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Preface

TABLEAUX, the International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, is a conference series that started in 1992 and has been
held every year since then. The series brings together researchers interested in all aspects
- theoretical foundations, implementation techniques, systems development and applica-
tions - of the mechanization of reasoning with tableaux and related methods. Since 1995,
proceedings of TABLEAUX have been published in Springer’s LNCS/LNAI series.

TABLEAUX 2023 was the 32nd edition of the conference series and it was an in-
person conference hosted by the Czech Technical University in Prague, Czech Republic,
September 18-21, 2023. It was co-located with the 14th International Symposium on
Frontiers of Combining Systems (FroCoS 2023).

The Program Committee received a total of 43 submissions, comprising 33 research
papers and 10 short papers. Each submission received on average three reviews in a
single-blind process and was evaluated during program committee discussions. Even-
tually 20 research papers and 5 short papers were accepted for presentation at the
conference.

This volume includes all the accepted research papers and short papers of
TABLEAUX 2023. These include papers on proof theory, with deductive mechanisms
ranging from tableaux, sequent calculi and extensions, and non-wellfounded proofs.
Their objects of inquiry encompass a range of modal logics, including in the non-normal,
intuitionistic, constructive and temporal settings, linear logic, MV-algebras, separation
logic, first-order logics and results on cut-elimination, termination and complexity of
proof search, term-forming operators and proof-theoretic semantics. Investigations also
delve into formalised proofs, automated theorem proving for classical and non-classical
logics, and their integration with machine learning and SMT solvers. In addition to
the main track, this year’s edition hosted a special track on Artificial Intelligence and
Theorem Proving (AITP), inviting papers combining machine learning and related Al
methods with standard TABLEAUX topics.

This volume also includes abstracts of invited talks presented at TABLEAUX 2023.
The five invited speakers, chosen by the Program Committee, were:

— Marta Bilkova (Czech Academy of Sciences, Czechia) joint with FroCoS

— Chad E. Brown (Czech Technical University in Prague, Czechia) joint with FroCoS
— Valentin Goranko (Stockholm University, Sweden) joint with FroCoS

— Rosalie Iemhoff (Utrecht University, The Netherlands)

— Roman Kuznets (Technische Universitat Wien, Austria)

The following papers were selected by the Program Committee for awards:

— Best Paper. Ian Shillito, Iris van der Giessen, Rajeev Gore and Rosalie lemhoff. A new
calculus for intuitionistic Strong Lob logic: strong termination and cut-elimination,
formalised.
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— Best Junior Researcher Paper. Bahareh Afshari, Lide Grotenhuis, Graham Leigh
and Lukas Zenger. Ill-founded Proof Systems For Intuitionistic Linear-time Temporal
Logic.

The two awards were presented at the conference.

We thank all the people who contributed to making TABLEAUX 2023 a success. We
thank the Programme Committee and all additional reviewers for the time, professional
effort and expertise they invested to deliver the high scientific standards of the conference
and these proceedings. We thank the local organizers for making this event happen. We
thank the invited speakers for their inspiring talks, and the Steering Committee for their
helpful advice. We thank all the authors for their excellent contributions. Special thanks
to Jens Otten who supported us with advice through all phases of the conference.

We would also like to thank Springer for sponsoring the conference and publishing
these proceedings, University of Innsbruck for providing the registration system, and
the Czech Institute of Informatics, Robotics, and Cybernetics (CIIRC-CTU) for hosting
and supporting the conference and its organization.

July 2023 Revantha Ramanayake
Josef Urban
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Epistemic Logics of Structured Intensional Groups:
Agents - Groups - Names - Types

Marta Bilkova
Czech Academy of Sciences, Czechia

In the overwhelming majority of contributions to multi-agent epistemic, doxastic, and
coalition logic, a group is reduced to its extension, i.e., the set of its members. This
has a counter-intuitive consequence that groups change identity when their membership
changes, and rules out uncertainty regarding who is a member of a given group. Addi-
tionally, this idealization does not reflect the structure of groups, or the structured way in
which collective epistemic attitudes emerge, in the intended application of logical mod-
els. We will outline an abstract framework in which we can lift this idealisation, namely
replacing agent or group labels of epistemic modalities with names, or providing them
with an algebraic structure relevant to types of collective epistemic attitudes in question.
The resulting formalisms are essentially two-sorted, combining the language of labels
of modalities and the language of epistemic statements. A fully abstract account of
such epistemic logics can be given, linking two-sorted algebras (involving propositions
and group labels/types of knowledge) with monotone neighborhood frame semantics,
in terms of an algebraic duality. This can further be applied to obtain, e.g., a definability
theorem or to design a multi-type proof theory for the basic logic. We further discuss
several particular examples of algebraic signatures giving rise to interesting and useful
variants of group knowledge.



First-Order Instantiation-Based Tableau

Chad E. Brown
Czech Technical University in Prague, Czechia

‘We present a tableau calculus for first-order logic with equality. The calculus is a fragment
of the higher-order calculus that is the theoretical basis for the award winning higher-
order automated theorem prover Satallax and its successor Lash. A key aspect of the
calculus is that universal quantifiers only need to be instantiated with terms that occur on
one side of a disequation on the current open branch. This makes the search instantiation-
based (as no metavariables are introduced and no unification is used). We will give an
overview of the completeness proof and how the completeness proof can be modified
to justify various modifications to the calculus. Both Satallax and Lash make use of the
SAT solver MiniSat to determine when the search is complete (i.e., when every branch
of the tableau is closed). Superposition provers like Vampire and E and SMT solvers
like CVC5 and Z3 outperform Lash on typical first-order TPTP problems (used in the
CASC competition). However, we will present a set of first-order clausal problems on
which Lash significantly outperforms other provers.



Combining Semantic Tableaux

Valentin Goranko
Stockholm University, Sweden

Semantic tableaux for combined logical systems are usually constructed ad hoc and the
question of developing more general methodologies for combining tableaux is yet to be
systematically explored.

In this talk I will address that question and will outline a methodological approach for
combining tableaux. I will discuss the questions of transfer of soundness, completeness,
and termination from the components to the combined tableaux, both in general and
in the context of some important special cases, including multi-agent epistemic and
temporal epistemic logics.



