
INFORMATION THEORY FOR

DATA SCIENCE

CHANGHO SUH

Published, sold and distributed by:

now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510

www.nowpublishers.com

sales@nowpublishers.com

Outside North America:

now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

ISBN: 978-1-63828-114-6

E-ISBN: 978-1-63828-115-3

DOI: 10.1561/9781638281153

Copyright © 2023 Changho Suh

Suggested citation: Changho Suh. (2023). Information Theory for Data Science. Boston–Delft:

Now Publishers

The work will be available online open access and governed by the Creative Commons

“Attribution-Non Commercial” License (CC BY-NC), according to https://creativecommons.or

g/licenses/by-nc/4.0/

This work was supported by Institute of Information & Communications Technology Planning &

Evaluation (IITP) grant funded by the Korea government (MSIT) (2020-0-00626, Ensuring high AI

learning performance with only a small amount of training data).

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Table of Contents

Acknowledgement vii

Preface viii

Chapter 1 Source Coding 1

1.1 Overview of the Book . 1
1.2 Entropy and Python Exercise . 11
1.3 Mutual Information, KL Divergence and Python Exercise 22
Problem Set 1 . 33
1.4 Source Coding Theorem for i.i.d. Sources (1/3) 41
1.5 Source Coding Theorem for i.i.d. Sources (2/3) 47
1.6 Source Coding Theorem for i.i.d. Sources (3/3) 53
Problem Set 2 . 59
1.7 Source Code Design . 62
1.8 Source Coding Theorem for General Sources 67
1.9 Huffman Code and Python Implementation . 72
Problem Set 3 . 84

Chapter 2 Channel Coding 91

2.1 Statement of Channel Coding Theorem. 91
2.2 Achievability Proof for the Binary Erasure Channel 97
2.3 Achievability Proof for the Binary Symmetric Channel 102
Problem Set 4 . 109
2.4 Achievability Proof for Discrete Memoryless Channels 115
2.5 Converse Proof for Discrete Memoryless Channels 120
2.6 Source-Channel Separation Theorem and Feedback. 125
Problem Set 5 . 132

iii

iv Table of Contents

2.7 Polar Code: Polarization . 140
2.8 Polar Code: Implementation of Polarization . 147
2.9 Polar Code: Proof of Polarization and Python Simulation 155
Problem Set 6 . 164

Chapter 3 Data Science Applications 168

3.1 Social Networks: Fundamental Limits . 168
3.2 Social Networks: Achievability Proof . 176
3.3 Social Networks: Converse Proof . 184
3.4 An Efficient Algorithm and Python Implementation 190
Problem Set 7 . 200
3.5 DNA Sequencing: Fundamental Limits . 205
3.6 DNA Sequencing: Achievability Proof . 212
3.7 DNA Sequencing: Converse Proof . 217
3.8 DNA Sequencing: Algorithm and Python Implementation 223
Problem Set 8 . 231
3.9 Top-K Ranking: Fundamental Limits . 235
3.10 Top-K Ranking: An Efficient Algorithm . 242
3.11 Top-K Ranking: Python Implementation . 248
Problem Set 9 . 261
3.12 Supervised Learning: Connection with Information Theory 264
3.13 Supervised Learning: Logistic Regression and Cross Entropy 272
3.14 Supervised Learning: TensorFlow Implementation 279
Problem Set 10 . 288
3.15 Unsupervised Learning: Generative Modeling 295
3.16 Generative Adversarial Networks (GANs) and KL Divergence 300
3.17 GANs: TensorFlow Implementation . 307
Problem Set 11 . 316
3.18 Fair Machine Learning and Mutual Information (1/2) 326
3.19 Fair Machine Learning and Mutual Information (2/2) 333
3.20 Fair Machine Learning: TensorFlow Implementation. 341
Problem Set 12 . 350

Appendix A Python Basics 356

A.1 Jupyter Notebook . 356
A.2 Basic Syntaxes of Python . 360

Appendix B TensorFlow and Keras Basics 375

Table of Contents v

Appendix C A Special Note on Research 384

C.1 Power of Fundamentals . 384
C.2 How to Read Papers? . 387

References . 391

Index . 396

About the Author. 404

To my family, Yuni Kim, Hyun Seung Suh, and Ian Suh

Acknowledgement

We would like to extend our heartfelt appreciation to Hyun Seung Suh, who has
generously offered numerous insightful comments and valuable feedback on the
organization of the book, the writing style, and the overall accessibility of the
content to those who are new to the subject.

This work was supported by the 2022 Google Research Award; and Institute
of Information & Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (2020-0-00626, Ensuring high
AI learning performance with only a small amount of training data).

vii

Preface

Features of the book The writing of this book was prompted by the surge of
research activities in data science, and the role of information theory in the field.
This forms the motivation for this book, enabling three key features.

The first feature is the demonstration of principles and tools of information
theory in the context of data science applications, such as social networks, DNA
sequencing, search engine, and artificial intelligence (AI). Information theory is a
fundamental field that have made foundational impacts upon a wide spectrum of
domains in science and engineering. It was established by Claude Shannon in 1948
and deals with mathematical laws that govern the flow, representation and transmis-
sion of information. The most significant achievement of the field is the invention
of digital communication which forms the basis of our daily-life digital products
such as smart phones, laptops and Internet of Things (IoT) devices. While the field
was founded in communication, it has since expanded beyond its original domain,
contributing to a widening array of contexts, including networks, computational
biology, quantum science, economics, finance, and even gambling. Therefore, sev-
eral books on information theory have been published over the past few decades,
covering a broad range of subjects (Gallager, 1968; Cover, 1999; MacKay, 2003;
Yeung, 2008; Csiszár and Körner, 2011; El Gamal and Kim, 2011; Gray, 2011;
Gleick, 2011; Pierce, 2012; Wilde, 2013). However, this book focuses on a single
field: data science. Out of the vast content, we emphasize the information-theoretic
concepts and tools related to data science applications. These applications include:
community detection in social networks, DNA sequencing in biological networks,
ranking in search engine, supervised learning, unsupervised learning and social AI.

Secondly, this book is written in a lecture-style format. Most books on this sub-
ject cover numerous mathematical concepts and theories, as well as various appli-
cations in diverse domains. The concepts and relevant theories are presented in a

viii

Preface ix

dictionary-style organization, with topics listed in a sequential order. Although this
dictionary-style organization makes it easy to find specific material, it often lacks a
cohesive narrative that can engage and motivate readers. This book aims to engage
and motivate those who are interested in data science and its interconnections with
other disciplines. Our aim is to create a compelling narrative that emphasizes the
significance of fundamentals in the field. To achieve this, we have adopted a lecture-
style format, with each section serving as notes for a lecture lasting approximately
80 minutes. A consistent connection is established across sections through themes
and concepts. To ensure a smooth transition from one section to the next, we have
included two paragraphs: (i) the “recap” paragraph that summarizes what has been
covered and motivates the contents of the current section; and (ii) the “look ahead”
paragraph that introduces the upcoming contents by linking it to previous material.

The final feature of this book is the inclusion of many programming exercises via
two software languages: (i) Python; and (ii) TensorFlow. While C++ and MATLAB

are widely used in traditional fields, Python has become a key software in data
science. Given the breadth of data science applications covered in the book, we
have selected Python as our primary platform. To implement machine learning
and deep learning algorithms, we utilize TensorFlow, one of the most popular deep
learning frameworks. TensorFlow provides many built-in functions for performing
many important procedures in deep learning, and its integration with Keras, a high-
level library that emphasizes fast user experimentation. With Keras, we can easily
transition from an idea to implementation with minimal steps.

Structure of the book This book consists of course materials developed at
KAIST over the past decade: (i) EE623 Information Theory (offered from Fall 2012
to 2016 and in 2018 and in 2019); (ii) EE326 Introduction to Information The-
ory and Coding (offered in Spring 2016 and 2017); (iii) EE321 Communication
Engineering (offered from Spring 2013 to 2015 and in 2022); (iv) EE523 Convex
Optimization (Spring 2019); and (v) EE424 Introduction to Optimization (Fall
2020 and 2021). It is structured into three parts, each consisting of many sections.
Each section covers the material from a single lecture, which lasted approximately
80 minutes. Problem sets, which served as homework in the courses, are included
every three or four sections. The detailed contents are summarized as below.

I. Source coding (9 sections and 3 problem sets): A brief history of informa-
tion theory; in-depth study of key notions and Python exercise (entropy,
joint entropy, mutual information, Kullback-Leibler (KL) divergence); role
of entropy in source coding theorem; prefix-free codes; Kraft’s inequality;
typical sequences and the asymptotic equipartition property; entropy rate;
Huffman code and Python implementation.

x Preface

II. Channel coding (9 sections and 3 problem sets): Role of mutual information in
channel coding theorem; capacity of binary erasure channels (BECs), binary
symmetric channels (BSCs), and discrete memoryless channels (DMCs);
random coding; maximum a posteriori probability (MAP) decoding, max-
imum likelihood (ML) decoding; jointly typical sequences; union bound;
Fano’s inequality; data processing inequality; polar code and Python imple-
mentation.

III. Data science applications (20 sections and 6 problem sets): Community
detection in social networks; the achievability and converse proofs of the
fundamental limits; the spectral algorithm and Python implementation;
Haplotype phasing in computational biology; the achievability and con-
verse proofs of the fundamental limits; an advanced two-staged algorithm
and Python implementation; top-K ranking in search engine; a variant of
PageRank, an advanced two-staged algorithm and their Python implemen-
tation; supervised learning, and the role of cross entropy in logistic regres-
sion and deep learning; gradient descent; TensorFlow implementation of
a digit classifier; unsupervised learning, and the role of the KL divergence
in Generative Adversarial Networks (GANs); alternating gradient descent;
TensorFlow implementation of a digit image GAN; fair machine learn-
ing, and the role of mutual information in the design of a fair classifier;
TensorFlow implementation of a recidivism predictor.

In terms of data science applications, several sections are adapted from the
author’s previous books: (i) “Convex Optimization for Machine Learning” (Suh,
2022); and (ii) “Communication Principles for Data Science” (Suh, 2023). The
contents has been tailored to fit the theme of this book, which focuses on the role
of information-theoretic concepts and tools. The book also includes three appen-
dices: two providing brief tutorials on the programming languages used (Python

and TensorFlow); and one offering guidance on how to conduct research (primar-
ily aimed at student readers). These tutorials have been adapted from (Suh, 2022,
2023), with appropriate modifications to suit the focused topics. At the end of the
book, a list of references relevant to the discussed content is provided, but these are
not explained in detail, as we do not aim to exhaust the extensive research literature.

How to use this book This book is written as a textbook for a senior-level under-
graduate course and is also suitable for a first-year graduate course. The expected
background includes solid undergraduate courses in probability and random pro-
cesses, as well as basic familiarity with Python.

Preface xi

For students and interested readers, we provide the following guidelines:

1. Study one section per day and two sections per week: This is recommended, as
each section is designed for a single lecture and two lectures are typical per
week in a course offering.

2. Complete the content in Parts I and II: One of the most important concepts
in information theory is phase transition, together with the achievabilty and
converse proofs. Also the following three notions are crucial: entropy, mutual
information and the KL divergence. If you are already familiar with these,
you can quickly review Parts I and II before proceeding to Part III. However,
if you are not familiar with these concepts, it is recommended to read Parts I
and II in a sequential manner. The sections are arranged in a way that builds
a motivating storyline, and appropriate exercise problems are interspersed
throughout to enhance your understanding and motivation.

3. Explore Part III as per your interest: Part III focuses on applications and can be
partially read, if desired. However, it is structured so that each section builds
upon the previous one, assuming a sequential reading. One of the key aspects
of Part III is the implementation of algorithms in Python and TensorFlow.
With the guidance provided in the main text, problem sets, and appendices,
you should be able to implement the algorithms covered.

4. Solve four to five basic problems in each problem set: Over 130 problems
(including more than 280 subproblems) are provided. Most of them elab-
orate on the concepts discussed in the main text. The exercises cover
basics in probability and random processes, relatively simple derivations of
results from the main text, in-depth exploration of non-trivial concepts not
fully explained in the main text, and implementation through Python or
TensorFlow. The problems are closely tied to the established storyline, so it
is essential to work on at least some of them to fully understand the material.

In the course offerings at KAIST, we have covered most of the materials in Parts
I and II, but only a limited number of applications in Part III. Based on the stu-
dents’ backgrounds, interests, and available time, there are several ways to structure
a course utilizing this book. For example:

1. Semester-based course (24–26 lectures): This option would entail covering all
the sections in Parts I and II, as well as two to three selected applications from
Part III, e.g., (i) community detection and supervised learning, (ii) Haplo-
type phasing and GANs, or (iii) top-K ranking and fair machine learning.

2. Quarter-long course (18–20 lectures): This option would encompass almost all
the materials in Parts I and II, excluding certain topics like Huffman coding,

xii Preface

source-channel separation theorem, the role of feedback, and polar codes.
Investigate two applications picked up from Part III.

3. A graduate-level course for students with prior knowledge of information theory:
This option would provide a brief review of the contents in Parts I and II,
taking approximately 6–8 lectures. The focus would be on covering as many
of the materials in Part III as possible.

Programming exercises can be included as homework assignments to enhance the
in-class learning experience.

DOI: 10.1561/9781638281153.ch1

Chapter 1

Source Coding

1.1 Overview of the Book

Outline In this section, we will cover two basic stuffs. Firstly, we will discuss the
logistics of the book, providing details on its organization. Secondly, we will provide
a brief overview of the book, including the history of how information theory was
developed and what will be covered throughout the book.

Prerequisite A basic understanding of probability and random processes is
required before proceeding with this book. This can be achieved by taking
introductory-level courses on the topics, typically offered in the Department of
Electrical Engineering. If you have taken equivalent courses, this is also acceptable.
The importance of probability in this book is rooted in the fact that information
theory was developed in the context of communication, where the relationship
between information theory and probability is evident.

Communication is the transfer of information from one end (called the
transmitter) to the other (called the receiver), over a physical medium (like an air)
between the two ends. The physical medium is called the channel . The channel
links the concept of probability to communication. If you think about how the

1

http://dx.doi.org/10.1561/9781638281153.ch1

2 Source Coding

channel behaves, you can easily see why. The channel can be interpreted as a system
(in other words, a function) that inputs a transmitted signal and outputs a received
signal. However, the channel is not a deterministic function, as it is subject to ran-
dom elements, also known as noise, that are added to the system. Typically, the
noise is additive, meaning that the received signal is the sum of the transmitted sig-
nal and the noise. In mathematics or statistics, such a random quantity is referred
to as a random variable or random process, which is based on probability. This
is why a comprehensive understanding of probability is crucial for understanding
this book. If you have taken a basic course on probability but are not familiar with
random processes, don’t be concerned. Whenever the topic of random processes
arises, we will provide detailed explanations and exercises to help you comprehend
the material.

There is another important course that can aid in understanding the material in
this book, such as a course on random processes, e.g., EE528 at KAIST or EE226
at UC Berkeley. This is a graduate-level course that delves deeper into probability,
encompassing many crucial concepts related to random processes. If you have the
passion and time, we strongly recommend taking this course while reading this
book, though it is not a prerequisite.

Problem sets Problem sets are provided every three to four sections, with a
total of 12 problem sets. We encourage working together with other peers if
available, as problem sets serve as opportunities for learning, and any method
that enhances your learning is encouraged, including discussion, teaching oth-
ers, and learning from others. Solutions will be made available only to instructors
upon request. Some problems may require the use of programming tools such as
Python and TensorFlow. We will be using Jupyter notebook. For further infor-
mation, please refer to the installation guide in Appendix A.1 or seek assistance
from:

https : //jupyter.readthedocs.io/en/latest/install.html

We provide tutorials for the programming tools in appendices: (i) Appendix A for
Python; and (ii) Appendix B for TensorFlow.

History of communication We will explore the establishment and evolution
of information theory within the field of communication. We will begin with a
recount of the communication industry’s role in the establishment of information
theory. Afterwards, we will delve into the in-depth topics that we will cover through-
out the book.

Communication is the transfer of information from one end (the transmitter) to
the other (the receiver). In between lies a physical medium, known as the channel.
The history of communication dates back to the beginning of civilization, where

Overview of the Book 3

people communicated through dialogue. However, this form of communication has
no relation to the electronic communication systems prevalent today. There was a
major breakthrough in the history of communication with the invention of the
telegraph by Samuel Morse (Beauchamp, 2001). Morse code1 was the first instance
of a simple transmission system used in the telegraph. The invention was based on
the discovery in physics that electrical signals, such as voltage or current signals,
could be transmitted over wires, such as copper lines. This was the first communi-
cation system to use electrical signals and is the reason that communication systems
are studied in electrical engineering. Over time, this technology was improved and
Alexander Graham Bell invented the telephone (Coe, 1995).

Later advancements in communication systems were made based on another
discovery in physics, that electrical signals could be transmitted wirelessly through
electromagnetic waves, known as radio waves. This discovery inspired Guglielmo
Marconi to develop a wireless version of the telegraph, known as wireless telegra-
phy (Bondyopadhyay, 1995). Over time, this technology was further developed,
leading to the invention of radio and television.

The state of affairs in the early 20th century and Claude E. Shannon In
the early 20th century, several communication systems emerged, such as telegraphs,
telephones, wireless telegraphs, radios, and televisions. Claude E. Shannon, known
as the father of information theory, made a noteworthy observation about these
systems during this time. He pointed out that the engineering designs of these sys-
tems were customized and specific to each application, resulting in varying design
principles for different signals.

Shannon was discontent with this ad-hoc approach and felt that a general frame-
work was necessary to unify these different communication systems. With this in
mind, he formulated three questions aimed at integrating the fragmented approach.

Shannon’s questions The first question is the most fundamental in terms of
the possibility of unification in communication systems.

Question 1: Is there a general unified methodology for

designing communication systems?

The second question is a logical follow-up to the first and is aimed at addressing
it. Shannon believed that if unification was possible, there could be a common
currency (such as the dollar in economics) with respect to information. In com-
munication systems, there are a variety of information sources, such as text, voice,

1. The term “code” should not be mistaken for computer programming languages, such as C++ and Python,
as they have no relationship to it. In the communication literature, “code” refers to a transmission scheme.

4 Source Coding

video, and images. The second question addresses the existence of such a common
currency.

Question 2: Is there a common currency of information that can

represent different information sources?

The last question pertains to the communication process itself:

Question 3: Is there a limit on the speed of communication?

By addressing these questions, Shannon was able to develop a single theory, which
would later be known as information theory.

What Shannon did What Shannon did can be divided into three parts. Firstly,
he demonstrated that the answer to the second question was affirmative, and he
devised a common currency of information that could represent different types of
information sources. With this common currency, he then addressed the first ques-
tion and developed a single comprehensive framework that could unify all the vari-
ous communication systems. Under this unified framework, he answered the third
question by showing that there is a limit to the amount of information that can be
communicated, expressed in terms of the common currency. He also characterized
this limit.

Interestingly, during the process of characterizing the limit, Shannon made an
important observation. The limit is solely dependent on the channel, regardless
of any transmission and reception strategy. This means that for a given channel,
there is a fundamental limit to the amount of information that can be transmitted,
and beyond this limit, communication becomes impossible, no matter what. This
quantity does not change, regardless of the actions of the transmitter and receiver.
It is like a fundamental law dictated by nature. Shannon theorized this law in a
mathematical framework and referred to it as “a mathematical theory of communi-
cation” in his landmark paper (Shannon, 2001). Later, this theory became known
as information theory or the Shannon theory.

A communication architecture Next, we will explain how Shannon accom-
plished these tasks, and then we will outline the specific topics that will be covered
in this book.

To begin, we will introduce an additional term, in addition to the three terms
of transmitter, receiver, and channel. This new term is called “information source,”
and it refers to the information that one wishes to transmit, such as text, voice, or
image pixels. According to Shannon, there must be a process that transforms the
information source before it is transmitted. He envisioned this process as a black
box, which he called an encoder. At the receiver, there must also be a process that

Overview of the Book 5

Figure 1.1. A basic communication architecture.

tries to recover the information source from the received signals, which Shannon
referred to as a decoder. This was the first block diagram that Shannon imagined for
a communication architecture, as shown in Fig. 1.1. From Shannon’s perspective,
a communication system is simply a collection of an encoder and a decoder, and
designing a communication system involves creating an appropriate pair of encoder
and decoder.

Representation of an information source With the basic architecture
(Fig. 1.1) in mind, Shannon sought to unify the various communication systems
that existed at the time. Many engineers at the time transmitted information sources
without significant modification, despite the variations in the information sources
based on the application. Shannon believed that this was the reason behind the
existence of multiple communication systems.

To achieve unification, Shannon believed that there had to be a common rep-
resentation that could be used to describe different information sources. His work
on his Master’s thesis at MIT (Shannon, 1938) was pivotal in finding a universal
way of representing information sources. He used Boolean algebra to demonstrate
in his thesis that logical relationships in circuit systems could be represented using
binary strings, represented by the 0/1 logic.

Encouraged by this, Shannon theorized that the same approach could be applied
to communication systems, meaning that any type of information source could
be represented using a binary string. He proved that this was indeed possible by
demonstrating that binary strings, known as “bits,” could represent the meaning
of information. For instance, in the case of an English text consisting of multiple
letters, how could each letter be represented using a binary string? One key realiza-
tion was that there is a finite number of possibilities for each letter. This number
refers to the total number of letters in the English alphabet, which is 26, excluding
any special characters like spaces. From this observation, it can be deduced that
dlog2 26e = 5 number of bits suffices to represent each letter.

A two-stage architecture This realization led Shannon to propose bits as a
standard unit of information. He proposed a two-stage architecture where the
encoder was divided into two parts. The first part, known as the “source encoder,”
was responsible for converting the information source into bits. The second part,

6 Source Coding

known as the “channel encoder,” was responsible for converting the bits into a signal
that could be transmitted over a channel.

Similarly, the receiver operates in two stages, but in reverse order. The received
signals are first converted into bits through the channel decoder, and then the infor-
mation source is reconstructed from the bits through the source decoder. The source
decoder should have a one-to-one mapping, or there will be no way to recreate the
original information source.

The portion of the system that extends from the channel encoder, through the
channel, to the channel decoder is referred to as the “digital interface.” This digital
interface is universal and agnostic to the type of information source, as the input to
the digital interface is always bits, regardless of the source. In this sense, it provides
a unified communication architecture.

Two questions on the fundamental limits Keeping the two-stage architec-
ture (Fig. 1.2) in his mind, Shannon tried to address the third question: Is there
a limit on how fast one can communicate? Shannon discovered the importance of
having bits as a standard unit of information. In his proposed two-stage architec-
ture, the source encoder is responsible for converting the information source into
bits, before the channel encoder converts the bits into a signal that can be trans-
mitted over a channel.

In order to maximize the amount of information transmitted, Shannon consid-
ered the efficiency of the source encoder. To do this, he split his third question
into two sub-questions: the first focused on finding the minimum number of bits
needed to represent the information source, and the second focused on determining
the maximum number of bits that can be transmitted over a channel successfully.

Figure 1.2. A two-stage communication architecture.

Overview of the Book 7

Shannon developed two theorems to answer these sub-questions. The first, called
the “source coding theorem,” determined the minimum number of bits needed to
represent the information source. The second, called the “channel coding theorem,”
characterized the maximum transmission capability.

Source coding theorem Let’s first discuss the source coding theorem. An infor-
mation source can be represented as a sequence of elementary components, such
as a sequence of English alphabets, audio signals, or image pixels, represented as
S1, S2, S3, Shannon viewed this sequence as a random process, as the informa-
tion source is unknown to the receiver.

The minimum number of bits needed to represent the information source
depends on the probabilistic properties of the random process, specifically its joint
distribution. For example, when the random process has a simple joint distribution,
such as when the individual variables are independent and identically distributed
(i.i.d.), it is straightforward to state the source coding theorem.

In this context, each individual random variable is referred to as a “symbol.” The
minimum number of bits needed to represent the information source is related
to the concept of entropy, which is a measure of disorder or randomness. This
measure plays a crucial role in formulating the source coding theorem, which states
that the minimum number of bits needed to represent the information source is
proportional to the entropy of the random process.

Theorem 1.1 (Source coding theorem in the i.i.d. case). The minimum number
of bits that can represent the source per symbol is the entropy of the random variable S,
denoted by

H(S) :=
∑
s∈S

PS(s) log2
1

PS(s)
(1.1)

where PS(s) denotes the probability distribution2 of S, and S (that we call “caligraphy
S”) indicates the range (the set of all possible values that S can take on).

Source code example To gain a clearer understanding of the source coding
theorem, let’s examine a practical example. The objective in source coding is to
establish a functional relationship, denoted by f , between the input sequence S and
the output from the source encoder, referred to as the “codeword”. For instance,
consider a DNA sequence where each symbol S can take on one of four values:
A, C , T , G. To make things simple, let’s consider an unrealistic yet straightforward

2. It is a probability mass function, simply called pmf, for the case where S is a discrete random variable. It is
often denoted by p(s) for brevity.

8 Source Coding

scenario where the random process, represented by {Si}, is independent and iden-
tically distributed (i.i.d.). In this case, each symbol in the sequence is distributed as
follows:

S =

A, with probability (w.p.) 1
2 ;

C , w.p. 1
4 ;

T , w.p. 1
8 ;

G, w.p. 1
8 .

How can we design the functional relationship f (S) in order to minimize the aver-
age length of the codeword, represented by E[f (S)], and reduce the number of bits
needed to represent S? With a total of four letters, it is sufficient to use two bits per
symbol. A simple approach might be to assign A to 00, C to 01, T to 10, and G to
11. This would result in an average of 2 bits per symbol. However, according to the
source coding theorem, it is possible to attain better results. The limit promised is:

H(S) =
1

2
· 1+

1

4
· 2+

1

8
· 3+

1

8
· 3 = 1.75. (1.2)

The existence of a code that achieves the desired limit has been confirmed. The
code is based on the following observations: (i) the letter A occurs more frequently
than the other letters, and (ii) the length of the codeword does not have to be fixed.
These observations lead to a natural idea. Assigning short codewords to frequent
letters and long codewords to less frequent letters. To implement this idea, a “binary
code tree” is introduced to facilitate the mapping from S to f (S).

A binary code tree: A binary code tree is a tree structure where every internal node
has only two branches, and a node without any branches is referred to as a leaf. An
example of this can be seen in Fig. 1.3. The binary tree is related to a code by
assigning a symbol to a leaf and defining the functional relationship by specifying
the pattern of the corresponding codeword. This is done by following the sequence
of binary labels (associated with branches) from the root to the leaf. For instance,
if an upper branch is labeled 0 and a lower branch is labeled 1, and the symbol A
is assigned to the top leaf, then f (A) = 0, as there is only one branch (labeled 0)
linking the root to the leaf. Similarly, f (C) = 10, as there are two branches (labeled
1 and 0, respectively) connecting the root to the leaf assigned to C .

How to implement an optimal mapping rule that achieves 1.75 bits per symbol
using a binary code tree? As previously noted, the goal is to assign short codewords
to frequent letters. The most frequent letter, A, should be assigned to the top leaf,
as it has the shortest codeword length. This is evident. However, what about the
second most frequent letter, C ? It may seem like a good idea to assign it to the
internal node marked with a blue square in Fig. 1.3, but this is not a valid solution.

Overview of the Book 9

Figure 1.3. Representation of an optimal source code via a binary code tree.

The reason for this is that the codeword pattern would end. This is problematic,
as there are only two leaves available, but four are required in total. Another two
branches need to be generated from the internal node. C can be assigned to the
second top leaf with a codeword length of 2. Similarly, the next frequent letter,
T (or G), cannot be assigned to the internal node marked with a red triangle in
Fig. 1.3. The node should have another set of two branches. The remaining letters
T and G are assigned to the two remaining leaves. With this mapping rule, we
achieve:

E[length(f (S))] = P(S = A)length(f (A))+ P(S = C)length(f (C))

+ P(S = T)length(f (T))+ P(S = G)length(f (G))

=
1

2
· 1+

1

4
· 2+

1

8
· 3+

1

8
· 3 = 1.75 = H(S).

Channel coding theorem The channel coding theorem states that the maxi-
mum number of bits that can be transmitted over a channel is its capacity, rep-
resented by C . There is a mathematical definition for C , which involves several
important concepts and notions that we will need to study. One of these impor-
tant concepts is “mutual information.” We will delve into the definitions of these
concepts later.

Book outline The two theorems are at the core of the material covered in this
book. The book is divided into three parts. In Part I, we will study the basic prin-
ciples of the field, including (i) entropy, which is an essential component in estab-
lishing the source coding theorem; (ii) mutual information, which is critical for

10 Source Coding

the channel coding theorem; and (iii) Kullback-Leibler (KL) divergence, a power-
ful concept that has similar functions to mutual information and is widely used in
fields like mathematics, statistics, and machine learning. By using entropy, we will
demonstrate the source coding theorem. In Part II, we will prove the channel cod-
ing theorem with the use of mutual information and present a code that satisfies
the fundamental limit set by the channel coding theorem.

Information theory, and these three crucial concepts in particular, form the foun-
dation for solving numerous important problems across various fields such as com-
munication, social networks, computational biology, machine learning, and deep
learning. In Part III, we will examine the applications of information theory in the
field of data science, with a specific emphasis on six major examples that highlight
the fundamental limit and key concepts of information theory.

The first of these applications is community detection (Girvan and Newman,
2002; Fortunato, 2010; Abbe, 2017), a well-researched problem in data science
with applications in social networks (such as Facebook, LinkedIn, and Twitter)
and biological networks. The second is Haplotype phasing, one of the significant
DNA sequencing problems that shares a similar structure with community detec-
tion (Browning and Browning, 2011; Das and Vikalo, 2015; Chen et al., 2016a; Si
et al., 2014). The third is a ranking problem which forms the basis of search engines.
Google’s PageRank (Page et al., 1999) is a famous ranking algorithm that serves as
the backbone of Google’s website search engine.

In these three problems, we will demonstrate that the concept of fundamental
limits plays a crucial role in addressing the problems and in the development of
optimal algorithms. The last three applications are related to machine learning and
deep learning: (i) supervised learning, one of the most widely used machine learning
methods; (ii) Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), a
groundbreaking model for unsupervised learning; and fair classifiers (Larson et al.,
2016; Zafar et al., 2017; Cho et al., 2020), a timely and socially significant topic in
machine learning. In particular, we will emphasize: (i) the central role of entropy
and KL divergence in the design of a loss function for optimization in supervised
learning; (ii) the fundamental role of KL divergence in the design of GANs; and (iii)
the recently discovered role of mutual information in the design of fair classifiers.

Entropy and Python Exercise 11

1.2 Entropy and Python Exercise

Recap In the previous section, we recounted out the story of Shannon’s founding
of information theory. Motivated by the desire to unify the disparate communica-
tion systems of the early 20th century, Shannon proposed the use of bits to rep-
resent different information sources and established a unified two-stage architec-
ture. The first stage transforms an information source into bits, while the second
stage generates a signal that can be transmitted over a channel. With this frame-
work in place, Shannon determined the limit on the amount of information that
can be communicated, leading to the formulation of two fundamental theorems.
The first of these theorems, the source coding theorem, defines the maximum
compression rate of an information source, while the second theorem, the chan-
nel coding theorem, defines the maximum number of bits that can be transmitted
reliably.

Outline Before delving into the two landmark theorems, we will first examine
three crucial concepts that play central roles in the theorems: (i) entropy; (ii)
mutual information; and (iii) Kullback-Leibler (KL) divergence. These concepts
are essential in addressing many critical issues across a range of disciplines, includ-
ing statistics, physics, computational biology, and machine learning. Therefore, it
is advisable to familiarize oneself with the detailed properties of these concepts for
various purposes.

In this section, we will focus on the first concept: entropy. Our tasks will include:
(i) reviewing the definition of entropy, providing intuitive explanations for the
meaning of entropy to better understand why the maximum compression rate must
be entropy, as stated in the source coding theorem; (ii) studying key properties of
entropy that are useful in various contexts; and (iii) completing a Python exercise
to compute entropy. In a later section, we will see how entropy factors into the
proof of the source coding theorem.

Definition of entropy The entropy is defined in relation to a random quantity.
Specifically, it deals with the probability distribution of a random variable (for scalar
random quantities) or a random process (for vector quantities). For simplicity, we
will begin by examining the case of a random variable, and then move on to cover
the general case of a random process later.

More precisely, the entropy is defined w.r.t. a discrete3 random variable. Let X be
a discrete random variable and PX (x) be its probability mass function (pmf). For

3. We say that a random variable is discrete if its range (the set of values that the random variable can take on)
is finite or at most countably infinite.

12 Source Coding

brevity, we employ a simpler notation p(x) to indicate PX (x). Let X (that we call
“caligraphy ex”) be its range: the set of values that X can take on. The entropy is
defined as:

H(X) :=
∑
x∈X

p(x) log2
1

p(x)
bits. (1.3)

Throughout this book, the logarithmic function most commonly used is the base
2 logarithm. However, to simplify the notation, we will omit the “2” and use the
logarithm function without any base specification.

We introduce an alternative expression for the entropy formula. It is much sim-
pler and thus easy to remember. In addition, it serves to simplify the proof of some
important properties that we are going to investigate. Observe in (1.3) that the
entropy is a weighted sum of log 1

p(x) for different values of x’s. So it can be repre-
sented as:

H(X) := E
[

log
1

p(X)

]
(1.4)

where the expectation is taken over the distribution p(x) of X .

Interpretation #1 We will highlight two commonly recognized interpretations
of entropy that are intuitive and can provide some understanding of why entropy
is associated with the maximum compression rate. The first is:

Entropy is a measure of the uncertainty of a random quantity.

This interpretation is supported by a tangible instance, as demonstrated below.
Consider two experiments: (i) tossing a fair coin; and (ii) rolling a fair dice. One
simple random variable that one can think of for the first experiment is a function
that maps the head (or tail) event to 0 (or 1). Since the coin is fair, we have:

X =

{
0, w.p. 1

2 ;

1, w.p. 1
2 .

The abbreviation “w.p.” stands for “with probability”. On the other hand, a natural
random variable in the second experiment is a function that maps a dice result to

Entropy and Python Exercise 13

the same number:

X =

1, w.p. 1
6 ;

2, w.p. 1
6 ;

3, w.p. 1
6 ;

4, w.p. 1
6 ;

5, w.p. 1
6 ;

6, w.p. 1
6 .

One may inquire about which random variable is more unpredictable. Intuitively,
it appears that the second random variable is more uncertain. The entropy provides
precise numerical evidence to confirm this intuition. Note that H(X) = 1 in the
first experiment while H(X) = log 6 > 1 in the latter. The entropy plays a role to
quantify such uncertainty.

Let us give you another example. Suppose we have a bent coin. Then, it yields a
different probability for the head event, say p 6= 1

2 :

X =
{

0, w.p. p;
1, w.p. 1− p.

(1.5)

Can it be inferred that this random variable is more unpredictable than the fair
coin scenario? To examine this, let us contemplate an extreme situation in which
p� 1, yielding the following:

H(X) = p log
1

p
+ (1− p) log

1

1− p
≈ 0. (1.6)

Here we used the fact that limp→0+ p log 1
p = 0. Remember L’Hospital’s theorem

that you may learn from calculus (Stewart, 2015). According to this theorem, it can
be concluded that the bent-coin scenario is unquestionably more certain. This is
logically sound since a very small value of p(� 1) implies that the tail event occurs
almost all the time, making the outcome highly foreseeable.

Interpretation #2 The second interpretation concerns a method for eliminating
uncertainty. To clarify this point, consider the following example: Imagine meet-
ing a person for the first time. At this point, the person is entirely unknown to us.
However, one can remove this uncertainty by asking questions. With each answer,
randomness associated with the person can be eliminated. With enough questions,
it is possible to gain complete knowledge about the individual. Therefore, the num-
ber of questions needed to obtain comprehensive knowledge reflects the degree of
uncertainty: the greater the number of questions required, the more unpredictable

14 Source Coding

the situation. This leads to:

Entropy is intimately related to the number of questions
required to uncover the value of X .

In some cases, the number of questions (on average) precisely corresponds to H(X).
The following is an example of such a scenario:

X =

1, w.p. 1

2 ;

2, w.p. 1
4 ;

3, w.p. 1
8 ;

4, w.p. 1
8 .

A straightforward calculation yields H(X) = 1.75. Assume that the questions are
binary, requiring a yes or no answer. In this case, the minimum average number of
questions needed to ascertain the value of X is H(X). The optimal approach for
posing questions to achieve H(X) is as follows: start by asking if X is equal to 1. If
the answer is yes, then X is 1; otherwise, ask if X is equal to 2. If the answer is yes,
then X is 2; if not, ask if X is equal to 3. Let f (x) represent the number of questions
required to determine X when X = x. This method results in:

E
[
f (X)

]
=

1

2
f (1)+

1

4
f (2)+

1

8
f (3)+

1

8
f (4)

=
1

2
· 1+

1

4
· 2+

1

8
· 3+

1

8
· 3 = 1.75.

Some of you may recognize that this is exactly the same as the number that appears
in the prior source code example. See (1.2) for details.

Key properties The entropy has several important properties. We can identify
them by making some observations.

Recall the bent-coin example. See (1.5) for the distribution of the associated ran-
dom variable X . Consider the entropy calculated in (1.6). Notice that the entropy
is a function of p. Fig. 1.4 illustrates how H(X) behaves as a function of p. One can
make two observations here: (i) the minimum entropy is 0; and (ii) the entropy is
maximized when p = 1

2 , i.e., X is uniformly distributed.
Consider another example in which X ∈ X = {1, 2, . . . , M} and is uniformly

distributed:

X =

1, w.p. 1

M ;

2, w.p. 1
M ;

...

M , w.p. 1
M .

Entropy and Python Exercise 15

Figure 1.4. The entropy of a binary random variable X with P(X = 0) = p and P(X = 1)

= 1− p.

In this case,

H(X) =
M∑

x=1

1

M
log M = log M = log |X |

where |X | indicates the cardinality of X (the size of the set). This leads to another
observation: the entropy of the uniformly distributed random variable X ∈ X is
log |X |.

The above three observations lead us to conjecture the following two: for X ∈ X ,

Property 1: H(X) ≥ 0.

Property 2: H(X) ≤ log |X |.

These properties hold indeed. The first is easy to prove. Using the definition of
entropy and the fact that p(X) ≤ 1, we get: H(X) = E[log 1

p(X)] ≥ E[log 1] = 0.
Using Jensen’s inequality, it is straightforward to prove the second property. This
inequality is a popular and fundamental mathematical concept that underlies many
results in information theory. Its formal statement is presented below.

Theorem 1.2 (Jensen’s inequality). For a concave4 function f (·),

E[f (X)] ≤ f (E[X]).

4. We say that a function f is concave if for any (x1, x2) and λ ∈ [0, 1], λf (x1)+ (1−λ)f (x2) ≤ f (λx1+ (1−
λ)x2). In other words, for a concave function, the weighted sum w.r.t. functions evaluated at two points is
less than or equal to the function at the weighted sum of the two points. See Fig. 1.5.

16 Source Coding

Figure 1.5. Jensen’s inequality for a concave function: E[f(X)] ≤ f(E[X]).

Proof. The proof is immediate for a simple binary case, say X ∈ X = {x1, x2}.
By setting p(x1) = λ and p(x2) = 1 − λ, we get: E[X] = λx1 + (1 − λ)x2 and
E[f (X)] = λf (x1)+ (1− λ)f (x2). The definition of concavity (see the associated
footnote for the definition or Fig. 1.5) completes the proof. The generalization to
an arbitrary X can be done by induction. Try this in Prob 1.5.

Using the definition of entropy and the fact that log(·) is a concave function,
we get:

H(X) = E
[

log
1

p(X)

]
≤ log

(
E
[

1

p(X)

])

= log

(∑
x∈X

p(x) ·
1

p(x)

)

= log |X |

where the inequality is due to Jensen’s inequality.

Joint entropy We will examine the entropy defined w.r.t. multiple (say two)
random variables. Since this calculation involves multiple quantities, it is referred
to as joint entropy, and is defined as follows: for two discrete random variables,
X ∈ X and Y ∈ Y ,

H(X , Y) :=
∑
x∈X

∑
y∈Y

PX ,Y (x, y) log
1

PX ,Y (x, y)

where PX ,Y (x, y) denotes the joint distribution of (X , Y). Again, we employ a sim-
pler notation p(x, y). The only distinction w.r.t. the single random variable case

Entropy and Python Exercise 17

is that the joint distribution p(x, y) comes into picture. Similarly, an alternative
expression reads:

H(X , Y) = E
[

log
1

p(X , Y)

]
where the expectation is taken over p(x, y).

Chain rule We highlight a significant characteristic of joint entropy, known as the
chain rule, which demonstrates the correlation between multiple random variables.
For the two random variable case, it reads:

Property 3 (chain rule): H(X , Y) = H(X)+H(Y |X)

where H(Y |X) is conditional entropy and defined as:

H(Y |X) :=
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(y|x)
= E

[
1

p(Y |X)

]
where the expectation is taken over p(x, y) and p(y|x) denotes a simpler notation of
conditional distribution PY |X (y|x). The proof of the chain rule is straightforward:

H(X , Y) = E
[

log
1

p(X , Y)

]
(a)
= E

[
log

1

p(X)p(Y |X)

]
(b)
= EX ,Y

[
log

1

p(X)

]
+ E

[
log

1

p(Y |X)

]
(c)
= EX

[
log

1

p(X)

]
+ E

[
log

1

p(Y |X)

]
= H(X)+H(Y |X)

where (a) follows from the definition of conditional probability (p(y|x) := p(x,y)
p(x));

(b) follows from the linearity of expectation; and (c) follows from
∑

y∈Y p(x, y) =
p(x) (total probability law). The last step is due to the definition of entropy and
conditional entropy.

We provide an interesting interpretation on the chain rule. Remember that
entropy is a measure of uncertainty. Hence, one can interpret Property 3 as fol-
lows. The uncertainty of (X , Y) (reflected in H(X , Y)) is the sum of the following
two: (i) the uncertainty of X (reflected in H(X)); and (ii) residual uncertainty in
Y when X is known (reflected in H(Y |X)). See Fig. 1.6 for visual illustration.

18 Source Coding

Figure 1.6. A Venn diagram interpretation of the chain rule.

The interpretation of Property 3 becomes clearer when we map the Venn diagram
to the amount of uncertainty associated with a random variable. The area of the
blue circle represents H(X); the area of the red part represents H(Y |X); and the
entire area represents H(X , Y).

A remark on conditional entropy Another way to express conditional
entropy is:

H(Y |X) =
∑
x∈X

∑
y∈Y

p(x, y) log
1

p(y|x)

=

∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
1

p(y|x)

=

∑
x∈X

p(x)H(Y |X = x)

where the last equality is due to the conventional definition of:

H(Y |X = x) :=
∑
y∈Y

p(y|x) log
1

p(y|x)
.

Here H(Y |X = x) is the entropy defined w.r.t. Y when X = x. So the conditional
entropy can be interpreted as the weight sum of H(Y |X = x). This interpretation
serves to remember the formula as well as provides an easy way to calculate.

Python exercise Let us investigate how to compute entropy, joint entropy and
conditional entropy via Python. As per the definition (1.3) of entropy, one can
calculate entropy from scratch via the following code.

Entropy and Python Exercise 19

import numpy as np

def entropy(pX):
return sum(pX*np.log2(1/pX))

probability distribution of a binary random variable
pX = np.array([1/2, 1/2])
print(entropy(pX))

1.0

Alternatively one can use a built-in function in scipy.stats.

from scipy.stats import entropy

pX1 = np.array([1/2, 1/2]) # numpy.array
pX2 = [1/2, 1/2] # list
print(entropy(pX1, base=2))
print(entropy(pX2, base=2))

1.0
1.0

As for the input distribution, entropy can take either numpy.array or list.
Using the above entropy function, we draw the entropy of a binary random

variable as a function of p, as demonstrated in Fig. 1.4.

import matplotlib.pyplot as plt

p = np.arange(0.001,0.999,0.001)
Hp = np.zeros(len(p))
for i,val in enumerate(p):

pX = np.array([val, 1-val])
Hp[i] = entropy(pX, base=2)

plt.figure(figsize=(5,5), dpi=150)
plt.plot(p,Hp)
plt.xlabel(’p’)
plt.ylabel(’H(X)’)
plt.title(’Entropy of a binary random variable’)
plt.show()

The way to compute joint entropy is the same as that of entropy. The only
distinction is that the cardinality of the range set grows. To see this, consider a
simple two-random variable example where the joint distribution reads: p(x, y) =
1
4 , 1

4 , 1
3 , 1

6 for (x, y) = (0, 0), (0, 1), (1, 0), (1, 1), respectively. The joint distribu-
tion is then represented as an array like [1

4 , 1
4 , 1

3 , 1
6]. This gives the computation of

joint entropy as:

20 Source Coding

Figure 1.7. Python plotting: Entropy of a binary random variable.

pXY = np.array([1/4, 1/4, 1/3, 1/6])
HXY = entropy(pXY, base=2)
print(HXY)

1.959147917027245

Next, we compute H(X) and H(Y |X) (conditional entropy) to verify the chain
rule.
Compute p(x)
pX = np.array([1/4+1/4, 1/3+1/6])
Compute p(y|0)
pY_x0 = np.array([1/4, 1/4])/pX[0]
Compute p(y|1)
pY_x1 = np.array([1/3, 1/6])/pX[1]

Compute H(X)
HX = entropy(pX, base=2)
Compute H(Y|X)=\sum p(x)*H(Y|X=x)
HY_X = pX[0]*entropy(pY_x0,base=2) \

+ pX[1]*entropy(pY_x1,base=2)

Verify the chain rule: H(X,Y) = H(X) + H(Y|X)
print(HX+HY_X)

1.9591479170272448

Notice that H(X)+H(Y |X) is the same H(X , Y), taking ≈ 1.9591.

Entropy and Python Exercise 21

Look ahead We can use the entropy concept to prove the source coding theorem,
but not the channel coding theorem. To prove the channel coding theorem, we need
to introduce another concept: mutual information. In the next section, we will delve
into mutual information, covering its definition and several important properties.
These properties not only serve to prove the theorem but also play critical roles
in other fields. Additionally, we will examine another essential concept: the KL
divergence. The KL divergence, together with entropy, is crucial in proving the
source coding theorem. It has also played a significant role in other disciplines,
such as serving as a distance measure between distributions in statistics.

22 Source Coding

1.3 Mutual Information, KL Divergence and Python
Exercise

Recap In the preceding section, we gained knowledge about entropy, which is
crucial in proving the source coding theorem. Initially, we defined entropy for a
single random variable and subsequently extended it to cases where multiple ran-
dom variables are present. Furthermore, we explored the chain rule, a significant
principle that governs the association among multiple random variables. Specifi-
cally, for two random variables X and Y , the chain rule can be stated as follows:

H(X , Y) = H(X)+H(Y |X) (1.7)

where H(Y |X) denotes conditional entropy. Remember the definition of condi-
tional entropy:

H(Y |X) :=
∑
x∈X

p(x)H(Y |X = x) (1.8)

where H(Y |X = x) is the entropy w.r.t. p(y|x).
Towards the end, it was highlighted that to prove the channel coding theorem,

an understanding of another significant concept, mutual information, is necessary.
Additionally, we emphasized the need to delve into another important notion, the
Kullback-Leibler (KL) divergence.

Outline This section is dedicated to exploring two important concepts: mutual
information and the KL divergence. It is divided into five parts. Firstly, we will
begin with the definition of mutual information. Secondly, we will delve into the
key properties of mutual information. Thirdly, we will examine the relationship
between mutual information and the KL divergence. In the fourth part, we will dis-
cuss how mutual information is related to the channel coding theorem. Finally, we
will conclude this section with a Python exercise that involves computing mutual
information and the KL divergence.

Observation An interesting observation we made w.r.t. the chain rule (the Venn
diagram interpretation in Fig. 1.8) brings about a natural definition for mutual
information. First recall the interpretation. The randomness of two random vari-
ables X and Y (reflected in the total area of two Venn diagrams) is the sum of
the randomness of one variable, say X , (reflected in the area of the blue Venn dia-
gram) and the uncertainty that remains about Y conditioned on X (reflected in the
crescent-moon-shaped red area). By the chain rule, the crescent-moon-shaped red
area can be represented as: H(Y |X).

We see an overlap between the blue and red areas. The area of the overlapped
part depends on how large H(Y |X) is: the larger the overlapped area, the smaller

Mutual Information, KL Divergence and Python Exercise 23

Figure 1.8. A Venn diagram interpretation of the chain rule.

H(Y |X). A low value of H(Y |X) implies a high level of dependence between X
and Y . Therefore, the larger the area of overlap between the two Venn diagrams, the
greater the dependence between them. Consequently, the overlapping area quanti-
fies the degree of shared information between X and Y .

Definition of mutual information This observation leads to the definition of
the overlapped area that captures the shared information:

I(X ; Y) := H(Y)−H(Y |X). (1.9)

In the literature, this notion is called mutual information instead of shared (or
common) information.

From the picture in Fig. 1.8, one can define it instead as I(X ; Y) := H(X) −
H(X |Y) because the alternative indicates the same overlapped area. By convention,
we follow the definition of (1.9) though: The entropy of the right-hand-side term
inside I(·; ·) minus conditional entropy of the right-hand-side term conditioned
on the left-hand-side term.

Key properties Remember that entropy respects: (i) the non-negativity
H(X) ≥ 0; and (ii) the cardinality bound H(X) ≤ log |X |. Similarly mutual infor-
mation exhibits the following properties:

Property 1: I(X ; Y) = I(Y ; X);

Property 2: I(X ; Y) ≥ 0;

Property 3: I(X ; Y) = 0⇐⇒ X ⊥⊥ Y .

The first property (named the symmetry property) is obvious from the picture. For
rigorousness, we leave the proof as below:

I(X ; Y) := H(Y)−H(Y |X)

(a)
= H(Y)− (H(X , Y)−H(X))

(b)
= H(Y)+H(X)− (H(Y)+H(X |Y))

24 Source Coding

= H(X)−H(X |Y)

(c)
= I(Y ; X)

where (a) and (b) follow from the chain rule (1.7); and (c) is due to the definition
of mutual information (1.9).

The second property is also straightforward, as mutual information captures the
overlapped area and therefore it must be non-negative. But the proof is not that
simple. It requires a bunch of steps as well as the usage of an important inequality
that we learned in the previous section. That is, Jensen’s inequality. We will prove
the second property in the sequel.

The third property also makes an intuitive sense. Mutual information being 0
means no correlation between X and Y , implying the independence between the
two. But the proof is not trivial either. We will provide the proof right after proving
the second property.

Proof of I(X; Y) ≥ 0 & its implication Starting with the definition of mutual
information, we obtain:

I(X ; Y) := H(Y)−H(Y |X)

(a)
= EY

[
log

1

p(Y)

]
− EX ,Y

[
log

1

p(Y |X)

]
(b)
= EX ,Y

[
log

1

p(Y)

]
− EX ,Y

[
log

1

p(Y |X)

]
(c)
= E

[
log

p(Y |X)
p(Y)

]
(d)
= E

[
− log

p(Y)
p(Y |X)

]
(e)
≥ − logE

[
p(Y)

p(Y |X)

]

= − log

∑
x∈X

∑
y∈Y

p(x, y)
p(y)

p(y|x)

(f)
= − log

∑
x∈X

∑
y∈Y

p(x)p(y)

(g)
= − log 1 = 0

Mutual Information, KL Divergence and Python Exercise 25

where (a) follows from the definition of entropy and joint entropy; (b) is due to the
total probability law

∑
x∈X p(x, y) = p(y); (c) is due to the linearity of expecta-

tion; (d) comes from log x = − log 1
x ; (e) is due to the fact that− log(·) is a convex

function and applying Jensen’s inequality; (f) follows from the definition of con-

ditional distribution p(y|x) := p(x,y)
p(x) ; and (g) is due to an axiom of the probability

distribution:
∑

x∈X p(x) =
∑

y∈Y p(y) = 1.
This non-negativity property has another intuitive implication. Applying the

definition of mutual information and then re-arranging the two terms H(Y) and
H(Y |X) properly, we get:

H(Y) ≥ H(Y |X). (1.10)

Remember one interpretation of entropy: a measure of uncertainty. So H(Y) can
be viewed as the uncertainty of Y , while H(Y |X) being interpreted as the residual
uncertainty in Y after X being revealed. Our intuition then says: Given side infor-
mation like X that is given as conditioning, we know more about Y (the uncertainty
is removed further) and therefore, such conditional entropy must be reduced. In
short, conditioning reduces entropy. The above property proves this intuition.

Some curious readers may want to ask: What if X is realized as a certain value
X = x? In such a case, does the particular form of conditioning still reduce entropy:

H(Y) ≥ H(Y |X = x)? (1.11)

Please think about it while solving Prob 1.9.

Proof of I(X; Y) = 0 ⇐⇒ X ⊥⊥ Y To prove this, first recall one procedure that
we had in the process of proving the second property:

I(X ; Y) := H(Y)−H(Y |X)

= E
[
− log

p(Y)
p(Y |X)

]
≥ − logE

[
p(Y)

p(Y |X)

]
.

Remember that the last inequality is due to Jensen’s inequality. As you will figure
out while solving Prob 1.5, the sufficient and necessary condition for the equality
to hold in the above is:

p(Y)
p(Y |X)

= c (constant).

26 Source Coding

The condition then implies that

p(y) = cp(y|x) ∀x ∈ X ,∀y ∈ Y .

Using the axiom of probability distribution (the sum of the probabilities being 1),
we get c = 1 and therefore:

p(y) = p(y|x) ∀x ∈ X ,∀y ∈ Y .

Due to the definition of independence between two random variables, the above
implies that X and Y are independent. Hence, this completes the proof:

I(X ; Y) = 0⇐⇒ X ⊥⊥ Y .

Interpretation on I(X; Y) Let us say a few words about I(X ; Y). Using the chain
rule and the definitions of entropy and joint entropy, one can rewrite I(X ; Y) :=
H(Y)−H(Y |X) as

I(X ; Y) = H(Y)+H(X)−H(X , Y)

= E
[

log
1

p(Y)

]
+ E

[
log

1

p(X)

]
− E

[
log

1

p(X , Y)

]
= E

[
log

p(X , Y)
p(X)p(Y)

]
.

(1.12)

This leads to the following observation:

p(X , Y) close to p(X)p(Y) H⇒ I(X ; Y) ≈ 0;

p(X , Y) far from p(X)p(Y) H⇒ I(X ; Y) far above 0.

This enables us to interpret mutual information as a sort of distance measure that
captures how far the joint distribution p(X , Y) is from the product distribution
p(X)p(Y). In statistics, there is a well-known divergence measure that reflects a
distance between two distributions. That is, KL divergence. So mutual information
can be represented as the KL divergence. Before detailing the representation, let us
first introduce the definition of the KL divergence.5

5. The classic book “Elements of Information Theory” by Cover and Thomas (Cover, 1999) employs a different
naming for the KL divergence. That is, relative entropy. This naming is popular yet mainly in the information
theory literature. It is not the case in other societies; the naming of the KL divergence is more prevalent.
Hence, we have chosen the naming of the KL divergence in this book.

Mutual Information, KL Divergence and Python Exercise 27

Definition of the KL divergence Let Z ∈ Z be a discrete random variable.
Consider two probability distributions w.r.t. Z : p(z) and q(z) where z ∈ Z . The
KL divergence between the two distributions are defined as:

KL(p‖q) :=
∑
z∈Z

p(z) log
p(z)
q(z)

= Ep(Z)

[
log

p(Z)
q(Z)

]
.

(1.13)

Mutual information in terms of the KL divergence Applying the defini-
tion (1.13) to (1.12), we obtain:

I(X ; Y) = E
[

log
p(X , Y)

p(X)p(Y)

]
= Ep(X ,Y)

[
log

p(X , Y)
p(X)p(Y)

]
(a)
= Ep(Z)

[
log

p(Z)
q(Z)

]
(b)
= KL(p(Z)‖q(Z))

= KL(p(X , Y)‖p(X)p(Y))

(1.14)

where (a) comes from our own definition: Z := (X , Y) (note that p(x)p(y) is a
valid probability distribution. Why?); and (b) is because of the definition of the KL
divergence.

Properties of the KL divergence As mutual information has the three prop-
erties, the KL divergence has three similar properties:

Property 1: KL(p‖q) 6= KL(q‖p);

Property 2: KL(p‖q) ≥ 0;

Property 3: KL(p‖q) = 0⇐⇒ p = q.

The first property of the KL divergence is different from mutual information in
that it is not symmetric. The definition of the KL divergence in (1.13) only takes
the expectation over the first probability distribution p, which breaks symmetry.
The second and third properties, on the other hand, are similar to those of mutual
information and their proofs are also similar. Please refer to Prob 1.12 for more
details.

28 Source Coding

Figure 1.9. Binary erasure channel.

Connection between mutual information and channel capacity We
establish a connection between mutual information and the channel coding theo-
rem. To illustrate this connection, we consider a concrete exemplary channel called
the binary erasure channel (BEC). The BEC is the first toy-example channel that
Shannon proposed. It has an input, X , which is binary and takes values 0 or 1. The
output, Y , is ternary and takes values 0, 1, or an erasure symbol (denoted by e). As
discussed in Section 1.1, the channel introduces uncertainty in the form of noise,
which can be characterized by the conditional distribution p(y|x). In the BEC, the
output is the same as the input with probability 1−p, otherwise, it takes an erasure
symbol regardless of the value of x. The conditional distribution is given by:

p(y|x) =

1− p, for (x, y) = (0, 0);

p, for (x, y) = (0, e);

p, for (x, y) = (1, e);

1− p, for (x, y) = (1, 1);

0, otherwise.

(1.15)

A pictorial description of the BEC is in Fig. 1.9(b). A value placed above each arrow
indicates the transition probability for a transition reflected by the arrow.

To see the connection, let us compute mutual information between the input
and the output.

I(X ; Y) = H(Y)−H(Y |X).

As you can see, it requires a computation of the entropy H(Y) of a ternary random
variable Y . It turns out that H(Y) is a bit complicated to compute, while a simpler
calculation comes from an alternative expression:

I(X ; Y) = H(X)−H(X |Y). (1.16)

Mutual Information, KL Divergence and Python Exercise 29

In order to compute H(X), we need to know about p(x). However, p(x) is not
given. So let us make a simple assumption: X is uniformly distributed, i.e., (in
other words), X ∼ Bern(1

2). Here “∼” refers to “is distributed according to”; Bern

denotes the distribution of a binary (or Bernoulli6) random variable; and the value
inside Bern(·) indicates the probability that the variable takes 1, simply called the
Bernoulli parameter. Assuming X ∼ Bern(1

2), the entropy of X is H(X) = 1 and
the conditional entropy H(X |Y) is calculated as:

H(X |Y)
(a)
= P(Y = e)H(X |Y = e)+ P(Y 6= e)H(X |Y 6= e)

(b)
= P(Y = e)H(X |Y = e)

(c)
= p

where (a) is due to the definition of conditional entropy; (b) follows from the fact
that Y 6= e completely determines X (no randomness) and therefore H(X |Y 6=
e) = 0; and (c) follows from the fact that Y = e does not provide any information
about X and hence X |Y = e has the same distribution as X , so H(X |Y = e) =

H(X) = 1. Applying this to (1.16), we get:

I(X ; Y) = H(X)−H(X |Y) = 1− p.

This is where we can see the connection between mutual information and channel
capacity C : the maximum number of bits that can be transmitted over a channel.
It turns out that I(X ; Y) = 1 − p is the capacity of the BEC. Remember that we
assume the distribution of X in computing I(X ; Y). For a general channel indicated
by an arbitrary p(y|x), such p(x) serves as an optimization variable and the channel
capacity is characterized as:

C = max
p(x)

I(X ; Y). (1.17)

This is the statement of the channel coding theorem. We see that mutual informa-
tion indeed characterizes the channel capacity. Later in Part II, we will prove the
theorem.

Python exercise Finally we explore how to compute mutual information and
the KL divergence via Python. As per the definition of mutual information together

6. The binary random variable is named after Jacob Bernoulli, a Swiss mathematician from the 1600s who used
this simple random variable to discover one of the foundational laws in mathematics, the Law of Large Num-
bers (LLN). Hence, the binary random variable is commonly referred to as the Bernoulli random variable.
Later, we will have an opportunity to explore the LLN in more detail.

30 Source Coding

with the way to compute entropy and conditional entropy (that we learned in
Section 1.2), one can calculate mutual information. Let us do some exercise with
the same example introduced in the previous section: p(x, y) = 1

4 , 1
4 , 1

3 , 1
6 for

(x, y) = (0, 0), (0, 1), (1, 0), (1, 1). First we compute I(X ; Y) = H(Y)−H(Y |X).

import numpy as np
from scipy.stats import entropy

Compute p(y)
pY = np.array([1/4+1/3, 1/4+1/6])
Compute H(Y)
HY = entropy(pY, base=2)

Compute p(x)
pX = np.array([1/4+1/4, 1/3+1/6])
Compute p(y|0)
pY_x0 = np.array([1/4, 1/4])/pX[0]
Compute p(y|1)
pY_x1 = np.array([1/3, 1/6])/pX[1]
Compute H(Y|X)=\sum p(x)*H(Y|X=x)
HY_X = pX[0]*entropy(pY_x0,base=2) \

+ pX[1]*entropy(pY_x1,base=2)

Compute I(X;Y)=H(Y)-H(Y|X)
IXY = HY - HY_X
print(IXY)

0.020720839623907916

We also compute I(Y ; X) = H(X)−H(X |Y) to do sanity check for the symmetry
property.

Compute p(x)
pX = np.array([1/4+1/4, 1/3+1/6])
Compute H(X)
HX = entropy(pX, base=2)

Compute p(y)
pY = np.array([1/4+1/3, 1/4+1/6])
Compute p(x|0)
pX_y0 = np.array([1/4, 1/3])/pY[0]
Compute p(x|1)
pX_y1 = np.array([1/4, 1/6])/pY[1]

Mutual Information, KL Divergence and Python Exercise 31

Compute H(X|Y)=\sum p(y)*H(X|Y=y)
HX_Y = pY[0]*entropy(pX_y0,base=2) \

+ pY[1]*entropy(pX_y1,base=2)

Compute I(Y;X)=H(X)-H(X|Y)
IYX = HX - HX_Y
print(IYX)

0.02072083962390825

Up to a numerical precision error on a computer, we observe that I(X ; Y) is equiv-
alent to I(Y ; X).

Using the definition (1.13) of the KL divergence, one can implement it from
scratch.
def kl(p,q):

return sum(p*np.log2(p/q))

We employ this function to verify the relationship (1.14) between mutual informa-
tion and the KL divergence.

Compute p(x,y)
pXY = np.array([1/4, 1/4, 1/3, 1/6])
Compute p(x)p(y)
pXpY = np.array([pX[0]*pY[0],pX[0]*pY[1],

pX[1]*pY[0],pX[1]*pY[1]])
Compute KL(pXY||pXpY)
print(kl(pXY,pXpY))

0.020720839623908215

Below we check that the symmetry property does not hold for the KL divergence.

print(kl(pXY,pXpY))
print(kl(pXpY,pXY))

0.020720839623908215
0.020945827042758484

For computation of the KL divergence, one can alternatively employ a built-in
function rel_entr provided in the scipy.special package. The rel_entr employs the
natural logarithm instead of log base 2. It returns a list of all the associated values

p(x) ln p(x)
q(x) . Hence, we need a proper conversion.

from scipy.special import rel_entr

kl_builtin = rel_entr(pXY,pXpY)
print(sum(kl_builtin))
To convert into log base 2

32 Source Coding

print(sum(kl_builtin)/np.log(2))
print(kl(pXY,pXpY))

0.014362591564146779
0.020720839623908218
0.020720839623908215

Look ahead We have completed our exploration of the key concepts in infor-
mation theory. Moving forward to the next section, we will begin the process of
proving the source coding theorem.

Problem Set 1 33

Problem Set 1

Prob 1.1 (Bits) In Section 1.1, we learned that bits is a common currency of
information that can represent any type of information source. Consider an image
signal that consists of many pixels. Each pixel is represented by three real val-
ues which indicate the intensity of red, green and blue colors respectively. We
assume that each value is quantized, taking one of 256 equal-spaced values in [0, 1),
i.e., 0

256 , 1
256 , 2

256 , . . . , 254
256 , 255

256 . Explain how bits can represent such an image
source.

Prob 1.2 (Digital communication architecture) Draw the digital communi-
cation architecture that Shannon came up with. Also, point out the digital interface.

Prob 1.3 (Source coding example) Let S be a discrete random variable with
the probability distribution:

S =

1, w.p. 0.4;

2, w.p. 0.2;

3, w.p. 0.2;

4, w.p. 0.1;

5, w.p. 0.1.

Consider a source code that maps S ∈ {1, 2, . . . , 5} to codeword f (S).

(a) Calculate the entropy of the random variable S.
(b) Using the binary code tree that we learned in Section 1.1, construct a source

code that minimizes the expected codeword length E
[
length(f (S))

]
.

(c) Compare the expected codeword length of your code with H(S). Which
one is smaller? Also explain why.

Prob 1.4 (Channel coding example) Consider a binary erasure channel in
which input X ∈ {0, 1}, output Y ∈ {0, 1, erasure }, and Y = X with probability
1−p and Y = erasure with probability p where p ∈ [0, 1]. An information theorist
claims that the capacity of the erasure channel is a sole function of p, regardless of
transmission and reception strategies. Is the claim true? Also explain why.

Prob 1.5 (Jensen’s inequality) Suppose that a function f is concave and X is
a discrete random variable. Show that

E[f (X)] ≤ f (E[X]).

Also identify conditions under which the equality holds.

34 Source Coding

Prob 1.6 (An empirical estimate of entropy) The table below shows the
frequency of letter usage in a particular sample of an English text. Suppose that the
text sample is sufficiently large such that the frequencies are precise enough. Then,
one natural way to estimate the probability mass function (pmf) of English letter
is to employ such frequencies:

P(English letter = A) ≈
of A’s in the text

total # of letters in the text
≈ 0.0817.

Please see below for the estimates of other letters. Using Python, compute the
entropy of English letter with these estimates.

A 8.17 % H 6.09% O 7.51 % V 0.98%

B 1.49 % I 6.97% P 1.93 % W 2.36%

C 2.78 % J 0.15% Q 0.10 % X 0.15%

D 4.25 % K 0.77% R 5.99 % Y 1.97%

E 12.7 % L 4.03% S 6.33 % Z 0.07%

F 2.23 % M 2.41% T 9.06 %

G 2.02 % N 6.75% U 2.76 %

Prob 1.7 (Joint entropy) Suppose X and Y are binary random variables with
P(X = 0) = 0.2 and P(Y = 0) = 0.4. A student claims that the joint distribution
that maximizes joint entropy H(X , Y) is:

P(X = 0, Y = 0) = 0.08;

P(X = 0, Y = 1) = 0.12;

P(X = 1, Y = 0) = 0.32;

P(X = 1, Y = 1) = 0.48.

Prove or disprove it.

Prob 1.8 (Independence) Suppose that two binary random variables X1 and X2

satisfy:

P(X1 = i1, X2 = i2) =
1

4

for all possible sequence patterns (i1, i2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Show that
X1 and X2 are independent and identically distributed (i.i.d.), each taking 0 or 1
with probability 1

2 . Also compute H(X1, X2) and H(X1)+H(X2).

Problem Set 1 35

Prob 1.9 (Conditional entropy) Let X and Y be discrete random variables.

(a) Show that

H(Y) ≥ H(Y |X).

Do you think that the above inequality make an intuitive sense? If so,
explain why.

(b) A curious student claims that for any x ∈ X

H(Y) ≥ H(Y |X = x).

Either prove or disprove it.

Prob 1.10 (Chain rule & conditional entropy) Let {Xi} be a discrete random
process with a joint distribution p(x1, x2, . . . , xn). In view of the entropy (defined
w.r.t. a single random variable) and the joint entropy (defined w.r.t. two random
variables), a natural way to define the entropy for a random process is as follows:

H(X1, X2, . . . , Xn) := E
[

log
1

p(X1, X2, . . . , Xn)

]
.

(a) Derive the chain rule for the random process:

H(X1, X2, . . . , Xn)

= H(X1)+H(X2|X1)+ · · · +H(Xn|X1, X2, . . . , Xn−1).

(b) Show that when X1 and X2 are independent,

H(X2|X1) = H(X2).

Considering the interpretation for conditional entropy that we learned in
Section 1.2, this result makes a perfect sense. When X1 has nothing to do
with X2 (statistically speaking, being independent), the uncertainty of X2

remains the same whether X1 is revealed.

(c) Let H(X2|X1 = x1) := Ep(x2|x1)

[
log 1

p(X2|X1=x1)

]
. Show that

H(X2|X1) =
∑

x1∈X1

p(x1)H(X2|X1 = x1)

where X1 indicates the range of X1.

36 Source Coding

Prob 1.11 (Mutual information) Recall the mutual information that we defined
in Section 1.3:

I(X ; Y) := H(Y)−H(Y |X)

where X and Y denote discrete random variables. One interpretation that we made
is that mutual information captures common information between the two random
variables involved, as it represents the overlapped area in the Venn diagram. Con-
sider another discrete random variable Z .

(a) A curious student claims that if X and Y are independent, so is it even when
Z is given:

I(X ; Y) = 0 H⇒ I(X ; Y |Z) = 0

where I(X ; Y |Z) := H(Y |Z)−H(Y |Z , X). Either prove or disprove it.
(b) A creative student wishes to capture common information across three ran-

dom variables. To this end, the student defines triple mutual information
as follows:

I(X ; Y ; Z) := I(X ; Y)− I(X ; Y |Z).

And then she/he interprets I(X ; Y |Z) as the overlapped area between two
parts, each being reflected in H(X |Z) and H(Y |Z) respectively. With this
interpretation, the student feels happy about her/his definition because in
that way I(X ; Y ; Z) indeed indicates the overlapped area between three
circles (each reflected in H(X), H(Y), H(Z)). With the faith that the area
must be non-negative, the student claims:

I(X ; Y ; Z) ≥ 0,

as in the conventional case I(X ; Y) ≥ 0. Either prove or disprove it.

Prob 1.12 (Kullback-Leibler divergence) Let p and q be two distributions
on X . Let

KL(p‖q) := Ep

[
log

p(X)
q(X)

]
.

(a) Either prove or disprove that KL(p‖q) = KL(q‖p).
(b) Show that KL(p‖q) ≥ 0.
(c) Show that the equality in the above inequality in part (b) holds if and only

if p = q.

Problem Set 1 37

Prob 1.13 (Mutual information vs. KL divergence) In Section 1.3, we learned
about one specific yet insightful expression that connects mutual information to the
KL divergence:

I(X ; Y) = KL(PX ,Y ‖PXPY)

where PX (x) and PY (y) indicate probability distributions of discrete random vari-
ables X ∈ X and Y ∈ Y , respectively; and PX ,Y (x, y) denotes the joint distri-
bution. There is another insightful expression that relates mutual information to
the KL divergence. In this problem, you are asked to establish the expression. The
expression gives insights into GANs (Goodfellow et al., 2014) and fair classifiers
that we will study in Part III.

(a) Let PY |X=x(y) be the conditional distribution of Y given X = x. Show
that

I(X ; Y) =
∑
x∈X

PX (x)KL(PY |X=x‖PY).

(b) Suppose X ∼ Bern(1
2) and

Y =
{

Yreal, if X = 1;
Yfake, if X = 0

where Yreal ∈ Y and Yfake ∈ Y denote other discrete random variables.
Show that

I(X ; Y) = JS(PYreal‖PYfake)

where JS(PYreal‖PYfake) is the Jensen-Shannon divergence (another well-
known divergence measure in information theory and statistics) defined as:

JS(PYreal‖PYfake) :=
1

2
KL

(
PYreal‖

PYreal + PYfake

2

)
+

1

2
KL

(
PYfake‖

PYreal + PYfake

2

)
.

Remark: Those who are familiar with GANs may be able to see a connection
between GANs and mutual information. Otherwise, don’t worry. We will
elaborate the connection in Part III.

Prob 1.14 (Mutual information expressed in terms of optimization) Sup-
pose X ∼ Bern(1

2) and

Y =

{
Yreal, if X = 1;

Yfake, if X = 0

38 Source Coding

where Yreal ∈ Y and Yfake ∈ Y denote discrete random variables with PYreal(·) and
PYfake(·), respectively. In Prob 1.13, it was shown that

I(X ; Y) = JS(PYreal‖PYfake)

=
1

2
KL

(
PYreal‖

PYreal + PYfake

2

)
+

1

2
KL

(
PYfake‖

PYreal + PYfake

2

)
.

Show that

I(X ; Y) = max
D(·)

1

2

∑
yreal∈Y

PYreal(yreal) log D(yreal)

+
1

2

∑
yfake∈Y

PYfake(yfake) log(1− D(yfake))+H(X).

(1.18)

Remark: Those who are familiar with GANs may be able to see a closer connection
between GANs and mutual information. Don’t you see that connection yet? Don’t
worry. You will see more details later in Part III.

Prob 1.15 (Conditional entropy) Let X and Y be random variables that take
values in finite sets X and Y respectively. You are given that H(X) = 11 and
H(Y |X) = H(X |Y). A student claims that |Y| ≥ 3. Either prove or disprove the
claim.

Prob 1.16 (Chain rule) Let {Xi} be a discrete random process. A student
claims that

H(X1, . . . , Xn) ≤
1

n− 1

n∑
i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn).

Prove or disprove this statement.

Prob 1.17 (A lower bound) Suppose that random variables X , Y , X̄ , Ȳ take val-
ues on the same set, and X̄ and Ȳ are independent. Let E = 1{X 6= Y } and
Ē = 1{X̄ 6= Ȳ } where 1{·} denotes an indicator function that returns 1 when the
event is true; 0 otherwise. Show that

I(X ; Y) ≥ KL
(
PE‖PĒ

)
− KL(PX ‖PX̄)− KL(PY ‖PȲ).

Prob 1.18 (Mutual information in the play-off game) The play-off is a five-
game series that terminates as soon as either team wins three games. Let X be the
random variable that represents the outcome of a play-off between teams A and B;
possible values of X are AAA, BABAB and BBAAA. Let Y be the number of games

Problem Set 1 39

played, which ranges from 3 to 5. Assuming that A and B are equally matched and
that the games are independent, calculate I(X ; Y).

Prob 1.19 (True or False?)

(a) Let X be a discrete random variable taking values in an alphabet X where
|X | ≥ 8. The value of X is revealed to Alice, but not to Bob. Bob wishes to
figure out the value of X by asking to Alice questions of the following type:
if X = i, say 0; if X = j, say 1; if X = k, say 2; otherwise, say 3. Then, the
minimum number of questions (on average) required to uncover the value
of X is in between 2H(X) and 2H(X)+ 1.

(b) Consider weathers in Daejeon and Seoul. Assume that Daejeon’s weather is
sunny w.p. 0.3 and cloudy w.p. 0.7; Seoul’s weather is the same as Daejeon’s
w.p. 0.3, and different w.p. 0.7. Conditioned on Daejeon’s weather being
cloudy, Seoul’s weather is more predictable than that without any informa-
tion on Daejeon’s weather.

(c) In Section 1.3, we learned that conditioning reduces entropy: H(Y |X) ≤
H(Y) for discrete random variables (X , Y). The same argument holds with
regard to mutual information, i.e., conditioning reduces mutual informa-
tion: H(Y |Z) − H(Y |Z , X) =: I(X ; Y |Z) ≤ I(X ; Y) for any discrete
random variable Z .

(d) If X and Y are independent random variables, then I(X ; Y) = 0. However,
the converse does not always hold.

(e) Consider triplet mutual information defined w.r.t. three random variables:
I(X ; Y ; Z) := I(X ; Y)−I(X ; Y |Z). As in the conventional case I(X ; Y) =
I(Y ; X), the symmetry holds:

I(X ; Y ; Z) = I(X ; Z ; Y) = · · · = I(Z ; Y ; X).

(f) Let p and q be distributions. Define:

H(p, q) := H(p)+ KL(p‖q)

where H(p) indicates the entropy of a random variable having the distri-
bution of p. Then, H(p, q) is convex in q.

(g) For any discrete random variables (X , Y , Z),

H(X , Y , Z)+H(Y) ≤ H(X , Y)+H(Y , Z).

(h) Suppose two random variables X ∈ X and Y ∈ Y are independent, |X | =
|Y| = 2 and X ∩ Y = ∅. Then,

H(X + Y) = H(X)+H(Y).

40 Source Coding

(i) Let X be a discrete random variable taking values in an alphabet X where
|X | ≥ 6. The value of X is revealed to Alice, but not to Bob. Bob wishes to
figure out the value of X by asking to Alice questions of the following type: if
X = i, say 0; if X = j, say 1; otherwise, say 2. Then, the minimum number
of questions (on average) required to determine the value of X cannot exceed
the entropy H(X).

(j) Suppose X and Y are binary random variables with P(X = 0) = 0.2 and
P(Y = 0) = 0.4. The joint distribution that maximizes the joint entropy
H(X , Y) is:

P(X = 0, Y = 0) = 0.08;

P(X = 0, Y = 1) = 0.12;

P(X = 1, Y = 0) = 0.32;

P(X = 1, Y = 1) = 0.48.

(k) Let X be a discrete random variable taking values in X . For an one-to-one
mapping function f and an arbitrary function g defined on X ,

H(f (X)|g(X)) = H(X |g(X)).

(`) Suppose that X and Y are independent binary random variables. Then,
there exists a distribution of p(x, y) such that

H(X + Y) = log 3.

Source Coding Theorem for i.i.d. Sources (1/3) 41

1.4 Source Coding Theorem for i.i.d. Sources (1/3)

Recap In the previous sections, we delved into the fundamental concepts of infor-
mation theory, including Shannon’s two-stage architecture that involves splitting
the encoder into a source encoder and a channel encoder. The purpose of this archi-
tecture is to convert information from different sources into a common currency:
bits. Shannon’s work resulted in two theorems that describe the efficiency of the two
encoder blocks and, in turn, limit the amount of information that can be transmit-
ted over a channel. These theorems are known as the source coding theorem and
the channel coding theorem. Having established these key concepts, we are now
prepared to prove the theorems. Over the next five sections, including this one, we
will focus on proving the source coding theorem.

Outline The source coding theorem quantifies the minimum number of bits
needed to represent an information source without losing any information. The
information source can be composed of various elements, such as dots and lines (as
in Morse code), English text, speech signals, video signals, or image pixels. There-
fore, it consists of multiple components. For instance, a text is made up of multiple
English letters, and speech signals contain multiple points, each indicating the sig-
nal’s magnitude at a specific time instant. From the perspective of a receiver who is
unaware of the signal, it can be considered a random signal. As a result, the source
is modeled as a random process comprising random variables. Let {Xi} denote the
random process, where Xi represents a “symbol” in the source coding literature. To
simplify matters, let us begin with a simple scenario in which Xi’s are independent
and identically distributed (i.i.d.). We denote by X a generic random variable that
represents each individual instance of Xi. The source coding theorem in the i.i.d.
case is stated as follows:

The minimum number of bits required to represent

the i.i.d. source Xi per symbol is H(X).

In the present section, we will make an effort to prove this theorem. After com-
pleting the i.i.d. case, we will extend it to a more realistic non-i.i.d. distribution
that the source may follow.

Symbol-by-symbol source encoder Since an information source consists of
multiple components, an input to source encoder contains multiple symbols. So the
encoder acts on multiple symbols in general. To understand what it means, consider
a concrete example where source encoder acts on three consecutive symbols. What
it means by acting on multiple symbols is that an output is a function of the three
consecutive symbols. But for simplicity, we are going to consider a much simpler

42 Source Coding

case for the time being in which the encoder acts on each individual symbol, being
independent of other symbols. It means that the encoder produces bits in a symbol-by-
symbol basis: a symbol X1 yields a corresponding binary string, and independently
another binary string w.r.t. the next symbol X2 follows, and this goes on for other
follow-up symbols. The reason that we consider this simple yet restrictive setting
is that this case provides enough insights into a general case. It contains every key
insight needed for generalization. Building upon the insights that we will obtain
from this simple case, we will later address the general case.

The simple case allows us to simplify notations. First it suffices to focus on one
symbol, say X . The encoder is nothing but a function of X . Let us denote the
function by C . Please do not be confused with the same notation that we used
to indicate channel capacity. The reason that we employ the same notation is that
the output C(X) is called codeword. Let `(X) be the length of codeword C(X).
For example, consider X ∈ {a, b, c, d} in which C(a) = 0, C(b) = 10, C(c) =
110, C(d) = 111. In this case, `(a) = 1, `(b) = 2, `(c) = 3, `(d) = 4. Note that
`(X) is a function of a random variable X , hence it is also a random variable. So
we are interested in a representative quantity of such varying quantity, which is the
expected codeword length:

E [`(X)] =
∑
x∈X

p(x)`(x).

An optimization problem The efficiency of source encoder is well reflected in
the expected codeword length. Hence, we wish to minimize the expected codeword
length. The optimization problem of our interest is then:

min
`(x)

∑
x∈X

p(x)`(x). (1.19)

There are many ways to estimate the distribution p(x) of an information source.
See Prob 1.6 for one way. Assume that p(x) is given. In this case, `(x)’s are only
variables that we can optimize over.

Next, consider constraints that the optimization variables `(x)’s are subject to.
The obvious constraints are: `(x) ≥ 1 and `(x) ∈ N. Are these constraints enough?
No. If they were enough, the solution to this problem would become trivial. It
would be 1. One can set `(x) = 1 for all x’s to obtain 1. But this is too good to be
true. In fact, there is another constraint on `(x), concerning the condition that a
valid code should satisfy.

A naive condition: Non-singularity For the validity of a code, the encoder
function must be one-to-one. The reason is that if it is not one-to-one, there is
no way to reconstruct the input from the output. In the source coding literature,

Source Coding Theorem for i.i.d. Sources (1/3) 43

a code is said to be non-singular if it is one-to-one mapping. Mathematically, the
non-singularity condition reads:

C(x) = C(x′) H⇒ x = x′.

