


Child Development with the
 
D-score
 

Children learn to walk, speak, and think at an astonishing pace. The D-score presents a 
unified framework that places children and their developmental milestones from different 
tools onto the same scale, enabling comparisons in child development across 
populations, groups and individuals. This pioneering text explains why we need the D-
score, how we construct it, and how we calculate it. It will be of interest not just to 
professionals in child development, but also to policymakers in international settings and 
to data scientists. 

Open Plus Books are published on an F1000-powered open research platform where 
they can be amended, updated, and extended, in addition to being published as a print 
and open access ebook. The Open Plus Book version of this book, available at 
gatesopenresearch.org/dscore, and the Open Access version of this book, available at 
www.taylorfrancis.com, have been made available under a Creative Commons 
Attribution-Non Commercial-No Derivatives 4.0 license. For more information about 
Open Plus Books go to www.routledge.com and for F1000 go to f1000.com. 

Stef van Buuren, PhD, is a professor of Statistical Analysis of Incomplete Data at the 
University of Utrecht and statistician at the Netherlands Organisation for Applied 
Scientific Research TNO in Leiden. His interests include the analysis of incomplete 
data and child growth and development (h-index 61). Van Buuren is the inventor of the 
MICE algorithm for multiple imputation of missing data (>85.000 downloads per 
month) and has written the accessible monograph Flexible Imputation of Missing Data. 
Second Edition, CRC/Chapman & Hall. He designed the growth charts for the Dutch 
child health care system and invented the D-score, a new method for expressing child 
development on a quantitative scale. He consults for the World Health Organization and 
the Bill & Melinda Gates Foundation. More background at https://stefvanbuuren.name 
and software at https://github.com/stefvanbuuren. 

Iris Eekhout, PhD, holds a double masters in clinical psychology and methodology and 
statistics of psychology (Leiden University). She obtained her PhD at the Department of 
Epidemiology and Biostatistics of the VU University medical centre in Amsterdam. Her 
dissertation work resulted in novel ways of dealing with missing data in questionnaire 
items and total scores. Currently, Iris teaches a course on missing data analysis in the 
epidemiology master’s program at VU University medical centre. At TNO, Iris works on 
a variety of projects as a methodologist and statistical analyst related to child health, e. 
g., measuring child development (D-score) and adaptive screenings for psycho-social 
problems (psycat). More background at https://www.iriseekhout.com and software at 
https://github.com/iriseekhout. 

www.taylorfrancis.com
www.routledge.com
https://stefvanbuuren.name
https://github.com/
https://www.iriseekhout.com
https://github.com/
http://www.gatesopenresearch.org/
http://www.f1000.com




Child Development
 
with the D-score
 

Edited by
 
Stef van Buuren1,2 and Iris Eekhout1
 

1Netherlands Organisation for Applied Scientific Research TNO,
 
Leiden, 2316 ZL, The Netherlands
 

2University of Utrecht, Utrecht, 3584 CH, The Netherlands 



Designed cover image: shutterstock 

First published 2024 
by CRC Press 
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 

and by CRC Press 
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN 

CRC Press is an imprint of Taylor & Francis Group, LLC 

© 2021 van Buuren S and Eekhout I. This edition is based on material in an open access Gateway 
distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. 

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are 
used only for identification and explanation without intent to infringe. 

This book contains information obtained from authentic and highly regarded sources. While all 
reasonable efforts have been made to publish reliable data and information, neither the author[s] nor 
the publisher can accept any legal responsibility or liability for any errors or omissions that may be 
made. The publishers wish to make clear that any views or opinions expressed in this book by 
individual editors, authors or contributors are personal to them and do not necessarily reflect the 
views/opinions of the publishers. The information or guidance contained in this book is intended for 
use by medical, scientific or health-care professionals and is provided strictly as a supplement to the 
medical or other professional’s own judgement, their knowledge of the patient’s medical history, 
relevant manufacturer’s instructions and the appropriate best practice guidelines. Because of the 
rapid advances in medical science, any information or advice on dosages, procedures or diagnoses 
should be independently verified. The reader is strongly urged to consult the relevant national drug 
formulary and the drug companies’ and device or material manufacturers’ printed instructions, and 
their websites, before administering or utilizing any of the drugs, devices or materials mentioned in 
this book. This book does not indicate whether a particular treatment is appropriate or suitable for a 
particular individual. Ultimately it is the sole responsibility of the medical professional to make his 
or her own professional judgements, so as to advise and treat patients appropriately. The authors 
and publishers have also attempted to trace the copyright holders of all material reproduced in this 
publication and apologize to copyright holders if permission to publish in this form has not been 
obtained. If any copyright material has not been acknowledged please write and let us know so we 
may rectify in any future reprint. 

The Open Access version of this book, available at www.taylorfrancis.com, has been made 
available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license. 

Library of Congress Cataloging-in-Publication Data 
A catalog record has been requested for this book 

ISBN: 978-1-003-21631-5 (ebk) 
ISBN: 978-1-032-10634-2 (hbk) 
ISBN: 978-1-032-10633-5 (pbk) 

DOI: 10.1201/9781003216315 

Typeset in Times New Roman 
by T&F Books 

www.taylorfrancis.com
http://dx.doi.org/10.1201/9781003216315


Contents
 

List of illustrations ............................................................................................... x
 
List of contributors ............................................................................................. xv
 
Preface...............................................................................................................xvii
 
Maureen M. Black 

1	 Child development with the D-score: turning milestones 
into measurement 

1.1 Introduction..................................................................................................3
 
Stef van Buuren and Iris Eekhout
 
with Marianne de Wolff
 

1.1.1 First 1000 days ............................................................................... 3
 
1.1.2 Relevance of child development ....................................................4
 
1.1.3 Stunting as proxy for child development ......................................5
 
1.1.4 Measuring neurocognitive development ........................................5
 
1.1.5 Why this chapter?........................................................................... 6
 
1.1.6 Intended audience ........................................................................... 7
 

1.2 Short history ................................................................................................8
 
Stef van Buuren and Iris Eekhout 

1.2.1 What is child development?........................................................... 8
 
1.2.2 Theories of child development.......................................................9
 
1.2.3 Example of motor development................................................... 11
 
1.2.4 Typical questions asked in child development ............................ 13
 

1.3 Quantifying child development .................................................................15
 
Stef van Buuren and Iris Eekhout 

1.3.1 Age-based measurement of development ....................................15
 
1.3.2 Probability-based measurement....................................................17
 
1.3.3 Score-based measurement of development..................................18
 
1.3.4 Unit-based measurement of development....................................20
 
1.3.5 A unified framework ....................................................................22
 
1.3.6 Why unit-based measurement? ....................................................23
 

v 



vi Contents 

1.4	 The D-score ...............................................................................................24
 
Stef van Buuren and Iris Eekhout 

1.4.1 The Dutch Development Instrument (DDI)................................. 24
 
1.4.2 Probability of passing a milestone given age.............................. 25
 
1.4.3 Probability of passing a milestone given D-score.......................25
 
1.4.4 Relation between age and the D-score ........................................28
 
1.4.5 Measurement model for the D-score ........................................... 29
 
1.4.6 Item response functions................................................................31
 
1.4.7 Engelhard criteria for invariant measurement ............................. 35
 
1.4.8 Why take the Rasch model? ........................................................35
 

1.5	 Computation...............................................................................................37
 
Stef van Buuren and Iris Eekhout 

1.5.1 Identify nature of the problem .....................................................37
 
1.5.2 Item parameter estimation............................................................ 39
 
1.5.3 Estimation of the D-score ............................................................ 41
 
1.5.4 Age-conditional references........................................................... 46
 

1.6	 Evaluation ..................................................................................................52
 
Stef van Buuren and Iris Eekhout 

1.6.1 Item fit...........................................................................................52
 
1.6.2 Person fit ....................................................................................... 58
 
1.6.3 Differential item functioning (DIF) ............................................. 58
 
1.6.4 Item information ........................................................................... 61
 
1.6.5 Reliability......................................................................................63
 

1.7	 Validity.......................................................................................................65
 
Stef van Buuren and Iris Eekhout 

1.7.1 Internal validity............................................................................. 65
 
1.7.2 External validity ........................................................................... 66
 

1.8	 Precision.....................................................................................................69
 
Stef van Buuren and Iris Eekhout
 
with Manon Grevinga
 

1.8.1 SMOCC design: Standard and additional milestones ................. 69
 
1.8.2 D-score from short tests ............................................................... 70
 
1.8.3 Impact of short tests on predicting IQ.........................................74
 



Contents	 vii 

1.9 Three studies..............................................................................................78
 
Stef van Buuren and Iris Eekhout
 
with Paula van Dommelen and Maria C. Olthof
 

1.9.1 SMOCC study...............................................................................78
 
1.9.2 POPS study ...................................................................................78
 
1.9.3 TOGO study .................................................................................86
 
1.9.4 Conclusions...................................................................................92
 

1.10 Next steps ..................................................................................................96
 
Stef van Buuren and Iris Eekhout 

1.10.1 Usefulness of D-score for monitoring child health.....................96
 
1.10.2 D-chart, a growth chart for child development ........................... 97
 
1.10.3 Opportunities for early intervention............................................. 97
 
1.10.4 D-score for international settings.................................................98
 
1.10.5 D-score from existing instruments............................................... 99
 
1.10.6 Creating new instruments for D-score.........................................99
 

1.11 Appendices...............................................................................................101
 
Stef van Buuren and Iris Eekhout 

A - Notation.............................................................................................101
 
B - Technical information .......................................................................101
 

Data availability................................................................................................ 103
 
Underlying data .......................................................................................103
 

Note................................................................................................................... 104
 
References......................................................................................................... 105
 

2	 Child development with the D-score: tuning instruments 
to unity 

2.1 Introduction..............................................................................................111
 
Iris Eekhout and Stef van Buuren 

2.1.1 Previous work on the D-score ................................................... 111
 
2.1.2 What this volume is about ......................................................... 112
 
2.1.3 Relevance of the work ............................................................... 112
 
2.1.4 Why this chapter?....................................................................... 113
 
2.1.5 Intended audience ....................................................................... 114
 



viii Contents 

2.2 Data ..........................................................................................................115
 
Iris Eekhout and Stef van Buuren 

2.2.1 Overview of cohorts and instruments ........................................ 115
 
2.2.2 Cohort descriptions..................................................................... 116
 
2.2.3 Instruments.................................................................................. 118
 

2.3 Comparability ..........................................................................................120
 
Iris Eekhout and Stef van Buuren 

2.3.1 Are instruments connected? .......................................................120
 
2.3.2 Bridging instruments by mapping items....................................121
 
2.3.3 Age profile of item mappings ....................................................124
 

2.4 Equate groups ..........................................................................................127
 
Iris Eekhout and Stef van Buuren 

2.4.1 What is an equate group?........................................................... 127
 
2.4.2 Concurrent calibration ................................................................128
 
2.4.3 Strategy to form and test equate groups....................................129
 
2.4.4 Parameter estimation with equate groups ..................................131
 
2.4.5 Common latent scale ..................................................................132
 
2.4.6 Quantifying equate fit.................................................................133
 
2.4.7 Differential item functioning......................................................135
 

2.5 Modelling equates....................................................................................139
 
Iris Eekhout and Stef van Buuren 

2.5.1 GCDG data: design and description .......................................... 139
 
2.5.2 Modelling strategies ...................................................................140
 
2.5.3 Impact of number of active equate groups................................141
 
2.5.4 Age profiles of similar milestones ............................................. 143
 
2.5.5 Quality of equate groups............................................................ 144
 
2.5.6 Milestone selection .....................................................................145
 
2.5.7 Other modelling actions ............................................................. 146
 
2.5.8 Item information ......................................................................... 149
 
2.5.9 Final model .................................................................................150
 

2.6 Comparing ability ....................................................................................152
 
Iris Eekhout and Stef van Buuren 

2.6.1 Comparing child development across studies ........................... 152
 
2.6.2 Precision of the D-score............................................................. 153
 
2.6.3 Domain coverage........................................................................ 157
 



ix Contents 

2.7 Application I: tracking a Sustainable Development Goal......................161
 
Iris Eekhout and Stef van Buuren 

2.7.1 Estimating SDG 4.2.1 indicator from existing data ..................161
 
2.7.2 Defining developmentally on track............................................ 162
 
2.7.3 Country-level estimations........................................................... 164
 
2.7.4 Off-track development and stunted growth ............................... 164
 

2.8 Application II: who is on-track?.............................................................167
 
Iris Eekhout and Stef van Buuren 

2.8.1 What determines who is developmentally on-track? ................ 167
 
2.8.2 Factors that impact child development ......................................167
 

2.9 Discussion ................................................................................................170
 
Iris Eekhout and Stef van Buuren 

2.9.1 D-score from multiple instruments ............................................ 170
 
2.9.2 Variability within and between cohorts .....................................171
 
2.9.3 D-score for international comparisons.......................................171
 
2.9.4 Better measurement ....................................................................172
 

2.10 Appendices...............................................................................................173
 
Iris Eekhout and Stef van Buuren 

A - Abbreviations ....................................................................................173
 
B - Notation.............................................................................................174
 

Data availability................................................................................................ 175
 
Underlying data .......................................................................................175
 

Acknowledgements........................................................................................... 177
 
Note................................................................................................................... 178
 
References......................................................................................................... 179
 
Index ................................................................................................................. 182
 



Illustrations
 

FIGURES 

Figure 1.1.1 Serve and return interactions shape brain architecture. ...........4
 
Figure 1.2.1 Gross motor development as a sequence of milestones...........9
 
Figure 1.2.2 A group of culturally diverse children. ..................................11
 
Figure 1.2.3 Staircase plot indicating the age at which each baby achieves a
 

new milestone of gross-motor functioning. ............................13
 
Figure 1.3.1 Ages at which 21 children achieve four motor development
 

milestones. ...............................................................................16
 
Figure 1.3.2 Mean (symbol x) and spread of the ages at which 21
 

children achieve four motor development milestones............16
 
Figure 1.3.3 Probability of achieving four motor milestones against age....18
 
Figure 1.3.4 Same data as in Figure 1.2.3, but now with the vertical axis
 

representing gross-motor score. ..............................................19
 
Figure 1.3.5 Modelled probability of achieving four motor milestones
 

against the D-score. .................................................................21
 
Figure 1.3.6 Placing milestones and children onto the same line reveals
 

their positions. .........................................................................22
 
Figure 1.4.1 Empirical percentage of passing each milestone in the
 

DDI against age (Source: SMOCC data, n = 2151, 9
 
occasions).................................................................................27
 

Figure 1.4.2 Empirical percentage of passing each milestone in the
 
DDI against the D-score (Source: SMOCC data, 2151
 
children, 9 occasions). .............................................................28
 

Figure 1.4.3 Relation between child D-score and child age in a cohort
 
of Dutch children (Source: SMOCC data, n = 2151, 9
 
occasions).................................................................................29
 

Figure 1.4.4 3D-line graph illustrating how the patterns in Figure 1.4.1
 
and Figure 1.4.2 induce the curvature in the relation 
between D-score and age. .......................................................30
 

Figure 1.4.5 Standard logistic curve. ...........................................................32
 
Figure 1.4.6 Item response functions for five hypothetical items, each
 

demonstrating a positive relation between ability and 
probability to pass. ..................................................................33
 

Figure 1.4.7 Person response functions for three children with abilities
 
-2, 0 and +2, using a small test of items A, C and D. ..........34
 

Figure 1.5.1 Estimated item difficulty parameters (di) for 57 milestones
 
of the DDI (0 – 2 years). ........................................................40
 

Figure 1.5.2 Estimated item difficulty parameters (di) for 57 milestones
 
of the DDI (0 – 2 years). ........................................................41
 

x 



xi Illustrations 

Figure 1.5.3 Age-dependent starting priors for the D-score at the ages of
 
1, 15 and 24 months................................................................43
 

Figure 1.5.4 D-score distribution for David and Rob before (prior) and
 
after (posterior) a milestone is taken into account.................45
 

Figure 1.6.1 Empirical and fitted item response curves for two milestones
 
from the DDI (SMOCC data). ................................................53
 

Figure 1.6.2 Three simulated items that illustrate various forms of item
 
misfit. .......................................................................................54
 

Figure 1.6.3 Two simulated items that illustrate item overfit.....................55
 
Figure 1.6.4 Frequency distribution of infit (left) and outfit (right) of 57
 

milestones from the DDI (SMOCC data)...............................57
 
Figure 1.6.5 Frequency distribution of person infit (left) and person
 

outfit (right) for 16538 measurements of the DDI
 
(SMOCC data). ........................................................................59
 

Figure 1.6.6 Two milestones from the DDI with similar item response
 
curves for boys and girls.........................................................60
 

Figure 1.6.7 Two milestones from the DDI with different item response
 
curves for boys and girls.........................................................61
 

Figure 1.6.8 The item information curve for two milestones from the
 
DDI. .........................................................................................62
 

Figure 1.6.9 Information information of Figure 1.6.8 plotted against
 
age. ...........................................................................................63
 

Figure 1.7.1 Cumulative item information by DDI domain. ......................65
 
Figure 1.7.2 Item fit by D-score for the DDI domains...............................67
 
Figure 1.7.3 Relation between body height and the D-score in the
 

SMOCC data............................................................................68
 
Figure 1.8.1 Age-item grid of the SMOCC study, illustrating how the
 

57 DDI items are distributed over nine visits during the
 
first 24 months. ........................................................................71
 

Figure 1.8.2 Distribution of the D-scores calculated from the standard,
 
additional and all available milestones at month 2................72
 

Figure 1.8.3 Distribution of the D-scores calculated from the standard,
 
additional and all available milestones at month 3................73
 

Figure 1.8.4 D-score by age 0–30 months for standard, additional and all
 
available milestones at each measurement occasion..............73
 

Figure 1.8.5 Histogram of UKKI IQ scores taken around the age of five
 
years (SMOCC data, n = 557). ...............................................75
 

Figure 1.8.6 Relation between D-score at infancy and IQ at age 5 years
 
according to three milestone sets and nine visits (SMOCC
 
data, n = 557). .........................................................................76
 

Figure 1.9.1 Distribution of D-score and DAZ by child age in a cohort
 
of Dutch children aged 0–2 years (Source: SMOCC data,
 
n = 2151, 9 occasions). ...........................................................79
 

Figure 1.9.2 Distribution of D-score and DAZ by child age in a cohort of
 
preterm aged 0–2 years. ..........................................................80
 



xii Illustrations 

Figure 1.9.3 Scatterplot of two versions of the D-score, one calculated
 
using postnatal age (f = 0.00), the other calculated using full
 
age-adjustment (f = 1.00). .......................................................81
 

Figure 1.9.4 Distribution of D-score and DAZ without age correction for
 
preterm birth (f = 0.00). ..........................................................84
 

Figure 1.9.5 Distribution of D-score and DAZ under full age correction
 
for preterm birth (f = 1.00). ....................................................85
 

Figure 1.9.6 Distribution of D-score and DAZ by child age of
 
children living near Kpalimé, Togo (Source: TOGO
 
data, n = 1567). .......................................................................87
 

Figure 1.9.7 Three of the data-assistants who helped to digitize the paper
 
files. ..........................................................................................89
 

Figure 1.9.8 Distribution of D-score by age labelled by neurological
 
(tonus and/or reflex) problems. ...............................................90
 

Figure 1.9.9 Distribution of D-score by age labelled by Apgar score
 
(10 minutes) lower than 8. ......................................................90
 

Figure 1.9.10 Distribution of D-score by age labelled by severe
 
underweight (WAZ < -4) (Source: TOGO data). ...................91
 

Figure 1.9.11 Distribution of D-score by age labelled by severe stunting
 
(HAZ < -4) (Source: TOGO data)..........................................91
 

Figure 1.9.12 Gross motor milestones. ..........................................................93
 
Figure 1.9.13 Fine motor milestones. ............................................................94
 
Figure 1.9.14 Communication and language milestones. .............................95
 
Figure 1.10.1 D-chart with five children from the SMOCC study...............98
 
Figure 2.2.1 Coverage of countries included in the study. .......................115
 
Figure 2.2.2 Age range and assessment instrument of included data for
 

each GCDG cohort. ...............................................................116
 
Figure 2.3.1 Connections between the instruments via mapped item
 

groups for the fine motor domain (https://tnochildhealthsta
 
tistics.shinyapps.io/GCDG_mapping/). .................................123
 

Figure 2.3.2 The probability of passing by age in potential bridging
 
items.......................................................................................125
 

Figure 2.3.3 Probability to pass items for age in poor bridges. ...............125
 
Figure 2.4.1 Example of three instruments that are bridged by common
 

items in equate groups. .........................................................128
 
Figure 2.4.2 One year old child climbs stairs. ..........................................130
 
Figure 2.4.3 Example of three cohorts with and without equate group
 

linking. ...................................................................................133
 
Figure 2.4.4 Two equate groups that present a good equate fit. ..............135
 
Figure 2.4.5 Two equate groups that present a poor equate fit. ...............136
 
Figure 2.4.6 Two equate groups that present no differential item
 

functioning between cohorts. ................................................137
 
Figure 2.4.7 Two equate groups that present differential item functioning
 

between cohorts. ....................................................................138
 



Illustrations xiii 

Figure 2.5.1 A snapshot of information generated by subject-matter
 
experts. ...................................................................................140
 

Figure 2.5.2 D-score by age of four models with all 1339 items using
 
0, 11, 33 and 184 active equate groups. .............................142
 

Figure 2.5.3 Percentage of children that pass similar milestones at a given
 
age (https://d-score.org/dbook-apps/p-a-equate-1339/).........143
 

Figure 2.5.4 Percentage of children that pass similar milestones given
 
their D-score as calculated under four models (1339 items,
 
and 0, 11, 33 and 184 equate groups, respectively
 
(https://d-score.org/dbook-apps/p-d-equate-1339/). ..............145
 

Figure 2.5.5 Infit and outfit of 1339 items in model 1339_11. .............146
 
Figure 2.5.6 Box plot of the distribution of item outfit per instrument in
 

model 1339_11. ..................................................................147
 
Figure 2.5.7 Item information grade by item difficulty for the final
 

model......................................................................................149
 
Figure 2.6.1 D-score distributions for study GCDG-COL-LT42M
 

(https://d-score.org/dbook-apps/gcdgdscores/). .....................153
 
Figure 2.6.2 DAZ distributions for study GCDG-COL-LT42M
 

(https://d-score.org/dbook-apps/gcdgdaz/). ...........................154
 
Figure 2.6.3 Standard error of measurement (sem) as a function of the
 

number of items.....................................................................155
 
Figure 2.6.4 Mean DAZ ± sem as a function of age................................155
 
Figure 2.6.5 The standard error of measurement (sem) around the
 

age-standardized D-scores (DAZ) for cohort
 
GCDG-COL-LT42M (https://d-score.org/dbook-apps/
 
gcdgsem). ...............................................................................156
 

Figure 2.6.6 Cohort Standard Error of Measurement (sem). ....................156
 
Figure 2.6.7 Domain coverage of the D-score scale.................................158
 
Figure 2.6.8 Average domain-specific DAZ ± sem by cohort..................159
 
Figure 2.6.9 Domain-specific D-scores for a 3 year old boy. ..................160
 
Figure 2.7.1 Illustration of the method to define on-track development
 

(https://d-score.org/dbook-apps/gcdgreferences/). ................163
 
Figure 2.7.2 Off-track development (%) versus stunting (%) per
 

country....................................................................................165
 
Figure 2.7.3 Difference in mean DAZ per country between stunted and
 

not stunted children. ..............................................................166
 
Figure 2.8.1 D-score observatations that are on-track according the
 

current references. .................................................................168
 
Figure 2.8.2 Relative importance of the explanatory factors in this
 

study. ......................................................................................169
 



xiv Illustrations 

TABLES 

Table 1.2.1 Age at beginning stages of walking (in weeks) for 21
 
babies. ......................................................................................12
 

Table 1.2.2 Questions whose answers require quantitative measurements
 
of child development. ..............................................................14
 

Table 1.3.1 Evaluation of four measurement approaches on seven
 
criteria. .....................................................................................23
 

Table 1.4.1 Codebook of DDI as used in the SMOCC study. ..................26
 
Table 1.5.1 SMOCC DDI milestones, first three children, 0–2 years. .....38
 
Table 1.5.2 Anchoring values used to identify the D-score scale.............40
 
Table 1.5.3 Scores of David and Rob on five milestones from the
 

DDI ..........................................................................................44
 
Table 1.5.4 Dutch reference values for the D-score..................................48
 
Table 1.8.1 Number of items administered per wave in the SMOCC
 

data...........................................................................................69
 
Table 1.8.2 Pearson correlation between D-score (0–2 years) and IQ
 

at 5 years..................................................................................75
 
Table 1.9.1 Average DAZ at various ages under four correction
 

factors.......................................................................................83
 
Table 2.3.1 Linkage pattern indicating combinations of cohorts and
 

instruments.............................................................................122
 
Table 2.3.2 Example of similar items from different instruments. .........123
 
Table 2.4.1 Overview of the symbols used in equations (2.4.1) and
 

(4.2).Overview of the symbols used in equations (4.1) 
and (2.4.2)..............................................................................132
 

Table 2.5.1 Milestones not used for equating because of limited
 
cross-cultural validity. ...........................................................148
 

Table 2.5.2 Equate group information in the final model. ......................150
 
Table 2.6.1 Test length and probability to pass the items per cohort.....157
 
Table 2.6.2 Pearson correlation of the DAZ and five domain-specific
 

DAZ scores. ...........................................................................159
 
Table 2.7.1 Percentage of on-track children per country.........................164
 
Table 2.8.1 Comparisons between on-track and off-track
 

development. ..........................................................................169
 



Contributors
 
Maureen Black University of 

Maryland School of Medicine, 
Baltimore, MD, USA 

Marianne de Wolff Netherlands 
Organisation for Applied Scientific 
Research TNO, Leiden, The 
Netherlands 

Manon Grevinga Netherlands 
Organisation for Applied Scientific 
Research TNO, Leiden, The 
Netherlands 

Maria C. Olthof University of 
Amsterdam, The Netherlands 

Paula van Dommelen Netherlands 
Organisation for Applied Scientific 
Research TNO, Leiden, The 
Netherlands 

xv 





Preface
 
Maureen M. Black1,2 

1Department of Pediatrics and Department of Epidemiology and Public 
Health, University of Maryland School of Medicine, Maryland, USA 
2RTI International, North Carolina, USA 

ABSTRACT 

The foundations of adult health and wellbeing have their origins early in life, 
often measured by children’s early growth and development. A valid and easily 
interpretable metric is needed to interpret the underlying latent construct of 
early childhood development that can represent change and is comparable 
across cultures and contexts. 

KEYWORDS: CHILD DEVELOPMENT; D-SCORE 

The foundations of adult health and wellbeing have their origins early in life, 
often measured by children’s early growth and development (Clark et al., 
2020). Growth standards established by the World Health Organization 
(WHO) have been adopted globally and are used as indices and targets for 
improvement. For example, in 2018, 219 million children under 5 years of age 
(21.9%) were stunted (height for age < -2 standard deviations of the WHO 
growth standards) (UNICEF, 2019). Stunting early in life has been associated 
with negative childhood development, academic achievement, and adult 
productivity. In the absence of direct population-based metrics for childhood 
development, stunting and poverty have been used as proxy indicators to 
estimate the number of children not reaching their developmental potential (Lu 
et al., 2016). 
Although stunting and poverty have been effective indicators and have 

contributed to advances in global childhood development policies and 
programs (Black et al., 2017), they lack the sensitivity to measure changes 
associated with programmatic interventions. Early childhood development is a 
latent construct composed of an ordinal sequence of developmental domains 
(motor, language, cognitive, personal-social). A valid and easily interpretable 
metric is needed to interpret the underlying latent construct of early childhood 
development that can represent change and is comparable across cultures and 
contexts. Chapter 1 - Turning milestones into measurement - shows that the D-
score (Developmental score) meets those criteria. 
Chapter 2 - Tuning instruments to unity - deals with the problem of how to 

define and calculate the D-score from data obtained from multiple studies and 
multiple instruments. After harmonizing longitudinal measures of childhood 
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development among over 36,000 children from 11 countries (Weber et al., 
2019), the statistical analysis produced a D-score scale with interval qualities 
that can reflect change over time and enable within and across country 
comparisons. In addition, the D-score is responsive to environmental conditions 
that may impact children’s development, ranging from community programs 
and policies to macro-level conditions from migration, inequities, or climate. 
Applied to populations, direct metrics of children’s early growth and development 
assess the current status of the population’s health and well-being, establish 
predictions of future health and well-being, and provide opportunities to 
measure changes. Thus, applying the D-score to the early development of 
children extends to populations and society as a whole. 

Maureen M. Black (July, 2020) 
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This introductory section outlines why we utilize the D-score: 

• reviewing key discussions about the first 1000 days in a child’s life (1.1.1) 
• highlighting the relevance of early childhood development for later life 

(1.1.2) 
• discussing the use of stunting as a proxy for development (1.1.3) 
• pointing to existing instruments to quantify neurocognitive development 

(1.1.4) 
• explaining why we have written this chapter (1.1.5) 
• delineating the intended audience (1.1.6) 

1.1.1 FIRST 1000 DAYS 

The first 1000 days refers to the time needed for a child to grow from 
conception to the second birthday. It is a time of rapid change. During this 
period the architecture of the developing brain is very open to the influence of 
relationships and experiences (Shonkhoff et al., 2016). Early experiences affect 
the nature and quality of the brain’s developing architecture by reinforcing 
some synapses and pruning others through lack of use. The first 1000 days 
shape the brain’s architecture, but higher-order brain functions continue to 
develop into adolescence and early adulthood (Kolb et al., 2017). 
The classic nature versus nurture debate contrasts the viewpoints that 

variation in development is primarily due to either genetic or environmental 
differences. The current scientific consensus is that both genetic predisposition 
and ecological differences influence all traits (Rutter, 2007). The environment 
in which a child develops (before and soon after birth) provides experiences 
that can modify gene activity (Caspi et al., 2010). Negative influences, such as 
exposure to stressful life circumstances or environmental toxins may leave a 
chemical signature on the genes, thereby influencing how genes work in that 
individual. 
During the first 1000 days, infants are highly dependent on their caregivers to 

protect them from adversities and to help them regulate their physiology and 
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behavior. As Figure 1.1.1 illustrates, caregivers can do this through responsive 
care, including routines for sleeping and feeding. To reach their developmental 
potential, children require nutrition, responsive caregiving, opportunities to explore 
and learn, and protection from environmental threats (Black et al., 2017). 
Gradually, children build self-regulatory skills that enable them to manage 
stress as they interact with the world around them (Johnson et al., 2013). 

1.1.2 RELEVANCE OF CHILD DEVELOPMENT 

The first 1000 days is a time of rapid change. Early experiences affect brain 
development and influence lifelong learning and health (Shonkhoff et al., 
2016). Healthy development is associated with future school achievement, 
well-being, and success in life (Bellman et al., 2013). 
Professionals and parents consider it important to monitor children’s 

development. Tracking child development enables professionals to identify 
children with signs of potential delay. Timely identification can help 
children and their parents to benefit from early intervention. In a normal 
population, developmental delay affects about 1–3% of children. A delay in 
development may indicate underlying disorders. About 1% of children have 
an autism spectrum disorder (Baird et al., 2006), 1–2% a mild learning 
disability, and 5–10% have a specific learning disability in a single domain 
(Horridge, 2011). 
Children develop at different rates, and it is vital to distinguish those who are 

within the “normal” range from those who are following a more pathological 

FIGURE 1.1.1 Serve and return interactions shape brain architecture. 

