


Advancing Edge Artificial Intelligence 
System Contexts 



RIVER PUBLISHERS SERIES IN COMMUNICATIONS 
AND NETWORKING 

Series Editors: 

ABBAS JAMALIPOUR 
The University of Sydney, Australia 

MARINA RUGGIERI 
University of Rome Tor Vergata, Italy 

The “River Publishers Series in Communications and Networking” is a 
series of comprehensive academic and professional books which focus on 
communication and network systems. Topics range from the theory and use 
of systems involving all terminals, computers, and information processors 
to wired and wireless networks and network layouts, protocols, architec­
tures, and implementations. Also covered are developments stemming from 
new market demands in systems, products, and technologies such as per­
sonal communications services, multimedia systems, enterprise networks, 
and optical communications. 

The series includes research monographs, edited volumes, handbooks 
and textbooks, providing professionals, researchers, educators, and advanced 
students in the field with an invaluable insight into the latest research and 
developments. 

Topics included in this series include: 

• Communication theory 
• Multimedia systems 
• Network architecture 
• Optical communications 
• Personal communication services 
• Telecoms networks 
• Wi-Fi network protocols 

For a list of other books in this series, visit www.riverpublishers.com
 

http://www.riverpublishers.com


Advancing Edge Artificial Intelligence 
System Contexts 

Editors 

Ovidiu Vermesan 
SINTEF, Norway 

Dave Marples 
Technolution B.V., The Netherlands 

River Publishers 



Published 2024 by River Publishers 
River Publishers
 

Alsbjergvej 10, 9260 Gistrup, Denmark
 
www.riverpublishers.com
 

Distributed exclusively by Routledge 
4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN 

605 Third Avenue, New York, NY 10017, USA 

Advancing Edge Artificial Intelligence / by Ovidiu Vermesan, Dave Marples. 

ISBN: 978-87-7004-102-7 (hardback) 

978-10-4002-704-2 (online)

978-10-0347-871-3 (master ebook)

DOI: 10.1201/9788770041027 

© Ovidiu Vermesan, Dave Marples, 2024. This book is published open access. 

Open Access 
This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 
International License, CC-BY-NC 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits use, 
duplication, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons 
license and any changes made are indicated. The images or other third party material in this book are 
included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such 
material is not included in the work’s Creative Commons license and the respective action is not permitted 
by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt, 
or reproduce the material. 

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 

The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, express or implied, with respect to the material contained herein or for any errors 
or omissions that may have been made. 

 

http://www.creativecommons.org
http://www.riverpublishers.com
https://www.dx.doi.org/10.1201/9788770041027


Dedication 
“The test of a first-rate intelligence is the ability to hold two opposed ideas in 
the mind at the same time and still retain the ability to function.” 

- F. Scott Fitzgerald 

“The world needs dreamers, and the world needs doers. But above all, what 
the world needs most are dreamers that do.” 

- Sarah Ban Breathnach 

“The real question is, when will we draft an artificial intelligence bill of 
rights? What will that consist of? And who will get to decide that?” 

- Gray Scott 

“The greatest masterpiece in literature is only a dictionary out of order.” 
- Jean Cocteau 

“There’s a way to do it better. Find it.” 
- Thomas Edison 

Acknowledgement 
The editors would like to thank all the contributors for their support in the 
planning and preparation of this book. The recommendations and opinions 
expressed in the book are those of the editors, authors, and contributors 
and do not necessarily represent those of any organizations, employers, or 
companies. 

Ovidiu Vermesan 
Dave Marples 



https://www.taylorandfrancis.com


Contents
 

Contents	 vii
 

Preface	 xiii
 

List of Figures	 xv
 

List of Tables	 xix
 

List of Contributors	 xxi 

List of Abbreviations	 xxiii 

1	 Edge AI LoRa Mesh Technologies 1
 
Ovidiu Vermesan, Kai vorm Walde, Roy Bahr, Cordula Conrady,
 
Janis Judvaitis, Gatis Gaigals, Tore Karlsen, Marcello Coppola,
 
and Hans-Erik Sand
 
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .  2 
  
1.2 Overview of the State-of-the-Art Wireless Mesh Technologies 5
 

1.2.1	 Mesh components and roles . . . . . . . . . . . . .  6 
  
1.2.2	 Wireless routing concepts . . . . . . . . . . . . . .  7 
  

1.3 Routing protocols . . . . . . . . . . . . . . . . . . . . . . .  8 
  
1.3.1	 Ad hoc on-demand distance vector (AODV) . . . . .  9 
  
1.3.2	 Optimized link state routing (OLSR) . . . . . . . . .  10 
  
1.3.3	 Dynamic source routing (DSR) . . . . . . . . . . .  11 
  
1.3.4	 Routing protocol for low-power and lossy networks
 

(RPL) . . . . . . . . . . . . . . . . . . . . . . . . .  12 
  
1.3.5	 Wireless mesh protocols . . . . . . . . . . . . . . .  13 
  

1.3.5.1 B.A.T.M.A.N . . . . . . . . . . . . . . .  13 
  
1.3.5.2 Bluetooth Low Energy . . . . . . . . . . .  14 
  
1.3.5.3 OpenThread and Thread . . . . . . . . . .  15 
  
1.3.5.4 ZigBee . . . . . . . . . . . . . . . . . . .  15 
  

vii 



viii Contents 

1.3.5.5 Wi-Fi . . . . . . . . . . . . . . . . . . . .  16 
  
1.3.5.6 Wi-SUN . . . . . . . . . . . . . . . . . .  18 
  
1.3.5.7 WirelessHART . . . . . . . . . . . . . . .  18 
  
1.3.5.8 Z-WAVE . . . . . . . . . . . . . . . . . .  20 
  
1.3.5.9 6LoWPAN . . . . . . . . . . . . . . . . .  21 
  

1.4 LoRa and LoRaWAN Technology . . . . . . . . . . . . . .  22 
  
1.4.1 LoRa physical layer . . . . . . . . . . . . . . . . .  22 
  
1.4.2 LoRaWAN protocol . . . . . . . . . . . . . . . . .  24 
  
1.4.3 2.4 GHz LoRa . . . . . . . . . . . . . . . . . . . .  26 
  

1.5 LoRa Mesh and Enabling AI Technologies . . . . . . . . . .  27 
  
1.6 Applications for LoRa Mesh . . . . . . . . . . . . . . . . .  28 
  
1.7 Conceptual Edge AI and LoRa Mesh Device Architecture . . 28
 

1.7.1 Sensor and interfaces . . . . . . . . . . . . . . . . .  29 
  
1.7.2 AI accelerators . . . . . . . . . . . . . . . . . . . .  29 
  
1.7.3 2.4 GHz LoRa and Bluetooth radios . . . . . . . . .  30 
  
1.7.4 Microcontrollers and microprocessors . . . . . . . .  30 
  
1.7.5 Peripheral driver . . . . . . . . . . . . . . . . . . .  30 
  
1.7.6 Operating systems . . . . . . . . . . . . . . . . . .  31 
  
1.7.7 Sensor models . . . . . . . . . . . . . . . . . . . .  31 
  
1.7.8 AI learning and inference . . . . . . . . . . . . . . .  31 
  
1.7.9 2.4 GHz LoRa Mesh Protocol Stack . . . . . . . . .  32 
  
1.7.10 AI applications and services . . . . . . . . . . . . .  32 
  

1.8 Challenges and Future Research Directions . . . . . . . . .  32 
  
1.9 Discussion and Conclusions . . . . . . . . . . . . . . . . .  35 
  

2	 Edge AI Lifecycle Management 43
 
Dinu Purice, Francesco Barchi, Thorsten Röder, and Claus Lenz 
2.1 Introduction and Background . . . . . . . . . . . . . . . . .  43 
  
2.2 Pre-development . . . . . . . . . . . . . . . . . . . . . . .  46 
  
2.3 Development . . . . . . . . . . . . . . . . . . . . . . . . .  49 
  
2.4 Production . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 
  
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
  

3	 Federated Learning: Privacy, Security and Hardware
 
Perspectives 65
 
Taha Yassine Abidi, Iyad Dayoub, Elhadj Doguech,
 
and Ihsen Alouani
 
3.1 Introduction and Background . . . . . . . . . . . . . . . . .  66 
  
3.2 Federated Learning Overview . . . . . . . . . . . . . . . .  67 
  



Contents ix
 

3.2.1 Horizontal Federated Learning . . . . . . . . . . . .  68 
  
3.2.2 Vertical Federated Learning . . . . . . . . . . . . .  68 
  
3.2.3 Federated Transfer Learning . . . . . . . . . . . . .  69 
  

3.3 Challenges and Limitations of Federated Learning . . . . . .  69 
  
3.3.1 Security challenge . . . . . . . . . . . . . . . . . .  69 
  

3.3.1.1 Malicious Clients . . . . . . . . . . . . .  70 
  
3.3.1.2 Mitigating client-based attacks . . . . . .  71 
  
3.3.1.3 Malicious Server attacks and mitigations . 73
 

3.3.2 Privacy challenge . . . . . . . . . . . . . . . . . . .  74 
  
3.3.2.1 Client privacy attacks . . . . . . . . . . .  75 
  
3.3.2.2 Mitigating client-based attacks . . . . . .  76 
  
3.3.2.3 Server based privacy attacks . . . . . . . .  77 
  

3.3.3 Hardware constraint and opportunities . . . . . . . .  79 
  
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .  82 
  

4	 Inside the AI Accelerators: From High Performance to Energy
 
Efficiency 87
 
Ana Pinzari, Adrien Prost-Boucle, Christelle Rabache,
 
and Frédéric Pétrot
 
4.1 Introduction and Background . . . . . . . . . . . . . . . . .  87 
  
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . .  89 
  
4.3 Classification Model . . . . . . . . . . . . . . . . . . . . .  90 
  
4.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . .  91 
  
4.5 Experiments and Results . . . . . . . . . . . . . . . . . . .  93 
  

4.5.1 Time and power consumption . . . . . . . . . . . .  94 
  
4.5.1.1 Google Coral Board . . . . . . . . . . . .  95 
  
4.5.1.2 STM32MP1 Board . . . . . . . . . . . .  96 
  
4.5.1.3 NVIDIA Jetson . . . . . . . . . . . . . .  96 
  

4.5.2 FPGA . . . . . . . . . . . . . . . . . . . . . . . . .  97 
  
4.5.2.1 QKeras Library . . . . . . . . . . . . . .  97 
  
4.5.2.2 Quantized model and Experimental Setup 99
 

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .  100 
  

5	 Designing Lightweight CNN for Images: Architectural
 
Components and Techniques 105
 
Lilian Hollard, Lucas Mohimont, and Luiz Angelo Steffenel 
5.1 Introduction and Background . . . . . . . . . . . . . . . . .  106 
  
5.2 CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 
  

5.2.1 The pioneers . . . . . . . . . . . . . . . . . . . . .  108 
  



x	 Contents 

5.2.2	 YOLO, first step towards fast object detectors . . . .  109 
  
5.2.3	 Convolutional Neural Network architecture
 

improvements . . . . . . . . . . . . . . . . . . . . .  111 
  
5.2.4	 Tackling memory consumption . . . . . . . . . . . .  113 
  
5.2.5	 Structural re-parameterization . . . . . . . . . . . .  113 
  

5.3 Transformers for EdgeAI . . . . . . . . . . . . . . . . . . .  116 
  
5.3.1	 Hybrid transformers . . . . . . . . . . . . . . . . .  116 
  

5.4 ConvNeXts . . . . . . . . . . . . . . . . . . . . . . . . . .  119 
  
5.5 Neural Architecture Search . . . . . . . . . . . . . . . . . .  120 
  

5.5.1	 NAS scale study . . . . . . . . . . . . . . . . . . .  121 
  
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
  

6	 Natural Language Conditioned Planning of Complex Robotics
 
Tasks 131
 
Toms Eduards Zinars, Oskars Vismanis, Peteris Racinskis,
 
Janis Arents, and Modris Greitans
 
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .  131 
  
6.2 Natural Language Processing for Robotics . . . . . . . . . .  133 
  

6.2.1	 Large language models . . . . . . . . . . . . . . . .  133 
  
6.2.2	 Multi-modal embeddings . . . . . . . . . . . . . . .  134 
  
6.2.3	 Recent implementations of high-level planning for
 

mobile manipulation . . . . . . . . . . . . . . . . .  135 
  
6.3 Action Primitives for Mobile Manipulation . . . . . . . . .  139 
  

6.3.1	 Methods for creating primitives . . . . . . . . . . .  140 
  
6.3.2	 Action primitive implementations . . . . . . . . . .  141 
  

6.4 Identified Challenges . . . . . . . . . . . . . . . . . . . . .  142 
  
6.5 Conceptual Architecture . . . . . . . . . . . . . . . . . . .  143 
  
6.6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . .  145 
  

7	 An Overview of the Automated Optical Inspection Edge AI
 
Inference System Solutions 153
 
Claudio Cantone and Alberto Faro 
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .  154 
  
7.2 Overview of the Main Edge AI Solutions for AOI . . . . . .  155 
  
7.3 Comparing EdgeAI solutions for AOI . . . . . . . . . . . .  159 
  

7.3.1	 Comparison using KPIs . . . . . . . . . . . . . . .  159 
  
7.3.2	 Comparison using NFRs . . . . . . . . . . . . . . .  167 
  
7.3.3	 Comparison using functional requirements . . . . .  169 
  



Contents xi
 

7.3.4	 Advantages of ES with respect to the other
 
approaches . . . . . . . . . . . . . . . . . . . . . .  169 
  

7.4	 Edge AI Solutions Demonstrator . . . . . . . . . . . . . . .  170 
  
7.5	 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .  171 
  

8	 Efficient AI-based Attack Detection Methods for Sensitive
 
Edge Devices and Systems 177
 
Daniel Hirsch, Falk Hoffmann, Andrija Neskovic,
 
Celine Thermann, Rainer Buchty, Mladen Berekovic,
 
and Saleh Mulhem
 
8.1	 Introduction and Background . . . . . . . . . . . . . . . . .  178 
  
8.2	 Efficient Attack Detection . . . . . . . . . . . . . . . . . .  183 
  

8.2.1	 Requirements . . . . . . . . . . . . . . . . . . . . .  183 
  
8.2.2	 Underlying Dataset . . . . . . . . . . . . . . . . . .  185 
  
8.2.3	 State-of- the-Art Attack Detection Methods . . . . .  185 
  
8.2.4	 Selection of Applicable Algorithms . . . . . . . . .  188 
  

8.3	 Discussion and Conclusion . . . . . . . . . . . . . . . . . .  189 
  

9	 Explainability and Interpretability Concepts for Edge AI
 
Systems 197
 
Ovidiu Vermesan, Vincenzo Piuri, Fabio Scotti, Angelo Genovese,
 
Ruggero Donida Labati, and Pasquale Coscia
 
9.1	 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .  198 
  
9.2	 AI Explainability and Interpretability Goals . . . . . . . . .  202 
  
9.3	 AI Explainability and Interpretability Methods
 

and Techniques . . . . . . . . . . . . . . . . . . . . . . . .  204 
  
9.4	 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . .  211 
  
9.5	 Edge AI Explainability and Interpretability . . . . . . . . .  213 
  
9.6	 Challenges and Open Issues . . . . . . . . . . . . . . . . .  214 
  
9.7	 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . .  216 
  

Index	 229
 

About the Editors	 231
 



https://www.taylorandfrancis.com


Preface
 

Taking the Next Steps on the Journey to Intelligent Pervasive
 
Networked Systems
 

Given AI’s astounding progress over the past few years, it is time to posit 
the next question: How do we integrate AI into IoT devices at the edge of the 
network? 

The pre-question should, of course, be why? That is easy to answer: AIs 
are becoming pervasive, but conveying the data they need over networks 
is time-consuming, expensive, and potentially risky. Migrating them to the 
network edge mitigates those issues. 

Edge AI marks a shift from traditional cloud-centric AI models to 
decentralised computing power embedded directly into edge devices. 

Modern high-performance, low-power silicon makes the proposition to 
move these AIs into the devices themselves viable, even though we don’t 
really have too much clarity yet on how that will be done, how the devices 
will be managed, or what the consequences for our networked systems 
architectures will be. In this book, we start the process of addressing those 
uncertainties. 

In the following chapters, we start documenting the journey to address 
these questions, starting with considering the underpinnings of our current 
network technology in Chapter 1 before regarding how we can manage the 
lifecycle of AIs in IoT devices in Chapter 2. Chapters 3, 4 and 5 investigate 
how we might teach these AIs before Chapter 6 introduces how we might 
communicate with them (we can consider screens and keyboards depreciated 
in this brave new world). Chapters 7 and 8 present two example environments 
where such AIs will find application, and Chapter 9 addresses how they can 
explain their actions. 

We don’t have the answers to the big questions yet. If we did, we’d be 
off-creating VC-backed startups somewhere rather than coordinating research 
programs, but we know that we’re at the start of the next chapter of a 
fascinating journey. 

xiii 



xiv Preface 

This book provides valuable insight to researchers working with edge 
AI technologies, machine and deep learning engineers, IoT designers, and 
intelligent systems developers looking to deploy intelligent solutions at the 
edge. 



List of Figures
 

Figure 1.1 Network Topologies . . . . . . . . . . . . . . . . .  2 
Figure 1.2 BLE Mesh Layered Architecture . . . . . . . . . .  14  
Figure 1.3 Wi-Fi Mesh Layered Architecture . . . . . . . . .  17  
Figure 1.4 WirelessHART Protocol Architecture . . . . . . .  19  
Figure 1.5 WirelessHART Mesh Networking . . . . . . . . .  20  
Figure 1.6 LoRaWAN Network Architecture . . . . . . . . . .  25  
Figure 1.7 Edge AI Enabled LoRa Mesh Network . . . . . . .  27  
Figure 1.8 Conceptual Edge AI and LoRa Mesh Device Archi­

tecture . . . . . . . . . . . . . . . . . . . . . . . .  29  
Figure 2.1 AI Lifecycle Stages Overview. . . . . . . . . . . .  46  
Figure 2.2 Overview of hyper-parameter training methodolo­

gies [10] illustrating (a) sequential optimisation; (b) 
parallel optimisation; (c) adaptive optimisation. . . 51 

Figure 2.3 Model Training Overview illustrating (a) training 
during the development stage and (b) training dur­
ing the production stage. . . . . . . . . . . . . . .  59  

Figure 3.1 Client device sends their locally trained model 
updates to server for training the federated model. . 68 

Figure 3.2 Logic diagram of (a) exact Full Adder, (b) Approx­
imate full adder. . . . . . . . . . . . . . . . . . . .  81  

Figure 3.3 Precise and approximate models robustness under 
PGD attack. . . . . . . . . . . . . . . . . . . . . .  81  

Figure 4.1 Workflow to Create a Tflite Model (Int8 And 
Binary16) for Inference on Edge Boards: Google 
Coral Including the Compiled Model for the 
EdgeTPU, STM32MP1 and Jetson. . . . . . . . . .  94  

Figure 4.2 Coral Performance and Power Measurements . . . 95 
Figure 4.3 MP1 Performance and Power Measurements . . . .  96  
Figure 4.4 Jetson Performance and Power Measurements. . . . 96 
Figure 5.1 ResNet architecture [11] . . . . . . . . . . . . . .  109  
Figure 5.2 CSPNet (Identity Block - DenseNet) . . . . . . . .  111  

xv
 



xvi List of Figures 

Figure 5.3 MobileNetv2 block . . . . . . . . . . . . . . . . .  112  
Figure 5.4 MobileViT block [37]. . . . . . . . . . . . . . . .  116  
Figure 5.5 ConvNeXt Block [11] . . . . . . . . . . . . . . . .  119  
Figure 5.6 EfficientNet Scaling [12] . . . . . . . . . . . . . .  122  
Figure 6.1 Proposed Mobile Manipulator Control System . . . 144 
Figure 7.1 a) Printed Circuit Board (PCB) Assembly Process, 

and b) Typical Implementation of the SMT Pro­
duction Line, where production data are taken from 
Printer, Chip Mounter and Reflow, whereas quality 
data are taken from SPI, AOI and AXI. . . . . . . .  155  

Figure 7.2 Main Inspection Machine Configurations for AOI in 
the Digital Industry . . . . . . . . . . . . . . . . .  156  

Figure 7.3 Edge AI AOI solutions from Neousys (a), Advan­
tech (b), and AAEON (c) for Defect Detection (D) 
and Classification (C). The model is Pre-trained on 
the Workstation. . . . . . . . . . . . . . . . . . . .  158  

Figure 7.4 AOI Solution Consisting of an Edge Board for 
Testing and a GPU Server for Learning. . . . . . .  159  

Figure 7.5 Confusion Matrix and Precision/Recall Formulas . 160 
Figure 7.6 Repeating the AOI Check. . . . . . . . . . . . . .  164  
Figure 7.7 a) A Camera Equipped with a Testing Board Which 

Sends the Image of a PCB Slice of about 5 X 25  
cm Using a Telecentric Lens to a Testing Board, 
b) A Set of Five Cameras Equipped with Testing 
Boards. Images Are Sent to a Server to Update the 
Pre-Trained Model. The Server Periodically Sends 
the Updated Model to the Edge Testing Boards. . . 167 

Figure 7.8 An Approximate Comparison of the Purchase Costs 
of CSs and ESs Equipped with one Camera Versus 
the Low Cost 2D Saki AOI (a), and the Purchase 
Costs of CSs and ES Equipped with Five Cam­
eras Seats Versus the Professional 2D/3D OMRON 
AOI (b). . . . . . . . . . . . . . . . . . . . . . . .  168  

Figure 8.1 Architecture of Edge System . . . . . . . . . . . .  178  
Figure 8.2 Possible Attacks against Edge Devices (Adapted 

From [4]) . . . . . . . . . . . . . . . . . . . . . .  180  
Figure 8.3 Correlation of requirements . . . . . . . . . . . . .  183  



List of Figures xvii 

Figure 9.1 AI Interpretability and Explainability vs Perfor­
mance for Common ML Algorithms (Adapted 
from [7]) . . . . . . . . . . . . . . . . . . . . . . .  199  

Figure 9.2 Conceptual Workflow explainable and interpretable 
ML model development . . . . . . . . . . . . . . .  199  

Figure 9.3 Responsibilities Across the AI Value Chain . . . .  201  
Figure 9.4 Data and Model AI Explainability and Interpretabil­

ity Classification . . . . . . . . . . . . . . . . . .  205  
Figure 9.5 AI Explainability and Interpretability Model 

Approach Classification . . . . . . . . . . . . . . .  206  
Figure 9.6 AI Explainability and Interpretability Model-

Agnostic Approach Classification . . . . . . . . . .  207  
Figure 9.7 AI Explainability and Interpretability Model-

Specific Approach Classification . . . . . . . . . .  208  
Figure 9.8 Feature- and Example-based AI Explainability and 

Interpretability Techniques . . . . . . . . . . . . .  210  



https://www.taylorandfrancis.com


List of Tables
 

Table 1.1 Frequency Band Overview . . . . . . . . . . . . . . .  24 
  
Table 1.2 Frequency Band Overview . . . . . . . . . . . . . . .  26 
  
Table 2.1 Types of Learning and corresponding tasks . . . . . .  47 
  
Table 2.2 Techniques to combat overfitting. . . . . . . . . . . .  54 
  
Table 2.3 Compression Techniques . . . . . . . . . . . . . . .  55 
  
Table 2.4 Types of Automation based on the definition by SAE
 

International [21] . . . . . . . . . . . . . . . . . . .  60 
  
Table 4.1 Neural Network Description . . . . . . . . . . . . . .  91 
  
Table 4.2 Inference Accuracy Of The Quantized Model Before
 

(QAT) and After (PTQ) Training . . . . . . . . . . .  93 
  
Table 4.3 Inference Performance and Latency Measurements for
 

Randomly Selected Images. Experiments Done on 
x86 Standalone Server, Google Coral, STM32P1 and 
NVIDIA Jetson Boards. . . . . . . . . . . . . . . . .  95 
  

Table 4.4 QKeras quantization for different precisions . . . . .  98 
  
Table 4.5 FPGA performance and resource utilization . . . . . .  100 
  
Table 4.6 Model perpormance on FPGA . . . . . . . . . . . . .  100 
  
Table 5.1 CNNs based model optimization since AlexNet . . . 112
 
Table 5.2 MCUNet memory optimization compared to MobileNet
 

and MobileNetv2 . . . . . . . . . . . . . . . . . . .  114 
  
Table 5.3 CNNs based model optimization since AlexNet . . . 115
 
Table 5.4 Optimized transformers and hybrid transformers per­

formance by scale . . . . . . . . . . . . . . . . . . .  118 
  
Table 5.5 ConvNeXt compared to hybrid transformers perfor­

mance by scale. . . . . . . . . . . . . . . . . . . . .  120 
  
Table 5.6 Efficient neural network architectures with neural net­

work search . . . . . . . . . . . . . . . . . . . . . .  122 
  

xix
 



https://www.taylorandfrancis.com


List of Contributors
 

Adrien, Prost-Boucle, Institute of Engineering Univ. Grenoble Alpes, France 

Alberto, Faro, Deepsensing, DEEPS, Italy 

Ana, Pinzari, Institute of Engineering Univ. Grenoble Alpes, France 

Andrija, Neskovic, Universität zu Lübeck, Germany 

Angelo, Genovese, Università degli Studi di Milano, Italy 

Celine, Thermann, Universität zu Lübeck, Germany 

Christelle, Rabache, Institute of Engineering Univ. Grenoble Alpes, France 

Claudio, Cantone, High Technology Systems H.T.S. srl, Italy 

Claus, Lenz, Cognition Factory GmbH, Germany 

Cordula, Conrady, IMST GmbH, Germany 

Daniel, Hirsch, NXP Semiconductors, Germany 

Dinu, Purice, Cognition Factory GmbH, Germany 

Elhadj, Doguech, Université Polytechnique Hauts-De-France, France 

Fabio, Scotti, Università degli Studi di Milano, Italy 

Falk, Hoffmann, NXP Semiconductors, Germany 

Francesco, Barchi, Universita di Bologna, Italy 

Frédéric, Pétrot, Institute of Engineering Univ. Grenoble Alpes, France 

Gatis, Gaigals, Institute of Electronics and Computer Science, Latvia 

Hans-Erik, Sand, NXTECH AS, Norway 

Ihsen, Alouani, Université Polytechnique Hauts-De-France, France 

Iyad, Dayoub, Université Polytechnique Hauts-De-France, France 

Janis, Arents, Institute of Electronics and Computer Science, Latvia 

xxi
 



xxii List of Contributors 

Janis, Judvaitis, Institute of Electronics and Computer Science, Latvia 

Kai, vorm Walde, IMST GmbH, Germany 

Lilian, Hollard, Université de Reims Champagne-Ardenne, France 

Lucas, Mohimont, Université de Reims Champagne-Ardenne, France 

Luiz, Angelo Steffenel, Université de Reims Champagne-Ardenne, France 

Marcello, Coppola, STMicroelectronics, France 

Mladen, Berekovic, Universität zu Lübeck, Germany 

Modris, Greitans, Institute of Electronics and Computer Science, Latvia 

Oskars, Vismanis, Institute of Electronics and Computer Science, Latvia 

Ovidiu, Vermesan, SINTEF AS, Norway 

Pasquale, Coscia, Università degli Studi di Milano, Italy 

Peteris, Racinskis, Institute of Electronics and Computer Science, Latvia 

Rainer, Buchty, Universität zu Lübeck, Germany 

Roy, Bahr, SINTEF AS, Norway 

Ruggero, Donida Labati, Università degli Studi di Milano, Italy 

Saleh, Mulhem, Universität zu Lübeck, Germany 

Taha, Yassine Abidi, Université Polytechnique Hauts-De-France, France 

Thorsten, Röder, Cognition Factory GmbH, Germany 

Toms, Eduards Zinars, Institute of Electronics and Computer Science, 
Latvia 

Tore, Karlsen, ProLux AS, Norway 

Vincenzo, Piuri, Università degli Studi di Milano, Italy 



List of Abbreviations
 

AC Approximate Computing 
AES Advanced encryption standard 
AIA Artificial intelligence act 
AI Artificial intelligence 
AOI Automated Optical Inspection 
AODV Ad hoc on-demand distance vector 
ASIC Application-specific integrated circuit 
B.A.T.M.A.N.	 Better approach to mobile ad-hoc networking 

(protocol) 
BLE	 Bluetooth low energy 
BW	 Bandwidth 
CMM	 Coordinate mount metrology 
CNN	 Convolutional neural network 
CPU	 Central processing unit 
CS	 AOI Solution using cloud server receiving 

images from cameras for both learning and 
testing 

CSS	 Chirp spread spectrum 
DAG	 Directed acyclic graph 
DL	 Deep learning 
DLG	 Deep leakage from gradients 
DNN	 Deep neural network 
DnC	 Divide and conquer 
DSR	 Dynamic source routing 
ES	 AOI Solution using testing boards at the edge 

and cloud server receiving images from cameras 
for learning 

FAN Field area network 
FCT Functional test 
FEC Forward error correction 

xxiii
 



xxiv List of Abbreviations 

FL	 Federated learning 
FPGA	 Field programmable gate array 
GAM	 Generalised additive models 
GDPR	 General data protection regulation 
GPU	 Graphical processing unit 
GS	 AOI Solution using GPU workstation receiving 

images from cameras for both learning and 
testing 

GSA	 Global sensitivity analysis 
IoT	 Internet of Things 
ICT	 In circuit test 
IR	 Intermediate representation 
IS	 AOI Solution using inspecting machine close to 

the conveyor belt 
JIT	 Just in time compilation 
Lime	 Local interpretable model-agnostic explanation 
LLN	 Low-power and lossy network 
LoRaWAN	 Long-range wide area network 
LUT	 LookUp table 
M2M	 Machine-to-machine 
MAC	 Multiply accumulate; Medium/media access 

control layer 
MANET	 Mobile ad-hoc network 
MAPLE	 Model agnostic supervised local explanation 
MEMS	 Micro-electromechanical system 
ML	 Machine learning 
MLE	 Mesh link establishment 
MLP	 Multi-layer perceptron 
MPR	 Multi-point relay 
MRI	 Magnetic resonance imaging 
NLP	 Natural language processing 
OGM	 Originator message 
OLSR	 Optimised link state routing 
PCBA	 Printed circuit board assembly, sometimes 

printed circuit board assembler 
PDP	 Partial dependence plot 
PTQ	 Post-training quantization 
QAT	 Quantization aware training 
OTA	 Over-the-air 



List of Abbreviations xxv 

PHY Physical layer 
QoS Quality of service 
RNN Recursive neural network 
RPL Routing protocol for low-power and lossy 

networks 
SDLC Software development lifecycle 
SHAP Shapley additive explanation 
SIMD Single instruction multiple data 
SMT Surface mount technology 
SoC System on a chip 
SPI Solder paste inspection 
TPU Tensor processing unit 
TTL Time to live 
TVM Tensor virtual machine 
WLAN Wireless local area network 
WMN Wireless mesh network 
WSN Wireless sensor network 
XAI Explainable AI 
XLA Accelerated linear algebra 
YOLO You only look once - Object detection model 

known for its speed and accuracy. 



https://www.taylorandfrancis.com


1
 
Edge AI LoRa Mesh Technologies
 

Ovidiu Vermesan1, Kai vorm Walde2, Roy Bahr1, Cordula Conrady2, 
Janis Judvaitis3, Gatis Gaigals3, Tore Karlsen4, Marcello Coppola5, 

and Hans-Erik Sand6 

1SINTEF AS, Norway 
2IMST GmbH, Germany 
3Institute of Electronics and Computer Science, Latvia 
4ProLux AS, Norway 
5STMicroelectronics, France 
6NXTECH AS, Norway 

Abstract 

Intelligent connectivity at the edge combines wireless communication, edge 
artificial intelligence (AI), edge computing and internet of things (IoT) 
technologies to perform machine learning (ML) and deep learning (DL) 
on connected edge devices. Low latency, ultra-low-energy intelligent IoT 
devices with on-board computing, and a distributed architecture and analytics 
are essential to drive intelligent connectivity. 

Intelligent wireless mesh technologies exploit multiple interconnected 
devices, or nodes, to create a distributed network integrated with edge AI 
analytics using ML and DL algorithms. In an intelligent wireless mesh 
network (WMN), each node has embedded intelligence and can communicate 
directly with its neighbouring nodes and transfer data efficiently to other 
nodes. Compared with traditional point-to-point wireless networks, the intel­
ligent wireless mesh approach offers several advantages, including increased 
coverage, redundancy, scalability and resilience. 

The convergence of multiple technologies (connectivity, edge AI, IoT, 
distributed architectures and federated learning) delivers intelligent edge 

1
 
This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-1 



2 Edge AI LoRa Mesh Technologies 

mesh communication systems that perform efficient connectivity by optimis­
ing data rates, coverage, energy, and interference. 

This article overviews the latest advancements in edge AI long-range 
mesh technologies and applications, highlights state-of-the-art mesh com­
munication requirements and implementations and identifies future research 
challenges and directions. 

Keywords: mesh communication technologies, edge artificial intelligence, 
LoRaWAN, LoRa mesh. 

1.1 Introduction 

Star, tree and mesh networks are examples of topologies used in commu­
nication networks. Each is suitable for different application scenarios. An 
illustration of the different network architectures is shown in Figure 1.1. 

Star networks are simple to set up and manage because they have 
centralised control points. However, this makes them more susceptible to 
single-point failures. Mesh networks offer high redundancy and self-healing 
(e.g., recovery from a link failure), making them more reliable and fault 
tolerant at the cost of increased complexity. 

Wireless mesh technologies play an essential role in creating robust and 
flexible wireless networks that address modern connectivity challenges. 

In a star topology, all nodes are directly connected to a single central root 
node, often referred to as a hub. Direct peer-to-peer communication is not 
supported; all nodes must communicate through this central hub. 

Figure 1.1 Network Topologies 



1.1 Introduction 3 

Networks with cluster-tree topologies are divided into so-called clusters. 
Each cluster consists of a group of nodes connected to a local central node 
referred to as the cluster head. The cluster head coordinates the communica­
tion within its cluster. The tree terminology refers to the cluster heads which 
are organised in such a hierarchical structure. Communication from node to 
node may involve routing via multiple cluster heads. 

Wireless mesh technologies use multiple interconnected nodes which 
can communicate directly with their neighbours nodes. This approach offers 
several advantages, including increased coverage, redundancy, resilience, and 
scalability. 

Mesh communication technologies use distributed networking methods 
that typically create a decentralised and self-configuring network. Each 
node can also act as a repeater to extend network coverage and improve 
resilience. 

The convergence of edge computing, edge AI, federated learning and 
IoT can create multi-dimensional architectures consisting of a wide range of 
heterogeneous entities with different sensing/actuating, connectivity, process­
ing, and intelligence capabilities connected with applications in a dynamic 
mesh network linked by platforms and distributed services located at the edge 
level. Some of the technologies contributing to enhancing the capabilities of 
intelligent mesh connectivity include: 

Edge AI - The deployment of AI algorithms and data processing capabilities 
directly on edge devices, rather than relying on centralised cloud servers, 
brings the following benefits: 

• Real-time decision making – By processing data locally, AI models 
can make fast decisions without the latency of sending data to remote 
servers, enabling rapid responses to critical events. 

• Data privacy and security – Edge AI reduces the need to transmit sensi­
tive data to the cloud, increasing privacy and decreasing the consequence 
of data breaches. 

• Bandwidth efficiency – Edge AI can filter and prioritise data before 
transmission, reducing bandwidth demands. 

Federated Learning (also called collaborative learning) is a machine learn­
ing method in which edge devices collaboratively contribute to a global model 
while keeping their data locally. Federated learning can play a significant 
role in enhancing the combination of edge AI, IoT and communication 
technologies. 



4 Edge AI LoRa Mesh Technologies 

Privacy preservation: Federated learning avoids the transmission of raw 
data to a central server. This ensures that sensitive data remain on the edge 
devices, addressing privacy concerns and complying with data protection 
regulations. 

Bandwidth efficiency: By training models locally on edge devices, fed­
erated learning reduces the need to send large amounts of data to the cloud 
for model training. This optimises bandwidth usage, making it more efficient 
for IoT devices with limited communication capabilities, such as long-range 
(LoRa)-based communication devices. LoRa is a wireless spread spectrum 
modulation technique derived from the chirp spread spectrum (CSS), which 
enables long-range communication between devices with low power con­
sumption. The technology was initially developed by a company called 
Cycleo SAS and later acquired by Semtech Corporation [1], a semiconductor 
company specialising in analogue and mixed signal circuits. 

Improved model performance: Federated learning allows IoT devices to 
continuously improve their local models. This can result in better model 
performance and adaptability over time, as each device benefits from the 
collective intelligence of the entire network. 

Decentralised intelligence: Federated learning distributes intelligence 
across edge devices, promoting decentralised data processing and decision-
making. This leads to increased resilience in the overall system. 

Collaboration and knowledge sharing: By collaborating on model train­
ing, edge devices share knowledge and insight. This collaborative approach 
fosters rich and diverse learning experiences. 

Reducing infrastructure costs: Federated learning reduces the need for 
large-scale cloud infrastructure for centralised model training. This results in 
cost savings in respect of data transmission and cloud computing resources. 

Versatility and scalability: Federated learning can be adapted to many dif­
ferent edge devices and network architectures. It can scale efficiently making 
it suitable for IoT networks with diverse deployments and configurations. 

Federated learning complements the combination of edge AI, IoT and 
LoRa by enhancing privacy, efficiency, model performance and collaboration. 
It empowers IoT networks with intelligent decision-making capabilities while 
respecting data privacy and promoting decentralised data processing. 

Internet of Things (IoT) is related to the network of interconnected devices 
and sensors that collect, exchange, and analyse data. By integrating IoT with 
edge AI and LoRa technology, it becomes a powerful enabler across various 
domains: 



1.2 Overview of the State-of-the-Art Wireless Mesh Technologies 5 

• Remote monitoring and control – IoT sensors can collect data from 
different environments, enabling remote monitoring and control of 
processes, infrastructure, and assets. 

• Predictive maintenance – IoT data, when combined with edge AI 
analytics, allows the prediction of equipment failures, optimisation of 
maintenance schedules and reductions in downtime. 

• Energy management – IoT deployments combined with edge AI enable 
efficient energy management, waste reduction and improved urban 
services in smart city applications. 

The combination of edge AI and mesh communication has several ben­
efits, especially when infrastructure is impracticable or unavailable. Mesh 
networks enable flexible, reliable, and scalable networks. They are increas­
ingly used in industrial IoT, energy, smart homes, agri-food and beverage, 
disaster recovery operations and smart city applications. 

This chapter is organised into the following sections. Section 1 introduces 
the research area and the state of play of technology development. Sections 
2 and 3 provide an overview of the state of the art of existing wireless 
mesh technologies and their primary functions, operating characteristics and 
actual advantages and disadvantages. Section 4 describes the LoRa wireless 
modulation technique and the long-range wide area network (LoRaWAN) 
technology, the main architectures, the architectural building blocks, and their 
characteristics. Section 5 covers enabling technologies (e.g., edge AI, edge 
computing, internet of intelligent things, artificial intelligence of things) and 
integration with LoRa mesh to enhance and optimise communication perfor­
mance and mesh-based systems’ collaborative and cooperative capabilities. 
Section 6 presents potential applications for LoRa mesh connectivity, edge 
AI and IoT systems and emphasises the requirements for intelligent com­
munication and convergence with other technologies. Section 7 outlines the 
conceptual edge AI LoRa mesh device architecture. Section 8 analyses the 
state of play and future research directions and highlights several challenging 
open issues for intelligent edge LoRa meshes. Finally, Section 9 summarises 
the main points for discussion. 

1.2 Overview of the State-of-the-Art Wireless Mesh 
Technologies 

Meshes are networks that create a decentralised and robust structure where 
each node can communicate directly with neighbouring nodes. 



6 Edge AI LoRa Mesh Technologies 

Nodes are interconnected and, depending on the network topology, there 
can be multiple connection pathways for each node. Connections between 
nodes may be dynamically updated and optimised through a built-in mesh 
routing table. As nodes enter and exit the network, the mesh topology 
enables the nodes to reconfigure routing paths based on the new network 
configuration. 

Mesh topology and ad-hoc routing assures stability in the face of 
changing communication conditions or node failure. 

Mesh networks use a distributed approach, where each node can act as 
a repeater to extend network coverage and improve resilience. The critical 
characteristics of mesh communication technologies include: 

• Decentralisation – mesh networks are not dependent on a single central 
point of control. Each node can communicate with its neighbour, allow­
ing messages to bounce from one node to another until they reach their 
destination. 

• Self-configuration – mesh networks are capable of self-organisation. 
When nodes are added or removed the network can dynamically 
reconfigure itself to accommodate these changes. 

• Redundancy and reliability – due to their decentralised nature and self 
configuration capability, mesh network topologies are more resilient to 
node failure or network disruption. 

• Extended coverage – mesh networks can cover an extended area by 
using multiple nodes as relays. This provides an advantage in cases when 
establishing a traditional infrastructure might be challenging or costly. 

• Ad-Hoc networking – mesh communication technologies enable ad-
hoc networking, where devices can spontaneously create a network 
without relying on pre-existing infrastructure. 

• Geographical scalability – mesh networks can quickly expand their 
coverage by adding more nodes which do not need to be in direct 
communication. 

1.2.1 Mesh components and roles 

Wireless mesh networks usually consist of routers, nodes, and coordinators 
as described below: 

• Routers – these devices form the backbone of a wireless mesh network. 
They are typically more powerful than simple nodes with enhanced 
processing capabilities and are responsible for routing data within the 



1.2 Overview of the State-of-the-Art Wireless Mesh Technologies 7 

whole network. Mesh routers communicate with other routers and nodes 
in the network to forward data packets along the most efficient path to 
reach their intended destination. 

• Nodes – these are individual devices connected to the mesh network. 
They can be computers, smartphones, sensors, IoT devices, or any other 
device capable of wireless communication. Mesh nodes are typically 
senders, receivers, or relay points. Unlike traditional networks, mesh 
nodes in a wireless mesh network can communicate directly with each 
other, creating multiple data transmission paths. This decentralised com­
munication architecture enhances the network’s reliability and overall 
performance. 

• Coordinators – mesh coordinators are nodes with specialised roles 
in some wireless mesh network protocols. They act as central control 
points for the entire mesh network. A coordinator is responsible for 
managing and organising the network, assigning roles to other nodes 
(such as routers or end devices), and controlling aspects of the network’s 
operation. They handle tasks like channel allocation, network formation, 
and security management. In some mesh network implementations, 
coordinators have a critical role in preserving the network’s stability 
and performance. On one hand, central coordinators can offer efficient 
control and coordination; on the other hand, they can also become a 
single point of failure, potentially disrupting the entire network and 
compromising one of the key advantages of mesh topologies. 

• Decentralised functionality – this approach eliminates the central 
mesh coordinator. Instead, the process of decision-making and control 
is distributed across multiple nodes. Nodes may possess a degree of 
autonomy, enabling them to make local decisions based on independent 
observations and interactions with neighbouring nodes. Local decisions 
collectively contribute to the overall behaviour of the network. 

1.2.2 Wireless routing concepts 

One of the key elements for wireless mesh communication, routing protocols 
are designed to enable communication and data exchange between devices in 
a wireless network. These protocols establish routes for data transmission 
and determine the best paths for information to flow from a source to a 
destination. The functions of a wireless routing protocol vary depending on 
the specific protocol used and the type of wireless network. We present a 



8 Edge AI LoRa Mesh Technologies 

general overview of the common functionalities of these wireless routing 
protocols: 

• Neighbour discovery – in wireless networks, devices must discover 
neighbours to establish direct communication links. 

• Route discovery – when a device wishes to send data to another device, 
a route discovery process is initiated. During the process, the device 
searches direct links or for potential intermediate devices (routers) that 
can relay the data towards the destination. This process can involve 
broadcasting or multicasting route request packets to nearby devices to 
find potential routes. 

• Route maintenance – once a route is established, the routing protocol 
is responsible for maintaining the health and stability of it. This includes 
monitoring the status of the intermediate devices along the path and 
detecting any changes, such as link failures or device mobility. If a route 
becomes unavailable, the routing protocol triggers a route repair process 
to find an alternative path. 

• Routing metrics – wireless routing protocols use various metrics to 
determine the quality and efficiency of potential routes. Metrics include 
signal strength, link quality, distance, and available bandwidth. The 
routing protocol uses these metrics to select the preferred routes based 
on network conditions and requirements. The current battery state of 
a node may also be a metric to implement a kind of energy-balancing 
policy. 

• Data forwarding – once a route is established, the data packets are 
forwarded from one router to the next until they reach their destination. 
Each router in the path makes a forwarding decision based on the routing 
table and the packet’s destination address. 

• Adaptation to network changes – wireless routing protocols are con­
structed to adapt to changes in the network topology, such as device 
mobility, link quality fluctuations, or node failures. They continuously 
monitor the network and adjust the routing paths to ensure reliable and 
efficient data transmission. 

1.3 Routing protocols 

Some standard wireless routing protocols, include Optimised Link State 
Routing (OLSR) [29][30][31][33], Ad hoc On-Demand Distance Vector 



1.3 Routing protocols 9 

(AODV) [34][35], Dynamic Source Routing (DSR) [36][37] and Routing 
Protocol for Low-Power and Lossy Networks (RPL) [38][39][40]. Each 
protocol has specific features, advantages, with use cases tailored for different 
wireless networks and applications. There follow some details about the 
algorithms and their pros and cons. 

1.3.1 Ad hoc on-demand distance vector (AODV) 

AODV is a demand-driven reactive wireless routing protocol that establishes 
routes only when needed. When a source node requests to send data to 
a destination node, it initiates a route discovery process to find the most 
efficient path. The protocol uses sequence numbers to ensure loop-free routes 
and maintains a routing table to store information about discovered routes. 

Pros: 

• Reduced overhead – AODV minimises control message overhead by 
initiating route discovery only when necessary. This helps conserve 
network resources and reduces unnecessary traffic. 

• Loop-free routes – using sequence numbers ensures that routes are 
loop-free, improving route stability and reliability. 

• Proactive link failure detection – AODV employs proactive link fail­
ure detection to quickly identify failed links and initiate route repair, 
ensuring data continues to flow via alternative paths. 

• Scalability – AODV performs well in moderately sized networks and 
maintains route information for frequently used paths, reducing route 
discovery latency. 

Cons: 

• High latency for new routes – AODV’s on-demand route discovery 
process can introduce delays in finding a new route, especially in large 
networks or sparse topologies. 

• Route rediscovery – several cases (link changes, node mobility, mali­
cious nodes, battery depletion, network congestion or topology changes) 
lead to frequent route rediscovery, increasing control message overhead. 

• Suboptimal routes – sometimes, AODV may not find the shortest path 
in specific network scenarios, leading to less efficient data transmission. 

AODV balances control message overhead and route discovery latency, 
making it suitable for dynamic networks with changing topologies. However, 
its performance may vary depending on network size, mobility patterns, and 
the frequency of route changes. 



10 Edge AI LoRa Mesh Technologies 

1.3.2 Optimized link state routing (OLSR) 

OLSR is a proactive routing protocol that uses a hybrid approach, combining 
both proactive and reactive mechanisms. It optimises link-state information 
exchange to minimise overhead while ensuring efficient route computation 
and maintenance. OLSR uses Multi-Point Relays (MPRs) to reduce control 
message flooding and speed up route discovery. 

Pros: 

• Reduced control message overhead – OLSR uses MPRs to limit the 
number of nodes participating in control message dissemination. This 
decreases control overhead and improves scalability, making it suitable 
for large networks. 

• Proactive and reactive hybrid approach – OLSR combines proactive 
link-state information with reactive route discovery. It provides real-time 
responsiveness while minimising the amount of control traffic generated. 

• Loop-free routes – OLSR guarantees loop-free routes and enhances 
route stability and reliability. 

• Fast route recovery – MPRs and proactive topology updates enable 
quick route recovery and repair in case of link failures. 

• Better convergence – OLSR converges quickly and efficiently, enabling 
devices to find optimised routes with lower latency. 

Cons: 

• Memory and computation requirements – OLSR requires storing 
and managing additional topology information due to MPRs. This 
imposes overhead which might be critical on devices with limited 
resources. 

• Increased initial setup overhead – the initial setup phase in OLSR 
involves the exchange of control messages to determine MPRs which 
leads to higher overhead during network initialisation. 

• Relatively complex implementation – compared to other protocols, the 
implementation and management of OLSR can be more complex due to 
its hybrid nature and the need to optimise MPR selection. 

OLSR balances proactive and reactive mechanisms, making it suitable 
for dynamic networks with varying traffic patterns and topology changes. 
Its efficiency in controlling message overhead and quick route conver­
gence makes it a viable choice for both small and large-scale wireless 
networks. 



1.3 Routing protocols 11 

1.3.3 Dynamic source routing (DSR) 

DSR is an on-demand routing protocol that establishes routes between nodes 
only when needed. When a source node requests to send data to a destination 
node, it initiates a route discovery process to find a path. The route discovery 
process is based on source routing, which includes the complete route in the 
data packet. Intermediate nodes use this route information to forward the 
packet to the next hop until it reaches the destination. 
Pros: 

• Reduced overhead – DSR minimises control message overhead since 
route discovery is initiated only when needed, conserving network 
resources and reducing unnecessary traffic. 

• Loop-free routes – DSR ensures loop-free routes through sequence 
numbers and route caching, enhancing route stability and reliability. 

• Efficient source routing – including the complete route in the data 
packet enables efficient source routing, eliminating the need for inter­
mediate nodes to maintain routing tables. 

• Route repair – DSR supports quick route repair in case of link failure, 
as the source node can initiate a new route discovery process to find an 
alternative path. 

Cons: 

• Route discovery latency – the route discovery process in DSR can 
introduce delays, especially in large networks or sparse topologies, as 
it requires time to find a route to a new destination. 

• Increased packet overhead – including the complete route in the data 
packet leads to larger packet sizes, especially for long routes, resulting 
in increased packet overhead. 

• Route maintenance overhead – frequent mobility or link changes can 
lead to higher route maintenance traffic, as DSR requires regular route 
updates to adapt to topology changes. 

• Source routing overhead – While source routing eliminates the need 
for routing tables in intermediate nodes, it increases the size of data 
packets, which can be a concern for resource-constrained devices. 

DSR offers a simple and efficient approach to routing in Mobile Ad-hoc 
Networks (MANETs), particularly for networks with moderate mobility and 
communication demands. Its reactive nature allows it to adapt to changing 
network conditions, while the use of source routing eliminates the need 
for routing tables in intermediate nodes. The trade-offs include potential 



12 Edge AI LoRa Mesh Technologies 

overhead from route discovery and maintenance, which should be con­
sidered when selecting DSR as the routing protocol for specific MANET 
deployments. 

1.3.4 Routing protocol for low-power and lossy networks (RPL) 

RPL is a specialised routing protocol for low-power and lossy networks 
(LLNs) as commonly been in IoT and wireless sensor networks. RPL is a 
proactive routing protocol that forms a directed acyclic graph (DAG) to route 
data in LLNs efficiently. It organises devices into a tree-like structure, with 
a root node at the top. It optimises routes using objective functions based 
on specific metrics, such as energy efficiency or latency. RPL is tailored for 
devices with limited resources, making it well suited for battery-powered IoT 
devices that require reliable and energy-efficient communication. 
Pros: 

• Energy efficiency – RPL is designed to minimise energy consumption 
in resource-constrained devices. It optimises routes to ensure that energy 
is conserved during data transmission, thus prolonging the battery life of 
IoT devices and the entire IoT system. 

• Adaptability to LLNs – RPL’s tree-like DAG structure is well-suited 
for LLNs, where devices may have limited processing power and 
intermittent connectivity. 

• Objective function flexibility – RPL allows network designers to 
choose different objective functions based on their specific require­
ments, such as energy efficiency, latency, or reliability. 

• Self-configuring and self-healing – RPL networks can self-configure 
and adapt to changes in network topology, including the addition or 
removal of devices. It also supports self-healing, where the network finds 
alternative routes if link failures occur. 

Cons: 

• Complex configuration – configuring RPL for specific use cases can 
be complicated due to the various parameters and objective functions 
that must be considered. Proper tuning and optimisation may require 
expertise and considerable time. 

• Scalability for large networks – while RPL performs well in small to 
medium-sized LLNs, it may face challenges in large networks, where 
the tree-like structure can lead to increased control traffic and reduced 
scalability. 



1.3 Routing protocols 13 

• Overhead in highly mobile networks – in highly mobile LLNs fre­
quent changes in the network topology may result in increased control 
message overhead as the network adapts to mobility. 

Overall, RPL’s focus on energy efficiency and adaptability to low-power 
and lossy networks makes it a strong choice for IoT and wireless sensor 
networks. It effectively addresses the unique challenges posed by resource-
constrained devices, allowing them to form reliable and efficient com­
munication links while optimising energy consumption. However, careful 
configuration and consideration of scalability in large networks are essential 
to ensure the protocol’s effectiveness for specific deployment scenarios. 

1.3.5 Wireless mesh protocols 

Mesh communication technologies offer flexible, reliable, and scalable 
networking solutions, and several protocols include mesh topologies. A 
short overview of mesh protocols such as B.A.T.M.A.N., Bluetooth Mesh, 
OpenThread, Thread, ZigBee, Wi-Fi, Wi-SUN, WirelessHART, Z-WAVE and 
6LoWPAN is presented before focusing on the LoRa mesh protocol and 
applications. 

1.3.5.1 B.A.T.M.A.N 
The protocol Better Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.) 
[11] is a multi-hop ad-hoc mesh network routing protocol where each node 
transmits broadcast or originator messages (OGMs) to notify neighbouring 
nodes about its presence. These neighbours re-broadcast the OGM.s based 
on specific rules to inform their neighbours about the presence of the original 
initiator. The network is steeped with OGM.s that are small, with a typical 
raw packet size of 52 bytes, including IP and UDP overhead. OGMs contain 
at least the originator’s address, the address of the transmitting packet’s node, 
a Time to Live (TTL) and a sequence number. 

The approach of the B.A.T.M.A.N. algorithm is to divide the knowledge 
about the best end-to-end paths between nodes in the mesh to all participating 
nodes. 

B.A.T.M.A.N. uses a proactive routing approach, which means it continu­
ously maintains up-to-date routing information without waiting for a specific 
request to transmit data. Instead of relying on global routing tables, each node 
perceives and retains only the information about the best next hop towards all 
other nodes. Thereby the condition for overall network knowledge about local 
topology changes is unnecessary. Since wireless mesh networks are subject 



14 Edge AI LoRa Mesh Technologies 

to frequent changes, B.A.T.M.A.N. is designed to be adaptive and capable 
of quickly reconfiguring routes when nodes join, leave, or move within the 
network. 

The protocol also supports load balancing by distributing traffic across 
multiple paths to prevent congestion and optimise the overall network 
performance. 

1.3.5.2 Bluetooth Low Energy 
Bluetooth Low Energy (BLE) [13] is optimised for low power consumption to 
address small-scale consumer IoT applications. BLE is integrated into several 
IoT devices, and data is conveniently communicated to and visualised on 
smartphones. The Bluetooth Mesh specification aims to enable a scalable 
deployment of BLE devices. 

BLE provides versatile indoor localisation features, and IoT bea­
con networks are used for different IoT service applications. BLE is 
incompatible/non-interoperable with Bluetooth, and a dual-mode device is 
required to achieve interoperability. 

BLE uses multiple techniques to ensure low power consumption imple­
menting the data protocol to create low-duty-cycle transmissions, combined 
with very low-power sleep modes. 

Bluetooth Low Energy Mesh [12] protocol is a networking technology 
built on the BLE standard. It enables large-scale, reliable, secure communi­
cation between many devices, forming a mesh network. This mesh network 
allows devices to communicate with each other and extend the range of the 
network. 

A device can have one or more logical elements in the Bluetooth Mesh 
network. Each element represents a specific functionality or component of the 
device, and each element is assigned a unique address within the network. 

Figure 1.2 BLE Mesh Layered Architecture 



1.3 Routing protocols 15 

Bluetooth Mesh devices use models to define their behaviour and capa­
bilities. Models represent how a device handles messages, what types of 
messages it supports, and how it behaves in the mesh. 

Provisioning is the process of securely adding a new device to the mesh 
network. Encryption keys and other necessary information are exchanged 
between the new device and the network during this process. 

1.3.5.3 OpenThread and Thread 
Thread [14] is a mesh networking low-power wireless protocol based on 
Internet Protocol version 6 (IPv6), designed to address the interoperabil­
ity, security, power, and architecture challenges of the IoT. Thread utilises 
6LoWPAN that employs the IEEE 802.15.4 wireless protocol with mesh 
communication. Thread is IP-addressable, with cloud access and advanced 
encryption standard (AES). 

Thread uses a mesh network topology in the 2.4 GHz frequency spectrum, 
providing data rates of 250 kbps with a coverage range of 30 m. Security uses 
a 128-bit AES encryption system and the encryption cannot be disabled. 

Thread utilises a network-wide key for inscription that is applied at the 
Media Access Layer (MAC). The key is employed as specified in IEEE 
802.15.4. Attacks on Thread network originating over-the-air from outside 
the network are protected by IEEE 802.15.4 security mechanisms. The 
Thread network’s nodes exchange frame counters with their neighbours via 
a Mesh Link Establishment (MLE) handshake. The protection against replay 
attacks is done via frame counters. Thread lets the application use various 
internet security protocols for end-to-end communication and can connect up 
to 250 devices. 

OpenThread, released by Google, is an open-source implementation 
of Thread that implements all Thread networking layers (IPv6, 6LoW­
PAN, IEEE 802.15.4 with MAC security, Mesh Link Establishment, Mesh 
Routing), device roles, and Border Router support. 

1.3.5.4 ZigBee 
ZigBee [15] is a short-range, low-power, wireless standard deployed in a 
mesh topology to extend coverage by relaying IoT sensor data over multiple 
sensor nodes. 

The Zigbee standard works on the IEEE 802.15.4 physical radio specifi­
cation and runs in unlicensed bands such as 2.4 GHz, 915 and 868 MHz. 

Zigbee 3.0 sustains wireless networks’ increasing scale and complexity 
and deals with extensive local networks of over 250 nodes. The data rates 



16 Edge AI LoRa Mesh Technologies 

provided are 250 kbps (2.4 GHz), 40kbps (915 MHz) and 20kbps (868 MHz). 
Zigbee also handles the dynamic behaviour of the networks (with nodes dis­
appearing, appearing, and re-appearing in the network topology) and permits 
orphaned nodes, resulting from the loss of a parent to rejoin the Zigbee 
network through another parent. 

The self-healing structure of state-of-the-art Zigbee Mesh networks per­
mits nodes to drop out of the network without disrupting internal routing. 
Zigbee supports over-the-air (OTA) upgrades during device operation and 
provides enhanced network security by employing a coordinator/trust centre, 
which creates the network and oversees the allocation of network and link 
security keys to joining nodes or distributed security where there is no 
coordinator/trust centre. The Zigbee router node can provide the network key 
to joining nodes. 

1.3.5.5 Wi-Fi 
Wi-Fi (IEEE/ISO/IEC 8802-11-2022) is a standard defining the characteris­
tics of a wireless local area network (WLAN). The name Wi-Fi (short for 
“Wireless Fidelity”) relates to the name provided by the Wi-Fi Alliance, for­
merly WECA (Wireless Ethernet Compatibility Alliance). This group assures 
compatibility between hardware devices that use the 802.11 standards. Wi-Fi 
networks must comply with the 802.11a-x specifications. 

Wi-Fi mesh [16] protocol IEEE 802.11s creates a mesh network that 
extends Wi-Fi coverage over a larger area and enhances overall network 
performance and reliability. Traditional Wi-Fi networks are based on a single 
wireless access point (router) communicating directly with Wi-Fi-enabled 
devices. They may suffer from limited range and dead zones in larger spaces. 

A Wi-Fi mesh network consists of multiple interconnected access points 
that work together to create a seamless and continuous network. These access 
points, often referred to as “nodes” or “mesh nodes”, communicate with 
each other wirelessly, forming a self-healing network that can automatically 
reroute data packets to find the most efficient path to reach the destination 
device. 

The system architecture for WLAN mesh network technology is 
described in IEEE 802.11 functional requirements and scope [17] and 
illustrated in Figure 1.3. 

The functional blocks of the architecture include the following: 

• The Mesh Topology Learning, Routing, and Forwarding block includes 
a function for discovering neighbouring nodes, a function for obtaining 
radio metrics, which deliver information on the quality of wireless links, 



1.3 Routing protocols 17 

Figure 1.3 Wi-Fi Mesh Layered Architecture 

a routing protocol for determining routes to transfer packets to their 
destinations using MAC addresses as identifiers, and a packet forward­
ing function. The routing protocol must use radio metrics and multiple 
frequency channels according to radio conditions to efficiently use radio 
resources. 

• The Mesh Network Measurement block includes functions for calcu­
lating radio metrics used by the routing protocol and measuring radio 
conditions within the WLAN mesh network for frequency channel 
selection. 

• The Mesh Medium Access Coordination block contains functions for 
preventing degraded performance due to hidden and exposed termi­
nals, procedures for performing priority control, congestion control, and 
admission control, and a function for achieving spatial frequency reuse. 

• The Mesh Security block comprises security functions (e.g., WLAN 
security schemes defined by the IEEE 802.11 standard) for protecting 
data frames carried on the WLAN mesh network and management 
frames used by control functions such as routing protocol. 

• The Interworking block implements the function that supports WLAN 
mesh network to conform to IEEE 802 network architecture and con­
nect to other networks by implementing a transparent bridge function 
enforced in the mesh portal situated at the network boundary. Each 
WLAN mesh network must operate as a broadcast network to deliver 
forwarded packets to all terminals connected to the LANs. 