Here is an example that respects this condition:

C(a) = 0; C(b) = 010; C(c) = 01; C(d) = 10. (1.20)

Note that every codeword is distinct, ensuring one-to-one mapping.
Is this non-singularity condition enough to ensure the validity of a code? Unfor-

tunately, no. What we care about is a sequence of multiple symbols. What we get in
the output is the sequence of binary strings which corresponds to a concatenation
of such multiple symbols: X1X2 · · ·Xn H⇒ C(X1)C(X2) · · ·C(Xn). Remember
we assume the symbol-by-symbol encoder; hence we get C(X1)C(X2) · · ·C(Xn)

instead of C(X1X2 · · ·Xn). By non-singularity of the extended code, one should
be able to reconstruct the sequence X1X2 · · ·Xn of input symbols from that out-
put C(X1)C(X2) · · ·C(Xn). But in the above example (1.20), there is ambiguity in
decoding the sequence of input symbols. Here is a concrete example where one can
see the ambiguity. Suppose that the output sequence reads:

output sequence: 010

Then, what are the corresponding input sequence? One possible input would be “b”
(C(b) = 010). But there are some other patterns that yield the same output: “ca”
(C(c)C(a) = 010) and “ad” (C(a)C(d) = 010). We have multiple candidates
that agree upon the same output. This is problematic because we cannot tell which
input sequence is fed into. In other words, we cannot uniquely figure out the input
sequence.

A stronger condition: Unique decodability What additional condition do
we need to satisfy in order to make a code valid? What we need is that for any
encoded bit sequence, there must be no decoding ambiguity, in other words, there
must be only one matching input sequence. This property is called unique decod-
ability. This is equivalent to the one-to-one mapping constraint w.r.t. the sequence
of source symbols with an arbitrary length. Here is a mathematical expression for
unique decodability: for any n and m,

C(x1)C(x2) · · ·C(xn) = C(x′1)C(x
′
2) · · ·C(x

′
m)

H⇒ x1x2 · · · xn = x′1x′2 · · · x
′
m.

44 Source Coding

A uniquely decodable example Let us give you an example where the unique
decodability condition holds:

C(a) = 10; C(b) = 00; C(c) = 11; C(d) = 110. (1.21)

To verify unique decodability, we can follow these steps. Let’s consider an output
sequence:

output sequence: 10110101111 · · ·

First we read a binary string until we find a matching codeword or a codeword which
includes the string in part. In this example, the first read must be 10 because there
is only one corresponding codeword: C(a). The corresponding input is “a”. What
about the next read? An ambiguity arises in the next two bits: 11. We have two
possible candidates: (i) a matching codeword C(c) = 11; and (ii) another codeword
C(d) = 110 which includes the string 11 in part. Here the “11” is either from “c”
or from “d”. It looks like this code is not uniquley decodable. But it is actually
uniquely decodable – we can tell which is the correct one. The way to check is
to look at the future string. What does this mean? Suppose we see one more bit
after “11”, i.e., we read 110. Still there is no way to figure out which is correct
one. However, suppose we see two more bits after “11”, i.e., we read 1101. We
can then tell which symbol is fed into. That is, “d”. Why? Another possibility “cb”
(C(c)C(b) = 1100) does not agree upon 1101. So it is eliminated. We repeat this.
If the input sequence can be decoded in a unique way using this method, then the
code is considered to be uniquely decodable. In fact, one can verify that the above
mapping (1.21) ensures unique decodability.7

Constraints on `(x) induced by uniquely decodable property? Recall our
goal: finding constraints on `(x) in the optimization problem (1.19). How to trans-
late the unique decodability property into a mathematical constraint in terms of
`(x)’s? The translation is a bit difficult.

Fortunately, we have some positive news to share. The good news is that there
exists a simpler and indirect method to determine the constraint. This approach
is based on a type of uniquely decodable codes known as prefix-free codes. The
prefix-free code that we will soon discuss has two key features: firstly, it imposes
the same constraint as the one required for uniquely decodable codes (i.e., any
uniquely decodable code must adhere to the prefix-free code constraint); secondly,
it provides an easier method for identifying the constraint that a valid code must
satisfy.

7. There is a rigorous way of checking unique decodability, proposed by Sardinas and Patterson. Please check
Problem 5.27 in (Cover, 1999) for details.

Source Coding Theorem for i.i.d. Sources (1/3) 45

The first feature implies that the prefix-free code constraint is both necessary and
sufficient for a valid uniquely-decodable code. Therefore, it is enough to consider
the prefix-free code when determining the constraint imposed by a valid code. Prov-
ing the first feature is not a straightforward task, but in Prob 2.3, we provide mul-
tiple subproblems that will assist you in proving it with relative ease. Nevertheless,
the proof itself is non-trivial.

To comprehend the second feature, we need to understand the prefix-free code
in more detail. We will first explain what the code is and also mention a significant
advantage it has over non prefix-free codes that are also uniquely decodable.

Prefix-free codes Let us revisit the example (1.21) discussed earlier, which is
a case of a uniquely decodable code. However, this example highlights a concern
related to decoding complexity, which in turn motivates the use of prefix codes.
The issue is that, as we observed in the previous example, decoding the second
input symbol necessitates examining a future string, which implies that decoding is
not immediate. This issue can be further exacerbated, particularly in the worst-case
scenario, where the output sequence is as follows:

1100000000000000000000000000000000000001.

In this case, in order to decode even the first symbol, we have to take a look at many
future strings.

In the prefix-free code that we will define soon, there is no such complexity issue.
Here is an example of the prefix-free code:

C(a) = 0; C(b) = 10; C(c) = 110; C(d) = 111. (1.22)

One key property of this code is that no codeword is a prefix of any other codeword.
This is why the code is named the prefix-free code. It is evident that the code in
the previous example (1.21) is not prefix-free, despite being uniquely-decodable.
One of its codewords serves as a prefix of another codeword, resulting in the need
to examine future strings while decoding. In the worst-case scenario, the entire
string must be examined to decode even the first input symbol. On the other hand,
prefix-free codes like (1.22) do not have any codewords that act as prefixes of other
codewords. This eliminates any ambiguity in decoding and avoids any decoding
complexity issues, as there is no need to examine future strings to decode an input.
The code can be decoded instantaneously, which is why prefix-free codes are also
known as instantaneous codes.

46 Source Coding

Look ahead Remember the optimization problem (1.19) that we discussed ear-
lier. The positive news is that: (i) the restriction on `(x) that applies to the prefix-free
code is the same as that imposed by the uniquely-decodable code, and (ii) it is easy
to recognize the constraint caused by the prefix-free code. In the next section, we
will determine the restriction that the prefix-free code property must satisfy. After
that, we will approach the optimization problem.

Source Coding Theorem for i.i.d. Sources (2/3) 47

1.5 Source Coding Theorem for i.i.d. Sources (2/3)

Recap In the preceding section, we made an attempt to prove the source coding
theorem for i.i.d. sources. To begin with, we concentrated on a basic symbol-by-
symbol encoder, where the code operates independently on each symbol, without
any regard for the other symbols. Our aim was to create a code C that minimizes
the expected codeword length E[`(X)]. In order to accomplish this, we framed an
optimization problem:

min
`(x)

∑
x∈X

p(x)`(x)

subject to some constraints on `(x).
(1.23)

The key to solving the problem is to come up with mathematical constraints on
`(x) that a valid code (fully specified by the unique-decodability property) should
respect.

We acknowledged that deriving the constraints on `(x) for the optimization
problem can be challenging. Therefore, we decided to take a different approach
based on the following facts: (1) the constraints on `(x) that prefix-free codes
(which are a subset of uniquely-decodable codes) satisfy are equivalent to those of
uniquely-decodable codes; and (2) obtaining the mathematical constraints on `(x)
induced by the prefix-free code property is relatively straightforward. We postponed
the proof of the first fact to Prob 2.3.

Outline In this section, we are going to derive the constraint due to the prefix-free
code property, and will attack the optimization problem (1.23) accordingly.

Review of prefix-free codes We start by reviewing the prefix-free code example
introduced in Section 1.4:

C(a) = 0; C(b) = 10; C(c) = 110; C(d) = 111. (1.24)

No codeword is a prefix of any other codeword. So it is indeed prefix-free.

From codeword to a binary code tree We present a visual depiction of the
code that can assist us in determining the mathematical constraints on `(x) more
easily. This representation is based on the binary code tree, which was introduced
earlier. In a binary code tree, each node (either the root or an internal node) has
two branches. A one-to-one correspondence exists between a code mapping rule
and the representation of a binary code tree.

To draw a binary code tree from a code mapping rule, we begin with the root
node and draw two branches that originate from it. We then label the top branch

48 Source Coding

Figure 1.10. The codeword representation via a binary code tree.

with 0 and the bottom branch with 1. We may want to take the other way around: 1
for the top and 0 for the bottom. This is our own choice. We then have two nodes.
Following that, we assign a binary label sequence to each node that represents the
path from the root to that particular node. Specifically, we assign a label of 0 to
the top branch and a label of 1 to the bottom branch. After that, we check if any
codeword matches either of the two binary sequences 0 and 1. Since the codeword
C(a) matches the sequence 0 assigned to the top node, we label the top node with
“a”. A visual representation of this process can be found in Fig. 1.10.

We follow a similar process for the bottom node. However, since there is no
matching codeword, we generate two additional branches from the node and assign
a label of 0 on the top and 1 on the bottom. We assign the sequence of binary labels
“10” to the top node and “11” to the bottom node. Since the codeword C(b) is
identical to “10”, we assign “b” to the top node. There is no matching codeword for
“11”, so we split the bottom node into two, assigning “110” to the top and “111”
to the bottom. Finally, we assign “c” to the top and “d” to the bottom.

Representing the code using a binary code tree helps in identifying a mathemat-
ical constraint on `(x) that a prefix-free code should adhere to. The following two
observations are helpful:

Observation #1 The first observation is regarding the location of nodes to which
symbols are assigned. A tree consists of two types of nodes. One is an ending node
(terminal) which has no further branch. We call that ending node a leaf. The second
is a node from which another branch generates. We call it an internal node. Keeping
these in our mind, let us take a look at the earlier binary code tree illustrated in
Fig. 1.10. Notice that all codewords are assigned to leaves only. In other words,
there is no codeword that is assigned to an internal node. Can you see why that is
the case? If there were a codeword that is assigned to an internal code, we would

Source Coding Theorem for i.i.d. Sources (2/3) 49

violate the prefix-free code property because that codeword is a prefix of some other
codeword which lives in the associated leaf. So the first observation that one can
make from the prefix-free code is:

Observation #1: Codeword must be a leaf in a binary code tree.

Observation #2 Let us move on to the second observation that serves to relate
the prefix-free code property to the mathematical constraint on `(x). That is,

Observation #2: Codeword can be mapped to a subinterval in [0, 1].

What does this mean? We can illustrate this by adding a new diagram to the binary
code tree shown in Fig. 1.10. In this diagram, we associate an interval [0, 1] with
the set of all codewords. A line is drawn through the root of the tree, and the
midpoint (0.5) of the associated interval is assigned to the point where the line
intersects with the [0, 1] interval. We then assign a codeword to the subinterval
[0, 0.5], since there is only one codeword above the root level. However, below the
root level, there are multiple codewords. To address this, we draw another line on
the central interior node in the bottom level, and assign the midpoint (0.75) of
the [0.5, 1] interval to the point where the line intersects with the [0.5, 1] interval.
We then assign the codeword C(b) to the subinterval [0.5, 0.75]. We continue this
process until all codewords are assigned to subintervals, resulting in the diagram
shown in Fig. 1.11. As a result, each codeword is mapped to a unique subinterval
of [0, 1]:

C(a)↔ [0, 0.5];

C(b)↔ [0.5, 0.75];

C(c)↔ [0.75, 0.875];

C(d)↔ [0.875, 1].

This naturally leads to the following two facts: (1) subinterval size = 2−`(x);
and (2) there is no overlap between subintervals. The second fact comes from the
first observation: an interior node cannot be a codeword. This yields the following
constraint: ∑

x∈X
2−`(x) ≤ 1. (1.25)

This is called Kraft’s inequality.

50 Source Coding

Figure 1.11. Observation #2: Any codeword can be mapped to a subinterval in [0, 1].

An optimization problem Using Kraft’s inequality, we can formulate the opti-
mization problem as:

min
`(x)

∑
x∈X

p(x)`(x)

subject to
∑
x∈X

2−`(x) ≤ 1, `(x) ∈ N, `(x) ≥ 1.

One can ignore the constraint `(x) ≥ 1. Why? Otherwise, the Kraft’s inequality∑
x∈X 2−`(x) ≤ 1 is violated. So the simplified problem reads:

min
`(x)

∑
x∈X

p(x)`(x)

subject to
∑
x∈X

2−`(x) ≤ 1, `(x) ∈ N.
(1.26)

Non-convex optimization The optimization problem (1.26) is widely known
for its difficulty in finding a solution. It falls under a category of optimization
problems that are generally considered challenging. To see this, remember one
definition that we introduced in Section 1.2. That is, concave functions. We say
that a function is concave if ∀x1, x2 and λ ∈ [0, 1], λf (x1) + (1 − λ)f (x2) ≤

f (λx1+ (1−λ)x2). There is another type of functions which are defined in a simi-
lar yet opposite manner: convex functions. We say that a function f is convex if−f

Source Coding Theorem for i.i.d. Sources (2/3) 51

is concave, i.e., ∀x1, x2 and λ ∈ [0, 1],

λf (x1)+ (1− λ)f (x2) ≥ f (λx1 + (1− λ)x2). (1.27)

The inequality has an opposite direction compared to the one used in defining
concave functions.

If we consider the optimization problem (1.26) with the concept of convex func-
tions, we can observe that the objective function is convex in `(x). Additionally, the
left-hand side of the inequality constraint (which can be transformed so that the
right-hand side is 0) is

∑
x∈X 2−`(x) − 1, which is also convex in `(x). An opti-

mization problem is deemed convex when both the objective function and the left-
hand sides of the constraints are convex in the variables (Boyd and Vandenberghe,
2004). Conversely, if an optimization problem contains any non-convex objective
function and/or non-convex functions in the inequalities, it is considered to be
non-convex.

In (1.26), the objective function and the function in the inequality constraint are
both convex. However, when considering the integer constraint `(x) ∈ N, we must
take into account the definition of convexity with respect to a set. A set is considered
convex if any linear combination of two points in the set is also in the set. If not,
the set is non-convex. In this case, N is a non-convex set. To see this, consider two
integer points, 1 and 2, and one linear combination of them, 1.5. Clearly, 1.5 is not
an integer. As a result, the integer constraint `(x) ∈ N is non-convex, making the
optimization problem non-convex as well. Problems with non-convex constraints,
particularly integer constraints, are notoriously difficult to solve. As a result, the
optimization problem at hand is extremely challenging and remains unsolved to
date.

Approximate! To tackle this challenge, Shannon took a different approach. Rec-
ognizing the difficulty of the problem, he aimed to provide insight into the solution
rather than solving it exactly. He proposed that while the problem is difficult, it may
be possible to find an approximate solution that is similar to the exact solution.
Therefore, his objective was to create upper and lower bounds on the solution that
are sufficiently close to each other. In other words, Shannon attempted to approx-
imate the solution of the problem rather than solving it exactly.

A lower bound The goal of the optimization problem presented in (1.26) is to
minimize the objective function. Therefore, one would expect that a larger search
space for `(x) would lead to a smaller or equal solution compared to the exact solu-
tion in the original problem. Shannon was motivated by this insight to expand the
search space in order to obtain a lower bound. One way to achieve this is by remov-
ing a constraint. Unsurprisingly, Shannon chose to remove the integer constraint,

52 Source Coding

which includes a non-convex set, and is the main reason that makes the problem
challenging. Here is the relaxed version of the problem that Shannon formulated:

L := min
`(x)

∑
x∈X

p(x)`(x)

subject to
∑
x∈X

2−`(x) ≤ 1.
(1.28)

Look ahead The optimization problem we have presented aims to minimize the
expected length of codewords, taking into account Kraft’s inequality and the integer
constraint on `(x) in the original formulation. However, we relaxed the integer
constraint, which allowed us to convert the non-convex problem into a manageable
convex optimization problem. In the following section, we will solve the convex
optimization problem to obtain a lower bound. Subsequently, we will derive an
upper bound and use both bounds to prove the source coding theorem.

Source Coding Theorem for i.i.d. Sources (3/3) 53

1.6 Source Coding Theorem for i.i.d. Sources (3/3)

Recap In the previous section, we formulated an optimization problem that aims
to minimize the expected codeword length while satisfying both Kraft’s inequality
and the integer constraint on `(x). However, we encountered a challenge as the
problem is non-convex and generally intractable. To make progress, we followed
Shannon’s approach of approximation by deriving lower and upper bounds that
are as close as possible. To obtain a lower bound, we employed a trick of relaxing
constraints and expanding the search space, which involved removing the non-
convex integer constraint. This allowed us to convert the problem into a tractable
convex optimization problem:

L := min
`

∑
x∈X

p(x)`(x)

subject to
∑
x∈X

2−`(x) ≤ 1.
(1.29)

Outline In this section, we will derive the lower bound. We will also derive an
upper bound by introducing another trick. Based on the lower and upper bounds,
we will finally complete the proof of the source coding theorem.

A lower bound Convex optimization problems, where both the objective func-
tion and constraint functions are convex, have been extensively studied and there
exist numerous methods to solve them. One such method is the Lagrange multiplier
method, which is commonly taught in Calculus courses (Stewart, 2015; Boyd and
Vandenberghe, 2004). The idea behind this method is to introduce a new variable
called the Lagrange multiplier, denoted by λ, and define a Lagrange function that
involves both the optimization variables `(x)’s and the Lagrange multiplier:

L(`(x), λ) =
∑
x∈X

p(x)`(x)+ λ

(∑
x∈X

2−`(x) − 1

)
.

In the canonical form, the number of Lagrange multipliers equals the number of
constraints. In this case, we only have one constraint, so we have one Lagrange mul-
tiplier. The Lagrange function consists of two parts: (i) the objective function, and
(ii) the product of the Lagrange multiplier and the left-hand side of the inequality
constraint.8

8. In the canonical form of inequality constraints, the right-hand-side reads 0 and the inequality direction is≤.

54 Source Coding

How does the Lagrange multiplier method work? We take a derivative of the
Lagrange function w.r.t. optimization variables `(x)’s. We also take a derivative
w.r.t. the Lagrange multiplier λ. Setting these derivatives to zero, we get:

L(`(x), λ)
d`(x)

= 0;

L(`(x), λ)
dλ

= 0.

It has been found that the solution can be obtained by solving these equations9

under the constraint of λ ≥ 0. However, we will not use this method for two
reasons. Firstly, this method is somewhat complicated and messy. Secondly, it is
not quite intuitive as to why it should work, as there is a deep underlying theorem
called the strong duality theorem (Boyd and Vandenberghe, 2004) which proves
that this approach leads to the optimal solution under convexity constraints. Since
we will not deal with the proof of this theorem, it is reasonable not to take an
approach that relies on it. In Prob 2.4, you will have an opportunity to use the
Lagrange multiplier method to solve the problem.

Rather than following the conventional approach, we will adopt a much sim-
pler and intuitive alternative. Before delving into the specifics of the method, let
us streamline the optimization problem even further. It is worth noting that we
can disregard situations where the strict inequality is satisfied:

∑
x∈X 2−`(x) < 1.

Suppose there exists an optimal solution, say `∗(x), such that the strict inequality
holds:

∑
x∈X 2−`

∗(x) < 1. Then, one can always come up with a better solution,
say `′(x), such that: for some x0,

`′(x0) < `∗(x0);

`′(x) = `∗(x) ∀x 6= x0;∑
x∈X

2−`
′(x)
= 1.

We reduced `∗(x0) a bit for one particular symbol x0, in an effort to increase
2−`

∗(x0) so that we achieve
∑

2−`
′(x)
= 1. This is indeed a better solution as it

yields a smaller objective solution due to `′(x0) < `∗(x0). This is contradiction,
implying that an optimal solution occurs only when the equality constraint holds.
Hence, it suffices to consider the equality constraint. The optimization can then be

9. These are called the KKT conditions in the optimization literature (Karush, 1939; Kuhn and Tucker, 2014).

Source Coding Theorem for i.i.d. Sources (3/3) 55

simplified as:

L := min
`(x)

∑
x∈X

p(x)`(x)

subject to
∑
x∈X

2−`(x) = 1.
(1.30)

The approach that we will take is based on a method called “change of variables”.
Let q(x) = 2−`(x). Then, the equality constraint becomes

∑
x∈X q(x) = 1, and

`(x) in the objective function should be replaced with log 1
q(x) :

L = min
q(x)

∑
x∈X

p(x) log
1

q(x)

subject to
∑
x∈X

q(x) = 1, q(x) ≥ 0.
(1.31)

Observe that the constraint q(x) ≥ 0 is introduced as q(x) = 2−`(x). When imple-
menting a “change of variable”, we need to be mindful of any inherent restrictions
on the novel variables that were not present in the initial optimization problem.
Now take note that

∑
x∈X q(x) = 1. What does this trigger in your memory? A

probability mass function! Remember the axiom that the pmf must satisfy.
The objective function bears a resemblance to the one presented earlier, namely

entropy H(X). We now assert that the solution to the optimization problem is
H(X), and the minimizing function q∗(x) (that minimizes the objective function)
is equal to p(x). Here is the reasoning behind this assertion.

If we subtract the objective function from H(X), we obtain:

∑
x∈X

p(x) log
1

q(x)
−

∑
x∈X

p(x) log
1

p(x)

=

∑
x∈X

p(x) log
p(x)
q(x)

= Ep

[
log

p(X)
q(X)

]
What does the final term bring to mind? That is, the Kullback-Leibler (KL) diver-
gence that we covered in Section 1.3. By leveraging a crucial fact about the KL
divergence, namely that it is non-negative (verified in Prob 1.12), we can readily

56 Source Coding

observe that the objective function is minimized when L = H(X), and the mini-
mizer is:

q∗(x) = p(x), i.e., `∗(x) = log
1

p(x)
. (1.32)

An upper bound Let’s now shift our focus to the issue of an upper bound. To
generate a lower bound, we expanded the search space. Conversely, what is a natural
approach to generating an upper bound? The answer is to narrow down the search
space. We will adopt a basic method for narrowing the search space: selecting a
specific choice for the optimization variables `(x)’s.

What is the particular choice we want to make for `(x)? Choosing `(x) randomly
could result in a potentially weak upper bound. Therefore, we need to be cautious
when making our selection. One might speculate that a good choice would be simi-
lar to the optimal solution in the relaxed optimization problem (without the integer
constraint). In this respect, the minimizing function q∗(x) for the relaxed optimiza-
tion problem can provide some guidance. Recall the minimizer in the instance:

q∗(x) = p(x).

Since q(x) := 2−`(x), in terms of `(x), it would be:

`∗(x) = log
1

p(x)
.

If `∗(x)’s were integers, we are happy as we can obtain the exact solution to
the original problem. In general, however, `∗(x)’s are not necessarily integers. One
natural choice for `(x) is then to take an integer which is as close to `∗(x) as possible.
So one can think of two options: (i) blog 1

p(x)c; and (ii) dlog 1
p(x)e. Which of the

two options would you like to choose? In reality, the first option is invalid. Why?
Consider Kraft’s inequality. Therefore, the appropriate selection is the second one.
With the second choice, we obtain:

L∗ ≤
∑
x∈X

p(x)
⌈

log
1

p(x)

⌉

≤

∑
x∈X

p(x)
(

log
1

p(x)
+ 1

)
= H(X)+ 1.

Are the bounds tight? In summary, what we can say for L∗ is :

H(X) ≤ L∗ ≤ H(X)+ 1.

Source Coding Theorem for i.i.d. Sources (3/3) 57

First take a look at the lower bound. The lower bound is tight when log 1
p(x) ’s are

integers (i.e., p(x)’s are integer powers of 2) and therefore `∗(x) can be chosen as
log 1

p(x) without violating the integer constraint. However, this is a particular case
because in general p(x) is not limited to that particular type. As for the upper bound
H(X)+ 1, if H(X) is large enough, the gap of 1 would be negligible. However, if
H(X) is comparable to (or much smaller than) 1, the bounds are loose. For instance,
consider a case in which X is a binary random variable with P(X = 0) = p where
p � 1. In this case, H(X) is close to 0; hence, the bounds play almost no role in
the case.

General source encoder Despite our significant efforts to approximate L∗,
we discovered that the bounds are generally not tight, rendering our efforts use-
less. However, the methods employed to derive these bounds play a crucial role in
demonstrating the source coding theorem. Here’s why.

Our analysis has been limited to a particular scenario in source encoding. We
have focused on a symbol-by-symbol encoder that processes each symbol indepen-
dently. However, the encoder can handle an arbitrary length of input sequence to
produce an output. As a result, it can operate on multiple symbols. For instance,
one could take an n-length sequence of Zn := (X1, X2, . . . , Xn), which is called a
super symbol, and generate an output like C(X1, X2, . . . , Xn). The sequence length
n is a design parameter that can be chosen as desired.

Interestingly, if we apply the bounding methods we have learned to this general
situation, we can readily demonstrate the source coding theorem. Let L∗n be the
minimum expected codeword length concerning the super symbol Zn:

L∗n = min
`(z)

∑
z∈Z

pZn(z)`(z).

Applying the same bounding techniques to L∗n, we get:

H(Zn) ≤ L∗n ≤ H(Zn)+ 1.

Since the codeword length per symbol is of our interest, what we care about is the
one divided by n:

H(Zn)

n
≤

L∗n
n
≤

H(Zn)+ 1

n
. (1.33)

Remember that the length n of the super symbol is of our design choice and hence
we can choose it so that it is an arbitrary integer. In an extreme case, we can make
it arbitrarily large. This is the way that we achieve the limit. Note that the lower
and upper bounds coincide with H(Zn)

n as n tends to infinity.

58 Source Coding

We are almost done with the proof. What remains is to calculate such matching
quantity. Using the chain rule (a generalized version of the chain rule – check in
Prob 1.10), we get:

H(X1, X2, . . . , Xn)

n

=
H(X1)+H(X2|X1)+ · · · +H(Xn|X1, · · · , Xn−1)

n

(a)
=

H(X1)+H(X2)+ · · · +H(Xn)

n
(b)
= H(X)

where (a) follows from the independence of (X1, X2, . . . , Xn) and the fact that
H(X2|X1) = H(X2) when X1 and X2 are independent (check in Prob 1.10(b));
and (b) is due to the fact that (X1, X2, . . . , Xn) are identically distributed.

Applying this to (1.33) together with the sandwidth theorem, we obtain:

lim
n→∞

L∗n
n
= H(X).

This proves the source coding theorem for i.i.d. sources: the maximum compression
rate of an information source per symbol is H(X).

Look ahead The source coding theorem has been proven, showing that optimal
codes exist that can achieve the limit. The optimization problem was formulated
and it was shown that the solution to the problem is entropy. However, we did not
discuss the explicit sequence pattern of the optimal codes, which means that we did
not address how to design the optimal codes. In the next section, we will delve into
this issue more deeply.

Problem Set 2 59

Problem Set 2

Prob 2.1 (Unique decodability) Consider a binary code tree in Fig. 1.12 for
a symbol X ∈ {a, b, c, d}. Is the code uniquely decodable? Also explain why. You
don’t need to prove your answer rigorously. A non-rigorous yet simple explanation
based on what we learned in Section 1.4 suffices.

Prob 2.2 (Prefix-free codes vs. Kraft’s inequality) Consider prefix-free
codes for X ∈ {1, 2, . . . , M} where M is an arbitrary positive integer. Let `(x)
be the codeword length for X = x. In Section 1.5, we showed that such prefix-free
codes satisfy Kraft’s inequality: ∑

x∈X
2−`(x) ≤ 1.

In this problem, you are asked to prove the converse: showing that if Kraft’s inequal-
ity holds, then there exists a prefix-free code with such `(x)’s.

Prob 2.3 (Proof of Kraft’s inequality for uniquely decodable codes) In
Section 1.5, it was claimed that a direct way to come up with a mathematical con-
straint on `(x)’s that uniquely decodable codes should satisfy is difficult. In this
problem, you are asked to develop the constraint. Consider a symbol-by-symbol
source code in which the code acts on each individual symbol independently,
i.e., an input sequence of X1X2 · · ·Xn yields the output C(X1)C(X2) · · ·C(Xn)

Figure 1.12. Illustration of a binary code tree with four codewords.

60 Source Coding

where C(X) indicates a codeword for a symbol X . Each symbol X takes on one
of the following values 1, 2, . . . , M . Let `(i) be the length of codeword C(i) where
i ∈ {1, 2, . . . , M}. Suppose that the source code is uniquely decodable. Through
the following subproblems, you are asked to show that Kraft’s inequality holds for
the uniquely decodable code:

M∑
i=1

2−`(i) ≤ 1.

Remark: This implies that Kraft’s inequality is also necessary, thus proving that
Kraft’s inequality (induced by prefix-free codes) is indeed a necessary and sufficient
condition that uniquely decodable codes should satisfy.

(a) For a positive integer n, show that[
M∑

i=1

2−`(i)
]n

=

M∑
i1=1

M∑
i2=1

· · ·

M∑
in=1

2−(`(i1)+`(i2)+···+`(in)).

(b) Consider a concatenation of n symbols X1X2 · · ·Xn = i1i2 · · · in. What
is the codeword corresponding to such a concatenation? Also what is the
length of the corresponding codeword?

(c) Let `max := max1≤i≤M `(i) and `min := min1≤i≤M `(i). Let N` be the
number of n-fold concatenated sequences which yield codewords of length
`. Using parts (a) and (b), show that[

M∑
i=1

2−`(i)
]n

=

n`max∑
`=n`min

N`2
−`.

(d) Show that

N` ≤ 2`.

(e) Using parts (c) and (d), complete the proof of Kraft’s inequality.

Prob 2.4 (Convex optimization) Let X ∈ X be a discrete random variable
with pmf p(x). In Section 1.6, in the process of proving the source coding theorem,
we considered the following optimization problem:

min
`(x)

∑
x∈X

p(x)`(x) :∑
x∈X

2−`(x) ≤ 1.

Problem Set 2 61

(a) State the definition of a convex set.
(b) Consider a set A := {`(x) :

∑
x∈X 2−`(x) ≤ 1}. Prove that the set A is

convex.
(c) State the definition of convex optimization.
(d) Is the above optimization problem convex? Also explain why.
(e) Using the Lagrange multiplier method that we discussed in Section 1.6,

derive the solution to the optimization problem as well as the minimizer
`∗(x).

Prob 2.5 (True or False?)

(a) Consider a discrete random variable X ∈ X . Suppose a source code w.r.t.
X satisfies: ∑

x∈X
2−`(x) ≤ 1

where `(x) denotes the codeword length w.r.t. x. Then, there always exists
a prefix-free code that satisfies the above.

(b) Any codeword of a uniquely decodable code cannot be mapped to an inter-
nal node in the corresponding binary code tree.

(c) Consider a source symbol X ∈ {a, b, c, d}. Consider a source code:

C(a) = 0; C(b) = 11; C(c) = 111; C(d) = 010.

This code is uniquely decodable.

(d) If the most probable letter in an alphabet has probability less than 1
3 , any

prefix-free code will assign a codeword length of at least 2 to that letter.

(e) In Section 1.5, we learned that the integer set N = {. . . ,−2,−1, 0, 1,
2, . . . } is non-convex. On the other hand, the real set R is convex.

62 Source Coding

1.7 Source Code Design

Recap In the preceding sections, we established the source coding theorem for
the i.i.d. source scenario. To gain insights, we first examined a simple but restricted
context - the symbol-by-symbol encoder, where the source encoder operates on each
symbol independently. Subsequently, we formulated an optimization problem that
aims to minimize the expected codeword length in this scenario. However, due to
the problem’s intractability, we attempted to approximate the solution by deriving
reasonably tight lower and upper bounds. By applying simple yet powerful bound-
ing techniques, we were able to derive lower and upper bounds that differ by 1.

Furthermore, we extended these bounding techniques to a general setting in
which the source encoder operates on multiple symbols of possibly varying lengths,
resulting in the following:

H(X1, . . . , Xn)

n
≤

L∗n
n
≤

H(X1, . . . , Xn)+ 1

n

where L∗n indicates the minimum expected codeword length w.r.t. a super symbol
Zn := (X1, . . . , Xn). In the limit of n, this gives:

L∗n
n
−→ H(X). (1.34)

Outline The implication of (1.34) is that there are optimal codes that can reach
the limit, but we haven’t discussed the specific sequence patterns of these optimal
codes. In other words, we haven’t explained how to design these optimal codes. This
issue will be thoroughly investigated in this section.

Regimes in which one can achieve the limit Recall the setting where we can
achieve the limit, i.e., the setting in which a super symbol is taken while its length
tends to infinity. In order to design codes, we need to specify the following two:
the length and pattern of codewords. The minimizer of the relaxed optimization
problem (see (1.32)) gives insights into the length of optimal codewords. Recall:

`∗(X n) = log
1

p(X n)

where X n denotes the shorthand notation of the sequence: X n := (X1, . . . , Xn).
Hence, in order to figure out how the optimal length `∗(X n) looks like in the
interested regime of large n, we should take a look at the behavior of p(X n) for the
regime.

Behavior of p(Xn) for a large value of n We focus on the binary alphabet
case in which Xi ∈ {a, b} and P(Xi = a) = p. Later we will consider the general

Source Code Design 63

alphabet case. The sequence consists of a certain combination of two symbols: a’s
and b’s. For very large n, an interesting behavior occurs on two quantities regarding
the sequence. One is the faction of symbol “a”, represented as the number of a’s
divided by n. This is an empirical mean of occurrences of symbol “a”. The second
is the symbol “b” counterpart, the fraction of symbol b.

To see this, we compute the probability of observing X n. Since X n is i.i.d., p(X n)

is simply the product of individual probabilities:

p(X n) = p(X1)p(X2) · · · p(Xn).

Each individual probability is p or 1−p depending on the value of Xi. So the result
would be of the following form:

p(X n) = p{# of a’s}(1− p){# of b’s}.

Consider log 1
p(X n)(= `

∗(X n)) that we are interested in:

log
1

p(X n)
= {# of a’s} · log

1

p
+ {# of b’s} · log

1

1− p
.

Dividing by n on both sides, we obtain:

1

n
log

1

p(X n)
=
{# of a’s}

n
· log

1

p
+
{# of b’s}

n
· log

1

1− p
. (1.35)

What can we say about this in the limit of n? Your intuition says: {# of a’s}
n → p

as n → ∞. One can naturally expect that as n → ∞, the fraction would be
concentrated around P(X = a). This is indeed the case. Relying on a well-known
theorem, called the Weak Law of Large Numbers (WLLN10), one can prove this. Let
Yi = 1{Xi = a} where 1{·} is an indicator function that returns 1 when the event
(·) is true; 0 otherwise. Consider:

Sn :=
Y1 + Y2 + · · · + Yn

n

where Sn indicates the fraction of a’s. Obviously it is a sequence of n.
Now consider the convergence of the sequence. From Calculus, you learned

about the convergence of sequences, which are deterministic. But the situation is
a bit different here. The reason is that Sn is a random variable (not deterministic).
We need to consider the convergence w.r.t. a random process. There are multiple
types of convergence w.r.t. random processes. One type of the convergence that is

10. This is the law (discovered by Jacob Bernoulli) mentioned in Section 1.3

64 Source Coding

needed to be explored in our problem context is the convergence in probability. In
fact, what the WLLN that we mentioned above says is that

WLLN: Sn converges to E[Y] = p in probability.

Simply speaking, it means that Sn converges to p with high probability (w.h.p.). But
in mathematics, the meaning should be rigorously stated. What it means by this in
mathematics is that for any ε > 0,

P(|Sn − p| ≤ ε)→ 1 as n→∞.

In other words, Sn is within p± ε w.h.p.

Applying the WLLN to {# of a’s}
n and {# of b’s}

n , we get: for any ε1, ε2 > 0,

{# of a’s}

n
is within p± ε1,

{# of b’s}

n
is within 1− p± ε2,

as n→∞. Applying this to (1.35), we can say that in the limit of n,

1

n
log

1

p(X n)
= (p± ε1) log

1

p
+ (1− p± ε2) log

1

1− p

= H(X)± ε

where ε := ε1 log 1
p + ε2 log 1

1−p .

Manipulating the above, we get:

p(X n) = 2−n(H(X)±ε) holds w.h.p. (1.36)

The key observation is that for a very large value of n, ε can be made arbitrarily
close to 0 and thus p(X n) is almost the same for all such X n. We call such sequences
typical sequences. The set that contains typical sequences is said to be a typical set,
formally defined as below.

A(n)ε := {xn : 2−n(H(p)+ε)
≤ p(X n) ≤ 2−(H(p)−ε)

}.

Notice that p(X n) ≈ 2−nH(X) is almost uniformly distributed. This property plays
a crucial role to design a optimal code. In the sequel, we will use this property to
design the code.

Source Code Design 65

Prefix-free code design What (1.36) suggests is that any arbitrary sequence
is asymptotically equiprobable. Remember in Section 1.1 that a good source code
assigns a short-length codeword to a frequent symbol, while assigning a long-length
codeword to a less frequent symbol. For a very large value of n, any sequence
is almost equally probable. This implies that the optimal length of a codeword
assigned for any arbitrary sequence would be roughly the same as:

`∗(X n) = log
1

p(X n)
≈ nH(X).

A binary code tree can be constructed where the depth of the tree is approximately
nH(X), and the codewords are allocated to the leaves. It is worth noting that in a
prefix-free code, the codewords are located only in the leaves.

Let us check if we can map all the possible sequence patterns of X n into leaves.
To this end, we need to check two values: (1) the total number of leaves; and (2) the
total number of possible input sequences. First of all, the total number of leaves is
roughly 2nH(X). What about the second value? The total number of input sequence
patterns is 2n because each symbol can take on one of the two values (“a” and
“b”) and we have n of them. But in the limit of n, the sequence X n behaves in a
particular manner, more specifically, in a manner that p(xn) ≈ 2−nH(X); hence,
the number of such sequences is not the maximum possible value of 2n. Then, how
many sequences such that p(xn) ≈ 2−nH(X)? To see this, consider:

∑
xn:p(xn)≈2−nH(X)

p(xn) ≈ |{xn : p(xn) ≈ 2−nH(X)
}| × 2−nH(X).

The aggregation of all the probabilities of such sequences cannot exceed 1; hence,

|{xn : p(xn) ≈ 2−nH(X)
}| . 2nH(X).

Note that the cardinality of the set does not exceed the total number of leaves
≈ 2nH(X). So by using parts of leaves, we can map all of such sequences. This
completes the design of an optimal prefix-free code. See Fig. 1.13.

Finally let us check if this code indeed achieves the fundamental limit H(X).
Notice that the length of every codeword is ≈ nH(X). So the expected codeword
length per symbol would be ≈ nH(X)

n = H(X).
Remark: The argument for the source code design is based on approximation.

You will have a chance to do this rigorously in Prob 3.7.

66 Source Coding

of leaves

� Use part of the leaves
for mapping codewords

Figure 1.13. Design of optimal prefix-free codes.

Extension to non-binary sources We have considered the binary alphabet
case. How about for non-binary sources? Using the WLLN, one can prove that:

1

n
log

1

p(X n)
−→ H(X) in prob.

although X is an arbitrary random variable, not limited to the binary one. Please
check this is indeed the case in Prob 3.4. Roughly speaking, this implies that
p(X n) ≈ 2−nH(X) w.h.p. – any arbitrary sequence is asymptotically equally prob-
able. Using this and applying the code design rule based on a binary code tree, we
can easily construct an optimal source code. Every input sequence is mapped to a
leaf in a binary code tree with depth ≈ nH(X) and hence, the expected codeword
length per symbol is H(X). The sequence pattern of a codeword is determined by
which leaf the codeword is assigned to.

Look ahead We have focused on i.i.d. sources so far. However, in real-world sce-
narios, many information sources exhibit non-i.i.d. behavior. Therefore, it is cru-
cial to investigate the source coding theorem and optimal code design for non-i.i.d.
sources. In the next section, we will delve into these practically-relevant scenarios.

Source Coding Theorem for General Sources 67

1.8 Source Coding Theorem for General Sources

Recap In the previous section, we examined the method for creating an optimal
code that can achieve the entropy promised by the source coding theorem for the
i.i.d. source case. The approach utilized a super symbol-based technique, where the
source encoder operates on a sequence of multiple input symbols (n symbols), and
the value of n is chosen by the designer. The construction aimed to increase the size
of the super symbol to a sufficiently large value. As we analyzed the technique for
large n, we discovered using the WLLN that:

1

n
log

1

p(X n)

in prob.
−→ H(X) (1.37)

i.e., 1
n log 1

p(X n) lies in between H(X)− ε and H(X)+ ε for any ε > 0, as n tends
to infinity. Inspired by the fact that the codeword length solution for the lower
bound in the interested optimization problem is `∗(xn) = log 1

p(xn) , we focused on

the quantity of 1
p(xn) . From (1.37), we observed that in the limit of n, the quantity

becomes:

log
1

p(X n)
≈ nH(X).

As a result, we were prompted to investigate a prefix-free code where a given input
sequence xn is assigned to a leaf located at the level with a tree depth of approxi-
mately nH(X). By doing so, we guarantee that the expected codeword length per
symbol is approximately H(X), meeting the expected limit. Additionally, we ver-
ified that the number of possible input sequences with probability p(xn) approxi-
mately equal to 2−nH(X) is lower than the total number of leaves. This guarantees
a unique mapping for each of these input sequences.

Outline Our focus was solely on i.i.d. sources. However, when it comes to non-
i.i.d. sources, one might wonder what the corresponding source coding theorem is,
as well as how we can design optimal codes for such sources. In this section, we will
explore these inquiries.

General non-i.i.d. sources In real-world scenarios, most information sources
deviate significantly from the i.i.d. assumption. One prime example of such a source
is an English text. To illustrate this, let’s take the example where the first and second
letters are “t” and “h” respectively. In this case, it is reasonable to expect that the third
letter would be “e” due to the high frequency of the word “the” in typical English
texts. This example highlights the strong correlation between symbols in a text,
indicating that the sequence is dependent and not i.i.d. Many other information

68 Source Coding

sources exhibit similar characteristics, making it imperative to explore the source
coding theorem and optimal code design for non-i.i.d. sources.

Source coding theorem for general sources By utilizing the bounding tech-
niques we have learned, we can easily address the non-i.i.d. source case. If we
utilize a super symbol-based source code with a super symbol size of n, and let
L∗n = E[`(Xn)], we can apply the same lower and upper bound techniques to
show that:

H(X1, X2, . . . , X n) ≤ L∗n ≤ H(X1, X2, . . . , Xn)+ 1.

Dividing the above by n, we get:

H(X1, X2, . . . , X n)

n
≤

L∗n
n
≤

H(X1, X2, . . . , Xn)+ 1

n
.

The expected codeword length per symbol is related to the following quantity:

lim
n→∞

H(X1, X2, . . . , Xn)

n
.

Is the limit present? If so, we can conclude the task. However, it is not always the
case, as there are certain artificial instances where the limit does not exist, as shown
in page 75 of (Cover, 1999). Nonetheless, in numerous cases that are of practical
importance, the limit does exist. Therefore, let us only focus on those cases where
the limit exists, and we can express the source coding theorem as follows:

Minimum # of bits that can represent a general source per symbol

= lim
n→∞

H(X1, X2, . . . , Xn)

n
.

Figure 1.14. limn→∞
H(X1 ,X2 ,...,Xn)

n means the growth rate of the sequence uncertainty w.r.t.

n, so it is called the entropy rate.

Source Coding Theorem for General Sources 69

There is a term that refers to this limit. In order to comprehend why this term
is used, take a look at a graph where the n and H(X1, X2, . . . , Xn) are represented
on the x and y axes, respectively. This can be observed in Fig. 1.14. What the above
limit means is the slope. In other words, it means the growth rate of the sequence
uncertainty w.r.t. n. Hence, it is called the entropy rate.

Stationary process You might be wondering how to calculate the entropy rate.
In many cases of practical significance, computing the entropy rate is a straightfor-
ward task. One such example is a stationary process. A random process is consid-
ered stationary if {Xi} has the same statistical properties (such as joint distribution)
as its shifted version {Xi+`} for any non-negative integer `. An example of this is
English text. The statistics of a 10-year-old text would be almost identical to that
of a present-day text; for instance, the frequency of the word “the” in an older text
would be roughly the same as in a contemporary text.

When the limit is applied to a stationary process, it can be simplified even further.
To illustrate this, let’s consider:

H(X1, X2, . . . , Xn)

= H(X1)+H(X2|X1)+ · · · +H(Xn|X1, . . . , Xn−1)

=

n∑
i=1

H(Xi|X1, X2, . . . , Xi−1)

=

n∑
i=1

H(Xi|X i−1)

where the first equality is due to the chain rule and the last comes from the short-
hand notation that we introduced earlier: X i−1 := (X1, . . . , Xi−1). Let ai =

H(Xi|X i−1). We can see two properties of the deterministic sequence {ai}. First it
is non-negative. Second, it is non-increasing, i.e., ai+1 ≤ ai. To see this, consider:

ai+1 = H(Xi+1|X1, X2, . . . , Xi)

≤ H(Xi+1| X2, . . . , Xi)

= H(Xi|X1, . . . , Xi−1)

= ai

where the inequality follows from the fact that conditioning reduces entropy and
the second last equality is due to the stationarity of the process. These two prop-
erties imply that the deterministic sequence {ai} has a limit. Why? Please check in

70 Source Coding

Prob 3.8. Now consider

H(X1, . . . , Xn)

n
=

1

n

n∑
i=1

ai.

This quantity indicates the running average of the sequence {ai}. Keeping in your
mind that {ai} has a limit, what your intuition says is that the running average will
converge to the limit because almost all the components in the running average will
converge to the limit. This is indeed the case. The entropy rate of the stationary
process is:

H(X) = lim
i→∞

H(Xi|X i−1). (1.38)

Please see Prob 3.8 for the rigorous proof.
Next, how to design optimal codes for such a stationary process? We can apply

the same methodology that we developed earlier. The first is to check that such a
stationary sequence is also asymptotically equiprobable. In fact, one can resort to a
generalized version of the WLLN to prove that this is indeed the case:

p(X n) ≈ 2−nH(X). (1.39)

The proof of this is not that simple, requiring some non-trivial tricks. We will not
deal with the proof here. If you are interested, you can try it via Prob 3.10. Recalling
what we learned in the previous section. What (1.39) suggests is that the optimal
code assigns the same codeword length for every sequence and the length should
read roughly nH(X). The sequence patterns will be determined by the binary code
tree of depth ≈ nH(X) in which codewords are mapped to leaves.

From theory to practice Up to this point, we have discussed the limit (the
entropy rate) in relation to the compression rate of an information source (which
is almost always a stationary process in practical applications) and learned how to
design optimal codes that achieve this limit. However, our focus has been on an ide-
alistic scenario where the super symbol size n can be made infinitely large. In reality,
n must be finite for two reasons. Firstly, the hardware used to implement the code
cannot support an infinite n size. Secondly, the amount of available information
from the source is limited. Therefore, the question arises: what are the optimal codes
for a finite value of n? This was the question posed by Shannon and shared with one
of the professors in MIT, Prof. Robert Fano. Prof. Fano then shared this question
with students who took the information theory course that he held at that time.

As previously mentioned, solving the optimization problem for the finite n case
is non-convex and extremely difficult. To date, a closed-form solution to the limit
remains elusive.

Source Coding Theorem for General Sources 71

However, surprisingly, one of Prof. Fano’s students, David Huffman, devised a
simple algorithm that leads to the optimal code. Although he did not provide an
exact closed-form solution to the limit, he was able to give an explicit design rule in
the form of an algorithm that generates the optimal code. This code is now known
as the Huffman code, and it was developed as a term project in the class.

Look ahead In summary, we have demonstrated the source coding theorem for
general information sources and discovered how to design codes that achieve the
limit. Additionally, we provided a brief introduction to some practical codes such
as the Huffman code. The next section will delve deeper into the Huffman code.

72 Source Coding

1.9 Huffman Code and Python Implementation

Recap We have demonstrated the source coding theorem for general information
sources (stationary processes in practically-relevant scenarios). We also learned how
to design optimal codes that attain the limit, which is the entropy rate. Nevertheless,
our attention has been focused on an idealistic situation in which the super symbol
size n is infinitely large, while in practice, n must be finite. The good news is that
an optimal code construction was developed shortly after Shannon established the
source coding theorem.

Outline In this section, we will delve into the study of the optimal code, known
as the Huffman code, which was developed by David Huffman. The inspiration for
the code came from “thinking outside the box”. Huffman scrutinized an intuitive
binary code tree and deduced several properties that an optimal binary code tree
must satisfy. These properties led him to invent a natural algorithm that guarantees
optimality. We will first examine the crucial properties that an optimal binary code
tree should possess. Next, we will describe the functioning of the optimal algorithm.
Finally, we will investigate the implementation of the algorithm using Python.

An optimization problem for n = 1 Let us start with the simplest case in
which the super symbol size n is 1. Let a symbol X be an M -ary random variable
with the pmf p(x) in which x ∈ X = {a1, a2, . . . , aM }. For notational simplicity,
we will denote p(ai) by pi for i ∈ {1, . . . , M}. Let `i be the codeword length w.r.t.
symbol ai. Then, the optimization problem which aims to minimize the expected
codeword length is:

min
`i

M∑
i=1

pi`i

s.t.
M∑

i=1

2−`i ≤ 1, `i ∈ N.

(1.40)

As we learned in Section 1.5, this is a non-convex optimization problem. Especially
when it involves an integer constraint, it is so called integer programming which is
known to be notoriously difficult. In general, solving integer programming requires
searching over all possible candidates for variables.

Since the intractability of the problem is well-known, in early days, only
heuristics were suggested. One heuristic proposed by Shannon is to choose `i

as (Shannon, 2001):

`i =

⌈
log

1

pi

⌉
.

Huffman Code and Python Implementation 73

People later called this Shannon code. When there is no ceiling, the minimizer is the
solution to the relaxed optimization problem which ignores the integer constraint.
Hence, it yields the exact solution when log 1

pi
’s are integers. In general, log 1

pi
’s are

not necessarily integers, so the problem is not that simple. Actually even until now,
the closed-form solution for the expected codeword length has been unknown.

Birth of the Huffman code Fano had developed another heuristic code, which
was later named Shannon-Fano code (Salomon, 2004), but it was not generally
optimal. He challenged the students in his information theory course at MIT
to find a solution to the integer programming problem. Unexpectedly, a student
named David Huffman came up with a simple algorithm that leads to the optimal
code, which is now known as the Huffman code (Huffman, 1952).

Instead of attempting to solve the difficult problem directly, Huffman used a
creative approach to gain insights from the properties that the optimal code must
have. He studied the binary code tree and established three key properties that the
optimal binary code tree should satisfy. These properties allowed him to develop
an optimal algorithm.

Properties of optimal prefix-free codes Without loss of generality, assume
that p1 ≥ p2 ≥ · · · ≥ pM . Let `∗i ’s be optimal codeword lengths. The first property
is w.r.t. the relationship between pi’s and `∗i ’s:

Property 1: pi > pj −→ `∗i ≤ `
∗
j . (1.41)

This is very intuitive. Having a larger frequency (higher pi), the corresponding
optimal codeword length must be smaller (smaller `∗i). Here is a rigorous proof
for this seemingly-trivial property. The idea is by contradiction. Suppose `∗1 > `∗2
when p1 > p2. The optimal expected codeword length reads:

L∗ = p1`
∗
1 + p2`

∗
2 +

M∑
i=3

pi`
∗
i .

On the other hand, consider another expected codeword length, say L̂, w.r.t. the
case in which we interchange the role of `∗1 and `∗2:

L̂ = p1`
∗
2 + p2`

∗
1 +

M∑
i=3

pi`
∗
i .

We then see that

L∗ − L̂ = p1(`
∗
1 − `

∗
2)− p2(`

∗
1 − `

∗
2)

= (p1 − p2)(`
∗
1 − `

∗
2) > 0.

74 Source Coding

This contradicts with the hypothesis that L∗ is the minimum expected codeword
length.

The second property is regarding the relationship between the optimal lengths
w.r.t. the last two least probable symbols:

Property 2: `∗M−1 = `
∗

M . (1.42)

The immediacy of this statement arises from the fact that a binary code tree pos-
sesses only two branches. If we assume that `∗M−1 6= `

∗

M , there must exist a vacant
leaf adjacent to the leaf designated for the least probable symbol aM . This assump-
tion is contradictory since a binary code tree with an unoccupied left leaf cannot
produce the most efficient code. To further illustrate this point, let us examine a
simple instance in which M equals 4, and the codewords are:

C(a1) = 0, C(a2) = 10, C(a3) = 110, C(a4) = 1110.

See Fig. 1.15. In this case, one can immediately find a better codeword that yields
a shorter length: C(a4) = 111.

The last third property is about the relationship between the last two least prob-
able symbols:

Property 3: (aM−1, aM) can be assumed to be siblings, (1.43)

meaning that the codewords for aM−1 and aM can always be mapped to the leaves
which are neighbors with each other. Here is the proof. Suppose (aM−1, aM) are
not siblings. Then, there must be another symbol, say aM−i, (i ≥ 2), such that
it is a sibling of aM . Otherwise, one can immediately find a better code (Why?).
Clearly `∗M−i = `

∗

M . This together with Property 2 gives: `∗M−1 = `
∗

M−i. Hence,

Figure 1.15. An example which supports the second property: `∗M−1 = `
∗

M .

Huffman Code and Python Implementation 75

interchangable

Figure 1.16. An example which supports the third property: two least probable symbols

(a4, a5) can be assumed to be siblings.

one can interchange the codewords of aM−i and aM−1 without loss of optimality
(while keeping the expected codeword length). This ensures aM−1 to be a sibling
of aM . To see this clearly, consider an example in which M = 5 and codewords are:

C(a1) = 0, C(a2) = 100, C(a3) = 110, C(a4) = 110, C(a5) = 111.

See Fig. 1.16. In this case, one can interchange the codewords of a3 and a4 so that
a4 is a sibling of a5 while maintaining the expected codeword length.

An optimal algorithm The above three properties (1.41)–(1.43) enabled Huff-
man to come up with a simple and natural algorithm. Let us explore it by starting
with the simplest case M = 2. In this case, the second property `∗M−1 = `

∗

M yields
an obvious construction: C(a1) = 0 and C(a2) = 1.

Next consider M = 3. The second property gives `∗2 = `∗3. Obviously `∗2 =
`∗3 ≥ 2. Otherwise (i.e., `∗2 = `

∗
3 = 1), `∗1 must be greater than or equal to 2. But

this violates the first property. Hence, `∗1 = 1 and `∗2 = `
∗
3 ≥ 2; and this yields a

straightforward construction: Assigning 10 and 11 to two least probable symbols
while mapping 0 to the most frequent symbol:

C(a1) = 0, C(a2) = 10, C(a3) = 11. (1.44)

Now consider M = 4. With the second and third properties, `∗3 = `∗4 and
(a3, a4) can be assumed to be siblings. Consider the internal node associated with
the two leaves w.r.t. (a3, a4). Let a′3 be a virtual symbol which represents the two
symbols (a3, a4). Map a′3 to that internal node, and define

p′3 := p(a′3) = p3 + p4.

76 Source Coding

Run the algorithm for M=3

Figure 1.17. The Huffman algorithm for M = 4.

Let `′3 be the codeword length w.r.t. a′3. This then gives `′∗3 + 1 = `∗3 = `∗4.
Consider a new set of symbols (a1, a2, a′3) with (p1, p2, p′3). The idea of the Huff-
man algorithm is to take a recursion: Running the M = 3 algorithm (described
in (1.44)) for the new set of (a1, a2, a′3). See Fig. 1.17.

The recursive approach outlined here results in the minimum expected length
for codewords. While the verification process will be elaborated upon later, a com-
prehensive account of the algorithm for any given M is presented below:

1. If M = 3, we run the algorithm described in (1.44).
2. Otherwise, merge two least probable symbols (aM−1, aM) to generate a

virtual symbol a′M−1 with p′M−1 := pM−1 + pM . Run the same algo-
rithm (performing procedures 1 and 2) for the new set of M − 1 symbols:
(a1, a2, . . . , aM−2, a′M−1).

We also provide an example for M = 5:

(p1, p2, p3, p4, p5) = (0.4, 0.2, 0.15, 0.15, 0.1). (1.45)

See Fig. 1.18. We first merge two least probable symbols (a4, a5) to generate a
virtual symbol a′4 with p′4 = 0.15 + 0.1 = 0.25. Next we repeat the same now
for the new set of four symbols with (p1, p2, p3, p′4) = (0.4, 0.2, 0.15, 0.25). We
merge two least probable symbols (a2, a3) to generate a virtual symbol, say a′2, with

Huffman Code and Python Implementation 77

Figure 1.18. An example of how the Huffman algorithm runs.

p′2 = 0.2 + 0.15 = 0.35. This yields another set of symbols with (p1, p′2, p′4) =
(0.4, 0.35, 0.25). Lastly we merge a′2 and a′4 to complete the algorithm.

Proof of the optimality Let us prove the optimality of the Huffman algo-
rithm. Let

L =
M∑

i=1

pi`i = pM−1`M−1 + pM`M +

M−2∑
i=1

pi`i

Here (aM−1, aM) are the two least probable symbols and we merge them to generate
a′M−1 with p′M−1 = pM−1+ pM . Note that `′M−1+ 1 = `M−1 = `M . Using this,
we get:

L = pM−1(`
′

M−1 + 1)+ pM (`
′

M−1 + 1)+
M−2∑
i=1

pi`i

= pM−1 + pM +

[
p′M−1`

′

M−1 +

M−2∑
i=1

pi`i

]
.

(1.46)

Let L′ be the expected codeword length w.r.t. the new set of symbols
(a1, a2, . . . , aM−2, a′M−1). Then, L′ = p′M−1`

′

M−1 +
∑M−2

i=1 pi`i, which coin-
cides with the second bracketed term in the second equality of (1.46). The key to
observe is that minimizing L′ yields the same solution as that aiming to minimize

78 Source Coding

L, as the left-over term pM−1 + pM is irrelevant to the optimization variables `i’s.
Also Kraft’s inequality for the new set of (a1, a2, . . . , aM−2, a′M−1) holds:

2−`
′
M−1 +

M−2∑
i=1

2−`i

= 2 · 2−(`
′
M−1+1)

+

M−2∑
i=1

2−`i

= 2−`M−1 + 2−`M +

M−2∑
i=1

2−`i

=

M∑
i=1

2−`i ≤ 1.

This proves the optimality of the Huffman algorithm.

Extension to an arbitrary super symbol size n To give you an idea, let us
consider the case in which the size of the super symbol n = 2. Let Z = (X1, X2).
Then, the probability distribution w.r.t. Z reads:

p(a1, a1), p(a1, a2), . . . , p(aM , aM). (1.47)

We can then run the Huffman algorithm w.r.t. Z . The generalization to arbitrary
n is straightforward. Let Z = (X1, X2, . . . , Xn). Then, the probability distribution
is defined as in (1.47). Running the same algorithm, we obtain the optimal code.

Python implementation We explore how to implement the Huffman algo-
rithm via Python. For illustrative purpose, consider a simple setup where M = 5
(say a, b, c, d , e) and the probability distribution is the same as in (1.45):

(p1, p2, p3, p4, p5) = (0.4, 0.2, 0.15, 0.15, 0.1). (1.48)

Since the algorithm is based on a binary tree, we start with constructing a binary
tree class with the top and bottom branches.

class TreeNode(object):
def _ _init_ _(self, top=None, bottom=None):

self.top = top
self.bottom = bottom

def children(self):
return self.top, self.bottom

Huffman Code and Python Implementation 79

Figure 1.19. A binary code tree constructed by the Huffman algorithm.

This class is equipped with a method (named children) that returns the values
assigned to the top and bottom branches.

Using this tree class, we wish to construct a binary code tree as illustrated in
Fig. 1.19. We first create a tree (that we named Node 1) by merging the two
least probable symbols (d , e). To Node 1, we then assign a new probability p′4 =
0.15+ 0.1. Next we repeat the same for the new set of four symbols (a, Node 1, b, c)
with (p1, p′4, p2, p3). We build another tree, Node 2 by merging the two least prob-
able symbols (b, c) in the new set. For another set of symbols (a, Node 2, Node 1)

with (p1, p′2, p′4) = (0.4, 0.35, 0.25), we create Node 3, taking Node 2 and Node 1

as the top and bottom children. Lastly we construct Node 4 (the root node) to
complete the algorithm.

For code implementation, we represent the probability distribution via a dictio-
nary where the keys and values are symbols (or TreeNode) and probabilities, respec-
tively. To merge two least probable symbols, we sort the dictionary in a descending
order, thus taking the last two. To this end, we employ sorted function. Here is
code implementation.

probability distribution
freq={"a":0.4, "b":0.2, "c":0.15, "d":0.15, "e":0.1}
Sort in a descending order
freq=sorted(freq.items(),key=lambda x: x[1],reverse=True)

Construct a binary code tree
while len(freq) > 1:

Retrieve the mimimum probability
(key_b, c_b) = freq[-1]

80 Source Coding

Retrieve the 2nd minimum probability
(key_t, c_t) = freq[-2]
Build a TreeNode taking minimum and 2nd minimum
as the bottom and the top child, respectively
new_node = TreeNode(key_t,key_b)
Construct a new probability distribution with
remaining probabilities & that of the new NodeTree
freq = freq[:-2]
freq.append((new_node, c_t+c_b))
Sort in a descending order
freq = sorted(freq, key=lambda x: x[1], reverse=True)
print(freq)

[(’a’, 0.4),
(<__main__.TreeNode object at 0x000001344B434250>, 0.25),
(’b’,0.2), (’c’, 0.15)]
[(’a’, 0.4),
(<__main__.TreeNode object at 0x000001344B434A30>, 0.35),
(<__main__.TreeNode object at 0x000001344B434250>, 0.25)]
[(<__main__.TreeNode object at 0x000001344B434580>, 0.6),
(’a’, 0.4)]
[(<__main__.TreeNode object at 0x000001344B4343A0>, 1.0)]

The tree construction stops when the newly updated dictionary contains only one
element. In the above example, we have four steps in total. To see how each step
works, we print out the updated dictionary. We also illustrate it via Fig. 1.20.

Figure 1.20. How each step works in the Huffman algorithm.

Huffman Code and Python Implementation 81

Next we construct an encoding function due to the Huffman algorithm. In the
above example, we wish to generate a dictionary as below:

{b : 000, c : 001, d : 010, e : 011, a : 1}.

To this end, we need to traverse all the leaves while producing a corresponding
binary string w.r.t. each leaf. In the data structure literature, there are two major
methods for traversing all the leaves in a binary tree: (i) Depth First Search (DFS);
and (ii) Breath First Search (BFS). Here we take DFS and this can easiliy be imple-
mented via recursion. Here is code implementation.

def huffman_code_tree(node, binString=’’):
returns a dictionary where
(key, value) = (symbol, codeword)

if node is of string type, return (node,binString)
if type(node) is str:

return {node: binString}
(top,bottom) = node.children()
initialize a dictionary for encoding
d = dict()
top child: assign a label ’0’
d.update(huffman_code_tree(top, binString+’0’))
bottom child: assign a label ’1’
d.update(huffman_code_tree(bottom,binString+’1’))
return d

enc_dict = huffman_code_tree(freq[0][0])
print(enc_dict)

{’b’: ’000’, ’c’: ’001’, ’d’: ’010’, ’e’: ’011’, ’a’: ’1’}

Notice that the resultant dictionary matches the desired codewords illustrated in
Fig. 1.19.

Limitations of the Huffman code Although the Huffman algorithm provides
an optimal code in practical scenarios with a finite number of source elements,
its implementation has certain limitations. One limitation is the requirement for
knowledge of source statistics to design the Huffman code, which means that the
joint distribution of a super symbol, p(x1, x2, . . . , xn), must be known. However,
obtaining this statistical knowledge may not be straightforward in practice. There-
fore, a pertinent question that arises in this practical scenario is: Is it possible to
find optimal codes that do not rely on prior knowledge of source statistics?

Lempel-Ziv code (Ziv and Lempel, 1977, 1978) Lempel and Ziv are two
individuals who could answer the question regarding whether there are optimal

82 Source Coding

codes that do not rely on prior knowledge of source statistics. They developed a
universal code called the Lempel-Ziv code, which can be applied to any type of
information source without requiring statistical knowledge. The code has generated
significant interest from system designers because it can approach the limit, i.e., the
entropy rate. The Lempel-Ziv code has been implemented in various systems under
different names, such as gzip, pkzip, and UNIX compression.

The basic idea behind the Lempel-Ziv code is straightforward and is something
that people use in their daily lives. To illustrate the idea, let us consider the context
of closing email phrases. People often use similar phrases such as “I look forward
to your reply,” “I look forward to seeing you,” “I look forward to hearing from
you,” and “Your prompt reply would be appreciated.” If we were to compress this
English phrase as it is, it would require more bits than the number of alphabets
in the phrase. However, the Lempel-Ziv code suggests that we can compress the
phrase much more effectively using a dictionary. Since people use only a few closing
phrases, we can create a dictionary that maps each phrase to an index like 1, 2, 3.
This dictionary serves as the basis for the Lempel-Ziv code.

The Lempel-Ziv code operates in the following way: Firstly, a dictionary is cre-
ated from a pilot sequence that forms part of the entire sequence. This dictionary
is then shared between the source encoder and decoder. The source encoder only

closing email phrases

I look forward to your reply.
I look forward to seeing you.
I look forward to hearing from you.
I look forward to hearing from you soon.
I look forward to meeting you next Tuesday.
I look forward to seeing you next Thursday.
We look forward to welcoming you as our customer.
I look forward to an opportunity to speak with you personally.
I look forward to a successful working relationship in the future.
I hope to get answers from you.
Good luck and I look forward to your response!
If you require any further information, feel free to contact me.
If you have any questions, please don't hesitate to contact us.
Should you need any further information, please do not hesitate to contact me.
I would appreciate your immediate attention to this matter.
Your prompt reply is very much appreciated.
Please contact us again if we can help in any way.
Please contact us again if there are any problems.
Please contact us again if you have any questions.

dictionary1
2
3
4
5
6
7
8
9
10
11
12
13
14

16
17

15

18
19

Figure 1.21. The idea of the Lempel-Ziv code. We construct a dictionary (e.g., assign-

ing indices, marked in blue, for frequently used email phrases) using only part (pilot

sequence) of the entire sequence. We then share the dictionary between source encoder

and decoder. The decoder receives the indices and recovers the original sequence using

the shared dictionary. This code is shown to achieve the limit (the entropy rate) as the

dictionary size increases.

Huffman Code and Python Implementation 83

encodes the indices, while the decoder decodes the indices using the shared dictio-
nary. By following this process, it is not necessary to have knowledge of the statistics
of the information sources. Moreover, it has been demonstrated that this code can
approach the limit, i.e., the entropy rate, as the dictionary size increases. However,
since the focus of this book is not on this code, we will refrain from delving further
into its details.

Look ahead Thus far, we have demonstrated the source coding theorem for gen-
eral information sources and acquired knowledge about optimal code design. Addi-
tionally, we have gained insight into constructing an explicit optimal code for finite
n, which is the Huffman code, along with its implementation using Python. These
constitute the contents of Part I. In the ensuing section, we will commence with
Part II.

84 Source Coding

Problem Set 3

Prob 3.1 (Markov’s inequality) Consider a non-negative random variable X
and a positive value a > 0.

(a) Show that a · 1{X ≥ a} ≤ X where 1{·} denotes an indicator function.
(b) Using part (a), prove Markov’s inequality:

P(X ≥ a) ≤
E[X]

a
.

Prob 3.2 (Chebychev inequality) Let X be a discrete random variable with
mean µ and variance σ 2 <∞. Show that for any t > 0,

P(|X − µ| ≥ t) ≤
σ 2

t2 .

Prob 3.3 (Weak Law of Large Numbers) Let {Yi} be an i.i.d. discrete random
process with mean µ and variance σ 2 <∞.

(a) State the Weak Law of Large Numbers (WLLN) w.r.t. {Yi}.
(b) Prove the WLLN.

Prob 3.4 (Typical sequences) Let {Xi} be an i.i.d. random process where Xi ∈

X . Let X n := (X1, X2, . . . , Xn). In Section 1.7, we claimed the following for an
arbitrary alphabet case |X | = M :

1

n
log

1

p(X n)

in prob.
−→ H(X). (1.49)

(a) Explain the meaning of the convergence in prob. in (1.49).
(b) Prove that (1.49) holds indeed.
(c) We say that a sequence xn is ε-typical if it satisfies: for ε > 0,

2−n(H(X)+ε)
≤ p(xn) ≤ 2−n(H(X)−ε).

Define a typical set that contains the typical sequences as elements:

A(n)ε := {xn : 2−n(H(X)+ε)
≤ p(xn) ≤ 2−n(H(X)−ε)

}. (1.50)

Show that for any ε > 0,

P(A(n)ε) := P(X n
∈ A(n)ε) −→ 1 as n→∞.

(d) Show that for any ε > 0, |A(n)ε | ≤ 2n(H(X)+ε).

Problem Set 3 85

Prob 3.5 (An example of ε-typical sequences) Let {Xi} be an i.i.d. ternary
random process:

Xi =

1, w.p. p;

2, w.p. q;

3, w.p. 1− p− q.

We say that a sequence xn is ε-typical if it satisfies: for ε > 0,

2−n(H(X)+ε)
≤ p(xn) ≤ 2−n(H(X)−ε). (1.51)

Fix ε = 0.01 and (p, q) = (1/2, 1/4). Consider a sequence xn such that

of 1’s

n
= p+ 0.05;

of 2’s

n
= q − 0.03;

of 3’s

n
= 1− p− q − 0.02.

Is xn ε-typical? Also explain why.

Prob 3.6 (A choice of codeword length) Let {Xi} be an i.i.d. random process
where Xi ∈ X . Fix ε > 0. In Section 1.7, we derived the following with the help
of the WLLN:

n(H(X)− ε) ≤ log
1

p(xn)
≤ n(H(X)+ ε) w.h.p. (1.52)

where w.h.p. stands for “with high probability”. This motivated us to set the length
of every codeword being equal to:

`(xn) = dn(H(X)+ ε)e ∀xn
∈ A(n)ε (1.53)

where A(n)ε is a typical set defined as:

A(n)ε := {xn : 2−n(H(X)+ε)
≤ p(xn) ≤ 2−n(H(X)−ε)

}. (1.54)

We also verified the validity of this choice by demonstrating that the number of
leaves that codewords can be mapped in the design of a prefix-free code is greater
than or equal to |A(n)ε |.

On the other hand, one may suggest another choice:

`(xn) = dn(H(X)− ε)e ∀xn
∈ A(n)ε . (1.55)

86 Source Coding

In this problem, you are asked to prove that this choice is invalid.

(a) Fix ε > 0. Show that for sufficiently large n,∑
x∈A(n)ε

p(xn) ≥ 1− ε. (1.56)

(b) Fix ε > 0. Show that for sufficiently large n,

|A(n)ε | ≥ (1− ε)2
n(H(X)−ε). (1.57)

(c) Using part (b) or otherwise, show that the choice (1.55) on the codeword
length is invalid in the limit of n.

Prob 3.7 (Source code design for an i.i.d. source) Let {Xi} be an i.i.d. ran-
dom process where Xi ∈ X . Fix ε > 0. In this problem, you are asked to construct
a super symbol-based code of size n that achieves the expected codeword length (per
symbol) of H(X)+ ε in the limit of n. Notice that it can achieve the fundamental
limit H(X) (promised by the source coding theorem) with ε → 0.

(a) Let A(n)ε be a typical set defined as (1.54). Consider a prefix-free code C such
that the first bit of C(xn) is assigned 0 if xn

∈ A(n)ε ; assigned 1 otherwise.
The pattern of the remaining bits of C(xn) is specified by a binary code
tree constructed as follows. To the internal node associated with the first
upper branch (labeled 0), we attach a full subtree of depth dn(H(X)+ ε)e
so that the total number of leaves in the top subtree is 2dn(H(X)+ε)e. If xn

∈

A(n)ε , we map the typical sequence into one of the leaves in the top subtree.
Different sequences are assigned distinct leaves.

To the other internal code associated with the first lower branch
(labeled 1), we attach another full subtree of depth dn log |X |e so that the
total number of leaves in the bottom subtree is 2dn log |X |e. If xn /∈ A(n)ε ,
we map the non-typical sequence into one of the leaves in the bottom sub-
tree. Show that this prefix-free code is valid, i.e., there are enough leaves for
mapping all possible sequences xn’s.

(b) Suppose we employ the prefix-free code in part (a). Show that

lim
n→∞

E[`(X n)]

n
= H(X)+ ε

where `(X n) indicates the length of C(X n).

Prob 3.8 (Convergence of a non-increasing & non-negative sequence)

Consider a deterministic sequence {ai} satisfying the following two properties:
(i) ai ≥ 0 and (ii) ai ≥ ai+1.

Problem Set 3 87

(a) State the definition of the existence of a limit.
(b) Show that ai converges to a limit: limi→∞ ai(=: a).
(c) Show that

lim
n→∞

1

n

n∑
i=1

ai = a.

Prob 3.9 (Source code design for a generalized Markov process) Let
{Xi} be a generalized Markov process with two memory states:

p(sn|sn−1, sn−2, . . . , s1) = p(sn|sn−1)

where sn := (xn−1, xn). Suppose that

P(Sn = 00|Sn−1 = 00) = P(Sn = 11|Sn−1 = 11) = p,

P(Sn = 10|Sn−1 = 01) = P(Sn = 01|Sn−1 = 10) = 0.5.

(a) Show that the minimum number of bits that represent the above informa-
tion source per symbol is

H(X) = lim
n→∞

H(Xn|X n−1).

In Section 1.8, we introduced a terminology for the quantity H(X). What
is it? Also explain the rationale behind the naming.

(b) Using part (a), show that H(X) = H(X3|X1, X2). Also compute
H(X3|X1, X2).

(c) Define a typical set:

A(n)ε := {xn : 2−n(H(X3|X1,X2)+ε) ≤ p(xn) ≤ 2−n(H(X3|X1,X2)−ε)}.

It has been verified that for any ε > 0,

P(A(n)ε) := P
(

X n
∈ A(n)ε

)
−→ 1 as n→∞.

Using this together with part (b), construct a prefix-free code (i.e., draw
a binary code tree) in which the expected codeword length (per symbol)
approaches H(X3|X1, X2) as n → ∞. Also show that the expected code-
word length of your code indeed achieves the limit H(X3|X1, X2).

Prob 3.10 (WLLN of a stationary process) Let {Xi} be a stationary pro-
cess. Suppose that µ := E[Xi]; σ 2

k := E[(Xi − µ)(Xi+k − µ)], ∀k ∈ N; and∑
∞

k=0 σ
2
k <∞.

88 Source Coding

(a) Prove that

Sn :=
X1 + X2 + · · · + Xn

n
−→ µ in prob. (1.58)

(b) As mentioned in Section 1.8, (1.58) is a generalized version of the Weak
Law of Large Numbers (WLLN). Using this, show that

1

n
log

1

p(X n)
−→ H(X) in prob.

Here X n := (X1, X2, . . . , Xn).

Prob 3.11 (Statistics of optimally compressed output) Consider an infor-
mation source S1, S2, . . . , Sn. Suppose we use an optimal source code that maps
(S1, S2, . . . , Sn) into a binary string (b1, b2, . . . , bm). Compute H(b1, b2, . . . , bm).
Hint: You may want to assume that n is sufficiently large.

Prob 3.12 (Entropy rate) Let X = {Xn, n ∈ Z} be a stationary sequence of
random variables taking values in a finite alphabet X . Define conditional entropy:

HL|L(X) :=
1

L
H(X2L, . . . , XL+1|XL, . . . , X1).

The confused information theorist claims that

lim
L→∞

HL|L(X) = H(X)

where H(X) denotes the entropy rate of the source. Prove or disprove this claim.

Prob 3.13 (Entropy rate and Markov chain) The standard nomenclature
designates the four quadrants of the Euclidean plane as NE, NW, SE, and SW
(i.e., northeast, northwest, southeast, and southwest). The particle travels between
these quadrants, moving equiprobably either vertically or horizontally at each time,
which means that it switches quadrants with equal probability. For example, if it
currently occupies the NE quadrant, there is an equal probability that it will be
in the SE quadrant or the NW quadrant at the next time instant. The particle’s
movement is denoted by the standard directional labels N, S, W, or E, with the
move from NE to SE labeled as S and the move from SW to SE labeled as E, for
instance. At time 0, the particle is equally likely to be in any of the quadrants. The
{Xn, n ≥ 0} defines the quadrant in which the particle is located at time n, whereas
{Yn, n ≥ 0} provides the label for the move made by the particle from time n to
time n+ 1.

(a) Is {Xn, n ≥ 0} a Markov chain? Either prove or disprove it.

Problem Set 3 89

(b) Is {Xn, n ≥ 0} stationary? Either prove or disprove it.
(c) Find the mutual information rate between {Xn, n ≥ 0} and {Yn, n ≥ 0}:

lim
L→∞

1

L
I(X L; Y L).

(d) Is {Yn, n ≥ 0} a Markov chain? Either prove or disprove it.
(e) Is {Yn, n ≥ 0} stationary? Either prove or disprove it.

Prob 3.14 (Huffman code construction) Consider a random variable with
the probability distribution:

X =
(

x1 x2 x3 x4 x5 x6 x7

0.5 0.25 0.2 0.02 0.01 0.01 0.01

)
.

(a) Construct a binary Huffman code for X .
(b) Construct a ternary Huffman code for X .

Prob 3.15 (Optimality of the Huffman code) Let X ∈ {a1, a2, . . . , aM } be a
discrete random variable where M ≥ 3 is an integer. Let pi be a pmf of X where
i ∈ {1, 2, . . . , M}. Without loss of generality, assume that p1 ≥ p2 ≥ · · · ≥ pM .
Consider a source code which takes X as an input. Let `i be the codeword length
w.r.t. ai. Describe the Huffman algorithm. Prove the optimality of the algorithm.

Prob 3.16 (Principles of the Huffman code) A student claims that if the most
probable letter in an alphabet has probability less than 1

3 , then any Huffman code
will assign a codeword length of at least 2 to that letter. Prove or disprove the claim.

Prob 3.17 (Principles of the Huffman code) Let X be a random variable
taking values in the finite set {1, 2, 3}. Let `(X) denote the expected length of an
optimal Huffman code for X . A student claims that if P(X = i) > 0 for all
i = 1, 2, 3, then `(X)−H(X) ≥ 5

3−log 3. Either prove or disprove this statement.

Prob 3.18 (True or False?)

(a) Let {Xi} be a random process. We say that Xn converges to X in probability
if for any ε > 0,

P(|Xn − X | ≤ ε)→ 1 as n→∞.

(b) For a discrete random variable X and ε > 0, consider a typical set:

A(n)ε := {xn : 2−n(H(X)+ε)
≤ p(xn) ≤ 2−n(H(X)−ε)

}.

90 Source Coding

Then,

|A(n)ε | ≥ (1− ε)2
n(H(X)−ε).

(c) Let {Xn} be an i.i.d. sequence of binary random variables, each equally likely
to be 0 or 1. Define

Yn := |{j : 1 ≤ j ≤ n, Xj = 1}|, n = 1, 2, . . .

Then, the entropy rate of the process {Yn} is 1 bit/symbol.

(d) Consider discrete random variables X and Y . Suppose that X and Y are
independent. Then, the expected codeword length of a Huffman code for
the pair (X , Y) is at least as large as the sum of the expected codeword
lengths of individual Huffman codes for X and Y .

(e) Let X ∈ X be a discrete random variable with pmf p(x). In Section 1.5, we
consider the following optimization problem:

min
`(x)

∑
x∈X

p(x)`(x) :

∑
x∈X

2−`(x) = 1

`(x) ∈ N.

The closed form solution to the problem has been open thus far. Hence, no
one knows how to construct an optimal `∗(x) that minimizes the objective
function.

DOI: 10.1561/9781638281153.ch2

Chapter 2

Channel Coding

2.1 Statement of Channel Coding Theorem

Recap In Part I, we delved into Shannon’s communication architecture consist-
ing of two stages. The first stage, source coding, aims to convert an information
source, which may be of a different type, into bits, a common information cur-
rency. The second stage, channel coding, converts these bits into a signal that can
be transmitted reliably over a channel to the receiver. We explored the source cod-
ing theorem, which determines the maximum compression rate of an information
source, and learned how to design optimal codes that achieve this limit. Specifically,
we investigated the Huffman code and practiced implementing it in Python.

Moving onto Part II, we shift our focus to the second block in Shannon’s archi-
tecture. Here, we will examine the channel coding theorem, which delineates the
fundamental limit on the number of bits that can be transmitted reliably over a
channel.

Outline Recall the statement we made in Section 1.1 regarding the channel cod-
ing theorem. Similar to the laws of physics, there is a fundamental law in com-
munication systems. It states that the maximum amount of information that can
be transmitted over a channel is fixed, regardless of any operations performed by
the transmitter or receiver. To put it differently, communication systems have a

91

http://dx.doi.org/10.1561/9781638281153.ch2

92 Channel Coding

law similar to that of physics. The maximum number of bits that can be trans-
mitted over a channel is determined, regardless of any operations performed at the
transmitter and receiver. This means that there is a fundamental limit on the num-
ber of bits that allows communication and beyond which communication becomes
impossible, no matter what we do. The limit is known as the channel capacity. This
section aims to provide a more precise understanding of this statement by examin-
ing (i) a specific problem scenario that Shannon investigated, (ii) a mathematical
representation of channels, and (iii) the mathematical definition of communication
that is possible or impossible. Once we have a clear understanding of the statement,
we will proceed to prove the theorem.

Problem setup The objective of communication is to transmit binary string
information (bits) to the receiver as much as possible. Our investigation begins
with analyzing the statistics of the binary string. Unlike the information source in
the context of source coding, it is possible to assume simple statistics for the binary
string. In the source coding scenario, the information source has arbitrary statistics
that depend on the application of interest, and source code design is customized
accordingly. In contrast, in channel coding, there is some good news; the input
binary string’s statistics are not arbitrary. Under a reasonable assumption, it follows
a particular distribution. This reasonable assumption is that we use an optimal
source code.

