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PREFACE

CP violation is an intriguing, elusive subject and our current knowledge of it
is rather limited, both at the experimental and theoretical levels. On the one
hand, CP violation has only been observed in the neutral-kaon system; on the
other hand, in that system CP violation is very solidly established. From the
theoretical standpoint, CP violation can be incorporated in the three-generation
standard model (SM), which easily leads to the right order of magnitude for
that effect, after one takes into account the experimental values for the quark
mixing angles. However, we lack a fundamental understanding of the origin of
CP violation. This is all the more important, because CP violation is one of
the crucial ingredients necessary to generate the observed matter-antimatter
asymmetry of the Universe. It is now believed that it is not possible to generate a
baryon asymmetry of the observed size exclusively with the CP violation present
in the SM. New sources of CP violation in models beyond the SM can play an
important role in the explanation of the observed size of this asymmetry.

In spite of the importance of the phenomenon of CP violation, at present
there is no self-contained textbook on the subject, covering both its phenomeno-
logical and theoretical aspects. It is this lack that we have aimed at eliminating.
We have tried to write a text which, starting from basic and well known concepts,
can lead graduate students and professional physicists alike into a reasonable un-
derstanding of the intricacies of CP violation. We have been particularly keen
about adopting a consistent notation, and about self-containedness: we only as-
sume knowledge of ordinary quantum mechanics, in the first part of the book,
and of the standard model of electroweak interactions, from the second part on-
wards. We have also not hesitated in providing a detailed derivation of many
results which remain poorly or only superficially explained in the literature.

The book is divided in four parts, aiming at an increasingly specialized group
of readers. Most of the topics in the first two parts of the book might be in-
cluded in a standard particle-physics course discussing electroweak interactions.
The intended readership for the first part is very broad, including any student
or physicist wishing to learn the basics of CP violation; this part is accessible
to anyone familiar with ordinary quantum mechanics, and only little knowledge
of particle physics and field theory is assumed. We explain what CP violation is
and what are its basic observed features. Special emphasis is given to the phe-
nomenology of CP violation in neutral-meson systems, considering the specific
cases of the neutral kaons and neutral-B mesons and the approximations relevant
for each of them. We discuss various ways to measure CP violation, especially
in the neutral-B systems. Throughout, we use quantities which are invariant un-
der arbritary rephasings of the state vectors, using that property to identify the
physical, measurable quantities.



vi PREFACE

Part IT deals with the Kobayashi-Maskawa mechanism of CP violation in the SM.
The readers are assumed to have some familiarity with gauge theories in general
and the SM in particular. We study the unitarity triangles and their relevance
for CP violation, describe various parametrizations of the Cabibbo-Kobayashi—
Maskawa matrix, and discuss the experimental constraints on that matrix; we
then review the computation of the CP-violating parameters € and €' /¢, being
careful to present the analysis in such a way that it can easily incorporate new
experimental data.

The third and fourth parts are narrower in scope. Part III is devoted to
the model-building subtleties related to CP violation, and to various possible
CP-violation mechanisms. Specific models are considered, the intention being
to illustrate particular mechanisms of CP violation within minimal extensions
of the SM. Thus, each model should be taken as representative of a whole set
of possibilities. We work out models with, in turn, an extended scalar sector,
fermion sector, and gauge sector. We also discuss the strong CP problem and
describe some of its possible solutions.

We repeatedly emphasize the fact that CP violation arises as a clash between
the CP-transformation properties of different terms in the Lagrangian. Although
CP violation is due to the presence of complex phases in field theory, physical CP-
violating quantities should not depend on the particular basis that one chooses
to work in. This philosophy naturally leads to the construction of weak-basis-
invariant CP-violating quantities; those quantities automatically eliminate the
spurious phases which may always be brought in and out of the Lagrangian by
means of rephasings of the fundamental fields.

It is generally believed that a deeper understanding of CP violation will re-
quire its experimental observation outside the neutral-kaon complex. This lacuna
will be partially filled by the upcoming experimental studies at B factories; var-
ious tests of the SM, and the corresponding searches for new physics, will be
conducted at those machines. These exciting prospects have provided further
motivation for writing this book, which we hope will prove to be a timely pub-
lication. Thus, Part IV is specifically dedicated to the possibilities for the study
of CP violation, in particular through the observation of CP asymmetries, at B
factories. Our analysis is mostly model-independent, and we try to distinguish
between theoretical expectations and the actual measuring capabilities.

It is not possible to cover all aspects of CP violation in a book of this size
and, of course, our experience and interests have influenced the choice of topics.
Three important subjects which are not dealt with in this book are electric dipole
moments, baryogenesis, and supersymmetric models. These are very specialized
areas of research which would require considerable space for a thorough and
pedagogical introduction. However, the new sources of CP violation which arise in
models beyond the SM, presented in detail in Chapters 22-26, will have an impact
on baryogenesis. Furthermore, the techniques introduced in those chapters can
be readily extended to the case of supersymmetric models. We may refer the
interested reader to the existing monographs on baryogenesis (Cohen et al. 1993;
Turok 1993; Rubakov and Shaposhnikov 1996; Trodden 1998) and on electric
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dipole moments (Khriplovich and Lamoreaux 1997).

There are many chapters and sections in the book which, having been in-
cluded for the sake of completeness, may be skipped without undue loss of con-
tinuity or understanding. We have marked those chapters and sections with an
asterisk in the Contents, and we have usually also called attention to this fact
in the beginning of the chapter or section.

Whenever using experimental data, we have used the values given in the
1996 edition of the Review of Particle Properties (Particle Data Group 1996).
The 1998 edition (Particle Data Group 1998) was not used because it appeared
only shortly before completion of the manuscript; moreover, the physics in this
book does not rely heavily on any precise experimental values.

In our bibliography we have made an effort to cite the original relevant lit-
erature on each topic which appeared up to the summer of 1998. But, in a field
which evolves as rapidly as CP violation, it is impossible to keep track of all the
relevant articles in the literature. The fact that many topics have been studied
for a long time only makes things worse. We apologize for any omissions, which
should not be interpreted as reflecting any negative opinion on our part.

Lisbon, Portugal G. C. Branco
November 1998 L. Lavoura

J. P. Silva
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Part 1

CP in quantum mechanics






1

THE MEANING OF THE DISCRETE SYMMETRIES

1.1 Parity and time reversal in classical physics

Left-right symmetry—also called space-inversion or parity symmetry—and time-
reversal symmetry are two invariances of classical physics—of classical mechan-
ics and of classical gravitational and electromagnetic interactions—which were
recognized lontg before the advent of quantum mechanics and of quantum field
theory. We shall review the meaning of those symmetries in classical physics
before implementing them in a quantum-mechanical context.

1.1.1 Parity

Parity symmetry, usually called P, consists in the invariance of physics under
a discrete transformation which changes the sign of the space coordinates z, y,
and z. This corresponds to the inversion of the three coordinate axes through
the origin, a transformation which changes the handedness of the system of axes.
A right-handed system becomes left-handed upon the parity transformation (see
Fig. 1.1).

Parity symmetry is sometimes called mirror symmetry, because the inversion
of the coordinate axes may be achieved in two steps, through a mirror reflection
on a coordinate plane followed by a rotation by an angle 7 around the axis per-
pendicular to that plane (see Fig. 1.2). From the basic assumption of isotropy
of space it follows that physics is invariant under a rotation. Therefore, the rele-
vant point is whether physics is invariant under the mirror reflection too. Thus,
P symmetry is in practice equivalent to symmetry under a mirror reflection. As
the mirror interchanges left and right—for instance, our right arm is the left arm

FiG. 1.1. A right-handed coordinate system becomes left-handed under the par-
ity transformation.
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F1G. 1.2. The parity transformation as a reflection on a mirror followed by a
rotation.

of our mirror image—parity symmetry is also called left-right symmetry.
Applying two parity transformations in succession is equivalent to no trans-
formation at all. The square of the parity transformation is the identity trans-
formation.
The parity transformation changes the sign of the position vector of a particle:
7 — —7. As a consequence, the velocity of the particle,
dr

v = E, (11)

also changes sign under P. The same happens with the momentum
p=md. (1.2)

The angular momentum,

J=7xp, (1.3)
is invariant under P, because both 7 and p' change sign. According to Newton’s
law, the force which acts on a particle is equal to the rate of change of its
momentum,

. dp
F = e (1.4)
Therefore, under parity F o —F.

The Lorentz force acting on a particle with electric charge ¢ is given by
Florents = 4 (E+7x B), (1.5)

where E is the electric-field strength and B is the magnetic-field strength. Under
parlty FLO,entz and 7 change sign. Therefore, P must transform E - —F and
B - B.

The scalar potential V' and the vector potential A are defined through

o’ (1.6)
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The operator vV = 0/07 changes sign under P. Therefore, parity transforms
A — —A while V is left invariant.

We shall not demonstrate the invariance of the whole body of classical me-
chanics and electromagnetism under the parity transformation delineated above.
That invariance is established by surveying all the equations of classical physics
and checking that they are invariant under parity.

Vectors are generically defined as three-component objects which transform
in the same way as 7 under a rotation of the system of coordinate axes. This
prescription does not tell us how vectors should transform under parity. As the
square of the parity transformation is the identity transformation, there are two
types of vectors: those which change sign under P and those which do not. Vectors
which change sign under parity, like p’and E, are called polar vectors, or simply
vectors. Entities like B and J, which do not change their sign under a mirror
reflection, are called axial vectors, or pseudovectors.

Analogously, there are quantities which are invariant under a space rotation
but change sign under parity. This is the case in particular of the scalar product of
a vector and a pseudovector, e.g. E-B. Those quantities are called pseudoscalars,
as opposed to (proper) scalars, which are mirror-invariant.

1.1.2  Time reversal and T

Let us now consider the time-reversal transformation, usually called T. This
consists of changing the sign of the time coordinate ¢. From eqn (1.1) we see
that, when t — —t, the velocity ¥ - —%. The momentum p also changes sign.
The angular momentum J — —J. On the other hand, from eqn (1.4), as both 7
and ¢ change sign under time reversal, the force F remains invariant.

As FLoremz in eqn (1.5) must be invariant while ¥ changes sign, E — E but
B — —B under time reversal. From eqns (1.6) we see that V — V but A - —4
under T.

The mathematical transformation delineated above, under which ¢, p, and
other entities change sign, may be called T. The genuine time-reversal transfor-
mation T goes beyond T, since it also interchanges final states and initial states.
Time reversal is related to the following fundamental question that one may ask
about the laws of Nature: let us consider the final state of some process, invert
the velocities of all particles in that state, and let it evolve; shall we obtain the
former initial state with all velocities reversed?

1.1.3 Spin, dipole moments, and helicity

Spin is a concept extraneous to classical physics. However, there is no problem
in integrating it as an ad hoc quantity. Some particles are postulated to have
associated with them an intrinsic angular momentum &, which is in everything
identical to a classical angular momentum J. As such, § — § under parity and
§ — —& under time reversal.

The spin §'is observable through interactions which are proportional to it. If
a partlcle with spin § moves in an electromagnetic field with field strengths E
and B there may exist in the Hamiltonian terms of the form
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Table 1.1 P and T transformations in classical

physics.
Name Symbol P T
Time t + -
Position 7 - +
Energy E + +
Momentum P - -
Spin § + -
Helicity h - +
Electric-field strength E - +
Magnetic-field strength B + -
Magnetic dipole moment dm + +
Electric dipole moment de - -
~d.5-E (1.7)
and
—dp,5- B, (1.8)

the numerical coefficients d. and d,, having the appropriate dimensions. If the
interaction in eqn (1.7) exists the particle is said to possess an electric dipole
moment d.. If the interaction in eqn (1.8) is present the particle has a magnetic
dipole moment d,,. . .

Checking the transformation rules of F and of B under parity and under time
reversal, we conclude that d,, — d,,, under any of those transformations, while
de — —d. under any of them. Therefore, electric dipole moments violate both
P and T. On the other hand, magnetic dipole moments violate neither P nor T
and, indeed, they provide a practical way of measuring the spin of a particle.

An important quantity is the sign of the projection of a particle’s spin § along
the direction of its momentum p. This is called the helicity h of the particle:

h=2P (1.9)
15111
Helicity is a pseudoscalar, because it is the dot product of a polar vector (7) and
an axial vector (8). On the other hand, h — h under T.

1.1.4 Summary

The preceding results are summarized in Table 1.1, in which we have indicated
whether the relevant quantities are invariant (denoted by a ‘+’ sign) or change
their sign (denoted by a ‘-’ sign) under the P and T transformations.

1.1.5 Relativistic mechanics

When one makes the transition to relativistic mechanics, the time and the po-
sition vector get united in the position four-vector! z# = (t,7), while the en-

1We use units such that ¢ = k = 1.



THE MEANING OF P AND OF T 7

Table 1.2 Pand T transformations in relativistic

physics.
Name Symbol P T
Position T T, —T,
Derivative o+ O —0Ou
Momentum p* Py DPu
Potential AH A, A,
Field tensor Fry F,., -F,.

ergy and three-momentum become components of the momentum four-vector
p* = (E,P). The derivative four-vector is 0* = (8/0t, —V). The scalar and vec-
tor potentials of electromagnetism are united in the four-vector A* = (V, A).
The angular momentum J becomes part of an antisymmetric tensor M*¥ =
zhpY — p*x¥. In the same way, E and B are united in an electromagnetic-field
tensor FHY = QFAY — QVAH.

All four-vectors behave in the same way under parity: their time component
is left unchanged, while their space components change sign. We denote this by
ot = x,, O — Oy, P* — pu, and A¥ — A,. Tensors also have their indices
lowered by P: M*¥ — M,, and F*” — F,,. Parity invariance may thus be
extended to relativistic mechanics.

The transformation properties under time reversal are more complex, since
not all four-vectors behave in the same way. The four-vectors z# — —z, and
O* — -0, behave in a different way? from the four-vectors p* — p, and
A* — A,. The electromagnetic-field tensor F#¥ — —F,, and the angular-
momentum tensor M** — —M,,,, under T. All equations of relativistic mechanics
are invariant under the time-reversal transformation delineated above.

In Table 1.2 we have indicated how relativistic tensors of interest transform
under P and under T.

1.2 The meaning of P and of T

Parity and time reversal are closely related to some of the most basic questions
that one may ask about the laws of Nature.

Suppose that one watches some physical event in a mirror. Does the event
that one sees there look real? Does the event seen in the mirror correspond to
something allowed by the laws of Nature? This is the basic question that P
symmetry addresses.

Now suppose instead that one has the physical event filmed and then watches
the film running backwards. Will the events seen in the backward-running film
look possible and realistic, or will they be at odds with the laws of Nature? This
is the issue raised by T symmetry.

2Thus, T differs from the discrete transformation of the Poincaré group under which all
four-vectors V# — —V,. The latter discrete transformation is sometimes misleadingly called
T.
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1.2.1 P- and T-asymmetry of the observed events

In a certain sense, it is an obvious fact that left and right are distinct in Na-
ture. They represent more than mere conventions. Most people display greater
skilfulness with their right than with their left hand. Our liver is located in the
right side, our heart in the left side of our body. Therefore, no one would confuse
the mirror image of a human being with a real person! At a more fundamen-
tal level, the aminoacids in life’s chemistry are not identical with their mirror
images. Many organic molecules have a right-handed and a left-handed version,
and one of the versions occurs much more often in the biosphere than the other
one. However, the above asymmetries are in general considered to be accidents
of life’s evolution on Earth, and not the consequence of a fundamental left-right
asymmetry in the laws of Nature.

As for T, a ‘time arrow’ seems to exist in observed events, not only in biology,
but also in the more fundamental realms of physics. A piece of wood burns down
to ashes and smoke, but ashes and smoke have never been seen to absorb heat
from their surroundings and generate a piece of wood. Naively one might think
that this asymmetry in the time evolution of physical systems is in contradiction
with the laws of classical physics, since Newton’s law is invariant under time
reversal, in the sense that, if 7(t) is a possible trajectory, then 7(—t) is also an
allowed trajectory. The asymmetry in the time evolution is one of the postulates
of classical thermodynamics, which states that, if a system at a certain instant
is in a non-equilibrium macroscopic state, it will evolve into another state with
higher entropy. This is the second law of thermodynamics, for which an expla-
nation is given within the framework of statistical mechanics. Systems evolve
in the time direction that they do because the final macroscopic configuration
is microscopically more probable than the initial one. This in no way implies a
time-reversal asymmetry in the fundamental laws of microscopic physics.

1.2.2 A thought experiment about T

The fundamental laws of classical physics are T invariant but, because of the
large number of individual particles and collisions involved, macroscopic systems
display T-asymmetry. In order to understand how this comes about, a simple
thought experiment (Lee 1990) may help.

Suppose that, in a large country with lots of intersecting roads, one thousand
drivers start from the same place and drive one thousand kilometres each. Sup-
pose that no directions are marked on the roads, and each driver meets multiple
road crossings, each time choosing at will, with no outside help, which new road
he shall take.

Now consider the time-reversed situation. Each of the thousand drivers starts
from the final point that he has reached in the previous journey, and drives once
again one thousand kilometres, once again choosing, more or less at random,
which new road he will take at each crossing. One asks oneself, will all drivers,
at the end of their second journey, meet at the starting point of the first one?
Clearly, the probability that this happens is extremely small.
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Although the individual motion of each driver has obeyed time-reversal-
invariant laws—they have driven one thousand kilometers in each journey, and
at each crossing they have chosen, according to the same chance rules, which
new road to take—the observed motion of the total system was time-reversal-
asymmetric. This was due to two reasons: first, the numerous road crossings at
which each driver had to make a choice; second, the large number of drivers
involved.

In the same way, in classical mechanics, the large number of particles and
the large number of collisions among them render the time-reversed motion of a
macroscopic system extremely improbable.

1.2.3 A thought experiment about P

One may wonder, where does the observed difference between right and left (see
§ 1.2.1) come from? Is it built into the fundamental equations of physics? Or
is it just a chance consequence of the particular development that life took on
Earth?

One may translate this question into a thought experiment. Suppose that we
were able to build a live being, for instance a dog or a fly, completely made up
of organic molecules of the wrong handedness. The question then is, would this
artificial being be able to live and function properly? Would it be competitive in
a Darwinian sense with the existing forms of life, or would it suffer from some
intrinsic disadvantage because of the opposite handedness of its biochemistry?

For a mechanical analogue of this question (Lee 1990), consider two mirror-
symmetric cars. They are of the same model, but each of them is the mirror
image of the other one.? One asks oneself, will these cars run in the same way?
If the two cars are accelerated with the gas pedal tilted at the same angle, will
they move forward at the same speed? Or might one of them, for instance, stay
stuck or even move backwards?

1.24 Summary

In spite of the observed reality that life is mirror-asymmetric, the equations
of classical physics are left-right symmetric. In spite of the obvious arrow of
time in real physical events, classical mechanics and classical gravitational and
electromagnetic interactions do not have a preferred time direction. The question
then is whether left-right symmetry and time-reversal symmetry carry over to
the microscopic world. Is there somewhere a fundamental P asymmetry which
might explain the observed left-right asymmetry of the biosphere? Or should that
asymmetry be assigned to fortuitous initial conditions? And is there, somewhere
in the fundamental interactions beyond classical physics’ realm, a T asymmetry?
Could such an asymmetry help explain the observed time arrow of events?

3This must not be confused with two cars of the same model with the driving wheels on
opposite sides. Such cars do not have mirror-symmetric engines.
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1.3 Charge conjugation

Contrary to P and T, charge-conjugation symmetry C does not have an analogue
in classical physics. This symmetry is related to the existence of an antiparticle
for every particle. This is a prediction of relativistic quantum theory which has
been brilliantly confirmed by experiment, in particular through the discovery of
the positron (Anderson 1933) and of the antiproton (Chamberlain et al. 1955).
It should be emphasized that the notion of antiparticle exists neither in classical
physics nor in non-relativistic quantum mechanics.

In relativistic quantum field theory, one can associate both positively and
negatively charged particles with each (complex) field ¢. Moreover, there is a
C transformation which transforms ¢ into a related field, e.g. ¢!, which has
opposite U(1) charges—electric charge, baryon and lepton number, and flavour
quantum numbers such as strangeness, the third component of isospin, and so
on. The transformed field obeys the same relativistic equation of motion as the
original one. It has the same mass, but its interaction with an electromagnetic
potential is characterized by opposite electric charge.

C symmetry asserts that antiparticles behave in exactly the same way as the
corresponding particles, and that it is a mere matter of convention which of them
we call ‘particles’ and which we call ‘antiparticles’.

1.3.1 A thought ezperiment about C

Why should C symmetry be important? Experimentally it is known that, when a
particle and its antiparticle collide, they have a high probability of annihilating,.
Let us then consider the following thought experiment (Lee 1990).

Suppose that our civilization came into contact with another civilization on
a distant planet. The contact might take place via exchange of electromagnetic
messages, without any charged particle ever being exchanged. After years of
friendly correspondence, the two civilizations might want to physically meet, for
instance through the sending of a space vessel. The problem would then be to
know whether the other civilization is made out of matter or of antimatter. In-
deed, if it were made out of antimatter, physical contact would be impossible,
lest annihilation destroys both meeting parties. How could civilizations commu-
nicate to each other whether each one’s ‘matter’ is the same as the other one’s,
or whether they are made out of the antimatter of each other?

In order to communicate this, one needs some absolute way of distinguishing
matter from antimatter. If C symmetry holds, matter and antimatter are dis-
tinguishable only by practical example, i.e., they are a convention. C symmetry
must be violated, some physical event must occur differently with matter and
antimatter, in order that an explanation to our distant partners of how that
event happens in our world lets them know what ‘matter’ means to us.

1.4 Violation of C, P, and CP

It turns out that the whole body of weak interactions works differently for matter
and antimatter. Moreover, weak interactions also are left-right asymmetric. On



VIOLATION OF C, P, AND CP 11

the other hand, after simultaneous C and P transformations, (most) weak inter-
actions remain identical to themselves—cross sections and decay rates remain
unchanged.

The composite transformation CP, made out of simultaneous C and P trans-
formations, then acquires relevance. Namely, the conceptual problem of distin-
guishing matter from antimatter (see § 1.3.1) can only acquire a solution if we
are able to eliminate the convention of what is ‘left’ and what is ‘right’ from the
- game. It is not enough that C be violated, CP must be violated too in order that
matter may be distinguished from antimatter.

1.4.1 The experiment of Wuet al.

Historically, the possibility that weak interactions violate parity was first sug-
gested by Lee and Yang (1956). They examined the experimental evidence then
available and concluded that parity invariance of the weak interactions was ‘only
an extrapolated hypothesis unsupported by experimental evidence’, i.e., it had
not yet been probed. They went on to suggest experiments which might test
whether parity is conserved. They observed that, in order to test parity viola-
tion, one should try and measure some pseudoscalar quantity, like for instance
the helicity of some particle, or more generally the scalar product of the spin of
a particle and the momentum of some other particle. If the expectation value of
a pseudoscalar observable is found to be non-zero, then there is parity violation.

Parity violation in the 3 decay of ®*Co was discovered soon afterwards (Wu
et al. 1957). The nuclide ®°Co decays through 3~ emission to an excited state of
60Nji, which then decays to its fundamental state through the emission of two suc-
cessive gammas. In the experiment of Wu et al., a %9 Co source was incorporated
into a crystal of cerium magnesium. When a small magnetic field (~ 0.05T) is
applied to the crystal, there is an alignment of the electronic spins, generating
inside the crystal a strong magnetic field (~ 10-100T). This in turn polarizes
the ®°Co nuclei through the hyperfine coupling, provided the whole system is
at a sufficiently low temperature (~ 0.01K). The low temperature was achieved
through a process of adiabatic demagnetization.

A scintillation counter was used to measure the intensity of the S~ emission
relative to the orientation of the polarizing field and as a function of the temper-
ature. It was found that the electrons are emitted preferentially in the direction
opposite to the one of the applied magnetic field, and that that preference dis-
appears when the crystal warms up. This means that the scalar product of the
spin of the ®*Co nuclei and the momentum of the emitted electron has a non-zero
expectation value. As that scalar product changes sign under P, parity violation
in B decay was established.

1.4.2 The helicity of the electron neutrino

After the experiment of Wu et al. (1957), another experiment of great impor-
tance in testing the nature of the weak interactions was the one of Goldhaber
et al. (1958). There, the helicity of the neutrino emitted in the electron capture
by 1°2Eu was measured. The experiment was particularly ingenious because, as
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Ve 152Eu 152Sm* 1525m* 152Eu Ve
< > < >
— - -— P -— -« —
Sy Se SSm SSm Se Sy

FiG. 1.3. The electron capture by '°2Eu, yielding *2Sm* and v,, and its
P-transformed process.

the neutrino hardly interacts with matter, some way of indirectly measuring its
helicity had to be devised.

The nuclide 52Eu has zero spin. It captures an electron from the K shell—
with zero orbital angular momentum—of the atom, giving rise to an excited
state with spin 1 of ®2Sm, and emitting a neutrino v,. The excited state then
decays to the fundamental state of >2Sm, which is spinless, through emission of
a photon.

Conservation of angular momentum along the direction of flight of the neu-
trino and of the !®2Sm* nucleus, in the rest frame of 152Eu, implies that the
handedness? of the neutrino is the same as the handedness of '2Sm*—see
Fig. 1.3. (This is because the angular momentum of the initial state, consti-
tuted by the 1°2Eu nucleus and by the K-shell electron, is just the spin of the
electron.) Again, it can easily be shown that, if the photon from the decay of
that excited state is emitted in the same direction as the neutrino, that photon
has the same handedness as the excited state and, therefore, as the neutrino.
Thus, the measurement of the helicity of the neutrino is reduced to a selection of
the events in which the gamma is emitted in the same direction as the neutrino,
and to a measurement of the helicity of the gamma in those events. It was found
that the gammas have helicity —1. Thus, the v, emitted in the electron capture
must have helicity —1, i.e., be left-handed.

The fact that the neutrino emitted in electron capture always has helicity —1
constitutes a violation of parity, as can be seen in Fig. 1.3.

After the original experiment of Goldhaber et al. (1958) on the electron neu-
trino, many other experiments have attempted to measure the helicity of the
neutrinos. In particular, the helicity of the muonic neutrino has been directly
measured in a nice experiment by Roesch et al. (1982). It has always been found
that neutrinos have helicity —1, while antineutrinos have helicity +1.

143 CP

In general, one finds that C is violated together with P in the weak interactions.
Let us give an example of this. The charged pion nt decays predominantly to
putv,. The muon neutrino from the decay is left-handed (Garwin et al. 1957;
Friedman and Telegdi 1957), see Fig. 1.4 (a). The P-conjugate process, in which
the v, would be right-handed, never occurs—see Fig. 1.4 (b). The C-conjugate

4Handedness is equivalent to the helicity of a particle. If a particle has helicity +1 it is said
to be right-handed. The particle is left-handed if it has helicity —1.
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process is the decay of 7~ to pu~7,, the 7, being left-handed—Fig. 1.4 (c). It
turns out that this process never occurs either. Instead, 7= — p~ 7, occurs at
the same rate as 7t — u*v,, only the 7, is right-handed, as in Fig. 1.4 (d).

This fact represents a simultaneous violation of C and of P. P is violated
because the neutrinos have a definite handedness. If P were not violated the
neutrinos should, with equal probability, be either left-handed or right-handed,
both in 7+ — ptv, and in 7= — p~p,. C is violated because the neutrinos in
the two observed decays have opposite handedness, and therefore the decays are
not C-conjugates of each other.

On the other hand, the combined symmetry CP is preserved. Indeed, when
we simultaneously interchange nt < 7~, u* < p~, and 11, ¢ 7, (C transfor-
mation), and also interchange left- and right-handedness of the neutrinos and of
the muons (P transformation), the decay rates are equal. C and P are violated,
but the combined symmetry CP is not.

Clearly, 7* decays cannot provide a solution to the communication problem
of § 1.3.1. The distinction of matter from antimatter using these decays requires
a previous convention about the handedness of the coordinate system. We are
unable to explain to our far-away partners what we mean by ‘a positively charged
pion’ because, if we try and tell them that ‘it decays into a neutral particle with
negative helicity’ they will ask us how do we define the sign of the helicity,
and such a definition is equivalent to a convention for the handedness of the
coordinate system.

1.4.4 CP violation

The fact that CP symmetry is preserved even while C and P symmetries are
violated was first pointed out by Landau (1957), who suggested that neutrinos
are always left-handed and antineutrinos are always right-handed.® Only much
later was CP discovered to be violated too (Christenson et al. 1964).

The clearest evidence for CP violation is the charge asymmetry in K3 decays.
The kaon Ky is a neutral particle with well-defined mass and decay width.

5 Actually, the first suggestion that C and P might be separately violated, while CP would
be conserved, was due to Wick et al. (1952). They considered that possibility ‘remote at the
moment’.
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There is no other particle with equal mass. Therefore, K; must be its own
antiparticle. It decays both to nte~7, and to the C-conjugate mode 7~ et v,.
However, it decays slightly less often to the first than to the second mode. This
fact unequivocally establishes both C violation and CP violation.

Indeed, when we consider the total decay rates, we have already performed
an integration over the momenta of all the particles resulting from the decay,
as well as a sum over their spin states. These integrations and sums eliminate
parity from consideration. Then, if the decay rates to 77e~ 7, and to 7~ et v,
are different, there is violation of CP, not only of C.

We now have the solution to the thought experiment of § 1.3.1. We should tell
our partners on a distant planet to observe K3 decays: the decay which occurs
less often gives rise to a pion with the same electric charge as the proton that
we are made of. They would thus learn what we mean by ‘matter’. No reference
to right-handed and left-handed coordinate systems would be needed. Indeed,
we might afterwards use pion decays to explain to our distant friends what we
mean by ‘left’ and ‘right’.

1.4.5 Theoretical importance of CP violation

Besides being a fascinating effect because of its elusiveness at both the experi-
mental and theoretical levels, CP violation might also play an important role in
our understanding of cosmology. This is because the observed baryon asymmetry
of the Universe, i.e., the fact that there is much more matter than antimatter
in the observed Universe, could only be generated from an initial situation in
which the amounts of matter and antimatter would be equal if there is CP vi-
olation. This fact was first shown by Sakharov (1967), who pointed out that
baryon-number violation, C and CP violation, and a departure from thermal
equilibrium, are all necessary in order for it to be possible to generate a net
baryon asymmetry in the early Universe.

Another interesting consequence of CP violation would be the possibility that
elementary particles have electric dipole moments. We have seen in § 1.1.3 that
electric dipole moments violate both P and T. Composite particles like nuclei
or atoms may display a net electric dipole moment because of the existence of
degenerate states with different properties under parity and time reversal; on
the contrary, any electric dipole moment of an elementary particle would in a
downright manner violate both P and T. Now, T violation is connected through
the CPT theorem to CP violation—this means that it would be very difficult
to conceive of a theory which would violate T without simultaneously violating
CP (see § 2.5 below). Thus, although not strictly necessary for the existence of
electric dipole moments of elementary particles, theoreticians certainly do not
expect them to exist unless CP is violated.
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THE DISCRETE SYMMETRIES IN QUANTUM PHYSICS

2.1 Introduction

In quantum theory the transformations P, T, and C are represented by operators
P, T, and C, respectively. In this chapter we introduce the main properties of
those operators. We shall not construct them explicitly in formal quantum field
theory; for this reason, some of the properties will remain undemonstrated.

The symmetry T requires a mathematical formalism distinct from the one
used for P and C symmetries. We shall treat C and P jointly, leaving T to a
separate section, which may be skipped without loss of continuity.

In quantum theory, the fundamental operator is the Hamiltonian A, which
is Hermitian and generates time translations exp (—iHAt). The time translation
from t' = —o0 to ¢t = +o0 is the scattering matrix

= i li —iH({t-t)]. 2.1

= A A ewlm -0 21

The matrix S is unitary. It is usually separated into a trivial part, the unit
matrix, and a non-trivial transition matrix T':

S =1+14T. (2.2)

Unitarity then yields
T - Tt =4T'T. (2.3)

2.2 Definition of C and of P
2.2.1 How to define the operators C and P

In classical physics, the parity transformation does not affect the time coordi-
nate. In particular, it commutes with a time translation ¢ — ¢ + At. Following
the principle of correspondence for passing from classical mechanics to quantum
mechanics (Dirac 1958), we require the quantum-mechanical representations of
parity through the operator P, and of the time translation through the operator
exp (—iHAL), to reproduce these features. The operator P must therefore com-
mute with H. Now, in quantum theory, [P,H] = 0 means that parity is a good
symmetry of Nature. This contradicts what we have seen in the previous chapter,
that parity is not a symmetry of the weak interactions. We conclude that there
is no operator P satisfying the requisites that an operator must have in order to
be a good quantum-mechanical representation of the parity transformation—in
particular, commuting with the weak Hamiltonian Hw. There is no operator P
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which adequately represents the parity transformation in quantum mechanics
(Lee and Wick 1966).

The same of course applies to the C transformation. Our picture of it implies
that it must commute with time translations. Therefore, the operator C must
satisfy [C,H] = 0. But we know that C is not a good symmetry of Nature.
Therefore, there is no operator C which represents correctly the C transformation.

In this book, however, we shall often be dealing with operators P and C,
and with their composite operator CP. How do we define them? We start from
the realization that electromagnetic interactions are C and P invariant. We then
assume that strong interactions are C and P invariant too; all available experi-
mental data warrant this assumption. Thus, when weak interactions are switched
off and only the strong and electromagnetic interactions are taken into account,
we can define legitimate C and P operators. We then use these operators as
probes for the (non-)invariance of the various interactions beyond the strong
and electromagnetic ones.

It is important to understand from the very beginning this strategy for defin-
ing P and C. We restrict ourselves to an appropriate part of the complete La-
grangian, namely, the kinetic Lagrangian and the electromagnetic-interaction
Lagrangian. This part of the Lagrangian is C and P invariant. We define opera-
tors C and P suitable to this part of the Lagrangian. We then gradually proceed
to other parts of the Lagrangian, at each step including new interactions. We
probe whether these parts of the Lagrangian are invariant under the action of
the operators C and P previously defined. If they are not, then there is C or P
violation.

2.2.2 Internal symmetries

There is in general some arbitrariness in the definitions of P and C in a quantum
theory. This is because the Lagrangian has internal symmetries. The simplest in-
ternal symmetry corresponds to the possibility of rephasing (changing the phase
of) each individual quantum field. More generally, whenever there are various
quantum fields with the same quantum numbers, there is an internal symmetry
mixing those fields. That symmetry is unitary, because we want the kinetic terms
of the Lagrangian to preserve their normalization.

Now, the action of the operators C and P may include an arbitrary reshuffling
of some internal indices, i.e., an internal-symmetry transformation may be juxta-
posed on the basic transformation effected by either C or P. The quantum fields
are mathematical constructs and do not have an immediate correspondence with
experimental observables. Therefore, an operator P which mixes some fields oc-
cupying an equivalent position in the Lagrangian is just as good a representation
of parity as an operator P which does not mix them. This is the origin of a large
degree of arbitrariness in the definition of P, and analogously also of C and CP.

2.3 Properties of C and of P

The operators C and P are unitary,



PROPERTIES OF C AND OF P 17

ct=c,

Pt =p-L 24)

When defining C and P we assume that C and P are good symmetries, as we
have explained in the previous section. Therefore,

[C,H] =0,
2.5
[P, ] = 0. (25)
For the scattering matrix, one has
csct =8,
PSPt =S. 26)

In quantum field theory each field may be written as a linear combination
of creation and destruction operators for particles and for antiparticles. For in-
stance, the electron field ¢ is a linear combination of operators a which destroy
electrons and of operators b! which create positrons; its C-conjugate field 1° is
a linear combination of operators a', which create electrons, and operators b,
which destroy positrons. If |e”) represents an electron with momentum g and
helicity h, and |e™) represents a positron with the same momentum and helicity,
then these states may be written as

le™) = a!(,h) |0),

€)= b5, 1) [0), @7

where |0) is the vacuum state. The operator C transforms electrons into positrons
and vice versa, without affecting the momentum and the spin. Thus,

Cal(p, h) C" = exp (9) b1(F, h) ,

Cvt(p, h) Ct = exp (=) at (P, ) . (2.8)

The phase ¥ in eqns (2.8) is arbitrary. The vacuum state does not change under
the action of C:
C|0) = |0). (2.9)
Combining eqns (2.7)-(2.9) one obtains
Cle™) = exp (i9) |eT),
) = exp i9) I¢*), 210
Clet) = exp (—i9) |e™).

The operator C does not commute with the charge operator Q. For instance,
Qle™) = —ele™),
Qlet) =elet).

(We denote the positron charge by e.) Equations (2.10) and (2.11) show that C
does not commute with Q.

(2.11)
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Particles, which are simultaneous eigenstates of  and of Q, cannot be eigen-
states of C if they have non-zero charge. Moreover, not all particles with zero
charge are eigenstates of C. Indeed, what we have said about Q is valid not
only for electric charge, but also for any other conserved charge, such as baryon
number and lepton number—and strangeness and the other flavour quantum
numbers, as long as the strong and electromagnetic interactions conserve them.
None of those operators commutes with C. Therefore, a particle must have zero
value of all those operators if it is to be an eigenstate of C. For instance, the
neutral pion 7° and the photon v are eigenstates of C, but the neutron n and
the neutral kaon K° are not, because the former has non-zero baryon number
and the latter has non-zero strangeness.

The operator P is associated with an observable, a quantum number, which is
conserved as long as interactions are P invariant. That quantum number is named
the parity of the state. In particular, as long as P commutes with the Hamil-
tonian, each non-degenerate particle must be an eigenstate of P. As quantum-
mechanical state vectors are defined up to an arbitrary phase, the fact that the
square of the classical P transformation is the identity transformation only im-
plies that P? applied on any quantum state vector should multiply that vector
by a phase. Thus, P does not in general satisfy P? = 1. The parities of quantum
states may in general be any complex number with modulus 1.

We may however choose a convention for P in which a basic set of fields all
have parity +1. Thus, in nuclear physics the intrinsic parities of the proton, the
neutron, and the A baryon are chosen to be +1. Once this is done, all other
particles and nuclei have intrinsic parities which are either +1 or —1.

It must be stressed that this phase choice for the action of P on hadron
states is really just a convention, which does not have to be adopted in order to
reach the physical conclusions that follow from parity conservation by the strong
interactions. In this book we shall not be using any phase convention when we
deal with the operator that interests us most, CP. We find this practice advisable
because it automatically prevents us from attributing physical significance to
phases which have none.

The operator C is also associated with a quantum number, which is named
C-parity. One finds from eqns (2.10) that C? = 1; as a consequence, C-parity
can only take the values +1 and —1. In order for a quantum state to be an
eigenstate of C it must have zero charge, as we have seen. Therefore, only neutral
particles may be assigned a C-parity. For charged particles, the eigenstates of
C are artificial constructs, the superposition of a particle and the corresponding
antiparticle in the same state of motion (i.e., with the same momentum and
spin).

The discrete symmetries C and P are different in one important respect from
the ordinary continuous symmetries of quantum mechanics, like translations and
rotations. While the conserved quantities associated with the latter (momentum
and angular momentum, respectively) are additive, the quantum numbers associ-
ated with the former are multiplicative. For instance, translations are generated
by a differential operator, which acts on the product of two functions by acting
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successively on each of them:
V(f9) = (V1) g+ (V). (212)

As a consequence, the momentum associated with the product wave function is
the sum of the momenta associated with the factor wave functions:

~iVf =p;f - L

o . =>=iV(fg) = (Fr +5,) (f9). (2.13)
—iVg = pyg
On the other hand, the parity transformation changes #* — —7 simultaneously in
all functions that it is applied to. Now,

f(=7) = (=) f ()
g(=7) = (=1)"g(

We see that the parities of f and of g must be multiplied in order to obtain
the parity of (fg). Parity is a multiplicative quantum number, just as C-parity.
This is the opposite of what happens with linear and angular momentum (and
baryon number, and electric charge...), which are additive quantum numbers.
The difference has its root in the fact that the additive quantum numbers are the
eigenvalues of the generators of some continuous transformations, while parity
and C-parity are the eigenvalues of (discrete) transformations themselves.

} = f(-Mg(-R = (P f@Pg(). (2.14)

2.4 The operator T

The implementation of time-reversal symmetry in a quantum-mechanical context
is subtle. This is because the relevant operator, 7, is not unitary but rather
antiunitary.

2.4.1 Antiunitary operators

In order to understand what antiunitarity means, let us start by considering
which requirements we should impose on a quantum-mechanical symmetry trans-
formation. Suppose that an operator 8 transforms |¢) into |g) and |x) into |xs):

1) = 61¥),

xe) = 81x). (2.15)

In order for 6 to represent a symmetry, we might be tempted to require that it
preserves the quantum-mechanical bracket:

(xoltbe) = (x|6'61¥) = (x|¥)- (2.16)

Equation (2.16) is, however, too restrictive. Indeed, quantum-mechanical prob-
abilities are not given by the brackets themselves, but rather by their moduli.
Therefore, in order for 6 to be a symmetry, it should be enough to impose
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I(xalve)| = [{x|¥)] . (2.17)
Equation (2.17) allows for another possibility, besides the one in eqn (2.16):
(xolve) = (xI¥)" = (¥|x)- (2.18)

It may be proved that any transformation 6 satisfying eqn (2.17) must follow
either the rule in eqn (2.16) or the one in eqn (2.18), apart from trivial phase
changes. The proof of this theorem (Wigner 1932; Gottfried 1966; Weinberg
1995) is rather involved, and we shall not deal with it here. It is enough to assert
that any quantum-mechanical symmetry 6 must either preserve the values of all
quantum-mechanical brackets, as in eqn (2.16), or else transform the brackets
into their complex conjugates, as in eqn (2.18). Symmetries of the first kind are
represented by unitary operators. This is the case, in particular, for P and C.
Symmetries of the second kind are represented by antiunitary operators. This is
the case of T, and also of the combined operator CPT, to be discussed in the
next section.

2.4.2 Operating rules for antiunitary transformations

Antiunitary operators § may be interpreted as consisting of the product of an
unitary operator, Uy, by an operator K which complex-conjugates all the c-
numbers to the right of it (Wigner 1932): § = UpK. When applied to a ket
|1}, understood as a column matrix of complex numbers, 6 acts in the following
manner:

o) = UpK|9p) = Upl|9p™). (2.19)
Obviously then,

6 (c1]¥) + c2|x)) = Us (ci[¥*) + c31x™))
= ci|e) + c3lxe)s (2.20)

where ¢; and ¢, are arbitrary complex coefficients. The property in eqn (2.20) is
called antilinearity.

As K just complex-conjugates all c-numbers to its right, K2 = 1. Therefore,
1=K UJ . Thus, when applied on an operator O, understood as a square
matrix of complex numbers, 8 acts in the following way:

Oy = 006!
= UpKOKU}
= U, 0*U}. (2.21)
The operator 81 = KU} is not identical with =1, contrary to what happens

with unitary operators. Indeed, in order to reproduce eqn (2.18), the operator
K’ must be interpreted as complex-conjugating all c-numbers to its left:

(xslve) = (x|61601p) = (XIKTUSUs K |9) = (x*|v*). (2.22)



THE OPERATOR T 21

Now consider (xg|Og|s). This should be understood as the product of the bra
(xo| by the ket Opl1pg). Thus,

(x01Oslipe) = ((x|61) (087 6]))
= ((X|Kng) (UgK(’)KUg U9K|zp))
= (10" ")
= (¥|O'|x). (2.23)

2.4.3 Basis-dependence of K

The complex-conjugation operator K is not well defined, contrary to what one
might grasp from the previous section. In order to understand this, let us consider
two different bases for the quantum-mechanical Hilbert space, {|ax)} and {|bk)}.
In the first basis, the ket |a;) is given by a column matrix in which the first
entry is unity and all other entries are zero. As that column matrix is real, we
find that Kla;) = |a1). On the other hand, in the second basis,

lar) =) (bilas)|bx). (2.24)

k

The kets |by) are now the basis vectors, which are represented by real column
matrices with all entries equal to zero, except for the k" entry which is unity.
They are therefore invariant under the action of K. Hence,

Klar) =Y (bklar)*[bx), (2.25)

k

which is in general different from |a;) in eqn (2.24). We conclude that in the
first basis K|a;) = |a1) while in the second basis K|a;) # |a1). The action of K
depends on the basis that one uses for the Hilbert space.

Of course, we would like the operator 8, which corresponds to a physical
symmetry transformation, not to depend on the basis. This means that Uy must
be basis-dependent, and its basis-dependence must offset the one of K. In the
words of Gottfried (1966), ‘if the basis is changed, the work of Uy and K has to
be reapportioned’.

2.4.4 T as an antiunitary operator

A straightforward way to realize that the operator 7T, representing the time-
reversal transformation in quantum mechanics, must be antiunitary, is to con-
sider the basic quantum commutator

[Tjspk] = i‘sjka (226)

where r; and py are Cartesian components of the position vector i and the
momentum vector p, respectively, of a particle. Under time reversal py changes
sign but r; does not, as we know from Chapter 1. This is in contradiction with
eqn (2.26) unless we assume that T also changes 7 into —i.
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One further indication is the behaviour of the Schrédinger equation for a free
particle,
0y V
"ot = " 2m’
under time reversal. In classical mechanics, a free particle has a time-reversal
invariant motion, and we would like the same to happen in quantum mechanics.
But the operator /0t is T-odd while the operator V is T-even. This is impossible
to reconcile with eqn (2.27) unless 7 changes ¢ & —i and ¥ — ¥*.
The operator 7 therefore has to be antiunitary. As the classical time-reversal
transformation leaves the energy invariant, we require

(2.27)

THT ' =H. (2.28)
From eqn (2.1) and from antiunitarity it then follows that

TST ! =5t (2.29)
Then, from eqn (2.2),

TTT =T (2.30)

In order to obtain correspondence with classical mechanics, 7 must be defined
in such a way that

T'ﬁ(ﬂ ga) = exp (Zaa) I_ ﬁaa —§a), (231)

where |p,, §,) is a state in which particles have momenta P, and spins §,. Equa-
tion (2.31) is the quantum version of the classical rule according to which time
reversal inverts the momenta and spins of all particles. It follows from eqns (2.23),
(2.29), and (2.31), that

(Pa) 5alS|Ps, 5b) = exp [i (0 — 05)] (—Pb, —55|S| — Pa, —5a). (2.32)
Therefore, T invariance implies
|(Pa; 80l S|Pb, 8b)| = [{—Pb, —5b|S| — Pa, —8a)| - (2.33)

Equation (2.33) is known as the reciprocity relation, or as the ‘principle of de-
tailed balance’. It states that the probability of an initial state b being scattered
into a final state a is the same as the probability that an initial state identical
to a, but with all the momenta and spins reversed, scatters into the final state
b with all the momenta and spins reversed. This is, of course, just the quantum
version of the classical picture of T symmetry.

2.4.5 T invariance and ‘T conservation’

The operator 7 does not have meaningful eigenvalues, contrary to what happens
with C and P. To see why this is so, suppose that

TiY) = kly), (2.34)
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with k& some complex number. Then, because of antiunitarity,

T [exp (i€) [¢)] = exp (=i{) T|yh) = kexp (—2i() [exp (i() [4)] - (2.35)

Quantum mechanics states that the kets |¢)) and exp (i{) |¢) correspond to the
same physical state. Equations (2.34) and (2.35) mean that that physical state
sometimes has T eigenvalue k, and sometimes has 7T eigenvalue kexp (—2i().
This implies that 7 cannot be associated with a quantum number.

Because of this fact, it is incorrect to refer to T invariance as ‘T conservation’,
or to say that ‘T is conserved’. As there is no quantum number associated with
T, nothing is conserved when there is T invariance.

Another way to see this is by supposing that at ¢ — —oo we had the initial
state prepared to be an eigenstate of 7, say

TI()) = klp(t')).

This quantum state would evolve and, at t — 400, we would obtain
[¥(t)) = Sl¥(t')).
Applying T to this state, and using eqn (2.29), we obtain
Tl(t)) = TST ' Tl(t)) = kS"[(t')),

which in general is not proportional to [(t)). Thus, at ¢ - +o00 we no longer
have an eigenstate of 7. This means that there is no T conservation.

2.4.6 Kramers’ degeneracy

While 7 is antiunitary and cannot be associated with a quantum number, 72 =
UrKUrK = UrUf is unitary and can be associated with a quantum number.
However, there are restrictions on that quantum number, which is not allowed
to be an arbitrary number of modulus one. In order to see this, let us suppose
that

T2|) = kfy) (2.36)

for some state |¢), where k is a number of modulus one. Then,
T2(TI¥)) = T° ) = Tkly) = k* (TI)) - (2.37)

This means that the eigenvalues of 72 for the states |¢)) and T|t) are complex-
conjugates of each other. If one makes the reasonable assumption that those two
states should have the same value of 72, one concludes that that value can only
be either +1 or —1.

By explicit construction of the operator T it may be shown (see for instance
Sakurai 1994) that bosonic systems (systems with integer angular momentum)
have A = +1, while fermionic systems (with half-integer angular momentum)
have A = —1. This has an interesting consequence:
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Theorem 2.1 In a T invariant fermionic system, all energy eigenstates are (at
least) doubly degenerate.

(This is called Kramers’ degeneracy after its discoveror.)

Proof Consider an energy eigenstate |E) with H|E) = E|E). Using eqn (2.28)
we find that |E7) = T|E) is also an eigenstate of H with energy E. On the

other hand, |[E77) = T?|E) = —|E) because the system has half-integer angular
momentum. Therefore,

—(ET|E) = (ET|ETT) = (ET|E). (2.38)
(In the second step we have used eqn 2.18.) We conclude that (E|E) = 0. Thus,
|E7) cannot be identical with |E), i.e., there is degeneracy. a

Kramers’ degeneracy occurs in particular in any fermionic system immersed in
a static electric field F, no matter how complicated that field is, provided there
is no magnetic field B.

2.5 CPT

At this point, it is useful to introduce the combined transformation CPT, which
simultaneously performs a reflection of the space axes through the origin, inverts
the time evolution, and interchanges particles and antiparticles. This operation
is represented in quantum mechanics by the operator CP7. Being the product
of two unitary operators and an antiunitary one, CPT is antiunitary.

Any of the discrete symmetries C, P, or T, or any combination thereof, may
be violated in Nature. However, there is a strong theoretical prejudice against the
possibility that CPT is violated. This prejudice is based on the so-called ‘CPT
theorem’ (Lueders 1954; Pauli 1955; Jost 1957, 1963; Streater and Wightman
1964) which, starting from very general properties of quantum field theory—in
particular, Lorentz invariance and local (anti-)commutation relations obeying
the spin-statistics connection—asserts that any such theory is CPT invariant.
Because of this theorem, it is very difficult to conceive a realistic, sensible rela-
tivistic quantum theory in which CPT is violated, and usually one just assumes
that Nature is CPT invariant.

String theory is a non-local theory and may also present spontaneous breaking
of Lorentz invariance. Then, it would not satisfy the assumptions of the CPT
theorem, and might display CPT violation. Some theoretical work has been done
in this direction (Kostelecky and Potting 1991), but the issue is far from clear.

A simple consequence of the CPT theorem is that violation of one of the
discrete symmetries implies violation of the complementary one. For instance, if
CP is violated, then T must be violated too. However, the CPT theorem applies
to quantum field theories, it does not apply to specific observables, which may
violate a symmetry without violating the complementary one. For instance, if
the electron turned out to have an electric dipole moment, this would represent a,
violation of T (and of P), but it would not represent a violation of CP. However,
the Lagrangian responsible for the electric dipole moment of the electron must
violate both T and CP.



CPT 25

Table 2.1 Some ezperimental bounds on the differences of masses
and lifetimes in particle-antiparticle pairs.

P (mw - '”L&) /maverage (7'1/1 - 7'1/';) /Taverage
et (positron) <4x1078 —
pt (antimuon) — (2+£8)x107°
7t (charged pion) (2+5)x 1074 (5.5+£7.1) x 1074
n (neutron) (9+£5)x107° -

The theoretical bias in favour of CPT invariance should not hinder experi-
mentalists in an effort towards observing CPT violation, or setting upper bounds
on CPT-violating quantities. Most equalities following from CPT symmetry also
follow from either C or CP symmetries; as we already know the latter symme-
tries to be violated in Nature, we must have recourse to CPT to enforce those
equalities.®

The most basic consequence of CPT symmetry is the equality of the masses
of a particle and its antiparticle. The lifetimes of a particle and its antiparticle
should also be equal—which is not surprising, because decay widths are equiv-
alent to imaginary parts of masses. These equalities have been experimentally
tested for some particles, as seen in Table 2.1.

Another consequence of CPT invariance is the fact that the electric charges ¢
of a particle and its antiparticle should be exactly symmetric. Also, the magnetic
dipole moments p of a particle and its antiparticle should be opposite; for the
leptons, which are point-like particles, it is usual to state this in terms of the
gyromagnetic ratios, denoted by the letter g. The corresponding experimental
bounds are given in Table 2.2.

Table 2.2 Ezperimental bounds on the sums of electric charges, and on the
differences of magnetic dipole moments, in particle—antiparticle pairs.

P lqw + qJ;I /e (/‘1/) - l“xﬁl) / |/J'average| (gw - gJ,) /gaverage
et <4x1078 —_ (-0.5+2.1) x 10~ 12
/,L+ — — (-2.6 £ 1.6) x 10~8

p (proton) <2x1075  (-2.6+2.9)x 1073 —

These experimental values and bounds are those given by the Particle Data
Group (1996, pp. 249, 250, 320, 321, 561, and 567). In any case, the best tests of
CPT symmetry come from the neutral-kaon system, specifically, from the agree-
ment of experiment with the predictions of the CPT invariant phenomenology.
We shall deal with this point at some length in Chapter 8. The value given by
the Particle Data Group (1996, p. 59) is

m — M%5
DK~ TR < 9x 10719, (2.39)

Maverage

%In any case, we may expect the violation of the equalities to be at least as suppressed as
CP violation normally is. Therefore, we should expect those violations to be extremely small.
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which looks like a very impressive bound. However, the derivation of the bound
in eqn (2.39) has subtleties which are far from trivial, partly because various
CPT-violating parameters might be cancelling out in the final result (Lavoura
1992a).



3
P, T, AND C INVARIANCE OF QED

3.1 Introduction

In this chapter we make an overview of the charged Klein-Gordon and Dirac
fields in interaction with the electromagnetic field—of quantum electrodynamics
(QED) of spin-0 and spin-1/2 particles. We assume the reader already to have
some acquaintance with the subject, and we do not pretend our overview to be
very pedagogical. Our emphasis is on the P, T, and C transformations of the
fields. We fix some notation, and present various formulae which will be used
later in the book.

3.2 The photon field
The Lagrangian for the photon field is

‘CA = _%FMVF‘“/
= 1 (0uds) (9"A") + 1 (9,4, (9°A%) (3.1)

The field A* (t,7) is, after second quantization, a Hermitian operator. It trans-
forms under P in the following way (see Table 1.2):

PA, (t,7) Pt = A* (t,—7). (3.2)
Taking into account that ¥ — —7 implies 9* — J,,, we see that
PLA (t,7)PT = La (t,—7). (3.3)
Similarly,
TA, (t,7) Tt = A* (=t,7). (3.4)

As t - —t implies 0* — —0,,, we see that

TLa (t, )Tt = La (~t,7). (3.5)

X

Physical intuition tells us that the charged current j* = (p,j) must change
sign under C—both the charge density and the density of current change sign.
Since Cj*Ct = —j*, and in order for the electromagnetic interaction A, j* to be
C invariant, we postulate

CAM (t,?'_') Ct = —AM (t’F) ’ (36)

and therefore
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CLa (t,7)CT = L (t,7). (3.7)

Equations (3.3), (3.5), and (3.7) introduce the P, T, and C transformation
rules for the Lagrangian or any part thereof; for consistency with electromag-
netism, we must have

Pcpart (ta 77) ,Pf = Epart (t7 _"-") ) (38)
Tcpart (ta 7-") T_l = Epart (_t, 77) ) (3'9)
Cﬁpart (t7 7_") Ct = Epart (ty 'F) ) (310)

for any Hermitian operator Ly, which is part of the total Lagrangian £.”

3.3 The Klein—Gordon field

The Klein—Gordon Lagrangian for a spin-0 field ¢ with mass m and electric
charge q, moving in the electromagnetic field given by the potential A*, is

Lxg = (040" —iqA,4") (0"¢ +igA*¢) — m*¢le. (3.11)

After second-quantization ¢ is an operator field. In this context we remind
that Hermitian conjugation both complex-conjugates all c-numbers and trans-
forms all operators into their Hermitian conjugates, while complex conjugation—
involved, for instance, in the operation of 7T—only complex-conjugates the c-
numbers, leaving the operators unaffected. Thus, ¢* # ¢t.

Under parity,

P (t,7) P = exp (iap) ¢ (t, —7) . (3.12)

The phase o, is arbitrary. Taking the Hermitian conjugate of eqn (3.12) we
obtain

Pol (t,7) P = exp (—iay) ¢! (t, —7). (3.13)
Together with eqn (3.2) and the change 0* — 9,,, we find
PLxa (t,7) P = Lka (¢, -7), (3.14)
as it should, cf. eqn (3.8). Notice that
P2 (t,7) Pt = exp (2ia,) ¢ (t, 7). (3.15)
P? multiplies the Klein-Gordon field by a phase.

7If, for instance, Lpart is not P invariant, then there is no operator P satisfying eqn (3.8).
That equation only informs us how a parity invariant part of the Lagrangian should behave
under parity.
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Under time-reversal we have

To(t, T = exp (ioy) ¢ (~t,7), (3.16)
with an arbitrary phase a;. From eqn (3.16) we derive
To! (6,7 T~ = exp (i) ¢' (=t,7). (3.17)

Then, for instance,
T (0" +iqAlg) T™1 = &' (8¢ — iqA,9) ,

in which we have omitted writing down the space-time coordinates, as we shall
sometimes be doing. As 0* — —0,, when t — —t, we find:

TLkc (t,7) T = Lxa (—t,7). (3.18)
As T complex-conjugates all complex numbers, eqn (3.16) also leads to
T2 (4,7 T % = Texp (ice) ¢ (—t,7) T
= exp (—iay) Urg® (—t,7) U}
= ¢ (¢,7). (3.19)
Thus, 72 = 1 on the Klein-Gordon field, as on the photon field.
Under charge conjugation,
Co (t,7) Ct = exp (ia.) o' (¢,7). (3.20)
Therefore,
cot (t,7) Ct = exp (—iac) ¢ (¢, 7). (3.21)
Together with eqn (3.6), we obtain

CLxg (t,7) Ct = (00 + igA,¢) (0“9 — igA*¢t) — m? gt

= Lxc (tvm ) (322)
because ¢ and ¢’ commute. Also,
o (t, 7t = ¢(t,7). (3:23)

Thus, C2 = 1 on the Klein-Gordon field.

3.4 The Dirac field
3.4.1 Dirac matrices

The Dirac matrices y* are four 4 x 4 matrices which obey the anti-commutation
algebra (Clifford algebra)

{7} = 29" (3.24)
There is an infinite number of sets of four matrices obeying this algebra. Each
of these sets is called a representation of the algebra, or simply a representation
of the Dirac matrices.?

