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Supervisor’s Foreword

A promising accelerator light source mechanism called steady-state microbunching
(SSMB) has been actively studied in recent years. The idea of SSMB is to scale
the longitudinal focusing of the electron beam in a storage ring from the conven-
tional radiofrequency range to optical laser wavelengths. The combination of
microbunching-enabled coherent radiation and the high repetition rate of electron
beam circulating in a storage ring makes SSMB a high-average-power high-flux
narrowband photon source, with wavelength extendable to soft X-ray. Such a high-
flux narrowband light source allows sub-meV energy resolution in angle-resolved
photoemission spectroscopy,which could provide newopportunities for fundamental
physics research, for example, to probe the energy gap distribution and electronic
states of superconducting materials. An SSMB-based kW-level extreme ultraviolet
(EUV) source is also appealing for the semiconductor industry to be used in EUV
lithography for high-volume chip manufacturing.

From the accelerator physics perspective, the six orders of magnitude shortening
of bunch length compared to that in a conventional storage ring provide challenges as
well as tremendous opportunities for the accelerator physics research of SSMB. The
Ph.D. thesis of Dr. Xiujie Deng is devoted to the theoretical and experimental studies
of SSMB, with important results achieved. The contribution of his thesis can be
summarized into three categories: first, answer the question of how to realize SSMB;
second, reveal what radiation characteristics can be obtained from the formed SSMB;
and third, experimentally demonstrate the working mechanism of SSMB in a real
machine for the first time. All these achievements, in particular, the first proof-of-
principle experiment, are of crucial and fundamental importance for the development
of SSMB. In addition, I believe the efforts of Dr. Deng on precision microbunching
dynamics will be of growing value to the general accelerator community, as the
requirement for beam manipulation becomes more and more demanding. I whole-
heartedly recommend this thesis to all accelerator scientists, especially those who
work on advanced light sources, and also to the potential users of SSMB.

Beijing, China
May 2023

Wenhui Huang
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Chapter 1
Introduction

Particle accelerators as photon sources are advanced tools in investigating the struc-
ture and dynamical properties of matter, and have enabled advances in science and
technology for more than half a century. The present workhorses of these sources are
storage ring-based synchrotron radiation facilities [1–3] and linear accelerator-based
free-electron lasers (FELs) [4–7]. These two kinds of sources deliver light with high
repetition rate and high peak brilliance and power, respectively. Some applications,
however, do need high average power and high photon flux. Kilowatt extreme ultra-
violet (EUV) light sources, for example, are urgently needed by the semiconductor
industry for EUV lithography [8]. Another example is that to realize high energy res-
olution in synchrotron-based angle-resolved photoemission spectroscopy (ARPES),
which is highly desired by fundamental condensed matter physics research, we need
the initial radiation photon flux before monochromator is high enough. To obtain
high average power and high photon flux, a high peak power or a high repetition rate
alone is not sufficient. We need both of them simultaneously.

The key of the high peak power of FELs lies in microbunching, which means
the electrons are bunched or sub-bunched to a longitudinal dimension smaller than
the radiation wavelength so that the electrons radiate in phase and thus cohere [9–
11]. The power of coherent radiation is proportional to the number of the radiating
electrons squared, therefore can be orders of magnitude stronger than the equivalent
incoherent radiation in which the power dependence on the electron number is linear.
The Self-Amplified Spontaneous Emission (SASE) scheme [6, 7] of microbunching
making the high-gain FELs so powerful, however, is actually a collective beam
instability which degrades the electron beam parameters and the microbunching
can only be exploited once. The repetition rate of the radiation is thus limited by
the repetition rate of the driving source, i.e., the linear accelerator. There are now
active efforts devoted to improve the repetition rate of FEL radiation, for example by
implementing the superconducting technology. However, the realization of a high-
average-power, continuous-wave (CW), narrowband, short-wavelength light source
remains a challenge.

© The Author(s) 2024
X. Deng, Theoretical and Experimental Studies on Steady-State Microbunching,
Springer Theses, https://doi.org/10.1007/978-981-99-5800-9_1
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2 1 Introduction

Fig. 1.1 A schematic layout of a conventional storage ring (left) and an SSMB storage ring (right)

A mechanism called steady-state microbunching (SSMB) has been proposed [12,
13] to resolve this issue. The idea of SSMB is that by a phase-space manipulation
of an electron beam, microbunching forms and stays in a steady state each time
going through a radiator in a storage ring. The steady state here means a balance of
excitation anddamping, a true equilibrium in the context of electron storage ringbeam
dynamics. The schematic layout of an SSMB storage ring and its operating principle
in comparison to a conventional storage ring is shown in Fig. 1.1. SSMB replaces
the conventional bunching system in a storage ring, namely the radiofrequency (RF)
cavity,with a lasermodulation system.As thewavelength of laser (∼ µm) is typically
six orders ofmagnitude smaller than that of an RFwave (∼m), amuch shorter bunch,
i.e., microbunch, can thus be anticipated by invoking this replacement together with
a dedicated storage ring magnetic lattice.

The microbunching in SSMB is from the active longitudinal focusing provided
by the laser modulator, just similar to the conventional RF bunching through phase
stability principle [14, 15]. The radiation in SSMB, unlike that in an FEL, is a
passive process and the radiator can be rather short, for example it can be a simple
dipole magnet or a short undulator. The SSMB modulator is also much shorter than
the radiator undulator in a high-gain FEL. Therefore, there is no FEL mechanism
invoked in the bunching or radiation process in SSMB. If there is some unavoidable
FEL effects, it needs to be controlled within a safe region to not destroy the steady
state micobunches.
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To provide adequate and stable longitudinal focusing such that microbunches can
be formed and sustained, SSMB requires a powerful phase-locked laser to interact
with electrons on a turn-by-turn basis. The realization of such a laser system usually
demands an optical enhancement cavity. A laser cannot effectively interact with the
co-propagating electrons if the electrons go through a straight line, as the electric
field of a laser is perpendicular to the laser propagation direction. Amodulator which
bends the electron trajectory transversely is thus needed. The modulator is usually an
undulator, which is a periodic structure of dipole magnets with oscillating polarity.
Note that to avoid the head-on collisions, i.e., the Compton back-scattering, between
the reflected laser and the electrons, a four-mirror optical cavity, instead of a two-
mirror one, is chosen for the illustration in Fig. 1.1.

Note that we have not presented explicitly the energy replenish system for SSMB
in the illustration. The modulation laser in principle can be used to compensate the
radiation energy loss of the electrons, just like the traditional RF, but this may not
be a cost-effective choice. Besides, the electron beam current and output radiation
power will also be limited by the incident laser power. Instead, one may just use
a traditional RF cavity for the energy compensation. If a larger filling factor of
the electron beam is desired, the energy supply system could also be one or several
induction acceleration cavities. In the present envisioned high-average-power SSMB
photon source, induction linac is tentatively used as the energy compensation system
and the filling factor of the electron beam in the storage ring can be rather large, for
example larger than 50%.

Once realized, SSMBcancombine the strong coherent radiation frommicrobunch-
ing and the high repetition rate of beam circulating in a storage ring to provide high-
average-power, high-repetition (MHz to CW) narrowband radiation, with the wave-
length ranging from THz to soft X-ray. Such a novel photon source could provide
unprecedented opportunities for accelerator photon science and technological appli-
cations. For example, SSMB is promising for generating kW-level EUV radiation for
EUV lithography [16]. Energy-tunable high-flux narrowband EUV photons are also
highly desirable in condensed matter physics study, such as used in high-resolution
ARPES to probe the energy gap distribution and electronic states of superconduct-
ing materials. Ultrahigh-power deep ultraviolet and infrared sources are potential
research tools in atomic and molecular physics. Moreover, new nonlinear phenom-
ena and dynamical properties ofmaterials can be driven and studied by high-peak and
average-power THz sources. Besides high power, SSMB can also produce ultrashort
(sub-femtosecond to attosecond) photon pulse trains with definite phase relations,
which could be useful in attosecond physics investigations.

This dissertation is devoted to the theoretical and experimental studies of SSMB,
with important results achieved. The contribution of this dissertation can be sum-
marized as: first, answer the question of how to realize SSMB; second, reveal what
radiation characteristics can we obtain from the formed SSMB; and third, experi-
mentally demonstrate the workingmechanism of SSMB in a real machine for the first
time. More specifically, in Chaps. 2 and 3, we have conducted in-depth theoretical
and experimental studies on single-particle effects vital for the formation and trans-
portation of microbunching in a storage ring. Chapter 2 is on longitudinal dynamics,
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while Chap. 3 is devoted to transverse-longitudinal coupling dynamics. Chapter 4
is the theoretical and numerical investigation on the average and statistical charac-
teristics of the radiation generated from the formed microbunching. In Chap. 5, we
report our work on the first successful demonstration of the mechanism of SSMB,
performed at the Metrology Light Source in Berlin. Finally, in Chap. 6 we present a
short summary of the dissertation, together with some useful formulas and example
parameters of SSMB storage rings aimed for kW-level infrared, EUV and soft X-ray
radiation, respectively. Summarizing, the highlights of this dissertation are:

• Presents the first proof-of-principle experiment of a promising accelerator light
source mechanism.

• Covers precision longitudinal and transverse-longitudinal coupling dynamics in a
storage ring.

• Provides useful formulas and example parameters for high-power infrared, EUV
and soft X-ray light source design.

The work presented in this dissertation is of fundamental importance for the devel-
opment of an SSMB-based high-power photon source.
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Chapter 2
SSMB Longitudinal Dynamics

In this chapter, we study the single-particle longitudinal dynamics of SSMB. The
motivation is to answer the question: how to realize the short bunch length and
small longitudinal emittance in an electron storage ring, as required by SSMB?
Note that the curvilinear (Frenet-Serret) coordinate system and the state vector
X = (x, x ′, y,′ y′, z, δ)T , with T representing the transpose, are used throughout this
dissertation. For the longitudinal dynamics without coupling from the transverse
dimension, what we can play are the momentum compaction and RF systems, for
SSMB the laser modulators. The momentum compaction is a measure of particle
energy dependence of the recirculation path length

α = �C/C0

�E/E0
= 1

C0

∮
Dx (s)

ρ(s)
ds, (2.1)

where C0 is the ring circumference, E0 is the particle energy, Dx is the horizontal
dispersion which is a measure of the energy dependence of particle horizontal posi-
tion, ρ is the bending radius. Considering the energy-dependent velocity, the particle
energy dependence of the revolution time can be quantified by a parameter named
phase slippage factor

η = �T/T0
�E/E0

= α − 1

γ 2
, (2.2)

with γ the Lorentz factor. For linear dynamics, the phase slippage to longitudinal
dimension is like the drift space to transverse dimension, while the RF kick in lin-
ear approximation to longitudinal dimension is like the quadrupole to transverse
dimension. The difference is that the sign of phase slippage can either be positive or
negative, while the drift space can only have a positive physical length. To account
for the impact of local or partial phase slippage on the evolution of longitudinal optics
around the ring, Courant-Snyder analysis can be invoked for linear dynamics study
beyond adiabatic approximation. Such new derivations are necessary to accurately
describe the dynamics of the SSMBmechanism. Usually there is only one RF cavity
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in a storage ring, the longitudinal optics can be manipulated with more freedom with
multiple RFs. For example, the strong focusing principle can be implemented in the
longitudinal dimension to realize ultrashort bunch length, not unlike its transverse
counterpart. For nonlinear dynamics, both the nonlinearity of the phase slippage and
the sinusoidal modulation waveform can lead to subtle and rich beam dynamics. In
the following we will investigate along this brief review. Parts of the work presented
in this chapter have been published in Refs. [1–4].

2.1 Linear Longitudinal Dynamics

2.1.1 Longitudinal Courant-Snyder Formalism

SSMB means an ultrashort electron bunch in an equilibrium state. One successful
method of realizing short bunches in an electron storage ring is the implementation of
a quasi-isochronous lattice, which means particles with different energies complete
one revolution using almost the same time. The reason behind is the well-known
σz ∝ √|η| scaling lawof the “zero-current” bunch length givenbySands [5], inwhich
η = α − 1

γ 2 is the global phase slippage factor of the ring as introduced just now.
However, from single-particle dynamics perspective, there is a fundamental effect
limiting the lowest bunch length realizable in an electron storage ring originating
from the stochasticity of photon emission time or location. This stochasticity results
in a diffusion of the electron longitudinal coordinate z even if the global phase
slippage of the ring is zero as we cannot make all the local or partial phase slippages
zero simultaneously. The partial phase slippage factor from s1 to s2 is defined as

η̃(s2, s1) = 1

C0

∫ s2

s1

(
Dx (s)

ρ(s)
− 1

γ 2

)
ds. (2.3)

The physical picture of the partial phase slippage and quantum excitation in both the
particle energy and longitudinal coordinate, therefore the longitudinal emittance, is
shown in Fig. 2.1.

Due to this quantum diffusion, there exists a lower bunch length limit and the
energy spread diverges when the bunch length is pushed close to the limit. This
effect is of vital importance for SSMB and other ideas invoking ultrashort electron
bunches or ultrasmall longitudinal emittance in storage rings. It is first theoretically
investigated by Shoji et al. [6, 7], and recently more accurately analyzed by us using
the longitudinal Courant-Snyder formalism [2, 3, 8]. The key to understanding the
effect is to change from theglobal viewpoint to a local one, i.e., the quantumexcitation
at different places around the ring actually contribute to the longitudinal emittance
with different strengths, just like its transverse counterpart.

For an accurate analysis of this effect, here we invoke Chao’s solution by linear
matrices (SLIM) formalism [9]. SLIM is an early effort to generalize the classical
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Fig. 2.1 Physical picture of
the partial phase slippage
factors and quantum
excitation. Particles undergo
diffusion in both the particle
energy and the longitudinal
coordinate in each turn,
giving rise to longitudinal
emittance growth

Courant-Snyder theory [10] from 1D (2D phase space) to higher dimensions. It
invokes 6 × 6 transport matrices and applies to 3D (6D phase space) general coupled
latticewithout the assumption of a small synchrotron tune. Concerning the evaluation
of equilibrium beam parameters in an electron storage ring, SLIM can be viewed
as a method of solving linear Fokker-Planck equation [11, 12] without adopting
the adiabatic approximation. Therefore, it can account for the variation of one-turn
map around the ring. In other words, the contribution of diffusion and damping,
for example the quantum excitation and radiation damping, to the eigen emittances
depends on the local one-turn map.

The three eigen emittances εk of a particle beam, with k = I, I I, I I I , are defined
as the positive eigenvalues of i�S, where i is the imaginary unit, � = 〈XXT 〉 are
the second moments of the beam and

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.4)

The eigen emittances are invariants with respect to a linear symplectic transportation
T, as

i
newS = iT
oldTTS = T(i
oldS)T−1, (2.5)

in which the last step has invoked the symplecticity of T, i.e., TTST = S. There-
fore, i
newS is related to i
oldS by a similarity transform, thus having the same
eigenvalues.

In an electron storage ring, the equilibrium state is a balance between quantum
excitation and radiation damping. According to SLIM [9], the equilibrium eigen
emittances are given by

εk = CLγ
5

cαk

∮ |Ek5(s)|2
|ρ(s)|3 ds, (2.6)
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and the second moments of the beam are

�i j = 2
∑

k=I,I I,I I I

εkRe[EkiE∗
k j ], (2.7)

where αk are the damping constants of the three eigen modes, CL = 55re�/

(48
√
3me), with � the reduced Planck’s constant, re the electron classical radius,

Re[] means taking the real part of a complex number, ∗ means complex conjugate,
and Ek are eigenvectors of the 6 × 6 symplectic one-turn map, satisfying the follow-
ing normalization condition

E†
kSEk =

{
i, k = I, I I, I I I,

−i, k = −I,−I I,−I I I,
(2.8)

and E†
kSE j = 0 for k �= j , in which † means complex conjugate transpose. Eki is the

i-th component of the eigenvector Ek .
To simplify the discussion, here we only consider the horizontal and longitudinal

dimensions and use the state vector X = (
x, x ′, z, δ

)T
. Under the assumptions that

the ring is planar x-y uncoupled and the RFs are placed at dispersion-free locations,
which is the typical setup for present synchrotron radiation sources, the betatron coor-
dinate Xβ = BX can be introduced to parametrize the transfer matrix in a diagonal
form, with the dispersion matrix given by

B =

⎛
⎜⎜⎝

1 0 0 −Dx

0 1 0 −D′
x

D′
x −Dx 1 0
0 0 0 1

⎞
⎟⎟⎠ . (2.9)

The one-turn map M of X is related to the one-turn map Mβ of Xβ by

M = B−1MβB, (2.10)

with

Mβ =
(
Mxβ 0
0 Mzβ

)
,

Mx,zβ =
(
cos�x,z + αx,z sin�x,z βx,z sin�x,z

−γx,z sin�x,z cos�x,z − αx,z sin�x,z

)
,

(2.11)

in which�x = 2πνx and�z = 2πνs are the betatron and synchrotron phase advance
per turn. The eigenvectors of Mβ can be expressed using the Courant-Snyder func-
tions as



2.1 Linear Longitudinal Dynamics 11

vx = 1√
2

⎛
⎜⎜⎝

√
βx

i−αx√
βx

0
0

⎞
⎟⎟⎠ ei�I , vz = 1√

2

⎛
⎜⎜⎝

0
0√
βz

i−αz√
βz

⎞
⎟⎟⎠ ei�I I I , (2.12)

where �I and �I I I are phase factors which do not affect the normalization of eigen-
vector and the calculation of physical quantities. Therefore, the eigenvectors of M
are

EI = B−1vx = 1√
2

⎛
⎜⎜⎜⎝

√
βx

i−αx√
βx

−√
βx D′

x + i−αx√
βx

Dx

0

⎞
⎟⎟⎟⎠ ei�I , EI I I = B−1vz = 1√

2

⎛
⎜⎜⎜⎜⎝

i−αz√
βz

Dx
i−αz√

βz
D′
x√

βz
i−αz√

βz

⎞
⎟⎟⎟⎟⎠ ei�I I I .

(2.13)
According to SLIM, the equilibrium horizontal and longitudinal emittance are then

εx ≡ 〈Jx 〉 = 55

96
√
3

αF�2eγ
5

αH

∮ Hx (s)

|ρ(s)|3 ds,

εz ≡ 〈Jz〉 = 55

96
√
3

αF�2eγ
5

αL

∮
βz(s)

|ρ(s)|3 ds,
(2.14)

in which

Jx = (x − Dxδ)
2 + [

αx (x − Dxδ) + βx (x ′ − D′
xδ)

]2
2βx

,

Jz =
(
z − D′

x x − Dxx ′)2 + [
αz(z − D′

x x − Dxx ′) + βzδ
]2

2βz
,

(2.15)

are the horizontal and longitudinal action of a particle, and 〈〉 here means particle
ensemble average, αH and αL are the horizontal and longitudinal damping constants,

αH = U0

2E0
(1 − D), αL = U0

2E0
(2 + D), (2.16)

where U0 is the radiation energy loss of a particle per turn, D =
∮

(1−2n)Dx
ρ3

ds∮
1

ρ2
ds

,

with n = − ρ

B
∂B
∂ρ

the field gradient index, αF = 1
137 is the fine-structure constant,

�e = λe/2π = 386 fm is the reduced Compton wavelength of electron and Hx =
γx D2

x + 2αx Dx D′
x + βx D′

x
2 = D2

x+(αx Dx+βx D′
x)

2

βx
is the horizontal chromatic func-

tion. Therefore, it is the longitudinal beta function βz at the bending magnets that
matters in determining the contribution of quantum excitation to the longitudinal
emittance εz . A physical picture is given in Fig. 2.2 to help better understand this
argument.
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Fig. 2.2 A physical picture
to explain why a larger
longitudinal beta function βz
means a larger contribution
to longitudinal emittance εz ,
with a given strength of
quantum excitation

After getting the equilibrium eigen emittances, we can obtain the secondmoments
of the beam according to Eqs. (2.7) and (2.13), more specifically,


β = 〈XβXT
β 〉 =

⎛
⎜⎜⎝

εxβx −εxαx 0 0
−εxαx εxγx 0 0

0 0 εzβz −εzαz

0 0 −εzαz εzγz

⎞
⎟⎟⎠ , (2.17)

and


 = 〈XXT 〉 = B−1
β

(
B−1

)T =
(


H 
HL


T
HL 
L

)
, (2.18)

where


H =
(

εxβx + εzγz D2
x −εxαx + εzγz Dx D′

x
−εxαx + εzγz Dx D′

x εxγx + εzγz D′2
x

)
,


HL =
(−εx (αx Dx + βx D′

x ) − εzαz Dx εzγz Dx

εx (γx Dx + αx D′
x ) − εzαz D′

x εzγz D′
x

)
,


L =
(

εxHx + εzβz −εzαz

−εzαz εzγz

)
.

(2.19)

The distribution of a Gaussian beam is related to the second moments matrix of the
beam according to

ψ(X) = 1

(2π)2
√
det


exp

(
−1

2
XT
−1X

)
= 1

(2π)2εxεz
exp

(
− Jx

εx
− Jz

εz

)
.

(2.20)

2.1.2 Classical σz ∝ √|η| Scaling

Now we first reproduce the classical σz ∝ √|η| scaling using this longitudinal
Courant-Snyder parameterization. To simplify the discussion further, in this section
and the following we focus on the longitudinal dimension only and the state vector
X = (z, δ)T is used. We treat first the case where there is only one RF placed at a
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dispersion-free location. In this case, the linear longitudinal one-turn map observed
in the middle of the RF cavity is

M =
(
1 0
h
2 1

)(
1 −ηC0

0 1

)(
1 0
h
2 1

)
=
(

1 − h
2ηC0 −ηC0

h − (
h
2

)2
ηC0 1 − h

2ηC0

)
, (2.21)

with h = eVRFkRF cosφs/E0 quantifying the RF acceleration gradient, where e is the
elementary charge, VRF is the RF voltage, kRF = 2π/λRF is the RF wavenumber, φs

is the synchronous phase and E0 = γmec2 is the electron energy. The R56 = −ηC0,
a measure for the dependence of z on δ, of the ring and the RF kick h can be viewed
as the longitudinal drift space and quadrupole, in correspondence to their transverse
counterparts, respectively. Note however that as mentioned before, the R56 can be
either positive or negative,while the physical length of a drift space is always positive.

The linear stability requires that

∣∣∣∣1 − h

2
ηC0

∣∣∣∣ < 1 ⇒ 0 < hηC0 < 4. (2.22)

Actually if the sinousidual modulation waveform is taken into account, the longitudi-
nal dynamics is more accurately modeled by a standard kick map [13]. We then need
hηC0 be small enough to avoid strong chaotic dynamics. An empirical safe criterion
is that 0 < hηC0 � 0.1. For rings working in the longitudinal weak focusing regime,
|νs | � 1, we then have

1 − h

2
ηC0 = cos�z ≈ 1 − �2

z

2
⇒ �z ≈

{
−√

hηC0 if η > 0,√
hηC0 if η < 0.

(2.23)

Therefore the longitudinal beta function βz at the RF center is

βzS = M12

sin�z
≈ −ηC0

�z
≈
√

ηC0

h
. (2.24)

In this dissertation, we use the subscript S to denote results which are the same with
that obtained in Sands’ classical analysis [5], although the method used here to get
these results is different from that of Sands. As |νs | � 1, therefore

βzS  | − ηC0|. (2.25)

We will see later in Sect. 2.1.6 that in a longitudinal strong focusing ring, |νs | can be
close to or even larger than 1, and βz can then be the same level of or smaller than
| − ηC0|.

Using this βzS to represent βz of the whole ring, we then get the longitudinal
emittance obtained in Sands’ analysis
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εzS = 55

96
√
3

αF�2eγ
5βzS

αL

∮
1

|ρ(s)|3 ds. (2.26)

For a ring consisting of isomagnets, ρ is a positive constant and

αL = Js
U0

2E0
= Js

2π�eαFγ 3

3ρ
, (2.27)

with Js = 2 + D the longitudinal damping partition number [5] and nominally Js ≈
2, we have

βzS = −ηC0

sin�z
≈
√

ηC0

h
,

νs = 1

2π
arcsin

(−ηC0

βzS

)
≈ − η

|η|
√
hηC0

2π
,

σzS = √
εzSβzS ≈

√
Cq

Js

γ 2

ρ

√
ηC0

h
≈ σδSβzS,

σδS = √
εzSγzS ≈

√
εzS

βzS
≈
√
Cq

Js

γ 2

ρ
,

εzS ≈ Cq

Js

γ 2

ρ

√
ηC0

h
≈ σzSσδS ≈ σ 2

δSβzS,

(2.28)

where Cq = 55�e
32

√
3

= 3.8319 × 10−13 m. Therefore, to generate short bunches in an
electron storage ring, we need to implement a quasi-isochronous lattice, i.e., a small
η, and a high RF acceleration gradient, i.e., a large h. We also note that the energy
spread of an electron beam in the classical analysis is dominantly determined by the
beam energy and bending radius of the bending magnets, and has little dependence
on the bunch length or global phase slippage of the ring.

2.1.3 Beyond the Classical σz ∝ √|η| Scaling

2.1.3.1 Analysis

Using a single βzS to represent that of the whole ring is valid in usual rings where the
relative variation of βz is negligible and the electron distribution in the longitudinal
phase space is always upright. But when the global phase slippage is small, the partial
phase slippage can be significantly larger than the global one and the variation of
βz and beam orientation in the longitudinal phase space around the ring can be
significant, thus the classical σz ∝ √|η| scaling fails. Now we present an accurate
analysis of this effect using the longitudinal Courant-Snyder formalism.
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If there is only a single RF cavity placed at a dispersion-free location in the ring,
then at a specific position s j , the ring can be divided into three parts, with their
longitudinal transfer matrices given by

T(sRF, s j ) =
(
1 −η̃(sRF, s j )C0

0 1

)
,

T(sRF, sRF) =
(
1 0
h 1

)
,

T(s j , sRF) =
(
1 −η̃(s j , sRF)C0

0 1

)
,

(2.29)

where η̃(sRF, s j ) + η̃(s j , sRF) = η, In the analysis, the RF cavity is assumed to be a
zero-length one. The one-turn map at s j is then

M(s j ) = T(s j , sRF)T(sRF, sRF)T(sRF, s j )

=
(
1 − η̃(s j , sRF)hC0 −ηC0 + η̃(s j , sRF)η̃(sRF, s j )hC2

0
h 1 − η̃(sRF, s j )hC0

)
.

(2.30)

Therefore,

βz(s j ) = M12(s j )

sin�z
= −ηC0 + η̃(s j , sRF)η̃(sRF, s j )hC2

0

sin�z
, (2.31)

Note that βz is always positive, and

dβz(s j )

ds j
=

[
η̃(sRF, s j ) − η̃(s j , sRF)

]
hC0

sin�z

(
Dx (s j )

ρ(s j )
− 1

γ 2

)

= 2αz(s j )

(
Dx (s j )

ρ(s j )
− 1

γ 2

)
,

(2.32)

which is different from the conventional relation dβx,y

ds = −2αx,y in transverse dimen-
sions [4].

The first term in the numerator of Eq. (2.31) is the conventional global phase
slippage. The second term reflects the impact of the partial phase slippage on βz .
In usual rings, the second term is much smaller than the first term, therefore βz

is almost a constant value around the ring. As mentioned, the classical formulas of
bunch length σzS, energy spread σδS, and longitudinal emittance εzS in last section are
actually obtained with such approximation. Now with both terms in the numerator
of Eq. (2.31) considered, the more accurate formula of the longitudinal emittance is
then

εz = εzS
〈βz〉ρ
βzS

= εzS

(
1 + hC0

〈η̃2(s j , sRF)〉ρ − η〈η̃(s j , sRF)〉ρ
η

)
. (2.33)
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Note that 〈〉ρ here means the radiation-weighted average around the ring, defined as

〈P〉ρ =
∮

P
|ρ(s)|3 ds∮

1
|ρ(s)|3 ds

, (2.34)

i.e., the average is actually conducted at places with nonzero bending field. After
getting the longitudinal emittance and Courant-Snyder functions, the bunch length
and energy spread at a specific location si are then

σz(si ) = √
εzβz(si ) ≈ σzS

√
εz

εzS

√
1 − η̃(si , sRF)η̃(sRF, si )

hC0

η
,

σδ(si ) = √
εzγz(si ) ≈ σδS

√
εz

εzS
.

(2.35)

We remind the readers that the energy spread and γz are unchanged outside the RF
cavity. In addition, if the contribution of 1

γ 2 is negligible in the definition of η, then
αz and βz will vary notably only inside the bending magnets. Actually, the chromatic
Hx function, a parameter quantifying the coupling of horizontal emittance to bunch
length as can be seen from Eq. (2.19), also changes only inside the bending magnets.
Both arguments reveal the fact that in ultrarelativistic cases, bunch length changes
only inside the bending magnets. We will see this clearly in Fig. 2.3.

By investigating the bunch length at the RF cavity

σz(sRF) ≈ σzS

√
εz

εzS
= σδS

√
η

hC0
+ 〈η̃2(s j , sRF)〉ρ − η〈η̃(s j , sRF)〉ρC0, (2.36)

we observe that there exists a lower bunch length limit when η approaches zero

σz,limit = σδS

√
〈η̃2(s j , sRF)〉ρC0. (2.37)

This limit is the main consequence of the unavoidable quantum diffusion of longitu-
dinal coordinate in a storage ring. It has little dependence on the global phase slippage
and RF voltage, once the beam energy and dispersion function pattern around the
ring is given. Since σzS ∝ √|η|, the above bunch length limit means εz

εzS
will diverge

as η approaches zero. The energy spread will thus diverge in this process.
While the bunch length at theRF cavitywill saturate at the limit given byEq. (2.37)

with the decrease of η, the bunch length at other places, from which the partial
phase slippage to the RF cavity is large, may first decrease and then increase. The
reason is that the increased energy spread will lead to bunch lengthening through the
partial phase slippage from the RF cavity to the specific location. In other words, the
longitudinal beta function ratio between that at the RF cavity and that at the specific
location may increase with the lowering of η.
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2.1.3.2 Experimental Verification

The above analysis has been confirmed by numerical simulation as presented in
Ref. [2]. Now we introduce our experimental work on this quantum diffusion effect.
The experiment was conducted at the Metrology Light Source (MLS) [14–16] of the
Physikalisch-Technische Bundesanstalt in Berlin. For usual rings, the bunch length
limit given by Eq. (2.37) is a couple of 10 fs to about 100 fs, while the typical bunch
length in operation is in 10 ps level. So this effect is negligible in almost all existing
rings. However, with the accelerator physics and technologies continue to advance,
more ambitious goals of bunch length can be envisioned and realized in the future
to benefit more from the electron beam. For example, in an SSMB storage ring, the
desired bunch length is sub-micron or even nanometer, which corresponds to sub-
fs in unit of time. The quantum diffusion investigated here then becomes the first
fundamental issue that needs to be resolved. With such motivation to develop an
SSMB light source, and considering that it is a fundamental physical effect by itself,
we believe it is important to experimentally verify this effect.

To observe the influence of this effect, we need the second term in the bracket
of Eq. (2.33) to be comparable or larger than 1, which is non-trivial for many of
the existing storage rings. Other collective and single-particle effects stand in the
way before arriving at such a small value of η. However, due to the dedicated quasi-
isochronous lattice design and the individually independent magnet power supplies
of theMLS storage ring, there is great flexibility in tailoring the lattice optics to obtain
a locally large and globally small phase slippage simultaneously, thus opening the
possibility to see this effect in an existing machine. Another characteristic making
the MLS an ideal test bed of single-particle beam dynamical effects is that it can
operate with a beam current ranging from 1 pA (a single electron) to 200 mA.

We have prepared two quasi-isochronous lattice optics at the MLS, named lattice
A and B, respectively. Lattice A is the standard quasi-isochronous lattice, while
lattice B is developed and dedicated for this experiment. The optical functions of
the two lattices are shown in Fig. 2.3. Other related parameters of the two lattices
are given in Table 2.1. The key difference of these two lattices is that lattice B has a
much larger partial phase slippage and average value of 〈βz〉ρ . Therefore, the bunch
length limit in lattice B (469 fs at 630 MeV) due to this quantum diffusion is larger
than that in lattice A (115 fs at 630 MeV). Note that with the given parameters set,
βz in lattice A is almost a constant value around the ring, while βz in lattice B varies
significantly and at many places is much larger than that in lattice A.

As can be seen in Fig. 2.3, the magnitudes of horizontal dispersion function Dx

of lattice B are large at some of the bending magnets, which according to Eq. (2.3)
means the local phase slippage increases or decreases sharply within them, leading to
a large variation of local phase slippage η̃ and βz . The small global phase slippage η is
realized by canceling the contribution of positive and negative Dx at different bending
magnets. We remind the readers that this lattice can also be used for the delayed
alpha-buckets study in which the momentum differences of particles in different
alpha-buckets can be translated into large arrival time differences through the large
partial phase slippage [16], which might be useful for some user experiments.
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Table 2.1 Parameters of the two lattices of the MLS storage ring used in the experiment

Parameter Value Description

C0 48 m Ring circumference

E0 630 MeV Beam energy

U0 9.14 keV Radiation energy loss

fRF 500 MHz RF frequency

VRF 600 kV RF voltage

hRF 0.01 m−1 RF acceleration gradient

σδS 4.4 × 10−4 Classical energy spread

εx 197.3 nm Lattice A

Js 1.95 Lattice A

〈η̃(s j , sRF)〉ρ 2.5 × 10−5 Lattice A√
〈η̃2(s j , sRF)〉

ρ
1.6 × 10−3 Lattice A

σz,limit 34 µm (115 fs) Lattice A

εx 219.4 nm Lattice B

Js 1.95 Lattice B

〈η̃(s j , sRF)〉ρ −5.5 × 10−3 Lattice B√
〈η̃2(s j , sRF)〉

ρ
6.7 × 10−3 Lattice B

σz,limit 142 µm (469 fs) Lattice B

To evaluate the possibility of verifying this effect experimentally, the bunch length
and energy spread evolution around the ring in these two lattices have also been
presented in Fig. 2.3. Note that the bunch length formula in Eq. (2.35) contains only
the contribution from longitudinal emittance. Considering the bunch lengthening
by horizontal emittance at dispersive locations, according to Eq. (2.19), the more
accurate formula of bunch length is [1, 18]

σz = √
εzβz + εxHx . (2.38)

Strictly speaking, Courant-Snyder and dispersion functions are only well-defined in
a planar uncoupled lattice and only when the RF cavity is placed at a dispersion-free
location. For a general coupled lattice, the more accurate SLIM formalism should be
referred, i.e.,

σz =
√
2

∑
k=I,I I,I I I

εk |Ek5|2,

σδ =
√
2

∑
k=I,I I,I I I

εk |Ek6|2.
(2.39)
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Fig. 2.3 Two lattices used in
the experiment. Evolution of
a βx,y , b Dx and βz , c σz , d
σδ , around the ring. In this
plot, the RF cavity is placed
at sRF = 0 m and VRF = 600
kV is applied, the global
phase slippage used is
η = 1 × 10−5. The dipole
magnets are shown at the top
as blue rectangles. Each
dipole has a length of 1.2 m
and bends the electron
trajectory for an angle of
π/4. βx,y and Dx are
obtained by fitting a model to
the BPM-corrector response
matrix (LOCO) [17]. The
bunch length and energy
spread evolution are
calculated based on the
longitudinal Courant-Snyder
formalism and SLIM
formalism

On the other hand, although the RF cavity is placed at a dispersive location in lattice
B, we have confirmed that the Courant-Snyder parametrization for beam dynamics
analysis in this case is still largely valid, since the difference of result between that
given by the longitudinal Courant-Snyder formalism and the more accurate SLIM
formalism is very small.

As can be seen in Fig. 2.3, in which the global phase slippage η is lowered to
be 1 × 10−5, which corresponds to a synchrotron frequency of fs = 2.2 kHz with
VRF = 600 kV, the energy spread grows to be σδ = 7.9 × 10−4, while the classical
energy spread is σδS = 4.4 × 10−4. Such an amount of energy spread growth is
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detectable by measuring the spectra of Compton-backscattered (CBS) photons from
the head-on collision between a CO2 laser with the electron beam at the MLS [14,
19]. In addition, the bunch length difference in these two lattices are large enough
to be observable by evaluating the spectra and power of coherent THz radiation, and
invoking streak camera measurement.

To exclude the influence of collective effects, the beamcurrent is lowered to around
6 µA/bunch in a multi-bunch filling mode in the experiment. There is no indication
of microwave or other collective instabilities. The beam is stable (no fluctuation of
radiation source point observed) and its width and energy spread are independent
of the beam current when the single-bunch current is as low as the value applied in
the experiment. The horizontal chromaticity has been carefully corrected close to
zero (about 0.05) to minimize the beam energy widening arising from the betatron
motion of particles as will be reported in Sect. 3.2. The longitudinal chromaticity has
also been corrected to a small value to mitigate longitudinal nonlinear dynamics. We
note that a large quantum diffusion of longitudinal coordinate (a root-mean-square
value of 0.54 µm or 1.8 fs per turn in lattice B at 630 MeV) actually helps suppress
collective beam instability of ultrahigh frequency, as it will disperse any fine time
structure in an electron beam like density modulation and energy modulation [7].