To determine the specific statistics, we can use the source coding theorem. Sup-
pose the binary string (b1, b2, . . . , bm) is the output of an optimal source encoder.
In that case, we can apply the source coding theorem to obtain:

m = H(information source)

= H(b1, b2, . . . , bm)
(2.1)

where the second equality follows from the fact that a source encoder is one-to-one
mapping and the fact H(X) = H(f (X)) for an one-to-one mapping function f .
Why? Now observe that

H(b1, b2, . . . , bm) = H(b1)+H(b2|b1)+ · · · +H(bm|b1, . . . , bm−1)

≤ H(b1)+H(b2)+ · · · +H(bm)

≤ m

(2.2)

where the first inequality is due to the fact that conditioning reduces entropy
and the last inequality comes from the fact that bi’s are binary random vari-
ables. This together with (2.1) suggests that the inequalities in (2.2) are tight.
This implies that bi’s are independent (from the first inequality) and identically

Statement of Channel Coding Theorem 93

channel
encoder channel

channel
decoder

Figure 2.1. Channel coding problem setup.

distributed ∼ Bern(1
2) (from the second inequality). Hence, we can make the fol-

lowing assumption: a binary string, an input to a channel encoder, is i.i.d., each
being according to Bern(1

2).
For notational simplicity, information theorists introduced a simple notation

which indicates the i.i.d. random process {bi}. They expressed it with a single ran-
dom variable, say W , using the following mapping rule:

(b1, . . . , bm) = (0, 0, . . . , 0) −→ W = 1;

(b1, . . . , bm) = (0, 0, . . . , 1) −→ W = 2;

...

(b1, . . . , bm) = (1, 1, . . . , 1) −→ W = 2m.

This allows us to express the input simply with W having the uniform distribution.
Why uniform?

What to design The design of the digital communication system involves
designing two components: (i) a channel encoder, say f ; and (ii) a channel decoder,
say g . See Fig. 2.1. One crucial consideration in the design process is the channel’s
behavior. As previously mentioned, the channel is an adversary that introduces
errors, turning the system into a random function. To combat these errors, the
encoder and decoder must be designed to provide protection. One way to accom-
plish this is by adding redundancy, which is akin to repeating the transmission when
communication fails. Building on this idea, we can represent the channel encoder’s
output as a sequence of symbols (X1, X2, . . . , Xn), where n is the code length. This
n is distinct from the super-symbol size utilized in the source coding context. We
use the shorthand notation X n := (X1, X2, . . . , Xn) to represent this sequence. We
denote Y n as the channel’s output, and the decoder g ’s objective is to infer W from
Y n. The challenge here is that Y n is not a deterministic function of X n. If the chan-
nel were deterministic, g would be the inverse function of the concatenation of f
and the channel. However, as the channel is not deterministic in reality, designing
g is not straightforward. In fact, understanding the channel’s behavior is critical in

94 Channel Coding

designing g . Therefore, before delving into details on f and g , we must discuss how
the channel behaves and how to model it briefly.

Channel modeling Let Xi and Yi be the input and the output of the channel
at time i, respectively. One typical way to capture the randomness of the channel
is via conditional distribution p(y|x). To give you an idea, consider one concrete
example: binary erasure channel (BEC). In the BEC, Yi takes “erasure” (garbage)
with probability, say p (called the erasure probability), while taking the input Xi

cleanly otherwise. So the relation between Xi and Yi is given by:

Yi =

{
Xi, w.p. 1− p;

e, w.p. p

where e stands for “erasure”. Usually we consider a mememoryless channel in which
this relationship is independent across different time instants.

Two performance metrics Let us investigate how to design f and g such that
communication is possible. To this end, we first need to understand what it means
by possible communication. To explain what it means, we will introduce two per-
formance metrics.

The first performance metric captures the amount of bits that we wish to trans-
mit. Suppose W ∈ {1, 2, . . . , M}. Then, the total number of bits that we intend to
send is log M . Since code length is n, the number of channels (time instants) that
we use is n and hence, the number of bits transmitted per channel use (called data
rate) is

R =
log M

n
bits/channel use.

The second performance metric is w.r.t. the decoding quality. Since the channel is
random, we cannot always guarantee the decoded message (say Ŵ) to be the same
as the original message W . Hence, the decoding quality can be captured by the
probability of an error event:

Pe := P(W 6= Ŵ).

The smaller Pe, the better the decoding quality.

Optimization problem Shannon devised an optimization problem using the
two performance metrics and introduced the concept of possible communication,
which will be explained shortly. Let us first take a look at the optimization problem.
One can expect that there should be tradeoff relationship between R and Pe. The
larger R, the larger Pe and vice versa. So one natural optimization problem is the

Statement of Channel Coding Theorem 95

following. Given R and n:

P∗e := min
f ,g

Pe.

What Shannon realized is that unfortunately, this is again a non-convex optimization
problem, being very difficult to solve. Shannon took a different approach, as he did
for the source coding theorem. This is, to approximate. In other words, he attempted
to develop upper and lower bounds on P∗e .

In the process, he discovered something interesting, which then led to the con-
cept of possible communication. What he found is that when R is below a certain
threshold, an upper bound on P∗e can be made arbitrarily close to 0 as n increases.
This implies that in the case, the actual P∗e can be made very small. He also found
that when R is above the threshold, a lower bound on P∗e cannot be made arbitrarily
close to 0 no matter what we do. This implies that the actual P∗e cannot be made
arbitrarily small.

This observation led him to come up with the concept of possible communica-
tion. We say that communication is possible if one can make P∗e arbitrarily close to
0 as n→∞; otherwise communication is said to be impossible. He also came up
with the related concept of achievable rate. We say that data rate R is achievable if
we can make P∗e → 0 as n→∞ given R; otherwise R is said to be not achievable.

Channel coding theorem Moreover, Shannon made an interesting observa-
tion. What he observed is that the threshold below which communication is pos-
sible and above which communication impossible is sharp. In other words, there
is a sharp phase transition on the achievable rate. He then called the limit channel
capacity and denoted it by C . This forms the channel coding theorem:

The maximum achievable rate is channel capacity C .

From the next section onwards, we will prove this theorem. Specifically we will
prove the following two:

R ≤ C H⇒ Pe → 0

R > C H⇒ Pe 9 0.

The first is called the achievability proof or the direct proof. The second is called
the converse proof. Why converse? Notice that the contraposition of the second
statement is:

Pe → 0 H⇒ R ≤ C ,

which is exactly the reverse of the first statement.

96 Channel Coding

Look ahead In the upcoming section, we will prove the achievability for a sim-
ple example. By deriving insights from this example, we will subsequently prove
the achievability for a broader class of channels, determined by any arbitrary
conditional distribution p(y|x).

Achievability Proof for the Binary Erasure Channel 97

2.2 Achievability Proof for the Binary Erasure Channel

Recap In the preceding section, we presented the framework for the channel cod-
ing problem. We formally stated the channel coding theorem, which was initially
introduced in a vague manner at the start of this book. Two performance metrics

were considered: (i) the data rate R, defined as log M
n (bits/channel use); and (ii)

the probability of error Pe, defined as P(W 6= Ŵ). Here, W belongs to the set
{1, 2, . . . , M}, and n represents the code length (i.e., the number of channel uses).
To investigate the tradeoff between these two metrics, we formulated the following
optimization problem. Given R and n:

P∗e = min
f ,g

Pe

where f and g indicate channel encoder and decoder respectively. Unfortunately,
Shannon could not solve this problem. Instead he looked into upper and lower
bounds. In the process, he made an interesting observation. If R is less then a thresh-
old, say C , then Pe can be made arbitrarily close to 0 as n→∞; otherwise, Pe 9 0
no matter what we do. This leads to the natural concept of achievable rate. The data
rate R is said to be achievable if we can make Pe → 0 for a given R. This finally
formed the channel coding theorem:

Maximum achievable rate = C .

The channel coding theorem requires the proof of two parts. The first is: R ≤
C H⇒ Pe → 0. To this end, we need to come up with an achievable scheme which
yields Pe → 0 given R ≤ C . This is called the achievability proof. The second
part to prove is: R > C H⇒ Pe 9 0. The contraposition of this statement is:
Pe → 0 H⇒ R ≤ C , which is the opposite of the statement for the first part proof.
Hence, it is called the converse proof.

Outline In this section, our goal is to prove the achievability of the channel coding
theorem. To achieve this, we will examine a simple example of a channel known
as the binary erasure channel (BEC). This example provides valuable insights into
proving the achievability of more complex channels. Once we have acquired enough
insights from the BEC, we will apply them to a fairly general channel model setting.

Binary erasure channel (BEC) Remember that the channel output reads:

Yi =

{
Xi, w.p. 1− p;

e, w.p. p

98 Channel Coding

where e stands for “erasure” (garbage) and p indicates the erasure probability. As
mentioned earlier, we consider a memoryless channel in which noises are indepen-
dent across different time instances.

First of all, let us guess what the channel capacity C is. One can make a naive
guess based on the following observation. The channel is perfect w.p. 1− p; erased
w.p. p; and the erasure (garbage) does not provide any information w.r.t. what we
transmit. This naturally leads to: C is at most 1 − p. Then, a question arises: Is
this achievable? Think about one extreme scenario in which the transmitter knows
all erasure patterns across all time instances beforehand. Of course this is far from
reality. But for simplicity, consider this case for the time being. In this case, one
can readily achieve 1− p. The achievable scheme is to transmit a bit whenever the
channel is perfect. Since the perfect channel probability is 1 − p, by the WLLN,
we can achieve 1− p as n tends to infinity.

Let us consider a realistic scenario in which we cannot predict the future events
and thus the transmitter has no idea of erasure patterns. In this case, we cannot
apply the above naive transmission scheme because each transmission of a bit is not
guaranteed to be successful due to the lack of the knowledge of erasure patterns.
One may imagine that it is impossible to achieve 1− p. Interestingly, one can still
achieve 1− p even in this realistic scenario.

How to encode? Here is a transmission scheme. Fix R arbitrarily close to 1− p.
Given R, what is M (the cardinality of the range of the message W)? Since R :=
log M

n , one needs to set it as: M = 2nR. The message W takes one of the values
among 1, 2, . . . , 2nR.

Next, how to encode the message W ? In other words, what is a mapping rule
between W and X n? Here we call X n codeword1. Shannon’s encoding rule, to be
explained in the sequel, enables us to achieve R = 1 − p. Shannon’s encoding
is simple. The idea is to generate a random binary string given any W = w. In
other words, for any W = w, every component of X n(w) follows a binary random
variable with parameter 1

2 and those are independent with each other, i.e., Xi(w)’s
are i.i.d. ∼ Bern(1

2) across all i’s. These are i.i.d. also across all w’s. This looks like
a dumb scheme. Surprisingly, Shannon showed that this dumb scheme can achieve
the rate of 1− p. We have a terminology indicating a collection (book) of Xi(w)’s.
It is called a codebook.

How to decode? Let us move onto the decoder side. The decoder input is a
received signal Y n (channel output). One can make a reasonable assumption on

1. The terminology “codeword” was used to indicate the output of the source encoder in Part I. By convention,
people employ the same terminology for the output of channel encoder.

Achievability Proof for the Binary Erasure Channel 99

the decoder. The codebook, a collection of Xi(w)’s, is known. This assumption
is realistic because this information can be shared only at the beginning of com-
munication. Once this information is shared, we can use this all the time until
communication is terminated.

How to decode W from Y n, assuming the knowledge of the codebook? What
is an optimal way of decoding W ? Remember the second performance metric: the
probability of error Pe := P(W 6= Ŵ). Due to the stochastic nature of the channel,
the best we can hope for is to minimize the probability of error. Thus, an optimal
decoder is one that achieves the minimum possible probability of error. Alterna-
tively, the optimal decoder can be defined as the one that maximizes the success
probability, P(W = Ŵ). Since the received signal is known (as it is an input to
the decoder), the success probability can be defined as the conditional probability
of correctly decoding the message, given the received signal:

P(W = Ŵ |Y n
= yn).

Then, a more formal definition of the optimal decoder is:

Ŵ = arg max
w

P(W = w|Y n
= yn).

We have a terminology for the optimal decoder. Notice that P(W = w|Y n
= yn) is

the probability after an observation yn is made; and P(W = w) is called the a priori
probability because it is the one known beforehand. Hence, P(W = w|Y n

= yn)

is called the a posteriori probability. Observe that the optimal decoder is the one
that Maximizes A Posteriori (MAP) probability. So it is called the MAP decoder.
The MAP decoder acts as an optimal decoder for many interesting problems not
limited to this problem context. As long as a problem of interest is an inference
problem (infer X from Y when X and Y are probabilistically related), the optimal
decoder is always the MAP decoder.

In fact, this MAP decoder can be simplified further in many cases including ours
as a special case. Here is how it is simplified. Using the definition of conditional
probability, we get:

P(W = w|Y n
= yn) =

P(W = w, Y n
= yn)

P(Y n = yn)

=
P(W = w)
P(Y n = yn)

· P(Y n
= yn
|W = w).

Notice that P(W = w) = 1
2nR , as it is irrelevant to w. Also P(Y n

= yn) is not a
function of w. This implies that it suffices to consider only P(Y n

= yn
|W = w)

100 Channel Coding

in figuring out when the above probability is maximized. Hence, we obtain:

Ŵ = arg max
w

P(W = w|Y n
= yn)

= arg max
w

P(Y n
= yn
|W = w).

Given W = w, X n is known as xn(w). Hence,

Ŵ = arg max
w

P(Y n
= yn
|W = w)

= arg max
w

P(Y n
= yn
|X n
= xn(w), W = w).

Also given X n
= xn(w), Y n is a sole function of the channel, meaning the inde-

pendence between Y n and w. Hence,

Ŵ = arg max
w

P(Y n
= yn
|X n
= xn(w), W = w)

= arg max
w

P(Y n
= yn
|X n
= xn(w)).

Notice that P(Y n
= yn
|X n
= xn(w)) is nothing but conditional distribution,

which is easy to compute. There is another name for the conditional distribution:
likelihood. So the decoder is called the Maximum Likelihood (ML) decoder.

How to derive the ML decoder? The ML decoder is simple in our problem
context. Let us see this through a simple example where n = 4 and R = 1

2 . In this
example, M = 2nR

= 4. Consider a particular codebook:

X n(1) = 0000;

X n(2) = 0110;

X n(3) = 1010;

X n(4) = 1111.

Suppose yn
= 0e00. Then, one can compute the likelihood P(yn

|xn(w)). For
instance,

P(yn
|xn(1)) = (1− p)3p.

The channel is perfect three times (time 1, 3 and 4), while being erased at time 2.
On the other hand,

P(yn
|xn(2)) = 0

Achievability Proof for the Binary Erasure Channel 101

because the third bit 1 does not match y3 = 0, and this is the event that would
never happen. In other words, the second message is incompatible with the received
signal yn. Then, what is the ML decoding rule? Here is what the rule says.

1. Eliminate all the messages which are incompatible with the received signal.
2. If there is only one message that survives, declare the survival as the correct

message that the transmitter sent.

However, this procedure is not sufficient to describe the ML decoding rule. The
reason is that we may have a different erasure pattern that confuses the rule. To
see this clearly, consider the following example. Suppose the received signal is now
yn
= (0ee0). Then,

X n(1) = (1− p)2p2;

X n(2) = (1− p)2p2.

The two messages (1 and 2) are compatible and those likelihood functions are equal.
In such cases, the best we can do is to randomly choose one out of the two options.
This forms the ML decoding rule.

3. If there are multiple survivals, choose one randomly.

Look ahead In the next section, we will demonstrate that we can achieve the rate
of 1− p under the optimal ML decoding rule.

102 Channel Coding

2.3 Achievability Proof for the Binary Symmetric
Channel

Recap In the prior section, we claimed that the capacity of the BEC with erasure
probability p is

CBEC = 1− p.

We then attempted to prove the achievability: if R < 1−p, we can make Pe arbitrar-
ily close to 0 as n→∞. We employed a random codebook where each component
Xi(w) of the codebook follows Bern(1

2) and is i.i.d. across all i ∈ {1, . . . , n} and
w ∈ {1, . . . , 2nR

}. We also employed the optimal decoder: the maximum likeli-
hood (ML) decoder in our problem context where the message W is uniformly
distributed. Next, we intended to complete the achievability proof, by showing
Pe → 0 under the problem setup.

Outline In this section, we will finish the proof and move on to another chan-
nel example that provides additional insights into the general channel setting. The
channel we will focus on is called the Binary Symmetric Channel (BSC).

Probability of error The probability of error is a function of codebook C. So
we are going to investigate the average error probability EC[Pe(C)] taken over all
possible random codebooks, and will demonstrate that EC[Pe(C)] approaches 0 as
n → ∞. This then implies the existence of an optimal deterministic codebook,
say C∗, such that Pe(C∗)→ 0 as n→∞. Why? See Prob 4.3 for the proof of the
existence. Consider:

EC[Pe(C)]
(a)
=

∑
c

P(C = c)P(Ŵ 6= W |C = c)

(b)
= P(Ŵ 6= W)

(c)
=

2nR∑
w=1

P(W = w)P
(

Ŵ 6= w|W = w
) (2.3)

where (a) follows from the fact that P(C = c) indicates the probability that code-
book is chosen as a particular realization c; (b) and (c) are due to the total proba-
bility law.

Now consider P(Ŵ 6= w|W = w). Notice that [X1(w), . . . , Xn(w)]’s are iden-
tically distributed over all w’s. The way that the wth codeword is constructed is the
same for all w’s. This implies that P(Ŵ 6= w|W = w) is irrelevant of what the

Achievability Proof for the Binary Symmetric Channel 103

particular value of w is, meaning that

P(Ŵ 6= w|W = w) is the same for all w.

This together with (2.3) gives:

EC[Pe(C)] = P(Ŵ 6= 1|W = 1)

= P

 2nR⋃
w=2

{Ŵ = w}|W = 1

 (2.4)

where the second equality is due to the fact that {Ŵ 6= 1} means that Ŵ = w for
some w 6= 1. In general, the probability of the union of multiple events is not that
simple to compute. Rather it is quite complicated especially when it involves a large
number of multiple events. Even for the three-event case (A, B, C), the probability
formula is not simple:

P(A ∪ B ∪ C) = P(A)+ P(B)+ P(C)
− P(A ∩ B)− P(A ∩ C)− P(B ∩ C)+ P(A ∩ B ∩ C).

Even worse, the number of associated multiple events in (2.4) is 2nR
− 1 and this

will make the probability formula very complicated. So the calculation of that prob-
ability is involved. To make some progress, Shannon took an indirect approach as
he did in the proof of the source coding theorem. He did not attempt to compute
the probability of error exactly. Instead, he intended to approximate it. He tried to
derive an upper bound because what we want to show at the end of day is that the
probability of error approaches 0. Note that if an upper bound goes to zero, the
exact quantity also approaches 0. We have a very well-known upper bound w.r.t.
the union of multiple events. That is, the union bound : for events A and B,

P(A ∪ B) ≤ P(A)+ P(B).

The proof is immediate. It is because P(A ∩ B) ≥ 0.
Now applying the union bound to (2.4), we get:

EC[Pe(C)] ≤
2nR∑

w=2

P(Ŵ = w|W = 1)

= (2nR
− 1)P(Ŵ = 2|W = 1)

where the equality follows from the fact that the codebook employed is symmetric
w.r.t message indices. The event of Ŵ = 2 implies that message 2 is compatible;

104 Channel Coding

otherwise, Ŵ cannot be chosen as 2. Using the fact that for two events A and B
such that A implies B, P(A) ≤ P(B), we get:

EC[Pe(C)] ≤ (2nR
− 1)P(message 2 is compatible|W = 1)

≤ 2nRP(message 2 is compatible|W = 1).

Message 2 being compatible implies that for time i in which the transmitted signal
is not erased, Xi(2) must be the same as Xi(1); otherwise, message 2 cannot be
compatible. To see this clearly, let B = {i : Yi 6= e}. Then, what the above means
is that we get:

EC[Pe(C)] ≤ 2nRP

(⋂
i∈B
{Xi(1) = Xi(2)}|W = 1

)

= 2nR
(

1

2

)|B| (2.5)

where the equality is due to the fact that P(Xi(1) = Xi(2)) = 1
2 and the codebook

is independent across all i’s.
Observe that due to the WLLN, for sufficiently large n:

|B| ≈ n(1− p).

This together with (2.5) yields:

EC[Pe(C)] . 2n(R−(1−p)).

Hence, EC[Pe(C)] can be made arbitrarily close to 0 as n → ∞, as long as R <

1− p. This completes the achievability proof.

Binary symmetric channel (BSC) Before moving on to arbitrary channels,
let us delve deeper into the Binary Symmetric Channel (BSC) to gain more under-
standing. While the techniques used in proving achievability for the Binary Erasure
Channel (BEC) are not sufficient for generalization, the techniques we will learn
in the BSC achievability proof offer valuable insights that can be extended to other
channels.

In the BSC, the channel output Yi is a flipped version of Xi with probability, say
p (called crossover probability): p(y|x) = p when y 6= x. So the relation between
Xi and Yi is given by:

Yi =

{
Xi, w.p. 1− p;

Xi ⊕ 1, w.p. p.

Achievability Proof for the Binary Symmetric Channel 105

Another simpler way to represent this is:

Yi = Xi ⊕ Zi

where Zi’s are i.i.d. ∼ Bern(p). Without loss of generality, assume p ∈ (0, 1
2);

otherwise, we can flip all 0’s and 1’s to 1’s and 0’s, respectively.
Let’s start by claiming the channel capacity:

CBSC = 1−H(p)

where H(p) := p log 1
p + (1− p) log 1

1−p . For the rest of this section, we will prove
the achievability: if R < 1−H(p), one can make the probability of error arbitrarily
close to 0 as n→∞.

Encoder & decoder The encoder that we will employ is the same as before: the
random code where Xi(w)’s are i.i.d. ∼ Bern(1

2) across all i’s and w’s. We will also
use the optimal decoder, which is the ML decoder:

Ŵ ML = arg max
w

P(yn
|xn(w)).

The way that we compute the likelihood function is different from that in the
BEC case. Let us see this difference through the following example. Suppose that
(n, R) = (4, 1

2) and the codebook is:

X n(1) = 0000;

X n(2) = 1110;

X n(3) = 1010;

X n(4) = 1111.

Suppose that the received signal yn is (0100). Then, the likelihood functions are:

P(yn
|xn(1)) = (1− p)3p1;

P(yn
|xn(2)) = (1− p)2p2;

P(yn
|xn(3)) = (1− p)p3;

P(yn
|xn(4)) = (1− p)p3.

Unlike the BEC case, all the messages are compatible because all of the likelihood
functions are strictly positive. So we need to compare all the functions to choose
the message that maximizes the function. Since we assume p ∈ (0, 1

2), in the above
example, the first message is the maximizer. It has the minimum number of flips

106 Channel Coding

(marked in red) and the flipping probability is smaller than 1
2 , and hence, the cor-

responding likelihood function is maximized.
This reveals that the decision is heavily dependent on the number of non-

matching bits (flips):

d(xn, yn) := |{i : xi 6= yi}|.

This is called the Hamming distance (Hamming, 1950). Using this, the ML decoder
can be re-written as:

Ŵ ML = arg min
w

d(xn(w), yn).

Our remaining task is to demonstrate that the probability of error can be made arbi-
trarily close to zero as n approaches infinity when utilizing the ML decoder. How-
ever, we will not use the ML decoder for two reasons. Firstly, the analysis of error
probability is somewhat intricate. Secondly, the proof method cannot be applied to
arbitrary channels. How can we then prove the achievability without employing the
ML decoder? Fortunately, there exists an alternative but suboptimal decoder that
simplifies the proof of achievability significantly while still achieving 1 − H(p).
Additionally, the suboptimal decoder is generalizable, which makes it suitable for
proving the achievability. Therefore, we will utilize the suboptimal decoder to prove
the achievability.

A suboptimal decoder The suboptimal decoder that we will employ is inspired
by the following observation. Notice that the input to the decoder is Y n and code-
word is available at the decoder, i.e., X n(w) is known for all w’s. Now observe that

Y n
⊕ X n

= Zn

and we know the statistics of Zn: i.i.d. ∼ Bern(p).
Suppose that the actually transmitted signal is X n(1). Then,

Y n
⊕ X n(1) = Zn

∼ Bern(p).

On the other hand, for w 6= 1,

Y n
⊕ X n(w) = X n(1)⊕ X n(w)⊕ Zn.

The statistics of the resulting sequence is Bern(1
2). Notice that the sum of any two

independent Bernoulli random variables is Bern(1
2), as long as at least one of them

follows Bern(1
2). Why? This motivates us to employ the following decoding rule.

1. Compute Y n
⊕ X n(w) for all w’s.

Achievability Proof for the Binary Symmetric Channel 107

2. Eliminate messages such that the resulting sequence is not typical w.r.t.
Bern(p). More precisely, let

A(n)ε := {zn : 2−n(H(p)+ε)
≤ p(zn) ≤ 2−n(H(p)−ε)

}

be a typical set w.r.t. Bern(p). Eliminate all w’s such that Y n
⊕X n(w) /∈ A(n)ε .

3. If there is only one message that survives, then declare the survival as the
correct message. Otherwise, declare an error.

The error event is of two types. The first is the case where there are multiple sur-
vivals. The second refers to the scenario where there is no survival.

Probability of error We are ready to analyze the probability of error to complete
the achievability proof. For notational simplicity, let P̄e := EC[Pe(C)]. Using the
same argument that we made in the BEC case, we get:

P̄e := EC[Pe(C)] = P(Ŵ 6= 1|W = 1).

As mentioned earlier, the error event is of the two types: (i) multiple survivals; and
(ii) no survival. The multiple-survival event implies that there exists w 6= 1 such
that Y n

⊕X n(w) ∈ A(n)ε . The no-survival event implies that even Y n
⊕X n(1) w.r.t.

the correct message “1” is not a typical sequence, meaning that Zn /∈ A(n)ε . Hence,
we get:

P̄e = P(Ŵ 6= 1|W = 1)

≤ P

⋃
w 6=1

{Y n
⊕ X n(w) ∈ A(n)ε } ∪ {Z

n /∈ A(n)ε }|W = 1

(a)
≤

2nR∑
w=2

P({Y n
⊕ X n(w) ∈ A(n)ε }|W = 1)+ P(Zn /∈ A(n)ε |W = 1)

(b)
= (2nR

− 1)P(Y n
⊕ X n(2) ∈ A(n)ε |W = 1)+ P(Zn /∈ A(n)ε |W = 1)

(c)
≈ (2nR

− 1)P(Y n
⊕ X n(2) ∈ A(n)ε |W = 1)

(2.6)

where (a) follows from the union bound; (b) is by symmetry of the codebook; and
(c) follows from the fact that Zn is a typical sequence w.h.p. due to the WLLN.
Observe that

Y n
⊕ X n(2) = X n(1)⊕ X n(2)⊕ Zn

∼ Bern

(
1

2

)
.

108 Channel Coding

How to compute P(Y n
⊕X n(2) ∈ A(n)ε |W = 1)? To this end, we need to consider

two quantities: (i) the total number of possible sequences that Y n
⊕ X n(2) ∼

Bern(1
2) can take on; and (ii) the size of the typical set |A(n)ε |. Specifically, we have:

P(Y n
⊕ X n(2) ∈ A(n)ε |W = 1) =

|A(n)ε |

total number of Bern(1
2) sequences

Note that the total number of Bern(1
2) sequences is 2n and |A(n)ε | ≤ 2n(H(p)+ε)

(Why?). Hence,

P(Y n
⊕ X n(2) ∈ A(n)ε |W = 1) ≤

2n(H(p)+ε)

2n .

This together with (2.6), we get:

P̄e . 2n(R−(1−H(p)−ε)).

Here ε can be made arbitrarily close to 0. Hence, if R < 1 − H(p), P̄e → 0 as
n→∞. This completes the proof.

Look ahead Having established the achievability proof for the BSC, our next
section will focus on expanding the proof of achievability to cover the general sce-
nario in which the channel is characterized by any arbitrary conditional distribution
p(y|x).

Problem Set 4 109

Problem Set 4

Prob 4.1 (Concept of channel capacity) We wish to send a uniformly dis-
tributed message W ∈ {1, 2, . . . , M} from a transmitter to a receiver. Let f and g
be channel encoder and decoder respectively. Let R = log M

n be data rate and

Pe = P(Ŵ 6= W) be the probability of error. Here n denotes code length and
Ŵ indicates a decoded message. In an attempt to understand the fundamental
tradeoff between the data rate R and the error probability Pe, Shannon considered
the following optimization problem. Given R and n,

P∗e (R, n) := min
f ,g

Pe. (2.7)

(a) Could Shannon solve the optimization problem (2.7)?
(b) State the definition of possible (reliable) communication.
(c) State the definition of an achievable rate.
(d) State the definition of channel capacity using the concept of an achievable

rate.
(e) Consider a slightly different optimization problem: Given R,

P∗e (R) := min
f ,g ,n

Pe.

Now the design variables that we optimize over include code length n. Let C
be the channel capacity. For any ε > 0, what are P∗e (C−ε) and P∗e (C+ε)?

Prob 4.2 (Optimal decoding principle) Consider a binary random variable
X ∼ Bern(m). The signal X is transmitted over a binary symmetric channel with
crossover probability p, yielding a channel output Y . Given Y = y, the receiver
wishes to decode X so as to minimize the probability of error Pe := P(X 6= X̂).
Here X̂ denotes a decoder output. This problem explores the optimal way of
decoding X .

(a) Compute the a posteriori probability: P(X = 1|Y = y).
(b) Derive the optimal decoder, i.e., derive X̂ that yields the minimum Pe.
(c) The optimal decoder derived in part (b) is called the Maximum A Posteriori

probability (MAP) decoder. Explain the rationale behind the naming.

Prob 4.3 (Existence of an optimal deterministic code) Consider a memo-
ryless binary erasure channel with erasure probability p. In Section 2.3, we claimed
the achievability of the data rate 1 − p when employing a random code. Given
R < 1 − p, EC[Pe(C)] can be made arbitrarily close to 0 as n → ∞. Here Pe(C)
indicates the probability of error when using a codebook C and the ML decoding,

110 Channel Coding

and the expression is over a random choice of the codebook. In this problem, you
are asked to show that the above statement implies the existence of an optimal
deterministic code, say C∗: P(C∗)→ 0 as n→∞.

(a) Suppose X is a real-valued discrete random variable. Argue that there exists
a value, say a such that P(X = a) 6= 0 and a ≤ E[X].

(b) Using part (a) or otherwise, show that the above statement for the achiev-
ability implies the existence of a deterministic code C∗ such that given
R < 1− p, Pe(C∗)→ 0 as n→∞.

Prob 4.4 (Chernoff bound)

(a) Show that for a random variable X and some constant a,

P(X > a) ≤ min
λ>0

E[eλX]

eλa .

(b) Suppose X1, . . . , Xn are i.i.d., each being distributed according to Bern(m).
Fix δ > 0. Show that

P(X1 + · · · + Xn ≥ n(m+ δ)) ≤ 2−nKL(m+δ‖m)

where KL(m+ δ‖m) denotes the KL divergence between Bern(m+ δ) and
Bern(m).

(c) Consider the same setup as that in part (b). Show that

P(X1 + · · · + Xn ≤ n(m− δ)) ≤ 2−nKL(m−δ‖m).

Prob 4.5 (Channel modeling & channel capacity) Consider a memoryless
channel which concatenates the following two channels serially: (i) a binary sym-
metric channel with crossover probability p; and (ii) a binary erasure channel with
erasure probability ε. Let X and Y be the input and the output of the channel.

(a) Derive the conditional distribution p(y|x).
(b) Compute maxp(x) I(X ; Y).

Prob 4.6 (Maximum Likelihood decoding) The achievability proof for BSC
that we learned in Section 2.3 uses joint typicality decoding. As mentioned in the
section, the joint typicality decoding is not optimal in terms of minimizing the
probability of error. In this problem, you are asked to prove the achievability when
using the optimal decoder: maximum likelihood decoder (MLD).

We consider a BSC with crossover probability p < 1
2 . Define the Hamming dis-

tance d(xn, yn) between two binary sequences xn and yn as the number of positions
where they differ, i.e., d(xn, yn) = |{i : xi 6= yi}|.

Problem Set 4 111

(a) Show that the MLD rule reduces to the minimum Hamming distance
decoding rule – declare ŵ is sent if d(xn(ŵ), yn) < d(xn(w), yn) for all
w 6= ŵ.

(b) Using the random code (that we learned in Section 2.2) and the minimum
distance decoder, show that for every ε > 0, the probability of error is upper
bounded as

Pe = P{Ŵ 6= 1|W = 1}

≤ P{d(X n(1), Y n) > n(p+ ε)|W = 1}

+ (2nR
− 1)P{d(X n(2), Y n) ≤ n(p+ ε)|W = 1}.

(c) Show that the first term in the RHS in the above inequality tends to zero
as n→∞. Using the Chernoff bound, show that

P{d(X n(2), Y n) ≤ n(p+ ε)|W = 1} ≤ 2−n(1−H(p+ε)).

Using these results, show that any R < C = 1−H(p) is achievable.

Prob 4.7 (Maximum Likelihood decoding) We wish to transmit a message
W ∈ {1, . . . , M} over a binary erasure channel with erasure probability p. Suppose
we employ random encoding that we learned in Section 2.2.

(a) State the MAP decoding rule.
(b) Show that the MAP rule is optimal in a sense of minimizing the probability

of error.
(c) Show that the MAP rule reduces the ML rule when the message W is uni-

formly distributed.
(d) A student claims that given W = 1, the following events are disjoint: {Ŵ =

2}, . . . , {Ŵ = M}. Prove or disprove it. Here Ŵ indicates the output of
the ML decoder.

Prob 4.8 (Random vs deterministic codes) Consider a channel coding
problem setup in which code length n = 4 and data rate R = 1

2 . Let W ∈

{1, . . . , 2nR
} and X n be the message and codeword respectively. Suppose that code-

word X n is transmitted over a BEC with erasure probability p ∈ [0, 1], thus yielding
a received signal Y n. Assume we use an optimal decoder (i.e., the ML decoder in
this problem setup). Let Ŵ be the decoded message.

(a) Suppose we employ the random code in which components of code-
words Xi(w)’s are i.i.d. ∼ Bern(1

2) across both w ∈ {1, . . . , 2nR
} and

i ∈ {1, . . . , n}. Show that P(Ŵ = i|W = 1) is the same for all i 6= 1.

112 Channel Coding

(b) Now we use a deterministic code, say C, instead:

X n(1) = 0000;

X n(2) = 1100;

X n(3) = 1110;

X n(4) = 1111.

A student claims that P(Ŵ = i|W = 1, C) is still the same for all i 6= 1.
Prove or disprove this claim.

Prob 4.9 (Basic bounds) Let A and B be events.

(a) Show that P(A ∪ B) ≤ P(A)+ P(B).
(b) Suppose that A implies B, i.e., whenever A occurs, B also occurs. Show that

P(A) ≤ P(B).

Prob 4.10 (A chance of a random sequence being typical) Let {Xi} be an
i.i.d. binary random process, each being according to Bern(1

2). Define a set

A(n)ε := {zn : 2−n(H(p)+ε)
≤ p(zn) ≤ 2−n(H(p)−ε)

}.

where H(p) := p log 1
p + (1− p) log 1

1−p and p ∈ (0, 0.5).

(a) Show that

P(X n
∈ A(n)ε) =

|A(n)ε |
2n .

(b) Show that

P(X n
∈ A(n)ε) ≤ 2−n(1−H(p)−ε).

Prob 4.11 (Concept of jointly typical sequences) Consider an i.i.d. sequence
pair (X n, Y n) with p(x, y) where x ∈ X and y ∈ Y . Here the i.i.d sequence pair
means that (Xi, Yi)’s are i.i.d. over i and each follows the identical distribution
p(x, y). Fix ε > 0. Let

A(n)ε (X) := {xn : 2−n(H(X)+ε)
≤ p(xn) ≤ 2−n(H(X)−ε)

}

A(n)ε (Y) := {yn : 2−n(H(Y)+ε)
≤ p(yn) ≤ 2−n(H(Y)−ε)

}

A(n)ε (X , Y) := {(xn, yn) : 2−n(H(X ,Y)+ε)
≤ p(xn, yn) ≤ 2−n(H(X ,Y)−ε)

}.

Problem Set 4 113

Show that for any ε > 0,

P(X n
∈ A(n)ε (X)) −→ 1,

P(Y n
∈ A(n)ε (Y)) −→ 1,

P((X n, Y n) ∈ A(n)ε (X , Y)) −→ 1,

as n→∞.

Prob 4.12 (Concept of jointly typical sequences) Consider an i.i.d.
sequence pair (X n, Y n) with p(x, y) where x ∈ X and y ∈ Y . Fix ε > 0. Let

A(n)ε (X) := {xn : 2−n(H(X)+ε)
≤ p(xn) ≤ 2−n(H(X)−ε)

}

A(n)ε (Y) := {yn : 2−n(H(Y)+ε)
≤ p(yn) ≤ 2−n(H(Y)−ε)

}

A(n)ε (X , Y) := {(xn, yn) : 2−n(H(X ,Y)+ε)
≤ p(xn, yn) ≤ 2−n(H(X ,Y)−ε)

}.

A student claims that there exists a sequence pair of (X̃ n, Ỹ n) such that as n→∞,

P(X̃ n
∈ A(n)ε (X))→ 1;

P(Ỹ n
∈ A(n)ε (Y))→ 1;

P((X̃ n, Ỹ n) ∈ A(n)ε (X , Y))9 1.

Prove or disprove this statement.

Prob 4.13 (Sum of Bernoulli random variables) Suppose that X1 ∼ Bern(p)
is independent of X2 ∼ Bern(1

2). What is the statistics of X1 ⊕ X2?

Prob 4.14 (True or False?)

(a) Consider a memoryless binary erasure channel. Let Xi and Yi be the input
and the output of the channel at time i, respectively. Then,

H(Y1, Y2|X1, X2) = H(Y1|X1)+H(Y2|X2).

(b) Let {Xi} be a binary random process such that P(X1 = i1, X2 =

i2, . . . , Xn = in) = 1
2n for all possible sequence patterns (i1, i2, . . . , in).

Then, {Xi}’s are identically distributed, but not necessarily independent.
(c) The Shannon’s landmark paper published in 1948 provides an explicit

guideline as to how to design an optimal communication system.
(d) Consider a binary asymmetric channel in which the output Y is a flipped

version of X with probability p1 ∈ [0, 1] when X = 0 (and with probability
p2 ∈ [0, 1] when X = 1). The capacity is achieved when X ∼ Bern(1/2).

114 Channel Coding

(e) For an inference problem, the optimal decoder is always the MAP decoder.
(f) Consider an inference problem in which we wish to decode X ∈ X from

Y ∈ Y . Given Y = y, the optimal decoder can be:

X̂ = arg max
x∈X

P(Y = y|X = x).

(g) Suppose that X1 ∼ Bern(p), X2 ∼ Bern(1
2) and S = X1 ⊕ X2. Then, S

follows Bern(1
2) no matter what p is.

(h) In the channel coding setup, we assumed that a message W is uniformly
distributed. The rationale behind this assumption is that we use an optimal
source code.

(i) In Section 2.1, we considered an optimization problem which aims to min-
imize the probability of error given data rate R and code length n. Denote
by P∗(R, n) the minimum probability of error. Instead of deriving the exact
P∗(R, n), Shannon developed a lower bound of P∗(R, n) to show that for
any R ≤ C , the probability of error can be made arbitrarily close to 0.

Achievability Proof for Discrete Memoryless Channels 115

2.4 Achievability Proof for Discrete Memoryless
Channels

Recap In the previous section, we demonstrated the achievability proof for BSC.
However, we will postpone the converse proof because the technique for the con-
verse proof, which we will discuss later, can be directly applied to a broad range of
problem settings.

Outline This section will expand the proof of achievability to encompass the gen-
eral scenario in which the channel is described by an arbitrary conditional distribu-
tion p(y|x). Subsequently, in the following section, we will establish the converse
proof for the general channel case.

Discrete memoryless channel (DMC) The general channel that we will con-
sider is called the discrete memoryless channel, DMC for short. Let us start with the
definition of the channel. We say that a channel is an DMC if input and output
are on discrete alphabet sets and the following condition is satisfied:

p(yi|xi, xi−1, yi−1, W) = p(yi|xi).

This is called the memoryless property. Notice that given the current channel input
xi, the current output yi is independent of the past input/output (xi−1, yi−1) and
any other things including the message W . Here one key property that we need to
keep in our mind is:

p(yn
|xn) =

n∏
i=1

p(yi|xi). (2.8)

This can be proved by using the memoryless property. Check in Prob 5.4. This
property plays a crucial role in proving the achievability as well as the converse.
This will be clearer later.

Guess on the capacity formula Let us guess the capacity formula for the
DMC. Remember the capacity formulas of the BEC and BSC: CBEC = 1 − p;
CBSC = 1 − H(p). These capacities are closely related to the key notion that we
introduced earlier: mutual information. Specifically what we can easily show is:
when X ∼ Bern(1

2),

CBEC = 1− p = I(X ; Y);

CBSC = 1−H(p) = I(X ; Y).

116 Channel Coding

Also one can verify that for an arbitrary distribution of X ,

CBEC = 1− p ≥ I(X ; Y);

CBSC = 1−H(p) ≥ I(X ; Y).

Check this in Prob 5.1. Hence, what one can guess on the capacity formula is:

CDMC = max
p(x)

I(X ; Y). (2.9)

It turns out it is indeed the case. For the rest of this section, we will prove the
achievability: if R < maxp(x) I(X ; Y), the probability of error can be made arbi-
trarily close to 0 as n→∞.

Encoder The encoder that we will employ is a random code, meaning that
Xi(w)’s are generated in an i.i.d. fashion according to some distribution p(x). We
know in the BEC and BSC that the input distribution is fixed as Bern(1

2). One can
verify that Bern(1

2) is the maximizer of the above optimization problem (2.9). This
motivates us to choose p(x) as:

p∗(x) = arg max
p(x)

I(X ; Y).

Indeed, this choice enables us to achieve the capacity (2.9).

Decoder Assume that the codebook is known at the decoder. We use the subop-
timal decoder employed in the BSC case. Remember that the suboptimal decoder
is based on a typical sequence and the fact that Y n

⊕X n
= Zn. One significant dis-

tinction in the general DMC case is that Y n is an arbitrary random function of X n.
So what we can do is to take a look at pairs of (Y n, X n(w)) and to check if we can
see a particular behavior of the pair associated with the true codeword, compared
to the other pairs w.r.t. the wrong codewords.

To illustrate this, consider the following situation. Suppose that X n(1) is trans-
mitted, i.e., message 1 is the correct one. Then, the joint distribution of the correct
pair (xn(1), yn) would be:

p(xn(1), yn) = p(xn(1))p(yn
|xn(1))

(a)
=

n∏
i=1

p(xi(1))p(yi|xi(1))

=

n∏
i=1

p(xi(1), yi)

Achievability Proof for Discrete Memoryless Channels 117

where (a) follows from the key property (2.8). This implies that the pairs
(xi(1), yi)’s are i.i.d over i’s. Then, using the WLLN on the i.i.d. sequence of pairs,
one can show that

1

n
log

1

p(X n(1), Y n)
−→ H(X , Y) in prob.

Check in Prob 5.4. From this, one can say that

p(xn(1), yn) ≈ 2−nH(X ,Y)

for sufficiently large n. Why?
On the other hand, the joint distribution of the wrong pair (xn(w), yn) for w 6= 1

would be:

p(xn(w), yn) = p(xn(w))p(yn).

This is because yn is associated only with (xn(1), channel noise), which is inde-
pendent of xn(w). Remember that we use a random code in which codewords are
independent with each other. Also one can verify that yn is i.i.d. Check in Prob 5.4.
Again using the WLLN on xn(w) and yn, one can get:

p(xn(w), yn) ≈ 2−n(H(X)+H(Y))

for sufficiently large n. This motivates the following decoder. Let

A(n)ε =
{
(xn, yn) : 2−n(H(X)+ε)

≤ p(xn) ≤ 2−n(H(X)−ε)

2−n(H(Y)+ε)
≤ p(yn) ≤ 2−n(H(Y)−ε)

2−n(H(X ,Y)+ε)
≤ p(xn, yn) ≤ 2−n(H(X)+H(Y)−ε)

}
.

The decoding rule is as follows:

1. Eliminate all the messages w’s such that (xn(w), yn) /∈ A(n)ε .
2. If there is only one message that survives, then declare the survival as the

correct message.
3. Otherwise, declare an error.

Similar to the previous case, the error event is of two types: (i) multiple survivals
(or one wrong survival); and (ii) no survival.

Probability of error We analyze the probability of error to complete the achiev-
ability proof. Using the same argument that we made in the BEC case, we get:

P̄e := EC[Pe(C)] = P(Ŵ 6= 1|W = 1).

118 Channel Coding

As mentioned earlier, the error event is of the two types: (i) multiple survivals;
and (ii) no survival. The multiple-survival event implies the existence of the wrong
pair being a jointly typical pair, meaning that there exists w 6= 1 such that
(X n(w), Y n) ∈ A(n)ε . The no-survival event implies that even the correct pair is
not jointly typical, meaning that (X n(1), Y n) /∈ A(n)ε . Hence, we get:

P̄e = P(Ŵ 6= 1|W = 1)

≤ P

⋃
w 6=1

{(X n(w), Y n) ∈ A(n)ε } ∪ {(X
n(1), Y n) /∈ A(n)ε }|W = 1

(a)
≤

2nR∑
w=2

P({(X n(w), Y n) ∈ A(n)ε }|W = 1)+ P((X n(1), Y n) /∈ A(n)ε |W = 1)

(b)
≤ 2nRP((X n(2), Y n) ∈ A(n)ε |W = 1)+ P((X n(1), Y n) /∈ A(n)ε |W = 1)
(c)
≈ 2nRP((X n(2), Y n) ∈ A(n)ε |W = 1)

where (a) follows from the union bound; (b) is by symmetry of the codewords w.r.t.
message indices; and (c) follows from the fact that (X n(1), Y n)) is jointly typical
for sufficiently large n w.h.p due to the WLLN. Observe that X n(2) and Y n are
independent. So the total number of pair patterns w.r.t. (X n(2), Y n) would be:

total number of (X n(2), Y n) pairs ≈ 2nH(X)
· 2nH(Y)

= 2n(H(X)+H(Y)).

On the other hand, the cardinality of the jointly typical pair set A(n)ε is:

|A(n)ε | ≈ 2nH(X ,Y)

Why? Hence, we get:

P(Y n
⊕ X n(2) ∈ A(n)ε |W = 1) =

|A(n)ε |
total number of (X n(2), Y n) pairs

≈
2n(H(X ,Y)−H(X)−H(Y))

2n

=
2−nI(X ;Y)

2n .

Achievability Proof for Discrete Memoryless Channels 119

Using this, we get:

P̄e . 2n(R−I(X ;Y)).

Hence, if R < I(X ; Y), then P̄e → 0 as n→∞. Since we choose p(x) such that
I(X ; Y) is maximized, maxp(x) I(X ; Y) is achievable. This completes the proof.

Look ahead So far we have proved the achievability for discrete memoryless
channels. In the next section, we will prove the converse to complete the proof
of channel coding theorem.

120 Channel Coding

2.5 Converse Proof for Discrete Memoryless Channels

Recap In the previous section, we have proven the achievability for discrete mem-
oryless channels which are described by conditional distribution p(y|x):

R < max
p(x)

I(X ; Y) H⇒ Pe → 0.

Outline In this section, we will prove the converse to complete the channel coding
theorem:

Pe → 0 H⇒ R < max
p(x)

I(X ; Y).

The proof consists of three parts. Firstly, we will examine Fano’s inequality, a fun-
damental inequality that plays a crucial role in the converse proof. Secondly, we
will explore another critical inequality known as the data processing inequality
(DPI). Lastly, utilizing both these inequalities, we will present the final proof of
the converse.

Fano’s inequality Fano’s inequality is a significant inequality in the context of
inference problems, which involve inferring an input from an output that is prob-
abilistically related to the input. In such problems, the only possible action with
respect to the input is to make an inference or guess. The communication problem
we have been studying can also be viewed as an inference problem, where the goal is
to infer the message W from the received signal Y n, which is stochastically related
to W . In this context, Fano’s inequality relates the following two quantities:

Pe := P(Ŵ 6= W) & H(W |Ŵ).

One can expect that the smaller Pe, the smaller H(W |Ŵ). Fano’s inequality
presents how one affects the other in a precise manner. In the converse proof,
we need to establish a lower bound on Pe to show that Pe does not converge to zero
when R > C . Fano’s inequality plays a crucial role in providing this lower bound
by giving an upper bound on H(W |Ŵ) expressed in terms of Pe. The formula for
this upper bound is well-known, and we will focus on its expression:

Fano’s inequality: H(W |Ŵ) ≤ 1+ Pe · nR. (2.10)

This indeed captures the intimate relationship between Pe and H(W |Ŵ). The
smaller Pe, the more contracted H(W |Ŵ). The proof of this is simple. Let

E = 1{Ŵ 6= W }.

Converse Proof for Discrete Memoryless Channels 121

By the definition of the error probability and the fact that E[1{Ŵ 6= W }] =
P(Ŵ 6= W), we see that E ∼ Bern(Pe). Starting with the fact that E is a function
of (W , Ŵ), we have:

H(W |Ŵ) = H(W , E |Ŵ)

(a)
= H(E |Ŵ)+H(W |Ŵ , E)

(b)
≤ 1+H(W |Ŵ , E)

(c)
= 1+ P(E = 1) ·H(W |Ŵ , E = 1)

= 1+ Pe ·H(W |Ŵ , E = 1)

(d)
≤ 1+ Pe · nR

where (a) is due to a chain rule; (b) follows from the cardinality bound on H(E |Ŵ);
(c) comes from the definition of conditional entropy; and (d) follows from the car-
dinality bound on H(W |Ŵ , E = 1).

Data processing inequality (DPI) The next inequality we will examine is
called the data processing inequality (DPI). Essentially, DPI states that any pro-
cessing of data cannot enhance the quality of inference beyond what was originally
available. In the case of our problem, this means that the quality of inference
of W based on X n (which we can view as the original data) cannot be infe-
rior to that based on processed data, such as Y n. DPI is a mathematical state-
ment formulated in the context of a Markov process. Therefore, let us first study
what a Markov process is. We say that a random process, say {Xi}, is a Markov
process if

p(xi+1|xi, xi−1, . . . , x1) = p(xi+1|xi).

The meaning of this condition is that, given the current state xi, the future state xi+1

and the past states xi−1’s are independent of each other. A Markov process is often
represented graphically using a well-known diagram. For example, if (X1, X2, X3)

form a Markov process, it can be represented as:

X1 − X2 − X3.

The reason for representing a Markov process in this way is as follows. If we are
given X2, we can remove it from the graph since it is already known. This removal

122 Channel Coding

results in X3 and X1 being disconnected, indicating that they are statistically inde-
pendent. Since the resulting graph resembles a chain, it is referred to as a Markov
chain.

Our problem context exhibits a Markov chain. One can show that (W , X n, Y n)

forms a Markov chain:

W − X n
− Y n.

The proof is straightforward. Given X n, Y n is a sole function of the noise induced
by the channel. Since the noise has nothing to do with the message W , (Y n, W)

are independent of each other.
DPI is defined w.r.t. the Markov chain. It captures the relationship between the

following quantities: I(W ; X n), I(W ; Y n), I(X n; Y n). In fact, I(W ; X n) represents
the common information shared between W and X n, which can be seen as the
quality of inference on W based on X n. Similarly, I(W ; Y n) represents the quality
of inference on W based on Y n. The verbal statement of DPI states that the quality
of inference on W cannot be improved by processing the original data X n to obtain
Y n. In terms of mutual information, this can be expressed as follows:

I(W ; Y n) ≤ I(W ; X n).

The proof of this is simple. Starting with a chain rule and applying non-negativity
of mutual information, we have:

I(W ; Y n) ≤ I(W ; Y n, X n)

= I(W ; X n)+ I(W ; Y n
|X n)

(a)
= I(W ; X n)

(2.11)

where (a) follows from the fact that W − X n
− Y n. There is another DPI w.r.t.

I(W ; Y n) and another mutual information I(X n; Y n). Note that X n is closer to
Y n relative to the distance between W and Y n. Hence, one can guess:

I(W ; Y n) ≤ I(X n; Y n).

Converse Proof for Discrete Memoryless Channels 123

It turns out this is indeed the case. The proof is also simple.

I(W ; Y n) ≤ I(W , X n; Y n)

= I(X n; Y n)+ I(W ; Y n
|X n)

= I(X n; Y n).

(2.12)

From (2.11) and (2.12), one can summarize that mutual information between two
ending terms in the Markov chain does not exceed mutual information between
any two terms that lie in-between the two ends.

Looking at our problem setting, there is another term: Ŵ . This together with
the above Markov chain (W − X n

− Y n) forms a longer Markov chain:

W − X n
− Y n

− Ŵ .

Given Y n, Ŵ is completely determined regardless of (W , X n) because it is a func-
tion of Y n. Now applying DPI, one can verify that

I(W ; Ŵ) ≤ I(W ; Y n); (2.13)

I(W ; Ŵ) ≤ I(W ; X n); (2.14)

I(W ; Ŵ) ≤ I(X n; Ŵ); (2.15)

I(W ; Ŵ) ≤ I(X n; Y n); (2.16)

I(W ; Ŵ) ≤ I(Y n; Ŵ). (2.17)

Converse proof We are ready to prove the converse with the two inequalities.
Starting with the fact that nR = H(W), we have:

nR = H(W)

= I(W ; Ŵ)+H(W |Ŵ)

(a)
≤ I(W ; Ŵ)+ 1+ Pe · nR

(b)
= I(W ; Ŵ)+ nεn

(c)
≤ I(X n; Y n)+ nεn

= H(Y n)−H(Y n
|X n)+ nεn

(d)
= H(Y n)−

n∑
i=1

H(Yi|Xi)+ nεn

124 Channel Coding

(e)
≤

n∑
i=1

[H(Yi)−H(Yi|Xi)]+ nεn

=

n∑
i=1

I(Xi; Yi)+ nεn

(f)
≤ nC + nεn

where (a) follows from Fano’s inequality (2.10); (b) comes from the definition of
εn that we set as:

εn :=
1

n
(1+ nPeR);

(c) is due to DPI (2.16); (d) follows from the memoryless channel property
(p(Y n

|X n) =
∏n

i=1 p(Yi|Xi) and hence H(Y n
|X n) =

∑n
i=1 H(Yi|Xi)); (e) con-

ditioning reduces entropy; and (f) is due to the definition C := maxp(x) I(X ; Y).
Dividing by n on both sides, we get:

R ≤ C + εn.

If Pe → 0, εn := 1
n(1+ PenR) tends to 0 as n→∞. Hence, we get:

R ≤ C .

This completes the proof.

Look ahead The source and channel coding theorems have been proven within
Shannon’s two-stage communication architecture, which does not permit inter-
action between the source and channel codes. However, a question arises as to
whether this separation approach is optimal and can achieve the same performance
as the general architecture that allows for cooperation between the two codes.
Surprisingly, the answer is yes, and we will prove this in the next section.

Source-Channel Separation Theorem and Feedback 125

2.6 Source-Channel Separation Theorem and Feedback

Recap So far, we have studied Shannon’s two fundamental theorems: the source
and channel coding theorems. These theorems are established under a specific
two-stage architecture, as shown in Fig. 2.2. Some readers may be curious about
what would happen if the architecture was arbitrary and allowed for any interac-
tion between the source and channel codes. Can we achieve better performance
with potential cooperation between the two codes? This was a question that Shan-
non himself raised in his landmark paper of 1948 (Shannon, 2001). Surprisingly,
he answered this question negatively by establishing the source-channel separation
theorem. This result is both surprising and important. It is surprising because the
simple separation approach is optimal, and it is important because it forms the
foundation of the digital communication architecture, where the digital interface
operates independently with the source code block.

Outline In this section, we will present the proof for the source-channel separa-
tion theorem. The proof consists of three parts. Firstly, we will identify a condition
that the separation approach relies upon for reliable transmission of an information
source, which will serve as a sufficient condition for reliable transmission. Secondly,
using the two critical inequalities, Fano’s inequality and data processing inequal-
ity, introduced in the previous section, we will demonstrate that the condition is
also necessary, thus establishing the optimality of the separation approach. Finally,
we will explore a distinct topic that has a close technical connection with the two
inequalities, namely the role of channel output feedback, and provide a detailed
analysis of this topic.

What to prove for the optimality of the separation approach? As the
separation approach is a specific communication scheme, a condition that guaran-
tees reliable transmission of an information source using this approach can serve
as a sufficient condition. Therefore, proving that this condition is also necessary
would establish the optimality of the separation approach. In the sequel, we will

encoder channelinformation
source

decoder

channel
encoder

bitssource
encoder

Figure 2.2. Shannon’s two-staged architecture for communication systems.

126 Channel Coding

joint
source-channel

encoder
channelinformation

source

joint
source-channel

decoder

Figure 2.3. Joint source-channel encoder and decoder.

first come up with a sufficient condition due to the separation approach, and then
prove its necessity accordingly.

A sufficient condition due to the separation approach Suppose we want
to transmit k source symbols using n channels, as shown in Fig. 2.3. An important
question is: under what conditions can the separation approach reliably transmit
k symbols? This condition can be identified using the source and channel cod-
ing theorems. The source coding theorem states that the entropy rate H (in bits
per symbol) is the minimum number of bits required to represent the information
source per symbol. The channel coding theorem states that the capacity C (in bits
per channel use) is the maximum number of bits that can be reliably transmitted
over a channel. We can represent the entropy of the k source symbols as kH , and
the total number of bits that can be transmitted using n channels as nC . If we apply
the source and channel coders separately, a sufficient condition would be:

kH < nC . (2.18)

Necessity of the sufficient condition (2.18) We will prove that the condi-
tion (2.18) is also necessary by using Fano’s inequality and DPI. To determine what
needs to be proven precisely, let us first express several quantities that arise in the
problem setup. We denote by V k the k source symbols. X n is the sequence fed into
the channel, and Y n is the channel output. V̂ k is the decoded source. In contrast to
the separation approach setup, V̂ k is the output of a joint source-channel decoder
that allows for any interaction across source and channel codes. This is because we
intend to prove the necessity of the condition (2.18) under any arbitrary scheme.
The probability of error is defined as:

Pe = P(V k
6= V̂ k).

What we wish to show is that for reliable communication, i.e., Pe → 0, the condi-
tion (2.18) must hold.

We will prove its necessity for a stationary random process where

H = lim
m→∞

H(V1, . . . , Vm)

m
.

Source-Channel Separation Theorem and Feedback 127

A stationary process has an interesting property on H(V1,...,Vm)
m . To see this, let us

first massage this term as:

H(V1, . . . , Vm)

m
=

1

m

m∑
i=1

H(Vi|V i−1).

This is because of a chain rule. Let ai := H(Vi|V i−1). Using the stationarity and
the fact that conditioning reduces entropy,

ai ≥ ai−1.

Keeping this in our mind, compare the following two terms:

1

m

m∑
i=1

ai vs
1

m+ 1

m+1∑
i=1

ai.

Since ai is non-increasing in i, 1
m

∑m
i=1 ai is also non-increasing in m:

1

m

m∑
i=1

ai ≥
1

m+ 1

m+1∑
i=1

ai.

Hence, for any positive integer k,

lim
m→∞

H(V1, . . . , Vm)

m
≤

H(V1, . . . , Vk)

k
.

Using this property, we have:

kH = k lim
m→∞

H(V1, . . . , Vm)

m

≤ k ·
H(V1, . . . , Vk)

k

= H(V k)

Starting with this and applying the definition of I(V k; V̂ k) := H(V k) −

H(V k
|V̂ k), we then get:

kH ≤ H(V k)

≤ I(V k; V̂ k)+H(V k
|V̂ k).

128 Channel Coding

We are now ready to employ Fano’s inequality and data processing inequality. To
be specific, Fano’s inequality reads:

H(V k
|V̂ k) ≤ 1+ kPe log |V| =: kεk.

DPI that we want to use in this context is:

I(V k; V̂ k) ≤ I(X n; Y n).

Applying these into the above, we obtain:

kH ≤ H(V k)

≤ I(V k; V̂ k)+H(V k
|V̂ k)

≤ I(X n; Y n)+ kεk

≤ H(Y n)−H(Y n
|X n)+ kεk.

Manipulating further, we get:

kH ≤ H(Y n)−H(Y n
|X n)+ kεk

(a)
=

∑
H(Yi|Y i−1)−H(Y n

|X n)+ kεk

(b)
≤

∑
[H(Yi)−H(Yi|Xi)]+ kεk

=

∑
I(Xi; Yi)+ kεk

(c)
≤ nC + kεk

where (a) comes from a chain rule; (b) follows from the memoryless property of
DMC and the fact that conditioning reduces entropy; and (c) is due to the defini-
tion of C := maxp(x) I(X ; Y). As k→∞, εk → 0. Hence, we get:

H ≤
n
k

C .

This completes the proof.

Discrete memoryless channel with feedback Next, we will discuss another
topic that is related to Fano’s inequality and DPI in a technical sense. The topic
we will cover is the role of channel output feedback, which was studied by Shan-
non previously. Feedback has proven to be valuable in numerous areas, particularly
in control. Feedback is known to have a significant role in stabilizing systems. In
communication, however, feedback has not been very useful. This is mainly due

Source-Channel Separation Theorem and Feedback 129

encoder DMC decoder

delay

Figure 2.4. A discrete memoryless channel with feedback.

to Shannon’s original result in the 1950s (Shannon, 1956). What Shannon showed
is that feedback cannot increase the capacity. Hence, feedback has been used to
verify the success of transmission. For the rest of this section, we will explore this
counter-intuitive result in depth.

We first introduce a channel model that Shannon considered. It is based on the
memoryless channel which respects:

p(yi|xi, xi−1, yi−1, W) = p(yi|xi).

We consider channel output feedback where the past channel output is fed back to
the encoder. See Fig. 2.4. Hence, a transmitted signal Xi at time i is a function of
the message W and the past channel output Y i−1 := (Y1, . . . , Yi−1). Under this
model, what Shannon showed is that the feedback capacity CFB is the same as the
non-feedback capacity:

CFB = CNO, (2.19)

meaning that feedback cannot increase the capacity.

Proof of (2.19) The initial procedure for the converse proof is the same as that
of the non-feedback case. We start with:

nR = H(W)

= I(W ; Ŵ)+H(W |Ŵ)

(a)
≤ I(W ; Ŵ)+ nεn

where (a) is due to Fano’s inequality and εn := 1
n(1 + nRPe). The next step is to

employ DPI to make a progress w.r.t. I(W ; Ŵ). Remember in the non-feedback
case that we used the following DPI:

I(W ; Ŵ) ≤ I(X n; Y n).

130 Channel Coding

We then expressed I(X n; Y n) as H(Y n) − H(Y n
|X n). The conditional entropy

H(Y n
|X n) was expressed as:

H(Y n
|X n) =

n∑
i=1

H(Yi|Xi), (2.20)

and it played a crucial role to prove the converse. The above (2.20) was because of
the key memoryless property:

p(yn
|xn) =

n∏
i=1

p(yi|xi).

It holds in the non-feedback case. See Prob 5.4 for the proof. In the feedback case,
however, it does not hold any more. Hence, we should take a different approach to
prove the converse.

Even in the feedback case, what we know for sure is about a Markov chain rela-
tionship, which reads:

(W , X n)− Y n
− Ŵ .

This then yields the following DPI:

I(W ; Ŵ) ≤ I(W ; Y n).

Applying this different DPI to I(W ; Ŵ) in the above, we get:

nR ≤ I(W ; Y n)+ nεn

(a)
=

∑
[H(Yi|Y i−1)−H(Yi|Y i−1, W)]+ nεn

(b)
=

∑
[H(Yi|Y i−1)−H(Yi|Y i−1, W , Xi)]+ nεn

(c)
=

∑
[H(Yi|Y i−1)−H(Yi|Xi)]+ nεn

(d)
≤

∑
[H(Yi)−H(Yi|Xi)]+ nεn

=

∑
I(Xi; Yi)+ nεn

(e)
≤ nCNO + nεn

where (a) is due to the definition of mutual information and a chain rule; (b)
follows from the fact that Xi is a function of (W , Y i−1) and adding a function
in conditioning does not alter entropy; (c) follows from the Markov property

Source-Channel Separation Theorem and Feedback 131

(W , Y i−1)− Xi − Yi; (d) comes from the fact that conditioning reduces entropy;
and (e) is because of the definition CNO := maxp(x) I(X ; Y).

The above gives

R ≤ CNO + εn.

Under reliable communication, εn → 0. Hence, we prove:

R ≤ CNO.

Look ahead Up to this point, we have proven the source coding theorem, the
channel coding theorem, and the source-channel separation theorem for a broad
range of channels, specifically the discrete memoryless channel. We also explored
the technical connection between the role of feedback and the converse proof. How-
ever, there is a topic that has not been thoroughly addressed in the channel coding
theorem, which pertains to the achievable scheme. During the achievability proof,
we established the existence of an optimal code that can achieve Pe close to 0 as n
approaches∞, but we did not discuss how to construct the optimal code. Moving
forward, we will delve into deterministic codes that are explicit and approach or
even reach the capacity.

132 Channel Coding

Problem Set 5

Prob 5.1 (Channel capacity) Let X and Y be the input and the output of a
discrete memoryless channel, respectively.

(a) Suppose the channel is a BEC with erasure probability p. Show that

I(X ; Y) ≤ 1− p.

Also derive the condition under which the equality in the above holds.
(b) Suppose the channel is now a BSC with crossover probability p. Show that

I(X ; Y) ≤ 1−H(p).

Also derive the condition under which the equality in the above holds.
(c) In Section 2.4, we learned that the capacity of a discrete memoryless chan-

nel is

C = max
p(x)

I(X ; Y).

Show that I(X ; Y) is a concave function in p(x).

Prob 5.2 (Computation of channel capacity) Let S1 ∼ Bern(q) and S2 ∼

Bern(1
2). Let X = S1 ⊕ S2 be an input to a BSC with crossover probability p and

Y denote an output of the channel. Suppose S1 and S2 are independent of each
other. Compute I(X ; Y).

Prob 5.3 (Typical versus non-typical sequence pairs) Consider a dis-
crete memoryless channel. Suppose X n are i.i.d., each being generated as per
pX (x). Let T n be another i.i.d. random process, being independent of X n yet
each being generated according to the same pX (·). Let Y n be the output of the
channel when X n is fed into. Explain the limiting behavior of limn→∞

1
n log

1
pX n ,Y n (T n,Y n) .

Prob 5.4 (Jointly typical sequence) Consider a discrete memoryless channel.
Suppose that the encoder uses a random code in which Xi(w)’s are i.i.d. ∼ p(x)
across i ∈ {1, . . . , n} and w ∈ {1, . . . , 2nR

}.

(a) Show that for w ∈ {1, . . . , 2nR
},

p(yn
|xn(w)) =

n∏
i=1

p(yi|xi(w)).

Problem Set 5 133

(b) Suppose that X n(1) is transmitted. Show that

1

n
log

1

p(X n(1), Y n)

in prob.
−−−−→ H(X , Y) as n→∞.

Also show that for ε > 0, as n→∞,

P(2−n(H(X ,Y)+ε)
≤ p(xn(1), yn) ≤ 2−n(H(X ,Y)−ε)) −→ 1.

(c) Suppose that X n(1) is transmitted. A student claims that as in part (b),

1

n
log

1

p(X n(2), Y n)

in prob.
−−−−→ H(X , Y) as n→∞.

Prove or disprove this statement.
(d) Show that Y n is i.i.d.

Prob 5.5 (Fano’s inequality) We wish to transmit a message W ∈ {1, . . . , 2nR
}

over a discrete memoryless channel. Let Ŵ be a decoded message at a receiver. Let
E = 1{Ŵ 6= W } where 1{·} denotes an indicator function which returns 1 if the
argument is true; 0 otherwise. Let Pe := P(Ŵ 6= W). Show that

H(W |Ŵ) = H(E |Ŵ)+ Pe ·H(W |Ŵ , E = 1).

Prob 5.6 (Data processing inequality) Suppose a random process {Xi} satis-
fies: for all i ≥ 1,

p(xi+2|xi+1, xi, . . . , x1) = p(xi+2|xi+1, xi).

Let Si := (Xi+1, Xi). A student claims that I(S1; S2) ≥ I(S1; S3). Prove or disprove
the claim.

Prob 5.7 (Source-channel separation theorem) We wish to transmit an
information source of a stationary process V k over a DMC. Let X n be the output
of an encoder fed by V k, and Y n be the output of the DMC when X n is fed into.
Let V̂ k be the decoded information source at a receiver. Let C := maxp(x) I(X ; Y)
and Pe := P(V̂ k

6= V k).

(a) Using the source coding and channel coding theorems, show that if

kH(V) < nC , (2.21)

then Pe can be made arbitrarily close to 0 as n→∞. Here H(V) denotes
the entropy rate:

H(V) := lim
k→∞

H(V k)

k
.

134 Channel Coding

(b) Show that for an integer m ≥ 0,

H(V m)

m
≥

H(V m+1)

m+ 1
.

Hint: H(V m) =
∑m

i=1 H(Vi|V i−1) and H(Vi|V i−1) is a non-increasing
sequence in i.

(c) Prove: (i) Fano’s inequality H(V k
|V̂ k) ≤ 1 + Pe · k log |V|; and (ii)

data processing inequality I(V k; V̂ k) ≤ I(X n; Y n). Here V denotes the
range of V .

(d) Using parts (b) and (c), show that if we want to make Pe → 0, then
kH(V) < nC must hold.

(e) Does the condition (2.21) serve as the sufficient and necessary condition for
reliable communication, even when using an encoder/decoder that doesn’t
follow Shannon’s two-stage architecture? Based on the answer, can we deter-
mine the optimality of the two-stage architecture? Is the two-stage architec-
ture lossless in terms of optimality, meaning that any data rate achieved
with an arbitrary encoder/decoder can also be achieved using the two-stage
architecture?

Prob 5.8 (Source-channel separation theorem) We wish to encode i.i.d.
V n
∼ Bern(1

4) for transmission over a binary erasure channel with erasure prob-
ability ε. Find the necessary and sufficient condition under which the probability
of error P(V̂ n

6= V n) can be made arbitrarily close to 0 as n→∞.

Prob 5.9 (Capacity of a composite channel) Suppose that two binary sym-
metric channels (BSCs) with crossover probabilities p1 and p2 respectively are con-
nected end-to-end to form a composite channel. Let X n

1 and Y n
1 (or X n

2 and Y n
2)

indicate the input and output of the first (or second) BSC. Here n denotes the code
length.

(a) Suppose no operation is allowed between the two BSCs, i.e., X n
2 is simply

set as Y n
1 . Compute the capacity of this composite channel.

(b) Suppose any operation is allowed between the two BSCs, i.e., X n
2 can now

be an arbitrary function of Y n
1 . Compute the capacity of this composite

channel.

Prob 5.10 (Capacity of the union of two channels) Consider a discrete
memoryless channel which is the union of the following two channels: (i) a binary
symmetric channel with crossover probability p; and (ii) an erasure channel with
erasure probability ε. At each time, one can send a symbol channel 1 or channel 2
but not both. Find the capacity of this channel.

Problem Set 5 135

Prob 5.11 (Capacity of a composite channel) Let X , Y , Z be three discrete
random variables defined on X ,Y and Z respectively. Suppose that p(y|x) is a
DMC with input in X , output in Y and capacity C1; and q(z|y) is another DMC
with input in Y , output in Z , and capacity C2. Consider the following DMC

r(z|x) :=
∑
y∈Y

q(z|y)p(y|x)

with input in X and output in Z . A confused information theorist claims that the
capacity of this DMC is min(C1, C2). Either prove or disprove this statement.

Prob 5.12 (Channel capacity and achievability) We wish to transmit a uni-
formly distributed message W ∈ {1, . . . , 2nR

} over a memoryless binary erasure
channel with erasure probability p. Here n denotes the code length and R := log M

n
where M indicates the cardinality of the range of W . Let f and g be channel encoder
and decoder respectively. Let Pe = P(Ŵ 6= W) be the probability of error where
Ŵ indicates a decoded message. Let C be the capacity of this channel.

(a) Given R, define:

P∗e (R) := min
f ,g ,n

Pe.

For ε > 0, compute P∗e (C − ε) and P∗e (C + ε).
(b) Show that C ≤ 1− p.
(c) In Section 2.2, we intended to prove the achievability of 1 − p. To this

end, we employed a random encoder in which Xi(w)’s are generated i.i.d.
according to p(x) for i ∈ {1, 2, . . . , n} and w ∈ {1, 2, . . . , 2nR

}. What was
the choice of p(x)?

(d) Given Y n
= yn, derive an optimal decoder. What is the name of the opti-

mal decoder? Also explain the rationale behind the naming. We say that a
decoder is optimal if it minimizes the probability of error.

(e) It turns out that under the random encoding in part (c) and the optimal
decoder in part (d), Pe can be made arbitrarily close to 0 as n→ 0. Show
that this implies the existence of an optimal deterministic code, say C∗ such
that given R < 1− p, Pe(C∗)→ 0 as n→∞.

Prob 5.13 (Role of feedback) This problem explores the role of the channel
output feedback in a DMC. We wish to transmit a message W ∈ {1, 2, . . . , 2nR

}

over the DMC. Let X n be a transmitted signal and Y n be the channel output.
Unlike the conventional non-feedback setting, we assume that the past channel out-
put Y i−1 is available at the encoder at time i; hence, Xi is a function of (W , Y i−1).
Let Ŵ be the decoded message.

136 Channel Coding

(a) Show that (W , Y n, Ŵ) form a Markov chain, i.e., W − Y n
− Ŵ .

(b) Using part (a), show that I(W ; Ŵ) ≤ I(W ; Y n) (data processing inequal-
ity).

(c) Prove that H(W |Ŵ) ≤ 1+ Pe · nR (Fano’s inequality).
(d) Using the definition of memoryless channels and the fact that Xi is a func-

tion of (W , Y i−1), show that

H(Y n
|W) =

n∑
i=1

H(Yi|Xi).

(e) Using parts (b), (c), (d), prove that the capacity of this feedback channel is
still C := maxp(x) I(X ; Y), meaning that feedback cannot increase capacity.
Since the achievability readily comes from the nonfeedback scheme, you
only need to prove the converse: if Pe → 0, then R ≤ C .

Prob 5.14 (Capacity of a cascaded channel) Consider a cascade of n identi-
cal binary symmetric channels (BSCs), each with crossover probability p ∈ (0, 1).
Assume that no operation is allowed in between any two BSCs. Compute the capac-
ity of this cascaded channel.

Prob 5.15 (Capacity of a cascaded channel) Consider a discrete memory-
less channel which concatenates the following two channels serially: (i) a binary
symmetric channel with crossover probability p; and (ii) an erasure channel with
erasure probability ε. Let X and Y be the input and output of the channel.

(a) Derive the conditional distribution p(y|x).
(b) Find the capacity of this channel.

Prob 5.16 (Markov chain) Suppose

X − Y − (Z , W).

(a) Show that

X − (Y , Z)−W .

(b) Find I(X ; W |Y).

Prob 5.17 (Capacity of the union of two channels) Define the probability
transition matrix Pi for a discrete memoryless channel (DMC) as a matrix whose
(x, y) entry is the probability that the output of the channel is y given the input
x. Consider two DMCs, called DMC1 and DMC2, with transition matrices P1

and P2 respectively. Consider a third DMC, say DMC3, whose transition matrix is

Problem Set 5 137

given by (
P1 0

0 P2

)
.

Define a selector S that selects the channel to which a symbol is transmitted.

(a) Show that

I(X ; Y) = I(X , S; Y).

(b) Show that the capacity of DMC3 is given by

C3 = log(2C1 + 2C2),

where Ci is the capacity of DMCi.
Hint: Use part (a).

Prob 5.18 (Capacity of an erasure channel with two erasures) Consider
a DMC with binary input X ∈ {0, 1}, output Y ∈ {0, e0, e1, 1}, and channel
probabilities:

p(0|0) = p(1|1) = 1− p− q,

p(e0|0) = p(e1|1) = p,

p(e1|0) = p(e0|1) = q

where p > q > 0. Find the capacity of this DMC.

Prob 5.19 (Quantum channel) Alice wishes to transmit a single bit X ∼
Bern(1

2) to Bob. There is an intruder Eve who intends to interfere with the commu-
nication. With probability 1− p, Eve does nothing, so Bob receives X . With prob-
ability p, however, Eve intervenes in the communication between Alice and Bob.
With probability p, Eve intercepts the transmitted bit in a possibly noisy manner.
The intercepted bit Z is:

Z =

{
X , w.p. 1

2 ;

X + N , w.p. 1
2

where N ∼ Bern(1
2), independent of X . Eve then resends Z to Bob. Hence, a

received signal Y at Bob reads:

Y =

{
X , w.p. 1− p;

Z , w.p. p.

138 Channel Coding

(a) Eve wishes to decode X given its received signal. Remember that Eve gets
nothing w.p. 1−p and gets Z w.p. p. Let X̂ E be the optimal detector output
w.r.t. X . Compute P(X̂ E 6= X). Also compute I(X ; X̂ E).

(b) Similarly Bob wants to decode X given Y . Let X̂ B be the corresponding
optimal detector output. Compute P(X̂ B 6= X). Compute I(X ; X̂ B).

(c) Find a condition on P(X̂ B 6= X) such that I(X ; X̂ B) ≥ I(X ; X̂ E).

Prob 5.20 (True or False?)

(a) Consider a discrete memoryless channel with input Xi and output Yi. Then,

H(Y1, Y2|X1, X2) = H(Y1|X1)+H(Y2|X2).

(b) Consider a channel coding problem setup where the channel is a BEC with
erasure probability 0.11. A hard-working student claims that she can come
up with a transmission scheme that achieves 100 bits of reliable transmission
with code length 1000. Does the claim make sense?

(c) Let V1, V2, . . . , Vk be a finite alphabet i.i.d source. The information source
is encoded as a sequence of n input symbols X n of a memoryless binary
erasure channel. Let Y n be the output of the channel. Given Y n

= yn, we
wish to decode X n. The optimal decoder is:

X̂ n
= arg max

xn
P(Y n

= yn
|X n
= xn).

(d) Consider a discrete memoryless channel (DMC) with probability transition
probability:

p(y|x) =

p 1− p 0 0

1− p p 0 0

0 0 q 1− q

0 0 1− q q

where rows and columns correspond to values of x and y, respectively. The
capacity of this channel is C = 2−H(p)−H(q) where H(p) := p log 1

p+

(1− p) log 1
1−p .

(e) Consider an additive channel whose input alphabet X = {0,±2,±4} and
whose output Y = X+Z . Here Z is distributed uniformly over the interval
[−1, 1]. The capacity of this channel is log 3.

(f) Consider a DMC with feedback in which the past channel output is avail-
able at encoder: an encoded signal Xi at time i is a function of (W , Y i−1).
Here W indicates a message W ∈ {1, 2, . . . , 2nR

}, Yi denotes channel out-
put at time i, and Y i−1 := (Y1, . . . , Yi−1). Then, W − X n

− Y n.

Problem Set 5 139

(g) Suppose a random process {Xi} satisfies: for all i ≥ 1,

p(xi+2|xi+1, xi, xi−1, . . . , x1) = p(xi+2|xi+1, xi).

Let Si := (Xi+1, Xi). Then, I(S1; S3) ≥ I(S2; S4).
(h) Suppose that two binary symmetric channels with crossover probabilities p1

and p2 respectively are connected end-to-end to form a composite channel.
Suppose that any operation is allowed between the two channels. Then, the
capacity of the composite channel is 1−max{H(p1), H(p2)}.

(i) Suppose random variables (X1, X2, X3, X4, X5) form a Markov chain. Then,
I(X1; X2) ≥ I(X2; X5).

(j) Shannon created a communication architecture that separates source cod-
ing and channel coding, allowing them to be performed independently
of each other. This independent design facilitates the standardization of
the digital interface and simplifies implementation. However, this comes
at the expense of performance degradation resulting from the separation of
the architecture.

(k) Let X , Y , Z be three discrete random variables defined on X ,Y ,Z respec-
tively. Suppose that p(y|x) is a discrete memoryless channel (DMC) with
input in X , output in Y and capacity C1; and q(z|y) is another DMC with
input in Y , output in Z , and capacity C2. Consider the following DMC

r(z|x) :=
∑
y∈Y

q(z|y)p(y|x)

with input in X and output in Z . This DMC can have capacity greater
than max(C1, C2).

(`) Let Y1 and Y2 be conditionally independent and conditionally identically
distributed given X . The capacity of a channel with input X and output
(Y1, Y2) is twice the capacity of a channel with input X and output Y1.

140 Channel Coding

2.7 Polar Code: Polarization

Recap In Part II, we proved the channel coding theorem and source-channel sep-
aration theorem for discrete memoryless channels. To achieve this, we used a ran-
dom coding argument in the proof of the channel coding theorem to establish the
existence of an optimal code. However, we did not discuss how to construct an
explicit and practical code that guarantees optimality.

Outline In the remainder of Part II, we will delve into a specific deterministic
code called the polar code, which achieves channel capacity for a class of channels.
This section is divided into four parts. Firstly, we will share an interesting backstory
about the random code utilized in the achievability proof of the channel coding
theorem. Following that, we will discuss two major endeavors focused on explicit
code constructions, with emphasis on the polar code. Then, we will highlight a
crucial feature of the polar code known as polarization, which brings about a fas-
cinating phenomenon. Finally, we will examine the polarization-inspired encoding
and decoding methods to describe how the polar code operates.

Initial reactions on Shannon’s channel coding theorem When Shannon
first introduced his channel coding theorem, it was met with mixed reactions, par-
ticularly from communication systems engineers. There were three main reasons
for this. Firstly, many engineers did not comprehend the concepts of reliable com-
munication, achievable data rate, and capacity, which made it difficult for them to
understand the theorem. Secondly, even those who understood the theorem had a
negative outlook on the development of an optimal code. The achievability proof
of the theorem suggested that the optimal code required a lengthy code-length to
attain capacity, which seemed complex and unfeasible given the technology of the
time. Lastly, even the optimistic engineers who saw the potential for implementa-
tion with future technology were not confident because Shannon did not provide
a concrete method for designing an optimal code. The proof only established the
existence of optimal codes without specifying how to construct them.