• The Mesh Configuration and Management block comprises a WLAN 
interface for the automatic setting of each mesh point’s RF parameters 
(transmit power, frequency channel selection, etc.) and quality of service 
(QoS) policy management. 



18 Edge AI LoRa Mesh Technologies 

Wi-Fi mesh protocol is designed to address the limitations of traditional 
Wi-Fi networks, making them ideal for large homes, offices, or public spaces 
where extended coverage and high-performance connectivity are required. 

1.3.5.6 Wi-SUN 
Wi-SUN [18] stands for Wireless Smart Ubiquitous Network and is a mesh 
network protocol developed by Wi-SUN Alliance. Wi-SUN is one of the most 
popular IPv6 sub-GHz mesh technologies for smart utility and smart city 
applications. The target networks are named Field Area Networks (FANs), 
and they deliver a communications infrastructure for large-scale outdoor 
networks, usually outdoor IoT devices. FANs let industrial devices such as 
smart meters and streetlights interconnect onto one common network. 

Wi-SUN is based on the IEEE 802.15.4g standard for the physical layer 
(PHY) and the IEEE 802.15.4e standard for the medium access control 
layer (MAC). It supports multiple data rates and frequency bands to meet 
regulatory requirements worldwide. 

Wi-SUN makes interoperable, multi-service, secure wireless mesh net­
works available to service providers, utilities, municipalities/local govern­
ments, and other businesses. Wi-SUN can be used in various line-powered 
and battery-powered applications for large-scale outdoor IoT wireless com­
munication networks. With the help of Wi-SUN, developers can add new 
features to existing infrastructure platforms by extending open standard 
internet protocols (IP) and APIs. With its long-range capabilities, high 
data throughput, and support for IPv6, Wi-SUN is designed to scale and 
makes wireless infrastructure easier for commercial applications and the 
development of smart cities. 

1.3.5.7 WirelessHART 
WirelessHART [19][20] is a process automation application wireless com­
munications protocol that provides wireless capabilities to extend Highway 
Addressable Remote Transducer (HART) by keeping compatibility with 
existing HART commands, tools, and devices. 

The architecture of the WirelessHART protocol stack according to the 
OSI 7-layer communication model is illustrated in Figure 1.4. 

The WirelessHART protocol stack addresses five layers: physical layer, 
data link/MAC layer, network layer, transport layer and application layer. A 
central network manager is added for arbitrating the communication schedule 
and manage the routing. 

http:802.15.4e
http:802.15.4g


1.3 Routing protocols 19 

Figure 1.4 WirelessHART Protocol Architecture 

WirelessHART uses mesh networking technology by design, where each 
device in a mesh network can act as a router for messages from other 
devices. This widens the range of the network and gives redundant com­
munication routes to extend reliability in challenging radio environments 
encountered in process facilities [21][22][23]. Networks can scale up to 
1000 nodes, but latency can be long and nondeterministic because trans­
missions occur only within an allocated time slot, and retransmissions are 
minimised. 

Each WirelessHART network contains three major components: 

• Wireless field devices that are connected to process or manufacturing 
equipment. 

• Gateways that communicate among devices and on-premises host appli­
cations connected to high-speed backbone or other communications 
networks. 

• A Network Manager configures the network, schedules communica­
tions between devices, monitors network health, and manages message 
routes. The Network Manager can be embedded into gateways, host 
applications, or process automation controllers. 



20 Edge AI LoRa Mesh Technologies 

Figure 1.5 WirelessHART Mesh Networking 

WirelessHART supports different messaging modes, such as one-way 
publishing of process and control values, spontaneous exception notification, 
ad-hoc request/response, and auto-segmented block transfers of large data 
sets, to provide flexibility to meet different application requirements. These 
features enable communications to be tailored to the application’s needs, 
lowering power consumption and overhead. 

The WirelessHART mesh networking topology applied to an industrial 
plant use case is illustrated in Figure 1.5. 

WirelessHART is used in industrial environments that require security 
to provide the highest levels of protection to the network and data. Security 
includes encryption and authentication. 

1.3.5.8 Z-WAVE 
Z-Wave [24][25] is the wireless technology for secure, trusted home appli­
cations like home appliances, lighting control, security systems, garage door 
openers, thermostats, windows, locks, etc. 



1.4 LoRa and LoRaWAN Technology 21 

It is a mesh network low-energy wireless communications protocol used 
in systems controlled via the Internet and locally through devices or a Z-Wave 
gateway or central control device serving as hub controller and portal. 

The Z-Wave Alliance [26] demands the mandatory implementation of 
the Security 2 (S2) framework on all devices receiving certification. Z-
wave delivers packet encryption, integrity protection and device authen­
tication services. End-to-end security is provided at the application level 
(communication using command classes). It has an in-band network key 
exchange and AES symmetric block cipher algorithm using a 128-bit key 
length. 

Products using Z-Wave mesh protocol are interoperable and communicate 
with each other regardless of brand or platform, and the Z-Wave mesh 
networks become more reliable as more devices are added (e.g., a Z-Wave 
network with 100 devices is more reliable than a Z-Wave network with 
30 devices). Z-Wave’s interoperability at the application layer assures that 
Z-Wave devices share information and allows all Z-Wave hardware and 
software to work together. 

Z-Wave uses the unlicensed industrial, scientific, and medical (ISM) band 
and operates at 868.42 MHz in Europe and 908.42 MHz in the US. Z-Wave 
delivers data rates of 9.6 kbps and 40 kbps, with output power at one mW. 

Z-Wave range between two nodes is 100 m in an outdoor, unobstructed 
setting. For in-home applications, the range is 30 m for no obstructions and 
15 m with walls in between. 

1.3.5.9 6LoWPAN 
6LoWPAN [27][28] itself is not a mesh protocol; it is an open standard 
defined in RFC 6282 by the Internet Engineering Task Force (IETF) for a 
network where every wireless network node is battery-powered and has a 
IPv6 address. Thus, a set of local nodes can make a wireless mesh network. 

6LoWPAN defines how to run IP version 6 (IPv6) over low data rate, low 
power, and small footprint radio networks (LoWPAN) as typified by the IEEE 
802.15.4 radio [28]. 

IP addresses may be static or dynamic if a network node that can issue 
IPv6 addresses is acting as or like a Dynamic Host Configuration Protocol 
(DHCP) server. For IoT networks, it is typical to have a node connected 
to both WLAN and LAN that performs the gateway functions to collect 
local data and control local nodes. If local 6LoWPAN demands such a 
functionality, it typically performs the DHCP server functions too. 



22 Edge AI LoRa Mesh Technologies 

1.4 LoRa and LoRaWAN Technology 

LoRa and LoRaWAN are related but distinct technologies used together to 
create long-range, low-power wireless communication networks for the IoT 
and other edge applications. 

1.4.1 LoRa physical layer 

LoRa operates in the sub-GHz ISM bands, such as 433MHz, 868 MHz 
(Europe) or 915 MHz (North America). 

Semtech has released a LoRa chipset operating at the 2.4 GHz frequency 
band, which is globally available with km-range capabilities, enabling region-
independent hardware design chipsets [3][4]. 

LoRa, compared with other technologies operating in the 2.4 GHz band, 
such as Wi-Fi and Bluetooth, offers several significant advantages in range 
and power consumption in comparison with other existing techniques. 

The BLE standard range is from 50 m indoors to 165 m outdoors, and the 
maximum range of 2.4 GHz Wi-Fi networks typically reaches around 100 m. 
LoRa’s outdoor range is more than five times the outdoor range of BLE, and 
more than eight times typical IEEE 802.11 networks. 

LoRa modulation is able to offer a higher receiver sensitivity and robust­
ness against noise and interference. Some of the specific details will be 
explained in the next sub-chapters. 

Chirp Spread Spectrum Modulation (CSS) 
LoRa modulation uses a form of chirp spread spectrum modulation, 

where the transmit signal frequency varies continuously over time. Instead 
of transmitting data on a fixed carrier frequency, LoRa uses chirp signals that 
start at one frequency and sweep across the spectrum. The LoRa chirping 
signal sequence makes LoRa signals robust against narrowband interference 
because the signal energy is spread over a wider frequency range. 

Symbols and Data Rate 
LoRa allows to adapt the number of bits per symbol according to the 

signal-to-noise ratio available over the link. Long range is achieved by reduc­
ing the number of bits per symbol, increasing the amount of energy per bit, 
and thus reducing the resulting bit rate. 

Spreading Factor (SF) 
The spreading factor (SF) is a critical parameter in LoRa modulation that 

determines the signal’s robustness and range. The SF defines the rate at which 



1.4 LoRa and LoRaWAN Technology 23 

the chirp signal spreads across the frequency spectrum and the amount of 
(potential) processing gain on receiver side. 

Higher SF results in a lower data rate but better resistance to interference 
and an extended communication range. Conversely, a lower SF provides 
a higher data rate but with reduced range and increased susceptibility to 
noise. 

Signal Bandwidth (BW) 
The bandwidth of the LoRa signal also influences communication perfor­

mance. LoRa modulation can operate in different bandwidths, typically 125 
kHz, 250 kHz, or 500 kHz for sub-GHz LoRa. 

A wider bandwidth allows for higher data rates but may reduce the 
communication range. Narrower bandwidths, on the other hand, result in 
lower data rates but offer increased range and better interference immunity. 

Reception and Demodulation 
On the receiver side, LoRa demodulation involves analysing the received 

chirp signal to decode the transmitted symbols. The receiver can determine 
the transmitted symbols and extract the original data by comparing the 
received signal with predefined chirp sequences. 

Forward Error Correction (FEC) 
In addition to the modulation scheme, a forward correction algorithm 

with several code rates can be applied, which enables the receiver to 
recover corrupted bits. This feature helps to decrease the number of packet 
retransmissions in noisy environments. 

Sub-GHz Frequency Bands 
The license-free sub-GHz ISM band allows transmitting within fixed 

defined frequency bands which vary depending on the region. 
In this context, it is not possible to use the same type of radio hardware 

equipment because the used frequencies significantly impact the used chips, 
antenna matching circuits and the connected antennas. 

The combination of a robust wireless transmission scheme with long-
range capabilities and a low power footprint makes the LoRa technology ideal 
for battery powered IoT devices that can last up to 10 years. 

The LoRa technology became public combined with the first LoRa radio 
modules and the so-called LoRaMAC protocol, today known as LoRaWAN 
protocol and defined within the LoRaWAN standard. 

The following subchapters outline the most compelling aspects of the 
standard. 



24 Edge AI LoRa Mesh Technologies 

Table 1.1 Frequency Band Overview 
No. Region Frequency Band 
#1 Europe 863 MHz – 870 MHz 
#2 Europe 433,05 MHz - 434,79 MHz 
#3 North America 902 MHz– 928 MHz 
#4 China 470 MHz – 510 MHz 
#5 Korea 920 MHz – 925 MHz 
#6 Japan 920 MHz – 925 MHz 
#7 India 865 MHz – 867 MHz 

1.4.2 LoRaWAN protocol 

The LoRaWAN protocol defines methods, packet formats and LoRa physical 
layer radio parameters to ensure interoperability between IoT end devices and 
a given network infrastructure. The LoRaWAN standard itself is maintained 
by the non-profit association the LoRa Alliance [2]. 

The standard defines a system architecture consisting of at least three 
different component types with different roles and responsibilities. 

The composition of end devices, gateways, and a central network server 
enables applications to create a star-of-star network topology. 

LoRaWAN End Devices 
These are typically sensors or actuators that need to communicate wire­

lessly over large distances through the LoRaWAN Link Layer protocol, 
formerly known as LoRaMAC protocol. 

LoRaWAN Gateways 
Gateways operate as intermediate devices with less intelligence. They 

relay the uplink and downlink messages between end devices and the network 
server using different TCP/IP-based protocols. A network can consist of 
several gateways. 

LoRaWAN Network Server 
The network server includes all the intelligence for controlling the radio 

network resources, e.g., network access, a security parameter, spreading 
factors (adaptive radio data rates) etc. 

The network server is connected to all gateways and the application 
server, which hosts the application data and business logic. Suitable TCP/IP­
based protocols typically handle these connections. 

LoRaWAN allows IoT devices to transmit data over long distances to 
LoRaWAN gateways, which act as intermediaries between the end devices 
and the network server. LoRaWAN’s key features are: 



1.4 LoRa and LoRaWAN Technology 25 

Figure 1.6 LoRaWAN Network Architecture 

• Low power – LoRaWAN is designed to operate with low-power IoT 
devices, enabling long battery life for sensors and devices. 

• Wide area coverage – LoRaWAN provides wide area coverage by 
leveraging the long-range capabilities of LoRa. 

• Public or private networks – LoRaWAN can be deployed in public 
networks managed by network operators or in private networks operated 
by organisations. 

• Security – LoRaWAN incorporates several security mechanisms, 
including end-to-end encryption and device authentication, to ensure 
secure data transmission. 

• Adaptive data rate – LoRaWAN supports adaptive data rates, allowing 
devices to adjust their transmission speed based on the quality of the 
communication link, ensuring efficient data transfer. 

LoRa and LoRaWAN form a powerful combination for creating efficient 
and scalable IoT communication networks. LoRaWAN defines a commu­
nication protocol and network architecture for IoT low-power wide area 
networks (LPWANs) and is designed to address the requirements for low 
power consumption (i.e., long battery life), long-range, and variable data 
rates (0.3 kbps – 50 kbps) while maintaining low operating and deployment 
costs. 



26 Edge AI LoRa Mesh Technologies 

1.4.3 2.4 GHz LoRa 

In addition to sub-GHz LoRa, Semtech has developed a transceiver circuit 
with LoRa modulation for the 2.4 GHz ISM band. Compared to the 
sub-GHz solution this radio enables additional applications with diverse 
requirements. 

The 2.4 GHz LoRa might be more suitable for applications operating 
in urban environments with higher device density, but covering shorter dis­
tances. On the other hand, sub-GHz LoRa is well-suited for applications 
needing extended range and better penetration of obstacles. Table 1.2 offers a 
brief comparison of the two radio technologies. 

The integration of 2.4 GHz LoRa and a mesh protocol stack holds the 
potential to enhance the capabilities of edge AI-enabled IoT applications, 
particularly in terms of range coverage, network density, and robustness 
against single points of failure. 

Table 1.2 Frequency Band Overview 
Aspect Sub-GHz LoRa 2.4 GHz LoRa 

Frequency Band 433 MHz, 868 MHz, 915 2.4 GHz 
MHz, depending on Worldwide available 
region / country 

Range Longer range Shorter range 
Penetration Better penetration of Lower penetration 

obstacles 
Susceptibility to Lower Higher due to higher signal channel 
Interference bandwidth and multiple usage of 

the 2,4 GHz ISM band 
Applications Agriculture, rural areas, Smart Cities, densely populated 

wide-area IoT networks areas, short-distance IoT networks 
Interference Lower potential Higher potential 
Potential 

Network Density Lower density networks Higher density networks 
Tx Limits Duty Cycle Limit 0.1%, Unlimited 

1%, 10% depending on 
sub-band 

Bandwidth 125 kHz, 250 kHz, 500 203 kHz, 406 kHz, 
kHz 812 kHz, 1625 kHz 

Data rate 0.3 kbps – 0.9 kbps 0.2 kbps - 203 kbps 



1.5 LoRa Mesh and Enabling AI Technologies 27 

1.5 LoRa Mesh and Enabling AI Technologies 

The convergence of technologies (including edge AI, IoT, distributed archi­
tectures, and federated learning) results in intelligent edge mesh communi­
cation systems performing efficient connectivity by optimising data rates, 
coverage, energy, and interference. LoRa when combined with edge AI and 
IoT, enhances connectivity and enables novel use cases: 

• Comprehensive area coverage – LoRa’s long-range capabilities allow 
devices to communicate over several kilometres, making it suitable for 
large-scale IoT deployments in smart agriculture, asset tracking, and 
environmental monitoring. 

• Energy efficiency – LoRa devices consume very little power, making 
them ideal for battery-operated IoT sensors and devices, which can 
operate for extended periods without frequent battery replacements. 

• Low cost and scalability – LoRa’s low infrastructure cost and sim­
ple deployment enable cost-effective and scalable IoT solutions across 
diverse environments. 

The Figure 1.7 illustrates a typical mesh topology with end nodes and 
gateways offering AI. For tasks like secure device enrolment, automatic 
firmware deployments or additional system monitoring a single or multi­
ple application servers can be connected by wired or wireless IP based 
communication links. By combining edge AI, IoT, and LoRa, adopters 
can benefit from improved data rates, reduced latency, increased efficiency, 

Figure 1.7 Edge AI Enabled LoRa Mesh Network 



28 Edge AI LoRa Mesh Technologies 

and cost-effectiveness. This convergence opens opportunities for innovation, 
automation, and optimisation across various sectors. 

1.6 Applications for LoRa Mesh 

LoRa mesh networks offer a versatile and reliable solution for applications 
that require low-power and extended-range wireless communication. LoRa 
mesh networks are suited for the following applications: 

Industrial Automation: In industrial settings, LoRa mesh networks can 
be deployed for machine-to-machine (M2M) communication, asset tracking, 
and control systems. They enable monitoring and control of equipment and 
processes with extended-range. 

Building Management Systems: LoRa mesh networks can be employed 
to optimise energy consumption in commercial buildings by managing light­
ing and other energy-related equipment more efficiently. However, it can be 
argued to what extent it remains energy efficient to reach indoor end nodes 
from an outdoor base station. 

Smart Metering: LoRa-based intelligent metering systems can enable 
utilities to remotely monitor and manage energy, water, and gas consumption 
in residential and industrial settings. 

Wireless Sensor Networks (WSNs): LoRa is a popular choice for 
creating WSNs, where many battery-powered sensors communicate with a 
gateway for data collection and analysis. 

Smart Agriculture: LoRa mesh networks can be deployed in agricultural 
settings to monitor soil conditions, automate irrigation systems, and track 
livestock. 

Lighting Control: LoRa can be used in wireless lighting control systems, 
enabling users to create adaptive and energy-efficient lighting environments. 

Environmental Monitoring: LoRa mesh networks can be employed for 
monitoring environmental parameters, such as air quality, temperature, and 
humidity, in smart cities or remote areas. Furthermore, those networks can 
aid in predicting critical situations such as fires, floods, or earthquakes. 

1.7 Conceptual Edge AI and LoRa Mesh Device 
Architecture 

This chapter outlines a possible device architecture which integrates AI and 
2.4 GHz LoRa Mesh technologies. 



1.7 Conceptual Edge AI and LoRa Mesh Device Architecture 29 

Figure 1.8 Conceptual Edge AI and LoRa Mesh Device Architecture 

The purpose of this architecture is to provide a foundational framework 
for designing and implementing edge-devices with respect to the hardware 
and embedded software aspects. 

The subsequent subsections should provide more detailed explanations of 
the provided building blocks, starting from the bottom, which includes the 
hardware-related units. 

1.7.1 Sensor and interfaces 

Typical IoT end devices include sensors (or actuators) that are connected via 
serial interfaces such as UART, SPI, or I2C to embedded microcontrollers 
running corresponding sensor drivers. More sophisticated devices may fea­
ture camera interfaces for image processing or display interfaces to connect 
displays that provide complex visual feedback to users. Consequently, the 
selection of microcontrollers/processors, sensor interfaces, power supplies, 
and connectors greatly depends on the specific application requirements. 
Designers and engineers must consider these factors when developing either 
a dedicated device or a multipurpose edge AI computing platform. 

1.7.2 AI accelerators 

Compared to pure software solutions, AI hardware accelerators offer better 
computational performance with a lower energy consumption footprint due 
to their parallel architecture. AI accelerators are designed for deep learning 
(DL) neural network computations and machine learning (ML) applications. 



30 Edge AI LoRa Mesh Technologies 

1.7.3 2.4 GHz LoRa and Bluetooth radios 

The integration of 2.4 GHz LoRa and Bluetooth radio technologies can be 
achieved using modules that include their own microcontroller running the 
corresponding protocol stack. Such modules typically offer serial interfaces 
like UART or SPI for configuration, control, and data transfers. While 2.4 
GHz LoRa is primarily used for long-range data exchanges within the appli­
cation, short-range Bluetooth can be used for tasks such as single device 
maintenance and firmware updates. This can be accomplished through smart-
phones, tablets, or other portable computers that have Bluetooth available as 
a standard connectivity service. 

1.7.4 Microcontrollers and microprocessors 

These units are available from various manufacturers, offering a wide range 
of processing capabilities, including single-core and multi-core devices, as 
well as various memory and interface options. Microprocessor systems are 
typically capable of running embedded Linux, providing enhanced flexibility 
in choosing an appropriate programming language with higher abstraction 
and extensive library support. Microcontrollers are more likely to run smaller 
operating systems like FreeRTOS or proprietary ones, often with vary­
ing levels of real-time support and are directly connected to sensors and 
actuators. 

Arm-based architectures with AI/ML-optimised cores support the devel­
opment of lightweight microcontrollers with embedded coprocessing to 
optimise overall processing capability, local analytics, and power consump­
tion. The edge AI methods, techniques, frameworks, and tools enable the 
embedded design to develop, train, optimise and deploy edge AI models on 
microcontroller-based hardware. 

1.7.5 Peripheral driver 

The connection between hardware and software is typically established 
through peripheral drivers. These drivers offer an interface for the higher 
layers of embedded software and ensure secure control and configuration 
of the underlying hardware units. In the case of operating systems like 
Linux, such drivers must adhere to specified interfaces and be implemented 
according to predefined rules. Additionally, in smaller microcontroller­
based systems, similar driver software has been developed for the same 
purpose. 



1.7 Conceptual Edge AI and LoRa Mesh Device Architecture 31 

1.7.6 Operating systems 

An operating system acts as an intermediary between hardware and embed­
ded software applications. It manages and coordinates various hardware 
and software components to provide a stable and efficient environment for 
middleware and application software to run on a device. The choice of 
the operating system is, like hardware selection, significantly dependent 
on application requirements. Furthermore, it must be compatible with the 
selected hardware to support the lower-level peripheral drivers and interfaces. 

1.7.7 Sensor models 

A sensor model is a representation of how a sensor behaves and interacts with 
the environment it is monitoring. The model is a mathematical or computa­
tional description that helps understand and predict the relationship between 
the input (physical quantity being sensed) and the output (measurement or 
signal generated by the sensor). 

Sensor models are used for various purposes, including: 

• Simulation – they can be used to create virtual sensor behaviours in 
software simulations, allowing engineers to test systems before physical 
implementation. 

• Calibration – sensor models help in calibrating real sensors by under­
standing how their measurements correspond to actual physical values. 

• Data Fusion – when multiple sensors are used to gather information, 
their models can help combine and interpret the data accurately. 

• System Design – in designing complex systems, sensor models aid in 
selecting appropriate sensors and understanding their integration. 

• Fault Detection – deviations between actual sensor outputs and model 
predictions can indicate sensor malfunctions. 

Sensor models can be as simple as linear equations or as complex as 
sophisticated computational simulations. They consider various factors that 
affect sensor behaviour, such as noise, sensitivity, non-linearity, temperature 
dependence, and more. By having an accurate model, engineers can improve 
the reliability and accuracy of systems relying on sensor data. 

1.7.8 AI learning and inference 

This building block includes the two fundamental aspects of an AI enabled 
edge device. 



32 Edge AI LoRa Mesh Technologies 

• AI Learning – this is the process in which AI systems gain knowledge 
and insights from data. It employs algorithms to identify patterns and 
learn how inputs relate to desired outputs. There are different types 
of AI learning, including supervised, unsupervised, and reinforcement 
approaches. 

• AI Inference – this is the phase when a trained AI model is used to make 
predictions or decisions based on available data. This is the practical 
application of what the AI system has learned before. 

1.7.9 2.4 GHz LoRa Mesh Protocol Stack 

The LoRa Mesh Protocol Stack encompasses the functionalities to enable 
end-to-end communication within a wireless mesh topology. This includes 
tasks such as neighbour and route discovery, packet forwarding, route adap­
tation and maintenance, device management, and medium access control. 
Additionally, specific metrics and interfaces may be exposed to the embedded 
AI unit, enhancing adaptive routing algorithms through AI-based methods 
and techniques. 

1.7.10 AI applications and services 

This upper layer encompasses specific aspects and services tailored to a 
particular distributed edge AI-enabled application. The associated software 
components within this layer utilize middleware layer components at the 
highest available abstraction level to meet the application’s specific functional 
and non-functional requirements. 

1.8 Challenges and Future Research Directions 

Built-in edge AI and wireless mesh connectivity capability that integrates 
processing units with AI-based capabilities, multiprotocol communication 
wireless modules for real-time monitoring and high-performance micro-
electromechanical systems (MEMS) accelerometer sensors extend the func­
tionalities and features of intelligent edge devices. This facilitates data 
aggregation, integration, and processing. 

Building AI into wireless edge devices and sensors allows edge devices 
to learn and infer. Inference and decision making are performed within the 
edge device based on data collected through its sensors. 



1.8 Challenges and Future Research Directions 33 

Long-range mesh network designs with edge AI capabilities enable effec­
tive monitoring through infrequent data updates communicated over long 
distances. 

The LoRa mesh network can include security mechanisms while main­
taining a low-energy profile for battery-powered edge sensors. 

Lightweight authentication and encryption techniques can avert spoofing 
and provide confidentiality in message exchanges between edge nodes and 
the base station. 

Updates can be performed using GPS-enabled time synchronisation and 
a concurrent transmission property inherent to LoRa. 

An overview of the primary challenges and future research directions 
for edge AI and wireless LoRa mesh connectivity is presented in the next 
paragraphs. 

Various wireless routing protocols, such as AODV, OLSR, DSR and 
RPL, face different challenges depending on the specific characteristics of 
the networks in which they are deployed. The following are some common 
challenges that these protocols frequently encounter: 

• Scalability – all of these protocols need to scale with the increasing 
number of nodes in a network. As the network grows, more routing 
information must be managed and distributed. This can lead to increased 
overhead and longer route discovery times, especially for protocols 
based on proactive topology updates. 

• Mobility – in wireless networks, devices can move frequently or follow 
unpredictable patterns. Protocols must be able to adapt to these changes 
and maintain efficient routes, even for mobile devices. 

• Connectivity – fluctuations and interferences – Wireless networks are 
susceptible to connectivity fluctuations, interferences, and signal atten­
uations. Routing protocols must cope with these variations to provide 
stable and reliable routes. 

• Energy efficiency – energy efficiency is crucial in IoT networks and 
battery-operated devices. Routing protocols should be designed to 
minimise energy consumption and maximise battery life. 

• Security – wireless networks are vulnerable to security threats, such as 
man-in-the-middle attacks and routing manipulation. Routing protocols 
must rely on other mechanisms to secure communication and ensure the 
integrity of routing information. 



34 Edge AI LoRa Mesh Technologies 

• Overhead and latency – routing protocols generate additional overhead 
in the network to distribute and update routing information. This over­
head can reduce the available bandwidth and lead to higher latency and 
increased energy consumption. 

• Complexity – some routing protocols can be complex, especially when 
optimised for specific use cases. The implementation and management 
of such protocols can be challenging. 

• Interoperability – in some cases, wireless networks must communicate 
with different devices and technologies from other vendors or protocols. 
Ensuring interoperability between different protocols can be a challenge. 

It can be a challenge to find the appropriate edge AI learning techniques 
and AI input parameters when combining communication protocols with AI-
based methods at the application level to enhance the overall performance of 
the wireless network itself. 

These challenges are crucial when selecting and implementing a routing 
protocol for a wireless network. The routing protocol must meet the specific 
requirements of the network and the characteristics of the connected devices 
to ensure optimal performance and reliability. 

The challenges for federated learning systems are potentially related to 
wireless communication efficiency, platform and sub-system heterogeneity, 
data heterogeneity, and protection of privacy [41][42][43]: 

• Wireless communication efficiency – federated networks can include 
many edge nodes/devices, and the communication latency in the network 
may be larger than the time for computations carried out locally at 
the edge nodes/devices. As for all wireless networks, bandwidth is 
limited depending on the wireless technology solution used. Efficient 
communication strategies are needed to reduce the size and number 
of messages transmitted, such as the communication rounds constitut­
ing the training cycles, which are typically repeated iteratively until 
the global model converges and the targeted accuracy is achieved. To 
increase communication efficiency, local updates carried out in parallel 
on the nodes/devices for each communication round can reduce the total 
number of communication rounds. The size of messages transmitted can 
be reduced by using model compression methods, such as subsampling 
and quantification, and latency and bandwidth challenges can be reduced 
by decentralised topologies and training. 



1.9 Discussion and Conclusions 35 

• Platform and sub-system heterogeneity – the federated network is a 
heterogeneous system typically without inherent seamless properties. 
The system may be challenged by different communication protocols, 
variations in hardware capabilities (e.g., processor units and memo­
ries) and various restrictions on energy consumption. When many edge 
nodes/devices are included in a system or its sub-systems, node/device 
fault tolerance properties are essential for the case of node loss (e.g., 
communication failure or power limitations) during a training/learning 
iteration. To reduce the possible adverse effects of heterogeneity, parallel 
iterative operations can be facilitated by asynchronous communication, 
and the number of nodes/devices participating in each communica­
tion round for training/learning can be increased and/or selected by 
active node/device sampling to maximise the aggregated node/device 
update within a defined timeframe; the effect of dropout can also 
be reduced/eliminated by implementing fault tolerance solutions that 
facilitate redundancy. 

• Data heterogeneity – the data collected/generated from a potentially 
large number of edge nodes/devices in a federated network may be het­
erogeneous because of differences in populations, samples, and results. 
That is; the data used for modelling and analysing are usually not 
uniformly distributed across the edge nodes/devices, and variations in 
data types, attributes, data labelling, data points and data refresh rates, 
challenge the training/learning processes. Machine learning methods, 
such as meta-learning and multi-task learning, have been extended to 
modelling in federated infrastructure, but they have limitations in terms 
of scalability, robustness, and automation. 

• Protection of privacy – the federated learning approach benefits pri­
vacy by keeping raw data (and possibly derived data) on each edge 
node/device in the federated network. However, sharing model updates 
in the network during the training/learning processes can expose sensi­
tive information to a third party. Modular and differential approaches can 
enhance privacy in a federated infrastructure, but there may be trade-offs 
between privacy and model accuracy. 

1.9 Discussion and Conclusions 

LoRa is a wireless communication technology used in low-power, long-
range communication applications. It provides low data rates to meet the 



36 Edge AI LoRa Mesh Technologies 

requirements of remote edge nodes, which periodically send small amounts 
of sensor data. The architecture of LoRaWAN builds on a star topology 
that creates a single hop between an edge node (sensor IoT node) and the 
gateway. LoRa mesh networks are available for various applications that 
cannot be sufficiently managed by LoRaWAN architecture. The work in 
[32] has demonstrated that LoRaWAN applications can be extended using 
multi-hop LoRa, in which intermediate nodes can operate as repeaters that 
broadcast traffic to other LoRa nodes to reach a gateway. 

The advantage of a LoRa mesh network is that the network coverage area 
can be expanded without adding more base stations. Furthermore, mesh net­
works combined with LoRa technology and AI-based techniques for routing 
optimisation can bring advantages to the application of the wireless sensor 
network in terms of improving the coverage area and promoting low power 
consumption. 

Different wireless technologies, such as ZigBee, Z-Wave, BLE, Wi-SUN 
and Wi-Fi, use mesh topologies in which each device can be a router relaying 
the packet of the other devices to the end node. The main difference between 
LoRa and these other technologies is the ability for long-range transmission. 
This advantage can assist in expanding the network model without the need 
for additional base stations. In addition, low bandwidth makes LoRa resistant 
to channel noise, long-term relative frequency drift, Doppler effects and 
fading. 

The key parameters used to configure the LoRa radio module are the 
modulation method, frequency range, bandwidth (BW), spreading factor 
(SF), coding rate (CR) and transmission power (TP). Artificial intelligence-
based ML methods applied to LoRa and LoRaWAN for efficient resource 
management (e.g., BW, SF, CR and TP) can enhance LoRaWAN network 
performance and efficiency. 

Edge AI solutions can be used in the processing modules of IoT devices 
that transmit information packets via the LoRa mesh network. 

As the communication bandwidth of a LoRa link is low, performing ML 
on the IoT device allows for sending classification results rather than sending 
a higher amount of raw sensor data for remote classification. This saves the 
bandwidth of the low-capacity LoRa communication link. 

Communication in a LoRa mesh network must adopt bandwidth-saving 
strategies, considering the duty cycle limitations of sub-GHz LoRa. Long 
range lacks packet delivery guarantees; for instance, using federated learning 
will require additional protocols for reliable messaging. 



1.9 Discussion and Conclusions 37 

Depending on the setup and operational conditions, messages in a LoRa 
mesh network are also delivered with delays, excluding applications with 
strict real-time requirements. Consequently, distributed intelligence within 
a LoRa mesh network must determine the trade-off between using local 
computation and using communication resources. In these cases, there is a 
need for network integration of the LoRa mesh layer with the internet in 
full-stack edge IoT applications. 

Long-range mesh networks and ML techniques deployed on edge IoT 
nodes can become communication substrates for building distributed intelli­
gence with tiny edge nodes. The application can be extended using federated 
ML over LoRa communication, which is performed by embedded devices at 
the IoT layer. 

Long-range mesh topology combined with intelligent gateways, AI-based 
routing optimisation and ML algorithms implemented in the processing nodes 
can be used for applications, such as intelligent lighting systems that provide 
extended coverage with limited data rates. Compared with other protocols for 
controlling large numbers of light devices, this technology can be suitable for 
lighting control. 

In addition, the presented technologies can offer several benefits that con­
tribute to the improved efficiency, scalability, and reliability of agricultural 
sensor systems. Sensors placed further from the central control point can still 
communicate through intermediate nodes, extending the coverage range of 
the overall network. 

Mesh networks are self-healing, meaning that if one sensor node fails 
or is disrupted, the network can dynamically reroute data through alternative 
paths. This is an important feature, for example, in agriculture, in which envi­
ronmental factors, such as weather, crop growth and equipment malfunctions, 
can temporarily disrupt communication. Sensor nodes equipped with edge 
AI functionality can detect or even predict such situations to improve system 
reliability and maintainability and, as a result, reduce costs. 

Mesh networks can easily accommodate the addition of new sensor 
nodes without requiring significant infrastructure changes. This scalability is 
crucial, for example, in agriculture, in which the number of sensors might 
need to increase as the plantation expands or as new monitoring needs 
arise. 

Communication through intermediate nodes alleviates the requirement 
for additional infrastructure components, thereby decreasing overall system 
costs. Moreover, agricultural sensor nodes frequently function in areas that 
are remote or difficult to reach, underscoring the importance of battery 



38 Edge AI LoRa Mesh Technologies 

life. Leveraging low-power mesh protocols enables sensors to operate for 
extended durations without frequent battery replacements. 

Acknowledgements 

This research was conducted as part of the EdgeAI “Edge AI Technologies for 
Optimised Performance Embedded Processing” project, which has received 
funding from KDT JU under grant agreement No 101097300. The KDT 
JU receives support from the European Union’s Horizon Europe research 
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia, 
Luxembourg, Netherlands, and Norway. 

The authors thank Fetze Pijlman and Jean-Paul Linnartz from Signify and 
the Eindhoven University of Technology, the Netherlands, for all their careful, 
constructive, and insightful comments and feedback about this work. 

References 

[1] LoRa (PHY). SEMTECH. Available at: https://www.semtech.com/lora 
/what-is-lora 

[2] LoRa Alliance. https://lora-alliance.org/ 
[3] Semtech. Semtech SX128x Long Range Datasheet. 2019. Available 

online: https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/ 
2R000000HVET/HfcgiChyabtiPTh6EjcDM6ZEwAOQV7IirEmRULg 
ggMM 

[4] Semtech. Application Note: Ranging with the SX1280 Transceiver. 
2017. Available online: https://semtech.my.salesforce.com/sfc/p/#E 
0000000JelG/a/2R000000HVET/HfcgiChyabtiPTh6EjcDM6ZEwAO 
QV7IirEmRULgggMM 

[5] OpenThread. Available online: https://openthread.io/ 
[6] Thread. Available online: Available online: https://www.threadgroup.or 

g/ 
[7] ZigBee Mesh Network. Available online: https://www.emcu-homeaut 

omation.org/zigbee-mesh-network-ver-3-introduction/ 
[8] Zigbee. The Full-Stack Solution for All Smart Devices. Connectivity 

Standards Alliance. Available online: https://csa-iot.org/all-solutions/zi 
gbee/ 

[9] G. R. Hiertz et al., “IEEE 802.11s: The WLAN Mesh Standard,” in IEEE 
Wireless Communications, vol. 17, no. 1, pp. 104-111, February 2010, 
doi: 10.1109/MWC.2010.5416357. 

https://www.csa-iot.org
https://www.emcu-homeautomation.org
https://www.threadgroup.org
https://www.openthread.io
https://www.semtech.my.salesforce.com
https://www.semtech.my.salesforce.com
https://www.lora-alliance.org
https://www.semtech.com
https://www.semtech.com
https://www.semtech.my.salesforce.com
https://www.semtech.my.salesforce.com
https://www.semtech.my.salesforce.com
https://www.semtech.my.salesforce.com
https://www.emcu-homeautomation.org
https://www.csa-iot.org
https://www.doi.org/10.1109/MWC.2010.5416357


References 39 

[10] B.A.T.M.A.N. protocol concept. Available online: https://www.open-m 
esh.org/projects/open-mesh/wiki/BATMANConcept 

[11] D. Johnson, N. Ntlatlapa, and C. Aichele, Simple pragmatic approach 
to mesh routing using BATMAN. 2nd IFIP International Symposium on 
Wireless Communications and Information Technology in Developing 
Countries, CSIR, Pretoria, South Africa, 6-7 October, pp 10, 2008. 
Available at: http://hdl.handle.net/10204/3035 

[12] S.M. Darroudi, and C. Gomez, Bluetooth low energy mesh networks: A 
survey. Sensors, 17(7), p.1467, 2017. Available at: https://doi.org/10.3 
390/s17071467 

[13] R. Heydon, and N. Hunn, Bluetooth low energy. In CSR Presentation, 
Bluetooth SIG. 2012. Available at: https://www.Bluetooth.Org/DocM 
an/handlers/DownloadDoc.Ashx 

[14] H. S. Kim, S. Kumar,	 and D. E. Culler, “Thread/Open thread: A 
compromise in low-power wireless multihop network architecture for 
the internet of things,” IEEE Communications Magazine, vol.57, no.7, 
pp.55-61, 2019. Available at: https://par.nsf.gov/servlets/purl/10136090 

[15] S.C. Ergen, ZigBee/IEEE 802.15. 4 Summary. UC Berkeley, September, 
10(17), p.11, 2004. Available at: http://users.eecs.northwestern.edu/~p 
eters/references/ZigtbeeIEEE802.pdf 

[16] P. Lech, P. Włodarski, Analysis of the IoT WiFi Mesh Network. In: R. 
Silhavy, R. Senkerik, Z. Kominkova, Z. Oplatkova, Z. Prokopova, P. 
Silhavy, (eds) Cybernetics and Mathematics Applications in Intelligent 
Systems. CSOC 2017. Advances in Intelligent Systems and Computing, 
vol 574. Springer, Cham, 2017. Available at: https://doi.org/10.1007/97 
8-3-319-57264-2_28 

[17] W. S. Conner “IEEE 802.11 TGs Functional Requirements and Scope,” 
IEEE802.11- 04/1174r13, Jan. 2005. 

[18] H. Harada, K. Mizutani, J. Fujiwara, K. Mochizuki, K. Obata, and R. 
Okumura, IEEE 802.15. 4g based Wi-SUN communication systems. 
IEICE Transactions on Communications, 100(7), pp.1032-1043, 2017. 
Available at: https://www.jstage.jst.go.jp/article/transcom/E100.B/7/E 
100.B_2016SCI0002/_pdf/-char/en 

[19] S. M. Hassan, R. Ibrahim, K. Bingi, T. D. Chung, N. Saad, Application 
of Wireless Technology for Control: A WirelessHART Perspective, 
Procedia Computer Science, Volume 105, pp. 240-247, 2017. ISSN 
1877-0509. Available at: https://doi.org/10.1016/j.procs.2017.01.217 

[20] J. Song, S. Han, A., Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt, 
WirelessHART: Applying wireless technology in real-time industrial 

https://www.doi.org/10.1016/j.procs.2017.01.217
https://www.jstage.jst.go.jp
https://www.doi.org/10.1007/978-3-319-57264-2_28
http://www.users.eecs.northwestern.edu
https://www.par.nsf.gov
https://www.Bluetooth.Org
https://www.doi.org/10.3390/s17071467
http://www.hdl.handle.net
https://www.open-mesh.org
https://www.open-mesh.org
https://www.doi.org/10.3390/s17071467
https://www.Bluetooth.Org
http://www.users.eecs.northwestern.edu
https://www.doi.org/10.1007/978-3-319-57264-2_28
https://www.jstage.jst.go.jp


40	 Edge AI LoRa Mesh Technologies 

process control. In 2008 IEEE Real-Time and Embedded Technology 
and Applications Symposium, pp. 377-386, April 2008. Available at: 
https://www.cecs.uci.edu/~papers/cpsweek08/papers/rtas08/9B.pdf 

[21] A. Saifullah, Y. Xu, C. Lu and Y. Chen, “Real-Time Scheduling for 
WirelessHART Networks,” 2010 31st IEEE Real-Time Systems Sym­
posium, San Diego, CA, USA, 2010, pp. 150-159. Available at: https: 
//doi.org/10.1109/RTSS.2010.41 

[22] T.	 Lennvall, S. Svensson and F. Hekland, “A comparison of Wire­
lessHART and ZigBee for industrial applications,” 2008 IEEE Interna­
tional Workshop on Factory Communication Systems, Dresden, Ger­
many, 2008, pp. 85-88. Available at: https://doi.org/10.1109/WFCS.200 
8.4638746 

[23] P.A.M. Devan, F.A. Hussin, R. Ibrahim, K. Bingi, F. A. Khanday, A 
Survey on the Application of WirelessHART for Industrial Process 
Monitoring and Control. Sensors 2021, 21, 4951. Available at: https: 
//doi.org/10.3390/s21154951 

[24] S. J. Danbatta and A. Varol, “Comparison of Zigbee, Z-Wave, Wi-
Fi, and Bluetooth Wireless Technologies Used in Home Automation,” 
2019 7th International Symposium on Digital Forensics and Security 
(ISDFS), Barcelos, Portugal, 2019, pp. 1-5. Available at: https://doi.or 
g/10.1109/ISDFS.2019.8757472 

[25] M. Lilli, C. Braghin, and E. Riccobene, Formal Proof of	 a Vul­
nerability in Z-Wave IoT Protocol. In Proceedings of the 18th 
International Conference on Security and Cryptography (SECRYPT 
2021), pages 198-209, 2021. ISBN: 978-989-758-524-1. doi: 10.5220/ 
0010553301980209. Available at: https://www.scitepress.org/Papers/20 
21/105533/105533.pdf 

[26] Z-Wave Alliance. Available at: https://z-wavealliance.org/ 
[27] J. Olsson, 6LoWPAN demystified. Available at: https://www.ti.com/lit 

/wp/swry013/swry013.pdf?ts=1691185461616&ref_url=https%253A% 
252F%252Fwww.google.com%252F 

[28] G.	 Mulligan, The 6LoWPAN architecture. EmNets ’07: Proceed­
ings of the 4th workshop on Embedded networked sensors, June 
2007, pp. 78–82, 2007. Available at: https://doi.org/10.1145/1278972. 
1278992 

[29] A.	 Tønnesen, Implementing and Extending the Optimized Link 
State Routing Protocol, 2004. Available at: http://www.olsr.org/doc 
s/report.pdf 

http://www.olsr.org
https://www.doi.org/10.1145/12789721278992
https://www.ti.com
https://www.z-wavealliance.org
https://www.scitepress.org
https://www.doi.org/10.1109/ISDFS.2019.8757472
https://www.doi.org/10.1109/WFCS.2008.4638746
https://www.cecs.uci.edu
https://www.doi.org/10.1109/RTSS.2010.41
https://www.doi.org/10.1109/RTSS.2010.41
https://www.doi.org/10.1109/WFCS.2008.4638746
https://www.doi.org/10.3390/s21154951
https://www.doi.org/10.3390/s21154951
https://www.doi.org/10.1109/ISDFS.2019.8757472
https://www.scitepress.org
https://www.ti.com
https://www.ti.com
https://www.doi.org/10.1145/12789721278992
http://www.olsr.org
https://www.doi.org/10.5220/ 0010553301980209
https://www.doi.org/10.5220/ 0010553301980209


References 41 

[30] T.	 Clausen, and P. Jacquet, Optimized Link State Routing Protocol 
(OLSR), Oktober 2003. Available at: https://datatracker.ietf.org/doc 
/html/rfc3626 

[31] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. 
Viennot, Optimized link state routing protocol for ad hoc networks, 
2001. Available at: https://ieeexplore.ieee.org/document/995315 

[32] J.R. Cotrim, and J.H. Kleinschmidt, “LoRaWAN mesh networks: A 
review and classification of multihop communication”, Sensors, 20 (15) 
(2020). Available at: https://www.mdpi.com/1424-8220/20/15/4273 

[33] J. Wang, M. Abolhasan, D. R. Franklin, and F. Safaei, OLSR-R∧3: Opti­
mised link state routing with reactive route recovery, 2009. Available at: 
https://ro.uow.edu.au/cgi/viewcontent.cgi?referer=&httpsredir=1&artic 
le=1791&context=infopapers 

[34] C.E. Perkins and E.M. Royer, Ad hoc On Demand Distance Vector 
(AODV) Routing, 1999. Available at: https://ebelding.cs.ucsb.edu/s 
ites/default/files/publications/wmcsa99.pdf 

[35] C. Perkins, E. Belding-Royer, and S. Das, Ad hoc On-Demand Distance 
Vector (AODV) Routing, July 2003. Available at: https://datatracker.ie 
tf.org/doc/html/rfc3561 

[36] D. Johnson, D. Maltz, and J. Broch, DSR: The Dynamic Source Routing 
Protocol for Multi-Hop Wireless Ad Hoc Networks. Available at: https: 
//cs.brown.edu/courses/cs295-1/dsr-chapter00.pdf 

[37] D. Johnson, Y. Hu, and D. Maltz, The Dynamic Source Routing Protocol 
(DSR) for Mobile Ad Hoc Networks for IPv4, 2007. Available at: https: 
//datatracker.ietf.org/doc/html/rfc4728 

[38] O. Iova, G. P.	 Picco, T. Istomin, and C. Kiraly, RPL, the Routing 
Standard for the Internet of Things . . . Or Is It?, 2017, Available at: 
https://hal.science/hal-01647152/document 

[39] T. Tsvetko. RPL: IPv6 routing protocol for low power and lossy net­
works. Sensor nodes–operation, network and application (SN), 2011, 
59. Jg., Nr. 2. Available at: https://citeseerx.ist.psu.edu/document?repid 
=rep1&type=pdf&doi=59b65811b94ba2162a9083744aef83fe09d381b 
0#page=67 

[40] T. Winter, and P. Thubert, RPL: IPv6 routing protocol for low-power 
and lossy networks, 2012. Available at: https://datatracker.ietf.org/doc 
/html/rfc6550 

[41] Li, T., Sahu, A. K., Talwalker, A., and Smith, V. “Federated Learning: 
Challenges, Methods, and Future Directions,” 2019. Available at: https: 
//arxiv.org/pdf/1908.07873.pdf 

https://www.datatracker.ietf.org
https://www.citeseerx.ist.psu.edu
https://www.hal.science
https://www.datatracker.ietf.org
https://www.ebelding.cs.ucsb.edu
https://www.ro.uow.edu.au
https://www.mdpi.com
https://www.ieeexplore.ieee.org
https://www.datatracker.ietf.org
https://www.datatracker.ietf.org
https://www.ro.uow.edu.au
https://www.ebelding.cs.ucsb.edu
https://www.datatracker.ietf.org
https://www.cs.brown.edu
https://www.cs.brown.edu
https://www.datatracker.ietf.org
https://www.datatracker.ietf.org
https://www.citeseerx.ist.psu.edu
https://www.citeseerx.ist.psu.edu
https://www.datatracker.ietf.org
https://www.arxiv.org


42 Edge AI LoRa Mesh Technologies 

[42] Iqbal, Z. and Chan, H.Y. “Concepts, Key Challenges and Open Prob­
lems of federated learning,” International Journal of Engineering, 2021. 
Available at: https://www.ije.ir/article_132537.html 

[43] Almanifi, O. R. A., Chow, C-O., Tham, M-L., Chuah, J. H.m and 
Kanesan, J. “Communication and computation efficiency in federated 
Learning: A survey,” Elsevier, ScienceDirect, Internet of Things, Vol­
ume 22, 2023. Available at: https://www.sciencedirect.com/science/arti 
cle/pii/S2542660523000653 

https://www.sciencedirect.com
https://www.ije.ir
https://www.sciencedirect.com


2
 
Edge AI Lifecycle Management
 

Dinu Purice1, Francesco Barchi2, Thorsten Röder1, and Claus Lenz1 

1Cognition Factory GmbH, Germany 
2Universita di Bologna, Italy 

Abstract 

This chapter aims to define and interpret phases of the AI Lifecycle for 
Edge AI applications. We highlight common pitfalls that can arise when 
developing and maintaining AI models at the edge and outline best practices 
that are recognized in academia and industry, with the goal of developing 
a well-established taxonomy and pipeline for the lifecycle of Edge AI. We 
lay out that edge-based AI is seen as a natural extension of the cloud-based 
AI paradigm, solving problems related to real-time responsiveness, privacy, 
and independent operation closer to the source of the data. The challenges 
of edge-use cases are summarized, including limited network access, limited 
computational resources, and the need for customised deployment and main­
tenance procedures. 

Keywords: machine learning (ML), software development lifecycle (SDLC), 
system-on-a-chip (SoC), deep learning (DL), dataset curation, edge AI, 
cloud-centric AI, model compression, deployment, monitoring, continuous 
learning, edge hardware. 

2.1 Introduction and Background 

In an ever more digital world, AI-based solutions have proven to be a driving 
force that is reshaping industries at an unprecedented pace. As artificial 
neural network architectures are growing, cloud-centred AI is a feasible 

43
 
This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-2 



44 Edge AI Lifecycle Management 

approach to deal with increasing computational requirements as no dedicated 
hardware is required and cloud-based systems can scale with application 
demands. This also unlocked the potential of AI-based solutions in industrial 
applications, followed by a continuous adoption of such technologies. Certain 
applications such as autonomous driving, financial trading, and healthcare 
monitoring. impose strict latency and availability requirements, which, cou­
pled with concerns of data privacy and bandwidth availability, result in a 
set of requirements that cloud computing is unable to satisfy. Incorporating 
local data processing can be the key to achieving fast response and real-
time latency, decoupled from the inherent delays arising from device-to-cloud 
communication. It enables decentralized solutions capable of inferring off­
line, increasing service availability while lowering bandwidth and power 
requirements. In addition, it improves data privacy. By delegating compu­
tation closer to the edge, relevant features can be extracted, and private ones 
obfuscated before any data gets transferred over a network. This also reduces 
the size of data transfers, further easing the requirements on the network 
infrastructure of the overall solution. 

EdgeAI refers to the practice of doing AI computations near the users at 
the networks edge instead of centralised locations [1], and in this context, 
becomes a natural extension of the cloud-centric paradigm, enabling the 
transfer of computations closer to the data acquisition source [2]. The EdgeAI 
computing market was estimated at $9 bn in 2020, with projections to reach 
$59.6 bn by 2030 [3]. Following this definition, the term edge device can 
describe both computation nodes between the edge and the Cloud (referred 
to as fog computing)[4], and lightweight processing units coupled with the 
sensors acquiring the data. The second type, further referred to as low-
powered devices, includes field-programable gate arrays (FPGAs), tensor 
processing units (TPUs), media processing engines (MPE), as well as other 
processing units. 

The main areas of applications of EdgeAI are among security, mobile net­
works, healthcare, voice and image analysis [5]. The list of tools and devices 
is constantly expanding as use-cases including predictive maintenance in 
industrial environments: sensors for predicting asset deprecation and main­
tenance timeline of production chains. Developments and innovations in the 
field of Edge AI happen both for software and hardware hand in hand, driven 
by the need for specialised frameworks for low-powered devices that cannot 
make use of containers and virtualisation typical of Cloud-based solutions. 
This enables a large variety of available solutions, of diverse complexity and 
computational power. On the other hand, the migration of existing Machine 



2.1 Introduction and Background 45 

Learning (ML) algorithms to the edge faces significant challenges due to the 
limited hardware capabilities associated with low-powered devices. 

Various techniques of compression, enabling coping with the reduced 
hardware capabilities are an active subject of research. Most notable among 
compression techniques are pruning-based [6], which decreases the size 
and complexity of trained model by eliminating non-contributing compo­
nents (weight, neuron, channel, filter) with minimal impact on accuracy and 
quantization-based [7], which reduce inference complexity by switching 
from the standard float-32 representation to more bit-conservative ones. 

Within this chapter we define the stages of the Edge AI Lifecycle by 
augmenting the well-established Software Development Life Cycle (SDLC) 
with ML and edge-specific processes and stages. 

For convenience, all phases are grouped into three stages: (I) Pre-
Development, (II) Development, and (III) Production. It should be noted 
that, like the SDLC case, phases in the Edge AI Lifecycle can overlap and 
cycle back. An overview of the flow of the Edge AI Lifecycle is presented in 
Figure 2.1 with examples of frameworks used at each stage. 

Starting with the first phase in the Lifecycle of any software solution 
is the requirement formulation phase, which includes functional and non­
functional requirements. Based on these, we introduce the ML methodology 
planning phase, which includes data planning (describing the type of data and 
availability of labels to be used for training, validation, testing) as well as the 
choice of software frameworks and ML methodologies. A difference between 
the Cloud-centric approach and the edge approach, is the addition of a third 
component in the ML planning phase, namely the selection of inference hard­
ware. Typically, in the case of Cloud-based solutions, the developed solution 
enters the deployment phase completely virtualized, and able to be deployed 
on any of the typical Cloud hardware, customisable within a few clicks on 
established platforms such as AWS. This is not the case for edge solutions, 
when the choice of hardware imposes restrictions on the software frameworks 
to be used, and on data formats. In the Edge use-case this step contains three 
intertwined components which impose limitations on each other. Following 
this phase, along with the dataset assembly phase, is the Development stage, 
consisting of the training, validation, evaluation, and optimisation phases. 
The conceptual difference between validation and evaluation is that validation 
chooses the best performing model of the many trained, while evaluation is 
used to obtain a representative estimate of its performance on unseen data. 
Following that, the optimisation stage then simplifies the obtained model 
while ensuring the accuracy does not drop below the specified requirements, 



46 Edge AI Lifecycle Management 

Figure 2.1 AI Lifecycle Stages Overview. 

and depending on the techniques used can sometimes partially overlap with 
the training phase. Finally, the Production stage encompasses the deploy­
ment, operation, and maintenance phases. The following subchapters address 
each of the stages defined above and elaborate on the good practices and 
common pitfalls recognized within academic and industrial environments, 
with the goal of pushing towards an openly standardized approach to Edge 
AI development and deployment. 

2.2 Pre-development 

We define the Pre-Development stage as encompassing the definition and 
planning of the ML solution and associated hardware for inference, along 
with the assembly of the corresponding dataset. 



2.2 Pre-development 47 

The definition phase includes problem formulation, which represents 
the process of translating the real-world problem into a format that can be 
solved by a machine. For the planning phase, we introduced three intertwined 
categories in the previous sub-chapter: hardware, software, and data. To better 
understand the interaction between the three categories, we depart from the 
relationship between data types and machine learning algorithms capable 
of processing each type. Based on the problem statement, the type of data 
and the scope of the ML algorithms, several learning paradigms can be 
distinguished, as outlined in Table 2.1. 

Each type of learning is equipped to handle different types of tasks, 
with their own requirements in terms of data and annotations. Unsupervised 
learning for example, being used mostly for extracting insights from large 
datasets with no labels, is rarely deployed to the edge. Typical edge use-cases 
refer instead to supervised (or semi-supervised, depending on the availability 
of labels for the data) or reinforcement learning. Every type of learning can 
in turn be further decomposed into different types of tasks. For example, 
a classification task can be formulated as binary classification, multiclass 
classification, or multi-label classification. A segmentation problem, very 
common in computer vision tasks, can be treated either as semantic seg­
mentation (pixel-wise segmentation into foreground and background), or 
instance segmentation (different objects of the same class receiving distinct 
labels of the same class). Different formulations entail different labelling 
effort requirements. For example, although instance segmentation outputs 

Table 2.1 Types of Learning and corresponding tasks 
Type of 
Learning 

Explanation Application tasks 

Supervised Learning a function that maps an Classification, Regression, 
input to an output based on sample Semantic Segmentation, 
input-output pairs (labelled data) Instance Segmentation 

Unsupervised Analyses unlabelled datasets with- Feature Extraction, Trend 
out the need for human labelling identification, Clustering, 
(data-driven) Principal Component Analysis 

Semi- Represents a combination of the Can be used to tackle both 
supervised above two types, typically used in supervised and unsupervised 

dealing with a partially labelled type tasks 
dataset 

Reinforcement Attempts to evaluate the optimal Robotics, Autonomous Driving, 
behaviour in a particular context or Natural Language Processing 
environment, based on reward or 
penalty. 



48 Edge AI Lifecycle Management 

a detailed mask covering all pixels belonging to an instance of the object 
of the given class, in some applications a separation between foreground 
and background would suffice, significantly cutting the time required for 
labelling. It is recommended to choose the simplest problem formulation 
type which satisfies the task requirements, with the goal of minimising the 
resource requirement to prepare the dataset. 

Dataset Formulation 

The goal of the dataset preparation phase to create a set of data that is 
representative of the intended use-case, with sufficient examples to provide 
the developed neural network model with enough space during training for 
generalisation and identification of relevant features. It represents a critical 
stage which might make the production of a high accuracy model an impos­
sible task, or more difficult than it needs to be. Hence, the right domain 
knowledge is required. Domain knowledge refers to the general background 
knowledge of the field or environment from which the data originates. It is 
particularly important for identifying outliers and non-representative data-
points, detecting biases, and proposing attribute sampling methods, to reduce 
the non-informative data in the set. Equally important, domain knowledge is 
required for the formulation of data labelling guidelines, which help to ensure 
that the dataset is consistently annotated even if the annotation process is done 
by multiple experts as annotation variability must be kept to a minimum. 
Furthermore, to better combat the possibility of human error, data labelling 
by multiple experts in parallel can be an effective, albeit costly, solution. One 
common pitfall arising from insufficient data analysis and lack of domain 
knowledge during the pre-development stage is concept drift [8]. It refers to 
unforeseen changes in the relation between input and output data that are left 
unaccounted for. An example of concept drift is the shift in relation that might 
occur due to seasonal conditions e.g. summer to winter. Based on the nature 
of the change of the statistical properties of the predicted variable, the drift 
can be sudden, gradual, incremental, or  periodic. The dangers of concept 
drift are amplified by the fact that its negative impacts on the accuracy are 
not detectable during training, and only become apparent during production, 
manifesting as degraded performance of the deployed solution. More on 
the detection and combating of concept drift is presented in the Production 
sub-chapter. 

Data augmentation represents the process of “artificially” increasing 
a dataset by modifying copies of existing datapoints (augmentation) or  



2.3 Development 49 

synthetically generating new ones using the existing dataset (synthetic). 
Although typically used to expand datasets which have high costs of labelling, 
data augmentation techniques are also useful as an additional regularization 
factor, and to combat overfitting during training [9]. Another non-trivial 
use of data augmentation is to create datasets out of private data, when 
augmentation is used to obfuscate private features. Data augmentation can 
be counter-productive in cases with data bias, as the inherent bias in the data 
persists (and can be amplified) in the augmented dataset. Data bias describes 
the effect of over-representing certain elements in the dataset. It leads to 
models trained on it ending up “lazy”, i.e. biased to predict the majority class. 

There are multiple techniques of addressing the bias inherent in the 
data, at various stages of the AI Lifecycle. During pre-development, bias-
compensating strategies include re-weighting and re-sampling the data, such 
that the dominating class becomes under-sampled. To further improve the 
generalisation capabilities and convergence of the developed model, it is 
recommended to make use of statistical rescaling techniques, such as nor­
malisation and standardisation. Normalisation rescales the data to a [0,1] 
interval, and should be used when the distribution of the expected real-world 
data is unknown, while standardisation rescales the data such that the mean 
becomes zero and the standard deviation becomes one. It should be used when 
it can be assumed that the expected data follows a Gaussian distribution. 
Such techniques are helpful with improving the convergence speed during 
training, and with the regularisation of model weights. Before proceeding 
to Development, the dataset is split into training, validation, and test subsets. 
Most common split ratios include 60-80% for training, 10-20% for validation, 
and 10-20% for testing. While the train and validation subsets are actively 
used in the Development stage, the purpose of the test subset is to give 
an estimate of the performance of the resulting model on unseen data and 
should therefore only used for computing a final quality metric once the best 
performing model on the validation set is selected. 

2.3 Development 

In the domain of Edge AI, the development of lightweight neural network 
architectures has gained substantial importance. This is primarily driven 
by the increasing demand for precise and resource-efficient Deep Neural 
Networks (DNNs), especially in scenarios where these networks need to 
operate on resource-constrained edge computing devices. The development 
stage represents the most computationally intensive phase during which the 



50 Edge AI Lifecycle Management 

network model is created, trained, evaluated, and optimised. At this stage 
in particular, comprehensive documentation is needed to record every step 
of model development, including weight initialisation and random number 
generator seed, to ensure the reproducibility and transparency of the process. 
Development is usually conducted in the Cloud or on-premise servers, where 
sufficient computational resources are available. This sub-chapter will pro­
vide a brief overview of state-of-the-art methodologies used for architecture 
design and training, as well as techniques for model compression and optimi­
sation. Additionally, an overview of state-of-the-art hardware used for edge 
applications will be presented. 