To get an idea about the bunch length in the two lattices, firstwemeasure the coher-
ent THz radiation spectra and power as a function of the synchrotron tune in the two
lattices. The shorter the electron bunch, the higher frequency range the coherent THz
radiation spectra extends and the larger radiation power we can obtain. In the experi-
ment, the synchrotron frequency fs , thus the global phase slippage η ( fs ∝ √|η|), is
controlled by slightly changing the quadrupole currents while keeping the dispersion
function pattern unchanged. The THz beamline has its source point at π

16 bending
angle (s = 38.775 m) at the 7-th dipole, counted from s = 0 m in Fig. 2.3 which is
where the RF cavity is placed. To get the coherent synchrotron radiation emission
spectra in the THz spectral range, a commercial, Michelson-type FTIR spectrome-
ter (Vertex 80v) in combination with a 4K liquid helium cooled composite silicon
bolometer was used for measuring interferograms. After fast Fourier transform of
the data, the emitted spectrum can directly be accessed. For this experiment a series
of 128 interferograms have been acquired and the average Fourier transformed.

The measured coherent THz radiation power, integrated with wavenumber from
1 to 20 cm−1, together with the theoretical bunch length at the THz observation
calculated using Eq. (2.38), are shown in Fig. 2.4a. The measurement results agree
with our expectation reasonablywell. In particular, we notice that in latticeB, theTHz
power first increases and then decreases, with the lowering of the synchrotron tune,
while the radiation power in lattice A monotonically decreases and then saturates
in this process. This observation agrees well with our theoretical prediction of the
bunch length evolution in these two lattices. Not presented here, we also notice that
the frequency range of the spectra evolves consistently with the integrated power,
i.e., a larger THz power corresponds to a higher frequency range coverage. To be
more rigorous, we remind the readers that the bunch length in lattice A at the THz
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Fig. 2.4 Experiment
measurement results and
comparison with theory. a
Theoretical bunch length and
measured coherent THz
radiation power observed at
s = 38.775 m, in lattice A
and B, respectively. b
Theoretical, measured raw
data (shifted 8 ps
downwards) and fitted bunch
length at s = 24 m, in lattice
A and B, respectively. c
Theoretical and measured
electron beam energy
spreads σδ normalized by the
classical energy spread σδS
versus the synchrotron
frequency fs , in lattice A and
B, respectively

radiation observation point in principle will also diverge, as explained in last section,
if we push the phase slippage factor of the ring even closer to zero, which in practice
is a demanding work.

During themeasurement of coherent THz radiation, we at the same time employed
a streak camera to measure the electron bunch length directly. The streak camera at
the MLS is installed at the undulator beamline (opposite the RF cavity, s = 24 m
in Fig. 2.3). For the experiment, the undulator was closed from the “open” gap of
180 mm to 45.7 mm to have the fundamental-mode undulator radiation at a visible
wavelength available for the streak camera. Themeasurement results of bunch length
and the comparison with theory is presented in Fig. 2.4b. Note that we have shifted
the measured raw data downwards by 8 ps in the plot. The errorbars in the plot are
the standard deviation of the fitted results for each single column of the recorded
streak camera image. Again we observe the significant difference in the two lattices
concerning the bunch length evolution as a function of the synchrotron tune, which
agrees qualitatively with theory. However, quantitatively the measured raw data of
bunch length deviates notably from the theoretic prediction.
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Realizing that there will be unavoidable systematic errors concerning the streak
camera measurement because we are close to its resolution limit, we try to use the
model below to fit the data with the theory,

�zfit =
√

�z2measure − noise2 − offset, (2.40)

where �z means the bunch length. Note that here we use the full width at half
maximum (FWHM), instead of the root mean square, to quantify the bunch length,
since in the real case, the bunch profile is unavoidable non-Gaussian to some extent,
especially when the phase slippage factor of the ring is small. The noise in the above
equation is used to model the square sum-type error, while the offset accounts for the
systematic shift concerning the measurement results. The fitted data (noise = 7 ps
and offset = 3 ps applied) agreeswell with the theoretical curve as shown in Fig. 2.4b.
We remind the readers that all the data points in the plot are modeled with the same
noise and offset.

Further, we have measured the electron beam energy spread in the two lattices,
using the head-on CBS between a CO2 laser with the electron beam. Note that the
RF voltage applied in the above bunch length measurements is 500 kV, while now
it is 600 kV when doing the energy spread measurement. The measurement of CBS
photon spectra and the evaluation of electron beam energy spread based on it is a
well-established method implemented at the MLS, and is used in this experiment
to confirm the energy widening as we push the bunch length close to the limit,
by lowering the global phase slippage η. More details about this CBS method can
be found in Refs. [14, 19]. Quantitative analysis revealing the energy spreads σδ

normalized by the classical energy spread σδS, and its comparisonwith the theoretical
prediction from Eq. (2.35) for the two different lattices are shown in Fig. 2.4c. The
error bars in Fig. 2.4c are the root-mean-square uncertainties of the measurements
and are due to calibration errors and counting statistics. The data acquisition time
of a photon spectrum is 15 min. It can be seen from Fig. 2.4 that in lattice B the
energy spread grows significantly with the decrease of η, in the figure synchrotron
frequency fs , to the level of 1 × 10−5, while the energy spread stays almost constant
in lattice A. Again the measurement agrees qualitatively with the theory.

There is still some deviation of the measured energy widening and the theoretical
prediction for lattice B. Candidate explanations are: first, there is some uncertainty
in the determination of synchrotron frequency fs , especially when fs is lowered to
2 ∼ 3 kHz, considering the fact that the peak of the synchrotron frequency spectrum
then can be as wide as 0.5 kHz; second, there could be some remaining higher-order
phase slippages which may contribute to the energy spread growth when η is small
due to its impact on the longitudinal phase space bucket, while the theory assumes a
linear phase slippage.

The above presented measurements of bunch length and energy spread are very
demanding and are moving on the edge of the experimentally accessible parameter
space. Nevertheless, we see a nice qualitative agreement with the theory presented
in this section, proofing important experimental evidence to support the theoretical
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analysis. As far as we know, this type of investigation can actually not be performed
at any other operating storage ring. However, we recognize that the deviation of
the quantitative numbers between the measurements and theory concerning both
the bunch length and energy spread emphasizes the need for an even more improved
model. Summarizingwe state that our experimentalwork supports the existenceof the
analyzed quantum diffusion effect, and the argument that the quantum excitation on
longitudinal emittance at a given location depends on the longitudinal beta function
there. The evidence however is not strong enough to claim this is a fully consistent
proof of the effect.

2.1.4 Campbell’s Theorem

We point out that quantifying the impact of variation of βz around the ring on εz using
partial phase slippage variance 〈η̃2〉ρ − 〈η̃〉2ρ , as that done in Ref. [6] and also our
previous publication Ref. [1], is not generally correct. The reason is that while the
photon emission process is stochastic, the evolution of partial phase slippage around
the ring is deterministic. So the diffusion of z each turn d2

z due to quantum excitation
is

d2
z = 〈z2〉 − 〈z〉2 = C2

0 〈η̃2〉ρ〈N〉
〈
u2

E2
0

〉
, (2.41)

instead of

d2
z = 〈z2〉 − 〈z〉2 = C2

0

(〈η̃2〉ρ − 〈η̃〉2ρ
) 〈N〉

〈
u2

E2
0

〉
(2.42)

as that given in Ref. [6], where η̃ is the partial alpha slippage calculated using the
final observation location as the ending point, 〈N〉 is the expected number of emitted
photons, u is the photon energy, 〈u2〉 and later also 〈u〉 mean the average is taken
with respect to the photon energy spectrum.

This result can be understood with the help of Campbell’s theorem [20]. From
this theorem some expectation result for the Poisson point process follows. For
example, for the application in synchrotron radiation, we have δ = −∑

i
ui
E0
, where

the subscript i means the i-th photon emission.Then according toCampbell’s theorem
we have

〈δ〉 = −〈N〉
〈
u

E0

〉
= −TdipoleṄ

〈
u

E0

〉
,

〈δ2〉 − 〈δ〉2 = 〈N〉
〈
u2

E2
0

〉
= TdipoleṄ

〈
u2

E2
0

〉
,

(2.43)

where Ṅ is the number of photons emitted per unit time in the dipoles and Tdipole is
the total time within dipoles. Equation (2.43) is why Ṅ〈u2〉 appears so often in the
calculation of energy spread, emittance, etc., in electron storage ring physics. Note
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that the relation in Eq. (2.43) holds as long as the radiation is a Poisson point process.
It is independent of whether 〈u〉 = 0 or not, and is also independent of the detailed
spectrum of the photon energy. In other words, the key of a Poisson point process
is the randomness in whether there is a kick or not, i.e, the kick number, and not in
the randomness of the size of the kicks. The importance of this theorem for electron
dynamics was first pointed out by Sands [21]. A proof can be found in the article of
Rice [22] and a less rigorous but simpler one in the lecture note of Jowett [23].

Nowwe can understand Eq. (2.41) as follows. Suppose that the RF is our observa-
tion point. We divide the ring into many sections, and in each section η̃(sRF, s j ) does
not change much. Then the change of electron longitudinal coordinate in one turn is
z = ∑

j z j , with z j = ∑
i C0η̃(sRF, s ji )

u ji

E0
the contribution due to photon emissions

within the section j . According to Campbell’s theorem, the variance of z j is

Var(z j ) = C2
0 η̃

2(sRF, s j )t jṄ
〈
u2

E2
0

〉
, (2.44)

where t j is the time within the dipoles in section j . As the photon emissions in
different sections are uncorrelated, then the variance of z is the sum of variance of
z j

〈z2〉 − 〈z〉2 = C2
0

∑
j

[
η̃2(sRF, s j )t j

]
Ttotal

TtotalṄ
〈
u2

E2
0

〉

= C2
0 〈η̃2(sRF, s j )〉ρ〈N〉

〈
u2

E2
0

〉
,

(2.45)

in which Ttotal = ∑
j t j is the total time within the dipoles. So now we have obtained

Eq. (2.41) following Campbell’s theorem.
Wecan also view the above argument fromanotherway.Given the samedispersion

function pattern, which means the same 〈η̃2〉ρ − 〈η̃〉2ρ as it is independent of the
observation point, a different longitudinal beta function pattern can be generated if
the RF is placed at a different location, therefore resulting in a different longitudinal
emittance according to Eq. (2.14).

Changing the RF location means shifting η̃(s j , sRF) up or down as a whole.
According to Eq. (2.33), the equilibrium emittance is a parabolic function of the
shifted value. When the RF is placed at a location such that 〈η̃(s j , sRF〉ρ = η

2 , we
arrive at the minimum longitudinal emittance

εz,min = εzS

(
1 + 〈η̃2〉ρ − 〈η̃〉2ρ − (

η

2

)2
ηC0/h

C2
0

)
. (2.46)

Themaximum longitudinal emittance is realizedwhen theRF is placed at a place such
that

∣∣〈η̃(s j , sRF〉ρ − η

2

∣∣ reaches the maximum possible value. When the minimum
longitudinal emittance is reached, the bunch length at the RF is
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σz,min(sRF) = σδS

√
ηC0

h
+
[
〈η̃2〉ρ − 〈η̃〉2ρ −

(η

2

)2]
C2
0 . (2.47)

In the case of ultrasmall η, we have

σz,min(sRF) ≈ σδS

√
〈η̃2〉ρ − 〈η̃〉2ρC0, (2.48)

and

εz,min ≈ εzS√
ηC0/h

(√
ηC0/h +

(〈η̃2〉ρ − 〈η̃〉2ρ
)
C2
0√

ηC0/h

)

≥ 2σ 2
δS

√
〈η̃2〉ρ − 〈η̃〉2ρC0.

(2.49)

The equality holds when βzS =
√

ηC0

h = C0

√
〈η̃2〉ρ − 〈η̃〉2ρ. Therefore, the variance

of partial phase slippage can be viewed as a parameter to quantify the lowest pos-
sible contribution of this effect to the equilibrium bunch length at the RF and the
longitudinal emittance with a dispersion function pattern given, if we can choose
the location of the RF as we want. However, in a real machine, the RF location is
fixed, and Eqs. (2.33) and (2.35) should be referred. This is why we state that using
〈η̃2〉ρ − 〈η̃〉2ρ to quantify the impact of this effect is not generally correct.

2.1.5 Minimizing Longitudinal Emittance

It is clear that the quantum diffusion of z needs to be carefully treated for the realiza-
tion and long-term maintenance of ultrashort bunch or small longitudinal emittance
in either a multi-pass device or a single-pass transport line with bending magnets and
large dispersion. A lower operating energy is preferred for suppressing the strength
of quantum excitation. Note that the energy scaling laws of this effect are differ-
ent in the one-turn or single-pass and steady-state cases; for the single-pass case,
i.e., Eq. (2.41), the root-mean-square diffusion of longitudinal coordinate dz ∝ γ 2.5,
while for the steady-state case, i.e., Eq. (2.48), σz,min ∝ γ , because the radiation
damping time also depends on γ .

As can seen in Eq. (2.14), the longitudinal beta function βz with respect to the
longitudinal dimension plays a role similar to that of the chromatic functionHx in the
transverse dimension. As both the longitudinal and transverse emittances originate
from quantum excitation, for a ring consisting of identical isochronous cells, the
same scaling law of the theoretical minimum emittance (TME), i.e., εx,z,TME ∝ γ 2θ3,
concerning the beam energy and bending angle of the dipole can be expected. Note
that the TME is independent of the bending radius. But we will show soon that the
bunch length limit does depend on the bending radius. According to the scaling, a
ring consisting of a larger number of isochronous cells, each with a smaller bending
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Fig. 2.5 A symmetric dispersion function pattern which makes each half of the bending magnet
isochronous, which is desired inminimizing the theoretical minimum bunch length and longitudinal
emittance when there is only a single RF or laser modulator in the ring. The lattice design for the
realization of the dispersion function pattern can be found in Ref. [25]

angle, can better minimize the emittance than a ring consisting of fewer cells with
larger bending. Generally, it is easier to realize small emittance in a larger ring.

Equation (2.48) gives the lower bunch length limit by optimizing the location of
RF cavity, with a given dispersion function pattern. To make this limit as small as
possible, in addition to ensuring a small global phase slippage, the variation in the
partial phase slippage should also be well confined by means of dedicated lattice
design. More specifically, the strategy is to tailor the horizontal dispersion func-
tion, thus to minimize the longitudinal beta function at the bending magnets. At the
MLS, the small global phase slippage is achieved by means of an overall integration
cancellation between the large positive and large negative horizontal dispersions at
different dipoles [15, 16]. Therefore, the partial phase slippage varies sharply within
the dipoles, leading to a large partial phase slippage variation and significant quan-
tum diffusion of z. To obtain small global and partial phase slippages simultaneously,
such cancellation should be done as locally as possible, and the magnitudes of the
dispersion at the dipoles should also be minimized, thus making the partial phase
slippage vary as gently as possible. In other words, each partial component of the
ring should be made as isochronous as possible. In this sense, the dispersion function
pattern in Fig. 2.5 is the most locally isochronous bending magnet [24], i.e., each
half of the bending magnet is isochornous.

2.1.5.1 Constant Bending Radius

Nowwe present some quantitative analysis of the minimization of longitudinal emit-
tance. In this section we use the partial R56, defined as

F(s2, s1) ≡ −η̃(s2, s1)C0 = −
∫ s2

s1

(
Dx (s)

ρ(s)
− 1

γ 2

)
ds, (2.50)
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for the analysis. As can be seen Eqs. (2.48) and (2.49), it is
√

〈F2〉ρ − 〈F〉2ρ that

determines the theoretical minimum bunch length and longitudinal emittance. Here

we present an analysis of the above scaling by evaluating
√

〈F2〉ρ − 〈F〉2ρ of a single
isochronous bending magnet with constant bending-radius, and whose dispersion
function is symmetric with respect to the dipole middle point as shown in Fig. 2.5.
To simplify the analysis, we start from the middle point of the dipole where the
dispersion angle is zero D′

m = 0, then the dispersion as a function of angle φ is

D(φ) = Dm cosφ + ρ(1 − cosφ), (2.51)

where Dm is the dispersion at the middle of the dipole. As we are mainly inter-
ested in the relativistic case, ignoring the contribution of 1

γ 2 on F , the condition of
isochronicity of each half of the dipole is

∫ θ
2

0
D(φ)dφ = 0, (2.52)

with θ the bending angle of each dipole. Substituting Eq. (2.51) into Eq. (2.52), we
get

Dm = ρ

(
1 −

θ
2

sin θ
2

)
≈ − 1

24
ρθ2,

De = ρ

(
1 −

θ
2

tan θ
2

)
≈ 1

12
ρθ2,

(2.53)

where De is the dispersion at the entrance and exit of the dipole. Then we have

F(φ) =
∫ φ

0
D(β)dβ = ρ

(
φ −

θ
2

sin θ
2

sin φ

)
,

〈F〉ρ = 1

θ

∫ θ
2

− θ
2

F(φ)dφ = 0,

〈F2〉ρ = 1

θ

∫ θ
2

− θ
2

F2(φ)dφ = 1

6
ρ2

[
2

(
−6 +

(
θ

2

)2
)

+ 9
θ
2

tan θ
2

+ 3

(
θ
2

)2
sin

(
θ
2

)2
]

,

√
〈F2〉ρ − 〈F〉2ρ ≈

√
210

2520
ρθ3.

(2.54)
Note that the F in this section is defined with the middle point of the bending magnet
as the starting point. Therefore, for a ring consisting of such isochronous isomagnets
(note that the global phase slippage of the ring is non-zero for a stable beammotion),
we have
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σz,min ≈ σδS

√
〈F2〉ρ − 〈F〉2ρ =

√
210

2520

√
Cq

Js

√
ργ θ3 ∝ √

ργ θ3, (2.55)

and

εz,min ≈ 2σ 2
δS

√
〈F2〉ρ − 〈F〉2ρ =

√
210

1260

Cq

Js
γ 2θ3 ∝ γ 2θ3. (2.56)

We can also derive the above emittance scaling using directly the longitudinal
beta function evolution in the dipole

βz(φ) = βzm − 2αzmF(φ) + γzmF
2(φ), (2.57)

where αzm, βzm, γzm are the longitudinal Courant-Snyder functions at the middle of
the dipole. Then

〈βz〉ρ = 1

θ

∫ θ
2

− θ
2

βz(φ)dφ

= ρ2
(
α2
zm + 1

) [
2
(
θ2 − 24

) + 3θ(θ + 3 sin(θ)) csc2
(

θ
2

)]
24βzm

+ βzm

≈ ρ2θ6
(
α2
zm + 1

)
30240βzm

+ βzm.

(2.58)

The minimum average of βz , 〈βz〉ρ,min, thus the minimum longitudinal emittance,
εz,min, is realize when

αzm = 0, βzm = 〈βz〉ρ,min

2
=

√
210

2520
ρθ3. (2.59)

The corresponding minimum longitudinal emittance is

εz,min = 55

96
√
3

αF�2eγ
5

αL

2π〈βz〉ρ,min

ρ2
=

√
210

1260

Cq

Js
γ 2θ3, (2.60)

which is the same as that given in Eq. (2.56). If the longitudinal damping partition
number Js = 2, then for practical use we have

σz,min[µm] ≈ 4.93ρ
1
2 [m]E0[GeV]θ3[rad],

εz,min[nm] ≈ 8.44E2
0 [GeV]θ3[rad]. (2.61)

This is the main result of our analysis of theoretical minimum bunch length and
longitudinal emittance in a longitudinal weak focusing ring. A comprehensive study
of minimizing longitudinal emittance can also be found in Ref. [4].
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Actually if we relax the condition of isochronousity for each dipole, and make
Dm and D′

m also variables that can be optimized, then we have

〈βz〉ρ = 1

θ

∫ θ
2

− θ
2

βz(φ)dφ

≈ βzm + D2
mθ2

12βzm
+ 4Dmρθ4

240βzm
+ 10ρ2θ6 + 504D′2

mρ2θ4 − 15D′2
mρ2θ6

161280βzm
.

(2.62)
When Dm = − ρθ2

40 , D
′
m = 0, and βzm =

√
7

840ρθ3, we reach theminimal of 〈βz〉ρ,min =√
7

420ρθ3 and longitudinal emittance

εz,min =
√
7

420

Cq

Js
γ 2θ3. (2.63)

This is also the result Eq. (29) in Ref. [4]. The emittance given in Eq. (2.63) is smaller
than that given in Eq. (2.60) or equivalently Eq. (2.61). However, we should note that
when isochronousity of each dipole is broken, to make the longitudinal beta function
in different dipoles identical, we need RF kick between each two neighboring dipoles
to adjust αz there, or we need a very long drift space between them if we consider the
contribution of 1

γ 2 on R56. This means at least N RFs or laser modulators are needed
if there are N dipoles in the ring. This is not very feasible in reality. In addition,
placing RFs at dispersive locations will make the dynamics becomes transverse-
longitudinal coupled. In the more-confronted or practical case of a single RF in the
ring, Eq. (2.61) is amore self-consistent evaluation of the theoreticalminimumbunch
length and longitudinal emittance.

Since high-powerEUVradiation is of particular interest for EUV lithography [26],
let us now do some evaluation based on our investigations to see if we can realize
high-power EUV radiation in a longitudinal weak focusing SSMB storage ring. For
coherent 13.5 nmEUVradiation generation,we need an electron bunch length around
3 nm or shorter. The lower limit of bunch length σz,min should be smaller than this
desired bunch length to avoid significant energy widening. Here we assume σz,min ≤
2 nm. If E0 = 400 MeV and ρ = 4 m (B = 0.334 T), then σδS = 1.7 × 10−4. To
realize σz,min ≤ 2 nm, according to Eq. (2.61), we need θ ≤ 0.0797 rad ≈ 2π rad

79 ,

which means 79 bending magnets are required in the ring. If the length of each
isochronous cell with a single bending magnet can be designed to be around 2 m,
then the circumference of the ring can be about 180 m, considering the sections of
laser modulation, radiation generation and the energy supply system, etc.

Applying the lowest phase slippage factor realizable in practice at present,which is
about η = 1 × 10−6, to realize a 3 nmbunch length in such a ring, the required energy

chirp strength is then h = ηC0

(
σδS
σzS

)2 = 5.88 × 105 m−1. The effective modulation

voltage of a laser modulator using a planar undulator is related to the laser and
undulator parameters as [27]
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VL = [J J ]K
γ

√
4PL Z0ZR

λL
tan−1

(
Lu

2ZR

)
, (2.64)

in which [J J ] = J0(χ) − J1(χ) with Jn the n-th order Bessel function of the
first kind and χ = K 2

4+2K 2 , K = eB0
mecku

= 0.934 · B0[T] · λu[cm] is the dimensionless
undulator parameter, determined by the undulator period and magnetic flux density,
PL is the modulation laser power, Z0 = 376.73 � is the impedance of free space,
ZR is the Rayleigh length of the laser, Lu is the undulator length. The linear energy
chirp strength around zero-crossing phase is therefore

h = eVL

E0
kL = e[J J ]K

γ 2mc2

√
4PL Z0ZR

λL
tan−1

(
Lu

2ZR

)
kL , (2.65)

where kL = 2π/λL is thewavenumber of themodulation laser. IfλL = 270 nm,λu =
4 cm, B0 = 1.02 T, Lu = 1.6 m, ZR = Lu

3 , then the required modulation laser power
to get h = 5.88 × 105 m−1 is PL = 2.75 GW.At present, 1MW stored average laser
power is the state-of-art value we can realize in practice for an optical enhancement
cavity. So we can only operate the cavity in pulsed mode, which means the average
radiation power will be limited. To put it another way, if a CW optical cavity and
a practical global phase slippage is applied, a longitudinal weak focusing SSMB
storage ring can only realize bunch length as low as tens of nanometer with a beam
energyof several hundredMeV.Such anSSMBring canprovide high-power radiation
with wavelength λR � 100 nm. We have presented in Table 6.1 of the final chapter
an example parameters set of SSMB ring for high-power infrared radiation. We
remind the readers again that considering the nonlinear modulation waveform, we
actually need 0 < hηC0 � 0.1 to avoid strong chaotic dynamics in a longitudinal
weak focusing ring.

The above limitation of longitudinal weak focusing scheme is the motivation for
us to develop the longitudinal strong focusing SSMB and transverse-longitudinal
coupling SSMB, or generalized longitudinal strong focusing SSMB, to compress
the bunch length further for coherent EUV and soft X-ray radiation generation. We
will present the details of these advanced scenarios in the following part of this
dissertation.

2.1.5.2 Transverse Gradient Bends

The above analysis of theoretical minimum bunch length and emittance is for a
constant bending radius. To minimize the longitudinal emittance further, transverse
and longitudinal gradient bending magnets (TGB and LGB) can be invoked. Below
we conduct some calculations based on the similar dispersion configuration as shown
in Fig. 2.5, but this time using a TGB. The Hill’s equation for the dispersion is
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d2D(s)

ds2
+
(

1

ρ(s)2
− k(s)

)
D(s) = 1

ρ(s)
. (2.66)

For simplicity, here we only investigate the case of a constant bending radius ρ(s) =
ρ and a constant transverse gradient k(s) = k. To simplify the writing, we denote

g ≡ 1

ρ2
− k. (2.67)

If g > 0, then the solution of Eq. (2.66) is

D(s) = Di cos
(√

gs
) + D′

i

sin
(√

gs
)

√
g

+ 1

gρ

[
1 − cos

(√
gs
)]

,

D′(s) = −Di
√
g sin

(√
gs
) + D′

i cos
(√

gs
) + 1√

gρ
sin

(√
gs
)
,

(2.68)

where Di and D′
i are the initial dispersion and dispersion angle at the origin s = 0

m, respectively. If g < 0, then the solution of Eq. (2.66) is

D(s) = Di cosh
(√|g|s

)
+ D′

i

sinh
(√|g|s)√|g| + 1

|g|ρ
[
−1 + cosh

(√|g|s
)]

,

D′(s) = −Di

√|g| sinh
(√|g|s

)
+ D′

i cosh
(√|g|s

)
+ 1√|g|ρ sinh

(√|g|s
)

.

(2.69)
Below, we present the derivations for the case of g > 0 and the results are similar

when g < 0. Like our previous calculations, we set the origin at the middle of the
dipole where D′

m = 0, the dispersion as a function of angle φ is then

D(φ) = Dm cos
(√

gρφ
) + 1

gρ

[
1 − cos

(√
gρφ

)]
. (2.70)

Substitute Eq. (2.70) into the isochronicity condition Eq. (2.52), we get

Dm = 1

gρ

[
1 −

√
gρ θ

2

sin
(√

gρ θ
2

)
]

≈ − 1

24
ρθ2

(
1 + 7

240
gρ2θ2

)
,

De = D

(
θ

2

)
= 1

gρ

[
1 −

√
gρ θ

2

tan
(√

gρ θ
2

)
]

≈ 1

12
ρθ2

(
1 + 1

60
gρ2θ2

)
.

(2.71)

The
√

〈F2〉ρ − 〈F〉2ρ in this case can be calculated as follows
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F(φ) =
∫ φ

0
D(φ′)dφ′ = 1

gρ

[
φ −

θ
2

sin
(√

gρ θ
2

) sin (√gρφ
)]

,

〈F〉ρ = 1

θ

∫ θ
2

− θ
2

F(φ)dφ = 0

〈F2〉ρ = 1

θ

∫ θ
2

− θ
2

F2(φ)dφ

= 1

6g3ρ4
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−12 + 2gρ2
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tan

(√
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(
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2
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(√
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(
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))2
sin

(√
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(
θ
2
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]

,

√
〈F2〉ρ − 〈F〉2ρ ≈

√
210

2520
ρθ3

(
1 + gρ2θ2

40

)
.

(2.72)

For example, to reduce
√

〈F2〉ρ − 〈F〉2ρ by a factor of two compared to the case of

no transverse gradient, we need

gρ2θ2

40
= −1

2
⇒ g = − 20

(ρθ)2
. (2.73)

For the example shown in last section, ρ = 4 m, θ = 2π
79 , then k = 63 m−2, which is

a practical gradient.

Besides the influence on
√

〈F2〉ρ − 〈F〉2ρ , the transverse gradient may also affect

the damping partition and hence has an impact on the bunch length and longitudinal
emittance. For the specific case of a constant bending radiuswith a constant transverse
gradient we are treating, we have

I2 =
∮

1

ρ2
ds = 2π

ρ
,

I4 =
∮

Dx

ρ3
(1 + 2ρ2k)ds = 0,

(2.74)

where I2 and I4 are the radiation integrals [5]. Then Js = 2 + I4
I2

= 2. So a dipole
with a constant bending radius and a constant transverse gradient is not very flexible
in controlling the damping partition number, due to the constraint of isochronous
condition. A varying transverse gradient may be helpful to minimize the longitudinal
emittance, and optimization of the transverse gradient profile based on numerical
method can be invoked. The application of TGB can also be analyzed following the
same formalism, which we do not detail in this dissertation.
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2.1.5.3 Transverse Emittance Scaling

For completeness, now we present the horizontal emittance scaling in a longitudinal
weak focusing SSMB storage ring. To realize the dispersion function pattern shown
in Fig. 2.5, in thin-lens approximation, the horizontal optical functions at the dipole
middle point are correspondingly1

βxm = −ρθ

3

sin�x

1 + cos�x
, αxm = 0, (2.75)

with �x the betatron phase advance per isochronous cell, which usually lies in
(π, 2π). We have assumed there is only a single dipole each isochronous cell. The
normalized eigenvector corresponding to the horizontal plane at the dipole middle
point is

EI (0) = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

√
βxm
i√
βxm

0
0

i√
βxm

Dm

0

⎞
⎟⎟⎟⎟⎟⎟⎠
ei�I . (2.76)

The transfer matrix of a sector dipole with no transverse gradient is

S(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cosα ρ sin α 0 0 0 ρ(1 − cosα)

− sin α
ρ

cosα 0 0 0 sin α

0 0 1 ρα 0 0
0 0 0 1 0 0

− sin α −ρ(1 − cosα) 0 0 1 ρ
(

α
γ 2 + α − sin α

)
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.77)

Then

Hx (α) = 2|EI5(α)|2 = 2|S(α)EI5(0)|2

= −ρ

{
θ

3

sin�x

1 + cos�x
sin2 α + 3

θ

1 + cos�x

sin�x

[
θ2

24
+ (1 − cosα)

]2}
.

(2.78)
Note that Hx (−α) = Hx (α). Putting in αH ≈ αL

2 ≈ U0
2E0

= 1
2Cγ

E3
0

ρ
, then according

to Eq. (2.14), the equilibrium horizontal emittance is

1 Private communication with Zhilong Pan.
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εx = 55
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√
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1
2Cγ
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(2.79)

Putting in the numbers, we have

εx [nm] = −366.5E2
0 [GeV]θ3[rad]

[
1

9
tan

(
�x

2

)
+ 1

10
cot

(
�x

2

)]
. (2.80)

Note that the horizontal emittance diverges as �x approaches π or 2π .

2.1.6 Longitudinal Strong Focusing

2.1.6.1 Analysis

The analysis in the above sections considers the case with only a single RF. When
there are multiple RFs, for the longitudinal dynamics, it is similar to implement mul-
tiple quadrupoles in the transverse dimension, and the beam dynamics can havemore
possibilities. Longitudinal strong focusing scheme for example can be invoked [8,
28], not unlike its transverse counterpart which is the foundation of modern high-
energy accelerators [29, 30]. The linear beam dynamics with multiple RFs can be
treated using SLIM the sameway as thatwith a singleRF.When all theRFs are placed
at dispersion-free locations, the Courant-Snyder parametrization can be applied as
analyzed in previous sections. Here we use a setup with two RFs as an example to
show the scheme of manipulating βz around the ring. The schematic layout of the
ring is shown in Fig. 2.6. The treatment of cases with more RFs is similar.

Fig. 2.6 A schematic layout of a storage ring using twoRF systems for longitudinal strong focusing
and an example beam distribution evolution in the longitudinal phase space. Note that the tilted
angles of the beam distribution and bunch length ratios at different places do not strictly correspond
to the parameters in Table 2.2, but only to present the qualitative characteristics
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We divide the ring into five sections, i.e., three longitudinal drifts (R56) and two
longitudinal quadrupole kicks (h), with the transfer matrices given by

TD1 =
(
1 R(1)

56
0 1

)
, TRF1 =

(
1 0
h1 1

)
, TD2 =

(
1 R(2)

56
0 1

)
,

TRF2 =
(
1 0
h2 1

)
, TD3 =

(
1 R(3)

56
0 1

)
.

(2.81)

Then the one-turn map at the radiator center is

MR = TD3TRF2TD2TRF1TD1. (2.82)

Linear stability requires that |Tr (MR) | < 2, where Tr() means the trace of. For
the generation of coherent radiation, we usually want the bunch length to reach its
minimum at the radiator, then we need αz = 0 for MR.

With the primary purpose to present the principle, instead of a detailed design,
here for simplicity we only discuss one special case: R(1)

56 = R(3)
56 , h1 = h2 = h. The

treatment of more general cases with different signs and magnitudes of R(1)
56 and R(3)

56

and h1 and h2 is similar, but the same-signed R(1)
56 and R(3)

56 might be easier for a
real lattice to fulfill. For example if R(1)

56 , R(3)
56 > 0, a possible realization of them are

chicanes.
For the special case of R(1)

56 = R(3)
56 , h1 = h2 = h and denote ζ1 ≡ 1 + R(1)

56 h, ζ2 ≡
2 + R(2)

56 h, we then have

MR =
(

ζ1ζ2 − 1 ζ 2
1 ζ2−2ζ1

h
hζ2 ζ1ζ2 − 1

)
. (2.83)

The linear stability requires |ζ1ζ2 − 1| < 1, and the synchrotron tune is

νs =
{

1
2π arccos [ζ1ζ2 − 1] if ζ 2

1 ζ2−2ζ1
h > 0,

1 − 1
2π arccos [ζ1ζ2 − 1] if ζ 2

1 ζ2−2ζ1
h < 0.

(2.84)

Here we give one example parameter set with a stable linear motion as shown in
Table 2.2. According to the longitudinal Courant-Snyder functions given in Table 2.2
(note the values of βz and the signs of αz), the evolution of electron distribution in the
longitudinal phase space around the ring (note the bunch lengths and orientations) is
qualitatively shown in Fig. 2.6. If we can realize εz � 5 pm in such a strong focusing
ring, then we have σz(srad) = √

εzβz(srad) � 3 nm. We remind the readers that the
contribution of modulators to longitudinal emittance should be carefully counted in a
longitudinal strong focusing SSMB storage ring. Note that the energy chirp strength
needed here is one order of magnitude smaller than the example of using a single RF
or lasermodulator to realize 3 nmas discussed just now. This benefit originates from a
much compressed βz at the radiator in a strong focusing ring. However, we recognize
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Table 2.2 An example
parameters set corresponding
to the setup shown in Fig. 2.6.
The subscripts −/+ means
right in front and after the
corresponding element

Parameter Value

R(1)
56 15 µm

R(2)
56 –100 µm

R(3)
56 15 µm

h −5 × 104 m−1

ζ1 0.25

ζ2 7

νs 0.115

βz(srad) 1.9 µm

βz(sRF) 121 µm

αz(srad) 0

αz(sRF1-) –7.9

αz(sRF1+) –1.9

αz(sRF2-) 1.9

αz(sRF2+) 7.9

that the laser power needed (20 MW level if 270 nm-wavelength laser is applied)
is still demanding, and here our primary goal is to present the principle based on
which the interested readers can choose and optimize the parameters for their target
applications. We will discuss in Chap. 3 the application of transverse-longitudinal
coupling scheme to lower the requirement on the modulation laser power further,
to make the optical cavity can be operated in CW mode, thus to improve the filling
factor of electron beam in the ring and the average output radiation power.

2.1.6.2 Discussions

Here we make several observations from the above analysis and numerical example,
which we believe are important. First, βz in a longitudinal strong focusing ring
can be at the same level of or even smaller than the ring |R56 = −ηC0|, while in a
longitudinal weak focusing ring βz  | − ηC0|. Therefore, the bunch length can thus
be much smaller than that in a longitudinal weak focusing ring. This is the reason
behind the application of longitudinal strong focusing in SSMB to realize extreme
short bunches [28, 31]. We remind the readers that the longitudinal emittance of
electron beam in a longitudinal strong focusing ring still cannot be smaller than that
given in Eq. (2.63), due to the intrinsic partial phase slippage, thus the evolution of
longitudinal beta function, in a dipole.

Second, βz changes significantly around the ring in the longitudinal strong focus-
ing regime. Therefore, the bunch length and beam orientation in the longitudinal
phase space varies greatly around the ring, as shown qualitatively in Fig. 2.6. This
means the adiabatic approximation cannot be applied for the longitudinal dimension
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anymore. Actually the adiabatic approximation also breaks down in the case corre-
sponds to Fig. 2.3, where the change of βz around the ring is significant although the
total synchrotron phase advance per turn is small. Therefore, the global synchrotron
tune is not a general criterion in the classification of whether the adiabatic approx-
imation fails. The evolution of βz is more relevant. The argument is based on the
fact that R56 can be either positive or negative, therefore the local synchrotron phase
advance can be either positive or negative. While in the transverse dimension, the
drift length and betatron phase advance are always positive.

The breakdown of adiabatic approximation may have crucial impacts on the study
of both the single-particle and collective effects. For linear single-particle dynamics,
the longitudinal and transverse dimensions should be treated the same way on equal
footing and SLIM formalism can be invoked. The treatment of nonlinear single-
particle dynamics ismore subtle as the longitudinal dynamics now is strongly chaotic.
For the collective effects, many classical treatments should be re-evaluated and some
new formalism needs to be developed. For example, the Haissinski equation [32] for
calculating the equilibrium beam distortion cannot be applied directly then. Also,
to our knowledge, there is no discussion on coherent synchrotron radiation (CSR)-
induced microwave instability in a longitudinal strong focusing ring. The scaling law
obtained in the longitudinal weak focusing [33] cannot be applied directly. 3D CSR
effects and also the impact of bunch lengthening from transverse emittance on CSR
needs more in-depth study. This is especially true for an SSMB ring, considering the
fact that the beam width there is much larger than the microbunch length, while the
contrary is true in a conventional ring. The contribution from horizontal emittance
can easily dominate the bunch length at many places in an SSMB ring. This on the
other hand, will be helpful to suppress unwanted CSR and may also be helpful in
mitigating intrabeam scattering (IBS) [34, 35], as extreme short bunches occur only
at limited locations. The IBS in a longitudinal strong focusing ring, and a general
coupled lattice, also deserves special attention. To our knowledge, the IBS formalism
of presented in Refs. [36, 37] can be applied for such purposes, as they are based
on 6 × 6 general transport matrices. An IBS formalism can also be developed based
on SLIM formalism [9], in which eigen analysis has been invoked and applies to 3D
general coupled lattice with longitudinal strong focusing.

