
Glutathione

Edited by

Leopold Flohé

ISBN: 9780815365327 (hbk)
ISBN: 9780367656997 (pbk)
ISBN: 9781351261760 (ebk)

Chapter 11  
Glutathione Transferases
From the Test Tube to the Cell

Bengt Mannervik and Birgitta Sjödin

(CC-BY) 4.0 license.

DOI: 10.1201/9781351261760-14

The Open Access version of chapter 11 was funded by The Swedish  
Childhood Cancer Foundation (grant PR2021-0071)

https://doi.org/10.1201/9781351261760-14


DOI: 10.1201/9781351261760-14 175

11 Glutathione Transferases
From the Test Tube 
to the Cell

Bengt Mannervik and Birgitta Sjödin
Stockholm University

CONTENTS

11.1  Introduction ................................................................................................ 176
11.2  Background ................................................................................................ 176

11.2.1  The Versatility of GST Functions ................................................. 176
11.2.2  GSTs as Model System ................................................................. 176

11.3  A Note on Nomenclature ........................................................................... 177
11.4  Inactivation of Toxic Compounds .............................................................. 178

11.4.1  Detoxification of Xenobiotics ....................................................... 178
11.4.2  Detoxification of Endogenously Produced Toxicants ................... 178

11.5  Roles in Intermediary Metabolism ............................................................ 179
11.5.1  Eicosanoid-Derived Signal Substances ........................................ 179
11.5.2  Isomerization in Aromatic Amino Acid Catabolism.................... 179
11.5.3  Role in Steroid Hormone Production ............................................ 179

11.6  Functional Groups in Both Glutathione and Protein 
Empower GST Catalysis ............................................................................ 181

11.7  Regulation of GST Gene Expression ......................................................... 181
11.8  Protein Engineering and Directed Molecular Evolution of GSTs ............. 182

11.8.1  Beyond the Genetic Code ............................................................. 182
11.8.2  Cooperative Protein Subunits ....................................................... 182
11.8.3  Active-Site Mimicry in Engineered GSTs .................................... 183

11.9  Evolution of Catalytic Activities in New Directions ................................. 183
11.9.1  Engineering GSTs for Fine-Chemical Synthesis .......................... 183
11.9.2  Evolution of GSTs for Prodrug Activation ................................... 184

11.10  Evolving Quasi-Species of Enzymes ......................................................... 184
11.11  Infologs as Novel Information-Optimized Mutants for 

Enzyme Evolution ...............................................................................185
11.12  Expression of GSTs in Plants for Phytoremediation .................................. 185
11.13  Intercellular Trafficking of GSTs ............................................................... 186
11.14  Biomarker Applications of GSTs ............................................................... 188
11.15  Antibody Directed Enzyme Prodrug Therapy (ADEPT) .......................... 188
11.16  Future Directions ....................................................................................... 190

This chapter has been made available under a CC-BY 4.0 license.

https://doi.org/10.1201/9781351261760-14


176 Glutathione

11.1  INTRODUCTION

Enzymology is a cornerstone in the molecular life sciences. Besides providing fun-
damental understanding of the dynamics of life processes, enzymology has essential 
applications in drug discovery and biotechnology. Glutathione transferases (GSTs) 
are ubiquitous and versatile enzymes with crucial physiological functions and are 
excellently suited to explore many of the above-mentioned aspects. Based on the 
 cutting-edge advances in molecular life sciences, it is now possible to move enzyme 
research from the test tube into the cell. Genes encoding GSTs in variant forms 
can be chemically synthesized, and expressed enzyme proteins can be produced 
and inserted directly into cells or produced intracellularly from transfected DNA. 
Organisms can be genetically engineered to acquire an altered “GSTome,” and pre-
cision gene surgery can be performed with novel techniques such as CRISPR/Cas9.