Model architecture development and training phase 

Training phase represents the iterative process of exposing the neural network 
model to the dataset, enabling it to learn and adjusting its weights and 
biases, also known as model parameters, such that the accuracy of the model, 
measured on the train set (also referred to as fitting accuracy) increases. The 
process starts with model initialisation, during which the model parameters 
are either randomly initialised or pre-set in case of a pre-trained network, as 
well as with the selection of a hyperparameter set. The term hyperparameters 
refers to a broad set of choices made prior to the network training phase, 
and include design decisions of the network architecture (number of layers, 
neurons, filters, etc), learning rate, activation functions, optimisation algo­
rithm, etc. The difference between model parameters and hyperparameters 
is that the first refers to the weights of the model trained through backprop­
agation applied on the model’s loss function, while hyperparameters refer 
to top-level parameters controlling the learning process. Picking the right 
hyperparameters is not a straightforward process, and a sub-optimal choice 
would negatively influence the convergence of model training, as well as 
the resulting overall accuracy. The activity to identify suitable hyperparam­
eters for DNN models within reasonable timeframes for novel applications 
has necessitated the adoption of automated pipelines. Trivial techniques for 
hyperparameter optimisation include manual search, grid search, and random 
search. These involve the launch of multiple experiments (i.e. independent 
training processes) with manually, grid-based, or randomly selected hyper-
parameters out of the set of possible values, which are then tried either 
sequentially or in parallel. The efficacy of each is then evaluated based on the 
performance of the model on the validation dataset, during or after training. 
Such methods do not guarantee that the optimal solution is found and are 



2.3 Development 51 

expensive in terms of computational resources and time. Due to the sheer 
complexity of manually exploring an extensive array of hyperparameter com­
binations, there has been a growing need for derivative network architecture 
search technologies. To this extent, more informed searching methods have 
been developed, such as Evolutionary and Population-based Optimisation 
[10]. These methods are adaptive, meaning they stop experiments in which 
the choice of hyper-parameters has proven to be sub-optimal, as measured 
by a user-defined fitness function. The terminated experiments are then 
replaced by new instances with hyperparameter sets derived from the more 
promising experiments. Such approaches are very efficient at minimising 
the training time and the hardware resources consumed compared to the 
previously mentioned classical search methods, and in addition provide a 
more exhaustive search over the hyperparameter space. Frameworks like Ray 
Tune, Optuna, and Hyperopt provide implementations for hyperparameter 
optimisation, and are compatible with most common ML frameworks such 
as PyTorch, TensorFlow, and Keras. 

Another approach to hyperparameter optimisation is given by Neural 
Architecture Search (NAS) algorithms, which exhibit the capacity to optimize 
a diverse range of functions, encompassing both precision and complexity 
considerations, within a discrete search space. These algorithms have a con­
siderable drawback due to the challenging evaluation step. Indeed, evaluating 
a sampled DNN necessitates a computationally intensive full training process. 

Figure 2.2 Overview of hyper-parameter training methodologies [10] illustrating (a) sequen­
tial optimisation; (b) parallel optimisation; (c) adaptive optimisation. 



52 Edge AI Lifecycle Management 

To alleviate this computational load, different techniques have been devel­
oped, such as the usage of reduced datasets, look-up tables and approximation 
of models to estimate cost-related metrics (memory occupancy, latency, 
energy consumption). Differential Neural Architecture Search (DNAS) repre­
sents a pivotal advancement in the realm of NAS, markedly reducing the time 
required for optimization. This reduction is achieved by transitioning from a 
discrete search space to a continuous one, rendering the problem addressable 
using gradient-descent optimization techniques. The central idea of DNAS 
revolves around the definition of a set of architectural parameters able to 
encode the selection of a DNN architecture from the search space. DNAS 
jointly optimizes these architectural parameters alongside the weights of the 
neural networks. This amalgamation of architectural parameter optimization 
and weight training within a continuous search space contributes to the 
accelerated optimization of DNN architectures, making DNAS a promising 
approach to exploring efficient and effective neural network design. 

“[11] introduces DARTS Differentiable Architecture Search”, addressing 
the challenges associated with scalability in architecture search. DARTS 
introduces the DNAS concept, framing architecture search as a differentiable 
problem. Through the continuous relaxation of architectural representations, 
DARTS enables accelerated search processes employing gradient descent 
techniques, significantly reducing search time. Extensive experiments have 
been conducted on diverse datasets, including CIFAR-10 and ImageNet, 
showing DARTS exceptional ability to uncover high-performance convo­
lutional and recurrent architectures tailored specifically for image classi­
fication and language modelling tasks. This goal is especially relevant in 
a domain where optimized network architectures, capable of accommo­
dating the constraints of edge devices, hold considerable importance, thus 
contributing to the advancement of EdgeAI model development. In [12], 
the researchers acknowledge the escalating demand for DNN models that 
strike a balance between precision and operational efficiency, a require­
ment in the context of edge computing. PLiNIO, is an open-source library 
that consolidates a comprehensive set of cutting-edge DNN design automa­
tion techniques into a user-friendly interface. These techniques, rooted in 
lightweight gradient-based optimization, simplify the intricacies of DNN 
development for edge applications. Through empirical assessments con­
ducted on tasks pertinent to edge computing, the study demonstrates that 
PLiNIO yields many DNN solutions that surpass baseline models in respect 



2.3 Development 53 

of the delicate trade-off between accuracy and model size. It is worth noting 
that PLiNIO exhibits remarkable memory reductions, up to 94.34%, while 
maintaining accuracy levels, underscoring its pivotal role in EdgeAI model 
development. 

In summary, derivative network architecture search technology, exempli­
fied by pioneering frameworks such as DARTS, is pivotal in the EdgeAI 
model development. These innovative approaches make the optimization 
process more efficient, allowing us to navigate the complex landscape of 
hyper-parameter configurations and unveil DNN architectures that achieve 
optimal equilibrium between accuracy and model size. This research direc­
tion holds great promise for the future of Edge AI, where resource-efficient, 
high-performing neural network architectures serve as the bedrock for a wide 
range of applications. 

Model validation phase 

Model validation asseses the quality of the training process by measuring 
the accuracy of the model on a dedicated validation dataset (validation 
accuracy). It goes hand in hand with the training phase. Insights acquired 
from the validation accuracy assessment are then used to compare different 
training instances to identify the optimal hyperparameter choices, and to 
assess when the training process should be stopped. Typically, an early stop­
ping mechanism is used for this purpose, which monitors the development 
of validation accuracy and stops the training once the accuracy reaches a 
plateau or starts degrading. Failing to stop a training session in time is 
one of the causes of overfitting, occurring when the model learns patterns 
unique to the training set that do not apply to real-world data. An overfitted 
model is typified by a high discrepancy between the fitting and validation 
accuracies and performs poorly on unseen data. Various techniques to combat 
the overfitting effect exist and can be grouped by mechanism as presented 
in Table 2.2. 

Model evaluation phase 

The evaluation phase starts once the training has been completed and the 
best performing instance of the model has been identified. The goal of this 
phase is to assess how well the trained model generalises to new, unseen data, 
thus emulating a real-world scenario. The accuracy of the model on the test 
dataset is measured, and serves as a final, unbiased indicator of the model’s 



54 Edge AI Lifecycle Management
 

Table 2.2 Techniques to combat overfitting.
 
Mechanism type	 Technique description 

Data-based	 More training data – most straightforward, increase the diver­
sity of the training data by adding additional datapoints 
Data augmentation – artificially increase the diversity of the 
training data through augmentation techniques and the addition 
of noise. 
K-fold cross validation – split the dataset into K subsets, 
with each subset used for validation set once while the others 
are used for training. Other similar cross validation tech­
niques include stratified cross-validation, leave-one-out-cross­
validation (LOOCV), etc. 

Regularisation-based	 L1 and L2 Regularisation – penalise complex model weights 
by adding their L1 or L2 norm to the loss function as an 
additional term 
Dropout [13] – randomly deactivate a fraction of neural 
network neurons during each training iteration 

Feature-based	 Feature engineering – manual selection, transformation, and 
creation of features from the original data 
Pruning – removal of parameters from a network based on 
their usefulness to the inference output, thus reducing the 
model’s complexity 

Inference-timed Model ensembling [14] – combine predictions from multiple 
models to produce a single optimal predictive model 

Training-timed Early stopping – stops the training process once the validation 
accuracy stops improving 

performance. The measured evaluation accuracy must not then be used to 
make any further decisions about the model’s architecture, hyperparameters, 
or any other aspect of training. Doing so would represent a form of data 
leakage when information from outside the training and validation phases 
makes its way into the training pipeline and undermines the validity and 
estimated evaluation accuracy of the trained model. Instead, in case the 
measured evaluation accuracy does not satisfy the requirements set in the 
previous stage, the whole development process must be restarted, with new 
dataset splits. 

Model compression phase 

Compressing a DNN model is crucial for making it more suitable for deploy­
ment on resource-constrained devices. There are several techniques available 
to achieve DNN model compression, as outlined in Table 2.3. 



2.3 Development 55 

Table 2.3 Compression Techniques 
Compression Technique description 
Technique 
Weight Quantisation Involves representing the model’s weights with a lower bit preci­

sion than the standard 32-bit floating-point numbers. Common 
bit-widths include 8-bit or even lower, reducing memory and 
computational requirements. 

Model Quantisation Involves quantizing activations during inference. This can further 
reduce memory and computation requirements by using lower-
precision representations for intermediate activations. 

Pruning Involves removing unimportant/low-magnitude weights or neu­
rons from the model. These elements contribute minimally to the 
model’s performance, so their removal can significantly reduce 
model size and inference time without a significant loss in accu­
racy. 

Knowledge Represents training a smaller student model to mimic the 
Distillation behaviour of a larger, more complex teacher model. This transfer 

of knowledge from the teacher to the student model results in 
a smaller and more efficient model that maintains most of the 
teacher’s accuracy. 

Knowledge Pruning This approach combines knowledge distillation with pruning. 
The teacher model is first pruned to a smaller size, and then a 
student model is trained to mimic the pruned teacher. This results 
in a more compact model while maintaining the knowledge of 
the original, larger model. 

Low-Rank This technique decomposes the weight matrices of the model 
Factorization into lower-rank matrices. By doing this, you can reduce the 

number of parameters in the model, leading to a smaller model 
with less computational overhead. 

Sparse Models Sparse models are models with a substantial number of zero-
valued weights. Techniques like sparse training or structured 
sparsity constraints can be applied to encourage weight sparsity, 
resulting in a more compact model. 

Compact Using model architectures designed for efficiency, such as 
Architectures MobileNet, EfficientNet, or  SqueezeNet, can lead to smaller mod­

els that maintain competitive performance on various tasks. 
Transfer Learning Instead of training a model from scratch, one can use pre-trained 

models as a starting point and fine-tune them to the specific task 
at hand. This approach leverages the knowledge learned from a 
larger dataset and model, resulting in a smaller model customised 
for the specific task. 

These techniques can be used individually or in combination to achieve 
the desired level of compression while minimizing the impact on model 
accuracy and performance. The choice of technique(s) depends on the specific 



56 Edge AI Lifecycle Management 

requirements of the task at hand and the available computational resources. 
Quantization, for example, has evolved significantly in the context of Edge AI 
applications. Its history is marked by the pursuit of approximating floating-
point weights and activations with low bit-width integers, ultimately aimed 
at reducing model size and enhancing operational efficiency. Particularly at 
the edge, where computational resources are constrained, quantization is a 
critical factor in making DNNs more viable [15]. In the past, quantization was 
often applied post-training, essentially mapping the high-precision model to 
a lower-precision representation. However, a significant breakthrough came 
with the introduction of Quantization-Aware Training (QAT) [16]. QAT 
enables DNNs to adapt to the effects of quantization during the training 
process, mitigating the subsequent drop in accuracy that occurs with post-
training quantization. Standard fixed-precision quantization assigns a uniform 
integer bit-width to the entire DNN, neglecting the unique sensitivity of 
each layer to precision reduction. Recognizing this limitation, the field 
advanced with mixed-precision methods [17]. These approaches introduce 
variability in bit-width assignment, quantizing different subsets of the DNN at 
varying levels of precision. This innovation, however, introduces a challeng­
ing optimization problem, demanding the identification of precise bit-width 
assignments that strike an optimal balance between model accuracy and 
computational complexity. The challenge grows exponentially with the num­
ber of considered bit-widths, making it a computationally intensive effort. 
Several mixed-precision strategies have emerged to address this complexity-
accuracy trade-off, representing a parallel development orthogonal to NAS. 
Additionally, some strategies employ reinforcement learning techniques to 
automate bit-width assignment. Recently, a gradient-based method inspired 
by the principles of DNAS was introduced, enabling bit-width assignment 
during training [18]. This method dynamically quantizes data at various preci­
sions and selects an optimal precision during the training process. In essence, 
quantization techniques have witnessed a historical shift from post-training 
conversion to in-training adaptation, reflecting the growing importance of 
model efficiency in the context of Edge AI applications and the innovative 
approaches developed to optimize this critical aspect of DNNs. 

Hardware for Edge AI 

Edge AI relies on a variety of hardware components and platforms to 
enable efficient and real-time inference. Many edge devices, such as smart-
phones, IoT devices, and embedded systems, use SoCs that integrate various 



2.4 Production 57 

components like CPU, GPU, DSP, and often hardware accelerators like Neu­
ral Processing Units (NPUs) or Field-Programmable Gate Arrays (FPGAs). 
These compact and power-efficient chips are well-suited for running AI 
workloads at the edge. General-purpose CPUs are still widely used in edge 
devices for AI inference, especially for less demanding tasks. Many modern 
CPUs come with support for hardware-based vectorization and optimizations 
like SIMD (Single Instruction, Multiple Data) instructions to accelerate AI 
workloads. GPUs, originally designed for graphics rendering, are highly 
parallel processors that excel at performing matrix operations essential 
for deep learning. Edge devices equipped with GPUs can leverage their 
computational power for AI tasks. Specialized NPUs designed explicitly 
for accelerating deep learning workloads are increasingly integrated into 
SoCs for edge devices and provide hardware acceleration for AI inference, 
improving both speed and energy efficiency, but generally have higher power 
consumption than dedicated hardware. FPGAs offer hardware programma­
bility, making them adaptable to specific AI models and tasks. They are 
commonly used in scenarios where low latency and real-time processing are 
crucial, such as autonomous vehicles and robotics. AI-specific accelerators, 
like Google’s Tensor Processing Unit (TPU) and Intel’s Movidius VPU, are 
custom-designed chips optimized for AI workloads. These accelerators are 
highly efficient for tasks like image recognition, object detection, and voice 
processing, making them valuable for Edge AI applications with stringent 
requirements. Depending on the specific needs of an Edge AI application, 
custom hardware solutions may be developed to meet unique demands, such 
as specialized hardware for robotics. The choice of hardware for Edge AI 
depends on factors such as the specific AI workload, power constraints, 
latency requirements, and cost considerations. Many Edge AI applications 
use a combination of these hardware components to optimize performance, 
power efficiency, and resource utilization for AI inference. Of particular 
significance are the architectural advancements that have emerged in recent 
years, owing to the advent of RISC-V, an open Instruction Set Architecture 
(ISA) that empowers hardware developers to devise pioneering and high-
performance solutions. As an exemplar, the GreenWaves GAP8 processor, 
equipped with eight CV32E40P cores [19], delivers 22.65 Giga Operations 
Per Second (GOPS) with an exceptional power efficiency of 4.24 milliwatts 
per GOP (mW/GOP). This technological achievement was effectively har­
nessed for the autonomous navigation of a micro-drone through the execution 
of a neural network [20]. 



58 Edge AI Lifecycle Management 

2.4 Production 

With the increase in maturity of Machine Learning algorithms, the issue 
of efficient deployment and maintenance comes more and more into focus. 
This has led to the emergence of the MLOps field, which handles the 
tasks of deployment, monitoring, and operations of ML models. Provision­
ing, the starting point of deployment to the edge, represents the transla­
tion of the model to the specific architecture of the hardware. Within the 
Cloud paradigm, provisioning is less critical, as the models are traditionally 
deployed through virtual machines and containers, isolated from underly­
ing hardware. Deployment to the edge however, particularly to low-power 
devices, requires the use of specialized frameworks, often developed and 
maintained by the manufacturers of said devices. Typically said frameworks 
consist of an intermediate representation component, which represents the 
prepared model in a lightweight, optimised state, and an inference engine 
which runs the model. Intel’s OpenVINO toolkit is one such example, best 
suited for Intel’s CPUs, GPUs, as well as GNAs. CoreML is compatible with 
Apple devices, while Tensorflow Lite is best used for Android and Coral 
TPUs. At the same time attempts are made at creating universal formats, such 
as ONNX, which supports a variety of frameworks used for developing ML 
models, such as Tensorflow, PyTorch and Caffe, and make them available 
on various hardware. Depending on the requirements and complexity of the 
application, the model can then be deployed to function in an online or 
offline mode. For describing the monitoring phase, we will assume an online 
functioning mode, with at least occasional network connectivity to a Cloud-
based managing framework. The data used for training does not always 
accurately reflect the real-world encountered by a deployed model in the long 
term, reflected in degrading model performance over time, adjustments must 
be made based on insights acquired during the production stage. Variations 
in production data distributions, a symptom of this effect, can be detected 
with data drift detection algorithms, such as the Kolmogorov-Smirnov test, 
Population Stability Index, Page-Hinkley method, etc. The phenomenon of 
taking such insights into account and modifying the deployed model based on 
them is called Continuous Learning and represents a technique of proactive 
intervention to combat model drift. 

After sufficient new data are acquired during production, a data curation 
stage is triggered, in which the data is prepared for a fine-tuning session. The 
fine-tunning session mirrors the training and validation pipeline, followed 
by an offline testing stage determining if the resulting fine-tuned model has 



2.4 Production 59 

Figure 2.3 Model Training Overview illustrating (a) training during the development stage 
and (b) training during the production stage. 

improved or downgraded its performance. Finally, the fine-tuned model is 
deployed in parallel to the production version, and their predictions compared 
in online testing, in which their comparative accuracies on unseen data are 
evaluated. In case the fine-tuned model is performing better, it takes the place 
of the previous version of the model, and the other is removed from service. 
Good version control is essential at this stage, to track model development 
and to keep the older versions as fall-back options, to be made available in 
case of unforeseen deviations by the active model. An overview of the ML 
procedures taking place within the continuous learning paradigm is presented 
in Figure 2.3. Here during stage (a) the optimal hyperparameters are found 
and the model is trained on the initial data, and in stage (b) the model 
makes use of the continuous learning pipeline to fine-tune its weights based 
on feedback from the production environment. It should be noted however 
that particularly in the case of Edge AI, where the production stage takes 
place on distributed, low-powered hardware, the infrastructure required to 
enable the continuous learning pipeline becomes more convoluted than in 
the Cloud-centric case. The issues that it needs to consider are the reduced 
computing power, which must be shared between the inferring component 
and the data acquisition component, and the limited bandwidth to be used for 
data transfer and model re-deployment, as well as the fact that new models 
must be deployed on each device. Overall, the infrastructure must support 
Edge-to-Cloud integration for transfers of fresh data, Model Version Control 



60 Edge AI Lifecycle Management
 

Table 2.4 Types of Automation based on the definition by SAE International [21]
 
Level of 
Automation 

Stage Name Stage explanation 

Level 0 

Level 1 

No Automation 

Assistance 

The human operator performs all tasks without 
input from the machine 
Limited assistance is provided to the human 

Level 2 Partial Automation 
operator in completing specific tasks 
The machine takes over some of the task, but 
continuous human monitoring is required 

Level 3 Conditional 
Automation 

The machine can perform most tasks indepen­
dently, but human intervention is required in 
case of complex and unexpended situations 

Level 4 High Automation The machine can perform most tasks indepen­
dently, human intervention required in excep­
tional cases 

Level 5 Full Automation Human operator not needed at all. The 
machine can perform independently including 
in exceptional conditions 

for tracking and updating models as needed, and Over-the-Air (OTA) updates 
for the deployed models. 

Depending on the level of autonomy of the deployed AI solution, as well 
as the requirements of the human factor in inference monitoring, different 
levels of autonomy can be defined. Currently, there is a system in place for 
autonomy in vehicles developed by SAE International [21], which we will 
use as a starting point to generalise guidelines for the autonomy of Edge AI 
solutions, presented in Table 2.4. 

The difficulties of reaching level three and above, as defined in the table 
above, particularly in the case of autonomous driving, lie in the unpredictabil­
ity of the environment in which an autonomous vehicle operates. In case of 
controlled environments, as is usually the case for applications within facto­
ries and assembly lines, the probability of unexpected and exceptional cases 
diminishes considerably, easing the transition to high and full automation. 

2.5 Conclusion 

In this chapter we have presented Edge AI as a natural extension of the 
Cloud-centric AI paradigm that enables solutions for use-cases with strict 
latency and data privacy requirements. The challenges and novel research 
directions arising from the transition towards the edge are summarised, 
including the development of compression techniques aimed at reducing 



References 61 

model complexity and inference time with minimised accuracy losses, as 
well as the design of compact, low-power hardware and associated software 
for network deployment. The standard SDLC is expanded to include the 
emergent set of good practices of ML development, deployment to the edge 
and maintenance, and encapsulated within the Edge AI Lifecycle. Divided 
into a pre-development, development, and production stage, common pit­
falls and good practices are outlined, with the goal of pushing towards a 
well-established pipeline and taxonomy in the field of Edge AI. The Pre-
Development section summarises the processes of dataset assembly, and 
problem definition with the translation of the task into one of the ML 
paradigms. Following that, the Development section addresses the emergent 
automation of the network design phase, as introduced by evolutionary hyper-
parameter search algorithms, and NAS-based methodologies. The section 
goes on to describe model validation and evaluation tactics, common to 
all ML applications. The specifics of edge use-cases are then addressed 
by a categorisation of model compression techniques, and an overview of 
available edge hardware. Finally, the Production section details a collection of 
frameworks used for the deployment of optimised models on dedicated hard­
ware and outlines the importance of production monitoring and continuous 
learning pipelines. 

Acknowledgements 

This research was conducted as part of the EdgeAI “EdgeAI Technologies for 
Optimised Performance Embedded Processing” project, which has received 
funding from KDT JU under grant agreement No 101097300. The KDT 
JU receives support from the European Union’s Horizon Europe research 
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia, 
Luxembourg, Netherlands, and Norway. 

References 

[1] R. Singh and S. S. Gill, “Edge AI: A	 survey,” Internet of Things 
and Cyber-Physical Systems, vol. 3, pp. 71–92, Jan. 2023, doi: 
10.1016/J.IOTCPS.2023.02.004. 

[2] N. Kukreja	 et al., “Training on the Edge: The why and the how,” 
Proceedings - 2019 IEEE 33rd International Parallel and Distributed 
Processing Symposium Workshops, IPDPSW 2019, pp. 899–903, Feb. 
2019, doi: 10.1109/IPDPSW.2019.00148. 

https://www.doi.org/10.1016/J.IOTCPS.2023.02.004
https://www.doi.org/10.1109/IPDPSW.2019.00148


62	 Edge AI Lifecycle Management 

[3] “AI Edge Computing Market Statistics | Industry Forecast - 2030.” https: 
//www.alliedmarketresearch.com/ai-edge-computing-market-A14885 
(accessedAug.22,2023). 

[4] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and 
applications,” Proceedings - 3rd Workshop on Hot Topics in Web 
Systems and Technologies, HotWeb 2015, pp. 73–78, Jan. 2016, doi: 
10.1109/HOTWEB.2015.22. 

[5] T. Sipola, J. Alatalo, T. Kokkonen, and M. Rantonen, “Artificial Intel­
ligence in the IoT Era: A Review of Edge AI Hardware and Software,” 
Conference of Open Innovation Association, FRUCT, vol. 2022-April, 
pp. 320–331, 2022, doi: 10.23919/FRUCT54823.2022.9770931. 

[6] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the State 
of Neural Network Pruning?,” Mar. 2020, Accessed: Aug. 22, 2023. 
[Online]. Available: https://arxiv.org/abs/2003.03033v1 

[7] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y.	 Bengio, 
“Quantized Neural Networks: Training Neural Networks with Low 
Precision Weights and Activations,” Journal of Machine Learning 
Research, vol. 18, pp. 1–30, 2018. 

[8] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under 
Concept Drift: A Review,” IEEE Trans Knowl Data Eng, vol. 31, no. 12, 
pp. 2346–2363, Apr. 2020, doi: 10.1109/TKDE.2018.2876857. 

[9] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmen­
tation for Deep Learning,” J Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, 
doi: 10.1186/S40537-019-0197-0/FIGURES/33. 

[10] M. Jaderberg et al., “Population Based Training of Neural Networks,” 
Nov. 2017, Accessed: Aug. 22, 2023. [Online]. Available: https://arxiv. 
org/abs/1711.09846v2 

[11] H. Liu, K. Simonyan, and Y.	 Yang, “DARTS: Differentiable Archi­
tecture Search,” 7th International Conference on Learning Represen­
tations, ICLR 2019, Jun. 2018, Accessed: Sep. 07, 2023. [Online]. 
Available: https://arxiv.org/abs/1806.09055v2 

[12] D. J. Pagliari, M. Risso, B. A. Motetti, and A. Burrello, “PLiNIO: 
A User-Friendly Library of Gradient-based Methods for Complexity-
aware DNN Optimization,” Jul. 2023, Accessed: Sep. 07, 2023. 
[Online]. Available: https://arxiv.org/abs/2307.09488v1 

[13] N.	 Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, 
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” 
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. 

https://www.arxiv.org
https://www.arxiv.org
https://www.arxiv.org
https://www.arxiv.org
http://www.doi.org/10.1109/HOTWEB.2015.22
http://www.alliedmarketresearch.com
http://www.alliedmarketresearch.com
https://www.doi.org/10.23919/FRUCT54823.2022.9770931
https://www.doi.org/10.1109/TKDE.2018.2876857
https://www.doi.org/10.1186/S40537-019-0197-0/FIGURES/33
https://www.arxiv.org


References 63 

[14] M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan, 
“Ensemble deep learning: A review,” Eng Appl Artif Intell, vol. 115, p. 
105151, Oct. 2022, doi: 10.1016/J.ENGAPPAI.2022.105151. 

[15] R. Banner, Y. Nahshan, and D. Soudry, “Post-training 4-bit quantization 
of convolution networks for rapid-deployment,” Adv Neural Inf Process 
Syst, vol. 32, Oct. 2018, Accessed: Sep. 07, 2023. [Online]. Available: 
https://arxiv.org/abs/1810.05723v3 

[16] B. Jacob	 et al., “Quantization and Training of Neural Networks for 
Efficient Integer-Arithmetic-Only Inference,” Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern Recog­
nition, pp. 2704–2713, Dec. 2017, doi: 10.1109/CVPR.2018.00286. 

[17] Z.	 Dong, Z. Yao, A. Gholami, M. Mahoney, and K. Keutzer, 
“HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-
Precision,” Proceedings of the IEEE International Conference on 
Computer Vision, vol. 2019-October, pp. 293–302, Apr. 2019, doi: 
10.1109/ICCV.2019.00038. 

[18] K. Wang, Z. Liu, Y.	 Lin, J. Lin, and S. Han, “HAQ: Hardware-
Aware Automated Quantization with Mixed Precision,” Proceedings 
of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, vol. 2019-June, pp. 8604–8612, Nov. 2018, doi: 
10.1109/CVPR.2019.00881. 

[19] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.Wolf: An 
Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge 
Processing,” IEEE J Solid-State Circuits, vol. 54, no. 7, pp. 1970–1981, 
Jul. 2019, doi: 10.1109/JSSC.2019.2912307. 

[20] D. Palossi, A. Loquercio, F.	 Conti, E. Flamand, D. Scaramuzza, 
and L. Benini, “A 64mW DNN-based Visual Navigation Engine for 
Autonomous Nano-Drones,” IEEE Internet Things J, vol. 6, no. 5, pp. 
8357–8371, May 2018, doi: 10.1109/JIOT.2019.2917066. 

[21] “SAE J3016 automated-driving graphic.” https://www.sae.org/news/2 
019/01/sae-updates-j3016-automated-driving-graphic(accessedSep. 
01,2023). 

https://www.sae.org
https://www.arxiv.org
http[s://www.doi.org/10.1016/J.ENGAPPAI.2022.105151
https://www.doi.org/10.1109/CVPR.2018.00286
https://www.doi.org/10.1109/ICCV.2019.00038
https://www.doi.org/10.1109/CVPR.2019.00881
https://www.doi.org/10.1109/JSSC.2019.2912307
https://www.sae.org
https://www.doi.org/10.1109/JIOT.2019.2917066


https://www.taylorandfrancis.com


3
 
Federated Learning: Privacy, Security and
 

Hardware Perspectives
 

Taha Yassine Abidi, Iyad Dayoub, Elhadj Doguech, and Ihsen Alouani 

Université Polytechnique Hauts-De-France, France 

Abstract 

Machine Learning (ML) models are being deployed in a wide range of 
domains owing to their capacity to deliver high performance across a range of 
challenging tasks including safety-critical and privacy-sensitive applications. 
Moreover, the computing requirements of increasingly complex ML models 
presents a significant challenge to the hardware industry. 

Against this backdrop, Federated Learning (FL) has emerged as a promis­
ing technique that enables privacy-preserving development of ML models on 
low-energy Edge devices. FL is a distributed approach that enables learning 
from data belonging to multiple participants, without compromising privacy 
since user data are never directly shared. Instead, FL relies on training a 
global model by aggregating knowledge from local models. Despite its repu­
tation as a privacy-enhancing strategy, recent studies reveal its susceptibility 
to sophisticated attacks that can undermine integrity and, as well as disrupt 
their operations. Notably, the constraints posed by the limited hardware 
resources in edge devices compound these challenges. Gaining insight into 
these potential risks and exploring hardware-friendly solutions is vital for 
effectively implementing trustworthy and power-efficient FL systems in edge 
environments. 

65 

This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-3 



66 Federated Learning: Privacy, Security and Hardware Perspectives 

This chapter contributes a review and perspective of the triad of privacy, 
security, and hardware optimization in FL settings. 

Keywords: Federated Learning, Hardware Optimisation, ML Security, 
Privacy. 

3.1 Introduction and Background 

In this era of unprecedented data proliferation and exponential technolog­
ical advancement, conventional centralized and cloud-based training and 
deployment of machine learning faces 2 main challenges: 

• How to train and deploy accurate models in an energy-efficient and 
sustainable manner? 

• How to guarantee the security and privacy of potentially sensitive data 
without compromising the learning process? 

FL has emerged as a promising approach to address the challenges 
posed by decentralised data sources while preserving data privacy. Traditional 
centralised ML approaches require aggregating sensitive data from various 
sources into a central repository for training, which can raise concerns about 
data exposure and privacy. FL offers an innovative solution by enabling model 
training across multiple devices or data silos, without the need to centralise 
the data themselves. This distributed approach not only safeguards individual 
privacy but also optimises the utilisation of edge devices, edge servers, and 
cloud resources. 

The key motivation behind FLis to leverage the collective intelligence 
of a network of devices while maintaining data locality. This is particularly 
crucial in scenarios where data is distributed across devices or locations, such 
as Internet of Things (IoT) ecosystems, healthcare networks, and financial 
institutions. By allowing devices to collaboratively learn a shared model 
while keeping their data local, federated learning can address challenges like 
network latency, bandwidth limitations, and data security. 

In this chapter, we delve into the multifaceted aspects of FL, focusing 
on privacy, security, and the opportunities for hardware optimisation at the 
Edge. We explore the techniques that enable data privacy within FL, the 
security measures needed to protect against adversarial attacks, and the ways 
in which hardware constraints and advancements shape the landscape of FL. 
Through case studies and emerging trends, we aim to provide a comprehen­
sive understanding of how federated learning empowers data-driven insight 



3.2 Federated Learning Overview 67 

while upholding individual privacy, ensuring security, and harnessing the 
potential of diverse hardware resources. 

This chapter not only sheds light on the current state of federated learning 
but also serves as a guide for researchers, practitioners, and policymakers who 
seek to navigate the intersection of machine learning, distributed systems, and 
data governance. As FL continues to evolve, it is imperative to appreciate its 
significance in reshaping the landscape of data-driven technologies, fostering 
collaboration, and advancing both technological and ethical dimensions in the 
digital era. 

The structure of the chapter is crafted to offer a comprehensive explo­
ration of the FL state-of-the-art. Our roadmap unfolds as follows: we 
begin with an initial introduction to the basics of FL and its applications, 
followed by an exploration of FL’s constraints and limitations, including 
hardware resources, security, and privacy considerations. Finally, we con­
clude by underscoring the crucial requirement for balance among these varied 
aspects. 

3.2 Federated Learning Overview 

Training a deep neural network necessitates a significant amount of data, 
often representing the most valuable resource within a target environment: 
it can be of commercial value, be governed by privacy regulations, can be 
limited by user agreements (as illustrated by regulations such as HIPAA in 
the US and GDPR in Europe). In another scenario, data generated on Edge 
devices may face sharing restrictions due to privacy anxieties, bandwidth 
restrictions, or performance constraints. 

FL recently emerged as a potential solution to the problems above. It 
enables participants to collaboratively train a federated model while preserv­
ing local data privacy. Within the FL framework, each participant trains a 
local model sharing it with a central server also known as a central aggregator. 
Data remain private to each participant. The server aggregates the local model 
updates into a single federated model and shares this model with the partic­
ipants, creating an updated federated model that benefits from all the data 
without jeopardising its confidentiality. The model’s refinement continues as 
participants deliver more updates. 

FL encompasses three primary categories from a data partitioning per­
spective: horizontal FL, vertical FL and federated transfer learning [5]. This 
document, however, zooms on the most prevalent and widely used model, 
namely horizontal FL. In the subsequent section, we consider the intricacies 



68 Federated Learning: Privacy, Security and Hardware Perspectives 

Figure 3.1 Client device sends their locally trained model updates to server for training the 
federated model. 

of horizontal FL while also offering succinct insights into the other two 
models for context. 

3.2.1 Horizontal Federated Learning 

Participants train their local model with data that are in the same feature 
space. For example, two regional hospitals might contain different patient 
population data, with little to no intersection in the data (perhaps because the 
hospitals serve different regions). However, the activities of the two hospitals 
are similar with respect to each other and so their feature spaces are the same. 
During the training phase of the horizontal FL model, each of the participants 
trains its local model using the local, private, data and sends the gradients to 
the central aggregator. The central aggregator aggregates all of those local 
model updates to build a global shared model and return this back to all 
participants. Finally, each participant updates its local model using the result 
from the central aggregator. 

3.2.2 Vertical Federated Learning 

Vertical FL addresses the scenario where participants refine their respective 
local models using data samples derived from different feature spaces. For 



3.3 Challenges and Limitations of Federated Learning 69 

example, consider a hospital and a pharmacy in the same region. While there 
is likely a significant overlap in patient population data, the retained infor­
mation (i.e., the features) for these patients vary due to the distinct functions 
of the two participants. For example, the hospital preserves the records of 
all users about their disease, diagnosis and information of treatment received 
while the pharmacy keeps the records of medicine purchasing history. Using a 
vertical FL system, the two institutions can collaboratively build a prediction 
model by aggregating those different features and calculating the gradients of 
their local data in a privacy preserving manner. 

3.2.3 Federated Transfer Learning 

Federated Transfer Learning [7] finds its niche in scenarios where users’ 
datasets remain disjoint or share minimal overlap in both the samples and 
feature spaces. For instance, revisiting the hospital and pharmacy scenario 
recall that the feature spaces of their data have little overlap. If the two insti­
tutions are in different countries they would also have few, if any, common 
patients, making it impossible to apply VFL. FTL solves this problem by 
creating a common representation using transfer learning and using it to build 
a predictive model across the entire data set. 

With a foundational understanding of FL in place, we now turn our 
attention to the challenges that accompany this paradigm. While FL offers 
a promising avenue for decentralised model training and data privacy preser­
vation, it is essential to acknowledge its limitations. 

3.3 Challenges and Limitations of Federated Learning 

FL presents a trio of critical challenges that demand rigorous exploration: 
hardware resources, security, and privacy. 

These dimensions shape the framework’s efficacy and ethical underpin­
nings. In this section, we consider this interplay. 

3.3.1 Security challenge 

The distributed nature of FL, while preserving data locality, introduces com­
plexities that require careful attention to ensure the confidentiality, integrity, 
and authenticity of the data and models being exchanged. 

Adversarial attacks, stemming from both malicious clients and malicious 
servers, pose a significant threat to the security and integrity of FL by 



70 Federated Learning: Privacy, Security and Hardware Perspectives 

exploiting vulnerabilities inherent in the decentralised nature of the approach. 
These attacks aim to manipulate the training process and the resulting model’s 
composition, leading to erroneous predictions and potential data exposure. 

In this context, understanding the objectives that potential attackers pur­
sue becomes crucial. These objectives can be categorised into three primary 
dimensions: 

• Compromising System Integrity: Attackers aim to compromise the 
integrity of the FL system by tampering with the model’s function. They 
induce misclassifications by poisoning individual local model updates 
or by colluding with other malicious participants. 

• Compromising Data Confidentiality and Privacy: Adversaries target data 
confidentiality and privacy by attempting to infer private information 
or reconstruct original training samples. We will delve deeper into this 
topic in the upcoming section. 

• Disrupting the Learning Process: Attackers seek to disrupt the learning 
process itself. This includes tactics such as initiating denial-of-service 
or impeding the convergence of the training process. 

To achieve these objectives, adversaries deploy a range of strategic 
actions: 

• Poisoning Attacks: Malicious actors maliciously alter either the training 
data or the model to corrupt the overall federated model’s integrity. This 
compromise is executed with the intention of manipulating the model’s 
behaviour to serve the attacker’s motives. 

• Privacy Attacks: Adversaries attempt to deduce sensitive information 
about the data, which will be discussed in detail in the subsequent 
section. 

• Disruption Attacks: Attackers exploit the learning process by introduc­
ing delays in updates or interfering with the protocol’s operation, aiming 
to undermine the system’s functionality. 

3.3.1.1 Malicious Clients 
We first consider model integrity attacks that originate from malicious clients. 
We assume that a client is able to arbitrarily change its local model that 
it sends to the server. The model can be manipulated either directly by 
changing its parameters, or indirectly by manipulating the local training set. 
The poisoned local model in turn poisons the aggregated model when it 
is combined with the models from other clients. One possible goal of this 



3.3 Challenges and Limitations of Federated Learning 71 

attack is to make the global model misclassify in general (untargeted attack). 
Alternatively, the attack can target specific classes that the attacker would like 
to degrade, potentially causing them to misclassify into specific alternative 
labels (targeted attack). 

In targeted attacks, the attacker aims at forcing the model to misclassify a 
specific class or subset of classes. These attacks are also called Backdoor 
attacks. For example, an attacker may desire to have a particular type of 
vehicle be undetected in a federated recognition system. Targeted attacks 
can be performed either by manipulating the target model’s parameter or by 
poisoning the target training data directly. 

Targeted Model and Data Poisoning 
Researchers have investigated model poisoning techniques aimed at crafting 
targeted attacks, where the adversary’s goal is to create a global model that 
exhibits high accuracy for both the primary task (untargeted classes) and 
includes a hidden backdoor to target specific classes. 

Attackers can attempt to disrupt the accuracy of the FL global model 
through three avenues in data poisoning: 

• Mislabelling Data: The adversary can change the labels of training sam­
ples, converting them to a target class while keeping the data otherwise 
unaltered [9]–[11]. These attacks are demonstrated by Biggio et al. [12], 
Fung et al. [9], and Gu et al. [10]. 

• Manipulating Input Features: By slightly modifying a portion of the 
original training dataset through noise addition or feature manipulation, 
adversaries can make models learn triggers on specific inputs while 
maintaining non-poisoned data accuracy [3], [13]. 

• Combining Mislabelling and Feature Manipulation: This category 
involves malicious clients changing both data and labels. The attacker 
can induce the global model to trigger on specific inputs and misclassify 
to a designated target label. An example is an attacker’s face being 
misclassified by a federated face recognition system while a specific 
watermark is present in the image. Naseri et al. [14] demonstrate this 
through a modification of training data and label of samples. 

3.3.1.2 Mitigating client-based attacks 
Defences can be organised into two primary categories: Detection and 
removal of malicious client updates; and mitigating attack severity. We dis­
cuss both of these categories below. Detection and removal of malicious client 
updates. 



72 Federated Learning: Privacy, Security and Hardware Perspectives 

Detection and Removal of Malicious Client Updates 
Detecting and removing malicious client updates involves strategies that 
flag unusual and statistically abnormal updates, excluding them from the 
aggregated model. These defences vary in how they decide if an update is 
abnormal, usually by comparing it to the distribution of updates from other 
clients. A balance exists between accommodating unique data contributions 
from clients while identifying and preventing harmful updates. This balance 
entails allowing valuable data to contribute while guarding against malicious 
intentions. Shejwalkar et al. [15] introduced a strategy called divide-and­
conquer (DnC) to tackle malicious model poisoning updates. DnC works 
under the assumption that a harmful update from a malicious source will 
significantly deviate from normal updates. Initially, DnC calculates the main 
direction of variance among input updates, known as the principal compo­
nent. It then computes projections, which are essentially measures of how 
much the updates align with this principal component. Harmful updates 
tend to have larger projections. In the final step, DnC removes a portion 
of updates with the highest projections. This approach is effective against 
untargeted attacks, as long as the number of malicious clients doesn’t surpass 
the proportion of removed updates. 

Shejwalkar et al. [15] introduced a strategy called divide-and-conquer 
(DnC) to tackle malicious model poisoning updates. DnC works under the 
assumption that a harmful update from a malicious source will significantly 
deviate from normal updates, causing harm. Initially, DnC calculates the 
main direction of variance among input updates, known as the principal 
component. It then computes projections, which are essentially measures of 
how much the updates align with this principal component. Harmful updates 
tend to have larger projections. In the final step, DnC removes a portion 
of updates with the highest projections. This approach is effective against 
untargeted ICM attacks, if the number of malicious clients doesn’t surpass 
the proportion of removed updates. 

Mitigating the severity of the attack 
In this second category, defences leverage aggregation strategies that do 
not exclude the malicious updates, but rather try to mitigate their effect. 
One strategy involves using the median as a point of aggregation for 
models, effectively lessening the influence of malicious outliers within FL 
systems [16]. 

Fu et al. [12] introduce an innovative aggregation algorithm termed 
“Reweighting” to counter targeted poisoning attacks. In their approach, the 



3.3 Challenges and Limitations of Federated Learning 73 

global model is a reweighted average of individual local models. This is 
achieved through techniques such as the Repeated Median Estimator [17] 
and Iteratively Reweighted Least Squares (IRLS) [18]. In practical terms, 
the authors assess the confidence of model parameters based on their dis­
tance from a robust regression line. Local models are then assigned weights 
proportional to their parameter confidence. Malicious outliers, having lower 
confidence scores, exert minimal influence on the overall model, effectively 
curtailing their impact. 

3.3.1.3 Malicious Server attacks and mitigations 
The central server’s role within the context of FL is pivotal, encompassing 
tasks such as aggregating updates into the global model and disseminating 
it to clients. While the server’s integrity is typically assumed, the potential 
for severe consequences necessitates a nuanced consideration of malicious 
server attacks and potential countermeasures. In essence, a compromised 
server holds the capacity to arbitrarily manipulate the global model, leading 
to detrimental impacts on classifier performance. Hence, comprehending 
this threat becomes crucial, prompting exploration into potential defence 
strategies. 

Architecting a secure federated training protocol without the presumption 
of a trusted server presents an intricate and compelling challenge. With­
out such safeguards, the server’s influence on the models sent to clients 
is unconstrained, allowing malicious servers to dispatch compromised or 
subpar classifiers. The server’s motives could range from intentional harm 
to clients, such as by distributing models with targeted poisoning, to a desire 
to leverage client data without reciprocating the effort of model aggregation 
and communication. In the baseline FL framework, clients implicitly bestow 
trust in the server and accept its model as the global reference, devoid of 
means to verify if the server adheres to the FL protocol’s integrity. A secure 
federated protocol would ideally impede malicious servers from arbitrarily 
injecting fake model updates. Alternatively, it would empower clients to 
validate the integrity of received model updates. Addressing this challenge, 
Xu et al. [19] propose Verifynet, a verification process that ensures the 
veracity of server-delivered outcomes. Their approach involves hashing the 
gradient of the client’s local model through a homomorphic hash function 
possessing universally recognized collision-resistant features. Furthermore, 
clients compute additional (meta) information utilising pseudorandom func­
tions linked to secret keys issued by a trusted authority (TA). Each client then 



74 Federated Learning: Privacy, Security and Hardware Perspectives 

dispatches the masked gradient and associated meta information to the server. 
On the server side, the gradients from all clients are aggregated, negating the 
added noise. The server subsequently calculates a proof derived from client-
provided meta information, broadcasting this proof to active clients. To assess 
the server update’s authenticity, each client scrutinises the proof by verifying 
the truth equations of homomorphic hash and pseudorandom functions. Any 
inconsistencies prompt client rejection of the server’s result. In essence, 
Verifynet verifies server results, safeguarding clients against manipulation by 
a malicious server. 

Adversarial attacks exploit the vulnerabilities inherent in the decen­
tralised model, seeking to disrupt the training process and compromise the 
behaviour of resultant models. The multifaceted challenges brought forth by 
these attacks underscore the need for innovative defence mechanisms that 
transcend traditional paradigms. 

3.3.2 Privacy challenge 

The privacy challenge is marked by the intricate balance between collabo­
rative knowledge extraction and safeguarding individual data privacy. In this 
section, we explore the complexities surrounding compromised data confi­
dentiality, the prevalence of privacy attacks, and the potential implications of 
membership inference attacks. The decentralised nature of FL, while foster­
ing collective learning, poses unique challenges to preserving the privacy of 
individual participants’ sensitive information. These challenges necessitate 
the exploration of innovative strategies and techniques designed to uphold 
the privacy of participants while maintaining the robustness of collaborative 
learning. 

Imagine a consortium of hospitals employing FL to construct a robust 
disease prediction model. In this collaborative effort, each hospital con­
tributes patient data with a strong emphasis on preserving individual privacy. 
Yet, the decentralised nature of FL introduces the potential for privacy 
breaches. Within this context, a malicious actor could exploit vulnerabilities 
to deduce sensitive patient information. This exploitation would compromise 
the confidentiality imperative. Such attacks could result in the unautho­
rised identification of individuals, thereby jeopardising their privacy and 
undermining trust in the collaborative strategy. 

It’s important to recognize that privacy attacks in FL can emanate from 
various malicious clients and malicious servers. Malicious clients might 
attempt to infer private information about other clients based on model 



3.3 Challenges and Limitations of Federated Learning 75 

updates. A malicious server could exploit model updates to deduce sensitive 
client information, further underscoring the multifaceted nature of the privacy 
challenge. In the subsequent sections, we examine specific types of attacks 
originating from both clients and servers. We will explore techniques to 
defend against these attacks. 

3.3.2.1 Client privacy attacks 
This type of attack originates either from a single malicious client or group 
of colluding clients. For a given client, only its own data and global model 
are available to them. As in the baseline FL setting, the client trains its local 
model and communicates the raw gradients to the server without protection 
(e.g., adding noise or using encryption), it opens up scope for any malicious 
player to infer private information about other clients’ data from the raw 
gradients. Here we consider two types of attacks. One is an inference attack 
on a specific client ‘overhearing’ the local model gradient of other clients. 
Overhearing might happen directly or through collusion between malicious 
clients. Another type of attack is to infer sensitive information of other 
clients through the global model weights. In this second category of attack, 
a client might maliciously modify its local model parameters to infer sensitive 
information of other clients. 

Membership Inference Attack – Membership inference attacks are a com­
mon privacy attack [20], [21]. In this form of attack, the attacking client’s 
goal is to infer whether a specific data sample is part of the dataset that was 
used to train the federated model. Often, the attacker may know only part 
of the data, and the attack could also enable them to recover this missing 
information [21]. With access to aggregate model parameters from the server, 
Nasr et al. [16] empirically show if a target data point is contained within 
the client’s dataset or not. A malicious client specifically modifies its local 
model parameters to increase the loss on a target data point X. Then the 
server receives adversarial parameters from the malicious client and aggre­
gates these parameters with other participants to generate the global model, 
which is finally transmitted back to the clients. Now, using the aggregated 
parameters, if the local stochastic gradient descent (SGD) algorithm on the 
client side abruptly lowers the gradient of the loss on a target data point X, 
then X is in the training set of a client. Alternatively, if the data point is not 
included in a client’s dataset, the gradient on this point would alter gradually 
throughout the course of the training. 



76 Federated Learning: Privacy, Security and Hardware Perspectives 

Property Inference Attack – Property inference is a class of privacy attacks 
on machine learning models where an attacker attempts to infer properties 
of the training set overall, rather than individual instances of the data [22], 
[23]. For example, the attacker may attempt to infer if the environment of 
most of the data is indoors or outdoors, to identify the proportion of the data 
from a particular class (e.g., gender or race), or more specifically inferring 
that whether a certain person is wearing glasses or not in the training data. 
In conventional machine learning settings, several property inference attacks 
have been demonstrated. These attacks can also be conducted in an FL 
setting, on the aggregate model or on individual client models if they are 
obtained. There are several attack strategies for property inference that arise 
in FL settings when training the global shared model [18, 19]. For example, 
Melis et al. [18] created a batch property classifier in a collaborative training 
(federated) environment. This classifier evaluates whether the server’s global 
updates are based on data that includes or excludes the desired characteristic. 
The adversary will need many batches of auxiliary data, consisting of data 
points with and without the property of interest, to carry out the attack. The 
auxiliary data points must come from the same class as the data from the 
target client. Using snapshots of the global model the adversary computes two 
sets of gradients (A and B) based on the batch of data points with the property 
of interest or without the property of interest. The attacker assigns a positive 
label to set A and a negative label to set B. They train a binary batch property 
classifier with those gradients (A and B), which generalises the gradients of 
future batches of data which are given as input and predicts whether or not 
they contain the desired property. As a result, without changing anything in 
the local or global collaborative training approach, the adversary observes the 
global model and performs a property inference attack on the updates. 

3.3.2.2 Mitigating client-based attacks 
Moving on to defences against client-originated attacks, we uncover a 
spectrum of strategies designed to fortify the privacy and security of FL. 

Gradient Perturbation with Noise: Exchanging intermediate model updates 
with the server introduces vulnerabilities to membership inference and 
property inference attacks. These risks arise from the server or colluding 
clients inferring private data of honest clients from their raw gradients. To 
counteract this, differential privacy techniques inject noise into gradients, 
ensuring privacy-preserving exchanges in FL [24]. Naseri et al. [14] propose 
Local Differential Privacy (LDP) and Central Differential Privacy (CDP). 



3.3 Challenges and Limitations of Federated Learning 77 

LDP applies differential privacy to local models, while CDP implements it 
centrally, leveraging the server’s trust. Both methods mitigate membership 
and property inference attacks. Adding noise conceals global properties, 
offering protection against various attacks. Despite enhancing security, dif­
ferentially private strategies slightly diminish the shared model’s utility. 
Zhu et al. [25] demonstrate that defence efficacy depends more on variance 
magnitude than noise type (Gaussian or Laplacian). Increased variance harms 
model accuracy, highlighting a trade-off between privacy and utility. 

GAN-based Generated Samples instead of the Original: Deploying gen­
erative adversarial networks (GAN) [54] can help to mitigate membership 
and property inference attack by generating a large amount of samples in the 
same distribution of the training dataset (Anti-GAN in table 2) to train the 
model. In the case of Anti-GAN [93], they train the victim’s GAN in a way 
that it learns the classification features rather than learning the visual features 
of the original images. Then, the generated fake samples from the GAN are 
mixed with the original images to train the model. Using GAN, this defence 
obscures the visual features of the clients’ training data to defend against this 
attack. However, it eventually degrades the accuracy of the model [93]. There 
is also evidence that GANs could also result in additional inference leakage 
[26] [61]. 

3.3.2.3 Server based privacy attacks 
If a server is malicious, it has full access to the individual client 
updates/models and can attempt arbitrary inference attacks on them. We 
describe the possible attacks under this model in this section. 

Deep Leakage from Gradients (DLG): Deep Leakage from Gradients 
(DLG) is an attack in the context of FL that focuses on exploiting vulnerabili­
ties arising from the exchange of intermediate model updates between clients 
and a central server. This attack is particularly concerned with revealing 
private information and properties of individual training data instances by 
analysing the gradients of the local models used in the learning process. In 
the DLG attack, a malicious entity, whether it is a client or a colluding group 
of clients, aims to infer sensitive details about other clients’ training data 
from the gradients of their local models. The core idea behind this attack is 
that the gradients of the local models contain information about the individual 
training samples they were trained on. These gradients, when exchanged with 
the server as part of the FL process, can leak information about the underlying 
data distribution and specific data instances. 



78 Federated Learning: Privacy, Security and Hardware Perspectives 

The attack’s mechanism involves carefully analysing the gradients to 
identify patterns, correlations, or unique features that correspond to specific 
data points. By reverse-engineering these gradients, attackers can deduce sen­
sitive information about other clients’ data, compromising data privacy and 
confidentiality. Deep Leakage from Gradients can lead to privacy breaches, 
property inference, and membership inference attacks, as attackers exploit 
the inherent information present in gradients to gain insights into the dataset 
without directly accessing the raw data. 

Mitigating Gradient Leakage Attacks: 
The primary mitigation strategy against DLG is to mask the gradients of the 
clients such that they are not exposed to the server. A number of different 
ideas to mask gradients have been proposed, like single masking[25], double 
masking[19]. 

Single masking is an approach that introduces controlled noise into the 
gradients before they are sent to the server. This noise acts as a protective 
layer, making it difficult for the server to extract sensitive information from 
the gradients. The key idea is to obfuscate the gradients in a way that pre­
serves the model’s learning progress while reducing the risk of information 
leakage. Single masking adds randomness to the gradients, making them less 
susceptible to reverse-engineering by malicious actors. 

Double masking, on the other hand, takes the concept of gradient mask­
ing a step further. In this approach, not only are the gradients masked 
before transmission to the server, but they are also further masked at the 
server’s end before aggregation. This double-layered masking provides an 
additional level of security by ensuring that the server itself cannot access 
the original gradients contributed by individual clients. This way, even if the 
server was compromised, the information contained in the gradients remains 
protected. 

Both single masking and double masking contribute to thwarting DLG 
attacks by minimising the potential leakage of sensitive information through 
the gradients. These techniques underline the efforts to strike a balance 
between collaborative model training and preserving the privacy of clients’ 
data in the FL setting. 

Our exploration of the multifaceted challenges in the realm of FL high­
lights the intricate interplay between hardware constraints, security vulnera­
bilities, and privacy concerns. We’ve delved into the limitations imposed by 
resource-constrained devices, where the balance between model complexity 
and hardware capabilities becomes a critical factor. The security landscape of 



3.3 Challenges and Limitations of Federated Learning 79 

FL, encompassing adversarial attacks from both malicious clients and servers, 
underscores the imperative to fortify the integrity and authenticity of collabo­
rative learning processes. Moreover, our investigation into privacy challenges 
reveals the significance of protecting sensitive data while maintaining the 
efficacy of FL. 

3.3.3 Hardware constraint and opportunities 

The deployment of AI at the Edge has the potential to transform industries and 
facilitate personalised products, which largely hinges on its ability to harness 
the data from ubiquitous devices spanning from smartphones to Internet of 
Things (IoT) devices. Yet, the energy and resource limitations inherent in 
these devices pose significant obstacles. Edge devices and embedded systems 
operate under stringent energy budgets and have constrained computational 
capabilities. These devices lack the computational capacities of data centres, 
making resource-intensive ML a challenge. 

In this section, we delve into the implications of Edge devices’ hardware 
limitations on FL. We also discuss the opportunities that can emerge from 
new computing paradigms such as approximate computing on FL security. 
FL processes that demand substantial computational power and memory can 
strain these devices, potentially leading to increased latency, reduced model 
quality, and even device overheating. 

Striking a balance between model complexity and the limitations of these 
hardware resources becomes a critical consideration, calling for innovative 
model architectures and optimization techniques that can maintain model 
performance while respecting the resource boundaries of edge and embedded 
devices. 

To address these challenges, researchers and practitioners have explored a 
range of optimization techniques that enhance the efficiency of FL processes. 
Quantization[8], for instance, involves representing model parameters with 
reduced precision, effectively reducing the memory footprint and commu­
nication overhead during updates. Model compression techniques focus on 
minimising the model’s size while preserving its predictive capabilities, 
enabling faster training and less demanding communication. In particular, in-
model compression techniques aim to design models that inherently require 
fewer computations, thereby reducing energy consumption and resource 
usage. One notable approach in this direction is approximate computing, 
where local clients introduce controlled inaccuracies into the computations, 
trading off precision for efficiency [30, 31]. This innovative strategy approach 



80 Federated Learning: Privacy, Security and Hardware Perspectives 

aligns well with the resource-constrained environment of edge devices, allow­
ing them to perform computations more efficiently in terms of both resources 
and energy consumption. 

The underlying principle of approximate computing stems from the 
observation that not all tasks require highly precise computational precision 
to achieve satisfactory overall results. By allowing local clients to perform 
computations with reduced precision, such as using fewer bits for numeri­
cal representation, devices can significantly lower their computational and 
energy requirements. 

A wide range of approximation techniques across all layers of the com­
puting stack have been proposed; these techniques leverage the inherent 
error tolerance of ML architectures to achieve improvements in inference 
efficiency (e.g., power consumption and resource utilisation) [32]. 

The main categories of approximation techniques explored previously are 
as follows: 

- Algorithmic level: This mainly includes Quantization, Pruning and 
Model Compression. Quantization approximates the model by reducing 
the number of bits used to represent the weights and activation outputs 
such as Bfloat [33], DLfloat [34], and very recently Graphcore and 
AMD proposed a new 8-bit floating-point standard for AI [35]. On the 
other hand, pruning and model compression try to reduce model size 
by skipping connections through forcing weights to zero. While these 
techniques achieve promising benefits towards lower complexity ML 
systems, their impact remains limited since: (i) Quantization is mainly 
used in convolution layers and other kernels like pooling, activation 
and normalisation are still dominated by floating-point arithmetic, and 
(ii) Pruning often results in irregular computation and memory access 
patterns and hence have little to no impact on hardware accelerator 
performance. 

- Circuit level: This category focuses on the computing building blocks 
of the models; Approximate circuits implement core functions to build 
approximate ML systems to leverage maximum benefits. More specif­
ically, the core arithmetic functions (multiplication, addition and non­
linear activation) are either replaced by lower resource approximate 
designs [36, 37], or more generically by undervolting the circuit to 
inject random computational errors. An example is shown in Figure 3.2, 
which corresponds to a circuit implementation of a full adder. Using 
this logical approximate building block to design a multiplier or an 



3.3 Challenges and Limitations of Federated Learning 81 

Figure 3.2 Logic diagram of (a) exact Full Adder, (b) Approximate full adder. 

adder results in approximate arithmetic elements. These techniques have 
a high impact on models power consumption and offer a bottom-up 
approach to overcome the models scalability problem for ML hardware 
accelerators. 

Approximate Computing (AC) as a defense – Recent work [37, 38] has 
shown that, perhaps surprisingly, implementing ML models using AC can 
provide substantial robustness against adversarial attacks while reducing the 
complexity of the implementation. In particular, it has been shown that using 
approximation during inference introduces robustness against both black-box 
and white-box adversarial attacks. For example Figure 3.3 shows the classi­
fication accuracy of the exact (conventional) model and approximate models 
for 3 different benchmarks, namely: LeNet-5, AlexNet, and ResNet-18 CNNs 
under adversarial attack, while varying the adversarial attack magnitude. 
Specifically, the figure shows the robustness against PGD adversarial attack, 
where the approximate model achieves the highest accuracy: about 88% for 
LeNet-5, 81% for AlexNet and 67% ResNet-18. 

However, these results are empirical, for specific post-hoc approximation 
structures and many questions remain. For example, it is not clear whether 

Figure 3.3 Precise and approximate models robustness under PGD attack. 



82 Federated Learning: Privacy, Security and Hardware Perspectives 

the robustness advantage demonstrated against existing attacks would persist 
against adaptive attacks. It is also not clear what approximation structures and 
functions would provide best gains, and how and where to apply approxima­
tion to find effective solutions that balance accuracy, robustness to adversarial 
attacks, and implementation efficiency. 

3.4 Conclusion 

In that chapter, we considered the state of FL, spanning hardware limitations, 
security vulnerabilities, and privacy considerations. 

We briefly discussed the vulnerabilities posed by adversarial attacks, 
originating from both malicious clients and servers, on the lights of the 
attacker’s objectives and strategies. From a privacy perspective, while FL had 
been branded as a privacy-preserving technology, we discussed the challenges 
arising from potential inference attacks that could leak sensitive information 
during the collaborative learning process. 

The main challenge towards developing accurate ML models at the Edge 
was the limited energy and hardware resources of Embedded and Edge 
devices. While the community had explored the use of emerging paradigms 
such as approximate computing to address this challenge, we believed that the 
deployment of approximate AI designs (i.e., based on approximate computing 
engines) might have significant gains from a security and privacy perspective, 
in addition to the by-product gain in terms of energy consumption. 

Acknowledgements 

This research was conducted as part of the EdgeAI “Edge AI Technologies for 
Optimised Performance Embedded Processing” project, which has received 
funding from KDT JU under grant agreement No 101097300. The KDT 
JU receives support from the European Union’s Horizon Europe research 
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia, 
Luxembourg, Netherlands, and Norway. 