2.1.7 Thick-Lens Maps of a Laser Modulator

In the previous discussions, we have approximated the function of a laser modulator
by a thin-lens RF-like kick. This means that we have ignored the phase slippage or
R56 of the laser modulator itself. We need to know if this approximation is valid or
under what circumstance we can use this approximation.

Here we first derive the phase slippage factor of the undulator and then get the
thick-lens transfer matrix of a laser modulator. The path length of an electron with a
relative energy deviation of δ wiggling in a planar undulator is
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L(δ) =
∫ Lu

0

√
1 + (x ′)2dz ≈
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γ 2
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]
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K 2

γ 2
r

δ

)
Lu,

(2.85)

in which ku = 2π/λu is the undulator wavenumber, γr is the Lorentz factor corre-
sponding to the resonant energy. The R56 of an undulator is then

R56 = Lu − L(δ)

δ
+ Lu

γ 2
r

= Lu(1 + K 2/2)

γ 2
r

= 2Nuλ0, (2.86)

where Nu is the number of undulator periods,λ0 = 1+K 2/2
2γ 2

r
λu is the centralwavelength

of the on-axis fundamental spontaneous radiation. As can be seen from Eq. (2.86),
the undulator R56 is twice the slippage length of the undulator radiation.

As mentioned, the RF or laser modulator kick in linear approximation is like a
longitudinal quadrupole and the R56 of the laser modulator is like the longitudinal
drift space length of this longitudinal quadrupole. Assuming that the energy modu-
lation is uniform along the undulator, then similar to the thick-lens quadrupole in the
transverse dimension, we have the thick-lens transfer matrix of a laser modulator

M =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝cos

(√−R56h
) R56 sin(

√−R56h)√−R56h
h sin(

√−R56h)√−R56h
cos

(√−R56h
)
⎞
⎠ , if R56h < 0,

⎛
⎝cosh

(√
R56h

) R56 sinh(
√
R56h)√

R56h
h sinh(

√
R56h)√

R56h
cosh

(√
R56h

)
⎞
⎠ , if R56h > 0.

(2.87)

A laser modulator in linear approximation is therefore like a thick-lens quadrupole
in the longitudinal dimension. A thin-lens approximation is applicable when |R56h|
� 1.

After discussing the linearmap, nowwe take into account the fact that themodula-
tionwaveformof a laser is actually sinusoidal. In principle,we can get an approximate
analytical nonlinear thick-lens transfer map of the laser modulator using the tech-
niques of drift and kick and Lie algebra [38, 39], by slicing the interaction into several
smaller pieces and concatenate the maps of thin-lens kickes and drift spaces. Here
we use a more straightforward method, i.e., to implement a symplectic kick map as
below in a numerical code, to give the readers a picture. The kick map implemented
in the code is as follows

for i = 1 : 1 : Nu

z = z + λ0δ

δ = δ + Ai sin(kL z)

z = z + λ0δ

end

(2.88)
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Fig. 2.7 Impact ofmodulator undulator period number Nu (thus R56) on the single-passmodulation
process in a laser modulator. The injected beam is “δ = 0 and z ∈ [0, λ0]”. (x, y) in the figures
from left to right: (zentrance, δexit); (zentrance, zexit); (zexit, δexit). Parameters used: λL = 1 µm, A =
1 × 10−3

In other words, we have split the undulator into Nu small “ 1
2dispersion + modulation

+ 1
2dispersion”. For a plane wave Ai = A

Nu
with A being the total energy modulation

strength, while for a Gaussian laser beam Ai is a function of i .
To simplify the analysis, in the example numerical simulation,we consider the case

of a plane wave, i.e., Ai = A
Nu
. First, we want to see how the single-pass modulation

waveform is like based on Eq. (2.88). We choose parameters λL = λ0 = 1µm, A =
1 × 10−3. The single-pass modulation of a line beam, with “δ = 0 and z ∈ [0, λ0]”,
as a function of Nu , namely R56, of the undulator is shown in Fig. 2.7.When changing
Nu , we keep A unchanged. As can be seen, the waveform deviates from sine wave
when Nu increases. The beam distribution in phase space at the undulator exit (right
sub-figure of Fig. 2.7) is similar to the beam de-coherence in an RF bucket.

Now we consider the multi-pass cases, i.e., we consider the impact of modulator
R56 on the phase space bucket. But here we do simulation only for the longitudinal
weak focusing with a single laser modulator, as we only aim to give the readers
a picture about such impact. We use parameters of λL = λ0 = 1 µm, A = 1 ×
10−3, C0 = 100m, η = 5 × 10−7 in the simulation, and choose to observe the beam
opposite themodulator centerwhereαz = 0with Nu = 0, 40, 320, respectively.Note
that η is the phase slippage factor of the whole ring, including the modulator. When
changing the undulator priod number Nu , we keep η a constant. The results are shown
in Fig. 2.8. It can be seen that the modulator R56 only distorts the bucket slightly
when Nu is 40. But when Nu is as large as 320, it will have a profound effect on
the longitudinal phase space topology. Its impact on longitudinal strong focusing is
more subtle as the particle motion in a longitudinal strong focusing ring is strongly
chaotic if the nonlinear modulation waveform is taken into account. The study of
such effect can refer more straightforwardly to numerical simulations. Besides, the
undulator R56 could also have an impact on the coherent radiation induced collective
instability in the laser modulator [40, 41].
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Fig. 2.8 Impact of modulator undulator period number Nu (thus R56) on the longitudinal
phase space bucket in longitudinal weak focusing regime. Parameters used: λL = 1 µm, A =
1 × 10−3, C0 = 100 m, η = 5 × 10−7

2.2 Nonlinear Longitudinal Dynamics

After resolving the issue of quantum diffusion of z by means of dedicated lattice
design, we can then apply the quasi-isochronous or low-phase slippage method to
realize short bunches in SSMB. However, the phase slippage is actually a function
of the particle energy

η(δ) = η0 + η1δ + η2δ
2 + ... (2.89)

When η0 is sufficiently small, the higher-order terms in Eq. (2.89) may become
relevant or even dominant, and the beam dynamics can be significantly different from
those in a linear-phase slippage state. Proper application of dedicated sextupoles and
octupoles may be needed to control these higher-order terms.

The beam dynamics of the quasi-isochronous rings have been studied by many
authors [15, 16, 42]. Here, we wish to emphasize two points that have not been
well investigated before and might be important, for example, in the SSMB proof-
of-principle experiment to be introduced in Chap. 5 and the longitudinal dynamic
aperture optimization in SSMB.

2.2.1 For High-Harmonic Bunching

For seeding techniques such as coherent harmonic generation (CHG) [43] and high-
gain harmonic generation (HGHG) [44, 45], it seems that to date, linear phase slip-
page or R56 has been applied for microbunching formation. Here, we wish to point
out that one can actually take advantage of the nonlinearity of the phase slippage for
high harmonic generation. Intuitively, this is because a sinusoidal energy modulation
followed by a nonlinear phase slippage can lead to a distorted current distribution,
which, in some cases, can lead to large bunching at a specific harmonic number.



2.2 Nonlinear Longitudinal Dynamics 41

Fig. 2.9 The beam evolution in longitudinal phase space, final current distribution and bunching
factor, when η(δ) = η1δ is used for microbunching in CHG or HGHG, as modeled by Eq. (2.90)

Figure 2.9 shows an example simulation of using η(δ) = η1δ for microbunching. It
can be seen that there is significant bunching in the second and fourth harmonics,
while no bunching is produced in the fundamental and third harmonics. The reason
can be found from the following derivation of the bunching factor.

The microbunching process in the case of a single energy modulation followed
by a dispersion section, as that in CHG and HGHG, can be modeled as

δ′ = δ + A sin(kL z),

z′ = z − η(δ′)C0δ
′, (2.90)

where kL = 2π/λL is the wavenumber of the modulation laser, A is the elec-
tron energy modulation strength induced by the laser. The bunching factor at the
wavenumber of k is defined as

b(k) =
∫ ∞

−∞
dze−ikzρ(z), (2.91)

where ρ(z) is the normalized longitudinal density distribution of the electron beam
satisfying

∫∞
−∞ dzρ(z) = 1. According to Liouville’s theorem, we have dzdδ =

dz′dδ′. Therefore, the bunching factor can be calculated in accordance with the
initial distribution of the particles ρ0(z, δ) as

b(k) =
∫ ∞

−∞

∫ ∞

−∞
dzdδ ρ0(z, δ)e

−ikz′(z,δ). (2.92)

Here we consider the simple case of η(δ) ≡ η0 + η1δ, then

b(k) =
∫ ∞

−∞

∫ ∞

−∞
dzdδ ρ0(z, δ)e

ik

(
η0C0δ+η1C0δ

2+ η1C0 A
2

2

)

e
ik

[
−z+(η0C0A+2η1C0δA) sin(kL z)− η1C0 A

2

2 cos(2kL z)

]
.

(2.93)

Adopting the notation Y ≡ k (η0C0A + 2η1C0δA) , Z ≡ −kη1C0A2/2, and using
the mathematical identity eix sin(kL z) = ∑∞

n=−∞ einkL z Jn[x], we have
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e−ikz+iY sin(kL z)+i Z cos(2kL z) =
∞∑

p=−∞

∞∑
q=−∞

Jp[Y ]Jq [Z ]exp
(
−i

[
(k − (p − 2q)kL )z − q

π

2

])
.

(2.94)
If the initial beam is much longer than the laser wavelength, and considering that
1
2π

∫∞
−∞ e−iωt dω = δ(t), where δ(t) is the Dirac delta function, the bunching factor

will not vanish only if k = (p − 2q)kL . The bunching factor at the n-th harmonic of
the modulation laser is then

bn =
∫ ∞

−∞
dδ e

inkL

(
η0C0δ+η1C0δ

2+ η1C0 A
2

2

)
ρ0(δ)

∞∑
m=−∞

Jn+2m[Y ]Jm[Z ]. (2.95)

Hereweconsider the simple case of an initialGaussian energydistributionρ0(δ) =
1√
2πσδ

exp
(
− δ2

2σ 2
δ

)
, where σδ is the initial RMS energy spread. If η1 = 0, then Y =

nkLη0C0A, Z = 0, and
∑∞

m=−∞ Jn+2m[Y ]Jm[Z ] = Jn[nkLη0C0A], and we have

bn = Jn[nkLη0C0A]exp
[
− (nkLη0C0σδ)

2

2

]
, (2.96)

which is a familiar result for HGHG [44] if we adopt the notation R56 = −η0C0. If
η0 = 0, then Y = 2nkLη1C0δA, Z = −nkLη1C0A2/2, meaning that we have

bn = 1√
2πσδ

∫ ∞

−∞
dδ exp

[
inkL

(
η1C0δ

2 + η1C0A2

2

)]
exp

(
− δ2

2σ 2
δ

) ∞∑
m=−∞

Jn+2m [Y ]Jm [Z ].
(2.97)

The two exponential terms in the integral are even functions of δ, while
Jn+2m[Y ]Jm[Z ] is an odd function of δ when n is odd; thus, bn is nonzero only
for an even n. This is why bunching occurs only in the second and fourth harmon-
ics but not in the fundamental and third harmonics when we use η(δ) = η1δ for
microbunching, as shown in Fig. 2.9.

Following the derivations and according to the relation

cosn(x) = 1

2n−1

n∑
m=(n+1)/2

(
n
m

)
cos(2m − n)x, (2.98)

it can be seen that the energymodulation at the fundamental frequency can be cast into
[i × (n − 2p) + j × (n − 2q)]-th harmonic bunching through the term ηn−1δ

n in the
function of η(δ). For an odd n, bunching at all harmonic numbers are possible, while
for an even n, only bunching at the even harmonic numbers is possible. The optimal
bunching condition for a specific harmonic requires the matching of η(δ) with the
energy modulation strength. However, the analytical formula for the bunching factor
will become increasingly involvedwithmore higher-order termsof the phase slippage
considered. Thus, it would be better to refer to numerical code to calculate and
optimize the bunching factor directly for a specific application case. For storage rings,



2.2 Nonlinear Longitudinal Dynamics 43

another relevant point is that the distribution of the particle energy in the nonlinear
phase slippage state may also have an impact on the high harmonic generation, and
this phenomenon is also easier to be studied by means of numerical simulation.

The approach of applying a nonlinear phase slippage for high harmonic bunching
can be considered to share some similarity with echo-enabled harmonic generation
(EEHG) [46, 47], in which the sinusoidal energy modulation and dispersion in the
first stage can be viewed as the source of the distorted current distribution in the
second stage of modulation and dispersion for microbunching. We have also noticed
the work on optimizing the nonlinearity of the dispersion to increase the bunching
factor for EEHG [48]. Based on similar considerations, tricks can also be applied on
the energy-modulation waveform using different harmonics of the modulation laser,
for example, forming a sawtooth waveform to boost bunching, as will be discussed
in Chap. 3.

2.2.2 For Longitudinal Dynamic Aperture

Similar to the transverse dimension, there is a region in the longitudinal phase space
outside of which particle motion is not bounded and can be lost in a ring. We refer
this stable region as the longitudinal dynamic aperture. Here in this section, we want
to show that, by properly tailoring the nonlinear phase slippage, the longitudinal
dynamic aperture can be enlarged significantly compared to the case of a pure linear
phase slippage. Only symplectic dynamics is considered in this discussion.

2.2.2.1 Longitudinal Weak Focusing

The longitudinal dynamics of a particle in a ring with a single RF can be modeled
by the kick map {

δn+1 = δn + A[sin(kRFzn) − sin φs],
zn+1 = zn − η(δn+1)C0δn+1,

(2.99)

where A sin φs = U0/E0 whereU0 is the radiation loss of a particle per turn. For the
case of longitudinal weak focusing, the kicik map can be approximated by differenti-
ation and Hamiltonian formalism can be invoked for the analysis. Denote φ ≡ kRFz,
then the equation of motion is

{
dφ

dt = − kRFη(δn+1)C0

T0
δ = ∂H

∂δ
,

dδ
dt = A

T0
(sin φ − sin φs) = − ∂H

∂φ
,

(2.100)

with T0 being the revolution period of the particle in the ring. For η(δ) = η0 + η1δ +
η2δ

2, the corresponding Hamiltonian is
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H(φ, δ) = −ωRF

(
1

2
η0δ

2 + 1

3
η1δ

3 + 1

4
η2δ

4
)

+ A

T0
[cosφ − cosφs + (φ − φs) sin φs] .

(2.101)
In writing down the closed-form Hamiltonian, we have implicitly assumed that the
motion is integrable, i.e., there is no chaos. But we need to keep in mind that the
dynamics dictated by Eq. (2.99) is actually chaotic even with a linear phase slip-
page [13]. But here we ignore this subtle point as the chaotic layer is very thin in the
longitudinal weak focusing regime.We remind the readers that the chaotic dynamics,
for example the bucket bifurcation, can actually also be applied for ultrashort bunch
generation [49].

To analyze the motion, we need to find the fixed points of the system

{
∂H
∂φ

= 0
∂H
∂δ

= 0
=⇒

{
sin φs − sin φ = 0,

δη(δ) = 0.
(2.102)

To determine whether a fixed point is stable or not, we need to check the trace of
the Jacobian matrix around the fixed point. If η(δ) = η0, there are two sets of fixed
points: {

SFP : (φs, 0),

UFP : (π − φs, 0),
(2.103)

in which SFP stands for stable fixed point while UFP stands for unstable fixed point.
If η(δ) = η0 + η1δ, there are four sets of fixed points:

⎧⎨
⎩
SFP : (φs, 0),

(
π − φs,− η0

η1

)
,

UFP : (π − φs, 0),
(
φs,− η0

η1

)
.

(2.104)

If η(δ) = η0 + η1δ + η2δ
2, there are six sets of fixed points

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SFP : (φs, 0),

(
π − φs,− η1

2η2
+
√(

η1
2η2

)2 − η0
η2

)
,

(
π − φs,− η1

2η2
−
√(

η1
2η2

)2 − η0
η2

)
,

UFP : (π − φs, 0),

(
φs,− η1

2η2
+
√(

η1
2η2

)2 − η0
η2

)
,

(
φs,− η1

2η2
−
√(

η1
2η2

)2 − η0
η2

)
.

(2.105)

To see the impact of η1 and η2 on the longitudinal phase space bucket, some
numerical simulations are conducted. We choose the observation point at the middle
of the RF, where αz = 0 and the beam distribution in the longitudinal phase space is
upright. The results of the impact of η1 and η2 on longitudinal dynamical aperture
are shown in Figs. 2.10 and 2.11, respectively. Note that in the plots, we have used
the longitudinal coordinate z rather than the phase φ.

As we can see in Fig. 2.10, the emergence of η1 will make the bucket asymmetric
in δ, which is as expected as the η = η0 + η1δ is asymmetric in δ. In both directions
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Fig. 2.10 The impact of η1 on the longitudinal phase space bucket in the longitudinal weak focusing
regime. Simulation parameters: λRF = 1 µm, A = 1 × 10−3, C0 = 100 m, η0 = 5 × 10−7

Fig. 2.11 The impact of η2 on the longitudinal phase space bucket in the longitudinal weak focusing
regime. Simulation parameters: λRF = 1 µm, A = 1 × 10−3, C0 = 100 m, η0 = 5 × 10−7

(positive or negative), the bucket size shrinks with the increase of η1 and the bucket
becomes like an upright α-shape, so they are usually referred to as α-buckets. Note
that we can also classify the bucket to be an RF-bucket or an α-bucket according to
whether δ = 0 or η(δ) = 0 at the bucket center, respectively. Such a classification is
more reasonable from beam dynamics consideration. α-bucket is also a method to
generate short bunch and there are many interesting beam dynamics issues related
to such buckets [16].

However, the impact of η2 is different. As can be seen from the simulation results
presented in Fig. 2.11, the bucket is still symmetric in δ as expected. Besides, when
η2
η0

< 0, the stable region of the bucket can be even larger than the case without η2.We
will see later that in the case of longitudinal strong focusing, such observation can be
even more notable. Therefore, we can tailor the phase slippage factor as a function
of energy in the case of longitudinal strong focusing to enlarge the longitudinal
dynamic aperture. This is very helpful as usually the longitudinal dynamic aperture
in a longitudinal strong focusing ring is not a trivial issue and needs to be optimized
to guarantee a sufficient quantum lifetime for example.
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2.2.2.2 Longitudinal Strong Focusing

For a longitudinal strong focusing ring, the particle motion is strongly chaotic and
not integrable, and we cannot get a closed-form Halmitonian for analysis anymore.
Therefore, we use numerical simulations to study the dynamics directly. Instead of
a comprehensive investigations, here in this section we aim to give some qualitative
remarks on the role of the nonlinear phase slippage, i.e., a proper tailoring of the
nonlinear phase slippage can enlarge the longitudinal dynamic aperture significantly.

Let us use the schematic layout shown in Fig. 2.6 and parameters choices given
in Table 2.2 as an example for illustration. Note that the modulation wavelength
used here is λRF = 1 µm. We choose to observe the beam at the radiator center, and
suppose the ring is symmetric with respect to the radiator. The one-turn kick map is
then

z = z + R(1)
56 δ,

δ = δ + h/kRF sin(kRFz),

z = z + R(2)
56 δ,

δ = δ + h/kRF sin(kRFz),

z = z + R(1)
56 δ.

(2.106)

As we aim to present the main physical picture, here we only consider the nonlin-
earity of the main ring first, i.e., R(2)

56 (δ) = −C0
(
η0 + η1δ + η2δ

2
)
. R(1)

56 and R(3)
56 in

principle can also be a function of δ. The simulation results are shown in Figs. 2.12
and 2.13.

From Fig. 2.12, we know that, like that in the weak focusing case, η1 makes the
bucket asymmetric in δ and shrinks the bucket size whether η1 is positive or negative.
From Fig. 2.13, we can see that when η2

η0
< 0, a proper η2 can help to merge the island

buckets with the main bucket and broaden the stable region of the phase space, i.e.,

Fig. 2.12 The impact of η1 on the longitudinal phase space bucket in the longitudinal strong
focusing regime. Simulation parameters: λRF = 1 µm, h = −50000 m−1, R(1)

56 = 15 µm, C0 =
100 m, η0 = 1 × 10−6
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Fig. 2.13 The impact of η2 on the longitudinal phase space bucket in the longitudinal strong
focusing regime. Simulation parameters: λRF = 1 µm, h = −50000 m−1, R(1)

56 = 15 µm, C0 =
100 m, η0 = 1 × 10−6

the longitudinal dynamic aperture, significantly. A proper η2 makes the amplitude
dependent tune shift favorable for the motion to be stable. Note that the fixed points
of the island buckets may not have period-1 but period-n stability.
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Chapter 3
SSMB Transverse-Longitudinal
Coupling Dynamics

After dedicated efforts devoted to the longitudinal dynamics to realize an ultrasmall
longitudinal emittance and ultrashort bunch length for coherent radiation generation,
we need to make sure that the coupling arising from transverse dynamics does not
degrade or even destroy the longitudinal fine structures. Such an argument is based
on the observation that the transverse beam size in an SSMB ring can be orders
of magnitude larger than the desired microbunch length. This is the basic motiva-
tion for us to investigate the transverse-longitudinal coupling (TLC) dynamics. In
this chapter, we start from the linear TLC and then investigate the nonlinear TLC
dynamics. For the linear dynamics, first we analyze the passive bunch lengthening
induced by bending magnets. We then emphasize the fact that TLC can actually be
actively applied for efficient bunch compression and high harmonic generation when
the transverse emittance is small. We present three theorems on the application of
such TLC schemes, with their implications discussed. Further, we have analyzed
the contribution of modulators to the vertical emittance from quantum excitation,
to obtain a self-consistent evaluation of the required modulation laser power when
applying these coupling schemes in a storage ring. The theorems and related anal-
ysis provide the theoretical basis for the application of TLC in SSMB to lower the
requirement on the modulation laser power, by taking advantage of the fact that the
vertical emittance in a planar ring is rather small. Based on the investigations, we
have presented example parameters sets for the envisioned SSMB storage ring to
generate high-power EUV and soft X-ray radiation at the end of this dissertation.
The relation between our TLC analysis and the transverse-longitudinal emittance
exchange is also briefly discussed. For the nonlinear dynamics, we present the anal-
ysis and the first experiment proof of a second-order TLC effect on the equilibrium
beam parameters, which can help to improve the stable beam current and coherent
radiation power of a ring working in quasi-isochronous regime. Parts of the work
presented in this chapter have been published in Refs. [1–4].
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3.1 Linear Transverse-Longitudinal Coupling Dynamics

3.1.1 Passive Bunch Lengthening

In a linear transport line without bending magnets, the transverse and longitudinal
motions are decoupled in a first-order approximation. However, the situation changes
when there are bending magnets. Particles with different horizontal (vertical) posi-
tions and angles will pass through the horizontal (vertical) bending magnets along
different paths, resulting in differences in the longitudinal coordinate. The transverse
motion can thus be coupled to the longitudinal dimension.When traversing the bend-
ing magnets, particles with different energies will also pass along different paths and
exit with different horizontal (vertical) positions and angles. The longitudinal motion
can thus also be coupled to the transverse dimension. The physical pictures of the
linear TLC introduced by the bending magnets are shown in Fig. 3.1. Although this
passive TLC is a well-understood effect [5–9], here we present a concise analysis
of this effect with an emphasis on its vital role in microbunching formation and
transportation for both the transient and steady-state cases.

We start with a planar x-y uncoupled lattice and assume that the RF cavities are
placed at dispersion-free locations. We temporarily ignoring the vertical dimension,
and use the state vector X = (x, x ′, z, δ)T . The subscripts 5, 6 are used for z, δ

for consistency with literature. Hereafter, the subscript x in this section is omitted
unless necessary. As introduced in Sect. 2.1.1, the betatron coordinate, defined by
Xβ = BX, is first used to parametrize the transport matrix in a diagonal form. The
transport matrix of Xβ from s1 to s2 is then

Mβ(s2, s1) =
(
Mxβ

(s2, s1) 0
0 Mzβ

(s2, s1)

)
. (3.1)

Following Courant and Snyder [10], we writeMxβ
(s2, s1) as

Mxβ
(s2, s1) = A−1(s2)T(s2, s1)A(s1), (3.2)

Fig. 3.1 Linear transverse-longitudinal coupling induced by a bending magnet. Particles with
different horizontal positions (a) and angles (b) pass the horizontal bending magnet along different
paths, resulting in longitudinal coordinate differences. Particles with different energies (c) also
pass the horizontal bending magnet along different paths, resulting in horizontal position and angle
differences
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with

A(si ) =
(

1√
β(si )

0
α(si )√
β(si )

√
β(si )

)
(3.3)

and

T(s2, s1) =
(

cosψ12 sinψ12

− sinψ12 cosψ12

)
, (3.4)

where

ψ12 = ψ2 − ψ1 =
∫ s2

s1

1

β(s)
ds (3.5)

is the betatron phase advance from s1 to s2. ForMzβ
(s2, s1), the expression is similar

to Mxβ
(s2, s1), but note that if we want to calculate the synchrotron phase advance

similar to Eq. (3.5), the distance s should be replaced by the effective longitudinal
drift space, i.e., F = −η̃(s2, s1)C0 defined in Eq. (2.50). If there is no RF cavity
between s1 and s2, we have

Mzβ
(s2, s1) =

(
1 F(s2, s1)
0 1

)
. (3.6)

The transport matrix of X from s1 to s2 is then

M(s2, s1) = B−1(s2)Mβ(s2, s1)B(s1). (3.7)

After some straightforward algebra, M(s2, s1) can be expressed as

M(s2, s1) =

⎛
⎜⎜⎝
R11 R12 0 D2 − R11D1 − R12D′

1
R21 R22 0 D′

2 − R21D1 − R22D′
1

R51 R52 1 F − R51D1 − R52D′
1

0 0 0 1

⎞
⎟⎟⎠ ,

R11 =
√

β2

β1
[cosψ12 + α1 sinψ12],

R12 = √
β1β2 sinψ12,

R21 = − 1√
β1β2

[(1 + α1α2) sinψ12 − (α1 − α2) cosψ12],

R22 =
√

β1

β2
[cosψ12 − α2 sinψ12],

R51 = R21D2 − R11D
′
2 + D′

1,

R52 = −R12D
′
2 + R22D2 − D1.

(3.8)
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This matrix can then be used to analyze both the transient and steady-state cases of
TLC. Note that for a given lattice, F is a function of the initial dispersion and dis-
persion angle (D1, D′

1) at s1, although the transfer mapM(s2, s1) for the state vector
X is not, as the transport matrix is fixed once the lattice is given. This dependence is
a result of the matrix parametrization.

We consider first the influence of the betatron oscillation on the longitudinal coor-
dinate. With the help of the Courant-Snyder parametrization, the betatron oscillation
position and angle at the starting point s1 can be expressed as

x1 = √
2Jβ1 cosψ1,

x ′
1 = −√2J/β1(α1 cosψ1 + sinψ1), (3.9)

where J = 1
2

(
γ x2 + 2αxx ′ + βx ′2) is the betatron invariant or action of the particle.

The longitudinal coordinate displacement relative to the ideal particle due to the
betatron oscillation from s1 to s2 is then

�z = R51x1 + R52x
′
1 =

√
2JH1 sin(ψ1 − χ1) −

√
2JH2 sin(ψ2 − χ2), (3.10)

where to obtain the final concise result, D and D′ have been expressed in terms of
the chromatic H-function and the chromatic phase χ , defined as

D = √
Hβ cosχ,

D′ = −√H/β (α cosχ + sin χ) , (3.11)

where H = γ D2 + 2αDD′ + βD′2. If there is no dipole kick between point 1 and
point 2,H stays constant andχ2 − χ1 = ψ2 − ψ1,whichmeans�z = 0. Physically,
this means the contribution of transverse emittance to the bunch length does not
change during drifting or experiencing quadrupole kicks, as these manipulations
only affect the beam distribution in the transverse phase space. This argument can
also be clearly observed in Fig. 2.3c.

FromEq. (3.10), the root-mean-square (RMS) value of the transient bunch length-
ening of a longitudinal slice from s1 to s2 caused by this linear TLC can be calculated
to be

σ�z =
√

εx

[
H1 + H2 − 2

√
H1H2 cos (�ψ21 − �χ21)

]
. (3.12)

The RMS bunch lengthening of an electron beam longitudinal slice after n complete
revolutions in a ring, due to betatron oscillation, is then

σ�z = 2
√

εxHx |sin(nπνx )| . (3.13)

The above equations can be used to explain the dependence of the coherent
synchrotron radiation (CSR) repetition rate on the betatron tune in the bunch slic-
ing experiment reported in Ref. [8]. A similar approach can be applied to analyze
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microbunching preservation with beam deflection, for example in FELmultiplexing.
These equations are also useful for evaluating the influence of the coupling effect
in the SSMB proof-of-principle experiment [11, 12], which is to be presented in
Chap. 5.

If the particle starts with a relative energy deviation of δ, then

�z = R51x1 + R52x
′
1 + (F − R51D1 − R52D

′
1)δ

=
√
2JH1 sin(ψ1 − χ1) −

√
2JH2 sin(ψ2 − χ2) + Fδ. (3.14)

Note that in Eq. (3.14), the betatron invariant and phase should be calculated accord-
ing to

xβ = x − Dδ = √
2Jβ cosψ,

x ′
β = x ′ − D′δ = −√2J/β(α cosψ + sinψ),

J = 1

2

(
γ x2β + 2αxβx

′
β + βx ′2

β

)
. (3.15)

For a periodic system, if we observe the particle at the same place n periods later,
then

�z = √
2JH [sin(ψ − χ) − sin(ψ + 2nπνx − χ)] − nηC0δ, (3.16)

where 2πνx is the horizontal betatron phase advance per period.
We can also obtain the equilibrium secondmoments in a storage ring by following

the Courant-Snyder parametrization one step further. The result is the same with
Eq. (2.18) obtained by SLIM. As can be seen from Eqs. (2.18) and (2.19), if there
is only passive TLC introduced by bending magnet, the transverse emittance can
lengthen the bunch at places where Hx �= 0,

σz = √
εzβz + εxHx . (3.17)

Similarly the energy spread can broaden the beam width at places where D �= 0,

σx =
√

εxβx + εzγz D2 =
√

εxβx + σ 2
δ D

2. (3.18)

To give the readers a more concrete feeling about the bunch lengthening from
this passive TLC, we have presented in Fig. 2.3c some calculations based on the
MLS lattice. As can be seen, indeed that the coupling from horizontal emittance can
contribute significantly, or even dominant the bunch length at places where Hx is
large. This observation will especially be true in an SSMB ring, where the trans-
verse size is much larger than the microbunch length. Therefore, the dispersion and
dispersion angle should be controlled in precision at places where ultrashort bunch
is desired, for example at the radiator. The bunch lengthening from the transverse
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Fig. 3.2 Beam current
distributions at places with
different Hx . Bunch length
in an SSMB ring can easily
be dominated by the
transverse emittance in
places where Hx �= 0
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emittance will make the current distribution in an SSMB storage ring less sharp and
more like a coasting beam as places where Hx �= 0, as shown in Fig. 3.2. Here we
make a remark that this coupling effect may be helpful for suppressing unwanted
CSR andmaymitigate the intrabeam scattering (IBS) in SSMB or other applications,
as extremely short bunches emerge only at dispersion-free locations.

3.1.2 Coupling for Harmonic Generation and Bunch
Compression

The analysis in the above section may lead us to conclude that TLC always lengthens
the bunch and degrades the microbunching. This, however, is not true, as the above
analysis is based on the assumption of a planar x-y uncoupled lattice with only
the passive coupling induced by the bending magnets. In addition to this passive
coupling, an RF cavity (laser modulator in SSMB) placed at a dispersive location, a
transverse deflecting RF cavity, etc., are other sources of coupling that can be used
for subtle manipulation of particle beam in 6D phase space. In fact, one can take
advantage of TLC for efficient harmonic generation or bunch compression when
the transverse emittance is small. The reason is that there is some flexibility in
tailoring the projection of the three eigen emittances of a beam into different physical
dimensions, although their values cannot be changed in a linear symplectic lattice.
Here in this and the following sections we investigate the active application of TLC
for harmonic generation and bunch compression by taking advantage of the fact that
the vertical emittance of an electron beam in a planar x-y uncoupled ring is rather
small.
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Fig. 3.3 A schematic layout of applying y-z coupling for bunch compression

3.1.2.1 Problem Definition

Let us first define the problem we are trying to solve. We use y-z coupling as an
example for the analysis, since we aim to exploit the small vertical emittance. The
case of x-z coupling is similar. Suppose the beam at the entrance of the bunch
compression section is y-z decoupled, i.e., its second moments matrix is

�i =

⎛
⎜⎜⎝

εyβyi −εyαyi 0 0
−εyαyi εyγyi 0 0

0 0 εzβzi −εzαzi

0 0 −εzαzi εzγzi

⎞
⎟⎟⎠ , (3.19)

where α, β and γ are the Courant-Snyder functions [10], the subscript i means initial,
and εy and εz are the eigen emittances of the beam corresponding to the vertical and
longitudinal mode, respectively. For the application of TLC for bunch compression,
it means that the final bunch length at the radiator depends only on the vertical
emittance εy and not on the longitudinal one εz . The magnet lattices are all planar
and x-y decoupled.

The schematic layout of a TLC-based bunch compression section is shown in
Fig. 3.3. We divide such a section into three parts, with their transfer matrices given
by

M1 =

⎛
⎜⎜⎝
r33 r34 0 d
r43 r44 0 d ′
r53 r54 1 r56
0 0 0 1

⎞
⎟⎟⎠ , M2 = Modulation kick map, M3 =

⎛
⎜⎜⎝
R33 R34 0 D
R43 R44 0 D′
R53 R54 1 R56

0 0 0 1

⎞
⎟⎟⎠ ,

r53 = r43d − r33d
′, r54 = −r34d

′ + r44d, r33r44 − r34r43 = 1,

R53 = R43D − R33D
′, R54 = −R34D

′ + R44D, R33R44 − R34R43 = 1,
(3.20)

with M1 representing “from entrance to modulator”, M2 representing “modulation
kick” and M3 representing “modulator to radiator”. Note that M1 and M3 are in
their general thick-lens form as analyzed in last section. The transfer matrix from
the entrance to the radiator is then

T = M3M2M1. (3.21)

From the problem definition, for σz(Rad) to be independent of εz , we need
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T55 = 0,

T56 = 0.
(3.22)

3.1.2.2 Three Theorems on Transverse-Longitudinal Coupling

Given the above problemdefinition,we have three theoremswhich dictate the relation
between the modulator kick strength with the optical functions at the modulator and
radiator, respectively.
Theorem one: If

M2 =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 h 1

⎞
⎟⎟⎠ , (3.23)

which corresponds to the case of a normal RF or a TEM00 mode laser modulator,
then

h2(Mod)Hy(Mod)Hy(Rad) ≥ 1. (3.24)

Theorem two: If

M2 =

⎛
⎜⎜⎝
1 0 0 0
0 1 t 0
0 0 1 0
t 0 0 1

⎞
⎟⎟⎠ , (3.25)

which corresponds to the case of a transverse deflecting RF or a TEM01 mode laser
modulator or other schemes for angular modulation, then

t2(Mod)βy(Mod)Hy(Rad) ≥ 1. (3.26)

Theorem three: If

M2 =

⎛
⎜⎜⎝
1 0 k 0
0 1 0 0
0 0 1 0
0 −k 0 1

⎞
⎟⎟⎠ , (3.27)

whose physical correspondence is not as straightforward as the previous two cases,
then

k2(Mod)γy(Mod)Hy(Rad) ≥ 1. (3.28)

3.1.2.3 Proof

Here we present the details for the proof of Theorem one. The proof of the other two
is just similar. From the problem definition, for σz(Rad) to be independent of εz , we
need
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T55 = hR56 + 1 = 0,

T56 = dR53 + d ′R54 + r56(hR56 + 1) + R56 = 0.
(3.29)

Note that the harmonic generation schemes in FEL like phase-merging enhanced har-
monic generation (PEHG) [13, 14] and angular dispersion-induced microbunching
(ADM) [15] can be viewed as specific examples of the above general relations [2].
Under the conditions of Eq. (3.29), we have

T =
(
A B
C E

)
, (3.30)

with

A =
(
r33R33 + r43R34 + r53hD r34R33 + r44R34 + r54hD
r33R43 + r43R44 + r53hD′ r34R43 + r44R44 + r54hD′

)
,

B =
(
hD dR33 + d ′R34 + (r56h + 1) D
hD′ dR43 + d ′R44 + (r56h + 1) D′

)
,

C =
(
r33R53 + r43R54 r34R53 + r44R54

r53h r54h

)
,

E =
(
0 0
h r56h + 1

)
.