Two major efforts Due to these reasons, Shannon and his supporters, including
some intelligent MIT folks, made significant efforts to develop explicit and deter-
ministic optimal codes with potentially low implementation complexity. Unfortu-
nately, Shannon himself failed to develop a good deterministic code. Instead, his
MIT supporters came up with some successful codes, and in this section, we will
discuss two of their major efforts.

One of the major efforts was made by Robert G. Gallager, who developed the
“Low Density Parity Check code” (LDPC code for short) in 1960 (Gallager, 1962).
It is an explicit and deterministic code, which provides a detailed guideline on how

Polar Code: Polarization 141

to design such a code. The code’s performance is remarkable, as it approaches capac-
ity as the code length tends to infinity, although it does not match the capacity pre-
cisely. However, the LDPC code was not initially given enough credit since it was
still of high implementation complexity given the digital signal processing (DSP)
technology of the day.2 However, the code was later revived 30 years later, as it
became an efficient code when the DSP technology evolved, finally enabling the
code to be implemented. Currently, it is widely being employed in a variety of
systems, such as LTE, WiFi, DMB,3 and storage systems.

Gallager was not entirely satisfied with his result, as his code was not guaranteed
to achieve capacity precisely, even in the limit of code length. This motivated one
of his PhD students, Erdal Arikan, to develop a capacity-achieving deterministic
code. Arikan developed the first capacity-achieving deterministic code, called polar
code (Arikan, 2009). Interestingly, he could develop the code in 2007, 30+ years
later than the motivation for Gallager’s work. Due to its excellent performance and
low-complexity nature, the polar code is being seriously considered for implemen-
tation in a variety of systems. We will dedicate the next three sections to study the
polar code.

The encoder structure that Arikan imagined Arikan focused on a simple
channel in which an input to the channel is binary-valued. Such examples are BEC
and BSC that we learned earlier. He proceeded to examine the statistical character-
istic that the channel input X n must possess to achieve the capacity. This brought
to mind the random code utilized by Shannon, where X n is independent and iden-
tically distributed (i.i.d.). This served as a source of inspiration for Arikan, leading
to the development of the encoding structure shown in Fig. 2.5.

switch

random dummy bits

full rank

Figure 2.5. The encoder structure of the polar code.

2. Despite the lack of immediate impact on the world, his remarkable work earned him a position as a faculty
member at MIT right after graduation. It is fortunate that there are scholars who are patient enough to
recognize the potential of such groundbreaking work.

3. It is the name of the technology for a digital broadcast system, standing for Digital Multimedia Broadcasting

142 Channel Coding

To explain the structure in detail, we first introduce some notations. We denote
the message W by binary string U nR := (U1, U2, . . . , UnR)

T where T denotes
a transpose. Note that the message can be represented as nR i.i.d. bits. Why? We
intend to generate another sequence X n from U nR. Remember that we consider
a binary-input channel where the capacity cannot exceed 1 (why?). Hence, X n is
of a longer length relative to U nR. We introduce additional number (n− nR) bits
that we call dummy bits. Since we want to have i.i.d. sequence X n, we induce the
random dummy bits which are independent of U nR and also i.i.d.

The way of constructing such X n takes two steps. First we combine U nR and
the dummy bits to generate a length-n sequence, say V n. Here Vi takes either a
component of U nR or that of the dummy bits. For instance, when n = 6 and R =
1
2 , we may have V n

= (U1, U2, dummy1, dummy2, U3, dummy3)
T . Whether we

choose the one from U nR or from the dummy bits for the value of Vi depends on a
particular rule that will be specified later on. We then pass V n through a full-rank
matrix of size n-by-n, say Gn, yielding:

X n
= GnV n.

One can verify that X n is also i.i.d. (the property that we wished to obtain) as long
as Gn has full rank. Check in Prob 6.3. It will be clearer soon as to why the full-rank
matrix is employed here.

This is the encoder structure that Arikan imagined. Under this structure, what
he observed is that for some particular Gn, an interesting phenomenon occurs. He
called that phenomenon “polarization” – the rationale behind the naming will be
clearer later. In fact, he discovered the phenomenon in the process of manipulating
the following quantity: I(V n; Y n).

Polarization He made two observations on I(V n; Y n). The first is:

Observation #1 : I(V n; Y n) = nI(X ; Y) =: nI (2.22)

where X (or Y) indicates a generic random variable for Xi (or Yi). We denote
I(X ; Y) by I for notational simplicity. The proof of Observation #1 is as follows:

I(V n; Y n) = H(Y n)−H(Y n
|V n)

(a)
= H(Y n)−H(Y n

|X n, V n)

(b)
= H(Y n)−H(Y n

|X n)

(c)
= H(Y n)−

n∑
i=1

H(Yi|Xi)

Polar Code: Polarization 143

(d)
=

n∑
i=1

H(Yi)−

n∑
i=1

H(Yi|Xi)

= nI(X ; Y) = nI

where (a) follows from the fact that X n is a function of V n; (b) is due to the Markov
chain of V n

− X n
− Y n (why?); (c) comes from the memoryless property of the

channel; and (d) follows from the fact that Y n is i.i.d. (why?).
The second observation is:

Observation #2 : I(V n; Y n) =

n∑
i=1

I(Vi; Y n, V i−1). (2.23)

This is due to the chain rule w.r.t. mutual information and the fact that Vi is inde-
pendent of V i−1: I(Vi; Y n

|V i−1) = I(Vi; Y n, V i−1). If you are not convinced,
please check in Prob 6.2. Arikan viewed I(Vi; Y n, V i−1) as a quantity that indi-
cates the data rate w.r.t. the ith virtual subchannel (say pi) with input Vi and output
(Y n, V i−1):

Vi → (virtual subchannel i)→ (Y n, V i−1). (2.24)

He then made an interesting phenomenon for the quantity I(Vi; Y n, V i−1) under
some particular choice of Gn. To illustrate this, let us plot an empirical CDF (cumu-
lative density function) of the quantity:

|{i : I(Vi; Y n, V i−1) ≤ x|
n

as a function of a dummy variable x.
You will soon understand why we plot the empirical CDF to see the interesting

phenomenon. To understand this, let us first consider the case of n = 1. In this
case, we have only one virtual subchannel where the data rate is I(V1; Y1), which
is I due to (2.22). So the empirical CDF is a dirac-delta function jumping at I . See
the first subfigure in Fig. 2.6.

When n = 2, the summation includes:

I1 := I(V1; Y1, Y2);

I2 := I(V2; Y1, Y2, V1).
(2.25)

Due to Observations #1 and #2 in (2.22) and (2.23):

I1 + I2 = 2I . (2.26)

144 Channel Coding

Figure 2.6. Polarization: I(Vi ; Y
n, V i−1) takes either 1 or 0 in the limit of n.

Suppose that I1 ≤ I ≤ I2 under some G2. Then, we would have two jumps at I1

and I2 as plotted in the second subfigure in Fig. 2.6. What Arikan found is that
under some Gn the empirical CDF is of a very interesting shape in the limit of n:
the jumps occur only at two extreme points, which are 0 and 1. This implies:

I(Vi; Y n, V i−1) = 1 or 0 as n→∞, (2.27)

meaning that the data rate of the ith subchannel is polarized (perfect or com-
pletely noisy). Also (2.22) together with (2.23) suggests that the fraction of
I(Vi; Y n, V i−1) being 1 (or 0) approaches I (or 1− I):

|{i : I(Vi; Y n, V i−1) ≈ 1|

n
→ I ;

|{i : I(Vi; Y n, V i−1) ≈ 0|

n
→ 1− I .

(2.28)

Encoding & decoding The polarization reflected in (2.27) and (2.28) immedi-
ately suggests the following encoding rule:

Set Vi =

{
information bit (from U nR), if I(Vi; Y n, V i−1) ≈ 1;

dummy bit, otherwise,
;

Set R ≈ I .

You may wonder when I(Vi; Y n, V i−1) is close to 1 or 0. It depends on the structure
of Gn that we will investigate in detail later on.

Now what about decoding? As we learned earlier, the optimal decoding rule
is ML: Choosing vn such that the corresponding likelihood p(yn

|V n
= vn) is

maximized. But we are not going to employ the ML rule since the complexity of
the rule is prohibitive. It requires an exhaustive search over all possible choices of
U nR (why?), i.e., the complexity scales like 2nR. Instead we will use a suboptimal
yet intuitive and low-complexity rule, so called successive cancellation decoding. This
is inspired by the subchannel representation as illustrated in Fig. 2.7.

Polar Code: Polarization 145

sub dec.

sub dec.

sub dec.

p1

p2

pn

...
pi

...

pi+1

Figure 2.7. Successive cancellation decoding.

The blue-colored (or red-colored) virtual subchannels indicate the perfect (or
completely noisy) channels. Note in the first subchannel, say p1, that the output
contains only the received signal Y n. So one can decode V1 by employing the fol-
lowing ML rule associated with that particular subchannel:

p(yn
|V1 = 1) ≥ p(yn

|V1 = 0) −→ V̂ 1 = 1;

p(yn
|V1 = 1) < p(yn

|V1 = 0) −→ V̂ 1 = 0.

On the other hand, in the second subchannel p2, the output contains V1 (in addi-
tion to Y n) which is not available at the decoder. But the good news is that the
estimate of V1 is available instead once we perform the above operation regarding
p1. This suggests a successive way of decoding. We first decode V1; we then use this
to decode V2; and all the way up to decode Vn with V̂ n−1. To be specific, for the
ith subchannel, the decoding rule is:

p(yn, v̂i−1
|Vi = 1) ≥ p(yn, v̂i−1

|Vi = 0) −→ V̂ i = 1;

p(yn, v̂i−1
|Vi = 1) < p(yn, v̂i−1

|Vi = 0) −→ V̂ i = 0

where the estimates v̂i−1 are available from the earlier steps. For time indices i in
which dummy bits are transmitted, we do not need to decode such bits. Hence
we simply ignore them while using them instead to decode other information bits.
It turns out that this suboptimal (yet intuitive) decoding rule enables the error
probability to be arbitrarily close to 0 as long as R < I . The proof of this is not
that simple. So we omit the detailed proof in this book.

146 Channel Coding

Look ahead What follows are two questions that need to be addressed. The first
question is: How can we create Gn to induce polarization? The second question is:
How can we calculate the likelihood p(yn

|v̂ i−1
|Vi) needed for successive cancella-

tion decoding? These questions will be answered in the next section.

Polar Code: Implementation of Polarization 147

2.8 Polar Code: Implementation of Polarization

Recap In the previous section, we began exploring the polar code, which is the
first code to achieve capacity with low complexity and explicit construction. The
encoder structure of the code consists of two stages. In the first stage, nR informa-
tion bits (U nR) are combined with n− nR dummy bits according to a certain rule
to construct a longer i.i.d. sequence V n. In the second stage, V n is converted into
X n by multiplying it with a full-rank matrix Gn to achieve polarization.

Arikan observed that when converting n independent copies of a channel p(y|x)
into n virtual subchannels (each having input Vi and output (Y n, V i−1)) under a
particular choice of Gn, the data rate of each virtual subchannel I(Vi; Y n, V i−1)

takes either 1 or 0 in the limit of n, indicating complete polarization of the sub-
channels. The polarization phenomenon led naturally to the encoding and decod-
ing strategies. The encoding rule assigns information bits to good channels (with a
data rate of 1) and dummy bits to bad channels (with a data rate of 0). The decoding
rule follows successive cancellation decoding, where Vi is decoded in a step-by-step
manner from i = 1 to i = n with the aid of previously decoded bits V̂ i−1.

Outline This section will cover two topics that were not previously discussed.
Firstly, we will investigate the construction of Gn, which is necessary to achieve
polarization. Secondly, we will delve into the computation of the likelihood func-
tions p(yn, vi−1

|vi), which are required for successive cancellation decoding of the
virtual subchannels.

Case of n = 2: Choice of G2 & likelihood computation Let us start with the
simplest case of n = 2. In this case, one obvious yet non-trivial choice for G2 is:

G2 =

[
1 1

0 1

]
. (2.29)

switch

random dummy bits

full rank

Figure 2.8. The encoder structure of the polar code.

148 Channel Coding

p1

p2

Figure 2.9. (Left): Two independent channels and the mapping between (V1, V2) and

(X1, X2); (Right): Two converted virtual subchannels (denoted by p1 and p2 respectively).

Clearly, no polarization occurs when G2 is either

[
1 0

0 1

]
or

[
0 1

1 0

]
.

One can readily verify that in the case, the data rate of the first virtual subchannel
I1 := I(V1; Y 2) coincides with that of the second subchannel I2 := I(V2; Y 2, V1),
meaning no polarization between I1 and I2 (please check). The choice of (2.29) is
one of the two remaining non-trivial candidates. This choice yields: X1 = V1⊕V2

and X2 = V2; see the left in Fig. 2.9. In the previous section, we converted these
two independent copies of p(y|x) into two virtual subchannels, inspired by the
following formula:

I(V 2; Y 2) = I(V1; Y 2)+ I(V2; Y 2, V1).

See the right in Fig. 2.9 for illustration of each virtual subchannel, say pi where
i ∈ {1, 2}.

Now recall one of the two questions raised earlier: how to compute (p1, p2)

which are required to perform successive cancellation decoding? Here the key is to
represent pi in terms of the one that is known: the conditional distribution of the
DMC p(y|x). First we get:

p1(y1, y2|v1)
(a)
=

∑
v2∈{0,1}

p(y1, y2, v2|v1)

(b)
=

∑
v2∈{0,1}

p(v2|v1)p(y1, y2|v1, v2)

(c)
=

1

2

∑
v2∈{0,1}

p(y2|v1, v2)p(y1|v1, v2, y2)

Polar Code: Implementation of Polarization 149

(d)
=

1

2

∑
v2∈{0,1}

p(y2|v2)p(y1|v1, v2, y2)

(e)
=

1

2

∑
v2∈{0,1}

p(y2|v2)p(y1|v1 ⊕ v2)

where (a) follows from the total probability law; (b) is due to the definition of
conditional distribution; (c) comes from the definition of conditional distribution
and the fact that p(v2|v1) =

1
2 ; (d) follows from the Markov chain: V1 − X2(=

V2)−Y2 (why?); and (e) is due to the Markov chain: (V1, V2, Y2)−V1⊕V2−Y1

(why?). Notice that p1(y1, y2|v1) is represented in terms of p(y2|v2) and p(y1|v1⊕

v2) which are known and therefore can be computed. Similarly we get:

p1(y1, y2, v1|v2) = p(v2|v1)p(y1, y2|v1, v2)

=
1

2
p(y2|v2)p(y1|v1 ⊕ v2).

Example: Binary Erasure Channel To give you a concrete feel as to how to
compute p1 and p2 derived as above, let us give you an example of a binary erasure
channel. Let α denote erasure probability of the BEC. Note in the BEC that

(Y1, Y2) =

(V1 ⊕ V2, V2), w.p. (1− α)2;

(e, V2) w.p. α(1− α);

(V1 ⊕ V2, e) w.p. (1− α)α;

(e, e) w.p. α2.

One can decode V1 only when there is no erasure (the first case). Hence, one can
view p1 as another BEC yet having different erasure probability: 1−(1−α)2. Since
I1 = (1 − α)2 is smaller than the capacity of the original BEC (CBEC = 1 − α),
p1 is sort of a bad channel.

On the other hand,

(Y1, Y2, V1) =

(V1 ⊕ V2, V2, V1), w.p. (1− α)2;

(e, V2, V1) w.p. α(1− α);

(V1 ⊕ V2, e, V1) w.p. (1− α)α;

(e, e, V1) w.p. α2.

One can decode V2 except for one case in which both channels are erased (the last
case); hence, p2 can be viewed as another BEC with erasure probability α2. Since
I2 = 1− α2 is larger than CBEC = 1− α, p2 is sort of a good channel.

150 Channel Coding

channel

Figure 2.10. Channel splitting for arbitrary n.

The above two interpretations suggest that the two independent copies of p(y|x)
can be split into two virtual subchannels: one with a smaller capacity (the bad
channel); the other with a larger capacity (the good channel). So we can view this
split as partial polarization.

Idea: Channel splitting for an arbitrary n This observation leads to a natural
way of polarizing n independent copies of p(y|x). The idea is to repeat the same
for the two split subchannels. See Fig. 2.10.

We first split the original BEC (with erasure probability α) into two subchannels,
say p− and p+ to indicate the bad and good subchannels respectively. Then, the
erasure probability of the bad (or good) channel would be α− := 1 − (1 − α)2

(or α+ := α2). Similarly we split p− into another set of two split subchannels, say
p−− and p−+ where α−− := 1− (1− α−)2 and α−+ := (α−)2. To this end, we
should first construct two p−’s from four p’s. Similarly p+ is split into (p+−, p++).
We repeat this until we get n split subchannels. This way, one may imagine that
the subchannels are completely polarized: the data rate of a split subchannel in
the final stage is either 1 or 0 in the limit of n. It turns out this is indeed the
case.

How to implement the idea? Before proving the complete polarization of the
subchannels, let us explore how to implement the channel-splitting idea, i.e., how
to construct Gn that yields the splitting? Consider a case in which n is of the form
2k. Let us start with n = 22. First of all, we merge the first and second copies of
p(y|x) to construct (p−, p+), also merging the third and fourth copies to construct
another (p−, p+). We then combine the two p−’s to construct (p−−, p−+). The
way to construct is the same as before: adding two inputs of (p−, p−) to yield the
first output while simply passing the second input to yield the second output. See
the modulo addition on top in the left of Fig. 2.11. We add V1 and V3 (inputs

Polar Code: Implementation of Polarization 151

Figure 2.11. Channel splitting for n = 4.

Figure 2.12. Relationship between V4 and X4, reflected in G4.

of p− subchannels) while simply passing V3. We do the same for the remaining
p+’s, thus yielding (p+−, p++). Now remember how we constructed outputs of
polarized virtual subchannels. The output of p−− should read a collection of the
outputs of the p−’s: Y 4

= (Y1, Y2, Y3, Y4); and the output of p−+ should read a
collection of Y 4 and the input V1 of the first p−. Similarly the outputs of p+− and
p++ should be: (Y 4, V1, V3) and (Y 4, V1, V3, V2) respectively.

Then, what is G4 that implements the mapping? To see this, let us represent
the four virtual subchannels in terms of the four independent copies of p(y|x). See
Fig. 2.12.

From this, we see that

X1 = V1 + V2 + V3 + V4;

X2 = V2 + V4;

X3 = V3 + V4;

X4 = V4.

152 Channel Coding

Figure 2.13. Relationship between V16 and X16, reflected in G16.

Hence, we get:

G4 =

1 1 1 1

0 1 0 1
0 0 1 1

0 0 0 1

 =
[

G2 G2

0 G2

]
.

This observation leads to the following for the case of n = 2k:

G2k =

[
G2k−1 G2k−1

0 G2k−1

]
. (2.30)

See Fig. 2.13 for n = 24.

Mathematical statement of polarization As claimed earlier, the construc-
tion (2.30) enables the complete polarization as n tends to infinity, meaning that
I(Vi; Y n, V i−1) is either 0 or 1 in the limit of n. To prove this, let us first introduce
some notations. Let I , I−, I+ be the data rate associated with p, p−, p+ respectively:

I = I(X ; Y);

I− = I(V1; Y1, Y2);

I+ = I(V2; Y1, Y2, V1).

Polar Code: Implementation of Polarization 153

As we verified earlier, 2I = I− + I+; see (2.23). Similarly we define
I−−, I−+, I+−, I++:

I−− = I(V1; Y1, Y2, Y3, Y4);

I−+ = I(V3; Y1, Y2, Y3, Y4, V1);

I+− = I(V2; Y1, Y2, Y3, Y4, V1, V3);

I++ = I(V4; Y1, Y2, Y3, Y4, V1, V3, V2).

You may wonder why I−+ (or I+−) is not of the form I2 = I(V2; Y 4, V1) (or
I3 = I(V3; Y 4, V 2)). However, swapping the role of V2 and V3, we see that the
above is equivalent to the form of (I1, I2, I3, I4). This swapping corresponds to
changing the positions of V2 and V3 in Fig. 2.12. As before, one can show that
2I− = I−−+ I−+ and 2I+ = I+−+ I++. Let Bi be a polarization sign in the ith
layer where i ∈ {1, 2, . . . , k}. Then, for general n = 2k, we have Ik := IB1B2···Bk .
Similarly we can show that

2Ik = I−k + I+k , ∀k (2.31)

where I−k (or I+k) indicates IB1B2···Bk− (or IB1B2···Bk+).
What the complete polarization means is: in the limit of k,

Ik −→ 1 or 0. (2.32)

This is the one that we intend to prove. In addition to this, we need to show that
the fraction of the good subchannels is I . The second is much easier to prove if we
make some assumption on Bi’s. Suppose that Bi’s are i.i.d., each being according to

Bi =

{
−, w.p. 1

2 ;

+, w.p. 1
2 .

Then, we get:

Ik =

I−−···−−, w.p. 1
2k ;

I−−···−+, w.p. 1
2k ;

I−−···+−, w.p. 1
2k ;

...

I++···+−, w.p. 1
2k ;

I++···++, w.p. 1
2k .

154 Channel Coding

This yields: ∀k,

E[Ik] =
1

2k

(
I−−···−− + I−−···−+ + · · · + I++···++

)
(a)
=

1

2k
· (2kI)

= I

where (a) follows from
∑n

i=1 I(Vi; Y n, V i−1) = nI . This is what we already
proved in the previous section; see (2.22) and (2.23). This then immediately implies
that the fraction of the good subchannels is I :

P(I∞ = 1) = E[I∞] = I .

Look ahead Inspired by a simple observation made in n = 2, we could come up
with Gn as in (2.30). We then claimed that under the Gn, the polarization formally
stated in (2.32) occurs. In the next section, we will prove this claim.

Polar Code: Proof of Polarization and Python Simulation 155

2.9 Polar Code: Proof of Polarization and Python
Simulation

Recap In the last section, we came up with an encoding strategy that enables
the perfect polarization. We designed the full-rank matrix Gn, which relates V n

(consisting of nR information bits and n− nR dummy bits) to X n (channel input)
as follows. For n = 2k,

G2k =

[
G2k−1 G2k−1

0 G2k−1

]
(2.33)

where G2 = [1 1; 0 1]. The key idea behind this matrix structure is to split the
original channel into bad and good subchannels infinitely many. We first split the
original channel p (with data rate I := I(X ; Y)) into two subchannels: (1) p−

channel with a smaller data rate, say I−; and (2) p+ channel with a larger data rate,
say I+. From I− ≤ I ≤ I+, we see some partial polarization, i.e., data rates of
the two split channels are being apart, being polarized to some extent. Repeating
this, we obtain four subchannels (p−−, p−+, p+−, p++). From I−− ≤ I− ≤ I ≤
I+ ≤ I++, we see a larger difference between I−− and I++, meaning further
polarization. Repeating this k times, we get 2k subchannels (p−···−, . . . , p+···+) in
the end. We claimed that the complete polarization on those subchannels occurs in
the limit of k:

I+−···−+ converges either to 1 or to 0. (2.34)

Outline In this section, we will bring the polar code story to a conclusion by prov-
ing the claim (2.34) mentioned earlier. To do so, we will take the following steps.
First, we will introduce some mathematical notations to clearly state what needs to
be proved. We can actually prove the polarization by relying on a prominent the-
orem in the random process literature. In the second part, we will delve into this
theorem, which is known as the bounded martingale theorem. Then, we will use
the theorem to prove the polarization. Lastly, we will provide numerical evidence
of polarization through a Python simulation.

A simpler notation for I+−···−+ Recall the simpler notation for I+−···−+. Let Bi

indicate the polarization sign in the ith layer where i ∈ {1, 2, . . . , k} and n = 2k.
Then, such data rate can be represented as IB1···Bk . For notational simplicity, let
Ik := I B1···Bk . In terms of this notation, what we intend to prove is then:

Ik −→ 1 or 0. (2.35)

156 Channel Coding

Observation The converging value in the above is either 1 or 0, meaning there
is uncertainty in the quantity. So we can view it as a random variable. This implies
that Ik is a random process, so is Bi.

Then, what is the statistics of the random process {Bi}? There is one key con-
straint that the statistics of {Bi} needs to satisfy. Since Ik indicates one of the data
rates of the n split subchannels, the aggregation of all the possible values should be
the same as nI (remember Observation#1 that we made in Section 2.7):

I−···− + I−···+ + · · · + I+···− + I+···+ = nI ,

which is equivalent to:

1

n

(
I−···− + I−···+ + · · · + I+···− + I+···+

)
= I . (2.36)

Suppose {Bi}’s are i.i.d. ∼ Bern(1
2). Then, the above (2.36) implies that

E [Ik] = I . (2.37)

If we can prove the perfect polarization (2.35) in the end, then this together
with (2.37) yields:

P(Ik = 1) = I . (2.38)

Here (2.38) means the fraction of the perfect channels is I , which is what we need
to satisfy. Hence this leads us to assume that Bi’s are i.i.d., each being according to:

Bi =

{
−, w.p. 1

2 ;
+, w.p. 1

2 .

Convergence of the random process Ik The proof of (2.35) requires the
proof of the convergence of Ik. It turns out that Ik belongs to a special class of
random processes and there is a key theorem for the special class that serves to
prove the convergence.

To figure out what the special class is, let us make some observations. One obser-
vation is:

0 ≤ Ik ≤ 1.

This is obvious as we consider a binary-input channel where the capacity cannot
exceed 1. This means that the random process Ik is bounded. Another observation
can be made on the following quantity: E[Ik+1|B1, B2, . . . , Bk]. Viewing k as the
current time index, one can interpret this quantity as the expected future outcome

Polar Code: Proof of Polarization and Python Simulation 157

given the current & past knowledge. Observe that given (B1, . . . , Bk), Ik+1 is a sole
function of Bk+1:

Ik+1 =

{
I−k , w.p. P(Bk+1 = −) =

1
2 ;

I+k , w.p. P(Bk+1 = +) =
1
2

(2.39)

where I−k (or I+k) indicates IB1B2···Bk− (or IB1B2···Bk+).
This then yields:

E[Ik+1|B1, B2, . . . , Bk] = P(Bk+1 = −)I
−

k + P(Bk+1 = +)I
+

k

=
1

2
(I−k + I+k)

= Ik

(2.40)

where the last equality follows from the fact that 2Ik = I−k + I+k (why?). Notice
that the expected future outcome, reflected in E[Ik+1|B1, . . . , Bk], is the same as
the current outcome Ik. This is the key property that characterizes one of the well-
known random processes, called the martingale. We say that a random process is a
martingale if (2.40) holds.4

Bounded martingale theorem There is a well known result as to the conver-
gence of such a bounded martingale: for a bounded martingale Ik,

Ik −→ I∞ almost surely (2.41)

where I∞ indicates a random variable that represents the limit of Ik. You may won-
der what the “almost surely” means. Remember in Part I that we learned about one
type of convergence w.r.t. a random process. That is, the convergence in probability.
There are a couple of more types of convergence regarding a random process. One
such type is the convergence almost surely. Mathematically, it means:

P
(

lim
k→∞

Ik = I∞

)
= 1. (2.42)

What it means is that the limit of Ik is almost surely I∞ as the name of the con-
vergence suggests. As the expression of (2.42) indicates, another name of it is the

4. The term “martingale” has an interesting historical origin in the gambling realm where it was used to describe
a particular betting tactic. In the context of probability theory, however, it refers to a stochastic process
that models a fair game of chance. For example, suppose we have a game where Bi represents the amount
of money gained or lost in the ith round of play. In this scenario, the values of Bi are independent and
identically distributed, taking either −1 or 1 with equal probability, ensuring that the game is unbiased.
Consider Ik =

∑k
i=1 Bi which denotes the capital after k games. Note that {Ik} is a martingale as it satisfies

the property (2.40): E[Ik+1|B1, . . . , Bk] = Ik . We see that this property is a consequence of the fair game.

158 Channel Coding

convergence w.p. 1. Actually this is a stronger type of convergence relative to the
one in probability because:

(2.42) H⇒ lim
k→∞

P (|Ik − I∞| ≤ ε) = 1 for any ε > 0.

It turns out that the other way around does not necessarily hold, i.e., there are
examples in which only the convergence in probability holds (think about such
examples). Hence, the convergence almost surely is of a stronger type.

In fact, the proof of the bounded martingale theorem (2.41) is not that simple.
This book does not cover the proof of the theorem as it requires a background in
probability theory, which is not covered here. If you are interested in the proof, you
may refer to a graduate-level textbook on probability theory, such as (Grimmett
and Stirzaker, 2020).

Proof of polarization: I∞ = 1 or 0 The key property on {Ik} reflected in (2.41)
means that Ik actually converges to I∞. For the proof of polarization, it suffices to
show that

I∞ = 1 or 0.

The proof of this requires the following two: (i) the bounded martingale the-
orem; and (ii) the recursive relationship between Ik and Ik+1, reflected in (2.39).
Using (2.39), we get:

E[|Ik+1 − Ik||B1, . . . , Bk]

(a)
=

1

2
(Ik − I−k)+

1

2
(I+k − Ik)

=
1

2
(I+k − I−k)

(2.43)

where (a) is due to (2.39). On the other hand, the bounded martingale theo-
rem (2.41) yields:

Ik −→ I∞ almost surely &

Ik+1 −→ I∞ almost surely.

This implies that:

|Ik+1 − Ik| −→ 0 almost surely.

This then yields:

E[|Ik+1 − Ik|] −→ 0 almost surely. (2.44)

Polar Code: Proof of Polarization and Python Simulation 159

Figure 2.14. Channel-splitting from Ik to (I−k , I+k).

Now using the tower property,5 we get:

E[|Ik+1 − Ik|] = EB1,...,Bk [EBk+1[|Ik+1 − Ik||B1, . . . , Bk]].

For a non-negative random process |Ik+1 − Ik|, if its mean converges to 0, such
random process also converges to 0. Hence, the above tower property together
with (2.44) yields:

EBk+1[|Ik+1 − Ik||B1, . . . , Bk] −→ 0 almostly surely. (2.45)

Applying (2.43) to the above (2.45), we get:

I+k − I−k −→ 0 almostly surely. (2.46)

Note that Ik is a random process which takes one of the virtual subchannels. Such
virtual subchannels are of the same type as the original channel: BEC (remember
what we learned in Section 2.8). So one can think of erasure probability for Ik, say
αk. Then, Ik = 1− αk. Applying the channel-splitting idea that we came up with
earlier, the bad channel split from the αk-channel would have α−k = 1− (1−αk)

2;
on the other hand, the good channel would have α+k = α

2
k . See Fig. 2.14.

This then gives:

I−k = (1− αk)
2;

I+k = 1− α2
k .

(2.47)

5. The tower property is a useful and well-known property that arises in the random process context. It says:
for random variables (or vectors), say X and Y , E[X] = EY [EX [X |Y]]. One can readily prove this using
the definition of conditional probability. Try Prob 6.1.

160 Channel Coding

This together with (2.46) yields:

1− α2
k − (1− αk)

2
−→ 0, (2.48)

which is equivalent to:

αk −→ 0 or 1. (2.49)

Hence, we complete the proof:

Ik −→ 1 or 0. (2.50)

Extension Thus far, we have outlined the narrative of the polar code, including
the encoder structure that facilitates polarization and the proof of polarization using
the bounded martingale theorem. We have primarily focused on the binary erasure
channel (BEC) for the sake of simplicity, but it should be noted that the polar code
has been shown to achieve capacity for all binary-input channels. The expansion to
the general case is explored in Prob 6.5 and Prob 6.7. If you wish to demonstrate
polarization for binary symmetric channels, follow the guidelines in Prob 6.5. If
you prefer to show polarization for binary-input memoryless channels, refer to the
instructions in Prob 6.7.

Python simulation of polarization We will use a Python simulation to con-
firm the polarization of Ik. We will simulate the same scenario we have been focus-
ing on: n = 2k, Ik := IB1B2···Bk , and the channel is the BEC with an erasure
probability α. Since Ik+1 takes either I−1

k or I+1
k , which are generated recursively

from Ik, we will use a binary tree class with top and bottom children.

class TreeNode:
def _ _init_ _(self, val, top=None, bottom=None):

self.val = val
self.top = top
self.bottom = bottom

We wish to construct a binary code tree as illustrated in Fig. 2.14. We assign Ik

to node.val and associate the top and bottom trees with I−k and I+k , respectively.
The relationship between Ik and I−k (or I+k) reads:

I−k = I2
k ;

I+k = 1− (1− Ik)
2.

We iterate this procedure until we reach all the leaves. See below for code imple-
mentation.
k=20
n=2**k

Polar Code: Proof of Polarization and Python Simulation 161

res=[] # an array for containing all the I_k’s
k=2 --> "res" is of the following structure
res=[[X],[X,X],[X,X,X,X]]

alpha = 0.4 # erasure probablity of BEC
root=TreeNode(1-alpha) # I=1-alpha (root node)

Recursive function for tree generation
def rec_treeGen(node,depth):

initialization of the resulting array
if len(res)<=depth: res.append([])
Append node.val in the depth level
res[depth].append(node.val)
If reaching a leaf node, terminate the process
if depth==k: return
else: # for an internal node, iterate further

Construct the top node and go deeper
node.top=TreeNode(node.val**2)
rec_treeGen(node.top,depth+1)
Construct the bottom node and go deeper
node.bottom=TreeNode(1-(1-node.val)**2)
rec_treeGen(node.bottom,depth+1)

rec_treeGen(root,0)

Using the resulting array res, we can then plot an empirical CDF of Ik as in
Fig. 2.6:

|{i : res[k][i] ≤ x|
n

.

import numpy as np

range of x
x_grid=np.arange(0,1,0.0001)
initialization of cdf
cdf_1=[0]*len(x_grid)
cdf_2=[0]*len(x_grid)
cdf_2_4=[0]*len(x_grid)
cdf_2_20=[0]*len(x_grid)
Sorting I_k
Why? To ease the computation of empirical cdf
sres_1 = sorted(res[0])
sres_2 = sorted(res[1])
sres_2_4 = sorted(res[4])
sres_2_20 = sorted(res[20])

for i,x in enumerate(x_grid):

162 Channel Coding

Case n=1
for j in range(len(sres_1)):

if sres_1[j]>x:
cdf_1[i]=j # because sres_1 is sorted
break

if sres_1[j]<=x for all j, set cdf(x)=1
if j==len(sres_1)-1: cdf_1[i]=1

Case n=2
for j in range(len(sres_2)):

if sres_2[j]>x:
cdf_2[i]=j/2 # divided by n=2
break

if j==len(sres_2)-1: cdf_2[i]=1
Case n=2ˆ4
for j in range(len(sres_2_4)):

if sres_2_4[j]>x:
cdf_2_4[i]=j/(2**4) # divided by n=2ˆ4
break

if j==len(sres_2_4)-1: cdf_2_4[i]=1
Case n=2ˆ20
for j in range(len(sres_2_20)):

if sres_2_20[j]>x:
cdf_2_20[i]=j/(2**20)
break

if j==len(sres_2_20)-1: cdf_2_20[i]=1
Set cdf_2_20[-1]=1 since x_grid is not dense enough
cdf_2_20[-1]=1

Here is a code for plotting the empirical CDFs for four cases: n = 1, 2, 24, 220.

import matplotlib.pyplot as plt
import matplotlib

plt.figure(figsize=(10,2),dpi=500)
Adjust the font size of axis tick values
matplotlib.rc(’xtick’, labelsize=7)
matplotlib.rc(’ytick’, labelsize=7)

plt.subplot(1,4,1)
plt.plot(x_grid,cdf_1,color=’red’)
plt.xlabel(’x’, fontsize=10)
plt.ylabel(’empirical CDF’, fontsize=8)
plt.title(’$n=1$’,fontsize=10)
plt.subplot(1,4,2)
plt.plot(x_grid,cdf_2,color=’red’)
plt.xlabel(’x’, fontsize=10)
plt.title(’$n=2$’,fontsize=10)

Polar Code: Proof of Polarization and Python Simulation 163

Figure 2.15. Python simulation for verifying polarization. As n increases, the number of

perfect subchannels converges to I = 1− α (=0.6 in this simulation).

plt.subplot(1,4,3)
plt.plot(x_grid,cdf_2_4,color=’red’)
plt.xlabel(’x’, fontsize=10)
plt.title(’$n=2ˆ4$’,fontsize=10)
plt.subplot(1,4,4)
plt.plot(x_grid,cdf_2_20,color=’red’)
plt.xlabel(’x’, fontsize=10)
plt.title(’$n=2ˆ{20}$’,fontsize=10)
plt.show()

Note that the obtained curves follow the same trend as those in Fig. 2.6:

Look ahead In Parts I and II, we delved into the source and channel coding theo-
rems, respectively, and also explored important information-theoretic measures like
entropy, mutual information, and KL divergence. Additionally, we placed signifi-
cant emphasis on the concept of phase transition, which resembles a fundamental
law in physics. These information-theoretic tools and the phase transition concept
are instrumental in addressing critical issues that emerge in various fields beyond
communication. Part III aims to showcase their role in data science applications,
ranging from social networks, ranking, computational biology, machine learning,
and deep learning. The following section will commence our investigation into
their role within the context of social networks.

164 Channel Coding

Problem Set 6

Prob 6.1 (Basics)

(a) Let X1 and X2 be Bern(1
2) random variables which are independent with

each other. Let Z = X1 ⊕ X2. Show that X1 and Z are independent, i.e.,
I(X1; Z) = 0.

(b) A curious student claims that X1 and Z (in part (a)) are independent even
if X2 is given, i.e., I(X1; Z |X2) = 0. Prove or disprove it.

(c) Let X and Y be random variables (or random vectors). Prove the tower
property:

E[X] = EY [EX [X |Y]].

Prob 6.2 (Chain rule for mutual information) Consider two random pro-
cesses: {Xi} and {Yi}.

(a) Show that

I(X i; Yi|Y i−1) =

i∑
j=1

I(Xj ; Yi|X j−1, Y i−1)

where X i := (X1, . . . , Xi) and Y i := (Y1, . . . , Yi).
(b) Let f (i, j) be a function of i and j where i, j ∈ N. Show that

n∑
i=1

i∑
j=1

f (i, j) =
n∑

j=1

n∑
i=j

f (i, j).

(c) Using parts (a) and (b), show that

n∑
i=1

I(X i; Yi|Y i−1) =

n∑
j=1

I(Xj ; Y n
j |X

j−1, Y j−1)

where Y n
j := (Yj , Yj+1, . . . , Yn).

Prob 6.3 (Useful facts in the polar code) Let {Vi} be an i.i.d. random process
∼ Bern(1

2). Let Gn = [Gij] be a full rank matrix of size n-by-n where each entry
Gij is a binary value. Let X n

= GnV n where V n := [V1, V2, . . . , Vn]T denotes an
n-by-1 column vector.

(a) Consider a case in which n = 2 and

G2 =

(
1 1

0 1

)
.

Problem Set 6 165

Show that X1 and X2 are i.i.d.
(b) Consider Xi =

∑n
k=1 GikVk and Xj =

∑n
k=1 GjkVk where

∑
indicates the

modulo-2 addition and i 6= j. Argue that there exists some component Vk

which appears in Xi but not in Xj (or vice versa). Show that I(Xi; Xj) = 0,
i.e., Xi and Xj are independent. Also show that Xi’s are i.i.d.
Hint: The full rank condition on Gn implies that its row vectors are linearly
independent.

(c) Let Y n be the output of a BEC when X n is fed into. Show that

I(V n; Y n) = I(X n; Y n) and I(X n; Y n) = nI

where I := I(X ; Y) and X (or Y) denotes a generic random variable for Xi

(or Yi).
(d) Show that

I(V n; Y n) =

n∑
i=1

I(Vi; Y n, V i−1).

Prob 6.4 (Polarization in BEC) Suppose that V1 and V2 are i.i.d. ∼ Bern(1
2),

and (X1, X2) are constructed through G2 = [1, 1; 0, 1]:[
X1

X2

]
= G2

[
V1

V2

]
=

[
1 1

0 1

][
V1

V2

]
.

We pass (X1, X2) through two independent copies of a BEC, say p, with era-
sure probability α, thus yielding the channel output (Y1, Y2). As we learned in
Section 2.7, we convert the collection of the two independent copies into two vir-
tual subchannels:

p− : V1 → (Y1, Y2); (2.51)

p+ : V2 → (Y1, Y2, V1). (2.52)

Let (I , I−, I+) be the data rates associated with (p, p−, p+) respectively:

2I = I(X1, X2; Y1, Y2);

I− = I(V1; Y1, Y2);

I+ = I(V2; Y1, Y2, V1).

(a) Compute (I , I−, I+). Express them in terms of α.
(b) Can p− be interpreted as another BEC? If so, explain why and indicate the

corresponding erasure probability.

166 Channel Coding

(c) Repeat part (b) for p+.
(d) Compare I− and I+. Which one is larger?

Prob 6.5 (Polarization in BSC) Consider the same problem setup as that in
Prob 6.4. The only distinction is that the channel is a BSC with crossover proba-
bility α.

(a) Compute H(V1|Y1, Y2) and I(V1; Y1, Y2).
(b) Compute H(V1|Y1 ⊕ Y2) and I(V1; Y1 ⊕ Y2).
(c) Using the above, show that I(V1; Y1, Y2|Y1 ⊕ Y2) = 0, i.e., V1 − (Y1 ⊕

Y2)− (Y1, Y2).
(d) Can p− be interpreted as another BSC? If so, explain why and indicate the

corresponding crossover probability.
(e) Show that 2I = I− + I+. Using this and part (d), compute I+.
(f) Compare I− and I+. Which one is larger or same?
(g) Show that when I+ − I− = 0, H(α) is either 0 or 1.
(h) The result of part (g) proves the perfect polarization for BSC. Explain why.

Prob 6.6 (Python simulation for BSC polarization) Consider a setting
where n = 2k, Ik := IB1···Bk , and the channel is a BSC with crossover probability
α. Let I be the capacity of the BSC: I = 1−H(α).

(a) Using the result in Prob 6.5, express I− and I+ in terms of α.
(b) Using part (a) and the skeleton Python code in Section 2.9, construct a

code yielding all the possible values (say res[k][i]) that Ik can take on. Here
res[k] is a 2k-sized array that contains all the values for Ik.

(c) Set α = 0.3. Using part (b) and the skeleton code in Section 2.9, plot
empirical CDFs for four cases: n = 1, 2, 24, 220:

|{i : res[k][i] ≤ x|
n

.

Prob 6.7 (Polarization in B-DMC) Consider the same problem setup as that in
Prob 6.4 and Prob 6.5. The only distinction is that the channel is a B-DMC where
the channel input is binary-valued. Let Y be the range of the channel output.

(a) Argue that given Y1 = y1, X1 ∼ Bern(q1) where q1 is a function of y1.
Using this, show that

I := I(X1; Y1) = 1−
∑
y1∈Y

p(y1)H(q1).

(b) Argue that given (Y1, Y2) = (y1, y2), channel inputs (X1, X2) are two inde-
pendent binary random variables, say Xi ∼ Bern(qi) where qi is a sole

Problem Set 6 167

function of yi, i ∈ {1, 2}. Using this, show that

I− = 1−
∑
y1∈Y

∑
y2∈Y

p(y1)p(y2)H
(
q1(1− q2)+ (1− q1)q2

)
.

(c) Using 2I = I− + I+, show that

I+ = 1+
∑
y1∈Y

∑
y2∈Y

p(y1)p(y2)H
(
q1(1− q2)+ (1− q1)q2

)
− 2

∑
y1∈Y

p(y1)H(q1).

(d) Show that when I+ − I− = 0, I is either 0 or 1.
(e) The result of part (d) proves the perfect polarization for B-DMC. Explain

why.

Prob 6.8 (Python simulation for B-DMC polarization) Consider a setting
where n = 2k, Ik := IB1···Bk , and the channel is a B-DMC. Let I , I−, I+ be the
quantities derived in Prob 6.7. Assume that Y = {0, 1, 2}.

(a) Using the skeleton Python code in Section 2.9, construct a code yielding
all the possible values (say res[k][i]) that Ik can take on. Here res[k] is a
2k-sized array that contains all the values for Ik.

(b) Set qi =
yi
4 for i ∈ {1, 2}. Using part (a) and the skeleton code in

Section 2.9, plot empirical CDFs for four cases: n = 1, 2, 24, 220:

|{i : res[k][i] ≤ x|
n

.

Prob 6.9 (True or False?)

(a) Let X , Y , Z be Bernoulli random variables. Suppose I(X ; Y |Z) = 0. Then,
I(X ; Y) = 0.

(b) Let (X1, X2, Y1, Y2) be discrete random variables. Suppose

I(X1; X2|Y1) = 0;

I(X1; X2|Y2) = 0.

A curious student claims that

I(X1; X2|Y1, Y2) = 0.

Either prove or disprove the statement.

DOI: 10.1561/9781638281153.ch3

Chapter 3

Data Science Applications

3.1 Social Networks: Fundamental Limits

Concepts and tools learned from Parts I and II In Parts I and II, we inves-
tigated the well-known theorems in information theory: the source coding theo-
rem, channel coding theorem, and source-channel separation theorem. In Part I,
we introduced important concepts in information theory such as entropy, mutual
information, and KL divergence. We also examined the idea of prefix-free codes,
typical sequences, and some lower and upper bounding techniques. With these
tools, we proved the source coding theorem and analyzed a specific code, the
Huffman code, along with its implementation in Python.

In Part II, we explored various concepts and techniques related to channel codes.
One crucial idea we discussed was the phase transition, where there is a critical data
rate below which we can make the error probability arbitrarily close to zero and
above which no matter what we do, the error probability is not zero. We used tech-
niques like random coding, maximum likelihood decoding, joint typicality decod-
ing, and union bound for the achievability proof, and Fano’s inequality and data
processing inequality for the converse proof. We also proved the source-channel
separation theorem and demonstrated that feedback cannot increase capacity in
a DMC. Moreover, we examined the polar code, an explicit channel code that
achieves the capacity of a specific type of memoryless channel, binary-input DMCs.

168

http://dx.doi.org/10.1561/9781638281153.ch3

Social Networks: Fundamental Limits 169

The concepts and information-theoretic notions we have explored are applica-
ble in various domains beyond communication. In particular, these concepts are
instrumental in data science. One example is the occurrence of phase transition in
various inference problems within data science. Examples include: (i) community
recovery of social networks (Girvan and Newman, 2002; Fortunato, 2010; Abbe,
2017; Chen et al., 2016b); (ii) DNA sequencing in computational biology (Brown-
ing and Browning, 2011; Das and Vikalo, 2015; Chen et al., 2016a; Si et al., 2014);
(iii) ranking in search engine (Negahban et al., 2012; Chen and Suh, 2015); and
(iv) matrix completion in recommender systems (Candès and Tao, 2010; Keshavan
et al., 2010; Candes and Recht, 2012; Ahn et al., 2018; Elmahdy et al., 2020; Zhang
et al., 2021). The KL divergence is utilized in the development of a loss function for
optimizing supervised learning, which is one of the most significant frameworks in
machine learning. Mutual information is used to enhance powerful unsupervised
learning frameworks such as generative adversarial networks (GANs) (Goodfellow
et al., 2014). Recently, mutual information has also been applied in the design of
new machine learning models known as fair prediction models. These models not
only ensure accurate predictions but also guarantee fairness in prediction statistics
for different groups and individuals (Larson et al., 2016; Zafar et al., 2017; Cho
et al., 2020; Roh et al., 2020).

Goal of Part III In Part III, our aim is to illustrate the significance of the phase
transition concept and fundamental notions through the exploration of three infer-
ence problems and three machine learning models:

(1) Inference problem #1: Community detection;
(2) Inference problem #2: DNA sequencing;
(3) Inference problem #3: Ranking;
(4) Supervised learning: Design of a loss function;
(5) Unsupervised learning: Generative Adversarial Networks (GANs);
(6) Fair machine learning: Design of fair classifiers.

Outline This section will examine the first inference problem: Community detec-
tion. It consists of four parts. Initially, we will study what community detection is
and discuss why it is essential in data science. Next, we will establish a related mathe-
matical problem and address a crucial issue regarding phase transition. We will then
establish a connection to the communication problem we have previously studied.
Finally, we will investigate how phase transition manifests in the problem context.

170 Data Science Applications

Figure 3.1. Community detection in picture.

Community detection (Girvan and Newman, 2002; Fortunato, 2010;

Abbe, 2017) Community refers to a collection of individuals with shared inter-
ests or residing in the same locality. The objective of community detection is to
identify similar groups, as illustrated in Fig. 3.1. Suppose users indicate nodes in a
graph (shown on the left in Fig. 3.1), and there are two communities: blue and red
communities. The aim of the problem is to determine which user (node) belongs
to which community among the blue and red communities (shown on the right
in Fig. 3.1). Clustering is another term for this problem (Bansal et al., 2004; Jalali
et al., 2011). Note that the output nodes are clustered into either a blue or a red
community.

One may wonder why we should be concerned with this problem. The prob-
lem arises in several critical domains, such as social networks (Facebook, LinkedIn,
Twitter, etc.), and biological networks (Chen and Yuan, 2006). In social networks,
identifying community memberships can assist in identifying target groups for
product advertisements. In biological networks, the problem is relevant to DNA
sequencing for cancer detection and personalized medicine. In Section 3.5, we will
discuss how this problem is connected to DNA sequencing. The problem has appli-
cations beyond these examples.

Problem formulation First consider the type of information that can be accessed
in many applications. One common type of information that is easily accessible is
relationship information, such as friendship in Meta’s social network, connections
in LinkedIn, and followers in Twitter. However, community memberships are often
not revealed in practice. For example, in Meta’s social network, only the friendship
information is available, and it is unknown whether a user belongs to a particular
community. In privacy-concerned contexts, this information is prohibited from
being made public by law, even if Meta has access to it.

Social Networks: Fundamental Limits 171

Figure 3.2. An example of community detection.

To give you a concrete feel as to what the relationship information looks like, let
us give you an example. Suppose that xi indicates community membership of user i,
and we assign xi to node i. Then, one natural function is a parity function between
the values assigned to two nodes, e.g., xi and xj . For instance, when x1 = x2, we
get, say y12 = 0; otherwise y12 = 1.

Given a collection of yij ’s, the goal of the problem is then to decode x :=
[x1, x2, . . . , xn]. Upon reflection, this objective is unattainable as decoding x with
precision is not feasible based solely on the parities yij ’s. To illustrate this point,
consider the scenario depicted in Fig. 3.2. Suppose that n = 4 and (y12, y13, y14)

are given as (0, 1, 1). If x1 = 0, x = [0, 1, 1, 0]. However, an ambiguity arises
on the value of x1 because there is no way to infer x1 only from the parities. The
other solution x = [1, 0, 0, 1] is also valid. We have always two valid solutions:
(i) the correct one; and (ii) its flipped counterpart. To resolve this ambiguity, we
should relax the goal as follows: decoding x or x ⊕ 1 from yij ’s. Here ⊕ indicates
the bit-wise modulo sum.

Two challenges Given the relaxed goal, solving the problem may appear to be
not too difficult, as suggested by the example in Fig. 3.2. However, in the era of big
data, two challenges arise. Firstly, in many applications, such as social networks, the
number of nodes (i.e., users) can be very large. For example, as of December 2022,
the number of Facebook users has reached 2.96 billion (Meta, 2022). Therefore,
we may only have access to a portion of the parities. Note that the number of all
possible pairs is huge:

(n
2

)
≈ 4.38× 1018 in the above example.

In situations where we are allowed to choose any pair of two nodes, community
detection is straightforward. For instance, by selecting a set of consecutive pairs like
(y12, y23, y34, . . . , y(n−1)n), we can easily decode x up to a global shift. However, this
approach can still be challenging due to the second challenge. In many applications,
such as Meta’s social network, similarity relationships are passively given according

172 Data Science Applications

Figure 3.3. The number of facebook users is ≈2.96 billion as of December 2022.

to a context. This means that such information is not obtained by our own choice.
For instance, the friendship information in Meta’s social network is simply given by
the context. It is not possible to ask an arbitrary pair of two users whether they are
friends or not. Therefore, one natural assumption is that the similarity information
is given in a probabilistic manner. For example, the parity of a pair of any two users
is given with probability p, independently across all the other pairs.

An information-theoretic question Although community detection is a chal-
lenging task due to the limited and probabilistic nature of pairwise measurements,
there is good news. The good news is that, as demonstrated in the example in
Fig. 3.2, it may not be necessary to observe every measurement pair in order to
decode x. Since the pairs are highly dependent on each other, partial pairs might be
enough to achieve this goal. An information-theoretic question arises: is there a fun-
damental limit on the number of measurement pairs required to enable detection?
Interestingly, similar to the channel capacity in communication, a phase transition
occurs. There exists a sharp threshold on the number of pairwise measurements
above which reliable community detection is possible and below which it is impos-
sible, regardless of any method used. For the rest of this section, we will investigate
this threshold in detail.

Translation to a communication problem Under the partial and random
observation setting, yij is statistically related to xi and xj . Hence, community detec-
tion is an inference problem, suggesting an intimate connection with a communi-
cation problem. Translating community detection into a communication problem,
we can come up with a mathematical statement on the limit.

Social Networks: Fundamental Limits 173

Figure 3.4. Translation to a communication problem.

Let us first translate the problem as below. See Fig. 3.4. One can view x as a
message that we wish to send and x̂ as a decoded message. What we are given are
pairwise measurements. A block diagram at the transmitter converts x into pairwise
measurements, say xij ’s. Here xij := xi⊕ xj . One can view this as an encoder. Since
we assume that only part of the pairwise measurements are observed at random,
we have another block which implements the partial & random measurements to
extract a subset of xij ’s. One can view this processing as the one that behaves like a
channel where the output yij admits:

yij =

{
xij , w.p. p;
e, w.p. 1− p

where p denotes the observation probability and e indicates empty information
(erasure). In other words, the measurement process can be modeled as an era-
sure channel with erasure probability 1 − p. These yij ’s are then fed into an
algorithm block, thus yielding x̂. The algorithm block can be interpreted as a
decoder.

Performance metrics & an optimization problem As in the communication
setting, we can think of two performance metrics. The first refers to a quantity that
we are interested in characterizing the limit on. That is, the number of pairwise
measurements that are observed, namely sample complexity. In this problem context,
the sample complexity would be concentrated around:

sample complexity −→

(
n
2

)
p as n→∞.

This is because of the WLLN. The second refers to a metric conventionally
employed in the context of inference problems. That is, the probability of error
defined as:

Pe := P
(
x̂ /∈ {x, x ⊕ 1}

)
.

An error occurs when x̂ 6= x and x̂ 6= x ⊕ 1.
There must be a tradeoff relationship between the sample complexity and Pe.

The larger the sample complexity, the smaller Pe and vice versa. Hence, as Shannon
did in the communication problem, we can formulate the following optimization

174 Data Science Applications

upper

lower

Figure 3.5. Phase transition in community detection. If S is above the minimal sample

complexity S∗ = n ln n
2 , we can make Pe arbitrarily close to 0 as n tends to infinity. If

S < S∗, Pe cannot be made arbitrarily close to 0 no matter what we do and whatsoever.

from which the tradeoff relationship can be characterized. Given p and n,

P∗e (p, n) := min
algorithm

Pe. (3.1)

Remember the optimization problem that Shannon formulated earlier. It was a dif-
ficult non-convex problem which has been open even thus far. Here we see the same
thing. The above problem (3.1) is very difficult; hence, the exact error probability
P∗e (p, n) is still open.

Phase transition But we have a good news. The good news is that as in the
communication setting, phase transition occurs w.r.t. the sample complexity in the
limit of n. If sample complexity is above a threshold, one can make Pe arbitrarily
close to 0 as n → ∞; otherwise (i.e., if it is below the threshold), Pe 9 0 no
matter what we do and whatsoever. In other words, there exists a sharp threshold
on the sample complexity which determines the boundary between possible vs.
impossible detection. This sharp threshold is called the minimum sample complexity
S∗. See Fig. 3.5.

It turns out the minimal sample complexity reads:

S∗ =
n ln n

2
.

Notice that S∗ is much smaller than the total number of possible pairs:
(n

2

)
≈

n2

2 .
This result implies that the limit on the observation probability is

p∗ =
S∗(n
2

) = ln n
n

Social Networks: Fundamental Limits 175

where the second equality is because limn→∞
n(n−1)

n2 = 1. Notice that p∗ = ln n
n

vanishes as n→∞, meaning that community detection requires only a negligible
fraction of pairwise measurements for successful community detection.

Look ahead In the next section, we will prove the achievability of the limit:

p >
ln n
n
H⇒ Pe → 0 as n→∞. (3.2)

176 Data Science Applications

3.2 Social Networks: Achievability Proof

Recap In the previous section, we embarked on Part III which focuses on the
application of information theory to data science. We discussed a specific applica-
tion known as community detection, which involves identifying similar communi-
ties. Given two communities and a set of users with community memberships xi ∈

{0, 1}, the goal is to decode the community membership vector x = [x1, . . . , xn].
We used parity information, i.e., whether two users belong to the same community,
as the measurement information. However, since x and its flipped version x⊕1 are
indistinguishable from the parities yij ’s alone, we included decoding both as a suc-
cess event. We considered a setting where only a subset of pairwise measurements
yij ’s are accessible and the pairs are chosen randomly without our control, motivated
by big data applications such as Meta’s social networks. This led us to ask whether
there exists a fundamental limit on the number of pairwise measurements needed
to make community detection possible. We claimed that there is indeed a limit,
and we explored what this means preciesely by translating it into a communication
problem, as shown in Fig. 3.6.

We introduced two performance metrics: (i) sample complexity (concentrated
around

(n
2

)
p); and (ii) the probability of error Pe := P(x̂ /∈ {x, x ⊕ 1}). We then

claimed the minimum sample complexity (above which one can make Pe → 0,
under which one cannot make Pe → 0 no matter what we do and whatsoever) is:

S∗ =
n ln n

2
, i.e., p∗ =

ln n
n

.

Outline In this section, we will prove that p∗ is achievable:

p >
ln n
n
H⇒ Pe → 0 as n→∞. (3.3)

It consists of three parts. First, we will employ the maximum likelihood (ML)
decoding to derive the optimal decoder. We will then analyze the error probability
under the ML decoding rule. Using a couple of bounding techniques, we will derive
an upper bound of the error probability instead of attacking the exact probability

Figure 3.6. Translation of community detection into a communication problem.

Social Networks: Achievability Proof 177

directly. Lastly we will show that as long as p > ln n
n , the upper bound approaches

0 as the number n of users tends to infinity, thereby proving the achievability.

Encoder The encoder converts x into xij := xi ⊕ xj . See Fig. 3.6. Unlike the
communication setting in which the encoder is subject to our design choice, it is
not of our design, but it is given by the context. Let X be the output matrix of size
n-by-n which contains xij ’s as its entries. As in the communication setting, we call it
a codeword (encoder output). Obviously X is symmetric as xij = xji. For instance,
when x = (1000) and n = 4,

X(x) =

1 1 1

0 0
0

. (3.4)

We omit diagonal components and symmetric counterparts as they can be trivially
inferred. Let us call, a collection of codewords X(x)’s, codebook.

The optimal decoder Let Y = [yij]. The codebook is assumed to be known at
the decoder. This assumption makes a trivial sense because the structure of pairwise
measurements is revealed. The decoder employs an optimal decision rule: the MAP
rule. In this setting, we have no idea on the statistics of x. So we consider the
worst-case scenario in which x is uniformly distributed. Notice that the randomness
of x, quantified as its entropy H(x), is maximized when xi’s are i.i.d. each being
uniformly distributed. In this setting, the MAP becomes equivalent to the ML
decoder:

x̂ML = arg max
x

P(Y|X(x)).

The calculation of P(Y|X(x)) is straightforward, being the same as the one in the
communication setting. For instance, suppose n = 4, x = (0000), and yij ’s are all
zeros except (y13, y14) = (e, e):

Y(x) =

0 e e

0 0
0

. (3.5)

Then,

P(Y|X(0000)) = (1− p)2p4.

The number 2 marked in red indicates the number of erasures. This message (0000)
is compatible since the corresponding likelihood is not zero. On the other hand, for

178 Data Science Applications

x = (1000),

P(Y|X(1000)) = 0.

Note that x12 = 1 (underscored in (3.4)) is different from y12 = 0 (underscored
in (3.5)), thus forcing the likelihood to be 0. This implies that the message x =
(1000) can never be a solution, meaning that it is incompatible with Y. Hence, the
ML rule is summarized as follows.

1. Eliminate all the messages incompatible with Y.
2. If there is only one survival, declare it as the correct message.

However, this procedure is not sufficient to describe the ML decoding rule. We
may have a different erasure pattern that confuses the rule. To see this clearly, con-
sider the following example. Suppose that yij ’s are all zeros except (y12, y13, y14) =

(e, e, e):

Y(x) =

e e e

0 0
0

. (3.6)

Then,

P(Y|X(0000)) = (1− p)3p4;

P(Y|X(0111)) = (1− p)3p4.

The two patterns (0000, 0111) are compatible and the likelihood functions are
equal. In this case, what we can do for the best is to flip a coin, choosing one out of
the two in a random manner. This forms the last step of the ML decoding rule.

3. If there are multiple survivals, choose one randomly.

A setup for analysis of the error probability For the achievability
proof (3.3), we analyze the probability of error when using the ML decoder. Starting
with the definition of Pe and using the total probability law, we get:

Pe := P
(
x̂ /∈ {x, x ⊕ 1}

)
=

∑
a

P(x = a)P(x̂ /∈ {a, a⊕ 1}|x = a).

For a fixed a, P(x̂ /∈ {a, a ⊕ 1}|x = a) is a sole function of the likelihood which
depends only on erasure patterns of the

(n
2

)
independent channels. Also, the erasure

Social Networks: Achievability Proof 179

patterns are independent of the channel input affected by a. Therefore, the proba-
bility is irrelevant of what the value of a is. Applying this to the above, we get:

Pe = P(x̂ /∈ {0, 1}|x = 0)

≤

∑
a/∈{0,1}

P(x̂ = a|x = 0) (3.7)

where the inequality comes from the union bound.

Further upper-bounding Consider P(x̂ = a|x = 0). To gain insights, con-
sider an example where n = 4 and a = (1000). In this case, the error event implies
that X(1000) must be compatible. A necessary condition for X(1000) being com-
patible under x = (0000) is: (y12, y13, y14) = (e, e, e). For all (i, j) entries whose
values are different between the two codewords X(0000) and X(1000) (that we call
distinguishable positions), erasures must occur; otherwise, (1000) cannot be compat-
ible as its corresponding likelihood would be 0. Hence, we get:

P(x̂ = (1000)|x = 0)

≤ P
(
X(1000) compatible|x = 0

)
≤ P

(
(y12, y13, y14) = (e, e, e)|x = 0

)
= (1− p)3.

The number 3 marked in red indicates the number of erasures that must occur in
those distinguishable positions.

A key to determine the above upper bound is the number of distinguishable
positions between X(a) and X(0). One can easily verify that the number of dis-
tinguishable positions (w.r.t. X(0)) depends on the number of 1’s in a. To see this,
consider an example of a = (11 · · · 1︸ ︷︷ ︸

k

00 · · · 0︸ ︷︷ ︸
n−k

). In this case,

X(a) =

0 0 0 1 1
0 0 1 1

0 1 1
0 0

0

.

where k denotes the number of 1’s in a. Each of the first k rows contains (n − k)
ones; hence, the total number of distinguishable positions w.r.t. X(0):

of distinguishable positions = k(n− k).

180 Data Science Applications

For a succinct description of the summation term in (3.7), we classify the
instance a depending on the number of 1’s in a. To this end, we introduce:

Ak := {a|‖a‖1 = k} (3.8)

where ‖a‖1 := |a1| + |a2| + · · · + |an|. Using this notation, we can then
express (3.7) as:

Pe ≤

n−1∑
k=1

∑
a∈Ak

(1− p)k(n−k)

=

n−1∑
k=1

|Ak|(1− p)k(n−k)

=

n−1∑
k=1

(
n
k

)
(1− p)k(n−k)

= 2

n
2∑

k=1

(
n
k

)
(1− p)k(n−k)

−

(
n
n

)
(1− p)n·0

≤ 2

n
2∑

k=1

(
n
k

)
(1− p)k(n−k)

(3.9)

where the second last step follows from the fact that
(n

k

)
(1− p)k(n−k) is symmetric

around k = n/2.

The final step of the achievability proof Since we intend to prove the achiev-
ability when p > ln n

n , focus on the regime: λ > 1 where λ is defined such that
p := λ ln n

n . Then, it suffices to show that for λ > 1,

n
2∑

k=1

(
n
k

)
(1− p)k(n−k)

−→ 0 as n→∞. (3.10)

In this setting of p = λ ln n
n , p is arbitrarily close to 0 in the limit of n. This motivates

us to employ the following upper bound on 1−p (which is very tight in the regime):

1− p ≤ e−p. (3.11)

Social Networks: Achievability Proof 181

Check the proof in Prob 7.1. When n is large, the following bound is good enough
to prove the achievability:(

n
k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)

k!
≤

nk

k!
≤ nk (3.12)

Applying the bounds (3.11) and (3.12) into (3.9), we obtain:

Pe ≤ 2

n
2∑

k=1

(
n
k

)
(1− p)k(n−k)

≤ 2

n
2∑

k=1

nke−pk(n−k)

(a)
= 2

n
2∑

k=1

e
k ln n−λk

(
1− k

n

)
ln n

= 2

n
2∑

k=1

e−k(λ(1− k
n)−1) ln n

(3.13)

where (a) follows from nk
= ek ln n and p := λ ln n

n .
For the range of 1 ≤ k ≤ n

2 , 1 − k
n (marked in blue in (3.13)) is minimized at

1
2 . Applying this to the above, we get:

Pe ≤ 2

n
2∑

k=1

e−k(λ2−1) ln n (3.14)

Case I: λ > 2: If λ > 2, we can apply the well-known summation formula w.r.t.

the geometric series where the common ratio is e−(
λ
2−1) ln n, thus obtaining:

Pe ≤ 2

n
2∑

k=1

(
e−(

λ
2−1) ln n

)k
≤ 2 ·

e−(
λ
2−1) ln n

1− e−(
λ
2−1) ln n

−→ 0 as n→∞.

Hence, we can make Pe → 0 for the case of λ > 2.
Case II: 1 < λ ≤ 2: Observe in the last step in (3.13) that

λ

(
1−

k
n

)
− 1 = 0 ⇐⇒ k =

(
1−

1

λ

)
n,

and λ(1− k
n)− 1 is a decreasing function in k. See Fig. 3.7.

182 Data Science Applications

Figure 3.7. Behavior of λ(1− k
n)− 1 in k.

This together with a choice of α < 1− 1
λ gives:

λ

(
1−

k
n

)
− 1 > 0 when k ≤ αn.

Applying this to (3.13), we get:

Pe ≤ 2

n
2∑

k=1

(
n
k

)
(1− p)k(n−k)

≤ 2
αn∑

k=1

e−k(λ(1− k
n)−1) ln n

+

n
2∑

k=αn+1

(
n
k

)
(1− p)k(n−k).

Again applying the summation formula of the geometric series to the first term in
the last step of the above, the first term vanishes as n→∞. Hence, we obtain:

Pe .

n
2∑

k=αn+1

(
n
k

)
(1− p)k(n−k)

(a)
≤ (1− p)α(1−α)n

2

n
2∑

k=αn+1

(
n
k

)
(b)
≤ (1− p)α(1−α)n

2
· 2n

(c)
≤ e−λα(1−α)n ln n

· en ln 2.

where (a) is due to the fact that k(n− k) ≥ α(1− α)n2 (where the equality holds
when k = αn+ 1); (b) comes from the binomial theorem (

∑n
k=0

(n
k

)
= 2n); and

Social Networks: Achievability Proof 183

(c) comes from the fact that 1 − p ≤ e−p and p := λ ln n
n . The last term in the

above tends to 0 as n → ∞. This is because λα(1 − α)n ln n grows much faster
than n ln 2. This implies Pe → 0, which completes the achievability proof (3.3).

Look ahead Using the ML decoding rule, we proved the achievability of the
community detection limit (3.3). It turns out the converse holds: p > ln n

n for
reliable detection, meaning that the condition of p > ln n

n is necessary for reliable
detection. In the next section, we will prove the converse.

184 Data Science Applications

3.3 Social Networks: Converse Proof

Recap In the previous section, we proved the achievability of the limit on obser-
vation probability p for community detection:

p >
ln n
n
H⇒ Pe → 0 as n→∞.

Outline In this section, we will prove that the condition p > ln n
n is also necessary

for reliable community detection, meaning the converse (the other way around)
holds:

p <
ln n
n
H⇒ Pe 9 0.

Proof strategy The converse proof relies on a lower bound of Pe which does not
vanish under the condition of p < ln n

n . In Part II, we learned about one impor-
tant inequality that played a significant role in deriving such a lower bound. That
is, Fano’s inequality. However, Fano’s inequality does not yield such a good lower
bound in the context of community detection. Check in Prob 7.4. Hence, we will
take a different approach.

The different approach builds upon another important concept that has been
extensively employed in the graph theory literature. That is, graph connectivity. We
say that a graph is connected if there exists a path (i.e., a sequence of connected
edges) between any pair of two nodes. Otherwise, it is said to be disconnected. See
Fig. 3.8 for a pictorial illustration.

The graph connectivity has a close relationship with an error event of community
detection. Suppose that an edge in the graph indicates a situation where a pairwise
measurement of the associated nodes is obtained. Then, the graph disconnectiv-
ity implies that there exist(s) isolated node(s) (node 1 in the example illustrated in
the right side of Fig. 3.8). In this case, there is no way to decode x even up to a

Figure 3.8. Graph connectivity: (Left) An example of a connected graph; (Right) An

example of a disconnected graph.

Social Networks: Converse Proof 185

Figure 3.9. A necessary condition for graph connectivity.

global shift. Note in the example that there are four possible candidates for a solu-
tion. For instance, suppose (y23, y34, y45) = (0, 0, 0). Then, the four candidates
are: (i) x = [0, 0, 0, 0, 0]; (ii) x = [0, 1, 1, 1, 1]; (iii) x = [1, 0, 0, 0, 0]; and (iv)
x = [1, 1, 1, 1, 1]. Obviously this does not ensure successful community detection,
hence Pe 9 0. Therefore, it suffices to show that

p <
ln n
n
H⇒ graph is disconnected, i.e., P(connected)→ 0.

An upper bound of connectivity probability P(connected) Since we
intend to show P(connected)→ 0, it suffices to prove that its upper bound tends
to 0 as n → ∞. The graph connectivity has nothing to do with the value of x.
Hence, without loss of generality, one can assume that the ground truth x = 0.
This then gives:

P(connected) = P(connected|x = 0).

The event of a graph being connected implies that node 1 is connected with
at least one different node; otherwise, node 1 is isolated. This suggests that there
exists at least one observation in the first row of the received signal matrix Y. In
the example of Fig. 3.9, (y12, y15) are observed as (0, 0). This observation is com-
patible with the all-zero ground truth vector. On the other hand, the codeword
w.r.t. the message (10 · · · 0) (X(10 · · · 0)) is incompatible with Y since the revealed
components in Y contradict with corresponding components in X(10 · · · 0). In
the example of Fig. 3.9, (y12, y15) = (0, 0) do not match with (x12, x15) = (1, 1).
Similarly X(010 · · · 0), . . . , X(0 · · · 01) are all incompatible with Y. Using this and
the following set A1 := {a : ‖a‖1 = 1}, we can rewrite P(connected) as:

P(connected) = P(connected|x = 0)

≤ P

⋂
a∈A1

{X(a) incomp.}

.
(3.15)

186 Data Science Applications

A key upper-bounding technique One key observation is that the computa-
tion of the above probability can be greatly simplified when the associated events are
independent. Remember that P(A∩B) = P(A)P(B) for independent events A and
B. Also the more independent events are, the tighter bound we get. This motivates
us to search for independent events (among n events) as many as possible.

To this end, we intend to see the functional relationship between X(a) and era-
sure patterns. Only the first row in X(10 · · · 0) are distinct with those in X(0).
This implies that whether X(10 · · · 0) is incompatible depends solely on the pair-
wise measurements yij ’s in those distinguishable positions. Similarly the event of
X(010 · · · 0) being incompatible depends on yij ’s in the second row. Here the sym-
metric matrix property gives x12 = x21, hence this may pose dependency between
the two events.

However, the dependency can be removed for certain situations. Suppose the
following event occurs: y12 = e. Then, the two events share no overlapping posi-
tions, since the overlapping (1, 2) entry is now erased. Hence, given y12 = e, the
two events become independent. Similarly, given yij = e for all i, j ∈ {1, 2, 3},

{X(10 · · · 0) incomp.}⊥{X(010 · · · 0) incomp.}⊥{X(0010 · · · 0) incomp.}.

This enables us to identify a general erasure pattern that makes mutiple events (say
L events) independent:

yij = e ∀i, j ∈ {1, 2, . . . , L} H⇒

{X(10 · · · 0) incomp.}⊥{X(010 · · · 0) incomp.}⊥

· · · ⊥{X(0 · · · 1︸︷︷︸
Lth position

· · · 0) incomp.}.

In view of graph, the number L refers to the number of nodes that are locally dis-
connected. In the example of Fig. 3.10, we have no observation for any pair of
nodes 1,2,3,4,5. So L ≥ 5 in this case.

This motivates us to find the maximum number of nodes that are locally dis-
connected. It reveals as many as independent events, thus leading to a tight upper
bound on the connectivity probability. To this end, we consider the following sit-
uation. Suppose we consider the first m nodes in the graph. We will choose m such
that L is maximized and m tends to∞ as n → ∞. Then, as per the WLLN, the
number of edges in the subgraph consisting of the m nodes would be concentrated
around (

m
2

)
p w.h.p.

Social Networks: Converse Proof 187

Figure 3.10. An example in which the number of nodes locally disconnected is greater

than or equal to 5.

Using the fact that one edge is associated with two nodes, the number of locally
disconnected nodes is at least m− 2

(m
2

)
p:

L ≥
⌊

m− 2

(
m
2

)
p
⌋

w.h.p.

Let p = λ ln n
n for some λ < 1. Then,

L ≥
⌊

m− λm2 ln n
n

⌋
.

In an effort to maximize the above bound, we choose m such that the first term
m and the second term λm2 ln n

n in the bound are of the same order. We make a
particular choice for such m: m = b n

2 ln nc, thus obtaining:

L ≥
⌊(

1

2
−
λ

4

)
ln n
n

⌋
=

⌊ αn
ln n

⌋
where α := 1

2−
λ
4 . We then reorder node indices such that the locally disconnected

nodes are numbered as 1, 2, . . . , b αn
ln nc. Let T be such an event:

T =
{

L ≥
⌊ αn

ln n

⌋}
.

We call it a typical event as it happens w.h.p.:

P(T)→ 1 as n→∞.

188 Data Science Applications

Given the typical event T ,

{X(10 · · · 0) incomp.}⊥{X(010 · · · 0) incomp.}⊥

· · · ⊥{X(0 · · · 1︸︷︷︸
b
αn
ln n cth position

· · · 0) incomp.}. (3.16)

Applying this into (3.15) together with the total probability law, we get:

P(connected) = P(connected|x = 0)

≤ P

⋂
a∈A1

{X(a) incomp.}|x = 0

= P

⋂
a∈A1

{X(a) incomp.}

 , T |x = 0

+ P

⋂
a∈A1

{X(a) incomp.}

 , T c
|x = 0

(a)
≈ P

⋂
a∈A1

{X(a) incomp.}|x = 0, T

(b)
≤

∏
a∈B1

P
(
X(a) incomp.|x = 0, T

)
(c)
= P

(
X(10 · · · 0) incomp.|x = 0, T

)b αn
ln n c

(3.17)

where (a) follows from P(T) → 1,P(T c) → 0 and (b) comes from (3.16) and
the definition B1 := {b : ‖b‖1 = 1, bi = 1, i = 1, 2, . . . , b αn

ln nc}; and (c) is by
symmetry.

The final step The event of X(10 · · · 0) being incompatible given (x = 0, T)
implies that there exists at least one observation among the last n − b αn

ln nc

components in the first row of Y. Hence,

P(X(10 · · · 0) incomp.|x = 0, T)

≤ 1− (1− p)n−b
αn
ln n c

Social Networks: Converse Proof 189

≤ 1− (1− p)n

(a)
≤ e−(1−p)n

where (a) is due to the fact that 1 − x ≤ e−x for x > 0. Applying this to (3.17),
we get:

P(connected) ≤ P(X(10 · · · 0) incomp.|x = 0, T)b
αn
ln n c

≤ exp
(
−(1− p)n

⌊ αn
ln n

⌋)
(a)
≈ exp

(
−e−pn αn

ln n

)
= exp

(
−αe(1−λ) ln n−ln ln n

)
where (a) comes from the fact that (1−p)n ≈ e−pn for sufficiently large n and small
p = λ ln n

n (which is our case) and the fact that b αn
ln nc ≈

αn
ln n for large n. Therefore,

if λ < 1, the upper bound goes to 0 as n→∞. This completes the proof.

Look ahead We have thus far proved the achievability and converse of the com-
munity detection limit. Remember that the achievable scheme is the ML decoding
rule:

x̂ML = arg max
x

P(Y|X(x)).

A practical issue arises with the implementation of the ML rule due to its prohibitive
complexity. The number of likelihood computations required for the rule is 2n and
grows exponentially with the number of users n, which is typically very large in
practice. As a result, the complexity becomes enormous. However, there is another
algorithm that is much more efficient and provides nearly the same performance as
the ML rule. In the following section, we will examine this efficient algorithm.

190 Data Science Applications

3.4 An Efficient Algorithm and Python Implementation

Recap In Section 3.2, we employed the ML decoding rule to prove the achiev-
ability of the limit p∗ = ln n

n for community detection. Recall the ML decoding
rule:

x̂ML = arg max
x

P(Y|X(x))

where x = [x1, . . . , xn]T indicates the community membership vector; X(x)
denotes a codeword matrix taking xij = xi ⊕ xj as the (i, j) entry; and Y is an
observation matrix with yij ’s (yij = xij w.p. p and e otherwise). One critical issue in
the ML rule is that its complexity is significant. Since x takes one of the 2n possi-
ble patterns, the ML rule requires the number 2n of likelihood computations that
grows exponentially with n. Hence, it is crucial to develop a computationally effi-
cient algorithm that possibly yields the same performance as the ML rule. Indeed,
efficient algorithms have been developed that achieve the optimal ML performance.

Outline In this section, we will examine one such efficient algorithm for commu-
nity detection. Although the optimal algorithm is quite complex, we will focus on
its simpler version that achieves sub-optimal performance while still including the
main components of the algorithm. We will cover four main points in this section.
First, we will introduce the adjacency matrix, which plays a fundamental role in
the algorithm. Second, we will explain how the algorithm works, including the
process of finding the principal eigenvector of the adjacency matrix. Third, we will
explore an efficient method of computing the principal eigenvector, known as the
power method. Finally, we will provide a Python implementation of the spectral
algorithm.

Adjacency matrix Since the number n of users is often huge, pairwise measure-
ments are big data although only part of them are observed. In data science, there is
a useful entity that represents such big data in a succinct way. That is, the adjacency
matrix (Chartrand, 1977). The adjacency matrix, say A, is an equivalent repre-
sentation of the pairwise data where each column and row represents users. Each
entry, say aij , indicates whether users i and j are in the same community. Precisely,
aij = +1 means that the two users are in the same community; aij = −1 indicates
the opposite; and aij = 0 denotes no measurement:

aij =

{
1− 2yij , w.p. p;

0, otherwise (yij = e).
(3.18)

An Efficient Algorithm and Python Implementation 191

For instance, when x = [1, 0, 0, 1]T , we might have:

A =

+1 −1 0 0

−1 +1 +1 −1

0 +1 +1 −1

0 −1 −1 +1

 (3.19)

where we have erasures for (y13, y14).
In the full measurement setting (p = 1), one can make an observation that gives

a significant insight into algorithms. When p = 1, we would obtain:

A =

+1 −1 −1 +1

−1 +1 +1 −1

−1 +1 +1 −1

+1 −1 −1 +1

. (3.20)

Note that the rank of A is 1, i.e., each row is a linear combination of the other
rows. Can we extract the community pattern from this rank-1 matrix? It turns out
the answer is yes, and this forms the basis of the spectral algorithm that we will
investigate in the sequel.

Spectral algorithm (Shen et al., 2011) Using the fact that the rank of A (3.20)
is 1, we can easily derive its eigenvector.

v =

+1

−1

−1

+1

. (3.21)

Check that Av = 4v indeed. Here the +1 (or −1) entries of v tell us the commu-
nity memberships of the users. Therefore, in the ideal situation where every pair is
sampled, the principal eigenvector (the sole eigenvector) recovers the communities.
This approach, taking the adjacency matrix and computing its principal eigenvec-
tor, is called the spectral algorithm.

What about for the partial measurement case p < 1? In this case, we are not
clear if the principal eigenvector is able to return the community memberships.
Also, the components in the eigenvector may not necessarily take +1 (or −1). To
address the second issue, we may take a thresholded eigenvector, say vth, where its

192 Data Science Applications

entry takes the sign of vi:

vth,i =

{
+1, vi > 0;

−1, otherwise.
(3.22)

As long as p is big enough, vth returns the ground truth of communities, as n tends
to infinity. Due to the interest of this book, we will not analyze how big p is required
for successful recovery of the spectral algorithm. Instead we will later provide empir-
ical simulation via Python to demonstrate that for a large value of n, vth indeed
approaches the ground truth with an increase in p.

Power method (Golub and Van Loan, 2013) Another technical question
arises when it comes to computing the principal eigenvector. What if the adja-
cency matrix is of a big size? Remember that the order of n is around 109 in Meta’s
social networks. A naive way of computing the eigenvector based on eigenvalue
decomposition requires the complexity of around n3. Hence, this way is prohibitive.
Fortunately, there is one very efficient and useful way of computing the principal
eigenvector. That is, the power method. The method is well-known and popular in
the data science literature.

Prior to describing how it works in detail, let us make important observations
that naturally lead to the method. Suppose that the adjacency matrix A ∈ Rn×n

has m eigenvalues λi’s and eigenvectors vi’s:

A := λ1v1vT
1 + λ2v2vT

2 + · · · + λmvmvT
m

where λ1 > λ2 ≥ λ3 ≥ · · · ≥ λm and vi’s are orthonormal: vT
i vj = 1{i = j}. By

definition, (λ1, v1) are the principal eigenvalue and eigenvector respectively. Let
v ∈ Rn be an arbitrary non-zero vector such that vT

1 v 6= 0. Then, Av can be
expressed as:

Av =

(
m∑

i=1

λivivT
i

)
v

=

m∑
i=1

λi(vT
i v)vi

(3.23)

where the second equality is due to the fact that vT
i v is a scalar.