Source: Shutterstock, under license. 
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course (Bellman et al., 2013). There is good evidence that early identification 
and early intervention improve the outcomes of children (Britto et al., 2017). 
Early intervention is crucial for children with developmental disabilities 
because barriers to healthy development early in life impede progress at each 
subsequent stage. 
Monitoring child development provides caregivers and parents with reliable 

information about the child and an opportunity to intervene at an early age. 
Understanding the developmental health of populations of children allows 
organizations and policymakers to make informed decisions about programmes 
that support children’s greatest needs (Bellman et al., 2013). 

1.1.3 STUNTING AS PROXY FOR CHILD DEVELOPMENT 

Stunting is the impaired physical growth and development that children 
experience from poor nutrition, repeated infection, and inadequate 
psychosocial stimulation. Linear growth in children is commonly expressed as 
length-for-age or height-for-age in comparison to normative growth standards 
(Wit et al., 2017). According to the World Health Organization (WHO), 
children are stunted if their height-for-age is more than two standard 
deviations below the Child Growth Standards median. Stunting caused by 
chronic nutritional deprivation in early childhood is as an indicator of child 
development (Perkins et al., 2017). 
There is consistent evidence for an association between stunting and poor 

child development, despite heterogeneity in the estimation of its magnitude 
(Miller et al., 2016; Sudfeld et al., 2015). Considering impaired linear growth 
as a proxy measure for child development is easy to do, and quite common. 
Yet, using impaired height growth as a measure for child development is not 
without limitations: 

•	 The relation between height and child development is weak after 
adjustment for age; 

•	 Height is a physical indicator that does not take into account a direct 
evaluation of a child’s cognitive or mental performance; 

•	 There is considerable heterogeneity in heights of children all over the 
world; 

•	 Height is not sensitive to rapid changes in child development. 

1.1.4 MEASURING NEUROCOGNITIVE DEVELOPMENT 

Assessment of early neurocognitive development in children is challenging for 
many reasons (Ellingsen, 2016). During the first years of life, developmental 
change occurs rapidly, and the manifestation of different skills and abilities 
varies considerably across children. Moreover, a child’s performance on a 
cognitive task is very susceptible to measurement setting, timing and the 
health of the child that day. 
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Recently, a toolkit was published that reviews 147 assessment tools 
developed for children ages 0–8 years in low- and middle-income countries 
(Fernald et al., 2017). Some of the most widely used tools include the Ages & 
Stages Questionnaires (ASQ), Achenbach Child Behavior Checklist (CBCL), 
Bayley Scales of Infant Development (BSID), Denver Developmental 
Screening Test (DEN), Griffiths Scales of Child Development (GRF), Mullen 
Scale of Early Learning (MSEL), Strengths and Difficulties Questionnaire 
(SDQ), Wechsler Intelligence Scale for Children (WISC), and its younger age 
counterpart Wechsler Preschool and Primary Scale of Intelligence (WPPSI). 
Each of these tools has its strengths and limitations. For example, the ASQ 

and DEN are screeners for general child development. The CBCL and SDQ are 
screeners for behavioral and mental health, not cognition or general development. 
DEN is relatively easy and quick to administer, but not very precise. It is out 
of production, not being sold or re-normed. The BSID, MSEL, and GRF 
provide a clinical assessment at the individual level and requires a skilled 
professional to administer. Some instruments collect observations through the 
caregiver (ASQ), whereas others emphasize traits and behavior over performance 
(SDQ, CBCL). Also, the age ranges to which the instruments are sensitive 
vary. Furthermore, they may cover different domains of development. 
The ideal child development assessment would be easy to administer and has 

high reliability, validity, and cross-cultural appropriateness. It should also show 
appropriate sensitivity in scores at different ages and ability levels. It is no 
surprise that no test can meet all of these criteria. Many tests are too long, 
difficult to administer, lack cross-cultural validity, or have low reliability. Also, 
many instruments are proprietary and costly to use. 

1.1.5 WHY THIS CHAPTER? 

We believe that there cannot be one instrument for measuring child 
development that is suitable for all situations. In general, the tool needs 
tailoring to the setting. For example, to find a delayed child, we need an 
instrument that is precise for that individual child, and that is sensitive to 
different domains of delay. In contrast, if we want to estimate the proportion of 
children that is developmentally on track in a region, we need one culturally 
unbiased, relatively imprecise low-cost measurement made on many children 
across many ages. The optimal instrument will look quite different in both 
cases. 
We also believe that there can be one scale for measuring child 

development and that this scale is useful for many applications. Such a scale 
is similar to well-known measures for body height, body weight or body 
temperature. These measurements have a clearly defined unit (i.e., centimetre, 
kilogram, degree Celsius), which moreover is assumed to be constant across all 
scale locations. We express measurements as the number of scale units (e.g. 92 
cm). Note that there may be multiple instruments for measuring a child height 
(e.g. ruler, laser distance meter, echolocation, ability to reach the door handle, 
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and so on). Still, their result translates into scale units (cm here). The opposite 
is also true, and perhaps more familiar. We may have one instrument and 
express the result in multiple units (e.g. cm, inches, light-years). 
Instruments and scales are different things. Currently, instruments for 

measuring child development define their own scales, which renders the 
measurements made by distinct tools incomparable. No measurement unit for 
child development yet exists. It would undoubtedly be an advance if we could 
tailor the measurement instrument to the setting while retaining the advantage 
of a scale with a clearly defined unit across different tools. We can then 
compare the data collected by distinct devices. This chapter explores the 
theory and practice for making that happen. 

1.1.6 INTENDED AUDIENCE 

We aim for three broad audiences: 

• Professionals in the field of child growth and development; 
• Policymakers in international settings; 
• Statisticians, methodologists, and data scientists. 

Professionals in child development will become familiar with a new 
approach to measuring child development in early childhood. We plan to 
separate the measurement instrument from the scale used to express the result. 
This formulation allows the user to select the instrument most suited for a 
particular setting. Since instruments differ widely in age coverage, length, 
administration mode, and domain coverage (Boggs et al., 2019), the ability to 
choose the instrument, while not giving up comparability, represents a 
significant advance over routines that marry the scale to the instrument. 
Policymakers in international settings wish to know the effect of different 

interventions on child development. Gaining insight into such effects is not so 
easy since different studies use different instruments. The ability to place 
measurements made by different instruments onto the same scale will allow 
for a more accurate understanding of policy effects. It also enables the 
setting of priorities and actions that are less dependent on the way the data 
were collected. 
Statisticians and data scientists generally prefer numeric values with an 

unambiguous unit (e.g., centimeters, kilograms) over a vector of dichotomous 
data points. This chapter shows how to convert a series of PASS/FAIL scores to 
a numeric value with interval scale properties. The existence of such a scale 
opens the way for the application of precise analytic techniques, similar to 
those applied to child height and body weight. The techniques have a solid 
psychometric backing, and also apply to other types of problems. 
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The measurement of child development has quite an extensive history. This 
section 

• reviews definitions of child development (1.2.1) 
• discusses concepts in the nature of child development (1.2.2) 
• shows a classic example of motor measurements (1.2.3) 
• summarizes typical questions whose answers need proper measurements 

(1.2.4) 

1.2.1 WHAT IS CHILD DEVELOPMENT? 

In contrast to concepts like height or temperature, it is unclear what exactly 
constitutes child development. Shirley (1931) executed one of the first rigorous 
studies in the field with the explicit aim 

that the many aspects of development, anatomical, physical, motor, intellectual, 
and emotional, be studied simultaneously. 

Shirley gave empirical definitions of each of these domains of development. 
Certain domains advance through a fixed sequence. Figure 1.2.1 illustrates 

the various stages needed for going from a fetal posture to walking alone. The 
ages are indicative of when these events happen, but there is a considerable 
variation in timing between infants. 
Gesell (1943) (p. 88) formulated the following definition of development: 

Development is a continuous process that proceeds stage by stage in an orderly 
sequence. 

Gesell’s definition emphasizes that development is a continuous process. The 
stages are useful as indicators to infer the level of maturity but are of limited 
interest by themselves. 
Liebert et al. (1974) (p. 5) emphasized that development is not a 

phenomenon that unfolds in isolation. 
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FIGURE 1.2.1 Gross motor development as a sequence of milestones. 

Source: Shirley (1933), with permission. 

Development refers to a process in growth and capability over time, as a function 
of both maturation and interaction with the environment. 

Cameron & Bogin (2012) (p. 11) defined an endpoint of development, as follows: 

“Growth” is defined as an increase in size, while “maturity” or “development” is 
an increase in functional ability…The endpoint of maturity is when a human is 
functionally able to procreate successfully … not just biological maturity but also 
behavioural and perhaps social maturity. 

Berk (2011) (p. 30) presented a dynamic systems perspective on child 
development as follows: 

Development cannot be characterized as a single line of change, and is more like 
a web of fibres branching out in many directions, each representing a different 
skill area that may undergo both continuous and stagewise transformation. 

There are many more definitions of child development. The ones described 
here illustrate the main points of view in the field. 

1.2.2 THEORIES OF CHILD DEVELOPMENT 

The field of child development is vast and spans multiple academic disciplines. 
This short overview, therefore, cannot do justice to the enormous richness. 
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Readers new to the field might orient themselves by browsing through an 
introductory academic titles (Berk, 2011; Santrock, 2011), or by searching for 
the topic of interest in an encyclopedia, e.g., Salkind (2002). 
The introductions by Santrock (2011) and Berk (2011) both distinguish major 

theories in child development according to how each answer to following three 
questions: 

1.2.2.1 CONTINUOUS OR DISCONTINUOUS? 

Does development evolve gradually as a continuous process or are there 
qualitatively distinct stages, with jumps occurring from one step to another? 
Many stage-based theories of human development have been proposed over 

the years: social and emotional development by psycho-sexual stages 
introduced by Freud and furthered by Erikson (Erikson, 1963), Kohlberg’s six 
stages of moral development (Kohlberg, 1984) and Piaget’s cognitive 
development theory (Piaget & Inhelder, 1969). Piaget distinguishes four main 
periods throughout childhood. The first period, the sensorimotor period 
(approximately 0–2 years), is subdivided into six stages. When taken together, 
these six stages describe “the road to conceptual thought.” Piaget’s stages are 
qualitatively different and aim to unravel the mechanism involved in intellectual 
development. 
On the other hand, Gesell and others emphasize development as a continuous 

process. Gesell (1943) (p. 88) says: 

A stage represents a degree or level of maturity in the cycle of development. A 
stage is simply a passing moment, while development, like time, keeps marching on. 

1.2.2.2 ONE COURSE OR MULTIPLE PARALLEL TRACKS? 

Stage theorists assume that children progress sequentially through the same set 
of stages. This assumption is also explicit in the work of Gesell. 
The ecological and dynamic systems theories view development as 

continuous, though not necessarily progressing in an orderly fashion, so there 
may be multiple, parallel ways to reach the same point. The developmental path 
taken by a given child will depend on the child’s unique combination of 
personal and environmental circumstances, including cultural diversity in 
development. 

1.2.2.3 NATURE OR NURTURE? 

Figure 1.2.2 illustrates that children vary in appearance. Are genetic or 
environmental factors more important for influencing development? Most 
theories generally acknowledge the role of both but differ in emphasis. In 
practice, the debate centres on the question of how to explain individual 
differences. 
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FIGURE 1.2.2 A group of culturally diverse children. 

Source: Shutterstock, under license. 

Maturation is the process of becoming fully developed, much like the natural 
unfolding of a flower. The process depends on both genetic factors (species, breed) 
as well as environmental influences (sunlight, water, nutrition). Some theorists 
emphasize that differences in child development are innate and stable over time, 
although there may be differences in unfolding speed due to different environments. 
Others argue that environmental factors drive differences in development between 
children, and changing these factors could very well impact child development. 
Our position in this debate has practical implications. If we believe that 

differences are natural and stable, then it may not make much sense trying to 
change the environment, as the impact on development is likely to be small. On 
the other hand, we may consider developmental potential as evenly distributed, 
with its expression governed by the environment. In the latter case, improving 
life circumstances may have substantial pay-offs in terms of better development. 

1.2.3 EXAMPLE OF MOTOR DEVELOPMENT 

1.2.3.1 SHIRLEY'S MOTOR DATA 

For illustration, we use data on locomotor development from a classic study on 
child development among 25 babies. Shirley (1931) collected measurements of 
the baby’s walking ability, starting at ages around 13 weeks, in an ingenious way. 
The investigator lays out a white paper of twelve inches wide on the floor of 
the living room, and lightly greases the soles of the baby’s feet with olive oil. 
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The baby was invited to “walk” on the sheet. Of course, very young infants need 
substantial assistance. Footprints left were later coloured by graphite and measured. 
Measurements during the first year were repeated every week or bi-weekly. 
Table 1.2.1 (Shirley, 1931, Appendix 8) lists the age (in weeks) of the 21
 

babies when they started, respectively, stepping, standing, walking with help,
 
and walking alone. Blanks indicate missing data. A blank in the first column
 
means that the baby was already stepping when the observation started
 
(Virginia Ruth, Sibyl, Donovan, Torey and Doris). Max and Martin, who have
 
blanks in the second column, skipped standing and went directly from stepping
 
to walking with help. Doris has a blank in the last column because she passed
 
away before she could walk alone.
 

1.2.3.2 INDIVIDUAL TRAJECTORIES OF MOTOR DEVELOPMENT 

Figure 1.2.3 is a visual representation of the information in Table 1.2.1. Each 
data point is the age of the first occurrence of the next stage. Before that age, 
we assume the baby is in the previous stage. 

TABLE 1.2.1 
Age at beginning stages of walking (in weeks) for 21 babies. 

Name Sex Stepping Standing Walking with help Walking alone 

Martin boy 15 21 50
 

Carol girl 15 19 37 50
 

Max boy 14 25 54
 

Virginia Ruth girl 21 41 54
 

Sibyl girl 22 37 58
 

David boy 19 27 34 60
 

James D. boy 19 30 45 60
 

Harvey boy 14 27 42 62
 

Winnifred girl 15 30 41 62
 

Quentin boy 15 23 38 64
 

Maurice boy 18 23 45 66
 

Judy girl 18 29 45 66
 

Irene May girl 19 34 45 66
 

Peter boy 15 29 49 66
 

Walley boy 18 33 54 68
 

Fred boy 15 32 46 70
 

Donovan boy 23 50 70
 

Patricia girl 15 30 45 70
 

Torey boy 21 72 74
 

Larry boy 13 41 54 76
 

Doris girl 23 44
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FIGURE 1.2.3 Staircase plot indicating the age at which each baby achieves a new 
milestone of gross-motor functioning. 

Figure 1.2.3 makes it easy to spot the quick walkers (Martin, Carol) and slow 
walkers (Patricia, Torey, Larry). Furthermore, we may also locate children who 
remain a long time in a particular stage (Torey, Larry) or who jump over stages 
(Martin, Max). 
For ease of plotting, the categories on the vertical axis are equally spaced. 

The height of the jump from one stage to the next has no sensible 
interpretation. We might be inclined to think that the vertical distance portrays 
to how difficult it is to achieve the next stage, but this is inaccurate. Instead, the 
ability needed to set the next step corresponds to the horizontal line length 
between stages. For example, on average, the line for stepping is rather 
short in all plots, so going from stepping to standing is relatively easy. 
Figure 1.2.3 presents data from only those visits where a jump occurred. The 

number of house visits made during the ages of 0–2 years was far higher. 
Shirley (1931) collected data from 1370 visits, whereas Figure 1.2.3 plot only 
the 76 occasions that showed a jump. Thus the data collection needs to be 
intense and costly to obtain individual curves. Fortunately, there are alternatives 
that are much more efficient. 

1.2.4 TYPICAL QUESTIONS ASKED IN CHILD DEVELOPMENT 

The emotional, social and physical development of the young child has a direct 
effect on the adult he or she will become. We may be interested in measuring 
child development for answering clinical, policy or public health questions. 
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Table 1.2.2 lists typical questions whose answers require measuring child 
development. Note that all questions compare the amount of child development 
between groups or time points. A few questions compare development for the 
same child, group or population at different ages. Others compare development 
at the same age across different children, groups or populations. 

TABLE 1.2.2 
Questions whose answers require quantitative measurements of child 
development. 

Level Question 

Individual What is the child's gain in development since the last visit?
 

Individual What is the difference in development between the child and peers of the same
 
age? 

Individual How does the child's development compare to a norm? 

Group What is the effect of this intervention on child development? 

Group What is the difference in child development between these two groups? 

Population What is the change in average child development since the last measurement? 

Population What was the effect of implementing this policy on child development? 

Population How does this country compare to other countries in terms of child development? 
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This section discusses four principles to quantify child development: 

• Age-based measurement (1.3.1) 
• Probability-based measurement (1.3.2) 
• Score-based measurement (1.3.3) 
• Unit-based measurement (1.3.4) 

1.3.1 AGE-BASED MEASUREMENT OF DEVELOPMENT 

1.3.1.1 MOTIVATION FOR AGE-BASED MEASUREMENT 

Milestones form the based building blocks for instruments to measure child 
development. Methods to quantify growth using separate milestones relate the 
milestone behaviour to the child’s age. Gesell (1943) (p. 89) formulated this 
goal as follows: 

We think of behaviour in terms of age, and we think of age in terms of behaviour. 
For any selected age it is possible to sketch a portrait which delineates the 
behaviour characteristics typical of the age. 

There is an extensive literature that quantifies development in terms of the 
ages at which the child is expected to show a specific behaviour. The oldest 
methods for quantifying child development calculate an age equivalent for 
achieving a milestone, and compare the child’s age to this age equivalent. 

1.3.1.2 AGE EQUIVALENT AND DEVELOPMENTAL AGE 

Figure 1.3.1 graphs the ages at which each of the 21 children enter a given 
stage in Shirley’s motor data of Table 1.2.1. Since standing follows 
stepping, children who can stand are older than the children who are 
stepping. Hence the ages for standing are located more to the right. 
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FIGURE 1.3.1 Ages at which 21 children achieve four motor development milestones. 

Since age and development are so intimately related, we can express the 
difficulty of a milestone as the mean age at which children achieve it. For 
example, Stott (1967) (p. 25) defines the age equivalent and its use for 
measurement, as follows: 

The age equivalent of a particular stage is simply the average age at which 
children reach that particular stage. 

Figure 1.3.2 adds the mean age and the boxplot at which the children enter 
the four stages. The difficulty of these milestones can thus be expressed as age 
equivalents: 16.1 weeks for stepping, 27.2 weeks for standing, 43.3 
weeks for walking with help and 63.3 weeks for walking alone. 
Thus, a child that is stepping beyond the age of 16.1 weeks is considered 

later than average, whereas a child already stepping before 27.2 weeks earlier 
than average. We may also calculate age delta as the difference between the 
child’s age and the norm age, and express it as “two weeks late” or “three 

FIGURE 1.3.2 Mean (symbol x) and spread of the ages at which 21 children achieve 
four motor development milestones. 
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weeks ahead.” Summarizing age delta’s over different milestones has led to 
concepts like developmental age as a measure of a child’s development. 

1.3.1.3 LIMITATIONS OF AGE-BASED MEASUREMENT 

Age-based measurement is easy to understand, and widely used in the popular 
press, but not without pitfalls: 

1. Age-based measurement requires us to know the ages at which the child 
entered a new stage. The mean age can be a biased estimate of item 
difficulty if visits are widely apart, irregular or missing. 

2. Age-based measurement can inform us whether a child is achieving a 
given milestone early of late. However, it does not tell us what 
behaviours are characteristic for children of a given age. 

3. Age-based measurement cannot exist without an age norm. When there 
are no norms, we cannot quantify development. 

4. Age-based	 measurement works only at the item level. Although we 
may average age delta’s over milestones, the choice of milestones is 
arbitrary. 

1.3.2 PROBABILITY-BASED MEASUREMENT 

An alternative is to calculate the probability of achieving a milestone at a given 
age and compare the child’s response to that probability. 
The passing probability is an interpretable and relevant measure. An 

operational advantage of the approach is that the necessary calculations place 
fewer demands on the available data and can be done even for cross-sectional 
studies. 

1.3.2.1 EXAMPLE OF PROBABILITY-BASED MEASUREMENT 

Figure 1.3.3 plots the percentage of children achieving each of Shirley’s motor 
stages against age. There are four cumulative curves, one for each milestone, 
that indicate the percentage of children that pass. 
In analogy to the age equivalent introduced in Section 1.3.1.2 we can define 

the difficulty of the milestone as the age at which 50 per cent of the children 
pass. In the Figure we see that the levels of difficulty are approximately 14.2 
weeks (stepping), 27.0 weeks (standing), 43.8 weeks (walking with 

help) and 64.0 weeks (walking alone). Also, we may easily find the ages 
at which 10 per cent or 90 per cent of the children pass each milestone. 
Observe there is a gradual decline in the steepness as we move from 

stepping to walk_alone. For example, we need an age interval of 13 
weeks (33 - 20) to go from 10 to 90 per cent in standing, but need 19 weeks 
(71 - 52) to go from 10 to 90 per cent in walking alone. Thus, one step on 
the age axis corresponds to different increments in probability. The flattening 
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FIGURE 1.3.3 Probability of achieving four motor milestones against age. 

pattern is typical for child development and represents evidence that evolution 
is faster at earlier ages. 

1.3.2.2 LIMITATIONS OF PROBABILITY-BASED MEASUREMENT 

Probability-based measurement is a popular way to create instruments for 
screening on developmental delay. For example, each milestone in the Denver 
II (Frankenburg et al., 1992) has markers for the 25th, 50th, 75th and 90th age 
percentile. 

1. The same age step corresponds to different probabilities. 
2. The	 measurement cannot exist without some norm population. When 

norms differ, we cannot compare the measurements. 
3. Interpretation	 is at the milestone level, sometimes supplemented by 

procedures for counting the number of delays. No aggregate takes all 
responses into account. 

1.3.3 SCORE-BASED MEASUREMENT OF DEVELOPMENT 

1.3.3.1 MOTIVATION FOR SCORE-BASED MEASUREMENT 

Score-based measurement takes the responses on multiple milestones and 
counts the total number of items passed as a measure of development. This 
approach takes all answers into account, hence leading to a more stable result. 
One may order milestones in difficulty, and skip those that are too easy, and 

stop administration for those that are too difficult. In such cases, we cannot 
merely interpret the sum score of a measure of development. Instead, we need 
to correct for the subset of administered milestones. The usual working 
assumption is that the child would have passed all easier milestones and failed 
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on all more difficult ones. We may repeat this procedure for different domains, 
e.g. motor, cognitive, and so on. 

1.3.3.2 EXAMPLE OF SCORE-BASED MEASUREMENT 

Figure 1.3.4 is a gross-motor score calculated as the number of milestones 
passed. It varies from 0 to 3. 
The plot suggests that the difference in development between scores 0 and 1 

is the same as the difference between, say, scores 2 and 3. This is not correct. 
For example, suppose that we express the difficulty of the milestone as an age-
equivalent. From Section 1.3.1.2 we see that the difference between stepping 
and standing is 27.2 - 16.1 = 11.1 weeks, whereas the difference between 
walking alone and walking with help is 63.3 - 43.3 = 20 weeks. Thus, 
according to age equivalents scores 0 and 1 should be closer to each other, 
and ratings 2 and 3 should be drawn more apart. 

1.3.3.3 LIMITATIONS OF SCORE-BASED MEASUREMENT 

Score-based measurement is today’s dominant approach, but is not without 
conceptual and logistical issues. 

1. The total score depends not only on the actual developmental status of 
the child, but also on the set of milestones administered. If a milestone 
is skipped or added, the sum score cannot be interpreted anymore as a 
measure of developmental status. It might be possible to correct for 

FIGURE 1.3.4 Same data as in Figure 1.2.3, but now with the vertical axis 
representing gross-motor score. 
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starting and stopping rules under the assumptions described in Section 
1.3.3.1, but such will be involved if intermediate milestones are 
missing. 

2. It is not possible to compare the scores made by different instruments. 
Some instruments allow conversion to age-conditional scores. However, 
the sample used to derive such transformations pertain to that tool and 
does not generalize to others. 

3. Domains are hard to separate. For example, some cognitive milestones 
tap into fine motor capabilities, and vice versa. There are different ways 
to define domains, so domain interpretation varies by instrument. 

4. Administration of a full test may take substantial time. The materials are 
often proprietary and costly. 

1.3.4 UNIT-BASED MEASUREMENT OF DEVELOPMENT 

1.3.4.1 MOTIVATION FOR UNIT-BASED MEASUREMENT 

Unit-based measurement starts by defining ideal properties and derives a 
procedure to aggregate the responses on milestones into an overall score that 
will meet this ideal. 
Section 1.2.4 highlighted questions for individuals, groups and populations. 

There are three questions: 

•	 What is the difference in development over time for the same child, group 
or community? 

•	 What is the difference in development between different children, groups 
or populations of the same age? 

•	 How does child development compare to a norm? 

In the ideal situation, we would like to have a continuous (latent) variable D 
(for development) that measures child development. The scale should allow us 
to quantify ability of persons, groups or populations from low to high. It should 
have a constant unit so that a given difference in ability refers to the same 
quantity across the entire scale. We find the same property in height, where a 
distance of 10 cm represents the same amount for molecules, people or 
galaxies. When are these conditions are met, we say that we measure on an 
interval scale. 
If we succeed in creating an interval scale for child development, an 

enormous arsenal of techniques developed for quantitative variables opens up 
to measure, track and analyze child development. We may then evaluate the 
status of a child in terms of D points gained, create age-dependent diagrams 
(just like growth charts for height and weight), devise age-conditional measures 
for child development, and intelligent adaptive testing schemes. Promising 
studies on Dutch data (Jacobusse et al., 2006; van Buuren, 2014) suggest that 
such benefits are well within reach. 
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1.3.4.2 EXAMPLE OF UNIT-BASED MEASUREMENT 

Figure 1.3.5 is similar to Figure 1.3.3, but with Age replaced by Ability. 
Also, modelled curves have replaced empirical ones, but this is not essential. 
We estimated the ability values on the horizontal axis from the data. The 

values correspond to the amount of development of each visit. Likewise, we 
calculated the logistic curves from the data. These reflect the probability of 
passing each milestone at a given level of ability. 
Figure 1.3.5 shows that the probability of passing a milestone increases with 

ability. Items are sorted according to difficulty from left to right. Milestone 
stepping is the easiest and walk_alone is the most difficult. The point at 
which a logistic curve crosses the 50 per cent line (marked by a cross) is the 
difficulty of the milestone. 
The increase in ability that is needed to go from 10 to 90 per cent is about 

five units here. Since all curves are parallel, the interval is constant for all scale 
locations. Thus, the scale is an interval scale with a constant unit of 
measurement, the type of measurement needed for answering the basic 
questions identified in Section 1.3.4.1. 

1.3.4.3 LIMITATIONS OF UNIT-BASED MEASUREMENT 

While unit-based measurement has many advantages, it cannot perform 
miracles. 

1. An important assumption is that the milestones “measure the same thing,” 
or put differently, are manifestations of a continuous latent variable that 
can be measured by empirical observations. Unit-based measurement 
won’t work if there is no sensible latent scale. 

FIGURE 1.3.5 Modelled probability of achieving four motor milestones against the 
D-score. 
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2. The portrayed advantages hold only if the discrepancies between the data 
and the model are relatively small. Since the simplest and most powerful 
measurement models are strict, it is essential to obtain a good fit between 
the data and the model. 

3. The	 construction of unit-based measurement requires psychometric 
expertise, specialized computer software and considerable sample sizes. 

1.3.5 A UNIFIED FRAMEWORK 

This section brings together the four approaches outlined in this section into a 
unified framework. 
Figure 1.3.6 shows the imaginary positions on a gross-motor continuum of 

three babies from Figure 1.2.1 at the age of 30 weeks. Both milestones and 
children are ordered along the same continuum. Thus, standing is more difficult 
than stepping, and at week 30, Doris is ahead of Walley in terms of motor 
development. 
More generally, measurement is the process of locating milestones and 

children on a line. This line represents a latent variable, a continuous 
construct that defines the different poles of the concept that we want to 
measure. A latent variable ranges from low to high. 
The first part of measurement is to determine the location of the milestones 

on the latent variable. In many cases, the instrument maker has already done 
that. For example, each length marker on a ruler corresponds to a milestone for 
measuring length. The manufacturer of the ruler has already placed the marks at 
the appropriate places on the tool, and we take for granted that each marker has 
been calibrated correctly. 
A milestone for child development is similar to a length marker, but 

•	 we may not know how much development the milestone measures, so its 
location on the line is unknown, or uncertain; 

•	 we may not know whether the milestone measures child development at 
all so that it may have no location on the line. 

The second part of measurement is to find the location of each child on the 
line. For child height, this is easy: We place the horizontal headpiece on top of 
the child’s head and read off the closest height marker. Since we lack a physical 

FIGURE 1.3.6 Placing milestones and children onto the same line reveals their 
positions. 
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ruler for development, we must deduce the child’s location on the line from the 
responses on a series of well-chosen milestones. 
By definition, we cannot observe the values of a latent variable directly. 

However, we may be able to measure variables (milestones) that are related to 
the latent variable. For example, we may have scores on tasks like standing or 
walking with help. 
The measurement model specifies the relations between the actual measurements 

and the latent variable. Under a given measurement model, we may estimate 
the locations of milestones and children on the line. Section 1.4.5 discusses 
measurement models in more detail. 

1.3.6 WHY UNIT-BASED MEASUREMENT? 

This section distinguishes four approaches to measure child development: age-
based, probability-based, score-based and unit-based measurement. Table 1.3.1 
summarizes how the approaches evaluate on nine criteria. 
Age-based measurement expresses development in age equivalents, whose 

precise definition depends on the reference population. Age-based measurement 
does not support multiple milestones and does not use the concept of a latent 
variable. 
Probability-based measurement expresses development as age percentiles for 

a reference population. It is useful for individual milestones but does not 
support multiple items or a latent variable interpretation. 
Score-based measurement quantifies development by summing the number of 

passes. Different instruments make different selections of milestones, so the 
scores taken are unique to the tool. Thus comparing the measurement obtained 
by different devices is difficult. Skipping or adding items require corrections. 
Unit-based measurement defines a unit by a theoretical model. When the data 

fit the model, we are able to construct instruments that produce values in a 
standard metric. 

TABLE 1.3.1
 
Evaluation of four measurement approaches on seven criteria.
 

Criterion Age Probability Score Unit 

Independent of age norm No No Yes Yes 

Supports multiple milestones No No Yes Yes 

Latent variable No No Yes Yes 

Robust to milestone skipping Yes Yes No Yes 

Comparable scores Yes Yes No Yes 

Probability model No Yes No Yes 

Defines measurement unit No No No Yes 
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Section 1.2 provided historical background on the nature of child development. 
Section 1.3 discussed three general quantification approaches. This section 
explains how to apply the unit-based approach to arrive at the D-score scale. 
The text illustrates the process with real data. 