(3.31)

The bunch length squared at the modulator and the radiator are

σ 2
z (Mod) = εz

(
βzi − 2αzi r56 + γzi r

2
56

)+ εy

(
βyi r53 − αyi r54

)2 + r254
βyi

= εzβz(Mod) + εyHy(Mod),

σ 2
z (Rad) = εy

(
βyi T53 − αyi T54

)2 + T 2
54

βyi
= εyHy(Rad).

(3.32)

According to Cauchy-Schwarz inequality, we have

h2(Mod)Hy(Mod)Hy(Rad) = h2

[(
βyi r53 − αyi r54

)2 + r254

]
βyi

[(
βyi T53 − αyi T54

)2 + T 2
54

]
βyi

≥ h2

β2
y

[− (
βyi r53 − αyi r54

)
T54 + r54

(
βyi T53 − αyi T54

)]2

= (T53r54h − T54r53h)2 = (T53T64 − T54T63)
2 .

(3.33)

The equality holds when
−(βyi r53−αyi r54)

T54
= r54

(βyi T53−αyi T54)
. The symplecticity of T

requires that TSTT = S, where S =
(
J 0
0 J

)
and J =

(
0 1

−1 0

)
, so we have
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(
AJAT + BJBT AJCT + BJET

CJAT + EJBT CJCT + EJET

)
=
(
J 0
0 J

)
. (3.34)

As shown in Eq. (3.31), E =
(
0 0
h r56h + 1

)
, then EJET =

(
0 0
0 0

)
. Therefore,

CJCT = J, (3.35)

which means C is also a symplectic matrix. So we have

T53T64 − T54T63 = det(C) = 1, (3.36)

where det(C) means the determinant of C. The theorem is thus proven.

3.1.2.4 Dragt’s Minimum Emittance Theorem

Theorem one in Eq. (3.24) can also be expressed as

|h(Mod)| ≥ εy√
εyHy(Mod)

√
εyHy(Rad)

= εy

σzy(Mod)σz(Rad)
. (3.37)

Note that in the above formula, σzy(Mod) means the bunch length at the modu-
lator contributed from the vertical emittance εy . So given a fixed εy and desired
σz(Rad), a smaller h(Mod), i.e., a smaller RF gradient or modulation laser power
(Plaser ∝ |h(Mod)|2), means a larger Hy(Mod), thus a longer σzy(Mod), is needed.
As |h(Mod)|σz(Mod) quantifies the energy spread introduced by the modulation
kick, we thus also have

σz(Rad)σδ(Rad) ≥ εy . (3.38)

Similarly for Theorem two and three, we have

|t (Mod)| ≥ εy

σyβ(Mod)σz(Rad)
, (3.39)

and
|k(Mod)| ≥ εy

σy′β(Mod)σz(Rad)
, (3.40)

respectively, and also Eq. (3.38). Note that in the above formulas, the vertical beam
size or divergence at the modulator contains only the betatron part, i.e., that from the
vertical emittance εy .

Equation (3.38) is actually a manifestation of the classical uncertainty principle
[16], which states that
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�11�22 ≥ ε2min,

�33�44 ≥ ε2min,

�55�66 ≥ ε2min,

(3.41)

in which εmin is the minimum one among the three eigen emittances εI,I I,I I I . In
our bunch compression case, we assume that εy is the smaller one compared to εz .
Actually there is a stronger inequality compared to the classical uncertainty principle,
i.e., the minimum emittance theorem [16], which states that the projected emittance
cannot be smaller than the minimum one among the three eigen emittances,

ε2x,pro = �11�22 − �2
12 ≥ ε2min,

ε2y,pro = �33�44 − �2
34 ≥ ε2min,

ε2z,pro = �55�66 − �2
56 ≥ ε2min.

(3.42)

3.1.3 Normal RF or TEM00 Mode Laser for Coupling

Now we investigate in more detail about the application of TLC in SSMB for bunch
compression, using a TEM00 mode laser modulator for the modulation kick. This
belongs to the category of Theorem one.

3.1.3.1 Physical Picture

According to Theorem one, given a vertical emittance εy and modulation kick
strength h, in principle we can realize as short σz(Rad) as we want by lengthening
σzy(Mod). In other words, we can lowerHy(Rad) by increasingHy(Mod). However,
such great flexibility of a TLC coupling scheme is not obtained without sacrifice. For
a premicrobunched beam, and considering that the modulation waveform is actually
a nonlinear sinusoidal, a bunch lengthening at the modulator will result in bunching
factor degradation at the radiator. Another key point is that the modulator itself will
contribute to the vertical emittance through quantum excitation since it is placed at
a place where Hy �= 0. We will elaborate these points more in this section.

To give the readers a better picture before going into the mathematical details,
here we summarize in Fig. 3.4 the main information to be presented in this section:
(i) Compared to bunch compression or harmonic generation scheme in longitudinal
dimension alone like high-gain harmonic generation (HGHG), TLC schemes like
PEHG or ADM can reduce the required energy chirp strength, to realize the same
bunch length compression ratio or harmonic generation number, when the transverse
emittance is small. (ii) This lowering of energy chirp strength is realized through the
bunch lengthening from transverse emittance at the modulator, which can degrade
the bunching factor at the radiator for a pre-microbunched beam due to the nonlinear
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Fig. 3.4 Application of TLC for bunch compression and harmonic generation, using a TEM00
mode laser modulator. Parameters used in this example plot: λL = 1064 nm, σzi = 30 nm and
σz f = 3 nm for the case of a pre-microbunched beam, σδi = 3 × 10−4, σyi = 2µm, σy′i = 1µrad.
The figures show the beam distribution evolution in the longitudinal phase space. Depending on
the specific lattice scheme, the different colors in the plot correspond to different particle vertical
positions, angles, or combination of them. The modulation waveforms are shown in the figure as
the red curves

nature of the sine modulation. (iii) Addition of the RF or laser harmonics is an
effective way to mitigate this bunching factor degradation by broadening the linear
zone of the modulation waveform.

3.1.3.2 Bunching Factor

Now we derive the bunching factor degradation at the radiator due to the bunch
lengthening at the modulator, using ADM as an example. PEHG has a similar result
as we have proven in the last section the general theorem of bunch lengthening in
this kind of TLC schemes. Thin-lens kick maps in the last section are again used for
the analysis, but now with the fact that the modulation waveform is a nonlinear sine
taken into account.

Putting in the optimized bunch compression conditions for ADM, namely hR56 +
1 = 0 and−d ′D + R56 = 0, and using themathematical identity eia sin(b) = ∑∞

m=−∞
eimb Jm[a], the final bunching factor at the n-th laser harmonic in ADM is
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bn =
∞∑

m=−∞
Jm (n)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dyidy

′
i dzi e

−inkL

[
− y′i

hd′ +(1− m
n )(d

′ yi+zi)
]
fi (yi , y

′
i , zi ).

(3.43)

For a coasting beam,
〈
e−inkL[(1− m

n )(d
′ yi+zi)]

〉
will be non-zero only if m = n, where

the bracket 〈· · ·〉 means the average over all the particles. Therefore,

bn,coasting = Jn(n)exp
[− (nkLσz(Rad))

2 /2
]
. (3.44)

Note that σz(Rad) = |D|σy′i = √
εyHy(Rad) in this section follows the definition in

the linearmatrix analysis of the previous section, anddoes not represent the real bunch
length at the radiator considering the nonlinear modulation waveform. Note also that
considering the nonlinear sine modulation waveform, the optimal microbunching
condition for a specific harmonic is slightly different from our simplified linear
analysis, and Jn(n) in Eq. (3.44) should be replaced by Jn(−nR56h). In the following
discussions, we will use the simplified optimal bunch compression conditions, as the
main physics is the same.

For a pre-microbunched beam,
〈
e−inkL[(1− m

n )(d
′ yi+zi)]

〉
will be non-zero for all m,

thus

bn,pre-microbunch =
( ∞∑
m=−∞

Jm (n) exp
[− ((n − m)kLσz(Mod))2 /2

])

exp
[− (nkLσz(Rad))

2 /2
]
,

(3.45)

with σz(Mod) = 〈d ′yi + zi 〉 = √
εyHy(Mod) + εzβz(Mod). Note that the bunch

length σz(Mod) here contains contribution from both εy and εz .
Now we first investigate two limiting cases. If σz(Mod) = 0, then we have

bn =
( ∞∑
m=−∞

Jm (n)

)
exp

[− (nkLσz(Rad))
2 /2

] = exp
[− (nkLσz(Rad))

2 /2
]
.

(3.46)
This result is the same as that assuming themodulation waveform is linear. Second, if
σz(Mod) is much longer than themodulation laser wavelength, i.e., kLσz(Mod) 
 1,
then the summation terms in Eq. (3.45) will be nonzero only form = n and we arrive
at the same result as the coasting beam case Eq. (3.44) as expected.

Nowwe conduct a bitmore general discussion. Compared to the linearmodulation
case, the reduction factor of the bunching factor Eq. (3.45) is

Rn =
∞∑

m=−∞
Jm (n) exp

[− ((n − m)kLσz(Mod))2 /2
]
. (3.47)
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Fig. 3.5 Flat contour plot
for the bunching factor
reduction factor |Rn | of
Eq. (3.47) as a function of
the harmonic number n and
the modulation
wavelength-normalized
bunch length at the
modulator kLσz(Mod)
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Figure 3.5 shows the flat contour plot for the bunching factor reduction factor |Rn| of
Eq. (3.47) as a function of the harmonic number n and the modulation wavelength-
normalized bunch length at themodulator kLσz(Mod). As can be seen from the figure,
the bunch lengthening at the modulator indeed degrades the bunching factor at the
radiator, due to the nonlinearity nature of sine modulation. The longer this bunch
lengthening, the more degradation of the bunching factor. The higher the harmonic
number, the more significant the impact is. The limit of Rn with an infinite long
σz(Mod) is Jn(n). Equation (3.47) and Fig. 3.5 is the general result of this bunching
factor degradation analysis. We emphasize the fact that the discussion of bunching
factor degradation is more relevant for a pre-microbunhed beam, like that in some
SSMB scenarios, and is generally not an issue for a coasting beam where the bunch
duration is much longer than the modulation wavelength, like that in an FEL.

As the decrease of bunching factor originates from the nonlinearity of the sine
modulation, we expect that this reduction will be less if we make the modulation
waveform more like linear, for example by adding a third-harmonic RF or laser
to broaden the linear zone of the modulation waveform, as also suggested before
in Refs. [17, 18]. The energy modulation then becomes δ = δ + h1

kL
sin(kL z) +

h3
3kL

sin(3kL z). The optimized bunch compression conditions for ADM are now
(h1 + h3)R56 + 1 = 0 and−d ′D + R56 = 0. The n-th laser harmonic bunching fac-
tor at the radiator is then

bn,coasting =
∑

m1+3m3=n

Jm1

(
h1

h1 + h3
n

)
Jm3

(
h3

h1 + h3

n

3

)
exp

[− (nkLσz(Rad))
2 /2

]
(3.48)

for a coasting beam, and
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Fig. 3.6 Left: the bunching factor reduction factor |Rn | of Eq. (3.50) as a function of the harmonic
number n for kLσz(Mod) = 1, with h3 = 0 (red) and h3 = −0.15h1 (blue), respectively. Right: the
bunching factor reduction factor |Rn | of Eq. (3.50) as a function of the modulation wavelength-
normalized bunch length at the modulator kLσz(Mod) for n = 79, with h3 = 0 (red) and h3 =
−0.15h1 (blue), respectively. n = 79 corresponds to the case for example a modulation wavelength
of λL = 1064 nm and a radiation wavelength of λR = λL/79 = 13.5 nm

bn,pre-microbunch =
∞∑

m1=−∞

∞∑
m3=−∞

Jm1

(
h1

h1 + h3
n

)
Jm3

(
h3

h1 + h3

n

3

)

exp
[
− ((n − m1 − 3m3)kLσz(Mod))2 /2

]
exp

[
− (nkLσz(Rad))

2 /2
]

(3.49)
for a pre-microbunched beam. Therefore, the reduction factor of the bunching factor
Eq. (3.49), compared to the linear modulation case, is now

Rn =
∞∑

m1=−∞

∞∑
m3=−∞

Jm1

(
h1

h1 + h3
n

)
Jm3

(
h3

h1 + h3

n

3

)

exp
[− ((n − m1 − 3m3)kLσz(Mod))2 /2

]
.

(3.50)

The limit of Rn with an infinite long σz(Mod) is
∑

m1+3m3=n Jm1

(
h1

h1+h3
n
)
Jm3(

h3
h1+h3

n
3

)
. It is straightforward to generalize the above derivation and result to the

case of adding more laser harmonics.
Nowwe can use the above formula of Rn to do comparison between the cases with

and without the third-harmonic laser. If h3 = 0, then Eq. (3.50) reduces to Eq. (3.47).
As can be seen in Fig. 3.6, indeed addition of a third-harmonic laser is effective in
mitigating the bunching factor degradation arising from the bunch lengthening at the
modulator.



66 3 SSMB Transverse-Longitudinal Coupling Dynamics

3.1.3.3 Contribution of Modulators to Vertical Emittance and Scaling
of Required Modulation Laser Power

We have stated that the main motivation of applying TLC scheme for bunch com-
pression in SSMB is to lower the requirement on the modulation laser power PL .
This is based on the fact that the vertical emittance εy in a planar x-y uncoupled ring
is rather small. However, since the modulator in this TLC scheme is placed at a dis-
persive location, i.e., Hy(Mod) �= 0, therefore quantum excitation at the modulator
will also contribute to εy . With this consideration taken into account, below we try
to give a self-consistent analysis of the required modulation laser power PL in these
TLC schemes.

To make sure that the TLC-based bunch compression can repeat turn-by-tun in
a ring, usually two laser modulators are placed upstream and downstream of the
radiator, respectively, to formapair. The lattice schemebetween these twomodulators
can either be a symmetric one, or a reversible seeding one. In both cases, the chromatic
function Hy at two modulators are identical. Assuming the modulator undulator is
planar, the contribution of these two modulators to εy is then

�εy(Mod, QE) = 2 × 55

96
√
3

αF�2eγ
5

αV

∫ Lu

0

Hy(Mod)

|ρ(s)|3 ds

= 2 × 55

96
√
3

αF�2eγ
5

αV

Hy(Mod)

ρ3
0Mod

4

3π
Lu,

(3.51)

with the vertical damping constant

αV ≈ 1

2

U0

E0
≈ 1

2
Cγ

E3
0

ρring
= 1

2
Cγ × 0.2998Bring[T]E2

0 [GeV] (3.52)

where Cγ = 8.85 × 10−5 m
GeV3 , ρring is the bending radius of dipoles in the ring, and

ρ0Mod is the minimum being radius corresponding to the peak magnetic flux density
B0Mod of the modulator. Note that in the above analysis we have ignored the contribu-
tion of the dispersive lattice sections upstream and downstream of the modulators to
the vertical emittance, as in principle we can minimize their contribution by choos-
ing weak bending magnets in them. On the other hand, we cannot choose as weak
modulator as we want since it will also affect the energy modulation efficiency. This
is the reason why the contribution of modulators to the vertical emittance is of more
fundamental importance.

The resonant condition of the laser-electron interaction inside a planar undulator
is

λL = 1 + K 2

2

2γ 2
λu, (3.53)
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with K = eB0λu
2πmec

= 0.934 · B0[T] · λu[cm] the dimensionless undulator parameter.
The effective modulation voltage of a laser modulator using a planar undulator is
related to the laser and undulator parameters according to [19]

VL = [J J ]K
γ

√
4PL Z0ZR

λL
tan−1

(
Lu

2ZR

)
. (3.54)

in which [J J ] = J0(χ) − J1(χ) and χ = K 2

4+2K 2 , PL is the modulation laser power,
Z0 = 376.73 � is the impedance of free space, ZR is the Rayleigh length of the
modulation laser, Lu is the undulator length. The linear energy chirp strength around
zero-crossing phase is therefore

h = eVL

E0
kL = e[J J ]K

γ 2mc2

√
4PL Z0ZR

λL
tan−1

(
Lu

2ZR

)
kL , (3.55)

where kL = 2π/λL is the wavenumber of the modulation laser.
For simplicity, we set εy = �εy(Mod, QE), i.e., the vertical emittance is purely

from the contribution of these two modulators, and assuming that equality holds in
Theorem one, then the required modulation laser power is

PL = λL

4Z0ZR

⎛
⎝ εy

σzy(Mod)σz(Rad)

1
e[J J ]K
γ 2mc2 tan−1

(
Lu
2ZR

)
kL

⎞
⎠

2

= 1

([J J ]K )2
λ3
L

3π3Z0

55

48
√
3

αFc2�2eγ
7B3

0Mod

Cγ E3
0Bring

1

σ 2
z (Rad)

Lu
2ZR[

tan−1
(

Lu
2ZR

)]2 .

(3.56)

Nowwe try to derive more useful scaling laws to offer guidance in our parameters
choice for a TLC SSMB ring. To maximize the energy modulation, we need ZR

Lu
=

0.359 ≈ 1
3 .When K >

√
2, we approximate the resonance condition as λL ≈ K 2

4γ 2 λu,

and [J J ] ≈ 0.7. Then we have

PL ∝ λ3
L

K 2

γ 4B3
0Mod

Bring

1

σ 2
z (Rad)

∝ λ
7
3
Lγ

8
3 B

7
3
0Mod

Bring

1

σ 2
z (Rad)

. (3.57)

The corresponding modulator length scaling is

Lu ∝ Bringεy

Hy(Mod)B3
0Mod

. (3.58)

Putting in the numbers for the constants, we obtain the quantitative expressions of
the above scalings for practical use



68 3 SSMB Transverse-Longitudinal Coupling Dynamics

PL [kW] ≈ 5.67
λ

7
3
L [nm]E 8

3
0 [GeV]B 7

3
0Mod[T]

σ 2
z (Rad)[nm]Bring[T] ,

Lu[m] ≈ 57
Bring[T]εy[pm]

Hy(Mod)[µm]B3
0Mod[T] .

(3.59)

The above scaling laws are accurate when K >
√
2.

Note that εy does not appear explicitly in the scaling of the required laser power.
It however affects the bunch length at the modulator and therefore the bunching
factor at the radiator as we have explained. Also it affects the required modulator
length. In other words, to obtain a desired bunching factor, the smaller εy is, the
larger σz(Rad) we can use, thus a lower modulation laser power. Generally a shorter
modulation laser wavelength and lower beam energy is preferred in lowering the
required laser power. But we need to keep in mind that when the beam energy is
too low, intrabeam scattering (IBS) could blow up εy [20, 21]. From the scaling,
a weaker B0Mod means a smaller modulation laser power will be needed. But we
should be aware that the corresponding length of modulator Lu ∝ 1

B3
0Mod

. In Table 6.2
of the final chapter, we have presented an example parameters set of a TLC SSMB
storage ring for high-power EUV and soft X-ray radiation generation, based on the
investigations presented here.

3.1.4 Transverse Deflecting RF or TEM01 Mode Laser
for Coupling

Now we investigate in more detail about the application of TLC in SSMB for bunch
compression, using a TEM01 mode laser modulator for the modulation kick. This
belongs to the category of Theorem two.

3.1.4.1 TEM01 Mode Laser Modulator for Bunch Compression

A laser modulator implementing a TEM01 mode laser is like a transverse deflecting
RF cavity in the optical wavelength range. The electric field of a Hermite-Gaussian
TEM01 mode laser polarized in the vertical direction is [19]

Ey = Ey0e
ikz−iωt

(
1

1 + i z
ZR

)2

exp

[
i
kQ

2

(
x2 + y2

)] 2
√
2

w0
y,

Ez = Ey0e
ikz−iωt

(
1

1 + i z
ZR

)2

exp

[
i
kQ

2

(
x2 + y2

)] 2
√
2

w0

(
i

k
− Qy2

)
,

(3.60)
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with Q = i

ZR

(
1+i z

ZR

) . The relation between Ey0 and the laser peak power for aTEM01

mode laser is given by

PL = E2
y0ZRλL

2Z0
. (3.61)

Note there is a factor of two difference in the above laser power formula compared to
the case of a TEM00 mode laser. The electron wiggles in a vertical planar undulator
according to

y(z) = K

γ ku
sin(kuz), (3.62)

and the laser-electron exchanges energy according to

dW

dt
= evy Ey + evz Ez . (3.63)

Assuming that the laser beam waist is in the middle of the undulator, and when
x, y � w(z), which is typically the case in SSMB, we drop exp

[
i kLQ2 (x2 + y2)

]
in

the laser electric field. Since usually ZR 
 λu , we can also drop the contribution
from Ez on energy modulation. Then the integrated modulation voltage induced by
the laser in the undulator is

Vmod = 4K [J J ]
γ

√
π PL Z0

λL

Lu
2ZR

1 +
(

Lu
2ZR

)2 y, (3.64)

The linear energy chirp with respect to y introduced is then

t = eVmod

E0

1

y
= 2eK [J J ]kL

γ 2mc2

√
PL Z0

π

Lu
2ZR

1 +
(

Lu
2ZR

)2 . (3.65)

Note that the symplecticity of the dynamics requires that the vertical angle of the
particle after modulation will depend on its initial longitudinal location. This obser-
vation is also supported by the Panofsky-Wenzel theorem [22]

∂�y′

∂s
= ∂

∂y0

(
�γ

γ

)
, (3.66)

where �y′ and �γ are the electron angular kick and energy change in the laser
modulator. It is interesting to note that the modulation kick strength depends on the
ratio between ZR and Lu , instead their absolute values, and the maximal modulation
is realized when ZR = Lu

2 .
Now we can do some evaluation based on the formulas. For an example choice of

parameters, E0 = 400 MeV, λL = 270 nm, K [J J ] = 5, PL = 1 MW, ZR = Lu
2 ,
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we have t = 4 m−1. If εy = 1 pm and the desired bunch length is 3 nm at the
radiator, i.e., σz(Rad) = 3 nm, then according to Theorem two we have βy(Mod) ≥

εy
t2(Mod)σ 2

z (Rad) = 6.9 × 103 m. The application of TLC with a TEM01 mode laser to
compress the bunch length therefore faces the issue of a too large βy at themodulator,
if the desired bunch length is at nm level, which is needed for example in 13.5
nm coherent EUV radiation generation. However, if our target wavelength region is
λR � 100 nm, then the idea looks appealing as the requiredβy iswithin the reasonable
reach then. We remind the readers that there could be other more effective angular
modulation scheme invented such that the issue of large βy at the modulator can be
solved, even if our target radiation wavelength is still in EUV.

3.1.4.2 Contribution of Modulators to Vertical Emittance

As said the advantage of TLC for bunch compression is based on a small vertical
emittance. Like before let us now investigate the contribution of modulators to εy .
We remind the readers that for bunch compression using a TEM01 mode laser, in
principle, we can place the modulator at a dispersion-free location. Note however,
if we aim at a complete y-z emittance exchange, the modulator needs to be placed
at a dispersive location as will be discussed in next section. Here to minimize the
contribution of modulators to εy , we choose to place the modulator at dispersion-free
location, which means d = 0 and d ′ = 0, then the bunch compression condition is

T55 = t R54 + 1 = 0,

T56 = R56 = 0.
(3.67)

Although we have placed the modulator at a dispersion-free location, there is still
some residual contribution to εy since the transfer matrix of a TEM01 mode laser
modulator is intrinsically transverse-longitudinal coupled, and the physical length
Lu and r56 = 2NuλL of the modulator are nonzero. The thick-lens transfer matrix
of the laser modulator can be obtained by slicing the laser modulator to tiny slices
and use the thin-lens kick and drift method to get the total map. If we consider only
terms to first order of t , r56 and Lu , then the thick-lens matrix of the TEM01 laser
modulator is

M2 ≈

⎛
⎜⎜⎝

1 Lu
tLu
2

r56t Lu
6

0 1 t r56t
2

r56t
2

r56t Lu
6 1 r56

t t Lu
2 0 1

⎞
⎟⎟⎠ . (3.68)

Note that M2 is symplectic to first order of t . The transfer matrix of the state vector
from the modulator entrance to a distance of s in it is
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M2s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
(

s
Lu

)
Lu

(
s
Lu

)2
t Lu
2

(
s
Lu

)3
r56t Lu

6

0 1
(

s
Lu

)
t

(
s
Lu

)2
r56t
2(

s
Lu

)2
r56t
2

(
s
Lu

)3
r56t Lu

6 1
(

s
Lu

)
r56(

s
Lu

)
t 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.69)

Here for simplicity we have assumed that the laser is a plane wave such that the
induced angular modulation strength is proportional to the distance traveled inside
the modulator.

Assuming that the one-turn map observed at the entrance of modulator is

T(0) =

⎛
⎜⎜⎝
cos�y + αy sin�y βy sin�y 0 0

−γy sin�y cos�y − αy sin�y 0 0
0 0 cos�z + αz sin�z βz sin�z

0 0 −γz sin�z cos�z − αz sin�z

⎞
⎟⎟⎠ ,

(3.70)
in which �y = 2πνy and �z = 2πνs . The eigenvector of the one-turn map corre-
sponding to the vertical mode at the position s inside the modulator is then

EI I (s) = M2sEI I (0) = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
βy +

(
s
Lu

)
Lu

i−αy√
βy

i−αy√
βy(

s
Lu

)2
r56t
2

√
βy +

(
s
Lu

)3
r56t Lu

6
i−αy√

βy(
s
Lu

)
t
√

βy

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
ei�I I .

(3.71)
Note that to ensure the TLC-based bunch compression can repeat turn-by-tun in
a ring, usually two laser modulators are placed upstream and downstream of the
radiator, respectively, to form a pair. According to Chao’s SLIM formalism [23], we
can calculate the contribution of the two modulators to εy

�εy(Mod, QE) = 2 × 55

48
√
3

αF�2eγ
5

αV

∫ Lu

0

|EI I5(s)|2
|ρ(s)|3 ds. (3.72)

When Nu 
 1, due to the fast oscillating behaviour of sin
[
2Nuπ

(
s
Lu

)]
, we can

adopt the approximation

�εy(Mod, QE) ≈ 2 × 55

96
√
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αF�2eγ
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αV

1

ρ3
0

1

Lu

∫ Lu
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2Nuπ
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)2 r56t
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)3 r56t Lu

6

i − αy√
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2

ds.

(3.73)
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For simplicity, we assumeαy = 0 at themodulator entrance, and usuallyβy(Mod) 

Lu , then

�εy(Mod, QE) ≈ 2 × 55

96
√
3

αF�2eγ
5

αV

1

ρ3
0Mod

4

3π

r256t
2βy

20
Lu . (3.74)

Now let us put in some numbers to get a more concrete feeling. For exam-
ple, if E0 = 400 MeV, ρring = 1 m (Bring = 1.33 T), λL = 270 nm, λu = 4 cm,
K = 3.8, B0 = 1.02 T, Nu = 10, r56 = 2NuλL = 5.4 µm, Lu = 0.4 m, εy = 1 pm,
βy(Mod) = 100 m, σy(Mod) = √

εyβy(Mod) = 10 µm, σz(Rad) = 2 nm, t =
1√

βy(Mod)Hy(Rad)
= εy

σy(Mod)σz(Rad)
= 50 m−1, then the contribution of the two mod-

ulators to εy is �εy(Mod, QE) ≈ 2.06 fm. So generally, the contribution of the two
modulators to εy is a small value, if the modulators are placed at dispersion-free
locations.

3.1.5 Emittance Exchange

3.1.5.1 Lattice Condition

For completeness of the investigation, it might also be helpful to make a short dis-
cussion on the relation between our TLC analysis and the transverse-longitudinal
emittance exchange (EEX). For a complete EEX, we need the transfer matrix of the
form

T =
(
0 B
C 0

)
. (3.75)

Therefore, EEX is a special case in the context of our problem definition of TLC-
based bunch compression, i.e., in EEX the final beam is also y-z decoupled. As
can be seen from Eq. (3.31), the application of a normal RF or TEM00 mode laser
modulator cannot accomplish a complete EEX, as T65 = h �= 0. PEHG and ADM
can thus be viewed as partial EEXs. In contrast, a transverse deflecting RF or TEM01
mode laser modulator can be used to obtain a complete EEX. All we need is to add
another condition to Eq. (3.22), i.e.,

dt + 1 = 0. (3.76)

After some straightforward algebra, the relations in Eqs. (3.22) and (3.76) can be
summarized in an elegant form as follows [24]
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Fig. 3.7 Application of two transverse-longitudinal emittance exchangers to manipulate the bunch
length in a storage ring

t = − 1

d
,

D = R34d
′ + R33d,

D′ = R44d
′ + R43d.

(3.77)

Note that the above relations mean that the lattices upstream and downstream the
transverse deflecting RF are not mirror symmetric with respect to each other [25].
Under the conditions given in Eq. (3.77), we have

T =

⎛
⎜⎜⎝

0 0 − R34
d d R33 − R34

r56−dd ′
d

0 0 − R44
d d R43 − R44

r56−dd ′
d

dr43 − r33
R56+dd ′

d dr44 − r34
R56+dd ′

d 0 0
− r33

d − r34
d 0 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 0 T35 T36
0 0 T45 T46
T53 T54 0 0
T63 T64 0 0

⎞
⎟⎟⎠ .

(3.78)

3.1.5.2 Two EEXs as an Insertion

In order to apply EEX to generate short bunch in a storage ring on a turn-by-turn
basis, another EEX might be needed following the radiator to swap back the εy and
εz to maintain the ultrasmall vertical emittance εy . If there is only one transverse-
longitudinal EEX, the ring will then be a transverse-longitudinal Möbius accelerator
[26], which is also an interesting topic we are not going into in this dissertation.

Now we consider the application of two y-z EEXs for bunch length manipulation
in a storage ring as shown in Fig. 3.7. The motivation is still to make use of the fact
that the vertical emittance εy is rather small in a planar x-y uncoupled ring. The first
natural idea is to add an inverse EEX unit following the EEX,

T−1 =

⎛
⎜⎜⎝

0 0 T64 −T54
0 0 −T63 T53
T46 −T36 0 0

−T45 T35 0 0

⎞
⎟⎟⎠ , (3.79)

then the total insertion will be an identity matrix and be transparent to the ring.
The issue of this approach, however, is that we need to design the downstream
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beamline with an R56 having opposite sign to the upstream beamline, which might
be a challenging task if we aim at a compact lattice.

The second natural idea is to implement the mirror symmetry of the upstream
beamline as the downstream beamline, which is straightforward for the lattice design.
The transfer matrix of the mirror image is related to that of the original beamline
according to [27, 28]

TmirrorUT = U, U =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ . (3.80)

Therefore,

Tmirror = UT−1U−1 =

⎛
⎜⎜⎝

0 0 −T64 −T54
0 0 −T63 −T53

−T46 −T36 0 0
−T45 −T35 0 0

⎞
⎟⎟⎠ . (3.81)

Note, however, the transfer matrix of the total insertion in this case is generally not
an identity matrix,

M = TmirrorT =
(
A’ 0
0 E’

)
, (3.82)

with

A’ =
(−(T53T64 + T54T63) −2T54T64

−2T53T63 −(T53T64 + T54T63)

)
,

E’ =
(−(T35T46 + T36T45) −2T36T46

−2T35T45 −(T35T46 + T36T45)

)
.

(3.83)

A special case of EEX is the phase space exchange (PSX), i.e., the exchange
happens in the phase space variables apart from a magnification factor. In this case,
a PSX followed by its mirror can form an identity or a negative identity matrix.
Case one:

T =

⎛
⎜⎜⎝

0 0 0 m1

0 0 − 1
m1

0
0 m2 0 0

− 1
m2

0 0 0

⎞
⎟⎟⎠ , Tmirror =

⎛
⎜⎜⎝

0 0 0 −m2

0 0 1
m2

0
0 −m1 0 0
1
m1

0 0 0

⎞
⎟⎟⎠ , M = TmirrorT = I,

(3.84)
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Case two:

T =

⎛
⎜⎜⎜⎝

0 0 m1 0
0 0 0 1

m1
m2 0 0 0
0 1

m2
0 0

⎞
⎟⎟⎟⎠ , Tmirror =

⎛
⎜⎜⎜⎝

0 0 − 1
m2

0
0 0 0 −m2

− 1
m1

0 0 0
0 −m1 0 0

⎞
⎟⎟⎟⎠ , M = TmirrorT = −I.

(3.85)
According to Eq. (3.78), for case one, we need

− R34

d
= 0,

dR43 + d ′R44 − r56R44

d
= 0,

dr43 − d ′r33 − r33R56

d
= 0,

−r34
d

= 0,

(3.86)

and

T =

⎛
⎜⎜⎝

0 0 0 d
R44

0 0 − R44
d 0

0 d
r33

0 0
− r33

d 0 0 0

⎞
⎟⎟⎠ . (3.87)

For case two, we need

dR33 + d ′R34 − r56R34

d
= 0,

− R44

d
= 0,

dr44 − d ′r34 − r34R56

d
= 0,

−r33
d

= 0,

(3.88)

and

T =

⎛
⎜⎜⎝

0 0 − R34
d 0

0 0 0 − d
R34− d

r34
0 0 0

0 − r34
d 0 0

⎞
⎟⎟⎠ . (3.89)
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3.2 Nonlinear Transverse-Longitudinal Coupling Dynamics

3.2.1 Average Path Length Dependence on Betatron
Amplitudes

After investigating the linear TLC, we will now examine nonlinear coupling. How-
ever, here we consider only the second-order path lengthening or shortening from
betatron oscillations, and its impact on equilibrium beam parameters. A general
discussion of the nonlinear dynamics is beyond the scope of this dissertation. The
second-order TLC considered here originates from a dependence of the average path
length on the betatron oscillation amplitudes, which can be expressed by a concise
formula

�C = −2π(ξx Jx + ξy Jy), (3.90)

where �C is the average path-length deviation relative to the ideal particle, and
ξx,y = dνx,y

dδ
and Jx,y are the horizontal (vertical) chromaticity and betatron invariant,

respectively. This simple relation is a result of the symplecticity of the Hamiltonian
dynamics [29–31]. It is called a second-order coupling because the betatron invariant
is a second-order term with respect to the transverse position and angle. Note that
Eq. (3.90) is accurate only for the cases of multiple passes or multiple betatron
oscillation periods as it is a betatron-phase-averaged result. For the case of a single
pass with only a few betatron oscillations, there will be an extra term, depending on
the betatron phase advance, in the path length formula.

This path length effect has previously been theoretically analyzed by several
authors in different contexts [29–34]. Due to this effect, particles with different beta-
tron amplitudes lose synchronization with each other when traversing a lattice with
nonzero chromaticity. This leads to a stringent requirement on the beam emittance
for FELs in the X-ray regime (XFELs), as microbunching can be smeared out by
this effect when the beam is traveling through the undulator [35]. This effect is also
crucial in non-scaling fixed-field alternating-gradient (FFAG) accelerators for muon
acceleration [31], as a muon beam typically has a large emittance. Furthermore, the
natural chromaticities of a linear non-scaling FFAG accelerator are usually not cor-
rected to achieve a large transverse acceptance. This effect may also have an impact
on the momentum and dynamic aperture in a storage ring [36, 37], for example,
due to the Touschek scattering-induced large betatron amplitude or the large natu-
ral chromaticity in a low-emittance lattice. In this dissertation, we will emphasize
the importance of this nonlinear TLC effect in precision longitudinal dynamics in a
storage ring, such as SSMB.
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3.2.2 Energy Widening and Distortion

As mentioned, this second-order TLC effect can disperse microbunching in XFELs.
Methods of overcoming this influence are referred to as “beam conditioning”. Several
such methods have been proposed since the first publication of Ref. [35]. The basic
idea of these proposals is to compensate the difference in path length through a
difference in velocity by establishing a correlation between the betatron amplitude
and the particle energy. In a storage ring, unlike in a single-pass device, the RF cavity
will “condition” the beam automatically, causing all particles to synchronize with
it in an average sense through phase stabilization (bunching). This is accomplished
by introducing a betatron-amplitude-dependent energy shift to compensate for the
path-length difference arising from the betatron oscillations,

�δ = − �C

αC0
, (3.91)

where α is the momentum compaction factor of the ring, defined in Eq. (2.1). This
shift will result in the beamenergywidening in a quasi-isochronous ringwith nonzero
chromaticity, because different particles have different betatron invariants [34]. This
widening will become more significant with the decreasing of the momentum com-
paction.

Due to the energy shift, there will also be an amplitude-dependent shift in the
betatron oscillation center at dispersive locations. The shift direction is determined
by the signs of α, ξx,y and Dx,y , and the magnitude of the shift is determined by the
magnitudes of Jx,y , α, ξx,y and Dx,y . The physical pictures of the betatron center
shift resulting from this effect are shown in Fig. 3.8.

When quantum excitation is also taken into account, the total relative energy
deviation of a particle with respect to the ideal particle is

Fig. 3.8 Physical picture of the amplitude-dependent shift of betatron oscillation center in the case
of a positive momentum compaction. Only a horizontal betatron oscillation is considered in this
illustration
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δ = �δ + δqe, (3.92)

where δqe represents the quantum excitation contribution. Finding a general ana-
lytical formula for the steady-state distribution of the particles is a complex task
and, at the same time, not very useful. Simpler expressions can be obtained based
on reasonable approximations. Since the vertical emittance is usually much smaller
than the horizontal emittance in a planar uncoupled ring, here, we consider only the
contribution from the horizontal emittance. When the coupling is not very strong,
the distributions of Jx and δqe are still approximately exponential and Gaussian,
respectively, and are independent of each other,

ψ(Jx ) = 1

2πεx0
e− Jx

εx0 , ψ(δqe) = 1√
2πσδ0

e
− δ2qe

2σ2
δ0 , (3.93)

where εx0 and σδ0 are the natural horizontal emittance and energy spread. The dis-
tribution of δ is thus an exponentially modified Gaussian because it is the sum of an
exponential and a normal random variable,

ψ(δ) = |λ|
2
e

λ(λσ2
δ0−2δ)
2 erfc

[
sgn(λ)

(
λσ 2

δ0 − δ
)

√
2σδ0

]
, (3.94)

where λ = αC0
2πξx εx0

, sgn(x) is the sign function and erfc(x) is the complementary error

function, defined as erfc(x) = 1 − erf(x) = 2√
π

∫∞
x e−t2dt. The direction of long

non-Gaussian tail of the energy distribution is determined by the signs of α and ξx .
Because of the dispersion and dispersion angle, the non-Gaussian particle energy

distribution can also be reflected in the transverse dimension. When this nonlinear
coupling is considered, the horizontal position and angle of a particle in the storage
ring are

x = √
2Jxβx cosϕx + Dx

(
δqe + 2πξx Jx

αC0

)
,

x ′ = −√2J/βx (αx cosψx + sinψx ) + D′
x

(
δqe + 2πξx Jx

αC0

)
.