The first term λ1(vT
1 v)v1 in the above summation forms a major contribution,

since λ1 is the largest. This major effect becomes more dominant when we multiply

An Efficient Algorithm and Python Implementation 193

the adjacency matrix to the resulting vector Av. To see this, consider:

A2v = A(Av)

=

(
m∑

i=1

λivivT
i

) m∑
j=1

λj(vT
j v)vj

(a)
=

m∑
i=1

λ2
i (v

T
i v)(vT

i vi)vi +
∑
i 6=j

λiλj(vT
j v)(vT

i vj)vj

(b)
=

m∑
i=1

λ2
i (v

T
i v)vi

(3.24)

where (a) comes from the fact that vT
i vj is a scalar; and (b) vi’s are orthonormal

vectors, i.e., vT
i vi = 1 and vT

i vj = 0 for i 6= j. The distinction in (3.24) relative
to Av (3.23) is that we read λ2

i instead of λi. So the contribution from the princi-
pal component is more significant relative to the other components. Iterating this
process (multiplying A to the resulting vector iteratively), we get:

Akv =
m∑

i=1

λk
i (v

T
i v)vi.

In the limit of k,

Akv

λk
1(v

T
1 v)
=

m∑
i=1

(
λi

λ1

)k vT
i v

vT
1 v

vi −→ v1 as k→∞.

This implies that iterating the following process (multiplying A and then normal-
izing the resulting vector), the normalized vector converges to the principal eigen-
vector:

Akv√
‖Akv‖2

−→ v1 as k→∞.

This observation leads to the power method:

1. Choose a random vector v and set v(0) = v and t = 0.

2. Compute v(t+1)
=

Av(t)√
‖Av(t)‖2

and increase t by 1.

3. Iterate Step 2 until converged, e.g., ‖v(t+1)
− v(t)‖2 < ε = 10−5.

194 Data Science Applications

The power method requires multiple (say k) matrix-vector multiplications, each
having the complexity of n2 multiplications. Hence, the complexity of the power
method is still on the order of n2, as long as the number k of iterations is not so
large relative to n (this is often the case in practice). This is much smaller than the
complexity n3 of the eigenvalue decomposition, especially when n is very large. Due
to this computational benefit, the power method is widely employed as an efficient
algorithm for finding the principal eigenvector in many applications.

Python implementation of the spectral algorithm We implement the spec-
tral algorithm via Python. We first generate the community memberships of n users.

from scipy.stats import bernoulli
import numpy as np

n = 8 # number of users
Bern = bernoulli(0.5)
Generate n community memberships
x = Bern.rvs(n)
print(x)

[0 0 0 0 1 0 1 0]

We then construct random pairwise measurements.

Construct the codebook
X = np.zeros((n,n))
for i in range(len(x)):

for j in range(i,len(x)):
Compute xij = xi + xj (modulo 2)
X[i,j] = (x[i]+x[j]) % 2
Symmetric component
X[j,i] = X[i,j]

print(X)

[[0. 0. 0. 0. 1 . 0. 1 . 0.]
[0. 0. 0. 0. 1 . 0. 1 . 0.]
[0. 0. 0. 0. 1 . 0. 1 . 0.]
[0. 0. 0. 0. 1 . 0. 1 . 0.]
[1 . 1 . 1 . 1 . 0. 1 . 0. 1 .]
[0. 0. 0. 0. 1 . 0. 1 . 0.]
[1 . 1 . 1 . 1 . 0. 1 . 0. 1 .]
[0. 0. 0. 0. 1 . 0. 1 . 0.]]

Next we compute the adjacency matrix.

observation probability
p = 0.8
obs_bern = bernoulli(p)

An Efficient Algorithm and Python Implementation 195

Construct an n-by-n mask matrix:
entry = 1 (observed); 0 (otherwise)
mask_matrix = obs_bern.rvs((n,n))

Construct the adjacency matrix
A = (1-2*X)*mask_matrix

print(1-2*X)
print(mask_matrix)
print(A)

[[1 . 1 . 1 . 1 . - 1 . 1 . - 1 . 1 .]
[1 . 1 . 1 . 1 . - 1 . 1 . - 1 . 1 .]
[1 . 1 . 1 . 1 . - 1 . 1 . - 1 . 1 .]
[1 . 1 . 1 . 1 . - 1 . 1 . - 1 . 1 .]
[- 1 . - 1 . - 1 . - 1 . 1 . - 1 . 1 . - 1 .]
[1 . 1 . 1 . 1 . - 1 . 1 . - 1 . 1 .]
[- 1 . - 1 . - 1 . - 1 . 1 . - 1 . 1 . - 1 .]
[1 . 1 . 1 . 1 . - 1 . 1 . - 1 . 1 .]]

[[1 1 0 0 1 0 1 1]
[1 1 1 0 0 1 1 1]
[1 1 0 1 1 1 1 1]
[1 1 1 1 0 1 1 1]
[1 1 1 1 1 1 1 1]
[1 1 1 1 1 0 1 1]
[1 1 1 1 1 1 1 1]
[1 0 1 1 1 1 1 1]]

[[1 . 1 . 0. 0. - 1 . 0. - 1 . 1 .]
[1 . 1 . 1 . 0. -0. 1 . - 1 . 1 .]
[1 . 1 . 0. 1 . - 1 . 1 . - 1 . 1 .]
[1 . 1 . 1 . 1 . -0. 1 . - 1 . 1 .]
[- 1 . - 1 . - 1 . - 1 . 1 . - 1 . 1 . - 1 .]
[1 . 1 . 1 . 1 . - 1 . 0. - 1 . 1 .]
[- 1 . - 1 . - 1 . - 1 . 1 . - 1 . 1 . - 1 .]
[1 . 0. 1 . 1 . - 1 . 1 . - 1 . 1 .]]

We run the power method to compute the principal eigenvector of A.

def power_method(A, eps=1e-5):
A computationally efficient algorithm
for finding the principal eigenvector
Choose a random vector
v = np.random.randn(n)
normalization
v = v/np.linalg.norm(v)

prev_v = np.zeros(len(v))

196 Data Science Applications

t = 0
while np.linalg.norm(prev_v-v) > eps:

prev_v = v
v = np.array(np.dot(A,v)).reshape(-1)
v = v/np.linalg.norm(v)
t += 1

print("Terminated after %s iterations"%t)
return v

v1 = power_method(A)
print(v1)
print(np.sign(v1))
print(1-2*x)

Terminated after 8 iterat ions
[0.25389707 0.29847768 0.35720613 0.34957476 -0.40941936

0.35720737 -0.40941936 0.36579104]
[1 . 1 . 1 . 1 . - 1 . 1 . - 1 . 1 .]
[1 1 1 1 -1 1 -1 1]

In the above experiment, the thresholded principal eigenvector np.sign(v1) coin-
cides with the ground truth community vector 1-2*x.

Python: Performance of the spectral algorithm We will demonstrate via
Python experiments that the principal eigenvector is getting closer to the ground
truth of the community memberships as p increases. Consider a practical scenario
in which n is large, say n = 4000. To measure the similarity between the prin-
cipal eigenvector and the community vector, we employ a well-known correlation
measure, called the Pearson correlation (Freedman et al., 2007):

ρX ,Y :=
σX ,Y

σXσY
(3.25)

where σX ,Y = E[XY] − E[X]E[Y], σX =
√
E[X 2]− (E[X])2, and σY =√

E[Y 2]− (E[Y])2. To compute the Person correlation, we use a built-in func-
tion pearsonr defined in the scipy.stats module.

from scipy.stats import bernoulli
from scipy.stats import pearsonr
import numpy as np
import matplotlib.pyplot as plt

n = 4000 # number of users
Bern = bernoulli(0.5)
Generate n community memberships
x = Bern.rvs(n)

An Efficient Algorithm and Python Implementation 197

Construct the codebook
X = np.zeros((n,n))
for i in range(len(x)):

for j in range(i,len(x)):
Compute xij = xi + xj (modulo 2)
X[i,j] = (x[i]+x[j]) % 2
Symmetric component
X[j,i] = X[i,j]

p = np.linspace(0.0003,0.0025,30)
limit = np.log(n)/n
p_norm = p/limit

def power_method(A, eps=1e-5):
A computationally efficient algorithm
for finding the principal eigenvector
Choose a random vector
v = np.random.randn(n)
normalization
v = v/np.linalg.norm(v)

prev_v = np.zeros(len(v))
t = 0
while np.linalg.norm(prev_v-v) > eps:

prev_v = v
v = np.array(np.dot(A,v)).reshape(-1)
v = v/np.linalg.norm(v)
t += 1

print("Terminated after %s iterations"%t)
return v

corr = np.zeros_like(p)

for i,val in enumerate(p):
obs_bern = bernoulli(val)
Construct an n-by-n mask matrix:
entry = 1 (observed); 0 (otherwise)
mask_matrix = obs_bern.rvs((n,n))

Construct the adjacency matrix
A = (1-2*X)*mask_matrix
Power method
v1 = power_method(A)
Threshold the principal eigenvector
v1 = np.sign(v1)
Compute the ground truth

198 Data Science Applications

ground_truth = 1-2*x
Compute Pearson correlation
corr[i] = np.abs(pearsonr(ground_truth,v1)[0])
print(p_norm[i], corr[i])

plt.figure(figsize=(5,5), dpi=200)
plt.plot(p_norm, corr)
plt.title(’Pearson correlation btw estimate and ground truth’)
plt.grid(linestyle=’:’, linewidth=0.5)
plt.show()

Notice in Fig. 3.11 that the thresholded principal eigenvector is getting closer
to the ground-truth community vector (or its flip version) with an increase in p,
reflected in the high Pearson correlation for a large p. Especially when p is around
the limit p∗ = ln n

n , the Pearson correlation is very close to 1, demonstrating that the
spectral algorithm achieves almost the optimal performance promised by the ML
decoding rule. This is sort of a heuristic argument. In order to give a precise argu-
ment, we should actually rely upon the empirical error rate (instead of the Pearson
correlation) computed over sufficiently many random realizations of community
vectors. For computational simplicity, we employ instead the Pearson correlation
which can be reliably computed only with one random trial per each p.

Figure 3.11. Pearson correlation between the thresholded principal eigenvector and the

ground-truth community vector as a function of λ := p
p∗ =

p
ln n/n

.

An Efficient Algorithm and Python Implementation 199

Look ahead We have delved into one particular data science application of infor-
mation theory, namely community detection, and highlighted the concept of phase
transition, as well as confirming its occurrence through Python simulations. Mov-
ing forward, the next section will focus on a closely related application to commu-
nity detection in the field of computational biology, known as Haplotype phasing.
We will explore the nature of this problem and how it is connected to community
detection.

200 Data Science Applications

Problem Set 7

Prob 7.1 (Basics on bounds and combinatorics)

(a) Let p ≥ 0. Prove that

1− p ≤ e−p.

Also specify the condition under which the equality holds.
(b) Show that for non-negative integers n and k (k ≤ n):(

n
k

)
≤ ek ln n.

(c) Show that for integers n ≥ 0:

n∑
k=0

(
n
k

)
= 2n.

Prob 7.2 (The concept of reliable community detection) Suppose there
are n users clustered into two communities. Let xi ∈ {0, 1} indicate a member-
ship of community with regard to user i ∈ {1, 2, . . . , n}. We are given part of the
pairwise measurements:

yij =

{
xi ⊕ xj , w.p. p;

e, w.p. 1− p,

for every pair (i, j) ∈ {(1, 2), (1, 3), . . . , (1, n), (2, 3), . . . , (n − 1, n)} and p ∈
[0, 1]. Assume that yij ’s are independent over (i, j). Given yij ’s, one wishes to decode
the community membership vector x := [x1, x2, . . . , xn] or its flipped counterpart
x⊕ 1 := [x1⊕ 1, x2⊕ 1, . . . , xn⊕ 1]. Let x̂ be an estimate. Define the probability
of error as:

Pe = P(x̂ /∈ {x, x ⊕ 1}).

(a) Let sample complexity be the number of pairwise measurements which are
not erased. Show that

sample complexity(n
2

) −→ p as n→∞.

(b) Consider the following optimization problem. Given p and n,

P∗e (p, n) := min
algorithm

Pe.

Problem Set 7 201

State the definition of reliable detection. Also state the definition of minimum
sample complexity using the concept of reliable detection.

(c) Consider a slightly different optimization problem. Given p,

P∗e (p) := min
algorithm,n

Pe.

The distinction here is that n is a design parameter. For ε > 0, what are
P∗e (

ln n
n + ε) and P∗e (

ln n
n − ε)? Also explain why.

Prob 7.3 (An upper bound) Let p = λ ln n
n where λ > 1. Show that

n
2∑

k=1

(
n
k

)
(1− p)k(n−k)

−→ 0 as n→∞.

Hint: Use the bounds in Prob 7.1.

Prob 7.4 (Applying Fano’s inequality to community detection) Con-
sider an instance of community detection in which the goal is to figure out the
community membership of each user between community 0 and community 1.
Let x = [x1, x2, . . . , xn] be a collection of community memberships of n users:
xi ∈ {0, 1}, 1 ≤ i ≤ n. We are given part of pairwise measurements. With proba-
bility p, we observe xij := xi ⊕ xj independently over all pairs (i, j) where i < j:

yij =

{
xij , w.p. p;

e, otherwise.

Let X = [xij] ∈ Fn×n
2 and Y = [yij] ∈ Fn×n

2 .

(a) Suppose n = 3. Compute H(X) and H(Y).
(b) Consider the following upper bound:

H(Y) ≤
∑
i<j

H(yij).

Is this bound tight? If not, derive a tighter upper bound.
(c) Using Fano’s inequality and data processing inequality, derive the following

necessary condition for reliable detection:

p ≥
2

n− 1
.

Does the result in part (b) lead to a tighter necessary condition? If so, derive
the necessary condition.

202 Data Science Applications

Figure 3.12. Illustration of graph connectivity and disconnectivity.

Prob 7.5 (Erdős-Rényi random graph) Consider a random graph G that two
mathematicians (named Paul Erdős and Alfréd Rényi) introduced in (Erdős et al.,
1960). Hence, the graph is called the Erdős-Rényi graph. The graph contains n
nodes and assumes that an edge appears w.p. p ∈ [0, 1] for any pair of two nodes
in an independent manner. We say that a graph is connected if for any two nodes,
there exists a path (i.e., a sequence of edges) that connects one node to the other;
otherwise, it is said to be disconnected. See Fig. 3.12 for examples.

(a) Show that

P(G is disconnected) ≤
n−1∑
k=1

(
n
k

)
(1− p)k(n−k).

Hint: Think about a necessary event for disconnectivity.
(b) Show that if p > ln n

n , P(G is disconnected)→ 0 as n→∞.
Hint: Recall the achievability proof for community detection that we did in
Section 3.2.

(c) It has been shown that if p < ln n
n , P(G is disconnected)→ 1 as n→∞.

This together with the result in part (a) implies that the sharp threshold on
p for graph connectivity is the same as the one for community detection:

p∗ =
ln n
n

.

Relate this to the fundamental limit on observation probability in commu-
nity detection, i.e., explain why the limits are same.

Prob 7.6 (The coupon collector problem) There are n different coupons.
Suppose that for any cracker, the probability that the cracker contains a particu-
lar coupon among the n coupons is 1

n , i.e., the n kinds of coupons are uniformly
distributed over the entire crackers that are being sold.

Problem Set 7 203

(a) Suppose that Alice has k(< n) distinct coupons. When Alice buys a new
cracker, what is the probability that the new cracker contains a new coupon
(i.e., being different from the k coupons that Alice possesses)? Let Xk be the
number of crackers that Alice needs to buy to acquire a new coupon. Show
that

P(Xk = m) =
(

k
n

)m−1 n− k
n

,

E[Xk] =
n

n− k
.

(b) Suppose Bob has no coupon. Let K :=
∑n−1

k=0 Xk indicate the number of
crackers that Bob needs to buy to collect all the coupons. Show that

E[K] = n
(

1+
1

2
+

1

3
+ · · · +

1

n

)
.

(c) Using the fact that
∑n

k=1
1
k ≈ ln n in the limit of n (check Euler-Maclaurin

formula in wikepidia), argue that in the limit of n,

E[K] ≈ n ln n. (3.26)

Note: This is order-wise the same as the minimal sample complexity n ln n
2

required for reliable community detection.
(d) Using Python, plot E[K] and n ln n in the same figure for a proper range

of n, say 1 ≤ n ≤ 10, 000.

Prob 7.7 (Converse for community detection) Suppose there are n users
clustered into two communities. Let xi ∈ {0, 1} indicates a membership of com-
munity with regard to user i ∈ {1, 2, . . . , n}. Let X be a codeword matrix whose
(i, j)-th entry is xij = xi ⊕ xj . Assume that we are given part of the comparison
pairs:

yij =

{
xij , w.p. p;

e, o.w.

for (i, j) ∈ {(1, 2), (1, 3), · · · , (n − 1, n)} and p ∈ [0, 1]. We also assume that
yij ’s are independent over (i, j). Let Y be a received signal matrix whose (i, j)-th
entry is yij . Given Y, one wishes to decode the community membership vector
x := [x1, x2, . . . , xn] or x⊕1 := [x1⊕1, x2⊕1, . . . , xn⊕1]. Let x̂ be an estimate.
Define the probability of error as

Pe = P(x̂ /∈ {x, x ⊕ 1}).

204 Data Science Applications

(a) Show that

H(x|x̂) ≤ 1+ nPe.

(b) Show that

I(x; x̂) ≤ I(X; Y).

(c) Assume xi’s are i.i.d.∼ Bern(1
2). Using parts (a) and (b), derive a necessary

condition on p under which Pe can be made arbitrarily close to 0 as n→∞.

Prob 7.8 (True or False?)

(a) Consider an instance of community detection with two communities. Let
x := [x1, x2, . . . , xn] be the community membership vector in which
xi ∈ {0, 1} and n denotes the total number of users. Suppose we are given
part of the comparison pairs with observation probability p. In Section 3.1,
we formulated an optimization problem which aims to minimize the prob-
ability of error defined as Pe := P

(
x̂ /∈ {x, x ⊕ 1}

)
. Given p and n, denote

by P∗e (p, n) the minimum probability of error. In Section 3.2, we did not
intend to derive the exact P∗e (p, n). Instead we developed a lower bound of
P∗e (p, n) to demonstrate that for any p > ln n

n , the probability of error can
be made arbitrarily close to 0 as n tends to infinity.

(b) Consider an inference problem in which we wish to decode X ∈ X from
Y ∈ Y where X and Y indicate the ranges of X and Y , respectively. Given
Y = y, the optimal decoder is:

X̂ = arg max
x∈X

P(Y = y|X = x).

DNA Sequencing: Fundamental Limits 205

3.5 DNA Sequencing: Fundamental Limits

Recap In the previous sections, we proved both the achievability and converse of
the fundamental limit on the observation probability p needed to achieve reliable
community detection:

p >
ln n
n

⇐⇒ Pe → 0 as n→∞.

Via Python simulation, we also observed phase transition on the limit ln n
n . The

estimated vector via the spectral algorithm indeed converges to the ground-truth
community vector when p is close to ln n

n .
Now we will move onto another data science application concerning phase

transition. The application that we will focus on is w.r.t. computational biol-
ogy. Specifically we will explore one of the important DNA sequencing problems,
named Haplotype phasing (Browning and Browning, 2011; Das and Vikalo, 2015;
Chen et al., 2016a; Si et al., 2014). Interestingly, it has a close connection with
community detection.

Outline In this section, we will examine Haplotype phasing and explore its rela-
tionship to community detection. The section is divided into four parts. First, we
will investigate two relevant keywords: DNA sequencing and Haplotype. We will
then figure out what Haplotype phasing is. Next, drawing upon computational
biology expertise, we will establish a link to community detection. Finally, we will
examine the sharp threshold present in this problem, as in community detection.

Our 23 pairs of chromosome We will begin by discussing two important
terms: (1) DNA sequence and (2) Haplotype. Our body consists of numerous cells,
and each cell has a vital component known as the nucleus. The nucleus contains
23 pairs of chromosomes. In each pair, one comes from the mother (maternal chro-
mosome), while the other comes from the father (paternal chromosome). Fig. 3.13
illustrates the 23 pairs of chromosomes. Each chromosome in a pair consists of a
series of elements known as bases, and each base can take on one of four letters: A,
C , T , or G. This series of bases is referred to as a DNA sequence, with a typical
length of around 3 billion.

Looking inside a pair of chromosome, we see an interesting sequence pattern.
The maternal sequence is almost identical to the paternal counterpart, ∼ 99.9%
being identical. See Fig. 3.14. Differences occur only at certain positions. Such dif-
ferences are called “Single Nucleotide Polymorphisms (SNPs)”, being pronounced
as “snips”. It is well known that knowing the SNPs patterns is useful for personalized
medicine. It can help predicting the probability of a certain cancer occurring. It

206 Data Science Applications

Figure 3.13. 23 pairs of chromosome.

maternal sequence

paternal sequence almost identical! ~ 99.9%

Figure 3.14. The maternal sequence is almost (99.9%) identical to the paternal sequence.

determines somatic mutations such as HIV. It also serves to understand phylogetic
trees, exhibiting relationships between a variety of distinct species. The second key-
word “Haplotype” refers to a pair of the two sequences of SNPs.

Haplotype phasing Haplotype phasing is the process of identifying the pair of
two SNPs, which involves two sub-tasks: (1) identifying the locations of the SNPs,
and (2) decoding the sequence pattern. The locations of SNPs are typically deter-
mined using “SNP calling” (Nielsen et al., 2011). Therefore, Haplotype phasing
usually refers to the second task: identifying the pattern of the SNPs. Each element
in the pattern takes a value from the set of four letters {A, C , T , G}. You may be
wondering how this is related to the community detection problem, where each
component in the community membership vector is binary.

DNA Sequencing: Fundamental Limits 207

Figure 3.15. Major vs. minor allele.

Binary representation of major and minor allele In fact, a key property
of the values taken by each base in the SNPs enables a concrete connection with
the community detection problem. Specifically, there are two types of base compo-
nents: (1) major allele; and (2) minor allele. The major allele is the base that occurs
for a majority of human beings, while the minor allele is the one that occurs for a
minor portion of humans, as shown in Fig. 3.15. Note that in the example, the first
SNP reads A for a majority of humans, representing the major allele (denoted by 0),
while Human 3’s SNP in that position reads T , which is a rare occurrence and is
classified as a minor allele (denoted by 1). Any letter except the one associated with
the major allele is considered a minor allele, such as T , C , and G in this example.
Because each SNP can be categorized into only two types, we can represent it as a
binary value, which in turn establishes a connection to the community detection
problem.

Two types of SNP positions Have we made the connection between the two
problems? Not quite yet. Although there are similarities between Haplotype phas-
ing and community detection, there is still a fundamental difference: Haplotype
phasing involves decoding two sequences (vectors), whereas community detection
involves decoding only one vector. However, it is possible to cast the Haplotype
phasing problem into a problem of decoding only one vector (up to a global shift).
To understand this, we need to consider another property of SNP positions: each
position is of only two types – “heterozygous” or “homozygous”. A heterozygous
position refers to a position where the maternal base is a complement of the pater-
nal base, while a homozygous position refers to a position where the maternal and
paternal bases are the same. Using a standard method, one can determine the type
of all SNP positions. Assuming that all SNP positions are heterozygous simplifies

208 Data Science Applications

the problem and makes it identical to the community detection problem. Let x be
the sequence of SNPs from a mother. Then, father’s sequence would be its flipped
version x ⊕ 1. The goal of Haplotype phasing is to decode x or x ⊕ 1.

Mate-pair read (Browning and Browning, 2011; Das and Vikalo, 2015)

To establish the connection, we need to examine the type of information we have
access to for Haplotype phasing. The information we can access is related to the cur-
rent sequencing technology, which relies on a technique called “shotgun sequenc-
ing”. This technique yields short fragments of the entire DNA sequence, known
as “reads”. The length of a typical read is between 100 and 500 bases, while SNPs
consist of around 3 million bases, and the entire DNA sequence is around 3 billion
bases in length. As a result, the average distance between SNPs is approximately
1000 bases, but the read length is much shorter than this distance. This implies
that one read (spanning 100 ∼ 200 bases) usually contains only one SNP. This
presents a challenge: we do not know which chromosome each read comes from
(either maternal or paternal). To see this, let yi denote the ith SNP contained in a
read. Then, what we obtain is:

yi =

{
xi (mother’s), w.p. 1

2 ;

xi ⊕ 1 (father’s), w.p. 1
2 .

Since the probabilities of getting xi and xi ⊕ 1 are all equal to 1
2 , there is no way to

figure out xi from yi.
To overcome this challenge, a more advanced sequencing technique has been

developed which allows for simultaneous reading of two fragments, known as
“mate-pair reads”. As shown in Fig. 3.16, mate-pair reads have proved to be useful.
One advantage of the sequencing technology is that both reads come from the same
individual, which means that the information we obtain is:

(yi, yj) =

{
(xi, xj) (mother’s), w.p. 1

2 ;

(xi ⊕ 1, xj ⊕ 1) (father’s), w.p. 1
2 .

Figure 3.16. Mate-pair read.

DNA Sequencing: Fundamental Limits 209

Connection to community detection What we know for sure from (yi, yj) is
their parity: yi ⊕ yj = xi ⊕ xj . Note that this is exactly the pairwise measurement
given for community detection. In reality, however, what we get is a noisy version
of (yi, yj):

(yi, yj) =

{
(xi ⊕ zi, xj ⊕ zj) (mother’s), w.p. 1

2 ;

(xi ⊕ 1⊕ zi, xj ⊕ 1⊕ zj) (father’s), w.p. 1
2

where zi indicates an additive noise induced at the ith SNP. As per extensive exper-
iments, it is found that zi’s can be modeled as i.i.d., each being according to say
Bern(q) (meaning that the noise statistics are identical and independent across all
SNPs). The parity is

yij := yi ⊕ yj = xi ⊕ xj ⊕ zi ⊕ zj .

Let zij := zi⊕ zj . Then, its statistics would be zij ∼ Bern(2q(1−q)). Why? Using
the total probability law, we get:

P(zij = 1) = P(zi = 1)P(zj = 0|zi = 1)+ P(zi = 0)P(zj = 1|zi = 0)

= q(1− q)+ (1− q)q

= 2q(1− q)

where the second equality is due to the independence of zi and zj . Denoting θ =
2q(1−q), we see that the measurement yij is a noisy version of xij . One may wonder
if looking at the parity only (instead of individual measurements (yi, yj)) suffices to
decode x. In other words, is yij is a sufficient statistic? It is indeed the case. Check
in Prob 8.5(c). This suggests that we do not lose any information loss although we
consider only parities.

Translation into a communication problem The connection as above was
made in (Chen et al., 2016a). The authors in (Chen et al., 2016a) applied the con-
nection into a partial and random measurement model where the parity is observed
with probability p, independently from others:

yij =

{
xi ⊕ xj ⊕ zij , w.p. p;

e, w.p. 1− p

where zij ∼ Bern(θ) and θ ∈ (0, 1
2). Without loss of generality, assume that

0 ≤ θ < 1
2 ; otherwise, one can flip all 0’s into 1’s and 1’s into 0’s. Since we wish

to infer x from yij ’s (an inference problem), this problem can be interpreted as a
communication problem illustrated in Fig. 3.17.

210 Data Science Applications

noisy partial
observation decoderpairwise

info

Figure 3.17. Translation of Haplotype phasing into a communication problem under a

noisy channel with partial observations.

Figure 3.18. The effect of noise upon the limit.

The fundamental limit (Chen et al., 2016a) The above model subsumes the
noiseless scenario θ = 0 as a special case. One can easily expect that the larger θ ,
the larger the limit p∗. It is shown that the fundamental tradeoff behaves like:

p∗ =
ln n
n
·

1

1− e−KL(0.5‖θ)
(3.27)

where KL(·‖·) denotes the Kullback-Leibler (KL) divergence defined w.r.t. a natural
logarithm:

KL(0.5‖θ) = 0.5 ln
0.5

θ
+ 0.5 ln

0.5

1− θ

= 0.5 ln
1

4θ(1− θ)
.

Plugging this into (3.27), we get:

p∗ =
ln n
n
·

1

1−
√

4θ(1− θ)
. (3.28)

Indeed the limit is an increasing function of θ . It grows exponentially with θ . See
Fig. 3.18.

DNA Sequencing: Fundamental Limits 211

The only distinction in the noisy setting relative to the noiseless counterpart
is that we have a factor 1

1−e−KL(0.5‖θ) in (3.27), reflecting the noise effect. In the

noiseless setting θ = 0, KL(0.5‖θ) = ∞, so it reduces to the limit ln n
n .

Look ahead We related community detection to one of applications in compu-
tational biology: Haplotype phasing. We showed that Haplotype phasing is a noisy
version of the community detection problem, and claimed that phase transition
occurs on observation probability like: p∗ = ln n

n ·
1

1−e−KL(0.5‖θ) . In the next section,
we will prove the achievability of the claimed limit.

212 Data Science Applications

3.6 DNA Sequencing: Achievability Proof

Recap In the previous section, we made a connection between Haplotype phasing
and community detection. We showed that Haplotype phasing is a noisy version
of community detection, wherein the goal is to decode x = [x1, . . . , xn] from yij ’s:

yij =

{
xi ⊕ xj ⊕ zij , w.p. p;
e, w.p. 1− p

where zij ∼ Bern(θ) and θ ∈ (0, 1
2). We then claimed that as in community

detection, phase transition occurs on observation probability:

p∗ =
ln n
n
·

1

1− e−KL(0.5‖θ)

where KL(0.5‖θ) denotes the KL divergence between Bern(0.5) and Bern(θ)

defined w.r.t. the natural logarithm:

KL(0.5‖θ) := 0.5 ln
0.5

θ
+ 0.5 ln

0.5

1− θ
= 0.5 log

1

4θ(1− θ)
.

Outline In this section, we will demonstrate that the limit is achievable, and we
will do so in three steps. First, we will derive the optimal ML decoder. Next, we
will analyze the error probability. Although the overall procedure of the proof is
similar to that in the noiseless case, there are a few key differences that require the
use of important bounding techniques, which we will detail. Finally, by applying
these bounding techniques to the error probability, we will prove the achievability.

The optimal ML decoder As in the noiseless case, we employ the same deter-
ministic encoder which yields a codeword matrix X(x) with the (i, j) entry xij =

xi⊕ xj . A distinction arises in the decoder side. The optimal decoder takes the ML
decision rule. But the ML decoder is not the one based solely on the concept of
compatibility vs. incompatibility which formed the basis of the noiseless case. To
see this, consider the following example in which n = 4, the ground-truth vector
x = 0, an observation matrix Y reads:

Y =

1 e e

0 0
1

. (3.29)

A key observation is that not all the observed components match the correspond-
ing xij ’s. In this example, noises are added to the (1, 2) and (3, 4) entries, yielding
(y12, y34) = (1, 1). This makes the calculation of P(Y|X(x)) a bit more involved,
relative to the noiseless case. The likelihood function is not solely determined by

DNA Sequencing: Achievability Proof 213

erasure patterns but is also influenced by flipping error patterns, which creates a
distinction between the noiseless and noisy cases. In the absence of noise, the like-
lihood takes on either a value of 0 or a specific non-zero value. However, in the
presence of noise, the likelihood can take on multiple non-zero values, depending
on the flipping error patterns. To illustrate this, consider the following examples.
Given Y in (3.29), the likelihoods are:

P(Y|X(0000)) = (1− p)2p4
· θ2(1− θ)2;

P(Y|X(1000)) = (1− p)2p4
· θ1(1− θ)3;

P(Y|X(0100)) = (1− p)2p4
· θ3(1− θ)1

where

X(1000) =

1 1 1

0 0
0

 , X(0100) =

1 0 0

1 1
0

.

In all likelihoods, the first product term (1−p)2p4 is common. So the second term
associated with a flipping error pattern will decide the ML solution. The num-
bers marked in red indicate the numbers of flips. Since the flipping probability
θ is assumed to be less than 1

2 , the smallest number of flips would maximize the
likehlihood, thus yielding:

x̂ML = arg min
x

d(X(x), Y) (3.30)

where d(·, ·) denotes the Hamming distance: the number of distinct bits between
the two arguments (Hamming, 1950).

A setup for the analysis of the error probability For the achievability proof,
we analyze the probability of error. Taking the same procedures as in the noiseless
case, we obtain:

Pe := P(x̂ML /∈ {x, x ⊕ 1})

= P(x̂ML /∈ {0, 1}|x = 0)

≤

∑
a/∈{0,1}

P(x̂ML = a|x = 0)

=

n−1∑
k=1

∑
ak∈Ak

P(x̂ML = ak|x = 0)

=

n−1∑
k=1

(
n
k

)
P(x̂ML = ak|x = 0)

(3.31)

214 Data Science Applications

0 0 0 1 1 1 1

0 0 1 1 1 1

0 1 1 1 1

0 0 0 0

0 0 0

0 0

0

* * * e 0 e 1

* * 1 0 e 0

* e e 1 e

* * * *

* * *

* *

*

Figure 3.19. Illustration of the distinguishable positions colored in purple. Unlike the

noiseless case, all that matters in a decision is the Hamming distance. So the error event

implies that the number of 1’s is greater than or equal to the number of 0’s in the k(n−k)
distinguishable positions.

where the first equality is by symmetry (each error probability does not depend
on the input vector pattern); and the inequality comes from the union bound. In
the second last equality, we take an equivalent yet more insightful expression, by
introducing a set Ak := {a : ‖a‖1 = k}.

A bound on P(x̂ML = ak|x = 0) Focus on P(x̂ML = ak|x = 0). Unlike the
noiseless case, deriving its upper bound is not that straightforward. To see this,
consider a case in which ak = (1 · · · 10 · · · 0) ∈ Ak. Notice that X(ak) takes 1’s
only in the last n − k positions of the first k rows (that we called distinguishable
positions in light of X(0)). See the middle in Fig. 3.19.

In the noiseless case, the error event {x̂ML = ak|x = 0} must imply that such
positions are all erased, since otherwise X(ak) is incompatible. In the noisy case, on
the other hand, the error event does not necessarily imply that the distinguishable
positions are all erased, since X(ak) could still be a candidate for the solution even if
a few observations are made in such positions. As indicated in (3.30), what matters
in a decision is the Hamming distance. As long as d(X(ak), Y) ≤ d(X(0), Y), the
codeword X(ak) can be chosen as a solution, no matter what the number of erasures
is in those positions. Hence, the error event only suggests that the number of 1’s is
greater than or equal to the number of 0’s in the k(n−k) distinguishable positions.
Let M be the number of observations made in the distinguishable positions. Then,
we get: for a ∈ Ak,

P(x̂ML = ak|x = 0)

≤ P(d(X(ak), Y) ≤ d(X(0), Y)|x = 0)

DNA Sequencing: Achievability Proof 215

= P(# 1’s ≥ # 0’s in the distinguishable positions|x = 0)

(a)
=

k(n−k)∑
`=0

P(M = `|x = 0)

× P(# 1’s ≥ # 0’s in distinguishable positions|x = 0, M = `)

(3.32)

where (a) is due to the total probability law. Here P(M = `|x = 0) =(k(n−k)
`

)
p`(1− p)k(n−k)−`.

Consider P(# 1’s ≥ # 0’s in distinguishable positions|x = 0, M = `). Let Zi be
the measured value at the ith observed entry in the k(n− k) distinguishable posi-
tions. Then, Zi’s are i.i.d. ∼ Bern(θ) where i ∈ {1, 2, . . . , `}. Using this, we get:

P(# 1’s ≥ # 0’s in distinguishable positions|x = 0, M = `)

= P
(

Z1 + Z2 + · · · + Z`
`

≥ 0.5

)
.

(3.33)

Since Zi’s are i.i.d. ∼ Bern(θ), one may expect that the empirical mean of Zi’s
would be concentrated around the true mean θ as ` increases. It is indeed the case
and it can be proved via the WLLN. Also by our assumption, θ < 0.5. Hence, the
probability P(Z1+Z2+···+Z`

` ≥ 0.5) would converge to zero, as ` tends to infinity.
What we are interested in here is how fast the probability converges to zero. There is
a very well-known concentration bound which characterizes a convergence behav-
ior of the probability. That is, the Chernoff bound (Bertsekas and Tsitsiklis, 2008;
Gallager, 2013), formally stated below:

P
(

Z1 + Z2 + · · · + Z`
`

≥ 0.5

)
≤ e−`KL(0.5‖θ). (3.34)

Check Prob 4.4 for the proof.
Applying this into (3.32), we get:

P(x̂ML = ak|x = 0)

≤

k(n−k)∑
`=0

P(M = `|x = 0)

× P(# 1’s ≥ # 0’s in distinguishable positions|x = 0, M = `)

216 Data Science Applications

(a)
≤

k(n−k)∑
`=0

(
k(n− k)

`

)
p`(1− p)k(n−k)−`e−`KL(0.5‖θ)

= (1− p)k(n−k)
k(n−k)∑
`=0

(
k(n− k)

`

)(
pe−KL(0.5‖θ)

1− p

)`

(b)
= (1− p)k(n−k)

(
1+

pe−KL(0.5‖θ)

1− p

)k(n−k)

= (1− p(1− e−KL(0.5‖θ)))k(n−k)

where (a) comes from P(M = `|x = 0) =
(k(n−k)

`

)
p`(1 − p)k(n−k)−`

and the Chernoff bound (3.34); and (b) is due to the binomial theorem:∑n
k=0

(n
k

)
xn−kyk

= (x + y)n.

The final step of the achievability proof Putting the above to (3.31), we get:

Pe ≤

n−1∑
k=1

(
n
k

)
P(x̂ML = ak|x = 0)

≤

n−1∑
k=1

(
n
k

)
(1− p(1− e−KL(0.5‖θ)))k(n−k).

Remember what we proved in the noiseless case (check the precise statement in
Prob 7.3):

n−1∑
k=1

(
n
k

)
(1− q)k(n−k)

−→ 0 if q >
ln n
n

.

Hence, by replacing q with p(1− e−KL(0.5‖θ)) in the above, one can make Pe arbi-
trarily close to 0, provided that

p(1− e−KL(0.5‖θ)) >
ln n
n

⇐⇒ p >
ln n
n
·

1

1− e−KL(0.5‖θ)
.

This completes the achievability proof.

Look ahead We have proved the achievability of the limit in the noisy observa-
tion model p∗ = ln n

n ·
1

1−e−KL(0.5‖θ) . In the next section, we will prove the converse.

DNA Sequencing: Converse Proof 217

3.7 DNA Sequencing: Converse Proof

Recap We proved the achievability of the limit on observation probability p in a
noisy community detection problem:

p >
ln n
n
·

1

1− e−KL(0.5‖θ)
H⇒ Pe → 0 as n→∞.

Outline In this section, we will prove the converse:

p <
ln n
n
·

1

1− e−K(0.5‖θ)
H⇒ Pe 9 0.

Proof strategy In the noiseless case, the converse proof is based on graph con-
nectivity:

graph is connected⇐⇒ Pe → 0.

Hence, we focused on checking whether P(connected) converges to 1 depending
on conditions of observation probability. In the noisy case, however, checking graph
connectivity is not sufficient because the event of graph being connected does not
necessarily imply reliable detection:

graph is connected
X
H⇒ Pe → 0.

So we will start from scratch. Starting with the definition of the probability of
error, we get:

Pe := 1− P(success)

(a)
= 1− P

(
{x̂ = 0} ∪ {x̂ = 1}|x = 0

)
(b)
= 1− P(x̂ = 0|x = 0)− P(x̂ = 1|x = 0)

(c)
= 1− 2P(x̂ = 0|x = 0)

where (a) is by symmetry; (b) follows from the fact that the two events are disjoint;
and (c) is due to the fact that {x̂ = 0} and {x̂ = 1} are equally likely (there is no
way to disambiguate x and x⊕ 1 from pairwise comparisons; the only way that we
can do in this case is to flip a fair coin). Hence, it suffices to show that

p <
ln n
n
·

1

1− e−D∗ H⇒ P(x̂ = 0|x = 0)→ 0 as n→∞. (3.35)

Here we define D∗ := KL(0.5‖θ) for notational simplicity.

218 Data Science Applications

An upper bound on P(x̂ = 0|x = 0) In the converse proof, one cannot make
any assumption on the decoder type. This is because we wish to come up with a
necessary condition that holds under any arbitrary decoder. However, there is one
exceptional case where one can make an assumption. That is the case in which the
optimal decoder is employed. Notice that a necessary condition w.r.t. the optimal
decoder also holds for any other decoder. Let Pe(opt) and Pe(a decoder) be error
probabilities w.r.t. the optimal decoder and a particular decoder, respectively. Then,
by the definition of optimality:

Pe(a decoder) ≥ Pe(opt).

We see that Pe(opt)9 0 implies Pe(a decoder)9 0. Hence, it suffices to show
that Pe 9 0 under the optimal decoder. This allows us to assume the use of the
optimal decoder:

x̂ = arg min
x

d(X(x), Y)

where d(·, ·) indicates the Hamming distance. In the noisy observation model, the
optimal decoder minimizes the Hamming distance; see (3.30). For notational sim-
plicity, define d(x) := d(X(x), Y).

The interested event {x̂ = 0} implies that {d(a) ≥ d(0)}, ∀a 6= 0. This
together with the fact that P(A ∩ B) ≤ P(A) for any two events (A, B) gives:

P(x̂ = 0|x = 0) ≤ P

⋂
a 6=0

{d(a) ≥ d(0)}|x = 0

≤ P

⋂
a∈A1

{d(a) ≥ d(0)}|x = 0

(3.36)

where A1 = {a : ‖a‖1 = 1, ai ∈ {0, 1}}.
Remember the two key observations that we made in the noiseless case: (1) the

calculation of the above probability can be greatly simplified when the associated
events are independent; and (2) the more independent events are, the tighter bound
we get. This again motivates us to search for independent events (among n events)
as many as possible.

As in the noiseless case, the number of independent events is the same as the
number of locally disconnected nodes. To see this, refer to Fig. 3.20.

Like the noiseless case, consider an event T in which there are at least b αn
ln nc

nodes which are locally disconnected, i.e., yij = e for i, j ∈ {1, 2, . . . , b αn
ln nc}:

T :=
{

L ≥
⌊ αn

ln n

⌋}

DNA Sequencing: Converse Proof 219

e e .. e * … *
e e e e * * *
e e e : * * *
e e e e * * *
e e e .. e * : *

* :
*

1
2
:

1 2 .. independent

th position

Figure 3.20. Independent events vs. locally disconnected nodes.

where L indicates the number of locally disconnected nodes. We assume that the
locally disconnected nodes are numbered as 1, 2, . . . , b αn

ln nc.
Given T , the event {d(10 · · · 0) ≥ d(0)|x = 0} is a sole function of y1j ’s

(marked in light blue in the figure) where j ∈ {b αn
ln nc + 1, . . . , n}. Notice that

(1, j)’s indicate distinguishable positions where the corresponding codeword entries
differ w.r.t. the messages (10 · · · 0) and 0. Hence, the difference between Ham-
ming distances, d(10 · · · 0) − d(0), depends only on the positions. Similarly the
event {d(010 · · · 0) ≥ d(0)|x = 0} is a sole function of y2j ’s (marked in purple).
Hence, the two events are independent since y1j ’s are y2j ’s are disjoint. Extending
this argument to other events, given (T , x = 0), we obtain:

{d(10 · · · 0) ≥ d(0)}⊥{d(010 · · · 0) ≥ d(0)}⊥ · · ·

⊥{d(0 · · · 1︸︷︷︸
b
αn
ln n cth position

· · · 0) ≥ d(0)}. (3.37)

As was shown in Section 3.3, the event T occurs w.h.p. for α = 1
2 −

λ
4 where λ

is the prefractor that appears in p = λ ln n
n : P(T) → 1 as n → ∞. Applying this

to (3.36), we get:

P(x̂ = 0|x = 0) ≤ P

⋂
a∈A1

{d(a) ≥ d(0)}|x = 0

= P

⋂
a∈A1

{d(a) ≥ d(0)}

 , T |x = 0

220 Data Science Applications

+ P

⋂
a∈A1

{d(a) ≥ d(0)}

 , T c
|x = 0

(a)
≈ P

⋂
a∈A1

{d(a) ≥ d(0)}

 |x = 0, T

 (3.38)

(b)
≤

∏
a∈B1

P(d(a) ≥ d(0)|x = 0, T)

(c)
= P(d(10 · · · 0) ≥ d(0)|x = 0, T)b

αn
ln n c

= {1− P(d(10 · · · 0) < d(0)|x = 0, T)}b
αn
ln n c

where (a) follows from P(T) → 1 and P(T c) → 0; (b) comes from (3.37) and
the definition B1 := {b : ‖b‖1 = 1, bi ∈ {1, 2, . . . , b αn

ln nc}}; and (c) is due to
symmetry.

A lower bound on P(d(10 · · ·0) < d(0)|x = 0, T) The last equation in (3.38)
motivates us to explore a lower bound on P(d(10 · · · 0) < d(0)|x = 0, T), as it
yields an upper bound on P(x̂ = 0|x = 0).

Given T , only the last ñ := n − b αn
ln nc positions in the first row of Y are dis-

tinguishable between messages 0 and (10 · · · 0). The event {d(10 · · · 0) < d(0)}
depends solely on those positions, which in turn suggests that the number of 1’s is
greater than the number of 0’s in the distinguishable positions. See Fig. 3.21.

e e e 1 e 0 1

e e e * * * *

e e e * * * *

e e e * * * *

* * *

* *

*

1 1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

1
2

1 2
0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

= { # of 1’s > # of 0’s in }
Figure 3.21. An equivalent condition.

DNA Sequencing: Converse Proof 221

Let M be the number of observations in the distinguishable positions. Then,
we get:

P(d(10 · · · 0) < d(0)|x = 0, T)

= P(# 1’s > # 0’s in the distinguishable positions|x = 0, T)

(a)
=

ñ∑
`=0

P(M = `|x = 0, T)

× P
(
1’s > # 0’s in distinguishable positions|x = 0, T , M = `

)
(b)
=

ñ∑
`=0

(
ñ
`

)
p`(1− p)ñ−`P

(
Z1 + Z2 + · · · + Z` >

`

2

)
.

(3.39)

where (a) is due to the total probability law; and (b) comes from P(M = `|x =
0, T) =

(ñ
`

)
p`(1 − p)ñ−`. We define Zi as the measured value at the ith observed

entry in the ñ distinguishable positions. Then, Zi i.i.d. ∼ Bern(θ) where i ∈
{1, . . . , `}.

The Chernoff bound (see Prob 4.4) provides an upper bound on P(Z1 + Z2 +

· · · + Z` > `
2). What we are interested in is a lower bound though. It turns out

the interested probability has the same order of the upper bound e−`D
∗

. More con-
cretely, given ε > 0, there exists n0 such that for ` ≥ n0:

P
(

Z1 + Z2 + · · · + Z` >
`

2

)
≥ e−(1+ε)`D

∗

.

Here n0 = ln n is one such choice under which the above holds. Check this in
Prob 8.2. This together with (3.39) gives:

P(d(10 · · · 0) < d(0)|x = 0, T)

≥

ñ∑
`=ln n

(
ñ
`

)
p`(1− p)ñ−`e−(1+ε)`D

∗

(a)
≥ (1− δn)

ñ∑
`=0

(
ñ
`

)
p`(1− p)ñ−`e−(1+ε)`D

∗

(b)
≈ (1− p)ñ

ñ∑
`=0

(
ñ
`

)(
pe−(1+ε)D

∗

1− p

)`

222 Data Science Applications

(c)
= (1− p)ñ

(
1+

pe−(1+ε)D
∗

1− p

)ñ

= (1− p(1− e−(1+ε)D
∗

))ñ

≥ (1− p(1− e−(1+ε)D
∗

))n. (3.40)

The step (a) is due to the fact that the summation up to ln n is negligible relative
to the entire sum. Precisely speaking, there exists δn → 0 such that the step (a)
holds. Check this in Prob 8.2. The step (b) comes from δn → 0 and (c) is due to
the binomial theorem.

The final step We are ready to complete the proof. Putting (3.40) to (3.38),
we get:

P(x̂ = 0|x = 0)

. {1− P(d(10 · · · 0) < d(0)|x = 0, T)}b
αn
ln n c

. {1− (1− p(1− e−(1+ε)D
∗

))n}
αn
ln n

(a)
≤ exp

{
−(1− p(1− e−(1+ε)D

∗

))n
αn
ln n

}
(b)
≈ exp

{
−e−np(1−e−(1+ε)D

∗
) αn
ln n

}
= exp

{
−αe(1−λ(1−e−(1+ε)D

∗
)) ln n−ln ln n

}
where (a) is due to the fact that 1−x ≤ e−x for x > 0; and (b) comes from the fact

that (1− p(1− e−(1+ε)D
∗

))n ≈ e−p(1−e−(1+ε)D
∗
)n for sufficiently large n and small

p = λ ln n
n (which is our case). Therefore, if λ < 1

1−e−(1+ε)D∗
, the upper bound goes

to 0 as n→∞. This completes the proof (3.35).

Look ahead We have proven the limit on p for the noisy community detection:

p >
ln n
n
·

1

1− e−(1+ε)D∗
⇐⇒ Pe → 0.

Our achievability is based on the ML decoder which suffers from high compu-
tational complexity. In the next section, we will explore efficient algorithms that
possibly yield the optimal performance as the ML rule.

DNA Sequencing: Algorithm and Python Implementation 223

3.8 DNA Sequencing: Algorithm and Python
Implementation

Recap We have proved the achievability and converse of the limit in the noisy
observation model (inspired by Haplotype phasing):

p∗ =
ln n
n
·

1

1− e−KL(0.5‖θ)
=

ln n
n
·

1

1−
√

4θ(1− θ)

where θ is the flipping error rate. Since the optimal ML decoding rule comes with a
challenge in computational complexity (as in the noiseless case), it is important to
develop computationally efficient algorithms that achieve the optimal ML perfor-
mance yet with much lower complexities. Even in the noisy setting, such efficient
algorithms are already developed.

Outline In this section, we will investigate two efficient algorithms for Haplotype
phasing in the presence of noise. The first method is the same as the one we used
in the noiseless scenario, which is the spectral algorithm. The second algorithm is
a slightly more complex version that involves obtaining an initial estimate through
the spectral algorithm and refining it with an additional operation to improve per-
formance (Chen et al., 2016a). This second algorithm is not only still efficient
but also optimal. However, as the focus of this book is not on optimality proofs,
we will concentrate on explaining how the algorithms work and providing their
Python implementations. This section consists of four parts. First, we will review
the spectral algorithm. Second, we will apply it to the noisy observation setting
and evaluate its performance through Python simulation. Third, we will describe
how the second algorithm works. Finally, we will implement the second algorithm
with the additional operation in Python to demonstrate that it outperforms the
first spectral algorithm.

Review of the spectral algorithm The spectral algorithm is based on the adja-
cency matrix A ∈ Rn×n where each entry aij indicates whether users i and j are in
the same community:

aij =

{
1− 2yij , w.p. p;

0, w.p. 1− p (yij = e)
(3.41)

where yij = xi ⊕ xj ⊕ zij and zij ’s are i.i.d. ∼ Bern(θ). Here aij = 0 denotes no
measurement. In the noiseless case, aij = +1 means that the two users are in the
same community; and aij = −1 indicates the opposite.

Inspired by the fact that the rank of A is 1 under the ideal situation (the noiseless
full measurement setting) and the principal eigenvector matches the ground-truth

224 Data Science Applications

community vector (up to a global shift), the spectral algorithm computes the princi-
pal eigenvector to declare its thresholded version as an estimate. For computational
efficiency, it employs the power method for computing the principal eigenvector
(instead of eigenvalue decomposition). Here is the summary of how it works.

1. Construct the adjacency matrix A as per (3.41).

2. Choose a random vector v and set v(0) = v and t = 0.

3. v(t+1)
=

Av(t)√
‖Av(t)‖2

and increase t by 1.

4. Iterate Step 3 until converged, e.g., ‖v(t+1)
− v(t)‖2 < ε = 10−5.

Python implementation of the spectral algorithm We implement the spec-
tral algorithm via Python. The code below is almost the same as in the noiseless
setting. The only distinction is that yij is a noisy version of xi ⊕ xj . We consider a
setting where the flipping error rate θ = 0.1 and n = 4000.

from scipy.stats import bernoulli
from scipy.stats import pearsonr
import numpy as np
import matplotlib.pyplot as plt

n = 4000 # number of users
Bern = bernoulli(0.5)
Generate n community memberships
x = Bern.rvs(n)

Construct the codebook
X = np.zeros((n,n))
for i in range(len(x)):

for j in range(i,len(x)):
Compute xij = xi + xj (modulo 2)
X[i,j] = (x[i]+x[j]) % 2
Symmetric component
X[j,i] = X[i,j]

Construct an observation matrix
theta = 0.1 # noise flipping error rate
noise_Bern = bernoulli(theta)
noise_matrix = noise_Bern.rvs((n,n))
Y = (X + noise_matrix)%2

p = np.linspace(0.001,0.0065,30)
limit = 1/(1-np.sqrt(4*theta*(1-theta)))*np.log(n)/n
p_norm = p/limit

DNA Sequencing: Algorithm and Python Implementation 225

def power_method(A, eps=1e-5):
A computationally efficient algorithm
for finding the principal eigenvector
Choose a random vector
v = np.random.randn(n)
normalization
v = v/np.linalg.norm(v)

prev_v = np.zeros(len(v))
t = 0
while np.linalg.norm(prev_v-v) > eps:

prev_v = v
v = np.array(np.dot(A,v)).reshape(-1)
v = v/np.linalg.norm(v)
t += 1

print("Terminated after %s iterations"%t)
return v

corr = np.zeros_like(p)

for i,val in enumerate(p):
obs_bern = bernoulli(val)
Construct an n-by-n mask matrix:
entry = 1 (observed); 0 (otherwise)
mask_matrix = obs_bern.rvs((n,n))

Construct the adjacency matrix
A = (1-2*Y)*mask_matrix
Power method
v1 = power_method(A)
Threshold the principal eigenvector
v1 = np.sign(v1)
Compute the ground truth
ground_truth = 1-2*x
Compute Pearson correlation
corr[i] = np.abs(pearsonr(ground_truth,v1)[0])
print(p_norm[i], corr[i])

plt.figure(figsize=(5,5), dpi=200)
plt.plot(p_norm, corr)
plt.title(’Pearson correlation btw estimate and ground truth’)
plt.grid(linestyle=’:’, linewidth=0.5)
plt.show()

As depicted in Fig. 3.22, the Pearson correlation approaches 1 as p approaches the
limit p∗. As previously noted, there exists an alternative method that surpasses the

226 Data Science Applications

Figure 3.22. Pearson correlation between the ground-truth community vector and the

estimate obtained from the spectral algorithm: n = 4000 and θ = 0.1.

performance of the spectral algorithm. Let us now examine this algorithm in further
detail.

Additional step: Local refinement The other algorithm takes two steps: (i)
running the spectral algorithm; and then (2) performing an additional step called
local refinement. The role of the second step is to detect any errors assuming that
a majority of the components in the estimate vector are correct. The idea of local
refinement is to use coordinate-wise maximum likelihood estimator (MLE). Here
is how it works. Suppose we pick up an user, say user i. We then compute the
coordinate-wise likelihood w.r.t. the membership value of user i. However, com-
puting the coordinate-wise likelihood presents a challenge as it requires knowledge
of the ground-truth memberships of other users, which are not revealed. As a sur-
rogate, we employ an initial estimate, say x(0) = [x(0)1 , . . . , x(0)n], obtained in the
earlier step. Specifically, we compute:

xMLE
i = arg max

a∈{x(0),x(0)⊕1}
P(Y|x(0)1 , . . . , x(0)i−1, a, x(0)i+1, . . . , x(0)n).

DNA Sequencing: Algorithm and Python Implementation 227

To find xMLE
i , we only need to compare the two likelihood functions w.r.t. a = x(0)

and a = x(0) ⊕ 1. It boils down to comparing the following two:∑
j:(i,j)∈�

yij ⊕ x(0)i ⊕ x(0)j vs
∑

j:(i,j)∈�

yij ⊕ x(0)i ⊕ 1⊕ x(0)j (3.42)

where � indicates the set of (i, j) pairs such that yij 6= e. In order to gain an
insights into the above two terms, consider an idealistic setting where x(0) matches
the ground truth. In this case, the two terms become:∑

j:(i,j)∈�

zij vs
∑

j:(i,j)∈�

zij ⊕ 1. (3.43)

Since the noise flipping error rate θ is assumed to be less than 0.5, the first term is
likely to be smaller than the second. Hence, it would be reasonable to take the candi-
date that yields a smaller value among the two. This is exactly what the coordinate-
wise MLE does:

xMLE
i =

x(0)i ,
∑

j yij ⊕ x(0)i ⊕ x(0)j <
∑

j yij ⊕ x(0)i ⊕ 1⊕ x(0)j ;

x(0)i ⊕ 1, otherwise.

We follow the same procedure for all other users, performing the local refine-
ment step iteratively and step-by-step. This forms one iteration to yield x(1) =
[xMLE

1 , . . . , xMLE
n]. It has been shown in (Chen et al., 2016a) that with multiple iter-

ations (around the order of ln n iterations), the coordinate-wise MLE converges to
the ground-truth community vector. We will not provide a proof of this fact, but
instead, we will present simulation results that demonstrate the improved perfor-
mance offered by local refinement. Below is the code for local refinement:

initial estimate obtained from the spectral algorithm
x0 = (1- v1)//2
xt = x0

ITER = 3
for t in range(1,ITER):

xt1 = xt
for i in range(len(xt)):

Likelihood w.r.t. x_iˆ(t)
L1 = (Y[i,:] + xt[i] + xt)%2
L1 = L1*mask_matrix[i,:]
Likelihood w.r.t. x_iˆ(t)+1
L2 = (Y[i,:] + xt[i] + 1 + xt)%2
L2 = L2*mask_matrix[i,:]
xt1[i] = xt[i]*(sum(L1) <= sum(L2)) \

228 Data Science Applications

+ ((xt[i]+1)%2)*(sum(L1)>sum(L2))
xt = xt1

Performances of the spectral algorithm vs local refinement We compare
the Pearson correlations of the spectral algorithm and the two-step approach with
local refinement, for a setting where n = 4000 and θ = 0.1. We set the number of
iterations in the local refinement step as 9, since it is close to the suggested number
(ln 4000 = 8.294). Here is a code for simulation.

from scipy.stats import bernoulli
from scipy.stats import pearsonr
import numpy as np
import matplotlib.pyplot as plt

n = 4000 # number of users
Bern = bernoulli(0.5)
Generate n community memberships
x = Bern.rvs(n)

Construct the codebook
X = np.zeros((n,n))
for i in range(len(x)):

for j in range(i,len(x)):
Compute xij = xi + xj (modulo 2)
X[i,j] = (x[i]+x[j]) % 2
Symmetric component
X[j,i] = X[i,j]

Construct an observation matrix
theta = 0.1 # noise flipping error rate
noise_Bern = bernoulli(theta)
noise_matrix = noise_Bern.rvs((n,n))
Y = (X + noise_matrix)%2

p = np.linspace(0.001,0.0065,30)
limit = 1/(1-np.sqrt(4*theta*(1-theta)))*np.log(n)/n
p_norm = p/limit

corr1 = np.zeros_like(p)
corr2 = np.zeros_like(p)

for i, val in enumerate(p):
obs_bern = bernoulli(val)
Construct an n-by-n mask matrix:

DNA Sequencing: Algorithm and Python Implementation 229

entry = 1 (observed); 0 (otherwise)
mask_matrix = obs_bern.rvs((n,n))

##################################
######## Spectral algorithm ######
##################################
Construct the adjacency matrix
A = (1-2*Y)*mask_matrix
Power method
v1 = power_method(A)
Threshold the principal eigenvector
v1 = np.sign(v1)

##################################
######## Local refinement ########
##################################
initial estimate (from the spectral algorithm)
x0 = (1- v1)//2
xt = x0
number of iterations
ITER = 9
for t in range(1,ITER):

xt1 = xt
coordinate-wise MLE
for k in range(len(xt)):

Likelihood w.r.t. x_kˆ{(t)}
L1 = (Y[k,:] + xt[k] + xt)%2
L1 = L1*mask_matrix[k,:]
likelihood w.r.t. x_kˆ{(t)}+1
L2 = (Y[k,:] + xt[k] + 1 + xt)%2
L2 = L2*mask_matrix[k,:]
xt1[k] = xt[k]*(sum(L1) <= sum(L2)) \

+ ((xt[k]+1)%2)*(sum(L1)>sum(L2))
xt = xt1

Compute the ground truth
ground_truth = 1-2*x
Compute Pearson correlation
corr1[i] = np.abs(pearsonr(ground_truth,v1)[0])
corr2[i] = np.abs(pearsonr(ground_truth,1-2*xt)[0])
print(p_norm[i], corr1[i], corr2[i])

plt.figure(figsize=(5,5), dpi=200)
plt.plot(p_norm, corr1, label=’spectral algorithm’)
plt.plot(p_norm, corr2, label=’local refinement’)
plt.title(’Pearson correlation btw estimate and ground truth’)

230 Data Science Applications

plt.legend()
plt.grid(linestyle=’:’, linewidth=0.5)
plt.show()

Figure 3.23. Pearson correlation performances of the spectral algorithm and local refine-

ment: n = 4000 and θ = 0.1.

Fig. 3.23 demonstrates that the inclusion of the local refinement step leads to an
improvement in performance.

Look ahead We have investigated two data science applications that exhibit
phase transitions. The subsequent section will delve into another data science appli-
cation that involves phase transition.

Problem Set 8 231

Problem Set 8

Prob 8.1 (Reverse Chernoff bound) Suppose we observe n i.i.d. discrete ran-
dom variables Y n := (Y1, . . . , Yn). Consider two hypotheses H0 : Yi ∼ P0(y);
and H1 : Yi ∼ P1(y) for y ∈ Y and i ∈ {1, . . . , n}. Define the Chernoff informa-
tion D∗ as:

D∗ = − min
0≤λ≤1

ln

∑
y∈Y

P0(y)λP1(y)1−λ

.

Let Lk be the likelihood function w.r.t. Hk:

Lk = P(Y n
|Hk).

Assume that P0 ∼ Bern(θ) and P1 ∼ Bern(1− θ) for a fixed θ ∈ (0, 1
2).

(a) Compute D∗.
(b) Show that

P(L1 ≥ L0|H0) ≤ e−nD∗ .

(c) Fix ε > 0. For sufficiently large n, show that

P(L1 ≥ L0|H0) ≥ e−(1+ε)nD∗ .

Prob 8.2 (Useful bounds) Let p = λ ln n
n for some positive constant λ.

(a) Show that

ln n−1∑
`=0

(
n
`

)
p`(1− p)n−` ≤ (1− p)n ln n

(
np

1− p

)ln n

.

(b) Show that

n∑
`=0

(
n
`

)
p`(1− p)n−` = (1− p)n

(
1+

p
1− p

)n

.

(c) Show that there exists εn > 0 such that εn → 0 as n→∞ and

n∑
`=ln n

(
n
`

)
p`(1− p)n−` ≥ (1− εn)(1− p)n

(
1+

p
1− p

)n

.

232 Data Science Applications

Prob 8.3 (Generalized Chernoff bound) Suppose we observe n i.i.d. discrete
random variables Y n := (Y1, . . . , Yn). Consider two hypotheses H0 : Yi ∼ P0(y);
and H1 : Yi ∼ P1(y) for y ∈ Y . Define the Chernoff information as:

D∗ := − min
0≤λ≤1

ln

∑
y∈Y

P0(y)λP1(y)1−λ

.

Let Lk be the likelihood function w.r.t. Hk: Lk = P(Y n
|Hk).

(a) Show that for a, b > 0 and λ ∈ [0, 1],

min{a, b} ≤ aλb1−λ.

(b) Let A := { yn : P(yn
|H1) ≥ P(yn

|H0)}. Show that

P(L1 ≥ L0|H0) =
∑
yn∈A

n∏
i=1

P0(yi).

(c) Using parts (a) and (b), show that

P(L1 ≥ L0|H0) ≤ e−nD∗ . (3.44)

Prob 8.4 (A generalized model for community detection) Suppose there
are n users clustered into two communities. Let xi ∈ {0, 1} indicate a community
membership with regard to user i ∈ {1, 2, . . . , n}. Assume that we are given part of
the comparison pairs:

yij =

{
∼ P(yij|xij), w.p. p;

e, w.p. 1− p

for every pair (i, j) ∈ {(1, 2), (1, 3), · · · , (n − 1, n)} and p ∈ [0, 1]. Whenever an
observation is made, yij is generated as per:

P(yij|xij) =

{
P0(yij), xij = 0;

P1(yij), xij = 1.

We also assume that yij ’s are independent over (i, j). Given yij ’s, one wishes to
decode the community membership vector x := [x1, x2, . . . , xn] or x ⊕ 1 :=
[x1 ⊕ 1, x2 ⊕ 1, . . . , xn ⊕ 1]. Let x̂ be a decoded vector. Define the probability
of error as Pe = P(x̂ /∈ {x, x ⊕ 1}). Suppose we employ the ML decoding rule:

x̂ML = arg max
x

L(x)

where L(x) := P(Y|X(x)) indicates the likelihood function w.r.t. x.

Problem Set 8 233

(a) Show that

Pe ≤

n−1∑
k=1

(
n
k

)
P(x̂ML = ak|x = 0)

where ak = [1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . , 0︸ ︷︷ ︸
n−k

].

(b) Let M be the number of observations made in the distinguishable positions
between X(ak) and X(0). Show that

P(x̂ML = ak|x = 0) ≤
k(n−k)∑
`=0

(
k(n− k)

`

)
p`(1− p)k(n−k)−`

× P(L(ak) ≥ L(0)|x = 0, M = `).

(c) Using the above and part (c) in Prob 8.3, show that

Pe ≤

n−1∑
k=1

(
n
k

)
(1− p(1− e−D∗))k(n−k)

where D∗ denotes the Chernoff information:

D∗ := − min
0≤λ≤1

ln

∑
y∈Y

P0(y)λP1(y)1−λ

.

(d) Using the above and Prob 7.3, show that if p > ln n
n ·

1
1−e−D∗ , Pe can be

made arbitrarily close to 0 as n→∞.

Prob 8.5 (True or False?)

(a) Suppose that X1 ∼ Bern(p), X2 ∼ Bern(1
2) and S = X1 ⊕ X2. Then, S

follows Bern(1
2) for any p ∈ [0, 1].

(b) Let X = [X1, X2, . . . , Xn]T be an i.i.d. random vector, each being according
to Bern(1

2). Let A be an n-by-n full-rank matrix with Aij ∈ {0, 1} entries.
Let Y = AX, i.e., Yi =

∑n
j=1 AijXj . Here the summation is modulo-2

addition. Then, Yi’s are i.i.d.

234 Data Science Applications

(c) Let X1 and X2 be independent random variables, each being according to
Bern(1

2). Suppose we observe

(Y1, Y2) =

{
(X1 ⊕ Z1, X2 ⊕ Z2), w.p. 1− α;

(X1 ⊕ 1⊕ Z1, X2 ⊕ 1⊕ Z2), w.p. α

where Z1 and Z2 are independent random variables ∼ Bern(q), being also
independent of (X1, X2). Then, Y1⊕Y2 is a sufficient statistic w.r.t. (X1, X2).

Top-K Ranking: Fundamental Limits 235

3.9 Top-K Ranking: Fundamental Limits

Recap Throughout the previous sections, we have examined two data science
applications that incorporate information theory, wherein a precise threshold on
the amount of information required to perform a specific task exists. Moreover, we
have discovered that various bounding techniques covered in Parts I and II play
a role in characterizing the fundamental limits of the explored problems, such as
community detection and Haplotype phasing.

Outline In the upcoming sections, we will explore another data science applica-
tion where phase transition occurs, specifically in the context of rank aggregation.
Our focus will be on a particular type of ranking problem, known as top-K rank-
ing, which aims to address the computational challenge posed by the huge number
of items to be ranked in the big data era. We will first provide an overview of the
ranking problem and highlight the aforementioned challenge. Then, we will intro-
duce top-K ranking and explain how it differs from traditional ranking methods.
Subsequently, we will present a benchmark model that can be used to evaluate
the performance of ranking algorithms. Finally, we will investigate the fundamen-
tal limits of top-K ranking and show how phase transition occurs in terms of the
amount of information required to achieve reliable ranking.

Ranking Ranking refers to the process of arranging items in order of significance.
One example of ranking is a competition where several candidates participate, and
the judges have to rank them in order of quality to determine the winner(s). In
the simplest scenario, if each candidate has a score that indicates their quality, and
those scores are known, then ranking is a straightforward task of sorting the can-
didates according to their scores. One can employ one of the well-known sorting
algorithms (like quick sorting, bubble sorting, merge sorting, etc1) to obtain a rank-
ing. Numerous sorting algorithms are available, which can sort a large number of
items efficiently with a relatively small number of comparisons, typically scaling as
n ln n. However, the challenge arises when we do not know the individual scores of
the candidates, which was assumed in the previous scenario. In reality, it is not that
easy to assess the value of individuals. How can we assign an absolute value to people
or items? It is nearly impossible. Therefore, in practical scenarios, individual scores
are often not available. On the other hand, pairwise comparisons are relatively easy
to obtain. For a given pair of candidates, it may be possible to determine which one
is better than the other without having knowledge of their absolute qualities.

1. These are very well known in the computer science literature. For those who are not familiar with, please
refer to an introductory book on data structure and/or wikepedia.

236 Data Science Applications

Figure 3.24. Small-scale ranking based on pairwise comparisons.

In situations where only pairwise comparisons are available, obtaining a ranking
becomes a challenging task. One approach to tackle this problem is to aggregate
all the comparison information to determine the order of all the candidates. By
analyzing each comparison, one can determine which candidate is preferred over
the other, and subsequently obtain a ranking. For instance, in Fig. 3.24, where
the number of candidates is 7, this approach would require at most 21 (=

(7
2

)
)

comparisons. Thus, it is evident that ranking is straightforward for small-scale
problems.

Large-scale ranking However, as the scale of the ranking problem increases, it
becomes increasingly challenging. A prime example is web search, which is handled
by search engines such as Google and Bing. The number of items (in this case, web-
sites) to be ranked is enormous, with Google alone managing billions (on the order
of 109) of websites. When a user enters a query, the search engine must provide a
list of relevant websites, but the sheer volume of related websites poses a significant
challenge.

Challenge in large-scale ranking To illustrate the challenge, let us consider the
naive ranking approach discussed earlier. If we were to use this approach to rank
the websites in the web search example, we would require an enormous number of
comparisons given that the number of websites is in the billions. Specifically, we

would need a total of n2

2 (≈
(n

2

)
) comparisons, which is an extremely large number,

around 1018 for the web search example. This means that ranking is no longer a
trivial task, and it begs the question of whether this number of comparisons is truly
necessary or if there exists a more efficient ranking algorithm.

Top-K Ranking: Fundamental Limits 237

Unfortunately, two conventional assumptions impose a fundamental lower
bound of around n2 comparisons, which cannot be beaten. The first assumption
is that we require a complete ordering of the items, while the second assumption
is that pairwise comparisons are given probabilistically. This second assumption is
relevant in many practical applications, such as web search where pairwise com-
parisons can be formed from hyperlink information. Since we cannot control the
existence of such information, it is reasonable to assume that it is given probabilisti-
cally. Another example is Twitter’s follower information, where user A follows user
B, and this information is also given by a context. To capture this passively given
information, we can assume that pairwise samples are given in a random manner.

Assuming the two conventional assumptions mentioned earlier, obtaining a
ranking becomes a huge challenge because it requires almost all comparisons, which

is around n2

2 . This is due to the fact that in order to identify the order between two
consecutive candidates, a direct comparison between any two adjacent items is nec-
essary. Therefore, all comparisons are required with probability 1, making the total
number of required comparisons too large to handle, especially when dealing with
a large scale ranking such as web search, where the number of items (websites) can
be in the billions. This is why Google’s ranking algorithm, PageRank, is an offline
algorithm that pre-computes ranking results for popular queries and stores them
in a table. However, this approach is not real-time and may result in outdated or
missing results.

Why does the challenge arise? The challenge arises because we are focused on the

ordering of all items, which requires a fundamental lower bound of n2

2 comparisons.

Top-K ranking To tackle this challenge, a straightforward yet effective approach
can be adopted based on the following observation: in many practical scenarios, the
focus is only on identifying a small number of significant items, such as the top-K
ranked items, among a large number of alternatives. A classic example is web search,
where only the top 20 or 30 relevant websites are of interest, rather than the entire
list of relevant websites.

This observation motivates us to shift our focus to top-K ranking, where the goal
is to identify the top-K ranked items rather than obtaining a complete ordering.
Clearly, this approach can significantly reduce the number of required comparisons
for ranking. This gives rise to natural information-theoretic questions.

• What is the fundamental limit on the number of pairwise comparisons
required for top-K ranking?

• Is there a computationally efficient algorithm that can achieve the limit?

There exists the fundamental limit which is far below ∼ n2/2. Also, there is an
efficient algorithm that can achieve the limit. We will explore them in depth.

238 Data Science Applications

1

64

7

2 5

3

Figure 3.25. A comparison graph in the BTL model.

A benchmark model The information-theoretic limit is determined by a math-
ematical model that measures the accuracy of pairwise comparisons. The Bradley-
Terry-Luce (BTL) model, which has been widely used as a benchmark model for
evaluating ranking algorithms, is a prominent example of such a model (Bradley
and Terry, 1952). It is commonly believed that an algorithm that performs well
under the BTL model will perform well in practice, although it is not always
the case.

The BTL model is based on two key assumptions. The first assumption is that
there are ground truth scores, x := [x1, x2, . . . , xn], that determine the ranking of
the items, with higher scores corresponding to higher rankings. The second assump-
tion is related to the quality of information available. When the number n of items
is very large, it is not feasible to observe all possible pairs of items, and we can only
access a subset of them. To account for this, we introduce a comparison graph that
shows which pairs have been observed (see Fig. 3.25). In the comparison graph, an
edge indicates that a comparison has been made between the two items it connects.
For a given pair of items i and j that have been observed, we are provided with pair-
wise comparison information that indicates whether item i is preferred over item j:

yij = 1{item i � item j}, (i, j) ∈ E

where 1{·} denotes an indicator function and E indicates the edge set. This model
assumes that the winning rate is proportional to the relative score of the two asso-
ciated items. Hence, the probability of item i winning over item j is xi

xi+xj
, which

in turn yields:

yij ∼ Bern

(
xi

xi + xj

)
. (3.45)

Top-K Ranking: Fundamental Limits 239

Figure 3.26. Translation of top-K ranking into a communication problem.

Notice that yij is a noisy data. In an effort to combat the noise effect, this

model allows for repeated independent comparisons, say L repetitions: y(`)ij i.i.d.
∼ Bern(xi

xi+xj
) over ` ∈ {1, 2, . . . , L}.

Translation to a communication problem Interpreting x as a message that
we wish to infer given { y(`)ij }, we can view the ranking problem as an inference

problem. Note that y(`)ij ’s are statistically related to x (see (3.45)). Hence, one can
translate the problem into a communication problem.

We start with x and this is fed into an encoder. See Fig. 3.26. The encoder is
a pairwise information function. Since the observation quality hinges upon the
relative score of two items involved, one can set the function so as to yield:

xij :=
xi

xi + xj
.

Since we can access to only part of pairwise information in a random manner and
also what we observe is the binary information, we can abstract the measurement
process as an erasure channel:

yij =

{
Bern(xij), w.p. p;

e, w.p. 1− p

where p indicates the observation probability. Assume that whenever an observation
is made (i.e., (i, j) ∈ E), L independent copies are given: y(`)ij ’s i.i.d. over ` ∈
{1, 2, . . . , L}.

Given { y(`)ij }’s, the goal is to identify a set of top-K ranked items. Since it is a
function of x, we denote this by f (x).2 We consider a simple setting which aims
at decoding the top-K set. One may want to consider another practically-relevant
setting which targets the order of the top-K items as well.

An optimization problem As we did in the previous instances, we define two
performance metrics. One is the quantity that we are interested in characterizing

2. It is in contrast to the previous instances (communication, community detection and Haplotype phasing)
which aim at decoding x. In general inference problems, what we wish to decode is a function of x, so the
case herein belongs to the general setting.

240 Data Science Applications

the limit on: the number of pairwise comparisons, sample complexity. Due to the
WLLN, it is concentrated around

(n
2

)
pL in the limit of n. The second is the error

probability defined as Pe := P(f̂ (x) 6= f (x)). With these two metrics, we can
formulate an optimization problem as we did earlier. Given (p, L, n):

P∗e (p, L, n) := min
algorithm

Pe.

Similar to the communication and community detection problems, it is not that
easy to derive the probability of error. It has been wide open. To make some
progress, we focus on the asymptotic regime in which n is pretty large. This moti-
vates us to ponder upon the following optimization. Given (p, L),

P∗e (p, L) := min
algorithm,n

Pe.

The distinction is that n plays as a control variable that we optimize over. It turns
out for some (p, L), we can make Pe arbitrarily close to zero as n→∞. We say that
such (p, L) is achievable. We are interested in characterizing the minimal achievable
region R of (p, L).

Minimal achievable region of (p, L) The minimal achievable region depends
highly on one key metric. The key metric is the separation score between the bound-
ary items (the K th and (K + 1)th ranked items):

1K :=
xK − xK+1

xK
.

Here 1K indicates the normalized separation score.
Our intuition says that the larger separation score, the easier to rank, thus yield-

ing the smaller achievable (p, L). This is indeed the case. More concretely, it has
been shown that for some positive constants 0 < c2 < c1 (Chen and Suh, 2015):

pL > c1
ln n

n12
K

H⇒ Pe → 0,

pL < c2
ln n

n12
K

H⇒ Pe 9 0.

We focus on a feasible regime in which p > ln n
n . Otherwise, the comparison graph

is disconnected (why?), thus ranking becomes impossible. See Fig. 3.27 for an illus-
tration of the minimal achievable region.

Top-K Ranking: Fundamental Limits 241

graph is
disconnected

Figure 3.27. Minimal achievable region of (p, L).

Using the above result, one can characterize the order-wise tight minimal sample
complexity:

S∗ = 2

(
n ln n

12
K

)
.

The standard notation y = 2(x) means that there exist positive constants c1 and
c2 such that c2x ≤ y ≤ c1x. This result makes an intuitive sense. The larger 12

K ,
the easier to rank, thus reducing sample complexity. Also comparing to

S∗total-order = O(n2),

the result is promising. With top-K ranking, we can reduce the sample complexity
from ∼ n2 to ∼ n ln n. Here the standard notation y = O(x) means that there
exists a positive constant c such that y ≤ cx.

Look ahead In the next section, we will study an efficient algorithm that achieves
the limit: for some positive constant c,

pL > c
ln n

n12
K

H⇒ Pe → 0.

242 Data Science Applications

3.10 Top-K Ranking: An Efficient Algorithm

Recap In the previous section, we delved into a ranking problem. Our focus was
on top-K ranking, where the objective is to retrieve the top-K ranked items, driven
by numerous practical applications. Using the well-established BTL model (Bradley
and Terry, 1952) as a benchmark, we transformed it into a communication prob-
lem, where the ground-truth scores were represented by the input x, and the target
function f (x) was the set of top-K items. Under the BTL model, every pair of
items is observed randomly and uniformly with probability p, and each observed
pair has L independent copies, each following Bern(xi

xi+xj
) for items i and j. We

asserted that the minimum number of pairwise comparisons required for reliable
top-K ranking, i.e., the minimum sample complexity, is:

2

(
n ln n

12
K

)
(3.46)

where 1K := xK−xK+1
xK

denotes the normalized score separation between the K th
and (K + 1)th items, reflecting a difficulty level of separating the two boundary
items.

Outline In this section, our focus will be on a computationally efficient algorithm
that achieves the aforementioned limit (3.46). This section consists of four parts.
Firstly, we will introduce a performance metric that captures the ranking perfor-
mance associated with the BTL model. Next, we will discuss one well-known algo-
rithm that aims to maximize this ranking performance, which is a modified version
of Google’s PageRank. After that, we will draw attention to a challenge faced by
this variant. Finally, we will examine a more advanced algorithm that overcomes
the challenge and achieves the minimum sample complexity stated in (3.46).

How to estimate scores? In the BTL model, scores correspond to a rank-
ing such that higher scores imply higher rankings. Therefore, we adopt a two-step
approach consisting of score estimation followed by ranking based on the estimate.
The question then becomes how to estimate the scores. To answer this, we first
need to identify a suitable metric that quantifies the quality of an estimate. One
commonly used performance metric is the probability of error, which is defined as:

Pe := P(x̂ 6= x).

This is not a proper metric in our problem setting though. Why? Pe is always 1 no
matter what the decoder is. It cannot distinguish good decoders from bad ones. This
is because x is a continuous value, which leads the success event to have measure 0.

Top-K Ranking: An Efficient Algorithm 243

In the context of estimation in which one wishes to infer a continuous quantity, there
is a well-known metric: Mean Square Error (MSE) defined as

1

n
‖x̂ − x‖2 :=

1

n

n∑
i=1

(x̂i − xi)
2.

We wish to develop algorithms that minimize the MSE.

A slight variant of PageRank There is one popular algorithm that minimizes
the MSE in the context of ranking problems (Negahban et al., 2012). That is,
a slight variant of PageRank, the backbone of Google’s web search engine. We
employ the variant.

Let us explain how the algorithm works. Here are a few key observations that give
an inspiration to the algorithm. Remember that when a pair of (i, j) is observed, we
are given L independent copies: y(1)ij , y(2)ij , . . . , y(L)ij . From this, what we can compute
is its empirical mean:

yij :=
1

L

L∑
`=1

y(`)ij , (i, j) ∈ E (3.47)

where E denotes the edge set of the comparison graph. One key observation is: by
the WLLN, the empirical mean converges to its true mean:

yij :=
1

L

L∑
`=1

y(`)ij
in prob.
−→ E[y(`)ij] =

xi

xi + xj
. (3.48)

Also observe that

xi ·
xj

xi + xj
= xj ·

xi

xi + xj
. (3.49)

This formula (3.49) reminds us of the detailed balance equation in a Markov chain:

πipji = πjpij

where πi := P(state = i) (stationary distribution) and pji := P(statenext =

j|statecurrent = i) (transition probability). We can view xi as πi and
xj

xi+xj
as pji.