• Dutch Development Instrument (DDI) (1.4.1) 
• Milestone passing by age and by D-score (1.4.2, 1.4.3) 
• How do age and D-score relate? (1.4.4) 
• Role of the measurement model (1.4.5) 
• Item and person response functions (1.4.6) 
• Engelhard invariance criteria (1.4.7) 
• Why the Rasch model? (1.4.8) 

1.4.1 THE DUTCH DEVELOPMENT INSTRUMENT (DDI) 

1.4.1.1 SETTING 

The Dutch Youth Health Care (YHC) routinely monitors the development of 
almost all children living in The Netherlands. During the first four years, there 
are 13 scheduled visits. During these visits, the YHC professionals evaluate the 
growth and development of the child. 
The Dutch Development Instrument (DDI; in Dutch: Van Wiechenschema) is  

the standard instrument used to measure development during the ages 0–4 
years. The DDI consists of 75 milestones. The instrument assesses three 
developmental domains: 

1. Fine motor, adaptation, personality and social behaviour; 
2. Communication; 
3. Gross motor. 

The milestones form two sets, one for children aged 0–15 months, and 
another for children aged 15–54 months. The YHC professionals administer 
an age-appropriate subset of milestones at each of the scheduled visits, thus 
building a longitudinal developmental profile for each child. 
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1.4.1.2 DESCRIPTION OF SMOCC STUDY 

The Social Medical Survey of Children Attending Child Health Clinics 
(SMOCC) study is a nationally representative cohort of 2,151 children born in 
The Netherlands during the years 1988–1989 (Herngreen et al., 1994). The 
study monitored child development using observations made on the DDI during 
nine visits covering the first 24 months of life. The SMOCC study collected 
information during the first two years on 57 (out of 75) milestones. 
The standard set in the DDI consists of relatively easy milestones that 90 per 

cent of the children can pass at the scheduled age. This set is designed to have 
maximal sensitivity for picking up delays in development. A distinctive feature 
of the SMOCC study was the inclusion of more difficult milestones beyond the 
standard set. The additional set originates from the next time point. The success 
rate on these milestones is about 50 per cent. 

1.4.1.3 CODEBOOK OF DDI 0–30 MONTHS 

Table 1.4.1 shows the 57 milestones from the DDI for ages 0 – 30 months as 
administered in the SMOCC study. Items are sorted according to debut, the age 
at which the item appears in the DDI. The response to each milestone is either a 
PASS (1) or a FAIL (0). Children who did not pass a milestone at the debut age 
were re-measured on that milestone during the next visit. The process continued 
until the child passed the milestone. 

1.4.2 PROBABILITY OF PASSING A MILESTONE GIVEN AGE 

Figure 1.4.1 summarizes the response obtained on each milestone as a curve 
against age. The percentage of pass scores increases with age for all milestones. 
Note that curves on the left have steeper slopes than those on the right, thus 
indicating that development is faster for younger children. 
The domain determines the coloured (blue: gross motor, green: fine motor, 

red: communication). In general, domains are well mixed across age, though 
around some ages, e.g., at four months, multiple milestones from the same 
domain appear. 

1.4.3 PROBABILITY OF PASSING A MILESTONE GIVEN 
D-SCORE 

Figure 1.4.2 is similar to Figure 1.4.1, but with the horizontal axis replaced by 
the D-score. The D-score summarizes development into one number. See 1.5.3 
for a detailed explanation on how to calculate the D-score. The vertical axis 
with per cent pass is unchanged. 
The percentage of successes increases with D-score for all milestones. In contrast 

to Figure 1.4.1 all curves have a similar slope, a desirable property needed 
for an interval scale with a constant unit of measurement (cf. Section 1.3.4). 
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TABLE 1.4.1
 
Codebook of DDI as used in the SMOCC study.
 

Item Debut Domain Label 

ddicmm029 1m Communication Reacts when spoken to 

ddifmd001 1m Fine motor Eyes fixate 

ddigmd052 1m Gross motor Moves arms equally well 

ddigmd053 1m Gross motor Moves legs equally well 

ddigmd056 1m Gross motor Lifts chin off table for a moment 

ddicmm030 2m Communication Smiles in response (M; can ask parents) 

ddifmd002 2m Fine motor Follows with eyes and head 30d < 0 > 30d 

ddicmm031 3m Communication vocalizes in response 

ddifmd003 3m Fine motor Hands open occasionally 

ddifmm004 3m Fine motor Watches own hands 

ddigmd054 3m Gross motor Stays suspended when lifted under the armpits 

ddigmd057 3m Gross motor Lifts head to 45 degrees on prone position 

ddicmd116 6m Communication Turn head to sound 

ddifmd005 6m Fine motor Plays with hands in midline 

ddigmd006 6m Gross motor Grasps object within reach 

ddigmd055 6m Gross motor No head lag if pulled to sitting 

ddigmd058 6m Gross motor Looks around to side with angle face-table 90 

ddigmd059 6m Gross motor Flexes or stomps legs while being swung 

ddicmm033 9m Communication Says dada, baba, gaga 

ddifmd007 9m Fine motor Passes cube from hand to hand 

ddifmd008 9m Fine motor Holds cube, grasps another one with other hand 

ddifmm009 9m Fine motor Plays with both feet 

ddigmm060 9m Gross motor Rolls over back to front 

ddigmd061 9m Gross motor Balances head well while sitting 

ddigmd062 9m Gross motor Sits on buttocks while legs stretched 

ddicmm034 12m Communication Babbles while playing 

ddicmm036 12m Communication Waves 'bye-bye' (M; can ask parents) 

ddifmd010 12m Fine motor Picks up pellet between thumb and index finger 

ddigmd063 12m Gross motor Sits in stable position without support 

ddigmm064 12m Gross motor Crawls forward, abdomen on the floor 

ddigmm065 12m Gross motor Pulls up to standing position 

ddicmm037 15m Communication Uses two words with comprehension 

ddicmd136 15m Communication Reacts to verbal request (M; can ask parents) 

ddifmd011 15m Fine motor Puts cube in and out of a box 

ddifmm012 15m Fine motor Plays 'give and take' (M; can ask parents) 

ddigmm066 15m Gross motor Crawls, abdomen off the floor (M; can ask parents) 

ddigmm067 15m Gross motor Walks while holding onto play-pen or furniture 

ddicmm039 18m Communication Says three 'words' 

ddicmd141 18m Communication Identifies two named objects 

ddifmd013 18m Fine motor Tower of 2 cubes 

(Continued) 
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TABLE 1.4.1 

(Continued) 

Item Debut Domain Label 

18m Fine motor Explores environment energetically (M; can ask 
ddifmm014 parents) 

ddigmd068 18m Gross motor Walks alone 

ddigmd069 18m Gross motor Throws ball without falling 

ddicmm041 24m Communication Says sentences with 2 words 

ddicmd148 24m Communication Understands 'play' orders 

ddifmd015 24m Fine motor Builds tower of 3 cubes 

ddifmm016 24m Fine motor Imitates everyday activities (M; can ask parents) 

ddigmd070 24m Gross motor Squats or bends to pick things up 

ddigmd146 24m Gross motor Drinks from cup (M; can ask parents) 

ddigmd168 24m Gross motor Walks well 

ddicmm043 30m Communication Refers to self using 'me' or 'I' (M; can ask parents) 

ddicmd044 30m Communication Points at 5 pictures in the book 

ddifmd017 30m Fine motor Tower of 6 cubes 

ddifmd018 30m Fine motor Places round block in board 

ddifmm019 30m Fine motor Takes off shoes and socks (M; can ask parents) 

ddifmd154 30m Fine motor Eats with spoon without help (M; can ask parents) 

ddigmd071 30m Gross motor Kicks ball 

FIGURE 1.4.1 Empirical percentage of passing each milestone in the DDI against age 
(Source: SMOCC data, n = 2151, 9 occasions). 
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FIGURE 1.4.2 Empirical percentage of passing each milestone in the DDI against the 
D-score (Source: SMOCC data, 2151 children, 9 occasions). 

How can the relation between per cent pass and age be so different from the 
relation between per cent pass and the D-score? The next section explains the 
reason. 

1.4.4 RELATION BETWEEN AGE AND THE D-SCORE 

Figure 1.4.3 shows that the relation between D-score and age is nonlinear. 
Development in the first year is more rapid than in the second year. During the 
first year, infants gain about 40 D, whereas in the second year they gain about 
20 D. A similar change in growth rate occurs in length (first year: 23 cm, 
second year: 12 cm, for Dutch children). 
Figure 1.4.4 shows the mutual relations between age, percentage of milestone 

passing and the D-score. There are three main orientations. 

•	 In the default orientation (age on the horizontal axis, D-score on the vertical 
axis), we see a curvilinear relation between the age and item difficulty. 

•	 Rotate the graph (age on the horizontal axis, passing percentage on the 
vertical axis). Observe that this is the same pattern as in Figure 1.4.1 
(with unequal slopes). Curves are coloured by domain. 

•	 Rotate the graph (D-score on the horizontal axis, passing percentage on 
the vertical axis). Observe that this pattern is the same as in Figure 1.4.2 
(with equal slopes). 

All patterns can co-exist because of the curvature in the relation between 
D-score and age. The curvature is never explicitly modelled or defined, but a 
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FIGURE 1.4.3 Relation between child D-score and child age in a cohort of Dutch 
children (Source: SMOCC data, n = 2151, 9 occasions). 

consequence of the equal-slopes assumption in the relation between the D-score 
and the passing percentage of a milestone. 

1.4.5 MEASUREMENT MODEL FOR THE D-SCORE 

1.4.5.1 WHAT ARE MEASUREMENT MODELS? 

From section 1.3.5 we quote: 

The measurement model specifies the relations between the data and the latent variable. 

The term Item Response Theory (IRT) refers to the scientific theory of 
measurement models. Good introductory works include Embretsen & Reise 
(2000); Wright & Masters (1982) and Engelhard Jr. (2013). 
IRT models enable quantification of the locations of both items (milestones) 

and persons* on the latent variable. We reserve the term item for generic 
properties, and milestone for child development. In general, items are part of 
the measurement instrument, persons are the objects to be measured. 
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FIGURE 1.4.4 3D-line graph illustrating how the patterns in Figure 1.4.1 and Figure 
1.4.2 induce the curvature in the relation between D-score and age. 

The printed version shows three orientations of the relation between age, percent pass 
and D-score. The online version holds an interactive 3D graph that the reader can 
actively manipulate the orientation of the graph by click-hold-drag mouse operations. 
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An IRT model has three major structural components: 

•	 Specification of the underlying latent variable(s). In this work, we restrict 
ourselves to models with just one latent variable. Multi-dimensional IRT 
models do have their uses, but they are complicated to fit and not widely used; 

•	 For a given item, a specification of the probability of success given a 
value on the latent variables. This specification can take many forms. 
Section 1.4.6 focuses on this in more detail; 

•	 Specification how probability models for the different items should be 
combined. In this work, we will restrict to models that assume local 
independence of the probabilities. In that case, the probability of passing 
two items is equal to the product of success probabilities. 

1.4.5.2 ADAPT THE MODEL? OR ADAPT THE DATA? 

The measurement model induces a predictable pattern in the observed items. 
We can test this pattern against the observed data. When there is misfit between 
the expected and observed data, we can follow two strategies: 

•	 Make the measurement model more general; 
•	 Discard items (and sometimes persons) to make the model fit. 

These are very different strategies that have led to heated debates among 
psychometricians. See Engelhard Jr. (2013) for an overview. 
In this work, we opt for the - rigorous - Rasch model (Rasch (1960)) and will 

adapt the data to reduce discrepancies between model and data. Arguments for 
this choice are given later, in Section 1.4.8. 

1.4.6 ITEM RESPONSE FUNCTIONS 

Most measurement models describe the probability of passing an item as a 
function of the difference between the person’s ability and the item’s difficulty. 
A person with low ability will almost inevitably fail a heavy item, whereas a 
highly able person will almost surely pass an easy item. 
Let us now introduce a few symbols. We adopt the notation used in Wright & 

Masters (1982). We use βn (ability) to refer to the true (but unknown) 
developmental score of child n. Symbol δi (difficulty) is the true (but 
unknown) difficulty of an item i, and πni is the probability that child n passes 
item i. See Appendix A for a complete list. 
The difference between the ability of child n and difficulty of item i is 

In the special case that βn = δi, the person will have a probability of 0.5 of 
passing the item. 
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1.4.6.1 LOGISTIC MODEL 

A widely used method is to express differences on the latent scale in terms of 
logistic units (or logits) (Berkson, 1944). The reason preferring the logistic over 
the linear unit is that its output returns a probability value that maps to discrete 
events. In our case, we can describe the probability of passing an item 
(milestone) as a function of the difference between βn and δi expressed in logits. 
Figure 1.4.5 shows how the percentage of children that pass the item varies 

in terms of the ability-difficulty gap βn – δi. The gap can vary either by βn or δi 
so that we may use the graph in two ways: 

•	 To find the probability of passing items with various difficulties for a 
child with ability βn. If  δi = βn then πni = 0.5. If δi < βn then πni > 0.5, and 
if δi > βn then πni < 0.5. In words: If the difficulty of the item is equal to 
the child’s ability, then the child has a 50/50 chance to pass. The child 
will have a higher than 50/50 chance of passing for items with lower 
difficulty and have a lower than 50/50 chance of passing for items with 
difficulties that exceed the child’s ability. 

•	 To find the probability of passing a given item δi for children that vary in 
ability. If βn < δi then πni < 0.5, and if βn > δi then πni > 0.5. In words: 
Children with abilities lower than the item’s difficulty will have lower 
than 50/50 chance of passing, whereas children with abilities that exceed 
the item’s difficulty will have a higher than 50/50 chance of passing. 

Formula (1.4.1) defines the standard logistic curve: 

Formula 1.4.1 

FIGURE 1.4.5 Standard logistic curve. Percentage of children passing an item for a 
given ability-difficulty gap βn – δi. 
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One way to interpret the formula is as follows. The logarithm of the odds that a 
person with ability βn passes an item of difficulty δi is equal to the difference 
βn –δi (Wright & Masters, 1982). For example, suppose that the probability that 
person n passes milestone i is πni = 0.5. In that case, the odds of passing is 
equal to 0.5/(1 – 0.5) = 1, so log(1) = 0 and thus βn = δi. If  βn –δi = log(2) = 0.693 
person n is two times more likely to pass than to fail. Likewise, if the difference is 
βn –δi = log(3) = 1.1, then person n is three more likely to pass. And so on. 

1.4.6.2 TYPES OF ITEM RESPONSE FUNCTIONS 

The standard logistic function is by no means the only option to map the 
relationship between the latent variable and the probability of passing an item. 
The logistic function is the dominant choice in IRT, but it is instructive to study 
some other mappings. The item response function maps success probability 
against ability. 
Figure 1.4.6 illustrates several other possibilities. Let us consider five 

hypothetical items, A–E. Note that the horizontal axis now refers to the 
ability, instead of the ability-item gap in 1.4.5. 

•	 A: Item A is the logistic function discussed in Section 1.4.6. 
•	 B: For item B, the probability of passing is constant at 30 per cent. This 

30 per cent is not related to ability. Item B does not measure ability, only 
adds to the noise, and is of low quality. 

•	 C: Item C is a step function centred at an ability level of 1, so all children 
with an ability below 1 logit fail and all children with ability above 1 
logit pass. Item C is the ideal item for discriminating children with 
abilities above and below 1. The item is not sensitive to differences at 
other ability levels, and often not so realistic in practice. 

FIGURE 1.4.6 Item response functions for five hypothetical items, each demonstrating 
a positive relation between ability and probability to pass. 
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•	 D: Like A, item D is a smoothly increasing logistic function, but it has an 
extra parameter that allows it to vary its slope (or discrimination). The 
extra parameter can make the curve steeper (more discriminatory) than 
the red curve, in the limit approaching a step curve. It can also become 
shallower (less discriminatory) than the red curve (as plotted here), in the 
limit approaching a constant curve (item B). Thus, item D generalizes 
items A, B or C. 

•	 E: Item E is even more general in the sense that it need not be logistic, 
but a general monotonically increasing function. As plotted, the item is 
insensitive to abilities between -1 and 0 logits, and more sensitive to 
abilities between 0 to 2 logits. 

These are just some examples of how the relationship between the child’s 
ability and passing probability could look. In practice, the curves need not start 
at 0 per cent or end at 100 per cent. They could also be U-shaped, or have other 
non-monotonic forms. See Coombs (1964) for a thorough overview of such 
models. In practice, most models are restricted to shapes A-D. 

1.4.6.3 PERSON RESPONSE FUNCTIONS 

We can reverse the roles of persons and items. The person response function 
tells us how likely it is that a single person can pass an item, or more 
commonly, a set of items. 
Let us continue with items A, C and D from Figure 1.4.6, and calculate the 

response function for three children, respectively with abilities β1 = –2, β2 = 0  
and β3 = 2.  
Figure 1.4.7 presents the person response functions from three persons with 

abilities of -2, 0 and +2 logits. We calculate the functions as the average of 

FIGURE 1.4.7 Person response functions for three children with abilities -2, 0 and +2, 
using a small test of items A, C and D. 
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response probabilities on items A, C and D. Thus, on average, we expect that 
child 1 logit will pass an easy item of difficulty -3 in about 60 per cent of the 
time, whereas for an intermediate item of difficulty of -1 the passing probability 
would be 10 per cent. For child 3, with higher ability, these probabilities are 
quite different: 97% and 90%. The substantial drop in the middle of the curve is 
due to the step function of item A. 

1.4.7 ENGELHARD CRITERIA FOR INVARIANT MEASUREMENT 

In this work, we strive to achieve invariant measurement, a strict form of 
measurements that is subject to the following requirements (Engelhard Jr., 
2013, 14): 

1.	 Item-invariant measurement of persons: The measurement of persons 
must be independent of the particular items used for the measuring. 

2.	 Non-crossing person response functions: A more able person must always 
have a better chance of success on an item that a less able person. 

3.	 Person-invariant calibration of test items: The calibration of the items 
must be independent of the particular persons used for calibration. 

4.	 Non-crossing item response functions: Any person must have a better 
chance of success on an easy item than on a more difficult item. 

5.	 Unidimensionality: Items and persons take on values on a single latent 
variable. Under this assumption, the relations between the items are fully 
explainable by the scores on the latent scale. In practice, the requirement 
implies that items should measure the same construct. (Hattie, 1985) 

Three families of IRT models support invariant measurement: 

1. Scalogram model (Guttman, 1950) 
2. Rasch model (Andrich, 1978; Rasch, 1960; Wright & Masters, 1982) 
3. Mokken scaling model (Mokken, 1971; Molenaar, 1997) 

The Guttman and Mokken models yield an ordinal latent scale, while the 
Rasch model yields an interval scale (with a constant unit). 

1.4.8 WHY TAKE THE RASCH MODEL? 

•	 Invariant measurement: The Rasch model meets the five Engelhard 
criteria (cf. Section 1.4.7). 

•	 Interval scale: When it fits, the Rasch model provides an interval scale, 
the de-facto requirement for any numerical comparisons (cf. Section 
1.3.4.1). 

•	 Parsimonious: The Rasch model has one parameter for each item and one 
parameter for each person. The Rash model one of the most parsimonious 
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IRT models, and can easily be applied to thousands of items and millions 
of persons. 

•	 Specific objectivity: Person and item parameters are mathematically 
separate entities in the Rasch model. In practice, this means that the 
estimated difference in ability between two persons does not depend on 
the difficulty of the test. Also, the estimated differences in difficulties 
between two items do not depend on the abilities in the calibration 
sample. The property is especially important in the analysis of combined 
data, where abilities can vary widely between sources. See Rasch (1977) 
for derivations and examples. 

•	 Unified model: The Rasch model unifies distinct traditions in 
measurement theory. One may derive the Rasch model from 
•	 Thorndike’s 1904 criteria 
•	 Guttman scalogram model 
•	 Ratio-scale counts 
•	 Raw scores as sufficient statistics 
•	 Thurstone’s scaling requirements 
•	 Campbell concatenation 
•	 Rasch’s specific objectivity 

•	 Fits child development data: Last but not least, as we will see in Section 
1.6, the Rasch model provides an excellent fit to child development 
milestones. 

Note that the Rasch model is not unique in all aspects. A reviewer indicated 
that specific objectivity and invariant measurement might also be achieved in 
certain 2PL models. For us, the combination of simplicity, interpretability, and 
convenient properties makes the Rasch model stand out. 



1.5 Computation 
Stef van Buuren1,2 

Iris Eekhout1 

1Netherlands Organisation for Applied Scientific 
Research TNO, Leiden, 2316 ZL, The Netherlands 
2University of Utrecht, Utrecht, 3584 CH, The 
Netherlands 

This section explains the basic computations needed for fitting and evaluating 
the Rasch model. We distinguish the following steps: 

• Identify nature of the problem (1.5.1) 
• Estimation of item parameters (1.5.2) 
• Anchoring (1.5.2.2) 
• Estimation of the D-score (1.5.3) 
• Estimation of age-conditional references (1.5.4) 

Readers not interested in these details may continue to model evaluation in 
Section 1.6. 

1.5.1 IDENTIFY NATURE OF THE PROBLEM 

The SMOCC dataset, introduced in Section 1.4.1.2, contains scores on the DDI 
of Dutch children aged 0–2 years made during nine visits. 
Table 1.5.1 contains data of three children, measured on nine visits between 

ages 0 – 2 years. The DDI scores take values 0 (FAIL) and 1 (PASS). In order 
to save horizontal space, we truncated the column headers to the last two digits 
of the item names. 
Since the selection of milestones depends on age, the dataset contains a large 

number of empty cells. Naive use of sum scores as a proxy to ability is 
therefore problematic. An empty cell is not a FAIL, so it is incorrect to 
impute those cells by zeroes. 
Note that some rows contain only 1’s, e.g., in row 2. Many computer 

programs for Rasch analysis routinely remove such perfect scores before 
fitting. However, unless the number of perfect scores is very small, this is not 
recommended because doing so can severely affect the ability distribution. 
In order to effectively handle the missing data and to preserve all persons in 

the analysis we separate estimation of item difficulties (cf. Section 1.5.2) and 
person abilities (cf. Section 1.5.3). 
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1.5.2 ITEM PARAMETER ESTIMATION 

1.5.2.1 PAIRWISE ESTIMATION OF ITEM DIFFICULTIES 

There are many methods for estimating the difficulty parameters of the Rasch 
estimation. See Linacre (2004) for an overview. 
We will use the pairwise estimation method. This method writes the probability 

that child n passes item i but not item j given that the child passed one of them as 
exp(δi)/(exp(δi) + exp(δj)). The method optimizes the pseudo-likelihood of all 
item pairs over the difficulty estimates by a simple iterative procedure. 
Zwinderman (1995) has shown that this procedure provides consistent 

estimates with similar efficiency as computationally more-intensive conditional 
and marginal maximum likelihood methods. 
The beauty of the method is that it is independent of the ability distribution, 

so there is no need to remove perfect scores. We use the function rasch. 

pairwise.itemcluster() as implemented in the sirt package 
(Robitzsch, 2016). 
Figure 1.5.1 summarizes the estimated item difficulty parameters. Although 

the model makes no distinction between domains, the results have been ordered 
to ease spotting of the natural progression of the milestones per domain. The 
figure also suggests that not all domain have equal representation across the 
scale. For example, there are no communication milestones around the logit 
of –10. 

1.5.2.2 ANCHORING 

The Rasch model identifies the item difficulties up to a linear transformation. 
By default, the software produces estimates in the logit scale (cf. Figure 1.5.1). 
The logit scale is inconvenient for two reasons: 

•	 The logit scale has negative values. Negative values do not have a 
sensible interpretation in child development, and are likely to introduce 
errors in practice; 

•	 Both the zero in the logit scale, as well as its variance, depend on the 
sample used to calibrate the item difficulties. 

Rescaling preserves the properties of the Rasch model. To make the scale 
independent of the specified sample, we transform the scale so that two items 
will always have the same value on the transformed scale. The choice of the 
two anchor items is essentially arbitrary, but they should correspond to 
milestones that are easy to measure with small error. In the sequel, we use the 
two milestones to anchor the D-score scale by the items in Table 1.5.2. With the 
choice of Table 1.5.2, D-score values are approximately 0 D around birth. At 
the age of 1 year, the score will around 50 D, so during the first year of life, 
one D unit corresponds to approximately a one-week interval. Figure 1.5.2 
shows the difficulty estimates in the D-score scale. 
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FIGURE 1.5.1 Estimated item difficulty parameters (d i) for 57 milestones of the DDI 
(0 – 2 years). 

TABLE 1.5.2 
Anchoring values used to identify the D-score scale. 

Item Label Value 

ddigmd057 Lifts head to 45 degrees on prone position 20 

ddigmd063 Sits in stable position without support 40 
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FIGURE 1.5.2 Estimated item difficulty parameters (di) for 57 milestones of the DDI 
(0 – 2 years). 

Milestones ddigmd057 and ddigmd063 are anchored at values of 20 D and 40 D, 
respectively. 

1.5.3 ESTIMATION OF THE D-SCORE 

The second part of the estimation process is to estimate a D-score. The D-score 
quantifies the development of a child at a given age. Whereas the instrument 
developer is responsible for the estimation of item parameters, D-score 
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estimation is more of a task for the user. To calculate the D-score, we need the 
following ingredients: 

•	 Child’s PASS/FAIL scores on the milestones administered; 
•	 The difficulty estimates of each milestone administered; 
•	 A prior distribution, an estimate of the D-score distribution before seeing 

any PASS/FAIL score. 

Using these inputs, we may use Bayes theorem to calculate the position of 
the person on the latent variable. 

1.5.3.1 ROLE OF THE STARTING PRIOR 

The first two inputs to the D-score will be self-evident. The third component, 
the prior distribution, is needed to be able to deal with perfect responses. The 
prior distribution summarizes our knowledge about the D-score before we see 
any of the child’s PASS/FAIL scores. In general, we like the prior to be non-
informative, so that the observed responses and item difficulties entirely 
determine the value of the D-score. In practice, we cannot use truly non-
informative prior because that would leave the D-score for perfect responses 
(i.e., all PASS or all FAIL) undefined. The choice of the prior is essentially 
arbitrary, but we can make it in such a way that its impact on the value D-score 
is negligible, especially for tests where we have more than, say, four items. 
Since we know that the D-score depends on age, a logical choice for the 

prior is to make it dependent on age. In particular, we will define the prior as a 
normal distribution equal to the expected mean in Figure 1.4.3 at the child’s 
age, and with a standard deviation that considerably higher than in Figure 1.4.3. 
Numerical example: the mean D-score at the age of 15 months is equal to 53.6 
D. The standard deviation in Figure 1.4.3 varies between 2.6 D and 3.0 D, with 
an average of 2.9 D. After some experimentation, we found that using a value 
of 5.0 D for the prior yields a good compromise between non-informativeness 
and robustness of D-score estimates for perfect patterns. The resulting starting 
prior for a child aged 15 months is thus N(53.6,5). 
The reader now probably wonders about a chicken-and-egg problem: To 

calculate the D-score, we need a prior, and to determine the prior we need the 
D-score. So how did we calculate the D-scores in Figure 1.4.3? The answer is 
that we first took at rougher prior, and calculated two temporary models in 
succession using the D-scores obtained after solution 1 to inform the prior 
before solution 2, and so on. It turned out that D-scores in Figure 1.4.3 hardly 
changed after two steps, and so there we stopped. 

1.5.3.2 STARTING PRIOR: NUMERICAL EXAMPLE 

Figure 1.5.3 illustrates starting distributions (priors) chosen according to the 
principles set above for the ages of 1, 15 and 24 months. As expected, the 
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assumed ability of an infant aged one month is much lower than that of a child 
aged 15 months, which in turn is lower than the ability of a toddler aged 24 
months. The green distribution for 15 months corresponds to the normal 
distribution N (53.6,5). 
Another choice that we need to make is the grid of points on which we 

calculate the prior and posterior distributions. Figure 1.5.3 uses a grid from -10 
D to +80 D, with a step size of 1 D. These are fixed quadrature points, and 
there are 91 of them. While these quadrature points are sufficient to estimate D-
score for ages up to 2.5 years, it is wise to extend the range for older children 
with higher D-scores. 

1.5.3.3 EAP ALGORITHM 

The algorithm for estimating the D-score is known as the Expected a posteriori 
(EAP) method, first described by Bock & Mislevy (1982). Calculation of the 
D-score proceeds item by item. Suppose we have some vague and preliminary 
idea about the distribution of D, the starting prior (cf. section 1.5.3.1), based 
on age. The procedure uses Bayes rule to update this prior knowledge with 
data from the first item (using the child’s FAIL/PASS score and the estimated 
item difficulty) to calculate the posterior. The next step uses this posterior as 
prior before processing the next item, and so on. The procedure stops when 
the item pool is exhausted. The order in which items enter does not matter 
for the result. The D-score is equal to the mean of the posterior calculated 
after the last question. 

FIGURE 1.5.3 Age-dependent starting priors for the D-score at the ages of 1, 15 and 
24 months. 
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1.5.3.4 EAP ALGORITHM: NUMERICAL EXAMPLE 

Suppose we measure two boys aged 15 months, David and Rob, by the DDI. 
David passes the first four milestones but does not complete the test. Rob 
completes the test but fails on two out of five items. 
Table 1.5.3 shows the difficulty of each milestone (in the column labelled 

“Delta”), and the responses of David and Rob for the standard five DDI 
milestones for the age of 15 months. 
The mean D-score for Dutch children aged 15 months is 53.6 D, so the 

milestones are easy to pass at this age, with the most difficult is ddicmm037. 
David passed all milestones but has no score on the last. Rob fails on 
ddifmm012 and ddigmm067. How do we calculate the D-score for David 
and Rob? 
Figure 1.5.4 shows how the prior transforms into the posterior after we 

successively feed the measurements into the calculation. There are five 
milestones, so the calculation comprises five steps: 

1. Both David and Rob pass	 ddifmd011. The prior (light green) is the 
same as in Figure 1.5.3. After a PASS, the posterior will be located more 
to the right, and will often be more peaked. Both happen here, but the 
change is small. The reason is that a PASS on this milestone is not very 
informative. For a child with a true D-score of 53 D, the probability of 
passing ddifmd011 is equal to 0.966. If passing is so common, there is 
not much information in the measurement. 

2. David passes ddifmm012, but Rob does not. Observe that the prior is 
identical to the posterior of ddifmd011. For David, the posterior is 
only slightly different from the prior, for the same reason as above. For 
Rob, we find a considerable change to the left, both for location (from 
54.3 D to 47.1 D) and peakedness. This one FAIL lowers Rob’s score 
by 7.2 D. 

3. Milestone	 ddicmm037 is more difficult than the previous two 
milestones, so a pass on ddicmm037 does have a definite effect on the 
posterior for both David and Rob. 

TABLE 1.5.3 
Scores of David and Rob on five milestones from the DDI. 

Item Label Delta David Rob 

ddifmd011 Puts cube in and out of a box 46.0 1 1 

ddifmm012 Plays "give and take" (M; can ask parents) 46.5 1 0 

ddicmm037 Uses two words with comprehension 50.1 1 1 

ddigmm066 Crawls, abdomen off the floor (M; can ask parents) 46.1 1 1 

ddigmm067 Walks while holding onto play-pen or furniture 46.1 0 



45 Computation 

FIGURE 1.5.4 D-score distribution for David and Rob before (prior) and after 
(posterior) a milestone is taken into account. 
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4. David’s PASS on ddigmm066 does not bring any additional information, 
so his prior and posterior are virtually indistinguishable. For Rob, we find 
a slight shift to the right. 