(3.95)

It is assumed that the concept of the Courant-Snyder functions is still approximately
valid in Eq. (3.95).

With these approximations, the variance of δ is then

σ 2
δ = σ 2

δ0 +
(
2πεx0ξx

αC0

)2

. (3.96)
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Table 3.1 Parameters of the MLS in the experiment

Parameter Value Description

C0 48 m Ring circumference

E0 630 MeV Beam energy

frf 500 MHz RF frequency

Vrf ≤600 kV RF voltage

U0 9.1 keV Radiation loss per turn

Js 1.95 Longitudinal damping partition

τδ 11.4 ms Longitudinal radiation damping time

εx0 250 nm Horizontal emittance

σδ0 4.4 × 10−4 Natural energy spread

By assuming the MLS parameters shown in Table 3.1 and applying α = 1 × 10−4

and ξx = 2, one can find that the energy spread contributed by this effect can be as
significant as its natural value.

As discussed in Ref. [34], a shift in the energy center corresponds to a shift in the
synchronous RF phase φs ,

�φs ≈ Js tan φs�δ, (3.97)

where Js is the longitudinal damping partition number and nominally Js ≈ 2. There-
fore, particles with different betatron amplitudes will oscillate around different fixed
points in the longitudinal dimension, thus lengthening the bunch. The change in the
synchronous RF phase in a unit of the longitudinal coordinate, �zs , is related to the
relative change in energy, �δ, according to

�zs
σz0

= νs Js tan φs

fRF/ frev|α|
�δ

σδ0
∝ 1√|α|

�δ

σδ0
, (3.98)

where νs is the synchrotron tune, frev is the particle revolution frequency in the ring,
σz0 and σδ0 are the natural bunch length and energy spread, respectively.

The critical value of alpha, αc, when the relative change of bunch length and
energy spread are the same can be calculated to be

νs Js tan φs

fRF/ frev|αc| = 1 ⇒ |αc| = JsT0 tan φs

π fRF/ frevτδ

, (3.99)

where τδ = 1/αL = 2E0
JsU0

T0 is the longitudinal radiation damping time. As an exam-
ple, we use the MLS parameters given in Table 3.1 and consider the application
of an RF voltage of 500 kV, which corresponds to a synchronous RF phase of
φs = 0.018 rad. The critical value of alpha is then |αc| ≈ 2.1 × 10−9, which is about
four orders of magnitude smaller than the alpha value reachable at the present MLS.
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Fig. 3.9 Energy widening, bunch lengthening and distortion from a Gaussian distribution induced
by a nonvanishing horizontal chromaticity. From up to bottom, the particle tracking results for
distributions of x , x ′, z and δ are shown at two dispersive locations in the MLS under three different
horizontal chromaticities ξx . The direction of the long non-Gaussian tail for δ is related to the signs
of α and ξx , while for x and x ′ they are also dependent on Dx and D′

x , respectively. The simulation
was conducted using the code ELEGANT [38] with a beam energy of 630 MeV, an RF voltage of
500 kV and the application of α = 1 × 10−4. In each simulation, eight particles were tracked for
5 × 106 turns, corresponding to approximately 73 longitudinal radiation damping times

Therefore, the relative bunch lengthening resulting from this effect is much less
significant than the corresponding energy widening at the MLS.

Several particle tracking simulations were conducted using the MLS lattice with
the parameters presented in Table 3.1 to confirm the analysis. Two dispersive loca-
tions, with different signs and magnitudes of Dx , were selected as the observation
points in the simulations. The simulation results are shown in Fig. 3.9. The energy
widening and distortion from Gaussian behaviors are as expected and, indeed, are
more significant than the bunch lengtheningwhenα = 1 × 10−4. At the two observa-
tion points, widening and distortion of the particle energy distribution also manifest
in the transverse dimension through Dx and D′

x . The related optic functions at the two
observation points are also shown in the profiles of x and x ′. Note that the directions
of the long non-Gaussian tails of the profiles and their relations to the signs of ξx ,
Dx and D′

x . We conclude that the simulation results agree well with the analysis and
physical pictures presented above.

3.2.3 Experimental Verification

Here we report the first experimental verification of the energy widening and particle
distribution distortion fromGaussian due to this second-order TLC effect as analyzed
above. At theMLS, theCompton-backscattering (CBS)method is applied tomeasure
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Fig. 3.10 Measurements of the CBS photons spectra at the 344.28 keV (a) and 778.90 keV (c)
emission lines of 152Eu radionuclide to calibrate the channel numbers in terms of keV and the
HPGe-detector resolution at the CBS cutoff edge (b) in the CBS method of measuring beam energy
spread

the electron energy [39]. Nevertheless, within certain limitations, the electron beam
energy spread can also be evaluated from the CBS photon spectra [40]. The non-
Gaussian momentum distribution makes the evaluation a bit more involved, but we
can assume a Gaussian distribution with an equivalent mean energy spread. This is
a good approximation as long as ξx is not too large.

The experiment is conducted with all 80 RF buckets equally filled. To exclude a
severe impact from energy widening collective effects, the beam current is decayed
till the horizontal beam size is not sensitively dependent on it. The average single-
bunch current is below12.5µA(1electron/1pA)while doing theCBSmeasurements.
To mitigate the influence of a nonlinear momentum compaction, the longitudinal
chromaticity has been corrected close to zero. The other parameters of the ring in
the experiment are presented in Table 3.1.

To get the energy spread based on the CBS method with precision, the HPGe-
detector used in the measurement should be calibrated in terms of the photon energy
per channel. This is realized by recording the emission lines froma 152Eu radionuclide
simultaneously during the measurement of the CBS photons. Moreover, the width
of the fitted 152Eu lines that are close to the edge of the CBS photons have been
used to determine the detector resolution σdet at the photon energy of the CBS cutoff
edge, Eedge, in our case 707 keV. This is done by a linear interpolation of the width
of the 152Eu lines at 344.28 and 778.90 keV. The detector resolution σdet at 707 keV
is thus determined to be 0.64(4) keV. The calibration scheme and result is shown in
Fig. 3.10.

Figure 3.11a shows the typical CBS photon spectra close to the cutoff edge under
the cases of different ξx and α. The adjustment of ξx is accomplished by the imple-
mentation of different chromatic sextupole strengths and the α by slightly tuning
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Fig. 3.11 Measurement of the electron beam energy widening brought by the horizontal chro-
maticity using the CBS method. a The cutoff edges of CBS photon spectra under different ξx and
fs (therefore α). b Quantitative evaluation of the cut-off edges revealing the energy spread and its
comparison with theory Eq. (3.96). The error bars in both figures are the one sigma uncertainties
of the measurements and are due to calibration errors and counting statistics. The data acquisition
of each spectrum takes 15 min

quadrupole strengths. In the experiment the RF voltage is kept constant and the syn-
chrotron frequency fs is proportional to the square root of the magnitude of α. The
edge in the figure is a convolution of a step function representing the CBS cutoff
edge with a Gaussian function which attributes to the finite HPGe-detector energy
resolution and the electron beam energy spread. The fitted line is basically an error
function from which the energy width of the CBS photons at the edge σedge, and
therefore the electron beam energy spread σδ , can be deduced. It is assumed σedge

is given by σedge =
√

σ 2
det + (2Eedgeσδ)2. The second term in the square root is due

to the electron beam energy spread and is based on the fact that the energy of the
backscattered photon is proportional to the electron energy squared.

It can be seen from Fig. 3.11a that the edge slope decreases with the magnitude
increasing of ξx and lowering of α when ξx �= 0, which indicates that there is an
energy widening in the process. Quantitative evaluation of the edges revealing the
energy spread and its comparison with theory of Eq. (3.96) are shown in Fig. 3.11b.
The energy spread grows significantly with the magnitude decrease of α when ξx =
−3.14 while it stays almost constant in the case of ξx = 0. The agreement between
measurements and theory is quite satisfactory. This is the first direct experimental
proof of the impact of this effect on the equilibrium beam parameters in a storage
ring.
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Fig. 3.12 Transverse beam intensity distortion from Gaussian at dispersive locations due to a non-
vanishing horizontal chromaticity measured by the imaging systems installed at QPD0 and QPD1.
Three different ξx are applied in both the positive and negative momentum compaction modes with
α = ±8.4 × 10−5. There is some residual horizontal-vertical coupling in the positive momentum
compaction case, which do not influence the principle observation of the non-Gaussian behavior

As analyzed before, the bunch lengthening due to this second-order coupling
is much less notable and also due to the limited resolution of the present streak
camera, we do not measure the bunch lengthening in the experiment. Nevertheless,
a more comprehensive investigation of this effect can be conducted on the other
beam characteristics like the transverse intensity distribution. As can be seen from
Eq. (3.95), particles with different betatron amplitudes oscillate around different
closed orbits, which is the amplitude dependent center shift [41]. Because of the
dispersion, the non-Gaussian particle momentum distribution can also be reflected
to the transverse dimension, which can be observed by the beam imaging systems
installed at the MLS [42].

Figure 3.12 shows the typical transverse beam intensity distribution measured by
the imaging systems at two dispersive locations, QPD0 and QPD1, with different
values of ξx in both the negative and positive momentum compaction modes. The
relevant optics functions, βx and Dx , at the two observation points are also shown
in the figure. Note that Dx have different signs and magnitudes at QPD0 and QPD1.
It can be seen that the horizontal beam distribution at these dispersive locations
becomes asymmetric when ξx �= 0. The long tail direction and the magnitude of
deviation from Gaussian are determined by the signs and magnitudes of α, Dx , ξx
and also the value of εx0 and βx , which fits with the expectations.

Figure 3.13a demonstrates the typical horizontal beam profiles measured at QPD1
in the negative momentum compaction mode under three different ξx and their good
agreements with theory. It turns out that both the theoretical and experimental mea-
sured horizontal coordinate distribution ψ(x) can be excellently fitted by a skewed
Gaussian function

ψ(x) = 1√
2πσ

· e− (x−b)2

2σ2 ·
(
1 + erf

[
d · x − b√

2σ

])
. (3.100)
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Fig. 3.13 Horizontal beam profile distortion from Gaussian by horizontal chromaticty. a Typical
horizontal beam profile at QPD1 with α = −7 × 10−5 under three different ξx . The closed orbit
movements of the ideal particle due to the sextupole strengths changes when adjusting ξx have
been compensated in the plot. Cross: beam imaging system measurement results. Dashed line:
fit of the measurement data by an exponentially modified Gaussian function Eq. (3.100). Solid
line: theoretical prediction. bMeasured and theoretical asymmetry parameter d versus ξx at QPD0
and QPD1 with fs = 5 kHz (α = −7 × 10−5); c Measured and theoretical asymmetry parameter
d versus fs at QPD0 and QPD1 with ξx = 1.4. All the theoretical curves are obtained based on
Eqs. (3.93) and (3.95)

The asymmetry parameter d in Eq. (3.100) is used to quantitatively describe the
deviation from Gaussian and as a criterion to do comparison between measurements
and theory. Figure 3.13b and c show the asymmetry parameter d versus ξx and fs ,
therefore α, from measurements and theory at QPD0 and QPD1. It can be seen that
the larger the ξx and the smaller the α, the more asymmetric the distribution is. Also
the asymmetry at QPD1 is more significant than that at QPD0 as themagnitude of Dx

at QPD1 is larger while the βx difference at two places is not much. The agreement
between measurements and theory confirms that this effect distorts the beam from
Gaussian in both the longitudinal and transverse dimensions.

While the energy widening and beam distortion could be a detrimental outcome
for some applications, it may actually also be beneficial as it can help to stabilize
collective instabilities. The bunch lengthening on the other hand is much less notable
compared to the energy widening. So quasi-isochronous ring-based coherent radia-
tion schemes, like some of the SSMB scenarios, may boost the stable coherent radi-
ation power by taking advantage of this effect. For example, the stable single-bunch
current at the MLS can grow for more than one order of magnitude by increasing the
absolute value of the horizontal chromaticity from zero to a value larger than three,
with the head-tail and the other collective effects like the longitudinal microwave
instability properly suppressed. It has been proved at the MLS that the increase of
THz power due to a higher stable beam current overcompensates the decrease due
to the slight bunch lengthening of this effect. Therefore, this is now the standard low
momentum compaction mode at the MLS for the application of Fourier Transform
Spectroscopy.

This nonlinear TLC may also be useful in some more applications. For example,
it can be used for the real-time emittance evaluation in storage rings if the chro-
maticities, beta function and dispersion are known, which are usually easier to get
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than measuring the emittance directly. The amplitude dependent center shift can be
applied to detect beam instabilities which blow up the transverse emittance [43]. A
strongly asymmetric particle momentum distribution due to this effect cooperating
with a large momentum compaction lattice can generate a strongly asymmetric dis-
tributed current, which is favored in some applications such as beam-drivenwakefield
acceleration [44].
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Chapter 4
SSMB Radiation

Having discussed the methods to form and preserve microbunching in the last two
chapters, now we present the theoretical and numerical study of the average and sta-
tistical property of coherent radiation from SSMB. Our results show that a kW-level
average power quasi-continuous-waveEUV radiation can be obtained fromanSSMB
ring, provided that an average current of 1 A and bunch length of 3 nm microbunch
train can be formed at the radiator which is assumed to be an undulator. Together
with its narrowband feature, the EUV photon flux can reach 1015 ∼ 1016 phs/s within
a 0.1 meV energy bandwidth, which is three orders of magnitude higher than that in
a conventional synchrotron source, allowing sub-meV resolution in angle-resolved
photoemission spectroscopy (ARPES) and providing new opportunities for funda-
mental physics research. In the theoretical investigation, we have generalized the
definition and derivation of the transverse form factor of an electron beam which can
quantify the impact of its transverse size on coherent radiation. In particular, we have
shown that the narrowband feature of SSMB radiation is strongly correlated with the
finite transverse electron beam size. Considering the pointlike nature of electrons
and quantum nature of radiation, the coherent radiation fluctuates from microbunch
to microbunch, or for a single microbunch from turn to turn. Some important results
concerning the statistical property of SSMB radiation are presented, with a brief dis-
cussion on its potential applications for example the beam diagnostics. The presented
work is of value for the development of SSMB and better serve the potential syn-
chrotron radiation users. In addition, it also sheds light on understanding the radiation
characteristics of free-electron lasers (FELs), coherent harmonic generation (CHG),
etc. Parts of the work presented in this chapter have been published in Ref. [1].
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4.1 Formulation of Radiation from a 3D Rigid Beam

For simplicity, as the first step we consider only the impacts of particle position x ,
y and z, but ignore the particle angular divergence x ′, y′ and energy deviation δ,
on the radiation. Under this approximation, concise and useful analytical formulas
of the coherent radiation can be obtained. This approximation is accurate when the
transverse and longitudinal beam size do not change much inside the radiator, i.e.,
βx,y � Lr and βz � R56,r , where βx,y,z are the Courant-Snyder functions of the beam
in the horizontal, vertical and longitudinal dimensions [2], Lr and R56,r are the length
andmomentum compaction of the radiator, respectively. Here in this dissertation, we
call this approximation the three-dimensional (3D) rigid beam approximation, as the
beam sizes do not change much during radiation. We will see later in Sect. 4.6 that
the conditions of rigid beam approximation is generally satisfied in the envisioned
EUV SSMB. In addition, we will briefly discuss the impact of beam divergence and
energy spread on coherent radiation in Sect. 4.4.

Assuming that the vector potential of radiation from the reference particle at the
observation location is Apoint(θ, ϕ, t), with θ and ϕ being the polar and azimuthal
angles in a spherical coordinate system, respectively, as shown in Fig. 4.1. Under
far-field approximation, the vector potential of radiation from a 3D rigid electron
beam containing Ne electrons is then

Fig. 4.1 Coordinate system
used to calculate the
undulator radiation
spectrum. The magnetic field
is in the y-direction, and the
electron wiggles in the x-z
plane
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Abeam(θ, ϕ, t) = Ne

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

Apoint

(
θ, ϕ, t + x sin θ cosϕ + y sin θ sin ϕ

c
+ z

βc

)
ρ(x, y, z)dxdydz,

(4.1)

in which β is the particle velocity normalized by the speed of light in vacuum c,
and ρ(x, y, z) is the normalized charge density satisfying

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞ ρ(x, y, z)

dxdydz = 1. Note that we have assumed that the particle motion pattern, therefore
also the radiation pattern of a single electron, does not depend on x , y and z of
the particle. In other words, x, y, z of a particle influences only the arrival time of
the radiation at the observation. This is the reason why their impacts can be treated
within a single framework. The impacts of x ′, y′ and δ are different. Generally, their
impacts are two-fold. First, they affect the radiation of the single particle itself, i.e.,
the radiation pattern. Second, they affect the electron beam distribution, therefore
the coherence of different particles, during the radiation process.

According to the convolution theorem, for a 3D rigid beam, we now have

Abeam(θ, ϕ, ω) = NeApoint(θ, ϕ, ω)b(θ, ϕ, ω), (4.2)

where

b(θ, ϕ, ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρ(x, y, z)e

−iω
(

x sin θ cosϕ+y sin θ sin ϕ

c + z
βc

)
dxdydz. (4.3)

Since A(θ, ϕ, t) is real, then A(θ, ϕ,−ω) = A∗(θ, ϕ, ω). The energy radiated per
unit solid angle per unit frequency interval is [3]

d2W

dωd�
(θ, ϕ, ω) = 2|A(θ, ϕ, ω)|2. (4.4)

Therefore, we have

d2W

dωd�
(θ, ϕ, ω)

∣∣∣∣
beam

= N 2
e |b(θ, ϕ, ω)|2 d2W

dωd�
(θ, ϕ, ω)

∣∣∣∣
point

. (4.5)

The total radiation energy spectrum of a beam can be obtained by the integration
with respect to the solid angle

dW

dω

∣∣∣∣
beam

=
∫ π

0
sin θdθ

∫ 2π

0
dϕ

d2W

dωd�
(θ, ϕ, ω)

∣∣∣∣
beam

, (4.6)

and the total radiation energy of the beam can be calculated by further integration
with respect to the frequency
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Wbeam =
∫ +∞

0
dω

dW

dω

∣∣∣∣
beam

. (4.7)

The reason why the lower limit in the above integration is 0, instead of −∞, is that
there is a factor of 2 in the right hand side of Eq. (4.4). The above formulas can be
used to numerically calculate the characteristics of radiation from an electron beam,
once its 3D distribution is given. Note that in the relativistic case, we only need to
account for θ several times of 1

γ
, as the radiation is very collimated in the forward

direction.

4.2 Form Factors

When the longitudinal and transverse dimensions of the electron beam are decoupled,
we can factorize b(θ, ϕ, ω) as

b(θ, ϕ, ω) = b⊥(θ, ϕ, ω) × bz(ω), (4.8)

where

b⊥(θ, ϕ, ω) =
∫ ∞

−∞

∫ ∞

−∞
ρ(x, y)e

−iω
(

x sin θ cosϕ+y sin θ sin ϕ

c

)
dxdy, (4.9)

and

bz(ω) =
∫ ∞

−∞
ρ(z)e−iω z

βc dz. (4.10)

Note that ρ(x, y) and ρ(z) are then the projected charge density. bz(ω) is the usual
bunching factor found in literature and is independent of the observation angle. This
however is not true for b⊥(θ, ϕ, ω). For example, in the case of a 3D Gaussian x-y-z
decoupled beam,

|b⊥(θ, ϕ, ω)|2 = exp

{
−

(ω

c

)2 [
(σx sin θ cosϕ)2 + (

σy sin θ sin ϕ
)2]}

,

|bz(ω)|2 = exp

[
−

(
ω

βc

)2

σ 2
z

]
,

(4.11)

where σx,y,z are the root-mean-square (RMS) size of the beam in the horizontal,
vertical and longitudinal dimension, respectively.

In order to efficiently quantify the impact of the transverse and longitudinal distri-
butions of an electron beam on the overall radiation energy spectrum, here we define
the transverse and longitudinal form factors of an electron beam as
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FF⊥(ω) =

∫ π

0 sin θdθ
∫ 2π
0 dϕ|b⊥(θ, ϕ, ω)|2 d2W

dωd�
(θ, ϕ, ω)

∣∣∣∣
point

∫ π

0 sin θdθ
∫ 2π
0 dϕ d2W

dωd�
(θ, ϕ, ω)

∣∣∣∣
point

, (4.12)

and
FFz(ω) = |bz(ω)|2, (4.13)

respectively. The overall form factor is then

FF(ω) = FF⊥(ω)FFz(ω). (4.14)

The total radiation energy spectrum of a beam is related to that of a single electron
by

dW

dω

∣∣∣∣
beam

= N 2
e FF(ω)

dW

dω

∣∣∣∣
point

. (4.15)

4.2.1 Longitudinal Form Factor

The longitudinal form factor is the usual bunching factor squared, and have been
discussed extensively in literature. For example, the longitudinal form factor for a
single Gaussian microbunch is given Eq. (4.11). When there are multi microbunches
separated with each other a distance of the modulation laser wavelength λL like that
in SSMB, the longitudinal form factor is that of the single bunch multiplied with a
macro form factor,

FFzMB(ω) = FFzSB(ω)

(
sin

(
Nb

ω
c

λL
2

)
Nb sin

(
ω
c

λL
2

)
)2

, (4.16)

where the subscripts MB and SB mean multi bunch and single bunch, respectively,
and Nb is the number of microbunches. This macro form factor of multi bunches is
a periodic function of the radiation frequency, with a period of the modulation laser
frequency. The full width at half maximum (FWHM) linewidth around each laser
harmonics is ωFWHM = ωL

Nb
. When Nb goes to infinity, this macro form factor will

become the periodic delta function. Figure 4.2 presents an example plot of the macro
form factor for three different Nb.

When the radiation wavelength is a high harmonic of the modulation laser wave-
length, corresponding to these delta function lines in the longitudinal form factor or
radiation energy spectrum, there will be interference rings in the spatial distribution
of the coherent radiation from different microbunches. The polar angles of these
rings, corresponding to the delta function lines in energy spectrum, are determined
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Fig. 4.2 Macro form factor
of multi bunches, as a
function of the number of
bunches

by the off-axis resonant condition. Note that when we use the above form factor
FFzMB(ω) to calculate the radiation energy or spectrum from Nb microbunches, the
number of electrons used should be NbNeSB, with NeSB the number of electrons per
microbunch. We remind the readers that the electron beam energy spread and angu-
lar divergence will make the linewidth of the delta function lines analyzed above
become non-zero. For example, the relative bandwidth of the radiation caused by an
energy spread of σδ is 2σδ .

To make our results more useful, here we also present some analysis applies
for FEL and CHG. As analyzed in Sect. 2.2.1, the bunching factor for a coasting
beam-based CHG is

bz,coasting(ω) =
∞∑
n=0

δ
(ω

c
− nkL

)
Jn

[
−ω

c
R56A

]
exp

[
−1

2

(ω

c
R56σδ

)2
]

,

(4.17)
where

δ(x) =
{
1, x = 0,

0, else.
(4.18)

Let us now consider the more-often confronted case of a finite bunch length. We
assume that the initial beam current before microbunching is Gaussian with an RMS
bunch length of σz . According to the convolution theorem, then

bz,bunched(ω) = bz,coasting(ω) ⊗ bz,Gaussian(ω), (4.19)

where ⊗ means convolution and bz,Gaussian(ω) = exp
[
− 1

2

(
ω
c σz

)2]
. Therefore, the

longitudinal form factor of the beam is now FFz,bunched(ω) = |bz,bunched(ω)|2. The
convolutionwith bz,Gaussian(ω) results in a non-zero bandwidth of each laser harmonic
line in the longitudinal form factor spectrum

(ω)FWHM = 2
√
2 ln 2

c/σz√
2

= 4
√
2 ln 2

(t)FWHM
, (4.20)
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where t is the electron bunch length in unit of time. Then the relative bandwidth
of the longitudinal form factor at the H -th laser harmonic can be expressed as

(
ω

ω

)
FWHM

= 2
√
2 ln 2

π

1

(ct)FWHM/λ
= 2

√
2 ln 2

π

λL

H(ct)FWHM
. (4.21)

Note that the coherent radiation pulse length is 1√
2
of the electron bunch length

due to the scaling of Pcoh ∝ N 2
e , and the above formula means that the coherent

radiation is Fourier-transform limited. Note also that the absolute width (ω)FWHM

is independent of H , while the relative bandwidth
(

ω
ω

)
FWHM

∝ 1
H .

4.2.2 Transverse From Factor

Now let us investigate the transverse form factor. Since the transverse form factor
depends on the radiation process, there is not a universal formula involving only the
beam distribution. Here for our interest, we focus on the case of undulator radiation.
We use a planar undulator as an example. The formulation for a helical undulator is
similar.

As well established in literature, the planar undulator radiation of a point charge
in the H -th harmonic is [4]

d2WH

dωd�
(θ, ϕ, ω)

∣∣∣∣
point

= 2e2γ 2

πε0c
G(θ, ϕ)F(ε),

F(ε) =
(
sin(πNuε)

πε

)2

, ε = ω

ωr (θ)
− H = ω

2ckuγ 2

(
1 + K 2/2 + γ 2θ2

)
− H,

G(θ, ϕ) = Gσ (θ, ϕ) + Gπ (θ, ϕ),

Gσ (θ, ϕ) =
⎡
⎣ H

(
K√
2
D1 + γ θ√

2
D2 cosϕ

)

1 + K 2/2 + γ 2θ2

⎤
⎦
2

, Gπ (θ, ϕ) = 1

2

(
Hγ θD2 sin ϕ

1 + K 2/2 + γ 2θ2

)2

,

D1 = −1

2

∞∑
m=−∞

JH+2m−1(Hα)
[
Jm(Hζ ) + Jm−1(Hζ )

]
,

D2 =
∞∑

m=−∞
JH+2m(Hα)Jm(Hζ ),

α = 2Kγ θ cosϕ

1 + K 2/2 + γ 2θ2
, ζ = K 2/4

1 + K 2/2 + γ 2θ2
,

(4.22)

in which e is the elementary charge, γ is the Lorentz factor, ε0 is the permittivity of
free space, ωr (θ) is the fundamental resonant angular frequency at the observation
with a polar angle of θ , ku = λu/2π is thewavenumber of the undulator, K = eB0

mecku
=

0.934 · B0[T] · λu[cm] is the dimensionless undulator parameter, with B0 being the



96 4 SSMB Radiation

peak magnetic flux density of the undulator and me being the mass of an electron,
Jm means the m-th order Bessel function of the first kind.

Now we try to get some analytical results for the transverse form factor. Instead
of a general discussion, here we consider only the simplest case of a transverse round
Gaussian beam, i.e,

|b⊥(θ, ϕ, ω)|2 = exp

[
−

(ω

c
σ⊥ sin θ

)2
]

, (4.23)

where σ⊥ is the RMS transverse size of the electron beam. As the radiation is domi-
nantly in the forward direction in relativistic case, and e−( ω

c σ⊥ sin θ)
2

approaches zero
with the increase of θ , therefore in Eq. (4.12), the upper limit of θ in the integration

can be effectively replaced by infinity, and sin θ can be replaced by θ in e−( ω
c σ⊥ sin θ)

2

.
Then ∫ 2π

0
dϕ

∫ π

0
sin θdθe−( ω

c σ⊥ sin θ)
2 d2WH

dωd�
(θ, ϕ, ω)

∣∣∣∣
point

≈
∫ 2π

0
dϕ

∫ ∞

0
θdθe−( ω

c σ⊥θ)
2 d2WH

dωd�
(θ, ϕ, ω)

∣∣∣∣
point

≈ e2

πε0c

∫ 2π

0
dϕG(θ1, ϕ)

∫ ∞

0
d(γ θ)2e−( ω

c σ⊥θ)
2

F(ε),

(4.24)

where θ1 = 1
γ

√(
1 + K 2/2

) ( Hω0
ω

− 1
)
, ω0 = ωr (θ = 0) = 2γ 2

1+K 2/2ωu .Herewehave
made use of the fact that there is only one value of θ , i.e., θ1, that contributes signif-
icantly to the integration over the solid angle � due to the sharpness of F(ε) when
the undulator period number Nu � 1, as the spectral width of F(ε) is 1/Nu .

The transverse form factor corresponding to the H -th harmonic can thus be defined
as

FF⊥(H, ω) =
∫ ∞
0 d(γ θ)2e−( ω

c σ⊥θ)
2

sinc2(Nuπε)∫ ∞
0 d(γ θ)2sinc2(Nuπε)

. (4.25)

The radiation spectrum of the H -th harmonic is then

dWH

dω

∣∣∣∣
beam

= N 2
e FF⊥(H, ω)FFz(ω)

dWH

dω

∣∣∣∣
point

, (4.26)

and the total radiation spectrum of an electron beam is

dW

dω

∣∣∣∣
beam

=
∞∑

H=1

dWH

dω

∣∣∣∣
beam

. (4.27)
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Denote

κ1 ≡ Nuπ

(
ω

ω0
− H

)
, κ2 ≡ Nuπ

ω

ω0

1

1 + K 2/2
, κ3 ≡

(
ωσ⊥
cγ

)2

, (4.28)

then the denominator in Eq. (4.25) is

D(H, ω) =
∫ ∞

0
dxsinc2 (κ1 + κ2x) =

π
2 − Si (2κ1) + sin2(κ1)

κ1

κ2
, (4.29)

where Si(x) = ∫ x
0

sin(t)
t dt is the sine integral, and the numerator in Eq. (4.25) is

N(H, ω) =
∫ ∞

0
dxe−κ3x sinc2 (κ1 + κ2x)

= e
κ1κ3
κ2

4κ1κ2
2

{
−4κ2 sin

2(κ1)e
− κ1κ3

κ2 − 2κ1κ2i

[
Ei

(
2κ1i − κ1κ3

κ2

)
− Ei

(
−2κ1i − κ1κ3

κ2

)]

+κ1κ3

[
Ei

(
2κ1i − κ1κ3

κ2

)
− 2Ei

(
−κ1κ3

κ2

)
+ Ei

(
−2κ1i − κ1κ3

κ2

)]}
,

(4.30)
where Ei(x) = ∫ x

−∞
et

t dt is the exponential integral. The transverse form factor is
then

FF⊥(H, ω) = N(H, ω)

D(H, ω)
. (4.31)

When ω = Hω0, then κ1 = 0, the transverse form factor has a simpler form,

FF⊥(S) ≡ FF⊥(H, Hω0) =
∫ ∞
0 dxe−κ3xsinc2 (κ2x)∫ ∞

0 dxsinc2 (κ2x)

= 2

π

[
tan−1

(
1

2S

)
+ S ln

(
(2S)2

(2S)2 + 1

)]
,

(4.32)

where

S (σ⊥, Lu, ω) = κ3

4κ2
= σ 2

⊥ku
ω
c

2Nuπ
= σ 2

⊥
ω
c

Lu
(4.33)

is the diffraction parameter, with Lu = Nuλu being the length of the undulator. This
form factor FF⊥(S) is a universal function and has been obtained before in Ref. [5].
Here we have reproduced the result following the general definition of the transverse
form factor. The variable S is a parameter used to classify the diffraction limit of the
beam,

FF⊥(S) =
{

1, S  1, below diffraction limit,
1

2π S , S � 1, above diffraction limit.
(4.34)
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Fig. 4.3 The universal
function FF⊥(S) and its
asymptotic value above
diffraction limit. The solid
line comes from Eq. (4.32),
the dashed line from the
asymptotic relation above
diffraction limit Eq. (4.34)

10-3 10-2 10-1 100 101
10-2

10-1

100

This function along with its asymptotic result above diffraction limit are shown in
Fig. 4.3.

Note that the decrease of FF⊥(S) with the increase of σ⊥ (S ∝ σ 2
⊥) means that

the coherent radiation at the frequency ω = Hω0 becomes less when the transverse
electron beam size becomes larger. This reflects the fact that for a given radiation
frequency ω, there is a range of polar angle θ that can contribute. For ω = Hω0,
not only θ = 0, but also θ very close to 0 contribute. With the increase of σ⊥,
the effective bunching factor b(θ, ϕ, ω) at ω = Hω0 drops for these non-zero θ

due to the projected bunch lengthening, therefore the coherent radiation becomes
less. Another way to appreciate the drop of FF⊥(S) with the increase of σ⊥ is that
there is a transverse coherence area whose radius is proportional to

√
Luλ0/H with

λ0 = 2π c
ω0
, and less particles can cohere with each other when the transverse size

of the electron beam increases.
Note that our definition Eq. (4.12) and derivation of the transverse form factor

Eq. (4.31) is more general than that given in Ref. [5], as it covers other frequencies
in addition to a single frequency ω0. Therefore, it contains more information than
Eq. (4.32) aswill be presented soon.However, Eq. (4.31) is still not simple enough for
efficient analytical evaluation to provide physical insight. A further approximation
is thus introduced,

FF⊥(H, ω) =
∫ ∞
0 dxe−κ3xsinc2 (κ1 + κ2x)∫ ∞

0 dxsinc2 (κ1 + κ2x)

= e
κ1κ3
κ2

∫ ∞
κ1

dye− κ3
κ2

ysinc2(y)∫ ∞
κ1

dysinc2(y)

≈ e
κ1κ3
κ2

∫ ∞
0 dye− κ3

κ2
ysinc2(y)∫ ∞

0 dysinc2(y)

= e
−4Nuπ S

(
H− ω

ω0

)
FF⊥(S).

(4.35)
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Fig. 4.4 The comparison of the transverse form factor, between that calculated from our simplified
analytical formula Eq. (4.35) and that from the direct numerical integration of Eq. (4.12) for the
case of H = 1, with Nu = 10 (left) and Nu = 100 (right), respectively. Other related parameters
used in the calculation: E0 = 400 MeV, λ0 = 13.5 nm, λu = 1 cm, K = 1.14, σ⊥ = 5 µm

The condition of applying such simplification is κ3
κ2

(ω = Hω0)  1 or S (ω = Hω0)

 1, i.e., the beam is below diffraction limit for the on-axis radiation ω = Hω0.
Therefore, the conditions of applying Eq. (4.35) are

Nu � 1 and σ⊥  1√
H

√
Luλ0

2π
. (4.36)

If the second condition is not satisfied, the more accurate result Eq. (4.31) should be
referred.

As a benchmark of our derivation, here we conduct some calculations of the trans-
verse form factor based on direct numerical integration of Eq. (4.12), and compare
them with our simplified analytical formula Eq. (4.35). The parameters used are for
the envisioned EUV SSMB to be presented in Sect. 4.6, and are given in the figure
caption. As can be seen in Fig. 4.4, their agreement when Nu = 100 is remarkably
well. Even in the case of Nu = 10, the agreement is still satisfactory. There are two
reasons why the agreement is better in the case of a large Nu . The first is that in the
derivation we have made use of the sharpness of F(ε), whose width is 1/Nu . The
second is that S ∝ 1

Nu
with a given transverse beam size and undulator period length,

and our simplified analytical formula Eq. (4.35) applies when S (ω = Hω0)  1.
To appreciate the implication of the generalized transverse form factor further, an

example flat contour plot of the transverse form factor as a function of the radiation
frequencyω and transverse electron beam sizeσ⊥ is shown in Fig. 4.5.As can be seen,
a large transverse electron beam size will suppress the off-axis red-shifted coherent
radiation due to the projected bunch lengthening from the transverse size, thus the
effective bunching factor degradation, when observed off-axis. Therefore, a large
transverse electron beam size will make the coherent radiation more collimated in
the forward direction, and more narrowbanded around the harmonic lines. But note
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Fig. 4.5 Flat contour plot of
the transverse form factor
FF⊥(H, ω) for H = 1, as a
function of the radiation
frequency ω and transverse
electron beam size σ⊥,
calculated using our
simplified analytical formula
Eq. (4.35). Parameters used
in the calculation: E0 = 400
MeV, λ0 = 13.5 nm, λu = 1
cm, K = 1.14, Nu = 2 × 79

that not only the red-shifted radiation is suppressed, the radiation strength of each
harmonic line ω = Hω0 actually also decreases with the increase of the transverse
electron beam size, the reason of which we have just explained.

Now we evaluate the bandwidth and opening angle of the radiation at different
harmonics due to the transverse form factor. In particular, we are interested in the case
where the off-axis red-shifted radiation is significantly suppressed by the transverse
size of the electron beam, which requires that

Nuπ S (ω = Hω0) � 1, (4.37)

i.e., σ⊥ �
√

H
2

√
λuλ0

2π . Note that to apply Eq. (4.35), we still need the conditions in
Eq. (4.36). For example, to apply the analytical estimation for the example EUV
SSMB calculation to be presented in Sect. 4.6, in which λu = 1 cm, λ0 = 13.5 nm
and Nu = 2 × 79, we need 1.3 µm  σ⊥  58 µm. The typical transverse electron
beam size in an EUV SSMB ring is in this range.