11.2  BACKGROUND

11.2.1  The veRsaTiliTy of gsT funCTions

Enzymes not only govern rates and specificities of metabolic reactions but also, 
via interactions with other biomolecules, are intimately involved in networks of 
cellular signal transduction. Particularly noteworthy in functional breadth and 
complexity are the GSTs, which have evolved to not only catalyze diverse chemical 
reactions but also serve as intracellular transporters of heme and other relatively 
small molecules, as well as to regulate the activity of protein kinases affecting 
the life  expectancy of a cell (Josephy and Mannervik, 2006). Accordingly, GSTs 
are involved in different networks of interactions, which to different degrees may 
be entangled. Clearly, the cellular systems have to master parallel processing of 
a wide variety of inputs (Singh, 2015). Surprisingly, GST proteins can move in 
and out of live mammalian cells and participate in intercellular trafficking. As 
an  example from pathology, parasites such as the human liver fluke Opithorchis 
 viverrini secrete GSTs, which in the bile duct serve as mitogens that through AKT 
and ERK signaling can promote cell proliferation and thereby induce cholangio-
carcinoma (Daorueang et al., 2012).

11.2.2  gsTs as model sysTem

The GSTs are promiscuous in their substrate acceptance and collectively they detox-
ify various xenobiotics or metabolic by-products that otherwise could be harmful. 
The protective effects of GSTs against xenobiotics are also exemplified by herbicide 
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resistance in plants (Cummins et al., 2011) and insecticide resistance in flies (Low et 
al., 2007). There are multiple forms of GSTs in higher organisms and both cytoso-
lic and membrane-bound GSTs occur in different numbers. In humans 17 different 
genes encode cytosolic GSTs, and in poplar (Populus trichocarpa) 81 (Lan et al., 
2009) and in potato (Solanum tuberosum) 90 (Islam et al., 2018) homologous GST 
genes have been annotated. The intrinsic catalytic promiscuity of GSTs makes evo-
lution to high activity with new substrates facile by mutations of only a few amino 
acids in the GST protein (Pettersson et al., 2002). Enzyme evolution occurs both 
in natural systems and in protein engineering. Studies of GSTs are therefore well 
suited to illustrate and clarify a range of important aspects of enzymology including 
protein evolution for novel functions, drug discovery, behavior of enzymes in the 
intracellular milieu, relationships to diseases and cell death, as well as biotechnical 
applications.

More than 13,000 nonredundant GST gene sequences have been identified 
in the biosphere (Mashiyama et al., 2014) and at least 30,000 scientific papers 
on GSTs have been published such that any attempt to cover the “GSTome” 
(Mannervik, 2012) extensively would be preposterous. We have therefore made 
a more personal selection of topics that we consider significant for this chapter. 
Numerous recent reviews cover other aspects of GST research (Singhal et al., 
2015; Hollman et al., 2016; Kumar et al., 2017; Mohana et al., 2017; Perperopoulou 
et al., 2017).

11.3  A NOTE ON NOMENCLATURE

GSTs discovered in hepatic tissues were catalyzing the conjugation of aromatic sub-
strates (Booth et al., 1961; Combes et al., 1961) leading to the name glutathione 
S-aryltransferase. This designation was subsequently generalized to glutathione 
S-transferase (Boyland et al., 1969). However, the latter nomenclature was recog-
nized as a misnomer, since sulfur is not transferred but a glutathionyl (GS–) group. In 
fact, the enzymes catalyzing conjugation and addition reactions can be regarded as 
“glutathionyl transferases.” The currently recommended nomenclature (Mannervik 
et al., 2005) designates the enzymes as glutathione transferase without the prefix 
“S−”; the abbreviation GST is still accurate.

In humans and other mammals, the GSTs have been grouped into 
 membrane-bound (microsomal) and soluble (cytosolic) proteins. The former are 
members of the MAPEG (membrane-associated proteins in eicosanoid and gluta-
thione metabolism) family (Jakobsson et al., 1999) and are composed of three sub-
units and further described by Morgenstern et al. in Chapter 13. A mitochondrial 
GST is an outlier with a somewhat different protein fold than the soluble enzymes 
(Ladner et al., 2004).

The soluble GSTs are generally dimers, although some monomeric plant GSTs 
are known (Lallement et al., 2014). The dimeric GSTs occur in numerous classes of 
homologous sequences. Proteins of the same class can form heterodimers as well as 
homodimers (Mannervik et al., 1982) and can, thus, be identified, for example, as 
GST A1-1, GST A1-2, and GST A2-2 by their composition of subunits 1 and 2, which 
are encoded by the GSTA1 and GSTA2 genes of the Alpha class.
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11.4  INACTIVATION OF TOXIC COMPOUNDS