Proof Systems and Termination

Rosalie Iemhoff
Utrecht University, The Netherlands

In the study of logics, proof systems are a useful tool, and proof systems that are ter-
minating even more so. Termination comes in degrees, where the strongest form of
termination arguably requires that any backwards proof search in the proof system ter-
minates. Not every application in which a proof system is involved needs this strong
form of termination, but some applications seem to do so. In this talk I discuss the role
of termination in proof theory, and connect it in particular to counter model constructions
and interpolation.



Always Look on Both Sides of Proof:
Syntax and Semantics as the Yin and Yang of Structural
Proof Theory

Roman Kuznets
Technische Universitiat Wien, Austria

Proof theory provides a purely syntactic way of reasoning, without the need to resort
to semantics. This is especially true of internal proof calculi where proof objects are
interpreted as formulas, as opposed to external calculi that also exploit semantic elements.
On the other hand, tableau formalisms suggest that the distinction between pure and
“impure” syntax, between internal and external calculi is, perhaps, more superficial
than commonly believed. Indeed, tableaus are typically isomorphic to some internal
sequent-like calculus, despite themselves being described in largely semantic terms.

I argue that the choice between embracing and avoiding semantic elements is a
false one, that the two sides of proof formalisms mutually enrich rather than oppose
each other. As an illustration of such successful interplay, I will discuss how semantic
intuitions have been instrumental in developing several proof formalisms, including
those used for solving two open problems: (1) the Lyndon interpolation property for
Godel-Dummett Logic and (2) decidability for the intuitionistic modal logic S4.

Supported by the Austrian Science Fund (FWF) project ByzDEL (P33600).
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Range-Restricted and Horn Interpolation
through Clausal Tableaux

Christoph Wernhard (&0

University of Potsdam, Potsdam, Germany
info@christophwernhard.com

Abstract. We show how variations of range-restriction and also the
Horn property can be passed from inputs to outputs of Craig interpo-
lation in first-order logic. The proof system is clausal tableaux, which
stems from first-order ATP. Our results are induced by a restriction of
the clausal tableau structure, which can be achieved in general by a proof
transformation, also if the source proof is by resolution/paramodulation.
Primarily addressed applications are query synthesis and reformulation
with interpolation. Our methodical approach combines operations on
proof structures with the immediate perspective of feasible implementa-
tion through incorporating highly optimized first-order provers.

1 Introduction

We show how variations of range-restriction and also the Horn property can be
passed from inputs to outputs of Craig interpolation in first-order logic. The
primarily envisaged application field is synthesis and reformulation of queries
with interpolation [5,39,56]. Basically, the sought target query R is understood
there as the right side of a definition of a given query ) within a given background
knowledge base K, i.e., it holds that K = (Q < R), where the vocabulary of R
is in a given set of permitted target symbols. In first-order logic, the formulas R
can be characterized as the Craig interpolants of K A Q and =K’V @', where
K, Q are copies of K’,Q" with the symbols not allowed in R replaced by fresh
symbols [14]. Formulas R exist if and only if the entailment K A Q | —~K' V @’
holds. They can be constructed as Craig interpolants from given proofs of the
entailment in a suitable calculus.

In databases and knowledge representation, syntactic fragments of first-order
logic ensure desirable properties, for example domain independence. Typically,
for given K and @ in some such fragment, also R must be in some specific
fragment to be usable as a query or as a knowledge base component. Our work
addresses this by showing for certain such fragments how membership is passed
on to interpolants and thus to the constructed right sides of definitions. The

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
— Project-ID 457292495. The work was supported by the North-German Supercomput-
ing Alliance (HLRN).

© The Author(s) 2023

R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 3-23, 2023.
https://doi.org/10.1007/978-3-031-43513-3_1
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4 C. Wernhard

fragment in focus here is a variant of range-restriction from [59], known as a
rather general syntactic condition to ensure domain independence [1, p. 97]. It
permits conversion into a shape suitable for “evaluation” by binding free and
quantified variables successively to the members of given predicate extensions.
Correspondingly, if the vocabulary is relational, a range-restricted formula can
be translated into a relational algebra expression. First-order representations of
widely-used classes of integrity constraints, such as tuple-generating dependen-
cies, are sentences that are range-restricted in the considered sense.

As proof system we use clausal tableauz [26,29-31,33], devised in the 1990s
to take account of automated first-order provers that may be viewed as enu-
merating tree-shaped proof structures, labeled with instances of input clauses.!
Such systems include the Prolog Technology Theorem Prover [53], SETHEO [32],
leanCoP [42,43] and CMProver [16,45,60,61]. As shown in [62], a given closed
clausal tableau is quite well-suited as a proof structure to extract a Craig inter-
polant. Via the translation of a resolution deduction tree [12] to a clausal tableau
in cut normal form [31,62] this transfers also to interpolation from a given reso-
lution/paramodulation proof.

Since the considered notion of range-restriction is based on prenexing and
properties of both a CNF and a DNF representation of the formula, it fits well
with the common first-order ATP setting involving Skolemization and clausifica-
tion and the ATP-oriented interpolation on the basis of clausal tableaux, where
in a first stage the propositional structure of the interpolant is constructed and
in a second stage the quantifier prefix.

Our strengthenings of Craig interpolation are induced by a specific restriction
of the clausal tableau structure, which we call hyper, since it relates to the proof
structure restrictions of hyperresolution [46] and hypertableaux [2]. However, it
is considered here for tree structures with rigid variables. A proof transformation
that converts an arbitrary closed clausal tableau to one with the hyper property
shows that the restriction is w.l.o.g. and, moreover, allows the prover unham-
pered search for the closed clausal tableaux or resolution/paramodulation proof
underlying interpolation.

Structure of the Paper. Section 2 summarizes preliminaries, in particular inter-
polation with clausal tableaux [62]. Our main result on strengthenings of Craig
interpolation for range-restricted formulas is developed in Sect. 3. Section 4 dis-
cusses Craig interpolation from a Horn formula, also combined with range-
restriction. The proof transformation underlying these results is introduced in
Sect. 5. We conclude in Sect.6 with discussing related work, open issues and
perspectives.