With these conditions satisfied, the value of the exponential factor in Eq. (4.35)
is more sensitive to the change of ω, compared to the universal function FF⊥(S).
Therefore, here we consider only the exponential term when ω is close to Hω0.

We want to know the ω at which the exponential term gives e
−4Nuπ S

(
H− ω

ω0

)
= e−1.

Putting in the definition of S = σ 2⊥ku
ω
c

2Nuπ
, we have ωe−1 =

1+
√
1− 2

H2σ2⊥ku k0

2 Hω0. Then

ωe−1

∣∣∣∣⊥ = Hω0 − ωe−1 =
1 −

√
1 − 2

H 2σ 2⊥kuk0

2
Hω0.

(4.38)

As σ⊥ �
√

H
2

√
λuλ0

2π , therefore 2
H 2σ 2⊥kuk0

 1, we have

ωe−1

Hω0

∣∣∣∣⊥ ≈ 1

2H 2σ 2
⊥kuk0

. (4.39)
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Correspondingly, the opening angle of the coherent radiation due to the transverse
form factor is

γ 2θ2
e−1

1 + K 2/2
≈ ωe−1

Hω0

∣∣∣∣⊥ ⇒ θe−1

∣∣∣∣⊥ ≈
√
2 + K 2

2Hγ σ⊥
√
kuk0

. (4.40)

It is interesting to note that

ωe−1

Hω0

∣∣∣∣⊥ ∝ 1

H 2
. (4.41)

As a comparison, the relative bandwidth at the harmonics due to the longitudinal
form factor is

ω

Hω0

∣∣∣∣
z

∝ 1

H
. (4.42)

Note also that ωe−1

Hω0

∣∣∣∣⊥ and θe−1

∣∣∣∣⊥ are independent of Nu , although the approximations

adopted in the derivation actually involve conditions related to Nu .

4.3 Radiation Power and Spectral Flux

In many cases, the microbunching is formed based on an electron bunchmuch longer
than the radiation wavelength, for example in an FEL or CHG. In these cases, the
linewidth of the longitudinal form factor at the harmonics are usually even narrower
than that given by the transverse form factor. This also means that the coherent radi-
ation of a long continuous electron bunch-based microbunching will be dominantly
in the forward direction, as the bunching factor of the off-axis red-shifted frequency
is suppressed very fast compared to the on-axis resonant ones. For a more prac-
tical application, here we derive the coherent radiation power and spectral flux at
the undulator radiation harmonics in these cases. As we will see, the results can be
viewed as useful references for SSMB radiation.

We assume that the long electron bunch, before microbunching, is Gaussain. The
transverse form factors around the harmonics do not change much, i.e., we assume

e
−4Nuπ S

(
H− ω

ω0

)
≈ 1 when ω is close to Hω0. Therefore, we only need to take into

account the Gaussian shape of the longitudinal form factors at the harmonics. The
RMS bandwidth of the longitudinal form factor for a Gaussian bunch with a length of
σz is ω|z = c

σz/
√
2
. Therefore, the coherent radiation energy at the H -th harmonic

is
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WH =
[
N 2
e FF⊥(H, ω)FFz(ω)

dWH

dω

∣∣∣∣
point

]
(ω = Hω0) ×

∫ ∞

−∞
exp

(
− (ω − Hω0)

2

(c/σz)2

)
dω

= N 2
e FF⊥(S)|bz,H |2 2e

2

ε0c
G(θ = 0)

1 + K 2/2

H

Nu

2
× √

πc/σz .

(4.43)
For a planar undulator, the σ -mode radiation dominates and from Eq. (4.22) we have

Gσ (θ = 0) =
[

HK/
√
2

2(1 + K 2/2)

]2

[J J ]2H , (4.44)

in which the denotation [J J ]2H =
[
J H−1

2
(Hχ) − J H+1

2
(Hχ)

]2
, with χ = K 2

4+2K 2 , is

used. Note however, the above expression is meaningful only for an odd H , as the
on-axis even harmonic radiation is rather weak. The peak power of the odd-H -th
harmonic coherent radiation is then

PH,peak = WH√
2π σz/c√

2

= π

ε0c
NuHχ [J J ]2H FF⊥(S)|bz,H |2 I 2P , (4.45)

where IP = Nee√
2πσz/c

is the peak current of the Gaussian bunch beforemicrobunching.
For amore practical application of the derived formula, we put in the numerical value
of the constants, and arrive at

PH,peak[kW] = 1.183NuHχ [J J ]2H FF⊥(S)|bz,H |2 I 2P [A]. (4.46)

Note that the above formula applies when the radiation slippage length Nuλ0 is
smaller than the bunch length σz . If not, the above formula will overestimate the
coherent radiation peak power, as the RMS radiation pulse length is then longer than
c/σz√

2
. Note also that given the same bunch charge and form factors, PH,peak ∝ I 2P ∝ 1

σ 2
z

while WH ∝ 1
σz
. The reason a shorter bunch radiates more total energy is because

that more particles are within the coherence length.
At a first glance of Eq. (4.45), the coherent radiation power Pcoh seems to be

proportional to Nu , while an intuitive picture of the longitudinal coherence length
lcoh ∝ Nu says that the scaling should be Pcoh ∝ N 2

u , as the electron number within
the coherence length is proportional to Nu . This is actually because that FF⊥(S) is
also a function of Nu . It is interesting to note that

Pcoh =
{

∝ Nu, below diffraction limit,

∝ N 2
u , above diffraction limit,

(4.47)

which can be obtained from the asymptotic expressions of FF⊥(S) as shown in
Eq. (4.34). So for a given transverse beam size, Pcoh ∝ N 2

u at first when Nu is small.
When Nu is large enough such that the electron beam is below diffraction limit,
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then Pcoh ∝ Nu . Physically this is because with the increase of Nu , the diffraction
of the radiation will prevent the radiation from one particle so effectively affect the
particles far in front of it, as the on-axis field from this particle becomes weaker with
the increase of the radiation slippage length.

Our derivation of the coherent radiation power above is for a Gaussian bunch-
based microbunching. For a coasting or DC beam, we just need to replace IP in
Eq. (4.45) by the average current IA, and the peak power is then the average power.
For a helical undulator, we need to replace Kplanar/

√
2 with Khelical, and [J J ]21 with

1, in the evaluation of the radiation power at fundamental frequency.
We remind the readers that Eq. (4.45) is for the case of a long continuous bunch-

based microbunching, for example in FELs and CHG. In some of the SSMB sce-
narios, the microbunches are cleanly separated from each other according to the
modulation laser wavelength as will be shown in Fig. 4.9, and usually the radiation
wavelength is at a high harmonic of the modulation laser. Therefore, there actu-
ally could be significant red-shifted radiation generated in SSMB as we will see
in the example calculation in Sect. 4.6. If we put the average current of SSMB in
Eq. (4.45), what it evaluates is the radiation power whose frequency content is close
to the on-axis harmonic and will underestimate the overall radiation power.

After investigating the radiation power, let us now have a look at the spectral flux,
which is the number of photons per unit time in a given small bandwidth. The spectral
flux of coherent radiation at the odd-H -th harmonic can be calculated according to
dWH
dω

as

F (ω = Hω0) =
[
N 2
e FF⊥(H, ω)FFz(ω)

dWH

dω

∣∣∣∣
point

× ω

�ω

]
(ω = Hω0)

= 1

1000

e2

2ε0c�
NuHχ [J J ]2H FF⊥(S)|bz,H |2N 2

e (phs/pass/0.1%b.w.),

(4.48)
where � is the reduced Planck’s constant. Again we put in the numerical value of the
constants, and arrive at

F (ω = Hω0) = 4.573 × 10−5NuHχ[J J ]2H FF⊥(S)|bz,H |2N 2
e (phs/pass/0.1%b.w.).

(4.49)

Note that the above spectral flux is for a single pass of the microbunched electron
beam through the radiator undulator. For the evaluation of the average spectral flux
in an SSMB storage ring, we need to multiply it with the number of microbunches
passing a fixed location in one second, namely F v̄z

λL
, with F being the filling factor

of microbunches in the ring, v̄z being the average longitudinal speed of electron
wiggling in the modulator undulator, and λL being the modulation laser wavelength.
We remind the readers that the above statement means we do not account for the
radiation overlapping between differentmicrobunches if the radiation slippage length
is larger than c

v̄z
λL . If there is such radiation overlapping, the flux will be boosted

further since the electrons in neighboring microbunches can now cohere with each
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other. To give the readers a more concrete feeling about the high spectral flux in
SSMB, we just need to multiply the spectral flux of the usual incoherent undulator
radiation with a factor of NeFF⊥(S)|bz,H |2, with Ne being the number of electrons
per microbunch. For example, in the envisioned EUV SSMB to be presented in
Sect. 4.6, Ne = 2.2 × 104, and FF⊥(S)|bz,H |2 can be as large as 0.1. Therefore, the
EUV spectral flux in an SSMB storage ring can thus be three orders of magnitude
higher than that in a conventional synchrotron source.

4.4 Impact of Electron Beam Divergence and Energy
Spread

Now we take into account the impact of beam divergence and energy spread on
the coherent radiation. With an aim to obtain some efficient evaluation, here we
simplify the analysis by considering only the impact of particle’s x ′, y′ and δ on the
arrival time of the radiation, not on the radiation pattern. This approximation is valid
when the beam divergence and energy spread are small enough, such that σx ′,y′ < 1

γ

and σδ < 1
Nu
. Basically we want to get a formula of the effective transverse and

longitudinal form factors considering the beam size evolution during radiation.
As an example, here we assume that the beam is a 6D Gaussian one, and round

in the transverse dimension. Further we assume the beam reaches its minimal in all
three dimensions at the radiator undulator center, which is desired to get high-power
radiation, then the effective transverse and longitudinal form factors are

FF⊥(ω) = 1

Lu

∫ Lu
2

− Lu
2

FF⊥

((
σ 2

⊥ + (σθ⊥s)
2
)

ω
c

Lu

)
ds,

FFz(ω) = 1

Lu

∫ Lu
2

− Lu
2

e
−( ω

c )
2
[
σ 2
z +

(
σδ

s
Lu 2Nuλ0

)2
]
ds

= e−( ω
c )

2
σ 2
z

√
π

2

erf
(

ω
c σδNuλ0

)
ω
c σδNuλ0

,

(4.50)

where σ⊥, σθ⊥ , σz and σδ are the transverse beam size, divergence, bunch length
and energy spread at the undulator center, with σ⊥σθ⊥ = ε⊥ and σzσδ = εz , and

erf(x) = 2√
π

∫ x
0 e−t2dt is the error function. Note that

√
π

2
erf(x)
x < 1 for x �= 0.

Figure 4.6 is an example plot of the effective form factors based on the above
formulas, and the comparison with the case for a 3D rigid beam. It can be seen
that given a transverse and longitudinal emittance, there is an optimal transverse
beam size and bunch length at the radiator center considering the impact of beam
divergence and energy spread. This is expected, since the beam size or bunch length
of an over-focused beam grows very fast.
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Fig. 4.6 An example plot to show the optimization of beam sizes in the middle of the radiator,
considering the beam divergence and energy spread. Parameters used for calculation: ε⊥ = 1 nm,
εz = 4 pm, λ0 = 13.5 nm, Nu = 2 × 79, Lu = 1.58 m

4.5 Statistical Property of Radiation

In the previous sections, we have ignored the quantum discrete nature of radiation.
Besides, we have derived the coherent radiation property using a smooth distributed
charge, i.e., we have treated the charge as a continuum fluid. The number of photons
radiated from a charged particle beam actually fluctuates from turn to turn or bunch
to bunch if the quantum nature of radiation and the pointlike nature of electrons are
taken into account. The first mechanism exists even if there is only one electron, and
the second mechanism is related to the interference of fields radiated by different
electrons [6]. Using the classical language, the second fluctuationmechanism is from
the fluctuation of the bunching factor or form factor of electron beam.

There have been studies on the statistical property of the radiation in FELs [7] and
also the storage ring-based synchrotron radiation sources [6, 8]. Rich information
about the electron beam is embedded in the radiation fluctuations, or more generally
the statistical property of the radiation. For example, the turn-by-turn fluctuation of
the incoherent undulator radiation can be used to measure the transverse emittance
of electron beam [8]. The previous treatment, however, usually cares about the cases
where the bunch length is much longer than the radiation wavelength, i.e., the radia-
tion is temporally incoherent (in SASE FEL, incoherent at the beginning). In SSMB,
the bunch length is comparable or shorter than the desired radiation wavelength, and
the dominant radiation is temporally coherent. Although numerical calculation is
doable following the general theoretical formulation, an analytical formula for the
fluctuation in this temporally coherent radiation dominant regime is of value for a
better understanding of the physics and investigation of its potential applications.
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4.5.1 Pointlike Nature of Electron

Here for SSMB we consider first the second mechanism of fluctuation, i.e., the
radiation power fluctuation arising from the pointlike nature of the radiating electron.
In this section, to simplify writing, we use the vector notation

k = ω

c
(sin θ cosϕ, sin θ sin ϕ, 1) ,

r = (x, y, z).
(4.51)

Then the bunching factor with the pointlike nature of electrons taken into account is

b(k) = b(θ, ϕ, ω) = 1

Ne

Ne∑
n=1

e−ik·rn . (4.52)

First we want to evaluate the coherent radiation power fluctuation at a specific
frequency and observation angle. As the radiation power is proportional to N 2

e |b(k)|2,
therefore we need to know the fluctuation of |b(k)|2. Since

|b(k)|2 = 1

N 2
e

Ne∑
n=1

Ne∑
m=1

e−ik·(rn−rm ) = 1

N 2
e

⎡
⎣Ne +

∑
m �=n

e−ik·(rn−rm )

⎤
⎦ , (4.53)

we have 〈|b(k)|2〉 = 1

Ne
+

(
1 − 1

Ne

)
|b(k)|2, (4.54)

with

b(k) = b(θ, ϕ, ω) =
∫

ρ(r)e−ik·rdr (4.55)

being the bunching factor we calculated before using a continuum fluid charge dis-
tribution in Eq. (4.3). As can be seen from Eq. (4.54), when Ne = 1, which corre-
sponds to the case of a single point charge, then

〈|b(k)|2〉 = 1. When Ne � 1 and
Ne|b(k)|2  1, which corresponds to the case of incoherent radiation dominance,
then

〈|b(k)|2〉 = 1
Ne
. When Ne � 1 and Ne|b(k)|2 � 1, which corresponds to the

case of coherent radiation dominance, then
〈|b(k)|2〉 = |b(k)|2. These results are as

expected.
The calculation of

〈|b(k1)|2|b(k2)|2〉 is more involved. More specifically,

|b(k1)|2|b(k2)|2 = 1

N 4
e

Ne∑
n=1

Ne∑
m=1

Ne∑
p=1

Ne∑
q=1

e−ik1·(rn−rm )−ik2·(rp−rq ). (4.56)
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Table 4.1 The N 4
e terms in the quadruple sum of Eq. (4.56) can be placed in 15 different classes,

as shown in Ref. [9]

Item number Index relations Number of terms

(1) n = m = p = q Ne

(2) n = m, p = q, n �= p Ne(Ne − 1)

(3) n = m, p �= q �= n Ne(Ne − 1)(Ne − 2)

(4) n = p,m = q, n �= m Ne(Ne − 1)

(5) n = p,m �= q �= n Ne(Ne − 1)(Ne − 2)

(6) n = q,m = p, n �= m Ne(Ne − 1)

(7) n = q,m �= p �= n Ne(Ne − 1)(Ne − 2)

(8) n = m = p, n �= q Ne(Ne − 1)

(9) n = m = q, n �= p Ne(Ne − 1)

(10) n = p = q, n �= m Ne(Ne − 1)

(11) p = q = m, n �= m Ne(Ne − 1)

(12) n �= m �= p �= q Ne(Ne − 1)(Ne − 2)(Ne − 3)

(13) p = q, n �= m �= p Ne(Ne − 1)(Ne − 2)

(14) m = q, n �= m �= p Ne(Ne − 1)(Ne − 2)

(15) m = p, n �= m �= q Ne(Ne − 1)(Ne − 2)

The N 4
e terms in this summation can be placed in 15 different cases, as shown in

Table 4.1. Corresponding to the 15 cases, we have

〈
|b(k1)|2|b(k2)|2

〉
= 1

N 4
e

[
Neb(k1 − k1 + k2 − k2)

+Ne(Ne − 1)b(k1 − k1)b(k2 − k2)

+Ne(Ne − 1)(Ne − 2)b(k1 − k1)b(k2)b(−k2)

+Ne(Ne − 1)b(k1 + k2)b(−k1 − k2)

+Ne(Ne − 1)(Ne − 2)b(k1 + k2)b(−k1)b(−k2)

+Ne(Ne − 1)b(k1 − k2)b(−k1 + k2)

+Ne(Ne − 1)(Ne − 2)b(k1 − k2)b(−k1)b(k2)

+Ne(Ne − 1)b(k1 − k1 + k2)b(−k2)

+Ne(Ne − 1)b(k1 − k1 − k2)b(k2)

+Ne(Ne − 1)b(k1 + k2 − k2)b(−k1)

+Ne(Ne − 1)b(−k1 + k2 − k2)b(k1)

+Ne(Ne − 1)(Ne − 2)(Ne − 3)b(k1)b(−k1)b(k2)b(−k2)

+Ne(Ne − 1)(Ne − 2)b(k1)b(−k1)b(k2 − k2)

+Ne(Ne − 1)(Ne − 2)b(k1)b(k2)b(−k1 − k2)

+Ne(Ne − 1)(Ne − 2)b(k1)b(−k2)b(−k1 + k2)
]
.

(4.57)

The above result can be re-organized as
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〈|b(k1)|2|b(k2)|2〉 = 1

N 4
e

[
N 2
e + N 2

e (Ne − 1)
(|b(k1)|2 + |b(k2)|2

)

+Ne(Ne − 1)(Ne − 2)
(
b(k1 + k2)b(−k1)b(−k2) + c.c.

)
+Ne(Ne − 1)(Ne − 2)

(
b(k1 − k2)b(−k1)b(k2) + c.c.

)
+Ne(Ne − 1)

(|b(k1 + k2)|2 + |b(k1 − k2)|2
)

+Ne(Ne − 1)(Ne − 2)(Ne − 3)|b(k1)|2|b(k2)|2
]
,

(4.58)
in which c.c. means complex conjugate.

If k1 = k2 = k, then

〈|b(k)|4〉 − 〈|b(k)|2〉2 = 1

N 4
e

[
Ne(Ne − 1) + 2Ne(Ne − 1)(Ne − 2)|b(k)|2

+2Ne(Ne − 1)(Ne − 2)Re
[
b(2k)b

2
(−k)

]

+Ne(Ne − 1)|b(2k)|2
−2Ne(Ne − 1)(2Ne − 3)|b(k)|4] ,

(4.59)

where Re[] means taking the real part of a complex number.
When Ne � 1 and Ne|b(k)|2  1, which is the case for incoherent radiation

dominance, we have
〈|b(k)|2〉 = 1

Ne
and

Var
[|b(k)|2]〈|b(k)|2〉2 = 1 + O

(
1

Ne

)
, (4.60)

where Var[] means the variance of, and O(xn) means terms of order xn and higher.
Therefore, the relative fluctuation of incoherent radiation is relatively large. This is
also the reason why SASE-FEL radiation has a large shot-to-shot power fluctuation.

When Ne � 1 and Ne|b(k)|2 � 1, which corresponds to the case of coherent
radiation dominance like that in SSMB, we have

Var
[|b(k)|2]〈|b(k)|2〉2 = 2

Ne

⎛
⎝ |b(k)|2 + Re

[
b(2k)b

2
(−k)

]

|b(k)|4 − 2

⎞
⎠ + O

(
1

N 2
e

)
.

(4.61)
The above equation is the main result of our analysis of bunching factor fluctuation
for the regime of coherent radiation dominance, and to our knowledge is new. The
formula can be used to evaluate coherent radiation power fluctuation at a specific
frequency and observation angle. If the transverse electron beam size is zero, or if
we observe on-axis, then we can just replace b(k) with bz(ω) in the above formula.
We remind the readers that b(k) in general is a complex number.

Now we conduct some numerical simulations to confirm our analysis of coherent
radiation fluctuation. As can be seen from Fig. 4.7, which correspond to the cases of
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Fig. 4.7 Fluctuation of the longitudinal form factor at 13.5 nm v.s. bunch length with Ne = 2.2 ×
104. The bunch distribution is assumed to be Gaussian in the left and rectangular in the right, and

the theoretical fluctuation is calculated according to Eq. (4.61), omitting the termO
(

1
N2
e

)
. For each

parameters choice, 1 × 104 simulations have been conducted to obtain the fluctuation

a Gaussian and a rectangular distributed bunch, respectively, the simulation results
agree well with our theoretical prediction.

After investigating the expectation and variance of |b(k)|2, one may be curious
about its more detailed distribution. It can be shown that when Ne|b(k)|2 � 1, the
distribution of |b(k)|2 tends asymptotically toward Gaussian.

As explained before, for a fixed frequency ω, there is a range of polar angle θ

which can contribute. To evaluate the overall radiation power fluctuation at a specific
frequency ω, we then need to know the fluctuation of the form factor FF(ω) which
involves calculation depending on the specific radiation process. For our interested
undulator radiation, it seems not easy to get a concise closed-form analytical formula
to evaluate the total radiation power fluctuation when the beam has a finite transverse
beam size. So here we refer to numerical calculation to give the readers a more
concrete feeling about the impact of transverse size on coherent radiation power
fluctuation.

For simplicity, we assume that the bunch length is zero and focus on the fluctuation
of the transverse form factor. As can be seen from the simulation result in Fig. 4.8, the
larger the transverse beam size, the larger relative fluctuation of the transverse form
factor.We also observe that in a typical parameters set of the envisioned EUVSSMB,
the fluctuation of 13.5 nm radiation power due to the finite transverse size is small.
For example if σ⊥ = 16µm, then the relative fluctuation of the transverse form factor
as shown in Fig. 4.8 is 0.14%. While the relative fluctuation of the longitudinal form
factor at 13.5 nm when σz = 3 nm according to Eq. (4.61) is about 2%. Assuming
that the beam is transverse-longitudinal decoupled, then

Var[FF(ω)]
〈FF(ω)〉2 = Var[FF⊥]

〈FF⊥〉2 + Var[FFz]
〈FFz〉2 + Var[FF⊥]Var[FFz]

〈FF⊥〉2〈FFz〉2 . (4.62)
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Fig. 4.8 Fluctuation of the transverse form factor at 13.5 nm v.s. transverse beam size with Ne =
2.2 × 104. The bunch is assumed to have zero length and is round Gaussian in the transverse plane.
For each parameters choice, 1 × 103 simulations have been conducted to obtain the fluctuation.
Parameters used for the calculation: E0 = 400 MeV, λu = 1 cm, K = 1.14, Nu = 2 × 79

Therefore, for the envisioned EUV SSMB, the fluctuation of the longitudinal form
factor dominates.

After investigating the power fluctuation at a specific frequency ω, now we look
into the radiation energy fluctuation gathered within a finite frequency bandwidth
and a finite angle acceptance. We use a filter function of FT (θ, ϕ, ω) to account for
the general case of frequency filter, angle acceptance, and detector efficiency. The
expectation of the gathered photon energy and photon energy squared are

〈W 〉 =N 2
e

∫ π

0
sin θdθ

∫ 2π

0
dϕ

∫ ∞

0
dωFT (θ, ϕ, ω)

d2W

dωd�
(θ, ϕ, ω)

∣∣∣∣
point

〈|b(θ, ϕ, ω)|2〉

(4.63)
and

〈W 2〉 =N 4
e

∫ π

0
sin θdθ

∫ 2π

0
dϕ

∫ ∞

0
dω

∫ π

0
sin θ ′dθ ′

∫ 2π

0
dϕ′

∫ ∞

0
dω′

FT (θ, ϕ, ω)FT (θ ′, ϕ′, ω′)
d2W

dωd�
(θ, ϕ, ω)

∣∣∣∣
point

d2W

dωd�
(θ ′, ϕ′, ω′)

∣∣∣∣
point〈|b(θ, ϕ, ω)|2〉 〈|b(θ ′, ϕ′, ω′)|2〉 g2(θ, θ ′, ϕ, ϕ′, ω, ω′),
(4.64)

where

g2(θ, θ ′, ϕ, ϕ′, ω, ω′) =
〈|b(θ, ϕ, ω)|2|b(θ ′, ϕ′, ω′)|2〉〈|b(θ, ϕ, ω)|2〉 〈|b(θ ′, ϕ′, ω′)|2〉 , (4.65)

whose calculation can follow similar approach of calculating
〈|b(k1)|2|b(k2)|2〉 in

Eq. (4.57). And the relative fluctuation of the gathered photon energy is

σ 2
W = 〈W 2〉

〈W 〉2 − 1. (4.66)
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4.5.2 Quantum Nature of Radiation

Asmentioned, there is another source of fluctuation, i.e., the quantum discrete nature
of radiation. As a result of the Campbell’s theorem [10], we know that for a Poisson
photon statistics, the variance of photon number arising from this equals its expec-
tation value. With both contribution from pointlike nature of electrons and quantum
nature of radiation taken into account, the relative fluctuation of the radiation power
or energy at a given frequency and a specific observation angle is

Var [P(ω)]

〈P(ω)〉2 = 1

〈Nph(ω)〉|beam + 2

Ne

⎛
⎝ |b(ω)|2 + Re

[
b(2ω)b

2
(−ω)

]

|b(ω)|4 − 2

⎞
⎠ + O

(
1

N 2
e

)
,

(4.67)
in which

〈Nph(ω)〉|beam = [
Ne + Ne(Ne − 1)|b(ω)|2] 〈Nph(ω)〉|point

≈ N 2
e |b(ω)|2〈Nph(ω)〉|point

(4.68)

is the expected radiated photon number from the electron beam, and 〈Nph(ω)〉|point
is the expected radiated photon number from a single electron. Note that to obtain
a nonzero expected photon number 〈Nph(ω)〉|beam, a finite frequency bandwidth is
needed. Therefore, Eq. (4.67) actually applies to a finite frequency bandwidth close
to ω where b(ω) does not change much.

From Eq. (4.67), it is interesting to note that with the narrowing of the energy
bandwidth acceptance, i.e., the decrease of 〈Nph(ω)〉|beam, the contribution to the
relative fluctuation from the quantum nature of radiation increases, while the contri-
bution from the pointlike nature of electron does not change. This reflects the fact
that one fluctuation is quantum, while the other is classical.

Note that in our interested case, Ne〈Nph(ω)〉|point is usually much larger than 1,
then the second term in Eq. (4.67) dominants. In other words, the fluctuation due to
the pointlike nature of electrons dominants. Only when Ne〈Nph(ω)〉|point is close to
1, will the first term become significant compared to the second term.

As the statistical property of the radiation embeds rich information about the
electron beam, innovative beam diagnostics method can be envisioned by making
use of this fact. One advantage of using radiation fluctuation in diagnostics is that
it has a less stringent requirement on the calibration of detectors. Here we propose
an experiment to measure the sub-ps bunch length accurately at a quasi-isochronous
storage ring, for example the MLS, at a low beam current, by measuring and ana-
lyzing the fluctuation of the coherent THz radiation generated from the electron
bunch. Equation (4.67) or some numerical code based on the analysis presented in
this section will be the theoretical basis for the experimental proposal. In principle,
we can also deduce the transverse distribution of electron beam by measuring the
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two-dimensional distribution of the radiation fluctuation. More novel beam diagnos-
tics methods may be invented for SSMB and future light sources by making use of
the statistical property of radiation.

4.6 Example Calculations for Envisioned EUV SSMB

To summarize our investigations on the average and statistical property of SSMB
radiation, here we present an example calculation for the envisioned EUV SSMB.
Figure 4.9 is an example plot of the beam current and longitudinal form factor spectra
of the envisioned EUV SSMB. In the envisioned example, the microbunch length
is σz ≈ 3 nm at the radiator where 13.5 nm coherent EUV radiation is generated,
and these 3 nm microbunches are separated from each other with a distance of
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Fig. 4.9 An example plot of the beam current and longitudinal form factor spectrum of the
microbunch train at the radiator in the envisioned EUV SSMB. Up: beam current of the 3 nm
microbunch train separated by the modulation laser wavelength λL = 1064 nm. Bottom: longitu-
dinal form factor FFz(ω). The exponential decaying envelope corresponds to that of a single 3
nm Gaussian microbunch, and the green periodic delta function lines correspond to the periodic
microbunch train in time domain. The desired radiation wavelength is λ0 = λL

79 = 13.5 nm
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λL = 1064 nm = 79 × 13.5 nm, which is the modulation laser wavelength. The
radiator is assumed to be an undulator. The beam at the radiator can be round or flat
depending on the lattice scheme, and its transverse size can range from a couple of
µm to a couple of 10 µm. Note that a Gaussian-distributed current at the radiator
is assumed in the plot. This is the case corresponding the usual longitudinal strong
focusing SSMB. We remind the readers that the current at the radiator in the TLC-
based bunch compression scheme, i.e., generalized longitudinal strong focusing, is
actually non-Gaussian considering the nonlinear modulation waveform, as shown in
Fig. 3.4. As our goal is to give the readers a picture of the radiation characteristics,
here for simplicity we consider the case of a round beam. We remind the readers
that the parameters used in this example EUV SSMB radiation calculation is for an
illustration and is not optimized.

4.6.1 Average Property

First we present the result for the average property of the EUV radiation. The calcu-
lation is based on Eqs. (4.7), (4.11) and (4.22), and the result is shown in Fig. 4.10.
The upper part of the figure shows the radiation energy spectrum. The lower part
shows the spatial distributions of the radiation energy. The total radiation power is
calculated according to

P = W

λL/c
, (4.69)

whereW is the total radiation energy loss of each microbunch. For the example radi-
ator undulator parameters, corresponding to σ⊥ = 5, 10, 20 µm, the total radiation
power are 92 kW, 14 kW, 3.5 kW, respectively. As a reference, the radiation power
calculated based on Eq. (4.45) for these three transverse beam sizes are 4 kW, 3.6
kW and 2.6 kW, respectively. The reason Eq. (4.45) gives a smaller value than the
overall power as explained is that it does not take into account the red-shifted part
of the radiation. Therefore, Eq. (4.45) can be used to evaluate the lower bound of
the radiation power from SSMB, once the parameters set of electron beam and radi-
ator undulator is given. It can be seen that generally, kW-level EUV radiation power
can be straightforwardly anticipated from a 3 nm microbunch train with an average
beam current of 1 A. Note that for simplicity, in this example calculation, the filling
factor of microbunches in the ring is assumed to be 100%, i.e., one microbunch per
modulation laser wavelength. Then 1 A average current corresponds to the num-
ber of electrons per microbunch Ne = IAλL/c

e = 2.2 × 104, if the modulation laser
wavelength is λL = 1064 nm.

Another important observation is that the spectral and spatial distribution of SSMB
radiation depends strongly on the transverse size of the electron beam. A large trans-
verse size results in a decrease of the overall radiation power, and also makes the
radiation more narrowbanded and collimated in the forward direction. This is an
important observation drawn from our investigation on the generalized transverse
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Fig. 4.10 An example EUV SSMB radiation calculation with a microbunch length of σz = 3 nm
and different transverse sizes σ⊥. The upper part shows the energy spectrum. Corresponding to
σ⊥ = 5, 10, 20 µm, the total radiation power are 92 kW, 14 kW, 3.5 kW, respectively. The shaded
area corresponds to wavelength of 13.5 ± 13.5

100 nm. The bottom part shows spatial distribution of
radiation energy. From left to right: σ⊥ = 5, 10, 20 µm. Parameters used for the calculation: E0 =
400 MeV, Iavg = 1 A, λL = 1064 nm, λr = λL

79 = 13.5 nm, λu = 1 cm, K = 1.14, Nu = 2 × 79

form factor. Using the example parameters, i.e., E0 = 400 MeV, λL = 1064 nm,
λ0 = λL

79 = 13.5 nm, λu = 1 cm, Nu = 2 × 79, K = 1.14, if σ⊥ = 10 µm, then
according to Eqs. (4.39) and (4.40), the relative bandwidth and opening angle due to
the transverse form factor can be calculated to be

ωe−1

ω0

∣∣∣∣⊥ ≈ 1.7%,

θe−1

∣∣∣∣⊥ ≈ 0.21 mrad.

(4.70)

which is in agreement with the result presented in Fig. 4.10.
Since Nu = 2 × 79 is used in the calculation, which means the radiation slippage

length is twice the modulation laser wavelength, the energy spectrum and spatial
distributions presented in Fig. 4.10 is for that of two neighboring microbunches.
The peaks in the energy spectrum, and the interference rings in the radiation spatial
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distribution as explained is due to the macro longitudinal form factor

(
sin

(
Nb

ω
c

λL
2

)

Nb sin
(

ω
c

λL
2

)
)2

of multiple microbunches, with Nb the number of microbunches. There is a one-to-
one correspondence between the peaks in the energy spectrum and the interference
rings in radiation energy spatial distribution. The reason for the appearance of such
peaks and rings is that our radiation wavelength is a high harmonic of the distance
between the neighboring microbunches.

As a result of the high-power and narrowband feature of the SSMB radiation,
a high EUV photon flux of 1015 ∼ 1016 phs/s within a 0.1 meV bandwidth can be
obtained, ifwe can realize anEUVpower of�1 kWper 1%b.w. as shown inFig. 4.10.
We remind the readers that the radiation waveform of SSMB is actually a CW or
quasi-CW one, if induction linac is used as the energy compensation system and the
microbunches occupy the ring with a large filling factor, as assumed in the example
calculation. This kind of CW or quasi-CW narrowband photon source is favored in
ARPES to minimize the space charge-induced energy shift, spectral broadening and
distortion of photoelectrons in a pulsed photon source-basedARPES [11]. Therefore,
the high photon flux within a narrow bandwith, together with its CW or quasi-CW
waveform, makes SSMB a promising light source for ultrahigh-resolution ARPES.
Such a powerful toolmay have profound impact on fundamental physics research, for
example to probe the energy gap distribution and electronic states of superconducting
materials like the magic-angle graphene [12].

4.6.2 Statistical Property

Nowwe present the result for the statistical property of the radiation. For the case of a
Gaussian bunch with σz = 3 nm and Ne = 2.2 × 104, from Eq. (4.61) we know that
the relative fluctuation of the turn-by-turn or microbunch-by-microbunch on-axis
13.5 nm coherent radiation power will be around 2%.

Figure 4.11 gives an example plot for the longitudinal form factor spectrum of
three possible realizations of such a Gaussian microbunch. As can be seen, the spec-
trum is noisy mainly in the high-frequency or short-wavelength range. Since our
EUV radiation is mainly at the wavelength close to 13.5 nm, and the longitudinal
form factor close to this frequency fluctuates together from turn to turn, or bunch to
bunch. As shown in Fig. 4.8 and discussed before, for the envisioned EUV SSMB,
the transverse form factor fluctuation is much smaller than that of the longitudinal
form factor. So the overall radiation power fluctuation is also about 2% as analyzed
above. This fluctuation is also the fluctuation of microbunch center motion induced
by the coherent radiation. A small fluctuation as it is, its beam dynamics effects need
further study.

Note that this 2% fluctuation of radiation power should have negligible impact for
the application in EUV lithography, since the revolution frequency of themicrobunch
in the ring is rather high (MHz), let alone if we consider that there is actually a
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Fig. 4.11 The spectrum of
the longitudinal form factor
of three possible realizations
of a Gaussian microbunch
length of σz = 3 nm and
Ne = 2.2 × 104. The shaded
area corresponds to
wavelength of 13.5 ±
13.5
100 nm

microbunch each modulation laser wavelength and the radiation waveform is CW or
quasi-CW.

4.6.3 Discussions

To resolve possible concerns of readers on the validity of the short bunch length and
high average current used in the example calculation, here we present a short dis-
cussion on the related single-particle and collective effects in SSMB. We recognize
that realizing a steady-state bunch length as short as nanometer level in an electron
storage ring is non-trivial. Both global and local momentum compaction should be
minimized to confine the longitudinal beta function, therefore the longitudinal emit-
tance, in an electron storage ring as analyzed in Sect. 2.1. By invoking this principle
in the lattice design, a bunch length as short as tens of nanometer can be realized in a
storage ring, with a momentum compaction factor of 1 × 10−6 and modulation laser
power of 1 MW. 1 MW intra-cavity power is the state-of-art level of present opti-
cal enhancement cavity technology. Therefore, to realize nanometer bunch length
at the radiator, we need to compress the bunch further. There are two scenarios
being actively studied by us, namely the longitudinal strong focusing scheme and
transverse-longitudinal coupling scheme. The longitudinal strong focusing scheme
is similar to its transverse counterpart which is the basis of modern particle accel-
erators [13, 14]. In such a scheme, the longitudinal beta function and therefore the
bunch length is strongly focused at the radiator, and the synchrotron tune of the beam
in the ring can be at the level of 1, as analyzed in Sect. 2.1.6 and Ref. [15]. Although
nanometer bunch length can be realized, this scheme requires a large modulation
laser power (20 MW level if 270 nm laser is used), causing the optical cavity can
work only in the pulsed laser mode and the average output radiation power is thus
limited. To lower the modulation laser power, the transverse-longitudinal coupling
scheme is thus applied in a clever way by taking advantage of the fact that the ver-
tical emittance in a planar storage ring is rather small, as analyzed in Sect. 3.1. We
refer to this turn-by-turn transverse-longitudinal coupling-based bunch compression
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scheme as the generalized longitudinal strong focusing [16], inwhich the phase space
manipulation is 4D or 6D, in contrast to the conventional longitudinal strong focus-
ing where the phase space manipulation is 2D. This generalized longitudinal strong
focusing scheme can relax the modulation laser power, but its nonlinear dynamics
optimization is a challenging task which we are trying to tackle.