11.4.1  deToxifiCaTion of xenobioTiCs

GSTs catalyze the detoxification of xenobiotics, compounds foreign to the organism, 
including numerous mutagenic compounds that cause cancer, such as polyaromatic 
hydrocarbons studied by Boyland and coworkers (Boyland et al., 1969). The abundant 
forms of the human enzymes, GST A1-1, GST M1-1, and GST P1-1, are all active with 
the potently carcinogenic diolepoxide of benzo(a)pyrene (Robertson  et  al.,  1986) 
resulting from oxidation by cytochrome P450 enzymes. The GST substrates also 
include toxic organic plant components, such as isothiocyanates present in edible 
 vegetables (Zhang et al., 1995). However, isothiocyanates provide a positive feedback, 
since the compounds also prevent toxicity and carcinogenesis by induction of protec-
tive enzymes (including GSTs) via transcriptional gene activation (Dinkova-Kostova, 
2013). In addition, GSTs inactivate alkylating anticancer drugs, reactions, which in 
tumor cells contribute to resistance against chemotherapy (Larsson et al., 2010).

11.4.2  deToxifiCaTion of endogenously PRoduCed ToxiCanTs

Although GSTs were first recognized as major components in the cellular defense 
against xenobiotic electrophiles, it became obvious that their protective functions 
included toxic products arising from oxidative metabolism of lipids, nucleic acids, 
catecholamines, and other physiologically relevant molecules (Mannervik, 1986; 
Berhane et al., 1994). Two enzymes, in particular, seem to have evolved to conjugate 
and inactivate specific endogenous toxicants. GST A4-4 displays prominent activity 
with 4-hydroxynonenal and other alkenals formed by lipid peroxidation (Hubatsch 
et al., 1998). GST M2-2 is distinguished by remarkable activity with aminochrome and 
dopamine orthoquinone (Segura-Aguilar et al., 1997; Dagnino-Subiabre et al., 2000) 
arising from dopamine, as well as with similar orthoquinones derived from other 
catecholamines (Baez et al., 1997). The glutathione conjugation of orthoquinones 
counteracts their propensity to generate reactive oxygen species via extensive redox 
cycling, which is linked to Parkinson’s disease and other degenerative conditions.

Notwithstanding established important roles of the enzymes in detoxification, the 
elimination of the three loci of the Mu, Pi, and Theta class GST genes, encoding 
14 out of the 22 GST enzymes in the mouse has no obvious detrimental effects on 
normal development, well-being, or fertility of the animals (Xiang et al., 2014). The 
members of these classes may have their most important functions in the protec-
tion against environmental toxins and oxidative stress not imposed under laboratory 
conditions. The results are also indicative of robust backup functions, in agreement 
with the finding that the null alleles of human GSTM1 and GSTT1 have modest phe-
notypic consequences (Josephy, 2010). It was originally proposed that the frequent 
absence of the Mu class enzyme would influence the capacity of different individ-
uals to metabolize and detoxify various carcinogenic polyaromatic hydrocarbons 
(Warholm et al., 1981), but subsequent genomic studies indicate that susceptibilities 
are dependent on a variety of gene sequence variations, and are not limited to the 
null genotype (Moyer et al., 2007).
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11.5  ROLES IN INTERMEDIARY METABOLISM

11.5.1  eiCosanoid-deRived signal subsTanCes

Arachidonic acid and other polyunsaturated fatty acids are not only undergoing 
oxidative processes to give toxic electrophiles including 4-hydroxyalkenals but also 
the source of prominent cellular signaling molecules such as prostaglandins, leukot-
rienes, and thromboxanes, as outlined in Chapter 13. Leukotriene A

4
 is an epoxide 

resulting from the action of 5-lipoxygenase on arachidonic acid, and leukotriene C
4
 

is the corresponding glutathione adduct. Soluble GSTs can catalyze this synthesis 
(Söderström et al., 1985), but the physiologically relevant conjugating enzyme is a 
separate membrane-bound leukotriene C synthase (Söderström et al., 1988). The leu-
kotriene C synthase is established as a distinct enzyme in the MAPEG family.