8For a good introduction to Clifford algebras and Dirac matrices in a space-time of arbitrary
dimension, see Sohnius (1985).
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The matrix
15 = i’y (3.25)
obeys a Clifford algebra together with the v#. Indeed,
{7s,7"} =0, (3.26)
(35)" = 1. (3.27)

The eigenvalue of ~ys is called chirality. From eqn (3.27), chirality may be either
+1 or —1. We define the projection matrices of chirality,

1+

YR = _2—75,
(3.28)

_1-%

YL = 7

They satisfy the usual properties of projection matrices:
YR+7L = 1a

2 et

(73)2 YR, (3.29)
()™ =z,

YRYL =YLYR = 0.

In the massless limit, a fermion of chirality +1 is right-handed, and a fermion of
chirality —1 is left-handed. This is the reason for the choice of the subscripts ‘R’
and ‘L’ for the projection matrices of chirality.

From the commutators of pairs of Dirac matrices we define matrices o#":

ot = % v, 4"]. (3.30)

For every representation of the Dirac matrices there are non-singular 4 x 4
matrices A and C such that

Ay, =7} A, (3.31)
1uC = —C'y?;. (3.32)
Then,
Avs = =114, (3.33)
C =Cr, (3.34)
Aoy = o}, A, (3.35)
0, C = —Col,. (3.36)

A and C also have the following properties:

Al = A, (3.37)
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cT = -¢, (3.38)
CA*C*A=1. (3.39)
The usual representations of the Dirac matrices (Dirac-Pauli, Weyl, and Ma-

jorana representations) have the extra feature that
f

’Yk = Yk,
for £ =1, 2, and 3. For those representations
A=+ (3.41)

However,.all the relevant properties of the Dirac matrices are independent of
their representation, and we do not need to assume eqns (3.40). Therefore, in
general eqn (3.41) does not hold.

3.4.2 Dirac spinors

A Lorentz transformation is a linear coordinate transformation
zt = '™ = A% ¥, (3.42)

given by a real 4 X 4 matrix A such that

9ap = A A 59,0 (3.43)
In particular, an infinitesimal Lorentz transformation
AR, =68 + M) (3.44)
has real infinitesimal transformation parameters A\, satisfying A, = —A, .

A Dirac spinor is a 4 x 1 column matrix of fields 3 () transforming under a
Lorentz transformation as

P(z) = J'(2) = S(A)(a'), (3.45)
where S(A) is a non-singular 4 x 4 matrix such that
S(A)TIyS(A) = A% 47, (3.46)

In particular, for the infinitesimal Lorentz transformation in eqn (3.44),
S(A) =1+ Fxu [v*,7"]. (3.47)
The matrix in eqn (3.47) has the following properties:
S(A)TA = AS(A)Y,
T (3.48)
C[S(A)71]" =S(A)C.

These properties of S (A) hold for any Lorentz transformation, and not only for
infinitesimal ones. This results from the fact that any finite Lorentz transforma-
tion may be constructed as a product of infinitesimal ones and, furthermore, if
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eqns (3.48) hold for any two matrices S (A;) and S (As), they also hold for their
product S (A1) S (A2).
For every Dirac spinor 9, we define

P =ytA, (3.49)
—T
P =CY
= ATy, (3.50)

Using eqgns (3.37)—(3.39) we find

(@) = (3.51)
e = —ypTCe 1, (3.52)
From eqns (3.45) and (3.48) it follows that
P =9S(A), (3.53)
Y'° = S (A)y°. (3.54)

Thus, ¢ transforms under a Lorentz transformation in the same way as 1.
A Majorana spinor is a Dirac spinor such that

Y = e, (3.55)

where ( is an arbitrary phase.
A Weyl spinor is a Dirac spinor which is an eigenstate of 5. We easily derive

Y5 = £ & Pys = FY & 19 = FY° (3.56)

Thus, if ¥ is a Weyl spinor, then 3¢ is also a Weyl spinor but with opposite
chirality. As a corollary, a spinor cannot simultaneously have Majorana and
Weyl character.

For every spinor v, we define its chiral components

Yr = YRY, (3.57)
1/)[‘ = ’YL"/)’
which are Weyl spinors. Obviously, ¥ = ¥g + 9. Moreover,
YR = ¥1, (3.58)
YL = YR
Therefore,
c _ c

()" = (¥)g-
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3.4.3 The Dirac Lagrangian

The Lagrangian for a Dirac field ¢ with mass m and electric charge ¢ in inter-
action with the electromagnetic field A* is

Lp =P [y, (i6* — gA*) — m] . (3.60)

This Lagrangian is Hermitian. Indeed, the total derivative 8" (1y,%) vanishes
because of current conservation. Therefore,

1 —
Lp=ota [% Yu (a“— aﬂ) — gy AP - m] b, (3.61)
which is obviously Hermitian.
3.44 Parity
From the Dirac algebra we know that
Py’ = . (3.62)
This suggests®
P (t,7) Pt = exp (i,) 1°% (¢, —7). (3.63)
Then,
Py (t,7) Pt = Pyt (¢,7) PTA
= exp (=ifp) ¥ (t, —7) . (3.64)
Also,
P2 (1,7) PY = exp (2i8,) ¥ (¢,7). (365)

The Dirac action is P invariant. Indeed,

7DACD (ta F) PT = E (ta _F) 70 {7/1 [Zap - un (t, _m] - m} ’701/) (ta -"_")
J (ta _7-") {’7“ [’Lau - qu, (ta _F)] - m} "/} (tv —'F)
= Lp (t,—7).

In the last line of this derivation we have taken into account that 8, — 0 when
7= =T

3.4.5 Time reversal
Under time reversal, we have

T (t,7) T~ = Ury* (,7) Ul = exp (iB) 1513 C A (—t,7) . (3.66)
Then,
T (t,7) T =Urd (t,7) UF

9Equation (3.62) is analogous to eqn (3.46), and eqn (3.63) is analogous to eqn (3.45), when
A¥, = diag(1,—1,-1,—1) and S (A) = exp (iBp) ¥°.
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= [ore* 7 U;—]TA*
= —exp (=ifs) ! (—t,7) ACY5 75 A*
= exp (=if) ¥' (=4, (C™) %%, (3.67)
This transformation leaves the Dirac action invariant. Indeed,
TLp (t,7) Tt
= UrLy (¢, P UL
= Urd (4,7 UL {7; [—ia“ _ qUrA** (8, 7) U*T] - m} Ury* (t,7) UL

=t (=, (C7)" v {7} [-i0" — qAu (—t, )] — m} 73 C* Ay (—t,7)
¥ (=t,7) {y* [-i0* — qA, (—t,7)] —m} ¥ (- ”)
=‘CD (—t”’:‘)’

where we have taken into account that ¢ - —¢ implies 0# — —0,,. Also notice
that

T2 (t,7) T % = exp (=iB;) 101 CA"Ury* (=t,7) UL
=107CA g C AP (¢, T)
= -9 (7). (3.68)

Thus, 72 acting on the Dirac field is equal to —1, while it is equal to +1 when
acting either on the Klein—-Gordon or on the photon field. In general, 72 is —1
for fermionic fields, +1 for bosonic fields, as anticipated in § 2.4.6.

3.4.6 Charge conjugation
Let us now consider the action of the charge-conjugation operator. It is given by

CyCt = exp (i) ¥°. (3.69)
Then, _ .
CYCt = exp (—if.) Y°. (3.70)
Moreover, on account of eqn (3.51),
c2yct? = . (3.71)

The C transformation leaves the Dirac Lagrangian invariant. Indeed,
CLoCt = —pTC1 [y, (10" + gA*) - m] cy
=yT [ (i0* + qA*) + m| ¥

-5l i) o]

= Lp.

We have passed from the second to the third line by transposition. When doing
this we have assumed 9 and 9! to anti-commute, because they are fermionic
fields.
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3.47 CP

Putting together the parity and the charge-conjugation transformations, we ob-
tain the CP transformation, effected by the operator CP. For two arbitrary
spinors ¥ and x, we have

(CP) o (CP)" = exp (i€4) 1°CH ",

3.72
(CP)x (CP)! = exp (i&,) 1°CxX" . -7

Then, _
(CP)F (CP)! = —exp (=iky) $TC1,
(CP)X(CP)" = —exp (=i&) X"C1°,
For simplicity of notation we have omitted an explicit reference to the space-time

coordinates (t,7) and (¢, —7). It will later be useful to have the CP transformation
properties of various field bilinears. We easily obtain:

(3.73)

P) (¥x) (CP)" = exp [i (& — &)] (X¥), (3.74)
(df’rsx) (CP)' = —expli (& — &) (Xs¥) , (3.75)
P) ($7"x) (CP)' = —expli (& — &) (Tn¥) (3.76)

(w 15x) (CP)! = —exp i (fx-&p)](wisw) (3.77)

Taking appropriate linear combinations of these equations we find the equivalent
equations

(CP) (Pyx) (CP)' = expi (& — &u)] (RRY) (3.78)
(CP) ($yrx) (cm* = exp[i (& — &)] (X1 ¥) (3.79)
(CP) (¥v*1x) (€ —exp [i (§x — &) (XVurLY) (3.80)
(CP) (¥7*vrX) (CP) = —exp[i (& — &) R1uVRY) - (3.81)

3.4.8 Field bilinears and the discrete transformations

We may now elaborate Table 3.1, which gives the result of the application of the
various discrete transformations to field bilinears. In writing down that table, we
have ommitted reference to the transformation of the coordinate variables. We
have also ommitted all the free phases present in each discrete transformation. As
a consequence, in general only the relative transformation rules of two different
field bilinears under each discrete symmetry is relevant.

3.5 Relative parities of a particle and its antiparticle

Consider again the Klein—Gordon field ¢ and its charge-conjugated field. It is
clear that if parity transforms

P (t,7) P = exp (iey) ¢ (¢, —7) (3.82)
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Table 3.1 Action of some discrete transformations on Dirac-field

bilinears.
P T C CP CPT
Px ¥x ¥x X X9 X
Prsx  —Prsx  Yx XY XV —XvY

Yyex  Ywx  Ywx Xnd XYRY XYRY
YYRX  PyLX  YYRX  XVRY XYL XYLV
VX Px Y XYY XY XMy
VY¥sX — VX PWVsX XYW X —XYE sy
VYYILX YWYRX YVYLX —XVPYRY XVt XYLy
PY*YRX YVVLX  VYRX XYY —XWYRY  —XVPYRY
Yor'x  PouwX  —poux  —XoMp  —Xou$  Xo Ui

then

P [Co (¢, 7 Ct] Pt = exp (—iay) [Co (¢, —7) CT]. (3.83)
Now consider instead the Dirac field ¢ and its charge-conjugated field. Clearly,
if

P (t,7) Pt = exp (ip) 1°9 (8, —7) , (3.84)

then
P [Cy (t,7) CT] Pt = —exp (—iB,) 7° [Co (¢, -7 CT] (3.85)
where we have used CATA?* = Cy°TAT = —4°CAT. Now if we compare

eqns (3.82) and (3.83) with their analogous egns (3.84) and (3.85), we find that
for the Dirac field we have a relative minus sign in the transformation laws for ¢
and CyCt while, for the Klein—-Gordon field, the sign in the transformation laws
of ¢ and C4C' is the same.

In reality, what matters is the parity of a particle-antiparticle pair. The parity
of a charged particle is arbitrary—the phases a, and B, are arbitrary—but the
parity of a particle-antiparticle pair may be experimentally probed—see the next
chapter for examples. In the case of Klein—Gordon particles, the intrinsic parities
of a particle and its antiparticle cancel each other (e!*re~i*» = 1), but in the
case of Dirac fields they give rise by themselves alone to a minus sign. Observable
consequences of this minus sign will be studied in the next chapter.

3.6 Electric and magnetic dipole moments

In a non-relativistic approximation—see for instance Bjorken and Drell (1964)—
the four-component Dirac spinor ¥ may be separated into two two-component
spinors ¢ and Y, the components of ¢ being much larger than the ones of x. The
two-component spinor ¢ obeys the equation

(9 0 _ 1 = =\ 2 9. B
(za—qA)go— % (—zV—qA) 90—;1‘3'390- (3.86)
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Here, § = &/2 are the Pauli matrices divided by two, representing the spin. One
sees in eqn (3.86) that ¢, besides the minimal coupling to the electromagnetic
field given by the transformations E - E — ¢A° and § — p — qA, also has a
magnetic dipole moment g/m.
Now suppose that we modify the Dirac Lagrangian and use, instead of eqn
(3.60), the non-renormalizable Lagrangian
L= [ (0" - g4*) —m + &

—0a
m

WP +iGys) (0,40 ¥, (3.87)

with real numbers F' and G. It may easily be checked that the Lagrangian in
eqn (3.87) is Hermitian. It is also C invariant. Indeed, .

C [0 (F +iGrys) ] €t = —pTC~ 1o (F +iGs) C
= —tpa" (F 4 iGrs) 9.

As A* changes sign under C, the new terms in the Lagrangian of eqn (3.87) are
C invariant. As for P invariance,

P [Go™ (F +iGys) §] PT = Pr 0™ (F +iGrys) %
= JO‘,W (F —iGys) 5

for T invariance,

T [P0 (F +iGys) ] T~ = ¢t (C71) 935 (6*)" (F — iGy3) 1573 C™ Ay
= "Eauv (F —iGs) 1.

Therefore, the F-term is both P and T invariant, while the G-term violates both
P and T. Thus, G has the same transformation properties as an electric dipole
moment. Indeed, making the same non-relativistic approximation as before, one
finds that ¢ now satisfies the equation

—

.0 Ny L (Lo ai)w_ 4 5 s . F
(l-a—t—qA)(p_%( 'AY qA) ® m[(1+F)s B+ GS E]go. (3.88)

The spinor ¢ now has an electric dipole moment (g/m) G and a magnetic dipole
moment (¢/m) (1 + F). Both dipole moments are proportional to g, and therefore
they have opposite sign for a particle and its antiparticle. F' is usually called the
anomalous magnetic dipole moment of .

As magnetic and electric dipole moments have opposite signs for a particle
and its antiparticle, one concludes that a Majorana field cannot have any of those
moments. Indeed,

peot” (F +iGrys) ¢ = —pot” (F +iGs) 9. (3.89)

The Lagrangian in eqn (3.87) may arise at higher order in perturbation the-
ory, with coefficients F' and G depending on the momentum transfer to the
photon. The G-term only appears if the underlying theory is both P- and T-
violating.
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3.7 P, T, and C invariance of the strong interactions

We have seen that the quantum electrodynamics of scalars and of spin-1/2
particles is P, T, and C invariant. In the case of P and T invariances, this is
not surprising, because these are symmetries of classical electromagnetism—see
Chapter 1—which we would want to recover as invariances of quantum electro-
magnetism too.

It is important to emphasize the crucial role that the electromagnetic interac-
tion plays in defining, in particular, what form the C transformation should take.
A particle and its antiparticle must have electromagnetic interactions character-
ized by the opposite sign of the electric charge. If a field has zero electric charge,
then its C- and CP-transformed fields are largely arbitrary. We shall encounter
this problem in § 23.6.

Once it is found that the electromagnetic interaction is C, P, and T invariant,
it is natural to assume that other interactions enjoy these invariances too. We
may assume, in particular, that the strong interaction has these invariances.
Indeed, up to now there is no experimental evidence for C, P, or T violation by
the strong interaction. In the next chapter we shall focus on some consequences
of the C, P, and T invariance of the strong and electromagnetic interactions.

The quantum-chromodynamics (QCD) (strong-interaction) Lagrangian is

a

A
Lqcp = —}TF/‘},,F“‘“’ + @z |Ozy (iVF0u — myg) + gw"G’Z% Qy. (3.90)

Here, g, is the strong coupling constant;  and y are colour indices; g, is a quark
field; m, is its mass; G, (with a from 1 to 8) are the gluon fields; the A* are the
Gell-Mann matrices:

010 0—-:0 100 001
AM=1100], X=[i00],X=[0-10],X=[000]},
000 000 000 100
00—: 000 000 100
NM=[000],X=[001}), X=[00—i ,)\szﬁ 010
i00 010 07 0 00-2
(3.91)
The field-strength tensor Fj;, = —Fy, is given by
FS, = 0,G2 — 8,G5 + g f**°GLGS, (3.92)
where the f2%¢ are the structure constants of SU(3), defined by
A? )‘b - rabc A°
[?, 7] = ifed (3.93)
They are given by
123 _ | 147 _ 1 156 _ _1  £246 _ 1  £257 _ 1
f345 L f367 ) f458 3" fe7s 3 d z (3.94)
f =23 f =3 f =2 f =2

and by the fact that they are antisymmetric in all three indices.
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Notice that the Gell-Mann matrices are Hermitian and they are either sym-
metric or antisymmetric: A*T = \** = s9)%, with s* = +1 fora = 1, 3, 4, 6,
and 8, and s* = —1 for @ = 2, 5, and 7. Also notice that f*¢ #£ 0 = sbs¢ = —s9.

The QCD Lagrangian already incorporates the assumption of P, C, and T in-
variance of the strong interactions. The quark fields transform under the discrete
symmetries as studied in § 3.4.4-3.4.6; the phases 3,, 8¢, and . are independent
of the colour index. The gluon fields transform as

PGS (t,7) Pt = G (t,-7),
TGS (6,7 T ' = s*G* (-t,7), (3.95)
CGY (t,7)Ct = —5°G2 (t,7).

Therefore, the field-strength tensor transforms as

PF,, (t,7) Pt = Fow (t,—7),
TRS, (4,7) T~ = —s2Fo (4,7, (3.96)
CF:V (t’F) Cf = _SGF:V (ta F) :

Given these transformation laws, the P, T, and C invariance of Lqcp is obvious.

However, in order to obtain invariance of the strong interaction under the
discrete transformations, it is not sufficient to prove the invariance of its La-
grangian. QCD has a non-trivial vacuum structure, and that vacuum must be
invariant if the strong interaction is to be invariant. In general, the vacuum of
QCD gives rise to both P and T violation, as we shall see in Chapter 27. For
most of this book, however, we shall neglect this awkward ‘strong CP problem’,
and assume that the vacuum of QCD is invariant under the discrete transfor-
mations. Only then can our theoretical understanding of the strong interaction
incorporate the invariance under the discrete symmetries that its experimental
exploration exhibits.

3.8 Conclusions

Besides deriving many formulae—in particular the ones relating to the Dirac
theory—which will be used later in the book, we have seen in this chapter
how QED fixes the CP-transformation properties of the electromagnetic, Klein—
Gordon, and Dirac fields:

(CP) A (t,7) (CP)' = — A, (¢, —7); (3.97)
(CP) ¢ (t,7) (CP)' = exp (ia) ¢ (t, —7); (3.98)
(CP) ¥ (t,7) (CP) = exp (i8) 0CATW! (8, -7 ; (3.99)
(CP)% (t,7) (CP)! = — exp (—iB) yT (t,—7) C 0. (3.100)

QED provides the model that must be followed by the CP transformation of any
other interactions, Lpart, in the complete Lagrangian:
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(CP) Lpart (¢, 7) (C’P)Jr = Lpart (8, —7) . (3.101)

In particular, we have also shown, in § 3.7, that CP invariance is also a property
of the strong interaction.
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APPLICATIONS OF THE DISCRETE SYMMETRIES

4.1 Introduction

We present in this chapter some elementary applications of the discrete sym-
metries P, C, and T. These examples are extracted from the realms of nuclear
physics and of low-energy particle physics. For more details, the reader is advised
to consult the books that we have used in preparing this brief account (Sakurai
1964; Perkins 1987; Lee 1990; Burcham and Jobes 1995).

In a first reading, this chapter may be skipped without inconvenience.

4.2 C invariance: Furry’s theorem

We have seen in the previous chapter that C transforms A* into —A*. The
creation operator a' (5, h) for a photon of momentum 7 and helicity h transforms
according to

Cal(p,h)Ct = —al (B, h). (4.1)

Therefore, a one-photon state |y) = af(#,h)|0) has C-parity —1: C|ly) = —|v).
The C-parity of an n-photon state |nvy) is the product of the C-parities of the n
photons:

Clny) = (=1)" |ny). (4.2)

If there is C invariance,
(n'4|SInv) = (n'y|CtCSCICIny)
= (=) (n'|S|ny). (43)

Therefore, if n + n' is odd then the matrix element must vanish. This is Furry’s
theorem (Furry 1937): a state with an odd number of photons (and no other
particles) cannot scatter into a state with an even number of photons, or vice
versa. An elementary example is the three-photon vertex at one loop in the
quantum electrodynamics of spin-1/2 fermions. The sum of the two relevant
graphs, depicted in Fig. 4.1, vanishes (Feynman 1949).

The neutral pion 7° decays mostly (branching ratio 98.8%) to two photons.
This is an electromagnetic decay, and the electromagnetic interaction is C in-
variant. From this fact we infer that

C|m°) = +|7°). (4.4)

Similarly, the meson 7, which decays with probability 39.3% to two photons, is
C-even. C conservation implies that none of these mesons may decay to an odd
number of photons. Indeed, it is found experimentally that
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BR (7% = 37) < 3.1 x 1078,

4.5
BR(n — 37) <5x 1074 (45)

4.3 T invariance: the spin of the pion
4.3.1 2 — 2 scattering

Let us apply the reciprocity relation to the scattering of two particles 1 and 2,
constituting the initial state ¢, to two particles 3 and 4, constituting the final
state f. In the centre-of-momentum frame, the particles 1 and 2 have momenta
P; and —pj, respectively, and the particles 3 and 4 have momenta p; and —pf,
respectively. The energy in that frame is s = (p; +.1’12)2 = (ps + p4)2, where py,
is the four-momentum of the particle k, for k = 1, 2, 3, or 4. Also, we denote by
Jr the spin of the particle k.

Let S¢; be the relevant S-matrix element. The differential cross-section rela-
tive to an element of solid angle df2; for the final-state momentum pfy is

do_1S5il” py
dQy  48n2%s p;’

where py = |py| and p; = |p;i|. In writing eqn (4.6) it has been assumed that
the particle wave functions are normalized in such a way that the density of
each particle species is 2F particles per unit volume, where E is the energy of
the particle. This normalization affects the normalization of the matrix S; our
|S fil2 is equal to 16 E; E» E3 E4 times what it would have been had we chosen the
normalization in which the density of particles is one particle per unit volume.

If we measure the cross-section without polarizing the initial-state particles 1
and 2, and without observing the polarizations of the final-state particles 3 and
4, the relevant differential cross-section is the sum over the final spins, averaged
over the initial spins, of the expression in eqn (4.6), i.e.,

4 2
do e =115sil pr
dQy 48725 (251 +1) (242 + 1) ps '
For the inverse reaction, in which particles 3 and 4 are scattered into particles

1 and 2, with the same energy s in the centre-of-momentum frame, we have,
because of the reciprocity relation,

(4.6)

(4.7)

Aa A(x
P by

P, P,
Ap Ap

Fi1G. 4.1. One-loop Feynman diagrams for the three-photon vertex in QED.
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do_  TeumlSil p (4.8)
dQ; 48725 (2j3+1) (254 + 1) pf’ '
with the same |Sy;|. Taking the ratio of eqns (4.7) and (4.8), we obtain
do(1+2-3+4) 17 (2s+1)(2s +1)dQy (4.9)

do(3+4—1+2) p2(21+1)(22+1)d%

Integrating the differential cross-sections over the solid angles for their respective
final-state momenta, we obtain

c(1+2-3+4) p7(2+1) (2 +1)
c(B+4-14+2) p2(2h+1)(252+1)

¢, (4.10)

where c is a factor which accounts for the possibility that the particles 1 and 2,
or the particles 3 and 4, are identical, in which case the integrations over the
final-state solid angle span only 27 steradians. Thus, ¢ = 1/2 if particles 3 and
4 are identical but particles 1 and 2 are distinct; ¢ = 2 if particles 1 and 2 are
identical but particles 3 and 4 are distinct; and ¢ = 1 otherwise.

4.3.2 The spin of the pion

Equation (4.10) was used (Marshak 1951; Cheston 1951) to determine the spin of
the charged pion 7t by using the reactions, assumed to be T invariant, d+ 7t +
p+ p, where d is the deuteron and p is the proton. Knowing that the proton spin
is 1/2 and the deuteron spin is 1, we obtain

o(d+7t =5 p+p) 2:0?,

clptp—ad+nt)  3p2(2.+1)

(4.11)

The comparison of the cross sections, measured at similar energies in the centre-
of-momentum frame (Durbin et al. 1951; Clark et al. 1951, 1952; Cartwright et
al. 1953), gave jp = 0.

In high-energy nucleon—nucleon collisions, the yields of neutral and charged
pions are equal, indicating that the spin multiplicities of those particles are the
same; hence, the spin of the neutral pion must be zero too.

4.4 P invariance: two-photon decay of a spin-0 particle

Consider a spin-0 particle decaying to two photons. In the rest frame of the
decaying particle one of the photons has momentum p and the other one has
momentum —p. Besides the direction of p, there are two other relevant directions
in the problem: the directions of the electric fields of the two photons, E, and
E5. Indeed, the mag_r}etic_‘ fields, B; and ﬁg, are perpendicular to the electric
fields and to p, i.e., By - By = El -p= By -E, =B, - p = 0. Therefore, they do

£

not constitute independent directions. Also, E; -p=FE;-p=0.
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The decay amplitude must be of the form
AE, -E,+B (E‘l x E}) B, (4.12)

where A and B are numbers which depend only on the mass of the decay-
ing particle. Notice that there is symmetry under the interchange of the two
photons—under E, & E, and § p — —p—as Bose-Einstein statistics requires.

Under parity a spin-zero field gets multiplied by exp (ia;,) and its charge-
conjugated field gets multiplied by exp (—ia,). If the particle is identical with
its antiparticle—if the Klein-Gordon operator field is Hermitian—then exp (ic,)
must be either +1 or —1. The particle may thus be a scalar (if it has parlty +1)
or a pseudoscalar (if it has parity —1). As for the three vectors p, Ej, and E,,
they all change sign under parity. Therefore, under parity B changes sign but A
does not.

Suppose that parity is conserved in the decay of a spin-0 particle which is
identical with its antiparticle. It follows that, if the particle is a scalar then B = 0,
and the polarizations of the two photons in the final state are predominantly
parallel—the probability that the two photons have polarizations at an angle 6
between themselves is_proportional to cos? §, where @ is the angle between the
directions of Ej and E,. If the decaying particle is a pseudoscalar then A = 0,
and the probability law for the polarizations of the two photons is sin? 6.

This argument (Yang 1950) led to the experimental determination of the
parity of the neutral pion. That meson decays to e*ete~e~ with a branching
ratio of (3.14 £ 0.30) x 10~3. The electrons and positrons result from the inter-
nal conversion of the two virtual photons of the main decay mode, 7° — 27,
into electron—positron pairs. It was shown by Kroll and Wada (1955) that the
electron and the positron are preferentially aligned with the electric field of the
photon which originated them, and the correlation between the photon polar-
izations persists as a correlation between the planes defined by the momenta of
the two electron—positron pairs. If 8 is the angle between those planes, then the
probability distribution of 8 should be proportional to 1 + K cos26 for a scalar
70, or to 1 — K cos 26 for a pseudoscalar 7°, with K = 0.47 (Kroll and Wada
1955). By comparing the orientation of the two planes, Plano et al. (1959) found
that they are mostly perpendicular. Therefore, 7° has parity —1.

4.5 C- and P-parities of positronium

Let us now consider the C and P quantum numbers of positronium, i.e., of a state
consisting of a positron and an electron bound by the Coulomb interaction.

As the electromagnetic interaction is P and C invariant, we may adiabatically
switch it off without altering the C and P quantum numbers. of the state. We
are thus able to eliminate the spin-orbit interaction as well as the presence of
virtual photons. The C- and P-parities of positronium are therefore equal to the
products of the C- and P-parities of the separate spin and orbital wave functions,
in their non-relativistic limit, and of the intrinsic C- and P-parities.
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The orbital wave function is given by a spherical harmonics Y, (/p) times a
function of p. Here, [ is the total orbital angular momentum, m is the projection
of the angular momentum along the z direction, 7 is the relative momentum
of electron and positron, and p = |p]. A fundamental property of Y™ is that it
acquires a sign (—l)l under the parity transformation g — —p. If the vector p has
a direction defined by the polar angles § and ¢, that transformation is equivalent
t0 6 —» 7 —0 and ¢ = 7 + ¢. Thus, ¥;™ (1 — 0,7 + ¢) = (—1)' Y™ (6, ¢). Parity
does not affect the spins of the electron and positron. If the electron field gets
multiplied by exp (i3,) upon a parity transformation, the positron field gets
multiplied by — exp (—ifp), as we have seen in § 3.5. Therefore, the overall parity
of positronium is

P=(-1)"". (4.13)

Charge conjugation interchanges the creation operators of the positron and
of the electron. When one brings back the operators to their original position
a minus sign arises, because fermionic operators anticommute. Besides, when
interchanging the positron and the electron one changes the sign of their relative
momentum g, thus generating a sign (—1)’ in the wave function. As for the spin
wave function, the total spin may be either 0 or 1. The combination of two one-
half spins to form an S = 1 state is symmetric under the interchange of the
spins; the S = 0 state is antisymmetric. A sign (—1)5+1 is thus generated by
the interchange of the spins of the electron and positron. Overall, we have for
positronium

C=(-1)"5. (4.14)

Comparing this result with the one in § 4.2, we arrive at the following im-
portant conclusion: a positronium state with even [ + S cannot decay to an odd
number of photons; a state with odd [ + S cannot decay to an even number of
photons. Thus, for [ = 0,'° positronium may decay to two photons if S = J = 0,
but it must decay to three photons if S = J = 1, where J is the total angu-
lar momentum. The decay rates may be computed and were first measured by
Deutsch (1953), who found excellent agreement with theory.

In the case I = S = J = 0, the positronium parity is negative and the two re-
sulting photons must have preferentially orthogonal polarizations, as was shown
in the previous section. This was checked by looking at the Compton scattering
of the photons. Compton scattering depends strongly on the polarization of the
photons, being more likely to occur on a plane normal to the electric vector
of the incoming photon. Using this method, Wu and Shaknov (1950) have ex-
perimentally demonstrated that the two photons from positronium decay have
mostly orthogonal polarizations, thus implicitly demonstrating the correctness
of the theoretical prediction that the electron and the positron have opposite
intrinsic parities.

10When [ = 0 there is a spatial superposition of the wave functions of the electron and
positron, allowing annihilation to take place.
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It is worth pointing out that the result in eqn (4.14) is valid in general for any
system of a particle and its antiparticle, of whatever intrinsic spin s, bound by
the Coulomb interaction. Indeed, the interchange of the particle and antiparticle
by the C transformation yields a factor (—1)! from the orbital wave function,
a factor (—1)2* from the fermionic or bosonic nature of the fields, and a factor
(=1)5*2% from the spin wave function, where S is the total spin of the bound
state. The latter factor is a particular case of the general rule for Clebsch-Gordan
coefficients

(Jrjemima|jijaJ M) = (—=1)7 79732 (jo jymam |jogs JTM). (4.15)

The two factors (—1)2° cancel out, and the C-parity of the particle-antiparticle
bound state always ends up being given by eqn (4.14).

4.6 The intrinsic parities of mesons and baryons
4.6.1 Flavour and intrinsic parities

Strong and electromagnetic interactions separately conserve each flavour—u, d,
s, and so on. Therefore, for each single flavour we may set by convention the
intrinsic parity of one hadron with that flavour to be +1 (or we may set it to be
any other arbitrary phase)—for more details, see Weinberg (1995, p. 124). The
standard convention is to assume the intrinsic parities of the proton, the neutron,
and the A, to be equal to +1. As these particles are in the same SU(3) multiplet,
they are characterized by the same state of inner motion—they are three-quark
states in which the relative orbital angular momentum of each pair of quarks is
zero. This means that, as a matter of fact, we are making the convention that
the u, d, and s quarks all have the same intrinsic parity. Thus, if

PuPt = exp (iB.) Yu,
PdPt = exp (iB4) 1°d,
PsPt = exp (i0s) A0s,

we are making the convention 3, = 4 = fs.

From the convention that the proton, the neutron, and the A all have parity
+1, we may derive step-by-step the intrinsic parities of all non-charmed, non-
beautiful mesons, baryons, and nuclei. For instance, the deuteron is composed
of a neutron and a proton, in a state of relative orbital angular momentum
L = 0, with a small (about 7% in amplitude) admixture of an L = 2 component.
This orbital angular momentum gives rise to a parity (—l)L = 1. The intrinsic
parities of neutron and proton are both 1 by convention; the deuteron therefore
has parity 1 too.
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4.6.2 The parities of pions and kaons

Most known mesons are a bound state of a quark ¢ and an antiquark ¢'.!*! We
denote by L the orbital angular momentum of the quark-antiquark system, and
by S its total spin, which may be either 0 or 1; the meson spin is denoted by J.

If ¢’ = q, as happens in the case of the 7%, then the meson is identical with its
antimeson, and it has a C-parity equal to (—I)L +S, as in the case of positronium.
Moreover, its parity does not depend on any convention for the relative parities
of the various quark flavours. Thus, we were able in the previous sections to find
experimental evidence for the parity of the 7° being —1, and its C-parity being
+1; the neutral pion, which is spinless, must therefore have L = S = 0.

If, on the other hand, the flavours ¢ and ¢’ are distinct, the meson is not an
eigenstate of C and, moreover, its intrinsic parity is dependent on the conven-
tion that we made in the previous subsection for the relative parities of proton,
neutron, and A. However, as long as all quark flavours have the same parity by
convention, the parities of all mesons are given by the same rules as the parities
of positronium states: the parity of any meson is thus given by (—l)LH.

In general, L = 0 states may have either J = S = 0 and then they are
pseudoscalars, or they may have J = S = 1 and they are pseudovectors. These
are the stable mesons, and they all have negative parity. In the same way, the
stable baryons are three-quark states in which the orbital angular momentum of
any two quarks is zero; all stable baryons have parity +1, just as the nucleons
and-the A.

The parity of the charged pion may be experimentally derived from obser-
vation (Panofsky et al. 1951; Chinowsky and Steinberger 1954) of the capture of
slow pions by deuterium,

T +d—=>n+n. (4.16)

The pion and the deuteron must be in an s-wave, which has a non-zero probability
of the two particles coinciding at the same point of space. As the pion is spinless
and the deuteron has spin 1, it follows that the total angular momentum on
each side of eqn (4.16) is 1. The system of two neutrons has orbital angular
momentum L and total spin S. The symmetry of its spatial wave function is
(=1)* and that of its spin wave function is (—1)°*. The total symmetry must
be negative because of Fermi-Dirac statistics. Therefore, L + S is even. On the
other hand, L and S must combine to give a total angular momentum J = 1.
The only values satisfying these requirements are L = S = 1.

The intrinsic parities of the nucleons cancel on both sides of the reaction in

eqn (4.16), because of the convention that the proton and the neutron have the

same intrinsic parity. The two-neutron state has (—l)L = —1, while the deuteron

has (—1)1’ = +1. Therefore, 7~ has odd parity.
If 7~ has parity exp (iap) = —1, then 7% has parity exp (—ia,) = —1 too.
We conclude that the 7+ is P-odd too.
11Some observed mesons appear not to fit this paradigm. They might be either multiquark

states, or else have an important gluonic component—be either glueballs or hybrid quark-
antiquark-gluon mesons. See for instance Particle Data Group (1996, p. 557).
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The intrinsic parities of the kaons may be found by studying strong processes
in which they are produced in association with the A (associated production). It
is found that the kaons have negative parity.

4.7 The relative phase of Gy and G4
Consider the 8 decay of the neutron n to the proton p,

n = pe” 7. (4.17)

According to the Fermi theory, modified to include maximal parity violation in
the leptonic sector, the effective Hamiltonian for this decay must be the product
of a leptonic and a hadronic current, in which the leptonic current is of the V—A
form,

J}f"m“ic = EYuYLVes (4.18)
while the hadronic current should be
J}}adm“ic =pY. (Gv + Gays) n. (4.19)

Thus, as the Hamiltonian is Hermitian,

Hest = (EvuvLVe) [PV (Gv + Gavs) n] + (TevuyLe) (A" (G + Goyys) p) -

(4.20)
4.7.1 T invariance
Now consider the T transformation:
TnT ! =372 C* An, (4.21)
TvT ™! =47 C* Ave, (4.22)
TpT ' =p' (C71) v, (4.23)
TeT ! =¢l (C71) . (4.24)

The arbitrary phases in the T transformation have been omitted for simplicity.
Explicit mention of the coordinate change t - —t was omitted too. Clearly,

T (evuyeve) [PY* (Gv + Gays)n) T~1
= [ (€7 o3 0" Ave]

x {pt (C1)"937% [v* (Gv + Gars)]" %373 C" An }
= (&v"yve) B (GV + Gs) ],

in which, we emphasize once again, arbitrary phases have been omitted. It is
now clear that T invariance of the Hamiltonian means

Gv + Gavs = exp (i€) (G + Gvs) (4.25)

i.e., Gy /G4 must be real in order for T invariance to hold. Experimentally
(Particle Data Group 1996, p. 48), it is found that the phase of Gy /G4 is
(180.07 £ 0.18)°, confirming T invariance in neutron decay.
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4.7.2 CP invariance

The CPT theorem tells us that, if the effective Hamiltonian in eqn (4.20) violates
T, then it should also violate CP. This is indeed true. Using eqn (3.80), we see
that

(CP) (Evureve) (CP)' = —exp i (6. — &)] (Ter1€); (4.26)
while, using eqns (3.76) and (3.77), we have

(CP) [py* (Gv + Gas)n] (CP)' = —exp[i (6 — &)] [Avu (Gv + Gms)(zj -27)
Thus, .

(CP) Herr (CP)! = exp (=iC) (Tevvre) [finu (Gv + Gays) p)
+exp (i€) (v yLve) [Py (G + Giavs)n],  (4.28)

where ( = & + & — &, — &n is an arbitrary phase. CP invariance requires

(CP) Hewr (CP)' = Heg
= Gv + G475 = exp (i) (Gy + G4s) - (4.29)

This is the same as eqn (4.25), as it should be.

An important point should be called to the reader’s attention in this example.
CP invariance of an effective Hamiltonian (or Lagrangian) in practice requires
that the coupling constants in that effective Hamiltonian (in this case, Gy and
G 4) be relatively real. It is not really each individual coupling constant that
must be real in order for CP invariance to hold. Indeed, there are arbitrary
phases in the CP transformation. Those phases may be adjusted in order to
obtain CP invariance of each individual term. Rather, it is the relative phase of
the coupling constants which must vanish (or be 7) in order for CP invariance
to prevail.
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5.1 Complex CP conditions

Let us consider the transitions of the CP-conjugate initial states i and 7 to the
final states f and g, and to their CP-conjugate states f and g, respectively.

We call the reader’s attention to the following: whenever we write ‘f’ and
‘f°, for instance, we mean by this two CP-conjugate states in a physical sense.

Thus, if f is composed of the particles a,b,..., with momenta g, ps, ..., and
spins &g, 8, - - ., respectively, then f is composed of the antiparticles @, b, . . ., with
momenta —p,, —Ps, - - -, and spins &, 3, . . ., respectively. This must be contrasted

with the kets | f) and | f), which are mathematical entities belonging to the formal
structure of quantum mechanics. Those kets may be rephased at will, and they
are related to each other by a mathematical operator CP, which transforms each
of them into the other one up to an arbitrary phase—see eqns (5.2) below. Thus,
the fact that f is the CP-conjugate state of f does nmot mean that a relation
CP|f) = |f) holds between the kets. Rather, we have CP|f) = /| f).

First we deal with the general case i # i, f # f, and g # g. We want to
find the conditions on the transition amplitudes imposed by CP invariance. CP
invariance implies, for the transition matrix T,

CP)T (P =T. (5.1)

CP may or may not be an invariance of Nature. On the other hand, the
square of the CP transformation is, in classical physics, identical with the iden-
tity transformation, and therefore (C’P)2 corresponds to a conserved quantum
number. The value of (CP)2 for initial and final states must be identical, and it
is an arbitrary, purely conventional phase. Without loss of generality we shall
always assume (CP)? = 1. This assumption simplifies the algebra.

The CP transformation of the kets reads

CPli) = eifi), CPli) = e %ili),
CP|f) = e¥|f), CPIf)=e"*|f), (5.2)
CPlg) = e*s|g), CPlg) = e *s]g).
The phases &;, &¢, and £, are arbitrary. We want to see whether it is possible to
choose them so that CP invariance of the phenomenology is obtained.

From eqgns (5.1) and (5.2) we derive the CP constraints on the transition
amplitudes:

(fITli) = eG4 (f|Tf3), (5.3)
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(fITIi) = CH4(fIT), (5.4)
(9ITi) = &%) (g|T i), (5.5)
(9ITi) = & +40) (g|T). (5.6)

From these equations it is clear that the modulus of each transition amplitude
must equal the modulus of the amplitude for the CP-conjugate transition. The
quantities

(FITIS) = [(FIT15)], (5.7)
[(FIT1)] = KAT 1), (5.8)
KglTli)| - gl T o)1 , (5.9)
I(GIT 1) — (g T5)] (5.10)

violate CP.

If we were considering solely the decays to f and to f we would have only
eqns (5.3) and (5.4), which are two complex equations involving two arbitrary
phases & and &;. Then, there would be no CP-violating quantities beyond the
ones in eqns (5.7) and (5.8). Similarly, if we were considering only the decays
to g and to g the only physical consequences of CP invariance would be the
vanishing of the quantities in eqns (5.9) and (5.10). However, when we consider
simultaneously the decays to f and to f and also to g and to g, we see that
eqns (5.3)—(5.6) correspond to four complex equations with only three arbitrary
phases. Then, a physical CP condition on the phases of the decay amplitudes
must remain. Indeed, we easily find that the complex quantity

(FITIFITIi)gITA)GIT () — (gIT1i)aIT i) FITID)(FIT i) (5.11)

must vanish if CP invariance holds.

Let us now consider the case in which f = f and § = g. Then, exp (i¢;) = 1y
and exp (i€,) = ng, where ny = +1 and ny = +1 are the CP-parities of f and of
g, respectively. The conditions in eqns (5.3)—(5.6) reduce to

(fIT1é) = mge (FIT13), (5.12)

(9ITé) = nge™ (g|TY3), (5.13)
from which we derive the complex CP condition

{9T]3) (fIT3)

= =, 5.14

(oITli) ~ ™" (1T} (514
Thus, the complex quantity

(fIT1i){gIT|3) — nmg(gIT13){fIT|2) (5.15)

violates CP.
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5.2 Weak phases and strong phases

In the course of this book we shall be discovering that the presence of complex
phases in the transition amplitudes is closely related to CP violation. A cavalier
argument for this is the following: as a result of the CPT theorem, CP violation is
equivalent to T violation; T transforms numbers into their complex conjugates;
therefore, T and CP violation must arise from some numbers being different from
their complex conjugates, i.e., from their being non-real.

It is important to stress from the very beginning that the phase of a transition
amplitude is arbitrary and non-physical, because in quantum theory kets and
bras may be rephased at will. As both |i) and (f| may be rephased at will, the
phase of (f|T|i) is arbitrary. Only phases which are rephasing-invariant, i.e.,
which do not change when the state vectors are rephased, may have a physical
meaning and, in particular, lead to CP violation. Those phases are in general the
relative phases of the various coherent contributions to a particular transition
amplitude. The phase of each partial amplitude may be changed at will and
is meaningless, but the relative phase of two partial amplitudes is rephasing-
invariant and in general has observable consequences.

Three kinds of phases may arise in transition amplitudes:

¢ ‘weak’ or CP-odd phases,
e ‘strong’ or CP-even phases,
e ‘spurious’ CP-transformation phases.

The designations ‘weak’ and ‘strong’ do not mean that the origins of the phases
are in weak and in strong interactions, respectively. A weak phase is defined to
be one which has opposite signs in the transition amplitude for a process and in
the transition amplitude for its CP-conjugate process. A strong phase has the
same sign in the amplitudes for two CP-conjugate processes. Spurious phases
are global, purely conventional relative phases between an amplitude and the
amplitude for the CP-conjugate process; they do not originate in any dynamics,
they just come from the assumed CP transformation of the field operators and
of the kets and bras they act upon.

Weak phases usually originate from complex couplings in the Lagrangian.
We have given one example in § 4.7: the phases of the two complex coupling
constants Gy and G4 are CP-odd. The couplings Gy and G4 appear in the
transition amplitude for neutron decay n — pe~7¢, while G}, and G?% appear
in the transition amplitude for the CP-conjugate antineutron decay i — pe*v,.
While the absolute phases of Gy and of G4 are irrelevant, the relative phase
arg Gy — argG 4 leads to T and CP violation if it is neither 0 nor .

Another example of CP-odd phases are the phases of the matrix elements
of the Cabibbo-Kobayashi-Maskawa matrix in the charged-current weak La-
grangian. As the Lagrangian is Hermitian, those complex phases change sign
when one passes to the CP-conjugate process.

Strong phases may have two different origins. First, they may arise from the
traces of products of an even number n of v matrices together with vs. If n = 0
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or n = 2 those traces vanish, trys = 0 and tr (y*v”vs) = 0, but if n is four or
larger the trace does not in general vanish, and is imaginary:

tr (’y“'y”’yx'y€75) = —44eHvXE, (5.16)

Here, €#¥X¢ is the completely antisymmetric tensor. Its overall sign is fixed by
€”12% = 1. The tensor e**X¢ is the Minkowski-space extension of the completely
antisymmetric tensor €% of Euclidean space, which arises in triple cross products

a- (5 X é’) of three vectors @, 5, and ¢ Indeed, traces like the one in eqn (5.16)

yield terms in cross-sections proportional to the triple cross product of three
(spin or momentum) vectors. Those terms are odd under the transformation T
defined in § 1.1.2.

A second possible origin for strong phases are final-state-interaction (FSI)
scatterings from on-shell states. These include the well-known final-state phase
shifts of nuclear physics. Those phase shifts are equal for two CP-conjugate
processes, and therefore they constitute strong phases.

The FSI allow the various final states of the weak decay to scatter elastically
or inelastically via non-weak interactions. Thus, the total amplitude for a par-
ticular decay 1 — f includes contributions from processes i — f' — f, where the
decay i — f' is weak, and the state f' subsequently scatters into f via the strong
(or electromagnetic) interaction. If the intermediate state f' is on mass shell this
generates an absorptive part in the amplitude. This is the origin of the CP-even
phase. Whereas the CP-odd (weak) phase originates in the weak decay i — f’,
the CP-even (strong) phase arises in the f’ — f scattering, and is dominated by
the strong interaction.

In perturbation theory, strong phases appear as absorptive parts in Feynman
loop integrals, which may be computed with the help of Cutkosky cuts. The com-
putation of the absorptive parts may be tiresome, because it requires that one
goes beyond Born approximation, and there may be many diagrams. Some au-
thors like to use a trick in which they avoid computing all those absorptive parts:
they only consider Born-approximation diagrams, but use Breit—-Wigner propa-
gators for the internal particles in those diagrams. Indeed, the imaginary part of
the Breit—Wigner propagator equals the absorptive part that would arise from al-
lowing the corresponding particle to be on shell. However, using a Breit-Wigner
propagator for a gauge particle may be inconsistent with gauge invariance. Also,
the Breit—Wigner propagator only accounts reasonably well for the absorptive
parts when the propagating particle is almost on shell. Besides, in the complete
computation there might be other intermediate states which might be put on
shell beyond the ones accounted for by the Breit-Wigner propagator.

In general, experimental information on the FSI for heavy-meson systems is
lacking, and it would anyway be hard to interpret, due to the large number of
available intermediate states f'. One must then rely on theoretical modelling.
For lighter mesons the situation is more favourable, as we shall see in particular
in Chapter 8.
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5.3 CP violation and interfering amplitudes

We next demonstrate that, if one wants to have CP violation in the transitions of
i and i to f and f only—omitting g and § for the moment—then the transition
amplitudes must be the sum of two or more interfering amplitudes with different
weak phases and different strong phases.

Weak phases change sign under CP, and we might think that, once there is
a CP-odd phase in an amplitude, CP violation automatically arises. To see that
this is not so, consider for instance that

(SITli) = Ae0+9), 1
(FITi) = Ae'6=9+0), (5.17)
Here, A is a real positive number, ¢ is a weak (CP-odd) phase, ¢ is a strong (CP-
even) phase, and 6 is a spurious phase, an arbitrary CP-transformation phase
which in general arises but has no bearing on the question of whether CP will
be violated or not. One immediately notices that the arrangement in eqns (5.17)
does not correspond to CP violation, since the phases of the amplitudes are
irrelevant, only their moduli matter. The quantity |(f|T|i)| — [(f|T[))| = A - A
vanishes, and therefore CP is conserved.

An alternative way to arrive at the same conclusion is the following. We know
from eqn (5.3) that CP is conserved once phases §; and &y such that

(fIT|i) = €& =4 (F|TY3) (5.18)
exist. Now, it is obvious that if we choose

&—E&r=20-0, (5.19)

then eqn (5.18) is satisfied. It is important to stress that & and s are free;
we have the right to choose them in the effort to obtain CP invariance of the
phenomenology.

As CP invariance holds when the amplitudes are as in eqns (5.17), let us
instead suppose that

<f|T|z) = Alei(51+¢1) + A2ei(52+¢2),

(fle — Alei(61—¢1+0) +Azei(62_¢2+9). (5.20)
There are now two interfering amplitudes; they have moduli 4; and A, CP-
even phases §; and §3, and CP-odd phases ¢; and ¢9, respectively. These two
interfering amplitudes may arise for instance from two different Feynman dia-
grams for the processes. The vertices of those diagrams would involve different
CP-odd factors, while absorptive parts or traces with 75 should also be present.
A spurious phase 6 is common in both partial amplitudes. CP violation is now
possible, because the moduli of the total amplitudes differ. Indeed,

KATI® = [(AITR)|* = —441 A2 sin (81 — 62) sin (¢1 — ¢2) - (5.21)
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In order to obtain CP violation, the interfering amplitudes must have different
strong phases (§; # d2) and different weak phases (¢; # ¢2). CP-even phases
are just as necessary as CP-odd phases in order to obtain CP violation.

Instead of the quantity in eqn (5.21), a more relevant quantity is the asym-
metry

(AT — AT _ —2A; Az sin (81 ~ &2) sin (41 — ¢2)
(AT + [(FITI)> AT+ Af + 2A1 As cos (61 — d2) cos (d1 — ¢2)
In order for the asymmetry to be large three conditions must be met:

(5.22)

1. the difference between the weak phases of the two interfering amplitudes
should be close to 7/2, i.e., cos (¢1 — ¢2) ~ 0;
2. the difference between the strong phases of the two interfering amplitudes
should be close to 7/2, i.e., cos (6; — d2) = 0;
3. the difference between the moduli of the two interfering amplitudes should
be small, i.e., A; ~ A,.
In the limiting case |¢p1 — ¢2| = |61 — d2| = 7/2 and A; = As, the absolute value
of the asymmetry attains its maximum value 1.

5.4 CP violation without strong phases

If we consider simultaneously the transitions to two different final states f and
g, and to their CP-conjugate states f and g, then CP violation may be observed
even in the absence of strong phases and of interfering amplitudes. Here we study
only the simple case in which f and g are two eigenstates of CP with the same
CP-parity. Suppose for instance that ny =, = +1, and that

(fITli) = Areil®rton),
(SITI) = AyeiGi=or+),
(9ITi) = Agei®at92),
(9|T[3) = Agei¥2—92+0),
The quantity in eqn (5.15), which we already know to violate CP, then is
(FITINGITIE) = (IITIEN(FITIE) = 2641 Az’ C ¥+ sin (6 — g2) . (5.24)

In this case, the strong phases §; and d; are basically irrelevant for CP violation.
They might be absent and CP violation would still exist. Only the weak phases
¢1 and ¢, are necessary.

In general, the quantity in eqn (5.24) will not be observable, because f and
g are in principle unconnected final states. Some relationship between these two
states must exist in order that a physical decay involves both of them simultane-
ously. This is precisely what happens in the decays of the neutral kaons to 7+ 7~
and 7%70. Indeed, these physical states are superpositions of two eigenstates of
CP with CP=+1—the state of two pions with isospin 2 and the state of two
pions with isospin 0. Those are the states f and g in that case. A quantity anal-
ogous to the one in eqn (5.24) is then defined to be the CP-violating parameter
€', as will be seen in Chapter 8.

(5.23)
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5.5 Hermiticity of the transition matrix

We shall be dividing the Hamiltonian H into two parts: the strong and electro-
magnetic Hamiltonian, which is dominant and is P, T, and C invariant, and the
weak Hamiltonian Hw, which violates the discrete symmetries and is treated as
a perturbation. Correspondingly, the transition matrix is written

T= Tstrong + Tweak, (525)

where Tgrong includes both the strong and electromagnetic interactions, and is
of order 0 in any weak coupling constant g.!? Equation (2.3) then yields

Tstrong - TsTtrong = z'Tstt:rongTStmﬂg’ (526)
Tweak - Tl:eak =1 (T;trongTweak + T‘,I,eakTstrong + TvteakTweak) . (5-27)

It may happen that, for some set of weak transitions i = f, i — f’, and so
on, Tstrong = 0, i.e., Sstrong = 1. This is the case when both the initial and the
final states of the transition are not scattered by the strong and electromagnetic
interactions In this case,

Tweak - Tt

weak

= iT‘:";eakTweak. (5.28)

Then, to first order in the weak coupling constants, Tweax is Hermitian. This is
because the right-hand side of eqn (5.28) is ~ g2. We shall consider instances of
this case later in the book, when we treat semileptonic decays of neutral-meson
systems in which there is only one hadron in the final state; in those cases, there
can be no final-state scattering due to the strong interaction, and Tsirong = 0.13
We now re-formulate, following Wolfenstein (1991), the reasoning above. Sup-
pose that strong and electromagnetic interactions do not cause the state 7 either
to decay or to mix with other states. The state i decays only via the weak
interaction. We expand the S matrix as a power series in the weak coupling g:

S=Sy+iI1+iTo+---, (5.29)

where T}, « g*. In this expansion, Sy is the S matrix for the strong and elec-
tromagnetic interactions. Unitarity of S implies S} = Sy* and T} = SJTS].
Therefore,

(FITTY =S (FISEEE | Ty IS ). (5.30)
if

As |i) is an eigenstate of Sy,

12In general, various weak interactions may exist. Those interactions may have different
coupling constants g. Then, Tstrong is that part of the transition matrix which does not depend
on any of the weak coupling constants.

13As a matter of fact, Tstrong is not zero even in this case, because of the presence of an
electromagnetic (Coulomb) final-state scattering. Only when this scattering is neglected, and
we only treat the weak interactions to order g, can we assert that Tyea) is Hermitian.
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(@'|S31i) = buri, (5.31)

i.e., i is stable under the strong and electromagnetic interactions, it decays only
weakly. The final state (f| may also be an eigenstate of Sp,

(FIS31S") = bs1, (5:32)
when there are no final-state interactions. Under these assumptions,
(FITTIE) = (fITal6), (5.33)

which means that T} is Hermitian for these particular initial and final states.

5.6 Consequences of CPT invariance
Now consider the consequences of CPT invariance. If

iy = CPTIe), (5.34)
|f) =CPTIf),
and as (from CPT invariance) (CPT) Ty CPT) ' = Tf , we have
(FITTI8) = (FITali)®
=> Z (FISSLEYF T 6| S 1) (5.35)
As |i) is an eigenstate of Sy, we obtain
(FITLfiys =Y (FISH (| Tud). (5.36)
f/
Then, using the unitarity of Sp,
S|FmB| = 33 SIS T 1S (T
f T
= Z FITL) Y (Tl D (FISSI SIS
" f
= Z Tuli) Y (" |Tuli)* 6 g
fll
= Z| Tyl (5.37)

The sum over states ehmmates from consideration the inversion of the momenta,
and spins originating in the T transformation. Therefore,

S [Amm| =3 [(AnB, (5.39)
f f

where 7 and f are the CP-conjugate states of i and f, respectively. We conclude
that the total decay widths of i and 7 are equal as a consequence of CPT invari-
ance. This precludes observation of a CP-violating difference between the total
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decay widths of a particle and its antiparticle, and constitutes an obstacle in the
study of CP violation.

Equation (5.37) is even more powerful because it applies separately to each
set of final states which is not connected by the FSI (by the action of Sp) to the
other possible final states. Weak interactions cause ¢ to decay to a multitude of
final states f, f', f", ..., which are connected among themselves by strong and/or
electromagnetic FSI, but are not connected by the FSI to the other possible final
states. Then, Sp is unitary in the subspace spanned by f, f', f’,..., and the
reasoning leading to eqn (5.37) holds. The CP-conjugate state of 4, i, decays
to the CP-conjugate final states f, f', f,.... CPT invariance forces the total
widths to be identical:

(AT + (T + 1Tl + -
= [(FIT)[* + [(FITB [ + [(F 1T + - (5.39)
However, the fact that there are final-state interactions connecting f, f', f",...
among themselves allows for CP violation to occur, embodied in different partial
decay widths:

(AT # [(FIT )]
(1T # [(FIT), (5.40)

(T # [Pl
Pais and Treiman (1975) have put forward a number of interesting instances

of this. For instance, let X¢ denote a sum over all possible hadron states with
total strangeness S. Then, CPT invariance implies

r (D+ — l+V1X_1) =T (D_ — l_ﬂle) R (5.41)
r (D+ — l+V[X0) =T (D_ — l_ﬂlXo) . (5.42)

As another example, consider the two-pion and three-pion decays of the charged
kaons. Because of G-parity, which is a particular combination of C symmetry and
isospin symmetry, and as such is preserved by the strong interaction—but not
by electromagnetism—, a state with an even number of pions cannot scatter into
a state with an odd number of pions, and vice-versa. Two-pion final states are
thus disconnected from three-pion final states. Thus, when the electromagnetic
FSI are neglected,

)

D(Kt = ntn%) =T (K~ -« 1), (5.43)
preventing CP violation in the two-pion decays. On the other hand, CP violation
in the three-pion decays may occur, but CPT still imposes a condition on it:

L (Kt = nta®r®) =T (K~ = 7~ n%0)
=LK~ = ntn"n") -T (Kt > n ntat). (5.44)
In order to have CP violation in the partial decay rates, as in eqns (5.40),
final-state-interaction phases are essential. The picture that one should keep in
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mind is a process i = f' — f, where the decay i — f’ is weak and then there is
a final-state scattering f' — f; if it is possible to put the intermediate state f’
on shell, CP violation may arise.

The consistency with the requirements of CPT invariance—that total semi-
inclusive widths should be equal for particles and antiparticles—should always
be carefully checked in any explicit computation. It is easy to run into pitfalls, as
was shown in particular examples by Gérard and Hou (1988, 1989) and Soares
(1992).

5.7 T violation and T violation

CP-violating (CP-odd) observables may be either T-o0dd, and then they are CPT-
even, or T-even, and then they are CPT-odd. Observables of the first kind typ-
ically are triple cross products constructed out of the momentum and/or spin
vectors of the particles in some process; say, 7, (5» X p.). What violates CP is the
difference between the expectation value of such an observable for a process and
for the CP-conjugate process, viz., (Dy. (Py X Pe)) — (Pa. (P X Pz)). Observables
of the second kind typically are partial-width asymmetries, as in the previous
section. R

The difference between T and T must be stressed. T involves an interchange of
initial and final states which, in a quantum-mechanical problem, is impossible to
reproduce in the laboratory; the final state of a scattering or decay is a coherent
superposition of outgoing quantum-mechanical spherical waves, and setting up
an apparatus which would produce the T-reversed state, a coherent superposition
of incoming spherical waves, is impossible (Lee 1990). This is the reason why
one cannot directly test T symmetry in the laboratory, and must have recourse
to consequences of that symmetry, like the principle of detailed balance—see
eqn (2.33).