References 

[1] K. Bonawitz	 et al., “Towards Federated Learning at Scale: System 
Design”. arXiv, 22 mars 2019. Available at: https://doi.org/10.48550 
/arXiv.1902.01046 

https://www.doi.org/10.48550/arXiv.1902.01046
https://www.doi.org/10.48550/arXiv.1902.01046


References 83 

[2] P. Kairouz et al., “Advances and Open Problems in Federated Learning”. 
arXiv, 8 mars 2021. Available at: https://doi.org/10.48550/arXiv.1912. 
04977 

[3] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, et D. 
Bacon, “Federated Learning: Strategies for Improving Communication 
Efficiency”. arXiv, 30 October 2017. Available at: https://doi.org/10.4 
8550/arXiv.1610.05492 

[4] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et B. A. y Arcas, 
“Communication-Efficient Learning of Deep Networks from Decentral­
ized Data”. arXiv, 26 janvier 2023. Available at: https://doi.org/10.485 
50/arXiv.1602.05629 

[5] Q. Yang, Y. Liu, T. Chen, et Y. Tong, “Federated Machine Learning: 
Concept and Applications”. arXiv, 13 février 2019. Available at: https: 
//doi.org/10.48550/arXiv.1902.04885 

[6] Y.	 Liu et al., “A Communication Efficient Collaborative Learning 
Framework for Distributed Features”. arXiv, 31 july 2020. Available at: 
https://doi.org/10.48550/arXiv.1912.11187 

[7] Y.	 Liu, Y. Kang, C. Xing, T. Chen, et Q. Yang, “Secure Federated 
Transfer Learning”, IEEE Intell. Syst., vol. 35, no 4, p. 70-82, juill. 2020, 
Available at: https://doi.org/10.1109/MIS.2020.2988525 

[8] K. Gupta, M. Fournarakis, M. Reisser,	 C. Louizos, et M. Nagel, 
“Quantization Robust Federated Learning for Efficient Inference on 
Heterogeneous Devices”. arXiv, 22 juin 2022. Consulté le: 31 août 2023. 
Available at: http://arxiv.org/abs/2206.10844 

[9] C. Fung, C. J. M. Yoon, et I. Beschastnikh, “Mitigating Sybils in 
Federated Learning Poisoning”. arXiv, 15 july 2020. Available at: https: 
//doi.org/10.48550/arXiv.1808.04866 

[10] T. Gu, B. Dolan-Gavitt, et S. Garg, “BadNets: Identifying Vulnerabil­
ities in the Machine Learning Model Supply Chain”. arXiv, 11 mars 
2019. Available at: https://doi.org/10.48550/arXiv.1708.06733 

[11] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, et J. Stainer, “Machine 
Learning with Adversaries: Byzantine Tolerant Gradient Descent”, in 
Advances in Neural Information Processing Systems, Curran Associates, 
Inc., 2017. Consulté le: 30 août 2023. Available at: https://papers.nips. 
cc/paper_files/paper/2017/hash/f4b9ec30ad9f68f89b29639786cb62ef­
Abstract.html 

[12] B. Biggio et al., “Evasion Attacks against Machine Learning at Test 
Time”, 2013, p. 387-402. Available at: https://doi.org/10.1007/978-3­
642-40994-3_25 

https://www.doi.org/10.1007/978-3642-40994-3_25
https://www.papers.nips.cc
https://www.doi.org/10.48550/arXiv.1708.06733
http://www.arxiv.org
https://www.doi.org/10.1109/MIS.2020.2988525
https://www.doi.org/10.48550/arXiv.1912.11187
https://www.doi.org/10.48550/arXiv.1602.05629
https://www.doi.org/10.48550/arXiv.1610.05492
https://www.doi.org/10.48550/arXiv.191204977
https://www.doi.org/10.48550/arXiv.191204977
https://www.doi.org/10.48550/arXiv.1610.05492
https://www.doi.org/10.48550/arXiv.1602.05629
https://www.doi.org/10.48550/arXiv.1902.04885
https://www.doi.org/10.48550/arXiv.1902.04885
https://www.doi.org/10.48550/arXiv.1808.04866
https://www.doi.org/10.48550/arXiv.1808.04866
https://www.papers.nips.cc
https://www.papers.nips.cc
https://www.doi.org/10.1007/978-3642-40994-3_25


84	 Federated Learning: Privacy, Security and Hardware Perspectives 

[13] H. Wang et al., “Attack of the Tails: Yes, You Really Can Backdoor 
Federated Learning”. arXiv, 9 july 2020. Available at: https://doi.org/10 
.48550/arXiv.2007.05084 

[14] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and Central Differen­
tial Privacy for Robustness and Privacy in Federated Learning”. arXiv, 
27 May 2022. Available at: https://doi.org/10.48550/arXiv.2009.03561 

[15] V. Shejwalkar and A. Houmansadr, “Manipulating the Byzantine: Opti­
mizing Model Poisoning Attacks and Defenses for Federated Learning”, 
NDSS Symposium. Available at: https://www.ndss-symposium.org/wp­
content/uploads/ndss2021_6C-3_24498_paper.pdf 

[16] S. Fu, C. Xie, B. Li, and Q. Chen, “Attack-Resistant Federated Learning 
with Residual-based Reweighting”. arXiv, 8 janvier 2021. Available at: 
https://doi.org/10.48550/arXiv.1912.11464 

[17] A. F. Siegel, “Robust regression using repeated medians”, Biometrika, 
vol. 69, no 1, p. 242-244, avr. 1982. Available at: https://doi.org/10.109 
3/biomet/69.1.242 

[18] P.	 W. Holland et R. E. Welsch, “Robust regression using iteratively 
reweighted least-squares”, Commun. Stat. - Theory Methods, vol. 6, no 

9, p. 813-827, janv. 1977, doi: 10.1080/03610927708827533. 
[19] G. Xu, H. Li, S. Liu, K. Yang and X. Lin, “VerifyNet: Secure and 

Verifiable Federated Learning,” in IEEE Transactions on Information 
Forensics and Security, vol. 15, pp. 911-926, 2020. Available at: https: 
//doi.org/10.1109/TIFS.2019.2929409 

[20] M. Nasr, R. Shokri, et A. Houmansadr, “Comprehensive Privacy Anal­
ysis of Deep Learning: Passive and Active White-box Inference Attacks 
against Centralized and Federated Learning”, in 2019 IEEE Symposium 
on Security and Privacy (SP), mai 2019, p. 739-753. Available at: 
https://doi.org/10.1109/SP.2019.00065 

[21] R. Shokri, M. Stronati, C. Song, et V. Shmatikov, “Membership Infer­
ence Attacks against Machine Learning Models”. arXiv, 31 mars 2017. 
Available at: https://doi.org/10.48550/arXiv.1610.05820 

[22] L. Melis, C. Song, E. De Cristofaro, et V. Shmatikov, “Exploiting Unin­
tended Feature Leakage in Collaborative Learning”. arXiv, 1 november 
2018. Available at: https://doi.org/10.48550/arXiv.1805.04049 

[23] B. Hitaj, G. Ateniese, et F. Perez-Cruz, “Deep Models Under the GAN: 
Information Leakage from Collaborative Deep Learning”. arXiv, 14 
september 2017. Available at: https://doi.org/10.48550/arXiv.1702. 
07464 

https://www.doi.org/10.48550/arXiv.1702.07464
https://www.doi.org/10.48550/arXiv.1805.04049
https://www.doi.org/10.48550/arXiv.1610.05820
https://www.doi.org/10.1109/SP.2019.00065
https://www.doi.org/10.1093/biomet/69.1.242
https://www.doi.org/10.48550/arXiv.1912.11464
https://www.ndss-symposium.org
https://www.doi.org/10.48550/arXiv.2009.03561
https://www.doi.org/10.48550/arXiv.2007.05084
https://www.doi.org/10.48550/arXiv.2007.05084
https://www.ndss-symposium.org
https://www.doi.org/10.1093/biomet/69.1.242
https://www.doi.org/10.1080/03610927708827533
https://www.doi.org/10.1109/TIFS.2019.2929409
https://www.doi.org/10.1109/TIFS.2019.2929409
https://www.doi.org/10.48550/arXiv.1702.07464


References 85 

[24] W. Li et al., “Privacy-preserving Federated Brain Tumour Segmenta­
tion”. arXiv, 2 october 2019. Available at: https://doi.org/10.48550/arX 
iv.1910.00962 

[25] L. Zhu, Z. Liu, et S. Han, “Deep Leakage from Gradients”. arXiv, 
19 décembre 2019. Available at: https://doi.org/10.48550/arXiv.190 
6.08935 

[26] C. Briggs, Z. Fan, et P. Andras, “Federated learning with hierarchical 
clustering of local updates to improve training on non-IID data”. arXiv, 
6 May 2020. Available at: https://doi.org/10.48550/arXiv.2004.11791 

[27] F. Sattler, K.-R. Müller, et W. Samek, “Clustered Federated Learning: 
Model-Agnostic Distributed Multi-Task Optimization under Privacy 
Constraints”. arXiv, 4 october 2019. Available at: https://doi.org/10 
.48550/arXiv.1910.01991 

[28] R. C. Geyer, T.	 Klein, et M. Nabi, “Differentially Private Federated 
Learning: A Client Level Perspective”. arXiv, 1 mars 2018. Available 
at: https://doi.org/10.48550/arXiv.1712.07557 

[29] H. Chang, V. Shejwalkar, R. Shokri, et A. Houmansadr, “Cronus: Robust 
and Heterogeneous Collaborative Learning with Black-Box Knowledge 
Transfer”. arXiv, 24 décembre 2019. Available at: https://doi.org/10.4 
8550/arXiv.1912.11279 

[30] A. Guesmi, I. Alouani, M. Baklouti, T. Frikha, M. Abid, and A. Rivenq. 
2019. HEAP: A Heterogeneous Approximate Floating-Point Multiplier 
for Error Tolerant Applications. In Proceedings of the 30th International 
Workshop on Rapid System Prototyping (RSP ’19). Association for 
Computing Machinery, New York, NY, USA, 36–42. https://doi.org/ 
10.1145/3339985.3358495 

[31] Ali, K.M.A., Alouani, I., El Cadi, A.A., Ouarnoughi, H., Niar, S. (2020). 
Cross-layer CNN Approximations for Hardware Implementation. In: 
Rincón, F., Barba, J., So, H., Diniz, P., Caba, J. (eds) Applied Reconfig­
urable Computing. Architectures, Tools, and Applications. ARC 2020. 
Lecture Notes in Computer Science(), vol 12083. Springer, Cham. 

[32] S. Venkataramani, S. T.	 Chakradhar, K. Roy, and A. Raghunathan. 
“Approximate Computing and the Quest for Computing Efficiency”. In: 
Proceedings of the 52nd Annual Design Automation Conference. DAC 
’15. San Francisco, California: Association for Computing Machinery, 
2015. ISBN: 9781450335201. Available at: https://doi.org/10.1145/27 
44769.2751163 

[33] S. Wang and P. Kanwar. Bfloat16: the secret to high performance on 
cloud TPUs. Google blog from https://cloud.google.com/blog/products 

https://www.cloud.google.com
https://www.doi.org/10.1145/2744769.2751163
https://www.doi.org/10.1145/3339985.3358495
https://www.doi.org/10.48550/arXiv.1912.11279
https://www.doi.org/10.48550/arXiv.1712.07557
https://www.doi.org/10.48550/arXiv.1910.01991
https://www.doi.org/10.48550/arXiv.2004.11791
https://www.doi.org/10.48550/arXiv.1906.08935
https://www.doi.org/10.48550/arXiv.1910.00962
https://www.doi.org/10.48550/arXiv.1910.00962
https://www.doi.org/10.48550/arXiv.1906.08935
https://www.doi.org/10.48550/arXiv.1910.01991
https://www.doi.org/10.48550/arXiv.1912.11279
https://www.doi.org/10.1145/3339985.3358495
https://www.doi.org/10.1145/2744769.2751163


86	 Federated Learning: Privacy, Security and Hardware Perspectives 

/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-clo 
ud-tpus.2019. 

[34] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. 
Choi, and K. Gopalakrishnan. “DLFloat: A 16-b Floating Point Format 
Designed for Deep Learning Training and Inference”. In: 2019 IEEE 
26th Symposium on Computer Arithmetic (ARITH). 2019, pp. 92–95. 
Available at: https://doi.org/10.1109/ARITH.2019.00023 

[35] B. Noune, P. Jones, D. Justus, D. Masters, and C. Luschi. 8-bit Numer­
ical Formats for Deep Neural Networks. 2022. Available at: https: 
//doi.org/10.48550/ARXIV.2206.02915 

[36] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu­
nathan. “SALSA: Systematic logic synthesis of approximate circuits”. 
In: DAC Design Automation Conference 2012. 2012, pp. 796–801. 
Available at: https://doi.org/10.1145/2228360.2228504. 

[37] A. Guesmi et al. “Defensive	 approximation: securing CNNs using 
approximate computing”. In: Proceedings of the 26th ACM Interna­
tional Conference on Architectural Support for Programming Lan­
guages and Operating Systems. 2021, pp. 990–1003. 

[38] M. S. Islam, I. Alouani, and K. N. Khasawneh. “Lower Voltage for 
Higher Security: Using VoltageOverscaling to Secure Deep Neural Net­
works”. In: 2021 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 2021 

https://www.doi.org/10.1145/2228360.2228504
https://www.doi.org/10.1109/ARITH.2019.00023
https://www.cloud.google.com
https://www.cloud.google.com
https://www.doi.org/10.48550/ARXIV.2206.02915
https://www.doi.org/10.48550/ARXIV.2206.02915


4
 
Inside the AI Accelerators: From High
 

Performance to Energy Efficiency
 

Ana Pinzari, Adrien Prost-Boucle, Christelle Rabache, 
and Frédéric Pétrot 

Institute of Engineering Univ. Grenoble Alpes, France 

Abstract 

This chapter overviews current technologies for high-performance, low-
power neural networks. To cope with the high computational and storage 
resources, hardware optimisation techniques are proposed: Deep Learning 
(DL) compilers and frameworks, DL hardware coupled with hardware-
specific code generators. More specifically, we explore the quantization 
mechanism in deep learning, based on a deep-CNN classification model. 
We highlight the accuracy of quantized models and explore their efficiency 
on a variety of hardware platforms. Through experiments, we show the 
performance achieved using general-purpose hardware (CPU and GPU) and a 
custom ASIC (TPU), as well as the simulated performance for a reduced bit-
width representation of 4 bits, 2 bits (ternary) down to 1-bit heterogeneous 
quantization (FPGA). 

Keywords: Deep Learning, hardware accelerators, DL Compilers, CPU, 
TPU, GPU, quantization aware training, binary neural network. 

4.1 Introduction and Background 

AI-based solutions are constantly emerging in our daily life. AI solu­
tions already dominate across all social fields; their remarkable success 

87
 

This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-4 



88 Inside the AI Accelerators: From High Performance to Energy Efficiency 

bringing comfort and quality, and saving time. However, the difficulty of 
deploying these solutions raises open questions for both industry and research 
communities. 

The use of the most recent neural networks generally requires a lot of 
computation and resources, as the rule of thumb is - the deeper the model, the 
more accurate it is. Various DL frameworks such as TensorFlow, MXNet and 
PyTorch are meant to simplify the definition and implementation of neural 
network architectures. To accelerate the performance of these models and 
achieve high energy efficiency, various DL hardware are proposed. CPU and 
GPU are general-purpose hardware embracing SIMD and vector-oriented 
logical components which can be used to facilitate and accelerate neural 
networks computation. 

Application-specific integrated circuits, such as the custom dedicated 
hardware Google Coral TPU and FPGA, are designed to increase neural 
network performance and leverage the energy efficiency. Each hardware 
architecture has its own specificity in term of computational requirements and 
memory complexity. To cope with these requirements and to adapt the DL 
models to the wide variety of DL chips, DL compilers have been proposed. 

The most recent DL compilers, such as TVM, Glow, XLA, Tensor 
Comprehension [6] have the objective of optimizing the NN for specific 
hardware architectures. They include in their flow a front-end intermediate 
representation (IR) and dedicated back ends, which allows the portability of 
a model across diverse target hardware. 

To enable and facilitate the portability to AI edge devices, various opti­
mization techniques must be applied. The most known methods involve 
reducing the parameter count and representational precision, while others use 
tensor decomposition techniques. 

The number of parameters can be reduced by pruning the weights and 
nodes, or to lighten the topology of the neural network architecture. To cope 
with the memory complexity and to leverage hardware requirements, models 
need to be represented in lower precision, such as 8-bit integer representations 
or extremely low-bit precisions (ternary {-1, 0, 1}, binary {-1, 1}). This is 
referred to as quantization. 

In this paper, we propose to show the implementation of a small neural 
network defined and designed to be deployed on a wide range of small edge-
AI devices. To evaluate these edge platforms, we implemented an end-to-end 
inference design based on a quantized neural network architecture. 

These experiments aim at demonstrating that an AI-based classification 
solution is feasible on these types of low-power and limited resource devices, 



4.2 Related Work 89 

by only applying quantization techniques. Other optimizations are of course 
feasible, and their efficiency is studied in Section 1.2. 

For the rest of the article, we show the performance our model achieves 
for real-time inference on CPU, GPU, TPU and FPGA boards. We are 
specifically interested to compare the power consumption and the logical and 
physical resources allocated for these edge devices. These criteria and the 
model’s performance will be examined in our study. 

4.2 Related Work 

To enable rapid deployment and exploit the performance of hardware accel­
erators, a great time and effort has been dedicated to DL compilers. A recent 
overview of these compilers to enable the automatic transformation of DNN 
to hardware accelerators is well explained in [7]. 

For specialized DL accelerators, a hardware programmable architecture 
integrating JIT compiler and runtime, is proposed to the community [4]. The 
VTA is part of Apache TVM and offers more flexibility and versatility for 
diverse models to hardware back ends (FPGAs). 

A comparison of various type of neural networks (MLPs, CNNs, RNNs) 
on Google TPU ASIC is done in [5]. Experiments show that the performance 
is limited by memory bandwidth rather than by peak computational need. 
This is due to the use of systolic execution (a row matrix is limited to 256­
element multiply-accumulate operations) in order to save energy (reading 
large SRAM uses much more power than arithmetic operations). 

Tensor decomposition is another acceleration method. A well-explained 
study of higher-order tensor decompositions and their applications is 
reviewed in [3][6]. The authors [2] propose an asymmetric 3D decomposition 
for different models. In their study, they show that shallower models can 
achieve 3.5x speed-up on the CPU and 3.3x speed-up on the GPU, with 
an insignificant loss of accuracy. Experiments on much deeper models, such 
as the VGG-16, showed that the GPU remains more sensitive to speed-up 
than the CPU. This gap is explained by the fact that for particular kernels 
used in tensor decomposition (e.g., 1x3, 3x1 convolutions), there is a lack of 
parallelism and therefore optimization in CPUs. This problem has boosted 
the research of many scientists, for example the authors [8] propose a CT 
decomposition that is up to 5.56x faster than the current Tensor Lab library. 

The work of [1] explains in detail the efficiency of using QKeras library 
for ultra-low-latency inference. The authors use the hls4ml library for a 
fully automated deployment of quantized model on FPGA and show that the 



90 Inside the AI Accelerators: From High Performance to Energy Efficiency 

amount of resource consumption can be reduced by up to 98%. Among vari­
ous optimizations techniques, such as pruning and 6-bit precision for weights 
and activations, the best energy efficiency is achieved by the heterogeneous 
quantization method (be it post-training or quantization aware training). 

The first authors to explore the training of neural networks with binary 
activations were introduced in [20]. An efficient way to map a binary CNN 
to reconfigurable logic is presented in [21]. Authors use FINN [22] frame­
work to build a scalable and fast binary neural network, achieving a high 
throughput but a limited accuracy. 

In the vast field of hardware accelerators, quantization techniques and 
models with limited number of weights are our primary research pillars. We 
are studying how heterogeneous quantization can be applied to achieve fairly 
high-performance with under 8-bit precision models, as some applications 
show [23]. In comparison, we do not neglect models with 8-bit integer 
quantization and show their performance on the most popular AI-edge boards. 
Indeed, the smallest items that CPUs manipulate is a byte, and there is no 
point in using smaller bit widths, as they require more instructions to process, 
and it is even counter-productive from a computation point of view. 

4.3 Classification Model 

The model we consider for our experiments has been developed for a multi-
class classification problem. 

To reduce the cost and energy consumption of the inference process as 
much as possible, we have considered the right balance between resources 
and accuracy, as a prior criterion. We performed the search for the appropriate 
network architecture using floating-point representation, keeping in mind that 
parameter size will be reduced by quantization. The definition of our model 
is mostly empirical, as the current pre-defined neural networks are mainly 
intended for very complex problems, and these large models are simply not 
appropriate for inference on small electronic devices. More details about our 
particular defined model can be found in [9]. 

Our neural network has been trained on mono-channel 224×224 images 
applying as learning method the supervised learning algorithm. Table 4.1 
shows an overall description of each layer of the model, the number of 
parameters and the output size for the resultant feature maps. 

We continue with optimization techniques regarding computational and 
memory requirements necessary to enable the execution of our model on 
small edge devices. 



4.4 Quantization 91 

Table 4.1 Neural Network Description 
Layer Output size / Nr of Parameters 

Input (224×224×1) 
Conv2D, 32 (7×7), s=2 109×109×32 / 1600 
MaxPool2D (2×2) 54×54×32 
Inception Block 54×54×32 / 1056 
32 (1×1), 54×54×8 / 264, 54×54×8 / 264, 
8 (1×1), 8 (1×1), MaxPool2D (3×3) 54×54×32 
32 (3×3), 32 (5×5), 54×54×32 / 2336, 54×54×32 / 6432 
32 (1×1) 54×54×32 / 1056 

54×54×128 / 11408 
MaxPool2D (2×2) 27×27×128 
Conv2D, 12 (1×1) 27×27×12 / 1548 
Conv2D, 116 (3×3), s=2 14×14×116 / 12644 
Conv2D, 116 (3×3), s=2 7×7×116 / 121220 
Flatten (5684) 
FC / Softmax, 58 58 neurons / 329730 
Total number of parameters: 478.150 (478 neurons and 477.672 weights) 
Total number of FLOPs: 125.518.940 

4.4 Quantization 

Quantization consists of reducing the number of bits necessary to represent 
a value. Its use in neural networks is not new [12, 13] but using it on deep 
convolutional neural network raises new challenges. There are now many dif­
ferent quantization approaches, ranging from quantizing only the parameters, 
quantizing both parameters (often only weights, not biases) and activations, 
quantizing on 16, 8, or even 2 or 1 bit. Approaches using the smallest 
bit sizes are meaningful for hardware implementations [14, 15, 16, 17]. 
For comparison reasons, we performed experiments targeting off-the-shelf 
microcontroller-based boards using 8-bit quantization and custom hardware 
accelerators such as FPGA, for lower bit-width representations. 

On micro-controllers, the most demanding part of the neuron output  n−1computation (vj = xiwij ) uses only 8-bit integer multiplications. i=0 
This is key because the area and power complexity of a multiplier is ( )

in O b2 where b is the number of bits of the inputs. Each multiplication 
produces a 2b-bit result, that is accumulated with the adder to produce a 
(2b + log2n )–bit result, n being the number of inputs of the neuron. Using 
a 32-bit addition is a safe guess here, as there are very few chances that the 
accumulation takes place with more than 216 inputs. It is also safe to have 
a bias bj on 32-bit, as this is a single addition performed after all integer 
multiplications (oj = vj + bj ). 



92 Inside the AI Accelerators: From High Performance to Energy Efficiency 

TensorFlow has been the first widely available framework to provide fine-
tuned 8-bit integer arithmetic implementations for micro-controllers (using 
e.g. SIMD instructions) and Google TPU [18], we opted to use it given 
our high power-efficiency goal. We briefly summarize here the quantiza­
tion approach that is advocated by and implemented in this framework, 
which is thoroughly detailed in [19]. For a given convolution layer, the 
quantization process produces, in addition, an offset (called zero-point, 
zp), and for each output channel of the layer a scale under the form 
of an integer multiplicand M and a shift s. The scale factor and offset 
must be applied before the activation function, leading (roughly, as the 

sidea is to divide by 2 which is not a raw shift for negative values) 
to yj = ((oj × M) » s) +  zp. These operations, done only once 
per kernel, typically fit in 32-bit, and the result is saturated to −128 
or 127. 

From a practical point of view, there are two main ways for quantizing 
a network: Post-training quantization (PTQ) and quantization-aware training 
(QAT). PTQ consists of finding offsets and scale values to approximate the 
weights of an already trained network. Post-training works quite well on large 
networks, especially when lowering weight size to 8 bits or more. To further 
reduce bit size without incurring high accuracy losses, it is usually necessary 
to use QAT. This consists of training the network by considering the low 
precision behaviour during the process. 

Google’s TensorFlow-Lite (TF-Lite) open-source framework provides an 
API to convert and interpret quantized networks. Given our target that is 
micro-controllers possibly backed by an accelerator, for which lower than 
8-bit precision is useless, we use the PTQ method. It produces weights 
and biases quantized to a fixed-point precision of 8-bit using the approach 
mentioned above and required by integer-only accelerators. PTQ takes a fully 
trained model and doesn’t require additional modifications for conversion 
into a quantized model. Nevertheless, an important point for the conversion 
process is to provide a representative data set, i.e., a small subset of the orig­
inal data set which covers the entire value space. This gives the quantization 
process the range of inputs values and it can then find the most appropriate 8­
bit fixed-point representation (multiplicand M and shift s) for each weight and 
activation value. To achieve the best possible performance, i.e., ensure that all 
computations are done using SIMD instructions or outsourced to the TPU, it 
is recommended to strictly stick to the 8-bit data type. For this purpose, we 
perform a full integer optimization with the TF-Lite converter, i.e., the inputs 
and the outputs use 8 bits too. 



4.5 Experiments and Results 93 

The accuracy with the quantization process activated is given Table 4.2. 

Table 4.2 Inference Accuracy Of The Quantized Model Before (QAT) and After (PTQ) 
Training 

Quantization-aware Post-training 
Training Quantization 

Accuracy 97.63 % 97.35 % 

4.5 Experiments and Results 

The following experiments are conducted using software implementa­
tion of our quantized neural network model as well as the unquantized 
version. They are each using the available kernel implementation pro­
vided with the development kit without modification or optimization from 
our side. 

Further optimization is described in Section 4.5.2, though we show 
through this type of experiment that solely optimizing the neural network 
model is enough to deliver the required performances using general purpose 
hardware. 

Experiments are conducted on the following hardware targets. 

• X86 Desktop CPU 48 cores / 96 threads (float and int) 
• Google Coral TPU coprocessor 4 TOPS (int) 
• Google Coral CPU quad Cortex-A53 and a Cortex-M4F (int and float) 
• Jetson CPU (int and float) Quad Cortex-a53 
• Jetson Maxwell GPU (float), 128 CUDA cores 
• STM32MP1 CPU Cortex-A7 (int and float) 
• Zynq-7000 SoC XC7Z010 FPGA 

Figure 4.1 describes the workflow to create a TensorFlow Lite model 
for inference on the above-mentioned edge devices. Our conversion focuses 
on creating a floating-point quantization model (for inference especially on 
GPU) and an 8-bit fixed point model for CPU and TPU acceleration. For 
optimal use of Coral’s TPU, the tflite model must be compiled at the end with 
the edge-tpu compiler to check the compatibility of the quantized operations 
and then map them onto the TPU. 

Once we have the models, we analyse the real-time performance of 
our model for different systems. The experiments target the number of 
inferences our model can perform per second, by measuring the latency 
for different scenarios: unquantized TensorFlow model (binary32 The 



94 Inside the AI Accelerators: From High Performance to Energy Efficiency 

Figure 4.1 Workflow to Create a Tflite Model (Int8 And Binary16) for Inference on Edge 
Boards: Google Coral Including the Compiled Model for the EdgeTPU, STM32MP1 and 
Jetson. 

binary256/128/64/32/16 types correspond to the floating-point representa­
tions defined in the IEEE 754-2008 standard on the number of bits indicated 
in their name.), tflite model (binary16 and int8) and edgetpu model (int8). 
Inference is performed one image at a time, i.e., the batch size is set to 1. 

4.5.1 Time and power consumption 

Table 4.3 shows the performance of our model for each target. An x86 CPU 
desktop machine uses binary32 floats by default to infer a neural network. 
With quantization, there is a gain in memory resources and therefore a higher 
inference speed, at the expense of a lower precision. The MP1 board performs 
faster for integer arithmetic, due to flexible dual cores dedicated for real-
time low-power tasks. For the Coral SoC, the best performance is achieved 
by the TPU ML accelerator, the performance is more than 30x higher (902 
i/s) than on its CPU. The Jetson GPU shows good inference performance 
for models at half precision. The binary16 operations are faster than the 
binary32 ones, so these quantized models should be considered for future 
evaluation. 

In the following, we present a general analysis by taking higher 
throughputs and focusing not only on hardware optimizations but also on 
power consumption. The following experiments are performed on a batch 
size of 100 images and within the range of 1 to 32 batches processed 
at a time. 



4.5 Experiments and Results 95 

Table 4.3 Inference Performance and Latency Measurements for Randomly Selected 
Images. Experiments Done on x86 Standalone Server, Google Coral, STM32P1 and NVIDIA 
Jetson Boards. 

Performance (inferences/s) 
Float Float (tflite) Int CPU TPU GPU 

x86 52.5 322.5 312.5 - -
Coral - 20 31.8 902 -
MP1 - 4.5 5.5 - -
Jetson 26 38 56 - 47 

Latency (ms) 
x86 19 3.1 3.2 - -
Coral - 49.4 31.4 1.11 -
MP1 - 223 181 - -
Jetson 38.5 26.4 17.8 - 21.2 

Accuracy: 97 % 

4.5.1.1 Google Coral Board 
Figure 4.2 shows the performance achieved by the TPU and the CPU of 
the Coral board. We can observe that for large batch sizes, the TPU hard­
ware accelerator achieves performance up to 1600 inferences/s for a power 
consumption of 4.2 W. Running the tflite model on the CPU (ARM vector 
instructions), and without edge-tpu optimization, we obtain a performance of 
33 inferences/s (ips) for the int8 model leading to a power consumption of 
4.3 W, and a lower consumption of 3.8 W for the binary32 model, with 21 
ips. In the power curves, we can observe a repetitive power overshoot of a bit 
less than 1 W per batch. This is due to the cooling fan that starts when using 
larger batches. Note that for inferences at a batch size of 1, the fan was never 
activated. 

Figure 4.2 Coral Performance and Power Measurements 



96 Inside the AI Accelerators: From High Performance to Energy Efficiency 

Figure 4.3 MP1 Performance and Power Measurements 

4.5.1.2 STM32MP1 Board 
The STM32 MP1 board is efficiently designed for low power mode. The 
float throughput improves when we increase the batch size, taking thus the 
advantages of the ARM SIMD instructions. For the integer model, there is 
not much improvement in performance, see Figure 4.3 

We can also report that it was not possible to exceed a batch size of 32 
with floats due to memory limitations. But we were able to go up to batches 
of 128 for 8-bit integers due to their much smaller memory footprint. 

4.5.1.3 NVIDIA Jetson 
Figure 4.4 shows GPU float experiments with two inference kernels. One 
available is the TensorFlow base interpreter, the other is the TensorFlow lite 
implementation. Both have similar throughput (a little lower for tflite) but 
there’s a non-negligible change in power consumption going from 5W to 
3.5W. The latter being close to integers which are even more interesting with a 
little more throughput for a little less power consumption. “The non-linearity 

Figure 4.4 Jetson Performance and Power Measurements. 



4.5 Experiments and Results 97 

in the GPU curve occurs for a batch ...” a batch size of 128 which is the 
number of CUDA core to feed with images. This is why we lose some 
throughput at 129 before slowly catching up the maximum throughput. 

4.5.2 FPGA 

4.5.2.1 QKeras Library 
QKeras [10, 11] is an extension to Keras, a high-level API to define and train 
neural networks. It has been implemented to perform a drop-in replacement 
for certain layers of the model, related to weights and activation functions 
with a deep quantized version of Keras neural network. 

QKeras is designed to remain a simple and consistent interface optimized 
for common functionalities in accordance with Keras design principles. For 
this purpose, the following set of layers have been implemented: Qconv2D, 
QActivation, QDense etc, to enable the conversion between non-quantized 
to quantized networks. To make your own quantization (QAT) it is needed 
to replace all variables and weights/bias created by Keras as well as output 
of arithmetic layers by quantized functions. Qactivation is used in both 
convolution (Qconv2D) and dense (Qdense) layers and acts at the end as 
a merging function for activation and quantization. For these layers, some 
parameters are interesting to mention. 

Alpha is a parameter concerning the scale factor and should be applied 
before the activation function. This parameter by default is None. It can also 
indicate that the scale is computed as a floating-point number by the learning 
process. It can also force the scale to be an integral power of 2, which ends 
up for a hardware implementation in shifting the result of a convolution or 
dense layer to the right or left (positive shifts left, negative shifts right). For 
these practical reasons, in our experiments we opt for the latter setting. 

Symmetric if set to, if set to True, ensures the trainable parame­
ters to get the same maximum and minimum values after the clipping 
operation during quantization. The use of stochastic_rounding reveals 
to be useful in practice for improving accuracy. However, computing 
stochastic rounding might be quite heavy, so we set this parameter to 
False. 

Table 4.4 describes the results obtained by our model after quantizing 
for different precisions. For example, the first convolution q_conv2d is set 
this way: bits=4, integer=0, symmetric=1. The 4-bit quantization of the entire 
model (weights, biases, and activations) achieves the better accuracy. When 
further reducing to 2 bits, the accuracy of the model decreases drastically. 



98 Inside the AI Accelerators: From High Performance to Energy Efficiency 

Table 4.4 QKeras quantization for different precisions 
Precision Sparsity 

Layer 4 bits 2 bits Heteroge 4 bits 2 bits Heteroge 
neous (4 bits, neous 
binary) (4 bits, 

binary) 
q_conv2d (4,0,1) (2,0,1) (4,1,1), 0.1156 0.5131 0.1350 
W,b (4,1) (2,0) (4,1,1) 
ReLU (4,1) 
q_conv2d_l 
W,b 
ReLU 
q_conv2d_2 
W,b 
ReLU 

(4,0,1) 
(4,1) 

(4,0,1) 
(4,1) 

(2,0,1) 
(2,0) 

(2,0,1) 
(2,0) 

binary, 
(4,1,1) 
(4,1) 
binary, 
(4,1,1) 
(4,1) 

0.1023 

0.0985 

0.5341 

0.5720 

-

-

q_conv2d_3 
W,b 
ReLU 
q_conv2d_4 
W,b ReLU 

(4,0,1) 
(4,1) 

(4,0,1) 
(4,1) 

(2,0,1) 
(2,0) 

(2,0,1) 
(2,0) 

binary, 
(4,1,1) 
(4,1) 
binary, 
(4,1,1) 
(4,1) 

0.1108 

0.1973 

0.5483 

0.5330 

-

-

q_conv2d_5 
W,b ReLU 

q_conv2d_6 
W,b ReLU 

(4,0,1) 
(4,1) 

(4,0,1) 
(4,1) 

(2,0,1) 
(2,0) 

(2,0,1) 
(2,0) 

binary, 
(4,1,1) 
(4,1) 
binary, 
(4,1,1) 
(4,1) 

0.2243 

0.0975 

0.6550 

0.5445 

-

-

q_conv2d_7 
W,b ReLU 

q_conv2d_8 
W,b ReLU 

(4,0,1) 
(4,1) 

(4,0,1) 
(4,1) 

(2,0,1) 
(2,0) 

(2,0,1) 
(2,0) 

binary, 
(4,1,1) 
(4,1) 
binary, 
(4,1,1) 
(4,1) 

0.1389 

0.1754 

0.5975 

0.5540 

-

-

q_conv2d_9 (4,0,1) (2,0,1) binary, 0.2935 0.6840 -
W,b ReLU (4,1) (2,0) (4,1,1) 

(4,1) 
q_dense (4,0,1) (2,0,1) (4,1,1), 0.5152 0.8756 0.4806 
W,b ReLU (4,1) (2,0) (4,1,1) 

(4,1) 
Model Performance Total Sparsity 

Accuracy 96 % 76.1 % 94.6 % 0.163 0.4397 0.81 0.3318 
Loss 0.148 0.747 



4.5 Experiments and Results 99 

The table shows, as an additional information, the model sparsity for 
various quantization scenario. This is a valuable metric to compare and see 
the trade-off between the accuracy and the computational cost of the model. 
The weights sparsity plays the role in reducing the number of calculations 
during the inference. When the sparsity is the same, the level of FLOPs 
remains constant. When the sparsity is too important (2 bits precision), the 
quantization becomes less effective, and the accuracy of the model is reduced. 
The sparsity for the last fully connected layer is like the pruning technique, 
where synapses between neurons are reduced. 

These reasons led us to search for heterogeneous quantization, the trick 
being to find the right trade-off between accuracy requirements and hardware 
performance. 

From a practical point of view, for the weights of the intermediate layers, 
we opted for an extremely low-bit quantization (we used binary quantization). 
The first and last classification layers were quantized to 4 bits, as well as the 
biases of the entire network. The activations of each quantized layer play an 
equally important role, so these neurons have not decreased in number of bits, 
the precision is maintained 4 bits. 

This last model was implemented on the small Zybo board. The precision 
for each quantized layer and the accuracy of the model are described Table 4 
(heterogeneous quantization). This method enabled us to achieve an accuracy 
slightly lower than the performance of the 4-bit model, more precisely a rate 
of 94.6%. 

4.5.2.2 Quantized model and Experimental Setup 
The quantized network used in our experiment, targets the small board 
Zybo Z7010 and explores the advantages of low-bit quantization. The major 
advantage of binary precision is that the pre-trained weights of the model 
(1.9 MB) fit very well within the on-chip memory. To achieve high memory 
throughput and very lightweight control paths, our hardware implementation 
does not leverage weight sparsity or compression. The low resource usage of 
multipliers with binary weights also enable to use a larger bit width for acti­
vations (4 bits), keeping accuracy high. Each network layer is an independent 
hardware block with its own dedicated resources and implementation, which 
enables to optimize parallelism and memory usage on a per-layer basis. The 
entire network fits inside the FPGA. 

The approach of this efficient neural network implementation is presented 
in [17]. The hardware architecture generated by this method presents a total 
of 40 layers, with the following type: Sliding Window Layer, Neuron Layer, 



100 Inside the AI Accelerators: From High Performance to Energy Efficiency 

Table 4.5 FPGA performance and resource utilization 
LUT (logic) LUTRAM Slice Block DSP cores 

Registers RAM 

9030 / 17600 4830 / 6000 11796 / 35200 60 / 60 37 / 80 

(51.3 %) (80.50 %) (33.51 %) (100 %) (46.25 %) 

Table 4.6 Model perpormance on FPGA 
Performance Latency Power Power 

(FPGA only) (Entire Chip) 
178 images/s 26 ms 0.24 W ∼ 1.75 W ∼ 

134 mJ/ image 983 mJ/ image 

ReLU Layer, MaxPooling Layer, and Fork and Cat layers for synchronization 
of the parallel branches in the inception part of the network. 

The resource utilization and performance of our quantized network 
implementation, is described Table 4.5 . 

The BRAM is used for read-only memories of weights in neuron layers. 
All quantized MAC operations (multiply-accumulate) in neuron layers are 
implemented in distributed logic with LUTs. The MAC operations of most 
layers have a 1 b  operand, which reduce the multiplications to tiny AND 
operations. Only the last layer actually implements a 4 b  multiplication (0.5% 
of all MACs). The DSP cores are only used for address calculations within 
Sliding Window Layers. 

The power consumption number is the total power estimation performed 
by the Xilinx Vivado synthesis suite. The processor subsystem of the Zynq 
chip would actually be mostly idle, so we report power both for the whole 
chip and for the FPGA only. The performance at 150MHz is summarized in 
following Table 4.6. 

4.6 Conclusion 

A selection of edge-AI boards and some optimization techniques have 
enabled us to investigate the possibilities of achieving high performance on 
a low budget. With a deep CNN model defined for a classification task, the 
accuracy achieved on 8-bit operating systems is around 97%. The efficiency 
of each board depends on processing speed and RAM availability. In our 
experiments, we found that performance is more limited by memory usage 
than by the number of neurons. In addition, we show how performance 



References 101 

and energy efficiency can be affected by the cost of each board. To these 
measurements, further experiments using binary operations were carried out 
to address the option of a more energy efficiency at the expense of slightly 
degraded accuracy (94.6%). To find a suitable model, we used a hybrid 
aware quantization and described the methods enabling the maintain of an 
acceptable accuracy. 

By focusing on this type of optimization related to the memory usage, 
i.e., an appropriate number of weights and limited bit widths, we have 
shown that high-performance inference can be achieved very efficiently. More 
specifically, the energy efficiency and power consumption achieved by each 
evaluation board is summarized as follows: 

• Coral TPU: 3.12 mJ/image or 320 images/s/W 
• STM32MP1: 232 mJ/image or 4.7 images/s/W 
• Jetson GPU: 22.7 mJ/image or 44 image/s/W 
• Zybo Z-7010: 983 mJ/image or 101.7 image/s/W 

For further work, we plan to try out other optimization techniques linked 
to specific applications, for which these methodologies are of the utmost 
interest. 

Acknowledgements 

This work was supported by Key Digital Technologies Joint Undertaking 
(KDT JU) in EdgeAI “Edge AI Technologies for Optimised Performance 
Embedded Processing” project, grant agreement No 101097300. 

References 

[1] Claudionor N. Coelho Jr, Aki Kuusela, Shan Li, Hao Zhuang, Jennifer 
Ngadiuba, Thea Klacboe Aarrestad, Vladimir Loncar, Maurizio Pierini, 
Adrian Alan Pol, Sioni Summers, “Automatic heterogeneous quantiza­
tion of deep neural networks for low-latency inference on the edge for 
particle detectors”, Nature Machine Intelligence (2021) 

[2] Zhang, Xiangyu & Zou, Jianhua & He, Kaiming & Sun, Jian. (2015). 
Accelerating Very Deep Convolutional Networks for Classification 
and Detection. IEEE Transactions on Pattern Analysis and Machine 
Intelligence. 

[3] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and 
Applications. SIAM Rev, 51, 3 (August 2009), 455-500. 



102 Inside the AI Accelerators: From High Performance to Energy Efficiency 

[4] T. Moreau et al., “A Hardware-Software Blueprint for Flexible Deep 
Learning Specialization,” in IEEE Micro, vol. 39, no. 5, pp. 8-16, 1 
Sept.Oct. 2019, doi: 10.1109/MM.2019.2928962. 

[5] Norman P. Jouppi, et al. 2017. In-Datacenter Performance Analysis of a 
Tensor Processing Unit. SIGARCH Comput. Archit. News 45, 2 (May 
2017), 1-12. 

[6] Vasilache, Nicolas, et al. “Tensor comprehensions: Framework-agnostic 
high-performance machine learning abstractions.”, 2018. 

[7] R. Zhao et al., “Hardware Compilation of Deep Neural Networks: An 
Overview,” 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), Milan, Italy, 
2018, pp. 1-8, doi: 10.1109/ASAP.2018.8445088. 

[8] Zhang, Tao et al. “cuTensor-Tubal: Efficient Primitives for Tubal-Rank 
Tensor Learning Operations on GPUs.” IEEE Transactions on Parallel 
and Distributed Systems 31 (2020): 595-610. 

[9] Pinzari, Ana et al. (2023). Power Optimized Wafer map Classification 
for Semiconductor Process Monitoring. 

[10] Moons, Bert, et al. “Minimum energy quantized neural networks.” 2017 
51st Asilomar Conference on Signals, Systems, and Computers. IEEE, 
2017. 

[11] Zhou, Shuchang,	 et al. “Dorefa-net: Training low bitwidth convolu­
tional neural networks with low bitwidth gradients.” arXiv preprint 
arXiv:1606.06160 (2016). 

[12] G. Dundar and K. Rose, “The effects of quantization on multilayer 
neural networks,” in IEEE Transactions on Neural Networks, vol. 6, no. 
6, pp. 1446-1451, Nov. 1995. 

[13] B. G. Hoskins, M. R.	 Haskard and G. R. Curkowicz, “A VLSI 
implementation of multi-layer neural network with ternary activation 
functions and limited integer weights,” Proceedings of International 
Conference on Microelectronics, Nis, Serbia, 1995, pp. 843-846 vol.2. 

[14] R. Andri, L. Cavigelli, D. Rossi and L. Benini, “YodaNN: An Ultra-
Low Power Convolutional Neural Network Accelerator Based on Binary 
Weights,” 2016 IEEE Computer Society Annual Symposium on VLSI 
(ISVLSI), Pittsburgh, PA, USA, 2016, pp. 236-241 

[15] Umuroglu, Yaman & Fraser, Nicholas & Gambardella, Giulio & Blott, 
Michaela & Leong, Philip & Jahre, Magnus & Vissers, Kees. (2017). 
FINN: A Framework for Fast, Scalable Binarized Neural Network 
Inference. 

https://www.doi.org/10.1109/MM.2019.2928962
https://www.doi.org/10.1109/ASAP.2018.8445088


References 103 

[16] Ritchie Zhao, et al. 2017. Accelerating Binarized Convolutional Neural 
Networks with Software-Programmable FPGAs. In Proceedings of the 
2017 ACM/SIGDA International Symposium on Field-Programmable 
Gate Arrays (FPGA ’17). Association for Computing Machinery, New 
York, NY, USA. 

[17] Adrien Prost-Boucle, Alban Bourge, and Frédéric Pétrot. 2018. High-
Efficiency Convolutional Ternary Neural Networks with Custom Adder 
Trees and Weight Compression. ACM Trans. Reconfigurable Technol. 
Syst. 11, 3, Article 15 (September 2018). 

[18] N. P.	 Jouppi, et al. “Ten Lessons From Three Generations Shaped 
Google’s TPUv4i: Industrial Product,” 2021 ACM/IEEE 48th Annual 
Intemational Symposium on Computer Architecture (ISCA), Valencia, 
Spain, 2021, pp. 1-14. 

[19] Jacob, Benoit, et al. “Quantization and training of neural networks for 
efficient integer-arithmetic-only inference.” Proceedings of the IEEE 
conference on computer vision and pattem recognition. 2018. 

[20] Courbariaux, Matthieu, Bengio, Yoshua, et David, Jean-Pierre. Bina­
ryconnect: Training deep neural networks with binary weights during 
propagations. Advances in neural information processing systems, 2015 
, vol. 28 . 

[21] Fraser, Nicholas J., et al. “Sealing binarized neural networks on recon­
figurable logic.” Proceedings of the 8th Workshop and 6th Workshop 
on Parallel Programming and Run-Time Management Techniques for 
Many-core Architectures and Design Tools and Architectures for Mul­
ticore Embedded Computing Platforms. 2017. 

[22] Umuroglu, Yaman, et al. “Finn: A framework for fast, scalable bina­
rized neural network inference.” Proceedings of the 2017 ACM/SIGDA 
international symposium on field-programmable gate arrays. 2017. 

[23] A. D. Vita, D. Pau, L. D. Benedetto, A. Rubino, F. PÃl’trot and G. 
D. Licciardo, “Low Power Tiny Binary Neural Network with improved 
accuracy in Human Recognition Systems,” 2020 23rd Euromicro Con­
ference on Digital System Design (DSD), Kranj, Slovenia, 2020, pp. 
309-315. 



https://www.taylorandfrancis.com


5
 
Designing Lightweight CNN for Images:
 

Architectural Components and Techniques
 

Lilian Hollard, Lucas Mohimont, and Luiz Angelo Steffenel 

Université de Reims Champagne-Ardenne, France 

Abstract 

While neural networks have brought about impressive advancements in 
computer vision tasks, these achievements heavily depend on computation-
ally demanding resources, restricting their deployment. The decentralized 
paradigm of Edge AI computing aims to bring decisional capabilities directly 
to the edge, facilitating real-time decision-making, streamlined data process­
ing, and reduced dependence on network connectivity. In some cases, it is 
possible to rely on cloud computing to offload processing tasks, but this 
can introduce latency issues that affect system responsiveness, security, and 
efficiency. Instead, searching for optimized neural networks for edge device 
deployment may lead to a better balance between computational efficiency 
and accurate analysis, empowering sensors to execute their roles effectively 
with minimal reliance on external resources. This paper reviews the landscape 
of deep learning architecture optimization tailored for edge devices. Within 
this survey, we delve into the state-of-the-art advancements in computer 
vision techniques optimized for edge computing. The challenges deploying 
and optimizing computer vision models on edge devices emphasize the 
importance of efficient computation and resource management while navi­
gating the trade-offs between model performance and hardware constraints. 

Keywords: neural network architecture, Edge AI, deep learning, neural 
architecture search, transformers, Edge vision, computer vision. 

105 

This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-5 



106 Designing Lightweight CNN for Images 

5.1 Introduction and Background 

Neural networks enabled significant advancements in computer vision. How­
ever, these achievements often rely on computationally expensive resources, 
limiting deployment on less powerful devices. Despite the rapid adoption of 
cloud-based processing and cloud AI over the last decade, such offloading 
brings several inconveniences such as latency, bandwidth limitations, and 
security concerns. These challenges led to the development of Edge AI, which 
stands to the AI landscape. Edge Computing offers notable advantages, such 
as data ownership, heightened security, reduced latency, and decreased power 
consumption attributed to minimized back-and-forth communication with the 
cloud. 

The term “Edge” encompasses a wide spectrum of devices and appli­
cations, including peripheral data centres (cloudlets [1], fog [2]) and IoT 
endpoints. Hence, it is not uncommon to partition the Edge according to 
the capabilities of the devices or the distance to end users. For example, the 
EdgeAI European project classifies edge solutions in three levels: Meta, Deep 
and Micro-Edge. Micro Edge represents mostly the final sensors and devices, 
Deep Edge lies in the vicinity (gateways, network routers) and Meta-Edge 
interfaces the Edge with external technologies such as the cloud. As a result, 
the size and capability of devices are determinant factors that differentiate 
various “Edge” application areas within Edge AI. 

Bringing computer vision tasks to Micro-Edge devices such as microcon­
trollers is often complex due to resource limitations and computational con­
straints. These devices may struggle with the intensive processing demands 
of computer vision algorithms, making it difficult to perform analysis and 
decision-making directly at the edge. Offloading computer-vision tasks to 
“upper” layers is also a problem, as the data volume to be transmitted is 
far over more traditional IoT sensor data. Instead, Edge-AI computer vision 
requires optimized solutions adapted to the resource constraints of edge 
devices. 

In this chapter, we review the most recent advances in computer vision 
methodologies for edge computing, with a specific emphasis on model 
architecture. While various established techniques such as quantization, 
pruning, and hardware optimization have been extensively investigated, our 
primary focus is the substantial enhancements that deep learning model 
architecture has witnessed over the last few decades. These enhancements 
have notably contributed to the improvement of Edge-AI. We explore 



5.2 CNNs 107 

the challenges faced in deploying and optimizing computer vision models 
on edge devices, the need for efficient computation and resource man­
agement, and the trade-offs between model performance and hardware 
constraints. 

Furthermore, we run our own benchmarks to obtain uniform comparison 
results. Indeed, the deployment of deep learning models must emphasize 
model efficiency and comparison across various parameters. Metrics such as 
inference time, latency, training and inference costs, and other established 
indicators are crucial for researchers to demonstrate the contribution of new 
deep-learning techniques. However, researchers often assume a correlation 
among these metrics and report only a few of them, leading to partial 
conclusions and incomplete evaluations of different models [3]. 

Considering the types of models, different computational aspects may 
yield varying results. One example of bias in deep learning model optimiza­
tion is relying solely on parameter-matched comparisons as a single metric, 
which may result in a flawed understanding of overall model performance. 
Shift-based convolution for instance, improves overall accuracy by offering a 
parameter-free alternative to traditional convolution but increases processing 
times. Memory access costs on different platforms or overall, unsatisfactorily 
optimized multi-branch model architecture for parallel computing might as 
well influence speeds metrics [3][7][8]. Therefore, models should evaluate 
multiple metrics on the targeted platform, as memory access and model 
parallelization are architecture dependent. 

For the sake of reproducibility, most benchmarks presented in this chapter 
originate from the PyTorch Torchvision module benchmark. Our intention is 
to enable readers to replicate the results, although some models may exhibit 
slight variations from their original paper. 

The remainder of the chapter is structured as follows: Section 1.2 explores 
the latest advancements in the computer vision research community using 
convolutional neural networks. Section 1.3 examines how Transformers rev­
olutionized computer vision and how these techniques can be employed to 
reduce the overall computational cost. Section 1.4 investigate ConvNeXt 
convolution and its potential to elevate CNN models, enabling them to rival 
Transformers, while also exploring their utility in Edge computation. Section 
1.5 covers the neural architecture search in an efficient computation scenario. 
We conclude this paper in Section 1.6, presenting some final remarks and 
research directions. 



108 Designing Lightweight CNN for Images 

5.2 CNNs 

Convolutional Neural Networks (CNN) are a class of deep learning mod­
els that excel when processing and analysing visual data. CNN enhanced 
the ability to learn intricate patterns and features from massive datasets, 
empowering deep learning to achieve remarkable breakthroughs in diverse 
areas, including computer vision but also natural language processing, speech 
recognition, recommendation systems and many more. The scalability, adapt­
ability, and robustness of CNNs make it a dominant force in the breakout of 
AI technologies. 

5.2.1 The pioneers 

Optimising CNNs for low-power applications often involves weight pruning, 
quantisation, and model compression techniques. In theory, these methods 
position CNNs as ideal solutions for edge devices operating in energy-
constrained environments; however, although essential for edge devices, 
these techniques often reduce accuracy. We cannot deny that the computer 
vision community made substantial progress since the remarkable perfor­
mance of AlexNet’s [9] first publication. Through architectural changes 
and optimisations, significant performance improvements extended several 
times state-of-the-art computer vision models while reducing computational 
demands. 

ResNet [10] revolutionised the landscape of neural networks by intro­
ducing the concept of residual connections, a breakthrough that facilitated 
the construction of exceptionally deep models. This innovation proved 
instrumental in optimising the training of deeper layers. As a result, these 
extended CNN architectures attained unparalleled performance across diverse 
benchmark tasks. 

ResNet’s pioneering influence shaped the field of Deep Learning, serving 
as a cornerstone that inspired the architectural design of countless contem­
porary models. Residual connections provide an alternative pathway for the 
gradient to flow during backpropagation to address the vanishing gradient 
problem, as illustrated in Figure 5.1. 

However, while many high-performing CNN models characterised by 
substantial numbers of parameters and FLOPS (Floating point operations 
per second) achieved impressive performance, the realm of Lightweight 
CNNs emerged as a potent contender. These efficient architectures, including 
EfficientNet [11][13], MobileNets [14][15], ShuffleNet [16][17], SqueezeNet 
[18], and ESPNet [19][20], devoted remarkable efforts to optimise CNNs by 



5.2 CNNs 109 

Figure 5.1 ResNet architecture [11] 

renouncing the need for excessively deep and densely interconnected struc­
tures, aligning with the philosophy that ResNet and VGG [21] established. 
The success of these Lightweight CNNs highlights their ability to achieve 
competitive performance while maintaining a judicious balance between 
model complexity, parameters, and FLOPS. 

CNNs are widely utilised across various domains, such as classification, 
object detection, segmentation, and other tasks. Currently, the object detec­
tion and segmentation research communities closely collaborate to enhance 
classification CNNs and the other way around, recognising their pivotal role 
as the backbone for object detection and segmentation models. Hence, the 
forthcoming sections will not specifically address these distinctions, as they 
all contribute to improving EdgeAI capabilities. 

5.2.2 YOLO, first step towards fast object detectors 

YOLO (You Only Look Once) [22], a deep learning model introduced in 
2016, revolutionised object detection by providing real-time detection and 
accurate results. Before YOLO, most object detection algorithms followed 
a two-step approach, which was time-consuming and limited in case of 
detection speed. On the other hand, YOLO formulated object detection as 
a regression problem, dividing the input image into a grid and predicting 
bounding boxes and class probabilities directly from the grid. 



110 Designing Lightweight CNN for Images 

Newer versions of YOLO [23][24][25][26][27][28][29][30] incorporated 
concepts like anchor boxes, feature pyramid networks, and advanced network 
architectures (e.g., Darknet, ResNet) to improve detection accuracy and han­
dle objects of various sizes. They also introduced multi-scale predictions, 
enabling detection at different resolutions within the network. However, 
these advanced network architectures, such as YOLOv5, have high memory 
requirements and need relatively powerful edge devices like the Jetson Nano 
with Nvidia GPU. 

To circumvent such requirements, the object detection research commu­
nity has three major perspectives. First, the improvement of YOLO-based 
models, both in terms of complex computation (e.g., YOLOv7 [25]) and 
adapting YOLO for edge computation (e.g., TinyssimiYOLO [31], YOLOv3 
Tiny[26], YOLOv5 Nano [23], YoloNAS [32]). Second, the enhancement 
of backbones for object detection, such as combining MobileNetV3 [33] 
with SSD320 [34] detection heads. One last approach is the exploration of 
Transformers-based object detectors. 

The miniaturisation of YOLO models is still ongoing research. Recent 
efforts have focused on reducing the architecture to create highly flexible, 
memory-efficient, and ultra-lightweight object detection networks with less 
than 0.5MB of memory. However, these optimised models are most suitable 
for detecting a few classes. For example, TinyissimiYOLO [31] performs well 
for up to three classes, and challenges remain when trying to improve the 
edge-oriented benchmark on datasets like MS COCO [35], which consists of 
80 classes. As demonstrated in TinyissimoYOLO, a plain-architecture model 
still exhibits great potential for efficient inference on microcontrollers or edge 
devices. 

In addition to YOLO object detectors, there is a significant effort to 
enhance classifier CNNs, which extend to backbone CNNs for object detector 
models in a broader context. These CNN architectures undergo rigorous 
benchmarking on datasets like ImageNet but also on datasets such as 
MSCOCO and Pascal VOC to address object detection and segmentation 
tasks. Indeed, the emergence of SSD detector heads and Mask R-CNN 
segmentation heads catalysed a distinct research avenue, prompting a concen­
trated exploration of classification models or backbone designs specifically 
tailored for advancing object detection capabilities. 

Research to enhance classifiers changed the recent panel of YOLO 
models. Since YOLOv4 [30], the composition of YOLO models depends 
on CSPNet [36] block modifications, an architecture that already enabled 
known architectures such as ResNet, ResNeXt, and DenseNet to reduce 



5.2 CNNs 111 

Figure 5.2 CSPNet (Identity Block - DenseNet) 

computational cost while preserving accuracy. It effectively reduces 
computational bottlenecks (YOLOv3’s computational bottlenecks can be 
reduced by 80%) and memory costs. ResNeXt already proved that cardinality 
can be more efficient than width and height. CSPNet divides feature maps 
into two main parts: one used to create an identity block (DenseNet, ResNet, 
MobileNet, etc.) and the other that is combined at the output after or before a 
transition layer, as shown in Figure 5.2. 

5.2.3 Convolutional Neural Network architecture improvements 

MobileNetv1 was one of the first CNN architectures specifically created 
to bring efficiency to mobile and embedded vision applications. Its main 
improvement was the efficient use of depthwise separable convolutions 
to build lightweight neural networks. MobileNet was nearly as accu­
rate as VGG16, with 32 times less size and 27 times less computation. 
MobileNetv1 performance on the ImageNet dataset achieved a top-1 of 
68.4%. MobileNetv2, on the other hand, improved MobileNetv1 drastically 
while preserving the same mobile-first philosophy, using inverted residual 
block and linear bottlenecks. MobileNetv2’s linear bottleneck does not incor­
porate linear activation within its narrow input and output layer. Instead, it 
incorporates non-linearity after each expanded layer of the bottleneck. 

The hypothesis of MobileNetv2 stated that ReLU can preserve complete 
information only if the i-th feature input lies in a low-dimensional sub-
space of the input space. Researchers showed through experimental evidence 
that using non-linear layers in the input/output of bottlenecks impacts the 



112 Designing Lightweight CNN for Images 

Figure 5.3 MobileNetv2 block 

model’s performance by several percent. Figure 5.3 illustrates the difference 
between non-linearity in the residual and inverted residual blocks. Resid­
ual block architecture skip connections with fewer feature maps between 
connections. In contrast, an inverted residual block broke this relation by 
using an expansion of feature maps. As a result, MobileNetV2 TOP-1 Ima­
geNet performance reaches 71.978%, with only 2.6M parameters and 0.3G 
Flops. Table 5.1 details the performance of different MobileNet models when 
conducting the ImageNet classification. 

Since MobileNet, a vast majority of modern networks adopted depth-wise 
separable convolutions. ShuffleNetv1 and v2 introduced practical guidelines 
for efficient network design, resolving some MobileNet issues. 

ShuffleNet v2 stated that the expensive use of depth-wise separable 
convolutions and grouped convolution increase memory access cost. Also, 
element-wise operations have a high MAC (Memory Access Cost) and FLOP 
cost, even with a small parameter count. The ShuffleNet architecture thus 
introduces an architecture using balanced convolutions of equal channel 
width, reducing the degree of fragmentation and reduced element-wise oper­
ations, surpassing MobileNetv2 with an ImageNet top-1 performance of 

Table 5.1 CNNs based model optimization since AlexNet 
Model ImageNet Top Parameters (M) FLOPs (G) 

1(%) 
ShuffleNetv2x0.5 60.5 1.3 0.04
 
ShuffleNetv2x1.0 69.36 2.27 0.14
 
MobileNetv3 Small 67.4 2.5 0.06
 
MobileNetv2 71.97 2.6 0.3
 
ShuffleNetv2x1.5 72.99 3.5 0.30
 
ShuffletNetv2x2.0 76.23 7.3 0.58
 
AlexNet 56.52 61 0.71
 
VGG16 76.3 132.8 7.61
 



5.2 CNNs 113 

72.99%, with comparable FLOPs of 0.3G and 3.5M parameters. Table 5.1 
benchmarks ShuffletNet v2 across various scales. 