This motivates us to construct a Markov chain in which transition probabil-
ity from j to i takes yij which converges to xi

xi+xj
as L → ∞. One caveat is that∑

i yij can exceed 1 while
∑

i pij must be 1. To resolve this, we normalize yij by the
maiximum out-degree (maximum number of out-going edges), denoted by dmax:

pij =
yij

dmax
.

244 Data Science Applications

i j

k
Figure 3.28. A Markov chain inspired by observations of (3.48) and (3.49).

Also we add self-transition to ensure
∑

i pij = 1:

pjj = 1−
1

dmax

∑
m:(m,j)∈E

ymj .

Now by (3.48), one can see that

πi
xj

xi + xj
= πj

xi

xi + xj
.

This together with (3.49) concludes that the stationary distribution π converges to
x up to some scaling as L→∞. This series of observations leads to the following
natural idea:

Take x̂ = π.

Then, how to compute π? To gain some insight, consider the following equation
(called the global balance equation in the Markov chain literature):∑

j

pijπj = πi.

Alternative matrix representation of this is:

Pπ = π

where P denotes the transition probability matrix:

P :=

p11 p12 · · · p1n

p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn

.

Top-K Ranking: An Efficient Algorithm 245

From this, we see that π is an eigenvector of P. It is well-known in the Markov
chain literature that the stationary distribution π is the first eigenvector (with the
largest eigenvalue) of the transition probability matrix. Remember that one very
efficient and useful way of computing the first eigenvector is the power method . See
Section 3.4.

Additional step: Local refinement The PageRank variant taking x̂ = π

exhibits a great MSE performance (Negahban et al., 2012). Is this algorithm enough
then? We are interested in a ranking, not the scores x themselves. So one may ask:
Does the MMSE solution implies high ranking accuracy? It turns out it is not
necessarily the case. We can readily see this from the following scenario in which
many of the estimates are very close to the ground truth scores while only a very
few of the estimates (let’s call them outliers) are far from the ground truth. In this
case, the MSE can be very small while ranking accuracy is not that good due to
the outliers. See such an example in Fig. 3.29. Notice that many of the estimates
are close to the ground-truth scores, leading to a small MSE; however, its ranking
result (t̂op-3) is distinct from the ground-truth top-3. From this observation, we
see that coordinate-wise errors are required to be small enough in order to ensure
high ranking accuracy.

Remember the advanced algorithm for Haplotype phasing in Section 3.8. The
advanced algorithm employs an additional step (called local refinement) in an effort
to detect any coordinate-wise error. This motivates us to apply the same method
herein. The role of the second step in this problem setup is to detect outliers and
then control corresponding errors in a point-wise manner. To implement this, we
use coordinate-wise maximum likelihood estimator (MLE) which tries to mini-
mize coordinate-wise MSE. Here is how it works. Pick up an item, say item i. We
then compute the coordinate-wise MLE w.r.t. item i. Similar to Haplotype phasing,

Figure 3.29. An example in which the MSE of an estimate is small while its ranking result

(t̂op-3) is distinct from the ground-truth top-3.

246 Data Science Applications

computing the coordinate-wise maximum likelihood estimate (MLE) poses a chal-
lenge. It necessitates having knowledge of the ground-truth scores of other items
that are not accessible. Therefore, we adopt the same approach as before and utilize
an estimate obtained in the previous step. Specifically, we compute:

xMLE
i = arg max

a
L(x̂1, . . . , x̂i−1, a, x̂i+1, . . . , x̂n)

where x̂j denotes the estimate obtained in the previous stage; and L(·) indicates the
likelihood function:

L(x̂1, . . . , x̂i−1, a, x̂i+1, . . . , x̂n)

=

∏
j:(i,j)∈E

L∏
`=1

P
(

y(`)ij |x̂1, . . . , x̂i−1, a, x̂i+1, . . . , x̂n

)

=

∏
j:(i,j)∈E

L∏
`=1

(
a

a+ x̂j

)y(`)ij
(

x̂j

a+ x̂j

)1−y(`)ij

=

∏
j:(i,j)∈E

(
a

a+ x̂j

)Lyij
(

x̂j

a+ x̂j

)L(1−yij)

(3.50)

where the last equality is due to the definition of yij := 1
L

∑L
`=1 y(`)ij (see (3.47)).

We then compute the gap between the coordinate-wise MLE and its earlier
estimate:

d := |xMLE
i − x̂i|.

We declare x̂i to be an outlier if d exceeds a certain threshold which is carefully
chosen, and then replace x̂i with xMLE

i in an effort to control the corresponding
error. Otherwise, we keep x̂i as it is. We repeat the same procedure for other items,
one-by-one and step-by-step. This forms one iteration. We do multiple iterations.
The formula of the threshold is suggested in detail from (Chen and Suh, 2015):

δ(t) = c

{√
ln n
npL
+

1

2t

(√
ln n
pL
−

√
ln n
npL

)}
(3.51)

where c indicates some positive constant and t refers to the iteration index: 0 ≤
t ≤ Titer. The rationale behind this choice is two folded. First, in the initial stage

t = 0,
√

ln n
pL can be shown to be order-wise greater than the maximum gap between

Top-K Ranking: An Efficient Algorithm 247

x̂i and xMLE
i :

max
1≤i≤n

|xMLE
i − x̂i| ≤ c1

√
ln n
pL

(3.52)

for some positive constant c1. Second, at the end of the last stage,
√

ln n
npL can be

proven to be an upper bound:

max
1≤i≤n

|xMLE
i − x(Titer−1)

i | ≤ c2

√
ln n
npL

(3.53)

for some positive constant c2. Here x(t)i refers to the coordinate-wise MLE of the
ith item at the t-th iteration. Due to the interest of this book, we will omit the
proof of the bounds.

Minimum sample complexity It has been shown in (Chen and Suh, 2015)
that the PageRank variant together with local refinement yields: if the number of
iterations is around ln n, then for some positive constant c,(

n
2

)
pL > c ·

n ln n

12
K

H⇒ Pe → 0.

This completes the achievability proof. In fact, the analysis for the above is not that
simple. It requires a variety of techniques including: (i) non-trivial linear-algebra
tricks; (ii) Chernoff-like bounds; (iii) a bunch of inequalities such as Cauchy-
Schwarz, triangle, Pinsker’s, etc. We omit details. We will also omit the other direc-
tion proof: for some other constant c′ > 0,

Pe → 0 H⇒

(
n
2

)
pL > c′ ·

n ln n

12
K

.

To know more know, refer to (Chen and Suh, 2015).

Look ahead We have explored the third application of data science, namely top-
K ranking, and examined the minimum sample complexity required for reliable
top-K ranking. Additionally, we investigated an efficient algorithm that achieves
the limit with a constant factor gap. In the subsequent section, we will implement
this efficient algorithm using Python.

248 Data Science Applications

3.11 Top-K Ranking: Python Implementation

Recap In the previous sections, we explored the problem of top-K ranking, which
is another inference problem concerning phase transition. We examined an efficient
algorithm that achieves the minimal sample complexity, up to a constant factor gap.

S :=

(
n
2

)
pL > c

n ln n

12
K

H⇒ Pe →∞ (3.54)

where c is some positive constant and 1K := xK−xK+1
xK

denotes the normalized
score separation between the K th and (K + 1)th items.

Outline In this section, we will delve into the algorithm by implementing it in
Python. This section consists of four parts. First, we will provide a pseudocode
of the algorithm that outlines all the detailed procedures. Second, we will focus
on implementing the first stage of the algorithm, which is the PageRank variant.
This variant finds the first eigenvector of the transition probability matrix in the
relevant Markov chain. We will also evaluate the performance of the algorithm by
calculating the mean squared error (MSE) between the ground truth score vector
x and its estimate x̂. Third, we will incorporate the second stage of the algorithm
(local refinement) to implement the advanced version. Finally, we will compare the
MSE performance of the two algorithms.

Pseudocode of the efficient algorithm The efficient algorithm consists of
two stages: (i) obtaining an initial estimate of x via the spectral algorithm (finding
the first eigenvector of the transition probability matrix of a Markov chain); and
(ii) performing local refinement of the initial estimate via the coordinate-wise MLE.
Details of the first stage are given as below.

1. Given y(`)ij ’s and E , compute yij for all (i, j) ∈ E : yij =
1
L

∑L
`=1 y(`)ij .

2. Compute the transition matrix P = [pij]: pij =
yij

dmax
, (i, j) ∈ E . Here dmax =

max1≤j≤n |{(i, j) : (i, j) ∈ E ∀i}|. For the (j, j) entry,

pjj = 1−
1

dmax

∑
m:(m,j)∈E

ymj .

3. Compute the stationary distribution π to obtain x(0) = nπ.

In Step 3, we multiply π by n for a proper scaling. This way, an estimated score x(0)i
does not scale with n. The second stage for local refinement is described as follows.

Top-K Ranking: Python Implementation 249

4. For t ∈ {0, . . . , Titer − 1}, iterate the following: for each 1 ≤ i ≤ n,

xMLE
i = arg max

a
lnL(x(t)1 , . . . , x(t)i−1, a, x(t)i+1, . . . , x(t)n)

x(t+1)
i =

{
xMLE

i , |xMLE
i − x(t)i | > δ(t);

x(t), |xMLE
i − x(t)i | ≤ δ

(t).

Here lnL(·) indicates the log-likelihood function:

lnL(x(t)1 , . . . , x(t)i−1, a, x(t)i+1, . . . , x(t)n)

=

∑
j:(i,j)∈E

Lyij ln

 a

a+ x(t)j

+ L(1− yij) ln

 x(t)j

a+ x(t)j

= L

∑
j:(i,j)∈E

(1− yij) ln x(t)j + L
∑

j:(i,j)∈E

{
yij ln a− ln(a+ x(t)j)

}
,

and δ(t) denotes the threshold for comparison:

δ(t) = c

{√
ln n
npL
+

1

2t

(√
ln n
pL
−

√
ln n
npL

)}
for some positive constant c.

Python implementation of the PageRank variant We implement the
PageRank variant (corresponding to Steps 1,2 and 3 in the above). For illustrative
purpose, we first consider a simple setting where interested parameters are small
numbers.
import numpy as np
n=4
K=2 # top-K ranking
p=2*np.log(n)/n # for graph connectivity
L=100

We set p = 2 ln n
n to ensure graph connectivity (p > ln n

n). The parameter L is
chosen as 100. We generate the ground truth score vector x. To emphasize the sep-
aration score between the K th and (K + 1)th scores, we set xK = 0.8 and xK+1 =

0.8 − gap such that 1K is fixed as xK−xK+1
xK

=
gap
0.8 . We choose gap = 0.1 to have

1K = 0.125. On the other hand, we generate (x1, . . . , xK−1) and (xK+2, . . . , xn),
uniformly distributed from [0.8, 1] and [0.8− gap, 0.5], respectively.

Generate the ground truth score vector
def scoreVector(gap,n,K):

Generate top-K items btw 0.8 and 1

250 Data Science Applications

xt=np.random.uniform(0.8,1,K)
xt=sorted(xt,reverse=True)
xt[K-1]=0.8
Generate n-K bottom items btw 0.5 and 0.8-gap
xb=np.random.uniform(0.5,0.8-gap,n-K)
xb=sorted(xb,reverse=True)
xb[0]=0.8-gap
x=np.concatenate((xt,xb))
score scaling
x=x/sum(x)*n
Compute DeltaK
DeltaK=(x[K-1]-x[K])/x[K-1]
sample complexity
return x,DeltaK

gap=0.1
x,DeltaK=scoreVector(gap,n,K)
S=n*(n-1)/2*p*L
claimed limit
limit=n*np.log(n)/(DeltaK**2)
print(x)
print(DeltaK)
print(S)
print(limit)

[1.1848639 1.04924926 0.9180931 0.84779374]
0.12500000000000003
415.88830833596717
354.8913564466918

In this setup, the sample complexity is above the claimed limit.
Next, we construct a comparison graph.

from scipy.stats import bernoulli

def genGraph(n,p):
Generate a comparison graph
Bern = bernoulli(p)
G = Bern.rvs((n,n))
make G symmetric
for i in range(n):

for j in range(i,n): G[j,i]=G[i,j]
for i in range(n): G[i,i]=0
compute dmax=max_j |{(i,j):(i,j) in G forall i}|

dmax=max(sum(G))
return G,dmax

Top-K Ranking: Python Implementation 251

G,dmax=genGraph(n,p)
print(G)
print(dmax)

[[0 1 1 1]
[1 0 1 1]
[1 1 0 1]
[1 1 1 0]]

3

Using the comparison graph, we generate observations y(`)ij ’s and then compute
yij and pij as per Steps 1 and 2 in the pseudocode.

from numpy.random import binomial

def transitionMatrix(x,n,L,G,dmax):
initialization
Y=np.zeros((n,n))
P=np.zeros((n,n))
construct transition matrix
for i in range(n):

for j in range(i,n):
if G[i,j]==1:

Y[i,j]=binomial(L,x[i]/(x[i]+x[j]))/L
Y[j,i]=1-Y[i,j]
P[i,j]=Y[i,j]/dmax
P[j,i]=Y[j,i]/dmax

add self-transition
for i in range(n): P[i,i]=1-sum(P[:,i])
return P,Y

P,Y=transitionMatrix(x,n,L,G,dmax)
print(Y)
print(P)

[[0. 0.51 0.58 0.58]
[0.49 0. 0.55 0.63]
[0.42 0.45 0. 0.51]
[0.42 0.37 0.49 0.]]

[[0.55666667 0.17 0.19333333 0.19333333]
[0.16333333 0.55666667 0.18333333 0.21]
[0.14 0.15 0.46 0.17]
[0.14 0.12333333 0.16333333 0.42666667]]

In order to find the first eigenvector of P, we employ the power method (see
Section 3.4). Below we copy the Python code of the power method.

def power_method(A, eps=1e-5):
A computionally efficient algorithm

252 Data Science Applications

for finding the principal eigenvector
Choose a random vector
v = np.random.randn(n)
normalization
v = v/np.linalg.norm(v)

prev_v = np.zeros(len(v))
t = 0
while np.linalg.norm(prev_v-v) > eps:

prev_v = v
v = np.array(np.dot(A,v)).reshape(-1)
v = v/np.linalg.norm(v)
t += 1

return v

x0=power_method(P)
scaling
x0=x0/sum(x0)*n
print(x0)
print(x)

[1.17192056 1.1662718 0.87537578 0.78643185]
[1.1848639 1.04924926 0.9180931 0.84779374]

We see that x̂ has the same order as that of x.
Now we perform an extensive experiment for a large value of n, say n = 1000,

and for a range of p spanning the claimed limit p∗ = 1
(n

2)L
·

n ln n
12

K
.

import numpy as np
from scipy.stats import bernoulli
from numpy.random import binomial
import matplotlib.pyplot as plt

n=1000
K=5 # top-K ranking
L=20
p_range=np.linspace(0.02,0.12,30)
#ln(n)/n ˜0.007
#nln(n)/(DeltaK**2)/(n*(n-1)*L/2)˜0.0089
gap=0.1
generate the ground truth score vector
x,DeltaK=scoreVector(gap,n,K)
MSE = np.zeros_like(p_range)
ITER=20
for idx,p in enumerate(p_range):

for k in range(ITER):
Generate a comparison graph

Top-K Ranking: Python Implementation 253

G,dmax=genGraph(n,p)
Transition probability matrix
P,Y=transitionMatrix(x,n,L,G,dmax)
Compute the stationary distribution
x0=power_method(P)
score scaling
x0=x0/sum(x0)*n
Compute MSE between x and x0
MSE[idx]+= \
sum(np.square(x-x0))/sum(np.square(x))/ITER

plimit=n*np.log(n)/(DeltaK**2)/(n*(n-1)*L/2)
p_norm=p_range/plimit

plt.figure(figsize=(5,5), dpi=100)
plt.plot(p_norm,MSE,label=’PageRank variant’)
plt.yscale(’log’)
plt.title(’Normalized MSE’)
plt.legend()
plt.grid(linestyle=’:’, linewidth=0.5)
plt.show()

Fig. 3.30 demonstrates the MSE performance of the PageRank variant as a func-
tion of p. The range of p is set so as to exceed the graph connectivity threshold ln n

n
as well as to span the claimed limit 0.4 ≤ p

p∗ ≤ 2.7. Notice that the MSE decreases
with an increase in n.

Additional stage: Local refinement We investigate a more advanced algo-
rithm that employs local refinement addigionally (Step 4 in the above pseudocode).
To implement this, we need to solve the optimization problem taking the log-
likelihood as an objective function:

xMLE
i = arg max

a
lnLi(a).

where we use a simpler notation for the log-likelihood:

Li(a) := L(x(t)1 , . . . , x(t)i−1, a, x(t)i+1, . . . , x(t)n).

One key observation is that the objective function is concave in the optimization
variable a. Check this in Prob 9.4. Hence, it is a convex optimization problem. As
mentioned in Section 1.5 and Prob 2.4, one can solve convex optimization via
the Lagrange multiplier method. Sometimes, the method yields the closed form
solution. But it is not always the case.

254 Data Science Applications

Figure 3.30. The MSE performance of the PageRank variant as a function of observation

probability p: n = 1000, L = 20, K = 5 and 1K = 0.125.

slope

k-th estimate

Figure 3.31. How gradient ascent works.

Gradient ascent Our problem has no closed-form solution. Hence, we employ
an algorithm that allows us obtain the solution numerically. One prominent
algorithm that yields the numerical solution is gradient ascent. Simply put, it is an
algorithm that finds the unique stationary point when the interested function is
concave. It is called gradient descent when the objective function is convex. Here is
how the algorithm works. See Fig. 3.31. It is an iterative algorithm. Suppose that at

Top-K Ranking: Python Implementation 255

the kth iteration, we have an estimate of a∗, say a(k). We then compute the gradient
of the function evaluated at the estimate: ∇f (a(k)). Next we update the estimate
along the same direction w.r.t. the gradient:

a(k+1)
←− a(k) + α(k)∇f (a(k)) (3.55)

where α(k) > 0 indicates the learning rate (or called a step size) that usually decays
like α(k) = 1

2k . If you think about it, this update rule makes an intuitive sense. Sup-

pose a(k) is placed left relative to the optimal point a∗, as in the two-dimensional
case3 illustrated in Fig. 3.31. Then, we should move a(k) to the right so that it
becomes closer to a∗. The update rule actually does this, as we add by α(k)∇f (a(k)).
Notice that ∇f (a(k)) points to the right direction given that a(k) is placed left rel-
ative to a∗. We repeat this procedure until it converges. It turns out: as k→∞, it
converges:

a(k) −→ a∗, (3.56)

as long as the learning rate is chosen properly, like the one decaying exponentially.
We will not touch upon the proof of this convergence. In fact, the proof is difficult.
There is a big field in statistics which intends to prove the convergence of a variety
of algorithms (if the convergence holds).

Python implementation of local refinement We apply gradient ascent to
implement the coordinate-wise MLE. To this end, we compute the gradient of the
objective function:

d
da

(
1

L
lnLi(a)

)
=

∑
j:(i,j)∈E

yij

a
−

1

a+ x(t)j

.

Then, the update rule for a(k) reads:

a(k+1)
←− a(k) + α(k)

∑
j:(i,j)∈E

 yij

a(k)
−

1

a(k) + x(t)j

. (3.57)

See below for a code implementation of the coordinate-wise MLE. We first set up
parameters and run the PageRank variant to obtain an initial estimate.

3. In a higher-dimensional case, it is difficult to visualize how a(k) is placed. Hence, we focus on the two-
dimensional case. It turns out that gradient ascent works even for high-dimensional settings although it is
not 100% intuitive.

256 Data Science Applications

import numpy as np

n=4
K=2 # top-K ranking
p=2*np.log(n)/n # for graph connectivity
L=100
gap=0.1

generate the ground truth score vector
x,DeltaK=scoreVector(gap,n,K)
Generate a comparison graph
G,dmax=genGraph(n,p)
Transition probability matrix
P,Y=transitionMatrix(x,n,L,G,dmax)
Compute the stationary distribution
x0=power_method(P)
score scaling
x0=x0/sum(x0)*n
print(x0)

[1.22440733 0.90509149 1.06241023 0.80809095]

def coordinateMLE(x0,G,Y,xmin,xmax):
n=len(G[0])
alpha=0.01
nITER=10

initialization for xMLE
xMLE=np.zeros_like(x0)

for i in range(len(G[:,0])):
compute the ith coordinate MLE
a=x0[i] # initialization
for k in range(nITER):

compute the gradient of ln(L_i(a))/L
grad=0 # initialization
for j in range(len(G[i])):

if G[i,j]==1: grad+=Y[i,j]/a-1/(a+x0[j])
update "aˆ{(k)}"
a = a+alpha*np.sign(grad)

projection to [x_min,x_max]
if a<xmin: xMLE[i]=xmin
elif a>xmax: xMLE[i]=xmax
else: xMLE[i]=a

return xMLE

Top-K Ranking: Python Implementation 257

xMLE=coordinateMLE(x0,G,Y,min(x),max(x))
print(x0)
print(xMLE)
print(x0-xMLE)

[1.22440733 0.90509149 1.06241023 0.80809095]
[1.20499993 0.88509149 1.06241023 0.82809095]
[0.0194074 0.02 0. -0.02]

We employ a simplified version of gradient ascent where we take only the sign
of the gradient and set α = 0.01. This way, we can do an efficient update. Other-
wise, the range of the gradient scales with n, yielding an unstable update. We also
apply the projection of the MLE solution so that the estimate is within [xmin, xmax].
Notice in the above that the coordinate-wise MLE is slightly different from the ini-
tial estimate.

Next, we employ δ(t) to decide whether to take the MLE solution:

x(t+1)
i =

{
xMLE

i , |xMLE
i − x(t)i | > δ(t);

x(t), |xMLE
i − x(t)i | ≤ δ

(t)
(3.58)

where

δ(t) = c

{√
ln n
npL
+

1

2t

(√
ln n
pL
−

√
ln n
npL

)}

We set the hyperparameters c = 0.1 and Titer = 7. In this case, the range of δ(t) is:

Titer=7
t=np.arange(Titer)
c=0.1
delta= c*(np.sqrt(np.log(n)/(n*p*L)) \

+ 1/(2**t)*(np.sqrt(np.log(n)/(p*L)) \
- np.sqrt(np.log(n)/(n*p*L))))

print(delta)

[0.01414214 0.0106066 0.00883883 0.00795495 0.00751301
0.00729204 0.00718155]

Under this setting, we iterate the coordinate-wise MLE Titer times.

def iter_coordinateMLE(x0,G,Y,p,L,Titer,xmin,xmax):
t=np.arange(Titer)
n=len(G[0])
c=0.01
delta= c*(np.sqrt(np.log(n)/(n*p*L)) \

+ 1/(2**t)*(np.sqrt(np.log(n)/(p*L)) \
-np.sqrt(np.log(n)/(n*p*L))))

258 Data Science Applications

xt=x0
for it in range(Titer):

xt1=np.zeros_like(xt)
xMLE=coordinateMLE(xt,G,Y,xmin,xmax)
for i in range(n):

if np.abs(xMLE[i]-xt[i])>delta[it]:
xt1[i]=xMLE[i]

else: xt1[i]=xt[i]
xt=xt1

return xt

x_est=iter_coordinateMLE(x0,G,Y,p,L,7,min(x),max(x))

print(x0)
print(x_est)
print(x0-x_est)

[1.22440733 0.90509149 1.06241023 0.80809095]
[1.20499993 0.88509149 1.04241023 0.80809095]
[0.0194074 0.02 0.02 0.]

We see that the MLE solution is further away from the initial estimate.
Now we compare the performance of the PageRank variant and the advanced

algorithm for a setting where n = 1000 and p spans the claimed limit.

import numpy as np
from scipy.stats import bernoulli
from numpy.random import binomial
import matplotlib.pyplot as plt

n=1000
K=5 # top-K ranking
L=20
Titer=7
p_range=np.linspace(0.02,0.12,30)
#ln(n)/n ˜0.007
#nln(n)/(DeltaK**2)/(n*(n-1)*L/2)˜0.0089

gap=0.1
generate the ground truth score vector
x,DeltaK=scoreVector(gap,n,K)

MSE1 = np.zeros_like(p_range) # for pagerank
MSE2 = np.zeros_like(p_range) # for advanced algorithm
ITER=20

Top-K Ranking: Python Implementation 259

for idx,p in enumerate(p_range):
for k in range(ITER):

Generate a comparison graph
G,dmax=genGraph(n,p)
Transition probability matrix
P,Y=transitionMatrix(x,n,L,G,dmax)
Compute the stationary distribution
x0=power_method(P)
score scaling
x0=x0/sum(x0)*n

xest= \
iter_coordinateMLE(x0,G,Y,p,L,Titer,min(x),max(x))
Compute MSE for pagerank and advanced algorithm
MSE1[idx] += \
sum(np.square(x-x0))/sum(np.square(x))/ITER
MSE2[idx] += \
sum(np.square(x-xest))/sum(np.square(x))/ITER

plimit=n*np.log(n)/(DeltaK**2)/(n*(n-1)*L/2)
p_norm=p_range/plimit

plt.figure(figsize=(5,5), dpi=100)
plt.plot(p_norm,MSE1,label=’PageRank variant’)
plt.plot(p_norm,MSE2,label=’Advanced algorithm’)
plt.yscale(’log’)
plt.title(’Normalized MSE’)
plt.legend()
plt.grid(linestyle=’:’, linewidth=0.5)
plt.show()

Fig. 3.32 shows the MSE performances of the PageRank variant and the
advanced algorithm. We see an improvement with local refinement.

260 Data Science Applications

Figure 3.32. The MSE performances of the PageRank variant and the advanced algorithm

as a function of observation probability p: n = 1000, L = 20, K = 5 and 1K = 0.125.

Look ahead In the previous sections, we discussed the application of top-K rank-
ing and studied an efficient algorithm that achieves the minimum sample complex-
ity with some constant factor gap. Additionally, we implemented the algorithm
using Python. As noted in the beginning of Part III, information-theoretic con-
cepts like KL divergence and mutual information play a significant role in machine
learning. In the next section, we will explore one such application.

Problem Set 9 261

Problem Set 9

Prob 9.1 (Ranking from pairwise comparisons) Suppose there exists a
ground-truth ranking, say R, of n items: e.g., R = {1 � 2 � · · · � n}. We
wish to identify the ranking from pairwise comparisons, e.g., item i is preferred
over item j. Let xij be a pairwise comparison between items i and j:

xij = 1{item i � item j}.

Suppose pairwise comparisons are observed uniformly at random. Each comparison
for items (i, j) is observed with probability p ∈ [0, 1] independently over all (i, j)’s:

yij =

{
xij , w.p. p;

e, w.p. 1− p.

Given yij ’s, we wish to decode R. Let R̂ be a decoded ranking. Let Pe be the prob-

ability of error: Pe := P(R̂ 6= R). Consider an optimization problem. Given p,

P∗e (p) := min
algorithm,n

Pe.

For ε ∈ (0, 1], what is P∗e (1− ε)? Also explain why.

Prob 9.2 (Ranking from pairwise comparisons) Suppose there exists a
ground-truth ranking, say R, of n items. We wish to identify the ranking of the
n items from pairwise comparisons, e.g., item i is preferred over j. Suppose pair-
wise comparisons are given uniformly at random: items (i, j) are compared with
probability p ∈ [0, 1] independently over all (i, j). Let R̂ be a decoded ranking.
Let Pe be the probability of error: Pe := P(R̂ 6= R). What is the number of pair-
wise comparisons on average required to make the probability of error arbitrarily
close to 0 as n→∞?

Prob 9.3 (Top-K ranking) Consider the BTL model (Bradley and Terry, 1952)
in Section 3.9. Let x := [x1, x2, . . . , xn] be the ground-truth score vector of n items
where xi ∈ R+. Assume that each pair of any two items is observed uniformly at
random w.p. p and the observed pair has L independent copies:

y(`)ij =

{
Bern

(
xi

xi+xj

)
, w.p. p ;

e, w.p. 1− p

where y(`)ij ’s are i.i.d for all pairs (i, j) and ` ∈ {1, 2, . . . , L}. Given y(`)ij ’s, we wish

to decode the set f (x) of top-K ranked items (top-K partitioning). Let f̂ (x) be a

262 Data Science Applications

decoded top-K set. Let Pe be the probability of error: Pe := P(f̂ (x) 6= f (x)). In
Section 3.9, we claimed that the minimum sample complexity required for reliable
top-K ranking is:

2

(
n ln n

12
K

)

where 1K := xK−xK+1
xK

.

(a) Explain what the notation 2(·) means.
(b) In Section 3.9, we claimed that the minimum sample complexity is a

promising result, when comparing it to the total ordering case. Explain why.
(c) Show that if p < ln n

n , Pe cannot be made arbitrarily 0 no matter what we
do and whatsoever.

(d) Given that the (i, j) pair is observed, compute:

lim
L→∞

1

L

L∑
`=1

y(`)ij .

(e) Describe the PageRank variant (that we learned in Section 3.10).
(f) In Section 3.10, we introduced an additional stage, called local refinement.

Explain why this stage is employed.

Prob 9.4 (Concavity) Consider a function:

f (x) =
b
x
−

1

x + c
(3.59)

where 0 < x ≤ 1, 0 ≤ b ≤ 1 and 0 < c ≤ 1. Prove that f (x) is concave in x.

Prob 9.5 (A bounding technique) Consider a system with an input X ∈
{1, 2, . . . , M} and an output Y ∈ Y . Here Y denotes a discrete alphabet. Let Pi be
the probability distribution w.r.t. Y conditioned on X = i. Suppose X is uniformly
distributed.

(a) Show that

I(X ; Y) ≤
1

M2

M∑
i=1

M∑
j=1

KL(Pi‖Pj)

where KL(·‖·) indicates the KL divergence defined w.r.t. log base 2.
(b) Find a condition under which the equality holds in the above.

Problem Set 9 263

Prob 9.6 (True or False?)

(a) Let A ∈ Rn×n be a matrix with m positive eigenvalues λi’s and eigenvectors
vi’s:

A := λ1v1vT
1 + λ2v2vT

2 + · · · + λmvmvT
m

where λ1 > λ2 ≥ λ3 ≥ · · · ≥ λm and vi’s are orthonormal: vT
i vj = 1{i =

j}. Let v ∈ Rn be some non-zero vector. Then,

Akv√
‖Akv‖2

−→ v1

as k→∞.

264 Data Science Applications

3.12 Supervised Learning: Connection with Information
Theory

Three key notions Part I focused on three essential notions in information the-
ory: entropy, mutual information, and Kullback-Leibler divergence. In Parts I and
II, we examined these notions in the context of Shannon’s source and channel cod-
ing theorems. Entropy provides a concise way to determine the highest possible
compression rate for an information source, while mutual information is a suitable
metric for defining channel capacity.

Role of the notions in data science Throughout the remainder of Part
III, we will delve into three different applications of machine learning and deep
learning where the key notions we have discussed are crucial. Specifically, we
will examine: (i) how entropy plays a significant role in one of the most preva-
lent methods of machine learning, known as supervised learning; (ii) the impor-
tance of KL divergence in another popular technique, unsupervised learning;
and (iii) how mutual information guides the design of machine learning algo-
rithms that promote fairness for disadvantaged groups in comparison to advantaged
ones.

Outline In the upcoming sections, our focus will be on the role of entropy in
supervised learning. We will begin by exploring what supervised learning is and
then formulate an optimization problem that corresponds to it. We will then
demonstrate that entropy plays a central role in designing an objective func-
tion that leads to an optimal architecture for the optimization problem. Finally,
we will learn how to solve this optimization problem using a powerful algo-
rithm known as gradient descent, which is a slight variation of gradient ascent
that we covered in Section 3.11. To aid in the implementation, we will use
TensorFlow, which is one of the most intuitive and widely-used deep learning
frameworks. If you are unfamiliar with TensorFlow, please refer to a tutorial in
Appendix B.

Machine learning Machine learning is about an algorithm that a computer sys-
tem can execute by following a set of instructions. More formally, it refers to the
study of algorithms used to train a computer system, enabling it to perform a spe-
cific task. A pictorial illustration of this concept can be found in Fig. 3.33. The
goal is to develop a computer system (referred to as a machine) that can take in an
input, denoted as x, and produce an output, denoted as y. This system or function
is designed to carry out a task of interest. For instance, if a task is legitimate-emails

Supervised Learning: Connection with Information Theory 265

Figure 3.33. Machine learning is the study of algorithms which provide a set of instruc-

tions to a computer system so that it can perform a specific task of interest. Let the input

x indicate information employed to perform a task. Let the output y denote a task result.

filtering against spams, x could be multi-dimensional quantities4: (i) frequency of
a keyword like dollar signs $$$; and (ii) frequency of another keyword, say win-
ner. And y could be an email entity, e.g., y = +1 indicates a legitimate email
while y = −1 denotes a spam. In machine learning, such y is called a label . Or
if an interested task is cat-vs-dog classification, x could be image-pixel values and
y is a binary value indicating whether the fed image is a cat (say y = 1) or a dog
(y = 0).

The essence of machine learning lies in designing algorithms that can train a
computer system to perform a desired task effectively. This involves using data as a
crucial component in the algorithm design process.

A remark on the naming From a machine’s perspective, a machine learns the
task from data. Hence, it is called machine learning, ML for short. This naming
was originated in 1959 by Arthur Lee Samuel (Samuel, 1967). See Fig. 3.34.

Arthur Samuel is one of the pioneers in Artificial Intelligence (AI), which encom-
passes machine learning as a sub-field. AI involves the study of creating intelligence
in machines, which differs from the natural intelligence observed in intelligent
beings such as humans and animals.

One of Samuel’s notable accomplishments in the early days of AI was the devel-
opment of a computer player for the board game checkers (see the right figure in
Fig. 3.34). He introduced several algorithms and concepts during the process of
creating this computer program. These algorithms ultimately served as the foun-
dation for AlphaGo (Silver et al., 2016), a computer program developed for the

4. In machine learning, such quantities are called features. These refer to key components of data that well
describe their characteristics.

266 Data Science Applications

Figure 3.34. Arthur Lee Samuel is an American pioneer in artificial intelligence. One of

his achievements in early days is to develop computer checkers which later formed the

basis of AlphaGo.

board game Go. AlphaGo went on to defeat Lee Sedol, a professional 9-dan player,
in 2016, winning 4 out of 5 games (News, 2016).

Mission of machine learning The ultimate objective of machine learning is to
attain artificial intelligence. Thus, it can be regarded as one of the methodologies
for achieving AI. As depicted in the block diagram in Fig. 3.33, the aim of ML is to
develop an algorithm that enables the trained machine to exhibit behavior similar
to intelligent beings.

Supervised learning There are some methodologies which help us to achieve
the goal of ML. One specific yet popular method is:

Supervised Learning .

Supervised learning involves the process of learning a function f (x) (which repre-
sents the machine’s functionality) with the assistance of a supervisor, as illustrated
in Fig. 3.35. The supervisor plays a crucial role in this process by providing input-
output samples, which serve as the data used to train the machine. Typically, these
input-output samples are represented as:

{(x(i), y(i))}mi=1 (3.60)

where (x(i), y(i)) indicates the ith input-output sample (or called a training sample
or an example) and m denotes the number of samples. Using this notation (3.60),
supervised learning is to:

Estimate f (·) using the training samples {(x(i), y(i))}mi=1. (3.61)

Optimization An effective approach to estimate f (x) is through optimization.
To fully grasp this concept, let’s delve into the formal definition of optimization.
Optimization refers to the selection of an optimization variable that minimizes or

Supervised Learning: Connection with Information Theory 267

machine

Figure 3.35. Supervised Learning: A methodology for designing a computer system f(·)
with the help of a supervisor which offers input-output pair samples, called a train dataset

{(x(i), y(i))}mi=1.

maximizes a particular quantity of interest while taking any relevant constraints
into account. Two significant factors come into play in this definition. Firstly, the
optimization variable is a multi-dimensional quantity that can influence the quan-
tity of interest and is subject to our design. Secondly, the quantity of interest that
we aim to minimize or maximize is known as the objective function, and it is a
one-dimensional scalar.

Objective function To figure this out, we need to know about the objective that
supervised learning wishes to achieve. In view of the goal (3.61), what we want is:

y(i) ≈ f (x(i)), ∀i ∈ {1, . . . , m}.

A natural question arises. How to quantify closeness (reflected in the “≈” notation)
between the two quantities: y(i) and f (x(i))? One common way that has been used
in the field is to employ a function, called a loss function, usually denoted by:

`(y(i), f (x(i))). (3.62)

One property that the loss function `(·, ·) should satisfy is that it should be small
when the two arguments are close, while being zero when the two are identical.
Using the loss function (3.62), one can formulate an optimization problem as:

min
f (·)

m∑
i=1

`(y(i), f (x(i))). (3.63)

How to introduce optimization variable? Unfortunately, there is no variable.
Instead we have a different quantity that we can optimize over: the function f (·)
that appears in (3.63). How to deal with such function optimization? There is one
typical approach in the field. The approach is to specify a function class (e.g., linear

268 Data Science Applications

or quadratic), represent the function with parameters (or called weights), denoted by
w, and then consider the weights as an optimization variable. Taking this approach,
one can translate the problem (3.63) into:

min
w

m∑
i=1

`(y(i), fw(x(i))) (3.64)

where fw(x(i)) denotes the function f (x(i)) parameterized by w.
The above optimization problem depends on how we define the two functions:

(i) fw(x(i)) w.r.t. w; and (ii) the loss function `(·, ·). In machine learning, lots of
works have been done for the choice of the functions.

Introduction of neural networks Around at the same time when the ML field
was founded, one architecture was suggested for the first function fw(·) in the con-
text of simple binary classifiers in which y takes one among the two options. The
architecture is called:

Perceptron,

and was invented in 1957 by one of the pioneers in AI, named Frank Rosen-
blatt (Rosenblatt, 1958). Frank Rosenblatt, a psychologist, was intrigued by the
workings of the brains of intelligent beings. His research into this area led him to
develop the Perceptron, which provided valuable insights into neural networks.

How brains work The architecture of Perceptron was inspired by the structure of
the brain, which contains numerous electrically excitable cells, known as neurons;
see Fig. 3.36. Each neuron is represented by a red circle in the figure, and there
are three neurons shown. There are three key features of neurons that influenced
the design of Perceptron. The first is that neurons possess electrical properties, and
therefore have a voltage. The second feature is that neurons are interconnected with

Figure 3.36. Neurons are electrically excitable cells and are connected through synapses.

Supervised Learning: Connection with Information Theory 269

neuron

synapse

activation

Figure 3.37. The architecture of Perceptron.

one another through channels called synapses, which facilitate the transmission of
electrical voltage signals between neurons. Depending on the connectivity strength
of a synapse, a voltage signal from one neuron to another can increase or decrease.
Finally, a neuron produces an action, known as activation, by generating an all-or-
nothing pulse depending on its voltage level. If the voltage level is above a specific
threshold, it generates an impulse signal with a certain magnitude, say 1; otherwise,
it produces nothing.

Perceptron Frank Rosenblatt proposed the Perceptron architecture based on the
three properties mentioned earlier, as depicted in Fig. 3.37. Let x denote an n-
dimensional real-valued signal, where x is represented as [x1, x2, . . . , xn]T . Each
component xi is distributed to a neuron, and xi is interpreted as the voltage level of
the ith neuron. The voltage signal xi is transmitted through a synapse to another
neuron located on the right in the figure (indicated by a large circle). The voltage
level can either increase or decrease, depending on the strength of the synapse’s
connectivity. To account for this, a weight wi is multiplied to xi, so that wixi is the
delivered voltage signal at the terminal neuron. Rosenblatt introduced an adder that
aggregates all voltage signals from multiple neurons to model the voltage signal at
the terminal neuron. He observed empirically that the voltage level at the terminal
neuron increases as more neurons are connected.

w1x1 + w2x2 + · · · + wnxn = wT x. (3.65)

Lastly in an effort to mimic the activation, he modeled the output signal as

fw(x) =

{
1 if wT x > th,

0 o.w.
(3.66)

270 Data Science Applications

where “th” indicates a certain threshold level. It can also be simply denoted as

fw(x) = 1{wT x > th}. (3.67)

Activation Taking the Perceptron architecture in Fig. 3.37, one can formulate
the optimization problem (3.64) as:

min
w

m∑
i=1

`(y(i), 1{wT x(i) > th}). (3.68)

This is an initial optimization problem that was proposed, but an issue in solv-
ing this optimization was discovered. The problem lies in the objective function
containing an indicator function, which makes it non-differentiable. This non-
differentiability presents a difficulty in solving the problem. The reason for this is
that the prominent algorithm that we learned in Section 3.11, gradient ascent (or
descent), involves derivative operations, which cannot be applied when the func-
tion is non-differentiable.

To address this problem, one common approach that has been taken in the field
is to approximate the activation function. There are several ways to achieve this
approximation. From below, we will explore one popular method.

Logistic regression The popular approximation approach is to take a smooth
transition from 0 to 1 for the abrupt indicator function:

fw(x) =
1

1+ e−wT x
. (3.69)

Notice that fw(x) ≈ 0 when wT x is very small; it then grows exponentially with an
increase in wT x; later grows logarithmically; and finally saturates as 1 when wT x is
very large. See Fig. 3.38. The function (3.69) is a very popular one used in statistics,

Figure 3.38. Logistic function: σ(z) = 1
1+e−z .

Supervised Learning: Connection with Information Theory 271

called the logistic5 function (Garnier and Quetelet, 1838). There is another name:
the sigmoid 6 function.

There are two good things about the logistic function. First it is differentiable.
Second, it can serve as the probability for the output in the binary classifier, e.g.,
P(y = 1) where y denotes the ground-truth label in the binary classifier. So it is
interpretable.

Look ahead Assuming the logistic activation function, what would be an appro-
priate loss function? In a certain sense, the design of an optimal loss function is
closely related to the concept of entropy. In the following section, we will explore
how this entropy-related concept is used to design the optimal loss function.

5. The word logistic comes from a Greek word which means a slow growth, like a logarithmic growth.

6. Sigmoid means resembling the lower-case Greek letter sigma, S-shaped.

272 Data Science Applications

3.13 Supervised Learning: Logistic Regression and Cross
Entropy

Recap In the previous section, we formulated an optimization problem for super-
vised learning based on the Perceptron architecture:

min
w

m∑
i=1

`(y(i), fw(x(i))). (3.70)

As an activation function, we considered a logistic function:

fw(x) =
1

1+ e−wT x
. (3.71)

We then claimed that an entropy-related concept plays a role in the design of the
optimal loss function.

Outline This section will demonstrate the validity of the claim in three steps.
Firstly, we will explore the definition of the optimal loss function. Secondly, we
will examine the role of entropy in the design of the optimal loss function. Finally,
we will discuss how to solve the optimization problem.

Optimality in a sense of maximizing likelihood Logistic regression is a
binary classifier that uses the logistic function (3.71). Fig. 3.39 provides a visual
representation of logistic regression. It should be noted that the output ŷ of logistic
regression falls between 0 and 1.

0 ≤ ŷ ≤ 1.

Hence, one can interpret this as a probability quantity. The optimality of a clas-
sifier can be defined under the following assumption inspired by the probabilistic
interpretation:

Assumption : ŷ = P(y = 1|x). (3.72)

logistic
regression

Figure 3.39. Logistic regression.

Supervised Learning: Logistic Regression and Cross Entropy 273

To understand what it means, consider the likelihood of the ground-truth
classifier:

P({ y(i)}mi=1|{x
(i)
}
m
i=1). (3.73)

Notice that the classifier output ŷ is a function of weights w. Hence, assum-
ing (3.72), the likelihood (3.73) is also a function of w.

We are now ready to define the optimal w. The optimal weight, say w∗, is defined
as the one that maximizes the likelihood (3.73):

w∗ := arg max
w

P({ y(i)}mi=1|{x
(i)
}
m
i=1). (3.74)

There are other ways to define the optimality. Here, we employ the maximum like-
lihood principle, the most popular choice. This is exactly where the definition of
the optimal loss function, say `∗(·, ·) kicks in. We say that `∗(·, ·) is the one that
satisfies:

arg min
w

m∑
i=1

`∗(y(i), ŷ(i)) = arg max
w

P({ y(i)}mi=1|{x
(i)
}
m
i=1). (3.75)

As mentioned earlier, an entropy-related concept appears in `∗(·, ·). From below,
we will figure this out.

Finding the optimal loss function `∗(·, ·) Usually samples are obtained from
different data x(i)’s. Hence, it is reasonable to assume that such samples are inde-
pendent with each other:

{(x(i), y(i))}mi=1 are independent over i. (3.76)

Under this assumption, we can rewrite the likelihood (3.73) as:

P({ y(i)}mi=1|{x
(i)
}
m
i=1)

(a)
=

P({(x(i), y(i))}mi=1)

P({x(i)}mi=1)

(b)
=

∏m
i=1 P(x(i), y(i))∏m

i=1 P(x(i))

(c)
=

m∏
i=1

P(y(i)|x(i))

(3.77)

where (a) and (c) are due to the definition of conditional probability; and (b)
comes from the independence assumption (3.76). Here P(x(i), y(i)) denotes the
probability distribution of the input-output pair:

P(x(i), y(i)) := P(X = x(i), Y = y(i)) (3.78)

274 Data Science Applications

where X and Y indicate random variables of the input and the output, respectively.
Recall the assumption (3.72) made with regard to ŷ:

ŷ = P(y = 1|x).

This implies that:

y = 1 : P(y|x) = ŷ;

y = 0 : P(y|x) = 1− ŷ.

Hence, one can represent P(y|x) as:

P(y|x) = ŷy(1− ŷ)1−y.

Using the notations of (x(i), y(i)) and ŷ(i), we get:

P(y(i)|x(i)) = (ŷ(i))y
(i)
(1− ŷ(i))1−y(i) .

Plugging this into (3.77), we get:

P({ y(i)}mi=1|{x
(i)
}
m
i=1)

=

m∏
i=1

P(x(i))
m∏

i=1

(ŷ(i))y
(i)
(1− ŷ(i))1−y(i) .

(3.79)

This together with (3.74) yields:

w∗ := arg max
w

m∏
i=1

(ŷ(i))y
(i)
(1− ŷ(i))1−y(i)

(a)
= arg max

w

m∑
i=1

y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))

(b)
= arg min

w

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i))

(3.80)

where (a) comes from the fact that log(·) is a non-decreasing function and∏m
i=1(ŷ(i))y

(i)
(1 − ŷ(i))1−y(i) is positive; and (b) is due to changing the sign of

the objective while replacing max with min.
The term inside the summation in the last equality in (3.80) respects the formula

of another key notion in information theory: cross entropy. In the context of a loss
function, it is named cross entropy loss:

`CE(y, ŷ) := −y log ŷ − (1− y) log(1− ŷ). (3.81)

Supervised Learning: Logistic Regression and Cross Entropy 275

Hence, the optimal loss function that yields the maximum likelihood solution is
cross entropy loss:

`∗(·, ·) = `CE(·, ·).

Remarks on cross entropy loss (3.81) Let us say a few words about why
the loss function (3.81) is called cross entropy loss. This naming comes from the
definition of cross entropy. The cross entropy is defined w.r.t. two random variables.
For simplicity, consider two binary random variables, say X ∼ Bern(p) and Y ∼
Bern(q). For such two random variables, cross entropy is defined as:

H(p, q) := −p log q − (1− p) log(1− q). (3.82)

Notice that the formula of (3.81) is exactly the same as the term inside summation
in (3.80), except for having different notations. Hence, it is called cross entropy loss.
You may wonder why H(p, q) in (3.82) is called cross entropy. The rationale comes
from the following fact (check this in Prob 10.4):

H(p, q) ≥ H(p) := −p log p− (1− p) log(1− p) (3.83)

where H(p) denotes the entropy of Bern(p). In Prob 10.4, you will be asked to
verify that the equality holds when p = q. One can interpret H(p, q) as an entropic-
measure of discrepancy across distributions. Hence, it is called cross entropy.

How to solve logistic regression? In view of (3.80), the optimization prob-
lem for logistic regression can be written as:

min
w

m∑
i=1

−y(i) log
1

1+ e−wT x(i)
− (1− y(i)) log

e−wT x(i)

1+ e−wT x(i)
. (3.84)

Let J (w) be the normalized version of the objective function:

J (w) :=
1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)). (3.85)

It turns out the above optimization belongs to convex optimization. In other words,
J (w) is convex in optimization variable w. For the rest of this section, we will prove
the convexity, and then discuss how to solve the problem.

Proof of convexity First, one can readily show that convexity preserves under
addition. Why? Think about the definition of convex functions. So it suffices to

276 Data Science Applications

prove the following two:

(i)− log
1

1+ e−wT x
is convex in w;

(ii)− log
e−wT x

1+ e−wT x
is convex in w.

Since the second function in the above can be represented as the sum of a linear
function and the first function:

− log
e−wT x

1+ e−wT x
= wT x − log

1

1+ e−wT x
,

it suffices to prove the convexity of the first function.
The first function can be rewritten as:

− log
1

1+ e−wT x
= log(1+ e−wT x). (3.86)

In fact, proving the convexity of the function (3.86) is a bit involved if one relies on
the definition of convex functions. There is another way to prove. It is based on the
second derivative of a function, called the Hessian. How to compute the Hessian?
What is the dimension of the Hessian? For a function f : Rd

→ R, the gradient
∇f (x) ∈ Rd and the Hessian ∇2f (x) ∈ Rd×d . If you are not familiar, check it
from the vector calculus course or from wikipedia.

A well-known fact says that if the Hessian of a function is positive semi-definite
(PSD)7, then the function is convex. Check this in Prob 10.5. If this proof is too
much, you may want to remember this fact only. No need to prove, but the state-
ment itself is useful. Here we will use this fact to prove the convexity of the func-
tion (3.86).

Taking a derivative of the RHS formula in (3.86) w.r.t. w, we get:

∇w log(1+ e−wT x) =
1

ln 2

−xe−wT x

1+ e−wT x
.

This is due to a chain rule of derivatives and the fact that d
dz ln z = 1

z , d
dz ez
= ez

and d
dw wT x = x. Taking another derivative of the above, we obtain a Hessian as

7. We say that a symmetric matrix, say Q = QT
∈ Rd×d , is positive semi-definite if vT Qv ≥ 0,∀v ∈ Rd , i.e.,

all the eigenvalues of Q are non-negative. It is simply denoted by Q � 0.

Supervised Learning: Logistic Regression and Cross Entropy 277

follows:

∇
2
w log(1+ e−wT x) = ∇w

(
1

ln 2

−xe−wT x

1+ e−wT x

)

(a)
=

1

ln 2

xxT e−wT x(1+ e−wT x)− xxT e−wT xe−wT x

(1+ e−wT x)2

=
1

ln 2

xxT e−wT x

(1+ e−wT x)2

� 0

(3.87)

where (a) is due to the derivative rule of a quotient of two functions: d
dz

f (z)
g(z) =

f ′(z)g(z)−f (z)g ′(z)
g2(z) . You may wonder why d

dw (−xe−wT x) = xxT e−wT x . Why not xx,

xT xT or xT x in front of e−wT x? One rule-of-thumb is to simply try all the can-
didates and choose the one which does not have a syntax error (matrix dimension
mismatch). For instance, xx (or xT xT) is just an invalid operation. xT x is not a
right one because the Hessian must be an d -by-d matrix. The only candidate left
without any syntax error is xxT . We see that xxT has the single eigenvalue of ‖x‖2.
Why? Since the eigenvalue ‖x‖2 is non-negative, the Hessian is PSD, and therefore
we prove the convexity.

Gradient descent How to solve the convex optimization problem (3.80)? Since
there is no constraint in the optimization, w∗ must be the stationary point, i.e., the
one such that

∇J (w∗) = 0. (3.88)

However, we face a challenge in determining the optimal point w∗ because there is
no closed-form solution and it cannot be analytically derived. Various algorithms
have been developed to overcome this challenge and find the optimal point without
the need for a closed-form solution. One such algorithm is gradient ascent, which we
learned about in Section 3.11. In this case, since the function of interest is convex,
we use gradient descent instead. The process of gradient descent is similar to that of
gradient ascent, with the only difference being that the estimate is updated in the
opposite direction of the gradient.

w(t+1)
←− w(t) − α∇J (w(t)) (3.89)

where w(t) the tth estimate of w∗ and α > 0 indicates the learning rate. We take the
opposite direction because the sign of the gradient of a convex function is flipped
relative to that w.r.t. a concave function. See Fig. 3.40.

278 Data Science Applications

slope:

t-th estimate

Figure 3.40. How gradient descent works.

Look ahead We have established an optimization problem for supervised learn-
ing and observed the crucial role of cross entropy in designing the optimal loss
function. Moreover, we acquired knowledge about solving the problem with the
widely-used gradient descent algorithm. In the following section, we will put this
algorithm into practice using TensorFlow to create a simple classifier.

Supervised Learning: TensorFlow Implementation 279

3.14 Supervised Learning: TensorFlow Implementation

Recap In the previous sections, we have formulated an optimization problem for
supervised learning:

min
w

m∑
i=1

`CE(y(i), ŷ(i)) (3.90)

where ŷ := 1
1+e−wT x

indicates the prediction output with logistic activation and

`CE denotes cross entropy loss:

`CE(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ). (3.91)

We proved that cross entropy loss `CE(·, ·) is the optimal loss function in a sense
of maximizing the likelihood. We also showed that the normalized version J (w)
of the above objection function is convex in w, and therefore, it can be solved via
gradient descent:

J (w) :=
1

m

m∑
i=1

−y(i) log ŷ(i) − (1− y(i)) log(1− ŷ(i)). (3.92)

Outline In this section, we will explore the implementation of the algorithm using
a software tool for a simple classifier. This section is divided into three parts. Firstly,
we will examine the setting of the simple classifier that we will focus on. In the
second part, we will discuss four implementation details regarding the classifier.
The first detail is the dataset used for training and testing. In machine learning,
testing refers to evaluating the performance of a trained model. For this purpose,
we will use an unseen dataset called the test dataset, which has never been used
during training. The second detail is how to build a deep neural network model
with the ReLU activation function. The Perceptron, introduced in Section 3.12,
is the first neural network. A deep neural network is an extended version of the
Perceptron, with at least one hidden layer placed between the input and output
layers (Ivakhnenko, 1971). The ReLU is a popular activation function often used
in hidden layers (Glorot et al., 2011). It stands for Rectified Linear Unit, and its
operation is given by ReLU(x) = max(0, x). The third implementation detail con-
cerns the softmax activation used at the output layer, which is a natural extension
of the logistic activation for multiple classes. The fourth implementation detail per-
tains to the Adam optimizer, which is an advanced version of gradient descent and
widely used in practice (Kingma and Ba, 2014).

280 Data Science Applications

digit
classifier

Figure 3.41. Handwritten digit classification.

white

black

Figure 3.42. MNIST dataset: An input image is of 28-by-28 pixels, each indicating an

intensity from 0 (white) to 1 (black); each label with size 1 takes one of the 10 classes

from 0 to 9.

The final part of this section will focus on programming the classifier using
TensorFlow, a popular deep learning framework. Specifically, we will be using
Keras, a high-level programming language that is fully integrated with TensorFlow.

Handwritten digit classification We will be focusing on a simple classifier that
aims to recognize handwritten digits from images, as shown in Fig. 3.41. For train-
ing our model, we will be using a widely popular dataset known as the MNIST
(Modified National Institute of Standards and Technology) dataset (LeCun et al.,
1998), which contains m = 60, 000 training images and mtest = 10, 000 testing
images. This dataset was created by remixing the examples from NIST’s original
dataset and was named after its creator, Yann LeCun. Each image, denoted as x(i),
comprises of a 28 × 28 pixel matrix, with each pixel representing a grayscale level
ranging from 0 (white) to 1 (black). Additionally, each image has a corresponding
label, denoted as y(i), which falls under one of the ten classes, y(i) ∈ {0, 1, . . . , 9},
as shown in Fig. 3.42.

Supervised Learning: TensorFlow Implementation 281

Figure 3.43. A two-layer fully-connected neural network where input size is 28 × 28 =

784, the number of hidden neurons is 500 and the number of classes is 10. We employ

ReLU activation at the hidden layer, and softmax activation at the output layer; see

Fig. 3.44 for details.

A deep neural network model We will use an advanced version of logistic
regression as our model for the handwritten digit classifier. The first reason for using
this advanced version is that logistic regression is a linear classifier and its perfor-
mance may not be optimal in many applications since the prediction function is
restricted to a linear function class. To overcome this limitation, researchers devel-
oped a Perceptron-like neural network with multiple layers, known as a deep neu-
ral network (DNN). Although the DNN was invented in the 1960s (Ivakhnenko,
1971), its performance benefits started to be greatly appreciated only in the past
decade, due to a big event in 2012. Geoffrey Hinton and his PhD students achieved
human-level recognition performance on ImageNet recognition competition using
a DNN, which was never achieved before (Krizhevsky et al., 2012). This event
marked the start of the deep learning revolution. Since a linear classifier does not
perform well for digit classification, we will use a simple version of DNN with only
two layers – a hidden layer and an output layer, as shown in Fig. 3.43. By conven-
tion, the input layer is not counted as a layer, so it is referred to as a two-layer neural
network instead of a three-layer one.

Each neuron in the hidden layer respects the same procedure as that in the
Perceptron: a linear operation followed by activation. For activation, the logistic
function or its shifted version, called the tanh function (spanning −1 and +1),
were frequently employed in early days. However, a significant number of experts
and practitioners have discovered that the Rectified Linear Unit (ReLU) is a more
powerful function that enables faster training and delivers better or equivalent

282 Data Science Applications

Figure 3.44. Softmax activation employed at the output layer. This is a natural extension

of logistic activation intended for the two-class case.

performance (Glorot et al., 2011). As stated previously, ReLU’s function can be
expressed as: ReLU(x) = max(0, x). In the deep learning community, a popular
approach is to utilize ReLU activation in all hidden layers, and we will follow this
standard as depicted in Fig. 3.43.

Softmax activation at the output layer We have another reason to use an
advanced version of logistic regression, which pertains to the number of classes in
our classifier. Since logistic regression is designed for binary classification, it cannot
be directly used for our digit classifier, which has 10 classes. To address this, we need
to use a generalized version of logistic function known as softmax. The operation
of softmax is illustrated in Fig. 3.44.

Let z be the output of the last layer in a neural network prior to activation:

z := [z1, z2, . . . , zc]
T
∈ Rc (3.93)

where c denotes the number of classes. The softmax function is then defined as:

ŷj := [softmax(z)]j =
ezj∑c

k=1 ezk
j ∈ {1, 2, . . . , c}. (3.94)

Note that this is a natural extension of the logistic function: for c = 2,

ŷ1 := [softmax(z)]1 =
ez1

ez1 + ez2

Supervised Learning: TensorFlow Implementation 283

=
1

1+ e−(z1−z2)

= σ(z1 − z2) (3.95)

where σ(·) is the logistic function. Viewing z1 − z2 as the binary classifier output
ŷ, this coincides with the logistic function.

Here ŷi can be interpreted as the probability that the ith example belongs to
class i. Hence, like the binary classifier, one may want to assume:

ŷi = P(y = [0, . . . , 1︸︷︷︸
ith position

, . . . , 0]T
|x), i ∈ {1, . . . , c}. (3.96)

Under this assumption, one can verify that the optimal loss function (in a sense of
maximizing likelihood) is again cross entropy loss:

`∗(y, ŷ) = `CE(y, ŷ) =
c∑

j=1

−yj log ŷj

where y indicates a label of one-hot vector type. For instance, in the case of label
= 2 with c = 10, y takes:

y =

0

0

1

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

The proof is almost the same as that in the binary classifier. So we will omit the
proof. Instead you will have a chance to prove it in Prob 10.3.

Due to the above rationales, softmax activation has been widely used for many
classifiers. Hence, we will use the conventional activation in our digit classifier.

Adam optimizer (Kingma and Ba, 2014) We employ a specific algorithm. As
mentioned earlier, we will use an advanced version of gradient descent, called the

284 Data Science Applications

Adam optimizer. To see how the optimizer operates, let us first recall the vanilla
gradient descent:

w(t+1)
← w(t) − α∇J (w(t))

where w(t) indicates the estimated weight in the t-th iteration, and α denotes the
learning rate. Notice that the weight update relies only on the current gradient,
reflected in ∇J (w(t)). Hence, in case ∇J (w(t)) fluctuates too much over iterations,
the weight update oscillates significantly, thereby bringing about unstable training.
To address this, people often use a variant algorithm that exploits past gradients for
the purpose of stabilization. That is, the Adam optimizer.

Here is how Adam works. The weight update takes the following formula
instead:

w(t+1)
= w(t) + α

m(t)
√

s(t) + ε
(3.97)

where m(t) indicates a weighted average of the current and past gradients:

m(t) =
1

1− β t
1
(β1m(t−1)

− (1− β1)∇J (w(t))). (3.98)

Here β1 ∈ [0, 1] is a hyperparameter that captures the weight of past gradients,
and hence it is called the momentum (Polyak, 1964). The notation m stands for
momentum. The factor 1

1−β t
1

is applied in front, in an effort to stabilize training in

initial iterations (small t). Check the detailed rationale behind this in Prob 10.7.
s(t) is a normalization factor that makes the effect of ∇J (w(t)) almost constant

over t. In case ∇J (w(t)) is too big or too small, we may have significantly different
scalings in magnitude. Similar to m(t), s(t) is defined as a weighted average of the
current and past values (Hinton et al., 2012):

s(t) =
1

1− β t
2
(β2s(t−1)

+ (1− β2)(∇J (w(t)))2) (3.99)

where β2 ∈ [0, 1] denotes another hyperparameter that captures the weight of past
values, and s stands for square.

Notice that the dimensions of w(t), m(t) and s(t) are the same. All the operations
that appear in the above (including division in (3.97) and square in (3.99)) are
component-wise. In (3.97), ε is a tiny value introduced to avoid division by 0 in
practice (usually 10−8).

TensorFlow: Loading MNIST data We will learn how to implement the simple
digit classifier using TensorFlow programming. The first step is to load the MNIST
dataset, which is a well-known dataset and is available in the following package:

Supervised Learning: TensorFlow Implementation 285

tensorflow.keras.datasets. Even more, train and test datasets are already therein
with a proper split ratio. So we do not need to worry about how to split them. The
only script that we should write is:

from tensorflow.keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train/255.
X_test = X_test/255.

We divide the input (X_train or X_test) by its maximum value 255 for the purpose
of normalization. This procedure is done as a part of data preprocessing.

TensorFlow: A two-layer DNN In order to implement the simple DNN, illus-
trated in Fig. 3.43, we rely upon two major packages:

(i) tensorflow.keras.models;

(ii) tensorflow.keras.layers.

The models package contains several functionalities regarding a neural network.
One major module is Sequential which is a neural network entity and hence can
be described as a linear stack of layers. The layers package includes many elements
of a neural network. Examples include fully-connected dense layers and activation
functions. These two allow us to readily construct a model illustrated in Fig. 3.43.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten

model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(500, activation=’relu’))
model.add(Dense(10, activation=’softmax’))

Flatten is an entity that indicates a vector expanded from a higher dimensional
one, like a 2D matrix. In this example, a digit image of size 28-by-28 is flattened
into a vector of size 784(= 28×28). add() is a method for attaching an interested
layer to the last part in the sequential model. Dense refers to a fully-connected layer.
The input size is automatically determined by the last part that it will be attached
to. The only thing to specify is the number of output neurons. In this example, 500
refers to the number of hidden neurons. We can also set an activation function with
another argument, like activation=’relu’. The output layer comes with 10 neurons
(coinciding with the number of classes) and softmax activation.

TensorFlow: Training a model For training, we need to first set up an algo-
rithm (optimizer) to be employed. We use the Adam optimizer. As mentioned ear-
lier, Adam has three key hyperparameters: (i) the learning rate α; (ii) β1 (capturing

286 Data Science Applications

the weight of past gradients); and (iii) β2 (indicating the weight of the square of
past gradients). The default choice reads: (α,β1,β2) = (0.001, 0.9, 0.999). These
values would be set if nothing is specified.

Next, we specify a loss function. We employ the optimal loss function: cross
entropy loss. A performance metric that we will look at during training and testing
can also be specified. One common metric is accuracy. One can set all of these via
another method compile.

model.compile(optimizer=’adam’,
loss=’sparse_categorical_crossentropy’,
metrics=[’acc’])

The option optimizer=’adam’ sets the default choice of the learning rate and betas.
For a manual choice, we define:

opt=tensorflow.keras.optimizers.Adam(
learning_rate=0.01,
beta_1 = 0.92,
beta_2 = 0.992)

We then replace the above option with optimizer=opt. As for the loss option
in compile, we employ ’sparse_categorical_crossentropy’, which indicates cross
entropy loss beyond the binary case.

Now we can bring this to train the model on MNIST data. During training, we
employ a part of the entire examples to compute a gradient of a loss function. The
part is called a batch. Two more terminologies. One is the step which refers to a loss
computation procedure spanning the examples only in a single batch. The other is
the epoch which refers to the entire procedure associated with all the examples. In
our experiment, we use the batch size of 64 and the number 20 of epochs.

model.fit(X_train,y_train,batch_size=64,epochs=20)

TensorFlow: Testing the trained model For testing, we need to make a pre-
diction from the model ouput. To this end, we use the predict() function as follows:

model.predict(X_test).argmax(1)

Here argmax(1) returns the class w.r.t. the highest softmax output among the 10
classes. In order to evaluate the test accuracy, we use the evaluate() function:

model.evaluate(X_test, y_test)

Look ahead We have concluded the supervised learning part, but there are addi-
tional topics that may pique your interest. However, due to the desire to cover other
subjects, we will end our discussion of supervised learning here. If you are interested

Supervised Learning: TensorFlow Implementation 287

in delving deeper into this topic, we recommend taking one of the many useful
online deep learning courses, such as those offered by Coursera. Moving forward,
we will shift our focus to unsupervised learning and explore one of the most pop-
ular machine learning frameworks, Generative Adversarial Networks (GANs). In the
upcoming section, we will delve into the intimate connections between KL diver-
gence, mutual information, and GANs, providing detailed coverage of the subject
matter.

288 Data Science Applications

Problem Set 10

Prob 10.1 (Basic concepts on machine learning)

(a) State the definition of an algorithm.
(b) State the definition of machine learning .
(c) State the definition of artificial intelligence.
(d) State the definition of examples (the terminology in machine learning).
(e) State the definition of supervised learning .

Prob 10.2 (KL divergence and cross entropy) The KL divergence is a valu-
able metric that measures the dissimilarity between two distributions. As demon-
strated in Prob 1.13, it can also represent mutual information I(X ; Y) by consid-
ering two distributions as a joint distribution P(X , Y) and a product distribution
P(X)P(Y). Furthermore, as revealed in Prob 4.4, it plays a crucial role in charac-
terizing the exponential decay rate of probability, which is essential in the statistical
field known as Large Deviation Theory.

Additionally, in this problem, we will utilize it to represent cross entropy, a well-
known concept in machine learning commonly used in classification problems,
which is defined as follows:

H(p, q) :=
∑
x∈X

p(x) log
1

q(x)
= Ep

[
log

1

q(X)

]
. (3.100)

Show that

H(p, q) = H(p)+ KL(p‖q)

where H(p) indicates the entropy of a random variable having the distribution of p.

Prob 10.3 (Softmax activation for multi-class classifiers) This problem
explores a general classifier setting in which the number of classes is not limited to
2, say c ∈ N. Let z := [z1, z2, . . . , zc]T

∈ Rc be the output of a multi-perceptron
prior to activation:

zj = wT
j x (3.101)

where x ∈ Rn indicates the input and wj := [wj1, . . . , wjn]T
∈ Rn denotes the

weight vector associated with the jth neuron in the output.
In an attempt to make those real values zj ’s being interpreted as probability quan-

tities that lie in between 0 and 1, people usually employ the following activation

Problem Set 10 289

function, called softmax:

ŷj := [softmax(z)]j =
ezj∑c

k=1 ezk
j ∈ {1, 2, . . . , c}. (3.102)

This is a natural extension of the logistic function: for c = 2,

ŷ1 := [softmax(z)]1 =
ez1

ez1 + ez2

=
1

1+ e−(z1−z2)

= σ(z1 − z2)

(3.103)

where σ(·) is the logistic function. Viewing z1 − z2 as the binary classifier output
ŷ, this coincides with logistic regression.

Let y ∈ {[1, 0, . . . , 0]T , [0, 1, 0, . . . , 0]T , . . . , [0, . . . , 0, 1]T
} be a label of one-

hot-encoded-vector type. Here ŷi can be interpreted as the probability that the ith
example is classified into class i. Hence, we assume that

ŷi = P(y = [0, . . . , 1︸︷︷︸
ith position

, . . . , 0]T
|x), i ∈ {1, . . . , c}. (3.104)

We also assume that examples {(x(i), y(i))}mi=1 are independent over i.

(a) Derive the likelihood of training examples:

P(y(1), . . . , y(m)|x(1), . . . , x(m)). (3.105)

Express it in terms of y(i)’s and ŷ(i)’s.
(b) Derive the optimal loss function that maximizes the likelihood (3.105).
(c) What is the name of the optimal loss function derived in part (b)?

Prob 10.4 (Cross entropy) Let p and q be two distributions. In information
theory, there is an important notion, called cross entropy (Cover and Joy, 2006):

H(p, q) := −
∑
x∈X

p(x) log2 q(x) = Ep

[
log2

1

q(X)

]
(3.106)

where X ∈ X is a discrete random variable. Show that

H(p, q) ≥ H(p) (3.107)

290 Data Science Applications

where H(p) denotes the entropy of a random variable with p:

H(p) := −
∑
x∈X

p(x) log2 p(x) = Ep

[
log2

1

p(X)

]
. (3.108)

Also identify conditions under which the equality in (3.107) holds.
Hint: Think about Jensen’s inequality in Prob 1.5.

Prob 10.5 (2nd-order condition of convexity) Suppose f : Rd
→ R is

twice differentiable, i.e., its second derivative ∇2f (also called the Hessian) exists at
each point in domf . A well-known fact w.r.t. convexity is: f is convex if and only if

domf is convex;

∇
2f (x) is positive semi-definite, i.e., ∇2f (x) � 0 ∀x ∈ domf

(3.109)

where domf denotes the domain of the function f . This problem explores the
proof of this via the following subproblems.

(a) State the definition of a positive semi-definite matrix.
(b) Suppose d = 1. Show that if f (x) is convex, then (3.109) holds.
(c) Suppose d = 1. Show that if (3.109) holds, f (x) is convex.
(d) Prove the 2nd-order condition for arbitrary d .

Prob 10.6 (Gradient descent) Consider a function J (w) = w2
+ 2w where

w ∈ R. Consider gradient descent with the learning rate α(t) = 1
2t and w(0) = 2.

(a) Describe how gradient descent works.
(b) Using Python, run gradient descent to plot w(t) as a function of t.

Prob 10.7 (Optimizers) Consider gradient descent:

w(t+1)
= w(t) − α∇J (w(t))

where w(t) indicates the weights of an interested model at the t-th iteration; J (w(t))
denotes the cost function evaluated at w(t); and α is the learning rate. Note that
only the current gradient, reflected in ∇J (w(t)), affects the weight update.

(a) (Momentum optimizer (Polyak, 1964)) In the literature, there is a promi-
nent variant of gradient descent that takes into account past gradients as
well. Using the past information, one can damp an oscillating effect in
the weight update that may incur instability in training. To capture past
gradients and therefore address the oscillation problem, another quantity,
denoted by m(t), is introduced:

m(t) = βm(t−1)
+ (1− β)(−∇J (w(t))) (3.110)

Problem Set 10 291

where β denotes another hyperparameter that captures the weight of the
past gradients, called the momentum. Here m stands for the momentum
vector. The variant of the algorithm (called the momentum optimizer) takes
the following update for w(t+1):

w(t+1)
= w(t) + αm(t). (3.111)

Show that

w(t+1)
= w(t) − α(1− β)

t−1∑
k=0

βk
∇J (w(t−k))+ αβ tm(0).

(b) (Bias correction) Assuming that ∇J (w(t)) is the same for all t and m(0) = 0,
show that

w(t+1)
= w(t) − α(1− β t)∇J (w(t)).

Note: For a large value of t, 1 − β t
≈ 1, so it has almost the same scaling

as that in the regular gradient descent. On the other hand, for a small value
of t, 1 − β t can be small, being far from 1. For instance, when β = 0.9
and t = 2, 1 − β t

= 0.19. This motivates us to rescale the moment m(t)

in (3.110) through division by 1− β t . Hence, in practice, we use:

m̂(t) =
m(t)

1− β t ; (3.112)

w(t+1)
= w(t) + αm̂(t). (3.113)

This technique is called the bias correction.
(c) (Adam optimizer (Kingma and Ba, 2014)) Notice in (3.110) that a very large

or very small value of∇J (w(t)) affects the weight update in quite a different
scaling. In an effort to avoid such a different scaling problem, people in
practice donormalization in the weight update (3.113) via a normalization
factor, denoted by ŝ(t) (Hinton et al., 2012):

w(t+1)
= w(t) + α

m̂(t)
√

ŝ(t) + ε
(3.114)

where the division is component-wise, and

m̂(t) =
m(t)

1− β t
1

, (3.115)

m(t) = β1m(t−1)
− (1− β1)∇J (w(t)), (3.116)

292 Data Science Applications

ŝ(t) =
s(t)

1− β t
2

, (3.117)

s(t) = β2s(t−1)
+ (1− β2)(∇J (w(t)))2. (3.118)

Here (·)2 indicates a component-wise square; ε is a tiny value introduced
to avoid division by 0 in practice (usually 10−8); and s stands for square.
This optimizer (3.114) is called the Adam optimizer. Explain the rationale
behind the division by 1− β t

2 in (3.118).

Prob 10.8 (TensorFlow implementation of a digit classifier) Consider a
handwritten digit classifier in Section 3.14. In this problem, you are asked to build
a classifier using a two-layer neural network with ReLU activation at the hidden
layer and softmax activation at the output layer.

(a) (MNIST dataset) Use the following script (or otherwise), load the MNIST
dataset:

from tensorflow.keras.datasets import mnist
(X_train,y_train),(X_test,y_test)=mnist.load_data()
X_train = X_train/255.
X_test = X_test/255.

What are m (the number of training examples) and mtest? What are the
shapes of X_train and y_train?

(b) (Data visualization) Upon the code in part (a) being executed, report an
output for the following:

import matplotlib.pyplot as plt
num_of_images = 60
for index in range(1,num_of_images+1):

plt.subplot(6,10, index)
plt.axis(’off’)
plt.imshow(X_train[index], cmap = ’gray_r’)

(c) (Model) Using a skeleton code provided in Section 3.14, write a script for
a two-layer neural network model with 500 hidden units fed by MNIST
data.

(d) (Training) Using a skeleton code in Section 3.14, write a script for train-
ing the model generated in part (c) with cross entropy loss. Use the Adam

optimizer with:

learning rate = 0.001; (β1,β2) = (0.9, 0.999)

Problem Set 10 293

and the number of epochs is 10. Also plot a training loss as a function of
epochs.

(e) (Testing) Using a skeleton code in Section 3.14, write a script for testing the
model (trained in part (d)). What is the test accuracy?

Prob 10.9 (True or False?)

(a) Consider an optimization problem for supervised learning:

min
w

m∑
i=1

`(y(i), fw(x(i))) (3.119)

where {(x(i), y(i))}mi=1 indicate input-output example pairs, and

fw(x) =
1

1+ e−wT x
. (3.120)

The optimal loss function (in a sense of maximizing the likelihood) is:

`∗(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ). (3.121)

(b) For two arbitrary distributions, say p and q, consider cross entropy H(p, q).
Then,

H(p, q) ≥ H(q) (3.122)

where H(q) is the entropy w.r.t. q.
(c) For two arbitrary distributions, say p and q, consider cross entropy:

H(p, q) := −
∑
x∈X

p(x) log q(x) = Ep

[
log

1

q(X)

]
(3.123)

where X ∈ X is a discrete random variable. Then,

H(p, q) = H(p) := −
∑
x∈X

p(x) log p(x). (3.124)

only when q = p.
(d) Consider a binary classifier where we are given input-output example pairs
{(x(i), y(i))}mi=1. Let 0 ≤ ŷ(i) ≤ 1 be the classifier output for the ith example.

294 Data Science Applications

Let w be parameters of the classifier. Define:

w∗CE := arg min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))

w∗KL := arg min
w

1

m

m∑
i=1

KL(y(i)‖ŷ(i))

where `CE(·, ·) denotes cross entropy loss and KL(y(i)‖ŷ(i)) indicates the KL
divergence between two binary random variables with parameters y(i) and
ŷ(i), respectively. Then,

w∗CE = w∗KL.

(e) Suppose we execute the following code:

import numpy as np
a = np.random.randn(4,3,3)
b = np.ones_like(a)
print(b[0].shape)
print(b.shape[0])

Then, the two prints yield the same results.
(f) Suppose that image is an MNIST image of numpy array type. Then, one

can use the following commands to plot the image:

import matplotlib.pyplot as plt
plt.imshow(image.squeeze(), cmap=’gray_r’)

Unsupervised Learning: Generative Modeling 295

3.15 Unsupervised Learning: Generative Modeling

Recap Over the past three sections, we have covered basic contents related to
supervised learning. The primary objective of supervised learning is to estimate
a function f (·) of a computer system from input-output samples, as depicted in
Fig. 3.45. To transform a function optimization problem, a natural form of super-
vised learning, into a parameterized optimization problem, we represented the func-
tion with weights (or parameters) based on a particular system architecture, namely,
the Perceptron. By using the logistic function, we obtained logistic regression and
proved that cross entropy is the optimal loss function for maximizing likelihood.
We also examined the more expressive Deep Neural Network (DNN) architecture
for f (·). As for a choice of activation functions, we used ReLU activation func-
tions for all hidden neurons and logistic (or softmax) function for the output layer.
To solve optimization, we investigated the widely used gradient descent algorithm
and its more advanced version, the Adam optimizer, which utilizes past gradients
for stable training. Lastly, we learned how to implement the algorithm through
TensorFlow.

Unsupervised learning What comes next? In reality, there is a significant chal-
lenge that arises in supervised learning. In many practical scenarios, collecting
labeled data is not a straightforward task. Typically, obtaining labeled data is a costly
process that requires extensive human labor for annotations. Therefore, there is a
growing need to explore solutions that do not rely on labeled data. Then, what can
we do only with {x(i)}mi=1?

This is where unsupervised learning becomes relevant. Unsupervised learning
is a methodology for acquiring knowledge about data {x(i)}mi=1 without relying
on labeled data. One of the prominent targets for unsupervised learning is the

machine

Figure 3.45. Supervised learning: Learning the function f(·) of an interested system from

data {(x(i), y(i))}mi=1.

296 Data Science Applications

Figure 3.46. Ian Goodfellow, a young figure in the modern AI field. He is best known as

the inventor of the Generative Adversarial Networks (GANs), which made a big wave in

the AI history.

probability distribution, which is the most complex yet fundamental information.
The probability distribution enables us to generate realistic signals according to our
preferences. The generative modeling method is the unsupervised learning tech-
nique used to learn this fundamental entity and is widely recognized in the field.
Therefore, we will concentrate on this approach.

Generative Adversarial Networks (GANs) Our focus will be on Genera-
tive Adversarial Networks (GANs) (Goodfellow et al., 2014), a popular generative
model in the literature. Ian Goodfellow, a research scientist in the AI field, invented
GANs; see Fig. 3.46. GANs have proven to be instrumental in various applica-
tions, including image creation, human image synthesis, image inpainting, color-
ing, super-resolution image synthesis, speech synthesis, style transfer, and robot
navigation. GANs are so effective that, as of October 3, 2019, the state of Califor-
nia passed a bill banning the use of GANs to create fake pornography without the
consent of those depicted. From an information theory perspective, GANs are an
intriguing framework since they are closely linked to KL divergence and mutual
information.

Outline In the upcoming sections, we will delve deep into the connection between
GANs, KL divergence, and mutual information. Our investigation will unfold in
four parts. Firstly, we will explore the concept of generative modeling. Secondly, we
will formulate an optimization problem, with a particular emphasis on the GAN
framework. Then, we will establish a connection to the KL divergence and mutual
information. Finally, we will learn how to solve the GAN optimization problem
and implement it using TensorFlow. For this section, our focus will be on the first
two parts.

Generative modeling Generative modeling refers to a method of producing
synthetic data that follows a similar distribution as real data. The model parameters

Unsupervised Learning: Generative Modeling 297

Figure 3.47. A generative model is the one that generates fake data which resembles

real data. Here what resembling means in a mathematical language is that it has a similar
distribution.

are trained using real data so that the model generates fake data that resembles the
real data. Fig. 3.47 provides a visual illustration of this process. The input signal,
which is not shown in the figure but should be fed into the model, can be either a
randomly generated signal or a synthesized signal that serves as a seed for the fake
data. The choice of input signal depends on the specific application. We will delve
into this in further detail later on.

A remark on generative modeling The design of a generative model has been
a classical age-old problem, and it is considered one of the most important problems
in statistics. This is because the main objective of the statistics field is to determine
the probability distribution of data, and the generative model serves as the under-
lying framework. Furthermore, the model can be utilized as a concrete function
block, also known as the generator in the field, to generate realistic fake data. Den-
sity estimation is another common name for the problem in statistics, where the
density pertains to the probability distribution.

Notations We relate generative modeling to optimization. We feed an input sig-
nal that one can arbitrary synthesize. A common way to generate the input is to
use Gaussian or uniform distribution. For this input, we employ a conventional “x”
notation, say x ∈ Rk, where k is a dimension. To avoid the conflict in notation with
real data {x(i)}mi=1, we use a different notation, say { y(i)}mi=1, for real data. Please
don’t be confused with labels. In fact, the convention in machine learning is to use
a z notation for a fake input while maintaining {x(i)}mi=1 for real data. This may
be another way that you should take when writing papers. Let ŷ ∈ Rn be a fake
output. Let {(x(i), ŷ(i))}mi=1 be such fake input-output m pairs and let {y(i)}mi=1 be
real data examples. See Fig. 3.48.