If final-state interactions may be neglected, then violation of T implies vi-
olation of T. This is because, in that case, the transition matrix T is, to first
order in the weak interactions, Hermitian. Now, T invariance implies |(f|T|¢}| =
[¢iT|T| fr)|, where fr and it are the T-transformed states of f and 7, respectively.
If T is Hermitian, we then have |(f|T|i)| = |(fr|T|i7)|, which means precisely T
invariance. Thus, when FSI are absent, T invariance implies T invariance, and
therefore violation of T implies violation of T.

Conversely, FSI may lead to T violation without the occurrence of any T
violation (and, from the CPT theorem, CP violation). Thus, T violation does
not have to correspond to CP violation; a non-zero value for the triple product
of momenta and/or spins should be confronted with the analogous observable
in the CP-conjugate process in order to ascertain CP violation (Rindani 1995;
Yuan 1995).
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NEUTRAL-MESON SYSTEMS: MIXING

6.1 Introduction

In this and the next chapter we discuss the mixing and decays of the P° and
PO mesons. In our notation, P® may refer to either K°, D%, BY, or BY. We deal
here with the general phenomenology relevant for any neutral-meson system.
The specifics of particular systems will be discussed later. L

If only the strong and electromagnetic interactions existed, P and P9 would
be stable and form a particle-antiparticle pair with common mass mg. Because
of the weak interactions, P° and P° decay. Moreover, neither electric-charge
conservation nor any other conservation law respected by the weak interactions
prevent P° and PO from having both real and virtual transitions to common
states n. As a consequence, P° and P° mix, i.e., they oscillate between themselves
before decaying. Similarly, there are theoretical speculations about the possible
mixing of neutrinos and, if baryon number is not conserved, of the neutron and
antineutron.

Thus, |P°) and |P®) are eigenstates of the strong and electromagnetic in-
teractions with common mass mo and opposite flavour content. Since flavour is
conserved in the strong and electromagnetic interactions, (P°|P%) = 0. When
the weak-interaction Hamiltonian Hw is switched on, |P%) and |P°) both mix
and decay to other states.

6.2 Mixing
In principle, we would like to consider the evolution of a state of the general
form

a(t)|P%) + b(t)[PO) + c1(8)|n1) + ca(t)|n2) + es(t)na) + -+,

where n;, n2, and so on, are states to which either P? or PO may decay, and t is
the time measured in the P°—PO rest frame. The evolution of such a state is in
general very complicated. If however

e for t = 0 only a(t) and b(t) are non-zero, while all ¢;(0) = 0,

e we want to compute only the values of a(t) and b(t), not the values of the
Ci(t)a

e the times ¢t in which we are interested are much larger than the typical
strong-interaction scale,

then a great simplification is achieved, as was first shown by Weisskopf and
Wigner (1930a,b). In the Wigner—Weisskopf approximation, which we shall use
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throughout, a beam of oscillating and decaying neutral mesons is described, in
its rest frame, by the two-component wave function

[%(2)) = $1())|P°) + %2(8)| PO, (6.1)
where t is the proper time. The wave function evolves according to a Schrédinger-
like equation:

.d (i Ri; Ryo (#’1
= = . 6.2
"t (7/)2) <R21 Rz ) \ ¥2 (62)

The matrix R is not Hermitian, else the mesons would just oscillate, they would
not decay—see eqn (6.9) below. It may be written

R=M - iT, (6.3)
with
M = M*t, 6.0
r=rt '
Clearly,
M = YR+ R,
2B+ R (6.5)
I =i(R- RY).

The matrices M and I' are given, in second-order perturbation theory, by sums
over intermediate states n:

Mij = mobij + (i[Hwli) + > plil V:’rl:)f"é wlj)

Ty =215, 8(mo — En) il Hwln) (nlHwlj).

b

(6.6)

The operator P projects out the principal part. The intermediate states con-
tributing to M are virtual, while the ones contributing to I' are physical states
to which both P® and PO decay. The latter states may be grouped together in
decay channels ¢ for which, by definition, the matrix elements of Hy are the
same. For instance, decay channels group together states with the same quan-
tum numbers, but with the decay particles flying off in different directions. The
density of states of each channel is

pe =Y 8(mo— En,). (6.7)
Ne
Therefore, another way to write I';; is
Ty =21y pelilHwle) (c[Hws)- (6.8)
c

From eqns (6.2)—(6.4) it follows that
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% (|¢1|2 + |1/)2|2) =— (¢ ¥3)T (32) : (6.9)

The mesons P° and PO decay, therefore the left-hand side of the above equation
must be negative for any values of 1; and ;. Hence, I is positive definite, i.e.,
I'11, a2, and det T are positive.

In quantum mechanics, all kets may be rephased at will, no measurable con-
sequences following from the rephasing of a ket. We shall be careful to keep the
phenomenology of neutral-meson mixing and decay invariant under the rephas-
ings

|P°) — ™| PP),

— N (6.10)

| P%) — e*7|PO).
The diagonal matrix elements of R are invariant under this rephasing, but the
off-diagonal ones are not:

Mz — e =M My,
12 = 0=y,
My = €077 My,
T2 = =MDy,

(6.11)

as can be seen from eqns (6.6). As a consequence, from the eight real numbers
(four moduli and four phases) in R, only seven have physical significance.

The two eigenstates of R may be distinguished by labels a and b. Since R
is not Hermitian, its eigenvalues are complex and we write them p, = m, —
(i/2)Tq and pp = mp — (i/2)I'y, where m, and my are the masses of P, and Py,
respectively, while I'; and I' are their decay widths. Let us denote Am = my,—m;
and AT' = T', — I',. At this stage the labels a and b do not have any physical
meaning. Hence, the signs of Am and of AT are arbitrary. However, their relative
sign has physical significance: it indicates whether it is the heaviest or the lightest
state which lives longer.

In fact, there are three distinct questions begging an answer (Azimov 1990):
Which, P, or Py, is the heavier eigenstate? Which eigenstate lives longer? And,
which eigenstate decays most often to a particular CP-even (or CP-odd) final
state? Neither of these questions has physical meaning in itself, because a and b
are meaningless labels, i.e., P, and P, are a priori equivalent and we have not
yet defined a way to distinguish them. However, the relative answers to those
questions are physically meaningful.

For the B°-B9 systems it has become customary to choose the mass of the
eigenstates as label: a = H and b = L for the heavy and light eigenstate, respec-
tively. Then, Am is positive by definition, while both the sign of AT and the
dominant CP content of the eigenstates are physically meaningful. A different
nomenclature is used in the K°-K0 system. There, the lifetimes of the eigen-
states are widely different and one uses them to label the eigenstates: a = L
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refers to the long-lived neutral kaon K, and b = S refers to the short-lived neu-
tral kaon Kg. Then, AT < 0 by definition, and the experimental determination
of the sign of Am is necessary. It turns out that K, is heavier than Kg: Am > 0.
Moreover, K is found to decay predominantly into CP-even states.

In this book we label the states by their mass: Py is the heaviest eigenstate
and Py, is the lightest one. Henceforth,

_mpyg+myp,
m=T
Tu+Ty (6.12)
r=——~=,
2
while
Ap = pg - pr
= Am — AT,
™ (6.13)
Am =myg —myp,
ATl = FH - FL.

The mass difference Am is positive by definition. The sign of AT is physically
meaningful.'4

In the different neutral-meson systems these observables have different orders
of magnitude and, therefore, different approximations are justified. Of course,
any given expression may be written using either the quantities on the left-
hand side or those on the right-hand side of eqns (6.12) and (6.13), but the
physical interpretation is typically more transparent with one choice than with
the other one. In the kaon case the lifetimes are widely different and writing the
decay widths in terms of I's and I'f, highlights the fact that the K's component
disappears much earlier than the K one: after a while we have an almost pure
K| beam. On the other hand, in the B and D systems the decay widths are
expected to be very similar and it makes more sense to use I' together with a small
modulation dependent on AT'. It is then useful to introduce the dimensionless

parameters A
m _ AT
T, Y= —2T. (6-15)
The range of y is from —1 to 1, approaching these limiting values when one decay
width is much larger than the other one, as in the kaon case. On the other hand,
z is positive by definition. We find it useful to define another parameter:
__ar y

x

14Be careful to note that my and my are not the eigenvalues of M, and 'y and I' are
not the eigenvalues of I'. Still,
trM = my +myp = 2m,

trI' = T’y + T = 2. (6.14)
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The parameter u happens to be very close to 1 in the kaon system. In the other
neutral-meson systems its value has not yet been experimentally determined.

6.3 Discrete symmetries
The CP transformation interchanges P° and P?. Choosing (CP)? = 1,

CP|P°) = ¥|PY),
il _ (6.17)
CP|PO) = e~i€| PY).

Analogously,
CPT|P°) = ei*|PY),

— , (6.18)
CPT|P%) = et |PY).
Here we have taken into account the fact that CP7T is antiunitary, contrary to

CP which is unitary. From eqns (6.17) and (6.18) we get

T|PO) — ei(u—5)|P0),
—_ ) — (6.19)
T|PO) = eilv+6)|P0),
Both 7 and CPT interchange outgoing with ingoing states. However, as P® and
PO are taken to be in their rest frame, we do not have to concern ourselves with
that point.
The phases £ and v are not invariant under the rephasing in eqn (6.10), rather

E> &+ 7 (6.20)
Vo v—vy-—7.

We emphasize that the phases £ and v must not be seen as defined a priori.
Rather, CP invariance exists if there is any phase £ such that the phenomenology
is left invariant by the transformation in eqns (6.17). Analogously, there is CPT
invariance if one can find a phase v such that the transformation in eqns (6.18)
leaves the phenomenology invariant. Strong and electromagnetic interactions are
invariant under the CP and CPT transformations for any choice of the phases
¢ and v, in the same way that quantum electrodynamics is invariant under the
P, T, and C transformations of the field v, for any choice of the transformation
phases (3, in eqn (3.63), B; in eqn (3.66), and f. in eqn (3.69), respectively.

We may define eigenstates of CP

Py) = (|P°) + elf@)) . (6.21)

The factor 271/2 is for normalization. The kets |P.) are the eigenstates of the
CP transformation in eqns (6.17) corresponding to the eigenvalues +1. Notice
the following two points:
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1. A choice of the relative phase of |Py) and |P-) was implicitly done when
writing down eqns (6.21). Indeed, we chose (P°|P,) to have the same
phase as (P°|P_). Whenever using eqns (6.21), one should be careful not
to attribute physical significance to any phase which would vary if the
phases of |P;) and of |P-) were to be independently changed.

2. The phase £ of the CP transformation in eqns (6.17) is arbitrary and devoid
of physical meaning, as we emphasized in the previous paragraph. This fact
is a further source of arbitrariness in the definition of |Py.).

We shall not be using the states |Py) in the rest of this book.

Let us consider the CP-, CPT-, and T-invariance condmons on the matrix
elements of M and I‘ Defining Hcp = (CP) Hw (CP)!, and similarly Hepr =
(CPT)Hw (CPT)™" and Hy = THwT !, we derive for instance

11 =271 Y 8(mo — En){P°[Hw|n)(n|Hw|P°)
= 27r§nj&(mo - Ey) (e-fﬁ (PO[Hop|m)) (e (mlHcr|PY))
= 2w26 mo — En)(PO|Hep|n) (nHop | P)
= 2r'33(mo - E2) (e-""@mcpﬂm)' (c* lHcrrlP))’
- 27r25 mo — En)(PO[Hoprin)(n|Hopr | %)
—on Z 5(mo — Ey) [ (& POy [ (nlmx| PY)]
= 27r2<5 mo — En)(P°|Hr|n)(n|Hr|P°).

We conclude that CPT and CP invariance (Hcpr = Hw and Hcp = Hw,
respectively) imply I';; = Tz, while T invariance (Ht = Hw) does not have
any consequence for I'y;. In a similar way we derive all the results in Table 6.1.
We discover that CP symmetry is equivalent, in the case of M and T, to the
simultaneous existence of CPT and T symmetry.

Since the phase £ is arbitrary, and since M and I' are Hermitian, the equa-
tions M1 = exp(2i€) M2 and I'y; = exp(2i€)I'12, which follow from either T or
CP symmetry, are not a constraint when taken separately. They only acquire a
meaning when taken together. They mean that

Table 6.1 Effects of the discrete symmetries.

Symmetry Diagonal elements Off-diagonal elements
CPT My, = My, 11 =T9e no effect
T no effect My = exp( 'E)Mlz, Ty = exp( '£)F12
CP My = Moz, I'1y = Tag My = exp(2i§) M1z, a1 = exp(2i€)T'12
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Im (M{,T'12) =0 (6.22)

or, equivalently, that
|Ri2| = |Ra| (6.23)

if either T or CP symmetry hold.
It is convenient to introduce the real dimensionless T- and CP-violating pa-

rameter \Ria| — |Rai]
6= 2 Al 6.24
|Riz| + [Ra1| (6.24)
and the complex dimensionless CPT- and CP-violating parameter
_ Ro2 — Ry
0= Ay (6.25)

Together with the two complex masses pgy and pr, the parameters § and # may
be taken to be the seven observables in R.

Notice that —1 < § < +1 by definition. There is however a stronger bound
on |8] when 2 |Mjz| # |'12|. We define the phase

w = arg (M]512), (6.26)
which is manifestly rephasing-invariant—cf. eqn (6.11). Then,

1) _ 2|M12I‘12|sinw

= . 6.27
14602 4|Mys|? + |12 (6.27)
From this equation it follows that
|T12]
8 < ,
I ’ — 2 |M12|
(6.28)
9] < Mzl
= |Tyof
Thus, |4| can only reach 1 if |T'j2| = 2| M2
6.4 The mass eigenstates
The eigenvalue equation for R yields
Au = \/4R12R21 + (Rzz - R11)2, (629)
or equivalently
(Ap)® (1-6?) = 4R12Ra1. (6.30)
The eigenvectors of R may be written
Py) = pu|P°) + qx|PY),
|Pr) = pu|P®) + qu|P°) (6.31)

|P) = pL|P°) — qr|PY).

The signs in front of gy and qr are just a convention, which may differ among
different authors, or even from one neutral-meson system to another within the



THE MASS EIGENSTATES 67

same paper. The normalization conditions are |pg|? + |qx|? = |pr|? + |q|? = 1.
The diagonalization of R fixes the ratios
91 _ Au(l+6) _ 2Ry
PH 2Rq2 Ap(l-06)’
_q_L_ _ A/L(l - 9) — 2R21
pL 2Ry Ap(l+6)
Their magnitudes, |gu/pu| and |qr/pL|, are measurable. On the other hand,

their phases do not have any physical significance. Indeed, under independent
rephasings of the flavour eigenstates, see eqns (6.10), and of the mass eigenstates,

|Pr) = €| Py),
|PL) = €% |PL),

the coefficients get transformed as

(6.32)

(6.33)

g = e Vg,
— ei(’YL -7) ,
qL A qr (6.34)
pr = €0 Vpy,
pL - ei('YL""Y)pL.
Therefore, the only relevant phase is that of the ratio
_ W/pn (6.35)
ar/pL
We may use eqns (6.32) to show that
5= lpL/qc| — lgu/pH| (6.36)
lpr/qcl + lau /pE|’
- qu/pH — qL/PL
qu/pH +qL/pL

_¢-1
=5 (6.37)

Hence, CPT is violated to the extent that gy /py differs from qr,/pr, while T is

violated if |pr/qr| # |qr /PH| .
Contrary to what happens with P° and P°, Py and P; have exponential
evolution laws with well-defined masses and decay widths. Thus,

|Pr(t)) = e~ "5t |Py) = e~ mute Tut/2| pyy,
|PL(t)) = e~#et|Pp) = eimete=Tut/2|pp).

The symbol ¢ always refers to the time measured in the rest frame of the decaying
particle.'> From eqns (6.38),

(6.38)

15 As we have seen, Py and Py have different masses and, hence, different rest frames. Still,
in the Wigner—Weisskopf approximation ¢ is the time measured in the rest frame given by the
common mass mo from the strong and electromagnetic interactions.
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[(P°|Pe()|* = 7Tt | (P Prr) |7,
J— 2 . 2 (639)
|(PoIPa@®)| = e |(POIPw)|

which displays an exponential fall-off in the probabilities to observe a P ora
PO, identifying 'y as the decay width of Py. Similarly, I'y is the decay width
of P L-

The bracket (Pg|Pr) has an ill-defined phase, because the relative phase of
| Pg) and |Pp) has not been fixed, see eqns (6.33). But

2 _ 1+|gu/pu|’lgr/pr|® — 2Re [(gn /pH) (gL /pL)*]
|(Pr|PL)|" =
(1 + lgu/pul?)(1 + la/pLl?)

_ 2|Ria|* + 2R | — |Ap[*(1 - |6%)

 2|Rizf? + 2[R |2 + [Apf2(1 +16]2)

_ (1401 -6 - (1-6*)(1-18°)

T+ -6+ (1-62)(1+102)°
Therefore, (Py|Pr) = 0 if and only if both § and Im @ vanish. This means that
CP invariance in mixing (§ = § = 0) implies (Py|Pr) = 0, but the converse is
not true: (Py|Pr) may vanish while Re 6 does not, with CP and CPT thus being
violated.

(6.40)

6.5 Unitarity

At any instant ¢, the state |1(t)) = 1 (t)|P°) + 12(t)|P°) decays to a state f
with a probability proportional to

AT @) = [aPKATIPO) + [P [(FITIPO)
+2Re (Y13 (FITIP)AITIPO)") (6.41)
We assume that the final-state kinematical factors and integrations are already
incorporated in the definition of T, in such a way that the probability that 1
decays to f between instants ¢ and t + dt is given by |(f |T|1/)(t‘))|2 dt. Thus, the
matrix elements of T have dimension square-root of mass.
Because of the unitarity of the evolution, the norm of the total state vector

must be conserved. Thus, the decrease in the norm of |¢(t)) must be compensated
by the increases in the norms of all decay products:

_ _d@®)®)
Xf: (AT @) = S Ta—

d
= —= (0l + 1al*). (6.42)
Remembering eqn (6.9), we see that, as 1; and v, are arbitrary,

Tu =y [(fITIPO)P, (6.43)
f
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T =y [{fITIPO)P, (6.44)
f

i = ) (fITIP%)*(fIT|PO). (6.45)
f

Equations (6.43)-(6.45) are the unitarity relations (Bell and Steinberger 1966).
Notice their similarity with eqn (6.8).
Let us define
T2

From the second eqn (6.14) we know that 2I' = I';; + I'so. Therefore,
2|50 (FITIPO)* (FITIPY)|
z= (6.47)

3 (KATIPOYR + (FIT[PO)2)

It follows that z < 1.

We may derive other unitarity relations, equivalent to the above ones, by
repeating the reasoning in a slightly different form (Bell and Steinberger 1966).
We assume that at instant ¢ = 0 the state |1(t)) was equal to x g |Pw) + x| PL)-
Thus, . .

[¥(t)) = xme™ ™! |Pg) + xre~"**|PL).

The norm of this state is
WOIH(®) = Ixml?e 5 + [xo P74 + 2Re [xirxweTHAM Py | PL)]

The rate of decrease of the norm at instant ¢ = 0 is

_ d@@)ly()

T =Tylxu|®> + Trlxc|* + 2Re[(T — iAm)x}yxL(Pu|PL)] .

t=0

This rate of decrease must equal

ST HATON? = > Ixu (FITI1Pr) + xc{fITIPL) .
f f

Therefore, as x g and xj are arbitrary,

Tu=Y_ [fITIPa)* =) Ty, (6.48)
f f
Tp =Y [(fITIPYP = Ty, (6.49)
f f
(T —iAm)(Pu|PL) = Y (fIT|Pu)*(f|T|PL). (6.50)
f

We have introduced here the partial decay widths of Py and Pj, to the channel
f, which we have named I'yy and I'sy, respectively.
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Defining
(fIT|Pr)
¢5 =ar , 6.51
= TR (651
one may write eqn (6.50) as
(T +iAm) (P |Pg) =Y /TyuTyL e’ (6.52)
f

From this unitarity relation we derive the Bell-Steinberger (1966) inequalities

2
(PulPan)E < (Zf \/FfHFfL)
=TT (Am)?
Culp  _ 1-3?
“I2+(Am)2 1422’

(6.53)

(6.54)

This upper bound on the overlap of |Pg) and |PL) is called the unitarity bound.
The overlap is a CP-violating quantity, as we know from the previous section.
Still, remarkably, it is possible to put an upper bound on it exclusively from the
knowledge of the non-CP-violating observables z and y.

6.6 CPT-invariant case

From now on we shall, unless otherwise explicitly stated, assume CPT not to
be violated. If CPT is a good symmetry the matrix R, instead of having seven
real observables, only has five, because 6 vanishes. From eqns (6.32) it is clear
that, when CPT invariance is assumed, qu/py = qr/pL. As IpHI2 + |qH|2 =
IpL|® + lqz|® = 1, we conclude that py and py then have the same modulus. It
is convenient to fix the relative phase of |Py) and |Pr) in such a way that py
and py, also have the same phase and are therefore equal. Once this is done, gy
and q;, become equal too. We thus write simply'®

|Prr) = p|P°) + ¢|PP),

\PL) = p|P%) — ¢|FF). (6.59)

Equivalently,

P9 = 2—11,<|PH> L 1P,
_ (6.56)
IP0) = ;—unH) _\Pwy).

It is important to stress that, once CPT is violated, this phase convention for
the relative phase of |Py) and |PL) becomes ill-defined. When gy /py # qr/pL,

16Note that some authors use |Py) = p|P°) — ¢|PO) and |PL) = p|P®) + q|P%) instead of
eqns (6.55). This is a simple matter of convention, but it leads to formulas that differ from
ours by ¢ & —gq.
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fixing the phases of py and pr to be equal does not lead to gy and ¢y with
the same phase, and vice versa. Therefore, in the CPT-violating case there is no
advantage in making any particular phase convention for py /py, or for qu/qr.

It is important to note that, if we interchange |Py) and |Pr) in eqns (6.55),
we have ¢/p = —q/p, together with Am — —Am and AT —» —AT'. Thus, the
sign of q/p, just as that of AT, acquires a meaning only relative to the sign of
Am. In this book we choose Am > 0 by convention.

We have ‘
Au =Am — %AF = 2\/ R12R21. (657)

The relative signs of v/R;2 and v/R2; are chosen so that Am > 0. One derives
from eqns (6.32) that

Q__ Au _2Mp-ily, _ MG iy -
p  2Mi3 — il Ap 2M;5 — il

By definition |p|? + |g|? = 1. Notice that ¢, p, and ¢/p are not invariant under a
rephasing of the kets and, therefore, their phases cannot be measured.

Once we have assumed the phase convention for the relative phase of |Pg)
and |Pp) embodied in eqns (6.55), the bracket (Py|PL) becomes real. Indeed,
we have, for the T- and CP-violating parameter § introduced in eqn (6.24),

& = |p|* — lgI* = (PL|Pr). (6.59)
Thus,
2 146
o = 222,
o1 (6.60)
q" = ——

Squaring eqn (6.57) and separating the real and imaginary parts we obtain

(Am)? — $(AT)? = 4|Mya|? — T1a/?, (6.61)
(Am)(AT) = 4Re (M?,T12). (6.62)

On the other hand, from eqn (6.24),

5= 2m(Miglhy) (6.63)
(Am)® 4 [T1z?

It is easy to invert the system of eqns (6.61)—(6.63) to find
4(Am)? + §2(AT)?

|M12|2 = 16(1 — 62) ) (664)
2 2 2

From eqn (6.65) it follows that |T5|° > (AT)? /4. Therefore, 22 > y2.
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Equations (6.64) and (6.65) may be inverted:

4|Mys|? — 6%|T12)?

2 _
(Am)* = 1592 , (6.66)
4|T12)? — 166%| M12|?
(AF) T o . (6.67)
It is useful to derive the identities
q _ y+idr
pl"n =915 (6.68)
q x — iy
= = r .
pMm REGR (6.69)
and
qg [1-0 —u+1i
» = ViTs exp (targI'},) N (6.70)
1-46 14 idu
Y exp (Z arg M12) W (671)

We have used the quantities z, y, and u defined in eqns (6.15) and (6.16). The
square roots in eqns (6.70) and (6.71) are positive by definition. Indeed, in de-
riving those equations we have used the convention that Am is positive.
From eqn (6.65) we derive
2 _ 2
=Y 72
22 + x2 (6:72)
Therefore, §2 is a monotonically increasing function of z2. The bound 22 < 1
corresponds to the unitarity bound of eqn (6.54),
1-92
6 < :
~ 142z

(6.73)

Sometimes eqn (6.45) enables us to place a bound on z way beyond 22 < 1. If
this can be done, we obtain from eqn (6.72) a bound on |§| better than the one
in eqn (6.73).

6.7 The case of CP conservation

From Table 6.1 we see that, if CP is conserved, then

21
My, = e¥® My,

— 24
;2 =€ 5I‘12.

(6.74)

Then, from eqn (6.58),
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1 _ peit, (6.75)
p
The phase £ appears in the CP transformation in eqns (6.17). Therefore, CP
invariance implies
CP|Py) = %|Py),

CP|PL) = F|PL),

i.e., |Pg) = |P+) and |Py) = |Pg). This means that the eigenstates of the
Hamiltonian are also eigenstates of CP and have opposite eigenvalues.

The sign in eqns (6.75) and (6.76) must be taken from experiment. Only
experiment can determine whether the heaviest eigenstate is mainly CP-even
and the lightest eigenstate is mainly CP-odd, or the opposite situation occurs.
This applies for each neutral-meson system separately.

(6.76)

6.8 The reciprocal basis

An important consequence of CP conservation is the unitarity of the transfor-
mation which relates the flavour eigenstates with the mass eigenstates. Indeed,
when CP is conserved the matrix R, although not Hermitian, commutes with

its Hermitian conjugate. Matrices R satisfying [R, RT] = 0 are called ‘normal’
matrices. It can be shown that

[R,RT] —0&[M,I]=0&6=Imf =0 (Py|PL) = 0. (6.77)

Moreover, there is a theorem stating that a matrix is normal if and only if it can
be diagonalized by a unitary transformation.

Notice that the crucial point is not whether the matrix R is Hermitian or not
but, rather, whether R commutes with its Hermitian conjugate or not. Indeed, if
both M and I' are non-zero then R is not Hermitian; still, R can be diagonalized
by a unitary transformation as long as [M,T] = 0.

On the other hand, we can see already from eqn (6.40) that |Py) and |Pr)
are not orthogonal if either § # 0 or Im# # 0. This is due to the fact that the
transformation in eqns (6.31), given by the matrix

X = (pH PL ) , (6.78)
g —4L
is not unitary. In order to see this, consider for simplicity the CPT-invariant
case:
X = (p P ) (6.79)
q —q
Then,
16 1446 O
Ty — t—
XX_(&I)’ XX_(0 1_5>, (6.80)

where use was made of eqns (6.60).
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In fact, if R is not normal then it is not diagonalized by a unitary transfor-
mation XTRX, but rather by a general similarity transformation:

X'RX = diag (um, p) - (6.81)
Here,
1
X—-l - - (‘JL DL ) (682)
PHYL +prLqey \9H —PH

is the matrix inverse of X. Since X is not unitary, the left-eigenvectors of R,
(Pg| and (Py|, are not the Hermitian conjugates of its right-eigenvectors |Pg)
and |Pp). Indeed, (Py| and (Py| are obtained from X ~1:

- 1 -
Pyl= — PO + pr(PY]),

( HI PHYL + PLAH (qL< l pL( [) (6 83)
- 1 — :
Pl=— PO — PO} .

(P PHAL + PLQH (qH< | = pa l)

The vectors |Py) and | PL) form the ‘reciprocal basis’ (Sachs 1963, 1964; Enz and
Lewis 1965; see also Alvarez-Gaumé et al. 1998) of the basis given by |Py) and
| P). The reciprocal basis may alternatively be defined through the equations

(Py|PL) = (PL|Pg) =0,

The need for a reciprocal basis is common to all quantum-mechanical problems
in which the effective Hamiltonian yields a matrix which is not normal—see for
instance Lowdin (1998).

Equation (6.81) means that

R = py|Py){(Py| + p|PL)(Py|

! [uH (pH> (a2 pL) +pe < Pr ) (an _PH)] - (6.85)

" PHAL + PLOH qH —qr

Moreover, it follows from eqns (6.84) that | Py )(Py| and | Pp)(Py| are projection
operators, and in particular

|Pu)(Pu| + |PLY(PL| =1, (6.86)

, |Pu){(Pu| + |PL){PL| constitutes a partition of unity, just as |P°)(P°| +
|P0)<P°| As a result, the time-evolution operator for the neutral-meson system
is

exp (—i Rt) = e" Hat | Py)(Py| + e 4Lt |PL)(Py). (6.87)

As an application, let us consider the decay chain ¢ - X{Py,Pr} - X f in
which an initial state 7 decays into an intermediate state X Py or X Py, which
after a time ¢ decays into the final state X f. The complete amplitude for this
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process involves the amplitude for the initial decay into X Py or X Py, the time-
evolution amplitude for this state, given by eqn (6.87), and finally the amplitude
for the decay into X f. Suppressing the reference to X, we find

A= Pur — f) = (fIT|Pu) e *#1* (Py|Tli) + (f|T|PL) e~*#+* (PL|Tli).
(6.88)
This is an exact expression. However, sometimes it is possible to choose a final
state f and to set the experimental conditions in such a way as to maximize the
importance of i - X Py — X f relative to ¢ & XPyr, — X f. In that case we
may make the approximation
A(t— Py — f)~A(i— Py — f)
= (f|T|Pu) e™*#4* (Py|T|i)
= (fIT|Pu) €= 4" [(PulPO)POITL) + (PulPOYPOIT)]
(6.89)
where we have used the partition of unity 1 = |P°)(P°| + |P%)(PY] to derive the
last line. When one uses the approximation in eqn (6.89), one talks about ‘the
decay i = X Py’,'" and writes
A(i & XPy) = (Py|P°) A(i - XP°) + (Py|P A(i - X P9)
=1 [p-lA(i — XP%) + ¢ 1AG — Xﬁ)] , (6.90)

where, in the last line, we have assumed the CPT-invariant case:
(Pul =} (5 (P° + a7 (PY)),

. (6.91)
L (p7 (PO - (PY).

(P

Therefore, the ratio of the two component amplitudes in eqn (6.90) is given by
q~1/p~! = p/q, and not by ¢*/p*—as would have been the case if we had used
(Pg| instead of (Py|. The difference between ¢~!/p~! and ¢* /p* only disappears
in the limit |¢/p| = 1. This will be important in § 33.1.2 where we study the
decay BY — J/¢Ks.

17Nevertheless, strictly speaking, it is eqn (6.88) which expresses the correct way to think
about decays into neutral-meson eigenstates (Enz and Lewis 1965; Kayser, private communi-
cation). The point is that, since CP is violated, there is no final state f that can be obtained
only from Py and not from Pr. There will always be a non-zero amplitude for the decay
path ¢ - XPr — X f. We shall come back to this point when we discuss cascade decays in
Chapter 34.



7

NEUTRAL-MESON SYSTEMS: DECAYS

7.1 The parameters \;

Consider the decays of P® and PO into a final state f. Phenomenologically, there

are two independent decay amplitudes,'®
A; = (f|IT|P%),
iy = (] |_0> (7.1)
Ay = (f|T|P%),

entering in the description of those decays. Physics must be invariant under the
phase redefinitions in eqns (6.10) and also under

) = €| f). (7.2)
The phases v, ¥, and vy are independent. Under these rephasings,
Ap = e A,
/if - ei(:’_ﬂ’f)z&f, (7.3)
9, ¢itr-n1,
p p

We see that the quantities which are rephasing-invariant, and therefore have a
chance to be observable, are the magnitudes

q —_
5’, A, 141, (7.4)

and the complex parameter
As

hSES

f
A—f. (7.5)
From the quantities in eqns (7.4) and (7.5) only four real numbers are inde-
pendent: three moduli and one phase. However, in the following discussion the
question of independence is not important.

It is sometimes convenient to use
1
A_f.

X (7.6)

Some authors use different definitions for A\. We use the notation in eqn (7.6) for
all decay modes f, avoiding any confusion.

18We shall implicitly assume the squared amplitudes to incorporate the relevant phase-space
factors and integrations. Hence, all |A|2 have mass dimension.
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If there were CPT violation in the mixing, we should construct two parame-
ters A¢, namely

f = A’

br 21 (7.7)
L Ay
= pr Ay’

which are invariant under rephasings of both the flavour and the mass eigenstates.
Obviously,

H
Af _au/pH _ (78)
eooa/pr
so that A and /\f: are equal in the CPT-invariant case.
It is also useful to consider the decay amplitudes for the mass eigenstates,

AY = (fIT|Pu) = puAs + qu Ay,

- 7.9
Az = (fIT|PL) = pLAs — qr Ay (79)
Then, the relevant invariant quantities are
H H
p—Li—sz 1“1. (7.10)
Alternatively, one may use
AR 14 0
e MR (7.11)

L — _1.13L°
QHAf —1+)\f

The quantities in eqns (7.10) and (7.11) are related through (. They are equal
in the CPT-invariant case.

7.2 CP-violating observables
7.2.1 Final states which are not CP eigenstates

We consider the decays of P° and PO to f and to the CP-conjugate decay channel
f. We assume f and f to be distinct.

If CP is conserved in the mixing, we know from eqns (6.74) and (6.75) that
there is a phase £ such that

Mf2 = CZiéMlz,
1-“{2 = €2iEF12,

: (7.12)
4 _ i
P
From eqns (7.12) follows the condition of CP conservation in the mixing:
11216 sinw=0, (7.13)

as we saw in the previous chapter.
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CP transforms o
CPIf) = e*|f),

CPIf) = 1)),

Together with eqn (6.17), this leads to the CP-invariance conditions for the decay
amplitudes

(7.14)

Af = ei(ff—g)Af’
Af — ei(EH'OAf.

From eqns (7.15), after elimination of the arbitrary phases ¢ and ¢, the condi-
tions for CP conservation in the decay amplitudes follow:

(7.15)

(7.16)

These conditions are just what one would expect: the probabilities of the decays
of P to f and of P9 to f must be equal. CP-invariance conditions analogous to
eqns (7.16) also hold in the case of the decays of charged particles, which do not
mix.

From eqns (7.15) one derives

AfAf—=e2i£Af‘Af. (717)

We may combine eqn (7.17) with eqns (7.12) and obtain extra conditions for CP
conservation, involving the phases of combinations of mixing matrix elements
and decay matrix elements:

arg (MB A, A} A7A%) = 0, (7.18)
arg (rszfA;A,—A}) =0, (7.19)
P, iea x
arg (q—zAfA}Af—A}—> =0. (7.20)
In particular, we find that CP conservation implies
Af = L (7.21)
f - Af. .

The moduli are equal because of eqns (7.13) and (7.16). The phases are equal
because of eqn (7.20).

7.2.2 Classification of CP violation
There may be three different types of CP violation:
e CP violation in the mixing (this is called by some authors ‘indirect CP
violation’), when eqn (7.13) does not hold;

o CP violation in the decay amplitudes (which is usually called ‘direct CP
violation’), when eqns (7.16) do not hold;
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e CP violation in a phase mismatch between the mixing parameters and
the decay amplitudes (we propose to call this ‘interference CP violation’,
although other authors use different names), when eqn (7.20) does not
hold.

Direct CP violation is not specific to systems of neutral mesons. If both direct
and indirect CP violation are absent, then |A;| = 1/|)f]; still, interference CP
violation may be present when

arg Ay +arg A\ # 0. (7.22)

Since we are free to rephase all kets and bras, CP violation may only arise
from the clash between two phases, and never from only one phase. Indirect
CP violation arises from a clash between the phases of M;2 and of I'12. Direct
CP violation arises from a clash between the phases of two interfering decay
amplitudes in the total decay amplitude—see Chapter 5. Interference CP viola-
tion arises from a clash between the phase of ¢/p and the phases of the decay
amplitudes.

The definition that we adopt for interference CP violation, in eqn (7.22),
is rather arbitrary. That definition follows from eqn (7.20). However, we might
just as well have adopted either eqn (7.18) or eqn (7.19) as the definition for
interference CP conservation. Unfortunately, as soon as there is CP violation in
the mixing the phases of M2, of I'15, and of p/q are all different; thus, mixing
CP violation implies the existence of interference CP violation for at least two
of the three alternative definitions.

7.2.3 Final states which are CP eigenstates

Let us now consider the case of decays to a CP eigenstate, i.e., the case f = f.
Then, the two eqns (7.16) become identical, i.e., we only have one direct-CP-
invariance condition:

|Af| = |Af]. (7.23)

Equation (7.22) becomes 2arg Ay # 0. Thus, the condition for the absence of
interference CP violation is

Im\; = 0. (7.24)

From eqns (7.13), (7.23), and (7.24), we conclude that CP invariance requires
Ap =1 (7.25)
if f is a CP eigenstate.

7.2.4 Different decay channels

At this point, we should remember Chapter 5 and note that, if we consider two

different decay modes f and g (with ¢ # f and g # f), the conditions for
direct CP invariance involve not only the moduli of the decay amplitudes, they



80 NEUTRAL-MESON SYSTEMS: DECAYS

also involve their phases. In particular, CP invariance requires the quantity in
eqn (5.11) to vanish, and therefore

AjAjA Ay = AjAgA; A (7.26)

Hence,
/\f)\f-= AgAg. (7.27)

In the case f = f and § = g, eqn (5.14) yields

Ag = NTgAf- (7.28)
If f and g have the same CP-parity A; should be equal to Ay; if they have
opposite CP-parities, then CP conservation implies Ay = —\,. In any case, Ay

must be either +1 or —1, as stated in eqn (7.25).

In the next chapter we shall see that, in the neutral-kaon decays to two pions,
there is a CP-violating parameter ¢ which measures a violation of eqn (7.28),
in the sense that two parameters A are different when €' # 0—see in particular
eqn (8.89).

7.3 The superweak theory

The superweak theory of Wolfenstein (1964) was an attempt at a theoretical
explanation of the CP violation observed that same year in the neutral-kaon
system (Christenson et al. 1964). Amazingly, during more than thirty years of
hard experimental work, that theory seemed to be able to account for all observed
CP-violating phenomena. The situation was changed by the recent result of the
KTeV Collaboration, which indicated a non-zero value for €'/e, thus confirming
an earlier result of the NA31 Collaboration (1993).

The superweak theory is a purely phenomenological assumption, and it is
difficult to ground it on a complete gauge theory of the electroweak interactions.
However, a few gauge models in which CP violation seems to have effective
superweak features are available in the literature (Lavoura 1994; Bowser-Chao
et al. 1998; Georgi and Glashow 1998).

The superweak theory was originally assumed for the neutral-kaon system
only. We may however extend it to any other neutral-meson system. Indeed, the
superweak theory may constitute a good gauge to evaluate future observations of
CP violation in, for instance, the Bg-Bg system. Exploratory attempts at such
a comparison have been done (Winstein 1992; Soares and Wolfenstein 1992;
Winstein and Wolfenstein 1993).

7.3.1 Basic assumption

The basic assumption of the superweak theory for the decays of the P°—P0
system is the following: there is no CP wviolation in the decay amplitudes. This
means that there is a phase £ and, for each pair of CP-conjugate final states f and
f, there is a phase & #, such that the decay amplitudes satisfy eqns (7.15). These
conditions imply the absence of direct CP violation. In particular, eqns (7.16)
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follow; also, for any other pair of CP-conjugate decay channels g and g, eqn (7.27)
holds.!?

If one considers instead a CP-eigenstate decay channel f, with CP-parity 7y,
one has

)\f = %e_ignf. (7.29)

Thus, if the superweak theory is valid then eqn (7.28) holds. The parameters A
are equal for the decays into two CP eigenstates with the same CP-parity. This
means that all interference CP wviolation is basically identical in the superweak
theory.

7.32 Ty
We recall that, according to eqn (6.45),

T =Y AjAf, (7.30)
f

where the sum extends over all decay modes f; in particular, the sum includes
all pairs of CP-conjugate decay modes. For instance,

I = A;Af + A}—/_lf- + A;Ag + A;Ag + e

From the CP-invariance conditions in eqns (7.15) it follows that

ApA; = ¥ ApA%. (7.31)
Therefore, )
T1 = e 24TY,. (7.32)
We then obtain B )
T2 Ap A} =T1,A7Af, (7.33)

which is valid for any f and f.

7.3.3 Source of CP violation

From the previous subsections we gather that there is no direct CP violation in
the superweak theory. Besides, there is no CP violation from the clash between
the phase of I'1, and the phases of the decay amplitudes. It follows that in the
superweak theory the only source of CP violation is the clash between the phase
of M;2 and the phases of the decay amplitudes or, equivalently, of I';.

The basic and original idea of the superweak theory was that the decay
amplitudes originate from the weak interaction, which is assumed to be CP-
conserving. On the other hand, a new, much weaker—‘superweak’—interaction
is assumed to exist, which only contributes to M;5. This superweak contribution
to M2 has a phase mismatch with the decay amplitudes and with I'y5.

19 At this juncture it is important to call attention to the fact that some authors use the term
‘direct CP violation’ to mean any CP-violating effect which disproves the superweak theory.
For those authors, in particular Winstein and Wolfenstein (1993), direct CP violation exists
not only when relations such as eqns (7.16) and (7.26) are violated; it exists whenever the
superweak theory is violated.
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7.3.4 Other consequences

Let us consider some other consequences of the superweak theory for the decays
of the P°-P? system to a CP eigenstate f. From eqns (7.29), (6.70), and (7.32)
one derives
1-6 —u+1d
Af =1y ——. 7.34
A SET Ny 2 (7:34)

Now define

(£|T|Pr)
(FIT|Pr)
_ A+ a4y
PA; —qAs
1+
Y

(7.35)

Then, from eqn (7.34),

2Ree; 1—|/\f|2
T+ ef> 14 )
=6 (7.36)
Imey 2Im Ay
Rees 11— |x°
1-62

=%\ 5w (7.37)

If for simplicity we assume that & is very small, so that 62 may be neglected,

then either
é 1
1ef|z%,/1+ﬁ, (7.38)
2 u?
les| ~ WV_Hu?’ (7.39)

i.e., either Py decays to f much more often than Py, or vice versa, depending
on the CP parity of f. In any case, the ratio of one partial decay width to the
other one is always the same. This is an important prediction of the superweak
theory. For the phase of €; we have, in the same approximation,

or

Imey 1
~+—. 7.4
Reey | (7.40)

Equations (7.38) and (7.40) are well verified in the case of the CP-violating
parameter € of the two-pion decays of the K°-K?0 system, as we shall see in the
next chapter.
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7.4 Main conclusions

We have made the following classification for CP violation in neutral-meson
systems:

e CP violation in the mixing (indirect CP violation). This occurs whenever
d # 0, i.e., whenever |¢/p| # 1. Unitarity imposes an upper limit on §—see
eqn (6.73). This upper limit may be improved through eqn (6.72) if we are
able to use eqn (6.45) to put a bound on |T'jo].

e CP violation in the decay amplitudes (direct CP violation). This occurs
whenever |4y| # |A 7l- It is the only type of CP violation possible in the
case of charged mesons. As shown in Chapter 5, |Af| # |Af| requires the
presence of (at least) two interfering amplitudes with different weak phases
and different strong phases.

o CP violation in the interference between the mixing and decay amplitudes
(interference CP violation). It occurs whenever arg A\; +arg A7 # 0. If f is
a CP eigenstate, this is equivalent to Im Ay # 0.

When f is a CP eigenstate, CP invariance implies Ay = +1. Moreover, if f
and g are CP eigenstates with CP eigenvalues 7y and 7, respectively, then CP
invariance requires Ay = nynyA,.



8
THE NEUTRAL-KAON SYSTEM

8.1 Introduction

The neutral kaons K° and KO are two of the eight members of the octet of light
spin-0 mesons with negative parity, which also includes the charged kaons K*,
the pions 7% and 7°, and the 75 (see Fig. 8.1). The kaons are strange particles,
the strangeness of K° and of K being +1, while that of K° and of K~ is —1.
In the quark model, K° ~ 5d, K° ~ sd, Kt ~ 5u, and K~ ~ sa.

The neutral kaons constitute the only system in which CP violation has been
observed up to now. Indeed, their mixing makes them an excellent laboratory
to look for very weak effects, like CP violation and CPT violation (Kostelecky
1998). The measurement of the tiny mass difference between the long-lived and
the short-lived neutral kaons is one of the most precise measurements in particle
physics.

We discuss in this chapter the specifics of neutral-kaon mixing and decays,
relying on notation and formulae from Chapters 6 and 7. We assume CPT in-
variance.

8.2 Special features

The neutral-kaon system has two features which distinguish it from other neutral-
meson systems.

First feature: the lifetimes of the two eigenstates of mixing are very different.
As a consequence, it is usual to distinguish the eigenstates of mixing by their
lifetimes instead of distinguishing them by their masses: Kg is the short-lived
neutral kaon and K7, is the long-lived neutral kaon. The corresponding masses

AY
»-- --ﬂ\\K‘*

o 0 N\t L

B
P>

e
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K O *K

F1G. 8.1. The SU(3) octet of light J¥ = 0~ mesons.
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and decay widths are given by us = mg — (i/2)I's and pr = mp — (¢/2) T,
respectively. We define
Am =my — mgs,

8.1
Al = Iy — Fs. ( )
Also,T'= (I's + T'1)/2 as in eqn (6.12). Experimentally,
= L = (5,17 +0.04) x 1055,
'y
1 (8.2)
ms = 0 = (8.927+0.009) x 10-'1s,
S

while
Am = (3.491 £ 0.009) x 10712 MeV = (5.304 £ 0.014) x 10°s~. (8.3)

We see that I's ~ 579T'y. Therefore, AI' ¥ —I's and I' = I'g/2. Moreover,
I's ~ 2Am. From the present point of view, the latter approximate equality is
just a coincidence. Remembering eqns (6.15), we see that in the neutral-kaon
system ¢ &~ —y R u ~ 1.

By definition, AT' < 0. The sign of Am was experimentally determined by
means of regeneration experiments; it was found that Am > 0, as anticipated in
eqn (8.3). The average mass of the neutral kaons is

my = 497.672 £ 0.031 MeV. (8.4)

Notice that the mass difference Am is fourteen orders of magnitude smaller than
the average mass. This is a consequence of the fact that Am arises at second
order in the weak Hamiltonian, which has a typical strength 10~7 that of the
strong Hamiltonian, responsible for mg.

As K is heavier than Kg, we should identify Py of Chapter 6 with K,
while P, is Kg. Accordingly, we write

|KL) = pr|K®) + gk |KO),

|Ks) = pc K°) — x| D), (85)
or 1
) = L (1K) + 1K),
o (56)
K% = 5 (1K) - [Ks)),
with )
[pK|2 = _;—a
2 (8.7)
loxcl” = ——

Second feature: the kinematically allowed phase space for the two-pion decay
channels 7+ 7~ and 7°7° is much larger than the one for any other decay channel.
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If it were not for CP symmetry, the decays to two pions would be dominant for
both Ks and K. As a matter of fact, the two-pion decays are dominant for Kg,
but not for K. Experimentally,

BR (Ks — ntn~) = (6.861 +0.028) x 1071,
BR (K5 — 7%7°) = (3.139 £ 0.028) x 107%,
BR (K — ntn~) = (2.067 +0.035) x 1073,
BR (K — 7%n%) = (9.36 + 0.20) x 10~*.

(8.8)

As both the kaons and the pions are spinless, the two-pion state resulting from the
decay of a neutral kaon is in an s wave. That state then has C = P = CP = +1.
If CP was conserved Kg and K, would be eigenstates of CP, one of them with
eigenvalue +1 and the other one with eigenvalue —1 (remember eqn 6.76). The
eigenstate with eigenvalue +1 would decay to two pions, the one with eigenvalue
—1 would not. Thus, the short-lived neutral kaon Kg, which decays predom-
inantly to two pions, would be the CP-even superposition of |K°) and |K©).
On the other hand, Ky, being prevented by CP symmetry from decaying to
the kinematically favoured two-pion states, would automatically have a lifetime
much longer than that of K.

Small CP violation in the kaon system slightly disturbs this state of affairs.
The original discovery of CP violation (Christenson et al. 1964) consisted in the
observation of two-pion decays of K. Intrinsically and a priori, K, is equivalent
to Ks and there is no CP violation in the fact that K by itself alone decays to
two pions. CP violation rather lies in the fact that both Kg and K, which are
mixtures of two CP-conjugate states, decay to the same CP eigenstate (Sachs
1987).

Thus, the dominance of the two-pion decay modes is closely related to the
large difference between the lifetimes of the two eigenstates of mixing. The
eigenstate Kg, which is allowed by CP symmetry to decay to the kinemati-
cally favoured two-pion states, automatically has a much smaller lifetime than
K, which only decays to two pions because of CP violation.

As CP violation in neutral-kaon mixing is very small, K° and K© are approx-
imately half Ks and half K. This means that the evolution of a neutral-kaon
beam is characterized by two-pion decays, from the Ks component, at a short
distance from the production vertex, followed at much larger distances by the
decays of K, given by

BR (KL = n*eTr,) = (3.878 £0.027) x 1071,
BR (K = ntuFy,) = (2.717 £ 0.025) x 1071, (8.9)
BR (K — n%7%7°) = (2.112+0.027) x 1071, '
BR (K = ntr~n®) = (1.256 + 0.020) x 1071,

8.3 Unitarity bound
Equations (6.53) and (6.54) read, in the case of neutral kaons,
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2

(KSIKL = 8 < sy | 3 VBRKs — NBRIKL = 1) | (510
f
< W—JI:S(F&L—W. (8.11)

From the experimental values in eqns (8.2) and (8.3), together with eqn (8.11),
one obtains || < 6 x 10~2. This bound indicates that CP violation in neutral-
kaon mixing is very small. The strength of this bound is a direct consequence of
lyl ~ 1.

A better bound can be obtained if we use eqn (8.10), together with the
experimental results in eqns (8.8) for the two-pion decay modes, which dominate
the sum. We obtain

6] < 3.4 x1073. (8.12)

With such a small |6], and Am and AT being of the same order of magnitude,
it is reasonable to approximate eqns (6.64) and (6.65) by

Am =
AT ~ 2_|§|4r1j|2| (8.13)
From eqn (6.63), and as
Am ~ 2|Mys| & —5AT & [Ty, (8.14)
we derive
w = arg (M{,T12) = m — 26. (8.15)

The complex numbers M;, and I'12 have a phase difference close to m, because
of eqn (6.62) and (Am)(AT) < 0.

8.4 Leptonic asymmetry

The leptonic asymmetries are the clearest signs of CP violation in the neutral-
kaon system. They are defined by

NKp — 7T_l+1/l) -T(Kp — 7T+l_171)

o= Ky - nlty) + 'K - 7T+l_171), (8.16)

where [ may be either the electron e or the muon p. If CP is conserved then K,
being a neutral particle with unique mass and decay width, must be an eigenstate
of CP. If CP is conserved a CP eigenstate must decay with equal probability
to two states which are CP-conjugates of each other. Therefore, §; # 0 is an
unmistakable signature of CP violation (see § 1.4.4).

Experiment indicates that J. and §, are almost equal:

& =(3.27+£0.12) x 1073, (8.17)

The equality of d. and §, follows from the universality of the weak interaction.
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One should remember the AS = AQ rule for the decays of strange particles.
This rule implies that K° decays to 7 =1, but not to 71~ 7, while K° decays
to 71~ 7, but not to 7~ T y;:

(7t 17| T|K°) = (x~ 1T y|T|KO) = 0. (8.18)

Thus, the semileptonic decays tag the flavour of the neutral kaon. Moreover, there
is only one hadron—the charged pion—in the semileptonic final states 7*i¥y;,
and therefore no final-state strong interactions may scatter those final states into
or from other final states; as a consequence, CPT invariance leads to

[(m= 1+ w|T|K®)| = |(x* 1= 7| T|KO)|. (8.19)

Then, the leptonic asymmetry measures the difference between the probability
of finding a K° and the probability of finding a K° in K. Therefore, when the
AS = AQ rule is strictly valid,

lpk |? — gk |?
5. =4, — PKI” ~ kI _ o 8.20
T Ipk|? + |k |? (8.20)

Notice the closeness between the value of § in eqn (8.17) and the unitarity
bound in eqn (8.12). From the derivation of the unitarity bound in Chapter 6
we learn what this means: the relevant phases

br. = arg TITCITIEL)
_ o (m0nIT|K ) '
o0 = 8 (O[T Ks)

must be very close to each other.
We may also define leptonic asymmetries for the semileptonic Kg decays,

F(KS — 7r_l+I/l) - F(KS - 7r+l_l71)

! —
o = ['(Ks = n=lty) + T'(Ks = ntl—iy)’

(8.22)

Their measurement may be possible at a ¢ factory (Buchanan et al. 1992). CPT
invariance together with the AS = AQ rule predict §; = d;.
Violation of the AS = AQ rule is parametrized by

(m~ 1Ty |T|KO)
(= 1+ |T|K°)’
(rt1~|T|K°)*
(n -0y |T|KO)*

(8.23)

T =
7 =

As long as final-state interactions in the semileptonic decays may be neglected,
the right-hand side of eqn (5.27) vanishes. Thus, (CPT)T (CPT) ' =Tt =T
and therefore (f|T|i) = (fcpr|Ticpr)*, where |icpr) = CPT]i) and |fopr) =
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CPT|f). Thus, CPT invariance implies z; = &;. The parameter z; is expected to
be ~ 1077, basically because (r~1*y|T|K°) and (7 +1~|T|K°) are first-order
in Hw, while (x~I*y|T|K% and (x*1~7|T|K°) are second-order. Experiment
indicates that z; is of order 10~2 or smaller.

The general expression for §;, assuming CPT invariance but allowing for
violation of the AS = AQ rule, is

_ VR + VRaw|’ - |VBa + VB[
VB + vVEaw| + VB + VEia; |

B (IRi2| = |Ral) (1 = |]?)

* (|Ri2| + |Ra1]) (1 + |z1[?) + 4Re (\/Ri,Ra121)

Thus, § must originate in mixing CP violation, |Rj2| # |R21|, even when the
AS = AQ rule is violated.

(8.24)

8.5 The parameters 7

We define, for an arbitrary decay channel f, the parameters

<f|TIKL>T
(fIT|Ks)

The factor r is introduced in order to obtain rephasing-invariance. It is largely
arbitrary, it must satisfy only two conditions. First, it must depend on the phases
of the kets |Ks) and |K) in such a way as to offset the phase-convention de-
pendence of the ratio (f|T|Kr)/(f|T|Ks). Only then is the phase ¢; physical.
Second, in the CPT invariant case, and with the phase convention of eqns (8.5),
one must have 7 = 1. Thus, (K°|K.) = (K°Ks) and (K°|K) = —(K°|Ks)
must imply r = 1. For instance, Kayser (1996) has suggested

_ (K°Ks)
(K°|KL)

ny = |ngle'®’ = (8.25)

and Lavoura (1991) has suggested

2(K°|Ks) (KO Ks)
(KOIKL)(KO|Ks) — (KO|Ks)(KO|KL)

The exact definition of r is immaterial as long as we assume CPT invariance and
the phase convention in eqns (8.5). It becomes important only when we want
to study the CPT-violating case. We shall assume r = 1, but we write down r
explicitly in the definitions of parameters, whenever necessary.

With r =1,
_ FfL FL BR KL - f)

is directly measurable.
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If we define, as in eqn (7.5),

— 9k z‘if
Af = ——, 8.27
ey (8.27)
where A; = (f|T|K°) and A; = (f|T|KO), then
14y
=1 A (8.28)

The parameters 7 are measured by observing the time dependence of the
decays of tagged neutral kaons. For instance, if at production time a neutral-
kaon beam had strangeness +1, we would use

2
[[K°(t) = f] = KAITIEs)” <£[(€If§;| [e’rst + ns2e x4+ 2|nsle T cos(¢y — Amt)].
(8.29)

If at production time the strangeness of the neutral-kaon beam was —1, we would
use

—5 _ AT IEs)?

T[KO(t) — f] ) [e“rst +|ns2e Txt = 2nsle T cos(¢y — Amt)] .

(8.30)
The time ¢ is measured in the rest frame of the neutral kaons. Notice the relative
minus sign between the interference terms in eqns (8.29) and (8.30). The inter-
ference pattern in those equations, which is displayed in Fig. 8.2, is one of the
best experimental demostrations of quantum mechanics in the realm of particle
physics.
Summing eqns (8.29) and (8.30) over all decay modes f, by means of the
unitarity eqns (6.48)—(6.50), one obtains

D TK(t) - f] = ﬁ {Tse st 4+ Tpe Tt
f
—Tt i
+2616 [T cos(Amt) + Amsin(Amt)]}, (8.31)
2 TIRR() = ] = gy {Fse" s + Tpe™
f

—26e~ Tt [T cos(Amt) + Am sin(Amt)]}.

The difference between the two decay curves in eqns (8.31) depends only on the
CP-violating parameter 4.
For the two main decay channels, 7t7~ and 7°7°, the parameters n are
named 74— and 7, respectively. Their measured values are
Ins—| = (2.285 + 0.019) x 103,
Inoo] = (2.275 % 0.019) x 103,
¢+— = (43.74£0.6)°,
boo = (43.5 £ 1.0)°.

(8.32)
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FIG. 8.2. The logarithms of [[K°(t) — f] (dashed line) and of T[KO(t) — f]
(dashed-dotted line) plotted against the time ¢ measured in units 7s. We
have used the values of I';, /T's, Am/T's, and ¢ in eqns (8.2)—(8.3) and (8.17).
Also, |ns| = 6/v/2 and ¢; = 43.49° are the (approximate) values relevant for
the two-pion decay modes. For an appropriate scaling of the logarithms we
have taken |(f|T|Ks)|> = 10°. For ¢ < 675 both curves approximately follow
the simple exponential decay of Kg; for ¢ > 1875 they both approximate the
exponential decay of K. The interference between Ky — o7 and Kg —
is maximal for ¢ ~ 9-157s, and has opposite sign in the decays of K O(t) and
of KO(t).

Particularly important are the ratio

T]oo

= 0.9956 £ 0.0023 (8.33)
N+—

and the phase difference
boo — b4— = (—0.2+0.8)°. (8.34)
If the AS = AQ rule is valid, then 9,-;+,, = +1 and 7,+;-5, = —1.

8.6 Regeneration

This section and the next one consider specific methods for the experimental
study of the neutral-kaon system, and may be skipped without loss of continuity.