Concerning the high average current, there are two collective effects of special
importance, namely the intrabeam scattering (IBS) and coherent synchrotron radia-
tion (CSR). IBS will affect the equilibrium emittance and thus can have an impact
on the radiation power and also the modulation laser power in the generalized longi-
tudinal strong focusing scheme. The IBS effect in an SSMB ring thus needs careful
optimization and the operation beam energy is also mainly determined by IBS. CSR
is the reason why SSMB can provide powerful radiation. On the other hand, CSR
is also the effect which sets the upper limit of the stable beam current. In Ref. [17],
there is some preliminary evaluation of the stable beam current for SSMB based on
the 1D model of CSR-driven microwave instability. The investigation in this dis-
sertation implies that the transverse dimension of the electron beam can have large
impact on the coherent radiation in SSMB. In addition, the bunch lengthening from
the transverse emittance in an SSMB storage ring can easily dominate the bunch
length at many dispersive places of the ring, as the transverse size of microbunches
is much larger than its longitudinal length. This bunch lengthening might be helpful
in mitigating unwanted CSR. The 3D effect of the coherent radiation is expected to
be also helpful in improving the stable beam current.With these beneficial arguments
in mind, we realize that CSR in SSMB still deserves special attention. For example,
the coherent radiation in the laser modulator could potentially drive single-pass and
multi-pass collective instabilities in an SSMB storage ring [18, 19]. More in-depth
study of collective effects in SSMB is ongoing.
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Chapter 5
SSMB Proof-of-Principle Experiments

To make SSMB a real option for future photon source facility, a crucial step is to
experimentally demonstrate its working mechanism. In this chapter, we report the
first successful experimental demonstration of the SSMB mechanism. Parts of the
work presented have been published in Refs. [1, 2].

5.1 Strategy of the PoP Experiments

5.1.1 Three Stages of PoP Experiments

Considering the fact that it is a demanding task to realize SSMBdirectly in an existing
machine, part of the reasons we have analyzed in previous chapters, among them the
most fundamental one is the large quantum diffusion of bunch length in rings not
optimized for SSMB, the SSMB PoP experiment has been divided into three stages
as shown in Fig. 5.1. Some brief descriptions of the three stages are as follows.

• Phase I: a single-shot laser is fired to interact at the undulator with the electron
beam stored in a quasi-isochronous ring. The modulated electron beam becomes
microbunched at the same place of modulation after one complete revolution in
the ring and this microbunching can preserve for several revolutions. By doing
this experiment, we want to confirm that the optical phases, i.e., the longitudinal
coordinates, of electrons can be correlated turn-by-turn in a sub-laser-wavelength
precision. The realization of SSMB relies on this precise turn-by-turn phase cor-
relation.

• Phase II: on the basis of Phase I, we replace the single-shot laser with a high-
repetition phase-locked one to interact with the electrons at the undulator turn
after turn. In this stage, we want to establish stable microbuckets and sustain the
microbunching in the microbuckets to reach a quasi steady state.

© The Author(s) 2024
X. Deng, Theoretical and Experimental Studies on Steady-State Microbunching,
Springer Theses, https://doi.org/10.1007/978-981-99-5800-9_5
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Fig. 5.1 Three stages of the SSMB PoP experiments: from single-shot to multiple shots to infinite
shots laser pulse; from short-lived to quasi-steady-state to real steady-state microbunching

• Phase III: Phase II is very close to, but is still not, the final SSMB as a true SSMB
means the balance of excitation and damping. However, the requirement of a true
SSMB on the magnet lattice is demanding, especially the quantum diffusion of
longitudinal coordinate z as analyzed in Sect. 2.1. Therefore, this final stage is
more likely to be realized in a dedicated ring designed for SSMB, which is also
one of the key ongoing tasks of the SSMB task force [3].

Below, we use PoP I, II, III to represent the three stages of the experiment. The key
words of the three stage experiments are summarized as follows.

• PoP I: microbunching based on stored electron bunch, turn-by-turn phase correla-
tion;

• PoP II: bounded motion in microbuckets, quasi steady state;
• PoP III: balance of diffusion and damping, real steady state.

These three stages each have their own significance and are all important for the
SSMB development. Among them, Phase I is from 0 to 1, and is the most important
one from conceptual viewpoint. Recently, we have successfully performed the PoP
I and demonstrated the mechanism of SSMB at the Metrology Light Source (MLS)
of Physikalisch-Technische Bundesanstalt (PTB) in Berlin [1, 2]. The experiment is
a collaboration work of Tsinghua, Helmholtz-Zentrum Berlin (HZB) and PTB.
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Table 5.1 Basic parameters of the MLS lattice

Parameter Value Description

E0 50–630 MeV Beam energy

C0 48 m Ring circumference

fRF 500 MHz RF frequency

VRF ≤600 kV RF voltage

η 3 × 10−2 Phase slippage factor (standard user)

η −2 × 10−5 Phase slippage factor (SSMB experiment)

U0 226 eV@250 MeV Radiation loss per turn

Js 1.95 Longitudinal damping partition

τδ 180 ms@250 MeV Longitudinal radiation damping time

σδ 1.8 × 10−4@250 MeV Natural energy spread

σz 36 µm (120 fs)@250
MeV

Zero-current bunch length (SSMB
experiment)

νx 3.18 Horizontal betatron tune

νy 2.23 Vertical betatron tune

εx 31 nm@250 MeV Horizontal emittance

λL 1064 nm Modulation laser wavelength

λu 125 mm Undulator period length

Nu 32 Number of undulator periods

Lu 4 m Undulator length

K 2.5 Undulator parameter

5.1.2 Metrology Light Source Storage Ring

The MLS is a storage ring optimized for quasi-isochronous operation [4–6], thus an
appropriate testbed for SSMB physics investigation and PoP experiments. However,
the partial phase slippage of the MLS is large as the bending angle of each dipole
is large (π

4 ) and the dispersion magnitude inside the dipoles is also large, so it is
not feasible to realize true SSMB, i.e., PoP III, directly at the MLS. Therefore, the
SSMB PoP experiment has been divided into three stages as introduced just now,
and PoP I and II are what we have performed and plan to conduct at the MLS. Some
basic parameters of the MLS are shown in Table 5.1. The lattice optics of the MLS
used in the SSMB PoP experiments are shown in Fig. 5.2.
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Fig. 5.2 The MLS quasi-isochronous magnet lattice used to generate microbunching. The magnet
lattice and the key are shown at the top. The curves are the model horizontal (red) and vertical
(blue) β-functions and the horizontal dispersion Dx (green). Operating parameters of the ring: beam
energy, E0 = 250 MeV; relative energy spread, σδ = 1.8 × 10−4 (model); horizontal emittance, εx
= 31 nm (model); horizontal betatron tune, νx = 3.18 (model and measured); vertical betatron tune,
νy = 2.23 (model and measured); horizontal chromaticity, ξx = −0.5 (measured). Note that this
optics is different from that used in Sect. 2.1.3 for the simulation of partial phase slippage effect.
(Figure from Ref. [1])

5.2 PoP I: Turn-by-Turn Laser-Electron Phase Correlation

5.2.1 Experimental Setup

Figure 5.3 shows the schematic setup of the SSMB PoP I experiment. A horizontally
polarized laser pulse (wavelength, λL = 1064 nm; pulse length, full-width at half-
maximum, FWHM ≈ 10 ns; pulse energy, ≈ 50 mJ) is sent into a planar undulator
(period, λu = 125 mm; total length, Lu = 4 m) to co-propagate with the electron
bunches (energy, E0 = 250 MeV) stored in the MLS storage ring (circumference, C0

= 48 m). To maximize the laser-electron energy exchange, the undulator gap is cho-
sen to satisfy the resonance condition λs = λL , where λs = 1+K 2/2

2γ 2 λu is the central
wavelength of the spontaneous undulator radiation, with γ ∝ E0 being the Lorentz
factor and K = eB0

mecku
= 0.934 · B0[T] · λu[cm] being the dimensionless undulator

parameter, determined by the undulator period and magnetic flux density. This laser-
electron interaction induces a sinusoidal energy modulation pattern on the electron
beam with a period of the laser wavelength. Because particles with different ener-
gies have slightly different revolution periods, after one revolution in the ring, the
energy-modulated electrons shift longitudinally with respect to each other, clumping
towards synchronous phases and forming microbunches. The formed microbunches
can last several revolutions in the ring. The coherent undulator radiation generated
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Fig. 5.3 Schematic of the experimental setup. The stored 250 MeV electron bunches are energy-
modulated by a 1064 nmwavelength laser in an undulator, and becomemicrobunched after one com-
plete revolution in the 48mcircumference quasi-isochronous storage ring. This formedmicrobunch-
ing can then preserve for multiple turns in the ring. Each time the microbunching going through the
undulator, narrowband coherent radiation will be generated. The undulator radiation is separated
into the fundamental and second harmonics by dichroic mirrors, and sensitive photodiodes are used
as the detectors. Narrow band-pass filters can be inserted in front of the photodetectors to pick out
the narrowband coherent radiation generated from the microbunching. (Figure from Ref. [1])

from the microbunches, detected by a high-speed photodetector with a photodiode,
confirms microbunching.

The symplectic longitudinal dynamics of the the above experiment processes can
be modeled by {

δ1 = δ0 + A sin(kL z0),

z1 = z0 − ηC0δ1,
(5.1)

for the first revolution with laser modulation, and{
δm+1 = δm,

zm+1 = zm − ηC0δm+1,
(5.2)

for the later revolutions. This demonstration proves that the longitudinal dynamics
described by the one-turn map Eq. (5.1) can be extrapolated from the RF wavelength
(metre scale) to laser wavelength (micrometre scale) for a stored electron beam, thus
validating the SSMB microbunching mechanism.

5.2.2 Physical Analysis of Microbunching Formation

5.2.2.1 Storage Ring

Operation energy The above models Eqs. (5.1) and (5.2), however, do not consider
the non-symplectic, transverse-longitudinal coupling and nonlinear lattice dynamics,
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which all could lead to degradation of the microbunching. It turns out that the first
non-symplectic dynamics we need to account for is the synchrotron radiation. As
we know, when a relativistic electron is subjected to an acceleration normal to its
velocity exerted by a bending magnet, it radiates electromagnetic energy. This radi-
ation is characterized by the quantum nature of the photon emission process. The
photon energy and emission place or time are both stochastic, giving rise to changes
on particle energy (instantly) and the longitudinal coordinate z (non-instantly), as
analyzed before in Sect. 2.1. Of special interest in the experiment is the root-mean-
square (RMS) quantum diffusion of z in one turn dz . According to Eq. (2.41), we
have

dz =
√

〈z2〉 − 〈z〉2 =
√

〈F2〉〈N〉
〈
u2

E2
0

〉
, (5.3)

with F(s2, s1) ≡ −η̃(s2, s1)C0. For the MLS quasi-isochronous magnet lattice used
in the PoP experiment as shown in Fig. 5.2, dz is as large as 260 nm at its standard
operation energy of 630MeV, deteriorating the sub-micrometre microbunching con-
siderably. Therefore, the beam energy needs to be lowered to mitigate this diffusion,

as

√
〈N〉

〈
u2

E2
0

〉
∝ γ 2.5. At the same time, a lower beam energy gives a smaller energy

spread and is also beneficial for microbunching, as the smearing from the natural
uncorrelated energy spread becomes smaller. Nevertheless, the beam energy cannot
be too low, otherwise the beam parameters and lifetime could be profoundly affected
by scattering among particles [7–9]. An electron beam energy of 250MeV is adopted
in the experiment to balance these issues. At E0 = 250 MeV, we have dz = 26 nm
and σδ = 1.8 × 10−4.

Phase slippage factor Because the laser wavelength is much smaller than that of
an RF wave, the phase slippage factor η needs to be ultrasmall. That is, the ring
should be quasi-isochronous to allow turn-by-turn stabilization of the electron optical
phases, i.e., the longitudinal coordinates, for particles with different energies. More
quantitatively, the RMS spread of z in one turn that arises from the uncorrelated
electron energy spread should be adequately smaller than the laser wavelength,

zES = |ηC0σδ| ≤ λL/2π. (5.4)

To fulfill this requirement, the phase slippage factor of the MLS was lowered to
η ≈ −2 × 10−5, which is three orders of magnitude smaller than its standard value
of 3 × 10−2. By implementing these parameters,zES = |ηC0σδ| ≈ 0.17µm (about
0.6 fs), enabling the formation and preservation of sub-micrometre microbunching.

Such a quasi-isochronous magnet lattice is achieved by tailoring the horizontal
dispersion functions Dx around the ring so that a particle with non-ideal energy trav-
els part of the ring inwards and part of the ring outwards compared to the reference
orbit, thus having a revolution period nearly the same as that of the ideal particle.
The tailoring of Dx is accomplished by adjusting the (de)focusing strengths of the
quadrupole magnet. The operation of the MLS as a quasi-isochronous ring also
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benefits from the optimization of the sextupole and octupole nonlinear magnet
schemes to control the higher-order terms of the phase slippage [5, 6], which affect
both the equilibriumbeamdistribution in the longitudinal phase space before the laser
modulation and the succeeding microbunching evolution as analyzed in Sect. 2.2.1.

In the experiment, the value of the small phase slippage factor is quantified by
measuring the electron orbit offsets while slightly adjusting the RF frequency up and
down at a beam position monitor (BPM), where Dx is large. From the offsets and
Dx , the phase slippage-dependent electron energy shifts caused by the RF frequency
adjustment can be derived, as well as the phase slippage factor. The Dx value at
the BPM is acquired using the same method in a reversible way, that is, based on a
known phase slippage factor. This is done at a larger phase slippage factor, at which
its value can be determined from its relation to the synchrotron oscillation frequency
of the electron beam as given in Eq. (2.28). The synchrotron oscillation frequency
can be measured accurately at a phase slippage factor such as −5 × 10−4, and the
model confirmed that the relative change of Dx at the highly dispersive BPM is small
(< 4%) when the phase slippage factor is reduced from −5 × 10−4 to the desired
−2 × 10−5 by marginally changing the quadrupole magnet strengths.

Bunching factor With the electron beam evolved according to Eq. (5.1) for one
revolution in the ring, the bunching factor at the n-th laser harmonic as analyzed in
Sect. 2.2.1 is

bn = Jn(nkLηC0A)exp

[
− (nkLηC0σδ)

2

2

]
, (5.5)

where Jn is the n-th order Bessel function of the first kind. The coherent radiation
power at the n-th harmonic is proportional to the bunching factor squared, Pn,coh ∝
|bn|2. With the dynamics in the following turns modeled by Eq. (5.2), for the m-th
revolution, we just need to replace the ηC0 in Eq. (5.5) with mηC0.

The maximum reachable bunching factor becomes larger with the decrease of η,
given that the optimal A can always be realized. η = −2 × 10−5 is approximately
the present lowest reachable value at the MLS, so here below we use this η for the
analysis. As we will explain soon, our signal detection at first focuses on the sec-
ond harmonic of the undulator radiation, since it is easier to mitigate the impact of
the modulation laser on signal detection compared to the fundamental frequency.
As shown in Fig. 5.4, given η = −2 × 10−5, a modulation strength of A ≈ 1.5σδ

results in the maximum bunching at the second harmonic. Correspondingly, given
A = 1.5σδ , the optimal η for the fundamental frequency and second harmonic bunch-
ing is a bit smaller than 2 × 10−5. Note that the optimized conditions for the fun-
damental frequency and second harmonic bunching are different. Figure 5.5 shows
the bunching factor evolution with respect to the revolution number, with A = 1.5σδ

and |η| = 2 × 10−5. As can be seen, the second harmonic bunching can last only one
turn, while the fundamental frequency bunching can last about three turns or even
more if η becomes smaller, as also can be seen in the right part of Fig. 5.4. These
expectations have also been confirmed in the experiment as will be presented soon.
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Fig. 5.4 Left: impact of the energy modulation strength (A ∝ √
PL ) on the bunching factor |bn | at

the fundamental and second harmonic, with η = −2 × 10−5. Right: impact of the phase slippage
factor η on the bunching factor |bn | at the fundamental and second harmonic, with A = 1.5σδ

Fig. 5.5 The evolution of
the bunching factor |bn | at
the fundamental and second
harmonic with respect to the
revolution number, with A =
1.5σδ and η = −2 × 10−5
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Chromatic Hx function and chromaticity ξx Apart from the longitudinal beam
dynamics, the coupling of the particle betatron oscillation to the longitudinal dimen-
sion is also critical. The reason is based on the fact that the horizontal beam width
at the undulator is about 600 µm (model value), three orders of magnitude larger
than the sub-micrometre longitudinal structures that we aim to produce. Because the
vertical emittance is much smaller than the horizontal one in a planar x-y uncoupled
storage ring, in the following we consider only the impact of the horizontal betatron
oscillation.

According to Eq. (3.13), for a periodic system, the RMS bunch lengthening of
an electron beam longitudinal slice after m complete revolutions in the ring, due to
betatron oscillation, is

zB,m = 2
√

εxHx |sin(mπνx )| . (5.6)
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Fig. 5.6 Influence ofHx at
the undulator on the
bunching factor one turn
after laser modulation, with
εx = 31 nm (model) and
νx = 3.18
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With this bunch lengthening taken into account, the bunching factor at the n-th laser
harmonic after m revolutions will be

bn,m = Jn(nkLmηC0A)exp

[
− (nkLmηC0σδ)

2 + (
nkL2

√
εxHx |sin(mπνx )|

)2
2

]
.

(5.7)
The relative bunching factor reduction due to the non-zero Hx at the undulator can
thus be defined as

Rn,m(Hx ) = exp

[
−

(
nkL2

√
εxHx |sin(mπνx )|

)2
2

]
. (5.8)

Putting in εx =31nm(model) andνx = 3.18 (model andmeasured),weneedHx ≤
0.8 µm at the undulator to have zB,1 ≤ λL/2π . Figure 5.6 shows the bunching
factor reduction at the fundamental frequency and the second harmonic one turn
after the laser modulation as a function of the Hx at the undulator. As can be seen,
the second-harmonic bunching is even more sensitive to the Hx at the undulator.
This stringent condition on Hx (note that Hx at other places of the ring is typically
≥0.1 m) is satisfied by fine-tuning the quadrupole magnet (de)focusing strengths to
correct the dispersion Dx and dispersion angle D′

x at the undulator to the level of
millimetre and 0.1 mrad, respectively (see Fig. 5.2).

In addition to the linear-order oscillating bunch lengthening, as discussed in
Sect. 3.2, the betatron oscillation also produces an average path lengthening or short-
ening (second-order effect) described by the formula

CB = −2π Jxξx , (5.9)

with CB being the average change of the particle recirculation path length, and
ξx = dνx/dδ being the horizontal chromaticity of the ring. Because different parti-
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cles have different betatron oscillation amplitudes (actions), this effect results in a
loss of synchronization between particles and degrades microbunching. Moreover,
it broadens the equilibrium energy spread and distorts the beam from the Gaussian
form before the laser modulation as investigated in Sect. 3.2, which also affects the
microbunching. Therefore, the horizontal chromaticity should be small, to moderate
its detrimental outcome, and simultaneously sufficient to suppress collective effects
such as the head-tail instability [10]. As a consequence, a small negative chromaticity
is used in the experiment.

5.2.2.2 Modulation Laser

Long-pulse laser A long-pulse laser (FWHM ≈ 10 ns) has been used to simplify
the experiment by avoiding a dedicated laser-electron synchronization system, as
the shot-to-shot laser timing jitter is tjitter ≤ 1 ns (RMS). According to Eq. (5.5) and
Fig. 5.4, for a given phase slippage factor and harmonic number, there is an optimal
laser-induced energy modulation amplitude A (A ∝ √

PL with PL the laser power)
that gives themaximum bunching factor. The laser used in the experiment (Beamtech
Optronics Dawa-200) has multiple longitudinal modes, and its temporal profile has
several peaks and fluctuates considerably from shot to shot (see Fig. 5.7). Therefore,
the laser-induced electron energy modulation amplitudes are different from shot to
shot and from bunch to bunch. When the modulation amplitude matches the phase
slippage factor, the energy-modulated electrons are properly focused at synchronous
phases, which gives optimal microbunching. For some of the shots, the laser intensity
is higher or lower than the optimal value, and the electrons are then over-focused or
under-focused, giving weaker microbunching and less coherent radiation. As we will
see soon, this explains the large shot-to-shot fluctuation of the coherent amplified
signals shown in Fig. 5.16c, e.

Power and Rayleigh length The electric field of a TEM00 mode Gaussian laser
beam is [11]

Ex = Ex0e
ikLz−iωt+iφ0

1

1 + i z
ZR

exp

[
i
kLQ

2
(x2 + y2)

]
,

Ez ≈ −Ex x,

(5.10)

with ZR = πw2
0

λL
the Rayleigh length, w0 the beam waist radius, and Q = i

ZR(1+ z
ZR

)
.

The relation between Ex0 and the laser peak power is given by

PL = E2
x0ZRλL

4Z0
, (5.11)

in which Z0 = 376.73 � is the impedance of free space. The electron wiggles in an
undulator according to
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Fig. 5.7 Fluctuating temporal profiles of the multilongitudinal-mode laser. a, Temporal profiles of
two example consecutive laser shots (red and blue) and the averaged waveform of 200 consecutive
laser shots (black). b, Statistical distribution of the laser power at t = 0 ns in a for 104 consecutive
laser shots, where the red curve is a gamma distribution fit. Laser: compact Nd:YAG Q-switched
laser (Beamtech Optronics Dawa-200). Detector: ultrafast photodetectors (Alphas UPS-40-UVIR-
D; rise time < 40 ps). Measurement system: digital oscilloscope (Teledyne LeCroy WM825Zi-B;
bandwidth 25 GHz; sample rate 80 billion samples per second). (Figure from Ref. [1])

x(z) = K

γ ku
sin(kuz), (5.12)

and the laser-electron exchange energy according to

dW

dt
= evx Ex + evz Ez . (5.13)

Assuming that the laser beam waist is in the middle of the undulator, and when
x, y � w(z), which is the case for SSMB PoP I, we drop the exp

[
i kLQ2 (x2 + y2)

]
in the laser electric field. Further, when ZR � λu , we can also drop the contribution
from Ez on the energy modulation. The integrated modulation voltage induced by
the laser in the planar undulator, normalized by the electron beam energy, is then
[11]

eVmod

E0
= e[J J ]K

γ 2mc2

√
4PL Z0ZR

λL
tan−1

(
Lu

2ZR

)
, (5.14)

in which [J J ] = J0(χ) − J1(χ) and χ = K 2

4+2K 2 .

As can be seen from the above formula, when Lu
ZR

is kept constant, then Vmod ∝√
ZR ∝ √

Lu . In our case, Lu is fixed, then as shown in Fig. 5.8, tomaximize Vmod we
need ZR

Lu
= 0.359 ≈ 1

3 . On the other hand, the modulation strength does not depend
on ZR sensitively when ZR is larger than this optimal value. To make the laser beam
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Fig. 5.8 Integrated
modulation voltage of a laser
modulator as a function of
the ratio between laser
Rayleigh length and the
modulator undulator length
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waist larger than the electron beam and thus induce the same energy modulation
on different electrons, a larger Rayleigh length might be in favored in our case.
For example if ZR = 2Lu , then in order to induce an energy modulation depth of
A = 1.5σδ , we can calculate that the laser power required is 430 kW. Considering the
non-ideal conditions and the fact that the laser used contains higher-order Gaussian
modes, one order of magnitude higher laser power might be required in the actual
case.

5.2.2.3 Microbunching Simulation

Based on the above parameters, we have conducted the simulation of microbunching
formation in the storage ring. The beam current and bunching factor one turn after
the laser modulation is shown in Fig. 5.9. As can be seen from the comparison with
Fig. 5.5, the simulation agrees with theory well.

5.2.3 Microbunching Radiation Calculation

Now we evaluate what radiation we can obtain from the formed microbunching.
The numerical calculation of incoherent and coherent undulation radiation shown
in this section are obtained using SPECTRA [13]. The beam energy and undulator
parameters used are those in our SSMB proof-of-principle experiment, i.e., E0 =
250 MeV, λL = λ0 = 1064 nm, λu = 125 mm, K = 2.5, Nu = 32. The results are
also used to compare with the theoretical formulas presented in Chap. 4. Note that the
numerical calculation of coherent radiation with a 3D charge distribution is usually
time-consuming. This is also one of the motivations for us in Chap. 4 to develop the
simplified analytical formulas with the main physics accounted for.
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Fig. 5.9 Example current profile and bunching factor spectrum one turn after the laser modulation
in SSMB PoP I, obtained from ELEGANT [12] tracking. Parameters used: σt = 100 fs, εx = 31
nm, εy = 1

10 εx . 1 × 106 particles are simulated, meaning 160 fC for a one-to-one correspondence

The left part of Fig. 5.10 shows the incoherent undulator radiation flux of 106

electrons (0.16 pC) versus the opening angle of a circular aperture placed in the
forward direction of electron traveling. As can be seen, with the increase of the
aperture opening angle, the red-shifted part of the radiation grows. For the total
flux, there are sharp spikes near the odd harmonics and no clear spikes near the
even harmonics. This is due to the fact that there is no on-axis radiation at the even
harmonics. Also note that with the change of the aperture opening angle, there are
jumps in the flux at a specific frequency nω0. This is due to the fact that the red-
shifted radiation of higher harmonics m > n can contribute to the flux at ω = nω0

when the aperture is large enough.
Now we calculate the coherent radiation of the laser modulation-induced

microbunched beam, using an RMS bunch length of 100 fs (σz = 30 µm). An exam-
ple beam current and bunching factor spectrum of the laser modulation-induced
microbunched beam are shown in Fig. 5.9. We remind the readers that the bunch
length in the real machine is typically longer than that used in the calculation here.
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Fig. 5.10 Left: incoherent radiation photon flux of 106 electrons within a circular aperture placed
in the forward direction, whose largest opening angles are θmax. Right: coherent radiation photon
flux of 106 electrons within the circular aperture whose largest opening angle θmax = 8 mrad. The
beam current and bunching factor spectrum used in the calculation are shown in Fig. 5.9. Other
related parameters: E0 = 250 MeV, λ0 = 1064 nm, λu = 125 mm, K = 2.5, Nu = 32

Therefore, the coherent radiation is even more narrowbanded than presented in the
example calculation in this section.

At first, we ignore the influence of electron beam’s transverse dimension, i.e., a
thread beam is assumed. The coherent radiation spectrum of 106 electrons is shown
in the right part of Fig. 5.10. As can be seen, there is narrowband coherent radiation
only at themodulation laser harmonics, which fitswith expectation due to the fact that
there is only notable bunching factor at the laser harmonics. More closer look of the
first two harmonics versus the aperture opening angle are shown in the upper part of
Fig. 5.11.As canbe seen, indeed the relative bandwidth of the coherent radiation at the
fundamental frequency and second harmonic are 1%and 0.5%, respectively, agreeing
with the values calculated from Eq. (4.21). In addition, the flux of the fundamental
mode H = 1 at the fundamental frequency agrees reasonablywellwith that according
to Eq. (4.48), i.e., F1(ω = ω0, σ⊥ = 0 µm) = 3.4 × 107 (photons/pass/0.1% b.w.).
In other words, the amplification factor of the flux at ω = Hω0 is indeed N 2

e |bz,H |2
when σ⊥ = 0 µm. Also note that the jumps of the flux with the change of aperture
opening angle as we commented just now.

Now we investigate the impact of transverse electron beam sizes on the coher-
ent radiation. As can be seen from the middle and bottom parts of Fig. 5.11, which
correspond to a transverse electron beam size of 100 µm and 400 µm, respec-
tively, and the comparison with the upper part, the transverse sizes of the electron
beam suppress the coherent radiation. And the calculated fluxes at the fundamen-
tal frequency agrees well with those predicted by Eq. (4.49), i.e., F1(ω = ω0, σ⊥ =
100 µm) = 3.1 × 107 (photons/pass/0.1% b.w.) and F1(ω = ω0, σ⊥ = 400 µm) =
1.6 × 107 (photons/pass/0.1% b.w.). The suppression from transverse beam size is
even more significant at the higher harmonics and the suppression factors agree with
those predicted according to the transverse form factor Eq. (4.32). Also note that
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Fig. 5.11 Coherent radiation photon flux of 106 electrons versus opening angle θmax of the cir-
cular aperture for the first two harmonics, with σ⊥ = 0 µm (up), σ⊥ = 100 µm (middle) and
σ⊥ = 400 µm (bottom), respectively. The beam current and bunching factor spectrum used in
the calculation are shown in Fig. 5.9. Other related parameters: E0 = 250 MeV, λ0 = 1064 nm,
λu = 125 mm, K = 2.5, Nu = 32
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Fig. 5.12 Total radiation
power as a function of the
observation time gathered
within a circular aperture
with θmax = 1 mrad, for
σ⊥ = 0, 100, 400 µm,
respectively. The beam
current and bunching factor
spectrum used in the
calculation are shown in
Fig. 5.9. Other related
parameters: E0 = 250 MeV,
λ0 = 1064 nm,
λu = 125 mm, K = 2.5,
Nu = 32
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different from that of incoherent radiation, when σ⊥ = 100 µm or 400 µm, there is
no visible jump of the flux with the aperture opening angle θmax grown from 1 mrad
to 8 mrad. This is because that the off-axis red-shifted coherent radiation of higher
modes are suppressed now.

We have also confirmed our derivation of the coherent radiation power by com-
paring it with simulation. As shown in Fig. 5.12, the calculated peak powers of
coherent radiation with different transverse electron beam sizes also agree well
with the theoretical predictions from Eq. (4.46), i.e., P1,peak(σ⊥ = 0 µm) = 363 W,
P1,peak(σ⊥ = 100 µm) = 332 W, P1,peak(σ⊥ = 400 µm) = 168 W.

From the calculation and analysis, we know that the coherent radiation from
the formed microbunching is mainly at the fundamental frequency and second har-
monic of the modulation laser, and in the forward direction. The coherent radiation
is narrowbanded, and stronger than the incoherent radiation. These calculations and
observation are the basis for our signal detection scheme.

5.2.4 Signal Detection and Evaluation

After investigating the microbunching formation beam dynamics and radiation char-
acteristics of the formed microbunching in the above sections, now we consider how
we can measure and evaluate the signals.

Measurement and evaluation of bunch charge The bunch-by-bunch charge (cur-
rent) in the experiment is measured by a single-bunch current monitor [14], which
analyses the electron beam-induced RF signals from a set of four stripline elec-
trodes (3 GHz bandwidth). To minimize the influence of neighbouring bunches on
the signal, the pulse response of the electrodes is reshaped by a 500-MHz low-pass
filter. The current calibration of the monitor is conducted using a parametric current
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Fig. 5.13 Evaluation of bunch charge based on the stripe line measurement. Blue dots are the
measurement results with the systematic offset subtracted and the red curve is a fit by the sum of
two exponential functions, Q(t) = Q1exp(−t/τ1) + Q2exp(−t/τ2), performed at different time
intervals, with the fit results connected by a smoothed line. (Figure from Ref. [1])

transformer [4] at higher current, and the linearity of the system at lower current
is checked with the signal of the photodiode illuminated by synchrotron radiation.
During the current decay in the experiment, one data point of the result given by the
monitor is saved every second for each individual bunch. The averaged measurement
of ten unfilled bunches preceding the homogeneous filled bunches (10 ns time gap
in between) is used as the systematic offset. To smooth the measurement noise and
at the same time account for the change of the beam lifetime, the time evolution of
the offset-removed data points is then fitted by the sum of two exponential func-
tions, Q(t) = Q1exp(−t/τ1) + Q2exp(−t/τ2), at different time intervals, with the
fit results connected smoothly. One example evaluation of the bunch chargemeasure-
ment result is presented in Fig. 5.13. Based on the evaluated data, we obtain a linear
bunch-charge dependence of the broadband incoherent signal that is detected by the
photodetector without the 3-nm-bandwidth band-pass filter, as shown in Fig. 5.14,
confirming the reliability of the bunch-charge measurement and evaluation method.

If the ring works in single-bunchmode, there is a more direct and accurate method
of bunch charge measurement based on the measurement of synchrotron radiation
strength using a photodiode. Both methods have been used in our experiments.

Detection and evaluation of undulator radiation The long-pulse laser (FWHM
≈ 10 ns) is used to simplify the experiment by avoiding a dedicated laser-electron
synchronization system, given that the shot-to-shot laser timing jitter is tjitter ≤ 1 ns
(RMS). However, the photodetector (Femto HSPR-X-I-1G4-SI; rise/fall time, 250
ps) becomes saturated and even damaged by the powerful laser (Beamtech Optronics
Dawa-200) if it is placed in the path of the laser. To address this issue, the undula-
tor radiation is separated into the fundamental and second harmonics by appropri-
ate dichroic mirrors (Thorlabs Harmonic Beamsplitters HBSY21/22), as shown in
Fig. 5.3, and the signal detection at first focuses on the second harmonic with the
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Fig. 5.14 Linear dependence of the broadband incoherent undulator radiation on the bunch charge.
a, Results corresponding to individual laser shots; the shading (light red) represents 3σ of the
detection noise. b, The result after 200-consecutive-laser-shot averaging. The blue dots are the
experimental data of a bunch not modulated by the laser and the red curves are linear fits. (Figure
from Ref. [1])

wavelength centred at 532 nm. The photodetector output voltage, which is propor-
tional to the radiation power, is then measured by a digital oscilloscope (Tektronix
MSO64:6-BW-4000; bandwidth, 4 GHz; sample rate, 25 billion samples per sec-
ond). Later we will also present the result of the 1064 nm radiation by implementing
Pockels cells to block the modulation laser and let pass the radiation in the following
turns.

An example radiation waveform of the second harmonic is shown in Fig. 5.16. To
avoid the impact of the signal waveform offset caused by stray laser light, the data
analysis takes the peak-to-peak value of the photodetector output voltage as a mea-
sure of the radiation power. The coherent radiation power that corresponds to each
individual laser shot, obtained during a time interval with a decaying beam current, is
presented in Fig. 5.15a, where themodest contribution on themeasured quantity from
the small amount of incoherent radiation transmitted through the 3-nm-bandwidth
band-pass filter has been eliminated. As can be seen, the coherent signal fluctuates
considerably from shot to shot. This is attributable to the shot-to-shot fluctuation
of the laser intensity profile (see Fig. 5.7) and the measurement noise. Despite the
fluctuation, quadratic functions fit reasonably to the lower and upper bounds of the
data points, which correspond to the cases of minimum and maximum bunching
factors induced by the fluctuating laser, respectively. When performing the fits, we
took into account that the measured quantity is the real radiation signal convoluted
with the detection noise. The impact of this noise, obtained by analysing the mea-
surement result of the unfilled bunches, on the bounds of the measured data points is
visualized as shading in Fig. 5.15a for the coherent signal and in Fig. 5.14a for the
incoherent signal. To smooth this shot-to-shot fluctuation, a 200-consecutive-laser-
shot averaging is conducted and the results are presented in Figs. 5.14b and 5.15b
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Fig. 5.15 Quadratic dependence of the narrowband coherent undulator radiation generated from
microbunching on the bunch charge. a, Results corresponding to individual laser shots; the shading
(light red and grey) represents 3σ of the detection noise. b, The result after 200-consecutive-laser-
shot averaging; the plot is the same as Fig. 5.17 and is presented again here for comparison with a
and with the incoherent signal in Fig. 5.14. The blue dots represent the experimental data and the
red curves are quadratic fits. (Figure from Ref. [1])

for the narrowband coherent and broadband incoherent signals, where a quadratic
and a linear fit have been performed, respectively.

5.2.5 Experimental Results

5.2.5.1 Second Harmonic Radiation

Figure 5.16 shows the typical measurement results of the second-harmonic undulator
radiation emitted from a homogeneous stored bunch train, with a charge of about
1 pC per bunch and a time spacing of 2 ns, supplied by the 500 MHz RF cavity at
the MLS. The spikes in the waveforms are the signals of different bunches. The left
and right panels show the results corresponding to 2 and 40 consecutive laser shots,
respectively. To smooth themeasurement noise and signal fluctuation, thewaveforms
in the right panels have been averaged. Figure 5.16a, b shows the signals one turn
before the laser shot, which correspond to the incoherent radiation and reflect the
homogeneous bunch filling pattern. Figure 5.16c, d shows the radiation one turn after
the laser shot, from the same bunches as those in Fig. 5.16a, b. The five larger spikes
at the centre correspond to the bunches modulated by the laser. The enhanced signals
of these five spikes indicate the formation of microbunching and the generation of
coherent radiation from the laser-modulated bunches.

The laser used in the experiment hasmultiple longitudinalmodes, and its temporal
profile has several peaks and fluctuates considerably from shot to shot (see Fig. 5.7).
Therefore, the laser-induced electron energy modulation amplitudes are different
from shot to shot and from bunch to bunch.When the modulation amplitude matches
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Fig. 5.16 Waveforms of the undulator radiation produced from a homogeneous stored bunch train.
a, b, Radiation one turn before the laser shot. The photodetector output voltage is proportional to
the radiation power. c, d, Radiation one turn after the laser shot, from the same bunches as those of a
and b, where the central five bunches are modulated by the laser pulse. The offset and general slight
decreasing trend of the waveforms are due to the photodetector being saturated by stray light from
the modulation laser one revolution before and not having completely recovered. e, f, Radiation
one turn after the laser shot, obtained with a narrow band-pass filter (centre wavelength, 532 nm;
bandwidth, 3 nm FWHM) placed in front of the photodetector, with bunch filling and charge similar
to those in a to d. (Figure from Ref. [1])

the phase slippage factor, the energy-modulated electrons are properly focused at
synchronous phases, which gives optimal microbunching. For some of the shots,
the laser intensity is higher or lower than the optimal value, and the electrons are
then over-focused or under-focused, giving weaker microbunching and less coherent
radiation. This explains the shot-to-shot fluctuation of the coherent amplified signals
shown in Fig. 5.16c, e.