However, another branch in the metabolism of arachidonic acid leads to the 
prostaglandins via cyclooxygenase-catalyzed oxidation to the 9,11-endoperoxide 
prostaglandin H

2
, and this reactive product can give rise to a number of other sig-

nal molecules including the 9-hydroxy-11-keto derivative prostaglandin D
2
 (Smith 

et al., 2011). Prostaglandin D
2
 synthase was discovered as a cytosolic glutathione- 

dependent isomerase (Christ-Hazelhof et al., 1979) and has subsequently been called 
hematopoietic prostaglandin D

2
 synthase (H-PGDS). A second nonhomologous 

PGDS catalyzes the same reaction, but has a different tissue distribution and is not 
dependent on glutathione (Smith et al., 2011). The latter enzyme shows homology 
to the members of the lipocalin family and is referred to as lipocalin-type PGDS 
(L-PGDS). By contrast, H-PGDS has prominent functional and structural similari-
ties to the soluble GSTs and is a member of the Sigma class, encompassing members 
in animal species ranging from nematodes and insects to mammals. Like in the 
other glutathione-dependent isomerases in the GST, superfamily glutathione is not 
consumed but serves only as a cofactor.

11.5.2  isomeRizaTion in aRomaTiC amino aCid CaTabolism

An early report of a glutathione-mediated cis–trans isomerization instrumental in 
the catabolism of aromatic amino acids indicated an unknown biochemical reaction 
(Edwards et al., 1956). The responsible enzyme was subsequently identified as the 
novel Zeta class GST Z1-1, ubiquitously present in organisms ranging from plants 
to mammals (Board et al., 1997). Obviously, GST Z1-1 plays a pivotal role in inter-
mediary metabolism, preventing the accumulation of maleyl-acetoacetate and its 
by-products maleyl-acetone and succinyl-acetone in the body. Although not lethal, 
the disruption of the Gstz1 gene in the mouse caused severe toxicity when the ani-
mals were challenged with dietary phenylalanine (Board et al., 2011).

11.5.3  Role in sTeRoid hoRmone PRoduCTion

Steroidogenesis begins with cholesterol and, via multiple steps, leads to production 
of steroid hormones such as progesterone and testosterone (Payne et al., 2004). One 
of the late steps in the synthesis of these hormones is formation of Δ5-unsaturated 
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3-ketosteroids in a pyridine-nucleotide-dependent reaction catalyzed by 3β- 
hydroxysteroid dehydrogenase (Samuels et al., 1951), followed by a double-bond 
isomerization (Talalay et al., 1955). The double-bond isomerization of Δ5-pregnene-
3,20-dione (Δ5-PD) to Δ4-PD is the last step in progesterone biosynthesis. In the 
synthesis of testosterone, the double-bond isomerization from Δ5-androstene-3,17-
dione (Δ5-AD) leads to the last precursor of testosterone, Δ4-AD (Figure 11.1). 
The 3β-hydroxysteroid dehydrogenase has the prerequisite isomerase function, but 
the observed activity is modest in comparison with the high catalytic efficiency of the 
human or equine GST A3-3 (Johansson et al., 2002; Lindström et al., 2018). Indeed, 
in vitro suppression of the cellular GST steroid isomerase activity by either enzyme 
inhibitors or RNA interference diminishes progesterone production to a large extent 
(Raffalli-Mathieu et al., 2008). Furthermore, pharmacological administration of the 
glucocorticoid dexamethasone to stallions suppressed serum testosterone levels in 
parallel with both the GSTA3 mRNA concentration and Δ5-AD isomerase activity 
in cytosolic testis extracts (Ing et al., 2014).

From a chemical mechanistic perspective, it should be noted that there is a fun-
damental difference in the double-bond isomerization reactions catalyzed by GST 
Z1-1 and GST A3-3. The Zeta class enzyme is involved in a cis–trans rotational 
rearrangement enabled by a transient nucleophilic addition of glutathione to the dou-
ble bond. By contrast, GST A3-3 utilizes the sulfur of glutathione as a base, which 
allows migration of the double bond in the B ring of the steroid to the A ring. This 
isomerization is facilitated by a hydrogen bond from the nitrogen of the glycine res-
idue of glutathione to the 3-oxo group of the substrate (Dourado et al., 2014), also 
revealing a dual function of glutathione in catalysis.