Suppose that we have a beam of neutral kaons and, after letting it evolve for
a proper time much longer than 7¢ but much shorter that 7, we have it inci-
dent on a thin slab of material, called a regenerator. When it is incident on the
regenerator, the beam is almost exclusively Ky, because the Kg component has
decayed away. Inside the regenerator kaons are scattered by strong interaction
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with the nuclei in the regenerator. The strong interaction distinguishes between
K° and K°, which have different forward-scattering amplitudes off the regen-
erator. As a consequence, from the opposite side of the regenerator emerges a
superposition of K° and K9 different from the incident one. Emerging from the
regenerator we will not have a K, beam, rather a beam of neutral kaons with a
regenerated Ks component.

We may describe the process in the following way. We name (K R|T|KLR)
the amplitude for a K incident on the regenerator to emerge as K. The ampli-
tude for the process in which a K, incident on the regenerator emerges as K is
(KsR|T|KR). Thus, the neutral-kaon state which emerges from the regenerator
is

|K;) = (KsRIT|KLR)|Ks) + (KLR|T|KLR)|KL). (8.35)

We now observe the decays of K, to the channel f as a function of the proper
time ¢, measured with the initial time being the instant at which the kaon beam
emerges from the regenerator. We get

T [K.(t) = f] = |(fIT|Ks)|” (KsRIT|KLR)|”
X [e‘rst +og e Tet 4 2|uy| e Tt cos (0 — Amt)] , (8.36)

where

i, _ (KLR|T|KLR) (f|T|KL)
" (KsR|T|KLR) (f|T|Ks)
Notice that vy is a rephasing-invariant quantity, and therefore its phase 8 is
measurable.
Regeneration is a way of measuring the parameters 7y whenever we are able
to make a reliable theoretical computation of (K R|T|KR)/(KsR|T|KLR), so
that we are able to extract 7y from vy.

vy = |vgle (8.37)

8.7 Correlated decays

We consider in this section the decays of K°K? pairs in an antisymmetric cor-
related state. This is important because such correlated states will be copiously
produced in the upcoming ¢ factories, in particular at DA®NE. The resonance
¢ has spin 1, and upon its decay the resulting K°K?© pair is in a p wave. This
correlated state is C- and P-odd and is written, in the rest frame of the decaying
®,

& [0 © [Ko(=F)) - [KO(R) @ |K°(=F))]
P

167
1

= 575y [Ks(B) @ [KL(=R) - 1Ko (B) @ |Ks(-R)] . (339)

Notice the absence of |K(k)) ® |K1(—k)) and |Ks(k)) ® |Ks(—k)) components.
This is because the p wave is antisymmetric, and two identical bosons in an
antisymmetric state would violate Bose symmetry. This fact holds not only for
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the initial instant at which ¢ decays into a kaon pair, but also for any later time,
even after the neutral kaons have oscillated back and forth into each other. The
antisymmetry of the wave function is preserved by the linearity of the oscillation.
This holds even when CPT is violated in the mixing.

Let the kaon with momentum k decay to the state f at time ¢; and the kaon
with momentum —k decay at time ¢2 to the state g. The density of probability
for this decay is

|<f|T|KS><gIT|KS 2 —TI'pti—Tsts
( 52) {I |
g 25412 — 2yl 7T cos [Amts — 1) + 65 — ¢,]} - (8:39)

(f,t1; 9, t2|T167)| =

If f and g are eigenstates of CP with the same CP-parity, this decay is forbidden
by CP symmetry. Indeed, in that case the eigenstates of mass would coincide with
the eigenstates of CP; Kg would have CP=+1 and K| would have CP= —1.
Equation (8.38) tells us that, if in one side of the detector we have Kg, in the
opposite side of the detector we must have K. Thus, the occurrence of two final
CP eigenstates with the same CP-parity in both sides of the detector is forbidden
by CP symmetry.

Suppose that experimentally we do not observe t;. Then, it is adequate to
integrate eqn (8.39) from ¢, = 0 to t; = oo and obtain a distribution dependent
only on t¢;:

_ WITIKs)(gIT|Ks)[* |77f|2 oTrt 4 IMol® rot,
—Fh B
=2|nsng| ——= Vg cos (—Amt1 +¢r — dg + ¢sw)] , (8.40)

where &sw = arctan(Am/T") ~ 43.39°. If we do not observe t; either, we obtain
the probability for the decays to f and g to occur at any time:

[(fIT|Ks){g|T|Ks)|* [w +1ml>  2Re (nsm;)

[(f;9IT167)|* = (8.41)

2I'2(1 — 42) 1—y? 1+ a2

Summing this expression over all decay channels f and g we obtain 1 as we
should, after using the unitarity relations.

We may also sum eqn (8.40) over all decay channels g and obtain the time
distribution of the decays of the meson with momentum k to the channel f:

[(FIT1Ks) [
2(1-1¢?)
X [e‘rstl + In,elze‘r‘”1 — 28|nsle~Th cos(¢; — Amty)] .(8.42)

(f, 11167 =

This distribution is the average of those in eqns (8 29) and (8.30). This is because
at t = 0 the probabilities of having a K° or a K K9 with momentum k are equal.
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F1G. 8.3. The decay curve in eqn (8.42). The notation and the values used are
the same as for drawing Fig. 8.2.

The interference term is suppressed by § and is therefore very small (see Fig. 8.3).

We may also consider the situation in which only the relative time At = t; —t
is measured, while ¢; + t2 remains unobserved. Then, we have to integrate the
expression in eqn (8.39) over t; + t2 from |At| to +00, obtaining the probability
distribution

|(fIT|Ks){g|T|Ks)|”

(30 MUTION = S [Ing 271881 4 g2~ 1
~2fnymgle T4 cos (g7 — ¢y — AmlA])] (8.43)

valid for At > 0. For At < 0 we must use eqn (8.43) with f and g interchanged.
An interesting particular case is f = g. In that case the distribution in
eqn (8.43) becomes symmetric in At:

|<f|TLI§?i<fI£|)KL>|2 [eTsiad 4 -rria

—2¢TlAt cog (Am|At|)] . (8.44)

[(; £; A8 T)¢ 7)) =

This distribution allows, with any decay channel f, measurements of I's, ',
and |Am|. It vanishes at At = 0 as a result of Bose symmetry: the original state
being antisymmetric, it cannot yield two simultaneous identical bosonic states

All the above decay distributions provide various possibilities for the mea-
surement of the mixing and CP-violation parameters in the K°~K?0 system at a ¢
factory, depending on the decay channels and time distributions used (Buchanan
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et al. 1992). Some of the phenomenological formulas in this section are still valid
in the case of CPT violation in neutral-kaon mixing, because they depend cru-
cially on the antisymmetry of the original state ¢, not on the assumption of
CPT invariance.

8.8 Two-pion decays
8.8.1 Parametrization

Both the. kaons and the pions are spinless particles. Therefore, when a neutral
kaon decays to two pions, the latter must be in a state of zero angular momentum.
The pions are bosons, therefore their total wave function must be symmetric.
Being in a state of zero angular momentum, their isospin state must be even.
Thus, the state (27, = 1| = ((n*7~| — (x~7*|) /v/2 must be discarded. The
symmetric combination ((zt7~| + (x~7%|) /v/2 may then be simply denoted
(rt7~|. The isospin decomposition of the two-pion states is

(rtr] = /Hem I =2 +/2(2m, T = 0),
(n070| = \/§<27r,1 =2/ - \/§<27r,1 =0,

2m, I = 0| =/ 2(xta~| — /1 (x%7°,
2m,1 =0 = f3rta| - [0 46)
2r,I=2|= \/%(7{+7T_1 + \/—%_(71‘0770|.

We shall denote the state (2m, I = 0] by (0], and the state (27, = 2| by (2|.

It is important to call the reader’s attention to the normalization of the two-
pion states that we are using. Namely, we are considering that the two neutral
pions in (7%7°| are identical particles, and the 7+ and 7~ in (77~ | are identical
particles too. Thus, for instance, we compute

(8.45)

or equivalently

2

1 4m?
tr=) = — ™ 1 2
P(Ks = tn7) = gomy 1 : ‘\/;(2|T|Ks)+ 2(0/T|Ks)| , (847)
1 4m? 2
Ko — 7070) = _Ama oy — L 0ITIE
F( s T ) T 32rmy 1 m§< ‘\/;<2|T| s) \/;<O|TI s)| - (8.48)

Some authors use a normalization in which the matrix elements are v/2 times
smaller than ours. This is because they want to compute ' (Ks — nt 7 ™) taking
7+ and 7~ to be distinguishable particles, while computing I' (Ks — n°n?) with
identical neutral pions. They write

2

1 4m?2
b , (8.49)

I (Ks = 77) = o 1=

VAQITIKS) + /2 0/T|Ks)
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2

1 4m?2
M . (8.50)

r (KS - WOWO) - 32mmg - E

Z(IT|Ks) - /2 (0ITIKs)

Notice the difference between the denominators (16mmg) in eqn (8.49) and
(32mmK) in eqn (8.50). We use for the main amplitude (0|T|K°) the value

|(0|T|K®)| = 4.71 x 10~* MeV,, (8.51)

while authors using the other normalization give |(0|T|K °)] =3.33x 1074 MeV.

We must take into account the |AI| = 1/2 rule for kaon decays. The kaons
have isospin 1/2, and that rule tells us that they decay predominantly to (0|, not
so much to (2|. It is convenient to normalize the four relevant decay amplitudes
by the largest of them, which is (0|T'|Ks). We thus define (Chau 1983)

_ QITIKS)
= (0|T|KS> , (8.52)
_ OITIEL)
= OITIKs) " (8.53)
_ QT

2= OITIKs) " (8.54)

Both w and €3 violate the |AI| = 1/2 rule. Both € and €, violate CP. Notice
that e is the parameter 7 for the decay to 27, I = 0—cf. eqns (8.25) and (8.53).
However, as this two-pion state is not experimentally observed, rather it is a
theoretical concoction, we use the notation ‘e’ instead of, say, ‘ng’.

Instead of €2 it is convenient to use a different parameter, which also violates
both CP and the |AI| =1/2 rule:
y_e2—ew _ QITIKL)O0|T|Ks) — (0|T|KL)(2|T|Ks)
= T. (8.55)
V2 V2(0|T|K5s)?

We find that €' # 0 represents direct CP violation, i.e., CP violation in the decay
amplitudes. Indeed, the two-pion states have CP=+1. And

(2ITIKL)OIT|Ks) = (OIT|KL)2IT|Ks) o (2T |K°)(0ITKO)~ (2 TIK ) (0| T K°)

€

is a directly CP-violating quantity, as we have seen in eqn (5.24).
From eqns (8.45) we find

6/
- =€+ —
T 14+w/vV2
~Ne+é,
9! (8.56)
(i
~e—2¢.

We have used |w| < 1, which is a consequence of the |AI| = 1/2 rule. (We shall
compute w explicitly soon.)
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Equations (8.53) and (8.55) constitute a ‘theoretical’ definition of € and €.
They have the advantage of an easy theoretical interpretation. Some authors
however prefer an ‘experimental’ definition of those parameters, which directly
connects them to the measured quantities 74— and 799. They define

204 + Moo
3 b
1 = 4=~ "o
T

€

(8.57)
€

The ‘theoretical’ and ‘experimental’ definitions yield parameters € and ¢’ which
differ only slightly. Indeed, eqns (8.56) lead to eqns (8.57) when |w| < 1.
From eqns (8.56) or (8.57) it follows that

Moo _ 1—2¢€/e
Ne—  1+€/e
!
~1—3%, (8.58)

where we have anticipated that |¢/| < |e|. On the other hand, we shall soon see
that €’ /e is predicted to be approximately real. Therefore,

2 '

16 (8.59)

oo
N+-

It is in this context that the experimental result in eqn (8.33) becomes important.
It displays a two standard deviation of €' /e from zero. In any case, it is clear that
€' /e is at most ~ 1072, A large experimental effort is being continually invested
in the experimental determination of

oo 2 _ BR(K - n°7°)BR(Ks — nt7~)
ny—| BR(Ks — n79)BR(KL = 7+7~)’

(8.60)

in the hope of achieving a better determination of €' /e.

8.8.2 w and possible AI = 5/2 transitions

In this subsection, which some readers may prefer to skip, we make a detour and
investigate how the value of w is determined from experiment. From eqns (8.47)
and (8.48), and from the definition of w in eqn (8.52), we derive

2

+ -
[(Ks o atn”) = 0.985 V2tw . (8.61)
'(Ks — m70) 1—2w

The factor 0,985 accounts for two breakings of isospin symmetry: the different
masses of the neutral and charged pions, and the Coulomb interaction in the
final state 7t 7~ . Assuming w to be small, we have
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I'(Kg—ntn™)

From the experimental data in eqns (8.8) we obtain
Rew =~ 0.026. (8.63)

In order to compute |w| we must compare the rate of Ks — 27 with the
one of K+ — n+7°. For this purpose we first use isospin symmetry to relate
(2|T|K°) and (x*#°|T|K*). The initial states K and K+ form a doublet of
isospin. The final states 2w, ] = 2 and 7+ 7% are components of a quintuplet of
isospin. The transition matrix effecting the transition between an initial I = 1/2
and a final I = 2 state must be the sum of a AT = 3/2 part and a AI = 5/2
part, which we denote T3/2) and T5/2)| respectively. Thus,

2IT|K®) = TP |K°) + (2]T®/?|K?), (8.64)
(rt 7| T|K+) = (rt 2| TC/D|K+) + (rt 20| TC/2) | K+, '

In order to parametrize the relative strength of T(3/2) and T(5/2) we introduce

2T/ 1K)

“ = @TEmKY)

(8.65)

Working out the Clebsch—-Gordan coefficients, we find
(O TOD|K*) = [32ITC|KO),
(8.66)
(r 7 T6/D | K+ = _\/§<2|T<5/2>|K°>.

Therefore,
(et r0|TIKY) = /3T K — 22T/ K°)

- <\/§ - \/ga) @IT®/?| K0
_ 3-2a 0
= e T (8.67)

Now, from the first eqn (8.6), and from eqns (8.52)—(8.55), we have

(2IT|K®) = ‘%ﬁ%ﬂwmw (8.68)

Therefore,

2 |w +V2 + ew[2
12 (1 +6) |w|®

3—-2a
1+a

2
|t O 7| = ‘ [ITIKs)
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9 —-12Rea 1 2
~ 1+2Rea 12(1+9) |GITIKS)]
~ § (1~ PRea) |2IT|Ks)|”- (8.69)

We have anticipated here the small values of a and of w, and also used the
experimental facts that e ~ 1073, ¢’ ~ 1076, and § ~ 103 are all small.
From eqn (8.69) we derive

(2T |Ks)|”
OIT|Ks)|* + [(2IT| Ks)|?
~ 3 (1- LRea)|w|*. (8.70)

[(K*+ = ntn0)

T(Ks S am) 4L~ sReq)

Inserting the experimental values in the left-hand side of eqn (8.70), one gets
lw| &~ 0.045 (14 2Rea) . (8.71)

As we shall see later in this chapter, theoretically one predicts the phase of
w to be close to —m/4. Let us assume this theoretical prediction to be correct.
Then, from eqns (8.63) and (8.71), one obtains

Rea ~ —0.11. (8.72)
We have thus proved the self-consistency of our assumption that a is small.

8.8.3 Decay amplitudes

Let us consider the decay amplitudes

I |T|K°) = Ape®dr,

Uou|TIK) = Ar . (8.73)
(Lout|T| KO) = Age®r,
for I = 0 and I = 2. We have explicitly factored out the phases §;, which are
the final-state-interaction (strong-interaction) phase shifts of the two-pion states
with definite isospin, defined by

|Tin) = €27 | Iou). (8.74)

These strong-interaction phase shifts depend on the angular momentum and
on the energy of the two-pion system in its centre-of-momentum frame. The
relevant é; are for an energy equal to mg and for zero angular momentum. The
experimental result is

0y — 0o = (—41.4 £ 8.1)°. (8.75)

In this treatment of the FSI, only the strong interaction is taken into ac-
count, while the final-state electromagnetic interaction is neglected. The states
(0| and (2| are eigenstates of the strong interaction, but they are mixed by the
electromagnetic interaction, which does not conserve isospin.
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Let us consider the consequences of CPT for A; and A;. CPT transforms

CPT|K®) = e*|KO),
CPTIKD) = ¢|K°),
CPT|0out) = €X|0in),
CPT|20ut) = €X|2in).

(8.76)

The CPT-transformation phases for the |0) and |2) states are equal because we
do not want CPT to mix |7t n~) with |7°7°), as would otherwise happen. CPT
invariance of the transition matrix implies

Are®® = (I |T|K°)

= (CPT (Low)|TICPT(K®))*
= (Iin |T|K° )* etlx—v)

= outlT‘KO)* i(x—v+24r)
—A; i(x— V+51).

Therefore, CPT symmetry implies

AO b A-aei(X"‘V)

A2 = A;ei(x_")_ (877)

The phases x and v are unphysical and meaningless. However, the following
equations are physically meaningful, because they are x- and v-independent:

| 40| = |4o|,
| 42| = |42,
AjAs = Ao A3,
AgA} = Ay A3,

(8.78)

These are the consequences of CPT invariance.

8.8.4 ¢

We define the parameters A for the decays of the neutral kaons to two pions
either with isospin zero or with isospin two:

ax Aj

A = ——. 8.79
"= pr 4 (8.79)
Then,
1+ X
“Tn (8.80)

as in eqn (8.28). If CP was conserved then Ao would be —1 and € would vanish.
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Because of the first eqn (8.78),

— /1_5 6
)\0 = 1-{-66 y (881)

where 6 = arg Ag. Then, from eqn (8.80) we may derive

2Ree  1—|X|*

= =4 8.82
1+ 0€l2 14 |Xof? (8.82)
and 5
Ime +1-62 .
E;E—E- = T sin 9 (883)

It is clear that ¢ may be non-zero because of either CP violation in mixing
(6 # 0) or interference CP violation (sin @ # 0).2° Thus, € contains no direct CP
violation, but it may originate either in mixing or interference CP violation.
We now define
s = arg(I'1240A4yp), (8.84)

which we shall use together with w = arg (M,I'12). From eqn (6.70) we have as
x>0,

0 +¢=arg (q—KFn) = arg (—u +19).
Pk

As a consequence, from eqn (8.83),

Ime [1— 42 using
E = m (COSC + 5 ) . (885)

All the above equations are exact.

8.8.4.1 A note on phase conventions From eqn (8.80) it follows that, in a
phase convention in which 4y = Ao, gx/px = (€ — 1)/(e + 1). In such a phase
convention we may write

p 1+e€
K = —F—,
2(1 + |¢|?
VLF 1) (8.86)
Gk = ——m——.
2(1+ef?)
Alternatively, in the phase convention Ay = —A,,
» 1+e€
K = —F——,
2(1 + |¢|?
V2L 1) (8.87)

V- )

Both eqns (8.86) and eqns (8.87) are used by many authors. It must be empha-
sized that the phase conventions Ay = +Ap do not exhaust the freedom that

20When § = 0, € = isin §/(1 — cos §) must originate in sin 8 # 0.
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one has in rephasing the kaon kets; indeed, we may rephase both |K°) and |K0)
at will, which means that there are two rephasing degrees of freedom, while
only one rephasing is needed in order to achieve either Ay = Ay or Ay = —A,.
It must also be emphasized that these phase conventions have nothing to do
with what is called ‘a phase convention for the CP transformation’, like fixing
CP|K°) = |KO) or CP|K®) = —|KO). Indeed, such ‘conventions’ convey a wrong
idea about the meaning of CP symmetry. The free phase £k in the CP transfor-
mation CP|K°) = exp (i€x) |KO) is not to be fixed by any convention, rather it
is a phase that must be kept free in an effort to find a phenomenology which is
CP invariant. CP invariance exists if there is any phase {x such that the phe-
nomenology turns out to be invariant under that transformation; £ should not
be restricted by assuming a priori that exp (i€x) must be either +1 or —1.

885 € andw

For ¢’ and w we derive

52—-50)pKA__2 — gk As — ei(52—t50) _112. 1-% (8.88)

_ i
w=e - ,
pr Ao — qx Ao Ag 1= X

and

52*50)2quK (A2A0 — Azfio) = \/iei(dz—do)_{{_z Az = Ao

¢ = eil = —r =
V2 (pKAo - QKAO)2 Ao (1- )‘0)2

(8.89)

Direct CP violation in €' lies in the difference between Ay and A, cf. eqn (7.28).

8.8.6 Approzimations: €

We now recall eqn (7.30). The main decay channel is |27, ] = 0). This is over-
whelmingly dominant, therefore

F12 ~ Aaz‘io (890)

This is the crucial approximation in the analysis of the two-pion decays of the
neutral kaons. It leads to ¢ = 0. Indeed, one may show (Lavoura 1992a) that the
present experimental data are already good enough to exclude || > 5 x 1075.
This is important, because ¢ must be much smaller than § if we want to neglect
the second term in the right-hand side of eqn (8.85).

Equation (8.90) effectively reduces interference CP violation in the 27,1 =0
channel to mixing CP violation. Indeed, when ¢ = 0, the phases of A§A, and
of "1 are equal, and the only independent phase to cause CP violation is w =
arg (M,T'12). This is the reason why many authors talk about e representing
mixing CP violation in the kaon system. In all rigour, € arises from both mixing
CP violation and interference CP violation, but eqn (8.90) reduces the latter to
the former.

Let us then assume ¢ = 0. From eqn (8.85) we get the important prediction
arg € & ¢sw, where
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1 o
¢sw = arctan 2™ 43.49 (8.91)
is the so-called ‘superweak phase’. Taking into account eqn (8.82), we find
6 in/4
e~ —e', 8.92
7 (8.92)

Equations (8.91) and (8.92) agree with the predictions of the superweak theory
in eqns (7.40) and (7.38), respectively.

Now, B
w = arg (M{5'12) = — arg(M12404p), (8.93)
because of eqn (8.90). Therefore,
: Im(M12 40 A3)
sinw &8 ————————>*, 8.94
| M2 Ao Ao (8.94)
But, from eqn (8.15), we find '
5~ s”;w (8.95)
Therefore, B
Im (M2 Ap A
5 - (M2 Aods) (8.96)
(Am) |AOA0\
The value given by the Particle Data Group (1996) is
€ = (2.280 + 0.013) x 103"/, (8.97)

this is a fit using eqns (8.32) and the first eqn (8.57). Comparing eqns (8.92) and
(8.97), one has
_ Im (Mleoz‘ia)

3.22440.018) x 1073 v —— = -0
( ) (Bm) Ao |

(8.98)

Equation (8.98) is the starting point for the theoretical fits of |¢| or, equivalently,
of 4.

8.8.7 Approrimations: € and w

As |€| is very small, we may approximate

Ao~ —1. (8.99)
Then, ~
Ay, | A A3
a A2 = Ao y Ay’ (8.100)

where we have used eqns (8.78). With these approximations, we get

. A A 1
— pild2—do) ( 22 _ 272 -
w=e (Ao th) T
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~ ei“z—éo)Re%. (8.101)
0
. A A 1
¢ = V3t (_n _ ey ) 1
A2 A" (1-X0)°
n L gilsa—0)p A2
75 Tm72. (8.102)

8.8.8 Conclusions

The phenomenological scheme includes two important approximations:

1. u= -AT'/ (2Am) =~ 1;

2. F12 ~ ASAO
Approximation 1 is an experimental fact which, from the point of view of present
theoretical knowledge, is just a coincidence—although a very useful one. Approx-
imation 2 basically follows from the |AI| = 1/2 rule. In practice, its important
consequence is that the phase ¢ in eqn (8.84) is extremely close to zero.

Based on these approximations, the phenomenological scheme makes four
predictions:

1. The values of € and of § are related by eqn (8.82);

2. The phase of € is equal to the superweak phase;

3. Assuming Im (A42/A4) > 0, the phase of € is d; — §p + 7/2 ~ 7/4;

4. Assuming Re (A3/Ao) > 0, the phase of w is 2 — §p =~ —7/4.
Predictions 1 and 2 are well verified experimentally. We do not yet have enough
experimental information on the phases of ¢ and w, but there is no reason to
suspect that predictions 3 and 4 do not hold, especially when we take into account
the possible existence of AI = 5/2 transitions. Deviations from the predictions
1-4 might signal CPT violation (Barmin et al. 1984; Lavoura 1991).
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HEAVY NEUTRAL-MESON SYSTEMS

9.1 Introduction

In this chapter we derive some theoretical formulas needed in the study of the
heavy-neutral-meson systems D°-D9, BS-BY, and B%-B?. Their quark contents
are D° = cii, B} = bd, and B = bs. We denote a generic heavy neutral meson
by P°. We denote by Q the heavy quark (or antiquark) and by q the light quark
(or antiquark).

Much of the interest in B decays had its origin in the seminal articles by
Carter and Sanda (1980, 1981) and by Bigi and Sanda (1981, 1987). In writing
some of the sections in this chapter we have also profited from the reviews by
Fridman (1988), Dunietz (1994), and Xing (1996).

The formulas that we shall be deriving can also be applied to the neutral-kaon
system. However, in that case it is more convenient to write the decay rates in
terms of the decay amplitudes of the mass eigenstates, (f|T|Ks) and (f|T|KL),
as we have done in the previous chapter. In the heavy-neutral-meson systems
one uses the decay amplitudes of the flavour eigenstates, Ay = (f|T|P°) and
Ay = (f|T|PO). o

Many experiments on the heavy P°-P° systems involve determining the
flavour of a neutral meson at its production time and/or when it decays. The
flavour of the meson at the time of decay may be found by looking for flavour-
specific decays. Analogously to the kaon decays into m%[Fy;, these are decays
into final states which can be reached either from P° but not from P9, or the
other way round. For example, B} has a probability of around 10% of decaying
semileptonically into a positively charged lepton (I = et or u*), a neutrino
v, and hadrons, through the quark subprocess b — &l*v;. Similarly, B_g may
decay semileptonically, through b — cl~ 7, yielding a negatively charged lepton.
In general, the charge of the lepton in the final state has the same sign as the
charge of the decaying heavy quark. This is the AB = AQ rule for semileptonic
B decays, analogous to the AS = AQ rule of kaon decays in § 8.4. Just as in the
kaon case, this rule is expected to be almost exact in the standard model (SM)
and in most of its extensions, and it is assumed in most experimental analysis of
B decays.?!

The determination of the initial flavour of a neutral meson is usually called
‘tagging’ and is done using the rule of associated production. The production
of the mesons is dominated either by the strong interaction, as in pp collisions,

21The impact of possible AB = —AQ amplitudes has been extensively discussed by Dass
and Sarma (1994, 1996a,b).
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or by the electromagnetic interaction, as in the process ete™ — ¢ - K 00
and in the analogous process ete™ — YT(4S5) — BJBY. Both the strong and the
electromagnetic interactions conserve flavour and, therefore, a quark @ is always
produced in association with its antiquark Q. Thus, the reasoning behind the
tagging strategy is: if we detect a quark @ in one side of the detector, we know
that the quark in the opposite side must be Q. This strategy can only work when
a charged meson containing the quark Q (or the antiquark Q) is observed in one
side of the detector. We then know that the neutral meson in the opposite side
had the corresponding antiquark @ (or quark Q) at production time. Indeed,
while charged mesons do not oscillate, neutral mesons do. The tagging of the
neutral meson is performed by identifying the flavour of the charged meson it
was produced together with, through the decay of the latter. For instance, this
is done at LEP when states such as BgB‘X * are produced, where X* is a
collection of particles with total charge +1. An analogous strategy was followed
by the CPLEAR Collaboration, who used the processes pp - K°K 7+ and
pp — KOK* 7~ for kaon production, and tagged the neutral kaons by the charged
kaon they were produced together with.

On the other hand, when two neutral mesons are produced in the strong or
electromagnetic process, both of them oscillate. Detecting a flavour-specific final
state in one side of the detector informs us about the flavour of that meson at
its decay time, but not about its flavour at production time.

Therefore, one must consider four classes of initial conditions (Bigi and Sanda
1981, 1987):

A) When a charged meson is produced in association with its antimeson, there
is no mixing. Then, all we can have is direct CP violation.

B) When a charged meson is produced in association with a neutral meson, the
decay of the charged meson tags the initial flavour of the neutral one. (One
may also have the neutral meson produced in association with a baryon.)
We then have a single tagged neutral meson. The decay-rate formulas rel-
evant for this case are derived in § 9.2. Those formulas are applied in the
ensuing sections to show how tagged decays can be used to extract infor-
mation about mixing and CP violation.

C) When two neutral mesons, P® and PP, are produced, identifying the flavour
of one of them at decay time does not identify the initial flavour of the
other one. Three different cases may then be considered:

1. The two neutral mesons are produced through an intermediate QQ
resonance with odd orbital angular momentum. The mesons then ap-
pear in a correlated, antisymmetric wave function, cf. § 8.7. This is
the case for the BY-BY pair produced from the decay of the Y(45).
Antisymmetry of the wave function ensures that the dependence on
the time difference t_ = t; — t5 between the times t; and t, of the
decays of the two mesons, is the same as the time dependence of a
single tagged neutral meson. (We show this explicitly in § 9.8.1.) This
is the reason why one often disregards the correlated nature of the
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meson production and discusses instead tagged, single-meson decay
rates, in the context of B-physics experiments at the Y(4S5).

2. The two neutral mesons are produced through an intermediate QQ
resonance with even angular momentum. The wave function is sym-
metric. This is the case for the B~B9 pair produced from the decay
of the Y(55). The formulas relevant for this case are derived in § 9.7
together with the ones relevant for case 1.

3. The two neutral mesons are uncorrelated. This situation occurs, for
instance, at LEP. Usually, one integrates over the time ¢, of the tag-
ging decay, obtaining a formula for the time evolution ¢; of the meson
in the opposite side of the detector. The corresponding formulas are
derived in § 9.9.

Measurements of mixing and CP violation using the decays of two corre-
lated or uncorrelated neutral mesons are discussed in § 9.10.

D) The two heavy neutral mesons produced may not be each other’s antiparticle.
For instance, we could produce B? together with B—g and a set of particles
with total strangeness S = +1. Now, although B? and B—g cannot interfere
along their respective evolutions, they can mix with their corresponding
antiparticles. As in the previous case, identifying the flavour of one meson
at decay time does not identify the initial flavour of the other meson.
We shall mention this case only briefly, in connection with uncorrelated
neutral-meson production, as at LEP. We refer the reader to the work by
Bigi and Sanda (1981, 1987).

9.2 Tagged decays

In this section we assume that the initial flavour of the meson has been tagged,
for instance, by the decay of an associated charged meson. We consider the time-
dependent decay rates of P® and PO.

Suppose that a P? (PY) is created at time t = 0, and denote by P°(t) (PO(t))
the state that it evolves into after a time ¢, measured in its rest frame. To find
out the time evolution we use eqns (6.56), (6.38), and (6.55) to obtain

IPY(8)) = 94 (£)| P) + %g_mlﬁ),

IPO(t)) = §g_ (6)|P°) + g4 (1) PO),

where

gi(t) = 1 (et £t (9.2)
Care must be exercised when comparing apparently similar formulas from differ-
ent authors, since extra minus signs sometimes appear in the definition of g_(t),
as well as in the definitions of AT" and of q.
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The following formulas are useful:

lg+(®)]2 = L [e7T#t +e7Tet £ 2e7 T cos(Am ¢)]
e

~T¢
5 [cosh ATF + cos (Amt)]

—e Tt — 2ie Tt sin(Amet)]

-
.

93 (8)g-(t)
—TI't

2

(b

[smh éQ_I_‘E + isin (Amt)]

Integrating over time, we obtain

+o00
Ga = / RO
0

1 1 1
= — 4+ —
2F(1—y2 1+x2>’

+00
G-z [ ot
1 -y —iz
~or < - y? 1 + z2>

G. 24y’
G+  2+x%—y?

Therefore,

F = (9.5)

From eqns (9.1), the probability that a particle initially identified as a P°
is again identified as a PO at time ¢, , is equal to the probability that a particle
which was PO at time ¢ = 0 is again P° at time ¢:

Prob[P°(t) = P°] = Prob[PO(t) = PP] = |g4 ()|>. (9.6)

On the other hand, the probabilities that a particle identified as a P at time
t = 0 becomes P? at time ¢, and that a particle identified as a P° at time ¢t =0
becomes P° at time ¢, are only equal if CP is conserved in the mixing:

Prob(PY(t) = P°] = ’-’ @2,
(9.7)
Prob[P°(t) = P9) = |~ _(t)|2 .
In the CPT-violating case we have, instead of eqns (9.1),
|P°(t) [g+ 6g-(1)] 1P°) + 2L(1 - 6)g_ (1) PY),
PH — (9.8)

|PO(t)) = ” EL (1 0)9-(8)|P%) + (9 (#) + 89— (8)] [PO).
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Therefore, once CPT is violated it is not true any more that
Prob[P° () = P°] = Prob[PO (t) = P°].
On the other hand,
Prob[P° (t) = P°] = Prob[PO (t) = P

means that there is T invariance in mixing, even when CPT is violated (Kabir
1970).
Using egns (9.1), we find

DIP(t) - f] = 4" {|g+<t>|2 + I lo- () +2Re [\sg3 (99— (8)]},

TIPO(t) - ;% { ~OF + A" lg+ O + 2Re [N g1 (0192 (8)]},
L(PO(t) - f] = |44 |2 {|g_<t)|2 + I\ lg+ (O)F + 2Re [Arg4 (97 (8)]
L(PO(t) > £ = |47 {lo+ O + [77[" lo- @)1 + 2Re [A707 (1)9-(8)] }.

(9.9)

These expressions give us the probability, divided by dt, that the state which
initially was P° (or P%) decays to the final state f (or f) during the time interval
[t,t + dt].

Experimentally it may be impossible to measure the time dependence. In
that case all we can measure are the total numbers of events. These numbers are
proportional to

T[P° = f] = |4 [G+ + I\I? G- + 2Re (34G1-)]

D[P — 7] = |4 2‘ (G- + 1A G +2Re (3,03)]
p
o (9.10)
[P0 — f] = [G- + I G+ 2Re (A, G3) ],
D(PY - ] = | 45" [G4 + N[ G- + 2Re (3;G-).
To determine the inclusive rates one uses the unitarity relations
Y 4P =Tu=T,
d 2
2.y 2 _ |4 _1-4
Zf: |Af " [Af] = 5 [y = 1+_6F’ (9.11)

+ iz
APa, =9, =Y r.
zf:l Y =T
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We find
10
T[P° 2 YHI0T o+ (1)g-
LR r{lan O + 53 1a-OF + 2Re |52 01 00|,

ST - f] = {| g (O +1i5| _(#)* +2Re [ “;zg.‘;(t)g-(t)]}.
f

(9.12)
One may check the correctness of these expressions by integrating over time to
show that L
S LP° = f]=Y TP f]=1. (9.13)
f f

Indeed, the meson created at time ¢ = 0 must have probability 1 of decaying to
any final state f at any later time.
Equations (9.9) may be written in the form

LIPO(t) = f]= )
. ; e‘” o2 (9.14)
LPO) = f1= 44" —— ‘5‘ (H-1),
where we have used eqns (9.3) and defined
H= (1 + IAfIz) cosh Al _ 2Re)f sinh ﬁ,
2 (9.15)

I= (1 - I/\flz) cos (Amt) + 2ImAy sin (Amt).

The function H depends on exponentials and on AT'; the function I is oscillatory
and depends on Am. If f is a CP eigenstate, then H is CP-conserving, while I
is CP-violating, because CP conservation then imposes Ay = +1.

9.3 Flavour-specific decays

Let us denote by o a final state to which only P° can decay, and by 6 its CP-
conjugate state, to which only PO can decay. (Typically, o is a semileptonic state.)
Thus, the decays of P° into 6 and of P into o are forbidden. This corresponds
to A; = A, = 0, and therefore A\, = A; = 0. Equations (9.9) become

T[P°(t) = o] = |4o|” |9+ (t)I%,

2
T[PO(t) = o] = I 1g- @),

(9.16)
T[PO(t) — o] = |Ao|”

§Mwm2
T[PO(t) = 0] = |45 |9+ (1))

Clearly, [[P°(t) — 6] and T[P%(t) — o] vanish at t = 0, but they are non-zero
for t # 0 due to the mixing of the neutral mesons. It is also due to mixing that
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one can find two states o (or two states 0) as the result of the decay of a state
which initially was a PO-P9 pair. This effect will be discussed when we come to
the associated production of two neutral mesons.

9.3.1 Time-integrated probabilities

Suppose that at ¢t = 0 we start with Ny mesons P°. The number of final states
o that we obtain in the time interval [t,t + dt] is then

2 2
No|Ao|" |9+ (t)|" dt.
The number of final states 0 obtained in the same time interval is

2
Mol o] |2 lg-0 at

If the typical decay time of the P mesons is very small we may be unable to
observe the time dependence of the flavour transitions. In that case, all we have
access to is the total number of events in a given final state. The total number
of 0 and 6 decays obtained from Ny mesons P is

N[P° = o] = Ny |A,|* TIP[P° — P°],

B _ 9.17
N[P° = 8] = No | 4,|" TIP[P® - PY], ®.17)

respectively. Here we have introduced the time-integrated probabilities (TIP)

TIP[P® - P°] = G,

— 2 9.18
TIP[P° - PY) = ‘% G_, (9.18)
respectively. -
Similarly, if we start out with Ny particles P?, we obtain
N[PY - o] = Ny |A,|* TIP[PY — P9,
N[PY - 6] = Ny |4,|* TIP[P® - P9
final states o and 0, respectively. We have defined
TIP[P® - PO) = G,
2 (9.19)

TIP[P® — P°] = \g G_.

These TIP have time dimension and are not probabilities. They become prob-
abilities only when multiplied by the square of the decay amplitude into the
relevant final state, which has mass dimension.
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The notation of the TIP may be a bit misleading. For instance, one might be
surprised by the fact that

— 1 q’ z? + 2 1
IP[P° - PO]+TIP[P° - P’ = ——— |1 = -1 —/— —=.
TIPIP" = P+ TIR(P" > P r(l—y?)[*(kp‘ )2(1+z2) 7T

The reason is simple: not all the P° mesons decay into flavour-specific final
states. Many final states may be reached from both P and P9. It is precisely
these channels that contribute to |['j2|. If these common states did not exist, we
would have I'1s = 0, implying both |¢/p| = 1 and y = 0. The sum of the TIPs
would then be 1/T.

9.3.2 Pais-Treiman parameters

It is usual to introduce the Pais-Treiman parameters (Pais and Treiman 1975)
as measures of mixing:

_ TIP[P® - P9 |q]?
r=e—— -1 =|1l F
TIP[P®° —» P%] ~ |p
T ) (9.20)
o TIP[PY P} \p* o
TIP[P® —» P%] |q| *’

where F' has been defined in eqn (9.5). CP violation in the mixing is probed by
the difference between the Pais—Treiman parameters:

6= [_'—‘/F (9.21)
Vit T

The quantity F = /r7 measures the amount of mixing. Mixing is maximal
if |[y| = 1 (Fridman 1988), corresponding to very different lifetimes, as in the
K°-K0 system:

y=+l=F=1. (9.22)

This happens because, if |y] — 1, after an infinitesimally small time one of
the eigenstates Py or P has completely decayed away and we have only the
other eigenstate which, under the assumption of CP conservation, is an equal
admixture of P° and P9. Mixing is also maximal in the limit of very large z
(Fridman 1988),

z=oc0=>F=1 (9.23)

This is due to the fact that, when the typical oscillation time 1/Am is much
smaller than the typical decay time 1/T, then the initial P° oscillates back and
forth to and from P° many times before decaying, thus appearing to be an equal
admixture of P° and PO.
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9.3.3 CP-violating asymmetries
One may test for CP violation through the asymmetry

N[PO — o] - N[P° — 0]
M= —==
N[P® = o] + N[P° — 0]
-2
_ Ip/al* 141" = lg/pl* | 45|
= s
Ip/al” |4o” + la/pl* | 45|
This asymmetry, however, is unable to separate mixing CP violation from direct
CP violation. One may get a clean measurement of direct CP violation from
_ N[P° - 0] = N[PY - g]
N[P? — o] + N[P° - ]
<12
_ A |4
|4, + | As|
As we have seen in Chapter 5, there is direct CP violation when at least two
amplitudes, having different strong and weak phases, contribute coherently to
the decay; the asymmetry may be sizeable if the two amplitudes have comparable
magnitudes.

In some cases, the asymmetry in eqn (9.25) is expected to be small. As an ex-
ample, consider the decay BY — h~ 11, where h™ is a single negatively charged
hadron. As there is a single hadron, there can be no final-state-interaction (FSI)
CP-even phase due to the strong interaction. There could be an FSI phase shift

due to electroweak scattering, but this is very small (Dass and Sarma 1996a,b).
Then, CPT invariance itself implies

[(h= 1 w|T|BY)| = [(h*1~1|T|BY)],

i.e., there is no direct CP violation. This is the same that happens in the neutral-
kaon decays to 7t1Fy;, as we have seen in eqn (8.19).

(9.24)

(9.25)

Let us assume this particular case of no direct CP violation. If |4,| = |Aa|,
one is able to measure the Pais—Treiman parameters:
N[P° > o] .
N[PY = o]
__ (9.26)
N[PY = o] -
N[PY 50

The asymmetry Aps then becomes a measure of CP violation in mixing:
_ Ip/af —la/pl> _F-r _ 25
/el Hlafpl® T 14
_ |Buo|* = |Raa|* _ 4Im (M},T1)
R +|Rau|® 4|Miof® + Tia*

In the kaon system, this asymmetry is & 6.5 x 1073,

(9.27)
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9.4 The case of CP conservation in mixing

In the case of heavy neutral mesons, it is usually assumed that mixing CP vi-
olation |¢/p| — 1 is small and can be neglected, at least when compared with
interference CP violation. We shall soon discuss the experimental status of this
assumption, and will later turn to its justification in a standard-model compu-
tation of |¢/p| — 1. In this section, we keep to standard practice and assume that
|g/p| = 1. Then, using eqns (9.14) and (9.15), we find

T[P°(t) = ] = T[P°(t) = f] _
[Afl2 exp (—TI't)

= (1 - |/\f|2) cos (Amt) + 2ImAy sin (Amt) ,
(9.28)
T[P°(t) - f]+T[P(t) - f]

H
|A,e|2 exp (—=I't)

=(1+ |/\f|2) cosh are _ 2Re); sinh —Aﬂ
2 2
(9.29)

9.4.1 No direct CP violation: CP eigenstates

In the case of the decays of the neutral mesons to a CP eigenstate f, there are

only two independent decay amplitudes and decay rates. Indeed, f = f implies
Af = Ay and Ay = Ay. Therefore

|~

Af=As= , (9.30)

>~
-

i
and the interference-CP-violation parameter is arg Ay + argAf = 2argAy or
Im)/, as stated in eqn (7.24). Moreover, as (CP)? =1,

CPIf) = ns1f), (9.31)

with 1y =1 for a CP-even and ny = —1 for a CP-odd final state f.
Equation (9.28) then exhibits two different sources of CP violation:

Direct CP violation: (|Af| # I/—l f]) is probed by the first term in the right-hand
side of eqn (9.28).

Interference CP wiolation: (ImAy # 0) is probed by the second term in the
right-hand side of eqn (9.28).

The theoretical estimate of direct-CP-violating quantities is usually plagued by
hadronic uncertainties. For this reason, finding situations in which that type of
CP violation can be neglected is crucial. We will now show that this occurs in
decays into CP eigenstates that are dominated by a single weak phase. In that
case, the calculation of Ay is also free of hadronic uncertainties.
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In order to simplify our presentation, we keep only the CP-transformation
properties of the CP eigenstate final state f through ;. For all the other (spuri-
ous) phases arising in the CP transformations of the kets and of the quark field
operators of the underlying theory, we follow the usual practice and eliminate
them from the game. Their impact is discussed in detail in Appendix A, where
we show explicitly that our conclusions are not affected by this simplification.??
We take

1 _riom (9.32)
p

and
Aj = Aei®aeia
s e (9.33)
Aj =npAe*04er4,
The minus sign in eqn (9.32) is introduced to ease the comparison with the
SM calculation to be performed in Chapter 33. The decay amplitude has been
parameterized in terms of its modulus A, weak phase ¢4, and strong phase § 4.
We obtain

Ap = —npelilon=04), (9.34)

The crucial feature of eqn (9.34) for the study of CP violation is the fact that
both the moduli of the decay amplitudes Ay and Ay, A, and the FSI effects
that those amplitudes contain, 64, cancel out in Ay. This effectively eliminates
the hadronic uncertainties from the computation of the CP-violating parameter
Im\¢, and, thus, from the CP-violating asymmetry. This is the reason behind
the importance of looking for decays into CP eigenstates, with decay amplitudes
dominated by a single weak phase: one has a direct measurement of a weak phase
in the Lagrangian. If there are several weak phases contributing to the decay, we
also have direct CP violation, hindering the extraction of the individual weak
phases ¢4 — dpr.

We may take the ratio of eqns (9.28) and (9.29) to form the time-dependent
asymmetry

L[P°(t) = f] - T[P°(t) = f]
T[PO(t) = f] + T[P°(t) - f]

_ ImAf sin (Amt)

~ cosh (AT'¢/2) — Re);sinh (ATt/2)

Acp(t) =

(9.35)

All hadronic uncertainties have cancelled out, since the result depends only on
Af. Only the phase 2(¢p — $4) is important.

22In this section we assume that there is no CP violation in the mixing. Therefore q/p = +e*¢,
where £ is the phase appearing in the CP transformation of the ket describing the neutral meson.
This seems to be in contradiction with eqn (9.32). This problem is clarified and explained in
detail in Appendix A.
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One can also look for CP violation in the time-integrated rates. The relevant
formulae are the same as in eqns (9.28) and (9.29), with |g+(¢)|* and g7 (t)g—(t)
substituted by G4+ and G4 _, respectively. One obtains
_ I[P’ f]-T(P° - ]
 T[P° — f]+ [P0 — f]

1—y?1—|As* + 22Im);

1+2% 14 |)\f)® - 2yRe);
_1-¢* zlmg

1+2%21—yRe)s’

Acp

(9.36)

These time-integrated asymetries are useful only for systems in which z is not
much larger than 1, and y? is not too close to unity; otherwise the suppression
factor (1 —y%)/(1 + z?) becomes very small. This is not the case for the B9-B9
system, forcing us to look for time-dependent rates, which are experimentally
more challenging.

9.4.2 Small direct CP violation: CP eigenstates

We now want to learn what happens if, besides the dominant amplitude A; with
weak phase ¢4, there is another interfering amplitude A, with a different weak

phase ¢ 42. In this case
Af = Aleimlei& + A26i¢Azei62, o
Af =0y (Ale_i¢‘Alei51 + Aze_i¢A26i62) . (9 )

The weak phases ¢41, ¢a2, and ¢pr, and the strong phases §; and 62 are not
rephasing-invariant, but the differences ¢1 = da1 — dm, P2 = da2 — dar, and
A = d — §; can be measured. Indeed,

1 + rei($1—¢2)gid

— _ —2i¢
Ay = —nse l 1 + re—i(¢1—¢2)id’ (9.38)
where r = As/A;. Therefore,
cos 2¢; + 27 cos(¢1 + B2) cos A + 2 cos 2¢,
Re/\f = —Ny N
1472+ 2rcos(¢1 — g2 — A)
L = g, S0201 + 27 sin(@; + @) cos A + 2 sin 26,
1= 1472 4 2rcos(¢y — 2 — A) ’ (9.39)
1+ A Iz_2+4rcos(¢1—¢2)cosA+2r2 ’
A 1472+ 2rcos(¢y — o — A) ’
drsi _ .
1= a2 = rsin(¢; — ¢2)sin A

1472+ 2rcos(¢; — ¢ — A)’

Equations (9.39) exhibit the symmetry ¢; < @2, A ¢ —A, and 7 < 1/r, as
they should. If A is much smaller than A;, we may expand in powers of r to
obtain
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mly 5 & 15 [sin 2¢1 — 27 cos 2¢; sin (@1 — ¢2) cos A], (9.40)
14 |A¢]

___2Re>‘f2 ~ 1)y [coS 21 + 27 sin 2¢ sin (¢ — ¢2) cos A], (9-41)
14 |Ag]

1- |\ : ;

———— ~ 2rsin(¢; — ¢2)sin A. 9.42
Ll (61— 62) (842)

The direct-CP-violation observable in eqn (9.42) vanishes when A = 0. However,
as pointed out by Gronau (1993), even if the FSI are very small and A = 0,
the interference-CP-violation observable in eqn (9.40) does not provide a clean
measurement of a single weak phase. The presence of a second amplitude with
a different weak phase may ruin the measurement of sin 2¢;, even if it has the
same strong phase. This occurs even for moderate values of r.

9.4.3 No direct CP violation: CP non-eigenstates

If the final states are not CP eigenstates, there is no relation between A; and
Ay, and the FSI phases do not cancel in their ratio and in A;. Let us take once
more q/p = —e?¥M . Assuming the decays to be dominated by only one weak
phase, one has one weak phase and one strong phase in the amplitudes Ay and
Az 7 and another weak phase and strong phase in the amplitudes A s and Ag:

Ap = Aeibaeida,
Af = Aemitegide, (9.43)

and
Ay = Be'bvei®,
Aj = Be~i%veide (0.44)
where we have discarded all the phases brought about by the CP transformation.
A and B are real by definition.
Interference CP violation is related to

B ... .
’\f — _Ze2z¢ezA’

(9.45)
A= __ﬁ_e-zwem’

where 2¢ = 2¢pr + ¢p — ¢o and A = 6 — d,. There is no direct CP violation,
as |Ag| = |Af|. Clearly, |\| = |Xf| # 1. If f were a CP eigenstate, then A; and
Ay would be related by a CP transformation such that B = A, §, = J,, and
¢p = —do. We would then have A = 0, :\f- = A}, |A¢| = 1, thus recovering the
case in § 9.4.1.

Equations (9.9) reduce to



118 HEAVY NEUTRAL-MESON SYSTEMS

)

P[PO(t) = £ = 42 {lg+ (OF + \gI lg-(B)F + 2Re [Ar3 ($)9- (1)
T[PO(t) - f] = 4% {lg- @1 + [\s[* lg+(8)” + 2Re [3;
[
[Arg

}
L]}
DPO() - £] = A* {lg- O + 1A/ 19+ (O + 2Re [Ar9. (1 ]},
-]}

)

(9.46)

®)] t-

Fitting for the time dependence of the various decay curves allows, in principle,
for the extraction of |A¢|, arg(—As) = 2¢ + A, and arg(—j\f-) = —2¢+ A. We
may thus recover the weak phase 2¢ as well as the strong phase A (Aleksan et
al. 1991). The limitations of this method lie in the need for high experimental
precision in the measurement of the decay curves. Moreover, in some cases we
may not really be able to determine arg Ay and arg A 7 experimentally. Rather,
we may only be able to determine some trigonometric functions thereof. Then,
discrete ambiguities arise in the determination of 2¢ and of A.

We may define CP asymmetries like the ones in eqns (9.35) and (9.36), but
they are not very illuminating. For instance, the time-integrated asymmetry

I[P° — f] - T[P° - f]
T[P° — f]+ I[P - f]
a:DMIm ()\f - /\f) - yRe (/\f - /\f)
" (14 D) + (1= Da) My + 2DarIm (As + Af) — yRe (Ay + Ap)
(9.47)

T[PO(t) = f1 = 42 {lg+ () + [ lg- (0 + 2Re

Acp =

where Djs = (1 —y?)/(1 + z?) is known as the dilution factor.

9.5 Inclusive decays

Thus far we have concentrated on exclusive decays, i.e., decays into specific, fully
reconstructed final states. Let us now see whether something can be learned
from the rates obtained by summing over all final states. Those rates have been
given in eqns (9.12). One sees that the two inclusive rates I[P°(t) — all] and
T[PO(t) — all] are equal if and only if there is no CP violation in the mixing, i.e.,
if § = 0—this had already been seen, in the neutral-kaon case, in eqns (8.31).
Therefore, the rate difference yields a measure of mixing CP violation. Indeed,
the asymmetry

T[P°(t) — all] — T[PO(t) — all]
T[PO(t) — all] + T[PO(t) — all]
5 lg- (1)1 + Re [(y — iz)g} ()9 (t)]
(1-62) g+ () + (14 62) |9-(t)]* + 2Re [(y — i62z) g3 (t)g— (t)]

_ 0[—cosh (ATI't/2) + ysinh (AT't/2) 4 cos (Amt) + z sin (Amt)]
~ cosh (AT't/2) — ysinh (AT't/2) — 62 cos (Amt) — 42z sin (Amt)

Azt

1]

.(9.48)
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Equation (9.13) guarantees that the time-integrated version of this quantity van-
ishes, as required by CPT invariance. (Indeed, G_ + Re[(y —iz)G4+-] = 0.) If
one assumes that y = 0 and § < 1, then

ARFl(t) ~ 6 [zsin (Amt) — 2sin® (Amt/2)] (9.49)

a result derived by Beneke et al. (1997). This inclusive asymmetry increases with
r and may be important in the B¢-B9 system. The time dependence in eqn (9.49)
has two important implications. First, it allows a determination of Am without
resorting to flavour-specific final states. Second, it provides an automatic discrim-
ination between the B3-BY and BY-B? systems. Of course, observing this time
dependence has a cost in statistics. Also, if y turns out to be large, one should
use the full expression in eqn (9.48) instead of the approximate eqn (9.49).

One might also consider partially inclusive asymmetries, where one sums over
all final states with a particular flavour content. These asymmetries depend on
all sources of CP violation: direct, mixing, and interference. Beneke et al. (1997)
have claimed that such asymmetries might be useful in B decays. Their analysis
uses local quark-hadron duality, in which one assumes that the quark-diagram
kinematics is not affected by hadronization. The advantage of working with par-
tially inclusive rates is that they are much larger than exclusive rates. On the
other hand, the sum over exclusive modes ‘dilutes’ possible CP-violating asym-
metries. Within a given model, this dilution factor may be calculable, up to
hadronic matrix elements. However, the correctness of the local duality assump-
tion and the effect of specific experimental conditions on the calculation of the
dilution factors may be hard to quantify.

9.6 Untagged decays

Experimentally, the tagging of a P® or PO inevitably implies a loss of statistics.
This problem is worse when the experiments are performed in the dirty envi-
ronment of hadron colliders. We want to discuss what can be learned from the
decays of untagged mesons. This case is all the more important because one may
design experiments with P%~PO pairs that reproduce this untagged condition
(Yamamoto 1997a).

The untagged decay rates are

T'y(t) = T[P°(t) — f] + T[P°(t) — f]

2 23
_|Af|2e—2— <1+‘§ >H+<1—§ )I]
9 e—I‘t
= Al £ (H - 1) . (9.50)

H and I have been defined in eqns (9.15).
Let us consider first untagged decays into flavour-specific final states o and
0. Then,
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—I't AT
To(t) = |4o|? fT(; [cosh Tt - 5cos(Amt)] ,
(9.51)

Tt
L5(t) = |f15|2 fﬁ [cosh % + écos(Amt)].

The corresponding time-integrated rates are
- |4, 1§
T T(A-6)\1-y2 1+422)°

. | 45|* 1, 8
T TA40) \1-y2  1+22)
One can learn about mixing CP violation through the asymmetries
Fo(t) - Fﬁ(t)
Lo (t) + T's(t)
cosh (AT't/2) — cos (Amt)
cosh (AT't/2) — §2 cos (Amt)

(9.52)

AL () =

(9.53)

The time-integrated version is

=3

o—T
ot T

ol

Al

=

7]

.’L‘2+y2
1+a2 -0 (1-y?)

Il
>

(9.54)

In writing eqns (9.53) and (9.54), we have assumed that there is no direct CP
violation, i.e., that |4,| = |A5|. If one abandons this assumption the expressions
get considerably more complicated. For instance, AY, becomes

v _ 0@®+9?) +k[1+22 - 621 —9?)]

Av =7 + 22 - 02(1 — y?) + kd(2? + y2) ’ (9.39)
where ) .
|[4o|” — | A5
= "2—"2 (9.56)
|4o|® + | 45|

One should compare the measure of mixing CP violation, A, in eqn (9.54),
obtained from untagged data samples, with the observable Ays in eqn (9.27),
corresponding to tagged data samples. In eqn (9.54), the CP-conserving mixing
parameters z and y are not disentangled from the CP-violating parameter 4. For
example, if § is small, AY; is approximately equal to the product of § and the
CP-conserving quantity (z2 +y?)/(1 + z?). The latter must be measured before
6 may be extracted. In addition, this CP-conserving factor may suppress A’I{,,.

Let us now return to eqn (9.50). In the rest of this section we assume that
|g/p| = 1. Then, I and the oscillatory dependence on Amt drop out from the un-
tagged decay rates, and the result is proportional to the function H in eqn (9.15).
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We first consider the decay rate into a flavour-specific final state o,

A

Lo(t) 5

(e7Trt e~ Trty. (9.57)
Fitting the data to this theoretical curve enables a measurement of AT' (Dunietz
1995).

Now consider untagged decays into CP eigenstates. When the decay ampli-
tudes into these CP eigenstates are dominated by a single weak phase, [Af| =1
and the only CP violation appears in the difference of |ReAy| from 1. However,
ReAs appears multiplied by sinh (AT't/2), and can only be measured if AT is
large. Therefore, untagged decays are useful only when AT is sufficiently large.
That is the case in the neutral-kaon system, and may also be the case in the B
BY system (Beneke et al. 1996). The time-integrated rates are enhanced when |y|
approaches 1.

In § 9.4.1 we have shown that, when y vanishes, tagged decays into CP
eigenstates dominated by a single weak phase provide a clean measurement of
the sine of the CP-violating phase 2(¢4 — ¢ar). Here we measure exclusively the
cosine of that angle. The use of untagged decays in the context of the B%-B9
system has been extensively discussed by Dunietz (1995), who presents many
candidate channels to search for CP violation.

9.7 Correlated mesons

In this and the following sections we consider the case in which a P°~P0 pair
is created. Depending on how that pair is produced, the two mesons may have
either correlated or uncorrelated wave functions. The former case occurs, for
instance, at the production threshold of QQ bound states such as J/1 or T,
or at the production threshold of a po-po” pair, with its subsequent decay to
P%—PO0. Uncorrelated wave functions occur in pp collisions, in the decays of the
Z boson, and when the production of the heavy mesons is done on the ete™
continuum.

We first consider the case in which the P°~P? pair is produced in a state ®°
with definite parity and C-parity n. = 1. This happens with the B3-BY pairs
produced at the Y(4S) (as in the forthcoming Belle and BaBar experiments), in
which case 7. = —1, and with the B%-B9 pairs produced at the Y(5S), in which
case 7. = +1. The formalism is the same as for the K°~K?° pairs produced in
the decay of the ¢, which was treated in the previous chapter, except that we
now want to write all formulas in terms of A; and Ay, and besides we want to
consider the case 7, = +1, instead of treating only the simpler case . = —1.

The relevant resonance is typically produced in ete~ collisions and has an-
gular momentum . It decays into a P°~P0 pair, which must also have angu-
lar momentum [. Therefore, both the parity and the C-parity of the pair are
ne = (=1)!. The CP-parity is always +1. The initial pair is in a state

) = &5 [|P°(F) © [F(-F) + n[FOR) © |P(-F))],  (9.59)
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where k and —k are the three-momenta of the left-moving and right-moving
meson, respectively, in the resonance’s rest frame.