! Alternate accounts and views are provided by model elimination [34] and the con-
nection method [7,8].
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Proofs of nontrivial claims that are not proven in the body of the paper
are supplemented in the preprint version [63]. An implementation with the PIE
environment [60,61]? is in progress.

2 Notation and Preliminaries

2.1 Notation

We consider formulas of first-order logic. An NNF formula is a quantifier-free
formula built up from literals (atoms or negated atoms), truth-value constants
T, L, conjunction and disjunction. A CNF' formula, also called clausal formula,
is an NNF formula that is a conjunction of disjunctions (clauses) of literals.
A DNF formula is an NNF formula that is a disjunction of conjunctions (con-
junctive clauses) of literals. The complement of a literal L is denoted by L. An
occurrence of a subformula in a formula has positive (negative) polarity, depend-
ing on whether it is in the scope of an even (odd) number of possibly implicit
occurrences of negation. Let F' be a formula. Var(F) is set of its free variables.
Var™ (F) (Var™ (F)) is the set of its free variables with an occurrence in an atom
with positive (negative) polarity. Fun(F') is the set of functions occurring in it,
including constants, regarded here throughout as 0-ary functions. ’Predi(F ) is
the set of pairs (p, pol), where p is a predicate and pol € {4, —}, such that an
atom with predicate p occurs in F with the polarity indicated by pol. Voct (F) is
Fun(F)UPred®(F). A sentence is a formula without free variables. An NNF is
ground if it has no variables. If S is a set of terms, we call its members S-terms.
The = symbol expresses semantic entailment.

2.2 Clausal First-Order Tableaux

A clausal tableau (briefly tableau) for a clausal formula F is a finite ordered tree
whose nodes N with exception of the root are labeled with a literal lit(N), such
that for each node N the disjunction of the literals of all its children in their left-
to-right order, clause(N), is an instance of a clause in F'. A branch of a tableau
is closed iff it contains nodes with complementary literals. A node is closed iff
all branches through it are closed. A tableau is closed iff its root is closed. A
node is closing iff it has an ancestor with complementary literal. With a closing
node N, a particular such ancestor is associated as target of N, written tgt(N).
A tableau is regular iff no node has an ancestor with the same literal and is
leaf-closing iff all closing nodes are leaves. A closed tableau that is leaf-closing is
called leaf-closed. Tableau simplification can convert any tableau to a regular and
leaf-closing tableau for the same clausal formula, closed iff the original tableau is
so. Regularity is achieved by repeating the following operation [31, Sect.2.1.3]:
Select a node N with an ancestor that has the same literal, remove the edges
originating in the parent of N and replace them with the edges originating in
N. The leaf-closing property is achieved by repeatedly selecting an inner node

2 http://cs.christophwernhard.com/pie.
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N that is closing and removing the edges originating in N. All occurrences of
variables in (the literal labels of) a tableau are free and their scope spans the
whole tableau. That is, we consider free-variable tableauz [30, p. 158ff] with rigid
variables [26, p. 114]. A tableau without variables is called ground. The universal
closure of a clausal formula F' is unsatisfiable iff there exists a closed clausal
tableau for F. This holds also if clausal tableau is restricted by the properties
ground, reqular and leaf-closing in arbitrary combinations.

2.3 Interpolation with Clausal Tableaux

Craig’s interpolation theorem [13,15] along with Lyndon’s observation on the
preservation of predicate polarities [35] ensures for first-order logic the existence
of Craig-Lyndon interpolants, defined as follows. Let F, G be formulas such that
F = G. A Craig-Lyndon interpolant of F and G is a formula H such that
(1) F = H and H |= G. (2) Voct(H) C Voct(F) N Voct(G). (3) Var(H) C
Var(F)NVar(G). The perspective of validating an entailment F' |= G by showing
unsatisfiability of F' A =G is reflected in the notion of reverse Craig-Lyndon
interpolant of F and G, defined as Craig-Lyndon interpolant of F' and —G.
Following [62], our interpolant
construction is based on a gener-
alization of clausal tableaux where
nodes have an additional side label
that is shared by siblings and indi-
cates whether the tableau clause is (@) la()l
an instance of an input clause derived
from the formula F' or of the formula

G of the statement F'AG = L under- ~4(2) [a(2)] (@ [T]
lying the reverse interpolant. Thus, a / \

two-sided clausal tableau for clausal

formulas F' and G is a tableau for ~p(a) [H a(@) la(2)]

F N G whose nodes N with excep- ‘

tion of the root are labeled addition-

ally with a side side(N) € {F, G}, such P@@) [4]

that (1) if N and N’ are siblings, then

side(N) = side(N’); (2) if N has a Fig. 1. A two-sided clausal tableau.
child N’ with side(N’) = F, then clause(N) is an instance of a clause in F, and
if N has a child N’ with side(N’) = G, then clause(N) is an instance of a clause
in G. We also refer to the side of the children of a node N as side of clause(IN).
For side € {F,G} define path,;;.(N) “ Anicpamn and side(n')=side lIt(N'), Where
Path is the union of the set of the ancestors of N and {N}.

Let N be a node of a leaf-closed two-sided clausal tableau. The value of
ipol(V) is an NNF formula, defined inductively as specified with the tables below,
the left for the base case where N is a leaf, the right for the case where N is an
inner node with children Ny,..., N,.
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side(IN) side(tgt(N)) ipol(V)
F F 1L side(Ny) ipol(V)
F G lit(N) F V7, ipol(N;)
G F lit(IV) G Ni_, ipol(N;)
G G T

Example 1. Figure 1 shows a two-sided tableau for F' = p(a) A (—p(a) V q(a))
and G = (—q(a)Vr(a))A—r(a). Side G is indicated by gray background. For each
node the value of ipol, after truth-value simplification, is annotated in brackets.
The clauses of the tableau are —r(a) and —q(a) V r(a), which have side G, and
—-p(a) V q(a) and p(a), which have side F. If N is the node shown bottom left,
labeled with p(a), then pathg(N) = —p(a) A p(a) and pathe(N) = —r(a) A ~q(a).