Goal Let G(·) be a function of the generator. Then, the goal of the generative
model can be stated as follows: Designing G(·) such that

{ŷ(i)}mi=1 ≈ { y
(i)
}
m
i=1 in distribution.

298 Data Science Applications

real data

fake outputfake input
generative

model

Figure 3.48. Problem formulation for generative modeling.

What does it mean by “in distribution”? To make it clear, we need to quantify close-
ness between two distributions. One natural yet prominent approach employed in
statistics is to take the following two steps:

1. Compute empirical distributions or estimate distributions from {y(i)}mi=1 and
{(x(i), ŷ(i))}mi=1. Let such distributions be:

QY ,QŶ

for real and fake data, respectively.
2. Next employ a well-known divergence measure in statistics which can serve

to quantify closeness of two distributions. Let D(·, ·) be one such divergence
measure. Then, the similarity between QY and QŶ can be quantified as:

D(QY ,QŶ).

Taking the above approach, one can state the goal as: Designing G(·) such that

D(QY ,QŶ) is minimized.

Optimization under the approach Under the approach, one can formulate
an optimization problem as:

min
G(·)

D(QY ,QŶ). (3.125)

As you may recognize, a couple of issues arise in solving the above problem (3.125).
One issue is that it is a function optimization problem. As mentioned earlier, one
common way to resolve this is to parameterize the function with a neural network:

min
G(·)∈N

D(QY ,QŶ) (3.126)

where N indicates a class of neural networks.

Unsupervised Learning: Generative Modeling 299

There are two more issues. First, the objective function D(QY ,QŶ) is a compli-
cated function of the knob G(·). Note that QŶ is a function of G(·), as ŷ = G(x).
The objective function is a twice folded composite function of G(·). The second is
perhaps the most fundamental issue. It is not clear as to how to choose a divergence
measure D(·, ·).

Look ahead There are various methods to tackle the aforementioned concerns,
and one of them leads to formulating an optimization problem for GANs. The
following section will explore this method for deriving the optimization problem
for GANs.

300 Data Science Applications

3.16 Generative Adversarial Networks (GANs) and KL
Divergence

Recap In the previous section, we introduced unsupervised learning. The goal
of unsupervised learning is to learn something about data, which we denoted by
{ y(i)}mi=1, instead of {x(i)}mi=1. There are several unsupervised learning methods
available depending on the desired outcome. However, we have emphasized one
particular approach, which is generative modeling, aimed at learning the probabil-
ity distribution. We have also formulated an optimization problem for generative
modeling:

min
G(·)∈N

D(QY ,QŶ) (3.127)

whereQY andQŶ indicate the empirical distributions for real and fake data, respec-
tively; G(·) denotes the function of the generator; D(·, ·) is a divergence measure;
and N is a class of neural networks. Next, we brought up a few challenges in
the optimization problem: (i) the optimization is a function optimization; (ii) the
objective function involves complex dependencies on G(·); and (iii) the choice of
D(·, ·) is not straightforward.

We also pointed out that there are approaches to tackle these issues, one of which
leads to an optimization problem for a highly effective generative model called Gen-
erative Adversarial Networks (GANs).

Outline This section will delve into the details on GANs. The section consists of
three parts. Firstly, we will examine the path that leads to GANs. Secondly, we will
derive an optimization problem for GANs. Finally, we will demonstrate that GANs
have the close connection with the KL divergence and mutual information.

What is the way that leads to GANs? Remember one challenge that we are
faced with in the optimization problem (3.127): D(QY ,QŶ) is a complicated func-
tion of G(·). To address this, we take an indirect way to represent D(QY ,QŶ). We
first observe how D(QY ,QŶ) should behave, and then based on the observation,
we will come up with an indirect way to mimic the behaviour. It turns out the way
leads us to explicitly compute D(QY ,QŶ). Below are details.

How D(QY ,QŶ) should behave? One observation that we can make is that if
one can easily discriminate real data y from fake data ŷ, then the divergence must be
large; otherwise, it should be small. This motivates us to:

Interpret D(QY ,QŶ) as the ability to discriminate.

Generative Adversarial Networks (GANs) and KL Divergence 301

Figure 3.49. Discriminator wishes to output D(·) such that D(y) is as large as possible

while D(ŷ) is as small as possible.

We introduce an entity that can serve the discriminating function. This particular
entity was introduced by Ian Goodfellow, the inventor of GAN, and he named it:

Discriminator.

Goodfellow considered a binary-output discriminator which takes as an input,
either real data y or fake data ŷ. He then wanted to design D(·) such that D(·)
well approximates the probability that the input (·) is real data:

D(·) ≈ P((·) = real data).

Noticing that

P(y = real) = 1;

P(ŷ = real) = 0,

he wanted to design D(·) such that:

D(y) is as large as possible, close to 1;

D(ŷ) is as small as possible, close to 0.

See Fig. 3.49.

How to quantity the ability to discriminate? Keeping the picture Fig. 3.49
in his mind, he wanted to quantify the ability to discriminate. To this end, he
observed that if D(·) can easily discriminate, then we should have:

D(y) ↑; 1− D(ŷ) ↑ .

Although one simplistic approach to capturing the ability is to add the above two
terms, Goodfellow chose to use a logarithmic summation instead:

log D(y)+ log(1− D(ŷ)). (3.128)

302 Data Science Applications

Figure 3.50. A two-player game for GAN: Discriminator D(·) wishes to maximize the

quantified ability (3.129), while another player, generator G(·), wants to minimize (3.129).

During the NeurIPS 2016 conference, Goodfellow presented a tutorial on GANs
and referenced a paper from AISTATS 2010 as the source of inspiration for the
problem formulation (Gutmann and Hyvärinen, 2010). See Eq. (3) in the paper.

Making the particular choice, he quantified the ability to discriminate for m
examples as:

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))). (3.129)

A two-player game Goodfellow then introduced a two-player game in which
player 1, discriminator D(·), wishes to maximize the quantified ability (3.129),
while player 2, generator G(·), wants to minimize (3.129). See Fig. 3.50 for illus-
tration.

Optimization for GANs The two-player game motivated him to formulate the
following min max optimization problem:

min
G(·)

max
D(·)

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))). (3.130)

You may be wondering why the order of “max min” was not used instead (i.e., first
taking “min” and then “max”). While that is a possible approach, there is a specific
reason why “min max” is preferred, which will become clear shortly. Note that the
optimization is focused on two functions, D(·) and G(·), meaning that it is still a
function optimization. Fortunately, the GAN paper was published in 2014, after
the start of the deep learning revolution. This enabled Goodfellow to appreciate
the power of neural networks: “Deep neural networks can represent any arbitrary
function well.” This inspired him to use neural networks to parameterize the two

Generative Adversarial Networks (GANs) and KL Divergence 303

functions, resulting in the following optimization problem:

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.131)

where N denotes a class of neural networks. This is the optimization problem for
GANs.

Related to original optimization? Remember what we mentioned earlier. The
way leading to the GAN optimization is an indirect way of solving the original
optimization problem:

min
G(·)

D(QY ,QŶ). (3.132)

What is the relationship between the two problems, (3.131) and (3.132)? These
problems are closely linked, and this is precisely where the selection of “min
max” (rather than “max min”) becomes important. The alternative approach can-
not establish a connection. Research has demonstrated that, assuming deep neu-
ral networks can effectively represent any function, the GAN optimization prob-
lem (3.131) can be transformed into the original optimization form (3.132). Below
we will demonstrate this.

Simplification & manipulation Let us start by simplifying the GAN optimiza-
tion (3.131). Since we assume that N can represent any arbitrary function, the
problem (3.131) becomes unconstrained:

min
G(·)

max
D(·)

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))). (3.133)

The objective is a function of D(·), and the two functions D(·)’s appear but with
different arguments: one is y(i); the other is ŷ(i). So in the current form (3.133), the
inner (max) optimization is not quite tractable to solve. In an attempt to make it
tractable, let us express it in a different manner using the following notations.

Define a random vector Y which takes one of the m real examples with proba-
bility 1

m (uniform distribution):

Y ∈ { y(1), . . . , y(m)} =: Y ; QY (y(i)) =
1

m
, i ∈ {1, 2, . . . , m}

where QY indicates the probability distribution of Y . Similarly define Ŷ for fake
examples:

Ŷ ∈ {ŷ(1), . . . , ŷ(m)} =: Ŷ ; QŶ (ŷ(i)) =
1

m
, i ∈ {1, 2, . . . , m}

304 Data Science Applications

where QŶ indicates the probability distribution of Ŷ . Using these notations, one
can rewrite the problem (3.133) as:

min
G(·)

max
D(·)

m∑
i=1

QY (y(i)) log D(y(i))+QŶ (ŷ(i)) log(1− D(ŷ(i))). (3.134)

Still we have different arguments in the two D(·) functions. To address this, we
introduce another notation. Let z ∈ Y ∪ Ŷ . Newly define QY (·) and QŶ (·) such
that:

QY (z) := 0 if z ∈ Ŷ \ Y ; (3.135)

QŶ (z) := 0 if z ∈ Y \ Ŷ . (3.136)

Using the z notation, one can rewrite the problem (3.134) as:

min
G(·)

max
D(·)

∑
z∈Y∪Ŷ

QY (z) log D(z)+QŶ (z) log(1− D(z)). (3.137)

We see that the same arguments appear in the two D(·) functions.

Solving the inner optimization We are ready to solve the inner optimization
in (3.137). Key observations are: log D(z) is concave in D(·); log(1 − D(z)) is
concave in D(·); and therefore, the objective function is concave in D(·). This
implies that the objective has the unique maximum in the function space D(·).
Hence, one can find the maximum by searching for the stationary point. Taking a
derivative and setting it to zero, we get:

1

ln 2

∑
z

[
QY (z)
D∗(z)

−
QŶ (z)

1− D∗(z)

]
= 0.

This then yields:

D∗(z) =
QY (z)

QY (z)+QŶ (z)
z ∈ Y ∪ Ŷ . (3.138)

Plugging this into (3.137), we obtain:

min
G(·)

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z)+QŶ (z)
+QŶ (z) log

QŶ (z)

QY (z)+QŶ (z)
.

(3.139)

Generative Adversarial Networks (GANs) and KL Divergence 305

Connection to KL divergence We massage the objective function in (3.139)
to express it as:

min
G(·)

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z)+QŶ (z)
2

+QŶ (z) log
QŶ (z)

QY (z)+QŶ (z)
2︸ ︷︷ ︸

−2. (3.140)

The above underbraced term can be expressed with a well-known divergence
measure: the KL divergence. Hence, we get:

min
G(·)

∑
z∈Y∪Ŷ

QY (z) log
QY (z)

QY (z)+QŶ (z)
2

+QŶ (z) log
QŶ (z)

QY (z)+QŶ (z)
2

− 2 (3.141)

= min
G(·)

KL(QY ‖(QY +QŶ)/2)+ KL(QŶ ‖(QY +QŶ)/2)− 2.

(3.142)

Slightly manipulating the above, we obtain an equivalent optimization:

G∗GAN = arg min
G(·)

1

2
{KL(QY ‖(QY +QŶ)/2)+ KL(QŶ ‖(QY +QŶ)/2)}.

(3.143)

Note that the objective coincides with Jensen-Shannon divergence that we intro-
duced in Prob 1.13.

Connection to mutual information From (3.143), we can also make a con-
nection to mutual information. Recall what you were asked to prove in Prob 1.13.
That is, for two random variables, say T and Ȳ ,

I(T ; Ȳ) =
∑
t∈T

PT (t)KL(PȲ |t‖PȲ) (3.144)

where PT and PȲ denote the probability distributions of T and Ȳ , respectively;
and PȲ |t indicates the conditional distribution of Ȳ given T = t.

Suppose that T ∼ Bern(1
2) and we define Ȳ as:

Ȳ =

{
Y , T = 1;

Ŷ , T = 0.

Then, we get:

PȲ |1 = QY , PȲ |0 = QŶ , PȲ = (QY +QŶ)/2

306 Data Science Applications

where the last is due to the total probability law (why?). This together with (3.143)
and (3.144) gives:

G∗GAN = arg min
G(·)

I(T ; Ȳ). (3.145)

Look ahead We have developed an optimization problem for GANs and estab-
lished an intriguing link to the KL divergence and mutual information. In the
subsequent section, we will explore a method for solving the GAN optimization
problem (3.131) and implement it utilizing TensorFlow.

GANs: TensorFlow Implementation 307

3.17 GANs: TensorFlow Implementation

Recap In the prior section, we investigated Goodfellow’s approach to formulate
an optimization problem for GANs. He began by quantifying the ability to dis-
criminate real against fake samples:

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.146)

where y(i) and ŷ(i) := G(x(i)) indicate real and fake samples, respectively; D(·)
denotes the output of discriminator; and m is the number of examples. He then
introduced two players: (i) player 1, discriminator, who wishes to maximize the
ability; (ii) player 2, generator, who wants to minimize it. This led to the optimiza-
tion problem for GANs:

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(G(x(i)))) (3.147)

where N denotes a class of neural networks. Lastly we demonstrated that the prob-
lem (3.147) can be stated in terms of the KL divergence or mutual information,
thus making a connection to information theory.

Two natural questions arise. First, how to solve the problem (3.147)? Second,
how to do TensorFlow implementation?

Outline This section will address two inquiries. We will cover four stuffs in detail.
Initially, we will explore a practical approach to resolving problem (3.147). Next,
we will conduct a case study to exercise the approach. Specifically, we will focus
on generating MNIST-style handwritten digit images. We will then delve into one
important implementation detail: Batch Normalization (Ioffe and Szegedy, 2015),
which is known to be quite useful for deep neural networks. Finally, we will acquire
the knowledge of scripting a TensorFlow program for software implementation.

Parameterization Solving the problem (3.147) starts with parameterizing the
two functions G(·) and D(·) with neural networks:

min
w

max
θ

1

m

m∑
i=1

log Dθ (y(i))+ log(1− Dθ (Gw(x(i))))︸ ︷︷ ︸
=:J (w,θ)

(3.148)

where w and θ indicate parameters for G(·) and D(·), respectively. Is the parameter-
ized problem (3.148) the one that we are familiar with? In other words, is J (w, θ) is

308 Data Science Applications

convex in w? Is J (w, θ) is concave in θ ? Unfortunately, it is not the case. In general,
the objective is highly non-convex in w and highly non-concave in θ .

Then, what can we do? In fact, there is nothing we can do more beyond what
we know. We only know how to find a stationary point via a method like gradient
descent. One practical way is to simply look for a stationary point, say (w∗, θ∗),
such that

∇wJ (w∗, θ∗) = 0, ∇θ J (w∗, θ∗) = 0,

while cross-fingering that such a point yields a near optimal performance. Luck-
ily, it is often the case in practice, especially when employing neural networks for
parameterization. Huge efforts have been made by many smart theorists in figur-
ing out why that is the case, e.g., (Arora et al., 2017). However, a clear theoretical
understanding is still lacking despite their efforts.

Alternating gradient descent One practical method to attempt to find (yet
not necessarily guarantee to find) such a stationary point in the min-max optimiza-
tion (3.148) is: alternating gradient descent.

Here is how it works. At the tth iteration, update generator’s weight:

w(t+1)
← w(t) − α1∇wJ (w(t), θ (t))

where w(t) and θ (t) denote the weights of generator and discriminator at the tth
iteration, respectively; and α1 is the learning rate for generator. Given (w(t+1), θ (t)),
we next update discriminator’s weight as per:

θ (t+1)
← θ (t) + α2∇θ J (w(t+1), θ (t))

where α2 is the learning rate for discriminator. In the discriminator update, we
perform gradient ascent. Lastly we repeat the above two until converged.

In practice, we may wish to control the frequency of discriminator weight update
relative to that of generator. To this end, we often employ k : 1 alternating gradient
descent:

1. Update generator’s weight:

w(t+1)
← w(t) − α1∇wJ (w(t), θ (t·k)).

2. Update discriminator’s weight k times while fixing w(t+1): for i = 1:k,

θ (t·k+i)
← θ (t·k+i−1)

+ α2∇θ J (w(t+1), θ (t·k+i−1)).

3. Repeat the above.

GANs: TensorFlow Implementation 309

You may wonder why we update discriminator more frequently than generator.
Usually more updates in the inner optimization yield better performances in prac-
tice. Further, we employ the Adam optimizer together with batches. We leave
details in Prob 11.6.

A practical tip on generator Let us say a few words about generator optimiza-
tion. Given discriminator’s parameter θ , the generator wishes to minimize:

min
w

1

mB

∑
i∈B

log Dθ (y(i))+ log(1− Dθ (Gw(x(i))))

where B indicates a batch and mB is the batch size (the number of examples in the
batch). Notice that log Dθ (y(i)) in the above is irrelevant of generator’s weight w.
Hence, it suffices to minimize:

min
w

1

mB

∑
i∈B

log(1− Dθ (Gw(x(i))))︸ ︷︷ ︸
generator loss

where the underbraced term is called “generator loss”. However, in practice, instead
of minimizing the generator loss directly, people rely on the following proxy:

min
w

1

mB

∑
i∈B
− log Dθ (Gw(x(i))). (3.149)

You may wonder why. There is a technical rationale behind the use of the proxy.
Check this in Prob 11.2.

Task We introduce one case study for implementation. The task is related to the
simple digit classifier that we implemented in Section 3.14. The task is to generate
MNIST style handwritten digit images, as illustrated in Fig. 3.51. We intend to
train generator so that it outputs an MNIST style fake image when fed by a random
input signal.

Model for generator As a generator model, we employ a 5-layer fully-connected
neural network with four hidden layers, as depicted in Fig. 3.52. For activation at
each hidden layer, we employ ReLU. Remember that an MNIST image consists of
28-by-28 pixels, each indicating a gray-scaled value that spans from 0 to 1. Hence,
for the output layer, we use 784 (= 28 × 28) neurons and logistic activation to
ensure the range of [0, 1].

The employed network has five layers, so it is deeper than the two layer network
that we used earlier. In practice, for a somewhat deep neural network, each layer’s
signals can exhibit quite different scalings. Such dynamically-swinged scaling yields

310 Data Science Applications

Figure 3.51. Generator for MNIST-style handwritten digit images.

Figure 3.52. Generator: A 5-layer fully-connected neural network where the input size

(the dimension of a fake input signal) is 100; the numbers of hidden neurons are 128, 256,

512, 1024; and the output size is 784 (=28×28). We employ ReLU activation at every

hidden layer, and logistic activation at the output layer to ensure 0-to-1 output signals.

We use Batch Normalization prior to ReLU at each hidden layer. See Fig. 3.53 for details.

a detrimental effect upon training: unstable training. Hence, people often apply an
additional procedure (prior to ReLU), in order to control the scaling in our own
manner. The procedure is called: Batch Normalization.

Batch Normalization (Ioffe and Szegedy, 2015) Here is how it works. See
Fig. 3.53. For illustrative purpose, focus on one particular hidden layer. Let z :=
[z1, . . . , zn]T be the output of the considered hidden layer prior to activation. Here
n denotes the number of neurons in the hidden layer.

Batch Normalization (BN for short) consists of two steps. First we do zero-
centering and normalization using the mean and variance w.r.t. examples in an
associated batch B:

µB =
1

mB

∑
i∈B

z(i), σ 2
B =

1

mB

∑
i∈B
(z(i) − µB)

2 (3.150)

GANs: TensorFlow Implementation 311

Figure 3.53. Batch Normalization (BN): First we do zero-centering and normalization

with the mean µB and the variance σ2
B computed over the examples in an associated

batch B. Next we do a customized scaling by introducing two new parameters learnable

during training: γ ∈ Rn and β ∈ Rn.

where (·)2 indicates a component-wise square, hence σ 2
B ∈ Rn. In other words, we

generate the normalized output, say znorm, as:

znorm =
z(i) − µB√
σ 2
B + ε

(3.151)

where division and multiplication are all component-wise. Here ε is a tiny value
introduced to avoid division by 0 (typically 10−5).

Second, we do a customized scaling as per:

z̃(i) = γ z(i)norm + β (3.152)

where γ ,β ∈ Rn indicate two new scaling parameters which are learnable via train-
ing. Again, the operations in (3.152) are all component-wise.

BN lets the model learn the optimal scale and mean of the inputs for each hidden
layer. This technique is quite instrumental in stabilizing and speeding up training
especially for a very deep neural network. This has been verified experimentally by
many practitioners.

Model for discriminator As a discriminator model, we use a 3-layer fully-
connected network with two hidden layers; see Fig. 3.54. The input size must be
the same as that of the flattened real (or fake) image. Again we employ ReLU at
hidden layers and logistic activation at the output layer.

TensorFlow: How to use BN? Loading MNIST data is the same as before – so
we omit it. Instead we discuss how to use BN. TensorFlow provides a built-in class

312 Data Science Applications

Figure 3.54. Discriminator: A 3-layer fully-connected neural network where the input size

(the dimension of a flattened vector of a real (or fake) image) is 784 (=28×28); the num-

bers of hidden neurons are 512, 256; and the output size is 1. We employ ReLU activation

at every hidden layer, and logistic activation at the output layer.

for BN:

BatchNormalization()

This is placed in tensorflow.keras.layers. Here is how to use the class in our setting:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import ReLU

generator = Sequential()
generator.add(Dense(128,input_dim=latent_dim))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(256))
generator.add(BatchNormalization())
: : :

where latent dim is the dimension of the fake input signal (which we set as 100).

TensorFlow: Models for generator & discriminator Using the deep neural
networks for generator and discriminator illustrated in Figs. 3.52 and 3.54, we can
implement a code as below.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import ReLU

GANs: TensorFlow Implementation 313

latent_dim =100
generator=Sequential()
generator.add(Dense(128,input_dim=latent_dim))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(256))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(512))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(1024))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(28*28,activation=’sigmoid’))

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import ReLU

discriminator=Sequential()
discriminator.add(Dense(512,input_shape=(784,)))
discriminator.add(ReLU())
discriminator.add(Dense(256))
discriminator.add(ReLU())
discriminator.add(Dense(1,activation= ’sigmoid’))

TensorFlow: Optimizers for generator & discriminator We use Adam

optimizers with lr=0.0002 and (b1,b2)=(0.5,0.999). Since we have two models
(generator and discriminator), we employ two optimizers accordingly:

from tensorflow.keras.optimizers import Adam
lr = 0.0002
b1 = 0.5
b2 = 0.999 # default choice
optimizer_G = Adam(learning_rate=lr, beta_1=b1)
optimizer_D = Adam(learning_rate=lr, beta_1=b1)

TensorFlow: Generator input As a generator input, we use a random signal
with the Gaussian distribution. In particular, we use:

x ∈ Rlatent dim
∼ N (0, Ilatent dim).

314 Data Science Applications

Here is how to generate the Gaussian random signal in TensorFlow:

from tensorflow.random import normal
x = normal([batch_size,latent_dim])

TensorFlow: Binary cross entropy loss Consider the batch version of the
GAN optimization (3.148):

min
w

max
θ

1

mB

∑
i∈B

log Dθ (y(i))+ log(1− Dθ (Gw(x(i)))). (3.153)

We introduce the ground-truth real-vs-fake indicator vector [1, 0]T (real = 1,
fake = 0). Then, the term log Dθ (y(i)) can be viewed as the minus binary cross
entropy between the real/fake indicator vector and its prediction counterpart
[Dθ (y(i)), 1− Dθ (y(i))]T :

log Dθ (y(i)) = 1 · log Dθ (y(i))+ 0 · log(1− Dθ (y(i)))

= −`BCE(1, Dθ (y(i))).
(3.154)

On the other hand, another term log(1−Dθ (ŷ(i))) can be interpreted as the minus
binary cross entropy between the fake-vs-real indicator vector (fake = 0, real = 1)
and its prediction counterpart:

log(1− Dθ (ŷ(i))) = 0 · log Dθ (ŷ(i))+ 1 · log(1− Dθ (ŷ(i)))

= −`BCE(0, Dθ (ŷ(i))).
(3.155)

We see that cross entropy plays a role in the computation of the objective func-
tion. TensorFlow offers a built-in class for cross entropy: BinaryCrossentropy().
This is placed in tensorflow.keras.losses. Here is how to use it in our setting:

from tensorflow.keras.losses import BinaryCrossentropy
CE_loss = BinaryCrossentropy(from_logits=False)
loss = CE_loss(real_fake_indicator, output)

where output denotes discriminator output, and real fake indicator is real/fake
indicator vector (real = 1, fake = 0). Here output is the result after logistic acti-
vation; and real fake indicator is also a vector with the same dimension as output.
The function BinaryCrossentropy() automatically detects the number of examples
in an associated batch, thus yielding a normalized version (through division by mB).

GANs: TensorFlow Implementation 315

TensorFlow: Generator loss Recall the proxy (3.149) for the generator loss
that we will use:

min
w

1

mB

∑
i∈B
− log Dθ (Gw(x(i)))

(a)
= min

w

1

mB

∑
i∈B

`BCE(1, Dθ (Gw(x(i))))

(3.156)

where (a) follows from (3.154). We can use the function CE_loss implemented
above to write a code as below:
g_loss = CE_loss(valid, discriminator(gen_imgs))

where gen imgs indicate fake images (corresponding to Gw(x(i))’s) and valid

denotes an all-1’s vector with the same dimension as gen imgs.

TensorFlow: Discriminator loss Recall the batch version of the optimization
problem:

max
θ

1

mB

∑
i∈B

log Dθ (y(i))+ log(1− Dθ (Gw(x(i)))).

Taking the minus sign in the objective, we obtain the equivalent optimization:

min
θ

1

mB

∑
i∈B
− log Dθ (y(i))− log(1− Dθ (Gw(x(i))))︸ ︷︷ ︸

discriminator loss

where the discriminator loss is defined as the minus version. Using (3.154)
and (3.155), we can implement the discriminator loss as:

real_loss = CE_loss(valid, discriminator(real_imgs))
fake_loss = CE_loss(fake, discriminator(gen_imgs))
d_loss = real_loss + fake_loss

where real imgs indicate real images (corresponding to y(i)’s) and fake denotes an
all-0’s vector with the same dimension as gen imgs.

TensorFlow: Training Using all of the above, one can implement a code for
training. We leave details in Prob 11.6.

Look ahead Over the past sections, we have investigated two machine learning
applications: one pertains to supervised learning, while the other relates to unsu-
pervised learning. In the upcoming section, we will delve into the final application,
which pertains to a societal issue in machine learning and is linked to mutual infor-
mation: fair machine learning.

316 Data Science Applications

Problem Set 11

Prob 11.1 (Generative Adversarial Networks) Consider a GAN with gener-
ator G(·) and discriminator D(·). Let Y be a random variable that takes one of
real samples {y(i)}mi=1 with probability 1

m , and QY be such probability distribution.

Similarly we define Ŷ and QŶ for fake samples ŷ(i) := G(x(i)) where x(i) indicates
an input to G(·), i ∈ {1, . . . , m}.

Let T ∼ Bern(1
2) and

Ȳ =

{
Y , T = 1;

Ŷ , T = 0.
(3.157)

Let

G∗MI := arg min
G(·)

I(T ; Ȳ). (3.158)

(a) Show that G∗MI is the same as

G∗JS := arg min
G(·)

JS(QY ‖QŶ).

(b) Show that G∗JS is the same as

G∗GAN := arg min
G(·)

max
D(·)

EY [log D(Y)]+ EŶ [log(1− D(Ŷ))].

(c) Suppose that the neural network class N can represent any arbitrary func-
tion. Show that the solution for G(·) to the following optimization

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.159)

converges to G∗GAN as m→∞.
(d) In Section 3.16, we mentioned that (3.159) is the GAN optimization.

Explain what the objective function in (3.159) means in the context of a
two-player game in which one player (discriminator) wishes to discriminate
real samples against fake ones while the other player (generator) wants to
fool the discriminator.

Prob 11.2 (A proxy for the generator loss in GAN) Consider the optimiza-
tion problem for GAN in Section 3.16:

min
G(·)∈N

max
D(·)∈N

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.160)

Problem Set 11 317

where N indicates a class of neural networks, and y(i) and ŷ(i) := G(x(i)) denote
real and fake samples respectively. Here x(i) denotes an input to the generator, and
m is the number of examples. Suppose that the inner optimization is solved to yield
D∗(·). Then, the optimization problem becomes:

min
G(·)∈N

1

m

m∑
i=1

log D∗(y(i))+ log(1− D∗(ŷ(i))). (3.161)

(a) Show that the optimization problem (3.161) is equivalent to:

min
G(·)∈N

1

m

m∑
i=1

log(1− D∗(ŷ(i))). (3.162)

(b) Let w be the weights of the generator. Show that

d log(1− D∗(ŷ(i)))
dw

=
1

ln 2

1

D∗(ŷ(i))− 1

dD∗(ŷ(i))

d ŷ(i)
d ŷ(i)

dw
, (3.163)

d(− log D∗(ŷ(i)))
dw

=
1

ln 2

−1

D∗(ŷ(i))

dD∗(ŷ(i))

d ŷ(i)
d ŷ(i)

dw
. (3.164)

(c) Suppose that the discriminator works almost optimally, i.e., D∗(ŷ(i)) is very
close to 0. Which is larger in magnitude between (3.163) and (3.164)?
Instead of solving (3.162), people prefer to solve the following for G(·):

min
G(·)∈N

1

m

m∑
i=1

− log D∗(ŷ(i)). (3.165)

Explain the rationale behind this alternative.

Prob 11.3 (Batch normalization) Consider a deep neural network. Let z(i) :=
[z(i)1 , . . . , z(i)n]T be the output of a hidden layer prior to activation for the ith exam-
ple where i ∈ {1, 2, . . . , m} and m is the number of examples. Here n denotes the
number of neurons in the hidden layer.

(a) Let

µ =
1

m

m∑
i=1

z(i), σ 2
=

1

m

m∑
i=1

(z(i) − µ)2 (3.166)

318 Data Science Applications

where (·)2 indicates a component-wise square, hence σ 2
∈ Rn. Consider

z(i)norm =
z(i) − µ
√
σ 2 + ε

(3.167)

z̃(i) = γ z(i)norm + β (3.168)

where γ ,β ∈ Rn. Again the division and multiplication are all component-
wise. Here ε is a tiny value introduced to avoid division by 0 (typically
10−5). This is called a smoothing term. Assuming that ε is negligible and
z(i)’s are independent over i, what are the mean and variance of z̃(i)?

(b) Many researchers employ z̃(i) instead of z(i) during training. These oper-
ations include zero-centering and normalization (hence it is named batch
normalization), followed by rescaling and shifting with two new parameters
(γ and β) which are learnable via training. In other words, these operations
let the model learn the optimal scale and mean of the inputs for each layer.
This technique plays a role in stabilizing and speeding up training espe-
cially for a very deep neural network. This has been verified experimentally
by many practitioners.

In practice, this operation is done over the current mini-batch, so the
whole procedure is summarized as follows: for the current mini-batch B
with the size mB,

µB =
1

mB

mB∑
i=1

z(i), σ 2
B =

1

mB

mB∑
i=1

(z(i) − µB)
2,

z(i)norm =
z(i) − µB√
σ 2
B + ε

, z̃(i) = γ z(i)norm + β.

(3.169)

At test time, there is no mini-batch to compute the empirical mean and
standard deviation. Then, what can we do? Suggest a way to handle this
issue and explain the rationale behind your suggestion. You may want to
consult with some well-known literature if you wish.

Prob 11.4 (Function optimization) Let Y ∼ PY and Ŷ ∼ PŶ . Consider:

EY

[
log

PY (Y)
PY (Y)+ PŶ (Y)

]
+ EŶ

[
log

PŶ (Ŷ)

PY (Ŷ)+ PŶ (Ŷ)

]
. (3.170)

(a) For x < 1, show that log(1− x) is concave in x.

Problem Set 11 319

(b) Show that (3.170) is the same as:

max
D(·)∈R+

EY [log D(Y)]+ EŶ [log(1− D(Ŷ))]. (3.171)

Prob 11.5 (A lower bound of mutual information) Let L and X be random
variables. Define Ŷ := G(X , L) for a function G(·, ·). Show that

I(L; Ŷ) ≥ EL,Ŷ [log Q(L|Ŷ)]+H(L) (3.172)

for some conditional distribution Q(·|·).

Prob 11.6 (TensorFlow implementation of GAN) Consider Goodfellow’s
GAN that we learned in Section 3.16. In this problem, you are asked to build a
simple GAN that generates MNIST style handwritten digit images. We employ a
5-layer neural network for generator with ReLU at all the hidden layers and logistic

activation at the output layer.

(a) (MNIST dataset loading) Use the following script (or otherwise), load the
MNIST dataset:
from tensorflow.keras.datasets import mnist
(X_train,y_train),(X_test, y_test)=mnist.load_data()
X_train = X_train/255.
X_test = X_test/255.

Explain the role of the following script:

import numpy as np
def get_batches(data, batch_size):

batches = []
for i in range(int(data.shape[0]//batch_size)):

batch=data[i*batch_size:(i+1)*batch_size]
batches.append(batch)

return np.asarray(batches)

(b) (Data visualization) Assume that the code in part (a) is executed. Using a
skeleton code provided in Prob 10.8(b), write a script that plots 60 images
in the first batch of X_train in one figure. Also plot the figure.

(c) (Generator) Draw a block diagram for generator implemented by the
following:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import ReLU

latent_dim =100

320 Data Science Applications

generator=Sequential()
generator.add(Dense(128,input_dim=latent_dim))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(256))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(512))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(1024))
generator.add(BatchNormalization())
generator.add(ReLU())
generator.add(Dense(28*28,activation=’sigmoid’))

(d) (Generator check) Upon the above codes being executed, report an output
for the following:

from tensorflow.random import normal
import matplotlib.pyplot as plt

batch_size = 64
x = normal([batch_size,latent_dim])
gen_imgs = generator.predict(x)
gen_imgs = gen_imgs.reshape(-1,28,28)

num_of_images = 60
for index in range(1,num_of_images+1):

plt.subplot(6,10, index)
plt.axis(’off’)
plt.imshow(gen_imgs[index], cmap = ’gray_r’)

(e) (Discriminator) Draw a block diagram for discriminator implemented by
the following:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import ReLU

discriminator=Sequential()
discriminator.add(Dense(512,input_shape=(784,)))
discriminator.add(ReLU())
discriminator.add(Dense(256))
discriminator.add(ReLU())
discriminator.add(Dense(1,activation=’sigmoid’))

Problem Set 11 321

(f) (Training) Suppose we construct the generator and discriminator as follows:

from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam

adam = Adam(learning_rate=0.0002, beta_1=0.5)

discriminator compile
discriminator.compile(loss=’binary_crossentropy’,

optimizer=adam)
freeze disc’s weights while training generator
discriminator.trainable = False

define GAN with fake input and disc. output
gan_input = Input(shape=(latent_dim,))
x = generator(inputs=gan_input)
output = discriminator(x)
gan = Model(gan_input, output)
gan.compile(loss=’binary_crossentropy’,

optimizer=adam)

where generator() and discriminator() are the classes designed in parts (c)
and (e), respectively.

Explain how generator and discriminator are trained in the following
code:

import numpy as np
from tensorflow.random import normal

EPOCHS = 50
k=2 # k:1 alternating gradient descent
d_losses = []
g_losses = []

for epoch in range(1,EPOCHS + 1):
train per each batch
np.random.shuffle(X_train)
for i, real_imgs in enumerate(get_batches(X_train,

batch_size)):
#####################
train discriminator
#####################
fake input generation
gen_input = normal([batch_size,latent_dim])
fake images
gen_imgs = generator.predict(gen_input)

322 Data Science Applications

real_imgs = real_imgs.reshape(-1,28*28)
input for discriminator
d_input = np.concatenate([real_imgs,gen_imgs])
label for discriminator
(first half: real (1); second half: fake (0))
d_label = np.zeros(2*batch_size)
d_label[:batch_size] = 1
train Discriminator
d_loss = discriminator.train_on_batch(d_input, d_label)

#####################
train generator
#####################
if i%k: # 1:k alternating gradient descent

fake input generation
g_input = normal([batch_size,latent_dim])
label for fake image
Generator wants fake images to be treated
as real ones
g_label = np.ones(batch_size)
train generator
g_loss = gan.train_on_batch(g_iput, g_label)

d_losses.append(d_loss)
g_losses.append(g_loss)

(g) (Training check) For epoch = 10, 30, 50, 70, 90: plot a figure that shows
25 fake images from generator trained in part (f) or by other methods of
yours. Also plot the generator loss and discriminator loss as a function of
epochs. Include Python scripts as well.

Prob 11.7 (Minimax theorem) Let f (x, y) be a continuous real-valued function
defined on X × Y such that

(i) f (x, y) is convex in x ∈ X ∀y ∈ Y ; and

(ii) f (x, y) in concave in y ∈ Y ∀x ∈ X

where X and Y are convex and compact sets.
Note: You do not need to solve the optional problems below.

(a) Show that

min
x∈X

max
y∈Y

f (x, y) ≥ max
y∈Y

min
x∈X

f (x, y). (3.173)

Does (3.173) hold also for any arbitrary function f (·, ·)?

Problem Set 11 323

(b) Suppose

α ≤ min
x∈X

max
y∈Y

f (x, y) H⇒ α ≤ max
y∈Y

min
x∈X

f (x, y). (3.174)

Then, argue that (3.174) implies:

min
x∈X

max
y∈Y

f (x, y) ≤ max
y∈Y

min
x∈X

f (x, y). (3.175)

(c) Suppose that α ≤ minx∈X maxy∈Y f (x, y). Then, show that there are finite
y1, . . . , yn ∈ Y such that

α ≤ min
x∈X

max
y∈{y1,...,yn}

f (x, y). (3.176)

(d) (Optional) Suppose that α ≤ minx∈X maxy∈{y1,y2} f (x, y) for any y1, y2 ∈

Y . Then, show that there exists y0 ∈ Y such that

α ≤ min
x∈X

f (x, y0). (3.177)

(e) (Optional) Suppose that α ≤ minx∈X maxy∈{y1,...,yn} f (x, y) for any finite
y1, . . . , yn ∈ Y . Then, show that there exists y0 ∈ Y such that

α ≤ min
x∈X

f (x, y0). (3.178)

Hint: Use the proof-by-induction and part (d).

Note: (3.178) implies that α ≤ maxy∈Y minx∈X f (x, y). This together with the
results in parts (b) and (c) proves (3.175). Combining this with (3.173) proves the
minimax theorem:

min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y). (3.179)

Prob 11.8 (Training instability) Consider a function:

f (x, y) = (2+ cos x)(2+ cos y) (3.180)

where x, y ∈ R.

(a) Solve the following optimization (i.e., find the optimal solution as well as
the points that achieve it):

min
x

max
y

f (x, y). (3.181)

324 Data Science Applications

(b) Solve the reverse version of the optimization:

max
y

min
x

f (x, y). (3.182)

(c) Suppose that we perform 1 : 1 alternating gradient descent for f (x, y) with
an initial point (x(0), y(0)) = (π+0.1,−0.1). Plot f (x(t), y(t)) as a function
of t where (x(t), y(t)) denotes the estimate at the tth iteration. What are the
limiting values of (x(t), y(t))? Also explain why.
Note: You may want to set the learning rates properly so that the convergence
behaviour is clear.

(d) Redo part (c) with a different initial point (x(0), y(0)) = (0.1,π − 0.1).

Prob 11.9 (Alternating gradient descent) Consider a function:

f (x, y) = x2
− y2 (3.183)

where x, y ∈ R.

(a) Solve the following optimization:

min
x

max
y

f (x, y). (3.184)

(b) Suppose that we perform 1 : 1 alternating gradient descent for f (x, y) with
an initial point (x(0), y(0)) = (1, 1). Plot f (x(t), y(t)) as a function of t where
(x(t), y(t)) denotes the estimate at the tth iteration. What are the limiting
values of (x(t), y(t))? Also explain why.
Note: You may want to set the learning rates properly so that the convergence
behaviour is clear.

(c) Redo part (c) with a different initial point (x(0), y(0)) = (−1,−1).

Prob 11.10 (True or False?)

(a) Consider the following optimization:

min
x∈R

max
y∈R

x2
− y2.

With 1:1 alternating gradient descent with a proper choice of the learning
rates, one can achieve the optimal solution to the above.

Problem Set 11 325

(b) Consider the following optimization:

min
x∈R

max
y∈R

(2+ cos x)(2+ cos y).

Suppose we perform 1:1 alternating gradient descent with a proper choice
of the learning rates. Then, the converging points can be distinct depending
on different initial points.

326 Data Science Applications

3.18 Fair Machine Learning and Mutual Information (1/2)

Recap Throughout the preceding sections, we have investigated two prominent
methodologies for machine learning: (i) supervised learning; and (ii) unsupervised
learning. We found that cross entropy plays a pivotal role in designing the opti-
mal loss function for supervised learning. Additionally, we established a fascinat-
ing relationship between GANs (an unsupervised learning framework) and two
information-theoretic notions: the KL divergence and mutual information.

Next application As the final application, we will delve into a recent topic in
machine learning: Fair machine learning. There are three reasons for choosing this
topic. Firstly, as machine learning becomes increasingly prevalent in various appli-
cations, such as medicine, finance, job hiring and criminal justice, it is essential to
ensure fairness for all groups involved. This morally and legally motivated need has
gained significant attention in the design of machine learning algorithms, particu-
larly with regards to the fairness issue highlighted in the learning algorithm used in
the US Supreme Court, which yielded unbalanced recidivism scores across differ-
ent races (Larson et al., 2016). Thus, this important societal topic will be discussed
in this book. Secondly, we will explore the connection between information theory
and fair machine learning, specifically the role of mutual information in formu-
lating an optimization problem for these algorithms. Finally, we will examine how
the associated optimization problem is closely related to the GAN optimization
we learned in the past sections, creating a coherent sequence of applications from
supervised learning, GANs to fair machine learning.

During upcoming lectures Over the next couple of sections, we will thor-
oughly explore fair machine learning. We will cover four parts. Firstly, we will

Figure 3.55. (a) Supervised learning: Learning the function f(·) of an interested system

from input-output example pairs {(x(i), y(i))}mi=1; (b) Generative modeling (an unsupervised

learning methodology): Generating fake data that resemble real data, reflected in {x(i)}mi=1.

Fair Machine Learning and Mutual Information (1/2) 327

Figure 3.56. Machine learning-based recidivism score predictor of the US Supreme

Court: Black defendants were 77.3 percent more likely than white defendants to receive

high recidivism scores.

define fair machine learning and its purpose. Following this, we will examine
two widely used fairness concepts found in current literature. We will then for-
mulate an optimization framework for fair machine learning algorithms that
abide by the constraints of fairness inspired by these concepts. Furthermore, we
will establish a connection between mutual information and the optimization,
drawing parallels to GANs. Lastly, we will learn how to solve the optimization
problem and implement it in TensorFlow. In this section, we will cover the
first two.

Fair machine learning Fair machine learning refers to a specific area of machine
learning that is concerned with fairness. It can be defined as a field of algorithms
that train a machine to perform a given task in a fair manner. Fair machine learn-
ing can be divided into two main methodologies, just like traditional machine
learning. The first is fair supervised learning, where the goal is to develop a fair
classifier or predictor using a set of input-output sample pairs. The second is
the unsupervised learning counterpart, which includes fair generative modeling.
This aims to produce synthetic data that is both realistic and fair in terms of the
statistics of the generated samples. In this book, we will focus on fair supervised
learning.

Two major concepts on fairness To develop a fair classifier, it is necessary to
grasp the meaning of fairness. The term “fairness” is rooted in law and has a lengthy
and substantial history, with many concepts in the legal field. For our purposes,
we will concentrate on two well-known concepts that have garnered significant
attention in recent literature.

The first concept we will discuss is known as disparate treatment (DT). This
concept is centered around unequal treatment that results from sensitive attributes

328 Data Science Applications

criminal
reoffending
predictor

objective

sensitive

Figure 3.57. A criminal reoffending predictor.

such as race, sex, or religion. It is sometimes referred to as direct discrimination, as
these attributes directly lead to discrimination.

The second concept we will focus on is disparate impact (DI). This term is used to
describe a situation where one group is adversely affected compared to another, even
when neutral rules are in place. Neutral rules are those where sensitive attributes are
not considered in classification, thereby preventing any instances of DT. Disparate
impact is also known as indirect discrimination because the biased historical data
leads to a disparate outcome indirectly.

Criminal reoffending predictor How can we design a fair classifier that meets
both the disparate treatment and disparate impact fairness criteria? To make it eas-
ier, we will examine this in the context of a simple prediction scenario: forecasting
criminal reoffending. The goal is to forecast if a person who has a criminal record
is likely to reoffend within two years, and this has been used by the US Supreme
Court in deciding parole.

A simple setting For illustrative purpose, we will examine a simplified version
of the predictor and visualize it in Fig. 3.57. The predictor uses two types of data:
(i) objective data; and (ii) sensitive data (sensitive attributes). For objective data
denoted by x, we only consider two features, x1 and x2. The variable x1 represents
the number of prior criminal records, while x2 represents the criminal type, such
as misdemeanour or felony. For sensitive data, we use a different notation z. We
consider a simple case in which z is binary, indicating only the race type of the
individual, either white (z = 0) or black (z = 1). Let ŷ be the classifier output
which aims to represent the ground-truth conditional distribution P(y|x, z). Here
y denotes the ground-truth label: y = 1 means reoffending within 2 years; y = 0
otherwise. This is a supervised learning setup, so we are given m example triplets:
{(x(i), z(i), y(i))}mi=1.

How to avoid disparate treatment? Firs of all, how to deal with disparate
treatment? Recall the DT concept: An unequal treatment directly because of

Fair Machine Learning and Mutual Information (1/2) 329

sensitive attributes. Hence, in order to avoid the DT, we should ensure that the pre-
diction should not be a function of sensitive attributes. Mathematically, it means:

P(y|x, z) = P(y|x) ∀z. (3.185)

How to ensure the above? The solution is very simple: Not using the sensitive
attribute z at all in prediction, as illustrated with a red-colored “x” mark in Fig. 3.57.
Sensitive attributes are offered as part of training data although they are not used
for an input. In other words, we employ z(i)’s only in the design of an algorithm.

What about disparate impact? How about for the other fairness criterion
regarding disparate impact? How to avoid the DI? Again recall the DI concept: An
action that adversely affects one group against another even with formally neutral
rules. Actually it is not that clear as to how to implement this.

To gain some insights, let us investigate the mathematical definition of DI. To
this end, we introduce a few notations. Let Z be a random variable for a sensitive
attribute. For instance, consider a binary case, say Z ∈ {0, 1}. Let Ỹ be a binary
hard-decision value of the predictor output Ŷ at the middle threshold: Ỹ := 1{Ŷ ≥
0.5}. Observe a ratio of likelihoods of positive example events Ỹ = 1 for two cases:
Z = 0 and Z = 1.

P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
. (3.186)

One natural interpretation is that a classifier is more fair when the ratio is closer to
1; becomes unfair if the ratio is far away from 1. One quantification for the degree
of fairness regarding the DI was proposed by (Zafar et al., 2017):

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
. (3.187)

Notice that 0 ≤ DI ≤ 1 and the larger DI, the more fair the situation is.

Two cases In view of the mathematical definition (3.187), reducing disparate
impact means maximizing the quantity (3.187). How to design a classifier so as to
maximize the DI? Depending on situations, the design methodology can be differ-
ent. To see this, think about two extreme cases.

The first refers to a case in which training data already respects fairness:

{(x(i), z(i), y(i))}mi=1 → large DI.

In this case, a natural solution is to rely on a conventional classifier that aims to max-
imize prediction accuracy. Why? Because maximizing prediction accuracy would

330 Data Science Applications

Figure 3.58. Visualization of a historically biased dataset: A hollowed (or black-colored-

solid) circle indicates a data point of an individual with white (or black) race; the red (or

blue) colored edge denotes y = 1 reoffending (or y = 0 non-reoffending) label.

well respect training data, which in turn yields a large DI. The second is a non-
trivial case in which training data is far from being fair:

{(x(i), z(i), y(i))}mi=1 → small DI.

In this case, the conventional classifier would yield a small DI. This is indeed a
challenging scenario where we need to take some non-trivial action for ensuring
fairness.

In reality, the second scenario is often observed due to the existence of biased
historical records that form the basis of the training data. For example, the decisions
made by the Supreme Court may be biased against certain races, and these decisions
are likely to be included as part of the training data. Fig. 3.58 illustrates one such
biased scenario, where a hollow or black-colored solid circle represents a data point
for an individual of white or black race, respectively, and the red or blue colored
edge denotes the event of the individual reoffending or not reoffending within two
years. This is a biased situation, as there are more black-colored solid circles than
hollow ones for positive examples where y = 1, indicating a bias in historical records
favoring whites over blacks. Similarly, for negative examples where y = 0, there are
more hollow circles than solid ones.

How to ensure a large DI? How can we guarantee a high level of DI in all
scenarios, including the challenging one described above? To gain a better under-
standing, let us revisit an optimization problem we previously formulated in the
development of a traditional classifier:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i)) (3.188)

Fair Machine Learning and Mutual Information (1/2) 331

where `CE(·, ·) indicates binary cross entropy loss, and w denotes weights (param-
eters) of a classifier. One natural approach to encourage a large DI is to incorporate
an DI-related constraint. Maximizing DI is equivalent to minimizing 1− DI (since
0 ≤ DI ≤ 1). We can resort to a well-known technique in optimization: regular-
ization. That is to add the two objectives with different weights.

Regularized optimization Here is a regularized optimization:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · (1− DI) (3.189)

where λ denote a regularization factor that balances predication accuracy against
the DI-associated objective (minimizing 1−DI). However, an issue arises in solving
the regularized optimization (3.189). Recalling the definition of DI

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
,

we see that DI is a complicated function of w. We have no idea as to how to express
DI in terms of w.

Another way It is not feasible to express DI as a function of w, so we can con-
sider an alternative approach inspired by information theory, specifically mutual
information. If DI = 1, then the sensitive attribute Z and the hard decision Ỹ are
independent. Mutual information has a significant property that the mutual infor-
mation between two random variables is zero when the two variables are indepen-
dent, and it is a “sufficient and necessary condition.” This motivates us to represent
the constraint of DI = 1 as follows:

I(Z ; Ỹ) = 0. (3.190)

This captures the independence between Z and Ỹ . Since the predictor output is Ŷ
(instead of Ỹ), we consider another stronger condition that concerns Ŷ directly:

I(Z ; Ŷ) = 0. (3.191)

The condition (3.191) is indeed stronger than (3.190), i.e., (3.191) implies (3.190).
This is because

I(Z ; Ỹ)
(a)
≤ I(Z ; Ỹ , Ŷ)

(b)
= I(Z ; Ŷ)

(3.192)

332 Data Science Applications

where (a) is due to the chain rule and non-negativity of mutual information; and
(b) is because Ỹ is a function of Ŷ : Ỹ := 1{Ŷ ≥ 0.5}. Notice that (3.191) together
with (3.192) gives (3.190).

Strongly regularized optimization In summary, the condition (3.191) indeed
enforces the DI = 1 constraint. This then motivates us to consider the following
optimization:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · I(Z ; Ŷ). (3.193)

How to express I(Z ; Ŷ) in terms of classifier parameters w? Interestingly, there is a
way to express it. The idea is intimately related to the GAN optimization that we
learned.

Look ahead In the next section, we will review the GAN briefly and use it to
formulate an optimization for a fair classifier.

Fair Machine Learning and Mutual Information (2/2) 333

3.19 Fair Machine Learning and Mutual Information (2/2)

Recap In the preceding section, we presented the last application of information
theory: a fair classifier. We used a recidivism predictor as an instance of a fair clas-
sifier, which aims to forecast whether an individual with previous criminal records
would reoffend within two years, as shown in Fig. 3.59. To prevent disparate treat-
ment, a prominent fairness concept, we excluded the sensitive attribute from the
input. To incorporate another fairness notion, disparate impact (DI for brevity),
we added a regularized term to the conventional optimization that only considered
prediction accuracy, resulting in the following expression:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · I(Z ; Ŷ) (3.194)

where λ ≥ 0 is a regularization factor that balances prediction accuracy (reflected in
the binary cross entropy terms) against the fairness constraint, reflected in I(Z ; Ŷ).
Remember that I(Z ; Ŷ) = 0 is a sufficient condition for DI = 1. At the end,
we claimed that one can express I(Z ; Ŷ) in terms of an optimization parameter w,
thereby enabling us to train the model parameterized by w. The idea for translation
is to use the GAN trick that we learned in the past sections.

Outline In this section, we will support our claim. We will cover three parts in
detail. Firstly, we will explain what it means by the “GAN trick”. Secondly, we will
utilize the “GAN trick” to construct an optimization problem in a simple scenario
where the sensitive attribute is binary. Finally, we will generalize this approach to
situations where the sensitive attribute can take on any value from an arbitrary
alphabet.

recidivism
predictor

Figure 3.59. A simple recidivism predictor: Predicting a recidivism score ŷ from x = (x1,

x2). Here x1 indicates the number of prior criminal records; x2 denotes a criminal type

(misdemeanor or felony); and z is a race type among white (z = 0) and black (z = 1).

334 Data Science Applications

The GAN trick Recall the inner optimization in GANs:

max
D(·)

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i)))

where y(i) and ŷ(i) indicate the ith real and fake samples, respectively; and D(·) is a
discriminator output. Also recall the connection with mutual information:

I(T ; Ȳ) = max
D(·)

1

m

m∑
i=1

log D(y(i))+ log(1− D(ŷ(i))) (3.195)

where T = 1{discriminator’s input is real} and Ȳ is a random variable that takes a
real sample if T = 1; a fake sample if T = 0.

Here what we mean by the GAN trick is the other way around, taking the reverse
order. We start with mutual information and then express it in terms of an opti-
mization problem similarly to (3.195). Now let us apply this trick to our problem
setting. For illustrative purpose, we start with a simple binary sensitive attribute
setting.

Mutual information vs KL divergence In our optimization (3.194), Z is a
sensitive attribute indicator, which plays the same role as T in (3.195). Similarly Ŷ
in (3.194) serves the same role as Ȳ in (3.195). Hence, one can expect that I(Z ; Ŷ)
in (3.194) would be expressed similarly as in (3.195). A slight distinction lies in a
detailed expression. To see the distinction, we start by manipulating I(Z ; Ŷ) from
scratch.

Starting with the relationship between mutual information and KL divergence,
we get:

I(Z ; Ŷ) = KL(PŶ ,Z‖PŶ PZ)

(a)
=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)PZ (z)

=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)

+

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
1

PZ (z)

(b)
=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)

Fair Machine Learning and Mutual Information (2/2) 335

+

∑
z∈Z

PZ (z) log
1

PZ (z)

(c)
=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)
+H(Z)

where (a) is due to the definition of the KL divergence; (b) comes from the total
probability law; and (c) is due to the definition of entropy.

Observation For the binary sensitive attribute case, we have:

I(Z ; Ŷ) =
∑

ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)
+H(Z)

=

∑
ŷ∈Ŷ

PŶ ,Z (ŷ, 1) log
PŶ ,Z (ŷ, 1)

PŶ (ŷ)︸ ︷︷ ︸
=:D∗(ŷ)

+

∑
ŷ∈Ŷ

PŶ ,Z (ŷ, 0) log
PŶ ,Z (ŷ, 0)

PŶ (ŷ)︸ ︷︷ ︸
=1−D∗(ŷ)

+H(Z).

(3.196)

Notice that the first log-inside term, defined as D∗(ŷ), has the close relationship
with the second log-inside term in the above: the sum of the two is 1. This reminds
us of the objective function in the optimization (3.195). So one may conjecture
that I(Z ; Ŷ) can be expressed in terms of an optimization problem as follows:

Theorem 3.1. The mutual information I(Z ; Ŷ) can be represented as the following
function optimization:

I(Z ; Ŷ) = max
D(·)

∑
ŷ∈Ŷ

PŶ ,Z (ŷ, 1) log D(ŷ)

+

∑
ŷ∈Ŷ

PŶ ,Z (ŷ, 0) log
(
1− D(ŷ)

)+H(Z).

(3.197)

Proof. The optimization in (3.197) is convex in D(·), since the log function is con-
cave and the concavity preserves under additivity. Hence, looking into the unique
stationary point, we can prove the equivalence. Taking the derivative w.r.t. D(ŷ),

336 Data Science Applications

we get:

1

ln 2

(
PŶ ,Z (ŷ, 1)

Dopt(ŷ)
−

PŶ ,Z (ŷ, 0)

1− Dopt(ŷ)

)
= 0 ∀ŷ

where Dopt(ŷ) is the optimal solution to the optimization in (3.197). This gives:

Dopt(ŷ) =
PŶ ,Z (ŷ, 1)

PŶ ,Z (ŷ, 1)+ PŶ ,Z (ŷ, 0)
=

PŶ ,Z (ŷ, 1)

PŶ (ŷ)

where the second equality is due to the total probability law. Since Dopt(ŷ) is the
same as D∗(ŷ) that we defined in (3.196), we complete the proof.

How to express I(Z; Ŷ) in terms of w? The formula (3.197) contains two
probability quantities (PŶ ,Z (ŷ, 1),PŶ ,Z (ŷ, 0)) which are not available. What we

are given are: {(x(i), z(i), y(i))}mi=1. We need to worry about what we can do with
this information for computing the probability quantities. To this end, we rely upon
the empirical distribution:

QŶ ,Z (ŷ(i), 1) =
1

m
;

QŶ ,Z (ŷ(i), 0) =
1

m
.

In practice, the empirical distribution is likely to be uniform, since ŷ(i) is real-
valued and hence the pair (ŷ(i), z) is unique with high probability. By applying
these empirical distributions, we can approximate I(Z ; Ŷ) as:

I(Z ; Ŷ) ≈ max
D(·)

1

m

 ∑
i:z(i)=1

log D(ŷ(i))+
∑

i:z(i)=0

log
(

1− D(ŷ(i))
)

+H(Z).

(3.198)

Implementable optimization (Cho et al., 2020) Recall the original
optimization:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · I(Z ; Ŷ).

Fair Machine Learning and Mutual Information (2/2) 337

Applying the approximation (3.198) into the above, we get:

min
w

max
θ

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))

+ λ

 ∑
i:z(i)=1

log Dθ (ŷ(i))+
∑

i:z(i)=0

log
(

1− Dθ (ŷ(i))
)

(3.199)

where D(·) is parameterized with θ . The sensitive-attribute entropy H(Z)
in (3.198) is removed, since it is irrelevant of the optimization parameters (θ , w).
The objective function has an explicit relationship with the optimization param-
eters (θ , w). Hence, the parameters are trainable via a practical algorithm. In the
next section, we will discuss details on the algorithm.

Extension to a non-binary sensitive attribute We previously focused on the
binary sensitive attribute setting, but in practice, this may not always be the case. For
example, there may be multiple race types, such as black, white, Asian, Hispanic,
and multiple sensitive attributes, such as gender and religion. To account for these
practical scenarios, we now consider a sensitive attribute with an arbitrary alphabet
size. Multiple sensitive attributes can be represented as a single random variable
with an arbitrary alphabet size. Therefore, we consider a setting where Z belongs
to the set Z and the cardinality of Z is not limited to two.

By recalling the relationship between mutual information and the KL diver-
gence, we can obtain:

I(Z ; Ŷ) = KL

(
PŶ ,Z‖PŶ PZ

)
=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)PZ (z)

=

∑
ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log
PŶ ,Z (ŷ, z)

PŶ (ŷ)︸ ︷︷ ︸
=:D∗(ŷ,z)

+H(Z).

(3.200)

Defining the log-inside term in the above as D∗(ŷ, z), we obtain:∑
z∈Z

D∗(ŷ, z) = 1 ŷ ∈ Ŷ .

This is due to the total probability law. Similar to Theorem 3.1, we can come up
with the following equivalence.

338 Data Science Applications

Theorem 3.2. The mutual information I(Z ; Ŷ) can be represented as the following
function optimization:

I(Z ; Ŷ) = max
D(ŷ,z):

∑
z∈Z D(ŷ,z)=1

∑
ŷ∈Y ,z∈Z

PŶ ,Z (ŷ, z) log D(ŷ, z)+H(Z).

(3.201)

Proof. It is a convex optimization problem, but we have multiple equality con-
straints. So we should take the Lagrange multiplier method which relies upon the
KKT conditions (Karush, 1939; Kuhn and Tucker, 2014; Boyd and Vandenberghe,
2004). First define the Lagrange function:

L(D(ŷ, z), ν(ŷ)) =
∑

ŷ∈Ŷ ,z∈Z

PŶ ,Z (ŷ, z) log D(ŷ, z)

+

∑
ŷ∈Ŷ

ν(ŷ)

(
1−

∑
z∈Z

D(ŷ, z)

)

where ν(ŷ)’s are Lagrange multipliers. There are the number |Ŷ| of Lagrange mul-
tipliers. We solve the problem via the KKT conditions:

dL(D(ŷ, z), ν(ŷ))
dD(ŷ, z)

=
1

ln 2

(
PŶ ,Z (ŷ, z)

Dopt(ŷ, z)
− ν?(ŷ)

)
= 0 ∀ŷ, z

dL(D(ŷ, z), ν(ŷ))
dν(ŷ)

=
1

ln 2

(
1−

∑
z∈Z

Dopt(ŷ, z)

)
= 0 ∀ŷ.

Plugging the following:

Dopt(ŷ, z) =
PŶ ,Z (ŷ, z)

PŶ (ŷ)
, νopt(ŷ) = PŶ (ŷ),

we satisfy the KKT conditions. This implies that Dopt(ŷ, z) is indeed the optimal
solution. Since Dopt(ŷ, z) is the same as D∗(ŷ, z) that we defined in (3.200), we
complete the proof.

Implementable optimization: General case (Cho et al., 2020) Again for
computation of I(Z ; Ŷ), we rely on the empirical version of the true distribution
PŶ ,Z (ŷ, z):

QŶ ,Z (ŷ(i), z(i)) =
1

m
∀i ∈ {1, . . . , m}. (3.202)

Fair Machine Learning and Mutual Information (2/2) 339

softmax

classifier discriminator

Figure 3.60. The architecture of the mutual information (MI)-based fair classifier. The

prediction output ŷ is fed into the discriminator wherein the goal is to figure out sen-

sitive attribute z from ŷ. The discriminator output Dθ (ŷ(i), z(i)) can be interpreted as the

probability that ŷ belongs to the attribute z. Here the softmax function is applied to

ensure the sum-up-to-one constraint.

So we get:

I(Z ; Ŷ) ≈ max
D(ŷ,z):

∑
z∈Z D(ŷ,z)=1

m∑
i=1

1

m
log D(ŷ(i), z(i))+H(Z). (3.203)

By parameterizing D(·, ·) with θ and excluding H(Z) (irrelevant of (θ , w)), we
obtain the following optimization:

min
w

max
θ :
∑

z∈Z Dθ (ŷ,z)=1

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))+ λ
m∑

i=1

log Dθ (ŷ(i), z(i))

}
.

(3.204)

The architecture of the fair classifier The architecture of the implementable
optimization (3.204) is illustrated in Fig. 3.60. On top of a classifier, we introduce
a new entity, called discriminator, which corresponds to the inner optimization.
In discriminator, we wish to find θ∗ that maximizes 1

m

∑m
i=1 log Dθ (ŷ(i), z(i)). On

the other hand, the classifier wants to minimize the term. Hence, Dθ (ŷ(i), z(i)) can
be viewed as the ability to figure out z from prediction ŷ. Notice that the classifier
wishes to minimize the ability for the purpose of fairness, while the discriminator
has the opposite goal. One natural interpretation that can be made on Dθ (ŷ(i), z(i))
is that it captures the probability that z is indeed the ground-truth sensitive attribute
for ŷ. Here the softmax function is applied to ensure the sum-up-to-one constraint.

Analogy with GANs Since the classifier and the discriminator are competing,
one can make an analogy with GANs, in which the generator and the discriminator
also compete like a two-player game. While the fair classifier and the GAN bear

340 Data Science Applications

MI-based fair classifier

classifier

GAN

generator

discriminator discriminator
Goal: Distinguish real samples

from fake ones.
Goal: Figure out sensitive
attribute from prediction

Generate realistic fake samplesMaximize prediction accuracy

Figure 3.61. MI-based fair classifier vs. GAN: Both bear similarity in structure (as illus-

trated in Fig. 3.60), yet distinctions in role.

strong similarity in their nature, these two are distinct in their roles. See Fig. 3.61
for the detailed distinctions.

Look ahead The optimization formulation of a fair classifier has been covered
in this section. In the upcoming section, we will examine a method to solve the
optimization problem (3.204) and how to implement it in TensorFlow.

Fair Machine Learning: TensorFlow Implementation 341

3.20 Fair Machine Learning: TensorFlow Implementation

Recap Previously we formulated an optimization that respects two fairness con-
straints: disparate treatment (DT) and disparate impact (DI). Given m example
triplets {(x(i), z(i), y(i))}mi=1:

min
w

1

m

m∑
i=1

`CE(y(i), ŷ(i))+ λ · I(Z ; Ŷ)

where ŷ(i) indicates the classifier output, depending only on x(i) (not on the sensitive
attribute z(i) due to the DT constraint); and λ is a regularization factor that balances
prediction accuracy against the DI constraint, quantified as I(Z ; Ŷ). Using the
connection between mutual information and KL divergence, we could approximate
I(Z ; Ŷ) in the form of optimization:

I(Z ; Ŷ) ≈ H(Z)+ max∑
z D(ŷ,z)=1

m∑
i=1

1

m
log D(ŷ(i), z(i)). (3.205)

We then parameterized D(·) with θ to obtain:

min
w

max
θ :
∑

z Dθ (ŷ,z)=1

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))+ λ
m∑

i=1

log Dθ (ŷ(i), z(i))

}
. (3.206)

Two questions that arise are: (i) how to solve the optimization (3.206)?; and (ii) how
to implement it via TensorFlow?

Outline In this section, we will tackle the two questions. What we are going to
do are four folded. Firstly, we will explore a practical algorithm to tackle optimiza-
tion (3.206). Secondly, we will conduct a case study, focusing on recidivism predic-
tion to exercise the algorithm. We will emphasize a specific implementation detail –
synthesizing an unfair dataset. Thirdly, we will discuss how to implement this algo-
rithm using TensorFlow. We will focus on a binary sensitive attribute setting for
illustrative purposes.

Observation Let’s begin by translating the optimization (3.206) into a version
that is more friendly for programming:

min
w

max
θ :
∑

z Dθ (ŷ,z)=1

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))+ λ
m∑

i=1

log Dθ (ŷ(i), z(i))

}

342 Data Science Applications

(a)
= min

w
max
θ

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))

+λ

 ∑
i:z(i)=1

log Dθ (ŷ(i))+
∑

i:z(i)=0

log(1− Dθ (ŷ(i)))

(b)
= min

w
max
θ

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))

+λ

(
m∑

i=1

z(i) log Dθ (ŷ(i))+ (1− z(i)) log(1− Dθ (ŷ(i)))

)}

(c)
= min

w
max
θ

1

m

{
m∑

i=1

`CE(y(i), ŷ(i))− λ
m∑

i=1

`CE(z(i), Dθ (ŷ(i)))

}

(d)
= min

w
max
θ

1

m

{
m∑

i=1

`CE(y(i), Gw(x(i)))− λ`CE(z(i), Dθ (Gw(x(i))))

}
︸ ︷︷ ︸

=:J (w,θ)

where (a) is because we consider a binary sensitive attribute setting and we denote
Dθ (ŷ(i), 1) simply by Dθ (ŷ(i)); (b) is due to z(i) ∈ {0, 1}; (c) follows from the
definition of binary cross entropy loss `CE(·, ·); and (d) comes from Gw(x(i)) :=
ŷ(i).

Notice that J (w, θ) contains two cross entropy loss terms, each being a non-
trivial function of Gw(·) and/or Dθ (·). Hence, in general, J (w, θ) is highly non-
convex in w and non-concave in θ .

Alternating gradient descent Similar to the prior GAN setting in Sec-
tion 3.17, what we can do is to apply the only technique that we are aware of:
alternating gradient descent. And then hope for the best. We employ k : 1 alter-
nating gradient descent:

1. Update classifier (generator)’s weight:

w(t+1)
← w(t) − α1∇wJ (w(t), θ (t·k)).

2. Update discriminator’s weight k times while fixing w(t+1): for i=1:k,

θ (t·k+i)
← θ (t·k+i−1)

+ α2∇θ J (w(t+1), θ (t·k+i−1)).

3. Repeat the above.

Fair Machine Learning: TensorFlow Implementation 343

Similar to the GAN setting, one can use the Adam optimizer possibly together with
the batch version of the algorithm.

Optimization used in our experiments Here is the optimization that we will
use in our experiments:

min
w

max
θ

1

m

{
m∑

i=1

(1− λ)`CE(y(i), Gw(x(i)))− λ`CE(z(i), Dθ (Gw(x(i))))

}
.

(3.207)

In order to restrict the range of λ into 0 ≤ λ ≤ 1, we apply the (1 − λ) factor to
the loss term w.r.t. prediction accuracy.

Like the prior GAN setting, we define two loss terms. One is “classifier (or gen-
erator) loss”:

min
w

max
θ

1

m

{
m∑

i=1

(1− λ)`CE(y(i), Gw(x(i)))− λ`CE(z(i), Dθ (Gw(x(i))))

}
︸ ︷︷ ︸

“classifier (generator) loss"

.

Given w, discriminator wishes to maximize:

max
θ
−
λ

m

m∑
i=1

`CE(z(i), Dθ (Gw(x(i)))).

This is equivalent to minimizing the minus of the objective:

min
θ

λ

m

m∑
i=1

`CE(z(i), Dθ (Gw(x(i))))︸ ︷︷ ︸
“discriminator loss"

. (3.208)

This is how we define “discriminator loss”.

Performance metrics We introduce a performance metric that captures the
degree of fairness. To this end, we first define the hard-decision value of the predic-
tion output w.r.t. a test example:

Ỹ test := 1{Ŷ test ≥ 0.5}.

The test accuracy is then defined as:

1

mtest

mtest∑
i=1

1{ y(i)test = ỹ(i)test}

344 Data Science Applications

where mtest denotes the number of test examples. This is an empirical version of
the ground truth P(Ytest = Ỹ test).

How to define a fairness-related performance metric? Recall the mathematical
definition of DI:

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
. (3.209)

You may wonder how to compute two probabilities of interest: P(Ỹ = 1|Z = 0)
and P(Ỹ = 1|Z = 1). Using their empirical versions together with the WLLN,
we can estimate them. For instance,

P(Ỹ = 1|Z = 0) =
P(Ỹ = 1, Z = 0)

P(Z = 0)
≈

∑mtest
i=1 1{ỹ(i)test = 1, z(i)test = 0}∑mtest

i=1 1{z(i)test = 0}

where the first equality is due to the definition of conditional probability and the
second approximation comes from the WLLN. The above approximation is getting
more and more accurate as mtest gets larger. Similarly we can approximate the other
interested probability P(Ỹ = 1|Z = 1). This way, we can evaluate DI (3.209).

A case study Let us exercise what we have learned with a simple example. As
a case study, we consider the same setting that we introduced earlier: recidivism
prediction, wherein the task is to predict if an interested individual reoffends within
two years, as illustrated in Fig. 3.62.

Synthesizing an unfair dataset In fair machine learning, we must be cautious
about unfair datasets. To simplify matters, we will use a synthetic dataset instead of
a real-world dataset. Although there is a real-world dataset for recidivism prediction
called COMPAS (Angwin et al., 2020), it contains many attributes, making it more
complicated. Therefore, we will use a specific yet simple approach to synthesize a
much simpler unfair dataset.

recidivism
predictor

Figure 3.62. Predicting a recidivism score ŷ from x = (x1, x2). Here x1 indicates the number

of prior criminal records; x2 denotes a criminal type: misdemeanor or felony; and z is a

race type among white (z = 0) and black (z = 1).

Fair Machine Learning: TensorFlow Implementation 345

non-reoffend

reoffend

Figure 3.63. Visualization of a historically biased dataset: A hollowed (or black-colored-

solid) circle indicates a data point of an individual with white (or black) race; the red (or

blue) colored edge denotes y = 1 reoffending (or y = 0 non-reoffending) label.

Let us revisit the unfair data scenario visualization that we examined in
Section 3.18, which will serve as the basis for our synthetic dataset (as explained
in the sequel). The visualization is shown in Fig. 3.63, where a hollow (or black-
colored solid) circle represents a data point corresponding to an individual of white
(or black) race, and the red (or blue) colored edge (ring) denotes the event of the
interested individual reoffending (or not reoffending) within two years. This sce-
nario is inherently unfair: for y = 1, there are more black-colored solid circles than
hollow circles, and conversely for y = 0, there are more hollow circles than solid
circles.

To generate such an unfair dataset, we employ a simple method. See Fig. 3.64 for
illustration of the method. We first generate m labels y(i)’s so that they are i.i.d., each
being according to Bern(1

2). For indices of positive examples (y(i) = 1), we then
generate i.i.d. x(i)’s according to N ((1, 1), 0.52I); and i.i.d. z(i)’s as per Bern(0.8),
meaning that 80% are blacks (z = 1) and 20% are whites (z = 0) among the
positive individuals. Notice that the generation of x(i)’s is not quite realistic. The
first and second components in x(i) do not precisely capture the number of priors
and a criminal type. You can view this generation as sort of a crude abstraction
of the realistic data. On the other hand, for negative examples (y(i) = 0), we
generate i.i.d. (x(i), z(i))’s with different distributions: x(i) ∼ N ((−1,−1), 0.52I)
and z(i) ∼ Bern(0.2), meaning that 20% are blacks (z = 1) and 80% are whites
(z = 0). This way, z(i) ∼ Bern(1

2). This is because

P(Z = 1)
(a)
= P(Y = 1)P(Z = 1|Y = 1)+ P(Y = 0)P(Z = 1|Y = 0)

(b)
=

1

2
· 0.8+

1

2
· 0.2 =

1

2

346 Data Science Applications

Figure 3.64. A simple way to synthesize an unfair dataset.

classifier discriminator

Figure 3.65. The architecture of the MI-based fair classifier.

where (a) follows from the total probability law and the definition of conditional
probability; and (b) is due to the rule of the data generation method employed.
Here Z and Y denote generic random variables for z(i) and y(i), respectively.

Model architecture Fig. 3.65 illustrates the architecture of the MI-based fair
classifier. Since we focus on the binary sensitive attribute, the discriminator yields
a single output Dθ (ŷ). For models of the classifier and discriminator, we employ
simple single-layer neural networks with logistic activation in the output layer; see
Fig. 3.66.

TensorFlow: Synthesizing an unfair dataset First consider the synthesis of
an unfair dataset. To generate i.i.d Bernoulli random variables for labels, we use:

import numpy as np
y_train = np.random.binomial(1,0.5,size=(train_size,))

Fair Machine Learning: TensorFlow Implementation 347

Figure 3.66. Models for (a) the classifier and (b) the discriminator.

where the first two arguments of (1,0.5) specify Bern(0.5); and the null space fol-
lowed by train_size indicates a single dimension. Remember we generate i.i.d.
Gaussian random variables for x(i)’s. To this end, one can use:

x = np.random.normal(loc=(1,1),scale=0.5, size=(train_size,2))

TensorFlow: Optimizers for classifier & discriminator For classifier, we use
the Adam optimizer with the learning rate of 0.005 and (β1,β2) = (0.9, 0.999).
For discriminator, we use another simpler optimizer, named Stochastic Gradient
Descent, SGD for short. SGD is the naive gradient descent yet with a batch size
of 1. We use SGD with the learning rate of 0.005.

from tensorflow.keras.optimizers import Adam
from tensorflow.keras.optimizers import SGD
adam=Adam(learning_rate=0.005,beta_1=0.9, beta_2=0.999)
sgd=SGD(learning_rate=0.005)

TensorFlow: Classifier (generator) loss Recall the optimization problem of
interest:

min
w

max
θ

1

m

{
m∑

i=1

(1− λ)`CE(y(i), Gw(x(i)))

−λ

m∑
i=1

`CE(z(i), Dθ (Gw(x(i))))

}
.

To implement the classifier loss (the objective in the above), we use:

from tensorflow.keras.losses import BinaryCrossentropy
CE_loss = BinaryCrossentropy(from_logits=False)
p_loss = CE_loss(y_pred,y_train)
f_loss = CE_loss(discriminator(y_pred),z_train)
c_loss = (1-lamb)*p_loss - lamb*f_loss

348 Data Science Applications

where y pred indicates the classifier output; y train denotes a label; and z train is a
binary sensitive attribute.

TensorFlow: Discriminator loss Recall the discriminator loss that we defined
in (3.208):

min
θ

λ

m

m∑
i=1

`CE(z(i), Dθ (Gw(x(i)))).

To implement this, we use:

f_loss = CE_loss(discriminator(y_pred),z_train)
d_loss = lamb*f_loss

TensorFlow: Evaluation Recall the DI performance:

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
.

To evaluate the DI performance, we rely on the following approximation:

P(Ỹ = 1|Z = 0) ≈

∑mtest
i=1 1{ỹ(i)test = 1, z(i)test = 0}∑mtest

i=1 1{z(i)test = 0}
.

Here is how to implement this in detail:

import numpy as np
y_tilde = (y_pred>0.5).int().squeeze()
z0_ind = (z_train == 0.0)
z1_ind = (z_train == 1.0)
z0_sum = int(np.sum(z0_ind))
z1_sum = int(np.sum(z1_ind))
P_y1_z0 = float(np.sum((y_tilde==1)[z0_ind]))/z0_sum
P_y1_z1 = float(np.sum((y_tilde==1)[z1_ind]))/z1_sum

Closing In Part I, we have explored three crucial notions in information theory,
namely entropy, mutual information, and KL divergence. These notions play a sig-
nificant role in representing the fundamental limit on the compression rate of an
information source and proving the associated theorem, source coding theorem.
Part II of the book has focused on investigating the fascinating phenomenon of
the maximum transmission rate, phase transition, and highlighting the elegance of
information theory, which deals with the laws governing the flow of information,
much like physics deals with the laws governing the behavior of the physical uni-
verse. In addition, we have discovered the critical role of mutual information in

Fair Machine Learning: TensorFlow Implementation 349

defining the sharp threshold on the maximum transmission rate, known as channel
capacity, as established in the channel coding theorem.

In Part III, we have showcased the modern applications of information theory
in data science, emphasizing two main storylines. The first storyline focuses on
the information theory of various systems that are of interest in data science, such
as social networks, biological networks, and ranking systems. In this context, we
have observed the occurrence of a phase transition in the amount of information
required to perform various tasks, including community detection in social net-
works, Haplotype phasing in computational biology, and top-K ranking in search
engines. To prove the achievability and converse of information-theoretic limits,
we have utilized several powerful tools of information theory, including the union
bound, MAP decoding, maximum likelihood decoding, Chernoff bound, Fano’s
inequality, and data processing inequality. The second storyline deals with the roles
of information-theoretic notions in machine learning and deep learning. Specifi-
cally, we have explored the core role of cross entropy in designing a loss function
for supervised learning, the fundamental role of KL divergence in the design of a
powerful unsupervised learning framework known as GAN, and the recently dis-
covered role of mutual information in the development of fair machine learning
algorithms.

The topics discussed in this book encompass a range of classical and modern
concepts in information theory. However, we acknowledge that there are still many
other topics that we have not covered. Our approach has been to emphasize the
development of logical and critical thinking skills, which we believe is more impor-
tant than simply covering a wide range of topics. Information theory provides pow-
erful principles and tools that have been successfully applied in various fields by
many researchers. Although this book focuses on applications in data science, we
believe that the principles discussed here have much broader applicability. We hope
that you will find these principles and tools useful for your own purposes.

350 Data Science Applications

Problem Set 12

Prob 12.1 (Equalized Odds) In Section 3.18, we studied two fairness con-
cepts: (i) disparate treatment; and (ii) disparate impact. In this problem, we explore
another fairness notion that arises in the field: Equalized Odds (EO for short). Let
Z ∈ Z be a sensitive attribute. Let Y and Ŷ be the ground-truth label and its
prediction.

(a) For illustrative purpose, consider a simple setting where Z and Y are binary.
Let Ỹ = 1{Ŷ ≥ 0.5}. The mathematical definition of the EO under this
setting is:

EO := min
y∈{0,1}

min
z∈{0,1}

P(Ỹ = 1|Y = y, Z = 1− z)

P(Ỹ = 1|Y = y, Z = z)
. (3.210)

Show that I(Z ; Ŷ |Y) = 0 implies EO = 1.
(b) Suppose that Z and Y are not necessarily binary. The relationship between

conditional mutual information and the KL divergence is:

I(Z ; Ŷ |Y) = KL(PŶ ,Z |Y ,PŶ |Y PZ |Y)

where PŶ ,Z |Y ,PŶ |Y and PZ |Y indicate the conditional probability of

(Ŷ , Z), Ŷ , and Z , respectively, conditioned on Y . Using this definition,
show that

I(Z ; Ŷ |Y) =
∑

y∈Y ,ŷ∈Ŷ ,z∈Z

PŶ ,Z ,Y (ŷ, z, y) log
PŶ ,Z |y(ŷ, z)

PŶ |y(ŷ)
+H(Z |Y)

(3.211)

where PŶ ,Z ,Y indicates the joint distribution of (Ŷ , Z , Y); and PŶ ,Z |y and

PŶ |y denote the conditional distributions of (Ŷ , Z) and Ŷ , respectively,
conditioned on Y = y.

(c) Show that

I(Z ; Ŷ |Y) = H(Z |Y)+

max
D(ŷ,z,y):

∑
z∈Z D(ŷ,z,y)=1

∑
ŷ∈Ŷ ,y∈Y ,z∈Z

PŶ ,Z ,Y (ŷ, z, y) log D(ŷ, z, y).

(3.212)

Problem Set 12 351

(d) Explain the rationale behind the following approximation:

I(Z ; Ŷ |Y) ≈ H(Z |Y)

+ max
D(ŷ,z,y):

∑
z∈Z D(ŷ,z,y)=1

m∑
i=1

1

m
log D(ŷ(i), z(i), y(i)).

(3.213)

(e) Formulate an optimization for a fair classifier that attempts to minimize
both prediction accuracy and the approximated I(Z ; Ŷ |Y) (3.213). Use
a notation λ for a regularization factor that balances prediction accu-
racy against the quantified fairness constraint. Also draw the classifier-&-
discriminator architecture which represents the formulated optimization.