The meson with momentum k decays at time ¢; into the final state f, and
the meson with momentum —k decays at time t; into the final state g. The
amplitude for this process is

(f,t159,t2|T|®°) = = {ac[g-(t1)g+(t2) + mega(t1)g-(t2)]

+be (94 (t1) g+ (t2) + neg—(t1)g-(22)]}, (9.59)
where g - p
ac = ZAng + ncEAng
= Af"}a (s ‘*‘_770’_\9) ) (9.60)
be = Ang + ncAng
= AfA, (1 +77c)\f/\g) .

The decay rate is proportional to

ac + be|? ac — be|?
(s 0, alT(@? = et [ Wt Ol pore y Jae = 0ol e
+ |b0|2 - |‘10|2 Im (a.b})

y cos (I'zt.) +

sin (T'zt.) |, (9.61)

where t. = t; + nct2. The domain t; € [0,+00] and t; € [0, +00] corresponds to
- =t; —ty € [-00,+00] and ty = t; +t2 € [[t_|, +00]. For 7. = +1 the rate in
eqn (9.61) depends only on t;. Given N P%-P0 pairs,

N l<f7 t1; 9, tZiT|(I)C)|2 dt1dt2

is the number of events characterized by a decay into the final state f during the
time interval [t1,¢; + dt;] and a decay into the final g during the time interval
[tz, to + dtz].

The times ¢; and ¢, are measured in the respective meson’s rest frame. In the
case of the Y(4S), the resulting B and B} mesons move slowly in the resonance’s
rest frame. It is then practically immaterial whether ¢; and ¢, are measured in
the meson’s rest frame or in the resonance’s rest frame. However, the difference
between the times measured in the two frames must be taken into account in the
case of the creation of K°-K?° pairs from the decay of the ¢ (Kayser 1996).

In practice, unless the bunch dimensions are much smaller than the paths of
the decaying mesons, the position of the resonance will not be determined with
sufficient accuracy to measure the individual decay times. The situation is worse
when the two mesons are produced nearly at rest, for then the decay vertices
and the time difference may not be measurable in practice. This is the case with
BY-BY production at the Y(4S). The solution is to build experiments with e+
and e~ beams of different energies, so that the mesons have a significant boost
in the laboratory frame. The decay rates for experiments in which only the time
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difference t_ between the two decays is measured are obtained by integrating
eqn (9.61) over ¢y,

o2 oo O(ty,1t2) o2
[(f; g;t-|T|2°)| E/ dty | 5| [{f 1159, t2|T|2°)|, (9.62)
| O(t4,t-)
where the Jacobian factor is
o(t1,t2) | 4
‘8(t+,t_) =L (9.63)

For n. = +1 one obtains (Bigi and Sanda 1981; Fridman 1988; Xing 1996)

—Tft| lay + by lay — by ?
cgit_|T|@ )| = & + 0417 ryjeo| 184+ = 041" rype
[(f: 05118 = [16(1+y)e Pl bl
+|b+|2 —|a4|? cos(Tz|t_|) — zsin (Tz|t_|)
8 1+ 2

I b* M _ —_
N m (a+b}) sin (Tz|t_|) + z cos (Tz|t_|) . (9.64)
4 1+ z2

For n. = —1 the result is (Bigi and Sanda 1981; Fridman 1988; Xing 1996)

|a— - b—]2ert_

“Tlt-1 Ta_ +b_|?
o 2 _ € a_ + —Tyt_
12 a2 I _b*
LS il 8‘“ ® cos (Tat_) + la=b2) (rxt_)l (9.65)

If we integrate over t_, we obtain the completely time-integrated rate, which
may be written for n. = £1 as

1 1+ ney? (1+nc)y
. cy|12 2 2y - T Hed ) PR L
I(f; 91T |@)" = arz [(|b0| +lacl?) 1—y2)? 2Re (acbe) 1 - y2)?
1- 7761'2 (1 +"7c)z
2 12 xy UL T 7e)T
(1l = acl?) ey + 20m (acb?) (e | - (9.60)

If we use the unitarity relations,

o 217 2 L £2(1 _ o o2
2.2 lacl = 7= [1+mew® + 6 (1= mea?)],
fog

b 2 _ 2F2 2 _ 52 _ 2
ZZ' c| = _1 52 [1 + Ny (1 NeT )]7 (9'67)
f 9

or?
DD acb: = T—g2 (1 +7) (y —i6°z).
f 9

we can show that, summing eqn (9.66) over f and g, one obtains 1 as one should.
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9.8 Quantum-mechanical effects with correlated states
9.8.1 Quantum mechanics of parity-odd P°~PO pairs

We highlight here an important feature of correlated mesons in a parity-odd
state, i.e., when . = —1, as occurs for the B}-BY pairs formed from the Y (45).

Let us assume that the meson decaying at time ¢ decays into the flavour-
specific final state o. The decay identifies the meson as being P° at that time.
In general, this would not tell us anything about the flavour of the other meson.
However, if the two mesons have started out in the parity-odd state &, we have

p
a- = —=AsA,,
g7 (9.68)
bo = —AsA,,
and, from eqn (9.65) and the third eqn (9.9), we find that
A,|* exp (—Tt_
[(frost-irien)? = el @R CTDppng ) g (960)

4’ exp (-T't-)

Similarly, if the meson decaying at time t» decays to 6, we learn that the
flavour of that meson is PO at that time. Then,

q - -
a_ = =AsAs;,

p (9.70)
b = A;As,

and, from eqn (9.65) and the first eqn (9.9),

2 _ | 45|” exp (~TJt_ D

[(f;0;¢-|T|@7)| AT exp (-Tt.)

L[P°(t-) = f]. (9.71)

How should we interpret the results in eqns (9.69) and (9.71)? When the
initial PO meson evolves in time, it oscillates back and forth into and from P°.
The same occurs with the initial PO. But, the antisymmetry of the correlated
wave function under the change k — —F is preserved by the linearity of the evo-
lution. Hence, if at some instant to # 0 the right-moving meson is found—from
its flavour-tagging decay—to be PP, then the left-moving meson at that instant
is certainly PO. That left-moving meson will from that instant on evolve as a
tagged PY. Thus, time-dependent experiments starting from the state ®~ and
tagging the flavour of one meson automatically reproduce the situation discussed
in § 9.2.

However, it is important to note that what one usually calls ‘time-integrated
measurements’ are not the same in the two situations. In § 9.2 we have considered
the time evolution of a neutral meson whose flavour content was determined
at time ¢ = 0. To obtain time-integrated observables we have integrated over
the time variable from ¢t = 0 to ¢t = +o00. In the case of a correlated initial
state ®~, we determine the flavour of the meson in one side of the detector
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at time to. At that instant the meson in the opposite side of the detector has
opposite flavour, and evolves thereafter as a tagged initial state with time variable
t_ = t; — to. However, if we are unable to measure t_—this is the case when
the two mesons move very slowly in the laboratory frame—we must integrate
t_ from —oco to +00. The problem, as we shall later show, is that the terms
proportional to ImAy in the time-integrated asymmetries of § 9.2 vanish when
the time integration is performed over the domain t_ = [—o00, +0o0] instead of
being performed over the domain ¢ = [0, +00]. Hence, the usual time-integrated
asymmetries—in which one tags one meson and looks for the decay of the other
meson into a CP eigenstate—cannot be used to test for interference CP violation
at symmetric colliders producing Y(4S), because, in that case, we are unable to
measure t_.

Of course, if we can measure the time difference, and in particular its sign,
we may select the events in the positive-t_ interval. Only then are we able to
reproduce the time-integrated results of § 9.2.

The tagging possibility described in this section does not occur for the &+
state. If the mesons arise from ®*, tagging the flavour of the right-moving meson
to be P° at some instant does mot guarantee that the left-moving meson is P°
at the same instant.

9.8.2 Other quantum-mechanical effects

Using eqns (6.56) we may rewrite |®1) and |®~) as

) = \/%pq [1Pa(B) ® 1Pa(=) - IPL(B) ® P (-], o
197) = e (1P (B @ Pir(—F) = |Pa () ® 1P (~F)]

Thus, if we have &, and if Py is found in one side of the detector, we are sure
that there is P, in the opposite side of the detector, and vice versa. On the other
hand, with &1, either we have P, in both sides of the detector, or Py in both
sides.

This is important because, as Py and Pj, are the eigenstates of evolution,
after we have tagged them at some time, they remain the same for all other
times. Thus, if at time ¢ the meson in one side of the detector is found to be
Py, then at any later time, the meson in the opposite side of the detector will
be Py if the original state was ®*, or Py, if the original state was ®~.

This is all the more interesting in the CP-conserving case, when Py and Py,
are eigenstates of CP: Py = Py and Pp, = Pz. It then means that tagging the
CP quantum number of the meson in the right side of the detector at some time
automatically fixes the CP quantum number of the meson in the left side of
the detector at any other time. We shall consider an application of this fact in
§9.10.4.
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9.9 TUncorrelated mesons

We turn to the case in which the P°~P0 pair is produced in an incoherent state.
This occurs in pp collisions, Z decays, and on the ete~ continuum (for instance
at LEP). In this case, there is an equal probability that at the initial instant
the left-moving meson was a P° and the right-moving meson was a P?, or the
opposite situation occurred; the two possibilities are incoherently superposed.

Considering as before that the left-moving meson decays at proper time t;
into a final state f, while the right-moving meson decays at proper time ¢, into
the final state g, the density of probability for this process is

(£, t2:9,12|T|@")
= L{r[P’(t1) - fI[PO(ta) — g] + T[PO(t1) — SIT[P°(t2) » 9]} . (9.73)

It may be checked that this is equal to
2 —\|2
L (10,1159, IT10%)[* + [(, 115, 2l TIT) ) (9.74)

This must be the case since the uncorrelated state is equivalent to an incoherent
superposition of even-parity and odd-parity correlated states. Equations (9.73)
and (9.74) are two different algorithms to compute the decay rates of uncorrelated
P%—PO pairs.

Thus, for instance, in order to obtain the probability that a decay into f
occurs in the left half of the detector and a decay into g occurs in the right half

of the detector, we must average eqn (9.66) for . = +1 and 7. = —1, obtaining

airign — Al (1+141) (14 %) + 45°Re Red,
(FsaiTien)? = EA _alb

(1 - |/\f|2) (1 - |/—\g|2) + 422ImA s ImA,

(14 22)2
1 R by ) - xl b%
b _y(le_(al;);) z(’fi";);)] (9.75)

This is equal to
(5 9IT1@*)* = 3 {T[P° = SIT[PT - g] + T[P° - fIT[P° = g}, (9.76)
as is easily checked from egns (9.10).

9.10 CP violation with neutral-meson pairs

Earlier in this chapter we have discussed some of the mixing and CP-violation
measurements which are possible when one tags the initial flavour of one neutral



CP VIOLATION WITH NEUTRAL-MESON PAIRS 127

meson. We now turn our attention to the case in which a P°~P0 pair is produced,
in either a coherent or incoherent state. The decay rates have been presented
in the previous two sections. Again, we focus our attention on flavour-specific
decays, and on decays into CP eigenstates.

9.10.1 Decays into a single flavour-specific final state

We have shown in § 9.8.1 that, for odd-parity correlated PY—P0 pairs, the evolu-
tion of the meson in one side of the apparatus, after the meson on the opposite
side has been tagged through its decay into a flavour-specific final state, is the
same as the evolution of a tagged initial meson. In other words, for odd-parity
correlated initial states, tagging one of the mesons effectively tags the other me-
son too, at that instant. Therefore, the analysis of mixing and CP is the same
as the one in § 9.3 and 9.4. This is the reason why many authors disregard the
correlated nature of the meson production and only discuss tagged, single-meson
decay rates when discussing B-physics experiments at the Y(4S). As explained
in § 9.8.1, one must only be careful in this comparison when considering time-
integrated decays.

The case of uncorrelated initial states is important, since it is the situation
occuring at LEP, for both B}-BY and BJ-B? pairs. Let us assume that the
meson in the opposite side of the detector is found to be P° through its decay
into o, at time ty. If we integrate eqn (9.73) over t, we find

[(f,t1;0|T|@%)* = 'ﬁé’ﬁ {I‘[Po(tl) — f]TIP[P? - P°]
+I[PO(t) — f]TIP[P® — PO]} . (9.77)

This is what one would expect. We know the meson in the opposite side of the
detector to be a P°. In a number of times proportional to TIP[P® — PY], that
meson has evolved from an initial PO. In those cases, the meson in this side of
the detector was originally a P9, and evolved as such, finally decaying into f
at time ¢;. But, the meson detected in the opposite side as a P° might have
been at the initial instant a PO. This occurs a number of times proportional to
TIP[PY — P°). In that case the meson in this side was originally a P°. The two
situations cannot be distinguished and must be incoherently averaged. In this
context, experimentalists usually refer to TIP[P° — P°] and to TIP[P® — P?]
as the ‘right’ and ‘wrong’ tags, respectively.
Analogously,
|4[*
(£t 0TI = =5 {TlPO(t) — AITIP(PT - P

[\

+D[PO(t,) — f]TIP[P® — ﬁ]}. (9.78)

If enough statistics is made available, these decays may be used to look for mixing
and CP violation. At LEP1, the statistics was such that the mixing variables z4
and z; could be probed—see Chapter 10.
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Another interesting use of the detection of a single flavour-specific decay
occurs when we sum over all decay channels and integrate over all decay times
in one side of the detector. The result is the same for either uncorrelated or
correlated (with . = +1 or . = —1) initial states:

/omdt2 > ot 9, 12T |24
9

o0
/ AT AL
0
g

L{T[P°(t1) > .+ TPO(t1) - 11} (9.79)

As for each event there was initially one P and one P?, the decaying meson in
the relevant side of the detector may have been initially either a P or a PO,
with equal probability. The result in eqn (9.79) still holds when CPT is violated
(Yamamoto 1997a,b).

Since the final state f may be found in either side of the detector, the prob-
ability that one finds it gets an extra factor of 2,

L [®(t1) = f] = T[P°(t1) = f] + T[P°(t1) = f), (9.80)

which is precisely the probability density I'f(t;) discussed in § 9.6. Then, the
analysis of mixing and CP violation follows the one presented in that section. In
particular, we may look for CP violation in the mixing through the single-tag
asymmetry,

T [®(t) = o] - T'[®(t) — 0]
L[®(t) » o]+ [2(t) = 0]

At) = (9.81)
The result is equal to the untagged asymmetry AY,(t) in eqn (9.53). Integrating

over time one finds, from eqn (9.54), the time-integrated single-tag asymmetry
(Hagelin 1979)

Nlo| = N[o] 52+

_ AU — ~
A=4 ~ NjoJ+Njg] " 1+z2’

(9.82)
where we have assumed that ¢ is small, and have used the notation N [f] =
I'[® — f]. We emphasize that this asymmetry does not depend on how the
initial state is prepared: it is the same for correlated as well as for uncorrelated
initial states.

For odd-parity initial states, there is another experimental procedure that
yields a result proportional to I's(t1). Using eqns (9.69) and (9.71), we find

[(Fsot- (712" + (500 |T|@7) "
_ AL

= S {TlP ) » A1+ TP - £}, (9.83)

for t_ > 0. We have assugned that there is no direct CP violation in the flavour-
specific decays (|4,| = |A<-,|).
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9.10.2 Decays into two flavour-specific final states

We now consider cases in which both mesons decay into flavour-specific final
states. If there were no mixing, the initial P°~P9 pair would only be allowed to
decay into 06. Using eqn (9.66), we obtain the totally time-integrated rate

AA—|2 1+ny?  1—na?
olTee)? = Ao : . :
|(0; 0| T|®°)| el e PR p (9.84)
The fact that P° and P9 mix also allows for
(oroiTiae)p = ol 2 [14me® 1 nea?
’ arz |q| [(1-922 @(Q+22)2) (9.85)
- 4 .
(ajre? = el |aff [1tney® 1 nea?
' ar?2 |p| [(1-y2)? (@ +22)2]

According to eqn (9.74), the numbers of events for uncorrelated initial pairs
are obtained by averaging the above expressions for both signs of 7.. This is
equivalent to setting 7. to zero.

Let us assume as before that |A,| = | 45|, and define N [fg] = I(f; 9|T|®)%,
for both correlated and uncorrelated initial states. We introduce the mixing
parameters

N[00] + N|oo]

=N [60] + Noo] + N[oo] + N{oo]’ (9-86)
, _ N[00] + Nfoo]
= N[o0] + N[od]’ (9.87)
which are related through
RI
R= Tk (9.88)

For uncorrelated and for odd-parity initial states, R’ is related to the Pais—
Treiman parameters through (Fridman 1988)
, _r+r
Runcorr - 147 ’ (989)
+
R __ =" (9.90)

Ne= 2

=i

where we have used eqns (9.84) and (9.85). In contrast, for an even-parity initial
state,

/ _1(|P
Ry—y1=3 (Ia

In general, this expression cannot be written in terms of r and 7.

2+22 3z2+z4+y2(3+x4+m2y2—y2)
p| ) 24+ +at +y?(—1+42? + 2t — 22y? +y?)
(9.91)



130 HEAVY NEUTRAL-MESON SYSTEMS

We may probe CP violation in the mixing through the di-tag asymmetry

_ Nloo] - N{oo] _ |p/al* —la/pl* _ 26
Nloo] + N[oo)  |p/ql* +la/p|> ~ 146

Ay (9.92)

This result is independent of the way in which the initial state was prepared,
and it coincides with the asymmetry Aps of eqn (9.27), which was defined for
single tagged mesons.

Thus, for any initial state, we may use either the single-lepton asymmetry
in eqn (9.82) or the dilepton asymmetry in eqn (9.92) to look for mixing CP
violation. Which asymmetry will prove more accurate will depend on the values
of 22 and y?; A, is better for large mixing. Since the two methods involve data
sets that are, to a large extent, statistically independent, they may be combined
to improve the sensitivity (Yamamoto 1997a).

If there is direct CP violation in the decays tagging the neutral mesons, dis-
entangling the different sources of CP violation should not be easy. In particular,
for a given initial state, i.e., for some value of 7)., we cannot have a clean measure-
ment of direct CP violation with dilepton time-integrated measurements alone.
This is contrary to what happens when the flavour of a single meson is tagged
through the associated production of a charged meson. In that case, we were
able to define the asymmetry Ap measuring direct CP violation.

For uncorrelated initial states one may also consider a time-integrated tag on
one side, and look for the time-dependence on the opposite side. Let us assume
that |A,| = |45/, and define

N{fgl(t1) = [(f, t1; g|T|®*)°. (9.93)
Using eqns (9.77) and (9.78), we find

N[60)(t1) + N[oo](t1) [ 1= y? cos(Amt;)
N{00](t1) + N[oo](t;) + N[00](t1) + N[oo](t:) 2 1+ 22 cosh(AI‘tl(/Q) )
9.94

At LEP1 this method has been used to observe an oscillatory time dependence in
the BY-BY system for the first time. Although the analyses of the LEP1 experi-
ments have assumed y = 0, that assumption is not really needed. Indeed, y only
appears in the prefactor (1 —y?)/(1+ z2)—which may be determined from time-
integrated rates alone—and in the non-oscillatory denominator cosh (AT't/2).

The prefactor (1—y?)/(1+2?) is usually called ‘dilution factor due to mixing’
and denoted Djs by experimentalists. One might worry about the fact that the
current bound z; > 9.5 for the B¢-B? system imposes a huge dilution. However,
at LEP, HERA-B, or LHC, one produces all the combinations described in the
introduction as cases A), B), C), and D) together. Therefore, the dilution factor
in those cases should be obtained by averaging over all B species contributing
to the tag signal. The average is dominated by the large values of Djs. This
comment is also applicable to the tagging dilution found in the CP-violating
asymmetries to be discussed in the next section.
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9.10.3 Decays into a flavour-specific state and a CP eigenstate

Consider the case in which one neutral meson decays into a flavour-specific state,
either o or 0, and the other meson decays into a CP eigenstate f. We shall assume
that there is no direct CP violation in the tagging decays, |A,| = | 45|, and that
there is no CP violation in the mixing, |¢/p| = 1.

We first look at uncorrelated initial states ®*. We integrate over the time of
the flavour-tagging decay, and follow the time dependence of the decay into the
CP eigenstate. Using eqns (9.77) and (9.78), we find?3

Nof](t:) — Nlof](t:)
[5f]( 1) + Nof](t)

1-—-
1o 2Acp(t1) (9.95)

¢p(t) =

Thus, for uncorrelated initial states, the mixing produces ‘wrong tags’ that dilute
the asymmetry Acp(t) defined in eqn (9.35) for the case of tagged initial mesons.
Constructing the same asymmetry with time-integrated rates we find

u — N[of] - Nlof]
P~ N[of] + Nlof]
11—y

= T ador. (9.96)

Note that Acp, defined in eqn (9.36) for tagged initial mesons, already has a
factor (1 —2)/(1+ z?) in it.

We next consider decays from correlated states ®~ or ®*. In this case it is
more convenient to define

Nelfig;t-) = [(f5 95 t-|T|2%)]°. (9.97)

For &~ the analysis of this case is very simple, due to the quantum-mechanical
effects discussed in § 9.8.1. One obtains

_ _ N[5 f;t-] = N"[o; f;t_]
Acp(t-) = N-=[o; fit_]+ N—[o; f;t_]
= ACP(t"‘)a (998)

reproducing the asymmetry Acp(t—) defined for tagged mesons—see eqn (9.35).
However, we should stress that the time variable ¢_ lies in the interval [—o0, +00],
while the time variable for the tagged decays of § 9.4.1 must be positive. This
has a dramatic impact on the time-integrated rates. Indeed, if we separately

23The superscript u in At p refers to an uncorrelated initial state. It should not be confused
with AY ,, which refers to untagged decays.
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integrate each rate over t_ and construct the asymmetry analogous to the one
in eqn (9.98), we obtain
P i L
R

(9.99)

which vanishes whenever |Af| = 1. This is responsible for the need to construct
asymmetric B factories. With symmetric B factories of ®~, tagged decay rates
can only be used to test direct CP violation (Deshpande and He 1996).

The time dependence for ®* decays may be derived directly from eqn (9.64).
The expressions are not as simple as in the previous case. Still, it is instructive
to look at the dominant contributions to the asymmetry under the additional
assumptions that y = 0 and = > 1. We find

_ N*[o; fit_] - N*[o; f;t-]

+ =
Acp(t-) = N+[o; f;t-]+ N*[o; f;t-]
2
2 =L Ay + B cos (Amle_) | . 0.100)
T+22 | |22 +1 Asl”+1

This result, which is relevant for B9~B9 pairs from the Y (55) resonance, exhibits
an interesting feature: direct CP violation appears multiplied by sin (Am|t_|),
while interference CP violation multiplies cos (Am/|t_|). In particular, if there is
no direct CP violation, we get

Afp(to) = Im\; cos (Amlt_|), (9.101)

__z
21+ 22)

rather than the usual dependence on sin (Amt) found in eqn (9.35).
As for the asymmetry of time-integrated rates, we find the general expression

2\ 2 2 2
- 1— 1-
At = (1 y2) (1 —2%)( |)\f|2) +4a:Im/\f. (9.102)
1+22) (14921 +[As]°) — 4yRe)s
For the particular case y =0 and z >> 1,
2 ([ = 1) + doTm),
Alp = . (9.103)

(AP + 1) (1 + 22)2

9.10.4 Decays into two CP eigenstates

We now turn our attention to the case in which both final states, f and g, are
CP eigenstates (Bigi and Sanda 1987). Let us denote the CP-parities of f and
g by ny and 7, respectively. We remind the reader that the initial state ¢ has
parity and C-parity equal to 7, = (—l)l, where [ is the spin of ®¢. Hence, the
CP-parity of ®¢ is +1. We want to prove
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Theorem 9.1 If, at any times t; and t2, decays occur to eigenstates f and g of
CP such that ncngng = —1, then there is CP violation.

Proof From eqn (7.28) we know that, if CP is conserved,
Ag = NngAs. (9.104)
Other necessary conditions for CP invariance are
[Afl =1 (9.105)

and
ImA; = 0. (9.106)

Using eqns (9.104) and (9.105), the parameters a. and b, in eqns (9.60) become
ac = Ang ()‘f + ncnfng)‘})a
be = AgAg (1 +nensmy).

Clearly, if n.nsny, = —1 then b, = 0. Also, a. « Im)A; vanishes because of
eqn (9.106). Thus, ®¢ is forbidden by CP invariance from decaying to f and g.
O

Recall eqns (9.72). If one starts with a ®~, whenever we have a Py in one
side of the detector, we must have a Py, in the opposite side, and vice versa. On
the other hand, with a &, either we have Py, in both sides of the detector, or
we have Py in both of them.

Now, if CP is conserved, Py and Py, coincide with the eigenstates of CP, and
they have opposite CP-parities. Suppose that we start with a &, i.e., 7. = -1,
and that at some time ¢; we observe the decay of one of the mesons to a CP
eigenstate f with CP-parity ny. We then learn that the meson in the opposite side
of the detector must have the opposite CP-parity, and therefore it cannot decay,
either at that time or at any other time, to a CP eigenstate g with CP-parity
Ng = MNy-

On the other hand, if we start with ®* and observe a CP eigenstate f in one
side of the detector, we learn that the meson in the opposite side must have the
same CP-parity 7y, and it cannot decay to a CP eigenstate g if n, = —7y.

Of course, the fact that there is CP violation whenever decays with n.nsn, =
—1 occur, does not inform us where exactly the CP violation lies. We must have
some extra information, or some assumptions, if we want to explicitly determine
a CP-violating quantity from the experimental data. Moreover, the branching
ratios into exclusive CP eigenstates will in general be small, in the case of heavy
mesons. It is then advisable to look for time-integrated rates.

As an example, let us assume that there is no CP violation in the mixing,
lg/p| = 1, and that there is no direct CP violation in either of the decays.
Then, |A¢| = |Ag| = 1. Let us moreover assume that eqn (9.104) also holds, i.e.,
Ag = nyngAs. (This occurs if the decays into f and g are dominated by the same
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diagram.) For instance, nyny = +1 when f = g, and nyn, = —1 for f = J/VKs
and g = J/VYK.?* With these simplifications and n.nsn, = —1, eqns (9.60)
yield

ac = 2iA A Im)y, (9.107)
be =0, (9.108)

from which eqn (9.66) becomes (Xing 1996)

< 12
e _ JArAg [14mey®  1-nea® ]
(£ 9IT12)" = —5 T=7 ~ 0T a) Im?);. (9.109)

The observation of this time-integrated quantity determines ImA¢ up to its sign.
In particular, let us consider the decays of Y (4S) into two identical CP eigen-
states, such as T(4S) —» J/PKg J/¥Kg (Wolfenstein 1984; Gavela et al. 1985b;
Bigi and Sanda 1987). If the decays are dominated by a single weak phase, one
gets
2 |AfAfl2 z? + 92
T2 (1-92)(1+22)
Thus, we may test for interference CP violation in time-integrated rates—and,
therefore, even at symmetric B-factories. To do this, we must look for decays
into two CP eigenstates rather than for decays into one CP eigenstate and one
flavour-specific final state. Unfortunately, the corresponding rates are expected
to be very small.

The case of uncorrelated initial states is less favorable, since the CP-forbidden
transitions should be overwhelmed by CP-allowed transitions. In that case, signs
of CP violation can only be sought through rate differences involving large can-
cellations. We shall not discuss them here.

|(fcp§fcp|T|‘I)_>| Im?)\;. (9.110)

24Gtrictly speaking, we should use the neutral-kaon CP eigenstates instead of Kg and K.
The difference between the choices is equivalent to an effect of order 10~3. We are implicitly
assuming that this is negligible when compared to the intereference CP violation in the heavy-
meson decays.
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EXPERIMENTAL STATUS OF B°-B9 MIXING

10.1 Introduction

In this chapter we discuss some experimental information on the B°~B9 systems,
where B® may be either B} or BY. The experimental results that we shall discuss

are important for two reasons. First, z4 (the mixing parameter z of the B}-BY
system) provides a constraint on the standard model’s CKM matrix, as we shall
discuss in Chapter 18. Second, mixing measurements fix the values of the dilution
factors that time-integrated experiments on CP violation will be faced with. For
more details the reader may wish to consult the reviews by Fridman (1988)
and by Schréder (1994), and the original articles of the various experimental
collaborations.

10.2 Mixing variables in the B°~B? systems

Several sets of variables are commonly used to describe mixing in the B°~BO
systems. The Pais—Treiman parameters refer to the evolution of a single, tagged,
neutral meson and have been defined in eqns (9.20). Four other variables referring
to the properties of a tagged neutral meson are introduced in this context:

2 2
Xo = 2?1:3::2)’ (10-1)
\ = TIPB° B _ _ _ la/p’xo (10.2)
TIP[B® — B%] + TIP[B® —» B% 1—xo+l¢/p*x0’
gz TIPB' 5 BY __ Ip/aPxo (10.3)
TIP[B® - BY] + TIP[B® — B°] 1—xo+|p/ql*x0’
2
x' = T TIP[B® = B9 = ‘;1—) 1f"y2. (10.4)

Notice that 0 < xo < 1/2, because 0 < |y| < 1. We want to emphasize once
again that the time-integrated probabilities (TIP) that appear in eqns (10.2),
(10.3), and (10.4) refer in practice to decays to flavour-tagging (semileptonic)
modes, and not to real transitions. Also, they have dimensions of time; they are
not probabilities. On the other hand, the parameter x may be interpreted as
a probability. Consider an initial tagged B® meson and its decays into flavour-
specific final states o and 0. The parameter x is the probability that the tagged
B will decay as B?; 1 — x is the probability that it will be observed as a B°. A
similar reasoning applies to ¥.
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The Pais—Treiman parameters may be written in terms of xo as

o X0
pl 1-xo’
,o X (10.5)
7= )B X0
q] 1-xo
Similarly, the dilution factor
_1-y

The unitarity bound of eqn (6.54) becomes
62 < Dy (10.7)

In the case of production of (either correlated or uncorrelated) B°~BO pairs,
one may measure the total numbers of flavour-specific final states, integrated over
all decay times. From these one may form the parameters R and R’, which have
been defined in eqns (9.86) through (9.88), and are related to the Pais—Treiman
parameters (or to z and y) by eqns (9.89)-(9.91).

One should be aware of the fact that, often, several unstated assumptions are
made when experimental results are quoted. Typically, it is assumed that CP
violation in the mixing is small (|q| = |p| or r = 7), as predicted in the standard
model for both the B}~BY and B-BY systems. Henceforth we shall assume that
lg| = |p|- Then,

X = X = Xo,
o X (10.8)
1-y?’

and x < x'. Since x and ¥ coincide in this limit, we may write symbolically

Prob[B® — B9] = Prob[B® — BY] = y,

. (10.9)
Prob[B® — B%] = Prob[B% — B%] =1 - .
Also,
R =T - X
Ne=—1 — - A
b (10.10)
R _  =p= -
nc—_l 1 — X’
and 5
r
Ryncorr = 3 = 2X (1 - X) s
(1;; r) (10.11)

Rl

uncorr — 1472

That is, for C-odd init@ states, R, .=—1 = x measures the probability that an
initial B decays as a BY. This result can be understood on physical grounds.
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The original BJ-BY pair from an Y(4S) is in a p wave. Each neutral meson
oscillates; if at a given instant one meson is detected as a BY, then the other
meson must be BY at that instant. Therefore, detecting one meson as a BY tags
the other one as a BY. The whole experiment can be reinterpreted®® as if we had
started with one tagged initial BY. This is the reason why R, —_; must equal x.

Of course, this does not hold when the initial mesons are uncorrelated. One
then has Runcorr = 2X(1 — X). This result for uncorrelated B°-B° pairs is easy to
understand, too. Using eqns (10.9), the probability to find mixed events is given
by

Prob[B® — BO|Prob[B? — B9 + Prob[B® — B°|Prob[B? — B°] = 2x(1 - x).
(10.12)
Most often, results are quoted assuming also that y = 0, in addition to
lg/p| = 1. In the SM, this is expected to hold to high precision in the BJ-BY
system. In the the B2—§§ system, the theoretical estimate of Beneke et al. (1996)
is

ys = 0.0813:58. (10.13)
When |g| = |p| and y = 0 one has

2

_ ' T
p— — p— = ———Q=T. 10.14
X=X=X=X0= 5005 ( )
As a result, the four xs are often confused in the literature. We prefer to define
them independently. The relation among them must be sought experimentally.
In any case, if the measurements confirm that in the B%-B9 system y is of the
order of the upper limit in eqn (10.13), |y| ~ 0.14, then the correction to the

equality X' = x is very small: x' = x/(1 — y2) ~ 1.02x.

10.3 Experiments at the T(45)

Experiments at the Y(4S) provide a rather clean source of b quarks, since the
branching ratio of Y(4S) into non-bb states is measured to be less than 4%, at
95% confidence level (Particle Data Group 1996).

As mentioned before, in the SM, semileptonic decays respect the AB = AQ
selection rule. As a consequence, a B® meson (with a b antiquark) decaying
semileptonicaly will yield a positively charged lepton I*, while a BO (with a b
quark) will yield a negatively charged lepton {~. The sign of the lepton’s charge
is the same as the sign of the heavy-quark’s charge.

Unfortunately, in a typical event there are many sources of charged leptons.
The leptons from the semileptonic decays of a b quark are selected through
some specific high-momentum cut. There is a further source of confusion: in
a given experimental situation one usually produces several types of hadrons
containing b quarks. These cannot be separated, and one must estimate the

25See Kayser (1997) for a detailed, covariant explanation of this interpretation.
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relative production rates in each experiment. In particular, the decays of the
Y (4S5) yield both B3-BY pairs and Bt-B~ pairs. Roughly speaking, half of the
Y (4S) decay into B3-BY, while the other half decay into BT-B~ pairs. The
‘mixed’, same-sign-dilepton events may only come from a Bg—Bg pair. But, the
‘unmixed’, oposite-sign-dilepton events may come from either Bg—Bg or Bt-B~
pairs.

For this reason, we must be careful and distinguish between the R and R’ of
Chapter 9, and the quantities which are experimentally measured, which we shall
denote Rpyeas and R! Experimentalists use for the quantities of Chapter 9 a

meas*

slightly different notation:

_ N[BYBY] + N[BBY]
N[B3Bj] + N[B}Bj] + N[Bj Bj] + N[B}Bj]
RO RO 0 RO
R = N1Ba Bal + N[ByBq] (10.16)
N[B}B]] + N[B}Bj]

(10.15)

This notation emphasizes the fact that we are interested in the numbers of
flavour-tagging (semileptonic) decays originating in neutral B} and B} mesons.
On the other hand, the measured quantities involve semileptonic decays which
may originate elsewhere.?6 We shall therefore use for those quantities the nota-
tion
N[I=17]+ N[i+it]
Rmeas=N_+ - —7— +7+1°
([=1+]+ N[H-]+ N[I-1-]+ N[I+1+]
R = N[I=I7] + N[I*lt]
meas T N[I-I+] 4+ N[I+1-]’

(10.17)

(10.18)

where Rmeas = Rineas/(1 + Ripeas)- We further introduce the experimentalists’
parlance of ‘mixed’ and ‘unmixed’ events from Bg—Bg pairs:

& = N[B} By + N[B}Bg),

_d I (10.19)
N¢ = N[BYBY] + N[BYBY].

In their practical application these are the numbers of same-sign and opposite-
sign dilepton events, respectively:

Nm.. = N[I=I7] + N[i*1#],

meas
NE... = N[I*I=] + N[i+1].

meas

(10.20)

Clearly,

26 Actually, neutral B mesons may be identified by complete reconstruction of the event.
However, this is extremely inefficient (see, for example, Schroder 1994), and one looks instead
for semileptonic decays.



EXPERIMENTS AT THE T(45) 139

Nm
R = 0
N+ Ny’
o + N (10.21)
R = —%.
Ny

Equations analogous to eqns (10.21) hold for the quantities having the subscript
‘meas’.
Now,
Nineas = Ng"

Ntops = N + N2

meas

(10.22)

The unmixed events N from charged pairs are related to the events from neutral
pairs through

_ Ny fBR

T NGNS foBRG
Here, f and fo are the probabilities, respectively, of charged and neutral pairs
being produced at the Y(4S). By definition, fo + f+ = 1. The ratio of f; and fo
has been measured to be (Particle Data Group 1996, p. 478)

A

(10.23)

J;—+ =1.13+0.14+0.13 £ 0.06, (10.24)
0

where the errors are, respectively, statistical, systematic, and due to the un-
certainties in the ratio of B and B™ lifetimes. Often, experimental results are
quoted assuming fi/fo to be one, which is consistent with the fact that BY
and BT have similar masses. The semileptonic branching ratios of charged- and
neutral-mesons are denoted BR; and BRyg, respectively. Some authors also as-
sume these branching ratios to be equal. Other authors assume that the semilep-
tonic decay widths are the same for both, and then they trade BR.; /BRy by the
ratio of lifetimes 75+ /TBS, which has been measured to be 1.03 + 0.06 (Particle
Data Group 1996).

Therefore, the mixing parameters are related to the measured dilepton events
through

R = (1 + )\) Rieas,

R = (L) Ry (10.25)
1 — AR} cas
Also,
N BRZR
x:eas o \ fO 0 \ - (10.26)
Nieas foBRg (l—R)+f+BR,+

The error in the production fractions is the largest source of uncertainty in these
parameters. This dependence on A may be reduced by reconstructing one of the
BY mesons.

The combined results from the CLEO and ARGUS meaurements at the Y (4.5)
are x4 = 0.156+0.024, where |g| = |p| has been assumed. If one takes y4 = 0, this



140 EXPERIMENTAL STATUS OF B°-B° MIXING

translates into a value for 4 = 1/2x4/(1 — 2x4). One obtains z4 = 0.67 £ 0.08,
meaning that a complete oscillation period 27/Am, takes about nine lifetimes.

CLEO has also looked for CP violation in the mixing through the dilepton
asymmetry of eqn (9.92). They found (CLEO Collaboration 1993c)

2164] _ |NQHIY) - N(@17)
1+62  |NQtIH)+ N(I-1-)

|Au| = <0.18, (10.27)

leading to |04 < 0.09. This bound is still quite far from standard-model expec-
tations, but is anyway much better than the one extracted from the unitarity
bound §2 < 1 — 2x4. A better bound should be attained once these results are
combined with the single-lepton asymmetry of eqn (9.82), 4; = 26x0, as pro-
posed by Yamamoto (1997a). The idea behind this asymmetry is to look for the
time-integrated rates of Y(4S) into a single semileptonic final state, summing
over all channels from the other decay.

Note that the BY and BY move very slowly (v/c & 0.06) in the rest frame of
the Y(45). Hence, for a T(4S) at rest in the laboratory frame, the B} mesons
travel about 30 um in one lifetime. Present technology precludes measurements
of distances shorter than 50-100 pm. For this reason, with symmetric machines
running on the Y(4S5) resonance, we can only perform time-integrated measure-
ments. This is the reason why asymmetric colliders are built, so that the Y(45)
moves in the laboratory frame. The difference between the beam energies makes
the BY mesons travel around 200 um in the laboratory frame. This allows the
time difference between the decays, t_, to be be measured.

10.4 Time-integrated experiments at high energy

In ete™ collisions at high energy, as at LEP, and in pp colliders, the situation
is complicated by the fact that several ¢ pairs may arise from the colour field,
allowing the b antiquark from the original bb pair to hadronize into bg—with
a probability f,—or into Ay and other b-baryons—with a probability fi. One
usually assumes that f. = 0, and, then, f4 + fu + fs + fo = 1. Under several
assumptions, in particular fy = f,, the Particle Data Group (1996) finds the
values

fa= fu = 0.378 +0.022, (10.28)
fo = 0.112+0:018 (10.29)
Fa = 0.132 £ 0.041. (10.30)

Assuming |g| = |p|, what is measured is a mixing parameter

_ I'[b— B — B® - [t X]
XB = T[b — b-hadron — 1 X]’

(10.31)

in which one cannot disentangle the oscillations of BY from those of BY. Hence,
the time-integrated mixing parameter measures
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BR, BR;
= fa—or B) Xd + fs5o B) Xs» (10.32)
where
(BY = fsBRq+ fu BRy + fs BRs + fo BRa. (10.33)

Here, BRy, BR,, BR,, and BR, are the branching ratios for B0 B* , BY, and
b-barions decaying into the observed mode, respectively. It is also poss1ble to
tag the flavour of each meson with decays other than the semileptonic ones. A
common method uses the jet charge. The combined results of LEP1, pp collisions
at 630 GeV, and pp collisions at 1.8 TeV, is xp = 0.126 + 0.008 (Particle Data
Group 1996).

These experiments are much more involved than those performed at the
Y(4S). This is in part due to the existence of more states with b-quark con-
tent, such as B? and b-baryons. Moreover, identifying the flavour of one jet does
not tag the flavour of the other b at that instant. The tagging possibility exists
for BY-BY pairs produced at the Y(4S5) due to the antisymmetry of the orig-
inal wave function. At high energy, because of uncorrelated initial states, this
possibility does not exist any more.

10.5 Time-dependent experiments at LEP1

At LEP one can measure the distance d between the primary vertex and the
point where the B° meson decays. This is related to the meson’s proper time
t by t = dmp/pp; the momentum pp of the B® meson is estimated from the
momentum of its decay products. As we have seen before, the probabilities that
a particle initially tagged as B° is still B, or is B?, at proper time t, are

Ores _ P01 = _ B et ATt
Prob[B°(t) = B°] = Prob[B9(t) = BY] = 5 cosh —~ + cos (Amt)| ,
e Tt ATt
Prob[B°(t) = BY] = Prob[BO(t) = B] = 5 cosh —5— —cos (Amt)|,

(10.34)
respectively. (In the second equation we have assumed that there is no CP viola-
tion in the mixing, as is always done in the experimental analysis.) Furthermore,
it is customary to assume that AI' < T. Since both B and B? mesons are
produced, the measurements are sensitive to both Amy and Am;. Extracting
both parameters involves searching for two separate frequency components in
the decay-time distributions.

These measurements are very complicated, and we shall only point out a
few difficulties. Any given experiment measures the time evolution of only one
meson. Its initial flavour may be tagged by the charged lepton in the opposite
side of the detector.?” This tagging has a probability x of being incorrect, as

27 At LEP, other tagging strategies were also used, such as the opposite jet charge, the same
side jet charge, and the kaon tag. They are usually combined into a complicated multivariable
analysis. The overall effect is to replace x by the ratio of the wrong tags to the total number
of events tagged (Moser, private communication).
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we have seen before. Even if there were no complications due to the possible
presence of several b hadrons, this would yield a ratio of dileptonic events given
by (assuming AI' = 0 as usual)

_ N™ o _ =(1-x 1 — cos (Amt) +X1 + cos (Amt)
Nmea.s + Nmeas 2 2

_ 1 - (1 = 2x)cos (Amt) (10.35)

5 . .

The same reasoning leads to the expression for y # 0,
Nrrnneas 1 COS (Amt)

—_— =2 [1-(1-2)——————= 10.

Nro+New 2 |V U g Gy | (10.36)

which has been derived in eqn (9.94). The oscillatory term is not changed. Indeed,
AT only shows up in cosh (AT't/2) and implicitly in x = (22 +%?)/(2+22?). Since
the experiments do observe an oscillation, removing the constraint y; = 0 should
not have a large impact on the central value and error bars of the z4 found in this
way.?8 Hence, one can place a limit on y4 by combining these time-dependent
determinations of Amg with the time-integrated bounds on x4.

In addition to the complication introduced by the mixing (i.e., by x # 0),
one must deal with all the b hadrons, mixing mistags and backgrounds, some
of which also depend on the amount of mixing (such as events with one lepton
from a direct decay b — [, and another from a chain b — ¢ — [). When all
this is taken into account, the time-dependent dileptonic fractions show a clear
frequency component, consistent with the estimate of z4 from time-integrated
measurements. The Particle Data Group (1996) finds Amg = (0.50 & 0.04) ps—?1.
One may combine this with the information on the BY lifetime to find z4. As-
suming y4 = 0 and combining all the time-independent and time-dependent
determinations of z4, the Particle Data Group (1996) finds z4 = 0.73 & 0.05.

In addition, the Particle Data Group (1996) gives Am; > 5.6ps~! (which
corresponds to z; > 9.5), where the assumptions f; = 11.2% and ys = 0 have
been used in the fit. This results in x; > 0.49, which is close to the upper bound
x < 0.5. In this case there is also a bound on ys; coming from the comparison of
the average BS and BY lifetimes. Assuming that y4 = 0, I'p, = I'g,, and that
there is no bias in the experiments, the combined LEP and CDF data yields
ys < 0.3 (Moser, personal communication).

28Recent Monte Carlo experiments confirm this expectation (Moser, personal communica-
tion). Still, it would be nice to see it confirmed by the data.
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GAUGE STRUCTURE OF THE STANDARD MODEL

11.1 Introduction

In this chapter we make an overview of the gauge structure of the standard model
(SM), with the purpose of establishing notation and writing down the Feynman
rules for all vertices and propagators in a general ’t Hooft gauge. The part of the
SM Lagrangian involving the fermions will be studied in the next chapter.

This chapter does not intend to be either pedagogical or self-contained. For a
thorough derivation of the SM Lagrangian, the reader is advised to consult one
of the texts existent on the subject—for instance Abers and Lee (1973); Fritzsch
and Minkowski (1981); Leader and Predazzi (1982); Cheng and Li (1994). Some
readers may prefer to skip this chapter altogether.

11.2 SU(2)

The Glashow—Weinberg-Salam (Glashow 1961; Weinberg 1967; Salam 1968)
model for the electroweak interactions, termed the standard model, has gauge
group SU(2)®U(1). The generators of SU(2) are denoted Tj, T», and T3. They
are Hermitian and obey the commutation relations

[Tk, Ti] = i€ximTrm. (11.1)
One defines T 44T
Lo
Ty =22 . 11.2
+ /2 ( )
Then, T_ = TJ_ and the commutation relations are
T,,T_] =1T;,
T, T-]=T; 113)
[T3,Ti] =4Ty.

In the doublet representation, the T} are represented by the Pauli matrices
T divided by 2, i.e.,

2) _ 01 (2) _ 0 — @2 _ 10
Tl _%(10>’ T2 _%<20>a TB _%<0_1 . (11'4)
Then,
2 _ 1 (01 2 _ 1 (00
T, _75(00), T _ﬁ<10 . (11.5)

In the triplet representation,
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" 010 " 0—i 0 o (100
T =21 101], T¥=2(i0 |, T®=(000 |. (116)
Y \o1o Ao o 00-1

Then,
010 000
T = (001 , T = (100 . (11.7)
000 010

11.3 Covariant derivative

The covariant derivative is
M —ig(WiTy + Wa'Ty + W;T;;) —ig' B*Y. (11.8)

Here, g denotes the SU(2) coupling constant and g’ is the U(1) coupling con-
stant. The U(1) charge Y is termed (weak) hypercharge; it is, for each irreducible
representation of SU(2)®U(1), a real multiple of the unit matrix. In our normal-
ization, the electric charge @ is given by @ = T3+Y. The three W' are the gauge
fields of SU(2), while B* is the U(1) gauge field. We shall often omit the Lorentz
indices on the gauge fields and on the derivatives, in order not to overload the
notation.

One defines
Wi ¥ iW,

V2

Instead of g and ¢’ it is useful to introduce e (the electric-charge unit) and the
angle 6, defined through

W:l:

(11.9)

;e (11.10)
g9 = e’
where s,, = sinf,, and ¢, = cosf,,. We also define the gauge fields A and Z to
be the result of an orthogonal rotation of B and Wj:

B\ [ cw Sw A
CAREESIC) N
The covariant derivative in eqn (11.8) may then be written

97 (Ts — Qs2) . (11.12)

—iZ
Cw

0+ieAQ —ig (WHTy + W™T.)

11.4 Self-interactions of the gauge bosons

Interactions among the gauge bosons are typical of a non-abelian gauge theory.
In the SM, they arise because of the presence of the non-abelian SU(2) in the
gauge group. If we denote
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= igz (2gaﬁguu — 9ap9pv — gaug[iu)

W,
Au Zy Ay
e
5
=19 (Jaupv + Jav98u — 29ap9ur) (855 Co; —SwCw)

AV§ZV§ZV

= ig [gaﬂ (p+ —P-), + 9u8 (@ — P+) g + Gua (P- — q)ﬁ]

X (Sw; —Cw)

F1G. 11.1. Self-interactions of the gauge bosons.

PP = grWY — "W + g (WEWY — WEWY),
FI = 0rWY — "W + g (WEWY — WEWY),
FpY = 0WY — 0" W + g (WEWY — WEWY),
F¥ = prBY — 9B,

(11.13)

then, the gauge-kinetic Lagrangian can be written

—3 (FY Fiyy + FY" Foy + F" Fa + FY  Fyp)
== (0., W,f) (0"W"™) + (0. W,f) (8"W*H7)
—-3 (8,A)) (0" A”) + 5 (8, A,) (0" A*)
—-3(8,2,) (0*2") + § (0u2) (0" Z*)
+non-quadratic terms. (11.14)

The non-quadratic terms in the last line of eqn (11.14) yield the vertices in
Fig. 11.1.

11.5 Gauge interactions of the scalars

The scalar sector of the SM consists of only one doublet, ¢, which has Y = 1/2.
If one chooses a negative sign for the coefficient 4 in the quadratic term pu¢'¢ of
the Higgs potential—see eqn (11.30)—then the SU(2)®U(1) gauge symmetry is
broken into U(1), which is identified with the gauge group of the electromagnetic
interaction. Without loss of generality, one can make an SU(2) rotation so that it
is the lower component of ¢ which acquires a vacuum expectation value (VEV)
v, which is a c-number, constant over the whole of Minkowski space. We write
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= (3) (o)

Here, H and x are Hermitian Klein-Gordon fields, ¢* are the Goldstone bosons
to be absorbed in the longitudinal components of W*, x is the Goldstone boson
to be absorbed in the longitudinal component of Z, and the physical Higgs
particle is H. One introduces the conjugate SU(2) doublet

~ ot —
p=ingt” = ( ¥ _) - (”+(H fX)/ﬂ), (11.16)
—p -
which has Y = —1/2.
From eqns (11.12), (11.4), and (11.5) it follows that the gauge-kinetic La-
grangian of ¢ is

[&p‘ —ieAp™ + i%W‘(pOJr + iéz—wZ (2 —s2) go']
X [Bcp"' +ieApt — i%W"'(pO - i%Z (2 —s2) <p+]
+ <6<p°* +i—j_—2W+cp_ - i2—‘z:Z<p°f)
x (3(,00 - i%W“w’L + i%ujz‘po) . (11.17)
We use the relationship between v and the masses of the W and Z,
v= ?mw = \/igcwmz, (11.18)

and find that the expression in eqn (11.17) is

(8¢7) (96*) +  [(OH)” + (8x0°] + miy W~ W+ + im3 2°
+imw (W™ 0T — Wt0¢p™) + mzZdx
+non-quadratic terms. (11.19)

The terms in the second line of eqn (11.19) are cancelled out by the gauge-fixing
Lagrangian, as we shall see next. The non-quadratic terms in the third line of
eqn (11.19) give rise to the vertices in Fig. 11.2.

11.6 Gauge-fixing Lagrangian

A gauge fixing is required in order to define the propagators of the gauge bosons
and of the Goldstone bosons. Here we shall consider only ’t Hooft gauges. Let
us first study the case of the gauge boson Z and the Goldstone boson x. The
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Wgi Za W;: +
H . mgz P . 2
----- = i9gag (mw; —= -<-- = —igap (emw; gs,mz)
w
Wi Zg Ap; Zg
\‘i(p:t WE ) H
Do . PH VA g
(" & _ ..g_ (pgo — p)a (:*:Z, 1) )vwwvvvg\. = = (px -—pH)a
Py Pxy 2w
/4H;X ,/ X
\ P+
P> Aa§Za_ . X g(sfu_c%u)
p_l)w\mvvvvvvv»—l(p_ "p+)a €; 2%
Ay~ N
’
Wa_aza Wa_aZa
H H_X X iges (g_2 i)
""""""""""""" «a )
27 2¢2
Wi Zs Wi Zg
WF ws
+ . + . 2.2
H; —ie . H; —tg°s .
RN S P TC T =) R ARG S0, . ATIAYCHES)
2 2¢cy
Ap Zp
Ag; Zoz;Aoz;Wa_
2
T . (f)j:ig 962. 9% (s2 —cl)” eg(sh—c) 9’
af ' 2c2, ' Cw T2
Ag;Zg;Zg;VVEr

Fi1G. 11.2. Gauge interactions of the scalars.

quadratic terms in the Lagrangian containing Z and x are—see eqns (11.19) and
(11.14)—

~1(8,2,) (0" 2") + } (3,2,) (8" Z%) + Im3 2, 2" + } (9,X) (8*X) + m2Z,0x.

(11.20)
One uses the gauge-fixing Lagrangian
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—iguy B ik k,
R w2 T (=8) =5
k

—1Q,0 ik, k, 1 1
Ww=k2gu2+ u2 ( )

Loz v —m% " m% \k*-m} k®—Ezmg
k —ig L ikk, (11
WY T R —my, | mE, \R-md, K- Ewmd,

Fi1Gc. 11.3. Propagators of the gauge bosons.

1 1 " 3
35 (8,2" — EzmzX)’ = % (8,Z*) (8,2") + mzXx8, 2" — ?Zm%f, |
11.21

where £z is an arbitrary real non-negative number, whose value is £z = 0 in the
Landau gauge, £z = 1 in the Feynman gauge, and {z = oo in the unitary gauge.
Physically meaningful quantities are independent of £z. Adding eqns (11.20) and
(11.21) we find that x has the usual propagator for a scalar boson, with squared
mass £zm?%. Also, after an integration by parts, the Z—x mixing terms mz Z,,0"x
and mzx0,Z* cancel out. The remaining terms yield, after some integration by
parts, the Z propagator. This propagator has two parts—see Fig. 11.3. The first
part has its pole on the physical squared mass m%. The second part has its pole
on the unphysical squared mass £zm%. The effects of this second part of the
Z propagator must cancel out with the effects of the propagation of y—and of
the Z ghost, as we shall see in the next section—which have the same fictitious
squared mass £zm?%.
The gauge-fixing term for the W*-p* sector reads

1
o ("W —igwmwe™) (0"W, +ifwmwe™)

- —EIW (O“WF) (0°Wy) + imuw (9 "W — o~ 0HWT)
—EwmiyeTe. (11.22)

From eqns (11.19) and (11.22) we see that ¢* has the usual propagator for a
charged scalar, with unphysical squared mass éwm?,. The W*—o* mixing terms
cancel out. The gauge boson W+ has a propagator with two parts, one with pole
on the physical squared mass m¥,, the other one with pole on the unphysical
squared mass &wm?,. Any physical quantity must be independent of the real
non-negative number &y . Note that £ does not need to be equal to £z; we may
choose different 't Hooft gauges for the Z—x sector and for the W*—p* sector.
The gauge-fixing term for the photon is

1 " "
~ 557 (04,) (@A) (11.23)
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k _ 7 k _ i k i
A s B e A

Fi1G. 11.4. Propagators of the scalars.

Once again, the unphysical gauge parameter £4 does not have to be equal to
either &y or £z. From eqns (11.14) and (11.23) it follows that the photon propa-
gator is as given in Fig. 11.3. It has a k, k, part with gauge-dependent coefficient
1 — £4; that part of the propagator must give a vanishing contribution to any
physical quantity.

The propagators of the scalars are collected in Fig. 11.4. The mass my of H
originates in the scalar potential, to be treated in § 11.8.

11.7 Ghosts

The ghost Lagrangian depends on the gauge-fixing conditions and on the gauge
transformations. An infinitesimal gauge transformation of the scalar doublet
reads

66 =i (9xT® + 95 ) 0, (
11.24)

8¢ =i gakT,Sz)—g’g- é,

where the oy are the three infinitesimal parameters of the SU(2) gauge transfor-
mation, and 3 is the infinitesimal parameter of the U(1) gauge transformation.
Writing
L _ 01 Fiag
a —_—

\/5 )

()= (=) (o)

—cf. eqns (11.9) and (11.11)—we find

(11.25)

2 _ 2
St = imwat +i [<_ea,4 + g S“’az) ot + 9 (H +ix) a+] ,
2¢y 2
. . et —§? g .
Sp~ = —imwa™ —i [(—eaA +9-57 thZ) v~ + 5 (H—ix) a‘} , (11.26)
dx = —mzaz — —g—Haz +9 (p7a™ +¢ta™).
2¢y 2

The same infinitesimal transformation of the gauge fields reads
6A, = Opaa +ie(a W —atW)),
62, = duaz —igey ("W —atW, ), (11.27)
SWE =00t £ ingjE (—8w@a + cwaz) Fig(—swAu +cuwZ,) at.
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k 7 ic 7 k k 1
..... )..... = — . teeer &= —m — —m .....,...... = .....).... =
ca k2 ey k2 —§&zmy ot c Ewmiy

Fic. 11.5. Propagators of the ghosts.
The Fadeev—Popov ghost Lagrangian for a general 't Hooft gauge reads, from
eqns (11.21), (11.22), and (11.23),

) Z“—fzmzx) _ 6(0,4%)
ﬁpp——Z[ o +CA6+¢1~-

5+6 (6“W;‘ - Z{meg0+)
éai

Ci

) (B“W“_ + ifwmwgo_) .

5o (11.28)

1

The notation of the sum over i is the following: c; denotes cz, c4, ¢*, and ¢~, and
the corresponding o; are az, a4, at, and o™, respectively. Notice that there are
two distinct charged ghosts, ¢t and c¢~, together with their distinct antighost
fields, ¢+ and ¢, respectively. We easily find
Lyp = —Cz (BHB“ + fzm2z) cz — EAaua“CA -t (8“6“ + fwm%,v) ct
—&~ (8,0* + éwmiy) ¢ + non-quadratic terms. (11.29)
From eqn (11.29) we find the ghost propagators in Fig. 11.5. The non-quadratic

terms yield the vertices in Fig. 11.6. Note that some of those vertices are pro-
portional to the gauge parameters {y and &z.

11.8 Self-interactions of the scalars
The self-interactions of the scalars originate in the scalar potential—which ap-

pears in the Lagrangian density £ with an overall minus sign, £ =--- = V-
V= udlé+A(8'9), (11.30)
where 2 )
¢'d =v? + V2uH + -—2+—X— + ¢ ot (11.31)

The vacuum stability condition is equivalent to the condition that the terms
linear in H vanish: 4 = —2X\v?. We trade X\ by the Higgs mass mpy through
4x\? = m¥%, and use the W mass mw instead of v by having recourse to
eqn (11.18). We obtain

Vo= WM Mg 9T (——H2+X2 +<p‘<p+) H

2¢2 2 2mw 2
2
g mH H? +X - +
+8mW ( 5 +o . (11.32)

We find that, besides the mass term for H and the vacuum energy density
—m?,m?% /(29?), the potential V contains cubic and quartic terms which yield
the vertices in Fig. 11.7.
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Fi1Gc. 11.6. Ghost vertices.
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Fi1G. 11.7. Self-interactions of the scalars.
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THE FERMIONS IN THE STANDARD MODEL

12.1 Introduction

We proceed in our overview of the SM, now considering the part of the La-
grangian involving fermions. In the first two sections of this chapter we assume
the existence of only one generation of fermions, and in the following sections we
study the modifications introduced by the presence of ny > 1 generations.