5.2.4 Tackling memory consumption 

Memory consumption is a significant concern when optimizing CNNs for 
mobile computing applications. State-of-the-art models for mobile and edge 
often employ grouped and depth-wise convolutions to reduce overall model 
parameters [37][14][15][39][16][17]. However, these models require more 
computation time and memory per layer, which may pose challenges for edge 
AI models focused on video stream processing. 

Therefore, in addition to the architecture optimization research of CNNs, 
researchers made significant efforts to achieve extreme memory consumption 
optimization for microcontroller use cases. A remarkable example of this is 
MCUNet [40], which demonstrated impressive potential for memory opti­
mization by simply enhancing the memory workflow of CNNs following the 
MobileNet architecture philosophy previously mentioned. 

MCUNet significantly reduces memory usage for MobileNetv2, fitting 
it within a mere 320kB of RAM. This impressive feat is accomplished 
through two key strategies: first, by identifying the optimal input resolution 
size and adapting the model width to achieve the most efficient neural 
architecture size. Second, it leverages the characteristic of depth-wise con­
volutions, which do not perform filtering across channels, allowing each 
channel to be computed in a temporary buffer. This approach substantially 
reduces overall memory consumption, computing the input and the output 
feature map as one shared memory, with one additional buffer to com­
pute and transfer the data. MCUNetv2 [41] goes further by optimizing 
memory usage through patch-based computation. Instead of processing the 
entire feature width and height, it strategically employs small input portions 
to generate activation maps, leading to more efficient memory utilization. 
Table 5.2 describes MobileNets memory consumption improvement with 
MCUNets. 

5.2.5 Structural re-parameterization 

Within this survey, we showcase research aimed at enhancing the architecture 
of models commonly referred to as “mobile”. However, these mobile-first 
models rely heavily on grouped and depth-wise convolutions, which induce 
many other computational challenges. 



114 Designing Lightweight CNN for Images 

Table 5.2 MCUNet memory optimization compared to MobileNet and MobileNetv2 
Model ImageNet Top 1 (%) SRAM 
MobileNetv1 68.4 NS 
MobileNetv2 69.8 1.8 MB 
MCUNetv1-int8 60.3 238 kB 
MCUNetv2-int8 64.90 196 kB 
MCUNetv1-int8 68.5 452 kB 
MCUNetv2-int8 71.8 465 kB 

Grouped and depth-wise convolutions utilize 1x1 convolutions not well-
optimized for certain architectures. In contrast, 3x3 convolution architectures 
are more efficient on generic GPUs than 1x1 convolutions. Multi-branch 
design models like ResNet [7] or branch-concatenation in Inception [42] 
encounter similar issues, making them less efficient for parallel architec­
tures like GPUs due to additional overhead, such as kernel launching and 
synchronization. Residual connections also face challenges in retaining con­
voluted feature maps in memory during the computation of multi-branch deep 
learning architectures. 

To address these challenges, recent research suggests structural re-
parameterization to revert to early deep learning plain models like VGG 
[21], Darknet [22], and AlexNet [9], which are theoretically efficient for edge 
computation. However, these models no longer compete in terms of accuracy 
and overall performance with the current state-of-the-art models. 

Residual connections and multi-branch architecture [43][44][42][36][39] 
[45][46], to cite only a few, are indeed essential components in deep learning 
architectures. Their introduction addresses the vanishing gradient problem, 
which occurs when gradients diminish as they propagate through deep 
networks during training. 

It is challenging for a plain model to achieve comparable performance to 
a multi-branch architecture. The complex structure of multi-branch architec­
tures often slows down inference, as the combination of small operators is not 
favourable for devices with strong parallel computing capabilities like GPUs. 
Taking a more edge-centric perspective, utilising multi-branch structures 
necessitates significant cache memory, as these structures demand the model 
to retain the feature maps of each branch in memory before processing to the 
subsequent layer. However, the benefits of multi-branch architecture mainly 
apply while training [47][7][46]. 

Structural re-parameterization involves transferring the knowledge gained 
from multi-branch architecture during training into a single plain convolution 
block for inference. 



5.2 CNNs 115 

MobileOne TOP-1 ImageNet performance on multiple scaling is 71.4% 
and 75.9% for MobileOne-S0 and MobileOne-S1 respectively, both under 1G 
Flops. Table 5.2 lists the complete results. Other re-parametrization models, 
like RepVGG, accompany the comprehensive results in Table 5.3. 

While the training cost may be significant, improving performance at 
the cost of additional training resources is acceptable if the deployed model 
fits the size and computing power required for edge devices. Hence, one 

Table 5.3 CNNs based model optimization since AlexNet 
Model ImageNet Top 

1 (%) 
Parameters (M) FLOPs (G) 

AlexNet 56.52 61 0.71 
EfficientNet B0 77.69 5.2 0.32 
EfficientNet B1 78.64 7.79 0.69 
EfficientNet B2 80.6 9.1 1.09 
EfficientNet B3 82.2 12.2 1.83 
EfficientNet B4 83.4 19.34 4.38 
EfficientNet B7 84.122 66.34 37.75 
EfficientNetv2 Large 85.808 118.5 56.08 
EfficientNetv2 Medium 85.112 54.1 24.58 
EfficientNetv2 Small 84.228 21.4 8.37 
ESPNetv2 72.1 3.49 0.28 
MobileNetv1 68.4 2.6 NS 
MobileNetv2 71.97 2.6 0.3 
MobileNetv3 Small 67.4 2.5 0.06 
MobileOne-S0 71.4 2.1 0.275 
MobileOne-S1 75.9 4.8 0.825 
MobileOne-S2 77.4 7.8 1.29 
MobileOne-S3 78.1 10.1 1.89 
MobileOne-S4 79.4 14.8 2.97 
RepVGG-A0 72.4 8.3 1.4 
RepVGG-A1 74.5 12.8 2.4 
RepVGG-B0 75.1 14.3 3.1 
ResNet101 77.374 44.5 7.80 
ResNet152 78.312 60.19 11.51 
ResNet18 69.75 11.6 1.81 
ResNet34 73.314 21.7 3.66 
ResNet50 76.13 25.5 4.09 
ShuffleNetv2x0.5 60.5 1.3 0.04 
ShuffleNetv2x1.0 69.36 2.27 0.14 
ShuffleNetv2x1.5 72.99 3.5 0.30 
ShuffletNetv2x2.0 76.23 7.3 0.58 
SqueezeNet 57.5 1.2 0.35 
VGG16 76.3 132.8 7.61 



116 Designing Lightweight CNN for Images 

can use a high-end GPU server for training before deployment on an edge 
device. 

5.3 Transformers for EdgeAI 

Initially proposed for natural language processing tasks, transformers have 
also found exploration in computer vision [48][49][50][51][52][53]. The 
Vision Transformer (ViT) [52], introduced in 2020, adapted the Transformer 
architecture specifically for computer vision by replacing CNN-based back­
bones with Transformer encoders. ViT achieved competitive performance on 
image classification benchmarks, indicating the effectiveness of Transformers 
in vision tasks. However, Transformers require substantial amounts of data to 
work well, and ViT struggles to perform on ImageNet-1K 0, which already 
contains over one million images. Convolution still plays an important role in 
Transformers. 

5.3.1 Hybrid transformers 

Research towards the miniaturization of Transformers focuses on utiliz­
ing CNNs as feature extractors with low computational cost. Models like 
MobileViT and its latest versions [37][50][49] achieved impressive perfor­
mance with significantly fewer parameters and floating-point operations than 
previously published computer vision Transformers. The concept involves 
incorporating multiple CNN blocks within transformers to enhance the 
extraction of features, as illustrated in Figure 5.4. While transformers like 
ViT demonstrated remarkable capabilities in natural language processing 
tasks, they often lack the reliance on powerful feature extractors, such as 
CNNs, which may explain the challenges faced by such models in achiev­
ing efficient training with limited data, as seen in the struggle encountered 

Figure 5.4 MobileViT block [37]. 



5.3 Transformers for EdgeAI 117 

when training ViT based network on datasets like ImageNet1K. These con­
tributions may lead to new backbones for object detection, segmentation, 
and classification in the computer vision community, utilizing these hybrid 
models. 

As mentioned earlier, the number of parameters is not the sole metric 
for comparing results; a compelling example is the comparison between 
MobileNetv2 and its supposed enhancement, MobileViT. MobileViT fails to 
match the computing speed of MobileNetv2 on the iPhone 12 neural engine, 
as the latter achieves an inference time of 0.9ms, while MobileViT requires 
7.28ms per inference despite having a similar number of parameters. 

Transformers inherently tend to be slower than CNNs for several reasons. 
First, Vision Transformers (ViTs) are designed to leverage dedicated CUDA 
kernels on GPUs, enabling improved scalability and efficiency. In contrast, 
CNNs benefit from device-level optimizations like batch normalization fusion 
with convolutional layers, 3x3 convolution optimization, and other tech­
niques. This observation suggests there is still room for improvement in 
optimizing transformers at a lower computational level. Despite their poten­
tial, transformers must continue to evolve to achieve faster and more efficient 
performance comparable to that of CNNs in specific contexts. 

MobileViTv2’s [50] enhancement primarily focused on optimizing 
the self-attention operation within transformers. As previously mentioned, 
researchers have a significant opportunity to improve attention layers like 
Multi-Head Attention (MHA). The computational complexity of the MHA 
layer is typically O(k2) whereas MobileViTv2’s version of MHA has 
reduced it to O(k) through the implementation of element-wise opera­
tions. The concept involves using element-wise operations such as summa­
tion, multiplication, and softmax instead of more computationally intensive 
operations like batch-wise matrix multiplication, which is quadratically 
expensive. 

Previous efforts to optimize self-attention, such as the Linformer [37] 
approach, decompose the self-attention operation into smaller segments 
via linear projections, effectively reducing the complexity from O(k2) to 
O(k). However, Linformer still employs resource-intensive operations to 
learn global representations within MHA, which could pose challenges for 
deploying such models on devices with limited resources. Other methods 
have managed to reduce complexity to O(k) but often suffer substantial 
performance degradation. 



118 Designing Lightweight CNN for Images 

In contrast, MobileViTv2 outperformed MobileViTv1 by approximately 
1% and exhibited a significant speed boost, running 3.2 times faster 
on comparable devices. This advancement underscores the potential of 
optimizing self-attention operations within transformers while maintaining 
robust performance, especially in constrained computing environments. 

In recent developments, there has been progress in enhancing hybrid 
architectures combining CNN and Transformers for mobile devices. Mobile­
ViTv3 [49] emerged as an improved iteration of the initial MobileViT 
architecture. This advancement involves substituting resource-intensive 3x3 
convolutional layers with more efficient depthwise and 1x1 convolutions. 
Additionally, the integration of residual connections contributed to an overall 
performance boost for the MobileViT v1 design. Furthermore, this enhance­
ment opened avenues for scaling the width of the MobileViTv3 model. The 
removal of the costly 3x3 convolutions led to a reduction in parameters and 
FLOPs, resulting in improved scalability while maintaining or enhancing 
performance. 

Table 5.4 gives comprehensive results around each MobileViT version 
compared to Swin-T as an accuracy gap to achieve for the transformer-
based model. While Swin Transformer [51] and DETR [48] significantly 
improved tackling the ImageNet classification and MS COCO challenges, 
they remain less suitable for edge computing due to their computational 
demands. Nevertheless, the technological advancements achieved through 
the rise of transformers could be instrumental in enhancing convolutions. 

Table 5.4 Optimized transformers and hybrid transformers performance by scale 
Models ImageNet Top Parameters (M) FLOPs (G) 

1 (%) 
MobileViT-XXS 69.4 1.3 0.4
 
MobileViTv2-0.5 70.2 1.4 0.5
 
MobileViTv3-XXS 70.98 1.2 0.28
 
MobileViTv3-0.5 72.33 1.4 0.48
 
MobileViTv2-1.0 78.1 4.9 1.8
 
MobileViTv3-XS 76.7 2.5 0.92
 
MobileViTv3-1.0 79.64 5.1 1.87
 
MobileViTv3-S 79.3 5.8 1.84
 
MobileViTv2-0.5 70.2 1.4 0.5
 
MobiletViTv2-2.0 81.2 18.5 7.5
 
Swin-T 81.3 28.3 4.5
 
MobileNetv2 71.978 2.6 0.3 



5.4 ConvNeXts 119 

Consequently, using the benefits of the previously mentioned miniaturization 
techniques with these technological advancements in an edge-computing 
context becomes a promising avenue for further progress. 

5.4 ConvNeXts 

While Transformers are a significant breakthrough in computer vision, recent 
advancements, such as the ConvNeXt [11] convolution, quietly surpassed 
their performance in computer vision. The foundation of ConvNeXt lies 
in the adaptation of ResNet, which serves as a starting point, leveraging 
techniques inspired by transformers to fill the gap between ResNet’s and Swin 
Transformer’s performance (Figure 5.5). 

To achieve this, ConvNeXt introduces a new CNN design inspired by 
Transformers. Firstly, it employs the patchify technique, which involves 
flattening the input into a vector of smaller patches, an idea initially intro­
duced in Vision Transformers (ViT) to exploit text-based transformer tech­
niques for processing 2D images effectively. Secondly, the training recipe 
aligns closely with the strategies employed in Swin Transformers and DeiT. 

Figure 5.5 ConvNeXt Block [11] 



120 Designing Lightweight CNN for Images
 

Table 5.5 ConvNeXt compared to hybrid transformers performance by scale.
 
Models ImageNet Top Parameters (M) FLOPs (G) 

1 (%) 
AlexNet 56.52 61 0.71 
VGG16 76.3 132.8 7.61 
ResNet152 78.312 60.19 11.51 
EfficientNetv2 Large 85.808 118.5 56.08 
MobiletViTv2-2.0 81.2 18.5 7.5 
Swin-T 81.3 28.3 4.5 
ConvNeXt-T 82.9 28.6 4.5 
ConvNeXt-S 83.616 50.2 8.68 
ConvNeXt-B 84.06 88.6 15.36 
ConvNeXt-L 84.414 197 34.36 

As a result, ConvNeXt exhibits less sensitivity to image shift-invariance. 
The training process is extensively enhanced through data augmentation, 
longer training epochs, and the AdamW optimizer, leading to improved 
results. 

Furthermore, ConvNeXt introduces a compelling microdesign aspect, 
replacing the conventional ReLU activation function with GeLU (Gaussian 
Error Linear Unit), a different non-linear activation function. Additionally, 
the model incorporates fewer activations and norms than those found in 
transformer architecture (Recognizing the initial hypothesis involving non­
linearity in MobileNetv2). These adaptations contribute to the model’s overall 
efficiency and performance, effectively leveraging the power of transformer-
inspired concepts within a CNN framework. 

ConvNeXt’s new philosophy for CNNs might open the path for new 
mobile architecture. The benchmark in Table 5.5 enlightens ConvNeXT 
performance compared to models with similar computing performance. 

5.5 Neural Architecture Search 

Amidst the collection of hand-crafted neural networks, the question arises: 
Can we venture into automatic network architecture design, to reduce the 
dependency on deep learning expert insights? The Neural Architecture 
Search (NAS) literature categorizes two primary domains: Evolutionary 
Algorithms (EA) and Reinforcement Learning (RL). Evolutionary algorithms 
utilize a pool of candidate architectures, each with its respective accuracy. 
Only a limited number of top-performing candidates evolve further. Should 
these evolved candidates exhibit enhanced accuracy, the candidate pool 



5.5 Neural Architecture Search 121 

is accordingly updated. On the other hand, Reinforcement Learning (RL) 
employs an LSTM Agent to generate a string, serving as a dictionary of 
convolution operations to execute on hardware to train and test. The accu­
racy serves as the reward signal for this operation, and the LSTM Agent 
subsequently refines and produces another dictionary block. 

The initial NASnet [54] model lacks consideration for runtime or compu­
tational efficiency. The search space for potential architectures is inherently 
resource intensive. While the LSTM Agent discovered architecture proves 
superior to manually crafted ones, it inherits the complexity identified in 
this survey as challenging for edge devices. This complexity arises from 
the substantial memory requirements due to the neural architecture search 
algorithm’s reliance on a configuration of five cells per layer, each with three 
potential residual depth connections (from the previous cell’s output, the cell 
before the previous one, and the previous block’s output within the current 
cell). 

Most NAS methods [54][55] explore architectural spaces to construct 
intricate cells, subsequently employing these cells with identical configura­
tions throughout the network. Unfortunately, this approach lacks the potential 
for layer wise diversity. MnasNet [56], a breakthrough in Aware Neural 
Architecture Search for Mobile, introduces an edge computation model for 
inference by selecting a considerably smaller number of convolution blocks. 
This time, the LSTM agent selects hand-crafted architectures in alignment 
with the MobileNet philosophy. Employing such block-based designs reduces 
the search space from 1039 options to 1013 . 

The search algorithm within MnasNet also introduces a multi-objective 
reward system that combines validation accuracy and a metric for real-
world latency on mobile devices. This dual-objective approach optimization 
creates architectures that excel in both accuracy and efficiency for real-world 
performance. 

5.5.1 NAS scale study 

While NAS is primarily concerned with discovering novel convolutions 
based on accuracy-to-speed trade-offs, EfficientNet [12][13] takes a different 
approach, aiming to optimise a manually designed model by identifying the 
optimal balance among width, depth, and resolution (Figure 5.6). Although 
these components might seem independent, EfficientNet’s case study high­
lights that achieving superior accuracy requires simultaneous optimization of 
all three components rather than considering them separately. 



122 Designing Lightweight CNN for Images 

Figure 5.6 EfficientNet Scaling [12] 

Table 5.6 Efficient neural network architectures with neural network search 

Models 
ImageNet 
Top 1(%) 

Parameters 
(M) 

FLOPs 
(G) 

ResNet50 76.13 25.5 4.09 
NASNet-A (4 @ 1056) 74 5.3 0.56 
NASNet-B (4 @ 1536) 72.8 5.3 0.48 
NASNet-C (3 @ 960) 72.5 4.9 0.558 
MobileNetv1_efficientNetv1 75.6 2.3 
(d=1.4,w=1.2,r=1.3) 
MobileNetv2_efficientNetv1 77.4 1.3 
(d=1.4, w=1.2, r=1.3) 
PNASNet-5 (N = 3, F = 54) 74.2 5.1 0.58 
PNASNet-5 (N = 4, F = 216) 82.9 86.1 25 
EfficientNet_B0 77.692 5.2 0.32 
EfficientNet_B1 78.642 7.79 0.69 
EfficientNetv2_Small 84.228 21.4 8.37 
EfficientNetv2_Medium 85.112 54.1 24.58 
EfficientNetv2_Large 85.808 118.5 56.08 
MobileNetv1 68.4 2.6 ND 
MobileNetv2 71.978 2.6 0.3 

To enhance accuracy and efficiency, the interplay between depth, width, 
and resolution is computed and then trained on the CIFAR dataset, allow­
ing rapid assessment of the newly formulated model. Subsequently, this 
model is scaled up for evaluation in an ImageNet context. Building upon 
this foundation, EfficientNetv2 introduces a further innovation: the incor­
poration of fused MBConv (MobileNet-like convolution). This mechanism 
combines the 1x1 expansion convolution with the subsequent 3x3 depth-
wise convolution into a single 3x3 operation, streamlining both processes 
and enhancing overall efficiency. Table 5.6 compares the performance of 



References 123 

NAS-based models against a list of comparable and well-known hand-crafted 
architectures. 

5.6 Conclusion 

Efficient neural network architectures are a subject of ongoing intensive 
research within the deep learning community. This research aims to har­
ness the scalability potential of Convolutional Neural Networks (CNNs) for 
emerging edge computing paradigms. Since the publication of AlexNet, these 
architectures not only improved accuracy but also advanced the state-of­
the-art through optimised proposals. However, developing efficient neural 
networks for mobile and edge devices highlights the challenge of crafting 
such models manually. 

Throughout this work, we presented a comprehensive array of opti­
mised neural network architectures tailored for edge devices, encompassing 
more than just microcontrollers. While these architectures may exhibit dis­
crepancies and contradictions, they collectively highlight the deep learning 
community’s commitment to refining model architectures. This emphasises 
the absence of a one-size-fits-all architecture for edge devices and the neces­
sity for benchmarks when searching for neural network architectures to 
fit our needs. This chapter provides researchers with a global perspective 
on significant advancements and their pros and cons, fostering a deeper 
understanding. 

Acknowledgements 

This research was conducted as part of the EdgeAI “Edge AI Technologies for 
Optimised Performance Embedded Processing” project, which has received 
funding from KDT JU under grant agreement No 101097300. The KDT 
JU receives support from the European Union’s Horizon Europe research 
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia, 
Luxembourg, Netherlands, and Norway. 

References 

[1] Buyya R., Yeo C. S., Venugopal, S., Broberg J., Brandic I. ’Cloud 
computing and emerging IT platforms: Vision, hype, and reality for 
delivering computing as the 5th utility’, Future Generation Com­
puter Systems, Volume 25, Issue 6, 2009, doi: 10.1016/j.future.2008. 
12.001. 

https://www.doi.org/10.1016/j.future.2008.12.001
https://www.doi.org/10.1016/j.future.2008.12.001


124 Designing Lightweight CNN for Images 

[2] Steffenel	 L. A., “Improving the Performance of Fog Com­
puting Through the Use of Data Locality,” 2018 30th Int. 
Symposium on Computer Architecture and High Performance 
Computing (SBAC-PAD), Lyon, France, 2018, pp. 217-224, doi: 
10.1109/CAHPC.2018.8645879. 

[3] Mostafa Dehghani et al. The Efficiency Misnomer. The Tenth Interna­
tional Conference on Learning Representations (ICLR), April. 2022. 
doi: 10.48550/arXiv.2110.12894. 

[4] Bichen Wu et al. “Shift: A Zero FLOP, Zero Parameter Alternative to 
Spatial Convolutions”. In: 2018 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition. Salt Lake City, UT: IEEE, June 2018, 
pp. 9127–9135. doi: 10.1109/CVPR.2018.00951. 

[5] Andrew Brown, Pascal Mettes, and Marcel Worring. “4-Connected Shift 
Residual Networks”. In: 2019 IEEE/CVF International Conference on 
Computer Vision Workshop (ICCVW). Seoul, Korea (South): IEEE, 
Oct. 2019, pp. 1990–1997. doi: 10.1109/ICCVW.2019.00248. 

[6] He Y., Liu X., Zhong H., Ma Y., ’AddressNet: Shift-Based Primitives 
for Efficient Convolutional Neural Networks,’ 2019 IEEE Winter Con­
ference on Applications of Computer Vision (WACV), Waikoloa, HI, 
USA, 2019, pp. 1213-1222, doi: 10.1109/WACV.2019.00134. 

[7] Ding X., Zhang X., Ma N., Han J., Ding G., Sun J.“RepVGG: Making 
VGG-style ConvNets Great Again”. In: Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition. 2021. p. 13733­
13742. 

[8] Ma N., Zhang X., Zheng HT, Sun J. “ShuffleNet V2: Practical Guide­
lines for Efficient CNN Architecture Design”, Proceedings of the 
European Conference on Computer Vision (ECCV), 2018, pp. 116-131. 

[9] Krizhevsky A., Sutskever I., Hinton G.E. “ImageNet classification with 
deep convolutional neural networks”. Communications of the ACM 60, 
6 (June 2017), 84–90. doi: 10.1145/3065386. 

[10] He K., Zhang X., Ren S., Sun J., “Deep Residual Learning for Image 
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 
10.1109/CVPR.2016.90. 

[11] Liu Z., Mao H., Wu C.-Y., Feichtenhofer C., Darrell T., Xie S.,	 “A 
ConvNet for the 2020s,” 2022 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, 
pp. 11966-11976, doi: 10.1109/CVPR52688.2022.01167. 

https://www.doi.org/10.1109/CVPR.2016.90
https://www.doi.org/10.1109/CAHPC.2018.8645879
https://www.doi.org/10.48550/arXiv.2110.12894
https://www.doi.org/10.1109/CVPR.2018.00951
https://www.doi.org/10.1109/ICCVW.2019.00248
https://www.doi.org/10.1109/WACV.2019.00134
https://www.doi.org/10.1145/3065386
https://www.doi.org/10.1109/CVPR52688.2022.01167


References 125 

[12] Tan, M., Le, Q. “EfficientNET: Rethinking model scaling for	 con­
volutional neural networks”. In: International conference on machine 
learning (ICML). 2019. p. 6105-6114. url: http://arxiv.org/abs/1905.1 
1946 

[13] Tan, M., Le, Q. “EfficientNETv2: Smaller models and faster training”. 
In: International conference on machine learning (ICML). 2021. p. 
10096-10106. doi: 10.48550/arXiv.2104.00298. 

[14] Howard	 A. G., Zhu M., et al. “Mobilenets: Efficient convolu­
tional neural networks for mobile vision applications”. arXiv preprint 
arXiv:1704.04861. 2017. 

[15] Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.C. “MobileN­
netV2: Inverted residuals and linear bottlenecks”. In: Proc. of the IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR). 
2018. p. 4510-4520. 

[16] Zhang X., Zhou X., Lin M., Sun J., “ShuffleNet: An Extremely Efficient 
Convolutional Neural Network for Mobile Devices,” 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, Salt Lake 
City, UT, USA, 2018, pp. 6848-6856, doi: 10.1109/CVPR.2018.00716. 

[17] Ma N., Zhang X., Zheng HT., Sun J. “ShuffleNet V2: Practical Guide­
lines for Efficient CNN Architecture Design”. In: Computer Vision – 
ECCV 2018. LNCS, vol 11218. doi: 10.1007/978-3-030-01264-9_8. 

[18] Iandola F.N., Han S., Moskewicz MW., Ashraf K., Dally WJ., Keutzer 
K. “SqueezeNet: AlexNet-level accuracy with 50x fewer parame­
ters and <0.5MB model size”. arXiv preprint, Nov. 2016. doi: 
10.48550/arXiv.1602.07360. 

[19] Mehta S., Rastegari M., Caspi A., Shapiro L., Hajishirzi H. “ESPNet: 
Efficient Spatial Pyramid of Dilated Convolutions for Semantic Seg­
mentation”. In: Computer Vision – ECCV 2018. LNCS vol 11214. doi: 
10.1007/978-3-030-01249-6_34. 

[20] Mehta S., Rastegari M., Shapiro L., Hajishirzi H., “ESPNetv2: A Light-
Weight, Power Efficient, and General Purpose Convolutional Neural 
Network,” 2019 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), Long Beach, CA, USA, 2019, pp. 9182-9192, doi: 
10.1109/CVPR.2019.00941. 

[21] Simonyan K., Zisserman A. “Very Deep Convolutional Networks for 
Large-Scale Image Recognition”. In: 3rd International Conference on 
Learning Representations (ICLR), San Diego, CA, USA, May 7-9, 
2015. doi: 10.48550/arXiv.1409.1556. 

http://www.arxiv.org
http://www.arxiv.org
https://www.doi.org/10.48550/arXiv.2104.00298
https://www.doi.org/10.1007/978-3-030-01264-9_8
https://www.doi.org/10.48550/arXiv.1602.07360
https://www.doi.org/10.1007/978-3-030-01249-6_34
https://www.doi.org/10.1109/CVPR.2019.00941
https://www.doi.org/10.48550/arXiv.1409.1556
https://www.doi.org/10.1109/CVPR.2018.00716


126 Designing Lightweight CNN for Images 

[22] Redmon J., Divvala S., Girshick R., Farhadi A., “You Only Look Once: 
Unified, Real-Time Object Detection,” 2016 IEEE Conference on Com­
puter Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 
2016, pp. 779-788, doi: 10.1109/CVPR.2016.91. 

[23] Glenn, J., “ YOLOv5 by Ultralytics”. doi: org/10.5281/zenodo.3908559. 
[24] Chuyi	 Li et al. “YOLOv6: A Single-Stage Object Detection 

Framework for Industrial Applications”. Sept. 2022. doi: 
10.48550/arXiv.2209.02976. 

[25] Wang CY., Bochkovskiy A., Liao HY. M., “YOLOv7: Trainable bag­
of-freebies sets new state-of-the-art for real-time object detectors.” 
Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition. 2023.. doi: 10.48550/arXiv.2207.02696. 

[26] Redmon J., Farhadi A. “YOLOv3: An Incremental Improvement”. Apr. 
2018. doi: 10.48550/arXiv.1804.02767. 

[27] Yan W., Liu T., Fu Y., “YOLO-Tight: An Efficient Dynamic Compres­
sion Method for YOLO Object Detection Networks”. In: 2021 13th 
International Conference on Machine Learning and Computing. ICMLC 
2021. event-place: Shenzhen, China. New York, NY, USA: ACM, 2021, 
pp. 378–384. doi: 10.1145/3457682.3457740. 

[28] Redmon	 J., Farhadi A., “YOLO9000: Better, Faster, Stronger,” 
2017 IEEE Conference on Computer Vision and Pattern Recog­
nition (CVPR), Honolulu, HI, USA, 2017, pp. 6517-6525, doi: 
10.1109/CVPR.2017.690. 

[29] Fang F., Wang L., Ren P. “Tinier-YOLO: A Real-Time Object Detection 
Method for Constrained Environments”. In: IEEE Access 8 (2020), pp. 
1935–1944. doi: 10.1109/ACCESS.2019.2961959. 

[30] Bochkovskiy	 A., Wang C.Y., Liao H-Y., M. “YOLOv4: Opti­
mal Speed and Accuracy of Object Detection”. Apr. 2020. doi: 
10.48550/arXiv.2004.10934. 

[31] Moosmann J., Giordan M., Vogt, C., Magno, M. “TinyissimoYOLO: A 
Quantized, Low-Memory Footprint, TinyML Object Detection Network 
for Low Power Microcontrollers”. (2023). arXiv preprint, url:http://arxi 
v.org/abs/2306.00001 

[32] Aharon S., Louis-Dupont, Ofri Masad, Yurkova K., Lotem F., Lkdci, 
Khvedchenya E., Rubin R., Bagrov N., Tymchenko B., Keren T., 
Zhilko A., Eran-Deci. “Super-Gradients”. 2021. doi: 10.5281/ZEN­
ODO.7789328. 

[33] Howard A., Sandler M., Chu G., et al. “Searching for MobileNetV3”. 
Proceedings of the IEEE International Conference on Computer 

https://www.doi.org/10.1109/CVPR.2016.91
https://www.doi.org/10.48550/arXiv.2209.02976
https://www.doi.org/10.48550/arXiv.2207.02696
https://www.doi.org/10.1145/3457682.3457740
https://www.doi.org/10.48550/arXiv.1804.02767
https://www.doi.org/10.1109/CVPR.2017.690
https://www.doi.org/10.48550/arXiv.2004.10934
https://www.doi.org/10.1109/ACCESS.2019.2961959
http://www.arxi v.org
http://www.arxi v.org
https://www.doi.org/10.5281/ZENODO.7789328
https://www.doi.org/10.5281/ZENODO.7789328
https://www.doi.org/org/10.5281/zenodo.3908559


References 127 

Vision, Seoul, 27 October-2 November 2019, 1314-1324. doi: 
10.1109/ICCV.2019.00140 

[34] Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C-Y., Berg A.C. 
“SSD: Single Shot MultiBox Detector”. In: Computer Vision – ECCV 
2016. LNCS vol 9905. doi: 10.1007/978-3-319-46448-0_2 

[35] Lin, TY. et al. “Microsoft COCO: Common Objects in Context”. In: 
ECCV 2014. LNCS vol 8693. doi: 10.1007/978-3-319-10602-1_48 

[36] Wang C.-Y., Mark Liao H.-Y., Wu Y.-H., Chen P.-Y., Hsieh J.-W., Yeh 
I.-H., “CSPNet: A New Backbone that can Enhance Learning Capability 
of CNN,” 2020 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, pp. 1571­
1580, doi: 10.1109/CVPRW50498.2020.00203. 

[37] Sinong Wang et al. “Linformer: Self-attention with linear complexity”. 
In: arXiv preprint arXiv:2006.04768 (2020). 

[38] Mehta S., Rastegari M., “MobileViT: Light-weight, General-purpose, 
and Mobile-friendly Vision Transformer”. International Conference in 
Learning Representation. 2022. Available at:http://arxiv.org/abs/2110.0 
2178 

[39] Chollet F. “Xception: Deep Learning with Depthwise Separable Con­
volutions,” 2017 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 1800-1807, doi: 
10.1109/CVPR.2017.195. 

[40] Lin J. et al. “MCUNet: Tiny Deep Learning on IoT Devices”. Annual 
Conference on Neural Information Processing Systems (NeurIPS 2020) 
Nov. 2020. doi: 10.48550/arXiv.2007.10319. 

[41] Lin	 J. et al., “MCUNetV2: Memory-Efficient Patch-based Infer­
ence for Tiny Deep Learning”. Oct. 2021. arXiv preprint. doi: 
10.48550/arXiv.2110.15352. 

[42] C. Szegedy et al., “Going deeper with convolutions,” 2015 IEEE Con­
ference on Computer Vision and Pattern Recognition (CVPR), Boston, 
MA, USA, 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594. 

[43] Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z., “Rethinking the 
Inception Architecture for Computer Vision,” 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 
USA, 2016, pp. 2818-2826, doi: 10.1109/CVPR.2016.308. 

[44] Ioffe S., Szegedy C. “Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift”. Proceedings of the 32nd 
International Conference on Machine Learning (ICML) 37:448-456, 
2015.Mar. 2015. doi: 10.48550/arXiv.1502.03167. 

https://www.doi.org/10.1109/ICCV.2019.00140
https://www.doi.org/10.1007/978-3-319-46448-0_2
https://www.doi.org/10.1007/978-3-319-10602-1_48
https://www.doi.org/10.1109/CVPRW50498.2020.00203
http://www.arxiv.org
http://www.arxiv.org
https://www.doi.org/10.1109/CVPR.2017.195
https://www.doi.org/10.48550/arXiv.2007.10319
https://www.doi.org/10.48550/arXiv.2110.15352
https://www.doi.org/10.1109/CVPR.2015.7298594
https://www.doi.org/10.1109/CVPR.2016.308
https://www.doi.org/10.48550/arXiv.1502.03167


128 Designing Lightweight CNN for Images 

[45] Huang G., Liu Z., Van Der Maaten L. Weinberger K. Q., “Densely Con­
nected Convolutional Networks,” 2017 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp. 
2261-2269, doi: 10.1109/CVPR.2017.243. 

[46] Xiaohan Ding et al. “Diverse Branch Block: Building a Convolution 
as an Inception-like Unit”. In: 2021 IEEE/CVF Conference on Com­
puter Vision and Pattern Recognition (CVPR). Nashville, TN, USA: 
IEEE, June 2021, pp. 10881–10890. doi: 10.1109/CVPR46437.2021. 
01074. 

[47] Vasu	 P, Gabriel J., Zhu J., Tuzel O., Ranjan A., “MobileOne: An 
Improved One millisecond Mobile Backbone”. Mar. 2023. arXiv 
preprint, url:http://arxiv.org/abs/2206.04040 

[48] Carion N., Massa F., Synnaeve G., Usunier N., Kirillov A., Zagoruyko 
S., “End-to-End Object Detection with Transformers”. In: ECCV 2020. 
LNCS vol 12346. doi: 10.1007/978-3-030-58452-8_13. 

[49] Adekar	 S.N., Chaurasia A. “MobileViTv3: Mobile-Friendly 
Vision Transformer with Simple and Effective Fusion of Local, 
Global and Input Features”. Oct. 2022. arXiv preprint. doi: 
10.48550/arXiv.2209.15159. 

[50] Mehta	 S, Rastegari M. “Separable Self-attention for Mobile 
Vision Transformers”. June 202. arXiv preprint. doi: 
10.48550/arXiv.2206.02680. 

[51] Liu Z. et al., “Swin Transformer: Hierarchical Vision Transformer using 
Shifted Windows,” 2021 IEEE/CVF International Conference on Com­
puter Vision (ICCV), Montreal, QC, Canada, 2021, pp. 9992-10002, 
doi: 10.1109/ICCV48922.2021.00986. 

[52] Dosovitskiy A.	 et al. “An Image is Worth 16x16 Words: Trans­
formers for Image Recognition at Scale”, 9th International Confer­
ence on Learning Representations (ICLR 2021). May 2021. doi: 
10.48550/arXiv.2010.11929. 

[53] Xie S., Girshick R., Dollár P., Tu Z., He K.,	 “Aggregated Residual 
Transformations for Deep Neural Networks,” 2017 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 
2017, pp. 5987-5995. Available at:https://doi.org/10.1109/CVPR.2017. 
634. Deng J., Dong W., Socher R., et al., “ImageNet: A Large-Scale 
Hierarchical Image Database”. 2009 IEEE Conference on Computer 
Vision and Pattern Recognition, Miami, 20-25 June 2009, 248-255. doi: 
10.1109/CVPR.2009.5206848. 

https://www.doi.org/10.1109/CVPR.2017.243
https://www.doi.org/10.1109/CVPR46437.2021.01074
https://www.doi.org/10.1109/CVPR46437.2021.01074
http://www.arxiv.org
https://www.doi.org/10.1007/978-3-030-58452-8_13
https://www.doi.org/10.48550/arXiv.2209.15159
https://www.doi.org/10.48550/arXiv.2206.02680
https://www.doi.org/10.1109/ICCV48922.2021.00986
https://www.doi.org/10.1109/CVPR.2017.634
https://www.doi.org/10.1109/CVPR.2017.634
https://www.doi.org/10.1109/CVPR.2009.5206848


References 129 

[54] Barret Zoph et al. “Learning Transferable Architectures for Scalable 
Image Recognition”. In: 2018 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition. Salt Lake City, UT: IEEE, June 2018, 
pp. 8697–8710. doi: 10.1109/CVPR.2018.00907. 

[55] Liu C. et al. “Progressive Neural Architecture Search”. In: ECCV 2018. 
LNCS vol 11205. doi: 10.1007/978-3-030-01246-5_2 

[56] Mingxing T.	 et al. “MnasNet: Platform-Aware Neural Architecture 
Search for Mobile”. In: 2019 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 
June 2019, pp. 2815–2823. doi: 10.1109/CVPR.2019.00293. 

https://www.doi.org/10.1109/CVPR.2018.00907
https://www.doi.org/10.1109/CVPR.2019.00293
https://www.doi.org/10.1007/978-3-030-01246-5_2


https://www.taylorandfrancis.com


6
 
Natural Language Conditioned Planning of
 

Complex Robotics Tasks
 

Toms Eduards Zinars, Oskars Vismanis, Peteris Racinskis, 
Janis Arents, and Modris Greitans 

Institute of Electronics and Computer Science, Latvia 

Abstract 

As natural language processing advances in the field of robotics, enabling 
seamless human-robot interaction, it becomes imperative to identify the most 
effective approach for conditioning complex robotics tasks using natural 
language commands. This article reviews various state-of-the-art methods 
for natural language-conditioned planning, with a particular focus on mobile 
manipulation. The authors explore and review different architectures and 
techniques to comprehend, interpret, and execute natural language com­
mands. Challenges are identified along the way, and conceptual architecture 
is proposed to tackle them in an efficient manner. 

Keywords: natural language processing, mobile manipulation, action primi­
tives, edge AI. 

6.1 Introduction 

Everyday interactions between people are usually performed in a very casual 
manner through natural language, or NL, as it is an comfortable way of 
communication. This has been carried over to our appliances, such as phones 
and cars, with the use of voice commands. It logically follows that robotic 
assistants, be they industrial or service, which operate in an environment with 
people of various machinery handling skill levels, would benefit from a user 

131
 
This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-6 



132 Natural Language Conditioned Planning of Complex Robotics Tasks 

interface utilizing Natural Language Processing (NLP) techniques to process 
unstructured input. As the environments in which these systems get deployed 
are diverse and varied, a general understanding of language and its relation to 
objects is crucial to a rational implementation. 

Large Language Models (LLM) [1][2] have shown to be very capable of 
tackling the task of inferring NL inputs for commanding a robotic agent. They 
can be made to operate with multi-modal information [3], but they often rely 
on cloud service models that require immense computing resource [4][5][6]. 
The possibility exists to use smaller models that can be run locally [7][2]. 
Robotic systems are typically specialized to operate under certain conditions, 
and a trained technician must perform any new adaptations. However, as 
real-life environments are usually unique in their layout and the objects they 
contain, it can be hard to predict what the robotic agent needs to know. In 
section 1.2, we do a quick overview of NL processing, LLM and multi-modal 
embeddings and their recent implementations and uses in planning for robotic 
systems. 

To function in such environments, a more general approach for represent­
ing robot tasks can be used, as, fundamentally, a robot system can be thought 
of as a handful of basic operations, but they are usually very task-dependant. 
One such approach is using action primitives. They provide the high-level 
planner with an abstract, symbolic representation of available actions so a 
task plan can be made. Another role they fulfill is low-level planning, a set 
of functions that can be adapted to specific scenarios and reused for different 
tasks [8]. Details about action primitives, their synthesis and implementations 
are described in section 1.3. 

The primary type of robot control we address with the approach outlined 
in this chapter is mobile manipulation, which can be described as the joint 
control of a mobile base and a manipulator arm. The overall workflow of 
such a system can be generalized to receiving, planning and executing a task. 
In our conceptual architecture, the function of receiving a task is done with 
NL commands. For this, a two-stage technique is proposed. A high-level 
LLM-based algorithm for mapping NL commands into a constrained space 
of action primitives, and a library of action primitives at the low level, which 
is further elaborated on in section 1.5. This chapter also includes section 
1.4, where we provide a brief overview of identified challenges and issues 
regarding both the practical use of NLP and the implementation of Action 
Primitives, while section 1.6 concludes the chapter with our views on future 
developments. 



6.2 Natural Language Processing for Robotics 133 

6.2 Natural Language Processing for Robotics 

Natural language is vast and vague, so much so that people often have 
problems understanding each other. An NL command can consist of a request 
that only makes sense in the context of the situation and the environment. It 
is not enough for a robotic system to just deduce what is being asked of it but 
also to be able to ground this information in the environment it finds itself in 
and act upon through a concise and safe plan of actions. 

The current state-of-the-art performance in NLP can be found in language 
models based on transformer architecture [9], specifically the LLMs. Starting 
at 10 billion, typically having 100-300 and with a couple exceeding 1 tril­
lion, these LLMs have demonstrated impressive performance across various 
language-related tasks [1][10]. 

6.2.1 Large language models 

Large Language Models are powerful natural language interpreters [11]. An 
important quality they share with the smaller models is multitask learning – 
the ability for one model to become relatively proficient at several different 
tasks but masters of none [12]. However, as their size grows and performance 
increases [13], these models begin to overtake previous-generation specialist 
fine tuned models [10][11]. 

Training large language models from scratch is a very expensive process 
in terms of energy, computing and time, typically requiring massive clusters 
of dedicated high-end hardware that train them non-stop for several weeks 
[2]. As this is only feasible for large tech corporations such as Google, Meta, 
OpenAI, Amazon and Huawei [2], a pre-trained model can be specialized 
for a downstream task through fine-tuning - using a specialized dataset to 
introduce into the model specific knowledge or teach it new operations all 
together [14], making them more accessible for specific tasks. 

When the parameter count reaches into the tens and hundreds of billions, 
the language models begin to exhibit new qualities that are not present in 
their smaller counterparts, referred to as emergent abilities [1][15], three 
prominent ones, as highlighted in [1], are: 

• In-context	 learning [11]- the ability to perform tasks not part of 
the training corpus, based on an instruction and several input-output 
examples(few-shot) provided in the prompt; 

• The instruction following [14] relies	 on fine-tuning a model using 
a dataset containing natural language instructions, which results in 



134 Natural Language Conditioned Planning of Complex Robotics Tasks 

improved zero-shot (no example given) prompting performance for 
unseen tasks; 

• Step-by-step [16] improves the model’s complex reasoning by leverag­
ing chain of thought prompting by adding step-by-step instructions to 
the examples for a few-shot task prompt. 

As fine-tuning takes computing resources and time, many pre-trained 
models are fully capable of being used out of the box [11]. By carefully 
structuring the input prompts, it is often possible to condition the model to 
provide the desired output for the task at hand [17], an approach known as 
prompt engineering [1]. 

As a way to improve the fine-tuning process, a lot of work has been done 
in developing various parameter-efficient fine-tuning methods (PEFTs) [18] 
that consider fine-tuning only parts of the overall model. Instead of having 
several different fine-tuned copies of the same LLM weights, using methods 
such as Low-Rank Adapters (LoRA) [19] one can have a single instance of an 
LLM and then simply apply the corresponding fine-tuned adaptation, saving 
on space and compute resource. 

Running the LLM inference process, even on the smaller models, requires 
capable hardware, primarily GPUs with sufficient VRAM [7]. The model’s 
parameters are typically stored in a 16-bit float format (FP16), translating to 
roughly 2GBs for every 1 billion parameters. A remedy for this issue is model 
quantization, a method where the parameters of the model are converted into 
smaller 8-, 4-, 3- and even 2-bit formats [20], which (plural) can reduce 
the required VRAM down from 14GB to roughly 4 GBs for a 7B model 
(7B representing 7 billion parameters) when using 4-bit quantization, with 
marginal loss to performance [7]. The requirements can be further reduced 
by using methods that share inference between CPU and GPUs [21], which 
provides perspectives for application in edge AI. 

As language models have been trained on general data such as textual 
information sourced from books or the internet and/or coding languages 
[1][2][22], they gain a broad internal knowledge base that can be leveraged to 
create a human-machine interface capable of decoding obscure NL requests 
into actions understandable to a robotic agent system [4][17]. 

6.2.2 Multi-modal embeddings 

The recent progress in autoregressive and sequence-to-sequence NLP pro­
cessing with LLMs has enabled a number of related advances. In particular, 
the abstract vector nature of the tokens being processed by transformers has 



6.2 Natural Language Processing for Robotics 135 

been exploited to create mappings between radically different data modal­
ities. CLIP [3], short for Contrastive Language-Image Pre-training, is a 
notable example. It jointly trains an image classifier and text encoder on 
image-caption pairs. Each model outputs a vector in the same latent space. 
The cosine similarity of vectors corresponding to matching image-caption 
pairs is maximized, while that between all others is minimized. The result is 
a pair of models capable of mapping the greatly dissimilar image and text 
input spaces to a common latent “concept” space. 

CLIP and similar systems have since been commonly described as 
vision-language models (VLMs). Subsequent work, such as LSeg [23] and 
ConceptFusion [24], has been done to extend the vision model in a VLM 
to produce segmentation maps – embeddings for each image in a pixel. 
These have subsequently found use in robotics, particularly in creating maps 
amenable to natural language queries. For example, in [25], a 2-dimensional 
grid map is constructed using LSeg and depth imagery, which can then 
be used to find navigation goals using text prompts. ConceptFusion [24] 
expands upon the mapping problem, producing 3-dimensional embedding-
tagged point clouds. Some approaches do away with explicit maps entirely, 
instead using a Neural Radiance Field to predict the embedding associated 
with any point in the environment directly [26]. 

The ability of transformer models to map between and autoregressively 
generate sequences of arbitrary vectors has been directly exploited for robot 
control in works such as [27], where robot actions are predicted directly from 
text prompts and images of the scene in which the robot should operate. The 
inputs need not be limited to a single type of embedding — in [28] and [29], a 
large transformer is trained to operate on input sequences containing multiple 
types of embeddings — such as VLM tokens, robot state encodings, scene 
representations and past actions — with PaLM-E in [29] being directly based 
on a pre-trained LLM. 

6.2.3 Recent implementations of high-level planning for mobile 
manipulation 

The practical implementation of language models for use in high-level plan­
ning of mobile manipulator systems has taken various approaches. Some 
approaches use the language models to extract language features that are 
further passed into more specialized modules for processing [30][31], others 
use the language models as active elements of the planning process [5][6][32], 
and others yet use the models for low-level planning [33]. Some models 



136 Natural Language Conditioned Planning of Complex Robotics Tasks 

perform their own mapping of the environment through computer vision 
[30][34], but it would seem that map integration is an underutilized solution, 
though some works are exploring combining embeddings from the language 
model with embeddings stored in a semantic map [6]. 

Many of the highlighted works rely on prompting and using pre-trained 
models [4][5][6][32][33][35]. The importance of proper prompting technique 
is explored in [19], which presents a method for selecting and formatting 
prompts to elicit outputs usable in robotic systems. They define a starting 
prompt that describes the role the LLM is supposed to play and condition 
it to respond only when directly prompted to by a specific keyword. That is 
followed up with a sequence of instructions, explanations and templates that 
describe the desired output format and contents. The prompt is finished up 
by providing several examples of how the output should look. The ability to 
provide NL feedback to improve and correct mistakes during inference is also 
showcased. 

While not an example of a natural language command, ProgPrompt 
[32] takes an input prompt of Python code containing imports of action 
primitives, a list of available objects, example tasks and the start of the 
desired operation. The LLM then returns a generated plan in Python that uses 
assertions to ensure a feedback loop once the agent encounters variables in 
the environment and can successfully execute the appropriate action. 

Lang2LTL [6] utilizes a modular system where LLMs are used to perform 
several subtasks in the interest of generating a grounded relation to objects 
and places that the system stores in a database. One module is tasked with 
extracting place names from the request prompt. These extracted names are 
then compared to the database objects through embedding cosine similarity, 
and then generalizing the input request with substitutions and passing it 
through a fine-tuned LLM symbolic translator that generates the LTL for­
mula, finished by inserting the found database objects in their respective 
substitution locations. 

Text2Motion [5] utilizes an LLM model that performs task planning in 
conjunction with geometric feasibility planning that evaluates if the plan 
generated by the LLM is valid or not. They evaluated planning the whole 
sequence of actions and then validating it, planning and validating each 
individual step of the sequence and a hybrid system that tries creating a full 
plan, falls back to individual step in case of a failure, then tries finishing the 
plan fully again. For implementation, they rely on OpenAI’s GPT series [36] 
and execute their system through prompt engineering. 



6.2 Natural Language Processing for Robotics 137 

Language to Rewards [33] employs a two-stage LLM setup in the form 
of a Reward Translator, where the first LLM (Motion descriptor) is used to 
translate the input sentence into a structured natural language instruction. The 
second LLM (Reward Coder) then generates a usable code in the form of 
reward functions that can be passed directly to a low-level motion controller, 
skipping the use of action primitives altogether. Both LLMs are conditioned 
by leveraging in-context learning by prompts. The first one contains templates 
to use when creating the task description, while the second is prompted with 
a general program description. Both prompts contain a list of instructions to 
guide inference to the desired result. While this approach doesn’t perform 
long-horizon tasks, it does showcase the possibility of using LLMs for low-
level planning to some degree. 

Say-Can [3] explored the issue of grounding an LLM planning system 
in the real world, as without any feedback elements or information about the 
current environment, the language model can propose logical but contextually 
impossible solutions such as suggesting using a vacuum cleaner when one 
isn’t available. They achieved this by using a two-part system - the LLM 
provides probabilities for action relevance to the given task, while a value 
function provides probabilities of how likely it is to succeed in doing specific 
actions. The multiplication of these two values is chosen as the action for the 
plan to perform. 

Inner Monologue [35] explores using feedback mechanisms to improve 
task completion. By being able to receive information from the environment 
in the form of language input, such as sensory data about detected objects 
or whether the planned action was successful or not, the agent can attempt 
to perform the action again or replan, whereas without such feedback the 
agent would fail the task outright. When the agent is met with an ambiguous 
situation, such as a request for “a drink”, by asking the user for clarification, 
it can form a dialogue that helps execute the task more successfully. They 
also question if the answering could be done by another LLM as well. 

There are doubts by some if LLMs are reliable enough to be used 
for planning operations [31][37] but do recognize their utility as language 
interpreters. One such implementation is proposed in [31] with LLM+P, a 
language model coupled with a classical planner. A classical planner provides 
proven ability in task solving, while the LLM can provide its understanding 
of language to be able to interpret a large amount of tasks and then translate 
them to a structured planning language such as PDDL [47]. 



138 Natural Language Conditioned Planning of Complex Robotics Tasks 

Language is only one part of a system meant to operate in an environment. 
The ALFRED benchmark was introduced in 2020 as a way to test agent sys­
tems that use both natural language instructions and ego-centric vision [38]. 
While not the first, it did combine several functions to create a benchmark that 
tests proposed systems in a non-reversible, partially observable environment. 
Models are tasked with solving basic household tasks within a limited number 
of actions, which typically involve moving and modifying objects using tools 
or special locations, requiring a specific sequence of actions to execute. Many 
models also build a map representation of the environment [30][34]. The 
baseline model relied on an LSTM (long-short-term memory, predecessor to 
the transformer architecture) based language model that managed to achieve 
only a 0.4% success rate in the unseen tests [38]. Later attempts would 
implement PLMs such as BERT [39] and improve the success rate to 50% 
[34]. At the time of writing, the best-performing models that have available 
materials are Prompter [30] and CAPEAM [34], both utilizing BERT for 
their language processing. BERT is an older language model (from late 2018) 
with sub-1 billion parameters, far from state-of-the-art in language models, 
making a direct comparison hard as LLM-based systems seem to rely on their 
own evaluation methods [3]. 

Prompter [30] utilizes its language model in a semantic search module, 
using natural relations between objects (apples found in kitchens, tooth­
brushes in bathrooms), speeding up the search. The benefits of using a 
language model for such a role is leveraging its inherent knowledge of 
language to determine word relations, whereas previous methods relied on 
using additional training. For its vision substream, based on [39], the agent 
creates a 2D top-down semantic map from images it received through its ego­
centric vision, which is a 2D RGB image that is processed into a depth map 
and segmented to create masks. 

CAPEAM [34] uses a fine-tuned BERT implementation for predicting 
what predefined role fits what words from the input sentence. Context Aware 
Planning module uses a sub-goal planning element that first finds a general 
template to use based on input requests and then a so-called “detailed plan­
ner” to insert the contextual information into predefined places. Environment 
Aware Memory is responsible for vision operations, utilizing memorization 
for object locations as well as saving previous segmentation masks, as it was 
found it helps to identify objects that become obscured through later actions. 



6.3 Action Primitives for Mobile Manipulation 139 

6.3 Action Primitives for Mobile Manipulation 

In [40], the authors define the concept of situated robotics, which describes 
robotic systems in complex, dynamic or, in other words, situated environ­
ments. The amount of an environment’s situatedness directly affects the 
complexity of the robot control system and its need to adapt to new situations, 
which shows that the more complex the environment, the more complex the 
control system needs to be. Derived from different action definitions, differ­
ent approaches to robot control exist, such as reactive control, deliberative 
control, hybrid control (a combination of the first two), and behaviour-based 
control [40]. Reactive Controls can be referred to as an IF...THEN rule inter­
preter while Deliberative control - as functioning in a higher level. Behaviour­
based control, on the other hand, functions a bit differently; at its core is 
the concept of behaviours, which are functionalities varying in complexity 
that get activated depending on their predefined inputs, which can be sensory 
data or other behaviours, and they output control commands for actuators or 
other behaviours. Where the other control type’s lack in either computation 
efficiency or complexity, the behaviour-based control can manage a combi­
nation of the two, that is easier to engineer and upgrade than hybrid control 
[40]. From the concept of behaviours, abstract or primitive behaviour can 
be derived, which is a more general function made to be reusable in different 
scenarios. These are often referred to in the literature as the action primitives 
(aka manipulation primitives, task primitives, skills etc.). 

To plan and execute tasks in situated environments, some form of Task 
and Motion Planning (TAMP) is usually required, as seen in [4][41][42][43], 
and for that, it is best to have representations of the environment and available 
robot actions. As mentioned before, dynamic environments can have many 
different actions fulfilled in them and engineering all of them can be a time-
consuming process [if even possible]. A better approach might be to use 
said action primitives, which would be task-specific only in the execution 
phase, depending on sensory inputs. This representation of behaviours allows 
for a more general form of activation conditions as these are usually atomic 
functions that do only one thing, but not in a way feedback control would be 
managed (for example, move by a certain angle) [8][44][40]. The granularity 
of primitives depends on the usage, but in robotics, it is usually a control com­
mand to make a robot move. As action primitives are usually computationally 
light, one system can be made to work for different tasks. 

Primitives can be divided by their usage, the simplest form being the 
primitive itself. After primitives come actions, and after that - activities [44]. 



140 Natural Language Conditioned Planning of Complex Robotics Tasks 

Taking as an example a robot doing picking, that could be considered an 
action, which would be made up of multiple primitives, in this case, moving 
to the object and closing the gripper. The case of putting multiple actions in 
a sequence, such as picking and placing, could be referred to as an activity of 
moving an object. This way of referencing actions is especially useful for task 
planning, as the symbolic representation of a task does not always include all 
the steps needed to complete it [41]. If, for example, the task of picking up 
an object and placing it somewhere is given, the task planner does not need 
to think about the specific primitives needed, such as moving the arm to the 
specific spot and closing the gripper, it just needs to make a sequence of 
actions, that fulfil the task. The primitives are then left for the motion planner 
to check geometrically if the task plan is feasible. Many systems would then 
use a so-called action library or a set of skills [41][42][45] that can be used 
by the task planner to know what the system is capable of and use it when 
making plans. 

Symbolically, actions and the action-state relations can be predefined 
using task planning languages such as STRIPS [46] or its successor, PDDL 
[47], or it can be done during the planning process using Large Language 
Model (LLM) prompt engineering [48]. Regarding the environment, the 
representation can be about locations, objects, etc. Actions refer to what tools 
the robot has at its disposal, in other words, what it can do to accomplish its 
tasks. 

6.3.1 Methods for creating primitives 

There can be many kinds of primitives made for specific applications, which 
means that creating them is a process of its own, and there are different ways 
of synthesis. For example, Jeon et al. [41] create a service robot application, 
which utilizes an action library in which one of the actions is hold_object. 
This action can be decomposed into two action primitives – approach_object 
and close_hand. For task planning purposes, actions, action primitives and 
their interrelations are represented using the PDDL language. This allows 
them to be used with PDDL-supported planners. In addition, it predefines the 
action’s preconditions, effects, requirements, etc. This method deeply relies 
on the engineer’s capabilities and understanding of the tasks they’re making 
the primitives for. Also, in the case of wanting to add new functionality, it can 
be a long process, depending on the complexity of the task. 

Action primitives can also be extracted from human motion via imitation 
learning (IL) [49]. In [50], manually segmented human motion capture data 



6.3 Action Primitives for Mobile Manipulation 141 

is used with a spatio-temporal non-linear dimension reduction technique to 
cluster similar segments of motion into generalized primitives. Similarly, in 
[43], imitation learning is used, in terms of behavioural cloning (BC), to learn 
action primitives, but their combinations into actions are then learned with 
reinforcement learning (RL). With these methods, the system is able to do 
the task of pouring cereal into a bowl. In [51], however, the stereotypical 
motions of a human picking up a cup are recorded and used as a basis for 
actions, though in the form of dynamic movement primitives (DMP). 

A different approach to creating primitives is only making them when 
needed. Gizzi et al. [42] look at using action primitives as a way of creative 
problem-solving. They use the definition of a MacGyver problem [52], which 
describes an environment that has everything necessary for successful task 
execution, and the robot has all the tools it needs. Still, the specific approach 
it must take is unknown. The system begins with a set of predefined actions 
and is tasked to do an indirect task, such as reaching an obstructed object 
or location. Whenever met with a situation where the robot cannot fulfil its 
task with the actions it knows, it starts generating combinations of available 
objects and interactions with them using the available actions. The environ­
ment and actions are described using PDDL. In this case, the actions available 
are obtain_object and press_button, and the robot is tasked with reaching 
an object on the other side of a wall. There are also buttons present. When 
the initial obtain_object fails, it starts generating different combinations of 
actions and tries executing the feasible ones one by one until it manages to 
hold down one of the buttons to move the wall. 

In the case of service robots or any robots that might work in envi­
ronments simultaneously with humans, there is also a positive effect when 
creating the primitives to function similarly to human motion, as humans can 
better understand them from the point of predictability. This approach also 
allows for easier training using imitation learning [51]. 

6.3.2 Action primitive implementations 

In relation to mobile manipulation or manipulation in general, the action 
primitive has been used consistently in systems that do more general or 
environment-adaptive tasks. In [42], action primitives are used as a basis for 
finding solutions to given problems in the sense of finding new primitives that 
would be applicable to the situation. 

In [53], such action primitives as pulling, pushing, grasping and pivoting 
are included. A dual-arm robot ABB YuMi with custom tactile sensors is 



142 Natural Language Conditioned Planning of Complex Robotics Tasks 

used. With the predefined action library and tactile feedback combination, the 
system is able to do dexterous manipulation based on robot/object interaction 
plans. This same setup is used in [54] to manipulate rigid objects based 
on pointcloud data using long-horizon planning. The planning problem is 
defined as an action primitive sequencing, where the symbolic representation 
of actions as action primitives allows for the planner to set aside the reasoning 
about robot-object dynamics. 

For service robots, action primitives are used to create and execute plans 
for such tasks as pouring cereal [43] or juice [41]. In [43], basic action 
primitives are learned and then combined into such actions as pick, bowl 
(picking an object and placing it in a bowl) and breakfast (moving objects 
in a pouring manner directed toward the bowl). For similar tasks, [41] uses 
such primitives as approach_object, close_hand, and move_arm. These are 
then used in plans to accomplish tasks like moving an object out of the way 
and then moving a package in a pouring motion. 