5. There is no measurement for David on	 ddigmm067, so the prior and 
posterior are equivalent. For Rob, we observe a FAIL, which shifts his 
posterior to the left. 

We calculate the D-score as the mean of the posterior. David’s D-score is 
equal to 55.7 D. Note that the measurement error, as estimated from the 
variance of the posterior, is relatively large. Rob’s D-score is equal to 47.7 D, 
with a much smaller measurement error. This result is consistent with the 
design principles of the DDI, which is meant to detect children with 
developmental delay. 
The example illustrates that the quality of the D-score depends on two 

factors, the match between the true (but unknown) D-score of the child and 
the difficulty of the milestone. 

1.5.3.5 TECHNICAL OBSERVATIONS ON D-SCORE ESTIMATION 

•	 Administration of a too easy set of milestones introduces a ceiling with 
children that pass all milestones, but whose true D-score could extend 
well beyond the maximum. Depending on the goal of the measurement, 
this may or may not be a problem. 

•	 The specification of the prior and posterior distributions requires a set of 
quadrature points. The quadrature points are taken here as the static and 
evenly-spaced set of integers between -10 and +80. Using other 
quadrature points may affect the estimate, especially if the range of the 
quadrature points does not cover the entire D-score range. 

•	 The actual calculations are here done item by item. A more efficient 
method is to handle all responses at once. The result will be the same. 

1.5.4 AGE-CONDITIONAL REFERENCES 

1.5.4.1 MOTIVATION 

The last step involves estimation an age-conditional reference distribution for 
the D-score. This distribution can be used to construct growth charts that 
portray the normal variation in development. Also, the references can be used 
to calculate age-standardized D-scores, called DAZ, that emphasize the location 
of the measurement in comparison to age peers. 
Estimation of reference centiles is reasonably standard. Here we follow van 

Buuren (2014) to fit age-conditional references of the D-score for boys and girls 
combined by the LMS method. The LMS method by Cole & Green (1992) 
assumes that the outcome has a normal distribution after a Box-Cox 
transformation. The reference distribution has three parameters, which model 



47 Computation 

respectively the location (M), the spread (S), and the skewness (L) of the 
distribution. Each of the three parameters can vary smoothly with age. 

1.5.4.2 ESTIMATION OF THE REFERENCE DISTRIBUTION 

The parameters are estimated using the BCCG distribution of gamlss 5.1-3 

(Stasinopoulos & Rigby, 2008) using cubic splines smoothers. The final 
solution used a log-transformed age scale and fitted the model with smoothing 
parameters df(M) = 2, df(S) = 2 and df(L) = 1.  
Figure 1.4.3 plots the D-scores together with five grey lines, corresponding to 

the centiles -2SD (P2), -1SD (P16), 0SD (P50), +1SD (P84) and +2SD (P98). 
The area between the -2SD and +2SD lines delineates the D-score expected if 
development is healthy. Note that the shape of the reference is quite similar to 
that of weight and height, with rapid growth occurring in the first few months. 
Table 1.5.4 defines age-conditional references for Dutch children as the M-curve 

(median), S-curve (spread) and L-curve (skewness) by age. This table can be 
used to calculate centile lines and Z-scores. 
The references are purely cross-sectional and do not account for the 

correlation structure between ages. For prediction purposes, it is useful to 
extend the modelling to include velocities and change scores. 

1.5.4.3 CONVERSION OF D TO DAZ, AND VICE VERSA 

Suppose that Mt, St and Lt are the parameter values at age t. Cole (1988) shows 
that the transformation 

converts measurement Dt into its normal equivalent deviate Z. If L t is close 
to zero, we use 

We may derive any required centile curve from Table 1.5.4. First, choose Zα 

as the Z-score that delineates 100 α per cent of the distribution, for example, 
Z0.05 = –1.64. The D-score that defines the 100 α centile is equal to 

If Lt is close to zero, we use 
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TABLE 1.5.4
 
Dutch reference values for the D-score.
 

Age M S L 

0.0383 8.81 0.3126 1.3917 

0.0575 10.59 0.2801 1.4418 

0.0767 12.27 0.2526 1.4891 

0.0958 13.87 0.2291 1.5331 

0.1150 15.39 0.2089 1.5722 

0.1342 16.83 0.1916 1.6049 

0.1533 18.20 0.1767 1.6304 

0.1725 19.50 0.1640 1.6487 

0.1916 20.75 0.1531 1.6607 

0.2108 21.94 0.1436 1.6676 

0.2300 23.07 0.1354 1.6706 

0.2491 24.16 0.1283 1.6711 

0.2683 25.21 0.1220 1.6698 

0.2875 26.21 0.1165 1.6673 

0.3066 27.17 0.1117 1.6636 

0.3258 28.10 0.1074 1.6589 

0.3450 28.99 0.1035 1.6533 

0.3641 29.86 0.1001 1.6471 

0.3833 30.70 0.0970 1.6403 

0.4025 31.50 0.0942 1.6330 

0.4216 32.29 0.0917 1.6255 

0.4408 33.05 0.0894 1.6178 

0.4600 33.79 0.0873 1.6100 

0.4791 34.51 0.0854 1.6022 

0.4983 35.21 0.0837 1.5946 

0.5175 35.89 0.0821 1.5870 

0.5366 36.55 0.0807 1.5797 

0.5558 37.20 0.0793 1.5725 

0.5749 37.83 0.0781 1.5656 

0.5941 38.44 0.0770 1.5588 

0.6133 39.04 0.0759 1.5523 

0.6324 39.63 0.0749 1.5460 

0.6516 40.21 0.0740 1.5399 

0.6708 40.77 0.0731 1.5340 

0.6899 41.32 0.0723 1.5284 

0.7091 41.86 0.0715 1.5230 

0.7283 42.39 0.0707 1.5178 

0.7474 42.91 0.0700 1.5128 

0.7666 43.42 0.0693 1.5081 

0.7858 43.92 0.0687 1.5036 

(Continued) 
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TABLE 1.5.4 

(Continued) 

Age M S L 

0.8049 44.40 0.0681 1.4993 

0.8241 44.88 0.0674 1.4952 

0.8433 45.36 0.0669 1.4913 

0.8624 45.82 0.0663 1.4876 

0.8816 46.27 0.0657 1.4841 

0.9008 46.72 0.0652 1.4809 

0.9199 47.16 0.0647 1.4778 

0.9391 47.59 0.0642 1.4749 

0.9582 48.01 0.0637 1.4723 

0.9774 48.43 0.0632 1.4698 

0.9966 48.84 0.0627 1.4676 

1.0157 49.24 0.0622 1.4655 

1.0349 49.64 0.0618 1.4637 

1.0541 50.03 0.0613 1.4620 

1.0732 50.41 0.0608 1.4605 

1.0924 50.79 0.0604 1.4592 

1.1116 51.16 0.0600 1.4580 

1.1307 51.53 0.0595 1.4570 

1.1499 51.89 0.0591 1.4561 

1.1691 52.24 0.0587 1.4553 

1.1882 52.59 0.0583 1.4547 

1.2074 52.94 0.0578 1.4542 

1.2266 53.27 0.0574 1.4538 

1.2457 53.61 0.0570 1.4535 

1.2649 53.94 0.0566 1.4534 

1.2841 54.26 0.0562 1.4533 

1.3032 54.58 0.0559 1.4533 

1.3224 54.89 0.0555 1.4533 

1.3415 55.20 0.0551 1.4535 

1.3607 55.50 0.0547 1.4537 

1.3799 55.81 0.0544 1.4539 

1.3990 56.10 0.0540 1.4542 

1.4182 56.39 0.0536 1.4546 

1.4374 56.68 0.0533 1.4551 

1.4565 56.97 0.0530 1.4555 

1.4757 57.25 0.0526 1.4561 

1.4949 57.52 0.0523 1.4567 

1.5140 57.80 0.0520 1.4573 

1.5332 58.06 0.0517 1.4580 

1.5524 58.33 0.0514 1.4587 

(Continued) 
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TABLE 1.5.4 

(Continued) 

Age M S L 

1.5715 58.59 0.0510 1.4595 

1.5907 58.85 0.0508 1.4603 

1.6099 59.11 0.0505 1.4612 

1.6290 59.36 0.0502 1.4620 

1.6482 59.61 0.0499 1.4630 

1.6674 59.86 0.0496 1.4639 

1.6865 60.11 0.0494 1.4649 

1.7057 60.35 0.0491 1.4660 

1.7248 60.59 0.0488 1.4670 

1.7440 60.82 0.0486 1.4681 

1.7632 61.06 0.0483 1.4692 

1.7823 61.29 0.0481 1.4704 

1.8015 61.52 0.0478 1.4716 

1.8207 61.75 0.0476 1.4728 

1.8398 61.97 0.0474 1.4740 

1.8590 62.20 0.0471 1.4752 

1.8782 62.42 0.0469 1.4765 

1.8973 62.64 0.0467 1.4778 

1.9165 62.85 0.0465 1.4791 

1.9357 63.07 0.0463 1.4805 

1.9548 63.28 0.0461 1.4818 

1.9740 63.49 0.0459 1.4832 

1.9932 63.70 0.0457 1.4846 

2.0123 63.91 0.0455 1.4861 

2.0315 64.11 0.0453 1.4875 

2.0507 64.32 0.0451 1.4890 

2.0698 64.52 0.0449 1.4904 

2.0890 64.72 0.0447 1.4919 

2.1081 64.92 0.0445 1.4934 

2.1273 65.11 0.0443 1.4949 

2.1465 65.31 0.0441 1.4964 

2.1656 65.50 0.0440 1.4979 

2.1848 65.70 0.0438 1.4994 

2.2040 65.89 0.0436 1.5009 

2.2231 66.08 0.0434 1.5024 

2.2423 66.26 0.0433 1.5039 

2.2615 66.45 0.0431 1.5054 

2.2806 66.64 0.0429 1.5069 

2.2998 66.82 0.0428 1.5084 

2.3190 67.00 0.0426 1.5098 

(Continued) 
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TABLE 1.5.4 

(Continued) 

Age M S L 

2.3381 67.18 0.0425 1.5113 

2.3573 67.36 0.0423 1.5127 

2.3765 67.54 0.0421 1.5142 

2.3956 67.72 0.0420 1.5156 

2.4148 67.89 0.0418 1.5170 

2.4339 68.07 0.0417 1.5185 

2.4531 68.24 0.0415 1.5199 

2.4723 68.41 0.0414 1.5213 

2.4914 68.59 0.0412 1.5226 

2.5106 68.75 0.0411 1.5240 

2.5298 68.92 0.0410 1.5254 

2.5489 69.09 0.0408 1.5267 

2.5681 69.26 0.0407 1.5281 

2.5873 69.42 0.0405 1.5294 

2.6064 69.59 0.0404 1.5308 

2.6256 69.75 0.0403 1.5321 

2.6448 69.91 0.0401 1.5334 

2.6639 70.07 0.0400 1.5347 

2.6831 70.23 0.0399 1.5360 

2.7023 70.39 0.0397 1.5373 

2.7214 70.55 0.0396 1.5386 

2.7406 70.71 0.0395 1.5398 

2.7598 70.86 0.0394 1.5411 

2.7789 71.02 0.0392 1.5423 
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The properties cut-off Rasch model (cf. Section 1.4.8) only hold when the data 
and model agree. It is, therefore, essential to study and remove discrepancies 
between model and data. This section explains several techniques that aid in the 
evaluation of model fit. 

• Item fit (1.6.1) 
• Person fit (1.6.2) 
• Differential item functioning (1.6.3) 
• Item information (1.6.4) 
• Reliability (1.6.5) 

These topics address different aspects of the solution. In practice, we have 
found that item fit is the most critical concern. 

1.6.1 ITEM FIT 

The philosophy of the Rasch model is different from conventional statistical 
modelling. It is not the task of the Rasch model to account for the data. Rather 
it is the task of the data to fit the Rasch model. We saw this distinction before 
in Section 1.4.5.2. 
The goal of model-fit assessment is to explore and quantify how well 

empirical data meet the requirements of the Rasch model. One way to gauge 
model-fit is to compare the observed probability of passing an item to the fitted 
item response curve for endorsing the item. 
The fitted item response curve for each item i is modelled as: 

where is the estimated ability of child n (the child’s D-score), and where 
is the estimated difficulty of item i. This is equivalent to formula (1.4.1) with 

the parameters replaced by estimates. Section 1.5 described process of 
parameter estimation in some detail. 
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1.6.1.1 WELL-FITTING ITEM RESPONSE CURVES 

The study of item fit involves comparing the empirical and fitted probabilities at 
various levels of ability. Figure 1.6.1 shows the item characteristics curves of 
two DDI milestones. The orange line represents the empirical probability at 
different ability levels. The dashed line represents the estimated item response 
curve according to the Rasch model. The observed and estimated curves are 
close together, so both items fit the model very well. 

1.6.1.2 ITEM RESPONSE CURVES SHOWING SEVERE UNDERFIT 

There are many cases where things are less bright. 
Figure 1.6.2 shows three forms of severe underfit from three artificial items. 

These items were simulated to have a low fit, added to the DDI, and we 
estimated their parameters by the methods of Section 1.5. For the first item, 

FIGURE 1.6.1 Empirical and fitted item response curves for two milestones from the 
DDI (SMOCC data). 
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FIGURE 1.6.2 Three simulated items that illustrate various forms of item misfit. 
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hypgmd001, the probability of passing is almost constant across ability, so 
retaining this item essentially only adds to the noise. Item hypgmd002 

converges to an asymptote around 80 per cent and has a severe dip in the 
middle. The strong relation to age causes the drop. Item hypgmd003 appears to 
have the wrong coding. Also, we often see the spike-like behaviour in the 
middle when two or more different items erroneously share identical names. 
Removal of items with a low fit can substantially improve overall model fit. 

1.6.1.3 ITEM RESPONSE CURVES SHOWING OVERFIT 

Figure 1.6.3 shows two artificial items with two forms of overfitting. The curve 
of item hypgmd004 is much steeper than the modelled curve. Thus, just this 
one item is exceptionally well-suited to distinguish children with a D-score 
below 50 D from those with a score above 50 D. Note that the item isn’t 
sensitive anywhere else on the scale. In general, having items like these is good 
news, because they allow us to increase the reliability of the instrument. One 

FIGURE 1.6.3 Two simulated items that illustrate item overfit. 
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should make sure, though, that FAIL and PASS scores are all measured (not 
imputed) values. 
Multiple perfect items could hint to a violation of the local independence 

assumption (cf. Section 1.4.5). Developmental milestones sometimes have 
combinations of responses that are impossible. For example, one cannot walk 
without being able to stand, so we will not observe the inconsistent 
combination (stand: FAIL, walk: PASS). This impossibility leads to more 
consistent responses that would be expected by chance alone. In principle, one 
could combine the two such items into one three-category item, which 
effectively set the probability of inconsistent combinations to zero. 
Item hypgmd005 is also steep, but has an asymptote around 80 per cent. 

This tail behaviour causes discrepancies between the empirical and modelled 
curves around the middle of the probability scale. In general, we may remove 
such items if a sufficient number of alternatives is available. 

1.6.1.4 ITEM INFIT AND OUTFIT 

We quantify item fit by item infit and outfit. Both are aggregates of the model 
residuals. The observed response xni of person n on item i can be 0 or 1. 
The standardized residual zni is the difference between the observed response 

xni and the expected response pni, divided by the expected binomial standard 
deviation, 

where the expected response variance Wni is calculated as 

Item infit is the total of the squared residuals divided by the sum of the 
expected response variances Wni 

Item outfit is calculated as the average (over N measurements) of the squared 
standardized residual 

The expected value of both infit and outfit is equal to 1.0. The interpretation 
is as follows: 
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•	 If infit and outfit are 1.0, then the item perfectly fits the Rasch model, as 
in Figure 1.6.1; 

•	 If infit and outfit > 1.0, then the item is not fitting well. The amount of 
underfit is quantified by infit and outfit, as in 1.6.2; 

•	 If infit and outfit < 1.0, then the item fits the model better than expected 
(overfit). Overfitting is quantified by infit and outfit, as in 1.6.3. 

Infit is more sensitive to disparities in the middle of the probability scale, 
whereas outfit is the better measure for discrepancies at probabilities close to 
0 or 1. Lack of fit is generally easier to spot at the extremes. The two 
measures are highly correlated. Achieving good infit is more valuable than a 
high outfit. 
Values near 1.0 are desirable. There is no cut and dried cut-off value for infit 

and outfit. In general, we want to remove underfitting items with infit or outfit 
values higher than, say, 1.3. Overfitting items (with values lower than 1.0) are 
not harmful. Preserving these items may help to increase the reliability of the 
scale. The cut-off chosen also depends on the number of available items. When 
there are many items to choose from, we could use a stricter criterion, say infit 
and outfit < 1.0 to select only the absolute best items. 

1.6.1.5 INFIT AND OUTFIT IN THE DDI 

Figure 1.6.4 displays the histogram of the 57 milestones from the DDI (cf. 
Section 1.4.1). Most infit values are within the range 0.6 - 1.1.1, thus indicating 
excellent fit. The two milestones with shallow infit values are ddigmd052 and 
ddigmd053. These two items screen for paralysis for newborns, so the data 
contain hardly any fails on these milestones. The outfit statistics also indicate a 
good fit. 

FIGURE 1.6.4 Frequency distribution of infit (left) and outfit (right) of 57 milestones 
from the DDI (SMOCC data). 
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1.6.2 PERSON FIT 

Person fit quantifies the extent to which the responses of a given child conform 
to the Rasch model expectation. The Rasch model expects that a more able 
child has a higher probability of passing an item than a less developed child. 
Person fit analysis evaluates the extent to which this is true. 

1.6.2.1 PERSON INFIT AND OUTFIT 

In parallel to item fit, we can calculate person infit and person outfit. Both 
statistics evaluate how well the responses of the persons are consistent with the 
model. Outlying answers that do not fit the expected pattern increase the outfit 
statistic. The outfit is high, for example, when the child fails easy items but 
passes difficult ones. The infit is the information weighted fit and is more 
sensitive to inlaying, on-target, unexpected responses. 
Similar to item fit, person fit is also calculated from the residuals, but 

aggregated differently. We calculate person infit as  

and person outfit as  

A threshold for person fit > 3.0 is customary to clean out children with 
implausible response patterns. 

1.6.2.2 PERSON INFIT AND OUTFIT IN THE DDI 

Figure 1.6.5 displays the frequency distribution of person infit and person outfit 
16538 measurements of the DDI in the SMOCC data. The majority of the 
values falls below 3.0. For infit, only 43 out of 16538 fit values (0.3 per cent) is 
above 3.0. There are 446 out of 16538 outfit value (2.7 per cent) above 3.0. 
Expect the solution to improve after deleting these measurements. 

1.6.3 DIFFERENTIAL ITEM FUNCTIONING (DIF) 

1.6.3.1 RELEVANCE OF DIF FOR CROSS-CULTURAL EQUIVALENCE 

An essential assumption in the Rasch model is that a given item has the same 
difficulty in different subgroups of respondents. Climbing stairs is an example 
where this assumption is suspect. The exposure to stairs, and hence the 
opportunity for a child to practice, varies across different cultures. It could 
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FIGURE 1.6.5 Frequency distribution of person infit (left) and person outfit (right) for 
16538 measurements of the DDI (SMOCC data). 

thus be that two children with the same ability but from different cultures have 
different success probabilities for climbing stairs. When these probabilities 
systematically vary between subgroup, we say there is Differential Item 
Functioning, or  DIF (Holland & Wainer, 1983). DIF is undesirable since it 
can make the instrument culturally biased. 

1.6.3.2 HOW TO DETECT DIF? 

Zumbo (1999) provided a clear definition of DIF: 

DIF occurs when examinees from different groups show differing 
probabilities of success on (or endorsing) the item after matching on the 
underlying ability that the item is intended to measure. 

There are various ways to detect DIF. Here we will model the probability of 
endorsing an item by logistic regression using the observed item responses as 
the outcome. Predictors include the ability, the grouping variable, and the 
ability-grouping interaction. If the latter two terms explain the residual 
variance of the item scores after adjusting for ability, the item shows DIF for 
that group. DIF can be visually inspected by plotting the curves for the 
subgroups separately. 
There are two forms of DIF: 

•	 Uniform DIF: The item response curves differ between groups in 
location, but are parallel; 

•	 Non-uniform DIF: The item response curve differ between groups in 
location, in slope and possibly in other characteristics. 

These forms correspond to, respectively, the main effect of group and the 
ability-group interaction in the logistic regression model. 
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1.6.3.3 EXAMPLES OF DIF 

Figure 1.6.6 shows an example comparing boys and girls. For both milestones, 
the item response curves are similar for boys and girls, so we see no evidence 
of DIF here. 
Figure 1.6.7 displays two milestones with DIF between boys and girls. Provided 

that the ability estimate (as estimated from all items in the model) is fair for both 
boys and girls, we see that milestone ddifmm019 (“Takes off shoes and socks”) 
is easier for girls by about 0.86 logits (= the difference in ability at the 
intersection of 50 per cent). Conversely, milestone ddigmm064 (“Crawls forward, 
abdomen on the floor”) is easier for boys by about 0.84 logits. These are the most 
substantial differences found for sex in the DDI. Both are uniform DIF. 
In practice, having milestones with opposite directions of DIF in the same 

instrument will cancel out one another, so one need not be overly concerned in 

FIGURE 1.6.6 Two milestones from the DDI with similar item response curves for 
boys and girls. There is no DIF for sex. 
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FIGURE 1.6.7 Two milestones from the DDI with different item response curves for 
boys and girls. There is evidence for uniform DIF. 

that case. However, we should be careful when the tool consists of milestones 
that all have DIF in the same direction. 
The DDI did not contain items for which the ability-group interaction was 

statistically significant, so we conclude that there is no non-uniform DIF in 
the DDI. 

1.6.4 ITEM INFORMATION 

1.6.4.1 ITEM INFORMATION AT A GIVEN ABILITY 

Items are generally sensitive to only a part of the ability scale. Item information 
is a psychometric measure that quantifies how illuminating the item is at different 
levels of ability. We may visualize item information as a curve per item. 
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The formula to obtain the item information is the first derivative of the item 
response curve and can be written as follows: 

where is the conditional probability of endorsing item i, and where 
is the estimated item difficulty in the logit scale. For example for milestone 
ddicmm039 (“Says three words”) equals 4.06. 
Figure 1.6.8 displays the item information curves for two milestones from 

the DDI. Note that the amount of information for the item is maximal around 
the item difficulty. 
The probability of endorsing milestone ddicmm039 for a child with an 

ability of 2 logits is 

At this ability level, milestone ddicmm039 has information 

1.6.4.2 ITEM INFORMATION AT A GIVEN AGE 

In practice, it is often interesting to express the item information against age. 
By doing so, one can identify at what ages an item provides the most 
information. 

FIGURE 1.6.8 The item information curve for two milestones from the DDI. 
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Figure 1.6.9 shows that the sensitive age ranges differ considerably between 
items. Suppose we use 0.05 as a criterion. Then ddigmm060 is susceptible 
between ages 4–8 months, a period of four months. Item ddicmm039 is 
receptive in the period 10–19 months, a range that is about twice as broad. 
The symmetric nature of the curves in Figure 1.6.8 is not present in Figure 
1.6.9. In general, the relation between age and item sensitivity is more 
complicated than the relationship between ability and item sensitivity. 
The item information by age curve helps to determine at what ages we 

should administer the item. The item will be most informative if delivered at 
the age at which 50% of the children will pass the milestone. This age 
corresponds to an item information is equal to 0.5 x 0.5 = 0.25. Administering 
the item closely around that age provide the most efficient measurement of 
ability. When space is at a premium (e.g. as in population surveys) using a 
well-chosen set of age-sensitive milestones will help in reducing the total 
number of milestones. 
In other contexts, milestones may be used as a screening instrument to 

identify developmental delay. In that case, it is more efficient to administer 
items that are very easy for the age, e.g. milestones on which, say, 90% of the 
children will pass. 

1.6.5 RELIABILITY 

The reliability is a one-number summary of the accuracy of an instrument. 
Statisticians define reliability as the proportion of variance attributable to the 
variation between children’s abilities relative to the total variance. More 
specifically, the reliability R of a test is written as 

FIGURE 1.6.9 Information information of Figure 1.6.8 plotted against age. 
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where is the variance of true scores and is the error variance. 
In general, high reliability is desirable. We often use reliability to decide 

between instruments. Cronbach’s α is a widely used estimate of the lower 
bound of the reliability of a test. In the Rasch model, we can estimate reliability 
by the ratio 

For a given model, we can calculate directly as the sampling variance of 
an estimate for is more complicated. We use 
and item difficulties to generate a hypothetical 
same missing data pattern, and re-estimate the 
ed data. Then is computable as the variance 
odelled and re-estimated person ability. 
the modelled abilities is = 76.6, and the 
een modelled and re-estimated abilities is equal 
g standard error of measurement (sem) is = 

e SMOCC data is equal to (76.6 – 1.74)/76.6 = 
stimate in the same way as Cronbach’s α, for 
ond 0.9 is classified as excellent. Note that the 
of the large variation in D-scores. Newborns are 
toddlers, which helps to increase reliability. In 
eful to use a measure of accuracy that is less 

the estimated abilities. Getting 
the modelled person abilities 
data set of the same size and 
person ability from the simulat
of the difference between the m
The estimated variance of 

variance of the difference betw
to = 1.74. The correspondin
1.32 logits. 
The estimated reliability in th

0.977. We may interpret this e
which typically any value bey
reliability is very high because 
very different from 2-year old 
practice, it is perhaps more us
dependent on the variation within the sample. The sem, as explained above, 
seems to be a more relevant measure of precision. 
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Validity is a generic term that refers to the question of how well an instrument 
measures what it claims to measure. There are various aspects of validity. This 
section briefly reviews the main types of validity: 

• Internal validity (1.7.1) 
• External validity (1.7.2) 

1.7.1 INTERNAL VALIDITY 

1.7.1.1 CONTENT VALIDITY 

Content validity is the extent to which the D-score represents all facets of 
development. In contrast to “face validity,” which assesses whether the test 
appears valid to respondents, content validity is about what is measured. 
One important form of content validity is that we wish to make sure that the 

measurement scale represents the various developmental domains in a fair way. 
In the simplest case, we can assign each milestone uniquely to one domain and 
evaluate coverage by splitting the cumulative item information. 
Figure 1.7.1 shows the coverage of the three domains of the DDI at various 

levels of the D-score. The three domains of the DDI are relevant at most ability 

FIGURE 1.7.1 Cumulative item information by DDI domain. 

DOI: 10.1201/9781003216315-7 65 

http://dx.doi.org/10.1201/9781003216315-7


66 Validity 

levels. The DDI contains no communication milestones between 20 D and 30 
D, so at these levels, the DDI measures primarily motor performance. 
Content validity assessment is part of modelling when we examine what 

milestones fit the model. Content validity also means that all relevant facets of 
development are measured. As discussed in Section 1.6.1, we may remove 
items that do not fit the model and hence fail to measure development in the 
technical sense. As a result, we may lose items considered relevant by subject-
matter specialists. If we want to preserve these, we could fit a separate model 
that captures another development aspect. We did not encounter the issue with 
the DDI. In contrast, our finding that items allocated to different domains form 
a unidimensional scale underlines the content validity of the D-score. 

1.7.1.2 CONSTRUCT VALIDITY 

Construct validity is the extent to which the D-score behaves like the theory says 
the construct should behave. For example, we expect that child development 
advances with age. Figure 1.4.3 provides convincing evidence that the D-score 
increases fastest in the first six months and keeps rising at a slower rate as children 
age. This phenomenon is consistent with theories in growth and child development. 
In Section 1.4, we assumed that child development is a latent variable. Figure 

1.7.2 provides one way to evaluate the validity of this assumption. The figure 
plots the item fit for each milestone coloured by domain. Items from different 
domains fit equally well, so there is no evidence that the D-score favours a 
particular area. Put in more technical terms; the DDI domains do not explain 
differences in the item fit residuals of the model. 

1.7.2 EXTERNAL VALIDITY 

1.7.2.1 DISCRIMINATORY VALIDITY 

Discriminatory validity indicates the extent to which the D-score can distinguish 
children with non-normal development from children that are developing 
normally. We may evaluate this by identifying children with lagging development, 
for example, indicated by reflex or tonus problems, and study whether the D-score 
can discriminate those children from the general population. Section 1.9.3 
presents some examples. 

1.7.2.2 CONVERGENT AND DIVERGENT VALIDITY 

Convergent validity is the extent to which the D-score relates to similar 
constructs. We measure it by the correlation between the D-score and the total 
score on Bayley-III or Denver. 
The correlation with the other construct should be 0.6, or higher for good 

convergent validity. Unfortunately, at present, only limited data is available for 
the DDI, so we cannot assess convergent validity for the D-score at this point. 



Validity 67 

FIGURE 1.7.2 Item fit by D-score for the DDI domains. 

Divergent validity is the extent to the D-score is uncorrelated with measures 
of a different construct. 
Figure 1.7.3 shows both convergent and divergent validity at work. The 

figure shows that, as expected, there is a strong and almost linear relation 
between body height and the D-score. However, after correction for the child’s 
age, the relationship between height and D-score almost disappears. Thus, 
growth and development are entirely different concepts. 
We can also evaluate the strength of the relations between the D-score and 

proxy measures of child development, such as stunted height growth (see 
section 1.1.3). The low correlation between DAZ and HAZ suggests that 
stunting is a poor proxy for child development. 

1.7.2.3 PREDICTIVE VALIDITY 

Predictive validity refers to the degree to which the D-score predicts the score 
on a criterion that is measured later. For the D-score, we may compare to 
measures for IQ at the school-age as a possible criterion. 
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FIGURE 1.7.3 Relation between body height and the D-score in the SMOCC data. 

Vlasblom et al. (2019) found strong evidence that individual milestones of 
the DDI measured during the first years of life predict later intellectual 
functioning at ages 5–10 years. It is to be expected that the D-score, which 
builds upon these individual items, will also predict limited intellectual functioning, 
perhaps even better. 
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This section shows the properties of the D-score when calculated from short 
tests. The study of quick tests is useful because it reveals the behaviour of the 
D-score when the measurement is inherently imprecise. 
This section covers: 

• Structure of milestone subsets (1.8.1) 
• Impact of short tests on D-score (1.8.2) 
• Impact of short tests on predicting IQ (1.8.3) 

1.8.1 SMOCC DESIGN: STANDARD AND ADDITIONAL 
MILESTONES 

At each visit, the SMOCC study collected scores on a set of standard milestones 
(that about 90 per cent of the children will pass) and a set of additional milestones 
(that about 50 per cent of the children will pass). See Section 1.4.1.2. 
The SMOCC dataset covers nine different waves. The set of milestones used 

in the DDI varies per visit. The number of standard milestones varies between 2 

TABLE 1.8.1 
Number of items administered per wave in the SMOCC data. 