In this part of the book we shall mainly discuss quarks and their interactions,
only occasionally commenting on leptons. This is because, in the SM, the leptonic
sector is a simplified version of the quark sector: the absence of right-handed
neutrinos and of Majorana masses leads to the absence of lepton mixing. In
particular, the phenomenon that interests us most, CP violation, does not occur
in the leptonic sector of the SM.

12.2 Gauge interactions of the fermions
The quarks of chirality —1 form SU(2) doublets with hypercharge 1/6:
QL = (PL) , (12.1)

nr

The quarks with chirality +1 are the singlets pg, with @ =Y = 2/3, and ng,
with@Q =Y =-1/3.

The charged- and neutral-current interactions of the quarks are derived from
the general gauge-kinetic Lagrangian for a fermion multiplet f,

P |0 = eAuQ+ g (WiTe + Wy T) + L2, (T - Qs2) | £ (122)

w

This yields the electromagnetic-interaction terms

£ = —eA, It (12.3)
where
Jbn = 5 (BL7"pL + PRY'PR) — § (ALY*nL + ARY*1R) . (12.4)
The neutral-current interaction with the Z is given by
£y = %Zu (PTY*pL — ALY nL — 255,J4,) (12.5)

and the charged-current interaction with the W¥ is
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L@ = % (WHpEy nL + W, nTy"pL) - (12.6)

For the leptons we have similar arrangements. A typical doublet of left-

handed?® leptons is
Ly = <‘;LL) . (12.7)

It has hypercharge Y = —1/2. The right-handed charged lepton lg is an SU(2)
singlet with @ =Y = —1. There are no right-handed neutrinos in the SM.
The charged-current interaction of the leptons is given by

) = —-}2- (WhHory le + Wy Tpytur) (12.8)

and the neutral-current interactions, mediated by the Z and by the photon, are

— 52 — —
E(zl) + ['g) = %Zu (v vL — lpyHlL) + <gc_wa# + eAu) (L7l + IrY"IR) -
(12.9)

12.3 The Yukawa Lagrangian

There are SU(2)®U(1)-invariant Yukawa couplings involving the left-handed
doublets of fermions, the right-handed singlets, and the Higgs doublet:

Ly = - (‘erqsnﬁ + QrAGpR + 'IIZH¢1R) +He. (12.10)
+ t
= [(p_n_) r (‘go ) ng+ (Pr 7L ) A (f’;_)pR
+(oplp) 1 (‘g:) ZR] +He, (12.11)

where I'; A, and II are arbitrary complex numbers. The notation ‘+H.c.” means
‘plus the Hermitian conjugate’.

If we substitute ¢° by its vacuum expectation value v, we obtain the mass
terms

Lmass = —ALMpnpg — p_LMppR - TEM[IR + H.c,, (12.12)

with M, = oI, M, = vA, and M; = vIl. The remaining terms in Ly are the
Yukawa interactions:

M, .
Ly — Lmass = \/_v = (H +ix)ngr — pL—= T (H —ix)pr
M; M,
L5 (H 4 ix) g - Pt
L\/iv( X)lr PL—¢"nR
M M
+7L = Lo PR — ﬁ—v—’goﬂR +He.. (12.13)

29From now on we adopt the standard use of terming fields with chirality —1 ‘left-handed’
and fields with chirality +1 ‘right-handed’.



156 THE FERMIONS IN THE STANDARD MODEL

12.4 Generations

One of the striking features of the spectrum of elementary fermions is the fact
that there is in Nature a replication of the fermion multiplets. In the SM, the
number n, of fermion ‘families’ or ‘generations’ is not fixed by any symmetry
principle. Experimentally, there is strong evidence that there are only three gen-
erations: ng = 3. The couplings I', A, and II in eqn (12.11) then become ng4 x ng
matrices in generation space. Gauge invariance does not constrain the flavour
structure of the Yukawa interactions and, as a result, I', A, and II are com-
pletely arbitrary. This arbitrariness is actually responsible for most of the free
parameters in the SM. This is the so-called flavour problem, one of the funda-
mental open questions in particle physics.

The Yukawa-coupling matrices are not necessarily Hermitian. They may be
diagonalized by bi-unitary transformations

pr = Ulur,
= UPupg,
PR = YRR (12.14)
ny = UZdL,
nR = Uﬁd}i,

where uz, g and dp g denote the ny x 1 column matrices with the chiral compo-
nents of the quark mass eigenstates—of the physical quarks. The n, X ng unitary
matrices U¥ and U}, are chosen such as to bi-diagonalize M, (or, equivalently,
A), while U and UZ bi-diagonalize M,, (or, equivalently, T'):

UP'M,UR, = M, = diag (my, me,m, ...,

(12.15)
Upt M,UR = My = diag (ma, ms, ms, . .) -

The matrices M, and M, are, by definition, diagonal; their diagonal matrix
elements are real and non-negative.
If we define the Hermitian matrices

H, = M,M},

q = M (12.16)
n — n n)

then we realize that the unitary matrices U] and U} diagonalize H, and Hy:

UR' U} = Mi, (12.17)
UMH,Up = M3.

The charged-current interaction in eqn (12.6), written in terms of the quark
mass eigenstates, is

£ = L (whapyvd, + Wy dpy"Viug) (12.18)

S

where



GENERATIONS 157

v =urtup (12.19)

is the Cabibbo—Kobayashi-Maskawa (CKM) matrix (Cabibbo 1963; Kobayashi
and Maskawa 1973). It is written

Vud Vus Vub
Vea Ves Vep -+
V=1 Vi Vis Vip -+~ | - (12.20)

The appearance of a non-trivial CKM matrix in the charged current reflects
the fact that the Hermitian matrices H, and H,, are in general diagonalized by
different unitary matrices.

In general, we will designate up-type (Q = 2/3) quarks by Greek letters
a, 3, ..., which may assume the values u, c, t, and so on (if there are more than
three generations). Down-type (Q = —1/3) quarks will be designated by Latin
letters i, 7, ..., which represent d, s, b, and so on. A general matrix element of V
will be denoted V;.

The neutral-current Lagrangian preserves the form in eqns (12.3)-(12.5), with
the weak eigenstates py r and np, g substituted by the mass eigenstates uy g and
dr, R, respectively. This means that no mixing matrix analogous to V arises in
the current which couples to the Z. In the SM there are no flavour-changing
neutral currents (FCNC) at tree level. This is a consequence of the fact that
all fermions of a given charge and helicity have the same value of T3, the third
component of weak isospin (Glashow and Weinberg 1977; Paschos 1977).

In the leptonic sector, we bi-diagonalize M; by performing unitary transfor-
mations of the fields, analogously to what is done in the quark sector. However,
as the neutrinos are massless in the SM, we are free to transform them in such
a way that a mixing matrix does not arise in the leptonic sector:

v = UiI/L,
lp =Uley, (12.21)
lR = UEGR,

where e and v denote the mass eigenstates of the leptons. Notice that the same
matrix U} is used to transform both I;, and vy. The unitary matrices Ut and
U}, are chosen such that

UL MUY = M, = diag (me, my,ms,...). (12.22)

In terms of the lepton mass eigenstates, both the charged-current interaction in
eqn (12.8) and the neutral-current interactions in eqn (12.9) preserve their form,
with the weak eigenstates I r and vy, substituted by the mass eigenstates er, r
and vy, respectively. In the SM there is no mixing matrix in the leptonic sector
due to the fact that there is no mass matrix for the neutrinos. The absence of
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k —ik+mf
T

F1G. 12.1. Propagator of a fermion f with mass my.

such a mass matrix allows one to transform vy, into vy, by using the same unitary
matrix Ui which is used to transform I;, into er. In the SM, neutrinos have zero
Dirac mass due to the fact that no right-handed neutrinos are introduced. Since
neutrinos have zero electric charge, one could in principle have Majorana mass
terms (see Chapter 25) of the type v7,C~1vL;. In the SM, tree-level Majorana
mass terms do not arise due to the absence of Higgs triplets. Majorana mass
terms might be induced by higher-order diagrams or by non-perturbative effects.
However, in the SM the quantum number B — L is exactly conserved—B is the
baryon number and L is the lepton number. As Majorana mass terms violate
B — L, we are sure that they do not arise.

The Feynman rules for the fermion propagators are displayed in Fig. 12.1.
The rules for the fermion gauge vertices are in Fig. 12.2.

12.5 Yukawa interactions

Let us return to the Yukawa interactions in eqn (12.13) and rewrite them in
terms of the physical-fermion fields. One obtains

M, .
Ly — Liass = \/_’U H + lX) dr UZ7—2—1; (H - ZX) UR
M, My
- H+ —wpV=Lotdn
eL—7=— T (H+ix)er —uL ¢

— .M M,
+dLV1—1i<p‘uR - ﬁ—vf-gﬁeg +H.c.

= \/_ (dMyd + WMyu + M.e) (12.23)
2v
—\—/-2‘5 (dMygysd — TMyy5u + EMeyse) (12.24)
+
+ & @MV - VM) d=TMeyre] (12.25)

+“’T [ (VIMyyr — MaViyp)u—eMoyv] . (12.26)
Here we have introduced the quark fields d = dp + dg and u = ug + ug, and
similarly for the leptons, e = er, + eg and v = vr. Equations (12.23)—(12.26)

yield the Feynman rules for the Yukawa interactions of the fermions with the
physical and unphysical scalars, shown in Fig. 12.3.
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160

THE FERMIONS IN THE STANDARD MODEL

. Uq
. G _ =9ma
2mw " X 2mw

a

. d.
Wk N -
2mw d X 2mw

. €
—gme N — gme
2mwy . X 2mw

V2 \mw
tg Mg _ *
\/§ mw YR YL ak
. e .
—1gMe —1gMe
YR -€-- =
\/imw ' \/imw

v

Fi1G. 12.3. Yukawa interactions.

YL



13

FUNDAMENTAL PROPERTIES OF THE CKM MATRIX

13.1 Rephasing-invariance

The CKM matrix V is complex, but some of the phases in it do not have physical
meaning. Indeed, one has the freedom to rephase the quark fields,

Ug = eVeu! |

dy = ¥, (13.1)

with ng arbitrary phases ¢, and n, arbitrary phases ;. Under eqn (13.1), V
transforms as ‘
o = eIy (13.2)

One may thus arbitrarily change, and in particular altogether eliminate, the
phases of 2ny, — 1 matrix elements of V. (One cannot eliminate 2n, phases be-
cause, if all ¥, and all ¢; are equal, no V, changes—a common rephasing of
all quark fields has no effect on V.) In particular, we may choose an arbitrary
row and an arbitrary column of V' to be real non-negative; this is true for any
number of families.

Physically meaningful quantities must be invariant under a rephasing of the
fields; only functions of V' which are rephasing-invariant may be measurable. The
simplest invariants are the moduli of the matrix elements. We denote

Uai = [Vail*- (13.3)
The next-simplest invariants are the ‘quartets’
Qaiﬁj = VangjV;jVEi. (134)

We require a # 8 and i # j, lest the quartet reduces to the product of two
squared moduli. Clearly, Qaig; = Qgjai = Qb = Qpia;- We denote

Waig; = arg Qaig;- (13.5)

The phases wqig; are invariant under eqn (13.2).
Invariants of higher order may in general be written as functions of the quar-
tets and of the moduli. For instance,

VaiVai Var Ve Vi Vo = _—Qai%gwﬁ (13.6)
1

The procedure may fail in singular cases in which some CKM matrix elements
are zero. We shall not consider such singular cases here.



162 FUNDAMENTAL PROPERTIES OF THE CKM MATRIX

13.2 CP violation

A pure gauge Lagrangian is necessarily CP-invariant (Grimus and Rebelo 1997);
as an instance of this, we have shown in § 3.7 that the Lagrangian of QCD is
CP-invariant.3® The scalar potential of the SM, in which only one Higgs doublet
exists, automatically conserves CP. As a result, CP violation can only arise from
the simultaneous presence of Yukawa interactions and gauge interactions.

We have seen in Chapter 3 that, under CP, 0* — 0, and

(CP) A¥ (t,7) (CP)! = —A, (¢, 7). (13.7)
Also, from eqns (3.12) and (3.20),
(CP)p* (t,7) (CP)' = e¥w o~ (t,—7),
(CP) ™ (t,7) (CP)T = e"¥w ot (t,—7),

where £y is an arbitrary phase. Analysing the interactions in eqn (11.17) we
find that, in order to obtain CP invariance of that part of the Lagrangian, one
must postulate

(13.8)

CP)WHr (1,7 (CP)' = —ew W, (t,—7),

; . (13.9)
CPYW = (t,7) (CP)' = —e~“wW} (t,—7),
together with
(CP) Z* (t,7) (CP)' = =2, (t, -, (13.10)
(CP)H (t,7) (CP)' = H (t,—), (13.11)
CP) x (t,7) (CP) = —x (t,—7). (13.12)

One finds that all interactions in Chapter 11 are invariant under this CP trans-
formation, which must be extended to the ghosts:

(CP)ct (t,7) (CP)' = xeéwe (t,—7),

(CP)c (t,7) (CP)! = ke~#wct (t,—7),

(CP) et (t,7) (CP)! = e~we™ (t,—),

(CP)e (67 (€ P)I ettt (t, -7, (13.13)
(CP) ez (t,7) (CP)! = ez (t, -,

(CP) ez (t,7) (CP)! = x2z (t, ),

(CP)ca (t,7) (CP) = £ca (t,—7),

(CP)ea (t,7) (CP)! = £ea (t,—7).

30We forget for the moment the possibility of strong CP violation, which will be studied in
Chapter 27.
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From Chapter 3 we know that

(CP) ua (t,7) (CP)! = eay®CT,T (t,-7),

(CP)Ta (t,7) (CP)! = —e~#eu] (t —) C~14°, (15.14)
(CP) di (t,7) (CP)! = eie40CT, " (2,7, '
(CP) i (t,7) (CP)' = —e~#rd] (t,—7) C~14°.

Now consider the interactions in eqn (12.25). We derive
(CP) ot ugmaVaryrdi (CP)' = W H6—82) =G m , Vok YR UG, (13.15)

and compare this result with the term cp‘d_kV;kmdfyRua in eqn (12.26). We
conclude that, in order for the sum of eqns (12.25) and (12.26) to be CP-invariant,
one must have

Vi = elltwtb—tady (13.16)

We would have arrived at this same condition if, instead of imposing CP in-
variance on the interactions in eqns (12.25) and (12.26), we had imposed CP
invariance on the interactions in eqn (12.18).

Equation (13.16) can always be made to hold if one considers a single matrix
element of V, because the CP-transformation phases éw, €4, and & are arbitrary.
However, if one simultaneously considers many matrix elements of V', one realizes
that eqn (13.16) forces the quartets, and all other rephasing-invariant functions
of V, to be real. In general, there is CP violation in the SM if and only if any of
the rephasing-invariant functions of the CKM matriz is not real.

Because of the absence of a mixing matrix, the interactions of the leptons in
the SM are always CP-invariant.

13.3 Parameter counting

In the SM with n, generations the CKM matrix is ny X ny, unitary. It would
therefore, in general, be parametrized by nf] parameters. However, 2n, —1 phases
may be absorbed or changed at will by rephasing the quark fields. Therefore, the

number of physical parameters in V' is
Nparam = nz - (2719 - 1) = (ng - 1)2 . (1317)

An ny x ny orthogonal matrix is parametrized by ng (ny — 1) /2 rotation an-
gles, which are sometimes called Euler angles. An unitary matrix is a complex
extension of an orthogonal matrix. Therefore, out of the Nparam parameters of
v,

Nangle = %ng (ng - 1) (13.18)
should be identified with rotation angles. The remaining
Nphase = {¥param — Nangle = % (ng - 1) (Tlg - 2) (13.19)

parameters of V' are physical phases.
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Thus, in the two-generation SM there is no physical phase—no phase which
cannot be eliminated by a quark-field rephasing. CP violation is therefore absent
when ny = 2. One may confirm this in another way. When ny = 2 there is only
one potentially complex quartet, Qyq4.s. However, the orthogonality relation

Vud cji + VusV;q =0 (1320)

implies, when we multiply it by V.5,V¢s, that Qudecs = —UusUcs, which is real.
The quartet being real, there is no CP violation.

According to eqn (13.19), there is one physical phase in V' when ny, = 3.
That phase generates CP violation, as was first pointed out by Kobayashi and
Maskawa (1973). Let us confirm in a different way the uniqueness of the origin
of CP violation when ny = 3. The orthogonality relation for the first two rows
of V reads

VudVeg + Vus Vi + VsV, = 0. (13.21)
Multiplying it by V;,V;s and taking the imaginary part, one obtains
Im Qudcs = —Im Qubcs- (13.22)

Thus, the two quartets Qu4cs and Qupes have symmetrical imaginary parts. Pro-
ceeding in the same way, one easily shows that, because of the orthogonality of
any pair of different rows or columns of V', the imaginary parts of all quartets are
equal up to their sign (Jarlskog 1985a,b; Dunietz et al. 1985). One may therefore
define

J =Im Qusco = Im (Vs Vs Vi Vi3 - (13.23)

The imaginary parts of all quartets are equal to J up to their sign. This is a
counterpart of Nphase = 1.

13.4 Unitarity conditions on the moduli

The SM prediction that the CKM matrix is unitary must be experimentally
tested. Non-fulfilment of the unitarity constraints would signal physics beyond
the SM. (It must however be kept in mind that the unitarity conditions depend
on the number of families. Therefore, it may happen that the physics beyond the
SM simply consists of extra generations, without any change in the structure of
the model.)

The rows and columns of V' are normalized:

Y Uai=) Uai=1, (13.24)

a=1 i=1

and therefore only (ng, — 1) moduli are independent. Thus, the number of pa-
rameters Nparam is equal to the number of independent moduli. This is a special
feature of the SM which does not hold in some other models. It suggests the pos-
sibility of parametrizing the CKM matrix by the moduli of its matrix elements
(Branco and Lavoura 1988a; Lavoura 19894,b).
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For ny, = 3, let us take Uys, Uup, Ucs, and Uep as the independent squared
moduli. The other U,; are easily found from these:

Uus = 1= Uys — Uus,

Ui =1=Ucs — Ues,

Uss = 1= Uys — Uss, (13.25)
Uw = 1= Uup — Uep,

Utd = Uys + Uyp + Ugs + Uep — 1.

The four independent squared moduli must of course be non-negative. They must
also be such that their linear combinations in the right-hand-sides of eqns (13.25)
are non-negative.

Now consider the orthogonality condition in eqn (13.21). From it we derive

2Re Quscb = UndUcd — UysUcs — UypUes. (13.26)
Using eqns (13.25) for U,4 and for U4, one obtains
2ReQusch =1 = Uus — Uub — Ucs — Uch + UusUch + UnpUecs. (13.27)
Therefore,
4UyoUetUupUss > (1= Uus = Uus = Uzs = Uep + UusUcs + UusUes)” . (13.28)

Thus, if we take the squared moduli Uys, Uy, Ucs, and U as independent, we
must check not only that they are non-negative and that their linear combina-
tions in eqns (13.25) are non-negative, but also that eqn (13.28) holds. As a
matter of fact, it may be shown (Branco and Lavoura 1988a) that, if the four
independent moduli are non-negative and if eqn (13.28) holds, then the linear
combinations in eqns (13.25) automatically are non-negative.

One may write |J| as a function of the moduli:

4J% = 4 (Im Quses)® (13.29)
= 4UysUcpUpUcs — 4 (Re Quscb)2
= 4UusUchubch - (1 - Uus - Uub - ch —Uep + UusUcb + Uubch)2 .

One sees that J? is a quadratic function of the U,;. For instance, if one keeps Uy,
Uub, and U fixed, and computes J? as a function of U, by using eqn (13.29), one
finds the following. There are two values of U,s for which J2 = 0 vanishes; call
them UM® and UM, For U,s < UMM and for U,s > UM the inequality (13.28)
is violated, and there is no unitary matrix corresponding to the assumed values
of the Uy;. For Ugs = U™ and for U,s = UM, V is an orthogonal matrix, with
J =0. For Umi® < U, < UMax | J2 first increases and then decreases, forming a
parabola as a function of U,s, and the matrix V is unitary non-real.
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FiG. 13.1. Representation of eqn (13.30) as a triangle in the complex plane.

13.5 The unitarity triangle
Consider the orthogonality condition between the first and third columns of V:

VuaViy + VeaVey + ViaVip = 0. (13.30)

This equation may be interpreted as representing a triangle in the complex plane.
That triangle is depicted in Fig. 13.1. It is rotated as a whole when the CKM
matrix is rephased as in eqn (13.2):

dVay = €PTVIVo Vs
However, the shape of the triangle remains unchanged, because both its inner
angles and the length of its sides are rephasing-invariant. In drawing Fig. 13.1

we have adopted a phase convention in which V.4V is real and negative.
The inner angles of the triangle, a, 3, and +, are defined by

arg (—M) = arg (—Qubtd) ,

a

VudVJb
Vch“},)
=arg| —— | = arg(— , 13.31
Vud Vo5
Y = arg <_"71L*b) = arg (_chud) .
cdVep

They satisfy, by definition,
a+ B+~ =arg(—1) =7 mod 2. (13.32)

It should be emphasized that eqn (13.32) holds even if eqn (13.30) is not valid—
i.e., even if there are deviations from 3 x 3 unitarity—provided that one sticks
to the definitions in eqns (13.31).

It is useful to rescale the triangle by defining

R = ViaVio
t= Vchcb ’
13.33
Rb — Vuqub ( )
~ | VeaVes

One then obtains a triangle with sides of length 1, R;, and Rj, which is de-
picted in Fig. 13.2. In that figure we have marked the complex coordinates of
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Fi1G. 13.2. The triangle of Fig. 13.1 after division of its sides by |VeqVes|-

the vertices of the triangle as (0,0), (1,0), and (p,7n), after we have made the
phase convention that the side with length 1 is real. Clearly, Ry = 1/p? + n?
and R; = /(1 — p)? + n?. This phase convention and parametrization will be
explained in Chapter 16.

Trigonometry yields

" 2RR, '’
2 _ p2
cosf = %—&, (13.34)
cosy = LRI+ BE
Y= —_2Rb )
and
sina = ﬂ
= 3R.Ry’
Vv
i = — 13.
sin 8 3Ry’ (13.35)
siny = —@
Y= 2R,’
where
=-1-R{ - R, +2(R} + R} + RIR}) (13.36)

must be non-negative. The condition ¥ > 0 is equivalent to eqn (13.28). This is
an instance of the theorem which states that it is possible to build a triangle with
sides of length a, b, and c if and only if those three numbers are non-negative
and satisfy

A(a,b,¢) = —a* = b* — c* + 2 (a®0® + a’? + b%c?) > 0. (13.37)
The law of sines reads
sina:sinf:siny=1:Ry: R;. (13.38)

Other useful relations are
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_ siny
B=&oray
_ sinf

_sin(y-5)
B-F=Gt7h)

13.6 Geometrical interpretation of J

Consider again the triangle in Fig. 13.1. Its height is h = |V,,4Vys siny| and the
area is |VeqVe| h/2. Therefore, the area of the triangle is (1/2) |Quacs sinvy|, i-e.,

Im Quacs| _ |J]

Area = 5 5

(13.40)
Thus, |J| may be geometrically interpreted as twice the area of the unitarity
triangle.

Similar considerations apply to the other orthogonality relations and to the
corresponding unitarity triangles. The six orthogonality relations for the three-
generation CKM matrix,

VuaVis + VeaVes + VaaVis = 0, (13.41)
VudVp + VedVep + VeaVip = 0, (13.42)
VusVJb + Vcchz + VtthZ =0, (13°43)
VudVeg + VusVes + ViV, =0, (13.44)
VuaVia + VusVis + Vs Vip = 0, (13.45)
VeaVig + VesVis + Van Vi = 0, (13.46)

may be represented by six triangles in the complex plane. All these triangles
have the same area |J| /2.

At this stage, one should note that, as we shall see in Chapter 15, the orders
of magnitude of the moduli |V,;| may be given as powers of a small parameter
A = 0.22 in the following way:

1 A
Vi~ X 1 2%]. (13.47)
A% 1

If we do this, we see that the sides of the triangles corresponding to eqns (13.42)
and (13.45) are all of comparable size A3. Those are ‘normal’ triangles. On the
other hand, the other four unitarity triangles are all very flat, in each case one of
their sides being much smaller than the other two—the triangles in eqns (13.43)
and (13.46) have two sides ~ A? and one side ~ A*; the triangles in eqns (13.41)
and (13.44) have two sides ~ A and one side ~ A\°. In spite of the very different
shapes, all six triangles end up having the same area. This follows from the unique
character of |J| as the imaginary part of all quartets in the three-generation SM.
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All imaginary parts of rephasing-invariant products of CKM matrix elements
are proportional to |J|. Hence, |J| is a measure of the strength of CP violation.
Its order of magnitude is

|J] = [VuaVusVeaVes siny| ~ A° [siny| S 107 (13.48)

It is clear from eqn (13.48) that, in the framework of the three-generation SM,
the smallness of |J| is due to the smallness of the moduli of the off-diagonal
matrix elements of V', and not to the fact that any phase is particularly small. It
is also interesting to note that, if we did not have any experimental knowledge
about the moduli of the CKM matrix elements, the maximum possible value of
|J| would be 1/ (6v/3) ~ 0.096, which is attained for

1 1 1
V:% 1 exp(2ir/3) exp(—2iw/3) | . (13.49)
1 exp(—2imw/3) exp(2in/3)

13.7 The parameters A\,

In the standard-model discussion of the neutral-meson systems, certain combi-
nations of CKM matrix elements will be useful. Those combinations are different
for the K0-K9, BY-BY, and BY-B? systems; however, it is customary to use the
same notation ), in all three cases. We define

Aa = V2 Vaa for the KO-KO system, (13.50)
Ao =V}, Vaa for the B-BY system, (13.51)
Ao = V},Vas for the BO-B? system. (13.52)

In all three cases, @ may be either u, ¢, or t. Unitarity of the 3 x 3 CKM matrix
implies
Au+ A+ A =0. (13.53)

The basic CP-violating quantity J is
J =TIm (AAy) = Im (AL AL) (13.54)

in the K°~K© and in the BY-B? cases; in the B)-BY case, we have to invert the
sign of J given by eqn (13.54).

13.8 Main conclusions

o As the quark fields may be freely rephased, there are phases in the CKM
matrix which have no physical significance.

e The simplest non-real rephasing-invariant functions of the CKM matrix
are the quartets VoV, Vy; V.

e CP is conserved in the SM if and only if all rephasing-invariant functions
of the CKM matrix are real.
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Unitarity of the CKM matrix implies that there can be no CP violation in
the SM for ny = 2.

Unitarity of the CKM matrix implies that there is only one basic CP-
violating quantity for n, = 3. That quantity is called J.

For n, = 3, the orthogonality relation between any pair of rows or columns
of the CKM matrix may be represented as a triangle in the complex plane.
All triangles have the same area 2|J|, in spite of their very different shapes.
The triangle with sides |VuaV,}|, [VeaVyy|, and |ViaV,;| is usually called ‘the
unitarity triangle’ and is particularly important. Its three sides have the
same order of magnitude. Its inner angles are called a, 3, and ~.

The physical CKM matrix can be parametrized by 3n, (n, — 1) Euler an-
gles and 3 (ny — 1) (ny — 2) physical phases.



14
WEAK-BASIS INVARIANTS AND CP VIOLATION

14.1 Introduction

In the previous two chapters we have taken the usual path to CP violation
in the SM. We have bi-diagonalized the quark mass matrices and noticed the
appearance of a mixing matrix V in the charged-current interaction. We saw
that, for three or more fermion generations, some of the phases in V' cannot
be removed by rephasing the quark fields; in general, some rephasing-invariant
combinations of CKM matrix elements are not real. We have considered the
CP transformations of the physical quark fields and have concluded that all
rephasing-invariant combinations of CKM matrix elements must be real in order
for CP symmetry to hold.

In this chapter, we shall describe what we believe to be the most natural path
to the study of the CP properties of any gauge theory. We have seen in § 2.2
that the CP-transformation properties of the fields in a given Lagrangian are
defined by the part of that Lagrangian which conserves CP. Thus, the complete
Lagrangian is written as

L= ACCP + ﬁremaininga (14‘1)

where Lcp is CP-conserving. Typically, it is the part of the Lagrangian which
involves the gauge interactions of the various fields—in particular, their electro-
magnetic interaction. In order to analyse whether the whole Lagrangian violates
CP, one has to check whether the CP transformation under which Lcp is invari-
ant implies non-trivial restrictions—i.e., restrictions which are not automatically
satisfied—on the rest of the Lagrangian, L emaining- The Lagrangian leads to CP
violation if and only if such restrictions exist and are not satisfied.

We have also seen that one should allow for the most general CP transfor-
mation. Typically, Lcp leaves a large freedom of choice in the definition of the
CP transformation. This is due to the existence of internal symmetries. CP is
violated only when there is no possible choice of CP transformation which leaves
Lremaining invariant.

We find this approach (Bernabéu et al. 1986a) aesthetically more appealing
than the previous one, since it gives new insight into the nature of CP violation
in the SM, and allows for interesting generalizations to other models.

14.2 Conditions for CP invariance

Let us consider the Lagrangian of the SM with one Higgs doublet and an arbitrary
number n, of fermion generations. The original SU(2)®U(1) gauge symmetry
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has been spontaneously broken into the U(1) of electromagnetism. We know
how the gauge fields, the scalar fields, and the ghost fields transform under
CP—see eqns (13.7)—(13.13). The gauge interactions of the quarks are given by
eqns (12.3)-(12.6).

One starts by choosing that part of the Lagrangian which will be used to de-
fine CP. This will be the part of the Lagrangian involving the gauge interactions.
One should consider the CP transformations of the eigenstates of the electroweak
interaction, i.e., the fields p and n. The most general CP transformation of the
quarks which leaves the gauge interactions invariant is

L (t,7) (CP)

(CP)ny, (t,7) (CP)' = Kpy°CrzT (¢, —7), (143
(CP)pr (t,M) (CP)' = K2A°CPRT (t,-7), '
(CP)ng (t,7) (CP) = Kpy°CRRT (t,—7),

where Ky, K%, and K}, are ng x ny unitary matrices acting in family space. It
follows that

(CP)PE (t,7) (CP)' = —e~*wpf (t,~7) CT*1°K],

(CP)az (t,7) (CP)' = —nT (¢, —7) C~17 K],

(CP)pr (t,7) (CP)' = —pT, (¢, —7) C~ 170K, (14.3)
C€P)ng (t,7) (CP) = —nT (t, —7) C~ 11K 3.

The appearance in the CP transformation of unitary matrices mixing the families
should not surprise us—remember § 2.2.2. Before one introduces the Yukawa
couplings, all fermion generations have identical weak interaction and the flavours
are indistinguishable. As a result, the generations may in general mix under
CP. This is the reason for the appearance of matrices Ky, K%, and K} in
the CP transformation. Those matrices are unitary because we must preserve
the normalization of the Lagrangian, in particular of the fermion kinetic terms.
Furthermore, the presence of the left-handed charged current pry*np in L’{;})
constrains py and ny to transform with the same unitary matrix K. On the
other hand, since there is no right-handed charged current, pg and ng may
transform differently.

We next consider the Yukawa Lagrangian of eqn (12.11) and test it for invari-
ance under the CP transformation in eqns (14.2) and (14.3). One readily finds
that, in order to obtain CP invariance, the Yukawa-coupling matrices I and A
should satisfy

KIAK? = A*,

14.4
KiITKR =T~ (144)

It is convenient to work with the mass matrices M, = vA and M, = oI instead
of working with A and I":
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KZMPKI% = M;7

; (14.5)
KM, K3 = M.

One may thus state

Theorem 14.1 The Lagrangian of the SM is CP-invariant if and only if the
quark mass matrices My, and M, are such that unitary matrices Ki,, K%, and
K7} exist, which satisfy eqns (14.5).
The non-trivial point is the simultaneous appearance of the matrix K in both
eqns (14.5). This is a consequence of the existence of a charged current connecting
the left-handed up-type and down-type quarks. We shall see that, for three or
more generations, in general one cannot find an unitary matrix K satisfying
both eqns (14.5), and therefore CP can be violated. In contrast, the lepton sector
is CP-invariant because unitary matrices K} and K} can always be found such
that

KU MK = My (14.6)

Indeed, from eqn (12.22) one has
M, = UL MUY, (14.7)

where M, is a real diagonal matrix; therefore, the matrices K, = ULUL” and
KL = UIIQU}'!T satisfy eqn (14.6).

Remembering the Hermitian matrices H, and H, defined in eqns (12.16),
one sees that eqns (14.5) imply

K H,K; = H:,
Lo LT (14.8)
Kl H,K;, = H:.
Conversely, one may prove that eqns (14.8) imply eqns (14.5). If eqns (14.8) hold,
then the matrices
K} =M 'K M},

14.9
Kp = M KM}, (14.9)

are unitary and satisfy eqns (14.5). One has thus proved

Theorem 14.2 The Lagrangian of the SM is CP-invariant if and only if the
matrices H, = M,,M; and H, = MnM,t are such that a unitary matriz Kj,
exists which satisfies eqns (14.8).

14.3 'Weak-basis transformations

Since M, and M,, are complex ng4 x ny matrices, they contain a total of 4ng real
numbers. However, there is a lot of unphysical information in those matrices,
due to the freedom that one has to make weak-basis transformations (WBT).
When a theory has several fields with the same quantum numbers—e.g. the
ny multiplets (), —one is free to rewrite the Lagrangian in terms of new fields,
obtained from the original ones by means of a unitary transformation which
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mixes them. Such changes of weak basis (WB) are an extension of the freedom
that one generally has to rephase a field. A WBT is a transformation of the
fermion fields which leaves invariant the kinetic-energy terms as well as the gauge
interactions. The WBT depend on the gauge theory that one is considering
because, if there are more gauge interactions then, in principle, there will be less
freedom to make WBT. In the SM a WBT is defined by

QL =WrQL,
pr = Wgph, (14.10)
ng = Wgnh,

where Wy, W5, and W} are ngy x ny unitary matrices acting in family space.
Under this WBT, the matrices M, and M, in eqn (12.10) transform as

MI/’ = WI)(/MPW}%’ (14 11)
r_ i n ’
M, = W} M WE.

The transformed mass matrices M, and M, have the same physical content as
the original matrices M, and M. One may use the freedom of making WBT
to put M, and/or M, in a special form. For example, in the SM, through a
WBT one can make M, Hermitian and, simultaneously, M, diagonal with real

non-negative diagonal elements. In particular, there is a WB in which

— 4 2 2 2
H, = diag (m%,m?,mZ,...),

14.12
Hy = H, = Vdiag (m2,m2,m?,...) V', (14.12)

Alternatively, one may consider another WB, in which
H, = H), = Vidiag (m2,m2,m?,...)V, (14.13)

— 4 2 2 2
H, = diag (m3,m?,m},...).

In a WBT one just rewrites the Lagrangian in terms of new fields. Physics
must be invariant under such a change. The result of any physical process can
only depend on WB-invariant quantities. Those quantities are especially useful
in the analysis of CP violation. Indeed, the possibility of rephasing each field
means that there are spurious phases in the Lagrangian. Those phases must be
carefully distinguished from the physical phases that are the hallmark of CP
violation.

Suppose that, in a particular WB, matrices K, K%, and K} exist which
satisfy eqns (14.5). In another WB the Yukawa-coupling matrices are given by
eqns (14.11). Then the unitary matrices

KIL = WLKLWZ,
Kb = whKEWET, (14.14)
K3 = WRKRWRT,
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satisfy
K I M KR! = M
FoopOR T (14.15)
Ky MKR = My,
analogously to eqns (14.5). Thus, Theorem 14.1 is invariant under a change of
WB, as it should.

14.4 'Weak-basis invariants

Physically meaningful quantities must be invariant under the transformation in
eqns (14.11). In order to find such quantities one must get rid of the arbitrary
unitary matrices W, W%, and W. We do this by first considering the matrices
H, and H,, which allow us to eliminate the unitary matrices W} and WZ.
Indeed,

H! = W} H,Wy,

. (14.16)
H, =W} H,W,.

Then, traces of arbitrary polynomials of H, and H,, are WB-invariant. For in-
stance, tr Hy, tr (H2Hp), and tr (H, H,H2H}) are invariant under a WBT and,
therefore, they are in principle physically meaningful quantities. Considering any
of the weak bases in eqns (14.12) and (14.13), one sees that

tr Hy = m2* + m2% + m?* + .-,

14.17
tr H = m2* + m2 + m23 4 ... ( )

are physically meaningful quantities. In the same way,
tr (HyH}) = Z Z M2 m2* Uy, (14.18)

a=u,c,t,... i=d,s,b,...

is measurable too. Thus, WB-invariant quantities in general are physical, i.e.,
measurable.

14.5 Weak-basis-invariant conditions for CP invariance

We next want to derive necessary conditions for CP invariance, expressed in
terms of weak-basis invariants. As the matrices K1, K%, and K% are WB-
dependent, see eqns (14.14), this is in practice equivalent to eliminating those
matrices from the CP-invariance conditions.

We start from eqns (14.8), in which K% and K} are already absent. As
Hy = HT and H}, = HT, we obtain

K} [Hp, Hn) K1 = [Hy, H]]
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= — [Hy, Ha)" . (14.19)
We multiply eqn (14.19) by itself an odd number of times to obtain
K} [H,, H,) K1 = —[H,, H,]"" for r odd. (14.20)
Taking the trace, one has
tr[Hp, Hp]" = 0 for r odd. (14.21)

Equation (14.21) is non-trivial if » > 3. For r = 1 it is trivial, since the trace of
a commutator is identically zero.

Equation (14.21) is a necessary condition for CP invariance, valid for an
arbitrary number of generations. Indeed, in its derivation we have not specified
ng.

One easily finds

tr [Hp, Hn)® = 6iImtr (H2H2H,H,) . (14.22)
=61 Z Z mim%m?m?lm@aiﬁj. (14.23)

a,B=u,c,t,... i,j=d,s,b,...

14.6 Two and three generations
146.1 ng =2

The conditions in eqn (14.21) should be automatically satisfied in the two-gene-
ration case, because there can be no CP violation in the SM when ny = 2, as seen
in § 13.3. Indeed, for arbitrary 2 x 2 Hermitian matrices H; and Hs, [H, H2]2 is
a multiple of the unit matrix. As a consequence, eqn (14.21) is trivially satisfied
when ny = 2.

1462 ng=3

Starting from eqn (14.23) and taking into account that, when ng = 3, all quartets
have identical imaginary parts, up to the sign, one finds

tr [H,,,H,,]3 =64 (mf - mz) (m? - mz) (mg - mf‘)

(m} = m?) (m3 —m3) (m? —m3) J.  (14.24)

One concludes that, in order for there to be CP violation, all three up-type quarks
must be non-degenerate, all three down-type quarks must be non-degenerate, and
J cannot vanish.

The fact that the quark masses should not be degenerate has to do with the
definition of J. Let us suppose, for instance, that m, was equal to m,. Then, we
would be free to mix the quarks s and b by means of a 2 x 2 unitary matrix Us.
This would correspond to a change of the CKM matrix,

10
VoV ( 0 U2> .
It is easily seen that, by manipulating Us, one may arbitrarily change the value of
J, and in particular set J = 0. Thus, J becomes arbitrary when any two quarks
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of equal charge are mass-degenerate. That is the reason why CP is conserved in
that limit.

14.6.2.1 Sufficient condition for CP conservation We have seen that the con-
dition
tr[H,, H,)’ =0 (14.25)

is necessary for CP invariance in the SM, for an arbitrary number of generations.
We shall next show that, for n, = 3, eqn (14.25) is not only a necessary condition
for CP invariance, it is also a sufficient condition.
For that purpose, it is advantageous to consider the WB of eqns (14.12). One
has
tr [Hy, HL)® o (m? —m?) (m? —m2) (m2 = m2) Im (H},,, H g Hlgy) - (14.26)

Let us consider first the case where the up-type quarks are not mass-degenerate.
In that case eqn (14.25) implies

Im (H,,,H} 53 H}5p) =0, (14.27)
from which it follows that there exist three phases a;, as, and as, such that
arg Hy, ;, = a;j — ax mod . (14.28)

In this case, a unitary matrix K satisfying eqns (14.8) can easily be found.
Remembering that H), is diagonal, we have

Kpji = 6k exp (2ia;) . (14.29)

Let us now consider the case in which two up-type-quark masses, say m, and
mg, are equal. We may then use a WBT to obtain Hy, ,; = 0. The condition of
eqn (14.27) is then trivially satisfied, and the unitary matrix K, of eqn (14.29)
will once again satisfy eqns (14.8).

We have thus shown that, in the SM with three families, eqn (14.25) implies
eqns (14.8), and therefore CP conservation.3!

31For ng = 3, as [Hp, Hy] is a 3 x 3 traceless matrix,
tr[Hp, Hn]® = 3det [Hp, Hn], (14.30)
and therefore the necessary and sufficient condition for CP invaraince may be written
det [Hp, Hn] = 0. (14.31)

As a matter of fact, the condition in eqn (14.31) (Jarlskog 1985a,b) anticipated historically the
one in eqn (14.25) (Bernabéu et al. 1986a). However, it must be stressed that eqn (14.25) is a
necessary condition for CP invariance for an arbitrary number of families, while the condition
in eqn (14.31) is only valid for ng odd—as one easily sees from eqn (14.19). Thus, eqn (14.25)
is more general than eqn (14.31).
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14.7 More than three generations
14.7.1 CP restrictions in a special weak basis

It is useful to analyse the form of the CP restrictions, for an arbitrary num-
ber of generations, in a special WB, namely the WB where one of the quark
mass matrices is diagonal and real. For definiteness, let us consider the WB in
eqns (14.12). From our analysis of the CP-violating phases in the CKM matrix,
one expects to obtain (ny — 1) (ny — 2) /2 independent CP restrictions. The first
eqn (14.8), in that WB, constrains the matrix K to be of the form

K = diag (€', e'2,...,e%) . (14.32)

In deriving eqn (14.32) we have assumed that there is no mass-degeneracy in
the up-quark sector. The phases J; are arbitrary. Substituting eqn (14.32) in the
second eqn (14.8) one obtains the constraint

arg Hy,;; = 4 ; % mod 7. (14.33)

The meaning of eqn (14.33) is clear: in the SM and for an arbitrary number
of generations, a necessary and sufficient condition for CP invariance is that
H, has cyclic phases in a WB where H,, is diagonal.3? Since H}, is an ny X ng
Hermitian matrix, it has in general ng (ny — 1) /2 independent phases. There-
fore, eqn (14.33) implies the existence of (ny — 1) (ngy —2) /2 independent CP
restrictions, as expected.

14.7.2  Sufficient conditions for CP invariance

The question of finding a minimal set of WB-invariant conditions which are
necessary and sufficient for CP invariance becomes quite involved for n, > 3.
For ny = 4, this problem has been solved by Gronau et al. (1986).

One can also derive WB-invariant conditions relevant to CP violation using
the following argument (Rold4n, unpublished thesis). Comparing eqns (14.5)
and (14.11), one observes that CP transformations do exactly the same thing as
weak-basis transformations, except for the fact that they transform c-numbers
into their complex conjugates. One concludes that WB invariants are transformed
into their complex conjugates by a CP transformation.3® It follows that a non-
zero imaginary part of any WB invariant signals CP violation. However, many
invariants are real independently of CP being violated or not. For instance,
tr Hy is real because the diagonal elements of an Hermitian matrix are real;
and tr (H; H3) is real because it is the trace of the product of two Hermitian
matrices. The simplest invariant which may have a non-zero imaginary part is
tr (HZH2H,H,) = —tr (H2H?H,H,), cf. eqn (14.23).

32Conversely, Hp should have cyclic phases in a WB in which H, is diagonal.

330ne excludes the case in which phases are introduced by hand into the weak-basis invariant
quantities. For instance, the imaginary part of (1 + 7) tr (Hp Hy) is non-vanishing and invariant
under a WBT, yet it does not signal CP violation.



CONCLUSIONS 179

It is important to stress that it is only when a quantity is WB invariant that
its imaginary part signals CP violation. Non-invariant quantities may in general
be rephased at will, and their phases have no significance whatsoever.

14.8 Conclusions

CP violation arises when the kinetic-gauge part of the Lagrangian implies CP-
transformation properties of the fields which are not satisfied by some other
part of the Lagrangian. In the SM, this happens because of a clash between
the Yukawa couplings and the CP-transformation properties required by the
charged-current weak interaction.

It is often said in the literature that, in the SM, CP violation arises from com-
plex Yukawa couplings. This is a misleading statement, since complex Yukawa
couplings by themselves do not lead to CP breaking. It is the simultaneous pres-
ence of the charged weak interaction and of complex Yukawa couplings which
leads to CP violation in the SM. Moreover, complex Yukawa couplings do not
necessarily lead to CP violation; rather, it is the weak-basis-invariant quantities
which must be non-real in order for CP violation to arise.

The main conclusions of this chapter are the following;:

e CP is conserved if and only if there is a unitary matrix K such that
eqns (14.8) hold.

o For three generations, CP is conserved if and only if the Hermitian mass
matrices satisfy tr [H,, H,]® = 0. This happens either when there are two
mass-degenerate quarks in the same charge sector, or when J = 0.

The WB-invariant conditions that we have derived may be useful in model-
building. In the SM, the Yukawa couplings are completely arbitrary, and there is
no relationship between the quark masses and the elements of the CKM mixing
matrix. However, additional ‘horizontal’ symmetries may be introduced, either
in the SM or in extensions thereof, with the aim of restricting the number of free
parameters and obtaining relations among the quark masses and CKM matrix
elements. The presence of these extra horizontal symmetries can have an impact
on CP violation. For example, it may be interesting to find the strength of CP
violation in the presence of horizontal symmetries. The CP invariants that we
have derived enable one to do this without having to diagonalize the Yukawa-
coupling matrices.



15

MODULI OF THE CKM MATRIX ELEMENTS

15.1 Introduction

Experimentally, the rephasing-invariant functions of the CKM matrix to which
one has most direct access are the moduli of its matrix elements. The relevant
processes are semileptonic production and decay rates which are, under very
broad assumptions about possible physics beyond the SM, dominated by tree-
level amplitudes with a W¥ as intermediate state. New particles are more likely
to contribute to loop processes. The information on the CKM matrix that we may
gather from the analysis of the mass difference and of CP violation in neutral-
meson systems—as we shall be doing in Chapter 18—is much more sensitive to
the possible presence of new heavy particles in the theory.

In this chapter we make an overview of the methods used to determine the
Uqi- We follow the reviews by Rosner (1994) and by the Particle Data Group
(1996). Readers may want to skip this chapter.

15.2 |Vud|

The matrix element V4 only involves the first-generation quarks, and is for this
reason the one which can be determined with best precision. Three different
methods have been used in its determination.

The first method is the most exact one to date. It makes use of superallowed
Fermi transitions, which are beta decays connecting two J¥ = 0% nuclides in the
same isospin multiplet. In these transitions only the vector current is involved.
Denoting the lifetime of the decaying nucleus by ¢, the Coulomb correction factor
by f, the nuclear-dependent (‘outer’) radiative corrections by Agyuter, and the
universal (‘inner’) radiative corrections by Ajpper, One has

Vil = 731n2 _ 2984.4+0.1s

Udl - G%mgft (1 + Aouter) (1 + Aim’xer) ft (1 + Aouter) (1 + Ainnez)l:5 1)
The value of G used in eqn (15.1) is computed from muon decay (one must be
careful to take into account the radiative corrections to that process). The uni-
versal radiative corrections have been computed (Marciano 1991; Marciano and
Sirlin 1986) to be Ainner = 0.0234 & 0.0012. The values of Ft = ft (1 + Aouter)
differ among the various nuclides undergoing superallowed Fermi transitions:
10¢, 140, 26mp] 34C), 38mK 42Gc, 46y, 50Mn, and 54Co. New and more com-
prehensive analyses of the radiative corrections regularly appear in the literature
(Marciano and Sirlin 1986; Sirlin and Zucchini 1986; Jaus and Rasche 1987; Sir-
lin 1987; Brown and Ormand 1989; Hardy et al. 1990; Barker 1992; Towner 1992;




[Vadl 181

Barker 1994; Towner and Hardy 1998). Taking into account the results of a re-
cent experiment at Chalk River Laboratory (Hagberg et al. 1997), Towner and
Hardy (1998) have obtained

[Vaa| = 0.9740 £ 0.0005. (15.2)
The value given by the Particle Data Group (1996) is
|Vua| = 0.9736 % 0.0010. (15.3)

The second method relates |Vy4| to the free-neutron lifetime 7,,. On the one
hand, the beta decay of the free neutron has the advantage that one does not have
to deal with nuclear-structure-dependent corrections; on the other hand, there is
the disadvantage that neutron decay also receives a contribution from the axial-
vector current. Moreover, the experimental input needed is more challenging to
obtain. One equates the vector coupling in neutron decay with the one in muon
decay. Denoting by g4 the ratio of the axial-vector and vector effective couplings,
one has (Wilkinson 1982; Marciano 1991)

4904.0 £ 5.0s

Vigl? = 222220028
Vaa Ta (1 + 3¢2)

(15.4)

Using (Mampe et al. 1989; Alfimenkov et al. 1990; Byrne et al. 1990) 7,, = 888.9+
1.9s and, from the decay asymmetries (Bopp et al. 1986; Klemt et al. 1988; Ero-
zolimskii et al. 1991), g4 = 1.257 £ 0.003, one finds |V,q4| = 0.9804 + 0.0005 £
0.0010 % 0.0020. The first source of uncertainty is radiative corrections; the sec-
ond one is 7,; the third one is g4. Notice that the error bar on the result from
free-neutron decay is some four times larger than the error bar on the result from
superallowed nuclear decays.

The value of |V,4| obtained from neutron decay is higher than the one ob-
tained from superallowed Fermi transitions. This is of interest, because the former
value yields the correct normalization for the first row of the CKM matrix,

Vel + [Vas | + Vi |* = 1 (15.5)

while the latter one does not. The value of |V,;| is so low that it does not
contribute effectively to eqn (15.5).

The third method relies on an analysis of the rate of the decay 7+ — 7% T v,.
This is a purely vector transition between two hadronic states with JF = 0~.
The major disadvantage is the extremely small branching ratio (~ 1078) for
this particular decay of the charged pion. One obtains (McFarlane et al. 1985;
Marciano and Parsa 1986; Towner and Hardy 1998) |V,q4| = 0.9670 £ 0.0161.
The uncertainty is substantially larger than in the other two methods, and is
overwhelmingly dominated by the experimental error in the branching ratio.
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15.3 Vi

This matrix element is obtained from semileptonic decays of strange particles.
Consider first K3 decays. The hadronic matrix element is a function of two form
factors. For instance,

(mt ) JuKOP)) = f+(®) P+ D) + f-(a%)ap, (15.6)

where g, = p, — pL. The form factor f_ gives a contribution to the decay rate
proportional to the square of the mass of the electron, which may be neglected.
One has

d['(K9 = 7te7,) _ Gim¥ 2 sz (2 ,m2\*?
= Vus|” | f4+()| (22 —4—) ,  (15.7)
dz, 19273 V¢ ] | m¥%

where z, = 2E,;/mg. One makes a fit to the Dalitz-plot distribution using a
model for f,(¢?) based on a K*-pole approximation,

2 f+(0)
=T 15.
f+(Q) 1_q2/m§<‘v (58)
with f4(0) calculated from the quark model; this calculation is the main source
of theoretical error. From both charged- and neutral-K;; decays one obtains
(Shrock and Wang 1978; Leutwyler and Roos 1984; Barker 1992)

[Vus| = 0.2196 £ 0.0023. (15.9)

A different starting point is furnished by semileptonic hyperon decays, which
include A = pX., £~ = nX,, 2= = AX,, and Z- = £°X,, where X, =
e~ 7. In order to extract information on |V,,| one compares those decays, using
flavour-SU(3) symmetry, with the strangeness-conserving processes n — pX,
and ¥~ — AX.. While only the vector current contributes to K;3 transitions, for
which therefore SU(3) violation only arises at second order (Ademollo and Gatto
1964), that violation is first order and much larger in hyperon decays, which
receive contributions from both vector and axial-vector currents. The analysis
(Donoghue et al. 1987) of the data of the WA2 Collaboration (1983) gave

|Vus| = 0.220 £ 0.001 £ 0.003, (15.10)

in good agreement with eqn (15.9).34
The Particle Data Group (1996) recommends the value

|Vaus| = 0.2205 £ 0.0018. (15.11)

34Garcia et al.(1992) have used different SU(3)-breaking corrections and obtained higher
[Vus].
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15.4 |V 4| and |V 4|

The direct determination of |V4| and |V.s| is both poor and fraught with theo-
retical uncertainties. The first source of information on these matrix elements is
deep inelastic neutrino excitation of charm, in reactions such as v,d =+ p~c for
|Vea| and v, s = p~c for |V, (the latter process involves strange quarks in the
parton sea, the modelling of which is somewhat uncertain). The experimental
signature is a dimuon event, because the semileptonic decay of the charm quark
yields a second muon. The method has been followed by the CDHS Collabora-
tion (1982) and later by the CCFR Collaboration (1993, 1995a). A reanalysis of
their results (Particle Data Group 1996) lead to

|Vid| = 0.224 % 0.016,

15.12
|Ves| > 0.59. (15.12)

The second source of information are semileptonic decays of charmed parti-
cles. These include D® — 7~ X, for |V.4|, and D° - K~ X, and D* — K°X,
for |V.s| (where X, = e*v,). The theoretical framework is the same as in the
previous section; one uses models for the form factors with poles on the masses
of the vector mesons—D* and D}, respectively—and one computes the values
of f7(0) and f£(0). For instance, from the experimental data by the Mark-III
Collaboration (1989, 1991) and CLEO Collaboration (1993b) one obtains

| F5(0) Ves |* = 0.495 + 0.036; (15.13)

using (Aliev et al. 1984; Bauer et al. 1985; Grinstein et al. 1986, 1989) fX(0) =
0.7+ 0.1, one finds
|Ves| = 1.01 £ 0.18. (15.14)

Notice that the central value |V¢s| = 1.01 is above what unitarity of the CKM
matrix allows.
15.5  |Va|

The bottom quark decays predominantly to the charm quark. The CKM-matrix
element |V,p| may be obtained by using a spectator approximation for B-meson
decays:

BR(B = Xlv) _
B =

(B — X.ly) = (b—c~m), (15.15)
where B is any bottom-flavoured meson and X, is any charmed set of particles.
One only has to compute I' (b — I~ 7).

The decay b — uql™7; (where u, may be either the up or the charm quark)
has, if one takes m; = 0, a differential decay rate

- = 2 5 o 2
b2 ualm) _ Grmy IVab|2 I:2z2 (1 lfz<> <3—2.Z‘+C+ 2 )]a

dz T 19273 1-z
(15.16)
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where ( = m2/m? and = = 2E;/m,, with E; the lepton’s energy in the b rest

frame. The maximum allowed value for z is 1 — (. Integrating over z one gets
_ Gim
19273

mp

5GeV

Vel £(0) = (114 % 107 GeV) (555) Weol? £(0), (15.17)
where

fQ)=1-8¢+8 - ¢*—12¢%In¢ (15.18)

is related to the reduction in phase space due to m, not being zero.

Equation (15.17) displays a dependence of the decay rate on the fifth power
of the bottom mass. This makes the determination of |V;| very sensitive to the
value that one uses for that mass. An analysis (Ball et al. 1995) of the inclusive
decays yields

T
1.5ps

For the average lifetime one may use (Patterson 1995) 7, = 1.55 & 0.06 ps.

Another way to extract |V is from exclusive decays B — Dly; (ARGUS Col-
laboration 1993; CCFR Collaboration 1995b; Scott et al. 1995), using corrections
based on heavy-quark effective theory. One obtains (Neubert 1995)

|Vcb|

= 0.041 % 0.002. (15.19)

[Ves| = 0.041 £+ 0.003 £ 0.002. (15.20)
The Particle Data Group (1996) recommends
|Ves| = 0.041 £ 0.003. (15.21)

Continuous progress is being made on the determination of |V,;|, and the uncer-
tainty bar can be expected to become smaller in the next few years.

15.6 Vi / |Ves|
From eqn (15.17) it follows that

Fo—-ul~y) f(mli/mﬁ) ’

Lb—cn)  f(m2/my)

Vs
Ve

2 1
= 0.41-0.54

Vub

Vcb

(15.22)

From the observation of the endpoint of the lepton-energy spectrum in semilep-
tonic B decays one may conclude that |V,| # 0. That endpoint is given, as
seen in the previous section, by EM®* = (m;/2)(1 — m?2 /m2). As m, is smaller
than m., the leptons from b — ul~# may attain a higher energy than those
from b — cl~ 7. Studying the electron spectrum the ARGUS Collaboration
(1990, 1991) and the CLEO Collaboration (1993a) have observed electrons with
higher energies than allowed for b — ce™ 7., and concluded that the quantity in
eqn (15.22) is 0.01-0.02.

Still, the determination of |Vy| /|Ves| is plagued with theoretical uncertain-
ties. The highest energy attainable by the leptons is determined by the low-mass
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states formed from the final u quark and the spectator quark ¢ in B = bg. The
decay B — wly; should be the dominant source of high-energy leptons, yet the
various models (Altarelli et al. 1982; Bauer et al. 1985; Grinstein et al. 1986, 1989)
differ in their predictions for this decay, and in general in the modelling of the
lepton-energy spectrum. The Particle Data Group (1996) suggests using

Vub

cb

= 0.08 % 0.02, (15.23)

but the theoretical uncertainty quoted is probably somewhat optimistic (Péene,
personal communication).

The theoretical models agree better on the exclusive modes B — ply; and
B — wly;. The CLEO Collaboration (1996) has measured BR (B® — n~ 1% ;)
and BR (B® — p~I*y;), which are at the level of 10*. The experimental un-
certainties are still relatively large, but this has already allowed the derivation
of

|Vaus| = 0.0033 £ 0.0008, (15.24)

which agrees with eqns (15.23) and (15.21).
Another method to measure |V,;| would be using the decay Bt — ptuy,,
which proceeds with rate

2
G2 f2mBm2 m2
I (BY = uty,) = % 1- ;n-% Vus|? (15.25)

cf. eqn (C.41). However, this would require a good estimate of fg, which is at
present unavailable.

15.7 Consequences of unitarity

The assumption of 3 x 3 unitarity of the CKM matrix allows one to further con-
strain the Uy,;, starting from the results in the previous sections of this chapter.
Let us use the 90%-confidence-level values

0.219 < |Vis| < 0.224,
0.036 < |V,s| < 0.046, (15.26)
0.002 < [Vs] < 0.005.

We want to investigate the consequences of the assumption that V' is 3 x 3 unitary
for the moduli of the other matrix elements. As the direct determination of |V q|
and |V,s| is poor, we expect unitarity to produce better constraints on them
than the experimental ones. We also want to have a prediction for the matrix
elements of the third row of V— for the couplings of the top quark—to which
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direct experimental access is not yet possible (see however Swain and Taylor
1997, 1998). We use

IVudl =4/1- |Vus|2 - |Vub|2a
Viol = /1= [Vis* = Va2,
and eqns (15.26) to obtain

(15.27)

0.9745 < |Vya| < 0.9757,

15.2
0.9989 < |Vis| < 0.9993. (15.28)

From eqns (15.28) we infer the following. Firstly, |V}s| is the best known of all nine
moduli, in spite of not being directly measured. Secondly, in order to have the first
row of V duly normalized, |V,4| should be at least one standard deviation higher
than the central value in eqn (15.3). The simplest alternative is allowing for the
existence of extra generations of quarks, in which case [Vyg|® +|Vas|* +[Vao|* < 1.
This has been suggested by Marciano and Sirlin (1986).