If Ny is the root of a two-sided tableaux for clausal ground formulas F
and G, then ipol(Np) is a Craig-Lyndon interpolant of F' and —G.?> The CTIF
(Clausal Tableau Interpolation for First-Order Formulas) procedure (Fig. 2) [62]
extends this to a two-stage [9,24] (inductive construction and lifting) interpo-
lation method for full first-order logic. It is complete (yields a Craig-Lyndon
interpolant for all first order formulas F' and G such that F' = G) under the
assumption that the method for tableau computation in Step 3 is complete
(vields a closed tableau for all unsatisfiable clausal formulas). Some steps leave
room for interpolation-specific heuristics: In step 4 the choice of the terms used
for grounding; in step 5 the choice of the side assigned to clauses that are an
instance of both a clause in F’ and a clause in G’; and in step 7 the quantifier
prefix, which is constrained just by a partial order.

Example 2. Let F & Vzp(z) A Ve (-p(z) V q(z)) and let G ¥ Vo (—q(z) V
r(z)) — r(a). Clausifying F' and =G then yields F’ = p(z) A —p(z) V q(x) and
G’ = —q(z) Vr(z) A—r(a). The tableau from Fig. 1 is a leaf-closed ground tableau
for F” and G’ and we obtain q(a) as Hggp. Lifting for 7 = {} and G = {a} yields
the interpolant H = Vvy q(v1).

Example 3. Let F' & VaVyp(z,f(z),y) and let G % Jzp(a, z,g(x)). Clausify-
ing yields F' = p(x,f(z),y) and G’ = —p(a, z,g(z)). We obtain p(a,f(a),g(f(a)))
as Hgpp. Lifting is for F = {f} and ¢ = {a,g} with #; = a, ¢t = f(a) and
ts = g(f(a)). It yields H = Vo, JvaVus p(vy, v2,v3).

3 Interpolation and Range-Restriction

We now develop our main result on strengthenings of Craig interpolation for
range-restricted formulas.

3 So far, the interpolation method is a variation of well-known methods for sequent
systems [52,55] and analytic tableaux [20] when restricted to propositional formulas.
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3.1 CNF and DNF with Some Assumed Syntactic Properties

Following [59] we will consider a notion of range-restriction defined in terms of
properties of two prenex formulas that are equivalent to the original formula,
have both the same quantifier prefix but matrices in CNF and DNF, respectively.

INpuUT: First-order formulas F' and G such that F = G.
METHOD:

1. Free variables to placeholder constants. Let F. and G. be the sentences obtained
from F' and G by replacing each free variable with a dedicated fresh constant.

2. Skolemization and clausification. Apply there conversion to prenex form and
second-order Skolemization independently to F. and to =G, resulting in dis-
joint sets of fresh Skolem functions F’,G’, clausal formulas F’,G’, and sets
U = Var(F'),V' = Var(G') of variables such that

(a) F.=3FVU'F and -G. =3IGW'G'.
(b)  Voct(F') C VocT(F.) U F" and VocT (~G') C Voc™ (G.)UG'.
(c) YUV (F'AG) E L.

In case I or G’ contains the empty clause, exit with result H % | or H ' T,
respectively.

3. Tableau computation. Compute a leaf-closed clausal tableau for the clausal for-
mula F' AG’. This can be obtained, for example, from a clausal tableaux prover
for clausal first-order formulas.

4. Tableau grounding. Instantiate all variables of the tableau with ground terms
built up from functions in F' AG’ and possibly also fresh functions S = S; W Ss.
Observe that the grounded tableau is still a leaf-closed tableau for F' A G’.

5. Side assignment. Convert the ground tableau to a two-sided tableau for F”
and G’ by attaching appropriate side labels to all nodes except the root. This
is always possible because every clause of the tableau is an instance of a clause
in I/ orin G'.

6. Ground interpolant extraction. Let Herp be the value of ipol(No), where Ny is
the root of the tableau.

7. Interpolant lifting. Let F % F' U (Fun(F) \ Fun(G)) U S; and let G & G’ U
(Fun(G)\ Fun(F))US,. Let FG stand for FUG. An FG-mazimal occurrence of
an FG-term in a formula is an occurrence that is not within another FG-term.
Let {t1,...,tn} be the set of the FG-terms with an JG-maximal occurrence in
Hcro, ordered such that if ¢; is a subterm of ¢;, then i < j. Let {v1,...,vn}
be a set of fresh variables. For ¢ € {1,...,n} define the quantifiers Q; as 3 if
t; € F-terms and as V if ¢; € G-terms. Let

H,. def lel e ann H(/;RD7

where H/, is obtained from Hgrp by replacing all FG-maximal occurrences of
terms ¢; with variable v;, simultaneously for all 7 € {1,...,n}.

8. Placeholder constants to free variables. Let H be H. after replacing any con-
stants that were introduced in step 1 with their corresponding variables.

OutpuT: Return H, a Craig-Lyndon interpolant of the input formulas F' and G.

Fig. 2. The CTIF Procedure for Craig-Lyndon Interpolation [62].
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Although not syntactically unique, we refer to them functionally as cnf(F') and
dnf(F) since we only rely on specific — easy to achieve — syntactic properties that
are stated in the following Proposition 4-6.

Proposition 4. For all formulas F it holds that Var(cnf(F)) C Var(F);
VocE (enf(F)) € VocE (F); Var(dnf(F)) C Var(F); Voc™ (dnf(F)) C Voc® (F).

For prenex formulas F with an NNF matrix let dual(F) be the formula obtained
from F by switching quantifiers V and 3, connectives A and V, truth-value con-
stants T and L, and literals with their complement.

Proposition 5. For all formulas F it holds that cnf(F) = dual(dnf(=F));
dnf(F) = dual(cnf(—F)); enf(—=F) = dual(dnf(F)); dnf(=F) = dual(cnf(F)).