Age Standard Additional 

1m 5 2 

2m 2 5 

3m 5 6 

6m 6 7 

9m 7 6 

12m 6 6 

15m 6 6 

18m 6 7 

24m 7 7 
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and 7 on various occasions. The additional milestones equal the standard ones 
from the next wave. 
Table 1.8.1 summarizes the scheduled age for each wave, the number of 

standard milestones and the number of additional milestones. 
Figure 1.8.1 shows the subsets of DDI items administered at each age. For 

example, at the 1-month visit, the five standard milestones are ddicmm029 
ddigm056, and the two additional ones are ddicmm030 and ddifmd002. 
At the 2-month visit, the standard milestones are ddicmm030 and ddifmd002, 
and the five additional ones are ddicmm031 - ddigmd057. And so on. 

1.8.2 D-SCORE FROM SHORT TESTS 

1.8.2.1 MILESTONE SETS 

In the analyses done thus far, we have calculated D-scores from responses on 
the combined (standard plus additional) milestones. Thus, at the 2-month visit, 
the D-score was calculated from 2 (standard) + 5 (additional) = 7 milestones. 
In daily practice, the set of additional milestones is often lacking. This section 

explores the impact of using the (smaller) subset of standard milestones on 
measurement error and prediction. 
This section reports and compares three D-scores: 

1. D-score from standard milestones; 
2. D-score from additional milestones. 
3. D-score from all available milestones; 

Estimation of 1 is more complicated than for 2 and 3, for the following reasons: 

•	 There are fewer milestones, so the estimate is less precise and more 
influenced by choice of the prior distribution; 

•	 The standard set contains only easy milestones, which are uninformative 
for the majority of children. 

1.8.2.2 MILESTONE SETS AT MONTH 2 

The vertical axis of Figure 1.8.2 shows the D-score, separately calculated from 
the standard, additional and all milestones for children aged two months. The 
colour of the dots represents the number of FAIL ratings within each set of 
milestones. 
At month two there are just two standard milestones: ddicmm030 and 

ddifmd002. About 90 per cent of the infants will pass these. The green dots 
in the left-hand panel represent the estimated D-scores corresponding to two 
passes. As explained in Section 1.5.3.2, we calculate the D-score with an age-
dependent prior. If the ages vary (and they do), then the D-score for infants 
having the same total score will also vary. 
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FIGURE 1.8.1 Age-item grid of the SMOCC study, illustrating how the 57 DDI items 
are distributed over nine visits during the first 24 months. 
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FIGURE 1.8.2 Distribution of the D-scores calculated from the standard, additional 
and all available milestones at month 2. Colors correspond to the number of fails. 

If a child fails either ddicmm030 or ddifmd002, then the D-score is 
substantially lower. The left-hand figure shows a gap between the green dots 
(perfect score) and the yellow dots (one FAIL). The impact of a FAIL on the D-
score is substantial. For example, the D-score of an infant with one FAIL on a 
standard milestone drops from about 20 D to 14 D. Thus, with these two 
milestones, there cannot be a D-score in the range 15 D - 18  D. It depends on 
the purposes of the measurement if this is acceptable. We can prevent gaps by 
measuring more milestones, e.g., milestones taken from the additional set. 
Another gap occurs between 14 D and 11 D. These gaps illustrate that 
precision is constrained if we administer only two milestones. 
The middle panel shows the estimated D-score at the same visit but now 

calculated from the five additional milestones (i.e., the standard milestones from 
month 3). Infant aged two months have approximately a 50 per cent chance of 
passing each. Note that administration of the additional milestones will cover the 
range 14D-20 D quite well. Note the ceiling is also higher with these milestones. 
Note that the range of the estimated D-scores is quite similar in both plots. 

This similarity is a result of accounting for the difficulty level of milestones. 
The estimate of the D-score is unbiased for difficulty. 
The panel on the right-hand side provides the D-score calculated from all 

milestones. We can easily recognize the points coming from the standard and 
additional sets. Also, there is a limited number of ratings on easier items that 
belong to month 1. We rescored these because the child failed these milestones 
at the previous visit. Rescoring effectively extends the range of possible D-
scores to the lower end, so now we can find some children who have D-score 
lower than 10 D. 
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1.8.2.3 MILESTONE SETS AT MONTH 3 

Figure 1.8.3 is the same plot as before, but now for month 3. Compared to Figure 
1.8.2, all points shifted upwards because the children are now one month older. 
The additional milestones from month 2 are the standard milestones of month 

3. In Figure 1.8.2, there were at least 11 children (in purple) failed all five 
additional milestones. One month later, one child has five fails. 

1.8.2.4 FLOOR AND CEILING EFFECTS 

Figure 1.8.4 plot the D-score distribution for all occasions. Some observations: 

FIGURE 1.8.3 Distribution of the D-scores calculated from the standard, additional 
and all available milestones at month 3. Colors correspond to the number of fails. 

FIGURE 1.8.4 D-score by age 0–30 months for standard, additional and all available 
milestones at each measurement occasion. 
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•	 Ceiling effect: The ceiling effect (green) is most prominent in the 
standard set, but is also present in the other two sets. None of the three 
sets can filter out children with really advanced development. To achieve 
more precision at the upper end, we would need to include more difficult 
milestones. 

•	 Floor effect: There are almost no floor effects in the standard and all sets. 
These sets discriminate well among children with delayed development, 
which was the designed purpose of the DDI. Note that floor effects are 
visible in the additional set. 

•	 Average level: All three sets capture the overall relation between age and 
development. The additional set is quite efficient for measuring average 
levels development but lacks detail on the extremes. 

Figure 1.8.4 shows that a short test (5–6 milestones) can precisely 
measure the lower tail of the D-score distribution (standard set) or the 
middle of the D-score distribution (additional set), but cannot do both at the 
same time. 

1.8.3 IMPACT OF SHORT TESTS ON PREDICTING IQ 

1.8.3.1 MEASUREMENT AND PREDICTION 

In Section 1.8.2, we saw that a short test can measure the middle or one tail of 
the distribution, but cannot be precise for both at the same time. If we want to 
identify children at risk for delayed development, we are interested in the lower 
tail of the distribution, so in that case, the standard set is suitable. But what set 
should we use if we want to predict a later outcome? 
This section explores that effect of taking different milestone sets on the 

quality of prediction. 

1.8.3.2 UKKI 

Hafkamp-de Groen et al. (2009) studied the effect of the D-score on later 
intelligence, using a subset of 557 SMOCC children that were followed up at 
the age of five years. 
The Utrechtse Korte Kleuter Intelligentietest (UKKI) (Baarda, 1978) is a 

short test to measure intelligence. The UKKI is a simple test with just three 
components: 

•	 Redraw five figures (square, triangle, cross, trapezoid, rhomboid); 
•	 Draw human figure, with 28 characteristics, like legs, eyes, and so on; 
•	 Give meaning to 13 words like knife, banana, umbrella, and so on. 

Administration time is about 15–20 minutes. The UKKI has a reasonable 
test-retest reliability for group use (Pearson r = 0.74, 3-month interval). 
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1.8.3.3 EXPLORATORY ANALYSIS 

Figure 1.8.5 shows the empirical IQ distribution of 557 children. The mean IQ 
score is 108, and the standard deviation is 15, so the IQ scores of children in 
the sample is about a half standard deviation above the 1978 reference sample. 
Figure 1.8.6 shows that the relation between the D-score 0–2 years and IQ at 

five years is positive for all milestone sets and all ages. The strength of the 
association increases with age. At the age of 2 years, the regression coefficient 
for D-score is equal to β (D) = 1.4 (SE: 0.21, p < 0.0001), so on average an 

TABLE 1.8.2 
Pearson correlation between D-score (0–2 years) and IQ at 5 years. 

Visit Standard Additional All 
set set milestones 

1m 0.059 0.005 0.027 

2m 0.051 0.056 0.048 

3m 0.036 0.100 0.102 

6m 0.040 0.038 0.036 

9m 0.094 0.143 0.132 

12m 0.046 0.162 0.137 

15m 0.180 0.153 0.187 

18m 0.129 0.153 0.146 

24m 0.245 0.255 0.267 

FIGURE 1.8.5 Histogram of UKKI IQ scores taken around the age of five years 
(SMOCC data, n = 557). 
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FIGURE 1.8.6 Relation between D-score at infancy and IQ at age 5 years according to 
three milestone sets and nine visits (SMOCC data, n = 557). 
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increase of 1.0 unit in the D-score at the age of 2 years corresponds to a 
1.4 IQ-score points increase at the age five years. 
Table 1.8.2 summarizes the Pearson correlations between the D-score and 

later IQ. The association between D-score and IQ is weak during the first year 
of life but gets stronger during the second year. In general, having more (and 
more informative) milestones helps to increase the correlation, but the effects 
are relatively small. So even from the standard set of the seven easy milestones 
at 24m, we obtain a reasonable correlation of 0.245. 
All in all, these results suggest that neither the amount nor the difficulty level 

of the milestones is critical in determining the strength of the relation between 
the D-score and IQ. 
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This section compares child development between samples from three different 
studies: 

• SMOCC, a representative sample of Dutch children (1.9.1) 
• POPS, a cohort of all Dutch preterms in 1983 (1.9.2) 
• TOGO, a set of medical records from preventive health service in Togo 

(1.9.3) 
• A summary of the main findings (1.9.4) 

Each study used the same measurement instrument, the DDI (see Section 
1.4.1). The section compares D-scores between studies. 

1.9.1 SMOCC STUDY 

Figure 1.9.1 shows the D-score distribution by age in the SMOCC data. The 
grey curves represent references calculated from the SMOCC data. The top 
figure illustrates that rise of the D-score with age, whereas the bottom chart 
shows that the DAZ distribution covers the references well. 
The ceiling effect causes low coverage after the age of 24 months. There are 

also less prominent ceiling effects for younger children. Without these effects, 
the references would presumably show some additional variation. 

1.9.2 POPS STUDY 

Figure 1.9.2 presents the D-score and DAZ distributions for the POPS cohort of 
children born very preterm or with very low birth weight. The distributions of 
the D-score and DAZ are similar to those found in the SMOCC study. 
Since the D-scores are calculated using the same milestones and difficulty 

estimates as used in the SMOCC data, the D-scores are comparable across the 
two studies. When the milestones differ between studies (e.g. when studies use 
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FIGURE 1.9.1 Distribution of D-score and DAZ by child age in a cohort of Dutch 
children aged 0–2 years (Source: SMOCC data, n = 2151, 9 occasions). 
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FIGURE 1.9.2 Distribution of D-score and DAZ by child age in a cohort of preterm 
aged 0–2 years. 
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different measurement instruments), it is still possible to calculate D-scores. 
This problem is a little more complicated, so we treat it in Chapter 2. 
The primary new complication here is the question whether it is fair to 

compare postnatal age of children born at term with postnatal ages of very 
preterm children. This section focuses on this issue in some detail. 

1.9.2.1 POPS DESIGN 

In 1983, the Project On Preterm and Small for Gestational Age Infants 
(POPS study) collected data on all 1338 infants in the Netherlands who had 
very preterm birth (gestational age < 32 weeks) or very low birth weight 
(birth weight < 1500 grams). See Verloove - Vanhorick et al. (1986) for 
details. 

FIGURE 1.9.3 Scatterplot of two versions of the D-score, one calculated using 
postnatal age (f = 0.00), the other calculated using full age-adjustment (f = 1.00). 
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The POPS study determined gestational age from the best obstetric estimate, 
including the last menstrual period, results of pregnancy testing, and ultrasonography 
findings. The POPS study collected measurements on 450 children using the 
DDI at four visits at corrected postnatal ages of 3, 6, 12 and 24 months. 

1.9.2.2 AGE-ADJUSTMENT 

Assessment of very preterm children at the same chronological age as term 
children may cause over-diagnosis of developmental delay in very preterm 
children. Very preterm children may require additional time that allows for 
development equivalent to that of children born a term. 
In anthropometry, it is common to correct chronological age of very preterm 

born children to enable age-appropriate evaluation of growth. For example, 
suppose the child is born as a gestational age of 30 weeks, which is ten weeks 
early. A full correction would deduct ten weeks from the child’s postnatal age, 
and a half correction would deduct five weeks. In particular, we calculate the 
corrected age (in days) as: 

where 280 is the average gestational age in days, and where we specify 
several alternatives for f as 1.00 (full correction), 0.75, 0.50 (half) or 0.00 (no 
correction). 
Let’s apply the same idea to child development. Using corrected age instead 

of postnatal age has two consequences: 

• It will affect the prior distribution for calculating the D-score; 
• It will affect DAZ calculation. 

We evaluate these two effects in turn. 

1.9.2.3 EFFECT OF AGE-ADJUSTMENT ON THE D-SCORE 

Figure 1.9.3 plots the fully age-adjusted D-score against the unadjusted D-
score. Any discrepancies result only from differences in the ages used in the 
age-dependent prior (cf. Section 1.5.3.2). 
All points are on or below the diagonal. Age-adjustment lowers the D-score 

because a preterm is “made younger” by subtracting the missed pregnancy 
duration, and hence the prior distribution starts at the lower point. For example, 
the group of red marks with D-scores between 30 D and 40 D (age not 
corrected) will have D-scores between 20 D and 30 D when fully corrected. 
Note that only the red points (with perfect scores) are affected, thus illustrating 
that the prior has its most significant effect on the perfect response pattern. See 
also Section 1.5.3.1. The impact of age-correction on the D-score is negligible 
when the child fails on one or more milestones. 



83 Three studies 

1.9.2.4 EFFECT OF NO AGE ADJUSTMENT (F = 0.00) ON 

THE DAZ 

Figure 1.9.4 illustrates that a considerable number of D-scores fall below the 
minus -2 SD line of the reference when age is not adjusted, especially during 
the first year of life. The pattern suggests that the apparent slowness in 
development is primarily the result of being born early, and does not 
necessarily reflect delayed development. 

1.9.2.5 EFFECT OF FULL AGE ADJUSTMENT (F = 0.00) ON 

THE DAZ 

Full age correction has a notable effect on the DAZ. Figure 1.9.5 illustrates that 
the POPS children are now somewhat advanced over the reference children. We 
ascribe this seemingly odd finding to more prolonged exposure to sound and 
vision in air. Thus after age correction, development in preterms during early 
infancy is advanced compared to just-born babies. 
Full age correction seems to overcorrect the D-score, so it is natural to try 

intermediate values for f between 0 and 1. 

1.9.2.6 PARTIAL AGE ADJUSTMENT 

Table 1.9.1 compares mean DAZ under various specifications for f. Values f = 
0.00 and f = 0.50 do not correct for preterm birth enough in the sense that all 
sign are negative. In contrast, f = 1.00 overcorrects. The value of 0.73 is 
implausibly high, especially because this value is close to birth. Setting f = 0.75 
seems a good compromise, in the sense that the average DAZ is close to zero in 
the first age interval. The average DAZ is negative at later ages. We do not 
know whether this genuinely reflects less than optimal development of very 
preterm and low birth weight children, so either f = 1.00 and f = 0.75 are 
suitable candidates. 

TABLE 1.9.1
 
Average DAZ at various ages under four correction factors.
 

Age (months) 0.00 0.50 0.75 1.00 

0–3 -1.46 -0.50 0.07 0.73 

3–4 -1.77 -0.89 -0.37 0.20 

5–6 -1.60 -0.87 -0.46 0.00 

7–8 -1.76 -1.13 -0.77 -0.39 

9-–1 -1.21 -0.77 -0.53 -0.28 

12–14 -0.99 -0.60 -0.39 -0.16 

15–23 -0.50 -0.23 -0.10 0.04 

24+ -0.70 -0.49 -0.37 -0.24 
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FIGURE 1.9.4 Distribution of D-score and DAZ without age correction for preterm 
birth (f = 0.00). 
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FIGURE 1.9.5 Distribution of D-score and DAZ under full age correction for preterm 
birth (f = 1.00). 
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1.9.2.7 CONCLUSIONS 

•	 Compared with the general population, more very preterm children 
reached developmental milestones within chronological age five months 
when chronological age was fully corrected; 

•	 Fewer preterm children reached the milestones when chronological age 
was not corrected; 

•	 Fewer children reached the milestones when we used a correction of 
f = 0.50; 

•	 Similar proportions were observed when we used f = 0.75 within the first 
five months after birth. 

•	 After chronological age five months, we observed similar proportions for very 
preterm and full-term children when chronological age was fully corrected. 

•	 We recommend using full age correction (f = 1.00). This advice corresponds 
to current practice for growth and development. As we have shown, 
preterms may look better in the first few months under full age-correction. 
If the focus of the scientific study is on the first few months, we 
recommend an age correction of f = 0.75. 

1.9.3 TOGO STUDY 

Figure 1.9.6 presents the D-score and DAZ distributions of a sample of children 
living near Kpalimé, Togo. While the primary trend with age conforms to the 
previous data, the distributions differ from those in Figure 1.9.1 and Figure 
1.9.2 in two respects: 

•	 Compression at the upper end: Most of the D-scores are above the 
median curve, which suggests that, at these ages, children living in Togo 
develop faster than children living in the Netherlands; 

•	 Expansion at the lower end: There is a considerable variation in D-scores 
on the lower end, with many D-scores below the -2 SD curve, suggesting 
that some children are significantly more delayed than would be expected 
in both Dutch samples. 

The D-scores are calculated using the same 57 milestones and difficulty 
estimates as before. The resulting D-score distribution is quite unusual. The 
main question here is what could explain the pattern found in the D-scores. 
This section explores this question in some detail. 

1.9.3.1 TOGO KPALIMÉ STUDY, DESIGN 

If the D-score is to be a universal measure, then it should be informative in low 
and middle-income countries (LMIC) as well. We do not yet know much about 
the usability and validity of the D-score in LMIC’s. The western African 
country of Togo qualifies as a low-income country, with a 2017 GNI per 
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FIGURE 1.9.6 Distribution of D-score and DAZ by child age of children living near 
Kpalimé, Togo (Source: TOGO data), 
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capita of USD 610, compared to USD 46,180 in the Netherlands, and USD 744 
for low-income countries in general (data.worldbank.org). 
The data were collected by Cécile Schat-Savy, who initiated a youth health 

care centre modelled after the Dutch youth health care system in Kpalimé, 
Togo. See https://www.kinderhulp-togo.nl for more background. Data monitoring 
included a french translation the DDI for measuring child development. The 
investigators gathered data from 9747 individuals in the 0–18 age range. 
Participants include children and their parents who visited the Kpalimé health 

centre at least one time. Kpalimé is the fourth largest town in Togo, but the 
health centre also attracted parents and children from a wide surrounding rural 
area. Parents visited the health centre for several reasons, including for a 
preventive health check or because of their child’s apparent health problems. 
The health centre targeted parents through information sessions for parents at 

primary schools. Parents paid a small amount of money per child (about USD 
4.00 for children of 4 years or older, and USD 0.80 for children younger than 
four years). Four local data-assistants, some portrayed in Figure 1.9.7, digitized 
the data from paper archives. TNO Child Health in The Netherlands monitored 
the process and checked the data for completeness and consistency. 
Here we use a subset of 2674 visits from 1644 unique children who scored 

on the 57 milestones of the DDI 0–2 years. We did not calculate D-scores when 
age or DDI milestones were missing, which left a dataset of 2425 visits from 
unique 1567 children. The number of visits varied from 1 – 9. The majority of 
children visited the centre once. 

1.9.3.2 D-SCORE LABELLED BY NEUROLOGICAL PROBLEM 

Figure 1.9.8 is the same scatter plot as in Figure 1.9.6, but now marked by 
whether the physician registered signs of neuropathology in the form of tonus 
and reflex problems. 
Many children with low D-scores also have tonus or reflex problems. This 

finding alone suggests that extreme D-score are not artefacts (e.g. caused by a 
wrongly coded age), but indicate main adverse health conditions. 

1.9.3.3 D-SCORE LABELLED BY APGAR SCORE 

Figure 1.9.9 identifies the children who had an Apgar score at 10 minutes after 
birth that was lower than 8. About half of these children had a D-score below 
-2 SD curve. 

1.9.3.4 D-SCORE LABELLED BY SEVERE UNDERWEIGHT 

Many children who visited the Kpalimé health centre had a low body 
weight for their age. Figure 1.9.10 marks the subset of severely underweight 
children (WAZ < -4). A substantial proportion of these children also had a 
very low D-score. 

https://www.kinderhulp-togo.nl
http://www.data.worldbank.org
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FIGURE 1.9.7 Three of the data-assistants who helped to digitize the paper files. 

Reproduced with permission from Stichting Kinderhulp Togo https://www.kinderhulp-togo.nl. 

1.9.3.5 D-SCORE LABELLED BY SEVERE STUNTING 

Figure 1.9.11 is similar to 1.9.10, but now marked by the subset of severely 
stunted children (HAZ < -4). Also here, a sizable proportion has a low D-score. 
When taken together, Figure 1.9.8–Figure 1.9.11 show that children with 

very low D-scores often experience (multiple) harsh health problems. Those 
health problems may have substantially delayed their development. 

1.9.3.6 GROSS MOTOR DEVELOPMENT 

Figure 1.9.12 shows substantial differences in gross motor development between 
children from Togo and the Netherlands. For example, at the age of three 
months, about 30 per cent of the Dutch infants succeed in controlling their 
head when pulled to sitting. However, infants from Togo seem already 
capable of head control when they are just one month old. 

https://www.kinderhulp-togo.nl
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FIGURE 1.9.8 Distribution of D-score by age labelled by neurological (tonus and/or 
reflex) problems. (Source: TOGO data). 

FIGURE 1.9.9 Distribution of D-score by age labelled by Apgar score (10 minutes) 
lower than 8. 
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FIGURE 1.9.10 Distribution of D-score by age labelled by severe underweight (WAZ -4) 
(Source: TOGO data). 

FIGURE 1.9.11 Distribution of D-score by age labelled by severe stunting (HAZ -4) 
(Source: TOGO data). 



92 Three studies 

Moreover, the advantage persists at least until up to the age of two years: 
children in Togo can roll over and sit much earlier, or kick a ball without falling. 
As the documentary Babies shows, African children even manage to learn to walk 
with a tin can on their head, a craft that children in the west never achieve. 

1.9.3.7 FINE MOTOR DEVELOPMENT 

Figure 1.9.13 shows a less pronounced but similar phenomenon for fine motor 
skills. These data suggest that children in Togo may have better fine motor 
skills than the children from the two Dutch cohorts. 

1.9.3.8 COMMUNICATION AND LANGUAGE 

Figure 1.9.14 summarizes the data for three milestones on communication and 
language. In general, the success probability is similar in the three studies. 
One curious finding is that the high proportion of milestones passes in 

ddicmm041 for the Togo children around the age of 18 months. Note that several 
of the green lines in Figure 1.9.12–Figure 1.9.14 start close to perfect scores, which 
makes it impossible to show the rising patterns found in the Dutch data. 
It may indeed be true that children from Togo develop more rapidly than 

Dutch children. But we may also wonder: Could there just be reporting bias on 
the part of the parents who either do not understand the items or have the 
expectation to say “yes” even if the child can’t do it? It would be desirable if 
these results could be backed up from other sources. 

1.9.4 CONCLUSIONS 

This section compared the D-scores estimated from the DDI administered to 
three different groups of children. 
We found that 

•	 The D-score by age plot showed a positive, curved relationship with age 
in all three studies; 

•	 Children born very preterm or with very low birth weight had similar 
development to reference children when their age was corrected for early 
birth; 

•	 A relatively small subset of children born in Togo had extremely low 
D-scores, not found in the Netherlands, likely the result of underlying 
neuropathology, severe underweight or severe stunting; 

•	 On average, children from Togo seemed to have faster development 
during the first two years, especially in motor development, though there 
may be issues with reporting bias. 

All in all, these findings support the usefulness and validity of the D-score as 
an informative summary of child development during their first two years of life. 
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FIGURE 1.9.12 Gross motor milestones. 
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FIGURE 1.9.13 Fine motor milestones. 
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FIGURE 1.9.14 Communication and language milestones. 
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This section provides a quick overview of the relevance, concepts and 
techniques of the D-score. While the results obtained thus far are encouraging, 
some questions will certainly remain when we put the method to practice. 
A rough selection of such questions includes: 

•	 What is the added value of the D-score in practice? 
•	 Does the D-score extend to higher ages? 
•	 Is the assumption of uni-dimensionality reasonable for other ages and 

populations? 
•	 Can we calculate the D-score from instruments other than the DDI? 
•	 Is it reasonable to assume that milestone difficulty is identical in other 

populations? 
•	 Does the method apply to caregiver-reported milestones? 
•	 Would a dedicated D-score instrument be more efficient? 
•	 How many milestones are “enough”? 
•	 Can the same scale be used for measurement at individual, group and 

population levels? 
•	 Can the D-score detect delayed development? 
•	 Would the D-score help to target early interventions? 

This section briefly reviews some of these issues. 

1.10.1 USEFULNESS OF D-SCORE FOR MONITORING 
CHILD HEALTH 

The D-score is a new approach to measure child development. The D-score is a 
scale for quantifying generic child development by a single number. Milestones 
are selected to fit the Rasch model. We can interpret the resulting measurements 
as scores on an interval scale, a requirement for answering questions like: 

•	 What is the difference in development over time for the same child, group 
or population? 
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•	 What is the difference in development between different children, groups 
or populations of the same age? 

•	 How does child development compare to a norm? 

The concept of the D-score is broader than a score calculated from the DDI. 
Any instrument that fits the model underlying the D-score can be used to 
measure the child’s D-score. 
The precision of the measurement depends on the number of milestones and 

the match between milestone difficulty and person ability. We may thus tailor 
the measurement instrument to the question at hand. 

1.10.2 D-CHART, A GROWTH CHART FOR CHILD 
DEVELOPMENT 

The field of child growth and development roughly divides into two areas: 

•	 The subfield child growth (or auxology) emphasizes body measures like 
height, weight, body mass index, and so on. It is a rigorous quantitative 
science with intimate ties to statistics since the days of Quetelet and 
Galton. 

•	 The subfield child development is more recent and builds upon a wide-
ranging set of domain-specific instruments for measuring motor, 
language, cognitive and behavioural states. 

The growth chart is a widely used tool to monitor physical growth. The 
D-score can be used in a similar way to create the D-chart. 
Figure 1.10.1 shows the developmental paths of five randomly chosen 

children from the SMOCC study. Although the milestones differ across age, 
there is only one vertical axis. These trajectories will help to track the progress 
of a child over time. 
The D-chart shows that it is straightforward to apply quantitative techniques 

from child growth to child development. Our hope is that D-score aids in 
bridging the disparate subfields of child growth and child development. 

1.10.3 OPPORTUNITIES FOR EARLY INTERVENTION 

Black et al. (2017) estimated that about 250 million children worldwide fail to 
reach their developmental potential. Developmental delays become evident in 
the first year and worsen during early childhood. The burden of children not 
reaching their developmental potential is high. 
Interventions aimed at improving child development work best when delivered 

at the sensitive periods. Programs are to be comprehensive, incorporating a 
combination of health, nutrition, security and safety, responsive caregiving 
and early learning. See Engle et al. (2011); Grantham‐McGregor et al. (2014) 
and Britto et al. (2017) for recent overviews and initiatives. 
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FIGURE 1.10.1 D-chart with five children from the SMOCC study. 

The lack of a universal measure for child development has long hampered 
the ability to estimate intervention effects or to compare populations. The D-score 
can be generalized to other instruments. We expect that the availability of a 
common yardstick will stimulate informed policy and priority setting. We 
hope a universal measure improves decision making, ultimately lowering the 
number of children not reaching their developmental potential. 

1.10.4 D-SCORE FOR INTERNATIONAL SETTINGS 

Section 1.9 compared D-scores between three study samples. We restricted the 
analysis to studies that used the same instrument (the DDI, in Togo, translated 
to French) to measure child development. 
It is difficult to compare levels of child development worldwide. Existing 

estimates on children not reaching their developmental potential rely on 
proxies, such as stunting and poverty. While these proxies have been found to 
correlate with child development, they are only weak indicators of actual child 
performance. Arguably, the performance of a child on a set of well-chosen 
milestones is more informative for his or her future health and productivity than 
body height or parental income. 
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There are more than 150 instruments are available that quantify child 
development. Many of these tools produce not just one but many scores. Such 
an overwhelming choice may seem a luxury until we realize that we cannot 
compare their ratings. Of course, we could settle on just one instrument …., but 
that’s never going to happen. While simple in theory, pre-harmonization is 
complicated in practice. It requires significant and continued investments by a 
central agency. It does not address historical data, so it will be challenging to 
see secular trends. Also, pre-harmonization impedes the adoption of innovative 
techniques, e.g., using smartphone-assisted evaluations. 
The D-score opens up an exciting alternative: agree on the scale, and leave 

some liberty to the data-collector in the exact choice of the instrument. We 
could build upon the expertise of the data collector about the local population. 
Also, it will equip is to keep up with innovations in measurement. 
The next chapter in our work will address some of the conceptual and technical 

issues that arise when we attempt to apply the D-score to other populations. 

1.10.5 D-SCORE FROM EXISTING INSTRUMENTS 

There is a vast base of historic child developmental data using existing 
instruments. The problem is that each device defines its own summaries, so 
we cannot compare scores across tools. Different instruments have different 
domains, various age forms, different stopping rules, diverse age norms, and so 
on. Yet, the milestones in these instruments are often very similar. Most tools 
collect data on milestones like: 

• Can the child stack two blocks? 
• Can the child roll over? 
• Can the child draw a cross? 
• Can the child stand? 
• Can the child say “baba?” 

With the D-score methodology in hand, we are ready to exploit the overlap in 
milestones shared by different instruments. Common items can act as bridges, 
so - with the appropriate item-level data - we may attempt calculating D-scores 
from other tools as well. 
The task is to identify milestones that overlap between both instruments, 

filter out milestones that do not fit a joint model, and estimate the item 
difficulties of items that remain. Chapter 2 (van Buuren & Eekhout, 2021) will 
explore this possibility in more detail. 

1.10.6 CREATING NEW INSTRUMENTS FOR D-SCORE 

Extending the D-score to other instruments has the side-effect of enlarging the 
item bank with useful items. As more and more data feed into the item bank, 
assessment of already present milestones may become more precise. 
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The enlarged and improved item bank then may act as the fundamental 
resource for creating instruments for particular settings. For example, if the 
interest is on finding the most advanced children, we may construct a difficult 
test that will separate the good and the best. Alternatively, we can use the item 
bank to create and administer computerized adaptive tests (Jacobusse & van 
Buuren, 2007; Wainer et al., 2000), a sequential method that selects the next 
milestone based on the previous test outcome. 
Our ongoing work will explore the conceptual and technical challenges, and 

propose an integrated approach to support instrument construction and 
validation. 
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A - NOTATION 

The notation in this chapter follows Wright & Masters (1982). 