In order to constrain the remaining four U,; one uses the unitarity condition
in eqn (13.28), which yields a lower and an upper limit on |V,s|. From this it is
easy to obtain bounds on |Ve4|, |Vi4|, and |Vis|, by using the normalization of
the rows and columns of V. The result is summarized in the following matrix of
moduli:

0.9745-0.9757 0.219-0.224  0.002-0.005
[V|=| 0.218-0.224 0.9736-0.9751 0.036-0.046 | . (15.29)
0.003-0.015  0.034-0.046  0.9989-0.9993

This is the consequence of the assumption of eqns (15.26) and of 3 x 3 unitarity.

Let us make a few comments:

e The ranges for the |V,;| in eqn (15.29) are correlated among themselves.
One is in general not allowed to choose any value for the modulus of any
one matrix element independently of the values chosen for the moduli of
other matrix elements.

¢ Equation (15.29) displays the approximate pattern of moduli anticipated
in eqn (13.47). As a matter of fact, |V,p| is smaller than A3, and |Vy,| ~ \*
might be closer to reality. The same is true for |Vi4|.

e In the limit V,, = 0 unitarity implies |Via| = |Vus||Veb| ~ A3. Similarly, if
V:a happened to vanish one would have |Vyp| = |Vea| |[Vis| ~ A3.

e Normalization of the rows and columns of V implies

Uus —Ucd = Ucb - Uts = Utd - Uub- (1530)

It is likely that the difference of squared moduli in eqn (15.30) is positive.
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PARAMETRIZATIONS OF THE CKM MATRIX

16.1 Introduction

The CKM matrix is usually parametrized in some specific way. The purpose of
the parametrizations is to incorporate the constraints of 3 x 3 unitarity. Some
parametrizations also incorporate experimental information, in particular the
pattern of moduli in eqn (13.47); this is the case of the Wolfenstein parametriza-
tion and of related parametrizations, which in practice are the ones most often
used.

Rephasing-invariance is the possibility of changing the overall phase of any
row, or of any column, of the CKM matrix, without changing the physics con-
tained in that matrix. We may use this freedom to constrain five matrix elements
to be real, or else to fix their phase in any other desirable way. It follows that the
3 x 3 unitary CKM matrix should in principle be parametrized by three rotation
angles and one phase.3?

Even if five matrix elements may have their phases fixed, it is important to
notice that those five matrix elements cannot be chosen at will. This is because
the quartets are rephasing-invariant. One must be careful not to implicitly fix
the phase of any quartet when choosing a phase convention for the CKM matrix.

All phase conventions used in practice have one thing in common: the matrix
elements V4 and V,,s are chosen real and positive. The reason for this choice is
the central role played by A, = V,,4V,}; in the physics of the neutral-kaon system.
If A, is real and spurious phases are neglected, then I'15 = Aaﬁo is real at tree
level, as will be shown in Chapter 17. This is an advantageous simplification.
Still, this phase convention is in no way necessary, because physics is rephasing-
invariant.3¢

16.2 Parametrizations with Euler angles

It seems natural to parametrize V' by means of three Euler angles—the angles of
three successive rotations about different axes—and one phase. The phase must
be introduced in such a way that it cannot be eliminated by means of a rephasing
of the quark fields.

35There are parametrizations in which none of the four parameters can be interpreted as a
rotation angle.

361t is important to keep in mind that many of the formulae for the neutral-kaon system
found in the literature are not rephasing-invariant. Those formulae should not be used together
with a phase convention in which A, is not real.
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16.2.1 Kobayashi-Maskawa parametrization

The first parametrization of the CKM matrix was put forward by Kobayashi and
Maskawa (1973). They wrote

10 O C1—810 10 O

V= 0 Cy —82 S1 C1 0 0 C3 S3
0sy co 0 0 e 0 s3 —c3
C1 —S81C3 —8183
= | sico cicacs — s283€" cicas3 + sacze | . (16.1)

8182 C182C3 + 62838“s C18283 — 02036i5
Here, ¢; and s; are shorthands for cosf; and sin6;, respectively, where 6, 65,
and 63 are Euler angles. One of the rotations is on the zy plane, and the other
two rotations are on the yz plane. The phase § appears as a rephasing of the
third generation; as the rephasing occurs in between two rotations involving that
generation, it is impossible to identify § with a rephasing of the quark fields.

The first row and the first column of V have implicitly been chosen to be real,
by use of the rephasing freedom of the CKM matrix. Without loss of generality
0, 62, and 65 may be constrained to lie in the first quadrant, provided one allows
4 to be free, 0 < § < 27. Indeed, putting one of the Euler angles in any other
quadrant is equivalent to a physically meaningless rephasing of V', sometimes
coupled with the transformation § — § + m. For instance, if 6, was chosen to lie
in the second quadrant, then we might bring it into the first quadrant by means
of the transformation ¢; — —c;. This transformation is equivalent to e — —e
together with

V — diag(-1,1,1) V diag (1,-1,-1),

which is a change of the sign of the fields u, s, and b.
In the Kobayashi-Maskawa parametrization

J = clsfczsgcwg sin 4. (16.2)

From this it is easy to derive that the maximum possible value of J is 1/ (61/3),
which is obtained when § = /2, 8 = 63 = 7/4, and ¢; = 1/\/?:, i.e., when all
matrix elements of V have modulus 37'/2, cf. eqn (13.49).

16.2.2 Chau-Keung parametrization

Chau and Keung (1984) have introduced a different parametrization, the use of
which has been advocated by the Particle Data Group (1996):

1 0 O C13 0 3136—1'613 c12 812 0
V = 0 C23 823 0 1 0 —812 C12 0
0 —s923 Co3 —81361613 0 C13 0 01
€12€13 $12€13 s13€ 1013
_ i is
= | —s12C23 — C12523513€"°1% C12C23 — 512523513€%°%  sg3c13 | . (16.3)

i6 ]
812823 — C12€23513€*°1%  —C12823 — 512C23513€*°13  C23C13
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Here, c¢;; and s;; are shorthands for cosf;; and sin#@;;, respectively. The three

rotation angles 62, 613, and 623 may be restricted to lie in the first quadrant

provided one allows the phase ;35 to be free. Only four matrix elements are

chosen to be real; still, only one physical phase appears in the parametrization.
The s;; are simply related to directly measurable quantities:

s13 = Vsl ,
S12 = % ~ | Vusl, (16.4)
S23 = \/-Tl%——-% ~ Ve,
because experimentally |Vy| is very small. On the other hand,
J = clgslchgslgczgsgg sin 413, (16.5)
and therefore
sndis = [ (16:6)

is related in a complicated way to rephasing-invariant quantities.

16.3 Rephasing-invariant parametrizations

We call a parametrization ‘rephasing-invariant’ when its parameters are defined
to be rephasing-invariant quantities, for instance the moduli of some matrix
elements, or the phases of some quartets. In contrast, the rotation angles in
the previous section can be related to measurable quantities—see for instance
eqns (16.4)—but they are not directly defined to be rephasing-invariant quanti-
ties.

We shall next present three rephasing-invariant parametrizations. As they
are not used very often, some readers may prefer to skip this section.

16.3.1 Branco-Lavoura parametrization

Branco and Lavoura (1988a) have suggested parametrizing the CKM matrix by
means of four linearly independent U,;. This is a convenient choice, because
the moduli constitute the most reliable information on the CKM matrix. A
convenient set of four squared moduli is

Uusy Uub, Ues, and Uyq. (167)
Indeed, |Vys|, |Vub_|, and |Vg| are small and relatively well measured, while |V;4]

is crucial in Bg—Bg mixing. In order to reconstruct the full CKM matrix from
the parameters in eqn (16.7), one first uses the normalization of the rows and
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columns of V, which allows one to compute the values of the remaining five
moduli. One then uses the relation

2ReQuigj =1 —Uqui — Ugj — Uqaj — Ui + UaiUgj + UqajUsgsi, (16.8)

which is derived in an analogous way as for eqn (13.27). One can thus find the
real part of each quartet. The imaginary part of the quartets, J, is given, as in
eqn (13.29), by

4J% = 4UoiUp;Ua;Upi — (2Re Quig;)’ (16.9)
together with eqn (16.8). The sign of J cannot be found from the moduli alone.
This is because the transformation V' — V* leaves the moduli invariant but
changes the sign of J. As a consequence, the parametrization of Branco and
Lavoura requires that sign J be given together with the parameters in eqn (16.7).
16.3.2 Bjorken—-Dunietz parametrization

Bjorken and Dunietz (1987) were the first authors to put forward a rephasing-
invariant parametrization. They chose the following phase convention:

Vud, Vus, Ves, Vep, and Vi real and positive. (16.10)
They used as parameters the rephasing-invariant quantities
Uuss Uub, Ucs, and ¢ = wyscs. (16.11)
It follows from the definition of ¢ and from the phase convention in eqn (16.10)
that Vip = v/Uup exp (—i¢), while Vs = /Uys and Ve = v/Ugp-

The full CKM matrix may be reconstructed in the following way. Firstly, as
Vwa and Vjp are real and positive by convention,

Vud =+v1- Uus - Uuba

(16.12)
Vie = V1 =Uch — Uns.

Then,

2Re Quscs = 2/ UusUcsUupUcs cos ¢

=1- Uus — Uecb — Uub - ch + UusUcb + Uubch (1613)

constitutes a quadratic equation for |V.4|, which gives (remember eqn 16.10)

1
Ves = 1-Uw [_ (UusUchub)l/2 cos @+ (1 = Uus = Ucb + UusUcs — 2Uws
+UusUss + UesUup + U2, — UsUepUsp sin? )"/ 2] . (16.14)

The orthogonality conditions yield the remaining three matrix elements of V:
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Ve = - Vel Vol
ud
_ VusViy + Ves Vi
Vib ’
_ VtSVJs + th 1:b
Vi

Vis = (16.15)

Via =

16.3.3 Aleksan—-Kayser-London parametrization

In the SM with n, generations, one may eliminate 2ny — 1 phases from the initial
ng phases of the matrix elements of V' through a rephasing of the quark fields.
The number of rephasing-invariant phases is thus

Tlphases = ng - (27’1,9 -1)= (TLg - 1)2 . (16.16)

At this stage we are not yet imposing unitarity. It is remarkable that nphases
equals the number of parameters necessary to parametrize the n, x n, unitary

matrix V: nphases = Nparam-
The idea of Aleksan et al. (1994) was to parametrize V by four wqigj. We
already know that w,ig; = Wgjai = —Wajsi = —Wgiaj. Therefore, for three

generations one needs to consider only nine phases: wipud, Wibcd, Webud, Webus,
Wibes, Webuss Wesud, Wseds aNd Wesyqd- From these nine phases only four are linearly
independent. We may choose as parameters

Wtbeds Webudy Wtbes, and wesud- (16.17)
The first two phases are related to 8 and ~y in eqns (13.31) by

Wibed = B — (sign ) ,

: (16.18)
Webud = 7Y — (Slgn ’7) ™

where we have taken the argument of a complex number to lie between —7 and
+m. Similarly, wipes and wesyq can be related to the two phases

€ = arg (—%Z—:ﬁ:f—) (16.19)
S
€ = arg <—-‘%§Z‘§-> , (16.20)
C
through®?
Wipes = —€ + (signe) m, (16.21)
Wesud = —€ + (sign 6’) . ’

In the SM, these four angles obey a strong hierarchy (Aleksan et al. 1994): al-
though 8 and vy may be large, € and € must be small: € £0.05 and €' < 0.0025.

37 Aleksan et al. (1994) used a, B, €, and € as parameters. We prefer to use v instead of «,
for reasons that will become apparent in § 16.4.2.
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The four phases 3, v, €, and €' —or, equivalently, wipcd, Webud, Webes, and

Wesud—can be used to

parametrize the 3 x 3 unitary CKM matrix. The other

five wqig; can be readily obtained from

Wtbud = Wtbed + Webuds

Wtbus = Webud + Wibes — Wesud
Webus = Webud — Wesud, (16.22)
Wtsud = Wtbed — Wibes T Wesud,

Wtscd = Wtbed — Wtbes-

Equations (16.22) follow from the algebra of complex numbers. Unitarity is only
needed in order to compute the moduli of the matrix elements from the phases
of the quartets. It follows from the normalization of the i*" column of V that

Ui = !
Y1+ (Uei/Uyi) + (Ui [Uws)’
(Ueci/Uui
ci = y 16.2
Vet = T U/ Vi) + (U] V) (16.23)
ti —

1+ (Uci/Um‘) + (Uti/Uui) ‘

We therefore need to know the ratios Uy;/Uy; and Ug;/Uy;. They are found by
applying the law of sines to the unitarity triangles. Let (3, j, k) be a permuta-
tion of the indices (d, s,b) and consider the unitarity triangles arising from the
orthogonality of the columns of the CKM matrix. Then,

Uci
Uui

Usi
Uui

_ | VeV | |Va Vi | | Ver Ve
Vuin:j ’ ‘/Cch*l‘c ’ VukVJi
_|Sinwpiy; | | SIDWejek | |SINWekui
Sin Weicj | |Sinwejuk | | SinWikei |
VS | [V | | VisVi tezy
ViV | Ve Va | IV Vi
_|SInWeing | | SinWejek | | SinWekui
| sinwiics || sinwejuk || sinwikes |

By using eqns (16.23) and (16.24) one obtains the moduli of all matrix elements
as functions of the sines of linear combinations of the parameters in eqn (16.17).
Of course, since the elements of the CKM matrix are not rephasing-invariant, one

must choose a specific

phase convention before the matrix elements themselves

can be written in terms of the manifestly rephasing-invariant moduli and wqig;-
Clearly, once one knows the moduli of all matrix elements and the phases of all
quartets, we are in possession of all the physical information in the CKM matrix.
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16.4 Wolfenstein parametrization

In 1983 it was realized that the bottom quark decays predominantly to the charm
quark: |V,p| > |Vus|- Wolfenstein (1983) then noticed that |Ves| ~ |Vis|® and
introduced an approximate parametrization of V—a parametrization in which
unitarity only holds approximately—which has since become very popular. He
wrote

1-2%/2 A AN (p—in)
V= - 1-X2/2 AN +0 (M. (16.25)
AN (1—p—in) —AN? 1

The parameter A =~ 0.22 is small and serves as an expansion parameter. On
the other hand, A ~ 1 because |Vus| ~ |Vys|*. Finally, [Vis|/|Ves| ~ A/2 and
therefore p and 7 should be smaller than one. Thus, one may estimate the order
of magnitude of any function of the matrix elements of V' by considering the
leading term of its expansion in \.38

One easily checks that the unitarity relations—normalization of each row and
column of V, and orthogonality of each pair of different rows or columns—are
satisfied up to order A® by the matrix in eqn (16.25). An expansion of V up to a
higher power of A must be made if one wants to obtain a better approximation
to unitarity.

The Wolfenstein parametrization is original for two main reasons. Firstly, it
incorporates as ingredients not only unitarity, but also experimental information:
[Vus| < 1, |Vep| ~ |Vus|2, and V| < |Veb|- Secondly, it is only approximately
unitary, with the approximation to exact unitarity being achieved in a series
expansion.

In the Wolfenstein parametrization, to leading order,

VudVJb
IVchcb|
VeV
— = 1, 16.26
[VeaVes| ( )
ViaVi .

—2=1—-p—in.

[VeaVes| P

=p+in,

This is the justification for the coordinates of the vertices of the unitarity triangle
in Fig. 13.2.

While A = 0.2205 £ 0.0018 and A = 0.824 £ 0.075 are relatively well known,
the parameters p and n—or, equivalently, the angles a, £, and y—are much
more uncertain. The main goal of CP-violation experiments is to over-constrain
these parameters and, possibly, to find inconsistencies suggesting the existence
of physics beyond the SM.

380ne should keep in mind the possibility of additional suppressions because p and/or n may
be very small.
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16.4.1 Ezact version of the parametrization

Sometimes the expansion up to order A3 in eqn (16.25) is not sufficient and one
may want to use terms of higher order in A. One knows for instance that the imag-
inary parts of all quartets should be equal in absolute value. This is however not
true when using eqn (16.25): Quacs and Qs are real, while Im Qyqcp = A2A\7
and Im Quscs = A%X®7 (1 — A?/2). Such imprecisions may become misleading
and/or constitute a source of error when using eqn (16.25).

Expanding the Wolfenstein parametrization to a higher order in A is easier
and more systematic when one is guided by an exact parametrization, i.e., by an
exactly unitary matrix V. Indeed, one needs a definition of the way in which the
series expansion in A is to be carried out to higher orders. A way to do this has
been suggested by Branco and Lavoura (1988b). They have used as a guide the
Bjorken-Dunietz parametrization. They have defined the parameters by means
of the equations

Vus = /\a
Vep = ANZ, (16.27)
Vb = Au/\3e_i"’,

together with the phase convention in eqn (16.10). In this way, A = |V, A =
IVC,, / Vu23|, = |Vup/ VusVep)|, and ¢ = wyscp are directly related to measurable
quantities. It is important to stress that eqns (16.27) are ezact by definition: the
expressions for Vys, Vi, and V,, are not corrected by terms of higher order in .

We may reconstruct the full CKM matrix just as was done in the Bjorken—
Dunietz parametrization. Thus,

Vua = /1= X2 — A212)6,

Vi = \/1—A2)\4 _Azuz)\e,

Ves = {—A2uXbcosd + [1 — A% — AZX* + A2 (1 — 2p%) A6 + A%p2)8
FASPIAIO 4 A2 (2 — sin2 ) /\12]1/2} /(1 — A22)6) .

(16.28)

Together with eqns (16.15) this fixes the CKM matrix. We may now perform the
expansion as a series in A up to any desired order.?® We present here the result
of the expansion up to order \°. For ease of comparison with eqn (16.25), we
substitute p and ¢ by p = pcos ¢ and n = psin ¢. We obtain

391t should be noted that, for each individual matrix element, the expansion parameter is
not really A but rather A2 ~ 1/20. The series expansion is thus, as a matter of fact, much more
precise when one considers individual functions of the matrix elements of V.
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Vaa=1-3X -1\ +0()\%),
Vea=-A+A* (L —p—in) X+ 0 (\"),

Ve =1 =322 = 1 (14+44%) X +0 ()%,

=1 P (1447 2 40 () 1620
Via=Al—p—in ¥ +L1A(p+in) X* +0 (A7),
Vie=—AN + A(} —p—in) M +0 ()Y,

Ve =1-3A422+0(X%).

Equations (16.27) and (16.29) coincide with eqn (16.25) up to order 3.

Buras et al. (1994) have used the Chau-Keung parametrization as the basis
for a different exact version of the Wolfenstein parametrization. They defined
the parameters by means of the equations

S12 = A,
823 = AN?, (16.30)
s13e”3 = AN (p —in).
Then,
ci2 = V1= A2,
co3 =V1-— A2)\4’ (1631)
C13 = \/1 — A2)\6 (p2 + 712).
Substituting these expressions in eqn (16.3) one obtains an exact parametrization
of the CKM matrix, which one may then proceed to expand as a power series in
A. In practice, the differences between the parametrizations of Buras et al. (1994)
and of Branco and Lavoura (1988b) first arise only at order A®: eqns (16.29) are

valid in both parametrizations.
In the parametrization of Branco and Lavoura (1988b)

J= ANV, m A%XOn (1 - 1X%). (16.32)

The parameters A, for the K°-K0 system, defined in eqn (13.50), are
A =A(1=-33)+0(N),
Ae=-A(1-1X%) +0(N%), (16.33)
A =—AN[1-p—in— 32 +2X2p— X (o> +7%)] + O ()?).
For the BY-BY system,
A = AN (p+1i7) + O (\7),
Ae=—AN+0 (X)), (16.34)
A =AN(1-p—-in)+0(\7),
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where

i
1]

p(1-1x%),
(1=3%) (16.35)
n

(1-32?).

=i
1l

For the B9-BY system,
Au = AN (p+in),
Ae = AN (1-1X) +0(X9), (16.36)
Ae=AN[-14+ X (3 —p—in)]+0()°).

16.4.2 Parametrization with R; and Ry

It is useful to introduce a Wolfenstein-type parametrization of the CKM ma-
trix with the following four parameters: A = |Vys|, A = |Vis|/ [Vas|*, R =
|ViaVio| [ |VeaVes|, and Ry = |VuaVus|/ |VedVes|- As usual, we make the phase
convention that V,,4 and V,; are real and positive; we also choose V.4 negative
and V; positive, so that the product V.4V } is real and negative as in the unitar-
ity triangle in Fig. 13.1. Finally, we choose V}; positive. In this phase convention,
the phase of V5 is —y and the phase of V;4 is —3 (remember eqns 13.31).

Working out this parametrization, and making the usual series expansion in
A, one obtains

Vg =1- 12— Ixt 40 (2),

Vub = [ARpA® + JARN® + O (A7) e,

Vea=-A+1A2(R}-RH) XN +0(\),

Veo=1- 12 - § (14447 + 4i2VE) X1 +0 (), (16.37)

Via = [ARN® + 0 (\7)] e,

Vie=—AN + 14 (R} - B} - iVE) X +0 (1),

Vip = 1— LAZXS 4.0 (09).
If one uses for exp (i8) and for exp (i) the expressions in eqns (13.34)—(13.36),
one has a parametrization of the CKM matrix in terms of A\, A, R;, and R;. All
matrix elements have been given up to order A®.

Using this parametrization only up to order A3, one has the simple result
(Buras and Fleischer 1998)

1-X2/2 A AR\
V= -2 1-=2%/2  AX +0 (M), (16.38)
AR N3e™ " —A)N? 1

which will be extensively used in Part IV.
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16.5 Main results

One may parametrize the 3 x 3 unitary CKM matrix by means of three rota-
tion angles and one phase. Examples are the Kobayashi-Maskawa parame-
trization in eqn (16.1) and the Chau-Keung parametrization in eqn (16.3).
The most commonly used parametrization nowadays is the Wolfenstein
parametrization in eqn (16.25). This is a series expansion in a parameter
A & 0.22, and takes into account the experimental data. The parameter A
is of order unity, while p and 7 are probably smaller than 0.5.

Sometimes one may need to use a version of the Wolfenstein parametriza-
tion in which the expansion in X is taken to higher order than A3. One
possibility is given in eqns (16.27) and (16.29).
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17.1 Introduction

We study in this chapter the standard-model computation of the CP-violating
parameters € and §. These are the only non-zero CP-violating parameters mea-
sured to date, but they are equivalent, as seen in eqn (8.92). Their fit constitutes
a crucial test for any model of CP violation.

In the Kobayashi-Maskawa model € provides a constraint on the CKM ma-
trix. That constraint depends on the assumption of the inexistence of sources of
CP violation beyond the complexity of the 3 x 3 CKM matrix.

In the SM all the CP-violating quantities are proportional to J. Their sign
is fixed by the sign of J. The experimentally measured sign of € fixes the sign
of J, which in turn fixes the sign of any other CP-violating quantity. Thus, the
prediction of the signs of the CP-violating asymmetries in the B3-BY system
hinges on the fit of €.

17.2 Ty, and gk /pK

We first consider the decay amplitudes of K° and K9 to 2r, I = 0. These ampli-
tudes, after the final-state-interaction phase &g has been factored out, have been
denoted Ay and Ay, respectively, in eqns (8.73). They are given, at tree level,
by the diagrams in Fig. 17.1. If we define the parameters A, = V7 ;Voq as in
eqn (13.50), and the Dirac-matrix combination

¥ = kg, (17.1)
then it follows from Fig. 17.1 that
Ao _ (27,1 = 0| (sT*u) (al,d) |K°)
Ay~ An(2m, I = 0] (als) (d0#u) [KO)

The matrix elements in eqn (17.2) are determined by the hadronization mecha-
nism of the strong interactions, and they are difficult to compute. They may be

(17.2)

u d
W W
s bl g %
(a) (b)

Fi1G. 17.1. Diagrams responsible for the decays (a) K° — 2m,I = 0, and (b)
KO — 27,1 =0, at tree level.
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related to each other by means of CP, which is a good symmetry of the strong
interactions. As we know,

CP|K®) = e¥x|K0),

17.3
CP|2n,I =0) = |2, I =0) (17.3)

(the two-pion state is CP-even); also,
(CP)q(CP)! = eitar0CqT, (17.4)

for any quark field g. Most authors assume either {x = 0 or {x¢ = m, while
the CP-transformation phases {; of the quark fields are usually neglected. We
display all these phases explicitly so that independence of the final results from
them becomes evident. CP-invariance of the strong interactions thus implies

(2m, I = 0] (3T*u) (al,d) | K°) = e'€x+8a=€) (o T = 0| (—al',s) (—dT*u) |KD).

Hence,

o

0 _ M gien+tats), (17.5)
o AL

It then follows from eqn (8.90) that

PN

argl], =&k +&a — & +2argA,. (17.6)

Remembering eqn (6.70), one obtains

9K _ D itetea—tl), 10 u—10
PK AX 1+6vu?+ 42
n =2 ilerHEa =€), (17.7)
A%

because § ~ 3.3 x 1072 is very small, while u = —AT'/ (2Am) =~ 1.

17.3 Master formula for ¢
Using eqns (8.98) and (17.5),

3 Im [M12ei(£K+§d_5s))\12‘]
Am |’\u|2

3224 x 107 ~ (17.8)

The computation of € thus reduces to the computation of Mj,.

Equation (17.8) holds whenever Ay and Ay are dominated by the diagrams
in Fig. 17.1. This is true in most extensions of the standard model. A more
precise formula for € should include the loop contributions (notably from penguin
diagrams) to Ay and Ay. Some of those contributions are proportional to ),
which has a phase different from that of A,.. One should then return to eqn (8.98)
and compute the ensuing corrections to €. However, that exercise is at present
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g WL d

- Z -
oAk kY

» 4 -

d; wt S2

FIG. 17.2. Box diagram effecting the transition K° — KO,

1 w d1
- Z -
oAk kYB
> .é. >
ds wt S2

FIG. 17.3. Another box diagram effecting the transition K° — KO,

rather futile, because we know from the experimental value of €' /e that the loop
contributions to the phases of Ag and Ay are very small. Besides, the theoretical
uncertainties in the computation of M;s are sufficiently large that it does not
really make sense to be worrying about a small deviation of the phase of Ay A}
from its tree-level value.

17.4 The box diagram

We want to compute M;2 in the SM. One first performs the weak-interaction,
perturbative part of the computation, which is done in terms of quarks. The
matrix element M, corresponds to the transition K© — K°. One interprets K0
as sd and K° and 5d. Then, M, arises from the box diagrams in Figs. 17.2 and
17.3. Those diagrams are computed in Appendix B. They are gauge-independent
and translate into an effective Hamiltonian

G%Zm?
Hesr = anw (3T*d) (3T d) Fo + H.c., (17.9)
where
.7'-0 = )\ﬁSO (.’L‘c) + )\?So (.’L‘g) + 2)‘0)‘t50 (.’L’c,(L't) . (1710)

Equation (13.53) has been used to eliminate )\, in favour of A; and )¢; moreover,

we have made the approximation of taking the up-quark mass to be zero. The

functions Sy (z,y) and Sp (z) = limy_,; So (z,y) are given in eqns (B.15) and

(B.16), respectively. They are functions of the up-type-quark masses through
— 2 [ 2

To =mE/myy.
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Then, M, is given by

2,2
GEmiy
472

My, = (K°| (dT*s) (dTs) |[KO)F;. (17.11)
The computation of the hadronic matrix element (K°| (d['*s) (d['xs) |KO) in-
volves the strong interaction and the corresponding hadronization process. This
is one of the awkward steps in the computation of M;j,: the matrix element
cannot be reliably computed.

Still, an order-of-magnitude estimate may be obtained by using the vacuum-
insertion approximation (VIA), which consists in the insertion of the vacuum
state in all possible ways in between bilinear quark operators. With the VIA
one reduces the problem of calculating the matrix element of a quartic operator
into the problem of calculating the matrix elements of two bilinear operators.
These may be calculated in some model or, sometimes, directly determined from
experiment. One uses the fact that the strong interactions enjoy P, CP, and
isospin symmetries, in order to simplify and relate among themselves various
matrix elements. This is illustrated in Appendix C. One obtains there the result

(KO (dT*s) (dTys) [KO)via = —Leiles—6a=) f2 1 (17.12)

The true matrix element is usually parametrized as the product of its VIA esti-
mate and a corrective factor B,

(K°| (dT*s) (dT,s) [KO) = —1e'€=¢a=8x) f2 my B, (17.13)

in the hope that By does not differ too much from unity. Of course, computing
By is the same as computing the original matrix element. The ‘bag parameter’
Bk must be real because of CP conservation by the strong interactions, but
it may be either positive or negative. If it is negative, then the VIA has failed
badly in approximating the matrix element. Most authors now agree that By
is positive. This is good, because the sign of € and the sign predicted for all CP
asymmetries in the B%~B0 systems hinge on sign By.
From eqns (17.11) and (17.13) we obtain

Gymiy
1272

My = — f2my Byellés—8a=8x) Fx. (17.14)
It is important to note the proportionality of M2 to exp (—i€k ). Comparing the
first eqn (6.11) and the first eqn (6.20), one sees that they agree in the way that
M, transforms under a rephasing of |K°) and |K°). Notice that M, is also
proportional to the difference of the CP-transformation phases of the s and d
quarks.

17.5 QCD corrections to the |AS| = 2 effective Hamiltonian

When QCD corrections are taken into account, the |AS| = 2 effective Hamilto-
nian in eqn (17.9) becomes
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Gimd, =2/ [ ol ()
Ho = ~ETW. (5T4d) (3T,d) F @] " |1+ = | +He, (17.15)
where
F = 7)1/\350 (:Bc) + 772/\350 (131‘,) + 2n3A:AeSo (zc,xt) . (1716)

Several features are worth notice:

e There are three QCD correction factors 7y, 72, and 73 in F, which were
absent in Fo—cf. eqns (17.10) and (17.16).

e The gluonic corrections do not lead to the appearance of any operators
beyond the one that was already present, (5I'“d) (5T ,d).*°

¢ The effective Hamiltonian depends on a renormalization scale u. The scale
dependence is brought in by as(u). The scale u should be taken below the
charm-quark threshold, 4 < m,; there, only the three light quarks u, d,
and s are dynamic degrees of freedom—thence the notation ag‘o’)(u).

o There is also a quantity J(3) which depends, through the beta function and
the anomalous dimension of the operator, on the renormalization scheme.

Since physical amplitudes cannot depend on an arbitrary renormalization scale,
the u-dependence must be cancelled out by a p-dependence of the hadronic
matrix element of the operator. Thus, the coefficient By, describing the deviation
of the true value of the matrix element from its VIA value, is now a scale-
dependent quantity:

(K°| (dT*s) (dTps) [KO) = —Lei€=8a=€x) g2 By (u). (17.17)

The renormalization-scheme-dependence must also be cancelled out by that
of Bg(u). One may hide the p-dependence and the renormalization-scheme-
dependence of the matrix element by defining a py-independent parameter B :

—2 (3)
w=mmkwm/w+ﬂﬁ%+ (17.18)

Its value can be found from lattice calculations, 1/N expansion, and a number
of other methods. A conservative estimate is 1/3 < Bk < 1, but we shall use
the value Bx = 0.75 + 0.15 suggested by Buras and Fleischer (1998), which is
warranted by recent lattice computations (Gupta 1998).

As a result,

GEmiy
1272

The interpretation of Bk is refined, but the final formula is the same as in
eqn (17.14), only with the QCD-corrected function F instead of .

My = — fimy Byellss—8a—¢x) >, (17.19)

40This nice feature is somewhat illusory, since the computation of the coefficients 7; involves
the |AS| =1 effective Hamiltonian, which includes many operators.
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s1 dz
+ ————
wH \W*
— .
d 1 S2

FiG. 17.4. Double-penguin diagram for K 0_K0 mixing.

The computation of the coefficients 7 in eqn (17.16) is presented in the review
article by Buchalla et al. (1996), who quote

m = 1.38+0.20,
ne = 0.57+0.01, (17.20)
ns = 0.47 £ 0.04.

17.6 Other contributions to M,

In the standard model there are other important contributions to M2, beyond
the one given by the box diagrams.

First, there is another type of diagram which may contribute to Mj2, the
so-called double-penguin diagram (see Fig. 17.4), which is a two-loop diagram
with a gluon connecting the two weak-interaction pieces. They are estimated
to be negligible in the case of neutral-kaon mixing (Donoghue et al. 1986d; Eeg
and Picek 1987, 1988), but they may give sizeable contributions to M, in other
neutral-meson systems, in particular in the D%-DO system (Petrov 1997).

Second, there are long-distance contributions to M2, in which the interme-
diate states in the transition KO — K° are mesons instead of up-type quarks
and W* gauge bosons. The intermediate states may for instance be off-shell
two-pion or three-pion states, or a 7°, 1, ', and so on. The corresponding con-
tribution to M12 has been estimated using flavour-SU(3) symmetry by Donoghue
et al. (1986a). In any case, the dominant intermediate meson states are analo-
gous, in quark terms, to a state u@; hence, the long-distance contribution to M2
should have a phase given by arg\:? + ¢, — €4 — éx,*! and then it does not
modify e. However, M98 415120 is expected to contribute significantly to | Mis]
or, equivalently, to Am. This is the reason why we are unable to compute Am
in the neutral-kaon system; as a consequence, in the denominator of eqn (17.8)
one uses the experimental value of Am instead of 2|M;3| computed from the
box diagram.

417t is sometimes stated that there are long-distance contributions to Re Mi2, but not to
Im Mj2. This is not a rephasing-invariant statement. The phase conventions involved are the
following: firstly, Ay is taken to be real, as in the usual parametrizations of the CKM matrix;
secondly, the phases s and &4 are assumed to be equal; thirdly, £k is chosen to be either 0 or
m. It is within these assumptions that the long-distance contribution to M2 is real.
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17.7 Fit of ¢

From eqns (17.8) and (17.19),

Im (F*\2)
Am A )?

The phase £k + €4 — &5 has cancelled out, marking the invariance of the compu-
tation under a change of the spurious CP-transformation phases.
Using eqns (17.16) and (13.54), one gets

Re (At ) [mSo (zc) — 1350 (2c, 24)] + Re (A Aw) [13.50 (2, 2:4) — 11250 (1))

Gme

3.224 % 107° = ZL=X fiemuc By (17.21)

6m2Am |A,|*
_ -3 u
=3.224 x 10 G%m%vf}z(mKBKJ
_ s al”
=5.949 x 1078 BrJ' (17.22)

We shall treat in detail the uncertainty introduced by the parameter Bx =
0.75 £ 0.15, and only illustrate the main other sources of uncertainty. We have
used the following values: Am = 3.491x107° GeV, Gr = 1.16639x10~° GeV 2,
my = 80.4 GeV, fx = 0.160 GeV, and myg = 0.497672 GeV.

We use the Wolfenstein parametrization. From eqns (16.32) and (16.33), to-
gether with A = |Vi,| and AX? = |V, we obtain J & |Vys|®|Ves|?>n, while
Mul® & —Re (AfAu) & |Vus|” and Re (A\f M) & — [Vas|* [Ves|* (1 — p). Thus,

Bicn [Vaol* {IVeol 13S0 (2, 20) = m o ()]
+ Vel (1 = p) [2S0 (z¢) — m3S0 (a:c,wt)]} = 5.949 x 1078, (17.23)

Up to now, there is no substantial source of uncertainty in the computation; all
the values used are relatively well known, with small associated errors.
With m, = 1.25 £ 0.25 GeV and m; = 175.5 £ 5.5 GeV,
So (zc) = 2.4275%5 x 1074,
So (z¢) = 2.5919:12, (17.24)
So (T, ) = 2.174083 x 1073,
One should remember that Sy (z.) ~ z. and S (z:) = ¢ f (z:), where f is
a slowly varying function of order unity. The main source of uncertainty in
So (z¢,xt) is m; the relatively small uncertainty from the top-quark mass is
almost immaterial. Together with the values in eqns (17.20), we obtain
13S0 (T¢, T4) — M So (zc) = 6.867353 x 1074,

17.25
n2S0 (2t) — 13S0 (Te, T¢) = 1.48f8.‘{g. ( :

The first quantity is very uncertain, the second one only has a small error bar,
which one may neglect. Using |Vys| = 0.2205 in eqn (17.23), one obtains
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Fi1G. 17.5. The curves in eqns. (17.29) (dashed line) and (17.30) (full line). The
parameter p is on the horizontal axis, n on the vertical axis.

Bkn [6.86t§;33 x 1074 | Ve |* + 1.48 |V, |* (1 - p)] =1223x107%  (17.26)

The value of |Vp| is a relevant source of uncertainty, which however should
diminish with an increasingly better theoretical understanding of the decays of
b-flavoured mesons. Using |V.5| = 0.040 and neglecting the uncertainty arising
from the charm-quark mass, one obtains

n(1.20 - p) = 232, (17.27)
Bk
We see that the Kobayashi-Maskawa mechanism of CP violation gives the right
order of magnitude for e. This fact in itself should be considered a success of the
model.*?
Equation (17.27) is of the form

n(A-p) =B, (17.28)
which may be depicted in the p—7 plane as a hyperbola with focus (p,n) = (4, 0).
We depict in Fig. 17.5 the curve

0.32
129 - p) = — .
n(1.29 - p) = o=, (17.29)

together with the circle which follows from the constraint in eqn (15.23),

42 A quick estimate of the order of magnitude of ¢ in the Kobayashi-Maskawa model might
have been produced in the following way: € = (0|T|K 1 ){0|T|Ks)*/|(0|T|Ks)|?; the numerator
is proportional to J ~ A%; the denominator is proportional to A2; therefore, € oc A &~ 2.5x1073,
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p° +n*=0.36. (17.30)

One sees that 1 should be positive. Knowledge of the sign of n enables one
to predict the sign of any other calculable CP asymmetry in the Kobayashi-
Maskawa model. Remember however that, if the sign of Bx were negative, the
sign of 7 would turn out negative too, and the predictions for all CP asymmetries
would see their signs inverted.

17.8 Main conclusions

The spurious phase £ + &4 — £ arises in both Ag A% and M;2; the physical
parameter €, on the other hand, is independent of that phase.

The computation of € boils down to the computation of M;2. Long-distance
contributions to this parameter may be sizeable, but they have a phase such
that they do not modify €. The relevant contributions are those given by
the box diagrams.

In the p-n plane, the fit of € leads to hyperbolae of the form in eqn (17.28).
Together with the experimental value of |V,,5/V,s|, this implies that n and
J are both positive.

A very uncertain matrix element, parametrized by the so-called ‘bag pa-
rameter’ B, is involved in the exact fit of €, but it is usually agreed that
By is positive.
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MIXING IN THE B?-BY SYSTEMS

18.1 M,

Let us consider the Bg——B_g systems, where ¢ may be either d or s. The meson BY

is made up of a heavy antiquark b and a light quark ¢, while B_g = bg. We want
to compute the mixing-matrix element M, for these neutral-meson systems.
It corresponds to the transition Bg — Bg or, in quark language, b§ — bq. In
the SM, the main short-distance contribution to this amplitude arises from box
diagrams like those in Fig. 17.2. The computation of those diagrams and of
the corresponding hadronic matrix element is analogous to the one presented in
Chapter 17 and in Appendices B and C. The result is, just as in eqn (17.19),

GEmiy o i(&o—€q— *
Mz =-=om qumBqBqu(gb €a=¢pa) (18.1)
where
F =mA2So (zc) + 1227 So (z4) + 2n3Ac Ao (e, 1) - (18.2)

The combinations A, and \; of CKM-matrix elements now are
Aa = ViyVag- (18.3)

Their values in the Wolfenstein parametrization are given in eqns (16.34)—(16.36).
We see that, when ¢ = d, A and \; both have order of magnitude A\3; when q = s,
they both have order of magnitude A\2.4® Explicit values of the function Sy are
given in eqns (17.24). The fact that

So (z¢) > So (zc,xt) > So (zc) (18.4)

is crucial. Indeed, as A. and A\; have the same order of magnitude, we may
approximate eqn (18.2) by

F mnB, A So (z4), (18.5)

where we now designate the QCD-correction coefficient 7, by np,. We shall use
the value (Buchalla et al. 1996; see also Buras et al. 1990)

ns, = 0.55, (18.6)

43This situation should be contrasted with what happens in the KO-KO system, where A¢ ~ A
is much larger than A¢ ~ 3.



208 MIXING IN THE BS—E‘;‘ SYSTEMS

which is approximately the same for both BS—E‘S’- systems. One thus has

2 2
Gymy

My~ —
12 1272

f3,mB,Bo,n8, S0 (z2) (VisViy)* e =6a=62a) . (18.7)

which is an approximation valid up to order Sp(z.,:)/So(zs) ~ 1073.

As before, there is a dependence on a renormalization scale u, coming from
factors a; () in the QCD corrections to the box diagrams. That dependence of
the effective Hamiltonian on p should be cancelled out by the u-dependence of
the hadronic matrix element

(BY| (@T*b) (T,b) [BY) () = ~1ei(&6~¢2) f2 mp Bp (u).  (18.8)

The matrix element has been normalized by its VIA value. In order to hide the
renormalization-scale- and renormalization-scheme-dependence, one defines

-6/23 (5)

By, = Bs, () [of? (0)] [1 - 475”) J«»] , (18.9)
just as in eqn (17.18). Notice that p should now be taken to be of order mp, ~
5 GeV, where five quark flavours are still dynamical degrees of freedom; for that
reason we now denote the strong coupling constant by o).

Contrary to what happens in the kaon system, the long-distance contributions
to M2 are estimated to be negligible in the B;’—B_f]’ systems. This is because the
relevant mass scale ms is much larger than the mass scale Aqcp below which
quarks cease to provide a reasonable picture of hadronic physics.

The non-diagonal mass term M2, which is of second order in the weak in-
teractions, can compete with the diagonal mass terms, which are dominated by
the bottom-quark mass and therefore are much larger, only because the latter
are degenerate as a consequence of CPT symmetry. If the diagonal mass terms
of Bg and B)) were substantially different, then the box diagram connecting B,?

to BY would be irrelevant. As an illustration of this fact, one may point out
that there are box diagrams connecting B9 to B?, but one never takes them into
account. There is a mass matrix connecting BY, Eg, BY, and B_g (and also other
states, like K°, KO, and so on); however, the difference between the masses of
BY and B? is sufficiently large that the boxes connecting B3-BY to BB are
irrelevant. As mp, # mp, the 4 x 4 mass matrix effectively breaks down into two
2 x 2 submatrices; one of them describes Bg—B_g mixing, the other one describes

0__0 P
B.-B? mixing.

18.2 A note on CP invariance
From eqn (18.7),

* . 2
12 = 2i(£3q +5q_£b) (‘/tb‘/tQ)
M, ¢ (thVt;)T (18.10)
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We know from Table 6.1 that CP conservation in the mixing implies

14;2 2i€B
—= = e“"Bq, 18.11
M (18.11)

Comparing eqns (18.10) and (18.11) we find that CP conservation requires
(VioVip)? = e (Vi Vig)®. (18.12)

If we had not neglected the contribution to My, of the terms proportional to
A% and to A\, and since the quark masses are in principle arbitrary, we would
have concluded that CP invariance also requires

(VapVe)? = €68 (V3 V). (18.13)

Equations (18.12) and (18.13) are precisely those that follow from the general
condition for CP invariance of the SM in eqn (13.16). This is a good check of
the consistency of the whole scheme.

18.3 Ty
Now consider I';2, which is given by
Ti2 = _(fITIBY)*(fITIBY), (18.14)
f

where f are the physical states to which both Bg and B—g decay. This relation
may be interpreted, in quark terms, as the absorptive part of the box diagrams
with intermediate ¢ or u quarks. As the mass of the top quark is much larger

than mp,_, Bg and Bg cannot decay to any top-flavoured hadron; therefore, the

box diagrams with intermediate top quarks have vanishing absorptive part. The
value of the absorptive part of the box diagram, or indeed of any other diagram
contributing to I';2, must be dominated by the mass available in the decays of
B? and BY, ie., by mp, ~ my.** As Mia ox So (x4) o ¢ x m7, one arrives at
the prediction

3P mj -3
— |~ —2~107"°. 18.15
Vs |~ m? (18.15)

Thus, while M, incorporates a GIM-enhancement and increases with the mass
of the heaviest up-type quark, I';2 is bound to remain ~ ms.
From eqns (18.15), (6.61), and (6.62), one then finds

Am =2 |M12| y (1816)
2Re (M* Flg)

AT = — 12220 18.17

M| (18.17)

with |AT| < Am.

44The computation of the absorptive part requires that the masses and momenta of the
external quarks not be neglected, contrary to what was done in Appendix B.
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If the masses of the up and charm quarks were equal, then the absorptive part
of the box diagram would be proportional to the CKM factor (A, + /\c)2 = A2,
and the angle between I';2 and M;2 would vanish. Therefore, we expect

2 _ 2
arg (Mj;Lia) ~ 7% ~ 107, (18.18)
b

leading to
2

m
~—S< ~ 1074 18.1
) m3 0 (18.19)
CP violation in the mixing is then very small (Hagelin 1981; Bigi et al. 1989;
Soares, unpublished thesis; see, on the other hand, Altomari et al.1988.), and
eqn (18.17) simplifies into

AT = 2|’y |sign cosarg (M512) . (18.20)

We may find the sign of AT" once we know whether arg (M;,T'12) is close to 0 or
close to .

The above results have a simple qualitative interpretation (Kayser 1997). Let
us choose the phase convention for the CP transformation g, + £, — & = 0.
We know that Rj; is computed from the same box diagram as Rp;, with all
quarks exchanged by their respective antiquarks. Hence the CKM phases get
complex-conjugated. Since the mass of the B% mesons is much smaller than the
tt production threshold, there is no absorptive part in the t-boxes. These facts
imply that Ri2 = R3; when the c- and u-boxes are neglected. Then, I';2 = 0 and
6 = 0. Also, Ap = 2v/R12R2; is real, and therefore AT"' = 0. Hence, if it were not
for the absorptive parts of the boxes with up and charm quarks, there would be
no CP violation in the mixing, and the widths of By and By would be equal.
One therefore expects both AT" and § to be small.

The smallness of mixing CP violation—cf. eqn (18.18)—has a deeper justi-
fication in the BY-B? system. There, M;, arises from the two-top-quarks box
diagram, while I'y5 is dominated by the decays b — ¢cs. Both M;2 and I'y5 in-
volve mainly the last two families, hence they cannot exhibit CP violation. This
is clear in the Wolfenstein parametrization of the CKM matrix: there are no
phases to lowest order in A between )\, ~ AX? and )\ & —A)2. In order to get
a phase one must introduce the first family, via the contributions to I';5 of the
suppressed decays b — ucs, cus, tus.

18.4 The mass difference in the Bg—gg system

The mass difference between the eigenstates of mixing in the Bg—_B—g system
has been measured to be Amp, = (3.1240.20) x 10713 GeV.*® Fitting this

45The mass difference is thirteen orders of magnitude lower than the mass of the Bg, mp, =
(5.2792 £+ 0.0018) GeV.



THE p—n PLANE AND THE UNITARITY TRIANGLE 211

mass difference in the SM provides an important constraint on the CKM matrix.
From eqns (18.16) and (18.7) we obtain
G2m2

Amp, = =" 18,mB, f5,Bp.So (20) Vs Vel (18.21)
The matrix element |V;3| must be very close to 1, as seen in § 15.7. Therefore,
the measurement of Amp, can be used to constrain |V;4|. The uncertainty is due
mainly to the poorly known fp, and Bp,. For simplicity we shall take only these
quantities to be uncertain. Using Amp, = 3.12 x 10713 GeV, Gp = 1.16639 x
107% GeV ™2, my = 80.4GeV, np, = 0.55, mp, = 5.2792 GeV, Sy (z;) = 2.59,
and

VisVial* ~ 4208 [(1= p)* +72] m Vsl Vel [(1= p)* +77],  (18:22)
with |V = 0.2205 and |V,| = 0.040, one obtains

f2.Bs, [(1 )+ 772] = 0.036 GeV?2. (18.23)

We need the values of the meson decay constant fp,, which has not yet been

measured, and of the matrix element in eqn (18.8). Various theoretical compu-
tations are available; we shall use (Flynn 1997)

fB, = (175 £ 25) MeV,

Bp, = 1.314+0.03; (18.24)
these values may be combined (Buras and Fleischer 1998) into
fBav/Bp, = (200 £ 40) MeV. (18.25)
One then has
(1-p)? + 7% =0.90%3:5L. (18.26)

18.5 The p— plane and the unitarity triangle

In the Wolfenstein parametrization there are four parameters: A, A, p, and 7.
The first two are rather well determined: A = |V,5| = 0.2205 £+ 0.0018 and A =
[Vio| / |Vus|® = 0.824 £ 0.075. On the other hand, p and 7 are poorly determined.

It is convenient to picture the constraints on these two parameters in the p-n
plane. Those constraints are:

e The value of |Vys|/ |Ves| in eqn (15.23) implies

0.27 < /p? + 1% < 0.45. (18.27)

In the p—n plane this is the area in between two circumferences with centre
(p,m) = (0,0).



212 MIXING IN THE BY-B? SYSTEMS

-04 -0.2 0.2 0.4

FiG. 18.1. The area in between the full lines is the one determined by
eqn (18.27); the area in between the dashed lines is the one determined by
eqn (18.28); the area in between the dashed—dotted lines is the one deter-
mined by eqn (18.29). The intersection of all three areas, which is shown
shadowed, is the allowed domain for p and 7.

e The constraint in eqn (18.26) from the measured value of Amp may be

rewritten
0.79 < 1/(1 = p)® + 72 < 1.18. (18.28)

In the p—n plane this is the area in betweeen two circumferences with centre
(p,m) = (1,0).

e The constraint in eqn (17.27) from the measured value of € may be rewrit-
ten, as 0.6 < Bg < 0.9,

0.36 < 1 (1.29 — p) < 0.53. (18.29)

In the p—n plane this is the area in between two hyperbolae with focus

(p,m) = (1.29,0).
We have depicted these constraints in Fig. 18.1. The precise boundaries of the
shadowed area should not be taken too seriously; on the one hand, because they
are dominated by the estimated values of theoretical errors, like the uncertainties
in the values of By, of Bp,, and of |Vy,| / |Ves|; on the other hand, because some
experimental errors are correlated—a fact that we have not taken into account
when intersecting the three domains in eqns (18.27)-(18.29). In any case, we
gather important information from Fig. 18.1. The parameter 7 is found to be
0.33 £ 0.10, but p is not that well determined: p = 0.04 £ 0.22.

It is important to translate this information into expected values for the
angles of the unitarity triangle in Fig. 18.2. One sees that the angle § is rather
well determined: it should be between 10° and 30°, approximately, corresponding
to

0.4 < sin2f8 < 0.9. (18.30)
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F1G. 18.2. The unitarity triangle of Fig. 13.2 and the allowed area of Fig. 18.1.

The angle 7 should lie between 50° and 125°, which constrains sin® y > 0.58.46
Finally, a is expected to be between 35° and 120°, which only constrains sin 2
to be larger than —0.9. These limits, though, should not be taken too literally.
It is interesting to notice that, if one accepts only the bounds shown in
eqns (18.27) and in (18.28), then one can already conclude that 7 must be non
zero, even if we discard the bound from CP violation in the K°-K?9 system. This
means that, if we trust the Standard Model, then we can assert that there is CP

violation by looking exclusively at CP-conserving observables.

18.6 The mass difference in the B-B? system

Clearly,

2

Amp,  f§, Bs, |Vis

Amp, = f%, Bp, |Via

The ratio of hadronic parameters should be one in the flavour-SU(3) limit, and

is much less uncertain than the numerator and denominator individually (Flynn
1997):

(18.31)

VB
I8 VBB, _ 154 005 (18.32)
de V BBd

There is also a quark-model bound fg,/fs, < 1.25 (Rosner 1990; Amundson
et al.1993). Therefore, once Amp, is known, one will get a much better con-
straint on the CKM matrix from Ampg, /Amp,. At present, there is only a bound
Amp,/Amp, > 21.2 from LEP, which allows one to find |1 — p — in| < 1.2. This
is already encroaching on the allowed region in the p—n plane, cf. eqn (18.28).

18.7 Main conclusions
e The ratio I';2/M;s ~ 1072 is very small in the Bg—B_g systems.

46This result is especially sensitive to the error bars that one assumes for the various input
parameters and, thus, to the numerical values in eqns (18.27)—(18.29). The numerical values
used and the error analysis vary significantly from one article to the next. As a consequence,
our results should be taken as merely illustrative. In Part IV we shall use the conservative
bound sin? 4 > 0.33 given by Ali and London (1997).
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e Mixing CP violation, § ~ 1074, is very small too.
e The mass difference Amp, « |l —p —in|* provides an important con-
straint on p and 7.

e The measured values of Amp,, of €, and of |V, /Vep|, allow us to determine
a closed domain in which p and 7 should lie.

e In the future, the experimental value of Amp,/Amp, may also turn out
to provide a strong constraint on p and 7.
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K, — v

19.1 Introduction

The rare kaon decay K; — 7°viv may become very important in the study of
CP violation. In the context of the Kobayashi-Maskawa model, it gives direct
access to the parameter n of the CKM matrix, with little associated theoretical
uncertainty—unknown hadronic matrix elements or other poorly known parame-
ters. On the other hand, this decay is extremely challenging for experimentalists,
due to the presence of two neutrinos and no charged particle in the final state.
The process K — 7°vi has not yet been observed; the 90%-confidence-level
experimental bound is (E799 Collaboration 1994)

BR (K — n°vp) < 5.8 x 1075. (19.1)

This is six orders of magnitude above the SM prediction (Buchalla 1997; Buras
1997)
BR (K - n%vp) = (28 £ 1.7) x 1071, (19.2)

and therefore much progress on the experimental side is still needed before we
are able to vindicate theory. Inverting the argument, there is ample room for the
discovery of new physics by observation of a branching ratio larger than the SM
prediction.

In the standard model K, — n%vi violates CP. The argument leading to this
conclusion still holds in many extensions of the SM (Grossman and Nir 1997).
The first assumption is conservation of the individual lepton numbers. Then, the
neutrino and the antineutrino in K; — 7% have the same flavour, i.e., they
are the antiparticle of each other. This is a necessary condition for the final state
to be an eigenstate of CP.

If CP is conserved, K does not decay into two pions and has CP-parity —1.
Then, the CP-parity of 7°v& should be —1 too. In the rest frame of K,

CP (7°v) = CP (x°) CP (vp) (-1)*, (19.3)

where L is the relative angular momentum of 7° and the v pair. As both K,
and 7° are spinless, L is equal to J, the total angular momentum of the v pair.
We know—see § 4.2 and 4.4—that 7° has CP-parity —1. Therefore,

CP (n°vi) = — CP (vi) (-1)” . (19.4)

One now assumes that the neutrino is left-handed and the antineutrino is
right-handed. Then, in the rest frame of the v¥ pair, the projection of angular



216 K - 7w

momentum on the direction of flight of those massless particles is 1. Moreover,
the dominant operator creating the v pair out of the vacuum is #y*y,v.47 Let
us separate this operator into its time and space components: #7y°y,v and Yy v
(Kayser 1997). The time component creates a v pair with J = 0, and therefore
does not contribute to K — n°vis, as one easily sees in the rest frame of the
v pair. The space component has CP=+1 (see eqn 3.80) and creates a v pair

with J = 1. The product CP (v7) (—=1)” is —1. We thus conclude that
CP (i) = +1. (19.5)

As the CP-parities of K, and of 7°v# are different, CP is violated in K; — 70vi.
Notice that eqn (19.5) depends on v and 7 being each other’s antiparticle, and
on the operator which creates them being 7y*#~vrv; in general, the three-particle
state 707 would not have a well-defined CP-parity.

19.2 Anp

In the rest of this chapter we study the SM prediction of BR (K — n°v7). Some
readers may want to skip this. L

The transition K — 7%v& corresponds to either K — 7% or KO — 7%ui.
In terms of quarks, the first decay is § — dv¥, and the second decay is s —
dvi. The standard-model effective Hamiltonian for these transitions has been
computed by Inami and Lim (1981)—see Appendix D. It is

4

Heost I X (@) + M X (20)] (5v*vd) (7yuvv) + He,,  (19.6)
w

~ 167%m

where Ay = V},Vad, To = m2/m3y,, and

X (z) = 8(+_1) <x +2+ 3;_"16 lnz) . (19.7)

With m, = 1.25 £ 0.25 GeV and m; = 175.5 + 5.5 GeV, one has

X (zc) = (1.44 £ 0.45) x 1073,

19.8
X (z;) = 1.615 % 0.058. (19.8)

We shall also need the Hamiltonian for the tree-level decay K+ — n%e*tv—in
terms of quarks, § — etv—, which is
' g
= F—VJS (37*yLu) (yuyLe) + Hee.. (19.9)
My

47Other operators, which create the pair in such a state that CP is conserved, may be
present. For instance, in the SM the box diagram in Fig. D.1 (Appendix D) yields the operator
oy*y 88y — (6317) Y*vLv when the four-momenta of the external particles are not neglected.
However, the coefficients of those operators are suppressed by factors mﬁ( /m%v ~ 1074, and

therefore these CP-conserving contributions to K; — 7%vo may safely be neglected. For a
detailed account, see Buchalla and Isidori (1998).
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The crucial parameter to be computed is

q_KA(Fa — mOvw)
px A(K°® - n0vi)’

(19.10)

Anuﬂ

Equation (19.6) tells us that

AKY = %) [MX (z) + X\ X ()] (x°p| (dy yLs) (77,71v) |KO)
A(KO = 70u0) — [AX (zc) + M X (x4)] (70| (5yuyLd) (PyHyLv) | KO)

_ X (@) + X (@) i, —a—tx0)

T AKX (z0) + M X (22) ' (19.11)

~—~~

—~

We have used CP symmetry together with eqn (19.5) to evaluate the ratio of
matrix elements.
We know the value of gx /pk from eqn (17.7). Thus,

Ae [T=0 u—id NX(zo)+ X (z)
MV 1+0Vu2 102 AcX (z0) + M X (2)
o AuAX (zc) + AP X ()
TN AKX (o) + M X ()

)\7”/17 - =

(19.12)

The parameter A, is independent of the spurious phases &, as it should be.