Remarkably, GSTE14, a member of the Epsilon class, a GST class present in 
Drosophila but not in mammals, is involved in the biosynthesis of the main insect steroid 
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FIGURE 11.1 The first of three steps in the steroid isomerase reaction catalyzed by GST 
A3-3. The thiolate of glutathione serves as a base removing a proton from C4 of the substrate 
Δ5-androstene-3,17-dione. In a concerted manner, the –NH– of the glycine moiety polarizes 
the O3 of the substrate to promote the dienolate intermediate (a), which facilitates the migra-
tion of the double bond between C5 and C6 from the B ring. Subsequently, the active-site 
Tyr9, following a rearrangement, protonates C6 (Dourado et al., 2014).
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hormone ecdysterone (Chanut-Delalande et al., 2014; Enya et al., 2014).The examples 
aforementioned show that GSTs catalyze reactions relevant to normal physiological 
processes, thereby expanding the scope of GST enzymology beyond detoxification.

11.6  FUNCTIONAL GROUPS IN BOTH GLUTATHIONE 
AND PROTEIN EMPOWER GST CATALYSIS

It has been noted that the soluble GSTs can be divided into two main categories 
distinguishable by the active-site residue interacting with the sulfur of glutathione, 
one category displaying either serine or cysteine and the other featuring tyrosine 
(Atkinson et al., 2009). The Alpha class members belong to the second category, and 
based on site-directed mutagenesis substituting phenylalanine for tyrosine, it was 
concluded that the hydroxyl group of the latter was not strictly essential but contrib-
uted to catalysis, possibly by stabilizing the thiolate of enzyme-bound glutathione 
via hydrogen bonding (Stenberg et al., 1991).

Surprisingly, the ionization of the glutathione thiol was found not to be accom-
plished by the active-site tyrosine or any other residue of the protein, but to be due 
to the α-carboxylate of the γ-glutamyl group of glutathione itself (Widersten et al., 
1996; Gustafsson et al., 2001). In fact, computational studies evidenced also the 
involvement of an active-site water molecule bridging the sulfur of glutathione with 
the carboxyl group (Dourado et al., 2008).

The GSTs with serine or cysteine in the active site have not been studied to the 
same extent as those featuring a tyrosine. However, serine is generally considered 
to stabilize the glutathione thiolate by hydrogen bonding in a similar fashion as 
tyrosine, whereas cysteine could be redox active and form a covalent bond with a 
reactant. The two members of the omega class are the only human GSTs presenting 
cysteine in the active site, and formation of a mixed disulfide with glutathione has 
been demonstrated as a reaction intermediate in catalysis (Brock et al., 2013).

11.7  REGULATION OF GST GENE EXPRESSION

A key player in the regulation of GST gene expression is the nuclear factor 
 erythroid-2-related factor 2, Nrf2, which is responsible for activation of the tran-
scription of over 500 genes in the human genome, most of which have cytoprotective 
functions. This nuclear transcription factor binds to the antioxidant response element 
ARE of the DNA to promote mRNA synthesis (Suzuki et al., 2015). The Kelch-like 
ECH-associated protein 1 (Keap1) in the cytoplasm functions as a negative regulator 
by binding of Nrf2 and thereby destining Nrf2 to ubiquitinylation and proteasomal 
degradation in the absence of chemical stress. Electrophiles and oxidants, including 
GST substrates, bind to Keap1, thus releasing Nrf2 to escape degradation and enter 
the nucleus as a result of exposure to the toxicants. The cadre of enzymes induced in 
general provide protection of the exposed tissue to carcinogenesis and other patho-
physiological conditions. However, in neoplastic cells, the Nrf2/Keap1 system may 
actually promote the carcinogenic process and thereby have undesired consequences 
(Suzuki et al., 2015; Pandey et al., 2017).
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An added level of complexity is the modulation of Nfr2 and Keap1 by a number of 
microRNAs (Cheng et al., 2013) indicating a mechanism for fine-tuning the expres-
sion of the diverse GSTs and other enzymes at the posttranslational level.

In cellular systems there is generally crosstalk between different signaling path-
ways leading to modulation of the resulting outcomes (Singh, 2015). In this con-
nection and with reference to the role of Alpha class GSTs and steroid hormone 
biosynthesis, it should be noted that the expression of the enzymes is regulated by the 
steroidogenic factor 1 (SF-1) in human cells (Matsumura et al., 2013).