Proposition 6. Let Fy, Fy, ..., F, be NNF formulas. Then (i) Fach clause in
enf(Ai_, Fi) is in some cnf(F;). (i) Each conjunctive clause in dnf(\/]_, F;)
is in some dnf(F};). (iii) Formulas F; that are literals are in each clause in
enf(\i, Fi). (iv) Formulas F; that are literals are in each conjunctive clause
indnf(Al_, Fi). (v) IfS is a set of variables such that for alli € {1,...,n} and
clauses C in cnf(F;) it holds that Var(C)NS C Var™ (C), then for all clauses C
inenf(\/[, F}) it holds that Var(C)NS C Var™(C). (vi) If S is a set of variables
such that for alli € {1,...,n} and conjunctive clauses D in dnf(F;) it holds that
Var(D) NS C Var* (D), then for all conjunctive clauses D in dnf(\;_, F}) it
holds that Var(D)N S C Var™t (D).

3.2 Used Notions of Range-Restriction

The following definition renders the characteristics of the range-restricted for-
mulas as considered by Van Gelder and Topor in [59, Theorem 7.2] (except for
the special consideration of equality in [59]).

Definition 7. A formula F with free variables X is called VG T-range-restricted
if enf(F) = Q Mc and dnf(F) = Q Mp, where Q is a quantifier prefix (the same
in both formulas) upon universally quantified variables U and existentially quan-
tified variables £ (in arbitrary order), and Mc, Mp are quantifier-free formulas
in CNF and DNF, respectively, such that

1. For all clauses C' in Mc it holds that Var(C)NU C Var™ (C).
2. For all conjunctive clauses D in Mp it holds that Var(D) N E C Var™ (D).
3. For all conjunctive clauses D in Mp it holds that X C Var™ (D).

For VGT-range-restricted formulas it is shown in [59] that these can be translated
via two intermediate formula classes to a relational algebra expression. Related
earlier results include [17,18,40,41]. The constraint on universal variables is also
useful on its own as a weaker variation of range-restriction, defined as follows.

Definition 8. A formula F'is called U-range-restricted if cnf(F') = Q Mc where
@ is a quantifier prefix upon of the universally quantified variables U (there may
also be existentially quantified variables in Q) and Mc is a quantifier-free formula
in CNF such that for all clauses C in Mc it holds that Var(C)NU C Var™ (C).
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For formulas without free variables, U-range-restriction and VGT-range-restric-
tion are related as follows.

Proposition 9. Let F be a sentence. Then (i) F is VGT-range-restricted iff
F and —F are both U-range-restricted. (ii) If F is universal (i.e., in prenex
form with only universal quantifiers), then F is VG T-range-restricted iff F is U-
range-restricted. (iil) If F is existential (i.e., in prenex form with only existential
quantifiers), then F is VGT-range-restricted iff ~F is U-range-restricted.

U-range-restriction covers well-known restrictions of knowledge bases and
inputs of bottom-up calculi for first-order logic and fragments of it that are nat-
urally represented by clausal formulas [3]. First-order representations of tuple-
generating dependencies (TGDs) are VGT-range-restricted sentences: conjunc-
tions of sentences of the form VXY (A(XY) — 3Z B(YZ)), where A is a possibly
empty conjunction of relational atoms, B is a nonempty conjunction of relational
atoms and the free variables of A and B are exactly those in the sequences X'
and Y Z, respectively. Also certain generalizations, e.g., to disjunctive TGDs,
where B is built up from atoms, A and V, are VGT-range-restricted.

3.3 Results on Range-Restricted Interpolation

The following theorem shows three variations for obtaining range-restricted inter-
polants from range-restricted inputs.

Theorem 10 (Interpolation and Range-Restriction). Let F and G be
formulas such that F = G.

(i) If F is U-range-restricted, then there exists a U-range-restricted Craig-
Lyndon interpolant H of F and G. Moreover, H can be effectively con-
structed from a clausal tableau proof of F E G.

(ii) If F and G are sentences such that F and =G are U-range-restricted, then
there exists a VGT-range-restricted Craig-Lyndon interpolant H of F' and
G. Moreover, H can be effectively constructed from a clausal tableau proof
of F =G.

(iii) If F and =G are U-range-restricted, Var(F) = Var(G) = X, and (1) no
clause in cnf(F) has only negative literals; (2) for all clauses C' in cnf(—Q)
with only negative literals it holds that X C Var™ (C); (3) for all clauses C
in cnf(=G) it holds that Var(C) N X C Var™ (C), then there exists a VGT-
range-restricted Craig-Lyndon interpolant H of F and G. Moreover, H can
be effectively constructed from a clausal tableau proof of F = G.

Observe that Theorem 10.i requires range-restriction only for F', the first of
the two interpolation arguments. Theorem 10.iii aims at applications for query
reformulation that in a basic form are expressed as interpolation task for input
formulas F = K A Q(X) and G = =K' vV Q'(X). Here K expresses background
knowledge and constraints as a U-range-restricted sentence and Q(X) represents
a query to be reformulated, with free variables X'. Formulas K’ and @)’ are copies
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of K and @, respectively, where predicates not allowed in the interpolant are
replaced by primed versions. If the query @ is Boolean, i.e., X is empty, and
Q@ is VGT-range-restricted, then Theorem 10.ii already suffices to justify the
construction of a VGT-range-restricted interpolant. If X' is not empty, the fine-
print preconditions of Theorem 10.iii come into play. Precondition (1) requires
that enf(K) does not have a clause with only negative literals, which is satisfied
if K represents TGDs. Also cnf(Q) is not allowed to have a clause with only
negative literals. By precondition (2) all the free variables X must occur in all
those clauses of cnf(—=Q) that only have negative literals, which follows if ) meets
condition (3.) of the VGT-range-restriction (Definition 7). By precondition (3)
for all clauses C' in cnf(—=Q) it must hold that Var(C)NX C Var™ (C). A sufficient
condition for @ to meet all these preconditions is that dnf(Q) has a purely
existential quantifier prefix and a matrix with only positive literals where each
query variable, i.e., member of X, occurs in each conjunctive clause.

3.4 Proving Range-Restricted Interpolation — The Hyper Property

We will prove Theorem 10 by showing how the claimed interpolants can be
obtained with CTIF. As a preparatory step we match items from the specification
of CTIF (Fig.2) with the constraints of range-restriction. The following notion
gathers intermediate formulas and sets of symbols of CTIF.