As analyzed before, the microbunching coherent radiation is much narrowbanded
compared to the incoherent radiation. To confirm that the amplified radiation is due to
microbunching, we tested this narrowband feature of the coherent radiation. A band-
pass filter (Thorlabs FL532-3; centre wavelength, 532 nm; bandwidth, 3 nm FWHM)
was inserted in front of the detector. The radiation one turn after the laser shot is
shown in Fig. 5.16e, f, which was obtained with a bunch filling and charge similar to
that of Fig. 5.16c, d. From the comparison between Fig. 5.16e and c (Fig. 5.16f and
d), we can see that the broadband incoherent signals are nearly completely blocked



5.2 PoP I: Turn-by-Turn Laser-Electron Phase Correlation 139

by the filter, whereas the amplified part is not affected much, confirming that the
amplification is the narrowband coherent radiation generated by the microbunches.

Finally, we investigated the dependence of the coherent radiation on the bunch
charge. Tomitigate collective effects such as intrabeam scattering and head-tail insta-
bility, which could change the electron beam parameters, this investigation was con-
ducted at low beam current, and the coherent signal was optimized by fine-tuning the
machine to ensure a sufficient signal-to-noise ratio. Because the longitudinal radia-
tion damping time in the experiment was 180 ms, we operated the laser at 1.25 Hz
repetition rate to ensure that the electron bunches had time to recover their equilib-
rium parameters before each laser shot. The 3-nm-bandwidth band-pass filter was
inserted to block the incoherent radiation, and the coherent signal corresponding to
each individual laser shot was saved, with the beam current decaying naturally until
the signal was at the detection noise level. The measurement results of the bunch
closest to the laser temporal centre (t = 0 ns in Fig. 5.16) are used for quantitative
analysis as introduced above. To lessen the impact of the laser temporal profile fluctu-
ation andmeasurement noise, a 200-consecutive-laser-shot averaging is performed to
obtain the data point for each bunch charge. The coherent undulator radiation power
versus the single-bunch charge is shown in Fig. 5.17, where a quadratic function fits
well to the experiment data. The quadratic bunch charge dependence, together with
the narrowband feature of the coherent radiation, demonstrates unequivocally the
formation of microbunching.

Fig. 5.17 Quadratic dependence of the coherent undulator radiation generated frommicrobunching
on the bunch charge. The blue dots represent the experimental data and the red curve is a quadratic
fit. Each data point represents the averaged result of 200 consecutive laser shots. The error bars
denote the standard deviation of the averaged results when the averaging time window shifts for
±100 consecutive laser shots from the corresponding data point. (Figure from Ref. [1])
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5.2.5.2 Fundamental Frequency Radiation

The above deciding experimental results were obtained in the year of 2020, and
have been published in Ref. [1]. After that, there are two main upgrades on the
experimental setup. First, the multi-longitudinal-mode laser has been replaced by a
single-longitudinal-mode one (Amplitude Surelite I-10). Second, Pockel Cells have
been installed along the signal detection optical path to block the modulation laser
and let pass the radiation in later revolutions, thus allowing the detection of the
fundamental frequency radiation [15]. As shown in our analysis, we expect that the
coherent radiation at the fundamental frequency is much stronger than that at the
second harmonic and the microbunching can last multiple turns. These expectations
have been confirmed in our following experimental investigations at the MLS [2].

Figure 5.18 shows the typical experimental results of the multi-turn coherent radi-
ation at the fundamental frequency. A narrowband-pass filter has been inserted to
select the narrowband coherent radiation. Figure 5.19 is the more quantitative data
analysis of the signal of the first three turns after each laser shots. The bunch charge
has now also been obtained in a more accurate way by using the incoherent syn-
chrotron radiation signal measured by a photodiode. Several important observations
are in order concerning the experiment results:

• First, signals of all three turns have shown nice quadratic bunch charge fits, con-
firming again the formation of microbunching and coherent radiation generation
from it.

• Second, we mentioned in the above section and also in Ref. [1] that the huge shot-
to-shot coherent radiation signal fluctuation obtained before the upgrades ismainly
due to the laser profile fluctuation arising from its multi-longitudinal-mode nature.
This argument has also been confirmed by the results shown in Fig. 5.19. From
the comparison of Figs. 5.15a and 5.19, we can see that the shot-to-shot coherent
signal with the present single-longitudinal-mode laser is much more stable.
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Fig. 5.18 Raw data of the multi-turn microbunching preservation experiment result. The signal is
for the fundamental-mode undulator radiation, i.e., 1064 nm. (Refer to J. Feikes’ talk in IPAC2021
and Ref. [2] for more details)
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Fig. 5.19 The bunch-charge scaling of the coherent undulator radiation signals of the first three
turns after the laser shots. Up: each data point corresponds to the radiation signal strength after
each single laser shot. Bottom: average of the radiation signal from 40 consecutive laser shots. The
saturation level of the detector is about 2 V

• Third, the signal deviates from the quadratic scaling at high current and starts
to saturates about 1.3 pC, which we believe is due to the influence of collective
effects.

More in-depth investigations on the multi-turn microbunching is still ongoing and
will be reported in the future [2].

5.2.6 Summary

In conclusion, we have demonstrated the mechanism of SSMB for the first time
in a real machine. This demonstration represents the first milestone towards the
implementation of an SSMB-based high-repetition, high-power photon source. As
great as the experimental results are, to avoid confusion, here we make clear that
here we do not report an actual demonstration of SSMB, but rather a demonstration
of the mechanism by which SSMB will eventually be attained. First, the formation
of microbunching after one complete revolution of a laser-modulated bunch in a
quasi-isochronous ring and the maintenance of microbunching for multiple turns
demonstrate the viability of a turn-by-turn electron optical phase correlation with a
precision of sub-laser wavelength. Second, this microbunching is produced on the
stored electronbunch, the equilibriumparameters anddistributionofwhichbefore the
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laser modulation are defined by the same storage ring as a whole. The combination
of these two crucial factors establishes a closed loop to support the realization of
SSMB, provided that a phase-locked laser interacts with the electrons turn by turn.

5.3 PoP II: Quasi-steady-State Microbunching

On the basis of the PoP I, the next step is to replace the single-shot laser by a high-
repetition phase-locked one to interact with the electrons turn-by-turn. By doing so,
we want to form stable microbuckets to constrain the microbunching in it to reach
a quasi steady state. This is the SSMB PoP II as introduced in the beginning of this
chapter.

5.3.1 Phase-Mixing in Buckets

To reach a quasi steady state, the particles need to do synchrotron oscillations to reach
phase mixing in the microbuckets, as a result of longitudinal amplitude dependent
tune spread of the electron beam. Here we present a remarkable feature of phase
mixing or filamentation in RF or optical buckets. As we will see soon, given an initial
DCmono-energetic beam, there will be an equilibrium phase space distribution after
phase mixing in the bucket. We find that in this final steady state, the beam current
distribution has little dependence on the bucket height. This feature is favorable for
the SSMB PoP II, as the requirement on the modulation laser power can then be
much relaxed compared to PoP I. This effect is also of relevance to the injection
process of the final real SSMB storage ring.

As the phase mixing is a rather fast process compared to radiation damping, we
consider only the symplectic dynamics in this section for simplicity. The symplectic
longitudinal dynamics of a particle in a storage ring with a single RF system, in
SSMB a laser modulator, can be modeled by the well-known “standard map” [16]

{
In+1 = In + K sin θn,

θn+1 = θn + In+1,
(5.15)

in which

θ = kRFz, I = R56kRFδ, K = VRF

E0
R56kRF, (5.16)

with R56 = −ηC0. Note that K in this section is not the undulator parameter. Equa-
tion (5.15) can be described with the pendulum Hamiltonian driven by a periodic
perturbation
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H(I, θ, t) = 1

2
I 2 + K cos θ

∞∑
n=−∞

cos(2πnt). (5.17)

The dynamics is given by a sequence of free propagations interleaved with periodic
kicks. For K �= 0, the dynamics is non-integrable and chaotic. But for a K much
smaller than 1, which is the case for usual storage rings working in the longitudi-
nal weak focusing regime, the motion is close to integrable and the differences in
Eq. (5.15) can be approximately replaced by differentiation, and the Hamiltonian
Eq. (5.17) can be replaced by a pendulum Hamiltonain

H = 1

2
I 2 + K cos θ. (5.18)

The separatrix of the pendulum bucket is H = K with a bucket half-height of 2
√
K .

Or in unit of δ, the bucket half-height is

δ 1
2

= 2
√
VRFR56kRF
|R56kRF| ≈ 1

βzSkRF
, (5.19)

where βzS is the longitudinal beta function at the RF as analyzed in Sect. 2.1.2. The
synchrotron tune is

νs ≈ −sgn(K )

√
K

2π
. (5.20)

When K is large, the strongly chaotic dynamics can also be used for interesting
applications, for example applying the bucket purification to generate short bunches
as proposed in Ref. [17].

Figure 5.20 shows a simulation result of the evolution in the longitudinal phase
space of a mono-energetic DC beam after injection into RF or optical buckets
described by Eq. (5.15). We have chosen to observe the beam in the middle of the
RF kick so the beam distribution in the longitudinal phase space is upright. As can
be seen, there is a steady-state beam distribution due to phase mixing in the bucket.
Note that the bucket center is at θ = π when K > 0. If K < 0, then the bucket center
will be at θ = 0.

As the longitudinal form factor, thus the coherent radiation power, depends more
directly on the beam current (namely the longitudinal coordinate z of the electrons)
rather than the energy spread, now we try to get an analytical formula for the steady-
state beam current. For convenience, we shift the bucket center to the origin, which
means θ − π → θ , or a sign change of K . What we want to know is the steady-
state distribution of θ , i.e., f (θ, t → ∞). In action-angle (φ, J ) phase space, the
distribution function evolves according to

f (φ, J, t) = f (φ − ω(J )t, J, 0). (5.21)
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Fig. 5.20 Phase mixing (filamentation or decoherence) of a mono-energetic particle beam trapped
in RF or optical bucket with K = 0.01. Up: particle distribution in longitudinal phase space, with
red curves being the separatrices. Bottom: the corresponding beam current distribution

Fig. 5.21 A plot to help
better understand Eq. (5.23)

When there is a tune dependence ω(J ) on J , then in the limit of t → ∞, the steady-
state distribution depends only on the initial distribution of action J as a result of
phase mixing,

f (φ, J, t → ∞) = 1

2π

∫ 2π

0
f (φ, J, t = 0)dφ. (5.22)

The final angle for each action J will uniformly distributed in [0, 2π). As shown in
Fig 5.21, after reaching the steady state, the percentage of the particles with θ ≤ x
for 0 < x < π is

P(θ ≤ x) = x

π
+

∫ π

x

(
1 − φ(x, I (x, β))

π

)
1

π
dβ, (5.23)

in which I (x, β) represents the I -coordinate of a point on the (φ, J ) phase space
trajectory traversing (β, 0) with a θ -coordinate of x .
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After getting P(θ ≤ x), the current distribution can then be calculated according
to

f (θ) = ∂P

∂x

∣∣∣∣
x=θ

. (5.24)

However, φ(x, I (x, β)) has a complex form, and it is hard to get a simple analytical
expression for f (θ). Here we simplify the discussion by approximating all the phase
space trajectories in the bucket by ellipses to arrive at an analytical formula for f (θ).
For an ellipse phase space trajectory, we have

φ(x, I (x, β)) = arccos
x

β
. (5.25)

Note that the result in Eq. (5.25) has no dependence on K . For a real RF or optical
bucket, there is a dependence of φ(x, I (x, β)) on K , but the dependence is weak,
especially for trajectories close to the bucket center. So we expect our approximated
Eq. (5.25) is valid to a large extent. Substituting Eq. (5.25) into Eqs. (5.23) and (5.24),
we have

f (θ) = ∂P

∂x

∣∣∣∣
x=θ

=
∫ π

θ

⎛
⎜⎜⎝ 1

π

√
1 −

(
θ
β

)2

1

β

⎞
⎟⎟⎠ 1

π
dβ = 1

π2
ln

∣∣∣∣π + √
π2 − θ2

θ

∣∣∣∣.
(5.26)

Note that our simplified theoretically current distribution f (θ) is independent of K ,
whichmeans the steady-state current distribution is independent of the bucket height.

Figure 5.22 shows the simulation result of the steady-state current distribution
under different K , i.e., different bucket heights, and simultaneously our simplified
theoretical distribution Eq. (5.26). As can be seen that indeed the steady-state current
distribution has little dependence on the bucket height, and our simplified analysis
is quite accurate. Note that the origin is not shifted in the plot.

The analysis reveals a remarkable feature of phase mixing in RF or optical bucket,
i.e., the final steady-state current distribution after a mono-energetic beam getting

Fig. 5.22 The steady-state
current distribution after
phase mixing in RF or
optical bucket, with different
K . In each simulation,
2 × 105 particles have been
tracked for 2 × 105 turns.
Also presented in the figure
is the theoretical prediction
given by Eq. (5.26)
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Fig. 5.23 The steady-state
current distribution after
phase mixing in RF or
optical bucket, with an
increase of K from 0.001 to
0.03 in two consecutive
steps. In each step, 2 × 105

particles have been tracked
for 2 × 105 turns
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trapped by RF or optical buckets has little dependence on the bucket height. This
is helpful for our Quasi-SSMB experiment since it means the requirement on the
modulation laser power is not that demanding. A bucket height several times of the
natural energy spread is sufficient.

The above result is based on a constant RF voltage in the phase mixing process,
it can be anticipated that more particles will be bunched closer to the bucket center
phase when we increase K after the beam reach its steady-state distribution after
phase mixing. Similar steps to the above section can be invoked for calculating the
new steady-state current distribution. A transformation of the actionwhen K changes
is all that needed. Figure 5.23 shows the simulation result of the steady-state current
distribution by increasing K in two consecutive steps from 0.001 to 0.03. As can be
seen, the current are more concentrated to the center after the increase of K .

A discrete change of K can boost bunching as shown in Fig. 5.23. However,
it is not without sacrifice, as the filamentation process will result in longitudinal
emittancegrowth.This emittance increase is unwanted in somecases.Aswell-studied
in RF gymnastics [18], an adiabatic change of RF voltage or lattice parameters can
manipulate the bunch length while preserving the longitudinal emittance. Similar
ideas can also be applied to boost microbunching with little emittance growth. A
simulation of trapping of microbunch with K linearly ramped from 1 × 10−6 to 1 ×
10−2 is shown in Fig. 5.24. Note the drastic difference between Figs. 5.24 and 5.20.
The spirit of adiabatic buncher [19, 20] is the samewith adiabatic trapping introduced
here, for enhancing microbunching while preserving longitudinal emittance which
is useful for FEL and inverse FEL. The adiabatic trapping mechanism can also be
applied in the beam injection of the SSMB or other storage rings whose momentum
aperture is of concern. It is interesting to note the connection of adiabatic trapping
with the microbunching process in a high-gain FEL [21–23].



5.3 PoP II: Quasi-steady-State Microbunching 147

0 0.5 1
0

2

4

6

8

In
te

ns
ity

0 0.5 1
0

2

4

6

8

In
te

ns
ity

0 0.5 1
0

2

4

6

8

In
te

ns
ity

Fig. 5.24 Trapping of particles with a linear increase of K from 1 × 10−6 to 1 × 10−2 in 104

turns. Up: particle distribution in longitudinal phase space, with red curves being the separatrices.
Bottom: the corresponding beam current distribution

5.3.2 Experimental Parameters Choice

As the quantum diffusion of z is large for the MLS lattice (26 nm RMS per turn
at 250 MeV corresponding to optics in Fig. 5.2), it is not feasible to realize true
SSMB inside a 1064 nm wavelength microbucket at the MLS. Therefore, the goal
of SSMB PoP II is to accomplish microbunching for 100 to 1000 consecutive turns
to reach a quasi steady state. Based on the beam physics and noises analysis, the
tentative experimental parameters choice is as shown inTable 5.2.Wehave conducted
numerical simulations based on the parameters set, from which we observe that the
typical evolution of electrons in PoP II experiment can be divided into several stages.

• I: with the modulation laser turned on, the bunching factor reaches the maximum
after about one quarter of the synchrotron oscillation period;

• II: after several synchrotron oscillation periods, the whole microbuckets are filled
with particles like that shown in the right part of Fig. 5.20 as a result of phase
mixing. Bunching factor after reaching this quasi-steady state will be stable if
there is no quantum excitation or other diffusion effects;

• III: due to quantum excitation and various diffusion effects, energy spread starts
to increase and particles continue to leak out the microbuckets and begin to hit on
the vacuum pipe and become lost. Bunching factor in this stage decreases;

• IV: after a while, all the particles are lost in the end.

To make the experiment more realistic, each time we fire the laser, we only want
to accomplish the above stages I and II, but avoid III and IV, i.e., to avoid particle
loss, otherwise it will be too time-consuming to do the experiment. This is based on
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Table 5.2 Tentative parameters of the Quasi-SSMB experiment to be conducted at the MLS

Parameter Value Description

E0 250 MeV Beam energy

C0 48 m Ring circumference

fRF 500 MHz RF frequency

η |η| ≤ 2 × 10−5 Phase slippage factor

τδ 180 ms@250 MeV Longitudinal radiation damping time

σδ 1.8 × 10−4@250 MeV Natural energy spread

εx 31 nm@250 MeV Horizontal emittance

λu 125 mm Undulator period length

Nu 32 Number of undulator periods

Lu 4 m Undulator length

K 2.5 Undulator parameter

λL 1064 nm Modulation laser wavelength

ZR ∼ Lu
3 Rayleigh length

Ppeak ≥10 kW Modulation laser peak power

δ 1
2

≥1.5σδ Microbucket half-height

λR 1064 nm Radiation wavelength

b1 ≥0.01 Bunching factor (1064 nm) in
quasi-steady state

the fact that preparing the beam and storage ring state is time-consuming, while the
particle can be lost in milli seconds with the laser keep firing. This is why we aim for
preserving mircorbunching for 103 turns, instead of 106 turns or a longer time. The
experiment is under preparation and more progress will be reported in the future.
One thingworthmentioning is that the second-harmonic bunching in the quasi-steady
state is negligible at the MLS, therefore, fundamental frequency radiation detection
is needed in SSMB PoP II.
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Chapter 6
Summary

In this final chapter, we give a brief summary of the dissertation, and present some
useful results for practitioners.

6.1 Summary of the Dissertation

The contribution of this dissertation consists of three parts: in Chaps. 2 and 3, we
answer the question of how to realize SSMB; in Chap. 4, we investigate what radi-
ation characteristics can be obtained from the formed SSMB; and in Chap. 5, we
experimentally demonstrate the working mechanism of SSMB in a real machine for
the first time.

In Chap. 2, to account for the impact of local phase slippage factors on beam
dynamics in a quasi-isochronous electron storage ring, we have developed and
applied the Courant-Snyder formalism in longitudinal dimension to derive new for-
mulae of bunch length, energy spread and longitudinal emittance beyond the classical
scaling laws. The method of optimizing the global and local phase slippages simul-
taneously to minimize the longitudinal β function at the bending magnets has been
proposed based on the analysis, to generate an ultrashort bunch length and ultrasmall
longitudinal emittance, as required by SSMB. Further, we have derived the scaling
law of the theoretical minimum bunch length and longitudinal emittance with respect
to the bending radius and angle of the bending magnet. The use of transverse gra-
dient bends for minimizing the longitudinal emittance has also been investigated.
The application of multiple RF cavities, or laser modulators in an SSMB storage
ring, for longitudinal strong focusing has been discussed using the same formalism
with important observationsmade. Considering themomentum compaction of a laser
modulator, its thick-lens linear and nonlinear maps have been derived and simulated
for a more accurate modeling of beam dynamics in it. We have also studied the
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application of the higher-order terms of phase slippage for high-harmonic bunching
and longitudinal dynamic aperture optimization. Based on the investigations in this
chapter, we have presented in Table 6.1 an example parameters set of a longitudinal
weak focusing SSMB storage ring for high-power infrared radiation generation.

In Chap. 3, we have presented a concise analysis of the bending magnet-induced
passive bunch lengthening from transverse emittance of the particle beam. After that,
we have generalized the analysis and proved three theorems on the active applications
of transverse-longitudinal coupling (TLC) for efficient harmonic generation or bunch
length compression. These theorems dictate the relation between the modulation lick
strength and the lattice optical functions at the modulator and radiator, respectively.
Further, we have analyzed the contribution of modulators to the vertical emittance
from quantum excitation, to obtain a self-consistent evaluation of the required mod-
ulation laser power in applying these TLC schemes in a storage ring. These theorems
and related analysis provide the theoretical basis for the application of TLC in SSMB
to lower the requirement on the modulation laser power, by taking advantage of the
fact that the vertical emittance in a planar ring is rather small. The relation between
our TLC analysis and the transverse-longitudinal emittance exchange is also briefly
discussed. In addition to the investigation on linear TLC dynamics, we have also
reported the first experimental validation of particle energy widening and distortion
by a nonlinear TLC effect in a quasi-isochronous ring, which originates from an aver-
age path-length dependence on the betatron oscillation amplitudes. The result could
be important for quasi-isochronous rings, SSMB, nonscaling fixed-field alternate
gradient accelerators, etc., where very small phase slippage factor or large chro-
maticity is required. Based on the investigations in this chapter, we have presented
in Table 6.2 an example parameters set of a transverse-longitudinal coupling SSMB
storage ring for high-power EUV and soft X-ray radiation generation.

In Chap. 4, we have presented theoretical and numerical studies of the average
and statistical property of the coherent radiation from SSMB. Our results show that
kW-level average power of 13.5 nm-wavelength EUV radiation can be obtained from
an SSMB ring, provided that an average current of 1 A and bunch length of 3 nm
microbunch train can be formed at the radiator. Such a high-power EUV source
is a promising candidate to fulfill the urgent need of semiconductor industry for
EUV lithography. Together with its narrowband feature, the EUV photon flux can
reach 1015 ∼ 1016 phs/s within a 0.1 meV energy bandwidth, which is appealing
for fundamental condensed matter physics research. In the theoretical investigation,
we have generalized the definition and derivation of the transverse form factor of an
electron beam which can quantify the impact of its transverse size on the coherent
radiation. In particular,wehave shown that the narrowband feature ofSSMBradiation
is strongly correlated with the finite transverse electron beam size. Considering the
pointlike nature of electrons and quantum nature of radiation, the coherent radiation
fluctuates from microbunch to microbunch, or for a single microbunch from turn to
turn. Some important results concerning the statistical property of SSMB radiation
have been presented, with a brief discussion on its potential applications for example
the beam diagnostics. The presented work is of value for the development of SSMB
and better serve the potential synchrotron radiation users. In addition, it also sheds
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light on understanding the radiation characteristics of free-electron lasers, coherent
harmonic generation, etc.

In Chap. 5, we have reported the first demonstration of the mechanism of SSMB
at theMetrology Light Source in Berlin.We have shown that electron bunches stored
in a quasi-isochronous ring can yield sub-micrometre microbunching and narrow-
band coherent radiation, one complete revolution after energy modulation induced
by a 1064 nm wavelength laser, and this microbunching can preserve for multiple
turns. These results verify that the optical phases, i.e, the longitudinal coordinates,
of electrons can be correlated turn by turn in a storage ring at a precision of sub-laser
wavelengths. On the basis of this phase correlation, we expect that SSMB will be
realized by applying a phase-locked laser that interacts with the electrons turn by
turn. This demonstration represents the first milestone towards the implementation
of an SSMB-based high-power, high-repetition photon source.

6.2 Useful Formulas and Example Parameters for SSMB
Storage Rings

To make our investigations more useful for practitioners, especially concerning the
parameters choice for an SSMB storage ring, here we present some important for-
mulas. Generally we group our formulas into two categories, i.e., a longitudinal
weak focusing storage ring for a desired radiation wavelength λR � 100 nm, and
a transverse-longitudinal coupling storage ring for a desired radiation wavelength
1 nm � λR � 100 nm. In each category, we have presented an example parameters
set for the corresponding SSMB storage ring.

6.2.1 Longitudinal Weak Focusing SSMB

The relation of bending radius ρ and magnetic flux density B of the bending magnet
is

1

ρ
= 0.2998

B[T]
E0[GeV] , (6.1)

with E0 the electron energy.
Assuming that the storage ring consists of isomagnets, then the radiation loss of

an electron per turn is

U0 = Cγ

E4
0

ρring
, (6.2)

withCγ = 8.85 × 10−5 m
GeV3 , ρring the bending radius of bending magnets in the ring.

The horizontal, vertical and longitudinal radiation damping constants for a planar
uncoupled ring are
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αH = U0

2E0
(1 − D),

αV = U0

2E0
,

αL = U0

2E0
(2 + D),

(6.3)

where D =
∮

(1−2n)Dx
ρ3

ds
∮

1
ρ2

ds
, with n = − ρ

B
∂B
∂ρ

the field gradient index and Dx is the hor-

izontal dispersion. Nominally for a planar uncoupled ring using bending magnets
with no transverse gradient, we have D � 1.

The horizontal, vertical and longitudinal radiation damping times are

τH,V,L = C0/c

αH,V,L
, (6.4)

with C0 the ring circumference and c the speed of light in vacuum.
The natural energy spread of electron beam in a longitudinal weak focusing ring

is

σδS =
√
Cq

Js

γ 2

ρ
, (6.5)

with Cq = 55�e
32

√
3

= 3.8319 × 10−13 m, �e = λe
2π = 386 fm is the reduced Compton

wavelength of electron, Js = 2 + D is the longitudinal damping partition number,
γ is the Lorentz factor.

The natural bunch length at the laser modulator is

σzS = σδSβzS, (6.6)

where βzS is the longitudinal beta function at the laser modulator to be given soon.
The effective modulation voltage of a laser modulator using a planar undulator

is [1]

VL = [J J ]K
γ

√
4PL Z0ZR

λL
tan−1

(
Lu

2ZR

)

. (6.7)

in which [J J ] = J0(χ) − J1(χ) and χ = K 2

4+2K 2 , Jn is the n-th order Bessel function

of the first kind, K = eB0
mecku

= 0.934 · B0[T] · λu[cm] is the undulator parameter,
determined by the peak magnetic flux density B0 and period λu of the undulator, PL

is the modulation laser power, Z0 = 376.73  is the impedance of free space, ZR is
the Rayleigh length of the laser, Lu is the undulator length.

The linear energy chirp strength around zero-crossing phase is related to the laser
and modulator undulator parameters according to
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h = eVL

E0
kL = e[J J ]K

γ 2mc2

√
4PL Z0ZR

λL
tan−1

(
Lu

2ZR

)

kL , (6.8)

where kL = 2π/λL is the wavenumber of the modulation laser.
Linear stability of the longitudinal motion requires

0 < hηC0 < 4, (6.9)

where η is the phase slippage factor of the ring.
Considering the fact that the modulation waveform is sinusoidal and the longi-

tudinal dynamics is more accurately modeled by a “standard kick map”, to avoid
strong chaotic dynamics, an empirical criterion is

0 < hηC0 � 0.1. (6.10)

In a longitudinal weak focusing ring (νs � 1), the synchrotron tune is

νs ≈ η

|η|
√
hηC0

2π
. (6.11)

In a longitudinal weak focusing ring, the longitudinal beta function at the laser
modulator is

βzS ≈
√

ηC0

h
. (6.12)

The micro-bucket half-height is

δ̂ 1
2

= 2

βzSkL
. (6.13)

If there is a singleRFor lasermodulator in the ring, and Js = 2, then the theoretical
minimum bunch length and longitudinal emittance in a longitudinal weak focusing
ring with respect to the bending radius ρ and angle θ of each bending magnet are

σz,min[μm] ≈ 4.93ρ
1
2 [m]E0[GeV]θ3[rad],

εz,min[nm] ≈ 8.44E2
0 [GeV]θ3[rad]. (6.14)

Scaling law of the horizontal emittance in an SSMB storage ring is

εx [nm] ≈ −366.5E2
0 [GeV]θ3[rad]

[
1

9
tan

(
�x

2

)

+ 1

10
cot

(
�x

2

)]

, (6.15)
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with�x the horizontal betatron phase advance per cell which usually lies in (π, 2π).
The above scaling is derived by considering only the contribution of main cells, and
ignoring that from the matching section.

Coherent undulator radiation power at the odd-H -th harmonic froma transversely-
round electron beam is

PH,peak[kW] = 1.183NuHχ [J J ]2H FF⊥(S)|bz,H |2 I 2P [A], (6.16)

where Nu is the number of undulator periods, [J J ]2H =
[
J H−1

2
(Hχ) − J H+1

2
(Hχ)

]2
,

with χ = K 2

4+2K 2 , and the transverse form factor is

FF⊥(S) = 2

π

[

tan−1

(
1

2S

)

+ S ln

(
(2S)2

(2S)2 + 1

)]

, (6.17)

with S = σ 2⊥
ω
c

Lu
and σ⊥ the RMS transverse electron beam size, bz,H is the bunching

factor at the H -th harmonic, and IP is the peak current.
The relative fluctuation of coherent radiation power considering the pointlike

nature of electrons is

Var
[|b(k)|2]

〈|b(k)|2〉2 = 2

Ne

⎛

⎝
|b(k)|2 + Re

[
b(2k)b

2
(−k)

]

|b(k)|4 − 2

⎞

⎠ + O
(

1

N 2
e

)

,

(6.18)
where b(k) is the bunching factor at the wavevector k, and Ne is the number of
electrons.

Based on the above formulas, here we present an example parameters set in
Table 6.1 of a longitudinal weak focusing SSMB storage ring, aimed for high-power
infrared radiation generation. As can be seen, such a compact SSMB storage ring
can be used for power amplification of the injected seed laser. The requirement on
the stored laser power is easy to realize in practice. All the other parameters are also
within practical range. A sharp reader may notice that the microbucket half-height
is only twice the natural energy spread of the electron beam. Therefore, in addition
to these shallow microbuckets, we need a larger bucket, for example a barrier bucket
formed by an induction linac, to constrain the particles in the ring to ensure a large
enough beam lifetime.

6.2.2 Transverse-Longitudinal Coupling SSMB

For a transverse-longitudinal coupling (TLC) based SSMB, or a generalized longi-
tudinal strong focusing SSMB [2], using TEM00 mode laser modulator for energy
modulation, we have the following important formulas.
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Table 6.1 Example parameters set of a longitudinal weak focusing SSMB storage ring for infrared
radiation generation

Parameter Value Description

E0 250 MeV Beam energy

C0 50 m Circumeference

η 4 × 10−6 Phase slippage factor

ρring 0.6 m Bending radius of dipoles in the ring

Bring 1.39 T Bending field in the ring

θ π
7 Bending angle of each dipole

σδS 2.76 × 10−4 Natural energy spread

σz,lim 86 nm Theoretical lower bunch length limit

λL 1064 nm Modulation laser wavelength

h 500 m−1 Energy chirp strength

σzS 175 nm Natural bunch length

δ 1
2

5.36 × 10−4 Microbuket half-height

λuMod 5 cm Modulator undulator period

B0Mod 0.92 T Modulator peak magnetic field

LuMod 1 m Modulator undulator length

PL (ZR = Lu
3 ) 24 kW Modulation laser power

g 5 × 103 Optical enhancement cavity gain

Pin 4.8 W Injection laser power

λR = λL 1064 nm Radiation wavelength

b1 0.59 Bunching factor

σ⊥ 100 μm Transverse electron beam size at the
radiator

λuRad 5 cm Radiator undulator period

B0Rad 0.92 T Radiator peak magnetic field

LuRad 2 m Radiator length

PR 1 kW @ IP = 0.55 A Radiation peak/average power

Relation between energy chirp strength and optical functions at the modulator
and radiator

h2(Mod)Hy(Mod)Hy(Rad) ≥ 1, (6.19)

whereHy is a chromatic function quantifying the contribution of vertical emittance
to bunch length.
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Put the above relation in another way,

h ≥ εy

σzy(Mod)σzy(Rad)
. (6.20)

Bunching factor at the n-th laser harmonic in TLC SSMB at the radiator

bn =
( ∞∑

m=−∞
Jm (n) exp

[
− ((n − m)kLσz(Mod))2 /2

]
)

exp
[
− (nkLσz(Rad))

2 /2
]
,

(6.21)
where σz(Mod) = √

εzβz(Mod) + εyHy(Mod) and σz(Rad) = √
εyHy(Rad) are the

linear bunch length at the modulator and radiator, respectively.
Contribution of two modulators to εy from quantum excitation

�εy(Mod) = 2 × 55

96
√
3

αF�2eγ
5

αV

Hy(Mod)

ρ3
0Mod

4

3π
Lu, (6.22)

where αF = 1
137 is the fine-structure constant.

Assuming εy = �εy(Mod), which means the vertical emittance is solely from
the two modulators, then the required modulation laser power and modulator length
scaling are

PL [kW] ≈ 5.67
λ

7
3
L [nm]E 8

3
0 [GeV]B 7

3
0Mod[T]

σ 2
z (Rad)[nm]Bring[T] ,

Lu[m] ≈ 57
Bring[T]εy[pm]

Hy(Mod)[μm]B3
0Mod[T] ,

(6.23)

where B0Mod is the peak magnetic flux density of the modulator undulator, Bring is
the magnetic flux density of bending magnets in the ring. The above scaling laws are
accurate when Ku >

√
2. For the more general case, refer to Eq. (3.56).

Based on the presented formulas, here we present an example parameters set in
Table 6.2 of a TLC SSMB storage ring, aimed for high-power EUV and soft X-ray
radiation. It can be seen that as long as we can realize a coasting beam of 1.5 A
average current, and an optical cavity stored power of �100 kW, we can realize 1
kW average power 13.5 nm EUV and 6.75 nm soft X-ray radiation. All the other
parameters applied should be realizable, including the small εy considering IBS.
Even if we can only realize an average beam current of 1 A or less, we can take
advantage of the fact that Pcoh ∝ I 2P to realize an average radiation power of kW
level, by decreasing the filling factor of electron beam in the ring but increasing the
peak current as long as the value is below the collective instability threshold.1 Since
there is no requirement on the longitudinal emittance for a coasting beam, thus no
requirement on the fine control of longitudinal β function, the circumference of this
ring has great flexibility, which means the ring can be very compact, for example a

1 Private communication with Alex Chao.
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Table 6.2 Example parameters set of a transverse-longitudinal coupling SSMB storage ring for
EUV and soft X-ray radiation generation

Parameter Value Description

E0 800 MeV Beam energy

C0 ∼100 m Circumference

Bring 1.33 T Bending field in the ring

ρring 2 m Bending radius in the ring

σδS 4.85 × 10−4 Natural energy spread

εy 2 pm Vertical emittance

λL 270 nm Modulation laser wavelength

σ⊥ 10 μm Transverse electron beam size at the
radiator

EUV (13.5 nm) σz (Rad) 2 nm Linear bunch length at the radiator

σzy (Mod) 1.85 μm Bunch lengthening from εy at the
modulator

h 541 m−1 Energy chirp strength

λuMod 0.5 m Modulator undulator period

B0Mod 0.039 T Modulator peak magnetic flux density

LuMod 1.5 m Modulator length

PL (ZR = Lu
3 ) 141 kW Modulation laser power

λR = λL
20 13.5 nm Radiation wavelength

b20 0.11 Bunching factor

λuRad 2 cm Radiator undulator period

B0Rad 1.15 T Radiator peak magnetic flux density

LuRad 3.2 m Radiator length

PR 1 kW @ IP = 1.5 A Radiation peak/average power

Soft X-ray (6.75 nm) σz (Rad) 1 nm Linear bunch length at the radiator

σzy (Mod) 1.85 μm Bunch lengthening from εy at the
modulator

h 1082 m−1 Energy chirp strength

λuMod 0.5 m Modulator undulator period

B0Mod 0.039 T Modulator peak magnetic flux density

LuMod 1.5 m Modulator length

PL (ZR = Lu
3 ) 564 kW Modulation laser power

λR = λL
40 6.75 nm Radiation wavelength

b40 0.085 Bunching factor

λuRad 1.5 cm Radiator undulator period

B0Rad 1.11 T Radiator peak magnetic flux density

LuRad 2.4 m Radiator length

PR 1 kW @ IP = 2.2 A Radiation peak/average power

Soft X-ray (2.7 nm) σz (Rad) 0.5 nm Linear bunch length at the radiator

σzy (Mod) 2.81 μm Bunch lengthening from εy at the
modulator

h 1423 m−1 Energy chirp strength

λuMod 0.6 m Modulator undulator period

B0Mod 0.028 T Modulator peak magnetic flux density

LuMod 1.8 m Modulator length

(continued)
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Table 6.2 (continued)
Parameter Value Description

PL (ZR = Lu
3 ) 1 MW Modulation laser power

λR = λL
100 2.7 nm Radiation wavelength

b100 0.049 Bunching factor

λuRad 1 cm Radiator undulator period

B0Rad 0.86 T Radiator peak magnetic flux density

LuRad 2 m Radiator length

PR 1 kW @ IP = 5 A Radiation peak/average power

circumference of 100 m should be feasible. This compact high-power EUV radiation
source is promising to fulfill the urgent need of EUV lithography for high volume
manufacture, and also serve the future lithography likeBlue-Xwhich invokes 6.x nm-
wavelength light source. Such an SSMB-based high-power soft X-ray photon source
could be of great value for fundamental science like high-resolution angle-resolved
photoemission spectroscopy and can also bridge the water window gap.
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