Prob 12.2 (A variant of the MI-based fair classifier) Let Z ∈ {0, 1} be a
binary sensitive attribute. Let Y and Ŷ be the ground-truth label and its prediction
of a classifier. Let Ỹ = 1{Ŷ ≥ 0.5}.

(a) Show that I(Z ; Ỹ) = 0 is a necessary and sufficient condition for DI = 1
where

DI := min

(
P(Ỹ = 1|Z = 0)

P(Ỹ = 1|Z = 1)
,
P(Ỹ = 1|Z = 1)

P(Ỹ = 1|Z = 0)

)
.

(b) Approximate I(Z ; Ỹ) similarly to the formula claimed in part (d) of
Prob 12.1. Also explain the rationale behind the approximation.

(c) Formulate an optimization for a fair classifier that attempts to minimize
both prediction accuracy and the approximated I(Z ; Ỹ), derived in the
prior part. Use a notation λ for a regularization factor that balances pre-
diction accuracy against the fairness constraint. Also draw the classifier-&-
discriminator architecture which respects the formulated optimization.

Prob 12.3 (TensorFlow implementation of the MI-based fair classifier)

Consider the MI-based fair classifier in Sections 3.19 and 3.20. In this problem, you
are asked to build a simple fair classifier that predicts recidivism scores of individ-
uals with prior criminal records. See Fig. 3.67. We employ very simple single-layer
neural networks for classifier (generator) and discriminator with logistic activation
at the output layer.

(a) (Unfair dataset synthesis) Explain how an unfair dataset is generated in the
following code:

352 Data Science Applications

Recidivism
predictor

Figure 3.67. Predicting a recidivism score ŷ from x = (x1, x2). Here x1 indicates the number

of prior criminal records; x2 denotes a criminal type: misdemeanor or felony; and z is a

race type among white (z = 0) and black (z = 1).

import numpy as np
n_samples = 2000
p = 0.8
numbers of positive and negative examples
n_Y1 = int(n_samples*0.5)
n_Y0 = n_samples - n_Y1
generate positive samples
Y1 = np.ones(n_Y1)
X1 = np.random.normal(loc=[1,1],scale=0.5,

size=(n_Y1,2))
Z1 = np.random.binomial(1,p,size=(n_Y1,))
generate negative samples
Y0 = np.zeros(n_Y0)
X0 = np.random.normal(loc=[-1,-1],scale=0.5,

size=(n_Y0,2))
Z0 = np.random.binomial(1,1-p,size=(n_Y0,))
merge
Y = np.concatenate((Y1,Y0))
X = np.concatenate((X1,X0))
Z = np.concatenate((Z1,Z0))
Y = Y.astype(np.float32)
X = X.astype(np.float32)
Z = Z.astype(np.float32)
shuffle and split into train & test data
shuffle = np.random.permutation(n_samples)
X_train = X[shuffle][:int(n_samples*0.8)]
Y_train = Y[shuffle][:int(n_samples*0.8)]
Z_train = Z[shuffle][:int(n_samples*0.8)]
X_test = X[shuffle][int(n_samples*0.8):]
Y_test = X[shuffle][int(n_samples*0.8):]
Z_test = X[shuffle][int(n_samples*0.8):]

Problem Set 12 353

(b) (Data visualization) Using the following code or otherwise, plot randomly
sampled data points (say 200 random points) among the entire data points
generated in part (a).

import matplotlib.pyplot as plt
randomly select the number n_s of samples
n_s = 200
Xs = X_train[:n_s]
Ys = Y_train[:n_s]
Zs = Z_train[:n_s]
choose part of X and Y assiciated with a certain Z
X_Z0 = Xs[Zs==0.0]
X_Z1 = Xs[Zs==1.0]
Y_Z0 = Ys[Zs==0.0]
Y_Z1 = Ys[Zs==1.0]
plot
plt.figure(figsize=(14,10))
plt.scatter(

X_Z0[Y_Z0==1.0][:,0], X_Z0[Y_Z0==1.0][:,1],
color=’red’,marker=’o’,facecolors=’none’,
s=120, linewidth=1.5, label=’White reoffend’)

plt.scatter(
X_Z0[Y_Z0==0.0][:,0], X_Z0[Y_Z0==0.0][:,1],
color=’blue’,marker=’o’,facecolors=’none’,
s=120, linewidth=1.5, label=’White non-reoffend’)

plt.scatter(
X_Z1[Y_Z1==1.0][:,0], X_Z1[Y_Z1==1.0][:,1],
color=’red’,marker=’o’,facecolors=’black’,
s=120, linewidth=1.5, label=’Black reoffend’)

plt.scatter(
X_Z1[Y_Z1==0.0][:,0], X_Z1[Y_Z1==0.0][:,1],
color=’blue’,marker=’o’,facecolors=’black’,
s=120, linewidth=1.5, label=’Black non-reoffend’)

plt.legend(fontsize=16)

(c) (Classifier & discriminator) Draw block diagrams of the classifier and the
discriminator implemented by the following code:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

classifier=Sequential()
classifier.add(Dense(1,input_dim=2, activation=’sigmoid’))
discriminator=Sequential()
discriminator.add(Dense(1,input_dim=1, activation=’sigmoid’))

354 Data Science Applications

(d) (Optimizers and loss functions) Explain how the optimizers and loss func-
tions of the discriminator and the classifier are implemented in the follow-
ing code. Also draw a block diagram of the GAN model implemented as
the name of gan.

from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.layers import Concatenate

optimizers of classifier & discriminator
c_opt=Adam(learning_rate=0.005,beta_1=0.9,beta_2=0.999)
d_opt=SGD(learning_rate=0.005)

define dicriminator loss
def d_loss(y_true,y_pred):

CE_loss = BinaryCrossentropy(from_logits=False)
lamb = 0.1
return lamb*CE_loss(y_pred,y_true)

discriminator compile
discriminator.compile(loss=d_loss, optimizer=d_opt)

define classifier (generator) loss
def c_loss(y_true,y_pred):

y_true[:,0]: Y_train (label)
y_true[:,1]: Z_train (sensitive attribute)
y_pred[:,0]: classifier output G(x)
y_pred[:,1]: discriminator output fed by
classifier output D(G(x))
CE_loss = BinaryCrossentropy(from_logits=False)
lamb = 0.1
p_loss = CE_loss(y_pred[:,0],y_true[:,0])
f_loss = CE_loss(y_pred[:,1],y_true[:,1])
return (1-lamb)*p_loss - lamb*f_loss

define the GAN model
input: x
output: [G(x), D(G(x))]
discriminator.trainable = False
gan_input = Input(shape=(2,))
Gx = classifier(inputs=gan_input)
DGx = discriminator(Gx)
output = Concatenate()([Gx,DGx])
gan = Model(gan_input, output)

Problem Set 12 355

The GAN model compile
gan.compile(loss=c_loss, optimizer=c_opt)

(e) (Training) Explain how classifier and discriminator are trained in the
following code:

import numpy as np

EPOCHS = 400
k=2 # k:1 alternating gradient descent
c_losses = []
d_losses = []

for epoch in range(1,EPOCHS+1):
#####################
train discriminator
#####################
input for discriminator
d_input=classifier.predict(X_train)
label for discriminator
d_label=Z_train
train discriminator
d_loss=discriminator.train_on_batch(d_input,d_label)

#####################
train classifier
#####################
if epoch % k == 0: # train once every k steps

label for classifier
1st component: Y_train
2nd component: Z_train (sensitive attribute)
c_label = np.zeros((len(Y_train),2))
c_label[:,0] = Y_train
c_label[:,1] = Z_train
train classifier
c_loss = gan.train_on_batch(X_train,c_label)

c_losses.append(c_loss)
d_losses.append(d_loss)

(f) (Evaluation) Suppose we train classifier and discriminator using the code
in part (e) with EPOCHS=400. Plot the tradeoff performance between test
accuracy and DI by sweeping λ from 0 to 1. Also include the Python script.

DOI: 10.1561/9781638281153.ch4

Appendix A

Python Basics

A.1 Jupyter Notebook

Outline To use Python, you will need to have another software platform, known
as Jupyter notebook, installed on your system. In this section, we will cover some
basic concepts related to Jupyter notebook. We will cover four parts in detail.
First, we will explore the role of Jupyter notebook in light of Python. Next, we
will provide guidance on how to install the software and launch a file for scripting
a code. We will also examine some useful interfaces that simplify the process of
scripting Python code. Finally, we will introduce several frequently-used shortcuts
for writing and executing code.

What is Jupyter notebook? Jupyter notebook is a powerful tool that allows
you to write and run Python code. One of its key advantages is that you can execute
each line of code individually, rather than running the entire code all at once. This
feature makes it easy to debug your code, particularly when dealing with lengthy
programs.

a=1
b=2
a+b

3

356

http://dx.doi.org/10.1561/9781638281153.ch4

Jupyter Notebook 357

Figure A.1. Three versions of Anaconda installers.

a=1

b=2

a+b

3

There are two common methods for using Jupyter notebook. The first involves
running the code on a server or in the cloud, while the second involves using a local
machine. In this section, we will focus on the latter approach.

Install & launch To use Jupyter notebook on a local machine, you need to install
a software tool called Anaconda. The latest version can be downloaded from

https://www.anaconda.com/products/individual

There are three different versions available for different operating systems, as
shown in Fig. A.1. During installation, you may encounter errors related to non-
ASCII characters in the destination folder path or permission to access the path.
To resolve these issues, ensure that the folder path does not include non-ASCII
characters and run the installer under “run as administrator” mode.

To launch Jupyter notebook, you can use the Anaconda prompt for Win-
dows or the terminal for Mac and Linux. Simply type “jupyter notebook” in the
prompt and press Enter. The Jupyter notebook window will open automatically.
If it does not appear, you can manually open it by copying and pasting the URL
indicated by the arrow in Fig. A.2 into your web browser. Once properly launched,
the Jupyter notebook window should look like Fig. A.3.

Generating a new notebook file is an easy process. Initially, navigate to the folder
where you wish to save the notebook file. Then, select the New tab on the top right
corner (highlighted in blue), and click on the Python 3 tab (indicated in red). Refer
to Fig. A.4 to locate the tabs.

358 Python Basics

Figure A.2. How to launch Jupyter notebook in the Anaconda prompt.

Figure A.3. Web browser of a successfully launched Jupyter notebook.

Figure A.4. How to create a Jupyter notebook file on the web browser.

Interface Jupyter notebook contains two key components required to run a
code. The first is a computational engine which executes the code. The engine
is named Kernel and it can be controlled via several functions in the Kernel tab.
See Fig. A.5 for details.

The second element is a component called a “cell,” where you can write a script.
The cell has two modes of operation: edit mode and command mode. In edit mode,
you can type a code script for running a program or any text like a regular text editor.

Jupyter Notebook 359

Figure A.5. Kernel is a computational engine which serves to run the code. There are

several relevant functions under the Kernel tap.

Figure A.6. How to choose the Code or Markdown option in the edit mode.

Code scripts are written under the Code tab, indicated by a red box in Fig. A.6,
while text-editing is done under the Markdown tab, indicated by a blue box. In
command mode, you can edit the notebook as a whole. This allows you to copy or
delete cells, and move them around.

Shortcuts There are numerous shortcuts that are very useful for editing and navi-
gating a Jupyter notebook. We will highlight three types of shortcuts that are com-
monly used. The first set is for changing between the edit and command modes. To
switch from the edit to the command mode, we press the Esc key, while pressing
Enter takes us back to the edit mode. The second set of shortcuts is for inserting or
deleting a cell. Under the command mode, we can use the “a” shortcut to insert a
new cell above the current cell, “b” to insert below, and “d+d” to delete the current
cell. The final set of shortcuts is for executing a cell. We can use the arrow keys to
move between cells, Shift + Enter to run the current cell and move to the next one,
and Ctrl + Enter to stay in the current cell after execution.

360 Python Basics

A.2 Basic Syntaxes of Python

Outline This section will cover the basic Python syntax required to script for
information-theoretic notions and algorithm implementation. Specifically, we will
focus on three essential concepts: (i) class; (ii) package; and (iii) function. Addi-
tionally, we will introduce a range of Python packages that are relevant and useful
for the topics covered in this book.

A.2.1 Data structure

There are two prominent data-structure components in Python: (i) list; and (ii)
set.

(i) List List is a data type that is built-in in Python, which enables the storage of
multiple elements in a single variable. The elements are listed in a specific order,
and duplicates are allowed. Below are examples of how to use:

x = [1, 2, 3, 4] # construct a simple list
print(x)

[1, 2, 3, 4]

x.append(5) # add an item at the end
print(x)

[1, 2, 3, 4, 5]

x.pop() # delete an item located in the last
print(x)

[1, 2, 3, 4]

checking if a particular element exists in the list
if 3 in x:

print(True)
if 5 in x:

print(True)
else:

print(False)

True
False

A single-line construction of a list
y = [x for x in range(1,10)]
print(y)

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Basic Syntaxes of Python 361

Retrieving all the elements through a "for" loop
for i in x:

print(i)

1
2
3
4

(ii) Set Set is a built-in data type that has similarities with List, but with two key
differences. Firstly, it is an unordered data type, and secondly, it does not allow for
duplicate elements. Below are some examples of how to use.

x = set({1, 2, 3}) # construct a set
print(f"x: {x}, type of x: {type(x)}")

x: {1, 2, 3}, type of x: <class ’set’>

The f in front of strings in the print command tells Python to look at the values
inside {·}.

x.add(1) # add an existing item
print(x)

{1, 2, 3}

x.add(4) # add a new item
print(x)

{1, 2, 3, 4}

checking if a particular element exists in the list
if 1 in x:

print(True)
if 5 in x:

print(True)
else:

print(False)

True
False

Retrieving all the elements through a "for" loop
for i in x:

print(i)

1
2
3
4

362 Python Basics

A.2.2 Package

Let us present five packages that are essential for writing codes for the problems
dealt in this book: (i) math; (ii) random; (iii) itertools; (iv) numpy; and (v) scipy.

(i) math The math module offers a range of useful mathematical expressions,
such as exponential, logarithmic, square root, and power functions. Below are some
examples to illustrate their usage.

import math

math.exp(1) # exp(x)

2.718281828459045

print(math.log(1, 10)) # log(x, base)
print(math.log(math.exp(20))) # natural logarithm
print(math.log2(4)) # base-2 logarithm
print(math.log10(1000)) # base-10 lograithm

0.0
20.0
2.0
3.0

print(math.sqrt(16)) # square root
print(math.pow(2,4)) # x raised to y (same as x**y)
print(2**4)

4.0
16.0
16

print(math.cos(math.pi)) # cosine of x radians
print(math.dist([1,2],[3,4])) # Euclidean distance

-1.0
2.8284271247461903

The erf() function can be used to compute traditional
statistical functions such as the CDF of
the standard Gaussian distribution
def phi(x):

CDF of the standard Gaussian distribution
return (1.0 + math.erf(x/math.sqrt(2.0)))/2.0

phi(1)

0.8413447460685428

Basic Syntaxes of Python 363

(ii) random This module yields random number generation. See below for some
examples.

import random

random.randrange(start=1, stop=10, step=1)
a random number in range(start, stop, step)
random.randrange(10) # integer from 0 to 9 inclusive

5

returns random integer n such that a<=n<=b
random.randint(1, 10)

7

(iii) itertools This package offers a concise method to explore all possible cases
in various combinatorial situations.
from itertools import permutations, combinations

generating all permutations of [1, 2, 3]
p = permutations([1, 2, 3])

for i in p:
print (i)

(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)

generating all length-2 combinations of [1, 2, 3]
c = combinations([1, 2, 3], 2)

for i in c:
print (i)

(1, 2)
(1, 3)
(2, 3)

generating all length-3 combinations of [1, 2, 3, 4, 5]
c = combinations([1, 2, 3, 4, 5], 3)

364 Python Basics

for i in c:
print (i)

(1, 2, 3)
(1, 2, 4)
(1, 2, 5)
(1, 3, 4)
(1, 3, 5)
(1, 4, 5)
(2, 3, 4)
(2, 3, 5)
(2, 4, 5)
(3, 4, 5)

(iv) numpy Numpy is a widely used package for manipulating matrices and vec-
tors. It provides numerous helpful functions, some of which are commonly utilized
and listed below.

(a) numpy.array() numpy.array() is a specialized array data structure in numpy.
This differs from Python data type array().

import numpy as np

np.array([1, 2, 3]) # construct an array

array([1, 2, 3])

np.array([[1, 2], [3, 4]]) # construct a 2D array

array ([[1 , 2] ,
[3 , 4]])

x = np.ones((2,2))
construct an all-one matrix with size of 2-by-2
x = np.zeros((2,2))
construct an all-zero matrix with size of 2-by-2
print(np.ones_like(x))
all-one matrix with the same shape and type of input
print(np.zeros_like(x))
all-zero matrix with the same shape and type of input

[[1 . 1 .]
[1 . 1 .]]

[[0. 0.]
[0. 0.]]

Basic Syntaxes of Python 365

range of x
x_grid=np.arange(0,1,0.0001)
or one can use:
x_grid2=np.linspace(0,1,0.0001)

concatenation of two numpy arrays
x1 = np.array([1,2])
x2 = np.array([3,4])
xc = np.concatenate((x1,x2)) # column-wise
xr = np.vstack((x1,x2)) # row-wise
print(xc)
print(xr)

[1 2 3 4]
[[1 2]
[3 4]]

sign function
x = np.array([1.2,-3,2,-4.2])
s = np.sign(x)
print(s)

[1. -1. 1. -1.]

(b) numpy.random() The purpose of this module is to generate random sam-
ples from different probability distributions. We provide some commonly used
examples below, but for more information, you may want to refer to:

https://numpy.org/doc/1.16/reference/routines.random.html

sampling a number from standard Gaussian distribution
np.random.normal(loc = 0, scale = 1)
loc: mean, scale: standard deviation
np.random.randn() # plays the same role

-2.5459976698222495

sampling multiple numbers as per the standard Gaussian
np.random.normal(0, 1, size = (2, 2))
Here the size determines the output shape
np.random.randn(2,2) # plays the same role

array ([[-1.8133258 , -1 .01151295] ,
[-0.37375747, 0.36005748]])

np.random.rand(2,2) # Uniform over [0,1]

366 Python Basics

array([[0.06535694, 0.2507505] ,
[0.17559137 , 0.60967901]])

Uniform over [0.8,1]
np.random.uniform(0.8,1,(2,2))

array([[0.89902277, 0.85310313] ,
[0.96578371 , 0.85695091]])

Binomial distribution
np.random.binomial(10000,0.5) # 10000 trials of Bern(0.5)

5042

(c) numpy.linalg Here are some of the useful linear-algebra related functions
offered by this package.

from numpy import linalg

x = np.random.randn(2,2)
print(linalg.det(x)) # Determinant of a matrix x
print(linalg.inv(x)) # Inverse of a matrix x
print(linalg.norm(x)) # Matrix or vector norm
print(linalg.svd(x)) # Singular value decomposition
print(linalg.eig(x)) # Eigenvalue decomposition

0.7125655927348966
[[0.77007826 -0.38835738]
[2.33455331 0.64504946]]

1.832010151997132
(array([[-0.2060815 , 0.97853483],

[0.97853483, 0.2060815]]) ,
array ([1.78814528 , 0.39849424]),
array([[-0.96330981 , 0.2683919] ,

[0.2683919 , 0.96330981]]))
(array([0.50418566+0.67702467j , 0.50418566-0.67702467 j]) ,
array([[0.02479485-0.37684352 j , 0.02479485+0.37684352 j] ,

[0.92594502+0. j , 0.92594502-0. j]]))

(d) numpy.fft One of the useful operations in communication and signal pro-
cessing is Discrete Fourier Transform (DFT). Let x[m]’s be time-domain discrete
signals where m ∈ {0, 1, . . . , N − 1}. Then, the corresponding frequency-domain
signals read:

X [k] =
1
√

N

N−1∑
m=0

x[m]e−j 2π
N mk k ∈ {0, 1, . . . , N − 1}.

Basic Syntaxes of Python 367

One can implement this using a built-in function fft in numpy.fft.

fft(x) =
N−1∑
m=0

x[m]e−j 2π
N mk.

In order to align with the specified DFT, it is necessary to divide the fft by
√

N .
Conversely, the inverse function ifft serves the opposite function and can be utilized
in a similar manner.

ifft(X) =
1

N

N−1∑
k=0

X [k]e j 2π
N mk.

from numpy.fft import fft
from numpy.fft import ifft

x_time = np.random.randn(8)
X_freq = fft(x_time)/np.sqrt(8)
x_time_rec = np.sqrt(8)*ifft(X_freq)
print(x_time)
print(x_time_rec)

[0.19398987 0.92755053 1.14652418 1.05737049 -0.66500356
0.43650243 1.04576987 -0.95167376]

[0.19398987+0. j 0.92755053+0. j 1.14652418+0. j 1.05737049+0. j
-0.66500356+0. j 0.43650243+0. j 1.04576987+0. j -0.95167376+0. j]

(e) resizing The resizing is used for transforming the dimension of one into
another.
x = np.random.randn(4,4,1)
y = x.view(dtype=np.float_).reshape(-1,2)
’-1’ can be inferred from the context: Shape of (8,2)
print(y)
z = x.squeeze()
print(z.shape)

[[-0.85719316 2.99692221]
[1.16327996 -0.11955541]
[-0.76229609 0.79871494]
[0.99757568 0.69329723]
[-1.52198295 -0.74430996]
[0.17174063 0.25343301]
[0.07151011 -2.90945412]
[1.1874155 -0.64209109]]

(4 , 4)

368 Python Basics

(v) scipy This particular module offers an extensive collection of probability dis-
tributions and corresponding statistical metrics. Presented below are a few exam-
ples; for additional details, please refer to:

https://docs.scipy.org/doc/scipy/reference/stats.html

from scipy import stats

A random variable with the standard Gaussian
X = stats.norm(loc = 0, scale = 1)
loc:mean, scale:standard deviation
print(X.cdf(np.array([-1, 0, 1])))
computes the CDF at each numpy array
print(X.rvs(size = 3))
generating a sequence of random variables

[0.15865525 0.5 0.84134475]
[0.39460402 -0.8042592 -0.71404882]

Another random variable with the uniform distribution
Y = stats.uniform(loc = 0, scale = 1)
uniform distribution in [loc, loc + scale]
print(Y.cdf(np.array([-1, 0, 0.5, 1])))
print(Y.rvs(size = 3))

[0. 0. 0.5 1 .]
[0.72953474 0.67879248 0.47947748]

For binary random variables, we employ a built-in function, bernoulli in
scipy.stats.

from scipy.stats import bernoulli
X = bernoulli(0.5)
X_samples = X.rvs(10)
print(X_samples)

[0 1 0 0 1 0 0 1 0 0]

It also contains built-in functions for entropy and the KL divergence.

from scipy.stats import entropy

pX1 = np.array([1/2, 1/2]) # numpy.array
pX2 = [1/2, 1/2] # list
print(entropy(pX1, base=2))
print(entropy(pX2, base=2))

Basic Syntaxes of Python 369

1.0
1.0

Here the input distribution can take either a numpy.array or a list.

from scipy.special import rel_entr

Compute p(x,y)
pXY = np.array([1/4, 1/4, 1/3, 1/6])
Compute p(x)p(y)
pXpY = np.array([pX[0]*pY[0],pX[0]*pY[1],

pX[1]*pY[0],pX[1]*pY[1]])
kl_builtin = rel_entr(pXY,pXpY)
print(sum(kl_builtin))
To convert into log base 2
print(sum(kl_builtin)/np.log(2))

0.014362591564146779
0.020720839623908218

To calculate the KL divergence, scipy.special provides the function rel_entr.
rel_entr uses natural logarithms instead of log base 2 and produces a list of values

in the form of p(x) ln p(x)
q(x) . Therefore, proper conversion is required.

In communication problems, it is common to compute the Q-function which
is defined as:

Q(a) :=
∫
∞

a

1
√

2π
e−

z2
2 dz.

The analysis of communication error probability is aided by this process. The
numerical computation of the required integration can be performed through the
implementation of the erfc command provided by scipy.special.

erfc(x) :=
∫
∞

x

2
√
π

e−t2
dt.

The relation between Q(a) and erfc(x) is:

Q(a) :=
∫
∞

a

1
√

2π
e−

z2
2 dz

(a)
=

∫
∞

a
√

2

1
√
π

e−t2
dt

=
1

2
· erfc

(
a
√

2

)
where (a) comes from the change of variable t := z

√
2

(dz =
√

2dt).

370 Python Basics

Figure A.7. Plotting a simple function via matplotlib.pyplot.

from scipy.special import erfc

a = 10
Qfunc = 1/2*erfc(a/np.sqrt(a/2))
print(Qfunc)

1.2698142947354283e-10

A.2.3 Visualization

matplotlib.pyplot is the most commonly used function for graph plotting. The
following is a guide on how to utilize it.

import matplotlib.pyplot as plt

x_value = [x for x in range(10)]
y_value = [y for y in range(10, 20)]

plt.figure(figsize=(4,4),dpi=150) # figure size and resolution
plt.plot(x_value, y_value, color=’blue’, label=’line’)
plt.xlabel(’x’) # labeling x-axis
plt.ylabel(’y’) # labeling y-axis
plt.title(’sample curve’)
plt.legend()
plt.show() # No need to use show() in jupyter notebook.

Basic Syntaxes of Python 371

Figure A.8. Multiple functions and legend.

It is also possible to plot multiple curves in a single graph.

we can plot multiple graphs at once

x = [x for x in range(10)]
y_1 = [3*y for y in range(10)]
y_2 = [2*y for y in range(10)]

plt.figure(figsize=(4,4), dpi=150)
plt.plot(x, y_1, color=’blue’, label=’y=3x’) # plot_1
plt.plot(x, y_2, color=’red’, label=’y=2x’) # plot_2
plt.xlabel(’x’) # labeling x-axis
plt.ylabel(’y’) # labeling y-axis
plt.title(’two sample curves’)
plt.legend()
plt.show()

To draw the probability distribution of a random variable, we often employ a
stats visualization package, named seaborn.

import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import bernoulli

X = bernoulli(0.5)
X_samples = X.rvs(1000)

372 Python Basics

plt.figure(figsize=(4,4), dpi=150)
sns.histplot(X_samples)
plt.xlabel(’Values of a random variable’)
plt.ylabel(’Histogram’)
plt.show()

In communication problems, it is common to plot the probability of error,
which is often exceedingly small, such as 10−5. To better differentiate between
small probability values, a logarithmic scale of error probability is utilized. This
can be achieved by employing the function plt.yscale('log').

import numpy as np
from scipy.special import erfc
import matplotlib.pyplot as plt

SNRdB = np.arange(0,21,1)
SNR = 10**(SNRdB/10)

Q-function
Qfunc = 1/2*erfc(np.sqrt(SNR/2))

plt.figure(figsize=(4,4), dpi=150)
plt.plot(SNRdB, Qfunc, label=’Q(sqrt(SNR))’)
plt.yscale(’log’)
plt.xlabel(’SNR (dB)’)
plt.grid(linestyle=’:’, linewidth=0.5)
plt.title(’Q function’)
plt.legend()
plt.show()

Figure A.9. Plotting a histogram of independent realizations of a random variable.

Basic Syntaxes of Python 373

Figure A.10. Logarithmic scale of the Q-function as a function of SNR.

Figure A.11. How to adjust the font size of axis tick values.

To modify the font size of axis tick values, the matplotlib.rc command is utilized.
The following code serves as an example:

To adjust the font size of axis tick values
import matplotlib
import matplotlib.pyplot as plt
import numpy as np

x= np.linspace(0,1,100)
y=np.sqrt(x)

374 Python Basics

plt.figure(figsize=(10,5),dpi=200)
matplotlib.rc(’xtick’,labelsize=10)
matplotlib.rc(’ytick’,labelsize=10)
plt.subplot(1,2,1)
plt.plot(x,y)
plt.title(’tick size = 10’)
matplotlib.rc(’xtick’,labelsize=20)
matplotlib.rc(’ytick’,labelsize=20)
plt.subplot(1,2,2)
plt.plot(x,y)
plt.title(’tick size = 20’)
plt.show()

DOI: 10.1561/9781638281153.ch5

Appendix B

TensorFlow and Keras Basics

Outline Part III covered several applications in data science, such as machine
learning and deep learning. Deep learning, a learning approach that utilizes a deep
neural network (DNN) as a basic model for predictions, can be implemented using
various software tools known as machine learning frameworks or application pro-
gramming interfaces (APIs). TensorFlow, Keras, Pytorch, DL4J, Caffe, and mxnet

are some examples of such frameworks. Each framework has its advantages and
disadvantages, depending on the requirements of the deep learning model design,
such as usability, training speed, functionality, and scalability in distributed train-
ing. This book prioritizes usability and therefore focuses on the high-level API with
fast user experimentation, which is Keras.

The Keras API facilitates moving from idea to implementation with minimal
steps, making it an ideal choice for this book. This appendix presents four basic
contents related to Keras. Since Keras is fully integrated with TensorFlow, it comes
packaged with the TensorFlow installation. In the first part, we will learn how to
install TensorFlow. To implement deep learning, three key procedures are required:
(i) data preparation and processing; (ii) neural network model building; and (iii)
model training and testing. The second part will cover an easy way to handle data
using Keras, followed by building a neural network model using popular packages
such as keras.models and keras.layers. Finally, we will explore how to train and
test a model accordingly. To illustrate these procedures easily, we will demonstrate
them using a simple example.

375

http://dx.doi.org/10.1561/9781638281153.ch5

376 TensorFlow and Keras Basics

Installation Installing Keras requires the installation of TensorFlow. Fortunately,
the installation process is straightforward:

pip install tensorflow

Keras is fully supported by TensorFlow 2 packages. To ensure a proper
installation, a pip version higher than 19.0 (or higher than 20.3 for macOS)
is required. You may need to upgrade pip by running the command:
"pip install –upgrade pip". To confirm a successful installation, try importing
keras using the following command:

from tensorflow import keras

If there are no errors, then you are ready to start using Keras. However, if you do
encounter any errors, you may want to refer to the installation guidelines found at:

https://www.tensorflow.org/install

A simple task We will be focusing on a simple task of classifying handwritten
digits, where the objective is to identify a digit from an image of handwritten digits.
An example of such an image is shown in Fig. B.1. The figure demonstrates a case
where an image of the digit 2 is accurately identified.

Preparing and processing data The digit classification task is commonly asso-
ciated with the MNIST (Modified National Institute of Standards and Technology)
dataset, which contains 60, 000 training images and 10, 000 testing images. Each
image, denoted by x(i), is a 28×28 pixel image with gray-scale levels ranging from
0 (white) to 1 (black). Additionally, each image has a label, denoted by y(i), that
corresponds to one of the 10 classes, y(i) ∈ {0, 1, . . . , 9}. Please refer to Fig. B.2 for
an illustration of the dataset.

Keras offers the advantage of having popular datasets, such as MNIST, readily
available in a sub-package called keras.datasets. This sub-package includes both

digit
classifier

Figure B.1. Handwritten digit classification.

TensorFlow and Keras Basics 377

white

black

Figure B.2. MNIST dataset: An input image is of 28-by-28 pixels, each indicating an inten-

sity from 0 (white) to 1 (black); each label with size 1 takes one of the 10 classes from

0 to 9.

the train and test datasets, which are already properly split. Hence, there is no need
to worry about the splitting process. The only requirement is to write a script as
follows:

from tensorflow.keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train/255.
X_test = X_test/255.

Downloading data from https :// storage . googleapis .com/
tensorflow/ tf -keras - datasets/mnist . npz
11493376/11490434 [=======================] - 1 s 0us/step
11501568/11490434 [=======================] - 1 s 0us/step

Normalization is an essential data preprocessing step. Here to this end, we divide
the input data (X_train or X_test) by its maximum value of 255. If the dataset
we want to use is not available in the keras.datasets sub-package, we need to be
familiar with other data preprocessing techniques. The pandas library offers one
such technique that is useful in handling .csv files. However, this book does not
cover the usage of pandas in detail. If you want to learn more about pandas, you
can refer to:

https://pandas.pydata.org/

We use matplotlib.pyplot for data visualization. The following code shows how
to plot a sample image:

378 TensorFlow and Keras Basics

Figure B.3. A sample image in MNIST dataset.

import matplotlib.pyplot as plt

plt.imshow(X_train[0], cmap = ’gray_r’)
plt.colorbar()
plt.title(’{}’.format(y_train[0], fontsize=30))

The output of the code for plotting the sample image is shown in Fig. B.3. The
’gray_r’ option is used to enable the white background and a black letter, while
’gray’ is used for the flipped one, which is a white letter with a black background.
The colorbar() function displays the color bar on the right, as seen in Fig. B.3. It is
also possible to plot multiple images in a single figure. For instance, the following
code shows how to display 60 images.

num_of_images = 60
for index in range(1,num_of_images+1):

plt.subplot(6,10, index)
plt.axis(’off’)
plt.imshow(X_train[index], cmap = ’gray_r’)

See Fig. B.4 for the output.

Building a neural network model We will use a two-layer neural network
that was studied in Section 3.14. Specifically, we introduce a hidden layer with 500
neurons as shown in Fig. B.5. The ReLU activation function is used at the hidden
layer and softmax is used at the output layer.

Keras includes two major packages:

(i) tensorflow.keras.models;

(ii) tensorflow.keras.layers.

The models package contains several functionalities regarding a neural network.
One major module is Sequential which is a neural network entity and hence can

TensorFlow and Keras Basics 379

Figure B.4. Plotting many image samples in a single figure.

Figure B.5. A two-layer fully-connected neural network where input size is 28× 28 = 784,

the number of hidden neurons is 500 and the number of classes is 10. We employ ReLU

activation at the hidden layer, and softmax activation at the output layer.

be described as a linear stack of layers. The layers package in Keras includes various
elements required for constructing a neural network, such as fully-connected dense
layers and activation functions. These components enable us to easily build a model
as depicted in Fig. B.5.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten

model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(500, activation=’relu’))
model.add(Dense(10, activation=’softmax’))
model.summary()

380 TensorFlow and Keras Basics

Model : " sequential_1 "
- -
Layer (type) Output Shape Param #

==
f latten (Flatten) (None, 784) 0

dense (Dense) (None, 500) 392500

dense_1 (Dense) (None, 10) 5010
==
Total params : 397,510
Trainable params : 397,510
Non- trainable params : 0

Flatten is a component that transforms a higher dimensional entity, such as a
2D matrix, into a vector. In this instance, a 28-by-28 digit image is transformed
into a vector of size 784(= 28× 28). The add() method is used to append a layer
to the end of the sequential model. Dense denotes a fully-connected layer, and the
input size is automatically determined by the last layer to which it will be appended.
The only parameter to specify is the number of output neurons, which is set to 500
in this example, corresponding to the number of hidden neurons. We can also set
an activation function, such as activation=’relu’, with an additional argument. The
output layer has 10 neurons, which corresponds to the number of classes, and uses
softmax activation to represent the likelihood of an output belonging to a particular
class. The summary() function generates a list of all layers, specifying the size and
number of associated parameters.

Training a model First, we have to choose an optimizer algorithm. One popular
algorithm is gradient descent, and we will be using its advanced version introduced
in Section 3.14 called the Adam optimizer. Adam is an improved version of gradi-
ent descent that provides more stable training. It has three important hyperparam-
eters, namely the learning rate , β1 (which represents the weight of past gradients),
and β2 (which indicates the weight of the square of past gradients). By default,
these are set to (α,β1,β2) = (0.001, 0.9, 0.999). If we do not specify any values,
these default values will be used.

Next, we need to specify a loss function. As we learned in Section 3.13, the
optimal choice for maximizing likelihood in multi-class cases is cross entropy. We
also need to specify a performance metric that we will use to evaluate the model
during training and testing. The accuracy metric is commonly used for this purpose.
All of these can be set using the compile method.

model.compile(optimizer=’adam’,
loss=’sparse_categorical_crossentropy’,
metrics=[’acc’])

TensorFlow and Keras Basics 381

To manually choose the hyperparameters of the Adam optimizer, we can define:

opt=tensorflow.keras.optimizers.Adam(
learning_rate=0.01,
beta_1 = 0.92,
beta_2 = 0.992)

Next, we replace the previous option with optimizer=opt. As for the loss option
in the compile method, we will use ’sparse_categorical_crossentropy’ instead,
which is suitable for cross entropy loss in cases beyond binary classification.

With these settings, we can now train the model on MNIST data. During the
training process, we use a portion of the total examples to compute the gradient of
the loss function, which is called a batch. Two more terms are used in this context:
a step refers to the process of computing the loss for the examples in a single batch,
while an epoch refers to the entire process associated with all the examples. For our
experiment, we use a batch size of 64 and train the model for 20 epochs.

history = model.fit(X_train, y_train, batch_size=64, epochs=20)

Epoch 1/20
938/938 [===] - 2s 2ms/step - loss : 0.0025 - acc : 0.9992
Epoch 2/20
938/938 [===] - 2s 2ms/step - loss : 0.0059 - acc : 0.9981
Epoch 3/20
938/938 [===] - 2s 2ms/step - loss : 0.0031 - acc : 0.9990
Epoch 4/20
938/938 [===] - 2s 2ms/step - loss : 0.0074 - acc : 0.9976
Epoch 5/20
938/938 [===] - 2s 2ms/step - loss : 0.0025 - acc : 0.9993
Epoch 6/20
938/938 [===] - 2s 2ms/step - loss : 0.0043 - acc : 0.9984
Epoch 7/20
938/938 [===] - 2s 2ms/step - loss : 0.0044 - acc : 0.9984
Epoch 8/20
938/938 [===] - 2s 2ms/step - loss : 0.0010 - acc : 0.9998
Epoch 9/20
938/938 [===] - 2s 2ms/step - loss : 1 .2813e-04 - acc : 1 .0
Epoch 10/20
938/938 [===] - 2s 2ms/step - loss : 3.5169e-05 - acc : 1 .0
Epoch 11/20
938/938 [===] - 2s 2ms/step - loss : 2.1899e-05 - acc : 1 .0
Epoch 12/20
938/938 [===] - 2s 2ms/step - loss : 1.6756e-05 - acc : 1 .0
Epoch 13/20
938/938 [===] - 2s 2ms/step - loss : 1.2778e-05 - acc : 1 .0

382 TensorFlow and Keras Basics

Figure B.6. Accuracy as a function of epochs.

Epoch 14/20
938/938 [===] - 2s 2ms/step - loss : 9.8947e-06 - acc : 1 .0
Epoch 15/20
938/938 [===] - 2s 2ms/step - loss : 0.0082 - acc : 0.9981
Epoch 16/20
938/938 [===] - 2s 2ms/step - loss : 0.0090 - acc : 0.9971
Epoch 17/20
938/938 [===] - 2s 2ms/step - loss : 0.0016 - acc : 0.9995
Epoch 18/20
938/938 [===] - 2s 2ms/step - loss : 3.9583e-04 - acc : 0.9999
Epoch 19/20
938/938 [===] - 2s 2ms/step - loss : 7.6672e-05 - acc : 1 .0
Epoch 20/20
938/938 [===] - 2s 2ms/step - loss : 2.4958e-05 - acc : 1 .0

An advantage of using the fit() function is that it provides a dictionary of the
metrics that were gathered during the training process. We can examine the metrics
by running:

list all data in history object
print(history.history.keys())

dict_keys([’loss’, ’acc’])

We can create a plot of the accuracy as a function of epochs using the collected
data.
plt.plot(history.history[’acc’])
plt.title(’model accuracy’)
plt.xlabel(’epoch’)
plt.ylabel(’accuracy’)

TensorFlow and Keras Basics 383

Testing the trained model To conduct testing, we need to predict the model
output using the predict() function in the following manner:

model.predict(X_test).argmax(1)

array([7, 2, 1, …, 4, 5, 6], dtype=int64)

The function argmax(1) retrieves the class with the highest softmax output among
the 10 available classes. In order to assess the accuracy of the test set, we utilize the
evaluate() function:

model.evaluate(X_test, y_test)

313/313 [===] - 0s 751us/step - loss: 0.1001 - acc: 0.9847

[0.10007859766483307, 0.9847000241279602]

Saving and loading Saving and loading the trained model is a straightforward
process, as shown below.

model.save(’saved_classifier’)

INFO:tensorflow:Assets written to: saved_classifier\assets

import tensorflow
loaded_model = tensorflow.keras.models.load_model(
’saved_classifier’)

DOI: 10.1561/9781638281153.ch6

Appendix C

A Special Note on Research

In this appendix, we aim to provide some insights that could be valuable for your
career advancement, specifically in the realm of conducting research. We will cover
two key topics related to research. Firstly, we will provide advice on what aspects to
concentrate on while conducting research. Secondly, we will outline a methodology
for reading research papers.

C.1 Power of Fundamentals

An advice The main message we want to convey through this book is the impor-
tance of fundamental concepts and tools such as phase transitions, entropy, mutual
information, and the KL divergence. One piece of advice we would like to offer is to
focus on strengthening your understanding of these fundamentals, particularly as
they relate to modern technologies. To further explain what we mean, let’s examine
how fundamentals have evolved from the past to the present day.

Fundamentals in old days Technologies in the past were shaped by the 1st,
2nd, and 3rd industrial revolutions, which were made possible by groundbreaking
inventions inspired by scientific discoveries. The steam engine was the key inven-
tion of the 1st industrial revolution, based on the principles of thermodynamics

384

http://dx.doi.org/10.1561/9781638281153.ch6

Power of Fundamentals 385

in which physics and chemistry played foundational roles. The 2nd revolution was
triggered by the invention of electricity, which is based on electromagnetism, again
with physics as the underlying theory. The 3rd revolution was brought about by the
computer, which is based on the invention of the semiconductor, with physics and
chemistry providing the foundation. Although these fundamentals are crucial, they
are not the ones we are referring to in this book. Our emphasis is on modern-day
technologies.

Fundamentals in modern days The 4th industrial revolution is currently
driving modern day technologies. It is widely accepted that the main focus
of this revolution is Artificial Intelligence (AI). It is important to note that
machine learning and deep learning, which are key methodologies for achieving
machine intelligence, rely on optimization techniques that fall under the umbrella
of mathematics. Therefore, mathematics is a significant driving force for the
development of AI.

Four fundamentals in mathematics The 4th industrial revolution, centered
around Artificial Intelligence (AI), relies heavily on mathematics. In particular,
four branches of mathematics play foundational roles in AI: optimization, linear
algebra, probability, and information theory. Optimization, a branch of mathemat-
ics that deals with finding the optimal solution to a problem, is a key methodol-
ogy in achieving machine intelligence. Linear algebra provides instrumental tools
for obtaining simple and tractable formulas of the objective function and/or con-
straints. Probability is used to deal with random quantities, and information theory
sheds optimal architectural insights into machine learning models. These funda-
mentals are essential in the 4th industrial revolution. Therefore, our advice is to
be strong in these fundamentals. However, it is worth noting that it is easier to
build these fundamentals when you are younger and in school, as you may not
have enough time or stamina to develop a deep understanding of these principles
after graduation.

Programming skills Do fundamentals alone suffice? Unfortunately, the answer
is negative. There is another vital skill that you must possess. Remember that
the ultimate product of machine learning is “algorithms.” In other words, it is
a set of instructions that typically require extensive computation. Manual com-
putation is virtually impossible, and therefore, it must be performed on a com-
puter. This is where programming tools, such as Python and TensorFlow, that we
have utilized throughout this book, become essential. We strongly suggest that you
become proficient in this tool as well. Swift implementations through exceptional

386 A Special Note on Research

programming abilities will assist you in realizing and advancing your concepts.
One caveat to note is that programming tools change over time. This is due to
the rapid evolution of computational resources and capabilities, which influence
the efficiency of programming languages. As a result, you must stay up to date with
such changes.

How to Read Papers? 387

C.2 How to Read Papers?

We would like to share with you our thoughts on a methodology for conducting
research, specifically on how to approach reading papers. We believe this is a crucial
skill for students, yet it is often not explicitly taught in university curriculums.
Many students may approach reading papers without a clear strategy or purpose,
which can be challenging even for experienced researchers.
Disclaimer: The following recommendations are based on our own opinions.

Two strategies We present two approaches: a passive strategy that is useful when
you are trying to grasp the basics and trends of a field you are interested in (if you
are not planning to write a paper), and an active strategy that is more suitable for
those who want to become experts in a trending but not fully developed field, or
for those who need to write papers on such topics.

Passive approach The concept is to depend on the expertise of professionals.
This means waiting until the experts can provide instruction in a very understand-
able way, and then reading papers written by these professionals. Ideally, these
papers should be of the survey type. Two questions that come to mind are: (i) how
can you determine who the experts are?; and (ii) how can you read well-written
papers effectively?

How to figure out experts? We suggest three practices that can help you find
experts in the field. The first practice is to approach professors, seniors, and peers
who are already working in the field. In most cases, well-known figures in the
field can be easily recognized, so you can simply ask them for recommendations.
The second practice is to use Google search with appropriate keywords. Nowadays,
many relevant blogs are available on websites. These blogs may provide references
or pointers to experts in the field. Once you have identified an expert, you can check
their track record, such as their Google citations. The third practice is to look for
organizers and keynote speakers in flagship conferences and workshops. These indi-
viduals are likely to be experts in the field. However, you may feel unsure when you
identify scholars who are too young and have weak track records. In such cases, you
may want to check their advisors, as great advisors usually produce great students.

How to read well-written papers? After identifying the experts, the next step
is to read their well-written papers. Survey papers that have been cited frequently
are generally a good choice. Here are some guidelines on how to read them.

First and foremost, it is crucial to read the papers intensively rather than simply
skimming through them. It is best to read the paper while taking notes and attempt-
ing to translate the authors’ words into your own understanding. It is recommended

388 A Special Note on Research

to ponder on the theorems before reading their proofs. The main messages and their
implications are usually conveyed through theorems, and comprehending them is
the most important aspect. Attempting to read technical proofs prior to grasping
what the theorems mean will be unproductive, and you may quickly lose interest
or become burnt out. Once you understand the main messages, you can delve into
the technical details.

Secondly, it is recommended to read the paper multiple times until you have
completely absorbed its contents. A well-written paper is like a bible, and repeated
readings can provide a deep and diverse understanding of its contents. It is also
important to be familiar with any proof techniques used in the paper. A good paper
typically contains simple and insightful proof techniques. A short proof may not
necessarily be good unless it is insightful. We believe that a good proof comes with
insights, even if it is lengthy.

Finally, it is essential to respect the experts’ notations, logical flows, mindsets, and
writing styles. Expert writers usually spend a lot of time selecting their notations,
developing a storyline, and refining their writing. Their choices are well-considered
and carefully crafted. You may have your own preferred style, but if you find their
methods to be better, don’t hesitate to adopt them. If you don’t have a preference
or are unable to judge, simply follow theirs. It is worth emulating their style.

Active approach Let’s now discuss the second approach, which is an active
approach designed for individuals who wish to write papers in a relatively new
or emerging field. This approach is suitable for those who cannot wait for experts
to become available to teach the field. The spirit of the approach is based on trial
and error. It involves reading numerous recent papers and going back and forth
until you can grasp the big picture. This approach is not easy and requires two
key skills: (i) the ability to quickly identify relevant and high-quality papers; and
(ii) the ability to quickly comprehend the main ideas presented in these papers.

How to identify relevant/good papers quickly? We recommend two
approaches. The first is similar to the one suggested in the passive approach, which
is to ask experts in the field, such as professors, seniors, or peers. However, we
emphasize the importance of seeking out experts who are familiar with the field,
as identifying good papers in a new field can be challenging. Non-experts may not
be able to identify relevant papers easily, and even if they can, they may not be
motivated to invest a significant amount of time searching for papers on behalf of
others.

The second approach is to search for papers in relevant conferences and work-
shops, but in a strategic manner. With so many conferences and workshops, it
can be overwhelming to go through all the papers. To streamline the process, we

How to Read Papers? 389

suggest a two-step filtering method. First, look at the title and only consider papers
that contain relevant keywords, are grammatically correct, and are well-written. If
a paper fails to meet these criteria, remove it from the list. Second, read the abstract
of the surviving papers. If the abstract is well-written and relevant, add the paper to
a shortlist. Authors typically spend a significant amount of time crafting and refin-
ing the abstract, so if it is poorly written, the main body is likely to be even worse,
which can make it challenging to understand the paper’s main idea. Therefore, it is
best to exclude such papers from the shortlist.

Further short-list papers if needed After applying the aforementioned guide-
lines, you might be left with a considerable number of papers. If the number of
selected papers is approximately 10 or more, we advise you to refine the list by
delving deeper into each paper. Here’s how to go about it: determine your objec-
tive and what you hope to gain from reading each paper, then begin by reading
the “introduction” section with your objective in mind. If the paper’s introduction
is well-written and relevant to your goal, it should remain on your list. If not, it
should be removed from the list.

Figure out main ideas of the short-listed papers At this point, the list
should only contain a few papers. If it still contains too many, repeat the previous
step with stricter criteria until you have only a few papers left. Once you’ve narrowed
down the list, search for the main idea sentence in the introduction of each paper.
If you can’t find it or don’t understand it, read other sections of the paper until you
do. Once you understand it, rephrase the main idea sentence in your own words
and write it down in the heading on the first page of the paper. If you get frustrated
during the process, it’s okay to stop reading and move on to the next paper.

Do back-and-forth Continue the iterative process of summarizing the main
ideas of the short-listed papers. Two important considerations to keep in mind
are: first, do not invest too much time reading “related works.” These sections are
often dense and not critical to the main story of the paper. They exist mainly to
avoid criticism from non-cited authors. You may choose to ignore them entirely.
Second, when investigating other references, read them quickly and stay focused on
your goal. It’s best not to get sidetracked by reading other references or spending
too much time on them.

You can end the iterative process when you either: (a) gain a complete under-
standing of the topic, or (b) find a well-written “anchor paper” that presents a clear
overview of the subject. If you find an anchor paper, follow the passive approach to
read it thoroughly.

390 A Special Note on Research

Do your own research After figuring out the big picture, it’s best to concentrate
on your own research and avoid getting sidetracked by reading more papers. Follow
these steps to get started:

1. Select a challenge that you want to tackle;
2. Define a specific and tangible problem that can address the challenge;
3. Attempt to solve the problem using conventional wisdom and first-principle

thinking.

It’s possible to encounter difficulties during the third step, especially if you’re stuck.
In that case, consider discussing the issue with your advisors, seniors, or peers.

Two final remarks We have two final remarks to make. Firstly, we advise you not
to give up during the research process. Research is a complex task and it is natural to
feel discouraged or overwhelmed at times. However, persistence and patience will
ultimately pay off. Secondly, regarding communication skills, it is crucial to quickly
grasp the writing quality and main idea of a paper as outlined in the guidelines. We
strongly encourage you to work on improving your reading comprehension and
grammar skills.

References

Abbe, E. (2017). “Community detection and stochastic block models: recent devel-
opments”. The Journal of Machine Learning Research. 18(1): 6446–6531.

Ahn, K., K. Lee, H. Cha, and C. Suh. (2018). “Binary rating estimation with graph
side information”. Advances in neural information processing systems. 31.

Angwin, J., J. Larson, S. Mattu, and L. Kirchner. (2020). “There’s software used
across the country to predict future criminals and it’s biased against blacks.
2016”.

Arikan, E. (2009). “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels”. IEEE
Transactions on information Theory. 55(7): 3051–3073.

Arora, S., R. Ge, Y. Liang, T. Ma, and Y. Zhang. (2017). “Generalization and equi-
librium in generative adversarial nets (gans)”. In: International Conference on
Machine Learning. PMLR. 224–232.

Bansal, N., A. Blum, and S. Chawla. (2004). “Correlation clustering”. Machine
learning. 56(1): 89–113.

Beauchamp, K. (2001). History of telegraphy. No. 26. Iet. Iet.
Bertsekas, D. and J. N. Tsitsiklis. (2008). Introduction to probability. Vol. 1. Athena

Scientific.
Bondyopadhyay, P. K. (1995). “Guglielmo Marconi-The father of long dis-

tance radio communication-An engineer’s tribute”. In: 1995 25th European
Microwave Conference. Vol. 2. IEEE. 879–885.

Boyd, S. P. and L. Vandenberghe. (2004). Convex optimization. Cambridge univer-
sity press.

Bradley, R. A. and M. E. Terry. (1952). “Rank analysis of incomplete block designs:
I. The method of paired comparisons”. Biometrika. 39(3/4): 324–345.

Browning, S. R. and B. L. Browning. (2011). “Haplotype phasing: existing meth-
ods and new developments”. Nature Reviews Genetics. 12(10): 703–714.

Candes, E. and B. Recht. (2012). “Exact matrix completion via convex optimiza-
tion”. Communications of the ACM. 55(6): 111–119.

391

392 References

Candès, E. J. and T. Tao. (2010). “The power of convex relaxation: Near-optimal
matrix completion”. IEEE Transactions on Information Theory. 56(5): 2053–
2080.

Chartrand, G. (1977). Introductory graph theory. Courier Corporation.
Chen, J. and B. Yuan. (2006). “Detecting functional modules in the yeast protein–

protein interaction network”. Bioinformatics. 22(18): 2283–2290.
Chen, Y., G. Kamath, C. Suh, and D. Tse. (2016a). “Community recovery in

graphs with locality”. In: International conference on machine learning. PMLR.
689–698.

Chen, Y. and C. Suh. (2015). “Spectral MLE: Top-K rank aggregation from pair-
wise comparisons”. In: International Conference on Machine Learning. PMLR.
371–380.

Chen, Y., C. Suh, and A. J. Goldsmith. (2016b). “Information recovery from
pairwise measurements”. IEEE Transactions on Information Theory. 62(10):
5881–5905.

Cho, J., G. Hwang, and C. Suh. (2020). “A fair classifier using mutual informa-
tion”. In: 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE. 2521–2526.

Coe, L. (1995). The telephone and its several inventors: A history. McFarland.
Cover, T. and A. T. Joy. (2006). Elements of information theory. Wiley-Interscience.
Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.
Csiszár, I. and J. Körner. (2011). Information theory: coding theorems for discrete

memoryless systems. Cambridge University Press.
Das, S. and H. Vikalo. (2015). “SDhaP: haplotype assembly for diploids and poly-

ploids via semi-definite programming”. BMC genomics. 16(1): 1–16.
El Gamal, A. and Y.-H. Kim. (2011). Network information theory. Cambridge uni-

versity press.
Elmahdy, A., J. Ahn, C. Suh, and S. Mohajer. (2020). “Matrix completion with

hierarchical graph side information”. Advances in neural information processing
systems. 33: 9061–9074.

Erdős, P., A. Rényi, et al. (1960). “On the evolution of random graphs”. Publ. Math.
Inst. Hung. Acad. Sci. 5(1): 17–60.

Fortunato, S. (2010). “Community detection in graphs”. Physics reports. 486(3–5):
75–174.

Freedman, D., R. Pisani, and R. Purves. (2007). Statistics. W.W. Norton & Co.
Gallager, R. (1962). “Low-density parity-check codes”. IRE Transactions on infor-

mation theory. 8(1): 21–28.
Gallager, R. G. (1968). Information theory and reliable communication. Vol. 588.

Springer.

References 393

Gallager, R. G. (2013). Stochastic processes: theory for applications. Cambridge
University Press.

Garnier, J.-G. and A. Quetelet. (1838). Correspondance mathématique et physique.
Vol. 10. Impr. d’H. Vandekerckhove.

Girvan, M. and M. E. Newman. (2002). “Community structure in social and
biological networks”. Proceedings of the national academy of sciences. 99(12):
7821–7826.

Gleick, J. (2011). The information: A history, a theory, a flood. Vintage.
Glorot, X., A. Bordes, and Y. Bengio. (2011). “Deep sparse rectifier neural net-

works”. In: Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics. JMLR Workshop and Conference Proceedings.
315–323.

Golub, G. H. and C. F. Van Loan. (2013). Matrix computations. JHU press.
Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio. (2014). “Generative adversarial nets”. Advances in
neural information processing systems. 27.

Gray, R. M. (2011). Entropy and information theory. Springer Science & Business
Media.

Grimmett, G. and D. Stirzaker. (2020). Probability and random processes. Oxford
university press.

Gutmann, M. and A. Hyvärinen. (2010). “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models”. In: Proceedings of the
thirteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings. 297–304.

Hamming, R. W. (1950). “Error detecting and error correcting codes”. The Bell
system technical journal. 29(2): 147–160.

Hinton, G., N. Srivastava, and K. Swersky. (2012). “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent”. Cited on. 14(8): 2.

Huffman, D. A. (1952). “A method for the construction of minimum-redundancy
codes”. Proceedings of the IRE. 40(9): 1098–1101.

Ioffe, S. and C. Szegedy. (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on
machine learning. PMLR. 448–456.

Ivakhnenko, A. G. (1971). “Polynomial theory of complex systems”. IEEE transac-
tions on Systems, Man, and Cybernetics. (4): 364–378.

Jalali, A., Y. Chen, S. Sanghavi, and H. Xu. (2011). “Clustering partially observed
graphs via convex optimization”. In: ICML.

Karush, W. (1939). “Minima of functions of several variables with inequalities as
side constraints”. M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago.

394 References

Keshavan, R. H., A. Montanari, and S. Oh. (2010). “Matrix completion from a
few entries”. IEEE transactions on information theory. 56(6): 2980–2998.

Kingma, D. P. and J. Ba. (2014). “Adam: A method for stochastic optimization”.
arXiv preprint arXiv:1412.6980.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. (2012). “Imagenet classification
with deep convolutional neural networks”. Advances in neural information
processing systems. 25.

Kuhn, H. W. and A. W. Tucker. (2014). “Nonlinear programming”. In: Traces and
emergence of nonlinear programming. Springer. 247–258.

Larson, J., S. Mattu, L. Kirchner, and J. Angwin. (2016). “How we analyzed the
COMPAS recidivism algorithm”.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. (1998). “Gradient-based learn-
ing applied to document recognition”. Proceedings of the IEEE. 86(11):
2278–2324.

MacKay, D. J. (2003). Information theory, inference and learning algorithms.
Cambridge university press.

Meta. (2022). “Investor earnings report for 3Q 2022”.
Negahban, S., S. Oh, and D. Shah. (2012). “Iterative ranking from pair-wise com-

parisons”. Advances in neural information processing systems. 25.
News, B. (2016). “Artificial Intelligence: Google’s AlphaGo Beats Go Master Lee

Se-Dol”.
Nielsen, R., J. S. Paul, A. Albrechtsen, and Y. S. Song. (2011). “Genotype and SNP

calling from next-generation sequencing data”. Nature Reviews Genetics. 12(6):
443–451.

Page, L., S. Brin, R. Motwani, and T. Winograd. (1999). “The PageRank citation
ranking: Bringing order to the web.” Tech. rep. Stanford InfoLab.

Pierce, J. R. (2012). An introduction to information theory: symbols, signals and noise.
Courier Corporation.

Polyak, B. T. (1964). “Some methods of speeding up the convergence of itera-
tion methods”. Ussr computational mathematics and mathematical physics. 4(5):
1–17.

Roh, Y., K. Lee, S. Whang, and C. Suh. (2020). “Fr-train: A mutual information-
based approach to fair and robust training”. In: International Conference on
Machine Learning. PMLR. 8147–8157.

Rosenblatt, F. (1958). “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” Psychological review. 65(6): 386.

Salomon, D. (2004). Data compression: the complete reference. Springer Science &
Business Media.

References 395

Samuel, A. L. (1967). “Some studies in machine learning using the game of check-
ers. II—Recent progress”. IBM Journal of research and development. 11(6):
601–617.

Shannon, C. (1956). “The zero error capacity of a noisy channel”. IRE Transactions
on Information Theory. 2(3): 8–19.

Shannon, C. E. (1938). “A symbolic analysis of relay and switching circuits”.
Electrical Engineering. 57(12): 713–723.

Shannon, C. E. (2001). “A mathematical theory of communication”. ACM SIG-
MOBILE mobile computing and communications review. 5(1): 3–55.

Shen, J., T. Tang, and L.-L. Wang. (2011). Spectral methods: algorithms, analysis and
applications. Vol. 41. Springer Science & Business Media.

Si, H., H. Vikalo, and S. Vishwanath. (2014). “Haplotype assembly: An informa-
tion theoretic view”. In: 2014 IEEE Information Theory Workshop (ITW 2014).
IEEE. 182–186.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. (2016).
“Mastering the game of Go with deep neural networks and tree search”. Nature.
529(7587): 484–489.

Stewart, J. (2015). Calculus. Cengage Learning.
Suh, C. (2022). Convex optimization for machine learning. Now Publishers.
Suh, C. (2023). Communication principles for data science. Springer.
Wilde, M. M. (2013). Quantum information theory. Cambridge University Press.
Yeung, R. W. (2008). Information theory and network coding. Springer Science &

Business Media.
Zafar, M. B., I. Valera, M. G. Rogriguez, and K. P. Gummadi. (2017). “Fairness

constraints: Mechanisms for fair classification”. In: Artificial Intelligence and
Statistics. PMLR. 962–970.

Zhang, Q., V. Y. Tan, and C. Suh. (2021). “Community detection and matrix
completion with social and item similarity graphs”. IEEE Transactions on Signal
Processing. 69: 917–931.

Ziv, J. and A. Lempel. (1977). “A universal algorithm for sequential data compres-
sion”. IEEE Transactions on information theory. 23(3): 337–343.

Ziv, J. and A. Lempel. (1978). “Compression of individual sequences via variable-
rate coding”. IEEE transactions on Information Theory. 24(5): 530–536.

Index

ε-typical sequences, 84, 85
1st industrial revolution, 384
2nd industrial revolution, 384
2nd-order condition of convexity, 290
3rd industrial revolution, 384
4th industrial revolution, 385
a posteriori probability, 109
accuracy, 286
achievability proof, x, 95, 168, 176, 178,

213, 247
achievable rate, 95, 109
activation, 269
active approach, 388
Adam optimizer, 279, 283, 291, 295, 309,

313, 343
additive channel, 138
adjacency matrix, 190, 223
AI, viii
Alfréd Rényi, 202
algorithm, 264, 288
AlphaGo, 266
alternating gradient descent, x, 308, 324,

325, 342
APIs, 375
Arthur Lee Samuel, 265
artificial intelligence, viii, 266, 288

asymptotic equipartition property, ix
bad channel, 149
batch, 286, 309
Batch Normalization, 307, 310, 317
BEC, 94, 97, 132, 138, 141, 149, 159, 165
Bernoulli random variable, 29
Bernoulli random variables, 113, 167
betas, 286
bias correction, 291
biased historical records, 330
big data, 171
big data era, 235
binary asymmetric channel, 113
binary classification, 282
binary code tree, 8, 47, 160
binary cross entropy, 333
binary cross entropy loss, 314, 342
binary erasure channel, 28, 113
binary erasure channels (BECs), x
binary sensitive attribute, 351
binary symmetric channel, 102, 109, 160
binary symmetric channels (BSCs), x
binary tree class, 78, 160
binary-input channel, 156
binary-input memoryless channels, 160
BinaryCrossentropy(), 314

396

Index 397

binomial theorem, 216, 222
biological networks, viii, 170, 349
bits, 5
BN, 310
bounded martingale, 157
bounded martingale theorem, 155, 157
Bradley-Terry-Luce (BTL), 238
Breath First Search (BFS), 81
BSC, 102, 104, 110, 132, 141
BTL model, 238, 242, 261
bubble sorting, 235
Caffe, 375
capacity, 126
capacity-achieving code, 147
capacity-achieving deterministic code, 141
cardinality bound, 23, 121
cascade channel, 136
cell, 358
chain rule, 17, 35, 164
channel, 1, 2, 93
channel capacity, 28, 95, 109, 132, 135,

141, 264, 349
channel coding, 91
channel coding theorem, 7, 95, 125, 140,

168, 264, 349
channel encoder, 6
channel output feedback, 128, 135
channel splitting, 150, 159
Chebychev inequality, 84
Chernoff bound, 110, 111, 215, 221, 349
Chernoff information, 231
chromosome, 205
class, 360
classifier, 347, 355
classifier loss, 343, 347
Claude E. Shannon, 3
clustering, 170
code, 3
codebook, 98, 177
codeword, 7, 98, 177

command mode, 359
common currency, 3
communication, 1, 239
community detection, viii, 169, 170, 204,

239, 349
community detection limit, 189
community membership, 171, 176
community membership vector, 190
community recovery, 169
comparison graph, 238, 250
COMPAS, 344
compatible, 101, 105, 178
composite channel, 134
computational biology, viii, 163, 199, 349
concave, 262, 308, 322
concavity, 16, 262
conditional entropy, 17, 35, 38
conditional mutual information, 350
constraints, 267
convergence almost surely, 157
convergence in probability, 64, 84
convergence w.p. 1, 158
converse for community detection, 203
converse proof, x, 95, 123, 168, 184, 217
convex, 308, 322
convex function, 50
convex functions, 275
convex optimization, 53, 60, 275
convexity, 275
coordinate-wise MLE, 227, 245, 248, 255
coupon collector problem, 202
cross entropy, x, 274, 288, 289, 293, 326,

349
cross entropy loss, 274, 279, 286
crossover probability, 109, 110, 132
data, 265
data processing inequality, x, 120, 133,

136, 168, 201, 349
data rate, 94
data science, viii, 169

398 Index

data science applications, 176
data structure, 235
decoder, 5
deep learning, ix, 163, 264, 349, 385
deep neural network, 279, 280
density estimation, 297
Depth First Search (DFS), 81
detailed balance equation, 243
deterministic codes, 111
DI, 333, 344, 348, 351, 355
digit classifier, 292
digital communication, viii
digital interface, 6
disconnected graph, 184
discrete memoryless channel, 128, 132,

133, 138, 140
discrete memoryless channels, x, 115
discriminator, 301, 302, 316, 347, 351,

355
discriminator loss, 315, 343, 348
disparate impact, 350
disparate impact (DI), 328, 341
disparate treatment, 350
disparate treatment (DT), 327, 341
distinguishable positions, 179, 214, 219
divergence measure, 298
DL4J, 375
DMC, 115, 128, 133, 138, 139
DMC with feedback, 138
DNA sequencing, viii, 169, 170, 205
DNN, 281, 295, 375
DPI, 121
DSP, 141
edit mode, 358
eigenvalue decomposition, 194
empirical distributions, 298
encoder, 4
entropy, ix, 7, 11, 163, 168, 264, 348, 384
entropy rate, ix, 69, 88, 90, 126
EO, 350

epoch, 286
Equalized Odds (EO), 350
erasure channel, 137, 173, 239
erasure probability, 149, 173
Erdős-Rényi random graph, 202
Erdal Arikan, 141
Euler-Maclaurin formula, 203
examples, 288
existence of an optimal deterministic code,

109
explicit construction, 147
Facebook, 171
fair classifier, x, 169, 332, 339
fair machine learning, x, 169, 326
fair machine learning algorithms, 349
fairness, 264, 326
fake data, 297
Fano’s inequality, x, 120, 133, 136, 168,

184, 201, 349
features, 265
feedback, 128, 135
feedback capacity, 129
flipping error rate, 224
Frank Rosenblatt, 268
function optimization, 300, 318
fundamental limits, x
fundamentals, 384
GAN, 38, 316, 343, 349
GAN optimization, 303, 314, 316, 326
GAN trick, 333
GANs, 169, 287, 296, 300, 307, 326, 339
Gaussian distribution, 297
generalized Chernoff bound, 232
generalized Markov process, 87
Generative Adversarial Networks, 316
Generative Adversarial Networks

(GANs), x
generative modeling, 295, 300
generator, 297, 302, 316, 351
generator loss, 309, 343, 347

Index 399

Geoffrey Hinton, 281
geometric series, 182
good channel, 149
gradient ascent, 254, 264
gradient descent, x, 264, 277, 290
graph connectivity, 184, 202, 217
graph disconnectivity, 184, 202
Hamming distance, 106, 110, 213, 214,

218
handwritten digit classifier, 280, 292
Haplotype, 205
Haplotype phasing, x, 199, 205, 239, 349
Hessian, 276, 290
heterozygous, 207
hidden layer, 279
homozygous, 207
Huffman algorithm, 76
Huffman code, ix, 71, 73, 89, 168
Ian Goodfellow, 296
ImageNet, 281
impossible communication, 92
impossible detection, 174
incompatible, 101, 185, 214
independent and identically distributed

(i.i.d.), 7
inference problem, 99, 114, 120, 204
inference problems, 169, 239
information source, 7
information theory, viii, 1, 264, 348, 385
information-theoretic notions, 163, 168
inner optimization, 309
instantaneous code, 45
integer programming, 72
inter-SNP distance, 208
itertools, 362, 363
Jacob Bernoulli, 29
Jensen’s inequality, 15, 33, 290
Jensen-Shannon divergence, 37, 305
joint entropy, ix, 16, 34
joint source-channel decoder, 126

joint source-channel encoder, 126
joint typicality decoding, 168
jointly typical sequence, x, 112, 113, 132
Jupyter notebook, 2, 356
Keras, ix, 280
Keras basics, 375
keras.datasets, 376
keras.layers, 375
keras.models, 375
Kernel, 358
KKT conditions, 54, 338
KL divergence, 26, 36, 55, 110, 163, 168,

169, 210, 260, 262, 264, 287, 288,
300, 305, 326, 348, 350, 384

Kraft’s inequality, ix, 49, 59
Kullback-Leibler (KL) divergence, ix
label, 265
Lagrange function, 53
Lagrange multiplier, 53
Lagrange multiplier method, 53, 61
large deviation theory, 288
large-scale ranking, 236
Law of Large Numbers (LLN), 29
LDPC code, 140
learning rate, 284
Lempel-Ziv code, 81
linear algebra, 385
List, 360
list, 19
local refinement, 226, 245, 253, 262
locally disconnected nodes, 219
log-likelihood function, 249
logistic activation, 279, 310, 311, 319,

346, 351
logistic function, 271
logistic regression, x, 270, 281
loss function, 169, 267
Low Density Parity Check code, 140
lower bound of mutual information,

319

400 Index

machine learning, ix, 163, 260, 264, 288,
349, 385

machine learning models, 169
MAP decoder, 99, 109, 114
MAP decoding, 111, 349
MAP rule, 177
Markov chain, 88, 122, 136, 243
Markov process, 121
Markov’s inequality, 84
martingale, 157
mate-pair read, 208
mate-pair reads, 208
math, 362
mathematics, 385
matplotlib.pyplot, 370
matplotlib.rc, 162
matrix completion, 169
maximum a posteriori probability (MAP)

decoding, x
maximum compression rate, 264
Maximum Likelihood (ML) decoder, 100
maximum likelihood (ML) decoding, x,

176
Maximum Likelihood decoding, 110
maximum likelihood decoding, 349
maximum likelihood estimator (MLE),

226
maximum likelihood principle, 273
Mean Square Error (MSE), 243
memoryless channel, 98
memoryless channel property, 124
memoryless property, 115, 128, 143
merge sorting, 235
Meta’s social network, 170
Meta’s social networks, 176, 192
MI-based fair classifier, 339, 351
minimal achievable region, 240
minimax theorem, 322, 323
minimum sample complexity, 174, 176,

201, 247, 262

ML decoder, 100, 106, 111, 177, 178, 222
ML decoding, 111, 168, 178, 189, 232
MLD, 110
MMSE, 245
MNIST dataset, 280, 292, 376
momentum, 284
momentum optimizer, 290
MSE performance, 248
multi-class classifiers, 288
multi-perceptron, 288
mutual information, ix, 23, 36, 163, 168,

260, 264, 287, 300, 305, 326, 331,
335, 348, 384

mxnet, 375
natural logarithm, 210
neural networks, 268
neurons, 268
noise flipping error rate, 227
non-concave, 342
non-convex, 342
non-convex optimization, 50
non-singular, 43
non-singularity, 42
numpy, 362, 364
numpy.arange, 257
numpy.array, 19, 364
numpy.concatenate, 249, 351
numpy.fft, 366
numpy.linalg, 366
numpy.ones_like, 294
numpy.random(), 365
numpy.random.binomial, 251, 252, 258,

346, 351
numpy.random.normal, 351
numpy.random.permutation, 351
numpy.random.randn, 251
numpy.random.uniform, 249
numpy.sign, 196
objective function, 267
observation probability, 173, 239

Index 401

one-hot-encoded vector, 289
optimal decoder, 114, 135, 138, 176, 204,

218
optimal decoding principle, 109
optimal loss function, 273, 293
optimal ML decoder, 212
optimization, 266, 385
optimization variable, 267
outlier, 246
package, 360
PageRank, x, 237, 242
PageRank variant, 243, 245, 247, 248,

255, 262
pairwise comparisons, 217, 235, 261
pairwise measurements, 172, 177
pandas, 377
parameters, 268
passive approach, 387
Paul Erdős, 202
Pearson correlation, 196, 226
Perceptron, 268, 279, 295
phase transition, 95, 163, 168, 169, 172,

174, 199, 348
phase transitions, 230, 384
plt.scatter, 353
polar code, x, 140, 164
polarization, 140, 142, 158
polarization in B-DMC, 166
polarization in BEC, 165
polarization in BSC, 166
positive semi-definite, 290
positive semi-definite (PSD), 276
positive semi-definite matrix, 290
possible communication, 92, 109
possible detection, 174
power method, 190, 192, 224, 245
prediction accuracy, 329
prefix-free codes, ix, 44, 59, 168
principal eigenvector, 190
probability, 1, 385

probability mass function, 7
probability of error, 94, 99, 102, 111, 114,

117, 173, 176, 213, 240, 242
probability theory, 158
probability transition probability, 138
programming skills, 385
Python, ix, 18, 29, 78, 160, 166, 167, 190,

194, 196, 203, 223, 224, 248, 249,
255, 290, 355, 385

Python basics, 356
Pytorch, 375
quantum channel, 137
quick sorting, 235
random, 362
random code, 109, 132, 141
random coding, x, 140, 168
random process, 41
random processes, 1
rank aggregation, 235
ranking, viii, 10, 163, 169
ranking systems, 349
reads, 208
receiver, 1
recidivism, 326
recidivism prediction, 344
recidivism predictor, x, 333
recidivism score, 352
recidivism score predictor, 327
recommender systems, 169
recursive algorithm, 76
regularization, 331
reliable communication, 109, 126, 131
reliable community detection, 172, 184,

200
reliable ranking, 235
reliable top-K ranking, 262
ReLU, 281, 295, 310, 319
ReLU activation, 279, 292, 310, 379
resizing, 367
reverse Chernoff bound, 231

402 Index

Robert Fano, 70
Robert G. Gallager, 140
sample complexity, 173, 176, 200, 240
scipy, 362, 368
scipy.special, 369
scipy.special.rel_entr, 31
scipy.stats, 196, 368
scipy.stats.bernoulli, 194, 252, 258
scipy.stats.entropy, 19
scipy.stats.pearsonr, 196
seaborn, 371
search engine, viii
search engines, 349
sensitive attributes, 329
separation approach, 124
separation communication architecture,

139
separation score, 240
Sequential, 285
Set, 361
SGD, 347
Shannon code, 73
Shannon-Fano code, 73
sharp threshold, 172
shortcuts, 359
shotgun sequencing, 208
sigmoid function, 271
Single Nucleotide Polymorphisms (SNPs),

205
SNPs, 205
social AI, viii
social networks, viii, 163, 169, 170, 349
softmax, 289, 295
softmax activation, 279, 282, 288, 292,

379
softmax function, 339
sorting, 235
source coding, 91
source coding theorem, ix, 7, 68, 125, 168,

264, 348

source encoder, 5
source-channel separation theorem, 131,

133, 134, 140, 168
spectral algorithm, x, 190, 191, 194, 223,

248
stationary distribution, 244, 248
stationary point, 304, 335
stationary process, 69, 87
step, 286
Stochastic Gradient Descent (SGD), 347
suboptimal decoder, 116
successive cancellation decoding, 145
sufficient statistic, 209, 234
supervised learning, viii, 169, 264, 288,

293, 326, 349
symbol, 7, 41
synapses, 269
tanh function, 281
TensorFlow, ix, 264, 278–280, 284, 292,

295, 307, 311, 313, 319, 341, 351,
385

TensorFlow basics, 375
tensorflow.keras.datasets, 285, 292, 319
tensorflow.keras.layers, 285, 312, 319, 353,

378
tensorflow.keras.losses, 314, 347, 354
tensorflow.keras.models, 285, 312, 319,

353, 378
tensorflow.keras.optimizers, 321, 354
tensorflow.random.normal, 314, 320, 321
test accuracy, 293, 355
test dataset, 279
testing, 279
top-K partitioning, 261
top-K ranking, x, 235, 237, 260, 261, 349
total probability law, 25, 149, 188, 215,

221, 306, 336
tower property, 159, 164
training instability, 323
transition probability, 243

Index 403

transition probability matrix, 244, 248
transmitter, 1
two-player game, 302, 316
two-stage architecture, 5, 91, 125, 134
typical event, 188
typical sequences, ix, 64, 84, 107, 116,

132, 168
typical set, 89, 108
unfair dataset, 341
unfair dataset synthesis, 351
uniform distribution, 297
union bound, x, 103, 107, 118, 168, 179,

214, 349

unique decodability, 43, 59
universal code, 82
unseen dataset, 279
unsupervised learning, viii, 169, 264, 295,

326
virtual subchannels, 150
Weak Law of Large Numbers,

63, 84
web search, 236
weights, 268
WLLN, 63, 84, 85, 87, 88, 104, 107, 117,

173, 186, 215, 240, 243, 344
Yann LeCun, 280

About the Author

Dr. Changho Suh is an Associate Professor of Electrical
Engineering at KAIST. He received the B.S. and M.S.
degrees in Electrical Engineering from KAIST in 2000
and 2002 respectively, and the Ph.D. degree in Electrical
Engineering and Computer Sciences from UC Berkeley
in 2011. From 2011 to 2012, he was a postdoctoral asso-
ciate at the Research Laboratory of Electronics in MIT.
From 2002 to 2006, he was with Samsung Electronics.

Prof. Suh is a recipient of numerous awards in
research and teaching: the 2022 Google Research Award, the 2021 James L. Massey
Research & Teaching Award for Young Scholars from the IEEE Information Theory
Society, the 2020 LINKGENESIS Best Teacher Award (the campus-wide Grand
Prize in Teaching), the 2019 AFOSR Grant, the 2019 Google Education Grant,
the 2018 IEIE/IEEE Joint Award, the 2015 IEIE Haedong Young Engineer Award,
the 2015 Bell Labs Prize finalist, the 2013 IEEE Communications Society Stephen
O. Rice Prize, the 2011 David J. Sakrison Memorial Prize (the best dissertation
award in UC Berkeley EECS), the 2009 IEEE ISIT Best Student Paper Award, and
the five Department Teaching Awards (2013, 2019, 2020, 2021, 2022). Dr. Suh
is an IEEE Fellow, a Distinguished Lecturer of the IEEE Information Theory
Society from 2020 to 2022, the General Chair of the Inaugural IEEE East Asian
School of Information Theory 2021, an Associate Head of the KAIST AI Insti-
tute from 2021 to 2022, and a Member of the Young Korean Academy of Sci-
ence and Technology. He is also an Associate Editor of Machine Learning for IEEE
TRANSACTIONS ON INFORMATION THEORY, a Guest Editor for the IEEE

404

About the Author 405

JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, the Editor
for IEEE INFORMATION THEORY NEWSLETTER, an Area Editor for IEEE
BITS the Information Theory Magazine, an Area Chair of NeurIPS 2021–2022
and a Senior Program Committee of IJCAI 2019–2021.

	Copyright
	Acknowledgement
	Preface
	Chapter 1 Source Coding
	1.1 Overview of the Book
	1.2 Entropy and Python Exercise
	1.3 Mutual Information, KL Divergence and Python Exercise
	Problem Set 1
	1.4 Source Coding Theorem for i.i.d. Sources (1/3)
	1.5 Source Coding Theorem for i.i.d. Sources (2/3)
	1.6 Source Coding Theorem for i.i.d. Sources (3/3)
	Problem Set 2
	1.7 Source Code Design
	1.8 Source Coding Theorem for General Sources
	1.9 Huffman Code and Python Implementation
	Problem Set 3

	Chapter 2 Channel Coding
	2.1 Statement of Channel Coding Theorem
	2.2 Achievability Proof for the Binary Erasure Channel
	2.3 Achievability Proof for the Binary Symmetric Channel
	Problem Set 4
	2.4 Achievability Proof for Discrete Memoryless Channels
	2.5 Converse Proof for Discrete Memoryless Channels
	2.6 Source-Channel Separation Theorem and Feedback
	Problem Set 5
	2.7 Polar Code: Polarization
	2.8 Polar Code: Implementation of Polarization
	2.9 Polar Code: Proof of Polarization and Python Simulation
	Problem Set 6

	Chapter 3 Data Science Applications
	3.1 Social Networks: Fundamental Limits
	3.2 Social Networks: Achievability Proof
	3.3 Social Networks: Converse Proof
	3.4 An Efficient Algorithm and Python Implementation
	Problem Set 7
	3.5 DNA Sequencing: Fundamental Limits
	3.6 DNA Sequencing: Achievability Proof
	3.7 DNA Sequencing: Converse Proof
	3.8 DNA Sequencing: Algorithm and Python Implementation
	Problem Set 8
	3.9 Top-K Ranking: Fundamental Limits
	3.10 Top-K Ranking: An Efficient Algorithm
	3.11 Top-K Ranking: Python Implementation
	Problem Set 9
	3.12 Supervised Learning: Connection with Information Theory
	3.13 Supervised Learning: Logistic Regression and Cross Entropy
	3.14 Supervised Learning: TensorFlow Implementation
	Problem Set 10
	3.15 Unsupervised Learning: Generative Modeling
	3.16 Generative Adversarial Networks (GANs) and KL Divergence
	3.17 GANs: TensorFlow Implementation
	Problem Set 11
	3.18 Fair Machine Learning and Mutual Information (1/2)
	3.19 Fair Machine Learning and Mutual Information (2/2)
	3.20 Fair Machine Learning: TensorFlow Implementation
	Problem Set 12

	Chapter A Python Basics
	A.1 Jupyter Notebook
	A.2 Basic Syntaxes of Python
	A.2.1 Data structure
	A.2.2 Package
	A.2.3 Visualization

	Chapter B TensorFlow and Keras Basics
	Chapter C A Special Note on Research
	C.1 Power of Fundamentals
	C.2 How to Read Papers?

	References
	Index
	About the Author