6.4 Identified Challenges 

Robotic agents designed to work alongside people are under great scrutiny, 
as such systems must be, first and foremost, safe, adequately efficient and 
easy to use. Such systems have to be robust, with no room for ambiguity. Yet, 
the datasets that language models are trained on come with biases that the 
model inherits and these biases can affect the inference process and result in 
seemingly random erroneous outputs [1][37] or repetitive cycles [5]. There is 
also a general risk of hallucination from LLM providing absurd plans to the 
robotic agent system or failing to generate anything at all. 

Many promising implementations rely on using the closed-source GPT 
series for their research [17][5][6][33]. While these models are state-of-the­
art and the main target for other models to beat [22], a real implementation 
for any mobile agent lacks practical autonomy if it must have a constant 
connection to a cloud service. If it is true that certain traits of language 
models are limited to the larger models and begin appearing only at 100B+ 
parameters [1][15], even with quantization, these larger models would require 
powerful GPUs that are impractical to be placed onto a physical agent 
to ensure autonomous operation, limiting the system to require a local 
network where a remote resource provides inference to the system. This 
impedes taking advantage of the LLMs emergent abilities for edge AI 
applications. 



6.5 Conceptual Architecture 143 

One of the main focuses of NL commanded mobile manipulation systems 
is higher autonomy, but they often still lack in their abilities. For example, a 
clear bottleneck of such systems is the range and capabilities of the skills 
they possess as [4], even if the NL command can be translated to the system 
correctly, it cannot execute something it does not know how. 

Another challenge, directly involving manipulation, can be addressed in 
the form of object recognition and grasping. A real environment usually has 
many different types of objects, and a robot operating in such an environment 
would be expected to be able to manipulate any of them. Modern approaches 
manage such a problem using 3D model databases from the internet [51] or 
pre-trained vision-language models [55] that can recognize previously unseen 
objects. Grasping them is then dependent on grasp point recognition [56][57] 
and the quality of active primitives used. 

6.5 Conceptual Architecture 

Based on what has been covered, we have considered various implementa­
tions for robotics systems with natural language commands. There is no one 
definitive architecture (as can be seen by examples in chapter 6.2.3), given 
differing sizes, scopes and environments in which such agents are expected 
to operate. The underlying principles we believe such a system would need 
to have are the need to process the language input, a way to locate itself and 
objects in the environment, plan its actions and finally execute the plans at 
the physical level, with a feedback system to account for changing factors in 
the environment or the user’s request. 

In Figure 6.1 we present a simplified interpretation of how such a system 
could be structured in two distinct main modules or levels – the language pro­
cessing module and the execution module. Other works have also approached 
the problem with some type of two-part design [4][34]. What may seem miss­
ing from this schematic is a dedicated planning module, but here it is under­
stood that high-level or task planning is done by the NLP module, whereas 
low-level planning or motion planning is done in the execution module. 

At the core of the NLP module would be an LLM that could be run locally, 
at least on a cluster, but which one fits this use case needs to be investigated. 
The module’s task is to interpret the user’s input request in a way that the rest 
of the system may act upon it. For successful communication between the 
levels, the execution module provides the NLP module with a description of 
what it can do and how the language module output needs to be formatted, 
allowing for new capabilities to be introduced to and utilized by the system 



144 Natural Language Conditioned Planning of Complex Robotics Tasks 

Figure 6.1 Proposed Mobile Manipulator Control System 

that were not originally accounted for. An interface with a map (or database) 
grounds the language module in its current environment and permits the NLP 
module access to task-relevant information. It would be preferable as well 
for the NLP module to be able to take received feedback from the execution 
module and present it to the user for clarification. 

The execution module consists of an action library, which is a set of action 
primitives the agent can execute to accomplish tasks. The module is respon­
sible for physical execution, so motion planning is also done here. Whenever 
a task plan is received, this module checks its geometrical feasibility and, in 
case of a failure, requests for a replanning. Once a feasible plan is made, the 
module executes the task sequence. 

The main benefits of such a layout is the idea that the information 
about the environment is contained within the semantic map, while the LLM 
possesses general linguistic knowledge. As action primitives should be the 
same regardless of where it is, by combining information extracted from the 
input with information available on the map, the system is not hard-coded to 
a particular place. By relying on a smaller and locally run LLM instance, the 
hope is to ensure the ability of the system to operate successfully in an edge 
AI use case. 



References 145 

6.6 Conclusions and Outlook 

Natural language application in robotics is an ever more relevant field of 
research and development. The rise of LLMs has made applying general 
language understanding to computer systems seem deceptively trivial, but 
there is still much ambiguity to overcome. We hope to see the field develop 
in both directions - more research done on larger models to see how much 
they are capable of, as well as more development to bring these high-level 
abilities down to smaller and smaller model sizes to enable true edge AI 
applications. 

When working in complex environments, action primitives can be used 
as a powerful tool to generalize actions available to a robotic system. This 
can be useful both with task and motion planning as they allow for these 
two processes to be less intertwined without affecting their effectiveness. 
There are different approaches to creating action primitives, and the future 
seems to be headed towards automated synthesis with different machine-
learning techniques. This chapter proposes a conceptual architecture for 
NL-commanded mobile manipulation, consisting of an NLP module for 
command interpreting and high-level planning and an execution module that 
utilizes action primitives for low-level planning and execution. 

Acknowledgements 

This research was conducted as part of the EdgeAI “Edge AI Technologies for 
Optimised Performance Embedded Processing” project, which has received 
funding from KDT JU under grant agreement No 101097300. The KDT 
JU receives support from the European Union’s Horizon Europe research 
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia, 
Luxembourg, Netherlands, and Norway. 

References 

[1]	 Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., 
Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., 
Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., Liu, P., Nie, J., & Wen, J. 
(2023). A Survey of Large Language Models. ArXiv, abs/2303.18223. 

[2]	 Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., 
Barnes, N., & Mian, A. S. (2023). A Comprehensive Overview of Large 
Language Models. ArXiv, abs/2307.06435. 



146 Natural Language Conditioned Planning of Complex Robotics Tasks 

[3] Radford, Alec, Jong	 Wook Kim, Chris Hallacy, Aditya Ramesh, 
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela 
Mishkin, Jack Clark, Gretchen Krueger and Ilya Sutskever. “Learn­
ing Transferable Visual Models From Natural Language Supervision.” 
International Conference on Machine Learning (2021). 

[4]	 Ahn M., Brohan A., Brown N., Chebotar Y., Cortes O., David B., Finn 
C., Gopalakrishnan K., Hausman K., Herzog A., Ho D., Hsu J., Ibarz J., 
Ichter B., Irpan A., Jang E., Ruano R. J., Jeffrey K., Jesmonth S., Joshi 
N. J., Julian R. C., Kalashnikov D., Kuang Y., Lee K.-H., Levine S., Lu 
Y., Luu L., Parada C., Pastor P., Quiambao J., Rao K., Rettinghouse J., 
Reyes D. M., Sermanet P., Sievers N., Tan C., Toshev A., Vanhoucke 
V., Xia F., Xiao T., Xu P., Xu S., Yan M. Do As I Can, Not As I Say: 
Grounding Language in Robotic Affordances. Conference on Robot 
Learning, 2022. 

[5] Lin,	 K., Agia, C., Migimatsu, T., Pavone, M., & Bohg, J. 
(2023). Text2Motion: From Natural Language Instructions to Feasible 
Plans. ArXiv, abs/2303.12153. 

[6] Liu, J., Yang, Z., Idrees, I., Liang, S., Schornstein, B., Tellex, S., & 
Shah, A. (2023). Lang2LTL: Translating Natural Language Commands 
to Temporal Robot Task Specification. ArXiv, abs/2302.11649. 

[7]	 Frantar, E., Ashkboos, S., Hoefler, T., & Alistarh, D. (2022). GPTQ: 
Accurate Post-Training Quantization for Generative Pre-trained Trans­
formers. ArXiv, abs/2210.17323. 

[8]	 Schaal S., Ijspeert A., Billard A. Computational approaches to motor 
learning by imitation. In: Philosophical Transactions of the Royal 
Society B: Biological Sciences, 2003, 358(1431), 537–547. 

[9] Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, 
A.N., Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. 
NIPS. 

[10] OpenAI (2023). GPT-4 Technical Report. ArXiv, abs/2303.08774. 
[11] Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., 

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T. J., Child, R., Ramesh, A., Ziegler, 
D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., 
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., 
Sutskever, I., & Amodei, D. (2020). Language Models are Few-Shot 
Learners. ArXiv, abs/2005.14165. 

[12] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. 
(2019). Language Models are Unsupervised Multitask Learners. 



References 147 

[13] Kaplan, J., McCHuang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Flo­
rence, P.R., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., Sermanet, 
P., Brown, N., Jackson, T., Luu, L., Levine, S., Hausman, K., & Ichter, 
B. (2022). Inner Monologue: Embodied Reasoning through Planning 
with Language Models. Conference on Robot Learning.andlish, S., 
Henighan, T. J., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, 
A., Wu, J., & Amodei, D. (2020). Scaling Laws for Neural Language 
Models. ArXiv, abs/2001.08361. 

[14] Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, 
A. M., & Le, Q. V. (2021). Finetuned Language Models Are Zero-Shot 
Learners. ArXiv, abs/2109.01652. 

[15] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., 
Yogatama, D., Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, 
T., Vinyals, O., Liang, P., Dean, J., & Fedus, W. (2022). Emergent 
Abilities of Large Language Models. Trans. Mach. Learn. Res., 2022. 

[16] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E. H., Xia, F., Le, 
Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning 
in Large Language Models. ArXiv, abs/2201.11903. 

[17] Wake, N., Kanehira, A., Sasabuchi, K., Takamatsu, J., & Ikeuchi, K. 
(2023). ChatGPT Empowered Long-Step Robot Control in Various 
Environments: A Case Application. ArXiv, abs/2304.03893. 

[18] Lialin, V., Deshpande, V., & Rumshisky, A. (2023). Scaling Down 
to Scale Up: A Guide to Parameter-Efficient Fine-Tuning. ArXiv, 
abs/2303.15647. 

[19] Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., & Chen, 
W. (2021). LoRA: Low-Rank Adaptation of Large Language Models. 
ArXiv, abs/2106.09685. 

[20] Chee, J., Cai, Y.,	 Kuleshov, V., & Sa, C.D. (2023). QuIP: 2-Bit 
Quantization of Large Language Models With Guarantees. ArXiv, 
abs/2307.13304. 

[21] Gerganov, G. Port of Facebook’s LLaMA model in C/C++. Available at: 
https://github.com/ggerganov/llama.cpp [Accessed August 23, 2023] 

[22] Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. E., Adi, 
Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, 
J., Bhatt, M. P., Ferrer, C.C., Grattafiori, A., Xiong, W., D’efossez, A., 
Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier, N., Scialom, 
T., & Synnaeve, G. (2023). Code Llama: Open Foundation Models for 
Code. 

https://www.github.com


148 Natural Language Conditioned Planning of Complex Robotics Tasks 

[23] Li, Boyi, Kilian Q. Weinberger, Serge J. Belongie, Vladlen Koltun 
and René Ranftl. “Language-driven Semantic Segmentation.” ArXiv 
abs/2201.03546 (2022). 

[24] Jatavallabhula, Krishna Murthy,	 Ali Kuwajerwala, Qiao Gu, Mohd. 
Omama, Tao Chen, Shuang Li, Ganesh Iyer, Soroush Saryazdi, Nikhil 
Varma Keetha, Ayush Kumar Tewari, Joshua B. Tenenbaum, Celso 
M. de Melo, M. Krishna, Liam Paull, Florian Shkurti and Antonio 
Torralba. “ConceptFusion: Open-set Multi-modal 3D Mapping.” ArXiv 
abs/2302.07241 (2023). 

[25] Huang, Chen, Oier Mees, Andy Zeng and Wolfram Burgard. “Visual 
Language Maps for Robot Navigation.” 2023 IEEE International Con­
ference on Robotics and Automation (ICRA) (2022): 10608-10615. 

[26] Shafiullah, Nur Muhammad (Mahi), Chris Paxton, Lerrel Pinto, Soumith 
Chintala and Arthur Szlam. “CLIP-Fields: Weakly Supervised Semantic 
Fields for Robotic Memory.” ArXiv abs/2210.05663 (2022). 

[27] Brohan, Anthony,	 Noah Brown, Justice Carbajal, Yevgen Chebotar, 
Krzysztof Choromanski, Tianli Ding, Danny Driess, Chelsea Finn, 
Peter R. Florence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana 
Gopalakrishnan, Kehang Han, Karol Hausman, Alexander Herzog, Jas­
mine Hsu, Brian Ichter, Alex Irpan, Nikhil J. Joshi, Ryan C. Julian, 
Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Sergey Levine, Hen­
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista 
Reymann, Michael S. Ryoo, Grecia Salazar, Pannag R. Sanketi, Pierre 
Sermanet, Jaspiar Singh, Anika Singh, Radu Soricut, Huong Tran, 
Vincent Vanhoucke, Quan Ho Vuong, Ayzaan Wahid, Stefan Welker, 
Paul Wohlhart, Ted Xiao, Tianhe Yu and Brianna Zitkovich. “RT-2: 
Vision-Language-Action Models Transfer Web Knowledge to Robotic 
Control.” ArXiv abs/2307.15818 (2023). 

[28] Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gomez Col­
menarejo, Alexander Novikov, Gabriel Barth-Maron, Mai Gimenez, 
Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake 
Bruce, Ali Razavi, Ashley D. Edwards, Nicolas Manfred Otto Heess, 
Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar and Nando 
de Freitas. “A Generalist Agent.” Trans. Mach. Learn. Res. 2022 
(2022). 

[29] Driess, Danny, F. Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha 
Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan 
Ho Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre 
Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, 



References 149 

Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mor­
datch and Peter R. Florence. “PaLM-E: An Embodied Multi-modal 
Language Model.” International Conference on Machine Learning 
(2023). 

[30] Inoue, Y., & Ohashi, H. (2022). Prompter: Utilizing Large Language 
Model Prompting for a Data Efficient Embodied Instruction Following. 
ArXiv, abs/2211.03267. 

[31] Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J., & Stone, 
P. (2023). LLM+P: Empowering Large Language Models with Optimal 
Planning Proficiency. ArXiv, abs/2304.11477. 

[32] Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, 
J., Fox, D., Thomason, J., & Garg, A. (2022). ProgPrompt: Generat­
ing Situated Robot Task Plans using Large Language Models. 2023 
IEEE International Conference on Robotics and Automation (ICRA), 
11523-11530. 

[33] Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K., Arenas, M. G., Chiang, 
H.L., Erez, T., Hasenclever, L., Humplik, J., Ichter, B., Xiao, T., Xu, 
P., Zeng, A., Zhang, T., Heess, N.M., Sadigh, D., Tan, J., Tassa, Y., & 
Xia, F. (2023). Language to Rewards for Robotic Skill Synthesis. ArXiv, 
abs/2306.08647. 

[34] Kim, B., Kim, J., Kim, Y., Min, C., & Choi, J. (2023). Context-Aware 
Planning and Environment-Aware Memory for Instruction Following 
Embodied Agents. ArXiv, abs/2308.07241. 

[35] Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P.R., Zeng, 
A., Tompson, J., Mordatch, I., Chebotar, Y., Sermanet, P., Brown, N., 
Jackson, T., Luu, L., Levine, S., Hausman, K., & Ichter, B. (2022). Inner 
Monologue: Embodied Reasoning through Planning with Language 
Models. CoArialArialnference on Robot Learning. 

[36] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, 
P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., 
Kelton, F., Miller, L.E., Simens, M., Askell, A., Welinder, P., Christiano, 
P. F., Leike, J., & Lowe, R.J. (2022). Training language models to follow 
instructions with human feedback. ArXiv, abs/2203.02155. 

[37] Xie, Y., Yu, C., Zhu, T., Bai, J., Gong, Z., & Soh, H. (2023). Translating 
Natural Language to Planning Goals with Large-Language Models. 
ArXiv, abs/2302.05128. 

[38] Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., 
Zettlemoyer, L., & Fox, D. (2019). ALFRED: A Benchmark for Inter­
preting Grounded Instructions for Everyday Tasks. 2020 IEEE/CVF 



150 Natural Language Conditioned Planning of Complex Robotics Tasks 

Conference on Computer Vision and Pattern Recognition (CVPR), 
10737-10746. 

[39] Min, S., Chaplot, D.S., Ravikumar, P., Bisk, Y., & Salakhutdinov, 
R. (2021). FILM: Following Instructions in Language with Modular 
Methods. ArXiv, abs/2110.07342. 

[40] Siciliano B., Khatib O. Handbook of Robotics. 2. izd. Berlin, Heidel­
berg: Springer-Verlag, 2016. 2304lpp. ISBN 978-3-319-32550-7. 

[41] Jeon J., Jung H., Yumbla F., Luong T. A., Moon H. Primitive Action 
Based Combined Task and Motion Planning for the Service Robot. In: 
Frontiers in Robotics and AI, 2022, 9. 

[42] Gizzi E., Castro M. G., Sinapov J. Creative Problem Solving by Robots 
Using Action Primitive Discovery. In: 2019 Joint IEEE 9th International 
Conference on Development and Learning and Epigenetic Robotics 
(ICDL-EpiRob), 2019, 228-233. 

[43] Strudel R., Pashevich A., Kalevatykh I., Laptev I., Sivic J., Schmid C. 
Learning to combine primitive skills: A step towards versatile robotic 
manipulation. In: 2020 IEEE International Conference on Robotics and 
Automation (ICRA), 2019, 4637-4643. 

[44] Moeslund T. B., Hilton A., Krüger V. A survey of advances in vision-
based human motion capture and analysis. In: Computer Vision and 
Image Understanding, 2006, 104(2-3), 90-126. 

[45] Simeonov A., Du Y., Kim B., Hogan F. R., Tenenbaum J. B., Agrawal 
P., Rodriguez A. A Long Horizon Planning Framework for Manipulating 
Rigid Pointcloud Objects. In: Conference on Robot Learning, 2020. 

[46] Fikes R., Nilsson N. J. STRIPS: A New Approach to the Application of 
Theorem Proving to Problem Solving. Artificial Intelligence, 1971, 2, 
189-208. 

[47] McDermott D., Ghallab M., Howe A. E., Knoblock C. A., Ram A., 
Veloso M. M., Weld D. S., Wilkins D. E. PDDL-the planning domain 
definition language, 1998. 

[48] Lin, K., Agia, C., Migimatsu, T., Pavone, M., Bohg, J. Text2Motion: 
From Natural Language Instructions to Feasible Plans. In: ArXiv, 2023. 

[49] Racinskis P, Arents J, Greitans M. A Motion Capture and Imitation 
Learning Based Approach to Robot Control. Applied Sciences. 2022; 
12(14), 7186. 

[50] Jenkins O. C., Matarić M. J. Deriving action and behavior primitives 
from human motion data. In: IEEE/RSJ International Conference on 
Intelligent Robots and Systems, 2002, 3, 2551-2556. 



References 151 

[51] Beetz M., Stulp F., Esden-Tempski P., Fedrizzi A., Klank U., Kresse I., 
Maldonado A., Ruiz F. Generality and legibility in mobile manipulation: 
Learning skills for routine tasks. In: Autonomous Robots, 2010, 28(1), 
21-44. 

[52] Sarathy V., Scheutz M. MacGyver problems: Ai challenges for test­
ing resourcefulness and creativity. In: Advances in Cognitive Systems, 
2018, 6, 31–44. 

[53] Hogan F.	 R., Ballester J., Dong S., Rodriguez A. Tactile Dexter­
ity: Manipulation Primitives with Tactile Feedback. In: 2020 IEEE 
International Conference on Robotics and Automation (ICRA), 2020, 
8863-8869. 

[54] Simeonov A., Du Y., Kim B., Hogan F. R., Tenenbaum J. B., Agrawal 
P., Rodriguez A. A Long Horizon Planning Framework for Manipulating 
Rigid Pointcloud Objects. From: Conference on Robot Learning, 2020. 

[55] Stone A., Xiao T., Lu Y., Gopalakrishnan K., Lee K., Vuong Q.H., 
Wohlhart P., Zitkovich B., Xia F., Finn C., Hausman K. Open-World 
Object Manipulation using Pre-trained Vision-Language Models. In: 
ArXiv, abs/2303.00905, 2023. 

[56] Ugalde F.	 R. Compact Models of Objects for Skilled Manipulation, 
2015. 

[57] Mahler J., Matl M., Satish V., Danielczuk M., DeRose B., McKinley S., 
Goldberg K. Learning ambidextrous robot grasping policies. In: Science 
Robotics, 2019, 4. 



https://www.taylorandfrancis.com


7
 
An Overview of the Automated Optical
 
Inspection Edge AI Inference System
 

Solutions
 

Claudio Cantone1 and Alberto Faro2 

1High Technology Systems H.T.S. srl, Italy 
2Deepsensing, DEEPS, Italy 

Abstract 

The aim of this chapter is to provide an overview of automated optical 
inspection (AOI) edge artificial intelligence (AI) inference system solutions 
in the digital industry by considering if, and how, they enable manufacturers 
to reach a satisfactory trade-off between customer needs and production costs. 
Numerous solutions can address customer and factory needs, from inspection 
machines to testing boards equipped with cameras installed near the conveyor 
belt. In all the considered solutions we can implement effective defect detec­
tion algorithms, such as the latest You Only Look Once (YOLO) variants 
based on deep learning (DL), to obtain high key performance indicators 
(KPIs), i.e., mean average precision, adequate process capability and high 
throughput yield. Parallel implementations of edge test systems allow us to 
further improve production yield, while repeated tests performed in sequence 
can allow us to approach the precision required for zero defect practice. 
The comparison of available solutions using KPIs, functional requirements 
(FRs) and non-functional requirements (NFRs) highlights that the advantage 
of using inspection machines is that they are equipped with user interface 
and data analysis which helps workers and managers to ensure high quality 
production process and effective order management. Their weakness is the 
high cost of purchase and energy consumption, whereas solutions that use 

153
 
This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-7 



154 An Overview of the Automated Optical Inspection Edge AI Inference 

computing boards for defect testing at the edge are featured by lower costs. 
A demonstrator to evaluate the effectiveness of edge AI solutions based on 
the test boards available on the market and those developed by the EdgeAI 
project is outlined. 

Keywords: automated optical inspection, key performance indicators, func­
tional, non-functional requirements, deep learning, PCB defect detection, 
edge computing, online and continual learning, process capability. 

7.1 Introduction 

The advent of cyber physical systems (CPS), i.e., IoT systems equipped 
with computational capabilities, is affecting the control systems in every 
industrial and service sector [28], [11]. CPSs allow computational systems 
to reside ever closer to the production process, reducing latency and increas­
ing throughput yield (TPY), one of the most important KPIs in production 
processes. 

This trend towards edge computing-based inspection systems is particu­
larly evident in the AOI of industrial products. This is our field of research 
interest in the EdgeAI project. 

In this context, we are faced with two different evolutions of the AOI. On 
the one hand traditional AOI systems that operate at the operational level are 
being rethought as intelligent systems to be coupled to the production line. 
On the other hand, CPSs equipped with camera are increasing their compu­
tational capacity to achieve effective AOI systems using local or cloud DL 
algorithms. 

The aim of this chapter is to provide an overview of AOI edge AI infer­
ence system solutions by discussing if, and how, they allow manufacturers 
to reach a satisfactory balance between customer needs (mainly in terms of 
product quality and on-time delivery of ordered lots) and production costs. 
Section 2 provides the context for us to classify edge AI inference system 
solutions for AOI, where specific products and prototypes are highlighted to 
flesh out the discussion. Section 3 compares the leading AOI solutions identi­
fied in Section 2 using both KPIs and functional/non-functional requirements. 
Section 4 outlines the demonstrator we are setting up in the EdgeAI project 
to improve optical inspection in the digital industry. This will allow us to 
highlight how edge AI solutions can outperform or complement conventional 
AI-based inspection machines for AOI. 



7.2 Overview of the Main Edge AI Solutions for AOI 155 

7.2 Overview of the Main Edge AI Solutions for AOI 

Traditional AOI machines are tipically designed to support Surface Mount 
Technology (SMT) for mounting and interconnecting electronic components 
on printed circuit boards. 

Figure 7.1a outlines the process by which an empty printed circuit board 
(PCB) is gradually filled with all the components to obtain a fully functional 
printed circuit board (PCBA). We note that in the figures of this chapter 
it is assumed that PCBAs are inserted into the AOI system to detect PCB 
or PCBA defects, i.e. defects relating respectively to the printed circuits 
or to the component assembly process. Also it should be noted that AOI 
machines are used online in two stages of the SMT process: at the exit of 
the Pick and Place process and after the reflow oven to detect almost any 
surface defect. AOI machines are primarily dedicated to discovering 2D and 
3D PCBA defects and making Coordinate Mounting Measurements (CMM). 
There are multifunctional machines on the market that perform not only 
AOI and CMM but also Solder Paste Inspection (SPI) [22]. After AOI and 
X-ray Inspection (AXI) discover surface and internal defects respectively, an 
electronic test phase consisting of In Circuit Test (ICT) and Functional Test 
(FCT) is performed. 

Figure 7.1 a) Printed Circuit Board (PCB) Assembly Process, and b) Typical Implementa­
tion of the SMT Production Line, where production data are taken from Printer, Chip Mounter 
and Reflow, whereas quality data are taken from SPI, AOI and AXI. 



156 An Overview of the Automated Optical Inspection Edge AI Inference 

An example illustrating this way of using AOI is shown in Figure 7.1b 
which shows how OMRON proposes to use AOI to discover surface defects 
using 2D/3D optics and internal defects using X-ray machines [23]. This last 
control is increasingly widespread, as underlined in [39]. Sometimes the AOI 
machine is only placed after the reflow oven. In principle this solution is less 
expensive, although finding defects after reflow oven costs the manufacturer 
much more to rectify. 

The above pattern is followed by mass production factories. In fact, 
Electronic Manufacturing Services (EMS) factories that produce small manu­
facturing lots featuring high technology for New Product Introduction (NPI), 
often adopt offline solutions to avoid changing the path of the conveyor 
belt in the production site. For this reason, the role of optical inspection 
machines can be schematized within the production line in two main ways: as 
control systems not necessarily close to the conveyor belt (Figure 7.2a), and 
as integrated control systems in the production line (Figure 7.2b) to ensure 
high production yield, especially in the case of mass production. 

Inspection machines have recently been equipped with DL algorithms to 
improve the accuracy of the defect detection process, such as the Omron 
VT-S1080. Modern optical inspection machines can be roughly viewed as 
intelligent edge computing solutions for AOI, whose main problem remains 
the high purchase and power consumption cost and the constraints they 
impose on the conveyor belt layout. 

A further weakness of inspection machines concerns the AI algorithms 
used. In fact, if they improve throughput by switching from statistical algo­
rithms to DL inspection-based algorithms, their performance may not reach 

Figure 7.2 Main Inspection Machine Configurations for AOI in the Digital Industry 



7.2 Overview of the Main Edge AI Solutions for AOI 157 

the high accuracy of 99.8% reported in [23] or the very low rate of defective 
products reported in [26], if they are not equipped with: 

a) Online Learning (OL) to use experimental data to optimize the initial 
learning model typically obtained from data available in the literature or 
from similar cases, and 

b) Continual learning (CL) to use experimental data to extend the learning 
capacity of the algorithm to discover further defects without forgetting 
the previous ones. 

Therefore in this chapter, by OL and CL we mean a learning technique 
that uses experimental data to improve defect detection accuracy and to 
learn additional defects respectively. Regarding OL, we have to note that 
in the global industry, online learning should be used with caution if a test 
program executed on one site is expected to produce the same results as that 
implemented on the other sites [18]. This implies that global manufacturers 
should check whether OL improves defect inspection equally across their 
different sites. In this case, or in the case of tests on local production lines, it 
is useful for the learning model to be continuously updated from the images 
captured by the cameras to optimize the discovery of defects or to deal with 
different types of defects. 

In principle, inspection machines can be equipped with OL and CL, but 
this will increase their cost as it requires the machines to be equipped with a 
powerful processing CPU or powered by an additional GPU due to the high 
computational load required by such algorithms [27]. 

For this reason, AOI solutions have recently appeared on the market 
consisting of powerful workstations, possibly equipped with GPU boards, 
and equipped with a high-resolution camera installed near the belt, such as 
those proposed in [7] using the Neousys technology (Figure 7.3a) and those 
proposed by Advantech [2], ADLINK [8] and AAEON [1]. Advantech and 
AAEON solutions are shown in Figure 7.3b and 7.3c. 

The hardware architectures shown in Figure 7.3 allow us to highlight that 
the Neousys and AAEON solutions use a powerful workstation able of both 
training and testing, while Advantech uses a processing unit for testing and a 
GPU workstation for learning and for the classification of defects. ADLINK’s 
solution can be achieved by replacing MIC-720 with EOS-I6000-M which 
is an AI vision system suitable for testing and classification, while learning 
takes place on cloud server. 

Although these solutions support both online and continual learning and 
real-time verification of product defects, the problem remains of the high 



158 An Overview of the Automated Optical Inspection Edge AI Inference 

Figure 7.3 Edge AI AOI solutions from Neousys (a), Advantech (b), and AAEON (c) for 
Defect Detection (D) and Classification (C). The model is Pre-trained on the Workstation. 

purchase and power consumption cost, as well as a certain difficulty of 
installing such systems near to the production line due to their size and 
conditioning constraints. 

Alternatively, a solution where visual testing is done at the edge and learn­
ing in the cloud can reduce purchase and power consumption costs without 
increasing latency, as shown in Figure 7.4. This solution can be obtained 
by replacing the MIC-720 unit with a NVIDIA board in the Advantech 
proposal shown in Figure 7.3. In Figure 7.4 a Jetson board is adopted for 
edge tests, for example Jetson TX2 as proposed in [29]. In the latter case, 
learning is on the cloud but several tests suitable for highlighting groups of 
defects can be performed in parallel by competing boards thus decreasing 
latency. 



7.3 Comparing EdgeAI solutions for AOI 159 

Figure 7.4 AOI Solution Consisting of an Edge Board for Testing and a GPU Server for 
Learning. 

7.3 Comparing EdgeAI solutions for AOI using Relevant 
KPIs, NFRs and FRs in Digital Industry 

In the previous section we outlined three main EdgeAI solutions for AOI, 
namely the one based on an inspection machine (see Figure 7.1), hereinafter 
referred to as IS, the one that makes use of a GPU workstation equipped with 
high-precision cameras (see Figure 7.3a and 7.3c), called GS, and the one 
based on a test board near the conveyor belt that sends images to the cloud 
server for online and continual learning (see figures 7.3b and 7.4), called 
ES. In the chapter we also consider a fourth solution consisting of cameras 
sending images to a cloud server for testing and learning, which we will 
call CS. 

The discussion of such solutions was mainly based on cost and flexibility 
aspects and suggested to take into great consideration both CS and ES. In 
this section, we compare these solutions by considering Key Performance 
Indicators, Functional and Non Functional Requirements. 

7.3.1 Comparison using KPIs 

KPIs mainly deal with cost effectiveness, efficiency (precision) of the dis­
crimination process and its productivity (speediness) as suggested in [13] to 
evaluate the performance of every digital system. Efficiency of the discov­
ery process is usually evaluated, as in every information retrieval system, 
using precision and recall that may be easily obtained by the confusion 
matrix related to the adopted discovery algorithm [15]. The confusion matrix 
together with the precision and recall formulas are shown in Figure 7.5. 



160 An Overview of the Automated Optical Inspection Edge AI Inference 

Figure 7.5 Confusion Matrix and Precision/Recall Formulas 

In some cases, the most important characteristic is recall, for example, 
if we are interested in finding out all, or almost all, defective PCBAs, it 
is reasonable to increase the false positive checking effort, while in other 
cases it may be better to use precision, for example, if one is interesting that 
the discrimination process only outlines not defective PCBAs although high 
accuracy may increase false negatives. 

At first glance, one might think that precision may be the most important 
feature in AOI of PCBAs, especially in cases where the requirement for 
near-zero defects should be adopted, for example in the aerospace sector or 
recently in the automotive industry. But precision alone can cause many good 
products to be discarded, thus increasing production costs. For this reason, 
efficiency indicators that combine precision and recall are used in the digital 
industry such as the mAP defined as the mean of the average precisions, 
and the F-measure defined as the weighted harmonic mean of precision and 
recall. The following balanced F-measure is often used, denoted as F1, which 
equally weighs precision and recall: 

F1 = 2  · P · R / (P+R) 

We use mAP as it is widely adopted to measure the performance of defect 
detection algorithms in industrial manufacturing. The meaning of mAP can 
be understood by introducing the notion of Intersection Of Union (IoU) [37], 
a measure from 0 to 1 of the similarity between the bounding box containing a 
possible defect and the one relating to a real one (the ground truth). According 
to [37] IoU is used as a threshold for whether an object having a defect-
like image should enter the defective class (i.e., class consisting of defective 



7.3 Comparing EdgeAI solutions for AOI 161 

PCBAs) or not. Other rules can be found in the literature for whether a 
PCBA defect should be predicted as real, for example, in [32] a possible 
defect contained in a bounding box is predicted as a real defect if both IoU 
and another coefficient, namely the confidence coefficient, calculated by the 
detection algorithm are greater than 0.5. 

Thus, choosing a high IoU will increase the percentage of really good 
items compared to those predicted good by the algorithm, but even numerous 
really good items may be discarded (that is, false negatives increase). Con­
versely, a low IoU will decrease false negatives, but defect discovery is 
characterized by low precision thus increasing false positives as the chosen 
similarity is not sufficient to discriminate good from bad elements. Conse­
quently, to reduce the AOI alarms for possible false positives, e.g., the PCBAs 
featured by IoU > 0,5 and whose confidence coefficient is close to 0,5, it is 
advisable to increase precision by adopting a most performing algorithm or 
to increase IoU since this generally implies an increase of the confidence too, 
even this is not desired since it implies an increase in false negatives. 

The mAP is obtained by evaluating the average precision of the controls 
performed for each IoU value from 0.5 to 0.9 with a step of 0.1 and perform­
ing the mean of these averages [32]. To simplify, in the work we will use 
mAP0.5, i.e. the precision of the discovery process for IoU = 0.5. Therefore 
mAP0.5 = 0.99 does not mean that we will have 1% error, but that the error 
of the predicted good items is close to 1% with a reasonably low number of 
false negatives, i.e., few good products will be discarded from the ones for 
customers. 

The above considerations justify why the efficiency of the discovery 
process is evaluated using mAP. We recall that the mAP depends not only on 
the efficiency of the discovery algorithm but also on the type of defect to be 
found. Typical defects to be discovered on the PCB are missing hole, mouse 
bite, open circuit, short circuit, spurious copper, spur. But measurements of 
the relevant metrological data of the PCBA are also useful, such as component 
height, lift, tilt, missing or incorrect component, incorrect polarity, flipped 
component, OCR inspection of 2D code, component offset (X / Y/rotation), 
fillet (e.g., end joint width, wetting angle, side joint length), exposed zone, 
foreign material, zone error, cable offset, cable posture, cable presence, 
sphere of weld, weld bridge, distance between components and component 
angle. 

Several algorithms have been proposed in the literature to manage the 
problems listed above. A study highlighting different algorithms to manage 
either PCB or PCBA defects can be found in [12] where it is demonstrated 



162 An Overview of the Automated Optical Inspection Edge AI Inference 

that mAP0.5 ranges from 95% to 98%. In this chapter we update this study 
considering the best performing algorithms for typical PCB defect detection. 
From the literature we found that these are mainly optimized versions of 
the DL-powered YOLO algorithm [35]. The mAP0.5 of such algorithms 
increased from 95.7% proposed in 2018 [5] to higher values using the best 
performing DL algorithms developed from 2018 to present. For example, 
mAP0.5 is 99% in the algorithm proposed in [38], 99% in [25], 98.7% in 
[36], 99% in [39]. Such values go beyond 99% more recently, i.e. 99.17% in 
[20], 99.5% in [11] and 99.71% in [40]. 

Although this comparison has only an indicative value since the men­
tioned precision values were not achieved using the same data set [33], we 
can reasonably assume that the solutions denoted with IS, GS and CS can 
be equipped with a DL algorithm whose defect discovery precision could 
increase from 98% to 99.7%, and that this could be further improved by 
online learning to 99.8%, as stated in [23]. 

The feasibility of implementing YOLO-based algorithms on ES has been 
recently shown in literature thus confirming that ES can also be equipped with 
such an algorithm, e.g., in [30] a YOLO implementation on NVIDIA Jetson 
TX2 is illustrated in characterized by satisfactory precision performance, that 
is, mAP0.5 = 98%. We are currently working on solving two open problems: 
a) to what extent more accurate algorithms can be implemented on ES and 
b) how to implement such algorithms on less expensive boards (e.g., Jetson 
Nano and Raspberry PI4) by extending the DL algorithms proposed in [14] 
and [34]. 

However, although the theoretical accuracy of the optimized YOLO ver­
sions has reached a very high value, it may not be sufficient for the quality 
control of PCBAs to be used in applications where the constraint of near-
zero defects is required, such as in the automotive industry [4]. In fact, 
99.8% of mAP0.5 approximately implies that the delivered defective products 
are about 2000 per million, whereas 1000 per million defective parts is a 
typical expected value in automotive products satisfying the near-zero defect 
constraint [24]. 

Note that the former failure rate, known as defects per million oppor­
tunities (DPMO) [16], measures all PCBA possible failures, i.e., defects 
of components or due to the assembly process. If each PCBA consists of 
approximately 100 components, this means that the DPMO is 2000 defective 
PCBAs per million if the PCB is filled with components with a failure rate of 
20ppm. The DPMO in the industrial sector is used as a relevant KPI to mea­
sure the process capability, i.e., how well the process yield meets customer 



7.3 Comparing EdgeAI solutions for AOI 163 

expectations in terms of acceptable defective products. This capability can 
also be expressed by a percentage (called Yield) or by a coefficient named 
Cpk, i.e., a statistical coefficient between 0 and 2 where Cpk = 2 means that 
there are no defective PCBAs leaving the production process, while Cpk = 
0 means that the quality process does not detect any fault, so all the faulty 
boards are still in the leaving products. A conversion table is available in the 
literature to pass from DPMO to Yield or to Cpk and vice versa, e.g., in [31]. 

In the semiconductor industry, DPMO = 6000 is an acceptable value if the 
near-zero defect constraint is not required. Using the conversion table, we can 
find that this corresponds to Cpk = 1.33 and Yield = 99.40%. Consequently, 
if we aim to have DPMO = 6000 for both defective components and surface 
defects, using the conversion table we obtain that we must use 99.55% of non-
defective components plus an instrument, such as AOI for example, obtaining 
99. 80% accuracy to discriminate between good and bad products coming 
out of the SMT process. The latter accuracy in detecting surface defects can 
be achieved by recent versions of the AI-YOLO algorithm, but applications 
characterized by the zero-defect constraint require a Yield of 99.98% which 
can be achieved using an AOI of 99.95% of precision. 

Therefore, while waiting for more performing algorithms, it is reasonable 
to carry out two or three repetitions of the AOI checks of the products 
classified as good to improve the accuracy as proposed in [9]. Indeed, this is 
a reasonable procedure only if the AOI checks are statistically independent. 
as claimed in [6] due to the noise superimposed on the images when they are 
taken by the cameras, for example due to faded colours or weaknesses in the 
lighting system. Consequently, reproducing the control using the same AOI 
can eliminate the uncertainty due to noise issues thus allowing the AOI to 
approach its maximum theoretical accuracy calculated using literature data. 

Also, as pointed out earlier, one could reduce the volume of bad products 
delivered as good (i.e., to reduce false positives) by increasing the IoU, but 
this usually also increases false negatives. In fact, this can lead to consider 
good products the ones that are close to the boundary between the “good” 
and “bad” classes and which are affected by the maximum uncertainty of 
classification. 

Therefore, checking the PCB using another AOI system, i.e., not repro­
ducing the measurement but replicating it using a different AOI, can be 
useful to improve accuracy without changing the recall. This repetition could 
add some defective elements to the “bad class” as suggested in [21] which, 
hopefully, could coincide with the few defective products that were not 
detected by the first test. This is also stated in [9] where it is underlined 



164 An Overview of the Automated Optical Inspection Edge AI Inference 

Figure 7.6 Repeating the AOI Check. 

 repetition improves accuracy in the electronics industry even if beyond a 
ain threshold repetition is not cost effective due to the increasing cost of 
ing a further check. 
This consideration suggests evaluating in our project the possibility of 
ing a check after the inspection machine using an ES check to try to satisfy 
constraint of near-zero defects. In fact, the hypothesis of adding a further 
trol to the one currently carried out without modifying the layout is an 
ortunity given the low cost and the high flexibility of the ES. Figure 7.6 

that
cert
add

add
the 
con
opp
shows how the repetition scheme proposed in [9] can be reworked to improve 
the mAP of AOI. Test repetition to avoid bad products reaching customers 
could be carried out, even manually, only for testing the few PCBAs that 
passed the first test but were classified close to the border between good and 
bad clusters. 

In addition to mAP and process capability to evaluate process efficiency, 
another important KPI is the productivity of an AOI system, also known as 
throughput yield (TPY), to measure good PCBAs at optical control output 
in the unit of time. Since in all considered IS, GS and CS the test phase is 
performed on GPU machines, the comparison can be made considering the 
latency due to the algorithm and the camera system used to acquire the images 
of the PCBAs on the belt. Latency mainly depends on the implementation of 
the algorithm and is often not indicated in the literature. It can be measured 
indirectly by the speed, in frames per second (FPS), at which the proposed 
algorithm is able to process the images. 

A general comparison of the FPS achievable in the available methods for 
defect discovery can be found in [30] where the authors pointed out that their 
version of the YOLO algorithm is able to reach about 90 FPS. This value is 
also confirmed in other studies, for example we found that the FPS goes from 
33 FPS in [40] to 90 FPS in [20]. Lower but satisfactory FPS characterize 



7.3 Comparing EdgeAI solutions for AOI 165 

3D defect detection, for example 19 FPS in [Du, 2023]. Regarding ES, 
we found from the literature that even in ES the implementation of YOLO 
algorithms can achieve high throughput, for example, in [30] it is proved 
that the DL-based YOLO algorithm implemented on Jetson TX2 can process 
22 FPS [30]. 

Therefore, using a TX2 board, it can be expected that a 25 cm2 PCB can 
be inspected in about 90 msec, if each image taken by the camera is about 5 
cm2. This means that the AOI production per hour obtainable using ES could 
be around 3250 boards per hour (bph) which is a value comparable with the 
value of 4189 bph obtained using IS reported in [26]. Let us note that such 
values refer to the number of PCBA exiting from the optical inspection phase 
(see fig.1.1a) . Indeed other electrical checks may decrease such thoughput, 
e.g., the ones dealing with the determination of the safe operating area of 
PCBs to be used in power applications. In [26] the authors proposed other 
relevant KPIs beyond hourly production, i.e., precision of detected defects, 
working time and delivery times from order to shipment. 

The accuracy of defect discovery can be calculated using mAP as shown 
above, while the last two proposed KPIs depend on the organization of work. 
Therefore, they can only be analysed by knowing the factory organization 
structure, order volume and rate. It is out of the scope of the chapter. However, 
they suggest us that mAP and FPS alone are not sufficient to measure the 
impact of AOI on the SMT process. In fact, cycle time and takt time should 
also be included in the KPIs at least to verify that the AOI production system 
can meet the time constraints due to customer orders. A general discussion 
may be found in [17]. For the paper, it is sufficient to include the following 
parameters in the KPI list: 

• Cycle time (CT), i.e., the time required to produce a lot of PCBs 
requested by the customer divided by the number of PCBs. 

• Takt time (TT), i.e., the time interval during which the production line 
is available in the time interval required by the customer to produce 
the PCB lot divided by the number of PCBs to be delivered to the 
customer. In other words, it is the maximum time interval for pro­
ducing one PCBA to meet the customer time constraint considering 
the availability of the production resources and the number of PCBAs 
of the lot. 

Knowing CT and TT we can verify the condition necessary to satisfy 
the customer’s demand, i.e., CT < TT. This means that CT (the inverse of 
throughput yield) is a very important KPI that should be appropriately scaled 

http:fig.1.1a


166 An Overview of the Automated Optical Inspection Edge AI Inference 

down to meet overall customer demand in due time. This can be achieved: i) 
by increasing the FPS of the AOI unit, ii) by using more than one AOI unit 
in parallel, or iii) by implementing more than one production line. The first 
two conditions can be obtained more conveniently by ES than by IS since its 
low cost allows adopting many cameras to work in parallel. In fact, the CT 
of a production line can be improved by passing from a solution in which a 
camera sends images to a testing board as illustrated in Figure 7.7a. to the one 
proposed in [3] made up of several cameras possibly equipped with a testing 
board (Figure 7.7b). In both cases, the images are sent to a server to update 
the pre-trained model. 

To get an idea of the cost savings using ES in both cases illustrated in 
Figure 7.7 let us consider the market cost of CS, ES, and IS. Assuming one 
CS as a unit cost, from the market cost we found that this cost becomes 2 for 
ES, 6 for a WS provided with GPUs and from 25 to 50 for IS depending on 
if the IS is a low-cost machine or a professional one. Therefore, the purchase 
costs are as follows: n+6 for CS, 2n+6 for ES and 25 or 50 for IS where n is 
the number of cameras and related testing boards. 

Using these values, Figure 7.8a compares the costs of ES and CS with 
the cost of a low cost IS proposed by Saki in [29]. This comparison is 
feasible since they have the same configuration, i.e., they are all equipped 
with a camera which, thanks to a telecentric lens system (Figure 7.7a), takes 
pictures of PCB slices of about 5 x 25 cm  while it is placed on the conveyor 
belt. 

Instead, to evaluate the cost savings by using multiple cameras and 
boards, we compare the CS and ES with the OMRON professional solution, 
i.e., VT-S1080, assuming that the CS (ES) is equipped with 5 camera posi­
tions (5 camera positions plus 5 testing boards) as in Figure 7.7b so that the 
whole PCB can be inspected as it is transported on the conveyor belt and 
at the same time the OMRON AOI captures all images of the PCB using a 
robotic system that moves the camera over the PCB inside the machine. The 
comparison is shown in Figure 7.8b. 

Figure 7.8 clearly shows that in both cases CS and ES are less expensive 
than IS. The cycle time using CS and ES in case 3.3a. is greater than that of 
IS, then CS and ES are suggested only if a relatively high CT is acceptable. If 
a lower CT is required, the parallel implementation is recommended. Further­
more, we should mention that both mAP and FPS could be further improved 
in ES by using more performant testing boards like the ones proposed in [19] 
where it is stated that object classification can be performed at hundreds of 
FPS. This is for further study. 



7.3 Comparing EdgeAI solutions for AOI 167 

Figure 7.7 a) A Camera Equipped with a Testing Board Which Sends the Image of a PCB 
Slice of about 5 X 25 cm  Using a Telecentric Lens to a Testing Board, b) A Set of Five Cameras 
Equipped with Testing Boards. Images Are Sent to a Server to Update the Pre-Trained Model. 
The Server Periodically Sends the Updated Model to the Edge Testing Boards. 

7.3.2 Comparison using NFRs 

In addition to the mentioned KPIs, further quality requirements, so-
called non-functional requirements, should be considered to compare the 
different solutions. Below we indicate some NFRs that consider those 



168 An Overview of the Automated Optical Inspection Edge AI Inference 

Figure 7.8 An Approximate Comparison of the Purchase Costs of CSs and ESs Equipped 
with one Camera Versus the Low Cost 2D Saki AOI (a), and the Purchase Costs of CSs and 
ES Equipped with Five Cameras Seats Versus the Professional 2D/3D OMRON AOI (b). 

proposed in [26] for the support of workers, i.e., the adopted solution 
should: 

• Enable efficient use of workers’ time through automation. 
• Improve control capability through real-time data feedback. 
• Explain the defects at least by locating the defects found on the PCB or 
PCBA, which allows workers to improve the production process. 

All the above NFRs can be satisfied by CS and ES provided that appro­
priate user interfaces are developed that help workers interpret and manage 
data from optical inspection. 

NFRs are proposed in [26] dealing with planning tools, i.e., managers 
should be supported by suitable planning tools, based on data from AOI and 
other IoT monitoring systems, to meet takt time and to verify more generally 
that the overall time including the purchase of the raw material and the 
delivery of the products to customers (i.e., the lead time) is compatible with 
the customer’s demand. This implies that lead time should also be included 
in the KPI list above. 

Since the current IS and GS provide effective operator interfaces and 
planning tools for managers, these solutions, despite the high cost, can 
maintain some advantage over ES until ES is equipped with the mentioned 
worker interface and management tools. 

This can be facilitated by the fact that ESs can take full advantage 
of parallel technology and cloud computing. In fact, the worker interface, 



7.3 Comparing EdgeAI solutions for AOI 169 

roduction line, could be implemented by adding usually installed near the p
another board to the edge testing system, while data analysis tools could be 
implemented on the network server available to plant managers. 

This issue should be addressed carefully in ES and is a challenge for any 
project aiming to use AOI testing boards at the edge. 

7.3.3 Comparison using functional requirements 

To complete the comparison, the main FRs must also be considered. The 
following list consists of five FRs, of which the first two are mandatory while 
the last three are highly recommended. Such FRs require that any AI solution 
for AOI: 

a) it should have a high mAP suitable to support the process capability 
required by the industrial sector of interest of the producers, for example 
CPk = 1.33 for the semiconductor industry. Based on the discussion in 
this section, all solutions could meet this requirement using OL-based 
DL defect detection algorithms. 

b) it should be able to detect PCB defects in real time as the PCBs are trans­
ported on a conveyor belt. Based on the discussion made in this section, 
all solutions can meet this requirement due to their relatively high FPS 
value. 

c) it must have an adequate feedback loop with the machine controls. 
This requirement also belongs to the NFR list mentioned, but here it 
is understood as the requirement that the solution has a minimum set of 
functions to help workers and managers optimize the PCB production. 
IS and GS usually satisfy such FR, while it is acceptable for CS and 
ES to provide at least some defect location functionality to explain the 
causes of the defect. 

d) it should learn to discover defects by exploiting the data available in the 
literature. In principle, this requirement is satisfied by GS, CS and ES as 
they are usually open systems, while ISs are usually designed as closed 
solutions which are not provided with network attached storage system 
on the cloud to include data from the literature to improve the accuracy 
of learning or to handle new defects. 

7.3.4 Advantages of ES with respect to the other approaches 

The comparison of the AI based AOI solutions using the main KPIs, NFR and 
FR has highlighted that ES is a promising technology provided it is equipped 
with adequate operational and management interfaces. 



170 An Overview of the Automated Optical Inspection Edge AI Inference 

Some points that encourage the effort to equip ESs with such interfaces 
are not only their low cost and parallel processing that allow them to achieve 
better KPIs for the detection of multiple defects simultaneously, but also the 
possibility for ESs to take full advantage of the cloud technology not only to 
use the cloud to better build the mentioned user interfaces, but also to enable 
small companies to use AOI-based control remotely. 

7.4 Edge AI Solutions Demonstrator 

Given the different solutions available for optical defect detection, a demon­
strator can be useful to evaluate if and how an AOI solution can help 
in practice manufacturers to reach a satisfactory compromise between the 
quality required by customers (in terms of acceptable number of defective 
items and takt time) and factory costs. 

Currently we are activating such demonstrator equipped with the follow­
ing technologies: 

• An IS machine, supplied by HTS, i.e., OMRON AI-AOI VT-S1080, 
to measure mAP and FPS achievable during the PCBA test and to 
verify that it is able of achieving using Deep Learning the high accu­
racy required by the industrial sector of interest, i.e., semiconductor or 
automotive sectors. 

• A workstation, provided by DEEPS, equipped with a 7 TB storage 
system, an AMD RyzenTM Threadripper 3970 CPU and two NVIDIA 
RTX 6000 GPUs. This workstation currently acts as a server on the local 
network so it will allow us to simulate CS ed ES but could be connected 
via a fast channel to cameras to simulate GS as well. 

• Several NVIDIA boards, namely Jetson Nano, Jetson TX2, Xavier and 
ORIN, to host the algorithm trained on the GPU server at the edge and 
a NAS (Network Attached Storage) system to store the images taken by 
the cameras to allow the server to online update the pre-trained model. 

• High-resolution Basler cameras to take images of PCBs as they are being 
transported on a conveyor belt. These images will be sent to the server’s 
NAS or workstation near the belt or passed through a fast channel to the 
NVIDIA cards. 

The components from b) to d) will allow us to activate the demonstra­
tor using the same platform illustrated in Figure 7.4, to measure the most 
significant KPIs and to evaluate the NFR for defect detection. In this way, 



7.5 Conclusion 171 

commercially available ES and new EdgeAI AOI solutions, such as the one 
based on the low-power board to be developed by the EdgeAI project, could 
be compared with GS, CS and IS. 

We note that the main purpose of the demonstrator is not to support 
designers in developing DL defect detection algorithms that outperform the 
current ones, even if this test can also be performed using the platform, but 
to demonstrate that: a) the DL-based defect models obtained from the pre-
training phase on the server can be implemented on the edge boards to obtain 
test performance comparable to that of IS and GS but at a lower cost as 
required mainly by mass production companies, and b) the AI Edge solution 
can be equipped with extremely precise defect discovery and defect explain-
ability algorithms to support the improvement of the production process 
and in the identification of possible critical components as required mainly 
by NPI. 

Furthermore, the conditions suggesting the combination of different solu­
tions can be studied. For example, if a low throughput yield is acceptable, 
this may justify CS over the others. In addition, an ES-based remote solution 
will be tested to support small companies in implementing a simple and cost-
effective solution where the testing board is installed close to the conveyor 
belt and the learning powered by OL and CL is done by a cloud server. 

7.5 Conclusion 

An overview of the available solutions for AI-based optical defect inspection 
of PCBAs has been made from an engineering point of view, i.e., emphasizing 
whether and how they can support a satisfactory trade-off between product 
quality and production costs. 

From the overview it emerged that it is possible to adopt different 
solutions to meet the needs of the factory and customers, from inspection 
machines to testing boards equipped with cameras installed near the conveyor 
belt. Generally, in all the considered solutions it is possible to implement 
effective defect detection algorithms, such as the latest DL-based YOLO 
versions, to obtain the suitable mean precision, i.e., mAP, to support the 
required process capability. 

The main advantage of using inspection machines is that they have data 
analysis tools that support managers to ensure high quality and effective 
management planning. Their weakness, i.e., the high cost of purchase and 
energy consumption, is the strength of solutions that use processing boards 
for defect testing at the edge. 



172 An Overview of the Automated Optical Inspection 

Parallel implementations of edge solutions, using suitable optical sys­
tems, improve latency and the number of PCBAs that may be classified as 
good or bad products per time unit, while repeated tests carried out by a test 
board installed after the inspection machine, allow us to approach the process 
capability required in industry sectors characterized by the near zero defects 
constrain. This can be achieved without decreasing recall, thus avoiding an 
increase in false negatives. 

It was discussed how a solution can achieve a low cycle time that can meet 
takt time and lead time to satisfy customer demand, emphasizing that using 
ES this can be achieved by increasing the FPS of the AOI and activating, if 
necessary, parallel AOI units in the production line. 

A suitable platform was also presented to evaluate the most suitable 
solutions using experimental data. This will help us demonstrate the effi­
ciency, productivity, and cost-effectiveness of a solution in practice and test 
whether coprocessing units, such as the recent neuromorphic boards, can 
improve discovery algorithms. It will allow us also to demonstrate how small 
companies can use the platform to perform defect detection using local testing 
boards supervised by a remote server. 

Acknowledgements 

This research was conducted as part of the EdgeAI “Edge AI Technologies for 
Optimised Performance Embedded Processing” project, which has received 
funding from KDT JU under grant agreement No 101097300. The KDT 
JU receives support from the European Union’s Horizon Europe research 
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia, 
Luxembourg, Netherlands, and Norway. 

References 

[1] AAEON,	 “AI@Edge: AI Vision in Automated Optical Inspection”, 
2023, Available at:https://newdata.aaeon.com.tw/DOWNLOAD/ap 
plication/BOXER-6841M%20AOI%20Story.pdf 

[2] Advantech, “AI AOI Selected Success Story”, 2023, Available at:https: 
//advcloudfiles.advantech.com/membership/upload/ee3b76aa/AI-AOI 
Success-Story-CollectionFinal.pdf 

[3] Advantech, “Building AOI Technology to Accelerate Yield in precision 
manufacturing”, March 2023, Available at:https://www.advantech.com/ 
en-eu/resources/case-study/building-aoi-technology-to-accelerate-yie 
ld-in-precision-manufacturing 

https://www.advantech.com
https://www.newdata.aaeon.com.tw
https://www.newdata.aaeon.com.tw
https://www.advcloudfiles.advantech.com
https://www.advcloudfiles.advantech.com
https://www.advcloudfiles.advantech.com
https://www.advantech.com
https://www.advantech.com


References 173 

[4] AEC-Q004: Zero Defects Guideline. Automotive Electronics Council, 
2020, Available at:http://www.aecouncil.com/Documents/AEC_Q00 
4_Rev-.pdf 

[5] L, Chang, “A CNN Based Reference Comparison Method for Classify­
ing Bare PCB Defects”, The Journal of Engineering, 2018 (16) 

[6] S. Chan, “How Repeatable Is Your AOI? An Easy and Quick Way To 
Find Out”, 2017, Available at:http://www.linkedin.com/pulse/how-rep 
eatable-your-aoi-easy-quick-way-find-out-steven-chan 

[7] L.C. Chen, M.S. Pardeshi, WT Lo, et al., “Edge-glued wooden panel 
defect detection using deep learning”. Wood Science Technology 56, 
477–507 (2022). 

[8] Y. Chia-Wei, “How Edge AI Can Improve the Visual Inspection Pro­
cess”, Quality Magazine, September 30, 2020 

[9] Y.	 Chung-Huang, C. Jwu-E, “Application of Three-Repetition Tests 
Scheme to Improve Integrated Circuits Test Quality to Near-Zero 
Defect”, Sensors 22 (4158), May 2022 

[10] A. Costanzo, A. Faro, D. Giordano and C. Spampinato, “An ontological 
ubiquitous city information platform provided with Cyber-Physical­
Social-Systems”, 2016 13th IEEE Annual Consumer Communications 
& Networking Conference (CCNC), Las Vegas, NV, USA, 2016, pp. 
137-144. Available at:https://doi.org/10.1109/CCNC.2016.7444746 

[11] Y.	 Du, et al., “An automated optical inspection (AOI) platform for 
three-dimensional (3D) defects detection on glass micro-optical com­
ponents (GMOC)”, Optics Communications, to appear on Volume 545, 
15 October 2023 

[12] A.A.R.M.A.	 Ebayyeh and A. Mousavi, “A Review and Analysis 
of Automatic Optical Inspection and Quality Monitoring Methods 
in Electronics Industry”, IEEE Access, vol. 8, pp. 183192-183271, 
2020 

[13] Eurocontrol, KPI Drafting Group, “Cost Effectiveness and Productivity 
KPIs”, October 2001, Available at:http://www.eurocontrol.int/sites/defa 
ult/files/2019-05/cost-effectiveness-and-productivity-kpis-2001.pdf 

[14] R. Faro, “Object Detection and Semantic Segmentation models for 
Defect Detection in Wood Production”, Undergraduate thesis, Depart­
ment of Electrical, Electronics and Computer Engineering University of 
Catania, 2023 

[15] T, Fawcett, “An Introduction to ROC Analysis”, Pattern Recognition 
Letters, 27 (8): 861–874. 2006 

http://www.aecouncil.com
http://www.aecouncil.com
http://www.linkedin.com
http://www.linkedin.com
https://www.doi.org/10.1109/CCNC.2016.7444746
http://www.eurocontrol.int
http://www.eurocontrol.int


174 An Overview of the Automated Optical Inspection 

[16] K. Feldeman, “Driving Quality Improvement with DPMO: A Roadmap 
to Process Excellence”, July 17, 2023 Available at:https://www.sixsig 
ma.com/dictionary/defects-per-million-opportunities-dpmo/ 

[17] E. Fogg, “Takt Time vs. Cycle Time vs. Lead Time: definitions and 
calculations”, Machine Metrics, Manufacturing Analytics, September 
24, 2020 

[18] D, Haigh, “Repeatability Is AOI Watchword for Volume SMT Produc­
tion”, 1999, Available at:http://www.edn.com/repeatability-is-aoi-wat 
chword-for-volume-smt-production/ 

[19] Hailo, “Delivering Unprecedented Performance to a Diverse Range of 
Edge AI Applications”, 3 August 2023, Available at:https://www.edge 
-ai-vision.com/companies/hailo/ 

[20] J.Y. Lim, J.Y.1 Lim, V.M. Baskaran, X. Wang, “A deep context learn­
ing based PCB defect detection model with anomalous trend alarming 
system”, Results in Engineering, Volume 17, March 2023 

[21] R.J Mackenzie, “Repeatability vs. Reproducibility”,	 Technology Net­
works, March 25, 2019 

[22] Nordson, SQ3000TM+ multi-Function for 3D AOI, SPI & CMM, online 
2021 

[23] OMRON, “VT-S1080, Next generation 3D AOI”, 2023, Available at:ht 
tps://inspection.omron.eu/en/products/vt-s1080#features 

[24] R. Oshiro (2018), Fundamentals of AEC-Q100: “What Automotive 
Qualified Really Means”, Available at:https://media.monolithicpowe 
r.com/mps_cms_document/w/e/Webinar_Fundamentals_-_of_AEC-Q 
100-6Nov2018.pdf 

[25] J.H. Park, Y.S. Kim, H. Seo H, Y.J. Cho. “Analysis of Training Deep 
Learning Models for PCB Defect Detection”, Sensors (Basel). 2023 Mar 
2;23(5):2766 

[26] M. Park, J. Jeong, “Design and Implementation of Machine Vision-
Based Quality Inspection System in Mask Manufacturing Process”, 
Sustainability 2022, 14, 6009. Available at:https://doi.org/10.3390/ 
su14106009 

[27] A. Prabhu, et al, “Computationally Budgeted Continual Learning: What 
Does Matter?”, Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), 2023, pp. 3698-3707 

[28] M. Ryalat, H. El Moaqet, M. Al Faouri, “Design of a Smart Factory 
Based on Cyber-Physical Systems and Internet of Things towards Indus­
try 4.0”. Appl. Sci. 2023, 13, 2156. Available at:https://doi.org/10.3390/ 
app13042156 

https://www.sixsig ma.com
https://www.sixsig ma.com
http://www.edn.com
http://www.edn.com
https://www.edge -ai-vision.com
https://www.edge -ai-vision.com
https://www.inspection.omron.eu
https://www.inspection.omron.eu
https://www.media.monolithicpower.com
https://www.media.monolithicpower.com
https://www.media.monolithicpower.com
https://www.doi.org/10.3390/su14106009
https://www.doi.org/10.3390/su14106009
https://www.doi.org/10.3390/app13042156
https://www.doi.org/10.3390/app13042156


References 175 

[29] Saki, “2D AOI technology”, Available at:https://www.sakicorp.com/en/ 
company/technology/2daoi_tec/ 

[30] S. Shaojun, J. Junfeng, H. Yanqing, S. Mingyang, EfficientDet for fabric 
defect detection based on edge computing, Journal of Engineered Fibers 
and Fabrics Volume 16: 1–13, 2021. 