Section Symbol Term Description 

1.4.6 βn Ability True (but unknown) developmental score of child n 

1.4.6 δi Difficulty True (but unknown) difficulty of item i 

1.4.6 πni Probability True (but unknown) probability that child n passes item i 

1.6.1 Ability Estimated developmental score (D-score) of child n 

1.6.1 Difficulty Estimated difficulty of item i 

1.6.1 Pni Probability Estimated probability that child n passes item i 

1.6.1 xni Data Observed response of child n on item i, 0 or 1 

1.6.1 Wni Variance Variance of xni 
1.6.1 zni Residual Standardized residual between xni and Pni 

1.6.1 N Count Number of measurements (children) 

1.6.1 L Count Number of items (milestones) 

1.6.4 P( ) Probability Conditional probability of passing item i 

1.6.4 I( ) Information Item information function of item i 

1.6.5 R Reliability True test reliability 

1.6.5 Reliability Estimated test reliability 

1.6.5 Variance True error variance 

1.6.5 Variance Estimated error variance 

1.6.5 Variance Standard error of measurement (sem) 

1.9.2 f Factor Age-adjustment factor 

B - TECHNICAL INFORMATION 

R version 4.0.4 (2021-02-15)
 

Platform: x86_64-apple-darwin17.0 (64-bit)
 

Running under: macOS Big Sur 10.16
 

DOI: 10.1201/9781003216315-11 101 

http://dx.doi.org/10.1201/9781003216315-11


102 Appendices 

Matrix products: default 

BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas. 

dylib 

LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/ 

libRlapack.dylib 

locale: 

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 

attached base packages: 
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other attached packages: 
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[13] reshape2_1.4.4 RColorBrewer_1.1-2 dplyr_1.0.4 

[16] tidyr_1.1.2 ggplot2_3.3.3 officer_0.3.17.001 

[19] officedown_0.2.1 kableExtra_1.3.2 knitr_1.31 

loaded via a namespace (and not attached): 

[1] nlme_3.1-152 webshot_0.5.2 httr_1.4.2 tools_4.0.4 
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Data availability
 

UNDERLYING DATA 

The raw data needed to replicate these analyses are not public, so we cannot 
share it with this publication. However, the reader can apply for access to the 
data through the study contact. The table given below contains the contact 
information for each cohort included in this publication. 
A subset of studies made their study data publicly available under a CC BY 

4.0 license (https://creativecommons.org/licenses/by/4.0/)1. Authorship remains 
with the study coordinator, but users are free to redistribute, alter and combine 
the data, on the condition of giving appropriate credit with any redistributions 
of the material. The URL of the public data is https://d-score.org/childdevdata/. 

Name in publication Reference Contact 

GCDG-NLD-SMOCC Herngreen et al., 1992 Paul Verkerk 
(paul.verkerk@tno.nl) 

TOGO Van Buuren & Eekhout, 2021 Cécile Schat-Savy 
(cschatsavy@kinderhulp-togo.nl) 

POPS Verloove - Vanhorick et al., Sylvia van de Pal 
1986 (sylvia.vanderpal@tno.nl) 
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Note
 
1 Zenodo: D-score/childdevdata: childdevdata 1.0.1, http://doi.org/10.5281/zenodo. 
4685979 (van Buuren, 2021) 
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This introductory section 

• briefly summarizes our previous work on the D-score (2.1.1) 
• introduces the main topic of the chapter (2.1.2) 
• highlights the relevance of work (2.1.3) 
• explains why we have written this chapter (2.1.4) 
• delineates the intended audience (2.1.5) 

2.1.1 PREVIOUS WORK ON THE D-SCORE 

Chapter 1 highlighted the concepts and tools needed to obtain a quantitative 
score from a set of developmental milestones. 
In practice, we typically want to make the following types of comparisons: 

• Compare development within the same child over time; 
• Compare the development of two children of the same age; 
• Compare the development of two children of different ages; 
• Compare the development of groups of children of different ages. 

To do this well, we need an interval scale with a fixed unit of development. 
We argued that the simple Rasch model is a very suitable candidate to provide 
us with such a unit. The Rasch model is simple, fast, and we found that it fits 
child developmental data very well (Jacobusse et al., 2006; van Buuren, 2014). 
The Rasch model has a long history, but (unfortunately) it is almost unknown 
outside the field of psychometrics. We highlighted the concepts of the model 
that are of direct relevance to child development. Using data collected by the 
Dutch Development Instrument, we demonstrated that the model and its 
estimates behave as intended for children in the open population, for 
prematurely born-children, and children living in a low- and middle-income 
country. 
As our approach breaks with the traditional paradigm that emphasizes 

different domains of child development, we expected a slow uphill battle for 
acceptance. We have now gained the interest from various prominent authors in 
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the field, and from organizations who recognize the value of a one-number
summary for child development. In analogy to traditional growth charts, it is 
entirely possible to track children, or groups of children, on a developmental 
chart over time. Those and other applications of the technology may eventually 
win over some more souls. 

2.1.2 WHAT THIS VOLUME IS ABOUT 

It is straightforward to apply the D-score methodology, as explained in Chapter 
1: Turning milestones into measurement (van Buuren & Eekhout, 2021), for 
measurements observed by one instrument. In practice, however, there is a 
complication. We often need to deal with multiple, partially overlapping tools. 
For example, our data may contain 

• different versions of the same instrument (e.g., Bayley I, II and III); 
• different language versions of the same tool; 
• different tools administered to the same sample; 
• different tools administered to different samples; 
• and so on. 

Since there are over 150 different instruments to measure child development 
(Fernald et al., 2017), the chances are high that our data also hold data 
observed by multiple tools. 
It is not apparent how to obtain comparable scores from different 

instruments. Tools may have idiosyncratic instructions to calculate total scores, 
distinctive domain definitions, unique compositions of norm groups, different 
floors and ceilings, or combinations of these. 
This chapter addresses the problem how to define and calculate the D-score 

based on data coming from multiple sources, using various instruments 
administered at varying ages. We explain techniques that systematically 
exploit the overlap between tools to create comparable scores. For example, 
many instruments have variations on milestones like Can stack two blocks, Can 
stand or Says baba. By carefully mapping out the similarities between 
instruments, we can construct a constrained measurement model informed by 
subject matter knowledge. As a result, we can map different instruments onto 
the same scale. 
Many of the techniques are well known within psychometrics and 

educational research. This chapter translates the concepts to the field of child 
development. 

2.1.3 RELEVANCE OF THE WORK 

We all like our children to grow and prosper. The first 1000 days refers to the 
time needed for a child to grow from conception to its second birthday. During 
this period, the architecture of the developing brain is very open to the 
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influence of relationships and experiences. It is a time of rapid change that lays 
the groundwork for later health and happiness. 
Professionals and parents consider it necessary to monitor children’s 

development. While we can track the child’s physical growth by growth charts 
to identify children with signs of potential delay, there are no charts for 
monitoring child development. To create such charts, we need to have a unit 
of development, similar to units like centimetres or kilograms. 
The D-score is a way to define a unit of child development. With the D-

score, we see that progress is much faster during infancy, and that different 
children develop at different rates. The D-score also allows us to define a 
“normal” range that we can use to filter out those who are following a more 
pathological course. There is good evidence that early identification and early 
intervention improve the outcomes of children (Britto et al., 2017). Early 
intervention is crucial for children with developmental disabilities because 
barriers to healthy development early in life impede progress at each 
subsequent stage. 
Monitoring child development provides caregivers and parents with reliable 

information about the child and an opportunity to intervene at an early age. 
Understanding the developmental health of populations of children allows 
organizations and policymakers to make informed decisions about programmes 
that support children’s greatest needs (Bellman et al., 2013). 

2.1.4 WHY THIS CHAPTER? 

We believe that there can be one scale for measuring child development and 
that this scale is useful for many applications. We also believe that there cannot 
be one instrument for measuring child development that is suitable for all 
situations. In general, the tool needs tailoring to the setting. 
We see that practitioners often view instruments and scales as exchangeable. 

In daily practice, the practitioner would pick a particular tool to measure a 
specific faculty, which then effectively produces a “scale score.” Each tool 
produces its own score, which then feeds into the diagnostic and monitoring 
process. 
We have always found it difficult to explain that scales and instruments are 

different things. For us, a scale is a continuous concept, like “distance,” 
“temperature” or “child development,” and the instrument is the way to assign 
values to the particular object being measured. For measuring distance, we use 
devices like rods, tapes, sonar, radar, geo-location, or red-shift detection, and 
we can express the results as the location under the underlying scale (e.g., 
number of meters). It would undoubtedly be an advance if we could establish a 
unit of child development, and express the measurement as the number of units. 
If we succeed, we can compare child development scores, that are measured 
through different devices. This chapter explores the theory and practice for 
making that happen. 
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2.1.5 INTENDED AUDIENCE 

We aim for three broad audiences: 

• Professionals in the field of child growth and development; 
• Policymakers in international settings; 
• Statisticians, methodologists, and data scientists. 

Professionals in child development are constantly faced with the problem that 
different instruments for measuring child development yield incomparable 
scores. This chapter introduces and illustrates sound psychometric techniques 
for extracting comparable scores from existing instruments. We hope that our 
approach will ease communication between professionals. 
Policymakers in international settings are looking for simple, versatile, and 

cheap instruments to gain insight into the effectiveness of interventions. The 
ability to measure child development by a single number enhances priority 
setting and leads to a more accurate understanding of policy effects. 
The text may appeal to statisticians and data scientists for the simplicity of 

the concepts, for the (somewhat unusual) application of statistical models to 
discard data, for the ease of interpretation of the result, and for the availability 
of software. 
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This chapter explains the methodology for obtaining a comparable developmental 
score (D-score) from different instruments. This section introduces the data 
that will illustrate our approach. The data originates from a study by the 
Global Child Development Group (GCDG), that brought together longitudinal 
measurement on child development data from 16 cohorts worldwide. 

• Overview of cohorts and instrument (2.2.1) 
• Cohort descriptions (2.2.2) 
• Instruments (2.2.3) 

2.2.1 OVERVIEW OF COHORTS AND INSTRUMENTS 

The Global Child Development Group (GCDG) collected longitudinal data 
from 16 cohorts. The objective of the study was to develop a population-based 
measure to monitor early child development across ages and countries. The 
requirements for inclusion were 

FIGURE 2.2.1 Coverage of countries included in the study. 
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1. direct assessment of child development; 
2. availability of individual milestone scores; 
3. spanning ages between 0–5 years; 
4. availability of follow-up measures, at ages 5–10 years. 

The effort resulted in a database containing individual data from over 16,000 
children from 11 countries. The world map shown in Figure 2.2.1 colors the 
countries included in the study. Section 2.2.2 briefly describes each cohort. 
Section 2.2.3 reviews the measurement instruments. 
The GCDG data consists of birth cohorts, impact evaluation studies and 

instrument evaluation studies. 

2.2.2 COHORT DESCRIPTIONS 

The cohorts have different designs, age ranges and assessment instruments. 
Figure 2.2.2 displays the age range of developmental assessments per cohort, 
coloured according to the instruments. 
A brief description of each cohort follows: 
The Bangladesh study (GCDG-BGD-7MO) was an impact evaluation study 

including 1862 children around the age of 18 months. The Bayley Scale for 
Infant and Toddler Development-II (by2) was administered and long-term 
follow-up data were available for the Wechsler Preschool and Primary Scale 
of Intelligence (WPPSI) at 5 years (Tofail et al., 2008). 
The Brazil 1 study (GCDG-BRA-1) was a birth-cohort with 3 measurement 

moments: 644 children at 3 months, 1412 children at 6 months and 1362 
children at 12 months. The investigators administered the Denver Developmental 
Screening Test-II (den) in each round. Long-term follow-up data were 

FIGURE 2.2.2 Age range and assessment instrument of included data for each GCDG 
cohort. 
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available for the Wechsler Adult Intelligence Scale (WAIS) at 18 years 
(Victora et al., 2006). 
The Brazil 2 study (GCDG-BRA-2) was a birth-cohort with measurements of 

3907 children at 12 months and 3869 children at 24 months. Both occasions 
collected data on the Battelle Development Inventory (bat) (Moura et al., 
2010). 
The Chile 1 study (GCDG-CHL-1) was an impact evaluation study of 128 

children assessed at 6 months, 1732 children at 12 months and 279 at 18 
months. The by1 was administered at each of the three waves. Long-term 
follow-up data were available for the WPPSI at 5–6 years (Lozoff et al., 2003). 
The Chile 2 study (GCDG-CHL-2) consists of a birth-cohort of 4869 children. 

The investigators measured child development by the Battelle Developmental 
Inventory (bat) at 7–23 months. A total of 9201 children aged 24–58 responded 
to the Test de Desarrollo Psicomotor (tep) at  24–58 months. For the latter 
group, follow-up data were available for the Peabody Picture Vocabulary Test 
(PPVT) at 5–6 years (Conteras & González, 2015). 
The China study (GCDG-CHN) was an impact evaluation study that contained 

990 children assessed with the by3 at 18 months (Lozoff et al., 2016). 
The Colombia 1 study (GCDG-COL-LT45M) was an impact evaluation 

study that comprised two waves. Wave 1 contained 704 children at 12–24 
months and wave 2 631 children at 24–41 months. The by3 was administered 
at each wave. Long-term follow-up data were available for PPVT at 4–6 years 
(Attanasio et al., 2014). 
The Colombia 2 study (GCDG-COL-LT42M) was an instrument validation 

study where all 1311 children aged 6–42 months were measured the by3. Also, 
there are data for a subgroup of 658 children on den, the Ages and Stages 
Questionnaire (aqi), and the bat screener. Long-term follow-up data were 
available for the Fifth Wechsler Intelligence Scale for Children (WISC-V) and 
the PPVT (Rubio-Codina et al., 2016). 
An impact evaluation study in Ecuador (GCDG-ECU) yielded data from 667 

children between 0–35 months on the Barrera Moncada (bar). Long-term 
follow-up data were available for the PPVT at 5–8 and 9–12 years [Paxson & 
Schady, 2010]. 
The Ethiopia study (GCDG-ETH) was a birth-cohort with 193 children of 12 

months in the first wave, 440 children of 30 months at the second wave, and 
456 children of 42 months at the third wave. The investigators used the same 
instrument (by3) for all waves. Long-term follow-up data were available for 
the PPVT at 10–11 years [Hanlon et al., 2009]. 
The Jamaica 1 study (GCDG-JAM-LBW) was an impact evaluation study 

that collected data on the Griffiths Mental Development Scales (gri) for 225 
children aged 15 months (first wave), and 218 children of aged 24 months 
(second wave). Long-term follow-up data were available for WPPSI and PPVT 
at 6 years (Walker et al., 2004). 
The Jamaica 2 study (GCDG-JAM-STUNTED) was an impact evaluation 

study with data on the gri for 159 children at 9–24 months, 21–36 months, 
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and at 33–48 months. Long-term follow-up data were available for sbi, 
Raven’s Coloured Progressive Matrices (Ravens), and PPVT at 7–8 years and 
the WAIS at 17–18 years (Grantham-McGregor et al., 1991). 
The Madagascar study (GCDG-MDG) was an impact evaluation study that 

used the sbi for 205 children aged 34–42 months. Long-term follow-up data 
were available for sbi and PPVT at 7–11 years (Fernald et al., 2011). 
The Netherlands 1 study (GCDG-NLD-SMOCC) was an instrument validation 

study with a total of 9 waves. At each wave the Dutch Developmental 
instrument (ddi) (In the Netherlands known as Van Wiechenschema) was 
administered. The first wave included 1985 children at 1 month, wave 2 1807 
children at 2 months, wave 3 1963 children at 3 months, wave 4 1919 children at 
6 months, wave 5 1881 children at 9 months, wave 6 1802 children at 12 
months, wave 7 1776 children at 15 months, wave 8 1787 children at 18 months, 
and wave 9 1815 children at 24 months (Herngreen et al., 1992). 
The Netherlands 2 study (GCDG-NLD-2) was an instrument validation 

study with a total of five waves. This study resembles GCDG-NLD-SMOCC 

but for older children. Wave 1 included 1016 children at 24 months, wave 2 
995 children at 30 months, wave 3 1592 children at 36 months, wave 4 1592 
children at 42 months, and wave 5 1024 children at 48 months (Doove, 2010). 
The South Africa study (GCDG-ZAF) was a birth cohort with four waves. 

The first wave included 485 children and second wave 275 children, who were 
assessed at 6 and 12 months, respectively, with the by1 and the gri. The third 
wave included 1802 children and the fourth wave 1614 children, assessed at 24 
and 48 months, respectively, with the Vineland Social Maturity Scale (vin) 
(Richter et al., 2007). 

2.2.3 INSTRUMENTS 

The Bayley Scales for Infant and Toddler Development (by1, by2, by3) 

aim to assess infants and toddlers, aged 1–42 months. The current version is the 
by3, but some GCDG cohorts used earlier versions (i.e. by1 and by2) 
(Bayley, 1969; Bayley, 1993; Bayley, 2006). The 326 items of the by3 

measure three domains: Cognitive items, Motor items (with fine and gross 
motor items), and Language items (with expressive and receptive items). The 
by2 contains 277 items and has two additional subscales: Social-Emotional and 
Adaptive Behavior. by1 contains 229 items. 
The Denver Developmental Screening Test (den) is aimed to identify 

developmental problems in children up to age six. The 125 dichotomous test 
items are distributed over the age range from birth to six years. The Denver 
covers four domains: personal-social, fine motor and adaptive, language, and 
gross motor. The test items are all directly observed by an examiner and are not 
dependent on parent report (Frankenburg et al., 1992) (Frankenburg et al., 
1990). 
The Griffiths Mental Development Scales (gri) measure the rate of 

development in infants and young children in six developmental areas: 
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locomotor, personal-social, hearing and language, eye and hand coordination, 
performance and practical reasoning (Griffiths, 1967). 
The Battelle Developmental Inventory (bat) measures key developmental 

skills in children from birth to 7 years, 11 months. The instrument contains 
450 items distributed over five domains: adaptive, personal-social, communication, 
motor, and cognitive (Newborg, 2005). 
The Vineland Social Maturity Scale (vin) is a test to assess social 

competence. The instrument contains eight subscales that measure communication 
skills, general self-help ability, locomotion skills, occupation skills, self-direction, 
self-help eating, self-help dressing and socialization skills (Doll, 1953). 
The Dutch Developmental Instrument (ddi) measures early child 

development during the ages 0–4 years. The instrument consists of 75 
milestones spread over three domains: fine motor, adaptive, personal and 
social behaviour; communication; and gross motor (Schlesinger-Was, 1981). 
The Barrera Moncada (bar) is a Spanish instrument that measures the 

growth and psychological development of children (Moncada, 1981). 
The Test de Desarrollo Psicomotor (tep) is an instrument to evaluate 

toddlers aged 2 to 5 years on their development. The items come from three 
sub-tests: 16 items assess coordination; 24 items measure language skills and 
12 items tap into motor skills (Haeussler & Marchant, 1999). 
The Ages and Stages Questionnaire (aqi) measures developmental 

progress in children aged 2 mo – 5.5 yrs. The instrument distinguishes 
development in five areas: personal-social, gross motor, fine motor, problem 
solving, and communication. The caregiver completes 30 items per age 
intervals and (Squires & Bricker, 2009). 
The Stanford Binet Intelligence Scales (sbi) is a cognitive ability and 

intelligence test to diagnose developmental deficiencies in young children. The 
items divide into five subtests: fluid reasoning, knowledge, quantitative 
reasoning, visual-spatial processing, and working memory (Roid, 2003) 
(Hagen & Stattler, 1986). 



2.3 Comparability 
Iris Eekhout1 

Stef van Buuren1,2 

1Netherlands Organisation for Applied Scientific 
Research TNO, Leiden, 2316 ZL, The Netherlands 
2University of Utrecht, Utrecht, 3584 CH, The 
Netherlands 

This section describes challenges and methodologies to harmonize child 
development measurements obtained by different instruments: 

•	 Are instruments connected? (2.3.1) 
•	 Bridging instruments by mapping items (2.3.2) 
•	 Overview of promising item mappings (2.3.3) 

2.3.1 ARE INSTRUMENTS CONNECTED? 

The ultimate goal is to compare child development across populations and 
cultures. A complication is that measurements are made by different instruments. 
To do deal with this issue, we harmonize the data included in the GCDG 
cohorts. In particular, we process the milestone responses such that the 
following requirements hold: 

•	 Every milestone in an instrument has a unique name and a descriptive 
label; 

•	 Every milestone occupies one column in the dataset; 
•	 Item scores are (re)coded as: 1 = PASS; 0 = FAIL; 
•	 Items not administered or not answered are a missing value; 
•	 Every row in the dataset corresponds to a unique cohort-child-age 

combination. 
•	 Two cohorts are indirectly connected if both connect to a third cohort that 

connects them. 
•	 Two instruments are indirectly connected if both connect to a third 

instrument that connects them. 
•	 Any differences between studies can be attributed to the difficulties of the 

instruments. 

Cohorts and milestones need to be connected. There are several ways to 
connect cohorts: 

•	 Two cohorts are directly connected if they use the same instrument; 

DOI: 10.1201/9781003216315-14 120 

http://dx.doi.org/10.1201/9781003216315-14


Comparability	 121 

•	 Two cohorts are indirectly connected if both connect to a third cohort that 
connects them. 

•	 Two instruments are indirectly connected if both connect to a third 
instrument that connects them. 

•	 Any differences between studies can be attributed to the difficulties of the 
instruments. 

Likewise, instruments can be connected: 

•	 Two instruments are directly connected if the same cohort measures both; 
•	 Two instruments are indirectly connected if both connect to a third 

instrument that connects them. 
•	 Any differences between studies can be attributed to the difficulties of the 

instruments. 

An X in Table 2.3.1 identifies which cohorts use which instruments. The 
linkage table shows that studies from China, Colombia, and Ethiopia are 
directly connected (by by3). Brazil 1 indirectly connects to these studies 
through den. Some cohorts (e.g., Chile 1 and Ecuador) do not link to any 
other study. Likewise, we might say that aqi, bat, by3, and den are directly 
connected. Note that no indirect connections exist to this instrument group. 
Table 2.3.1 is a somewhat simplified version of the linkage pattern. As we 

saw in section 2.2.2, there are substantial age differences between the cohorts. 
The linked instrument linkage table shows the counts of the number of 
registered scores per age group. What appears in Table 2.3.1 as one test may 
consist of two disjoint subsets, and hence some cohorts may not be connected 
after all. 
Connectedness is a necessary - though not sufficient - requirement for 

parameter identification. If two cohorts are not connected, we cannot 
distinguish between the following two alternative explanations: 

•	 Any differences between studies can be attributed to the ability of the 
children; 

•	 Any differences between studies can be attributed to the difficulties of the 
instruments. 

The data do not contain the necessary information to discriminate between 
these two explanations. Since many cohorts in Table 2.3.1 are unconnected, it 
seems that we are stuck. 
The next section suggests a way out of the dilemma. 

2.3.2 BRIDGING INSTRUMENTS BY MAPPING ITEMS 

Many instruments for measuring child development have appeared since the 
works of Shirley (1933) and Gesell (1943). It is no surprise that their contents 
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show substantial overlap. All tools assess events like starting to see, hear, smile, 
fetch, crawl, walk, speak, and think. We will exploit this overlap to bridge 
different instruments. For example, Table 2.3.2 displays the labels of milestones 
from six instruments. All items probe the ability of the child to formulate 
“sentences” of two words. 
The idea is to check whether these milestones measure development in the 

same way. If this is found to be true, then we may formally restrict the 

TABLE 2.3.2
 
Example of similar items from different instruments.
 

Item Label 

by1mdd136 Sentence of 2 words 

by2mdd114 Uses a two-word utterance 

ddicmm041 Says sentences with 2 words 

denlgd019 Combine Words 

grihsd217 Uses word combinations 

vinxxc016 Use a short sentence 

FIGURE 2.3.1 Connections between the instruments via mapped item groups for the 
fine motor domain (https://tnochildhealthstatistics.shinyapps.io/GCDG_mapping/). 

https://tnochildhealthstatistics.shinyapps.io/
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difficulty levels of these milestones to be identical. This restriction provides a 
formal bridge between the instruments. We repeat the process for all groups of 
similar-looking items. 
A first step in the bridging process is to group items from different 

instruments by similarity. As the by3 is relatively long and is the most often 
used instrument, it provides a convenient starting point. Subject matter experts 
experienced in child development mapped items from other tools to by3 items. 
These experts evaluated the similarity of wordings and descriptions in reference 
manuals. Also, they mapped same-skill items across other instruments into 
groups if these did not map onto by3 items. 
Figure 2.3.1 connects similar items and hence visualizes connections between 

instruments for the fine motor domain. Items are displayed in the wheel, 
coloured by instrument. In the online application we organized item mappings 
into ve domains: ne motor (FM), gross motor (GM), cognitive (COG),
receptive (REC), and expressive (EXP). The Prev and Next buttons allow us 
to visit other domains. 

2.3.3 AGE PROFILE OF ITEM MAPPINGS 

Another way to explore the similarity of milestones from different instruments 
is to plot the probability of passing by age. Figure 2.3.2 shows two examples. 
The first graph presents the age curves of a group of four cognitive items for 
assessing the ability to put a cube or block in a cup or box. The milestones are 
administered in different studies and seem to work similarly. The second plot 
shows a similar graph for items that assess the ability to build a tower of six 
cubes or blocks. These milestones have similar age patterns as well. 
Figure 2.3.3 presents two examples of weak item mappings. Notable timing 

differences exist for the “babbles” and “bangs” milestones, which suggests that 
we should not take these as bridges. 
While these plots are suggestive, their interpretation is surprisingly complicated. 

We may find that age profiles of two milestones A and B administered in 
samples 1 and 2, respectively, are identical if 

•	 A and B are equally difficult and samples 1 and 2 have the same 
maturation level; 

•	 A is more difficult than B and sample 1 is more advanced than 2. 

Similarly, we may find that the age profile for A is earlier than B if 

•	 A is easier than B and if samples 1 and 2 have the same level of 
maturation; 

•	 A and B are equally difficult and if sample 1 is more advanced than 
sample 2. 

 fi   fi         
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FIGURE 2.3.2 The probability of passing by age in potential bridging items. 

FIGURE 2.3.3 Probability to pass items for age in poor bridges. 
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Note that the age curves confound difficulty and ability, and hence cannot be 
used to evaluate the quality of the item map. 
What we need to do is separate difficulty and ability. For this, we need a 

formal statistical model. The next section introduces the concepts required in 
such a model. 
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This section introduces the concepts and tools needed to link assessments made 
by different instruments administered across multiple cohorts. Our methodology 
introduces the idea of an equate group. Systematic application of equate groups 
provides a robust yet flexible methodology to link different instruments. Once 
the links are in place, we may combine the data to enable meta-analyses and 
related methods. 

• What is an equate group? (2.4.1) 
• Concurrent calibration (2.4.2) 
• Strategy to form and test equate groups (2.4.3) 
• Statistical framework (2.4.4) 
• Common latent scale (2.4.5) 
• Quantifying equate fit (2.4.6) 
• Differential item functioning (2.4.7) 

2.4.1 WHAT IS AN EQUATE GROUP? 

An equate group is a set of two or more milestones that measure the same 
thing in (perhaps slightly) different ways. Table 2.3.2 contains an example of 
an equate group, containing items that measure the ability to form two-word 
sentences. Also, Figure 2.3.2 and Figure 2.3.3 show examples of equate 
groups. 
Equate groups vary in quality. We can use high-quality equate groups to 

link instruments by restricting the difficulty of all milestones in the equate 
group to be identical. Equate groups thus provide a method for bridging 
different tools. 
Figure 2.4.1 displays items from three different instruments with overlapping 

sets of milestones. The shared items make up equate groups, as presented by 
the arrows between them. In the example, all three instruments share one 
milestone (“walk alone”). The “sitting” and “clap hand” items appear in two 
tools. So in total, there are three equate groups. 
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2.4.2 CONCURRENT CALIBRATION 

Patterns as in Figure 2.4.1 occur if we have multiple forms of the sa
instrument. Although in theory, there might be sequence effects, the usu
working assumption is that we may ignore them. Equate groups with tru
shared items that work in the same way across samples are of high quality. 
may collect the responses on identical items into the same column of the da
matrix. As a consequence, usual estimation methods will automatically produ
one difficulty estimate for that column (i.e. common item). 
The procedure described above is known as concurrent calibration. See Ki

& Cohen (1998) for more background. The method simultaneously estimat
the item parameters for all instruments. Concurrent calibration is an attracti
option for various reasons: 

• It yields a common latent scale across all instruments; 
• It is efficient because it calibrates all items in a single run; 
• It produces more stable estimates for common items in small samples. 

me 
al 
ly 

We 
ta 
ce 

m 
es 
ve 

FIGURE 2.4.1 Example of three instruments that are bridged by common items in 
equate groups. 
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However, concurrent calibration depends on a strict distinction between items 
that are indeed the same across instruments and items that differ. 
In practice, strict black-white distinctions may not be possible. Items that 

measure the same skill may have been adapted to suit the format of the 
instrument (e.g. number of response options, question formulation, and so on). 
Also, investigators may have altered the item to suit the local language and 
cultural context. Such changes may or may not affect the measurement 
properties. The challenge is to find out whether items measure the underlying 
construct in the same way. 
In practice, we may need to perform concurrent calibration to multiple 

perhaps slightly dissimilar - milestones. When confronted with similar - but not 
identical - items, our strategy is first to form provisional equate groups. We then 
explore, test and rearrange these equate groups, in the hope of finding enough 
high-quality equate groups that will bridge instruments. 

2.4.3 STRATEGY TO FORM AND TEST EQUATE GROUPS 

An equate group is a collection of items. Content matter experts may form 
equate groups by evaluating the contents of items and organizing them into 
groups with similar meaning. The modelling phase takes this set of equate 
groups (which may be hundreds) as input. Based on the analytic result, we may 
activate or modify equate groups. It is useful to distinguish between active and 
passive equate groups. What do we mean by these terms? 

•	 Active equate group: The analysis treats all items within an active equate 
group as one super-item. The items obtain the same difficulty estimate 
and are assumed to yield equivalent measurements. As the items in an 
active equate group may originate from different instruments, such a 
group acts as a bridge between instruments. 

•	 Passive equate group: Any non-active equate groups are called passive. 
The model does not restrict the difficulty estimates, i.e., the milestones 
within a passive equate group will have separate difficulty estimates. 

Since active equate groups bridge different instruments, they have an 
essential role in the analysis. In general, we will set the status of an equate 
group to active only if we believe that the milestones in that group measure the 
underlying construct in the same way. Note that this does not necessarily imply 
that all items need to be identical. In Table 2.3.2, for example, small differences 
exist in item formulation. We may nevertheless believe that these are irrelevant 
and ignore these in practice. Reversely, there is no guarantee that the same 
milestone will measure child development in the same way in different samples. 
For example, a milestone like “climb stairs” (Figure 2.4.2) could be more 
difficult (and more dangerous) for children who have never seen a staircase. 
The data analysis informs decisions to activate equate groups. The following 

steps implement our strategy for forming and enabling equate groups: 
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FIGURE 2.4.2 One year old child climbs stairs. 

Photo by Iris Eekhout. 

•	 Content matter experts compare milestones from different instruments 
and sort similar milestones into equate groups. It may be convenient to 
select one instrument as a starting point, and map items from others to 
that (see section 2.3.2); 

•	 Visualize age profiles of mapped items (see section 2.3.3). Verify the 
plausibility of potential matches through similar age profiles. Break up 
mappings for which age profiles appear implausible. This step requires 
both statistical and subject matter expertise; 

•	 Fit the model to the data using a subset of equate groups as active. 
Review the quality of the solution and optimize the quality of the links 
between tools by editing the equate group structure. The technical details 
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of this model are explained in section 2.4.4. Refit the model until (1) 
active equate groups link all cohorts and instruments, (2) active equate 
groups are distributed over the full-scale range (rather than being centred 
at one point); 

•	 Assess the quality of equate groups by the infit and outfit (see section 2.4.6). 
•	 Test performance of the equate groups across subgroups or cohorts by 

methods designed to detect differential item functioning (see section 2.4.7). 