Definition 11. An interpolation context is a tuple (F\G,F',G',F,G,E, U,
C,V), where F,G are formulas, F’,G’ are clausal formulas, C is a set of con-
stants, F,G are sets of functions, and &,U,V are sets of terms such that the
following holds. (i) F' = G. (ii) Let F, and G, be F' and G after replacing each
free variable with a dedicated fresh constant. Let C be those constants that were
used there to replace a variable that occurs in both F' and G. F’ and G’ are the
matrices of cnf(F.) and of cnf(—G.), after replacing existentially quantified vari-
ables with Skolem terms. (iii) F is the union of the set of the Skolem functions
introduced for existential quantifiers of cnf(F.), the set of functions occurring
in F, but not in G. and, possibly, further functions freshly introduced in the
grounding step of CTIF. Analogously, G is the union of the set of the Skolem
functions introduced for cnf(—G.), the set of functions occurring in G, but not
in F,, and, possibly, further functions introduced in grounding. (iv) £ and U are
the sets of all terms with outermost function symbol in F and G, respectively.
(v) VisEUuU UC.

The following statements about an interpolation context are easy to infer.

Lemma 12. Let (F,G,F',G',F,G,E,U,C, V) be an interpolation context. Then
(i) No member of G occurs in F'. (ii) No member of F occurs in G'. (iii) If F is
U-range-restricted, then for all clauses C in F' it holds that if a variable occurs
in C in a position that is not within an E-term it occurs in C in a negative literal,
in a position that is not within an E-term. (iv) If =G is U-range-restricted, then
for all clauses C in G’ it holds that if a variable occurs in C in a position that
s not within an U-term, it occurs in C in a negative literal, in a position that is
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not within an U-term. (v) If G satisfies condition (3) of Theorem 10.iii, then for
all clauses C in G’ it holds that any member of C that occurs in C in a position
that is not within an U-term occurs in C in a negative literal in a position that
s not within an U-term.

CTIF involves conversion of terms to variables at lifting (step 7) and at
replacing placeholder constants (step 8). We introduce a notation to identify
those terms that will be converted there to variables. It mimics the notation for
the set of free variables of a formula but applies to a set of terms, those with
occurrences that are “maximal” with respect to a given set S of terms, i.e., are
not within another term from S. For NNF formulas F' define S-Maz(F') as the
set of S-terms that occur in F' in a position other than as subterm of another
S-term. Define S-Maz ™ (F) (S-Maz~ (F), respectively) as the set of S-terms
that occur in F' in a positive (negative, respectively) literal in a position other
than as subterm of another S-term. We can now conclude from Lemma 12 the
following properties of instances of clauses used for interpolant construction.

Lemma 13. Let (F,G,F',G',F,G,E,U,C, V) be an interpolation context. Then

(i) If F is U-range-restricted, then for all instances C' of a clause in F' it holds
that V-Maz(C)NU C V-Maz™ (C).

(ii) If =G is U-range-restricted, then for all instances C of a clause in G’ it
holds that V-Maz(C)NE CV-Maz™ (C).

(iii) If condition (1) of Theorem 10.ii holds, then no instance C of a clause in
F’ has only negative literals.

(iv) If condition (2) of Theorem 10.iii holds, then for all instances C' of a clause
in G' with only negative literals it holds that C CV-Maz™ (C).

(v) If =G is U-range-restricted and condition (3) of Theorem 10.iii holds, then
for all instances C of a clause in G' it holds that V-Maz(C) N C C
V-Maz~ (C).

The following proposition adapts Props. 6.v and 6.vi to S-Maz.

Proposition 14. Let Fi, Fs, ..., F, be NNF formulas and let T be a set of
terms. Then (1) If S is a set of terms such that for all i € {1,...,n} and
clauses C in cnf(F};) it holds that T-Maz(C) NS C T-Mazx™ (C), then for all
clauses C in cnf(\/[_, F;) it holds that T-Maz(C) NS C T-Maz~ (C). (i) If
S is a set of terms such that for all i € {1,...,n} and conjunctive clauses D
in dnf(F}) it holds that T-Maz(D) NS C T-Maz™ (D), then for all conjunctive
clauses D in dnf(A\[_, F;) it holds that T-Maz(D)N S C T-Maz™* (D).

The key to obtain range-restricted interpolants from CTIF is that the tableau
must have a specific form, which we call hyper, as it resembles proofs by hyper-
resolution [46] and hypertableaux [2].

Definition 15. A clausal tableau is called hyper if the nodes labeled with a
negative literal are exactly the leaf nodes.
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While hyperresolution and related approaches, e.g., [2,3,11,36,46], consider
DAG-shaped proofs with non-rigid variables, aiming at interpolant extraction
we consider the hyper property for tree-shaped proofs with rigid variables. The
hyper requirement is w.l.o.g. because arbitrary closed clausal tableaux can be
converted to tableaux with the hyper property, as we will see in Sect. 5.

The proof of Theorem 10 is based on three properties that invariantly hold
for all nodes, or for all inner nodes, respectively, stated in the following lemma.

Lemma 16. Let (F,G, F',G',F,G,E,U,C,V) be an interpolation context and
assume a leaf-closed and hyper two-sided clausal ground tableau for F' and G'.

(i) If F is U-range-restricted, then for all nodes N the property INVc(N) defined
as follows holds: INVc(N) < For all clauses C' in cnf(ipol(N)) it holds that
V-Maz(C)NU C V-Maz™ (C) U V-Maz™ (pathg(N)).

(ii) If =G is U-range-restricted, then for all nodes N the property INVp(N)
defined as follows holds: INVp(N) <t For all conjunctive clauses
D in dnf(ipol(N)) it holds that V-Maz(D) N € C V-Mazt (D) U
V-Maz ™" (pathg(N)).

(i) If =G is U-range-restricted and conditions (1)—(3) Theorem 10.iii hold,
then for all inner nodes N the property INVx(N) defined as follows holds:
INVx(N) ¥ For all conjunctive clauses D in dnf(ipol(N)) it holds that
C CV-Mazt (D) UV-Maz™ (pathg(N)).