[31] Six Sigma Material, “Conversion Tables”, Available at:https://www.six­
sigma-material.com/Tables.html 

[32] J. Solawetz, “What is Mean Average Precision (mAP) in Object Detec­
tion?” Roboflow, May 6, 2020, Available at:https://blog.roboflow.com/ 
mean-average-precision/ 

[33] G, Spadaro, et al., “Towards One-Shot PCB Defect Detection with 
YOLO”, Ital-IA 2023: 3rd National Conf. on Artificial Intelligence, 
organized 000by CINI, Pisa, IT May 29–31, 2023 

[34] A. Strano, “Chip Surface Defect Classification: A Benchmark Analysis 
of Deep Learning Architectures”, Undergraduate thesis, Department 
of Electrical, Electronics and Computer Engineering, University of 
Catania, 2023 

[35] J. Terven, D. Cordova-Esparza, “A Comprehensive Review of YOLO: 
From YOLOv1 and Beyond”, August, 2023, Under review in ACM 
Computing Survey, Available at:https://doi.org/10.48550/arXiv.230 
4.00501 

[36] Y. Yang, K. Haiyan, “An Enhanced Detection Method of PCB Defect 
Based on Improved YOLOv7”, Electronics 12, no. 9: 2023 Available 
at:https://doi.org/10.3390/electronics12092120 

[37] S. Yohanandan, “What is Mean Average Precision (MAP) and how does 
it work”, Xailent, June 5, 2020, Available at:https://xailient.com/blog/ 
what-is-mean-average-precision-and-how-does-it-work/ 

[38] C. Zhang, W. Shi, X. Li, H. Zhang, H. Liu, “Improved bare PCB defect 
detection approach based on deep feature learning”, The 2nd 2018 Asian 
Conference on Artificial Intelligence Technology, (ACAIT 2018), J. 
Eng., 2018, Vol. 2018 Is. 16, pp. 1415-1420, 2018. 

[39] Q. Zhang, et al., “Deep learning-based solder joint defect detection on 
industrial printed circuit board X-ray images”, Complex & Intelligent 
Systems 8:1525–1537, 2022 

[40] H. Zhu, L. Xing, H. Fan, T. Wu, “New PCB Defect Identification and 
Classification Method Combining Mobile Net Algorithm and Improved 
YOLOv4 Model”, Research Square, 2022 

https://www.blog.roboflow.com
https://www.sakicorp.com
https://www.sakicorp.com
https://www.blog.roboflow.com
https://www.sixsigma-material.com
https://www.sixsigma-material.com
https://www.doi.org/10.48550/arXiv.2304.00501
https://www.doi.org/10.48550/arXiv.2304.00501
https://www.doi.org/10.3390/electronics12092120
https://www.xailient.com
https://www.xailient.com


https://www.taylorandfrancis.com


8
 
Efficient AI-based Attack Detection Methods
 

for Sensitive Edge Devices and Systems
 

Daniel Hirsch1, Falk Hoffmann1, Andrija Neskovic2, 
Celine Thermann2, Rainer Buchty2, Mladen Berekovic2, 

and Saleh Mulhem2 

1NXP Semiconductors, Germany. 
2Universität zu Lübeck, Germany 

Abstract 

An increasing number of edge devices store and process sensitive user data, 
presenting an attractive target for attackers. This trend of data storage and 
processing at the edge is expected to continue. As secure devices are inte­
grated into new systems with increased device operation times, exposure 
to environmental stress also increases significantly. Especially, for stan­
dalone micro-Edge devices the relevance of this is increasing. Enhanced 
protection mechanisms are required and AI-based approaches are promising 
candidates. 

In this contribution, we examine the requirements for such mechanisms 
and the sensing capabilities of state-of-the-art secure devices. Based on 
these capabilities and attack models, a dataset for training and validation is 
generated. Considering the requirements and the available dataset, a selection 
of applicable algorithms is defined. The selected algorithms are evaluated and 
compared based on the obtained results and computational loads, as the basis 
for future work. 

Keywords: artificial intelligence, machine learning, security, attack detec­
tion, edge AI, micro-Edge, autonomous security, AI security. 

177
 
This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-8 



178 Efficient AI-based Attack Detection Methods 

8.1 Introduction and Background 

Edge Computing (EC) is one of the most practical computing concepts 
used in day-to-day life applications. The architecture of edge computing is 
illustrated in Figure 8.1. EC is divided into three levels: Edge/IoT device, 
Edge device/node, and Cloud level. The core idea of EC is to perform 
computations and storage directly at the end-user level [1]. i.e., at the network 
edge [2, 3]. Handling sensitive data becomes prominent. The extraction of 
these sensitive data and the manipulation of security-relevant features of IoT 
and edge devices represent a lucrative target for attackers. Therefore, the 
need to securely protect and handle these data becomes important. Protection 
mechanisms that work towards this goal can be deployed on all three levels. 

Security features are usually implemented to protect these data assets. 
The most straightforward way to identify manipulation or attacks is by 
checking both environmental and the device’s internal sensors. Another way 
is to observe the logical monitoring and protection mechanisms that trigger 
a device reset or limit further use of the device. In extreme cases, device 
operation is temporarily or permanently blocked. 

False alarms may be triggered in cases where sensor information is 
directly used without any further evaluation of severity, application relevance, 

Figure 8.1 Architecture of Edge System 



8.1 Introduction and Background 179 

or statistical analysis of environmental effects. The consequence of such false 
alarms may be severe, leading to DoS attacks, for example. As secure devices 
are being integrated into an increasing number of systems with extended 
duty cycles, even up to permanent power-on conditions, the exposure to 
environmental stress increases significantly. A more advanced evaluation of 
sensor events and more flexible reactions need to be considered. 

To ensure correct functionality of these systems and the integrity of user 
data, the evaluation of the security mechanisms with the help of AI algorithms 
represents a promising alternative to conventional approaches. To identify 
applicable algorithms for attack detection, an evaluation of the requirement 
specifications is carried out. However, due to the field of application and the 
special limitations in the physical domain of IoT and other edge devices, the 
requirements are challenging. 

Relevant attacks on the edge 

Studying security attacks on electronic devices and systems is a well-
established field, but edge devices have certain characteristics that make them 
more prone to certain attacks and threats when compared to more capable 
computing devices. In [4], some of the aspects are pointed out, namely: 

• Weak Computation Power: Edge devices are less powerful than cloud 
servers, making them susceptible to attacks not effective on cloud coun­
terparts. Fragile defence systems on edge devices further expose them to 
unique threats. 

• Attack Unawareness: IoT’s lack of user interfaces limits awareness of 
device status, hindering attack detection. 

• Operating System (OS) and Protocol Differences: Edge devices lack 
uniform OSes and protocols, complicating the creation of a unified 
security approach. 

• Limited Access Control Precision: Edge computing’s complex sys­
tems demand fine-grained access control, unlike current coarse-grained 
models. 

Figure 8.2 shows distributions of the attack types on edge devices as 
presented in [4]. 



180 Efficient AI-based Attack Detection Methods 

Figure 8.2 Possible Attacks against Edge Devices (Adapted From [4]) 

In the following, we summarize some possible attacks against edge 
devices, cloud, and edge systems: 

1. Possible Attacks on Edge Devices and Nodes 

• Malware Injection Attacks: Malware Injection Attacks inject mali­
cious code into the target device. These attacks can lead to arbitrary 
code execution which can compromise the security of further devices in 
the network. Considering the case of edge devices, protection becomes 
much more difficult because the limited computing power does not 
allow for classical high-performance firewalls or threat protection 
systems, like with general-purpose computers. 

• DDOS Attacks: DDoS, short for Distributed Denial of Service, is 
a cyber assault that involves perpetrators attempting to interrupt the 
regular operations of one or multiple servers. This is achieved by 
leveraging distributed resources, often in the form of a network of 
compromised edge devices, also known as a botnet [4]. It constitutes a 
potent form of attack that seeks to hinder the legitimate utilization of a 
particular service. 

• Authentication and Authorization Attacks: Authentication is the 
processing of verifying a user’s identity who requests certain ser­
vices and authorization grants that user rights to perform operations. 



8.1 Introduction and Background 181 

An adversary could exploit weaknesses in the authentication and autho­
rization mechanisms to obtain privileged access rights and perform 
malicious operations. 

• Side-channel Attacks: Refer to a type of attack, where the adver­
sary can exploit information leakage of security-sensitive information 
via publicly accessible information which is not security-sensitive by 
nature. Most prominent examples of side-channel attacks exploit the 
power consumption or timing behaviour of a device while executing 
sensitive information. Side-channel attacks on the device level can 
potentially come from two sources, malicious tasks or a malicious 
OS. Task-level attacks or Timing attacks are typically cache-based 
such as Flush+Reload [5], Flush+Flush [6], Prime+Probe [7], Evict 
& Time [8], Evict & Reload [9], Spectre [10] and Meltdown [11] 
attacks. Here, the attacker aims at getting sensitive data by exploiting 
sharing vulnerabilities in caches [10, 11] and, in the case of Spectre 
and Meltdown, out-of-order optimization issues. The attack surface is 
large, also comprising several proposed and existing covert-channel 
attacks [12, 13, 14]. Multiple mitigation techniques have already been 
proposed, typically featuring either logical or physical separation, 
noise-based techniques, scheduler-based techniques, and constant time 
techniques. Attackers can exploit the power consumption of the edge 
device via a power side-channel attack. The concept of side-channel 
analysis appeared in the late 1990s [15], with Differential Power Anal­
ysis (DPA) [16] becoming a successful attack method. It was utilized 
to attack AES with a Simple Power Analysis (SPA) [17]. With the 
growing interest in the topic, more elaborate attack methods have been 
presented, e.g., Correlation Power Analysis (CPA) [18]. These types 
of attacks pose a significant threat to security-critical applications. 
Nowadays, even more powerful attack methods based on Template 
Attacks or utilizing AI as an attack tool for side-channel analysis are 
present. Fault injection attacks aim at maliciously altering an edge 
device’s functionality. This can range from disturbances in the power 
supply voltage, irregularities in the clock signal, electromagnetic or 
radiation disturbances or overheating as described in [19]. The attack 
objective could be as complex as revealing the secret key of cryp­
tographic primitives, but also simple, like blocking the computation, 
i.e., denial of service. The complexity and cost to perform a successful 
Fault Injection Attack can vary based on equipment costs and required 
knowledge about the underlying hardware. Although fault attack can 



182 Efficient AI-based Attack Detection Methods 

be expensive in terms of complexity and cost, it is practical and can 
be mounted on most commonly used architectures from ARM, Intel 
and AMD [20]. In recent years, even more elegant software-based 
approaches exploiting voltage scaling led to successful attacks on the 
Intel SGX secure enclave [21]. 

2. Possible Attacks on the Cloud 

Securing cloud services is mainly achieved by separating a cloud’s tenants. 
These must not be able to escape their individual virtual machines and get 
access to other tenant’s data. Unfortunately, such has been proven viable via 
side-channel attacks, leading to cross-VM secret leakage via different levels 
of CPU cache side-channel attacks [5, 9, 22, 23, 24, 25, 26]. Mitigation is 
technically possible, but typically requires significant changes to hardware 
[27, 28, 29, 30], hypervisors [31, 32, 33, 34, 35, 36], or guest OSes [36]. 
Such approaches are not easily applicable to existing data centres. Mitigation 
by frequent VM migration [37, 38] is theoretically also feasible but comes 
at prohibitively high migration cost, i.e. several minutes of migration time 
[39], and hence only addresses the issue of long-term co-location. Attacks by 
malicious VMs however take only milliseconds [5, 24]. 

3. Intrusion Attacks on Edge System 

The network-based exchange of data and commands between edge devices 
and cloud infrastructure implies several threats that can affect the edge system 
due to an insecure network. For instance, attackers can block the data transfer 
by malicious gateway access or network floods [40]. Similarly, attackers can 
perform attacks such as impersonation attacks, communication interception, 
password guessing attacks, data integrity violations, Denial of Service (DOS) 
and bad Quality of Service (QoS) [40]. 

Several countermeasures have been proposed to prevent or detect such 
attacks. The problem with these existing countermeasures is that they usually 
only address one specific attack, where an attacker can launch a multitude 
of attacks. To identify such attacks, two essential approaches exist which 
are signature-based and anomaly-based detection. By nature, signature-based 
attacks can be overcome by altering the attack code to evade detection and 
do not protect against previously unknown attacks [41]. Anomaly-based 
detection, in turn, is prone to false positives as legitimate applications may 
appear as malicious [41]. The combination of both methods mitigates some 
of the named individual shortcomings [41, 42]. 

Intrusion detection systems (IDS) are essential tools for monitoring and 
detecting of anomalous activities in a network of edge devices and systems 



8.2 Efficient Attack Detection 183 

and responding to these attacks. Traditional IDS relies on signatures or rules 
to detect known attacks, but these methods are not effective against new and 
evolving threats. An anomaly detection system, on the other hand, relies 
on identifying abnormal behaviour in network traffic data. However, these 
systems can generate false positives, making them less reliable, and are 
inability to detect new/unknown attacks [40]. 

8.2 Efficient Attack Detection 

In this section, the approach of selecting an appropriate solution for attack 
detection on resource-constrained micro-Edge ICs is described. The stan­
dalone IC protects on-chip data and secrets by preventing unauthorized 
access. First, the requirements related to this task are described, followed 
by a section on the dataset. Based on the requirements and the available 
dataset, a selection of applicable algorithms obtained from thorough research 
is specified. 

8.2.1 Requirements 

An implementation must meet requirements in the three domains of security, 
user experience, and realizability. The correlation of the requirements focus­
ing on the three general domains is depicted in Figure 8.3 using a top-down 
representation. 

Figure 8.3 Correlation of requirements 



184 Efficient AI-based Attack Detection Methods 

The main goal is to target the domain of security. Based on AI, an 
algorithm capable of improving the present security mechanisms will be 
researched and evaluated. Since the devices handle sensitive data during 
operation, requirements covering the targeted levels of security must be 
defined. The second domain is represented by the user experience. Due to 
the commercial nature of the products, and since the additional functionality 
does not necessarily translate to a direct added value for the user, the user 
experience during usage is not allowed to be negatively influenced by the 
implemented solution. 

Lastly, it must be noted that the available resources for implementing the 
functionality on the considered devices are limited in terms of computational 
power, area, and current consumption. Therefore, to benefit from the devel­
oped solution, it is also necessary to formulate implementation requirements 
that are realistic and applicable. These requirements are summarized in the 
domain of realizability. 

Starting from the security perspective, the target of evaluation can contain 
highly sensitive data, therefore, a low miss rate in terms of detection of actual 
and exploitable attacks is mandatory to ensure the security and integrity of 
data stored on the device. Also, the implemented solution should not reduce 
the usability of the product or affect the user experience negatively. This 
requirement demands the lowest possible false alarm rate. Furthermore, the 
implemented solution should have minimal impact on the performance of the 
main application to achieve a satisfying user experience. 

Besides the presented requirements, a fast response time constitutes a 
very important requirement in this application. To react quickly and prevent 
performance issues, the response time needs to be as fast as possible. This 
requirement can be attributed to the domains of security and user experience. 
From a security perspective, a fast response time is required to protect the 
secrets stored on the device. From the user’s perspective, customers are not 
keen to see longer response times when using the devices. Therefore, in both 
domains, a fast response time is seen as advantageous. 

Since the developed solution is targeted to be implemented on low-power 
edge or IoT devices, the available resources are very limited. Based on these 
general preconditions, further requirements concerning the memory, required 
die area, power efficiency, and CPU usage need to be formulated. Especially 
considering the CPU usage, low utilization must be achieved to guarantee 
minimal impairment of the main application. 



8.2 Efficient Attack Detection 185 

8.2.2 Underlying Dataset 

To obtain a flexible solution that is applicable for a variety of devices, the 
detection capabilities of state-of-the-art devices will be investigated. Since a 
dataset cannot be obtained from measuring traces in the laboratory or gather­
ing field data, the dataset must be generated artificially. For this purpose, the 
relevant phases within an application and available inputs will be analysed. 

Based on this further possible attack scenarios need to be researched and 
modeled. By the combination of capabilities and the theoretical consideration 
of attacks, a dataset will be derived. In the process of dataset generation, 
reasoned assumptions must be made and all decisions must be evaluated 
critically. Furthermore, the choice of labeling is going to be justified and 
strategies for the generation of a subset for the model validation will be 
explained. 

8.2.3 State-of- the-Art Attack Detection Methods 

1. AI-based Attack Detection at Edge Device Level 
The use of AI methods provides efficient countermeasures. HAL [43] 
provides a quantitative and qualitative analysis of several machine-
learning models for use in cache-based side-channel attack detection. It 
specifically addresses real-time requirements, detection at an early stage, 
and minimal performance overhead and demonstrates this in the context 
of security applications (RSA and AES cryptosystems). It however does 
not provide a definite answer on specific model usage. 
Similarly, WHISPER [44] proposes a tool for side-channel attack detec­
tion based on machine learning. Instead of using a single approach, 
it features multiple ML models in combination that interpret the 
behavioural data of concurrent processes. This data is collected via 
hardware performance counters. The authors demonstrate the tool’s 
capability by achieving >99% accuracy of detecting a large and diverse 
attack vector while introducing only a reasonably low performance 
overhead. 
In today’s secured systems, installation and execution of malicious 
application software is typically rendered impossible by so-called 
shielded execution e.g. provided by the Intel Software Execution Guard 
[45]. However, such shielded execution can be compromised by priv­
ileged attackers, e.g. by changing page-table entries of memory pages 
that are specifically used by shielded execution. By this approach, a 
malicious OS kernel can observe corresponding memory-page accesses 



186 Efficient AI-based Attack Detection Methods 

and hence extract potentially sensitive information. DejaVu [46] is a 
software framework that enables self-protection detecting such priv­
ileged side-channel attacks from within the shielded execution. This 
is enabled by the so-called pathlet execution time. For this, a dedi­
cated reference clock is employed that is specifically constructed using 
the Intel Transactional Synchronisation Extension (TSX). By featuring 
this robust reference clock, not only deviations in pathlet execution 
time indicating an attack can be detected but also interruptions of the 
reference-clock thread resulting in a transaction timeout. 
Modern processors provide a limited number of registers known as hard­
ware performance counters (HPCs) that capture hardware-related events. 
These special-purpose registers can be used to study the impact of side-
channel attacks (SCAs). Compared to normal operation, the number of 
events when a system is under attack appears noticeably different. [47] 
explores several different machine-learning models for real-time cache-
based SCA detection using HPCs. 16 HPC features are collected for both 
victims under attack and victims not under attack at different sampling 
rates. Overhead is reduced, by only using four features. This way they 
all can be fetched synchronously. The authors determined that for a 
sampling granularity of 500 μs, the systems incur 5% overhead while 
maintaining good detection accuracy. In addition, they also considered 
the latency for the different models. It was found that the Decision Tree 
provides the best trade-off between performance and latency. 
[48] provides another approach using HPCs for the detection of side-
channel attacks. The authors provide a two-step process comprised of 
an offline and an online phase. In addition to covering cache-based 
SCAs, they also consider branch-based and DRAM-based SCAs. The 
HPC can be observed to follow a Gaussian distribution with different 
means and variances. Anomalous behaviour shows a different distribu­
tion with a different mean. During the offline phase, data is collected 
in different environments. This includes benign programs running in 
the background, that make intensive use of the cache, branching, or 
the RAM. Afterwards, during the online phase, HPCs are collected and 
classified using an AI model. To counteract the high number of false-
positives, anomalous traces are correlated with traces in a database. A 
high correlation indicates an attack, while a low correlation indicates a 
benign program running. 



8.2 Efficient Attack Detection 187 

2. AI-based Attack Detection at Cloud Level 
Several security countermeasures have been introduced to mitigate pos­
sible attacks on the cloud [49, 50]. For instance, CloudRadar [41] 
proposes an approach to secure the cloud. This approach correlates 
signature-based and anomaly-based detection techniques in to spot side-
channel attacks. Here, signature-based detection is used to identify 
when a protected VM executes cryptographic applications. Anomaly-
based detection is orthogonally used to monitor and identify abnormal 
cache behaviours typical of cache-based side-channel attacks. As such, 
the approach is non-intrusive, not requiring any changes to hardware, 
hypervisor, guest VM, and applications. It hence is comparatively easy 
to deploy in existing cloud environments and, according to the authors, 
requires only patching and a little overhead [51]. To improve the perfor­
mance of such detection techniques and cover more than the classical 
cache attacks against edge devices, Recurrent Neural Networks (RNNs) 
were proposed in [52]. The results show that additionally to the classical 
detection of cache attacks, the RNN-based solutions efficiently detect 
Rowhammer, Spectre, Meltdown, and Zombieload attacks as well. 

3. AI-based Intrusion Detection System for Edge Systems 
AI-based Intrusion Detection Systems (AI-IDS) are a promising alterna­
tive to traditional IDS. AI methods can identify patterns and anomalies 
in network traffic data, enabling it to detect previously unseen, unknown, 
and complex threats. AI-IDS faces three main challenges: (1) the quality 
of the data used for training and testing the models, (2) the accuracy 
of the chosen AI algorithm, and (3), the performance of the chosen AI 
algorithm. 
Various techniques have been proposed to enhance the accuracy and 
performance of AI-IDS. For instance, the use of sampling techniques 
to select representative datasets can improve both the accuracy and 
speed of intrusion detection [53]. By combining a sampling technique 
with a random forest machine learning algorithm, IDS exhibits very 
good performance. However, it shows also different levels of detection 
accuracy for different attacks. In [54], Gini Impurity-based Weighted 
Random Forest (GIWRF) was used as a data feature selection technique. 
Then, the accuracy of several AI algorithms deployed as AI-IDS was 
analyzed. The results show that AI accuracy ranges from 88.99% to 
99.98%. 



188 Efficient AI-based Attack Detection Methods 

8.2.4 Selection of Applicable Algorithms 

In the following, the algorithms from research are evaluated in terms of their 
applicability to the problem with the associated requirements. 

• Neural Network (NN): Model built from basic computation units called 
neurons that are usually organized into layers. Connections between 
neurons are associated with trainable weights. Upon receiving input, 
the input is weighted and aggregated. Afterwards, a possibly non-linear 
function is applied. The complexity of these models increases with the 
number of layers [55]. A Perceptron [56] is the simplest possible model 
and consists of a single layer of neurons. In contrast, Multilayer feed-
forward Networks are comprised of multiple layers that are connected 
in a feed-forward fashion. If there are not only forward connections but 
also those connecting neurons to previous layers, the network is called 
recurrent [55]. An example of these types of networks are long short-
term memory (LSTM) networks. These networks contain memory cells, 
making it possible to retain information [57]. 

• Trees: Models that make their decisions based on tree-like structures. 
One example of these types of models are decision trees (DT). They 
can be used for both classification and regression tasks [55]. Isolation 
Forests on the other side aim to find anomalies using binary trees [58]. 

• Support Vector Machine (SVM): Algorithm that tries to find a separator 
with the maximum distance to training samples. In the simplest case, 
the goal is to find a simple linear separator between two classes in a 
two-dimensional space [55]. 

• Bayesian Network: Probabilistic model allowing for computation of 
posterior probability distributions. Nodes represent random variables, 
while edges describe conditional dependencies between variables. Each 
node is associated with some probabilities that quantify the effect on 
other nodes. These probabilities can be learned from a given dataset. The 
simplest example of these classifiers are Naive Bayes classifiers [55]. 

• Instance-based: Algorithms that directly estimate from a given dataset. 
Processing of the input is deferred until queried. After answering the 
request, all intermediate results are discarded [55]. The most well-
known example of these algorithms is the k-nearest neighbour (KNN) 
algorithm [59]. 

• Linear Regression: Algorithms that try to find the best-fitting function 
for some given data. In the simplest case, the goal is to find a linear 
function for a single input variable. Depending on the application, more 
complex functions might be used [55]. 



8.3 Discussion and Conclusion 189 

• Discriminant Analysis: Methods aiming to estimate the decision bound­
ary between classes. Approaches like linear discriminant analysis might 
make simplifying assumptions, such as an underlying Gaussian distribu­
tion for all classes and the same covariance matrices for all classes [60]. 

• Ensemble: Combining multiple algorithms to achieve a better outcome. 
A random forest (RF) is an ensemble of decision trees. Ensembles can 
be created by many different techniques. One such technique is called 
boosting. It aims at improving performance by assigning higher weights 
to examples that have been misclassified and thus making an incentive 
to classify them correctly for the next model in the ensemble [55]. 

The most limiting factor in the selection of a suitable algorithm comes in 
the form of resource limitations. Some models have significant requirements 
for the systems they are executed on. Examples of such models are Neural 
Networks that can easily have millions of parameters. Not only does this 
require sufficient storage, but might also cause a significant delay in loading 
and applying these parameters. Consequently, a separate accelerator might be 
required, that increases the area consumed. Even non-parametric algorithms 
like KNN might not be a good solution, as the whole dataset has to be stored. 
Depending on the size of the dataset, this might also put a significant strain 
on the amount of memory available. 

In [44], the results for twelve different machine learning models were 
presented, covering all of the classes described above. Considering all 
models achieving 80% accuracy leaves SVMs, DTs, RFs, KNN, NNs and 
Ensemble learning. As discussed beforehand, both KNN and NNs have high 
computational requirements, making them not suitable for the application. 

Due to the experimental setup in [44], the detection latency using the 
models is unknown on the Edge and is to be determined in the future. Thus, 
the impact of deploying them cannot be determined, and there is still a need 
for AI models that offer (1) high detection accuracy, (2) efficiency, and (3) 
meet the requirements of Edge devices. Such an AI model can serve as a 
highly accurate, efficient and lightweight attack detector at the edge level. 

8.3 Discussion and Conclusion 

The continuously growing use and uptime of secure devices increase the 
number of sensor events during the product lifetime. Especially, for stan­
dalone micro-edge devices this becomes more relevant. Consequently, this is 
pushing the industry to step up from direct reaction to sensor events towards 



190 Efficient AI-based Attack Detection Methods 

more advanced solutions. It is, however, paramount that such solutions do not 
negatively influence both device operation and user experience. Processing 
and interpretation of available sensor information with the help of artificial 
intelligence offers the possibility to develop future solutions. 

AI-based approaches particularly overcome limitations of established 
solutions based on signatures and anomaly detection: Signature-based 
approaches are inherently limited to known attacks and their signatures. They 
hence neither provide protection against future attacks nor altered attack 
code. Approaches based on anomaly detection, in turn, are prone to false 
positives as legitimate, non-malicious code may trigger such detection. So 
far, AI methods have been successfully employed in a wide variety of security 
systems, covering both edge nodes and cloud environments. They provide a 
sufficiently high detection rate at minimal false-positive level and, by nature, 
are immune to evasion strategies like altered attack code. However, so far 
no single gold solution exists. For AI approaches the choice of a suitable 
AI method is paramount. Similarly, sufficient labelling strategies and derived 
training sets need to be developed. Finding an optimal AI strategy for a given 
threat scenario is hence still open to research. 

Acknowledgement 

This research was conducted as part of the project “Edge AI Technolo­
gies for Optimised Performance Embedded Processing” (EdgeAI), which 
has received funding from KDT JU under grant agreement No 101097300. 
The KDT JU receives support from the European Union’s Horizon Europe 
research and innovation program and Austria, Belgium, France, Greece, Italy, 
Latvia, Luxembourg, Netherlands, and Norway. 

References 

[1] H. Xue, B. Huang, M. Qin, H. Zhou and H. Yang, “Edge Computing 
for Internet of Things: A Survey”, 2020 International Conferences on 
Internet of Things (iThings) and IEEE Green Computing and Commu­
nications (GreenCom) and IEEE Cyber, Physical and Social Computing 
(CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on 
Cybermatics (Cybermatics), pp. 755–760, 2020. W442W7302 

[2] P.	 G. Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. 
Iamnitchi, M. Barcellos, P. Felber and E. Riviere, “Edge-centric Com­
puting: Vision and Challenges”, SIGCOMM Comput. Commun. Rev., 
vol. 45, no. 5, p. 37–42, 2015. W442W7302 



References 191 

[3] W.	 Shi and S. Dustdar, “The Promise of Edge Computing”, IEEE 
Computer, vol. 49, no. 5, pp. 78–81, 2016. W442W7302 

[4] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu and W. Lv, “Edge Computing 
Security: State of the Art and Challenges”, Proceedings of the IEEE, 
vol. 107, no. 8, pp. 1608–1631, 2019. W442W7302 

[5] Y.	 Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, 
Low Noise, L3 Cache Side-Channel Attack”, Proceedings of the 23rd 
USENIX Conference on Security Symposium, p. 719–732, 2014. 
W442W7302 

[6] D. Gruss, C. Maurice, K. Wagner and S. Mangard, “Flush+Flush: A 
Fast and Stealthy Cache Attack”, Proceedings of the 13th International 
Conference on Detection of Intrusions and Malware, and Vulnerability 
Assessment, vol. 9721, p. 279–299, 2016. W442W7302 

[7] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth and B. Sunar, 
“Cache Attacks Enable Bulk Key Recovery on the Cloud”, Crypto­
graphic Hardware and Embedded Systems – CHES 2016, pp. 368-388, 
2016. W442W7302 

[8] D. A. Osvik, A. Shamir and E. Tromer, “Cache Attacks and Counter­
measures: The Case of AES”, Topics in Cryptology – CT-RSA 2006, 
pp. 1–20, 2006. W442W7302 

[9] D. Gruss, R. Spreitzer and S. Mangard, “Cache Template Attacks: 
Automating Attacks on Inclusive Last-Level Caches”, 24th USENIX 
Security Symposium (USENIX Security 15), pp. 897–912, 2015. 
W442W7302 

[10] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham­
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz and Y. Yarom, 
“Spectre Attacks: Exploiting Speculative Execution”, 2019 IEEE Sym­
posium on Security and Privacy (SP), pp. 1–19, 2019. W442W7302 

[11] M. Lipp, M. Schwarz, D. Gruss, T.	 Prescher, W. Haas, A. Fogh, J. 
Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom and M. Ham­
burg, “Meltdown: Reading Kernel Memory from User Space”, 27th 
USENIX Security Symposium (USENIX Security 18), pp. 973–990, 
2018. W442W7302 

[12] Y. Lyu and P. Mishra, “A Survey of Side-Channel Attacks on Caches 
and Countermeasures”, Journal of Hardware and Systems Security, vol. 
2, no. 1, pp. 33–50, 2018. W442W7302 

[13] J. Van	 Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. 
Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom and R. Strackx, 
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with 



192 Efficient AI-based Attack Detection Methods 

Transient Out-of-Order Execution”, 27th USENIX Security Symposium 
(USENIX Security 18), 2018. W442W7302 

[14] D. Genkin, L. Valenta and Y.	 Yarom, “May the Fourth Be With 
You: A Microarchitectural Side Channel Attack on Several Real-World 
Applications of Curve25519”, Proceedings of the 2017 ACM SIGSAC 
Conference on Computer and Communications Security, p. 845–858, 
2017. W442W7302 

[15] R. Mayer-Sommer, “Smartly analyzing the simplicity and the power 
of simple power analysis on smartcards”, International Workshop on 
Cryptographic Hardware and Embedded Systems, pp. 78–92, 2000. 
W442W7302 

[16] P. Kocher, J. Jaffe and B. Jun, “Differential power analysis”, Advances 
in Cryptology—CRYPTO’99: 19th Annual International Cryptology 
Conference Santa Barbara, California, USA, August 15–19, 1999 Pro­
ceedings 19, pp. 388–397, 1999. W442W7302 

[17] S. Mangard, “A simple power-analysis (SPA) attack on implementations 
of the AES key expansion”, Information Security and Cryptology— 
ICISC 2002: 5th International Conference Seoul, Korea, November 
28–29, 2002 Revised Papers 5, pp. 343–358, 2003. W442W7302 

[18] E. Brier, C. Clavier and F. Olivier, “Correlation power analysis with 
a leakage model”, Cryptographic Hardware and Embedded Systems-
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 
11-13, 2004. Proceedings 6, pp. 16–29, 2004. W442W7302 

[19] A. Barenghi, L. Breveglieri, I. Koren and D. Naccache, “Fault Injection 
Attacks on Cryptographic Devices: Theory, Practice, and Countermea­
sures”, Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, 2012. 
W442W7302 

[20] J. Breier and X. Hou, “How Practical Are Fault Injection Attacks, 
Really?”, IEEE Access, vol. 10, pp. 113122–113130, 2022. 
W442W7302 

[21] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss and F. 
Piessens, “Plundervolt: Software-based Fault Injection Attacks against 
Intel SGX”, 2020 IEEE Symposium on Security and Privacy (SP), pp. 
1466–1482, 2020. W442W7302 

[22] G. Irazoqui, T. Eisenbarth and B. Sunar, “S $ A: A shared cache attack 
that works across cores and defies VM sandboxing–and its application 
to AES”, 2015 IEEE Symposium on Security and Privacy, pp. 591–604, 
2015. W442W7302 



References 193 

[23] G. Irazoqui, M. S. Inci, T. Eisenbarth and B. Sunar, “Wait a minute! 
A fast, Cross-VM attack on AES”, Research in Attacks, Intrusions 
and Defenses: 17th International Symposium, RAID 2014, Gothenburg, 
Sweden, September 17-19, 2014. Proceedings 17, pp. 299–319, 2014. 
W442W7302 

[24] F. Liu, Y. Yarom, Q. Ge, G. Heiser and R. B. Lee, “Last-level cache 
side-channel attacks are practical”, 2015 IEEE symposium on security 
and privacy, pp. 605–622, 2015. W442W7302 

[25] Y. Zhang, A. Juels, M. K. Reiter and T. Ristenpart, “Cross-VM side 
channels and their use to extract private keys”, Proceedings of the 2012 
ACM conference on Computer and communications security, pp. 305– 
316, 2012. W442W7302 

[26] Y. Zhang, A. Juels, M. K. Reiter and T. Ristenpart, “Cross-tenant side-
channel attacks in PaaS clouds”, Proceedings of the 2014 ACM SIGSAC 
Conference on Computer and Communications Security, pp. 990–1003, 
2014. W442W7302 

[27] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh and D. Ponomarev, 
“Non-monopolizable caches: Low-complexity mitigation of cache side 
channel attacks”, ACM Transactions on Architecture and Code Opti­
mization (TACO), vol. 8, no. 4, pp. 1–21, 2012. W442W7302 

[28] F.	 Liu and R. B. Lee, “Random fill cache architecture”, 2014 47th 
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 
203–215, 2014. W442W7302 

[29] Z. Wang and R. B. Lee,	 “A novel cache architecture with enhanced 
performance and security”, 2008 41st IEEE/ACM International Sym­
posium on Microarchitecture, pp. 83-93, 2008. W442W7302 

[30] Z. Wang and R. B. Lee, “New cache designs for thwarting software 
cache-based side channel attacks”, Proceedings of the 34th annual 
international symposium on Computer architecture, pp. 494–505, 2007. 
W442W7302 

[31] T. Kim, M. Peinado and G. Mainar-Ruiz, “STEALTHMEM System-
Level Protection Against Cache-Based Side Channel Attacks in the 
Cloud”, 21st USENIX Security Symposium (USENIX Security 12), pp. 
189–204, 2012. W442W7302 

[32] P. Li, D. Gao and M. K. Reiter, “Stopwatch: a cloud architecture for tim­
ing channel mitigation”, ACM Transactions on Information and System 
Security (TISSEC), vol. 17, no. 2, pp. 1–28, 2014. W442W7302 

[33] J. Shi, X. Song, H. Chen and B. Zang, “Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring”, 2011 



194 Efficient AI-based Attack Detection Methods 

IEEE/IFIP 41st International Conference on Dependable Systems and 
Networks Workshops (DSN-W), pp. 194–199, 2011. W442W7302 

[34] V. Varadarajan, T. Ristenpart und M. Swift, “Scheduler-based defenses 
against Cross-VM side-channels”, 23rd USENIX security symposium 
(USENIX security 14), pp. 687–702, 2014. W442W7302 

[35] B. C. Vattikonda, S. Das and H. Shacham, “Eliminating fine grained 
timers in Xen”, Proceedings of the 3rd ACM workshop on Cloud 
computing security workshop, pp. 41–46, 2011. W442W7302 

[36] Y. Zhang und M. K. Reiter, “Düppel: Retrofitting commodity operating 
systems to mitigate cache side channels in the cloud”, Proceedings of 
the 2013 ACM SIGSAC conference on Computer & communications 
security, pp. 827–838, 2013. W442W7302 

[37] S.-J. Moon, V. Sekar and M. K. Reiter, “Nomad: Mitigating arbitrary 
cloud side channels via provider-assisted migration”, Proceedings of the 
22nd acm sigsac conference on computer and communications security, 
pp. 1595–1606, 2015. W442W7302 

[38] Y. Zhang, M. Li, K. Bai, M. Yu and W. Zang, “Incentive compatible 
moving target defense against vm-colocation attacks in clouds”, Infor­
mation Security and Privacy Research: 27th IFIP TC 11 Information 
Security and Privacy Conference, SEC 2012, Heraklion, Crete, Greece, 
June 4-6, 2012. Proceedings 27, pp. 388–399, 2012. W442W7302 

[39] V. Varadarajan, Y. Zhang, T. Ristenpart and M. Swift, “A Placement Vul­
nerability Study in Multi-Tenant Public Clouds”, 24th USENIX Security 
Symposium (USENIX Security 15), pp. 913–928, 2015. W442W7302 

[40] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac and P. Faruki, 
“Network intrusion detection for IoT security based on learning tech­
niques”, IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 
2671–2701, 2019. W442W7302 

[41] T.	 Zhang, Y. Zhang and R. B. Lee, “CloudRadar: A Real-Time 
Side-Channel Attack Detection System in Clouds”, Research in 
Attacks, Intrusions, and Defenses. RAID 2016., pp. 118–140, 2016. 
W442W7302 

[42] M. Alam, S. Bhattacharya, D. Mukhopadhyay and S. Bhattacharya, 
“Performance Counters to Rescue: A Machine Learning based safe­
guard against Micro-architectural Side-Channel-Attacks”, IACR Cryp­
tol. ePrint Arch., 2017. W442W7302 

[43] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, M. Yousaf, U. 
Farooq, V. Lapotre and G. Gogniat, “Machine learning for security: 
The case of side-channel attack detection at run-time”, 2018 25th IEEE 



References 195 

International Conference on Electronics, Circuits and Systems (ICECS), 
pp. 485–488, 2018. W442W7302 

[44] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre, G. Gogniat 
and P. Benoit, “WHISPER: A tool for run-time detection of side-channel 
attacks”, IEEE Access, vol. 8, pp. 83871–83900, 2020. W442W7302 

[45] O. Aciiçmez, “Yet	 another microarchitectural attack: exploiting I-
cache”, Proceedings of the 2007 ACM workshop on Computer security 
architecture, pp. 11–18, 2007. W442W7302 

[46] S. Chen, X. Zhang, M. K. Reiter and Y. Zhang, “Detecting privileged 
side-channel attacks in shielded execution with Déjá Vu”, Proceedings 
of the 2017 ACM on Asia Conference on Computer and Communica­
tions Security, pp. 7–18, 2017. W442W7302 

[47] H. Wang, H. Sayadi, A. Sasan, S. Rafatirad, T.	 Mohsenin und H. 
Homayoun, “Comprehensive Evaluation of Machine Learning Coun­
termeasures for Detecting Microarchitectural Side-Channel Attacks”, 
Proceedings of the 2020 on Great Lakes Symposium on VLSI, pp. 
181–186, 2020. W442W7302 

[48] M. Alam, S. Bhattacharya and D. Mukhopadhyay,	 “Victims Can Be 
Saviors: A Machine Learning–Based Detection for Micro-Architectural 
Side-Channel Attacks”, J. Emerg. Technol. Comput. Syst., vol. 17, no. 
2, 2021. W442W7302 

[49] S. Briongos, G. Irazoqui, P. Malagón and T. Eisenbarth, “Cacheshield: 
Detecting cache attacks through self-observation”, Proceedings of the 
Eighth ACM Conference on Data and Application Security and Privacy, 
pp. 224–235, 2018. W442W7302 

[50] M. Chiappetta, E. Savas and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters”, 
Applied Soft Computing, vol. 49, pp. 1162–1174, 2016. W442W7302 

[51] Z. Liu, B. Xu, B. Cheng, X. Hu and M. Darbandi, “Intrusion detection 
systems in the cloud computing: A comprehensive and deep literature 
review”, Concurrency and Computation: Practice and Experience, vol. 
34, 2021. W442W7302 

[52] B. Gulmezoglu, A. Moghimi, T. Eisenbarth and B. Sunar, “Fortuneteller: 
Predicting microarchitectural attacks via unsupervised deep learning”, 
arXiv preprint arXiv:1907.03651, 2019. W442W7302 

[53] J. Ren, J. Guo, W. Qian, H. Yuan, X. Hao and H. Jingjing, “Building an 
effective intrusion detection system by using hybrid data optimization 
based on machine learning algorithms”, Security and communication 
networks, 2019. W442W7302 



196 Efficient AI-based Attack Detection Methods 

[54] R. A. Disha und S. Waheed, “Performance analysis of machine learn­
ing models for intrusion detection system using Gini Impurity-based 
Weighted Random Forest (GIWRF) feature selection technique”, Cyber-
security, Bd. 5, Nr. 1, p. 1, 2022. W442W7302 

[55] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, 
Prentice Hall, 2010. W442W7302 

[56] D. Rosenblatt, “The perceptron: A perceiving and recognizing automa­
ton”, Cornell Aeronautical Laboratory, 1957. W442W7302 

[57] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural 
computation, vol. 9, no. 8, pp. 1735–1780, 1997. W442W7302 

[58] F. T. Liu, K. M. Ting and Z.-H. Zhou, “Isolation forest”, 2008 eighth 
ieee international conference on data mining, pp. 413–422, 2008. 
W442W7302 

[59] E. Fix and J. L. Hodges, “Discriminatory Analysis. Nonparametric Dis­
crimination: Consistency Properties”, International Statistical Review / 
Revue Internationale de Statistique, vol. 57, no. 3, pp. 238–247, 1989. 
W442W7302 

[60] B. Ghojogh and M. Crowley, “Linear and quadratic discriminant analy­
sis: Tutorial”, arXiv preprint arXiv:1906.02590, 2019. W442W7302 



9
 
Explainability and Interpretability Concepts
 

for Edge AI Systems
 

Ovidiu Vermesan1, Vincenzo Piuri2, Fabio Scotti2, Angelo Genovese2, 
Ruggero Donida Labati2, and Pasquale Coscia2 

1SINTEF AS, Norway 
2Università degli Studi di Milano, Italy 

Abstract 

The increased complexity of artificial intelligence (AI), machine learning 
(ML) and deep learning (DL) methods, models, and training data to satisfy 
industrial application needs has emphasised the need for AI model providing 
explainability and interpretability. Model Explainability aims to commu­
nicate the reasoning of AI/ML/DL technology to end users, while model 
interpretability focuses on in-powering model transparency so that users will 
understand precisely why and how a model generates its results. 

Edge AI, which combines AI, Internet of Things (IoT) and edge com­
puting to enable real-time collection, processing, analytics, and decision-
making, introduces new challenges to acheiving explainable and interpretable 
methods. This is due to the compromises among performance, constrained 
resources, model complexity, power consumption, and the lack of bench­
marking and standardisation in edge environments. 

This chapter presents the state of play of AI explainability and inter­
pretability methods and techniques, discussing different benchmarking 
approaches and highlighting the state-of-the-art development directions. 

Keywords: edge AI, AI explainability, AI interpretability, explainable AI, 
XAI, trustworthy edge AI. 

197 

This chapter has been made available under a CC-BY-NC 4.0 license.
DOI: 10.1201/9788770041027-9 



198 Explainability and Interpretability Concepts for Edge AI Systems 

9.1 Introduction 

Explainability and interpretability are terms used to describe how under­
standable edge artificial intelligence (AI), machine learning (ML), and deep 
learning (DL) models provide insight into their decision-making, as their 
complexity and opacity otherwise make it challenging to comprehend their 
behaviour. This is required to get confidence that edge AI models are depend­
able (e.g., reliable, resilient, secure, safe), trustworthy, and adhere to ethical 
principles appropriate to context, while ensuring that they are minimised. It 
is necessary to distinguish between explainability and interpretability to help 
developers and users in determining an AI/ML approach meets particular use 
cases. 

Explainability is the ability to explain the decision-making process in 
terms that are understandable to the end user. An explainable model provides 
a clear and intuitive explanation of the decisions made, enabling users to 
understand why the model has produced a particular result; it focuses on why 
an algorithm has made a specific decision and how that decision can be jus­
tified. It requires a straightforward and intuitive presentation of information 
using an ontology familiar to the user. It is particularly valuable and beneficial 
in the case of deep neural networks, where the models are difficult to interpret 
due to the convoluted structure and complex internal interactions. 

Interpretability is the ability to understand the decision-making process of 
an edge AI model. An interpretable edge AI model provides clear information 
about the relationship between inputs and outputs. An interpretable algorithm 
can be explained clearly and understandably by a person. Interpretability is 
essential to ensure that users will trust AI models. 

While there are methods to explain the behaviour of models that are not 
inherently interpretable, interpretability serves as a gold standard for model 
explainability in a direct and transparent manner. 

Superior AI explainability and interpretability come at the expense of 
performance, as illustrated Figure 9.1 [7]. When datasets are large, and the 
data are related to images or text, neural networks can meet the customer’s 
AI/ML objective with high performance. For cases where complex methods 
are required to maximise performance, data scientists may focus on model 
explainability rather then of interpretability [7]. 

A conceptual workflow for the design of AI models which includes both 
interpretability and explainability is illustrated in Figure 9.2. 

Interpretability is mostly associated with model training, evaluation, and 
quality assurance, while the explainability is a consideration of the deployed 
AI model. 



9.1 Introduction 199 

Figure 9.1 AI Interpretability and Explainability vs Performance for Common ML Algo­
rithms (Adapted from [7]) 

Figure 9.2 Conceptual Workflow explainable and interpretable ML model development 

The European Union’s Artificial Intelligence Act (AIA) [3] addresses AI 
explainability and interpretability. The AIA is a comprehensive regulatory 
framework that promotes transparency, accountability, and the protection of 
individual rights in the face of AI’s growing influence, aiming to ensure the 
ethical and responsible use of AI. A significant proportion of current AI-based 
software falls within the scope of the AIA. 

The European Parliament has amended the AIA by introducing Article 
28 b, aligned with the 2019 OECD AI Principles [11], which states that AI 
“should be robust, secure, and safe throughout its lifecycle so that it functions 



200 Explainability and Interpretability Concepts for Edge AI Systems 

appropriately and does not pose unreasonable safety risks.” [12]. The new 
Article 28b features nine responsibilities for developers of foundation mod­
els. Of these nine obligations, the following three are the most relevant for AI 
designers; 

Risk identification [Article 28b(2a)], which specifies that it is mandatory 
to identify and mitigate reasonably foreseeable risks (inaccuracy, discrimina­
tion, etc.) with the support of independent experts. 

Testing and evaluation obliges AI providers to make adequate design 
choices to ensure that the foundation AI model achieves appropriate levels of 
performance, predictability, interpretability, corrigibility, safety, and cyber-
security. AI model functions are the building blocks for many downstream 
functions, so Article 28b(2c) aims to ensure that these meet the minimum 
standards and do not compromise systemic quality. 

Documentation is an obligation for AI providers in the form of data sheets, 
model cards and intelligible use instructions. This is required to avoid that 
black box AI foundational models being deployed without knowing their 
processes or capabilities. 

The documentation should include the following elements: 

• A description of the data sources used in the development of the AI 
foundational model. 

• An explanation of the capabilities and limitations of the foundational 
model, including reasonably foreseeable risks and the measures that 
have been taken to mitigate these, as well as the remaining unmitigated 
risks with an explanation of the motivation for which they could not be 
contained. 

• A description of the training resources utilised by the foundation model, 
including the required computing power, the training time, and other rel­
evant information related to the model’s size, performance, and energy 
efficiency. 

• A description of the model’s performance based on public state-of-the­
art industry benchmarking methods. 

• A report and explanation of the results of relevant internal and external 
testing and optimisation of the model. 

An overview of the responsibilities across the AI value chain according to 
the AIA is illustrated in Figure 9.3. The AIA provides a holistic approach to 
address the challenges posed by foundation models at different stages along 
the entire AI value chain. This approach considers that along the AI value 



9.1 Introduction 201 

C
ha
in

 
al
ue

 
V 

 A
I

 th
e

A
cr
os
s

R
es
po

ns
ib
ili
tie

s 
9.
3 

 
F
ig
ur
e



202 Explainability and Interpretability Concepts for Edge AI Systems 

chain, multiple entities will supply tools, services and components, including 
data collection and pre-processing, model training, model retraining, model 
testing and evaluation, hardware/software integration. The complexity of the 
AI value chain requires transparency in a manner that permits traceability and 
explainability while making users aware that they are interacting with an AI 
system [3]. 

This chapter is organised as follows. Section 1 introduces the edge AI 
explainability and interpretability research area, including the proper defi­
nitions of the terms. Section 2 presents the goals of AI explainability and 
interpretability. Section 3 provides an overview of the state of the art of 
existing edge AI explainability and interpretability approaches, methods and 
techniques, and the actual advantages/disadvantages. Section 4 describes pos­
sible benchmarking techniques for edge AI explainability and interpretability 
to align with edge AI systems’ trustworthiness requirements. Section 5 
presents more detail on edge AI explainability and interpretability elements 
and specific issues. Section 6 describes the challenges, open issues, and future 
research directions for edge AI explainability and interpretability. Section 7 
draws the conclusions. 

9.2 AI Explainability and Interpretability Goals 

Explainable and interpretable artificial intelligence enables trustworth predic­
tive analytics, anomaly alerts, and decision-making. Data from edge devices 
can be analysed to predict maintenance for machines in industry and to opti­
mise resource allocation in manufacturing. Effectively managing a distributed 
range of explainable systems to provide faithful computations on the data 
collected from edge devices is a fundamental challenge in deploying trans­
parent edge-based AI applications. Creating effective solutions that can easily 
combine and accumulate decisions made by multiple models is still under 
development. It represents one of the key research areas to be investigated in 
the future [47]. Also aggregating explainability and interpretability in such 
composed systems represents a key challenge. 

Over many years, researchers have primarily focused on enhancing model 
performance, relegating the intricate inner mechanisms that drive the out­
put to a secondary analysis. Classical neural networks rely on millions of 
parameters (e.g., VGGNet has ∼138M parameters, and ResNet-152 has 
∼60.3M parameters) [84]. Understanding the interconnections and com­
munication pathways in these networks remains a challenging task. Fur­
thermore, despite their remarkable performance, these models also exhibit 



9.2 AI Explainability and Interpretability Goals 203 

vulnerabilities; object detectors and classification models, for example, can 
be easily deceived with slight alterations to input signals using adversarial 
examples [44], or decisions could be based on entirely incorrect features. 
Gender biases and stereotypes also pose challenges for Natural Language 
Processing (NLP) [45]. 

An understanding of the underlying mechanisms driving AI-driven model 
results has emerged as an imperative. This understanding is also a fundamen­
tal goal for human progress and for enhancing current AI-based systems. With 
the advent of new methodologies and large datasets, various sectors, includ­
ing finance, transportation, healthcare, and security, have adopted approaches 
that are not only comprehensible but also endowed with an appropriate level 
of trustworthiness and effective oversight. For example, medical diagnosis 
systems usually employ visual explanations to provide support for their deci­
sions, increasing the classification confidence [42]. The financial sector also 
heavily relies on interpretable methods for extracting trends and seasonalities 
from historical time series data [46]. 

In scenarios involving the proliferation of edge devices within a system, 
strategies that guarantee reliability, transparency, interoperability and foun­
dational defence against vulnerabilities and errors become imperative, partic­
ularly in critical domains. The reliability of the analytics platform becomes 
crucial in these application scenarios. Autonomous systems equipped with 
the ability to perceive, learn, and make decisions represent the fundamental 
trajectory of future AI-based systems. Their actions must satisfy specific 
requirements and be explained in critical contexts. 

Domains where interpretable systems find application span a diverse 
spectrum, for example: 

Agriculture: Systems adept at extracting high-level insights from satellite 
images and remote sensors provide invaluable farming decision support. The 
possibility to expound upon the derived information is pivotal for informed 
decision-making [38]. 

Finance: Insurance companies and banks rely on automated systems to pro­
file clients. These systems are pivotal in evaluating loan eligibility, demanding 
a transparent rationale for granting or withholding loans. Clear justifications 
are imperative for accountability and audit [36]. 

Industry and Autonomous Robots: Deploying automated systems to pre­
vent human injuries requires the ability to proactively prevent individuals 
from specific actions. These systems must operate in a manner that absolves 
companies of liability for any unintended or improper action [37], while 
allowing post event analysis of any interventions that were performed. 



204 Explainability and Interpretability Concepts for Edge AI Systems 

Medical Diagnosis: Classifying magnetic resonance imaging (MRI) scans 
or histopathological images necessitates the elucidation of outcomes and 
the identification of causative factors. This is crucial for ensuring accurate 
diagnoses and comprehensible justifications for medical conclusions and 
interventions [35, 42]. 

Military and Security: Territorial defence and soldier training could consid­
erably benefit from support systems that explain actions. These systems can 
enhance the efficiency of achieving goals, ensuring that tactical manoeuvres 
and training regimens are effective and comprehensively rationalised [39]. 

Recommendation Systems and Marketing: Typical applications consist 
of profiling users to support marketing endeavours that augments corporate 
revenues and facilitates the targeted promotion of products. Transparency 
in explaining these attributes fosters customer engagement and strategic 
decision-making [40]. 

Smart Cities: Aspects such as lighting, energy management, and traffic 
control within smart buildings and urban infrastructures are very applicable to 
AI. As the number of interconnected devices increases, AI-based frameworks 
must explain decisions regarding different aspects of human life (e.g., water 
supply, waste management, governance, etc.). Addressing cybersecurity and 
privacy challenges with explainable and interpretable methods is crucial for 
smart city development [43]. 

In addition, the General Data Protection Regulation (GDPR) [41], which 
codifies regulations on information privacy in the European Union and the 
European Economic Area, imposes legal obligations upon developers to 
elucidate decisions that hold the potential for impact on individuals. Finally, 
systems that inspire user confidence by being unambiguous and explainable 
are much more likely to be positively received and well engaged with. 

9.3 AI Explainability and Interpretability Methods and 
Techniques 

Highly accurate models are favoured over those that offer superior explain-
ability but diminished accuracy, given that the primary objective of a machine 
learning system centres on its performance. However, it is not uncommon for 
these systems to be viewed as opaque by human evaluators, and the interpre­
tation of their decision-making processes is often relegated to a subsidiary 
investigation. 



9.3 AI Explainability and Interpretability Methods and Techniques 205 

Interpretability can enhance multiple aspects of a machine learning 
model. It can rectify biases learned during training, ensure that only mean­
ingful variables contribute to the output, and measure robustness against 
adversarial perturbations. Sectors such as healthcare, finance, and secu­
rity necessitate a profound understanding of ML models to uphold equity, 
responsibility, and transparency principles. 

AI explainability and interpretability primarily focus on two aspects of 
an ML system: data and model. As illustrated in Figure 9.4, exploratory data 
analysis and visualisation represent important tools for gaining insights from 
data. 

Dimensionality reduction techniques, such as PCA, ICA, t-SNE, LDA, 
and autoencoders, are used in cases involving many variables. These tech­
niques convert high-dimensional data into a lower-dimensional form while 
preserving or extracting their internal structures. 

Several frameworks implement data exploration and explanation 
techniques to express each feature’s relevance through graphs, heatmaps, 
and various plots. Contrastive analyses provide interpretations that study the 
impact of features in achieving a desired output rather than solely focusing 
on the outcome itself. 

Figure 9.4 Data and Model AI Explainability and Interpretability Classification 



206 Explainability and Interpretability Concepts for Edge AI Systems 

While data explainability provides insights into the collected data, model 
explainability and interpretability focuses on the techniques used to under­
stand the models. Specifically, explainable and interpretable models are 
categorised into transparent surrogate models, as illustrated in Figure 9.5. 

Models classified as transparent inherently offer comprehensive insight 
through their intrinsic design or explicit processes aligned with the input 
data. Logistic or linear regression, decision trees, k-nearest neighbours and 
rule-based methods are examples of transparent models. This characteristic 
is mainly owned by ante-hoc methods. 

Ante-hoc techniques allow embedding explainability into a model from 
the beginning. Post-hoc techniques enable models to be trained normally, 
with explainability only included at testing time. 

Generalised additive models (GAMs) [54], for example, represent one 
of the first classes of nonparametric interpretable models, where the impact 

Figure 9.5 AI Explainability and Interpretability Model Approach Classification 



9.3 AI Explainability and Interpretability Methods and Techniques 207 

Figure 9.6 AI Explainability and Interpretability Model-Agnostic Approach Classification 

of the examined variables is captured through smooth linear (or nonlinear) 
functions. Being additive, the effect, or impact of each variable can be 
measured independently from the others. Decision trees follow a tree-based 
logic, where control statements switch between specific paths to uncover rules 
behind decisions. 

While computationally cheaper to evaluate, transparent models may not 
fulfil the performance criteria of the task at hand. Surrogate models use 
approximation criteria to emulate the operative dynamics of the primary 
model by assimilating the input-output relationship and exploiting fidelity 
measures [50] to evaluate their performance. 

These models present fewer challenges in interpretation. They are created 
post-hoc and offer more flexibility and usability compared to the models 
they are built on top of. Post-hoc explainability refers to models that are 
not inherently interpretable by design and represent a class that encompasses 
diverse means to increase the explainability. 

Post-hoc techniques offer valuable approximations of the inner workings 
or information flow to produce understandable representations using graphs, 
rule sets, score maps, or natural language. 

While model-specific techniques extract explainable representations tai­
lored to a particular learning algorithm or the internal structure of a model, 
model-agnostic techniques utilise model inputs and predictions to replicate 
the learning mechanism and generate explanations, as illustrated in Figure 9.6 
and Figure 9.7. 

Among model-specific techniques, feature importance highlights the 
impact of each feature on the decision. 

Condition-based explanation defines oriented questions to allow the 
model to provide possible explanations with a set of conditions. 



208 Explainability and Interpretability Concepts for Edge AI Systems 

Figure 9.7 AI Explainability and Interpretability Model-Specific Approach Classification 

Knowledge distillation methods [70] or rule-based learners [71, 72] also 
strongly rely on the original model. 

Model-specific post-hoc explainable techniques cannot be employed 
with arbitrary models. In this circumstance, model-agnostic techniques can 
be considered since they involve conducting pairwise analyses of model 
inputs and predictions, aiming to comprehend the learning mechanism and 
generate explanations. This class, which does not make any assumptions 
about the model, includes visualisation-based techniques [73, 74], knowledge 
extraction [75, 76], and influence methods [77, 78]. Knowledge extraction 
provides a comprehensible representation of the model. Influence methods, 
instead, investigate the importance or resilience of hidden units by recording 
signal variations within the model. 

The way explanations are presented is also inextricably linked to the 
nature of the data under examination. For instance, saliency, or attention, 
maps are prevalent to explain decisions derived from visual data (popular 
saliency methods are GradCAM [60], DeepLIFT [61] and SmoothGrad [62]); 
conversely, for textual data, specific segments of text that contribute to the 
resultant output are typically highlighted. Moreover, a predetermined set of 
rules can be applied to highlight the relevance of attributes in influencing the 
prediction. 

Visual explanations represent one of the most important classes of meth­
ods used for classification, detection, and recognition tasks. Their success 
can be ascribed to the immediate representation of the decisions, highlighting 
what region of the input images generated that specific response. The medical 
domain, for example, extensively relies on these approaches [69]. 

These methods are typically used for visually understanding convo­
lutional neural networks (CNNs) [66, 67, 68]. Most visual explanation 
techniques use backpropagation-based approaches that compute partial 
derivatives concerning each input feature or intermediate deep neural network 
layers [47] [48]. 



9.3 AI Explainability and Interpretability Methods and Techniques 209 

Another key distinction of the explanation generation processes relies on 
type of extracted explanations, which are representative of instances (local) or 
are broadly applicable (global). In this regard, local methods investigate the 
output of the models for specific samples and refer to a dynamic explanation 
process. 