The application of equate groups is needed to connect different instruments 
to a universal scale. The technique is especially helpful in the situation where 
abilities differ across cohorts. 
If the cohort abilities are relatively uniform (for example as a result of 

experimental design) and if the risk of misspecification of the equate groups is high, 
a good alternative is to rely on the equality of ability distribution. In our application, 
this was not an option due to the substantial age variation between cohorts. 

2.4.4 PARAMETER ESTIMATION WITH EQUATE GROUPS 

The Rasch model is the preferred measurement model for child development 
data. Section 1.4 provides an introduction of the Rasch model geared towards 
the D-score. 
The Rasch model expresses the probability of passing an item as a logistic 

function of the difference between the person ability βn and the item difficulty 
δi. The model (2.4.1) is defined as 

Formula 2.4.1. 

One way to interpret the formula is as follows. The logarithm of the odds 
that a person with ability βn passes an item of difficulty δi is equal to the 
difference βi – δi (Wright & Masters, 1982). See the logistic model in Section 1. 
4.6.1 for more detail. 
In model (2.4.1) every milestone i has one parameter δi. We extend the Rasch 

model by restricting the δi of all items within the same equate group to the 
same value. We thereby effectively say that these items are interchangeable 
measures of child development. 
Estimation of the parameter for the equate group is straightforward. Wright 

& Masters (1982) present a simple method for aligning two test forms with 
common items. There are three steps: 

•	 Estimate the separate δi’ s per item; 
•	 Combine these estimates into δq by calculating their weighted average; 
•	 Overwrite each δi by δq. 
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TABLE 2.4.1
 
Overview of the symbols used in equations (2.4.1) and (2.4.2).
 

Symbol Term Description 

βn Ability True (but unknown) developmental score of child n 

δi Difficulty True (but unknown) difficulty of item i 

δq Difficulty The combined difficulty of the items in equate group q 

πni Probability Probability that child n passes item i 

l The number of items in the equate group 

wi The number of respondents with an observed score on item i 

Suppose that Q is the collection of items in equate group q, and that wi is the 
number of respondents for item i. The parameter estimate δq for the equate 
group is 

Equation 2.4.2. 

2.4.5 COMMON LATENT SCALE 

The end goal for using the equate group method to model development items is 
to measure development on one common latent scale, the D-score. That way, 
the measure (i.e. D-score) can be obtained, irrespective of which instrument is 
used in which population. 
Figure 2.4.3 displays the D-score estimates by age in three cohorts from the 

GCDG study: Netherlands 1 (GCDG-NLS-SMOCC), Ethiopia (GCDG-ETH) and 
Colombia 2 (GCDG-COL-LT42M) for two different analyses. As described in 
section 2.2.2, the Netherlands 1 study administered the ddi; Ethiopia measured 
children by the by3; and Colombia collected data on by3, den, aqi and bdi. 
Accordingly, there is an overlap in items between Ethiopia and Colombia via 
the by3, but the Netherlands 1 cohort is not linked. 
We created the plot on the left-hand side without active equate groups. The 

large overlap between Ethiopian and Columbian children occurs because the 
scales for these studies are linked naturally via shared items from by3. Since 
the ddi instrument is not connected, the Dutch cohort follows a different track. 
While we can compare D-scores between Ethiopia and Colombia, it is 
nonsensical to compare Dutch to either Ethiopia or Colombia. The right-hand 
side plot is based on an analysis that used active equate groups to link the 
cohorts. Since the analysis connected the scales for all three cohorts, we can 
now compare D-scores obtained between all three cohorts. 
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FIGURE 2.4.3 Example of three cohorts with and without equate group linking. 

This example demonstrates that active equate groups form the key for 
converting ability estimates for children from different cohorts using different 
instruments onto the same scale. 

2.4.6 QUANTIFYING EQUATE FIT 

It is essential to activate only those equate groups for which the assumption of 
equivalent measurement holds. We have already seen the item fit and person fit 
diagnostics of the Rasch model. This section describes a similar measure for the 
quality of an active equate group. 

2.4.6.1 EQUATE FIT 

Section 1.6 defines the observed response of person n on item i as xni. The 
accompanying standardized residual zni is the difference between xni and the 
expected response Pni, divided by the expected binomial standard deviation, 

with variances Wni = Pni(1 – Pni). 
Equate infit is an extension of item infit that takes an aggregate over all items 

i in active equate group q, i.e., 
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Likewise, we calculate Equate outfit of group q as 

where Ni is the total number of responses observed on item i. The 
interpretation of these diagnostics is the same as for item infit and item outfit. 
Note that these definitions implicitly assume that the expected response Pni is 

calculated under a model in which all items in equate group q have the same 
difficulty. This is not true for passive equate groups. Of course, no one can stop 
us from calculating the above equate fit statistics for passive groups, but such 
estimates would ignore the between-item variation in difficulties, and hence 
gives a too optimistic estimate of quality. The bottom line is: The interpretation 
of the equate fit statistics should be restricted to active equate groups only. 

2.4.6.2 EXAMPLES OF WELL FITTING EQUATE GROUPS 

The evaluation of equate fit involves comparing the observed probabilities of 
endorsing the items in the equate group to the estimated probability of endorsing 
the items in the equate group. For an equate group there is an empirical curve 
for each item in the equate group and one shared estimated curve. The 
empirical curves should all be close together, and close to the estimated 
curve for a good equate fit. 
Figure 2.4.4 shows a diagnostic plot for equate groups REC6 (Turns head to 

sound of bell) and GM42 (Walks alone). The items within REC6 have slightly 
different formats in the Bayley I (by1), Dutch Development Instrument (ddi), and 
the Denver (den). The empirical curves in the upper figure show good overlap, 
but note that hardly any negative responses were recorded for four of the five 
studies, so the shared estimate depends primarily on the Dutch sample. Items 
from equate group GM42 appear in six instruments: bar, by1, by2, by3, 
ddi, and gri. Also, here the empirical data are close together, and even a 
little steeper than the fitted dashed line, which indicates a good equate fit. 
The infit and outfit indices, shown in the upper left corners, confirm the good 
fit (fit < 1). 

2.4.6.3 EXAMPLES OF EQUATE GROUPS WITH POOR EQUATE FIT 

Poor fitting equate groups are best treated as passive equate groups, so that 
items in those groups are not restricted to the same difficulty. Empirical item 
curves with different locations and slopes indicate a poor fit. Additionally, the 
equate fit indices will indicate a poor fit (fit > 1). 
Figure 2.4.5 shows examples for groups COG24 (Bangs in play / Bangs 2 

blocks) and EXP12 (Babbles). In both cases there is substantial variation in 
location between the empirical curves. For COG24 we find that the fitted curve 
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FIGURE 2.4.4 Two equate groups that present a good equate fit. 

is closer to the den item, which suggests that the equate difficulty is mostly 
based on the den item. Items from equate group EXP12 have a different format 
in instruments by1, ddi and gri. The empirical curves, with different colours 
for each instrument, are not close to each other, nor close to the fitted curve. 
Note that all infit and outfit statistics are fairly high, indicating poor fit. Both 
equates are candidates for deactivation in a next modelling step. 

2.4.7 DIFFERENTIAL ITEM FUNCTIONING 

Items within an active equate group should work in the same way across the different 
cohorts, i.e., they have no differential item functioning (DIF). The assumption 
of no DIF is critical for active equate groups. If violated, restricting the difficulty 
parameters as equal across cohorts may introduce unwanted bias in comparisons 
between cohorts. This section illustrates the role of DIF in equate groups. 
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FIGURE 2.4.5 Two equate groups that present a poor equate fit. 

2.4.7.1 GOOD EQUATE GROUPS WITHOUT DIF 

Section 1.6.3 discusses the role of DIF in the evaluation of the fit of items to 
the Rasch model. This section illustrates similar issues in the context of equate 
groups. 
Figure 2.4.6 shows the empirical curves of two equate groups, FM31 (two 

cubes) and EXP26 (two-word sentence). All curves are close to each other, so 
there is no differential item functioning here. 

2.4.7.2 POOR EQUATE GROUPS WITH DIF FOR STUDY 

Figure 2.4.7 plots the empirical curves for equate groups GM44 (throws ball) 
and EXP23 (5 or more words). The substantial variation between these curves 
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FIGURE 2.4.6 Two equate groups that present no differential item functioning 
between cohorts. 

is a sign of differential item functioning. For example, Throws ball is easier for 
children in the South-Africa cohort (purple curve; GCDG-ZAF) and more 
difficult for children in Colombia (blue curve; GCDG-COL-LT42M). In other 
words, the probability of passing the item given the D-score (i.e. item difficulty) 
differs between the cohorts. Likewise, there is differential item functioning for 
Says more than 5 words. This milestone is easier for children in Jamaica 
(yellow and pink curves; GCDG-JAM-LBW and GCDG-JAM-STUNTED) than for 
children from Ecuador (green; GCDG-ECU). 
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FIGURE 2.4.7 Two equate groups that present differential item functioning between 
cohorts. 
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This section deals with the nitty-gritty of the modelling strategy used for the 
GCDG data introduced in Section 2.2. This section 

•	 provides a high-level description of the GCDG data (2.5.1) 
•	 discusses various modelling strategies (2.5.2) 
•	 shows the impact of equate groups on the model in extreme cases (2.5.3) 
•	 demonstrates visualization of age profiles to select promising equate 

groups (2.5.4) 
•	 introduces a helpful visualization of the quality of the equate group 

(2.5.5) 
•	 highlights infit and outfit for removing misfitting milestones (2.5.6) 
•	 discusses instrument fit and equate group editing (2.5.7) 
•	 introduces a grading system for equate groups (2.5.8) 
•	 provides pointers to the final model (2.5.9) 

2.5.1 GCDG DATA: DESIGN AND DESCRIPTION 

2.5.1.1 DATA COMBINATION 

Section 2.2.1 provides an overview of the data collected by Global Child 
Development Group. The group collected item level measurements obtained 
on 12 instruments for measuring child development across 16 cohorts. 
We coded every item as 0 (FAIL), 1 (PASS) or missing. For some instrument 

we did some additional recoding to restrict to these two response categories. 
The Battelle Developmental Inventory scores items as 0 (FAIL), 1, or 2, 
depending on the level of skill demonstrated or time taken to complete the 
task. We joined categories 1 and 2 for these items. The ASQ items were 
originally scored as 0 (not yet), 5 (sometimes) and 10 (succeeds). We recoded 
both 5 and 10 to 1. 
We concatenated the datasets from the GCDG cohorts cohort. The resulting 

data matrix has 71403 rows (child-visit combinations) and 1572 columns 
(items) collected from 36345 unique children. We removed 233 items that had 
fewer than 10 observations in a category. The remaining 1339 items were 
candidates for analysis. The total number of observed scores was equal to about 
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2.8 million pass/fail responses. While this is a large number of measurements, 
about 97 percent of the entries in the matrix are missing. 

2.5.1.2 EQUATE GROUP FORMATION 

A group of 13 subject-matter experts from the Global Child Development 
Group cross-walked the available instruments for similar milestones. This 
group 

•	 developed an item coding schema; 
•	 matched similarly appearing items stemming from different instruments; 
•	 formed an opinion about the quality of each match; 
•	 noted peculiarities of the matches; 
•	 reported the results as a series of detailed Excel spreadsheets. 

The group evaluated around 1500 milestones. After several days, this highly-
skilled, intensive labour resulted in a series of spreadsheets. Figure 2.5.1 shows 
an example. These sheets formed the basis of an initial list of 184 equate 
groups, each consisting of at least two items. 

2.5.2 MODELLING STRATEGIES 

The analytic challenge is twofold: 

•	 to find a subset of items that form a scale; 
•	 to find a subset of equate groups with items similar enough to bridge 

instruments. 

FIGURE 2.5.1 A snapshot of information generated by subject-matter experts. 
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Note that both subsets are related, i.e., changing one affects the other. Thus, 
we cannot first identify items and then equate groups, or first identify equate 
groups followed by the items. Rather we need to find the two subsets in an 
iterative fashion, primarily by hand. This section describes some of the 
modelling issues the analyst needs to confront. 
In general, we look for a final model that 

•	 preserves the items that best fit the Rasch model; 
•	 uses active equate groups with items that behave the same across many 

cohorts and instruments; 
•	 displays reasonable age-conditional distributions of the D-scores; 
•	 has difficulty estimates that are similar to previous estimates. 

The modelling strategy is a delicate balancing act to achieve all of the above 
objectives. Particular actions that we could take to improve a given model are: 

•	 remove bad items; 
•	 inactivate bad equate groups; 
•	 break up bad equate groups; 
•	 move items from one equate group to another; 
•	 create new equate groups; 
•	 remove entire instruments; 
•	 remove persons; 
•	 remove studies. 

In order to steer our actions, we look at the following diagnostics (in order of 
importance): 

•	 quality of equate groups (both visually and through infit); 
•	 plausibility of the distribution of the D-score by age per study; 
•	 correspondence of difficulty estimates from published (single study) 

Dutch data and the new model; 
•	 infit of the items remaining in the model. 

Various routes are possible and may result in different final models. The 
strategy adopted here is to thicken active equate groups by covering as many 
studies as possible, in the hope of minimizing the number of active equates 
needed. 

2.5.3 IMPACT OF NUMBER OF ACTIVE EQUATE GROUPS 

Figure 2.5.2 is a display of the D-score by age for the GCDG-COL-LT42M 

cohort under four models. D-score by age visualizations for all cohort are can 
be found via this link. As a rough reference to compare, the grey curves in the 
back represent the Dutch model as calculated from the SMOCC study. In order 
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FIGURE 2.5.2 D-score by age of four models with all 1339 items using 0, 11, 33 and 
184 active equate groups. 

The number of equate groups has a substantial effect on the D-score distribution (https:// 
d-score.org/dbook-apps/models1339/, in the online version you can use the arrows to see 
other cohorts). 

to speed up the calculations, the figure shows a random subsample of 25% of 
all points. Manipulate the plot controls to switch cohorts. 
All models contain 1339 items, but differ in the number of active equate 

groups. The most salient features per model are: 

•	 1339_: No equate groups, so different instruments in different cohorts 
are fitted independently; 

•	 1339_11: Connects all cohorts through one or more equated items using 
11 equate groups in total; 

•	 1339_33: There are 33 equate groups that bridge cohort and instruments; 
•	 1339_184: Maximally connects instruments and cohort by all equate 

groups. 

Comparison of the D-score distribution by age across these models yields 
various insights: 

http://d-score.org/
http://d-score.org/
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•	 The location of cohorts on the vertical scale depends on the number of 
active equate groups. For example, for Madagascar (MDG) the points are 
located around 52 when no equate groups are activated, whereas if all are 
activated it is about 68. 

•	 The age trend depends on the number of active equate groups. For example, 
for Colombia (COL) or Ethiopia (ETH), the model without equate groups 
has a shallow age trend, whereas it is steep for the 1339_184 model. 

•	 The vertical spread depends on the number of equate groups. For 
example, the spread in the Chile-2 (CHL-2) cohort substantially 
increases with the number of active equates. 

•	 Model 1339_0 for the Dutch NLD-SMOCC cohort is equivalent to the 
model fitted to the SMOCC study alone. Introducing equate groups 
compresses the range of scores, especially at the higher end. 

We have now seen that the number of active equate groups has a large effect 
on the model. The next sections look into the equate groups in more detail. 

2.5.4 AGE PROFILES OF SIMILAR MILESTONES 

Figure 2.5.3 displays the percentage of children that pass milestones at various 
ages for equate group EXP 26. Subject matter experts clustered similar items 
stemming from different instruments into equate groups. There are 184 equate 
groups that contain two or more milestones; the percentage pass by age for the 
items in these equate groups are shown here. 

FIGURE 2.5.3 Percentage of children that pass similar milestones at a given age 
(https://d-score.org/dbook-apps/p-a-equate-1339/). 

https://d-score.org/
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Most age profiles show a rising pattern, as expected, though some (e.g. FM17 

or EXP11) have one item showing a negative relation with age. Equate EXP26 

combines two-word sentences items from seven instruments into one plot. 
The item difficulties expressed as age-equivalents (cf. Section 1.3.1.2, Chapter I 
(van Buuren & Eekhout, 2021)) for these cohorts vary between 20–25 months. 
By comparison, equate group EXP18 (says two words) shows more 
heterogeneity across cohorts, and is therefore, less likely to be useful for 
equating. Equate group FM31 (stack two blocks) is another example of a 
promising example. By comparison, FM38 (stack 68 blocks) shows 
additional heterogeneity. As a last example, consider GM42 (walks alone), 
which has a similar age profile across cohorts, whereas GM44 (throws ball) 
or GM49 (walk down stairs) are more heterogeneous. 
We could follow different strategies in selecting which equate groups to 

activate. One strategy would be to include as many equate groups as 
possible (e.g. all 184 equates) so as to build as many bridges as possible 
between different instruments. A more selective strategy would be to activate a 
subset of promising equates and leave others inactive. The following section 
compares four different approaches. 

2.5.5 QUALITY OF EQUATE GROUPS 

This visualization shows how the passing percentage depends on the child’s D
score as calculated under four models. All models include the same 1339 
milestones, but differ in the number of active equates. The grey curve 
corresponds to the estimate made under the assumption that milestones are 
equally difficult. Good milestones for bridging instruments will have a tight 
bundle of curves. For example, as shown in Figure 2.5.4, equate EXP26 has 
tight bundles especially in models 1339_11 and 1339_33. By comparison, 
the curves of the two extreme models vary considerably: the model without 
any bridges (1339_) or the model with all bridges (1339_184) are thus less 
than ideal. The shallow grey curve of model 1339_184 indicates a poorer 
overall fit. 
Outfit and infit statistics measure the residual deviation of the items to the 

grey curve. High values (e.g. above 1.4) are undesirable and indicate lack of fit 
to the model. For example, the fit statistics for EXP26 in model 1339_184 

(1.70 and 1.25) indicate a mediocre fit, whereas EXP26 in models 1339_33 

and 1339_11 fits well. Sometimes the individual item curves are steeper than 
the grey curve. This indicates that these milestones are more discriminative than 
the combined item. Model 1339_ lacks a grey curve and has no fit statistics for 
equate groups, because in that model, the combined item is not activated. 
The probability curves provide a quick visual method for spotting promising 

and problematic equate groups. Examples of promising equate groups include 
COG36, FM31, GM26 and GM42. A little more weak are FM26 (has more 
variability), FM52 (looks promising, but has a problem with the item grigcd42 

from the GCDG_JAM_STUNTED cohort), and GM35 (does not align cohort 
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FIGURE 2.5.4 Percentage of children that pass similar milestones given their D-score 
as calculated under four models (1339 items, and 0, 11, 33 and 184 equate groups, 
respectively (https://d-score.org/dbook-apps/p-d-equate-1339/). 

GCDG-ZAF). In such cases, one may wish to move an item out of an equate 
group, combine equate groups, or inactivate troublesome links. 
Until now we only looked at models that include all 1339 items. In practice, 

we may improve upon the model by selecting the subset of milestones that 
fit the Rasch model. The next section looks in this modelling step in more 
detail. 

2.5.6 MILESTONE SELECTION 

Item infit and outfit are convenient statistics for selecting the milestones that fit 
the model. Figure 2.5.5 displays the infit and outfit statistics of model 
1339_11. The correlation between infit and outfit is high (r = 0.84). The 
expected value of the infit and outfit statistics for a perfect fit is 1.0. The centre 
of infit and outfit in Figure 2.5.5 is approximately 1.0, so on average one could 
say the items fit the model. Note however that fit values above and below the 
values of 1.0 are qualitatively different. Item with fit statistics exceeding 1.0 fit 
the model less well than expected (underfit), whereas items with fit statistics 
lower than 1.0 fit the model better than expected (overfit). See Chapter 1, 
Section 6.1 (van Buuren & Eekhout, 2021) for more details. 
Some practitioners remove both underfitting and overfitting items. However, 

we like to preserve overfitting items and be more strict in removing items that 
underfit. The idea is that preservation of the best fitting items may increase 
scale length, and hence reliability and measurement precision. Figure 2.5.5 
draws two cut-off lines at 1.0. Taking items with infit < 1.0 and outfit < 1.0 will 
select 631 out of 1339 items for further modelling. 

https://d-score.org/
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FIGURE 2.5.5 Infit and outfit of 1339 items in model 1339_11. 

About 8 percent of the points falls outside the plot. 

A practical problem of item removal is that it also affects equate group 
composition. By default, a removed item will also be removed from the equate 
group, so item removal may reduce the size of an equate group below two 
items. For passive equates this is no problem, since passive equates do no affect 
the estimates. However, removal of an underfitting item from an active equate 
group will break the bridge between the instrument it pertains to and the rest of 
the item set. Potentially this can result in substantial effects on the D-score 
distribution of the cohort, as demonstrated in Figure 2.5.2. As a solution, we 
force any items that are members of active equate groups to remain in the 
analysis. If that leads to substantially worse equate fit in the next model, we 
must search for alternative equate groups that bridge the same instruments and 
that are less sensitive to misfit. 

2.5.7 OTHER MODELLING ACTIONS 

2.5.7.1 INSTRUMENT FIT 

Some instruments fit better than others. Figure 2.5.6 shows the box plots of 
outfit per instrument. Instruments bar, by1, ddi and vin generally fit well, 
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FIGURE 2.5.6 Box plot of the distribution of item outfit per instrument in model 
1339_11. 

whereas discrepancies between model and data are larger for bat, by2 and 
sbi. Through additional modelling, we found that it was extremely difficult to 
get enough high-quality bridge items that could link bat (Battelle Development 
Inventory) to the other instruments. We also found that models without the Battelle 
were able to better discriminate children in the upper range of the D-score 
scale. We therefore opted to remove bat from the model, even though this 
meant that one cohort (GCDG-BRA-2) had to be dropped from the analysis. 
It is not clear why bat does not fit. Perhaps the scoring system of the Battelle 

in three categories invokes scoring behaviour that is different from the PASS/ 
FAIL scoring used by most other instruments, even though this appears to be 
less of a troublesome aspect in aqi, which also uses three response categories. 

2.5.7.2 SPLITTING, COMBINING AND SELECTING EQUATE GROUPS 

Most of the modelling effort went into finding a set of high-quality equate 
groups that link the instruments. For example, we tried to bridge the South-
African study placing vinxxc016 (uses a short sentence) into EXP26 (two
word sentences) and EXP36 (sentences of 3 or more words), but neither option 
led to a reasonable model. On the surface, milestone reasonable model. On the 
surface, milestone by3gmd06 (balances on right foot, 2 seconds) appears to fit 
within GM60 (balances on foot), but the analysis showed large discrepancies 
with the other items in the groups, so it had to be taken out. 
Subject-matter experts identified 38 items that were thought to be cross-

culturally incompatible. Table 2.5.1 provides an overview. Many of such milestones 
involve a specific language concept (such as a pronoun), refer to stairs (less common 
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TABLE 2.5.1 
Milestones not used for equating because of limited cross-cultural 
validity. 

Item Label 

aqislc023 When you dress your baby does she lift her foot for her shoe, sock, or pant leg? 

Using these exact words, ask your child, "Are you a girl or a boy?" Does your 
aqislc041 child answer correctly? 

by1mdd050 Washes and dries hands 

by1pdd053 Bowel and bladder control 

by1pdd054 manipulates table edge actively 

by2pdd069 Walsk up stairs with help 

by3cgd043 Walks down stairs with help 

by3cgd052 Walks down stairs with help 

by3gmd047 Clear Box: Front 

by3gmd049 Clear Box: Sides 

by3gmd057 Uses pronouns 

by3gmd058 Walks Up Stairs Series: Both feet on each step, with support. 

by3red030 Walks Down Stairs Series: Both feet on each step, with support 

by3exd030 Walks Up Stairs Series: Both feet on each step, alone. 

barxxx016 Walks Down Stairs Series: Both feet on each step, alone 

barxxx020 Understands pronouns (him, me, my, you, your) 

dengmd020 Eats with spoon without help (M; can ask parents) 

densld012 Takes off shoes and socks (M; can ask parents) 

densld013 Can dress (one piece) (M; can ask parents) 

grigmd219 Walk Up Stairs 

grigmd222 Drink from a cup 

mdsgmd002 help in house 

mdsgmd003 (Locomotor) Walks up and down stairs. 

mdsgmd004 (Locomotor) Goes alone on the stairs (any method) 

mdsgmd005 Hands-and-knees crawling 

mdsgmd006 Standing with assistance 

ddifmm019 Walking with assistance 

ddifmd154 Standing alone 

vinxxc002 Walking alone 

vinxxc003 chew solid foods 

vinxxc009 take off socks / shoes 

vinxxc012 get on with other children 

vinxxc014 know what's edible 

vinxxc022 walk upstairs 

vinxxc028 avoid simple danger - knife / hot 

vinxxc031 help around the house / clear table 

vinxxc040 Play or do things with other children of same age eg sing song 

ddifmm025 Help with little things around the house eg pick up things 
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in rural settings), help in house or clothing behaviour. These items have different 
meanings in different contexts, so they were not used to bridge instruments. 

2.5.8 ITEM INFORMATION 

Item information is a psychometric measure that quantifies the sensitivity of 
the item to changes in the person’s ability. An item is most sensitive around 
the D-score value where the PASS probability equals the FAIL probability, 
which corresponds to the item difficulty (δi). One unit change around δi has a 
large effect on the probability of endorsing, while one unit change far away 
from δi has negligible impact. Suppose person A had passing probability 0.7 
for some item. The information delivered by that item for person A is the 
product 0.7 × (1.0 – 0.7) = 0.21. Suppose person B has a D-score that 
coincides with the difficulty level of the item. In that case, the information for 
B equals 0.5 × (1 – 0.5) = 0.25, the maximum. Likewise, for a person C with 
high ability, the information could be 0.98 x 0.02 = 0.02, so that item carries 
almost no information for person C. 
The information is inversely related to the error of measurement. More 

information amounts to less measurement error. For each response in the data, 
we can compute the amount of information it contributed to the model D-score. 
By summing the information over persons, we obtain a measure of certainty 
about the difficulty estimate of the item. This sum of information incorporates 
both the number of administrations and the quality of the match between person 
abilities and item difficulty. 
Figure 2.5.7 displays the summed information for each item, divided into 

four grades: A(best) to D (worst). The information grade measures the stability 
of the difficulty estimate. Most items receive grades higher than C. In total, 30 
milestones have grade D. Adding these items to future studies may yield 
important additional information. 

FIGURE 2.5.7 Item information grade by item difficulty for the final model. 
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TABLE 2.5.2 
Equate group information in the final model. 

equate tau n info grade 

EXP2 11.44 3608 162.33 A 

REC6 30.9 5428 95.40 B 

GM25 36.43 6380 470.63 A 

FM26 42.93 4155 296.78 A 

GM35 44.01 5522 356.04 A 

COG36 44.53 7912 230.03 A 

GM42 49.86 5953 327.74 A 

FM31 53.17 10991 731.66 A 

COG55 54.08 5647 420.35 A 

FM72 57.07 5430 253.64 A 

EXP26 59.15 9119 578.79 A 

SA1 60.08 3363 172.11 A 

FM38 60.87 10236 491.68 A 

FM52 67.8 13487 1159.94 A 

FM43 69.66 15765 1563.89 A 

GM60 70.09 9519 1070.61 A 

REC40 71.04 10393 1182.91 A 

FM61 72.56 10612 945.87 A 

The red circles indicate active equate groups. Most have grade A, so we 
have a lot of information about the items that form the active equate groups. 
Table 2.5.2 displays more detailed information for the active equate groups. 
The sample sizes are reasonably large. Many information statistics are well is 
above 100; the criterion for Grade A. The interpretation of this criterion is as 
follows. Suppose that we obtain a sample of 400 persons who are all 
perfectly calibrated to the item of interest. In that case, the information for 
that item will be equal to 100. 

2.5.9 FINAL MODEL 

Unfortunately, there is no single index of model fit that we can optimize. 
Modelling is more like a balancing act among multiple competing objectives, 
such as 

•	 preserving as many items as possible that fit the model; 
•	 finding high-quality active equate groups that span many cohorts and 

instruments; 
•	 picking active equate groups for which we have enough information; 
•	 providing reasonable age-conditional distributions of the D-score; 



151 Modelling equates 

• representing various developmental domains in a fair way; 
• preserving well-fitting historical models as new data become available; 
• maintaining a reasonable calculation time. 

This section showed various modelling techniques and ways to assess the 
validity of the model. In real life, we fitted a total number of 140 models on the 
data and made many choices that weigh the above objectives. The final model 
for the GCDG data consists of 565 items (originating from 14 instruments) that 
fit the Rasch model and that connect through 18 equate groups. Due to the 
sparseness of data at the very young ages, the quality of the model is best for 
ages between 4–36 months. 
Model 565_18 formed the basis of the publication by Weber et al. (2019). 

Additional detail on model 565_18 is available through the dmodel shiny app 
at https://tnochildhealthstatistics.shinyapps.io/dmodel/. 

https://tnochildhealthstatistics.shinyapps.io/
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Once we identified a satisfactory D-score model, we may calculate the D-score 
for children from different cohorts and compare their values. This section 
highlights various techniques and issues for comparing D-score distributions 
between studies. We will address the following topics: 

• Comparing child development across studies (2.6.1) 
• Precision of the D-score (2.6.2) 
• Domain coverage (2.6.3) 

2.6.1 COMPARING CHILD DEVELOPMENT ACROSS STUDIES 

This display shows the scatterplot of the D-score by age separately for each 
cohort, Figure 2.6.1 presents the D-score by age for the GCDG-COL-LT52M 

study. Remember from section 2.2.1 that each study selected its own set of 
instruments to collect the data. The scatterplots demonstrate a significant 
advance made possible by the D-score: We can plot the developmental scores 
of children from different cohorts, with different ages, using different 
instruments, on the same vertical axis. 
The five blue lines guide the eye. These lines indicate the locations of the -2SD, 

-1SD, 0SD, +1SD and +2SD quantiles at each age in the combined data. Section 
2.5.4, in Chapter I (van Buuren & Eekhout, 2021) motivates the idea and provides 
some technical details. We’ll come back to these lines in section 2.7.2. 
By and large, the data in every study follow the blue lines. Perhaps the most 

obvious exception is the GCDG-JAM-STUNTED cohort, where older children 
somewhat exceed the D-score range. It is unknown whether this is real, or due 
to a sub-optimal calibration of the instrument. 
Figure 2.6.2 plots the same data with D-score transformed into age 

standardized scores (DAZ) for study GCDG-COL-LT42M. The distributions 
of the age standardized scores for all studies are displayed here. Replacing 
the D-score by the DAZ emphasizes the differences both within and between 
studies. The majority of observations lies between the -2 SD and +2 SD lines 
in all cohorts. Using DAZ makes is easier to spot deviating trends, e.g., for 
the Jamaican or Ethiopian data. 
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FIGURE 2.6.1 D-score distributions for study GCDG-COL-LT42M (https://d-score. 
org/dbook-apps/gcdgdscores/). 