Each of Lemma 16.i, 16.ii and 16.iii can be proven independently by an
induction on the tableau structure, but for the same tableau, such that the
properties claimed by them can be combined. In proving these three sub-lemmas
it is sufficient to use their respective preconditions only to justify the application
of matching sub-lemmas of Lemma 13. That lemma might thus be seen as an
abstract interface that delivers everything that depends on these preconditions
and is relevant for Theorem 10.

We show here the proof of Lemma 16.i. Lemma 16.ii can be proven in full
analogy. The proof of Lemma 16.iii is deferred to [63, App. A]. In general, recall
that the tableau in Lemma 16 is a two-sided tableau for F’ and G’ that is leaf-
closed and hyper. Hence literal labels of leaves are negative, while those of inner
nodes are positive. All tableau clauses are ground and with an associated side
in {F, G} such that a tableau clause with side F is an instance of a clause in F”
and one with side G is an instance of a clause in G’.

Proof (Lemma 16.1). By induction on the tableau structure.

Base case where N is a leaf. If N and tgt(IN) have the same side, then
ipol(N) is a truth value constant, hence V-Maz(ipol(N)) = 0, implying
INVc(N). If N has side F and tgt(IN) has side G, then ipol(N) = lit(N),
which, because N is a leaf, is a negative literal. Thus V-Mazx(ipol(N)) =
V-Maz~ (ipol(N)), which implies INVc(N). If N has side G and tgt(/V) has side
F, then ipol(N) = lit(tgt(NV)), which, because N is a leaf, is a positive literal.
Thus V-Maz(ipol(N)) € V-Maz ™ (pathg(N)), implying INVc(N).



14 C. Wernhard

Induction Step. Let Ni,..., Ny, where 1 < n, be the children of N. Assume as
induction hypothesis that for ¢« € {1,...,n} it holds that INVc(NV;). Consider
the case where the side of the children is F. Then

(1) ipol(N) = Vi, ipol(NN;).

Assume that INVc(N) does not hold. Then there exists a clause K in cnf(ipol(N))
and a term ¢ such that (2) t e U; (3) t € V-Maz(K); (4) t ¢ V-Maz™ (K); (5)
t ¢ V-Max ™ (pathg(N)). To derive a contradiction, we first show that given (2),
(4) and (5) it holds that

(6) For all children N’ of N: t ¢ V-Maz™ (pathg(N')).

Statement (6) can be proven as follows. Assume to the contrary that there is
a child N’ of N such that ¢ € V-Maz™(pathg(N)). By (5) it follows that
t € V-Maz(lit(N')) and lit(N') is positive. By Lemma 13.1 and (2) there is
another child N” of N such that lit(N”) is negative and t € V-Maz(lit(N")).
Since the tableau is closed, it follows from (5) that tgt(N') has side G, which
implies that ipol(N") = lit(N"). Hence ¢t € V-Maz(ipol(N"')). Since ipol(N") is
a negative literal and a disjunct of ipol(N), it follows from (1) and Prop. 6.iii
that for all clauses C' in cnf(ipol(N)) it holds that t € V-Maz™ (C'), contradicting
assumption (4). Hence (6) must hold.

From (6), (2) and the induction hypothesis it follows that for all chil-
dren N’ of N and clauses C’ in cnf(ipol(N")) it holds that V-Maz(C") N {t} C
V-Maz~ (C"). Hence, by (1) and Prop. 14.i it follows that for all clauses C
in cnf(ipol(V)) it holds that V-Maz(C) N {t} C V-Maz™ (C). This, however,
contradicts our assumption of the existence of a clause K in cnf(ipol(N)) that
satisfies (3) and (4). Hence INV¢(N) must hold.

We conclude the proof of the induction step for INVc(N) by considering the
case where the side of the children of N is G. Then

(7) ipol(N) = AL ipol(V;).
(8) For all children N’ of N: pathg(N) = pathg(N').

INVc(N) follows from the induction hypothesis, (8), (7) and Prop. 6.i. O

The invariant properties of tableau nodes shown in Lemmas 16.i—16.iii apply
in particular to the tableau root. We now apply this to prove Theorem 10.

Proof (Theorem 10). Interpolants with the stated properties are obtained with
CTIF, assuming w.l.o.g. that the CNF computed in step 2 meets the requirement
of Sect. 3.1, and that the closed clausal tableau computed in step 3 is leaf-closed
and has the hyper property. That CTIF constructs a Craig-Lyndon interpolant
has been shown in [62]. It remains to show the further claimed properties of the
interpolant. Let (F,G,F',G',F,G,E,U,C,V) be the interpolation context for
the input formulas F' and G and let Ny be the root of the tableau computed
in step 3. Since Ny is the root, pathg(Ng) = pathg(Ng) = T and thus the
expressions V-Maz ™t (pathg(Ny)) and V-Maz ™ (pathg(Ng)) in the specifications
of INVc(Np), INVp(Ng) and INVx(Ng) all denote the empty set. The claims made
in the particular sub-theorems can then be shown as follows.
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(10.i) By Lemma 16.i it follows that INVc(Ny). Hence, for all clauses C' in
cnf(ipol(Np)) it holds that V-Maxz(C) NU C V-Maz™ (C). Tt follows that the
result of the interpolant lifting (step 7) of CTIF applied to ipol(Np) is U-range-
restricted. Placeholder constant replacement (step 8) does not alter this.

(10.ii) As for Theorem 10.i it follows that for all clauses C' in cnf(ipol(Ny))
it holds that V-Maz(C) NU C V-Maz™ (C). By Lemma 16.ii it follows that
INVp(Ng). Hence, for all conjunctive clauses D in dnf(ipol(Ny)) it holds that
V-Maz(D) N E C V-Max™ (D). It follows that the result of the interpolant
lifting of CTIF applied to ipol(Ng) is U-range-restricted. Since F' and G have no
free variables, placeholder constant replacement has no effect.