In this context, Local Interpretable Model-agnostic Explanations (LIME) 
[55] builds a surrogate model around the sample, which is easy to explain. 
A trade-off between unfaithfulness and the complexity of the model allows 
non-experts to interpret decisions by weighing the most critical parameters. 
Despite there being no guarantee that the surrogate models inherit the same 
properties as the original model, it is model-agnostic and only requires small 
perturbations to the input data. 

Model Agnostic Supervised Local Explanations (MAPLE) [59] is a 
supervised neighbourhood approach that combines local linear models and 
ensembles of decision trees. SHAP (SHapley Additive exPlanations) [56] is 
another technique, based on game theory, used to explain the predicted output 
by computing the contribution of each input feature to the prediction. 

Shapley values could refer to individual feature values or groups of 
feature values. For instance, pixels can be grouped into super pixels to explain 
an image. This method can be used both locally and globally. Other examples 
are counterfactual explanations [57]. 

Random Forest Feature Importance [63], Quasi Regression [64] and 
Global Sensitivity Analysis (GSA) [65] are examples of global methods that 
measure the importance of the features that contributed to the prediction 
highlighting their overall influence. 

In this context, Partial Dependence Plots (PDPs) represent a class of 
visualisation-based techniques that define a global method able to visualise 
the effect of the values of a specific feature by marginalising all the other 
features. 

Along with t-SNE, PCA and Quasi Regression, in these techniques the 
explanation is directly inferred from the black box model, compared to 
surrogate models. These methods are categorised as illustrated in Figure 9.8. 

Whilst numerous methods were developed to explain the results, criteria 
to assess the explainability of a model are a fundamental and active area 
of research since several properties, such as casualty, target’s belief, or 
trustiness, cannot be easily formalised [57]. 

Complexity and sparsity represent two critical aspects of evaluating 
a model to define its interpretability. The Predictive, Descriptive, Rele­
vant (PDR) framework [58] proposes three desiderata for evaluating and 



210 Explainability and Interpretability Concepts for Edge AI Systems 

 
Te
ch
ni
qu

es
 

 I
nt
er
pr
et
ab
ili
ty

 a
nd

 E
xp

la
in
ab
ili
ty

 A
I

 E
xa
m
pl
e-
ba
se
d

an
d

Fe
at
ur
e-

9.
8 

 
F
ig
ur
e



9.4 Benchmarking 211 

constructing interpretations: predictive accuracy, descriptive accuracy, and 
relevancy. 

9.4 Benchmarking 

The effectiveness of interpretable and explainable AI (XAI) techniques is 
influenced by various factors, including the user, usage context, model type, 
data characteristics, and desired form of explanation. Several approaches have 
been introduced in the literature to analyse and measure such effectiveness, 
the performance, and impact of interpretable and explainable AI techniques 
in real-life applications. However, the definition of a standard set of measures 
for evaluationg the effectiveness of interpretable and explainable AI tech­
niques is still an open research problem, and there has yet to be an agreement 
on standard benchmarking methods. 

The lack of accords stems from the fact that a qualitative human-based 
evaluation of the explanation is often necessary to assess the explanation 
quality. Nevertheless, several research trends are oriented towards the def­
inition of quantitative approaches, enabling an automatic measurement of 
interpretable and explainable AI techniques, and allowing us to effectively 
compare different techniques [28]. 

It is therefore possible to distinguish two kinds of approaches to evaluate 
the effectiveness of interpretable and explainable AI techniques: i) quan­
titative evaluation methods, which involve creating an objective metric or 
benchmark to measure explanations without human involvement and that 
offer the advantage of facilitating comparisons between different explanation 
methods; ii) qualitative evaluation methods, which involve humans in evalu­
ating explanations and permit evaluating the beneficial effects of interpretable 
and explainable AI methods from the users’ perspective. 

Quantitative evaluation approaches can be classified according to differ­
ent taxonomies in the literature. As an example, [28] classifies evaluation 
approaches according to the type of application (images classifiers generating 
heatmaps, and natural language processing techniques). Moreover, recent 
studies propose the use of synthetically generated data with known properties 
to quantitatively evaluate the performance of interpretable and explainable 
AI methods [34]. However, generating realistic synthetic data with specific 
properties known a priori can be challenging for real application contexts. 
Together with classifying quantitative evaluation approaches, some work in 
the literature also review the measures used to evaluate their effectiveness. 
For example, [30] describes the following figures of assessments: 



212 Explainability and Interpretability Concepts for Edge AI Systems 

• Fidelity seeks to assess the accuracy of function f in emulating func­
tion b. Variations of fidelity exist, contingent upon the specific type of 
explainer being examined [31]. 

• Stability confirms that comparable instances yield consistent expla­
nations. The assessment of stability can be accomplished using the 
Lipschitz constant [32]. 

• Deletion involves eliminating the features that were deemed important 
by the explanation method f, observing how the performance of b deteri­
orates as a result. One of the deletion methods is Faithfulness [32], which 
seeks to confirm whether the relevance scores truly reflect significance: 
higher importance values are anticipated for attributes that substantially 
influence the ultimate prediction. 

• Insertion employs a complementary approach to deletion. Typically, 
both insertion and deletion evaluations are customised for specific types 
of explainers: Feature Importance explainers for tabular data, Saliency 
Maps for image data, and Sentence Highlighting for text data. 

• Monotonicity [33] can be viewed as a manifestation of an insertion 
approach. It assesses the impact of b by systematically introducing each 
attribute in ascending order of importance. In this scenario, the antic­
ipation is for the performance of the black-box model to progressively 
improve as more features are added, leading to monotonically increasing 
model performance. 

• Running time is the computational time needed to provide interpretations 
or explanations. The running time of the technique used to explain the 
decisions made by the model in real time and cloud applications can be 
a critical factor. It is important for systems to provide interpretations or 
explanations in a timely manner. 

Qualitative evaluation approaches can be classified according to whether 
they are designed to analyse explainable or interpretable AI methods. The 
qualitative analysis of explainable AI methods is mainly based on the 
statistical analysis of questionnaires submitted to human evaluation, which 
may be designed with different goals [29]: 

• Evaluate the a priori goodness of explanations. 
• Assess users’ satisfaction with explanations. 
• Uncover user’s mental model of an AI system. 
• Evaluate user’s curiosity or need for explanations. 
• Analyse the level of user’s trust and reliance on the AI. 
• Assess how the human-system work performs. 



9.5 Edge AI Explainability and Interpretability 213 

The qualitative analysis of interpretable AI methods is based on measures 
that can be systematised into three categories [30]: 

• Functionally-grounded measures, which analyse the impact of the sys­
tem in the considered application context. 

• Application-grounded evaluation methods, which require evaluations 
performed by the set of human experts for which the system has been 
designed. 

• Human-grounded measures, which assess interpretations using non-
expert humans. 

9.5 Edge AI Explainability and Interpretability 

Integrating IoT, edge computing and AI can revolutionise how intelligent 
devices interact and enable a new era of innovative applications. By bringing 
computation, analytics, and connectivity closer to the data source, edge AI 
technologies reduce latency, enhance privacy, optimise bandwidth, and enable 
the online/offline operation. 

Challenges such as limited computing resource, data quality and training, 
security and privacy, scalability, interoperability, ethical considerations, and 
explainability and interpretability must be addressed carefully. As these tech­
nology fields continue to advance, IoT, edge computing, and AI convergence 
are unlocking new opportunities, enabling intelligent decision-making and 
real-time insights at the edge. 

AI at the edge extends ethical concerns about biased decision-making, 
algorithmic transparency, and accountability to that environment. As the 
number of intelligent edge devices increases, it is necessary to address ethical 
considerations and ensure that edge AI systems are fair, transparent, and 
accountable while edge AI models are explainable and interpretable. Com­
pliance with legal regulations regarding data privacy, bias, and responsible 
AI usage is also crucial. 

In the literature, there are only a limited number of studies on edge 
AI interpretability and explainability [80, 83]. Most of the work considers 
autonomous driving technologies [17], preventive healthcare applications 
[18, 80], and IoT [19]. 

Considering autonomous driving technologies, the study on edge AI inter­
pretability and explainability regard different kinds of applications. There 
are methods for analysing images acquired from external cameras and Lidar 
sensors [20], and studies analysing the driver behaviour [21]. 



214 Explainability and Interpretability Concepts for Edge AI Systems 

In preventive healthcare applications, interpretability and explainability 
techniques can detect possible health problems, as well as assist healthcare 
experts and family members in making critical healthcare decisions [22]. 

In the context of IoT devices, interpretability and explainability can be 
used to achieve heterogeneous goals according to the considered applica­
tion scenario. For example, there are studies on edge AI interpretability 
and explainability for managing traffic [23], smart buildings [24], smart 
homes [25], environmental monitoring [26], and industrial control systems 
[27, 81, 82]. 

However, current studies on edge AI interpretability and explainability 
are limited to specific applications and do not propose a general approach for 
designing and developing interpretable and explainable AI technologies for 
the edge. This process is particularly challenging. In fact, developing edge AI 
solutions requires integrating edge AI hardware, software, AI stack building 
blocks techniques/methods/models and data addressed as a holistic edge AI 
design framework for the whole edge AI system. 

Edge AI interpretability and explainability must apply to the edge AI 
model and data, as illustrated in Figure 9.4. 

9.6 Challenges and Open Issues 

Edge AI models are implemented and run on devices at the edge of a 
network, enabling real-time data processing and analysis. Edge processing is 
characterised by constrained computing, memory, power budget, and latency 
resources. Edge AI interpretability manages the extent to which a cause and 
effect can be observed within an edge AI system. 

At the same time, explainability addresses how the internal mechanisms 
of an edge ML or DL system can be explained in human terms and repre­
sentations. AI explainable and interpretable methods and techniques provide 
additional processing requirements and affect the overall performance of the 
AI-based systems implemented at the edge. This section presents several 
challenges, open issues, and future research directions that must be addressed 
for a successful edge AI deployment. 

Edge AI model complexity vs interpretability and explainability is a 
challenge, considering AI decision-making must be transparent and under­
standable. Edge DL models are typically accurate but difficult to interpret. As 
a result, a trade-off between model complexity, interpretability, and explain-
ability may be accepted. Complex models, such as edge deep neural networks 
(DNNs), capture convoluted patterns in data and provide prime performance. 
DNNs act as black boxes, making interpreting their behaviour or internal 



9.6 Challenges and Open Issues 215 

decisions challenging. AI models, such as decision trees or linear regression, 
are more straightforward and interpretable but offer lower performance on 
complex tasks and are more difficult to create. 

The open issue is how to find the optimal balance to develop AI models 
that are powerful and robust enough to provide accurate results and yet 
sufficiently simple to be understandable. In many cases, this requires hybrid 
approaches, developing new edge AI interpretability and explainability tech­
niques and methods, or accepting unavoidable trade offs in either explain-
ability/interpretability or performance. In summary, achieving interpretability 
and explainability comes at the expense of edge AI model deployment. Sim­
pler models that are easy to interpret may not perform as well as their complex 
replicas. Balancing the demand for explanation and interpretation with the 
requirement for models offering high-level performance is challenging. 

Edge AI deployment and the management of AI models on many edge 
devices can be challenging considering the integration of edge AI explainable 
and interpretable methods, as it could be difficult to ensure that models 
perform optimally across all devices. Resource-constrained edge devices can 
also make running complex updates or retraining models challenging. This 
can be a significant problem as it is essential to monitor the performance 
of edge AI models and their explainable or interpretable surrogate models 
(twins) and implement regular maintenance, upgrades, and updates to prevent 
model degradation. 

A lack of expertise in the field of edge AI explainability and interpretabil­
ity will limit the adoption and deployment of edge AI. This can comprise 
the technical aspects of edge AI explainability and interpretability, such as 
how to build and optimise efficient explainable and interpretable models 
for edge devices and understanding the broader ramifications of using edge 
AI, such as real-time processing, latency, and security concerns. A lack of 
expertise can make it difficult to effectively design edge AI explainable 
and interpretable models and utilise them in edge AI applications to meet 
customers’ requirements. It can also make it challenging for edge AI model 
providers and users to adequately evaluate the potential risks and benefits 
of using edge AI, limiting their ability to make informed decisions about 
possible adoption and deployment of edge AI. 

Developing and deploying edge AI is a time-consuming and costly 
process and implies a trade-off between explainable and interpretable fea­
tures and performance. Difficulties are associated with integrating edge AI 
explainable and interpretable models with edge devices, especially the ones 
with limited resources. The complexity and time associated with deploying 
edge AI explainable and interpretable models is a challenge, especially 



216 Explainability and Interpretability Concepts for Edge AI Systems 

when dealing with large models, requiring extensive tuning and optimisation. 
Deploying, managing, and maintaining edge AI explainable and interpretable 
models on many edge devices is time-consuming and requires significant 
resources. 

Updating and upgrading the edge AI explainable and interpretable models 
aligned with the improvements and advancements of edge AI models is 
essential to extend the lifetime of edge AI solutions. Adapting the features 
to the latest market advancements can be challenging, as edge AI solution 
providers must plan for incorporating the newest edge AI explainable and 
interpretable technology into their developments to stay competitive. 

Edge AI explainability and interpretability is a relatively unexplored field 
with no standard definitions, established mature methods and techniques, best 
practices, or benchmarking methods. This can make it difficult for edge AI 
designers to know which approaches to adopt and how to measure their per­
formance and efficiency. The choice of the approach depends on the specific 
edge AI model, its complexity, the intended solution, and the application’s 
requirements. Combining different techniques may provide a more compre­
hensive interpretability and explainability solution for edge AI systems. 

9.7 Conclusion 

Explainable and interpretable AI models are applied to AI-based systems to 
complement them, facilitating the parallel use of data treatment, knowledge 
processing algorithms and analysable, and answerable implementations. This 
allows systems to simultaneously process relational and non-relational data 
from databases and sources that generate data in real-time, such as IoT 
sensors, and analyse the decision and outputs of the AI models. 

The advancements in AI and edge AI require data analysis systems with 
AI algorithms and the parallel use of mathematical models for the creation 
of self-explanatory, self-answerable models that incorporate, for example, 
convolutional neural networks, deep symbolic learning, fuzzy logic, compart­
mental mathematical models, Bayesian networks, dynamic data assimilation 
models, and other models from the ML and DL domains. 

The concepts of AI and edge AI explainability and interpretability are 
presented alongside emphasising that interpretability focuses on understand­
ing the inner workings of the models. By contrast, explainability focuses 
on explaining the decisions made. As a result of the differences between 
the two concepts, interpretability requires more significant detailing than 
explainability. 



9.7 Conclusion 217 

The field of edge AI explainability and interpretability is evolving rapidly, 
and new approaches, methods and techniques are being developed to improve 
the explainability and interpretability of AI models and make them more 
transparent and more functional by improving visualisation methods, decom­
position techniques, explanations based on examples, and ante-hoc and 
post-hoc approaches. 

Edge AI involves deploying AI models on devices with inherent resource 
constraints, such as limited computing power, memory, and latency. Achiev­
ing a clear understanding of causality within these systems and making 
their internal workings and outputs comprehensible to humans often neces­
sitates the use of hybrid approaches or the acceptance of trade-offs, with 
performance typically taking precedence. 

The trade-offs are essential to edge AI explainability and interpretability 
as performance, energy consumption, complexity, and speed are constantly 
optimised against each other in resource-constrained edge devices. This is 
even more relevant considering the need for regular AI model updatability 
and upgradability. 

Another essential consideration is that AI and edge AI models with 
advanced explainability or interpretability are mainly required in high-
risk AI-based applications. Highly explainable/interpretable models can be 
used to assess AI-based systems by an independent third party and make 
another party accountable or liable while building trust between designers, 
developers, and users. 

Currently, standardised definitions, mature methods, best practices, and 
benchmarking techniques are lacking in the field of edge AI explainability 
and interpretability. Nevertheless, there is an ongoing trend to explore com­
prehensive solutions that strike a balance between complexity, transparency, 
and the specific requirements of various applications. Addressing these chal­
lenges also requires the implementation of rigorous regulations and robust 
data quality validation. These efforts are becoming increasingly crucial as the 
networks of interconnected devices expand, adding complexity to the entire 
systems and emphasising the need for transparency. 

This article attempts to classify and structure the existing concepts, offer­
ing the taxonomy needed to understand the multi-dimensionality of elements 
that must be considered, such as data (e.g., data type, data sets, and data 
use, encompassing – training, validation, testing, and inference, various AI 
model methods (e.g., model specific, model agnostic, etc.), extend (e.g., 
local, global) and the quality and behavioural properties (e.g., causality, 
transferability, fairness, informativeness, etc.). 



218 Explainability and Interpretability Concepts for Edge AI Systems 

In this context, edge AI explainability and interpretability solutions aim 
to ensure that AI models are transparent, accountable, and compliant with 
regulations, increasing user confidence and facilitating their adoption in 
various industries and applications. 

Acknowledgements 

This research was conducted as part of the EdgeAI “Edge AI Technologies for 
Optimised Performance Embedded Processing” project, which has received 
funding from KDT JU under grant agreement No 101097300. The KDT 
JU receives support from the European Union’s Horizon Europe research 
and innovation program and Austria, Belgium, France, Greece, Italy, Latvia, 
Luxembourg, Netherlands, and Norway. 

References 

[1] A. Das and P. Rad. Opportunities and Challenges in Explainable Artifi­
cial Intelligence (XAI): A Survey. Available at: https://doi.org/10.485 
50/arXiv.2006.11371 

[2] F. K. Došilovi´ ci´ c, “Explainable artificial intel­c, M. Brˇ c and N. Hlupi´
ligence: A survey,” 2018 41st International Convention on Informa­
tion and Communication Technology, Electronics and Microelectronics 
(MIPRO), Opatija, Croatia, 2018, pp. 0210-0215. Available at: https: 
//doi.org/10.23919/MIPRO.2018.8400040 

[3] European Parliament. Artificial Intelligence Act. P9_TA(2023)0236. 
Online at: https://www.europarl.europa.eu/doceo/document/TA-9-2 
023-0236_EN.pdf 

[4] K. Gade, S.C.Geyik, K. Kenthapadi, V. Mithal and A. Taly. Explainable 
AI in Industry, KDD ’19: Proceedings of the 25th ACM SIGKDD 
International Conference on Knowledge Discovery & Data Mining, July 
2019, pp. 3203–3204. Available at: https://doi.org/10.1145/3292500.33 
32281 

[5] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G-Z. Yang. 
“XAI—Explainable artificial intelligence.” Science robotics 4, no. 37, 
2019. Available at: https://openaccess.city.ac.uk/id/eprint/23405/8/ 

[6] S. R. Islam, W.	 Eberle, S. K. Ghafoor, and M. Ahmed. Explainable 
Artificial Intelligence Approaches: A Survey. Available at: https://do 
i.org/10.48550/arXiv.2101.09429 

https://www.doi.org/10.48550/arXiv.2101.09429
https://www.openaccess.city.ac.uk
https://www.doi.org/10.1145/3292500.33
https://www.europarl.europa.eu
https://www.doi.org/10.48550/arXiv.2006.11371
https://www.doi.org/10.48550/arXiv.2006.11371
https//www.doi.org/10.23919/MIPRO.2018.8400040
https//www.doi.org/10.23919/MIPRO.2018.8400040
https://www.europarl.europa.eu
https://www.doi.org/10.1145/3292500.33
https://www.doi.org/10.48550/arXiv.2101.09429


References 219 

[7] J. King, B. Zhang, H. Mahboobi and S. Roy. “Model Explainability with 
AWS Artificial Intelligence and Machine Learning Solutions”. AWS 
Whitepaper. 2021. Available at: https://docs.aws.amazon.com/pdfs 
/whitepapers/latest/model-explainability-aws-ai-ml/model-explainabil 
ity-aws-ai-ml.pdf?did=wp_card&trk=wp_card 

[8] P. Linardatos, V. Papastefanopoulos, S. Kotsiantis. Explainable AI: A 
Review of Machine Learning Interpretability Methods. Entropy. 2021; 
23(1):18. Available at: https://doi.org/10.3390/e23010018 

[9] D. Minh, H.X. Wang, Y.F. Li, et al. Explainable artificial intelligence: a 
comprehensive review. Artif Intell Rev 55, 3503–3568 (2022). Available 
at: https://doi.org/10.1007/s10462-021-10088-y 

[10] M.Z. Naser, An engineer’s guide to eXplainable Artificial Intelligence 
and Interpretable Machine Learning: Navigating causality, forced good­
ness, and the false perception of inference, Automation in Construction, 
Volume 129, 2021, 103821, ISSN 0926-5805. Available at: https://doi. 
org/10.1016/j.autcon.2021.103821 

[11] OECD AI Principles overview. Available at: https://oecd.ai/en/ai-princi 
ples 

[12] OECD AI Principle 1.4. Robustness, security and safety. Available at: 
https://oecd.ai/en/dashboards/ai-principles/P8 

[13] G.	 P. Reddy and Y. V. P. Kumar, “Explainable AI (XAI): 
Explained,” 2023 IEEE Open Conference of Electrical, Electronic 
and Information Sciences (eStream), Vilnius, Lithuania, 2023, pp. 1-6. 
Available at: https://doi.org/10.1109/eStream59056.2023.10134984 

[14] D. Shin, The effects of explainability and causability on perception, 
trust, and acceptance: Implications for explainable AI, International 
Journal of Human-Computer Studies, Volume 146, 2021, 102551, ISSN 
1071-5819. Available at: https://doi.org/10.1016/j.ijhcs.2020.102551 

[15] V. Vishwarupe, P. M. Joshi, N. Mathias, S. Maheshwari, S. Mhaisalkar, 
and V. Pawar, Explainable AI and Interpretable Machine Learning: A 
Case Study in Perspective, Procedia Computer Science, Volume 204, 
2022, pp. 869-876, ISSN 1877-0509. Available at: https://doi.org/10.1 
016/j.procs.2022.08.105 

[16] F. Xu, H. Uszkoreit, Y. Du, W, Fan, D. Zhao, and J. Zhu, J. (2019). 
Explainable AI: A Brief Survey on History, Research Areas, Approaches 
and Challenges. In: Tang, J., Kan, MY., Zhao, D., Li, S., Zan, H. 
(eds) Natural Language Processing and Chinese Computing. NLPCC 
2019. Lecture Notes in Computer Science, vol 11839. Springer, Cham. 
Available at: https://doi.org/10.1007/978-3-030-32236-6_51 

https://www.doi.org/10.1007/978-3-030-32236-6_51
https://www.doi.org/10.1016/j.procs.2022.08.105
https://www.doi.org/10.1016/j.ijhcs.2020.102551
https://www.doi.org/10.1109/eStream59056.2023.10134984
https://www.oecd.ai
https://www.oecd.aiples
https://www.doi.org/10.1016/j.autcon.2021.103821
https://www.doi.org/10.1007/s10462-021-10088-y
https://www.doi.org/10.3390/e23010018
https://www.docs.aws.amazon.com
https://www.docs.aws.amazon.com
https://www.docs.aws.amazon.com
https://www.doi.org/10.1016/j.autcon.2021.103821
https://www.oecd.aiples
https://www.doi.org/10.1016/j.procs.2022.08.105


220 Explainability and Interpretability Concepts for Edge AI Systems 

[17] D. Omeiza, H. Webb, M. Jirotka and L. Kunze,	 Explanations in 
Autonomous Driving: A Survey. IEEE Transactions on Intelligent 
Transportation Systems, vol. 23, no. 8, pp. 10142-10162, Aug. 2022, 
Available at: https://doi.org/10.1109/TITS.2021.3122865 

[18] F. Di Martino, F. Delmastro. Explainable AI for clinical and remote 
health applications: a survey on tabular and time series data. Artificial 
Intelligence Review, vol. 56, pp. 5261–5315, 2023, Available at: https: 
//doi.org/10.1007/s10462-022-10304-3 

[19] İ. Kök, F. Y. Okay, Ö. Muyanlı and S. Özdemir, Explainable Artificial 
Intelligence (XAI) for Internet of Things: A Survey. IEEE Internet of 
Things Journal, vol. 10, no. 16, pp. 14764-14779, 15 Aug.15, 2023. 
Available at: https://doi.org/10.1109/JIOT.2023.3287678 

[20] M. Abukmeil, A. Genovese, V. Piuri, F. Rundo and F. Scotti, “Towards 
Explainable Semantic Segmentation for Autonomous Driving Systems 
by Multi-Scale Variational Attention,” 2021 IEEE International Confer­
ence on Autonomous Systems (ICAS), Montreal, QC, Canada, 2021, pp. 
1-5, Available at: https://doi.org/10.1109/ICAS49788.2021.9551172 

[21] M. P.	 S. Lorente, E. M. Lopez, L. A. Florez, A. L. Espino, J. A. I. 
Martínez, and A. S. de Miguel. Explaining Deep Learning-Based Driver 
Models, Applied Sciences, vol. 11, no. 8, p. 3321, Apr. 2021, Available 
at: https://doi.org/10.3390/app11083321 

[22] R.-K. Sheu and M. S. Pardeshi, A Survey on Medical Explainable AI 
(XAI): Recent Progress, Explainability Approach, Human Interaction 
and Scoring System, Sensors, vol. 22, no. 20, p. 8068, Oct. 2022, 
Available at: https://doi.org/10.3390/s22208068 

[23] A. R. Javed, W. Ahmed, S. Pandya, P. K. R. Maddikunta, M. Alazab, 
and T. R. Gadekallu, A Survey of Explainable Artificial Intelligence for 
Smart Cities, Electronics, vol. 12, no. 4, p. 1020, Feb. 2023, Available 
at: https://doi.org/10.3390/electronics12041020 

[24] R. Machlev, L. Heistrene, M. Perl, K.Y. Levy, J. Belikov, S. Mannor, Y. 
Levron, Explainable Artificial Intelligence (XAI) techniques for energy 
and power systems: Review, challenges and opportunities, Energy and 
AI, vol. 9, 2022, Available at: https://doi.org/10.1016/j.egyai.2022.100 
169 

[25] A. Dobrovolskis, E. Kazanaviˇ	 e, Building XAI­cius, and L. Kižauskien˙
Based Agents for IoT Systems, Applied Sciences, vol. 13, no. 6, p. 4040, 
Mar. 2023, Available at https://doi.org/10.3390/app13064040 

[26] I. Kalamaras, I. Xygonakis, K. Glykos,	 S. Akselsen, A. Munch-
Ellingsen, H. T. Nguyen, A. J. Lepperod, K. Bach, K. Votis, D. Tzovaras. 
Visual analytics for exploring air quality data in an AI-enhanced IoT 

https://www.doi.org/10.3390/app13064040
https://www.doi.org/10.1016/j.egyai.2022.100169
https://www.doi.org/10.3390/electronics12041020
https://www.doi.org/10.3390/s22208068
https://www.doi.org/10.3390/app11083321
https://www.doi.org/10.1109/ICAS49788.2021.9551172
https://www.doi.org/10.1109/JIOT.2023.3287678
https://www.doi.org/10.1109/TITS.2021.3122865
https//www.doi.org/10.1007/s10462-022-10304-3
https//www.doi.org/10.1007/s10462-022-10304-3
https://www.doi.org/10.1016/j.egyai.2022.100169


References 221 

environment. Proceedings of the 11th International Conference on 
Management of Digital EcoSystems (MEDES ’19). Association for 
Computing Machinery, New York, NY, USA, 103–110, 2020, Available 
at https://doi.org/10.1145/3297662.3365816 

[27] T.-T.-H. Le, A. T.	 Prihatno, Y. E. Oktian, H. Kang, and H. Kim, 
Exploring Local Explanation of Practical Industrial AI Applications: A 
Systematic Literature Review. Applied Sciences, vol. 13, no. 9, p. 5809, 
May 2023, Available at https://doi.org/10.3390/app13095809 

[28] G. Ras, N. Xie, M. van Gerven, Marcel, D. Doran, Explainable Deep 
Learning: A Field Guide for the Uninitiated. Journal of Artificial Intel­
ligence Research, vol. 73, pp.329-397, 2022, Available at https://doi.or 
g/10.1613/jair.1.13200 

[29] R. R. Hoffman, S. T. Mueller Shane, G. Klein, J. Litman, Measures for 
explainable AI: Explanation goodness, user satisfaction, mental models, 
curiosity, trust, and human-AI performance. Frontiers in Computer Sci­
ence, vol. 5, 2023, Available at https://doi.org/10.3389/fcomp.2023.109 
6257 

[30] F. Bodria, F. Giannotti, R. Guidotti, et al. Benchmarking and survey of 
explanation methods for black box models. Data Mining and Knowledge 
Discovery, vol.37, pp. 1719–1778, 2023, Available at https://doi.org/10 
.1007/s10618-023-00933-9 

[31] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri and F. 
Turini, Factual and Counterfactual Explanations for Black Box Decision 
Making. IEEE Intelligent Systems, vol. 34, no. 6, pp. 14-23, 1 Nov.-Dec. 
2019, Available at https://doi.org/10.1109/MIS.2019.2957223 

[32] D. Alvarez-Melisì, T. S. Jaakkola. Towards robust interpretability with 
self-explaining neural networks. Proc. of the 32nd International Con­
ference on Neural Information Processing Systems (NIPS’18). Curran 
Associates Inc., Red Hook, NY, USA, pp. 7786–7795, 2018, Available 
at https://dl.acm.org/doi/10.5555/3327757.3327875 

[33] R. Luss, P.-Y. Chen, A. Dhurandhar, P. Sattigeri, Y. Zhang, K. Shan­
mugam, C.-C. Tu, Leveraging Latent Features for Local Explanations. 
Proc. of the 27th ACM SIGKDD Conference on Knowledge Discovery 
& Data Mining (KDD ’21). Association for Computing Machinery, New 
York, NY, USA, pp. 1139–1149, 2021, Available at https://doi.org/10.1 
145/3447548.3467265 

[34] R. Brandt, D. Raatjens, G. Gaydadjiev,	 Precise Benchmarking of 
Explainable AI Attribution Methods, arXiv e-prints, 2023, Available at 
https://doi.org/10.48550/arXiv.2308.03161 

https://www.doi.org/10.48550/arXiv.2308.03161
https://www.doi.org/10.1145/3447548.3467265
https://www.dl.acm.org/doi/10.5555/3327757.3327875
https://www.doi.org/10.1109/MIS.2019.2957223
https://www.doi.org/10.1007/s10618-023-00933-9
https://www.doi.org/10.3389/fcomp.2023.1096257
https://www.doi.org/10.1613/jair.1.13200
https://www.doi.org/10.3390/app13095809
https://www.doi.org/10.1145/3297662.3365816
https://www.doi.org/10.1613/jair.1.13200
https://www.doi.org/10.3389/fcomp.2023.1096257
https://www.doi.org/10.1007/s10618-023-00933-9
https://www.doi.org/10.1145/3447548.3467265


222 Explainability and Interpretability Concepts for Edge AI Systems 

[35] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Müller (2019). 
Causability and explainability of artificial intelligence in medicine. 
WIREs Data Mining and Knowledge Discovery, 9(4). Available at: 
https://doi.org/10.1002/widm.1312 

[36] X.-Q. Chen, C.-Q. Ma, Y.-S. Ren, Y.-T.	 Lei, N.Q.A. Huynh, and S. 
Narayan (2023). Explainable artificial intelligence in finance: A bib­
liometric review. Finance Research Letters, 56, 104145. Available at: 
https://doi.org/10.1016/j.frl.2023.104145 

[37] R. Setchi, M.B. Dehkordi, and J.S. Khan (2020). Explainable Robotics 
in Human-Robot Interactions. Procedia Computer Science, 176, 3057­
3066. Available at: https://doi.org/10.1016/j.procs.2020.09.198 

[38] M. Ryo (2022). Explainable artificial intelligence and interpretable 
machine learning for agricultural data analysis. Artificial Intelligence 
in Agriculture, 6, 257-265. Available at: https://doi.org/10.1016/j.aiia.2 
022.11.003 

[39] D. Gunning, and D. Aha (2019). DARPA’s Explainable Artificial Intel­
ligence (XAI) Program. AI Magazine, 40(2), 44-58. Available at: https: 
//doi.org/10.1609/aimag.v40i2.2850 

[40] M. Liao, S.S. Sundar, and J.B. Walther (2022). User Trust in Recom­
mendation Systems: A comparison of Content-Based, Collaborative and 
Demographic Filtering. In Proceedings of the 2022 CHI Conference on 
Human Factors in Computing Systems (CHI ’22), Article 486, 1–14. 
Available at: https://doi.org/10.1145/3491102.3501936 

[41] M. Ebers (2021). Regulating Explainable AI in the European Union. An 
Overview of the Current Legal Framework(s). Nordic Yearbook of Law 
and Informatics 2020: Law in the Era of Artificial Intelligence. Available 
at: http://dx.doi.org/10.2139/ssrn.3901732 

[42] E. Tjoa, and C. Guan (2021). A Survey on Explainable Artificial Intel­
ligence (XAI): Toward Medical XAI. IEEE Transactions on Neural 
Networks and Learning Systems, 32(11), 4793-4813. Available at: https: 
//doi.org/10.1109/TNNLS.2020.3027314 

[43] A. Kirimtat, O. Krejcar, A. Kertesz, and M.F. Tasgetiren (2020). Future 
Trends and Current State of Smart City Concepts: A Survey. IEEE 
Access, 8, 86448-86467. Available at: https://doi.org/10.1109/ACCESS 
.2020.2992441 

[44] S. Thys, W.	 V. Ranst and T. Goedemé (2019). Fooling Automated 
Surveillance Cameras: Adversarial Patches to Attack Person Detec­
tion. IEEE/CVF Conference on Computer Vision and Pattern Recog­
nition Workshops (CVPRW), Long Beach, CA, USA, 2019, pp. 49-55. 
Available at: https://doi.org/10.1109/CVPRW.2019.00012 

https://www.doi.org/10.1109/CVPRW.2019.00012
https://www.doi.org/10.1109/ACCESS.2020.2992441
http://www.dx.doi.org/10.2139/ssrn.3901732
https://www.doi.org/10.1145/3491102.3501936
https://www.doi.org/10.1016/j.aiia.2022.11.003
https://www.doi.org/10.1016/j.procs.2020.09.198
https://www.doi.org/10.1016/j.frl.2023.104145
https://www.doi.org/10.1002/widm.1312
https://www.doi.org/10.1016/j.aiia.2022.11.003
https://www.doi.org/10.1609/aimag.v40i2.2850
https://www.doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1109/TNNLS.2020.3027314
https://www.doi.org/10.1109/ACCESS.2020.2992441


References 223 

[45] E. Balkir, S. Kiritchenko, I. Nejadgholi, and Kathleen Fraser (2022). 
Challenges in Applying Explainability Methods to Improve the Fairness 
of NLP Models. In Proceedings of the 2nd Workshop on Trustworthy 
Natural Language Processing (TrustNLP 2022), pages 80–92, Seattle, 
U.S.A.. Association for Computational Linguistics. Available at: http: 
//dx.doi.org/10.18653/v1/2022.trustnlp-1.8 

[46] Mandeep, A. Agarwal, A. Bhatia, A. Malhi, P. Kaler and H. S. Pannu. 
(2022). Machine Learning Based Explainable Financial Forecasting. 4th 
International Conference on Computer Communication and the Internet 
(ICCCI), Chiba, Japan, 2022, pp. 34-38. Available at: https://doi.org/10 
.1109/ICCCI55554.2022.9850272 

[47] S. K. Jagatheesaperumal, Q. -V. Pham, R. Ruby, Z. Yang, C. Xu and Z. 
Zhang, “Explainable AI Over the Internet of Things (IoT): Overview, 
State-of-the-Art and Future Directions,” in IEEE Open Journal of the 
Communications Society, vol. 3, pp. 2106-2136, 2022. Available at: ht 
tps://doi.org/10.1109/OJCOMS.2022.3215676 

[48] K. Simonyan, A. Vedaldi, and A. Zisserman (2014). Deep Inside 
Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps. In 2nd International Conference on Learning Represen­
tations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Workshop 
Track Proceedings. Available at: https://doi.org/10.48550/arXiv.1312. 
6034 

[49] M.D. Zeiler, R. Fergus (2014). Visualizing and Understanding Con­
volutional Networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, 
T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes 
in Computer Science, vol 8689. Springer, Cham. Available at: https: 
//doi.org/10.1007/978-3-319-10590-1_53 

[50] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. 
Pedreschi (2018). A Survey of Methods for Explaining Black Box 
Models. ACM Comput. Surv. 51, 5, Article 93 (September 2019), 42 
pages. Available at: https://doi.org/10.1145/3236009 

[51] C. Molnar (2019). Interpretable machine learning. A Guide for Making 
Black Box Models Explainable. Available at: https://christophm.github. 
io/interpretable-ml-book/ 

[52] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J.M. Alonso-Moral, 
R. Confalonieri, R. Guidotti, J. Del Ser, N. Díaz-Rodríguez, F. Herrera 
(2023). Explainable Artificial Intelligence (XAI): What we know and 
what is left to attain Trustworthy Artificial Intelligence. Information 
Fusion, Volume 99, 2023, 101805, ISSN 1566-2535. Available at: https: 
//doi.org/10.1016/j.inffus.2023.101805 

https://www.christophm.github.io
https://www.doi.org/10.1145/3236009
https://www.doi.org/10.48550/arXiv.13126034
https://www.doi.org/10.1109/ICCCI55554.2022.9850272
http://www.dx.doi.org/10.18653/v1/2022.trustnlp-1.8
http://www.dx.doi.org/10.18653/v1/2022.trustnlp-1.8
https://www.doi.org/10.1109/ICCCI55554.2022.9850272
https://www.doi.org/10.1109/OJCOMS.2022.3215676
https://www.doi.org/10.1109/OJCOMS.2022.3215676
https://www.doi.org/10.48550/arXiv.13126034
https://www.doi.org/10.1007/978-3-319-10590-1_53
https://www.doi.org/10.1007/978-3-319-10590-1_53
https://www.christophm.github.io
https://www.doi.org/10.1016/j.inffus.2023.101805
https://www.doi.org/10.1016/j.inffus.2023.101805


224 Explainability and Interpretability Concepts for Edge AI Systems 

[53] F.	 Doshi-Velez and B. Kim, “Towards A Rigorous Science of Inter­
pretable Machine Learning”, arXiv e-prints, 2017. Available at: https: 
//doi.org/10.48550/arXiv.1702.08608 

[54] T. Hastie and R. Tibshirani (1986). Generalized Additive Models. Sta­
tistical Science 1, no. 3, 297–310. Available at: http://www.jstor.org/st 
able/2245459 

[55] M.T. Ribeiro, S. Singh, and C. Guestrin (2016). “Why should I trust 
you?: Explaining the Predictions of Any Classifier.” In Proceedings 
of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, Kdd San Francisco, CA, 1135–44. New 
York, NY: Association for Computing Machinery 

[56] S. M. Lundberg and S.-I.Lee,	 “A Unified Approach to Interpreting 
Model Predictions”, Advances in Neural Information Processing Sys­
tems (NIPS), 2017, pp. 4765–4774. Available at: https://dl.acm.org/doi 
/10.5555/3295222.3295230 

[57] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning 
classifiers through diverse counterfactual explanations”, In Proceedings 
of the 2020 Conference on Fairness, Accountability, and Transparency 
(FAccT), 2020, pp. 607–617. Available at: https://doi.org/10.1145/3351 
095.3372850 

[58] W.J. Murdoch, C. Singh, K. Kumbier,	 R. Abbasi-Asl, and B. Yu 
(2019). Definitions, methods, and applications in interpretable machine 
learning, Proceedings of the National Academy of Sciences, 2019. 
Available at: https://doi.org/10.1073/pnas.1900654116 

[59] G. Plumb, D. Molitor, and A. Talwalkar (2018). Model Agnostic Super­
vised Local Explanations. Neural Information Processing Systems. 

[60] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. 
Batra (2017). Grad-CAM: Visual Explanations from Deep Networks via 
Gradient-Based Localization. 2017 IEEE International Conference on 
Computer Vision (ICCV). Available at: https://doi.org/10.1109/ICCV.2 
017.74 

[61] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important fea­
tures through propagating activation differences”, In Proceedings of 
the 34th International Conference on Machine Learning - Volume 70 
(ICML), 2017, pp. 3145–3153. Available at: https://dl.acm.org/doi/10. 
5555/3305890.3306006 

[62] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smooth­
grad: removing noise by adding noise”, In Proceedings of the 2017 
International Conference on Machine Learning (ICML), Workshop on 

https://www.dl.acm.org
https://www.doi.org/10.1109/ICCV.2017.74
https://www.doi.org/10.1073/pnas.1900654116
https://www.doi.org/10.1145/3351095.3372850
https://www.dl.acm.org
http://www.www.jstor.org
https://www.doi.org/10.48550/arXiv.1702.08608
https://www.doi.org/10.48550/arXiv.1702.08608
http://www.www.jstor.org
https://www.dl.acm.org
https://www.doi.org/10.1145/3351095.3372850
https://www.doi.org/10.1109/ICCV.2017.74
https://www.dl.acm.org


References 225 

Visualization for Deep Learning. Available at: https://arxiv.org/abs/17 
06.03825 

[63] J. Friedman, T.	 Hastie, and R. Tibshirani (2001). The Elements Of 
Statistical Learning. Springer, New York. Available at: https://web.st 
anford.edu/Ÿhastie/ElemStatLearn/printings/ESLIIprint12.pdf 

[64] T. Jiang and A.B. Owen, “Quasi-regression for visualization and inter­
pretation of black box functions”, 2002, Stanford University. Available 
at: https://artowen.su.domains/reports/qregvis.pdf 

[65] P. Cortez and M.J. Embrechts (2011). Opening black box data mining 
models using sensitivity analysis. In Computational Intelligence and 
Data Mining (CIDM), 2011 IEEE Symposium on. IEEE. Available at: 
https://doi.org/10.1109/CIDM.2011.5949423 

[66] Z. J. Wang et al., “CNN Explainer: Learning Convolutional Neural 
Networks with Interactive Visualization,” in IEEE Transactions on Visu­
alization and Computer Graphics, vol. 27, no. 2, pp. 1396-1406, Feb. 
2021. Available at: https://doi.org/10.1109/TVCG.2020.3030418 

[67] B. K. Iwana, R. Kuroki and S. Uchida, “Explaining Convolutional 
Neural Networks using Softmax Gradient Layer-wise Relevance Propa­
gation,” 2019 IEEE/CVF International Conference on Computer Vision 
Workshop (ICCVW), Seoul, Korea (South), 2019, pp. 4176-4185. 
Available at: https://doi.org/10.1109/ICCVW.2019.00513 

[68] S. Albawi, T.	 A. Mohammed and S. Al-Zawi, “Understanding of 
a convolutional neural network”, 2017 International Conference on 
Engineering and Technology (ICET), Antalya, Turkey, 2017, pp. 1–6. 
Available at: https://doi.org/10.1109/ICEngTechnol.2017.8308186 

[69] T. Evans, C. O. Retzlaff, C. Geißler, M. Kargl, M. Plass, H. Müller, T.R. 
Kiehl, N. Zerbe, and A. Holzinger (2022). The explainability paradox: 
Challenges for xAI in digital pathology. Future Generation Computer 
Systems, Volume 133. Available at: https://doi.org/10.1016/j.future.202 

[70] Hinton, G., Vinyals, O., and Dean, J.. Distilling the Knowledge in a 
Neural Network. ArXiv, 2015. Available at: 10.48550/arXiv.1503.02531 

[71] Martens, D., Huysmans, J., Setiono, R., Vanthienen, J., Baesens, B. 
(2008). Rule Extraction from Support Vector Machines: An Overview 
of Issues and Application in Credit Scoring. In: Diederich, J. (eds) Rule 
Extraction from Support Vector Machines. Studies in Computational 
Intelligence, vol 80. Springer, Berlin, Heidelberg. Available at: https: 
//doi.org/10.1007/978-3-540-75390-2_2 

[72] Núñez, H., Angulo, C. & Català, A. Rule-Based Learning Systems 
for Support Vector Machines. Neural Process Lett 24, 1–18 (2006). 
Available at: https://doi.org/10.1007/s11063-006-9007-8 

https://www.doi.org/10.1007/s11063-006-9007-8
https://www.doi.org/10.1016/j.future.202
https://www.doi.org/10.1109/ICEngTechnol.2017.8308186
https://www.doi.org/10.1109/ICCVW.2019.00513
https://www.doi.org/10.1109/TVCG.2020.3030418
https://www.doi.org/10.1109/CIDM.2011.5949423
https://www.artowen.su.domains
https://www.web.stanford.edu
https://www.arxiv.org
https://www.arxiv.org
https://www.web.stanford.edu
https://www.doi.org/10.1007/978-3-540-75390-2_2


226 Explainability and Interpretability Concepts for Edge AI Systems 

[73] P. Cortez and M. J. Embrechts, “Opening black box Data Mining models 
using Sensitivity Analysis,” 2011 IEEE Symposium on Computational 
Intelligence and Data Mining (CIDM), Paris, France, 2011, pp. 341-348. 
Available at: https://doi.org/10.1109/CIDM.2011.5949423 

[74] Alex Goldstein, Adam Kapelner, Justin Bleich & Emil Pitkin (2015) 
Peeking Inside the Black Box: Visualizing Statistical Learning With 
Plots of Individual Conditional Expectation, Journal of Computational 
and Graphical Statistics, 24:1, 44-65. Available at: https://doi.org/10.1 
080/10618600.2014.907095 

[75] J. Tan, M. Ung, C. Cheng, and C.S. Greene, “Unsupervised feature 
construction and knowledge extraction from genome-wide assays of 
breast cancer with denoising autoencoders”, Pacific Symposium on 
Biocomputing vol. 20, 2015, pp. 132–43. Available at: https://doi.or 
g/10.1142/9789814644730_0014 

[76] Goebel, R. et al. (2018). Explainable AI: The New 42? In: Holzinger, 
A., Kieseberg, P., Tjoa, A., Weippl, E. (eds) Machine Learning and 
Knowledge Extraction. CD-MAKE 2018. Lecture Notes in Computer 
Science (), vol 11015. Springer, Cham. Available at: https://doi.org/10 
.1007/978-3-319-99740-7_21 

[77] A. Datta, S. Sen and Y.	 Zick, “Algorithmic Transparency via Quan­
titative Input Influence: Theory and Experiments with Learning Sys­
tems,” 2016 IEEE Symposium on Security and Privacy (SP), San Jose, 
CA, USA, 2016, pp. 598-617, Available at: https://doi.org/10.1109/SP 
.2016.42 

[78] P. W. Koh and P. Liang, “Understanding black-box predictions via influ­
ence functions”, In Proceedings of the 34th International Conference on 
Machine Learning (ICML), Volume 70, pp. 1885–1894. Available at: 
https://dl.acm.org/doi/10.5555/3305381.3305576 

[79] R. El Shawi, Y. Sherif, M. Al-Mallah and S. Sakr, “Interpretability in 
HealthCare A Comparative Study of Local Machine Learning Inter­
pretability Techniques,” 2019 IEEE 32nd International Symposium on 
Computer-Based Medical Systems (CBMS), Cordoba, Spain, 2019, pp. 
275-280. Available at: https://doi.org/0.1109/CBMS.2019.00065. 

[80] A. Yadu, P. K. Suhas and N. Sinha, “Class Specific Interpretability in 
CNN Using Causal Analysis,” 2021 IEEE International Conference on 
Image Processing (ICIP), Anchorage, AK, USA, 2021, pp. 3702-3706. 
Available at: https://doi.org/10.1109/ICIP42928.2021.9506118. 

https://www.doi.org/10.1109/ICIP42928.2021.9506118
https://www.doi.org/0.1109/CBMS.2019.00065
https://www.dl.acm.org/doi/10.5555/3305381.3305576
https://www.doi.org/10.1109/SP.2016.42
https://www.doi.org/10.1007/978-3-319-99740-7_21
https://www.doi.or
https://www.doi.org/10.1080/10618600.2014.907095
https://www.doi.org/10.1109/CIDM.2011.5949423
https://www.doi.org/10.1080/10618600.2014.907095
https://www.doi.org/10.1007/978-3-319-99740-7_21
https://www.doi.org/10.1109/SP.2016.42


References 227 

[81] B. Malolan, A. Parekh and F. Kazi, “Explainable Deep-Fake Detection 
Using Visual Interpretability Methods,” 2020 3rd International Confer­
ence on Information and Computer Technologies (ICICT), San Jose, 
CA, USA, 2020, pp. 289-293. Available at: https://doi.org/10.1109/ 
ICICT50521.2020.00051. 

[82] R.	 Jiang, Y. Xue and D. Zou, “Interpretability-Aware Industrial 
Anomaly Detection Using Autoencoders,” in IEEE Access, vol. 11, 
pp. 60490-60500, 2023. Available at: https://doi.org/10.1109/ACCE 
SS.2023.3286548. 

[83] M. P. Neto and F. V. Paulovich, “Explainable Matrix - Visualization 
for Global and Local Interpretability of Random Forest Classifica­
tion Ensembles,” in IEEE Transactions on Visualization and Computer 
Graphics, vol. 27, no. 2, pp. 1427-1437, Feb. 2021. Available at: https: 
//doi.org/10.1109/TVCG.2020.3030354. 

[84] R. H. Valencia Tenorio, "Neuroevolved Binary Neural Networks". PhD 
thesis. The University of Auckland, 2020. Available at: https://research 
space.auckland.ac.nz/bitstream/handle/2292/57055/Valencia%20Teno 
rio-2020-thesis.pdf?sequence=1 

https://www.researchspace.auckland.ac.nz
https://www.doi.org/10.1109/ACCESS.2023.3286548
https://www.doi.org/10.1109/ICICT50521.2020.00051
https://www.doi.org/10.1109/ICICT50521.2020.00051
https://www.doi.org/10.1109/ACCESS.2023.3286548
https://www.doi.org/10.1109/TVCG.2020.3030354
https://www.doi.org/10.1109/TVCG.2020.3030354
https://www.researchspace.auckland.ac.nz
https://www.researchspace.auckland.ac.nz


https://www.taylorandfrancis.com


Index
 

A 
AI explainability 197, 199, 202, 204, 

205, 206, 208, 210, 213 
AI interpretability 199, 213, 215 
ASIC 87, 89, 132 
accelerated linear algebra (XLA) xxv 
action primitives 132, 139, 142, 145 
artificial intelligence 1, 153, 190, 

197, 202 
attack detection 177, 179, 183, 185 
automated optical inspection 153 

B 
Bluetooth low energy (BLE) 14 

C 
CPU 57, 87, 95, 157, 182 
cloud-centric AI 60 
computer vision 47, 105, 119, 136 
continuous learning 58, 59 
convolutional neural network (CNN) 

91, 107, 111, 208 

D 
DL compilers 87, 88, 89 
dataset curation 43 
deep learning (DL) 1, 43, 87, 105, 

109, 153, 197 
deep neural network (DNN) 49, 198, 

208, 214 
deployment 3, 43, 66, 105 

E 
Edge AI 1, 27, 28, 43, 56, 105, 153, 

190 
Edge Vision 105 
edge artificial intelligence 1, 153, 198 
edge computing 1, 52, 105, 178, 197 
edge hardware 61 
explainable AI 211, 212 

F 
federated learning 1, 65, 67, 68, 69 
FPGA 57, 88, 97, 100 
functional 7, 153, 169 

G 
GPU 57, 87, 93, 114, 159, 170 

H 
hardware accelerators 29, 89 
hardware optimisation 66, 87 

I 
intermediate representation (IR) 58, 

88 
Internet of Things (IoT) 4, 66, 197 

J 
just in time compilation (JIT) xxiv 

K 
key performance indicators 153, 159 

229
 



230 Index 

L 
LoRa mesh 1, 27, 28, 32
 
LoRaWAN 5, 22, 24, 25
 
LowPAN 13, 21
 
LUT 100
 

M 
MAC 15, 18, 100
 
machine learning (ML) 3, 47, 185,
 

197, 205,
 
mesh communication
 

technologies 6
 
mobile manipulation 131, 132, 135,
 

143
 
model compression 34, 50, 54, 61,
 

108
 
monitoring 5, 44, 60, 168, 182
 

N 
natural language processing 108,
 

116, 131, 211
 
neural architecture search 107, 121
 
neural network architecture 49, 53,
 

122
 
non-functional requirements 32, 153,
 

154, 167
 

O 
online and continual learning 157,
 

159
 

P 
PCB defect detection 162
 
privacy 34, 75, 77, 204, 213
 

process capability 153, 162, 164,
 
169, 171
 

Q 
quantization aware training (QAT)
 

90, 92
 

S 
security 3, 66, 106, 178, 179, 183,
 

200, 205
 
SIMD 57, 88, 92, 96
 
software development lifecycle
 

(SDLC) 43
 
system-on-a-chip (SoC) 43
 

T 
tensor virtual machine (TVM) xxv
 
TPU xxv, 57, 87, 95
 
transformers 116, 117, 118, 120
 
trustworthy edge AI 197
 

W 
Wi-Fi 13, 16, 17, 18, 22
 
WirelessHART 18, 19, 20
 
Wireless mesh 2, 13
 
Wi-SUN 13, 18
 

X
 
XAI 211, 218, 222
 
XLA 88
 

Z 
ZigBee 13, 15, 36
 
Z-WAVE 13, 20
 



About the Editors
 

Dr. Ovidiu Vermesan holds a PhD degree in microelectronics and a Master 
of International Business (MIB) degree. He is Chief Scientist at SINTEF Dig­
ital, Oslo, Norway. His research interests are intelligent systems integration, 
mixed-signal embedded electronics, analogue neural networks, edge artificial 
intelligence and cognitive communication systems. Dr. Vermesan received 
SINTEF’s 2003 award for research excellence for his work on implementing 
a biometric sensor system. He is currently working on projects addressing 
nanoelectronics, integrated sensor/actuator systems, communication, cyber-
physical systems (CPSs) and the Industrial Internet of Things (IIoT), with 
applications in green mobility, energy, autonomous systems, and smart cities. 
He has authored or co-authored over 100 technical articles and conference 
papers. He is actively involved in the activities of the European partnership for 
Key Digital Technologies (KDT) Joint Undertaking (JU), now the Chips JU. 
He has coordinated and managed various national, EU and other international 
projects related to smart sensor systems, integrated electronics, electromobil­
ity and intelligent autonomous systems such as E3Car, POLLUX, CASTOR, 
IoE, MIRANDELA, IoF2020, AUTOPILOT, AutoDrive, ArchitectECA2030, 
AI4DI, AI4CSM. Dr. Vermesan actively participates in national, Horizon 
Europe and other international initiatives by coordinating and managing 
various projects. He is a member of the Alliance for IoT and Edge Computing 
Innovation (AIOTI) board. He is currently the coordinator of the Edge AI 
Technologies for Optimised Performance Embedded Processing (EdgeAI) 
project. 

Dr. Dave Marples is Chief Scientist at Technolution in Gouda, NL where 
he is responsible for research and early-stage technical activities for the 
company. His primary research interests are in networked embedded systems 
in a Systems Engineering context. He regularly participates in EU Horizon 
and AENEAS research activities and is a member of the XECS Technical 
Experts Group. He is a member of the steering board of the IEEE Consumer 
Communications and Networking Conference (CCNC) and is a Fellow of 
the OSGi for services rendered as architecture chair and executive director. 

231
 



232 About the Editors 

He contributes to Open-Source projects and is the founder of orbcode.org. 
He was previously CS of the Internet Architecture Research laboratory at 
Telcordia (nee Bellcore) in Morristown, NJ where, amongst other things, 
he was responsible for the Networked Appliances research program. He 
was co-founder of the IEEE Communications Magazine Special Topic on 
Networked Appliances which runs today as the Internet of Things special 
topic. His PhD in Communications Systems is from Strathclyde University, 
Scotland and his BEng and MEng degrees in Electronics, Communication 
and Computer Engineering are from Bradford University, England. He is an 
Industrial Fellow of the Royal Society for the Exhibition of 1851 and lives in 
the UK with his partner, son and daughter. His hobbies include anything with 
an engine and Clay Pigeon missing. 

http://www.orbcode.org

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	List of Figures
	List of Tables
	List of Contributors
	List of Abbreviations
	Chapter 1: Edge AI LoRa Mesh Technologies
	1.1: Introduction
	1.2: Overview of the State-of-the-Art Wireless Mesh Technologies
	1.2.1: Mesh components and roles
	1.2.2: Wireless routing concepts

	1.3: Routing protocols
	1.3.1: Ad hoc on-demand distance vector (AODV)
	1.3.2: Optimized link state routing (OLSR)
	1.3.3: Dynamic source routing (DSR)
	1.3.4: Routing protocol for low-power and lossy networks (RPL)
	1.3.5: Wireless mesh protocols
	1.3.5.1: B.A.T.M.A.N
	1.3.5.2: Bluetooth Low Energy
	1.3.5.3: OpenThread and Thread
	1.3.5.4: ZigBee
	1.3.5.5: Wi-Fi
	1.3.5.6: Wi-SUN
	1.3.5.7: WirelessHART
	1.3.5.8: Z-WAVE
	1.3.5.9: 6LoWPAN


	1.4: LoRa and LoRaWAN Technology
	1.4.1: LoRa physical layer
	1.4.2: LoRaWAN protocol
	1.4.3: 2.4: GHz LoRa

	1.5: LoRa Mesh and Enabling AI Technologies
	1.6: Applications for LoRa Mesh
	1.7: Conceptual Edge AI and LoRa Mesh Device Architecture
	1.7.1: Sensor and interfaces
	1.7.2: AI accelerators
	1.7.3: 2.4: GHz LoRa and Bluetooth radios
	1.7.4: Microcontrollers and microprocessors
	1.7.5: Peripheral driver
	1.7.6: Operating systems
	1.7.7: Sensor models
	1.7.8: AI learning and inference
	1.7.9: 2.4: GHz LoRa Mesh Protocol Stack
	1.7.10: AI applications and services

	1.8: Challenges and Future Research Directions
	1.9: Discussion and Conclusions

	Chapter 2: Edge AI Lifecycle Management
	2.1: Introduction and Background
	2.2: Pre-development
	2.3: Development
	2.4: Production
	2.5: Conclusion

	Chapter 3: Federated Learning: Privacy, Security and Hardware Perspectives
	3.1: Introduction and Background
	3.2: Federated Learning Overview
	3.2.1: Horizontal Federated Learning
	3.2.2: Vertical Federated Learning
	3.2.3: Federated Transfer Learning

	3.3: Challenges and Limitations of Federated Learning
	3.3.1: Security challenge
	3.3.1.1: Malicious Clients
	3.3.1.2: Mitigating client-based attacks
	3.3.1.3: Malicious Server attacks and mitigations

	3.3.2: Privacy challenge
	3.3.2.1: Client privacy attacks
	3.3.2.2: Mitigating client-based attacks
	3.3.2.3: Server based privacy attacks

	3.3.3: Hardware constraint and opportunities

	3.4: Conclusion

	Chapter 4: Inside the AI Accelerators: From High Performance to Energy Efficiency
	4.1: Introduction and Background
	4.2: Related Work
	4.3: Classification Model
	4.4: Quantization
	4.5: Experiments and Results
	4.5.1: Time and power consumption
	4.5.1.1: Google Coral Board
	4.5.1.2: STM32MP1: Board
	4.5.1.3: NVIDIA Jetson

	4.5.2: FPGA
	4.5.2.1: QKeras Library
	4.5.2.2: Quantized model and Experimental Setup


	4.6: Conclusion

	Chapter 5: Designing Lightweight CNN for Images: Architectural Components and Techniques
	5.1: Introduction and Background
	5.2: CNNs
	5.2.1: The pioneers
	5.2.2: YOLO, first step towards fast object detectors
	5.2.3: Convolutional Neural Network architecture improvements
	5.2.4: Tackling memory consumption
	5.2.5: Structural re-parameterization

	5.3: Transformers for EdgeAI
	5.3.1: Hybrid transformers

	5.4: ConvNeXts
	5.5: Neural Architecture Search
	5.5.1: NAS scale study

	5.6: Conclusion

	Chapter 6: Natural Language Conditioned Planning of Complex Robotics Tasks
	6.1: Introduction
	6.2: Natural Language Processing for Robotics
	6.2.1: Large language models
	6.2.2: Multi-modal embeddings
	6.2.3: Recent implementations of high-level planning for mobile manipulation

	6.3: Action Primitives for Mobile Manipulation
	6.3.1: Methods for creating primitives
	6.3.2: Action primitive implementations

	6.4: Identified Challenges
	6.5: Conceptual Architecture
	6.6: Conclusions and Outlook

	Chapter 7: An Overview of the Automated Optical Inspection Edge AI Inference System Solutions
	7.1: Introduction
	7.2: Overview of the Main Edge AI Solutions for AOI
	7.3: Comparing EdgeAI solutions for AOI
	7.3.1: Comparison using KPIs
	7.3.2: Comparison using NFRs
	7.3.3: Comparison using functional requirements
	7.3.4: Advantages of ES with respect to the other approaches

	7.4: Edge AI Solutions Demonstrator
	7.5: Conclusion

	Chapter 8: Efficient AI-based Attack Detection Methods for Sensitive Edge Devices and Systems
	8.1: Introduction and Background
	8.2: Efficient Attack Detection
	8.2.1: Requirements
	8.2.2: Underlying Dataset
	8.2.3: State-of- the-Art Attack Detection Methods
	8.2.4: Selection of Applicable Algorithms

	8.3: Discussion and Conclusion

	Chapter 9: Explainability and Interpretability Concepts for Edge AI Systems
	9.1: Introduction
	9.2: AI Explainability and Interpretability Goals
	9.3: AI Explainability and Interpretability Methods and Techniques
	9.4: Benchmarking
	9.5: Edge AI Explainability and Interpretability
	9.6: Challenges and Open Issues
	9.7: Conclusion

	Index
	About the Editors