From eqn (7.25) we know that Ar,» # £1 implies CP violation. This may hap-
pen because of indirect CP violation (|q/p| # 1), direct CP violation (|A/A| # 1),
or interference CP violation (sinarg Az, # 0). In the case at hand there is no di-
rect CP violation; strong final-state-interaction phases are absent, because there
is no state scattering strongly to 7°vi; absorptive parts of Feynman diagrams
could in principle be present, but only when the intermediate quark is the up
quark, and the GIM suppression makes it that diagrams with intermediate up
quarks hardly contribute to the decay amplitude at all (see Appendix D). There
is indirect CP violation (§ ~ 3.3 x 10~3 does not vanish), but it is very small.
The main reason for \;,; # %1 is interference between mixing and decay: the
phases of ¢/p and of A/A do not match, as A\, A} and A, are not real. This is
different from CP violation in the two-pion decays of the neutral kaons; there,
the phases of the mixing and decay amplitudes are practically equal and CP
violation arises almost exclusively from . CP violation in K; — 7%v# may be
much larger precisely because it is mainly interference CP violation; the mea-
sured value of § would lead by itself alone to a branching ratio much smaller than
the prediction in eqn (19.2). Thus, if that prediction is experimentally vindicated
the superweak theory of Wolfenstein (1964) will be disproved.*®

4830ome authors would call this ‘direct CP violation’, because they interpret this expression as
meaning any form of CP violation which goes beyond the superweak model. In our terminology,
direct CP violation is something different. From our point of view, K; — 7%vi originates
mainly in interference CP violation, not direct CP violation.
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At this point it is convenient to introduce

R=X (IL’t) Re (/\f_A;) +X (xc) Re ()‘C)‘;) )

19.13
I=TIm A\ [X (z¢) — X (z0)]- ( :
Then, from eqn (19.12),
R —il
Arvo v~ (19.14)

Using the Wolfenstein parametrization and the fact that X (z;) > X (z.), one

has
R~ —A%\8 (1-p) X (24) — M2X (z.),

19.15
I~ A?X%nX (zy). ( )
19.3 Prediction of the branching ratio
The relevant decay amplitude is
A(Kp - n°vp) = pg A (K® = n°vi) + gk A (F - 7701/17)
= pk (1 + Anvp) A (K° = 7%00). (19.16)

We remind that [px|® = (1 + 8) /2. Therefore,

4

2
lA(wa"vﬂ)l“( : )I<w°vvl<smd><vv“w>|f<°>|2

16m2m3,
1+6
x ;“ 11+ Arws 2 Ae X (ze) + A X (z0)[?
( g* )2| 0 0 |2
~ | =5 | [(mv|(Fvuyed) (v yev) |K®)
16m2m¥, s
DX () + M X (@0)] = A [NEX () + 25X (2)]]”
2\’
4 2 2
g 0. ~1/= — o 12 21
= — movp| (3 d) (vy*yLv) |[K .
(o) 167971 @) Gy 1O 25
(19.17)

We cannot compute the matrix element, but we may equate it, using isospin
symmetry, to the matrix element for the tree-level decay K+ — 7m%e*v. From
eqn (19.9),

2 2
|A (K+ = n%tv)|* = ( g ) Vas|* (70 + v (57 yu) (Fyuye) |K )|

2m},
(19.18)
Thus,
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AL o) [ (g2 \?_2p (19.19)
A(K* = m%tv)| — \812) |\, Vil '
On the other hand,
A(Ks o) | (g \? 2R (19.20)
AK*+ - mO%etv)| — \872) |A, Vil '
Remembering g?> = 4ma/s?,, one has
r (KL — 71'01/17) _ a? 212
N A (19.21)
r (KS — 7701/17) _ a? 2R?

[(K+ = mOety)  “4n2s, |VoqV2|*

The factor 3 is because there are three neutrino species. With V4| = 1, |Vis| =
A, and |V3| = A2, one may write, because of the second eqn (19.15),
I (Kp - nvp) 3

o?
[ (K+ — mOety)  2n2si |

Vol 0 [X (z))° . (19.22)

194 Kt o 7ntup

The rare decay KT — 7ntvi also originates in the effective Hamiltonian in
eqn (19.6). Once again, one must compare it to the dominant decay in order to
get rid of the unknown matrix element:

BR(K* > 7tvp) (g% \*| XX (2) + AeX (x2)
BR (K+ — m0ety) — ° \ 872 Vs

(mtvp| (3y*yrd) (77.7Lv) [KT) [P
(m0e*v| (3y#yru) (Fvave) [KT)
30 | AX (z) + A X () [
T om2s) Vus

2

, (19.23)

where we have taken into account that, as 7° ~ (@u — dd) /v/2 while 7+ ~ du,
the ratio of matrix elements is equal to v/2 when isospin symmetry is exact.

19.5 Explicit values

Before proceeding to explicit numerical predictions, one must take into account
various corrections.
Firstly, X (z;) receives a QCD correction

X (24) = X (z,) + Z—;Xl (z), (19.24)

where the function X; has been computed by Buchalla and Buras (1993a,b). In
practice, eqn (19.24) amounts to making X (z;) — 0.985 X ().
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Secondly, there are QCD corrections to X (z.) too. These are much more un-
certain, because for p ~ m, the strong interactions are largely non-perturbative.
Besides, the effective Hamiltonian for K; — 7% depends on the neutrino
flavour, because the box diagram has an internal charged-lepton propagator. In
Appendix D we have assumed the charged leptons to be massless, but this is not
a good approximation for the 7 lepton. In practice, the ensuing dependence on
m, proves to be very small in the case of X (), but is important in X (z.).
Instead of X (z.) it is better to use (2/3)X§, + (1/3) X%, with the function X}
computed by Buchalla and Buras (1994) for any mass m; of the charged lepton
1.4% In practice,

X (z) = X%y + 5 X% = (9.5+£1.4) x 1074, (19.25)

which is somewhat smaller than X (z.) in eqn (19.8).

Thirdly, the isospin symmetry used to equate matrix elements is not exact. It
is convenient to separate the isospin-breaking corrections (Marciano and Parsa
1996) into three factors. The first factor originates in the different phase space
for different decays; the second factor comes from isospin violation in the K — =
form factors; the third factor stems from electromagnetic radiative corrections.
The latter factor is equal to 0.979 for both rare kaon decays considered; the
phase-space correction is 1.0522 for the decay of K, and 0.9614 for the decay of
K7; the form-factor correction is 0.9166 for the former and 0.9574 for the latter.
Thus, T' (K — 7%7) is reduced by 1.0522 x 0.9166 x 0.979 = 0.944 relative to
the original computation, while I' (K+ — 7t vp) is reduced by 0.9614 x 0.9574 x
0.979 = 0.901.

After introducing these corrections we may proceed to the numerical compu-
tations. We use BR (K+ — 1% *tv) = 0.0482, 7 (K1) = 5.17 x 10785, 7 (K ) =
1.2386 x 10785, @ = 1/127.9, and s2, = 0.2315. We get

BR (K1 — 7°vp) = 3.4878 x 107% |V,p|* n? [X (2¢))
=2.8x 10711, (19.26)

in which we have used |V,5| = 0.04, n = 0.35, and X (z;) = 0.985x 1.615. We thus
reproduce the prediction in eqn (19.2). Notice that BR (K — n°v#) depends
strongly on |V,|, and is proportional to n?.

49This substitution is conceptually wrong. The right computation would involve a sum over
the three neutrino flavours of the decay rates, which would be of the form

2|A1 + B> +|A2 + B?,

with B the amplitude from the diagrams with intermediate top quarks, and A; or Az the
amplitude from the diagrams with intermediate charm quarks. Instead, we are performing the
computation as

2
3|341+ 34, + B

However, the error involved is 2/3 |A; — Az|2, which is negligible in practice.
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Now consider the case of the superweak model. In that model the ratios of
the decay widths of K, and of Ks to CP eigenstates with CP-parity +1 are all
equal—see § 7.3.4. Thus,

[ (Kyp - 7ww) T (Kp—2mI=0)

T(Ks - mvp) T (Ks—2m1=0) el (19.27)
Comparing eqns (19.21) and (19.27), we see that
BR (K — n'vi) = 3.4878 x 10*5R—2 le]?. (19.28)
superweak VuaV2

We take |¢|> ~ 1073 /2 from the two-pion decays and, from eqn (19.15),

-R
— AN (1-p) X X (z.
|Vuqu231 ( p) (l‘t) + ($ )
~3.5x 1073, (19.29)
We obtain
BR (K — wouﬂ)superweak ~ 2 x 10718, (19.30)

This means that experimental vindication of eqn (19.2) would disprove the su-
perweak theory.

For the charged-kaon decay K+ — 7t vi one has, from eqn (19.23), and using
the Wolfenstein parametrization,
AeX (z0) + M X (20) |?
Vus

=753 x 107° [V |* [X (z0)]?

2
2 _ X (z.)
x{n + |1 p+_|%b|2X(mt)] }

=9.8x 1071, (19.31)

BR (K — 7tvp) = 7.53 x 1076

where we have used the same values as above, together with p = 0 and X (z.) =
9.5 x 107%. A careful analysis yields (Buchalla 1997)

BR (KT = ntwp) = (9+3) x 107 (19.32)

The computation of BR (Kt — 7tvi7) has much larger theoretical uncertainties
than that of BR (K — n%v»). This is because the value of X (z.) is relevant in
K+ — ntvp while it is mostly immaterial in K, — 7%v. This is a consequence
of the CP-violating character of the latter transition; as K — n%vi violates
CP, the top and charm quarks must contribute to it with opposite signs, and the
relevant quantity is X (z;) — X (z.) = X (zy).
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20.1 Current—current operators

We study in this chapter the effective low-energy Hamiltonian which drives the
nonleptonic decays of the kaons, as a preliminary for the computation of €'/e
in the next chapter. Readers less interested in detailed theoretical computations
may want to skip both chapters.

We base our analysis on the review articles by Buchalla et al. (1996) and
by Buras and Fleischer (1998). The reader should also consult the books by
Donoghue et al. (1992) and by Weinberg (1995), which contain useful introduc-
tory chapters on the operator product expansion, the renormalization group, and
the determination of Wilson coefficients. Finally, the TASI93 lectures by Cohen
(1994) constitute a very nice and pedagogical introduction to the use of effective
Hamiltonians.

Consider the decay K — 27. At tree level, it occurs through the W-exchange
diagram in Fig. 20.1 (a). When the masses of the external quarks are neglected,
the corresponding amplitude is

2

. ig . - _
Fig. 20.1(a) = mvusvud (37" vLu) (@yuyLd)
.G
= _ZT;)‘uQ2 +0 (k2/m%V) ) (201)
where Ay = V), Voq. We have defined
Q2 = (3u)y_, (Ad)y_4 - ‘ (20.2)

Here, V' denotes the vector coupling and A denotes the axial-vector coupling,
with the notation

u

u
S u S u u

() (b)

F1G. 20.1. (a) Tree-level quark diagram for K° — 27, and (b) a typical
QCD-correction diagram.
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(qql)ViA =" (1£9)q. (20.3)
The Lorentz index p is summed over in the product of two quark bilinears.
Since the momentum k of the internal W-boson line is small compared with
mw, we may neglect the higher-order terms in the k?/m?2, expansion. The re-
sulting amplitude, —i (G F/ \/5) Ay @2, may be obtained from the effective Hamil-
tonian

Hest = ?—/_g)\qu +Hec.. (20.4)
The higher-order terms in the k?/m2, expansion may be taken into account by
including extra operators in the effective Hamiltonian. Those operators generally
involve derivatives of the fields.

One has thus removed the W-boson degree of freedom from the theory.?® The
result is a set of local operators multiplied by effective coupling constants, called
Wilson coefficients. The operators do not involve the heavy degrees of freedom—
in our elementary example, the W field; information about them is hidden in the
Wilson coefficients—in our case, in Gr/v2 = g%/ (8m3,).

At this stage, the effective Hamiltonian is just a convenient way of parametriz-
ing the low-energy effects of the full theory. One may compute the relevant pro-
cesses using either the full theory or the effective Hamiltonian. However, it may
be more convenient to use an effective Hamiltonian since only a finite number of
operators appear up to a given order. Once the Wilson coeflicients are known,
the same effective Hamiltonian may be used for a variety of low-energy processes,
as has been done, for instance, in the previous chapter.

Next consider the QCD corrections to K° — 27. The simplest diagram is
depicted in Fig. 20.1 (b). It is computed setting to zero the external masses and
momenta, analogously to what was done in Appendices B and D. Due to the
zero mass of the gluon, an infrared divergence arises, which must be regulated.
The operator

8
Z [Buy" (1 = 75) A uz) [ay"/u (1 =) )‘;de] (20.5)

a=1

is generated, where A® are the Gell-Mann matrices, and z, y, w, and z are colour
indices. Using the Fierz transformation in eqn (C.10), we find that the operator
in eqn (20.5) is equal to —(2/3)Q2 + 2Q1, with

Q1 = (Batty)y_ s (Wlyda)y_, - (20.6)

Thus, in order to take QCD effects into account one needs at least two operators
in the effective Hamiltonian, ¢); and @2, with Wilson coefficients C; and Cs,

respectively:

Gr
Heg = —= A (C C. H.c.. 20.7
f /3 (C1Q1+ C2Q2) + Hc (20.7)

50This is sometimes referred to as ‘integrating out’ the degree of freedom. The expression
originates in the formal path-integral derivation of the procedure.
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(b)

FiG. 20.2. (a) Gluonic penguin for K® — 27, and (b) self-energy diagrams
which must be added to it in order to obtain a finite, gauge-invariant result.

For obvious reasons, Q1 and Q2 are known as current—current operators. At tree
level, i.e., without QCD, the Wilson coefficients are C; = 0 and Cy = 1.

20.2 Penguin operators

Besides the diagram in Fig. 20.1 (b), there are other diagrams involving a gluon
which contribute to K° — 27. One example is shown in Fig. 20.2 (a). This
diagram is known as ‘gluonic penguin’. Strictly speaking, one must also include
in its computation the self-energy corrections to the external lines, depicted in
Fig. 20.2 (b), and only then does one obtain finite effective vertices. In the limit
in which all external masses and momenta are set to zero, the gluonic penguin
brings into play four new operators:

Qs=(5d)y_n Y (@@)y_4 (20.8)
Q1= (szdwv_: > @)y (20.9)
Qs = (3d)y_4 ;(I(Q(I)HA , (20.10)
Qs = (5zdy)y_4 Y (@ye)ysa- (20.11)

q

There are two differences between the gluonic-penguin operators and the current—
current operators. The first difference is the appearance of the Dirac structure
(V = A) x (V + A) in some operators. This happens because the gluon couples
vectorially, and that coupling may be split into a right-handed and a left-handed
part. The second difference is the sum over quark flavours. In particular, we have
operators generating the transition 5 — ddd instead of 5§ — uad.

Depending on the virtual up-type quark « in the loop in Fig. 20.2, the CKM
factor may now be any of the three A, instead of only \,. Using eqn (13.53), this
may be re-expressed in terms of only two CKM factors, which may conveniently
be chosen to be A\, and ;.

The Wilson coefficients depend on the mass m, of the quark . (In the com-
putation of the gluonic penguin one may ignore m,-independent terms, because
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FIG. 20.3. Electroweak-penguin diagrams for K° — 2.

g .1 U |
ay AB ay Yk
s w4 s Wt g
@ (b)

FiG. 20.4. Box diagrams which must be added to Fig. 20.3 in order to obtain a
gauge-invariant result. The diagram (a) holds in case ¢ is a down-type quark;
the diagram (b) is for ¢ an up-type quark.

eqn (13.53) ensures that they give a vanishing contribution. If all up-type-quark
masses were equal the gluonic penguin would vanish.) Generically, the coefficients
grow with m,. Explicit calculation of the gluonic penguin with an intermediate
top quark yields a dominant logarithmic dependence.

There are other penguin diagrams, in which the gluon is replaced by either
the photon or the Z, as shown in Fig. 20.3. They must be computed together
with the box diagrams in Fig. 20.4 if we want to obtain a gauge-independent
result. (Also, when calculating any diagram involving either W or Z bosons the
contributions of the pseudo-Goldstone bosons must be included.) They bring in
four new operators,

Qr=36d)y_4Y e (@@)yya (20.12)

Qs = % (gzdy)v_:z €q (‘jy‘Ix)v.,_A ) (20.13)
q

Qo = % (8d)y _ 4 Z g (q9)y_4 - (20.14)

Qo = % (gzdy)v_:z €q (Qsz)v_A . (20.15)
q

Electroweak penguins with different final-state ¢g pairs acquire different factors
eq, the electric charge of ¢. Thus, e, = 2/3 for ¢ = u, while e; = —1/3 for ¢ =d
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and for ¢ = s.

The electroweak penguins are second-order electroweak effects, and one might
expect them to be suppressed with respect to the gluonic penguin. However, some
of their Wilson coefficients are considerably enhanced due to the large top-quark
mass, when a = t. There is an m? enhancement, like the well-known one found in
the process Z — bb (Akundov et al. 1986; Beenakker and Hollik 1988; Bernabéu
et al. 1988).

20.3 The effective Hamiltonian

After QCD and QED corrections have been taken into account, the effective
Hamiltonian takes the form

GF 10 10
7 Au Y zn (1) Qn =AM D yn (1) Qn| +He. (20.16)
n=3

n=1

Het =

Equation (20.16) gives the general structure of the effective Hamiltonian. It is the
sum of pieces of the type (Gr/v2) VekmCn (1) @, each with a definite CKM
factor Voxm, which may be either A, or A;. We have used eqn (13.53) to remove
terms proportional to A.. Notice that the operators @); and ()2 always have CKM
factor \y; no contribution proportional to A; exists for those operators.

We have indicated explicitly that there is a dependence of the Wilson coeffi-
cients C,, on the renormalization scale p. The Wilson coefficients are computed
by matching the standard model and the effective theory at a scale u ~ my,. One
thus obtains C,, (mw). The perturbative evolution of Cy, () is then computed,
with the help of renormalization-group techniques, down to scales u ~ 1GeV.
At those scales a; becomes so large that the perturbative renormalization group
breaks down and non-perturbative QCD effects, especially hadronization, must
be taken into account.

When computing the evolution of the Wilson coefficients from u ~ my, down
to u ~ 1GeV, one has to face three important technical difficulties: the need to
sum large logarithms, the presence of operator mixing, and the existence of quark
thresholds.

e Large logarithms arise due to the presence of two very different scales. In
fact, there are terms in the perturbative expansion which are proportional
to as, but there are also terms proportional to a;, In (m%v / uz). With p suf-
ficiently low, a; In (m3,/u?) may be large even when a is small. The large
logarithms must be summed to all orders in a;. This can be done efficiently
using the renormalization group, and results in a ‘renormalization-group-
improved’ perturbative expansion for the Wilson coefficients. At leading
order, terms of the type a? In™ (m?,/u?) are summed to all orders; at
next-to-leading order, the terms a? In"~' (m%, /u?) are summed to all or-
ders. These approximations are known as leading logarithmic approxima-
tion (LLA) and next-to-leading logarithmic approximation (NLLA), re-
spectively.



CALCULATING AMPLITUDES WITH THE EFFECTIVE HAMILTONIAN 227

e The operators mix under renormalization due to the matrix of anomalous
dimensions not being diagonal. As a consequence, the relation between the
coeflicients at different scales is a matrix relation:

Cr (1) = DU (tymw) py Con (mw) - (20.17)

Each coefficient at the scale u depends on many, sometimes on all, coeffi-
cients at the scale mw.

e When evolving the coefficients from g ~ mw down to u ~ 1GeV one
crosses several quark thresholds. This is accommodated by matching the
effective theories above the threshold—with the relevant quark as a degree
of freedom—and below the threshold—with that quark integrated out. This
is done at a scale u of the order of the mass of the quark. Below that scale,
the operators do not involve that quark any more; thus, the sum over ¢
in operators Q3—@Q10 runs over different ranges according to the scale p at
which one is writing down Heg.

The Wilson coefficients y,, (1) and z, (1), calculated in the NLLA, may be
found in the review by Buchalla et al. (1996).

20.4 Calculating amplitudes with the effective Hamiltonian

With the effective Hamiltonian in eqn (20.16) a physical amplitude reads

10 10
AG ) = %g- Mo S 2 (8) (F1Qnli) (1) = e S 9 () (FIQuli) (u)] .
n=1

n=3
(20.18)
The u-dependence of the Wilson coefficients must be offset by the pu-dependence
of the matrix elements of the operators. Similarly, any renormalization-scheme
dependence of the Wilson coefficients®! must drop out in the amplitudes. These
cancellations may in principle be quite complicated, involving several Wilson
coefficients and matrix elements simultaneously.
The crucial feature of the operator product expansion (OPE) is that it allows
a separation of two regimes: the hard-gluon contributions are included in the
Wilson coefficients; the non-perturbative, soft-gluon effects are included in the
hadronic matrix elements of the operators. This is achieved by choosing for the
renormalization scale at which the matching of the two regimes is done a value
pu~1GeV.5?

51This dependence arises because of the different prescriptions on how to deal with the
matrix s in dimensional regularization.

52When we shall be dealing with the effective Hamiltonian for bottom-meson decays, in
Chapter 32, we will choose pu ~ 5 GeV. This is because, there, the mass scale for the hadroniza-
tion effects is dominated by the bottom-quark mass, and not by the scale at which QCD
becomes non-perturbative.
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Taking into account eqn (20.17), one may write the product of Wilson coef-
ficients and matrix elements of the corresponding operators as

Y Co (1) (£1@nli) (1) = D (F1Qnli) (18) U (s mw ) Crmn (M) . (20.19)

n,m

The transfiguration of the Wilson coefficients due to mixing and matching hides
their dependence on the quark masses, notably on the mass of the top quark.
Buchalla et al. (1991) have proposed a ‘Penguin Box Expansion’ (PBE) in or-
der to eliminate this inconvenience and highlight the dependence on m;. The
PBE couples together the first two terms in the right-hand-side of eqn (20.19),
and rewrites the C,, (mw) in terms of a set of simple process-independent
functions.?3

20.5 Hadronic matrix elements

It only remains to compute the hadronic matrix elements (f|Qn|?) (1). This is
the awkward part of the calculation, as would be expected, since the OPE has
swept all the hadronization effects into those matrix elements. Eventually they
may be reliably calculated in the lattice; at the moment, only rough estimates
are possible. So, although the calculations of the Wilson coefficients have become
very developed, one still faces huge hadronic uncertainties in the evaluation of
decay amplitudes.

The simplest procedure consists in breaking the matrix elements of four-
fermion operators into the product of matrix elements of two quark bilinears by
inserting the vacuum in all possible ways. This is the vacuum-insertion approx-
imation (VIA), and assumes that that factorization is possible.>* The resulting
matrix elements of quark bilinears are parametrized with form factors, one for
each momentum structure consistent with Lorentz invariance and parity. When
possible, the form factors are determined directly from experiment.%®

In the next chapter the matrix elements of the operators Q1—Q19 for the
decays of K° to 2r,I = 0 and 27, I = 2 will be needed. As the gluonic-penguin
operators Q3—Qs do not differentiate between a final state u@ and a final state
dd, they only contribute to final states of zero isospin. Thus, (2|Qn,|K°) = 0 for
n =3, 4, 5, and 6. The other matrix elements may be computed in the VIA. In
an adequate phase convention for |K°), one obtains (Bertolini et al. 1998b)

53 A similar procedure was used in the calculation of €. The p-dependence of the coefficients
was cancelled by the p-dependence of the matrix element when defining a scale-independent
parameter Bk in eqn (17.18). The same was done in the definition of the parameter Bp, in
eqn (18.9).

54Gluons can be exchanged between quarks in different bilinears, invalidating factorization.
The reader should keep the possible existence of nonfactorizable terms in mind.

55An example of this can be found in Appendix C, where (0|5T#d|K?) is related to
(0|35T*u|K*) by isospin symmetry; the latter matrix element is then parametrized by a pa-
rameter fx, which is determined from experiment.
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(2|Q11K°%via = (2|Q2|K )via = %EX,
2Q7IK )via = —¥EX + ¥ 7, (2020)
(2|Qs|K%)via = —¥EX + 67, '
(2|Qa| K°)via = (2|Q10| K% via = 243@)(,
and
(0]Q:1|K®)via = %X,
(0[Qa2|K%via = 22X,
(01Qs|K%via = L X,
(0|Q4|K®)via = V3X,
(0|Qs|K%via = —%Y, (20.21)
(0|Qs| K% via = —4V/3Y, '
(01Q7IK ) via = X + 23y + 237,
(0|Qs|K%)via = ¥ X +2V3Y +2V32,
(0|Qo|K®)via = —éx,
(01Q1ol K°)via = X,
where
X = fr (m% —m2),
Y = (fx — fx) mi
(me +ma) (20.22)
7= _ famie )
(ms +mg)?

We remind the reader that in our normalization fr =~ 131MeV and fx =~
160 MeV (Particle Data Group 1996, p. 319).
One may normalize the true matrix elements by their VIA value:

(0|Qn|K°) = BS/2(0|Qu|K®)via,

(20.23)
(21Qn|K°) = BE/2(2|QulK)vi1a.

The computation of the matrix elements thus translates into the computation
of the values of the bag parameters B,. By definition, those parameters are 1
in the VIA. The B, depend both on the renormalization scheme and on the
renormalization scale p.
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21.1 Introduction
In this chapter we review the standard-model computation of

o = CITIKL)OIT|Ks) - (0T K1) 2IT|Ks)

€

V2(0|T|K5s)?
> %ei(62~60)1—‘m Lie ) (21.1)
2 | Ao
Experimentally, the ratio
€ o M=o (21.2)
€ 2n4— + Moo ‘
is more useful. Indeed, 14— and 79 are approximately equal:
[n+—| ~ [noo| =~ |e|] = (2.280 £ 0.013) x 1073, (213)
¢+_ ~ ¢00 ~ ¢sw = 43.49°. ’
As a consequence, €'/e is small:
€ 1 ( Too )
Sl 2. 21.4
c N3 . (21.4)

Experimentally, one measures |70/ n+—|?. In this way only Ree’ /€ is obtained:

€ 2
Re e Fl1- : (21.5)

For many years the experimental situation was unclear—the NA31 Collaboration
(1993) and the E731 Collaboration (1997) had produced results that were difficult
to conciliate:

7700

N+-

Ree'/e = (23+ 3.6 + 5.4) x 10~* (NA31),
Ree'/e = (7.4+5.24+2.9) x 1074 (E731).

This gave no clear evidence for a non-vanishing Ree€’/e. A recent result by the
KTeV Collaboration has changed this situation; they have obtained

(21.6)

Ree'/e = (28 £ 4.1) x 1074, (21.7)

It is expected that error bars ~ 1-2 x 10~* in Re€’/e will be attained by the
present generation of experiments (Iconomidou-Fayard 1997).
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As emphasized in eqn (8.89), €' originates in the difference between the pa-
rameters Ag and Ag. That difference is CP-violating—remember eqn (7.28). In
the superweak theory all parameters A are equal and ¢’ vanishes. Now, it is clear
that CP violation in the standard model is not superweak in nature, and € is in
principle non-zero; yet, because of an accidental cancellation among the various
contributions, € may turn out to be extremely small. This explains why the su-
perweak theory was difficult to disprove using the measurement of the quantity
in eqn (21.5).

The theoretical analysis of €' /e has been subject to increasing refinement for
more than twenty years (for a recent review see Bertolini et al. 1998b). At tree
level, both Ag and A, originate in the diagram in Fig. 20.1 (a); they then have the
same phase, and €' o Im (42A§) = 0. One must compute the amplitudes at loop
level in order to obtain a non-vanishing €'. In the pioneering works of Vainshtein
et al. (1975, 1977) and of Gilman and Wise (1979) it was recognized that the
gluonic penguin plays a central role in generating a positive €' /e. The gluonic
penguin contributes to Ag but not to Az. As it has.a component proportional to
At, it has a different phase from the tree-level diagram. This contribution to the
phase of Ay generates a non-vanishing €’; it also changes € o< Im (M 12A0A3)—e
gets a small correction, proportional to €/, when the phases of 4y and Ay change.

Later, due to the realization that the top-quark is very heavy, attention was
called to the fact that the electroweak penguins increase with m; (Bijnens and
Wise 1984; Donoghue et al. 1986b; Buras and Gérard 1987; Lusignoli 1989); when
the top quark is sufficiently heavy the electroweak penguins become important.
Those diagrams break isospin and therefore they contribute to As. It was found
that they tend to counter the effect of the gluonic penguin, cancelling the change
of the phase of Ay by a change of the phase of A; in the same direction. In this
way, € becomes smaller when the top quark is heavier. This observation became
particularly interesting when it was speculated that the top quark might be so
heavy (~ 200 GeV) that it would lead to a vanishing €' /e, because of the almost
complete cancellation between the effects of the electroweak penguins on As and
of the gluonic penguin on Ay (Flynn and Randall 1989; Buchalla et al. 1990;
Paschos and Wu 1991; Lusignoli et al. 1992).

More recently, the next-to-leading order computation of the Wilson coeffi-
cients (Buras et al. 1992, 1993a,b,c; Ciuchini et al. 1993, 1994), the experimental
determination of the top-quark mass, and increasing efforts to estimate the rel-
evant matrix elements, ushered in a more mature phase in the computation of
€'/e. Yet, because of the strong cancellation among the various contributions,
and because of the uncertainties in the hadronic matrix elements, an accurate
prediction of €' /e is not yet possible (Buras and Fleischer 1998).

It is important to stress that €' /€, being the ratio of two CP-violating param-
eters, is not in itself CP-violating. (When CP is conserved, both € and €’ vanish,
and their ratio becomes indeterminate.) Thus, in the standard model €' /¢ is not
proportional to J, and it neither tends to zero when J tends to zero, nor does
it increase when J increases. The usual theoretical computation of €' /e regret-
tably distorts this fact, in that what is really computed is €/, which is of course
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proportional to J, while the value of € is just inputted from experiment. If one
takes into account the fact that the phases of € and €' should be approximately
equal—see Chapter 8—one derives from eqn (21.1) that

¢ Im(A2A43)
€ p il 21.8
e~ ValeAy (219

As Im (A2 Ag) o< J, some authors state that €' /e oc J too. This statement is not
correct.

On the other hand, the value of J is found, in practice, from the fit of €. As
€ < BgJ, when fitting € one obtains a value of J which is inversely proportional
to the inputed value of Bg. One may then correctly state that €' /e « 1/Bk.

21.2 Master formula for €'/e
Let us start from the simple observation that

Re (A, A
|w| — ( 22 0)

| Ao|
_ Re(A2AL) Re (AoAL) + Im (AxA%) Im (ApAL)

[Re (AoAy))” + [Im (AoX;)]
= 0.045, (21.9)
/o Im (A2;40)
|Ao|
_ Im(A2)%) Re (Ag)%) — Re (AxX%) Im (AoAL)
[Re (AoA)]” + [Im (AoAy))? '

(21.10)

The dominant contributions to the amplitudes are proportional to A,; one thus
expects |Re (ArA%)] > |Im (ArAL)|. Then,

~ Re (A2 /\;)

Wl ™ R o) (21.11)
and
€ Im(42)7) — |w|Im (AoA7)
€ V2ldRe(4oX;)
Im (Az)\*) - |w| Im (AO/\*)
~ C CE 21.12
\/§|6A0/\u| ( )
Following eqn (20.18),
’ Gp L
Are®t = 7 > Duzn (1) = Ay ()] (T1QnlK®) (1) , (21.13)
n=1

where y; (1) = y2 (1) = 0. The final-state strong-interaction phases ¢; arise from
complex matrix elements (I|Q,|K°). Thus,
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m (413]) cosds = ~Z5Im () Zyn )Re(1|QulK% (). (21.14)

Then, from eqn (21.12),
10

¢  GrJ Z [leRe (01Qn|K°) (1) _ Re (2|@n|K°) (1)

; 2 eAoAy l cos do €os 05

. (21.15)

Using the Wolfenstein parametrization and the values of |w| in eqn (21.9), of |¢|
in eqn (21.3), and of |Ap| in eqn (8.51), one obtains
¢ ANy i ) [0.045 Re (0/QnlK°) (1)
€ 543 x 10-6 MeV3 = n W cos dg
_Re(2Qn|K°) (u)}

cos 0

(21.16)

At present, it is not possible to perform a reliable theoretical computation of | Ag|
and |A;|. In particular, the smallness of |w| reflects the |AI| = 1/2 rule, which
one is unable to explain fully and consistently, presumably because its origin lies
in non-perturbative hadronic physics. This is the reason why we have inputted
the experimental values of |w| and of |4p| in eqn (21.16). On the other hand,
we trust the computation of Im (ArAL) in eqn (21.14), which is equivalent to
saying that we believe that the unknown contributions to Ag and to Ay should
be proportional to A,. This is reasonable, because only A, should intervene in
the low-energy, long-distance part of the strong interactions, which presumably
is responsible for our inability to obtain the moduli of the decay amplitudes.

In eqn (21.16) notice that one only needs the coefficients y,, for the computa-
tion of €' /e. The coefficients z,, are unnecessary. The matrix elements of Q; and
Q)2 are not necessary either.

In eqn (21.16) we have taken into account the fact that the matrix elements
(I|Qn|K°) will in general have an absorptive part, i.e., be complex. Their com-
plex values build up the final-state strong-interaction phases d;. Correspondingly,
we have introduced the cosines of those phases as denominators. We thus follow,
for the sake of generality, the Trieste group (Bertolini et al. 1996, 1998b). Other
groups omit this detail, implicitly setting cosdy = cosdy = 1. A fit of the ex-
perimental data (Basdevant et al. 1974, 1975; Froggatt and Petersen 1977) yields
0o = 37°+3° and §, = —7° £ 1°. Thus, cosdy = 1 but cosdg ~ 0.8. This effect
tends to enhance (0|Q,|K°) relative to (2|@Q,|K°). This is one reason why the
Trieste group obtains a higher value for €' /e than other groups.

One still needs to introduce a further refinement in eqn (21.16). The different
masses of the up and down quarks lead to an isospin-breaking mixing between
the mesons 7°, 7, and . This mixing generates a contribution to A, proportional
to Ap. This may be parametrized by writing, instead of eqn (21.16),

¢ A2Xoq i P [0.045 Re (0|Qn|K°) (1)

€ 543x10-5MeV® =" cos &

(1= Q)
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_Re(2|QnlK°) (1)
cos &2

, (21.17)

where (Bertolini et al. 1998b)
Qi = 0.25 % 0.10. (21.18)

Equation (21.17) is the master formula for €' /e.

21.3 Matrix elements

Using the values in eqns (15.11) and (15.21), and 5 =~ 0.35 as found in § 18.5,
one obtains

AN = |V Vi n ~ 1.3 x 1074, (21.19)

Extensive tables for the coefficients y, (1) can be found in Buchalla et al. (1996).
As for the final-state phases, one may use cosdy = 0.8 and cosd = 1, as advo-
cated by the Trieste group (Bertolini et al. 1998b), or one may neglect the issue
altogether and use cosdy = cosd; = 1, as other experts usually do. It remains to
discuss the matrix elements. This is the crucial issue.

There are many approaches to the problem. Buras et al. (1993¢) have tried
to determine as many matrix elements as possible from the experimental data
on the CP-conserving decays K — 2m. However, the matrix elements of the
(V — A) x (V + A) operators @s—Qs cannot be constrained in this way, and one
must rely on theoretical methods to evaluate them. This is regrettable, because
the operators Q¢ and s have large Wilson coefficients and their matrix elements
are fundamental in the computation of €'/e.

The strength of the lattice approach is precisely the direct computation of the
crucial parameters Bél/ 2 and Bés/ 2. from Bernard and Soni (1989), Franco et
al. (1989), Kilcup (1991), and Sharpe (1991) one gathers that those parameters
are both equal to 1.0 £ 0.2. However, this value for Bél/ ? has been questioned
and may suffer large corrections, even in the quenched approximation (Gupta
1998). In the chiral quark model (Bertolini et al. 1996, 1998a) B{*/? = 1.0+0.4
and Béz/z) = 0.92 £ 0.02. In general that. model predicts Béa/z) < Bél/z), as
advocated also by Heinrich et al. (1992).

Still, various problems remain. The values quoted for the matrix elements
are taken at different scales p. The methods used to evaluate the matrix ele-
ments are at present unable to give their y-dependence and renormalization-
scheme-dependence. Because of these problems, the different approaches cannot
be directly compared. It should also be pointed out that most approaches do not
predict the imaginary parts of the matrix elements.

The parameters Béfe/ 2 and B%/ 2 depend only very weakly on p (Buras et
al. 1993c¢). Therefore, the p-dependence of (0|Qs,6|K°) (1) and of (2|Q7 8| K°) (1)
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is dominated by the u-dependence of the strange-quark mass, see eqns (20.21)-
(20.23). At present, the value of m, (i) constitutes an important source of un-
certainty in the calculation of the matrix elements, though future lattice compu-
tations might eliminate this issue of ms. For the moment, we have to take that
uncertainty into account. In particular, one may use a ‘high’ mg, say,

ms = (150 % 20) MeV, (21.20)

as found by Allton et al. (1994), Jamin and Miinz (1995), Chetyrkin et al. (1995),
and Narison (1995); or one may prefer a ‘low’ ms,

ms = (100  20) MeV, (21.21)

as advocated by Onogi et al. (1997) and by Gupta and Bhattacharya (1997).
The choice between eqns (21.20) and (21.21) has disturbing implications for the
theoretical prediction of €'/e. Of course, this effect should disappear when the
matrix elements are computed directly from the lattice.

21.4 Final result

The final predictions for €'/e are the following. The Munich group (Buras et
al. 1996) gives

~12x 1074 < ¢'/e < 16.0 x 104 for m, = (150 % 20) MeV,

21.22
0x 1074 <€/e<43.0x 107* for my = (100 £ 20) MeV. ( )

The Rome group has used lattice methods to evaluate the matrix elements and
has given (Ciuchini 1997)

€/e=(4.6+3.0+04) x 107 (21.23)

The Trieste group used the chiral quark model to compute the matrix elements
and found (Bertolini et al. 1998a)

€/e=(1.71]5) x 1073 (21.24)

It is clear that, although all three groups agree that €’/e is most probably positive
and not larger than 3 x 1073, there is still a long way to go before a reasonably
precise prediction may be claimed. Thus, it is not to be expected that the forth-
coming high-precision experimental results on Ree’/e will allow any constraint
on the CKM matrix to be derived.

For more details, the reader may consult the reviews by Buras and Fleischer
(1998) and by Bertolini et al. (1998b), which we have extensively used in writing
this account.
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MULTI-HIGGS-DOUBLET MODELS

22.1 Introduction

The scalar sector of the standard model (SM) consists of only one doublet with
weak hypercharge Y = 1/2. Most extensions of the SM include an enlargement
of the Higgs sector. There are many theoretical motivations to enlarge the scalar
sector of the standard electroweak theory, even if one only considers extensions
of that theory based on the standard SU(3).®SU(2)®U(1) gauge group. Among
the specially important theoretical motivations, one may include:

Supersymmetry—in a supersymmetric extension of the SM (for a review, see
e.g. Nilles 1984) a minimum of two Higgs doublets, with weak hypercharges
Y = 1/2 and Y = —1/2, are necessary.>® This is done, on the one hand
because of the need to give masses to both the up-type and the down-
type quarks, on the other hand in order to eliminate the gauge anomalies
generated by the fermionic supersymmetric partners of the scalars.

Spontaneous CP violation—if one wishes to have CP as a good symmetry of the
Lagrangian, only broken by the vacuum, then an extension of the Higgs
sector is required. This will be explained in detail in the next chapter,
where specific examples are presented.

Strong CP problem—most of the proposed solutions for this problem (see Chap-
ter 27), and in particular the Peccei-Quinn solution in any of its variations,
require an enlargement of the Higgs sector.

Baryogenesis—one of the exciting features of the electroweak gauge theories is
the fact that they have all the necessary ingredients (Sakharov 1967)—
namely baryon-number violation, C and CP violation, and departure from
thermal equilibrium—to generate a net baryon asymmetry in the early
Universe. However, it is by now clear that the SM cannot provide the
observed baryon asymmetry, for various reasons which include

1. the fact that the electroweak phase transition is not strongly first
order (Anderson and Hall 1992; Buchmiiller et al. 1994; Kajantie et
al. 1996), and as a result any baryon asymmetry generated during
the transition would be subsequently washed out by unsuppressed
B-violating processes in the broken phase;

561n a non-supersymmetric theory, a scalar doublet with Y = 1/2 is equivalent to a scalar
doublet with Y = —1/2, cf. eqns (11.15) and (11.16). In a supersymmetric theory this is not true
any more, because each scalar multiplet belongs to a chiral supermultiplet which also includes
a fermion multiplet of definite chirality. Indeed, the C-conjugate of a left-handed fermion is a
right-handed antifermion, and not a left-handed antifermion.
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2. CP-violating effects arising through the Kobayashi-Maskawa mech-
anism in the three-generation SM are too small (Gavela et al. 1994;
Huet and Sather 1995).

Therefore, the need of having extra sources of CP violation which could lead
to a successful baryogenesis is an important motivation to consider physics
beyond the SM. As will be seen in this chapter and in the following one,
the enlargement of the Higgs sector is one of the simplest ways of having
new sources of CP violation beyond the Kobayashi-Maskawa mechanism.

No fundamental scalars have yet been experimentally observed, and therefore at
present one only has experimental bounds on the masses and coupling constants
of the scalar sector. The experimental search—see e.g. Gunion et al. (1990)—for
Higgs particles is one of the most important tasks of particle physics.

An important constraint on the enlargement of the Higgs sector arises from
the experimentally well-established relationship mw = c,mz. This equality
holds at classical level if the scalar fields which get a vacuum expectation value
(VEV) are either singlets of SU(2)®U(1)—whose VEVs contribute neither to
mw nor to mz—or the neutral components of doublets of SU(2). Almost any
other neutral scalar getting a VEV will make my # c,mz at tree level.5” Hence
their VEVs must be sufficiently small. Thus, from all types of scalar multiplets
that we may think of adding to the SM, two are outstanding: SU(2) doublets with
Y = £1/2, and SU(2) singlets with Y = 0. Both types of multiplets have the ad-
vantage of having relatively few components; in the case of doublets, there is the
added advantage that they may have Yukawa couplings to the usual fermions,
allowing some interesting effects to arise.

In this chapter we dwell on multi-Higgs-doublet models (MHDMs). These
models have gauge group SU(2)®U(1) and the usual fermion content: ny families
of left-handed doublets @y and Ly and of right-handed singlets pgr, ng, and lg.

The scalar sector of the model consists of ng > 1 doublets ¢, (a =1,2,...,n4)
with Y = 1/2. Thus,
oF ) 9
= . 2.1
b= (% (22,1
Then,
~ T of
bo =iTagl = ( %_) (22.2)
—Pa

are doublets of SU(2) with Y = —1/2.

In the next four sections we study the general features of the MHDMs. We
give special attention to the two-Higgs-doublet model (THDM), which is the
object of § 22.3 and 22.5. We start the study of CP violation in multi-Higgs-
doublet models in § 22.6.

57In general (Tsao 1980), Higgs multiplets with weak isospin T and weak hypercharge Y
lead to the relation mw = cymyz provided T (T + 1) = 3Y'2. Solutions to this equation apart
fromT =Y =0and T =Y = 1/2 are usually not considered, because they correspond to
large scalar multiplets which cannot have Yukawa couplings to the known fermions.
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22.2 General multi-Higgs-doublet model
The Yukawa Lagrangian reads

Ly = ~Qz (Tadanr + Aadapr) — Trlladaln + He. (22.3)

The matrices Iy, A,, and II, have dimension ny X ny. A sum over a from 1 to
ng is implicit in eqn (22.3). The scalar potential is

V = Yol do + Zasea (6] 05) (¢104) - (22.4)

Once again, sums from 1 to ng over the indices a, b, ¢, and d are implicit.
The coefficients Y, have dimensions of mass squared; the coefficients Z,p.q are
dimensionless. We assume

Zabed = Zedab (225)
without loss of generality. Hermiticity of V implies
Yo =Y},
= “ha (22.6)

Zabed = Z{,‘adc-

Hence, there are n? independent real parameters in the quadratic couplings Yoy,
while the quartic couplings Z,p.q are parametrized by n?i (ng + 1) /2 real quan-
tities.

We assume that the vacuum preserves a U(1) gauge symmetry corresponding
to electromagnetism. Thus,

0
00600 =, %, ) (22.7)
with the v, real and non-negative. Without loss of generality, we may use a U(1)
gauge transformation to make the VEV of ¢ real and positive, just as in the
SM. We shall assume this from now on. Thus, §; = 0.

We write

— ,iba oF
ba=e (va+(.0a+ina)/\/§>’

. (22.8)
q"sa — g~ iba <va + (Pa — ia) /‘/§> ]
—Pq

We define the ng x ngy Hermitian matrix Vg as
Vb = vqupet(fa=0), (22.9)
Vay = Vi (22.10)

Let us define

v=/v}+v}+---+0vZ, >0. (22.11)
As mjy, and m% receive additive contributions from v}, v3,...,v2,, we find that

v is related to mw and myz by the same eqns (11.18) as in the SM.



242 MULTI-HIGGS-DOUBLET MODELS

22.3 The two-Higgs-doublet model

The simplest example of a MHDM is the THDM, in which only two scalar
doublets, ¢; and ¢2, are introduced. The most general renormalizable scalar
potential invariant under SU(2)®U(1) then is

V = migl 1 +magles +ma (¢96]6s + e %0},
2 2
+a; (¢}{¢1) + az (¢;¢2) + as (¢}{¢1) (¢;¢2) + a4 (¢I¢2) (¢;¢1)
‘ 2 ‘ 2 ) .

+as [6165 (¢1¢2) +e7 0 (¢;¢1) ] + as (¢I¢1) (6166¢J{¢2 +e7t ¢;¢1)

+ar (6h62) (e 8l a + e glar). (22.12)
The coupling constants m; (with 4 from 1 to 3) and a; (with j from 1 to 7) are
real; all phases have been explicitly displayed and, as a matter of fact, ms, as,
ag, and a7 may be taken to be non-negative without loss of generality.

In the language of the previous section, the tensors Y, and Z,p.q are given
by

Y11 =my, Yip = maeids,
)/21 - mBe-—iﬁs’ }/22 = mg; (2213)
Zun = a, Z2222 = a2,
Zn22 = Zoan1 = a3/2, Zi221 = Zan12 = a4/2,
Zi212 = a5e's, Zo121 = ase™s, (22.14)
Ziiz = Zhan = a6 (2, Znor = Zon = age /2,
Zona = Zizas = 7€ (2, Zago1 = Zarzz = aze” V7 /2.
The VEVs are given by
Olal0) = (), (Olgel0) = (, s (22.15)
1 ’ U2eu9 ) .

with v; and ve real and positive by definition. The expectation value of the
potential in the vacuum is

Vo = (0|V]|0) = myv? + mav2 + 2mavi v, cos (65 + 6)

+a10} + agvl + (a3 + aq) V202 + 2a5v2vZ cos (05 + 26)
+2agvdvy cos (6 + 0) + 2a7v1v3 cos (07 + 6) . (22.16)

The stability of the vacuum requires that

1w
- 2’[)1’02 00
= mgsin (63 + 0) + 2a5v;v9 sin ((55 + 20)
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+agvi sin (66 + ) + a7v2 sin (67 + 6) . (22.17)

The quark Yukawa Lagrangian is

£ =-Qp [(r1¢1 +To¢o) ng + (Au{sl + Aze”ﬁz) PR] +He. (22.18)
The quark mass matrices are

Mp = A + UQAze_ie,

. 22.19
M, = vT1 + vol'ge®. ( )

They are bi-diagonalized in the usual way, see eqns (12.14) and (12.15), and the
CKM matrix is in eqn (12.19).

22.4 The Higgs basis

In any MHDM there is an advantageous basis for the scalar doublets, which we
shall refer to as ‘the Higgs basis’. We use for the doublets in the Higgs basis the
notation Hy, Ha,...,Hp,. The Higgs basis is defined in the following way: the
doublet H; has VEV v; all other doublets have zero VEV. The defining property
of the Higgs basis is that only H; has a VEV, which is real and positive.

The Higgs basis is obtained by means of a unitary transformation—a weak-
basis transformation—of the original scalar doublets ¢1, @2, . . ., $n,, which mixes
thém without altering the gauge-kinetic Lagrangian. However, the Higgs basis is
not completely well defined, because one has the freedom to redefine the doublets
with vanishing VEV by means of an (ng — 1) x (ng — 1) unitary transformation.

The Higgs basis is useful because, when using it, the Goldstone bosons are
isolated as components of H;. Thus,

=, soive)

i = <U+(H_;EX)/\/§) ,

(22.20)

just as in eqns (11.15) and (11.16). The fields p* and x are the Goldstone bosons.
Contrary to what happens in the SM, the Hermitian neutral field H is not, in
general, an eigenstate of mass, rather it mixes with the neutral components of
Hs,Hs,...,Hy,,.

22.5 The Higgs basis in the THDM

In the THDM, with the VEVs given by eqn (22.15), one reaches the Higgs basis
by performing the following unitary transformation of the scalar multiplets:

Hl _l V1 Vg ¢l
(H2) v <v2 —Ul) (e—i9¢2> . (22.21)

We write
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= +€f+1)/\/§) ’

22.22
i, - ((N—z‘A)/\/i) ( )
2 = s .
-C
The Hermitian fields N and A mix with H to form the three physical neutral

scalars S7, S2, and S3, as we shall soon see.

Thus,
ot =l v V2 SOT
ct v \v2—v1 ) \¢d )’
HY _1/(v vy P1
(N) T (vz —’Ul) (02 ’ (22.23)

X :l U1 U2 U
A v\vz—v1)\m/’
22.5.1 The potential

The scalar potential in the Higgs basis is
V = mH Hy + i B Hy + (joH]Hy + He.) + (H{Hl)2 + X (H;‘Hg)2
+Xs (HIH) (B H2) + A (HIH) (HIH)
+ (B Ha + MBI Hy + M HI ) (HIHz) +He] . (22.24)

The p; (with ¢ from 1 to 3) have dimensions of mass squared, while the A; (with
j from 1 to 7) are dimensionless. All coupling constants are real but for pug, As,
Xs, and A7, which are not in general real.
The vacuum state is assumed to be a stability point of the potential; therefore,
the terms of V linear in the fields H, N, and A vanish. This yields
H1 = —'2/\1’02,

22.2
M3 = —/\6’02. ( 5)

We shall use eqns (22.25) to trade p; and ps by A; and Ag, respectively.
One expands the potential V in terms of the fields, after making the substi-

tutions in eqns (22.25). The terms quadratic in the fields are the mass terms of
the scalars:

H
V=-Mv"+miCtC~+1(HN A)M (N) + cubic and quartic terms,
A
(22.26)
where m% = ps + v%)\;3 is the squared mass of the charged scalars C*, and

4v2 ) 202Re \g —20%Im g
M= 2v°ReXs mZ + (\s +2ReXs)0v? —20%Im X5 . (22.27)
—2v2Im \g —2v2Im \s mZ + (A — 2Re \5) v?
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The symmetric matrix M is diagonalized by an orthogonal matrix T'. The diag-
onalization yields the masses m;, ms, and mg of the physical neutral scalars of
the THDM. Thus,

M = Tdiag (m?,m3,m3) TT (22.28)

H Sy
N|=T(S5]. (22.29)
A Ss3

Without loss of generality, we may choose the determinant of T to be 1.

The cubic and quartic terms in eqn (22.26) give rise to scalar self-interactions.
For instance, there is a cubic interaction between the neutral and the charged
scalars:

and

3
V=-t(@H+cN+cAd)CTC™ =+ fiSiCtC™, (22.30)
k=1

where f, = Tirer + Togco + Tsrcs for k = 1,2, and 3, and
(61 C2 C3) = \/i’l) ()\3 Re /\7 —Im )\7) . (2231)

22.5.2 The Yukawa interactions

The Yukawa interactions with the quarks read

ﬁg?) = _.QU_L [(MnH1 + Y, H2)ng + (M,,f{1 + Y,,I:IQ) pR] +He, (22.32)

where the matrices Y, and Y, are in principle arbitrary and unrelated to the
mass matrices M, and M,. Namely,

Yp = vl — U1A26_i0,

. 22.33
Yn = ’U2F1 - le‘ze’g. ( )

We define
Y, = Uy, UP,

Y, = UPY,UR.

While M, and My are diagonal, real and positive by definition, Y, and Yy in
general are arbitrary ngy x ny matrices. Then,

(22.34)

H - _ X =
Eg;l) S (1 + E) (dMyd + TMyu) + R (@Muysu — dMgysd)

+ -  — ———
+% (WrM,Vdy —urV Mydg) + 907 (dLVTMuuR - dRMdVTuL)

_% [3 (YWR + ijL) d+7% (Yuyr + Y1) “]
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—\j-—';) [c_i (Yﬂn - Y;')’L) d -1 (Yuyr - Y1) U]

c+ C- [ _
+=— (@RY}Vdy ~ WTVYadr) + — (V! Yuur - drY]Viur ) (22:35)

The first two lines of eqn (22.35) display the same interactions as in the SM, cf.
eqns (12.23)-(12.26). The last three lines of eqn (22.35) include the Yukawa inter-
actions of N, A, and C*, which depend on the non-diagonal, arbitrary matrices
Y, and Yy. This is one of the most important features of multi-Higgs-doublet
models: in general, there are flavour-changing neutral Yukawa interactions (FC-
NYI), mediated by neutral scalars. We shall come back to this important question
in § 22.10.

22.6 CP transformation

In this chapter, our starting point when defining the CP transformation is the
usual one: we require the gauge-kinetic terms of the Lagrangian to be CP-
invariant, and this requirement fixes the most general CP transformation allowed.
In particular, the pattern of spontaneous symmetry breaking—of the VEVs—
influences the gauge interactions of the various fields, notably, those involving
the scalar fields, and therefore the explicit values of the VEVs must be taken into
account in the definition of the CP transformation—see eqn (22.37) below.%®

Thus, from the requirement of CP invariance of the gauge interactions of
the fermions, one finds that they transform as in eqns (14.2).5° We write ¢ =
veetds + HY, where the H? are quantum fields, while the VEVs are c-numbers
constant over space-time. From the requirement of CP invariance of the gauge
interactions of the scalars, one finds that they transform as

(CP) ¥ (t,7) (CP)' = USPy; (t,—7),

(€P) B2 (1,7 (CP)' = UGS (0,7, (2230
where the ng X ng unitary matrix UYF must be chosen such that
veels = UG vpe™ . (22.37)
Equations (22.36) and (22.37) may be put together as
(CP) ¢a (t,7) (CP)! = USF 4} (t,~7). (22.38)

In the Higgs basis, eqn (22.37) constrains UF to be of the form

581n the next chapter, which will be dedicated to spontaneous CP violation, the starting point
will be different, in that we shall postulate the invariance of the Lagrangian, before spontaneous
symmetry breaking, under a certain CP transformation, fixed a priori, and require that, after
spontaneous symmetry breaking, there is no CP transformation under which the Lagrangian
is invariant.

59We shall set the phase & to zero. This leads to a simplification in some equations, without
thereby losing generality.
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1 0 _
Uer = ( 1x(a4 1>>, 22.39

One—1)x1  K°F ( )
with KF an arbitrary (ng—1) x (ng— 1) unitary matrix. Thus, the fields o*, H,
and x transform under CP in exactly the same way as in the SM—see eqns (13.8),
(13.11), and (13.12), respectively.

22.7 CP violation in the scalar potential: simple examples
22.7.1 THDM with a discrete symmetry

Consider the THDM with a discrete symmetry under which ¢ — —¢3. The
scalar potential in eqn (22.12) then has

m3 = ae = ay = 0. (2240)

Then, there is only one #-dependent term in the vacuum potential of eqn (22.16).
As as is positive by definition, the minimum is attained when

cos (05 + 20) = —1. (22.41)
The matrix UYF is fixed by eqn (22.37): USP = diag (1,e?*). Therefore,
from eqn (22.38),
€P) (s1¢2)" (€P)' = e (}n)
CP-invariance of the as-term of the potential then requires
ei(0s+40) — o—ids (22.43)

But, eqn (22.41) implies eqn (22.43). One concludes that CP is conserved in this
simple model—as long as no Yukawa couplings are introduced, at least.

Notice that this happens in spite of the potential not being real and in spite
of the existence of a complex phase between the VEVs of the two doublets. This
implies that neither condition by itself alone, or even both of them together, leads
to CP violation. The crucial point is that the vacuum phase 6 is determined by
only one term in the potential: there is only one -dependent term in V4. Such a
situation, in which there is only one term in Vj for each (relative) phase in the
vacuum, usually leads to CP invariance.

(22.42)

22.7.2  Softly broken discrete symmetry

The situation changes when one allows the discrete symmetry ¢ — —¢@2 to be
softly broken. A symmetry is said to be broken softly when all terms which break
it have dimension lower than four. In this specific case, allowing for soft breaking
of the symmetry will lead to the presence of only one extra quadratic term in
the potential, the one with coefficient ms in eqn (22.12). CP-invariance would
now require
eZi(55+20) — 1,

e2i(8a+0) — 1 (22.44)
However, 6 is now determined by the stability condition in eqn (22.17), with ag =
a7 = 0, which will in general yield 6 satisfying neither of the two eqns (22.44).
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Therefore, CP is violated. The point is that V5 now contains two clashing terms
depending on the sole vacuum phase #; under such conditions, one may in general
expect CP violation to occur.

This two-Higgs-doublet model, in which the reflection symmetry ¢ — —¢s is
softly broken by the quadratic terms proportional to mg, has been used as a toy
model for CP violation in the scalar sector (Branco and Rebelo 1985; Weinberg
1990).

22.7.3 Weinberg model

In the three-Higgs-doublet model of Weinberg (1976) there are two distinct sym-
metries: the first one transforms ¢, — —¢, and leaves all other fields unchanged;
the second one transforms ¢3 — —¢3 and leaves all other fields unchanged. These
two symmetries are assumed not to be softly broken—though they end up be-
ing spontaneously broken by the non-vanishing VEVs of ¢2 and ¢3. The scalar
potential is

V = miolgr +maghér + madies +an (6161) +ar (6h2) +as (6}5)
+b1 (#he2) (#h6s) + b (sl6s) (o161) + s (6161) (0102)
rer (#hs) (#hee) + 2 (#hen) (416s) +cs (102) (her)
v [ (o0n) "+ e (ehin) |+ e (ohon) e (eln)']
+ds [ei” (¢{¢2)2 + e (¢;¢1)2} : (22.45)
with real and positive di, dz, and ds. The vacuum potential is

Vo = mlvf + mzvg + m3v§ + alvf‘ + azvg + a3v§
+ (b1 + 1) V303 + (b + c2) v3v? + (b3 + c3) Vw3
+2d;v3vZ cos (20, — 263 — €1) + 2dav3v? cos (203 — €2)
+2d3v3v cos (202 + €3) . (22.46)
In the vacuum there are two gauge-invariant relative phases, 8, and 63, but in
Vo there are three terms which depend on them. The fact that there are less

phases than phase-dependent terms in Vp leads, once again, to CP violation in
the self-interactions of the scalars.

22.8 General treatment of CP violation

CP violation is associated with the presence of irremovable phases in the La-
grangian of the theory. However, a weak-basis transformation of the fields—
which includes the rephasing of the fields as a particular case—can bring new
phases in and out of the Lagrangian. The spurious phases thus generated or
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eliminated have no bearing on CP violation. Therefore, it is important to find
quantities which characterize CP violation in a given theory and which do
not depend on the weak basis chosen to write the Lagrangian. We have en-
countered this problem in Chapter 14, where we have derived the weak-basis
(WB) invariant tr [H,, H,]® for the three-generation SM using a general method
(Bernabéu et al. 1986a) to construct CP-violating WB invariants. This method
has been applied to some extensions of th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>