(10.iii) As for Theorem 10.ii it follows that for all clauses C' in cnf(ipol(Ny))
it holds that V-Maz(C)NU C V-Maz~ (C) and for all conjunctive clauses D in
dnf(ipol(Np)) it holds that V-Maz(D) N E C V-Maz™ (D). By Lemma 16.iii it
follows that INVx(Ny). Hence, for all conjunctive clauses D in dnf(ipol(Ny)) it
holds that C C V-Maz ™ (D). Tt follows that the result of the interpolant lifting
of CTIF applied to ipol(Ng) followed by placeholder constant replacement, now
applied to C, is VGT-range-restricted. O

4 Horn Interpolation

A Horn clause is a clause with at most one positive literal. A Horn formula
is built up from Horn clauses with the connectives A, 3 and V. Horn formulas
are important in countless theoretical and practical respects. Our interpolation
method on the basis of clausal tableaux with the hyper property can be applied
to obtain a Horn interpolant under the precondition that the first argument
formula F' of the interpolation problem is Horn. The following theorem makes
this precise. It can be proven by an induction on the structure of a clausal tableau
with the hyper property (see [63, App. B]).

Theorem 17 (Interpolation from a Horn Formula). Let F be a Horn
formula and let G be a formula such that F = G. Then there exists a Craig-
Lyndon interpolant H of F and G that is a Horn formula. Moreover, H can be
effectively constructed from a clausal tableau proof of F = G.

An apparently weaker property than Theorem 17 has been shown in [38, § 4]
with techniques from model theory: For two universal Horn formulas F and G
there exists a universal Horn formula that is like a Craig interpolant, except
that function symbols are not constrained. A universal Horn formula is there a
prenex formula with only universal quantifiers and a Horn matrix. For CTIF,
the corresponding strengthening of the interpolant to a universal formula can be
read-off from the specification of interpolant lifting (step 7 in Fig. 2).

The following corollary shows that Theorem 17 can be combined with The-
orem 10 to obtain interpolants that are both Horn and range-restricted.

Corollary 18 (Range-Restricted Horn Interpolants). Theorems 10.i,
10.7 and 10.7i1 can be strengthened: If F is a Horn formula, then there exists
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a Craig-Lyndon interpolant H with the properties shown in the respective theo-
rem and the additional property that it is Horn. Moreover, H can be effectively
constructed from a clausal tableau proof of F = G.

Proof. Can be shown by combining the proof of Theorem 10.i, 10.ii and 10.iii ,
respectively, with the proof of interpolation from a Horn sentence, Theorem 17.
The combined proofs are based on inductions on the same closed tableau with
the hyper property. a

5 Obtaining Proofs with the Hyper Property

Our new interpolation theorems, Theorems 10 and 17, depend on the hyper
property of the underlying closed clausal tableaux from which interpolants are
extracted. We present a proof transformation that converts any closed clausal
tableau to one with the hyper property. The transformation can be applied to
a clausal tableau as obtained directly from a clausal tableaux prover. Moreover,
it can be also be indirectly applied to a resolution proof. To this end, the reso-
lution deduction tree [12] of the binary resolution proof is first translated to a
closed clausal ground tableau in cut normal form [31, Sect. 7.22]. There the inner
clauses are atomic cuts, tautologies of the form —p(t1,...,t,) V p(t1,...,t,) or
p(t1,. .. tn) V p(t1,...,t,), corresponding to literals upon which a (tree) res-
olution step has been performed. Clauses of nodes whose children are leaves
are instances of input clauses. Our hyper conversion can then be applied to the
tableau in cut normal form. It is easy to see that a regular leaf-closed tableau
with the hyper property can not have atomic cuts. Hence the conversion might
be viewed as an elimination method for these cuts.

We specify the hyper conversion in Fig. 3 as a procedure that destructively
manipulates a tableau. A fresh copy of an ordered tree T' is there an ordered
tree T” with fresh nodes and edges, related to T through a bijection ¢ such that
any node N of T has the same labels (literal label and side label) as node ¢(N)
of T” and such that the i-th edge originating in node N of T ends in node M if
and only if the i-th edge originating in node ¢(N) of T” ends in node ¢(M). The
procedure is performed as an iteration that in each round chooses an inner node
with negative literal label and then modifies the tableau. Hence, at termination
there is no inner node with negative literal, which means that the tableau is
hyper. Termination of the procedure can be shown with a measure that strictly
decreases in each round (Prop. 20 in [63, App. C]). Figures4 and 5 show example
applications of the procedure.

Since the hyper conversion procedure copies parts of subtrees it is not a
polynomial operation.* To get an idea of its practical feasibility, we experimented
with an unbiased set of proofs of miscellaneous problems. For this we took those
112 CASC-J11 [54] problems that could be proven with Prover9 [37] in 400s per

4 A thorough complexity analysis should take calculus- or strategy-dependent proper-
ties of the input proofs into account. And possibly also the blow-up from resolution
to tree resolution underlying the cut normal form tableaux.
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INPUT: A closed clausal tableau.

METHOD: Simplify the tableau to leaf-closing and regular form (Sect. 2.2).
Repeat the following operations until the resulting tableau is hyper.

1. Let N’ be the first node visited in pre-order with a child that is an inner
node with a negative literal label. Let N be the leftmost such child.

2. Create a fresh copy U of the subtree rooted at N’. In U remove the edges

that originate in the node corresponding to V.

Replace the edges originating in N’ with the edges originating in N.

4. For each leaf descendant M of N’ with lit(M) = lit(N): Create a fresh
copy U’ of U. Change the origin of the edges originating in the root of
U' to M.

5. Simplify the tableau to leaf-closing and regular form (Sect. 2.2).

w

OutprUT: A leaf-closed, regular and hyper clausal tableau whose clauses are
clauses of the input tableau.

Fig. 3. The hyper conversion proof transformation procedure.

Fig. 4. Hyper conversion of a closed clausal tableau in two rounds.

/ \ / \ stmp / \ ‘ stmp ‘
—q q = P P = P P = P = p
/N VAR /N /N /\
-P p™q p P q p P q P p P q
A /\ | /\ |
P 7P q -q q -q P q -q
. .

Fig. 5. Hyper conversion of a closed clausal tableau in cut normal form in two rounds.
For each round the result after procedure steps 1