2.6.2 PRECISION OF THE D-SCORE 

The EAP algorithm estimates the D-score from a set of PASS/FAIL scores. The 
standard deviation of the posterior distribution (or sem: standard error of 
measurement) quantifies the imprecision of the D-score estimate. The sem is 
inversely related to the number of items. Thus, when we administer more 
milestones, the sem of the D-score drops. 
Figure 2.6.3 shows that the sem drops off rapidly when the number of items 

is low and stabilizes after about 35 items. Apart from test length, the precision 
of the D-score also depends on item information (cf. section 2.5.8). 
Administering items that are too easy, or too difficult, does not improve 
precision. The figure suggests that - in practice - a single D-score cannot be 
more precise than 0.5 D-score units. 

https://d-score.https://d-score.org/
https://d-score.https://d-score.org/
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FIGURE 2.6.2 DAZ distributions for study GCDG-COL-LT42M (https://d-score.org/ 
dbook-apps/gcdgdaz/). 

One may wonder whether the sem depends on age. Figure 2.6.4 suggests that 
this is not the case. The average DAZ is close to zero everywhere, as expected. 
The interval DAZ ± sem will cover the true, but unknown, DAZ in about 68% 
of the cases. While the interval varies somewhat across ages, there is no 
systematic age trend. 
Does precision vary with studies? The answer is yes. Figure 2.6.5 plots the 

same information as before but now only for GCDG-COL-LT42M. The 
standard error of measurement around de age-standardized D-scores (DAZ) for 
each cohort can be found here. Individual data points are added to give a feel 
for the design. The Colombia cohort GCDG-COL-LT45M, Figure 2.6.5, 
administered the Bayley-III, where each child answered on average 45 items, 
so the sem is small. In contrast, the Dutch cohort GCDG-NLD-SMOCC collected 
data on a screener consisting of about ten relatively easy milestones, so the sem 

https://d-score.org/
https://d-score.org/
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FIGURE 2.6.3 Standard error of measurement (sem) as a function of the number of items. 

FIGURE 2.6.4 Mean DAZ ± sem as a function of age. 

is relatively large. As a result, the Colombian D-scores are much more precise 
than the Dutch. These differences in precision between cohorts is also reflected 
in Figure 2.6.6. This figure shows the pooled standard error of measurement 
within each cohort. 
The ordering of studies depends on test length and item information. Table 

2.6.1 shows the median number of items per child (test length) and the 
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FIGURE 2.6.5 The standard error of measurement (sem) around the age-standardized
 
D-scores (DAZ) for cohort GCDG-COL-LT42M (https://d-score.org/dbook-apps/gcdgsem).
 

FIGURE 2.6.6 Cohort Standard Error of Measurement (sem). 

https://d-score.org/
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TABLE 2.6.1
 
Test length and probability to pass the items per cohort.
 

test length (median) pass probability (median)cohort        
GCDG-ETH 39 0,66 

GCDG-CHL-1 32 0,67 

GCDG-COL-LT45M 45 0,64 

GCDG-COL-LT42M 61 0,62 

GCDG-JAM-LBW 43 0,55 

GCDG-CHN 27 0,50 

GCDG-JAM-STUNTED 38 0,65 

GCDG-CHL-2 33 0,48 

GCDG-BGD-7MO 14 0,38 

GCDG-MDG 8 0,35 

GCDG-BRA-1 18 0,89 

GCDG-NLD-SMOCC 10 0,80 

GCDG-NLD-2 11 1,00 

GCDG-ECU 3 0,67 

GCDG-ZAF 12 1,00 

probability to pass the item. The Ethiopian cohort GCDG-ETH administered 39 
milestones with a median probability of 0.66. In contrast, the South Africa 
study GCDG-ZAF measures 12 items which were all very easy for the sample at 
hand (median probability of 1.0). One may thus well explain the extremes by 
test length and item information. 
In general, the design of the study has a significant impact on the precision of 

the measurement. Our ongoing work addresses the question how one may 
construct a measurement instrument that will be optimally precise given the 
goals of the research. 

2.6.3 DOMAIN COVERAGE 

The D-score is a one-number summary of early child development. Traditional 
instruments distinguish domains (like motor, communication, language and 
cognitive development) and some provide ways to calculate a total score. The 
D-score, on the other hand, is based on the notion that child development is a 
unidimensional latent construct and hence does not provide domain scores. And 
thus, the question is how the D-score represents domains. 
This section explores the following two questions: 

•	 Can we break down the D-score by domain contribution, and if so, can 
we evaluate whether the D-score fairly represents all domains? 

•	 Can we calculate domain-specific D-scores? 
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2.6.3.1 DOMAIN COVERAGE OF THE SCALE 

For many items in the D-score model, we had expert information available as to 
which domain the item belongs. For each item, we calculated the proportion of 
times the experts assigned it to one of five domains: Fine Motor, Gross Motor, 
Expressive, Receptive, Cognitive. We then calculated the distribution of domain 
by age. 
Figure 2.6.7 shows the domain composition of the D-score across different 

levels of ability. Note that we miss domain information for a few items. The 
share of gross-motor is large in early development (e.g., between 15 and 30 
months), and gradually tapers off at higher levels. Reversely, the percentage of 
cognition and language is relatively small before 30 months but rapidly rises as 
the child matures. These transitions in domain composition look both 
reasonable and valid. 

2.6.3.2 DOMAIN-SPECIFIC D-SCORES 

Suppose we select a domain of interest and calculate the D-score only from 
items that substantially load onto that domain. We then get a domain-specific 
D-score. Items that relate to multiple domains contribute to multiple domain-
specific D-scores. 
Figure 2.6.8 displays the standardized domain-specific D-score (i.e. DAZ) 

per cohort. The DAZ strips out irrelevant age variation, and thus enhances 
comparability between cohorts. The error bars around the scores depict the sem 
interval. We observe some variation in domain-specific DAZ scores within 
cohorts. Still, these differences are relatively small and well within the margins 
of error. This analysis suggests that the D-score is an excellent overall summary 
of the domain-specific D-scores. 
The D-score methodology assumes that child development is a unidimensional 

scale. As a consequence, the correlations between different domain-specific 

FIGURE 2.6.7 Domain coverage of the D-score scale. 



159 Comparing ability 

D-scores are extremely high (r > 0.95). It is more interesting to study the 
correlation between the DAZ equivalent of the domain-specific scores. 
Table 2.6.2 lists the Pearson correlation matrix of the DAZ and the five 

domain-specific DAZ scores. All correlations between the DAZ and the 
domain-specific scores are high, thus confirming the generic character of the 
D-score and DAZ. We find high inter-domain correlations for the cognitive-
receptive, cognitive-fine motor and expressive-receptive pairs. The gross motor 
domain appears as somewhat distinct from the four other domains. Its position 
may be genuine, but could also be related to the smaller number of responses 
on gross motor milestones in the GCDG data. 
Figure 2.6.9 displays individual scores for a 3 year old boy. The filled bars 

indicate the number of available items per domain. The vertical white line that 
crosses the horizontal axis at value 5 indicates a threshold for a minimum 
number of items needed for a D-score. Note that the number of items for Gross 
Motor in this example is meagre (only three items). The grey vertical line 
indicates the value of the overall D-score (68.55 D). The nearby dashed lines 
are located at one sem (0.53 D) distance. The coloured points are the domain-

FIGURE 2.6.8 Average domain-specific DAZ ± sem by cohort. 

TABLE 2.6.2 
Pearson correlation of the DAZ and five domain-specific DAZ scores. 

DAZ Fine motor Gross Motor Cognitive Receptive Expressive 

DAZ 1.00 0.69 0.57 0.84 0.70 0.69 

Fine motor 0.69 1.00 0.40 0.74 0.50 0.39 

Gross Motor 0.57 0.40 1.00 0.43 0.34 0.30 

Cognitive 0.84 0.74 0.43 1.00 0.76 0.59 

Receptive 0.70 0.50 0.34 0.76 1.00 0.63 

Expressive 0.69 0.39 0.30 0.59 0.63 1.00 
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specific D-scores with the sem around in error bars. The plot visualizes that the 
boys’ scores on language domains (i.e. Expressive and Receptive) are low as 
compared to the motor and cognitive domains. A systematic discrepancy 
between various domain-specific scores might be an early warning sign for 
developmental delay. 

FIGURE 2.6.9 Domain-specific D-scores for a 3 year old boy. 
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The Sustainable Development Goals (SDG) formulated by the United Nations 
(UN) set targets to promote prosperity while protecting the planet. One or more 
indicators quantify the progress towards each target. 
This section explores the use of the D-score to monitor the progress of the 

indicator for healthy child development, SDG 4.2.1. We propose a method to 
define on-track development and show how the application of this method pans 
out for the GCDG data. More in detail, the section deals with the following 
topics: 

• Estimating SDG 4.2.1 indicator from existing data (2.7.1) 
• Defining developmentally on track (2.7.2) 
• Country-level estimations (2.7.3) 
• Relation to other estimates (2.7.4) 

2.7.1 ESTIMATING SDG 4.2.1 INDICATOR FROM 
EXISTING DATA 

The UN Sustainable Development Goals form a universal call to action to end 
poverty, protect the planet and improve the lives and prospects of everyone, 
everywhere. All UN Member States adopted the 17 Goals in 2015. The SDG 4 
target to ensure inclusive and equitable quality education and promote lifelong 
learning opportunities for all. SDG 4.2 reads as: 

By 2030, ensure that all girls and boys have access to quality early 
childhood development, care and preprimary education so that they are 
ready for primary education. 
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To measure progress, the UN defined indicator 4.2.1 as follows: 

Proportion of children under 5 years of age who are developmentally on 
track in health, learning and psychosocial well-being, by sex. 

On July 22, 2020, the indicator was changed into 

Proportion of children aged 24–59 months who are developmentally on 
track in health, learning and psychosocial well-being, by sex. 

The exclusion of children 0–24 months is at variance with the importance of 
healthy growth and development during the first 1000 days of life. Indeed, the 
UN restricted the age range for practical concerns. Loizillon et al. (2017) 
report: 

The initial recommendation was for the ECDI to measure child 
development from birth–5 years, but the range was restricted to 3–5 years 
due to time and resource constraints and limited availability of comparable 
measurement tools for children under age 3. 

The careful scientific approach underlying the D-score fills the gap for children 
aged 0–24 months. Also, the D-score methodology enables extensions to ages 
beyond 24 months, permits back-calculation of D-scores from existing data, 
and acts as a linking pin to compare child development from birth onwards. 
The cohorts included in the GCDG study represent a wide range of countries 

and instruments (see Section 2.2.1). Combining existing data from such a wide 
range of countries to create the D-score, is undoubtedly challenging, but doable. 
Although, in all fairness, we note that obtaining accurate comparisons between 
world-wide populations requires additional representative (existing) data 
beyond what is available here. 

2.7.2 DEFINING DEVELOPMENTALLY ON TRACK 

In 2006, the World Health Organization (WHO) published the WHO Child 
Growth Standards. These standards specify “how children should grow” and 
form the basis for widely used anthropometric indicators such as stunting and 
wasting. We advocate a similar approach for child development. More in 
particular, the following steps: 

1. Measure child development on an interval scale; 
2. Estimate	 the age-conditional reference distribution for normal child 

development; 
3. Define the indicator developmentally on track as the proportion above a 

chosen cut-off. 
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Step 1 is solved by the D-score. Step 2 borrows from well-tested statistical 
methodology for constructing growth standards (Borghi et al., 2006). Step 3 
can be done in different ways, but a applying a simple cut-off fits easily with 
regular practice in reporting international comparisons. 
Figure 2.7.1 demonstrates steps 2 and 3 in more detail. In the online visualiza 

tion you can click ‘‘Next’’ to advance these series of six steps: 

1. Plot the D-score by age; 
2. Model the relation between age and D-score by	 an LMS model. In 

practice, this amounts to smoothing three curves representing the 
median, coefficient of variation and the skewness. 

3. Present the centile lines for the model; 
4. Plot the age-standardized scores for development (DAZ); 
5. Draw standard deviation lines	 to indicate the location at ±1 and ±2 

standard deviation from the mean; 
6. Count observations above the -2 SD line as on-track. Count observation 

below the -2 SD lines as off-track (red dots). 

FIGURE 2.7.1 Illustration of the method to define on-track development (https:// 
d-score.org/dbook-apps/gcdgreferences/). 

https://d-score.org/
https://d-score.org/
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Note: The SD lines as presented in Figure 2.7.1, are built upon on a 
convenience sample. The GCDG cohorts are not representative samples, and 
the countries are not representative of the world. While we should not over-
interpret these references, they play a central role in a stepwise, principled 
approach to define “developmentally on track.” 

2.7.3 COUNTRY-LEVEL ESTIMATIONS 

Using the definition from the previous section, we can calculate the percentage 
of children that are developmentally on track. Table 2.7.1 summarizes this 
statistic by country. At a cut-off value of -2 SD, we expect that about 97.7% of 
the children will be on track. The actual country estimates fall into the range 
93.9 - 99.9 and are thus near the theoretical value. This close correspondence 
shows that the definition and estimation procedure work as expected. 
Bear in mind that the measurements leading up to these estimates come from 

different instruments. It is gratifying to see how well we can do with historical 
data, thanks to the robust underlying measurement model. Of course, 
comparability only gets better if all countries would use the same instrument. 
However, using the same tool everywhere is not a requirement. 

2.7.4 OFF-TRACK DEVELOPMENT AND STUNTED GROWTH 

Weber et al. (2019) thoroughly discuss concurrent, discriminant and predictive 
validity of the D-score using the GCDG data. In this section, we concentrate on 
the relation between the D-score and stunting, a popular measure of impaired 
height growth in children due to nutrition problems. The WHO defines stunted 
growth as a height-for-age Z-score below the -2 SD line of the WHO Child 
Growth Standards (HAZ < -2.0). 

TABLE 2.7.1 
Percentage of on-track children per country. 

Country Percentage 
on-track 

BGD 94.9 

BRA 99.5 

CHL 98.3 

CHN 99.9 

COL 98.8 

ECU 93.9 

ETH 99.4 

JAM 99.6 

MDG 96.6 

NLD 96.8 

ZAF 97.4 
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Figure 2.7.2 plots the percentage off-track and percentage stunting per 
country. This plot reveals two exciting features: 

•	 The variation in stunting is much larger than the variation off-track 
development. One might speculate that height is more dependent on the 
environment than off-track development, and hence more variable. 

•	 Stunted growth and off-track development are unrelated. Ranking 
countries by stunting or by off-track development yields substantially 
different orders. This finding provides clear counter-evidence to the 
argument that stunted growth is as a proxy for delayed development. It 
may even be the case the child development and physical growth are 
different maturation processes that develop largely independently. 

FIGURE 2.7.2 Off-track development (%) versus stunting (%) per country. 
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However, this is not the whole story. Figure 2.7.3 reveals a consistent 
difference in DAZ between stunted and non-stunted children of about 0.2-0.3 
SD. There could be factors at the child level that affect both development and 
height growth. For example, low-income families may lack the resources for 
adequate nutrition, which may impact both child development and physical 
growth. 
The exact nature of the relation between stunting and development is still 

obscure. The D-score provides a means to study the intriguing interplay 
between both measures in more detail. 

FIGURE 2.7.3 Difference in mean DAZ per country between stunted and not stunted 
children. 
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Section 2.7 described a method to define and estimate off-track development. 
The current section highlights strategies to find factors that discriminate 
between children that are on-track and off-track. We order explanatory factors 
relative to their importance and discuss opportunities for interventions. 

• What determines who is developmentally on-track (2.8.1) 
• Factors that impact child development (2.8.2) 

2.8.1 WHAT DETERMINES WHO IS DEVELOPMENTALLY 
ON-TRACK? 

There are multiple ways to define on-track development. Here we will use the 
method outlined in Section 2.7.2. Ideally, we would like to fit the age-conditional 
reference distribution on a sample of children with normal, healthy development. 
As noted before, we calculated the references used in Section 2.7.2 from a 
convenience sample. They may not be representative of healthy development. 
Assuming we place the cut-off value at -2 SD, we may subdivide the observed 

D-scores into off-track and on-track. Figure 2.8.1 colours the regions of the 
D-score for children considered on-track (green) and off-track (red). The regions 
indicate the expected locations of D-scores in practice. Although one could find 
D-score outside the coloured areas, such should be very rare. The occurrence 
of such cases may indicate an error in the calculation of the D-score, most 
likely caused by setting an incorrect age variable. 
Preventing observations in the red region requires us to form an idea about 

the factors that determine the off-track probability. The next section looks into 
this topic. 

2.8.2 FACTORS THAT IMPACT CHILD DEVELOPMENT 

We already know many of the factors that influence early child development. A 
higher level of education in the family promotes development. Infectious 
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FIGURE 2.8.1 D-score observatations that are on-track according the current references. 

diseases like malaria slow down growth. Access to adequate nutrition, clean 
water and a stimulating, prosperous and safe environment is favourable for 
healthy development. And so on. Unfortunately, we do not have data on most 
factors, so we need to limit ourselves to a few background characteristics. 
Table 2.8.1 compares the frequency distributions of various factors for children 

on-track versus off-track. There are only tiny differences between boys and 
girls. Children with low birth weight (< 2500 gr) are more at risk for off-track 
development. This estimate does not correct for gestational age. We discussed 
techniques for such corrections elsewhere. 
The influence of maternal education on off-track development follows the 

expected trend. Interestingly, it seems that a rural environment could prevent 
off-track development. We note that original measures of maternal education 
and residence were harmonized across studies. It would, therefore, also be 
interesting to study the impact per cohort using the actual factor coding. 
We predicted DAZ by linear regressions with predictors country, sex, birth 

weight, maternal education, height for age and residential area. The percentage of 
explained variance was 11 percent. Figure 2.8.2 depicts the relative contributions 
of the individual factors to the prediction. Country differences explain over half 
the variances, followed by maternal education. Contributions of height-for-age 
(HAZ), low birth weight and residence are about equal in magnitude. 
These analyses only scratch the surface. It is nowadays common to analyse 

the impact of interventions on height and HAZ by multivariate techniques and 
machine learning methods. The D-score and DAZ are drop-in replacements that 
allow similar procedures to study which factors contribute to healthy child 
development worldwide. 
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TABLE 2.8.1
 
Comparisons between on-track and off-track development.
 

On-track Off-track 

n % n % 

sex female 21136 97.7 489 2.3 

male 20805 97.2 595 2.8 

birth weight <2500gr 3388 94.8 185 5.2 

>2500gr 36375 97.8 821 2.2 

maternal education no education 1907 96.7 66 3.3 

any primary 11764 96.7 398 3.3 

any secondary 21576 97.7 503 2.3 

higher secondary 6263 98.4 101 1.6 

residence rural 1251 98.9 14 1.1 

semi-urban 2236 99.0 23 1.0 

urban 18740 97.1 566 2.9 

metropolitan 11122 97.9 234 2.1 

* Exludes children with missing DAZ or missing factor 

FIGURE 2.8.2 Relative importance of the explanatory factors in this study. 
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This closing section briefly summarizes the key lessons from previous sections. 
The section covers: 

• D-score from multiple instruments (2.9.1) 
• Variability within and between cohorts (2.9.2) 
• D-score for international comparisons (2.9.3) 
• Better measurement (2.9.4) 

2.9.1 D-SCORE FROM MULTIPLE INSTRUMENTS 

We developed the initial D-score methodology for just one instrument. In 
practice, however, we need to deal with data collected on multiple, partially 
overlapping tools. This chapter addressed the problem how to define and 
calculate the D-score based on data coming from various sources, using 
multiple instruments administered at varying ages. 
We had longitudinal data available from 16 cohorts, collected with 15 tools 

to measure child development at various ages. Our analytic strategy to define a 
D-score from these data consists of the following steps: 

1. Make an inventory of instruments and cohorts; 
2. Combine all measurements into one dataset; 
3. Find out which shared instruments connect cohorts; 
4. Place similar items from different instruments into equate groups; 
5. Find the best set of active equate groups; 
6. Estimate item difficulty using a restricted Rasch model that requires the 

estimates of all items within an active equate group to be identical; 
7. Weed out items that do not fit the model. 

We need to perform steps 5, 6 and 7 in an iterative fashion. Depending 
on the result, we may also need to redefine, combine or break up equate 
groups (step 4). 
These techniques are well-known within psychometrics and educational 

research. Our approach builds upon a well-grounded and robust theory of 
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psychological measurement. We, therefore, expect that repeating our method on 
other data will lead to very similar results. 
A novel aspect in our methodology is the systematic formation of candidate 

equate groups by subject-matter experts based on similarity in concept and 
content. Our subsequent testing and tailoring of each equate group given the 
data provide empirical evidence of its quality for connecting instruments. While 
anchoring tests by itself is not novel, we are not aware of any work aimed at 
identifying the best set of active equate groups on this scale. 

2.9.2 VARIABILITY WITHIN AND BETWEEN COHORTS 

The final model retains 565 items and employs 18 equate groups. Given the 
difficulty estimates from that model, we can estimate the D-score and DAZ for 
each measurement. 
Figure 2.6.1 reveals that all cohorts show a rapidly rising age trend in the D-

score, which matches the earlier finding that child development is faster in 
younger children. 
Figure 2.6.2 shows large overlaps in the DAZ distributions between cohorts. 

This finding suggests that the level of child development is similar in different 
regions of the world. Some studies display more variability in DAZ than others, 
which is likely to be related to differences in measurement error, as the number 
of milestones differs widely. 
Observe that we used all cohorts for modelling, which may have made them 

appear more similar than they are. It would be good if we could verify the 
apparent similarities in level and variability of child development in different 
regions by other data that were not part of the modelling. 

2.9.3 D-SCORE FOR INTERNATIONAL COMPARISONS 

The D-score is a universal scale of early child development. The D-score does 
not depend on a particular instrument. Instead, we can calculate a D-score as long 
as appropriate difficulty estimates are available for the tool at hand. This feature 
makes the D-score methodology flexible and helpful for international comparisons. 
Of course, the ideal situation for international comparisons would be that all 

countries collect child development data in the same way. In practice, this ideal 
may be difficult to achieve. Also, we cannot change past data. In these less-
than-ideal worlds, the D-score presents a convenient, conscientious and timely 
alternative. 
As an example, we outlined a generic strategy on how to advance on SDG 

4.2.1. We use the D-score to operationalize the concept As an example, we 
outlined a generic strategy on how to advance on SDG 4.2.1. We use the D-
score to operationalize the concept developmentally on track. We calculated 
age-conditional references of the D-score, analogous to the WHO Multicentre 
Growth Reference Study. We may then define cut-off values. Children above 
the cut-off then count as developmentally on track. 
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While we highlighted the principles, much work still needs to be done. First, 
there are over 150 instruments for child development, and our current key 
covers only a fraction of these. We are actively expanding the key using 
additional data, so as time passes the coverage of tools will go up. Second, we 
calculated the references on a mix of studies, some of which include special 
populations. Thus, we cannot interpret the current reference values as portraying 
normal development. We hope that the inclusion of healthy population data will 
improve the usefulness of the references as a standard for child development. 

2.9.4 BETTER MEASUREMENT 

The D-score metric is a generic measure of child development. It summarizes 
child development by one number. We found that D-score fairly represents 
development domains over the entire scale. Due to its generic nature, the D-
score is less suitable for measuring a specific domain. It may then be better to 
use a specialized tool that accesses motor, cognitive or communication faculties. 
For example, think of sub-scales from the Bayley, ASQ, Griffiths, and so on. 
Note that also in those cases, one still has the option of calculating a D-score. 
The opposite scenario may also be of interest. Suppose we want to measure 

generic development AND identify any areas of slow growth. Extending the 
measurement by adding more items from domains with a higher failure rate will 
then increase precision in areas of suspected delay. 
Since we based the D-score on a statistical model, we may create instruments 

customized to the exact needs of the study. Population-based studies may 
require a short measure consisting of a handful of items per child, and 
aggregate scores over many children to achieve precision. Intervention studies 
aim for a precise estimate for the intervention effect. If group sizes are small, 
we may administer a more extended test to achieve the same precision and vice 
versa. At the other end of the spectrum, for clinical purposes, we want a precise 
estimate for one particular person, so here we will administer a relatively long 
test. The good news is: As long as we pick items from the statistical model, the 
D-score in those three cases are all values on the same scale. 
Our ongoing work targets tailoring instruments to a study design and 

discusses all of these options. And more. 
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A 
Abbreviations 

Section Abbreviation Description 

2.2.2 GCDG-BGD-7MO The Bangladesh study of the GCDG (Tofail et al., 2008) 

2.2.2 GCDG-BRA-1 The Brazil 1 study of the GCDG (Victora et al., 2006) 

2.2.2 GCDG-BRA-2 The Brazil 2 study of the GCDG (Moura et al., 2010) 

2.2.2 GCDG-CHL-1 The Chile 1 study of the GCDG (Lozoff et al., 2003) 

2.2.2 GCDG-CHL-2 The Chile 2 study of the GCDG (Conteras & González, 2015) 

2.2.2 GCDG-CHN The China study of the GCDG (Lozoff et al., 2016) 

2.2.2 GCDG-COL-LT45M The Colombia 1 study of the GCDG (Attanasio et al., 2014) 

2.2.2 GCDG-COL-LT42M The Colombia 2 study of the GCDG (Rubio-Codina et al., 2016) 

2.2.2 GCDG-ECU The Ecuador study of the GCDG (Paxson & Schady, 2010) 

2.2.2 GCDG-ETH The Ethiopia study of the GCDG (Hanlon et al., 2009) 

2.2.2 GCDG-JAM-LBW The Jamaica 1 study of the GCDG (Walker et al., 2004) 

2.2.2 GCDG-JAM- The Jamaica 2 study of the GCDG (Grantham-McGregor et al., 
STUNTED 1991) 

2.2.2 GCDG-MDG The Madagascar study of the GCDG (Fernald et al., 2011) 

2.2.2 GCDG-NLD-SMOCC The Netherlands 1 study of the GCDG (Herngreen et al., 1992) 

2.2.2 GCDG-NLD-2 The Netherlands 2 study of the GCDG (Doove, 2010) 

2.2.2 GCDG-ZAF The South Africa study of the GCDG (Richter et al., 2007) 

2.2.3 Bayley Scale for Infant and Todler Development version 1 
by1 

(Bayley, 1969) 

2.2.3 Bayley Scale for Infant and Todler Development version 2 
by2 

(Bayley, 1993) 

2.2.3 Bayley Scale for Infant and Todler Development version 3 
by3 

(Bayley, 2006) 

2.2.3 den Denver Developmental Screening Test (Frankenburg et al., 1992) 

2.2.3 gri Griffiths Mental Development Scales (Griffiths, 1967) 

2.2.3 bat Battelle Developmental Inventory (Newborg, 2005) 

2.2.3 vin Vineland Social Maturity Scale (Doll, 1953) 
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A 

(Continued) 

Section Abbreviation Description 

2.2.3 ddi Dutch Developmental Instrument (Schlesinger-Was, 1981) 

2.2.3 bar Barrera Moncada (Moncada, 1981) 

2.2.3 tep Test de Desarrollo Psicomotor (Haeussler & Marchant, 1999) 

2.2.3 aqi Ages and Stages Questionnaire (Squires & Bricker, 2009) 

2.2.3 sbi Stanford Binet Intelligence Scales (Roid, 2003) 

B 
Notation 

Section Symbol Term Description 

2.4.4 βn Ability True (but unknown) developmental score of child n 

2.4.4 δI Difficulty True (but unknown) difficulty of item i 

2.4.4 δq Difficulty The combined difficulty of the items in equate group q 

2.4.4 πni Probability True (but unknown) probability that child n passes item i 

2.4.4 l Count The number of items in the equate group 

2.4.4 wi Count The number of respondents with an observed score on item i 

2.4.6 Pni Probability Estimated probability that child n passes item i 

2.4.6 xni Data Observed response of child n on item i, 0 or 1 

2.4.6 Wni Variance Variance of xni 
2.4.6 zni Residual Standardized residual between xni and Pni 

2.4.6 Ni Count Number of responses on item i 

2.5.6 r Correlation Correlation coefficient 

2.6 D Score Developmental score of a child: D-score 

2.6.2 sem Error Standard Error of Measurement: precision of the D-score 
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UNDERLYING DATA 

The raw data needed to replicate these analyses are not public, so we cannot 
share it with this publication. However, the reader can apply for access to the 
data through the study contact. The table given below contains the contact 
information for each cohort included in this publication. 
A subset of studies made their study data publicly available under a CC BY 

4.0 license (https://creativecommons.org/licenses/by/4.0/)1. Authorship remains 
with the study coordinator, but users are free to redistribute, alter and combine 
the data, on the condition of giving appropriate credit with any redistributions 
of the material. The URL of the public data is https://d-score.org/childdevdata/. 

Name in Reference Contact 
publication 

GCDG-BGD-7MO Hamadani et al., 2011; Tofail, 2009 Jena Hamadani 
(jena@icddrb.org) 

GCDG-BRA-1 Halpern et al., 1996; Victora et al., 2006 Simone Karam 
(Karam.simone@gmail.com) 

GCDG-BRA-2 Moura et al., 2010 Simone Karam 
(Karam.simone@gmail.com) 

GCDG-CHL-1 Lozoff et al., 2013 Betsy Lozoff 
(blozoff@umich.edu) 

GCDG-CHL-2 Conteral & González, 2015 Lia Fernald 
(fernald@berkeley.edu) 

GCDG-CHN Angulo-Barroso et al., 2016; Lozoff et Betsy Lozoff 
al., 2016; (blozoff@umich.edu) 
Santos et al., 2017 

GCDG-COL- Andrew et al., 2017; Attanasio et al., Marta Rubio 
LT45M 2014 (martarubio@iadb.org) 

GCDG-COL Rubio-Codina et al., 2016 Marta Rubio 
LT42M (martarubio@iadb.org) 

GCDG-ECU Araujo et al., 2016; Fernald & Hidrobo, Caridad Araujo 
2011; (mcaraujo@iadb.org) 
Paxon & Shady, 2010 

GCDG-ETH Hanlon et al., 2016 Charlotte Hanlon 
(charlotte.hanlon@kcl.ac.uk) 

GCDG-JAM-LBW Walker et al., 2004; Walker et al., 2010 Susan Walker 
(susan.walker@uwimona.edu.jm) 

(Continued) 
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Name in Reference 
publication 

GCDG-JAM-	 Grantham-McGregor et al., 1991; 
STUNTED	 Grantham-

McGregor et al., 1997; Walker et al., 
2005 

GCDG-MDG	 Galasso et al., 2011; Galasso et al., 2017 

GCDG-NLD- Herngreen et al., 1992 
SMOCC 

GCDG-NLD-2 Doove et al., 2010; Doove et al., 2019; 

GCDG-ZAF	 Richter et al., 1995; Richter et al., 2004; 
Richter et al., 2007; Yach et al., 1991 

Contact 

Susan Walker
 
(susan.walker@uwimona.edu.jm)
 

Ann Weber
 
(annweber@stanford.edu)
 

Paul Verkerk
 
(paul.verkerk@tno.nl)
 

Bernice Doove
 
(bernice.
 
doove@maastrichtuniversity.nl)
 

Linda Richter
 
(Linda.Richter@wits.ac.za)
 

maolto:susan.walker@uwimona.edu.jm
maolto:annweber@stanford.edu
maolto:paul.verkerk@tno.nl
maolto:bernice.doove@maastrichtuniversity.nl
maolto:bernice.doove@maastrichtuniversity.nl
maolto:Linda.Richter@wits.ac.za
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1 Zenodo: D-score/childdevdata: childdevdata 1.0.1, http://doi.org/10.5281/zenodo. 
4685979 (van Buuren, 2021) 
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