11.8  PROTEIN ENGINEERING AND DIRECTED 
MOLECULAR EVOLUTION OF GSTS

11.8.1  beyond The geneTiC Code

In the vein of the earliest applications of site-directed mutagenesis applied to 
enzymes (Winter et al., 1982), the functions of numerous amino acid residues in 
various GSTs have been explored, as exemplified by the active-site tyrosine in 
human GST A1-1 (Stenberg et al., 1991). Drawing on the relatively small size of 
fluorine (van der Waals radius 1.35 Å) versus hydrogen (1.2 Å), steric perturbations 
resulting from fluorine substitution should be relatively small. This was exploited 
in the successful site-specific replacement of the active-site tyrosine by four dif-
ferent fluorinated tyrosines in order to influence the pK

a
 of the hydroxyl group and 

to provide evidence for its proposed function of hydrogen bonding to the gluta-
thione thiolate in the active site (Thorson et al., 1998). The role of the active-site 
tyrosine was also suggested by a nonspecific substitution of all 14 tyrosines in 
rat GST M1-1 by 3-fluorotyrosine (Parsons et al., 1996). In a similar investiga-
tion, substituting 5-fluoro-tryptophan for all four tryptophan residues resulting in 
a 4-fold increased turnover number, apparently due to an enhanced rate of product 
release (Parsons et al., 1998).

11.8.2  CooPeRaTive PRoTein subuniTs

Most soluble GSTs are dimeric proteins and the question whether an isolated sub-
unit could be catalytically functional has frequently been asked. A set of 10 muta-
tions were therefore introduced in the subunit–subunit interface of human GST P1-1 
to prevent dimerization and the monomeric protein was produced (Abdalla et al., 
2002). Based on physicochemical parameters, the GSTP1 monomer was properly 
folded, but the protein showed no enzyme activity. Binding studies suggested that the 
H-site was functional and could bind hydrophobic substrates, whereas the binding of 
glutathione was impaired in spite of the fact that none of the G-site residues had been 
mutated (Abdalla et al., 2002). This lack of activity of the monomer is in accord with 
other studies suggesting that the two subunits of the functional GST P1-1 cooperate, 
possibly via networks of water molecules (Hegazy et al., 2004; Hegazy et al., 2006). 
GSTs are not typical allosteric enzymes, but several studies demonstrate that GSTs 
can display cooperativity under certain physical conditions (Caccuri et al., 1999) or 
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with select substrates (Lien et al., 2001), as well as in the sequestration of the toxic 
nitric oxide derivative dinitrosyl-diglutathionyl-iron complex (Bocedi et al., 2016).

11.8.3  aCTive-siTe mimiCRy in engineeRed gsTs

Based on the premise that the substrate selectivity of GSTs is largely governed by the 
amino acids in the H-site, several successful attempts have been made to mimic the 
high activity of a chosen GST by installing corresponding residues in the H-site of 
a homologous low-activity enzyme of the same GST class. The catalytic efficiency 
of human GST M1-1 is 2700-fold higher than that of GST M2-2 in the conjugation 
of trans-stilbene oxide, and the mutation Thr210→Ser in GST M2-2 rendered the 
enzyme selectively more active with the same substrate by 200-fold (Ivarsson et al., 
2003). Apart from mimicking the structure of the active site of GST M1-1 and its 
activity with trans-stilbene oxide by this point mutation, investigating all 19 possible 
residue-210 substitutions in GST M2-2 revealed that a point mutation in the active 
site can enable or disable alternative catalytic reactions without necessarily alter-
ing already established activities with other substrates (Norrgård et al., 2006). This 
finding demonstrates a significant evolutionary plasticity useful for the emergence of 
diverse activities of the same protein.

Another example of mimicry is the generation of the GIMFhelix mutant of GST 
A1-1, comprising the replacement of four amino acids and the C-terminal helix by 
those present in GST A4-4 (Nilsson et al., 2000). The properties of the mutant were 
similar to the typical high catalytic activity of GST A4-4 with 4- hydroxyalkenals 
and the characteristic low pK

a
 (~7) of the active-site tyrosine. Analyses of crystals 

demonstrate the structural similarities of GIMFhelix and GST A4-4 (Balogh et al., 
2009).

A third case involved the augmentation of the steroid isomerase activity of human 
GST A2-2, which is lower by three orders of magnitude than that of GST A3-3 
(Pettersson et al., 2002). Five residues in GST A2-2 were changed into the corre-
sponding active-site residues of GST A3-3 enabling the steroid substrate to bind in a 
catalytically favorable orientation (Tars et al., 2010).

11.9  EVOLUTION OF CATALYTIC ACTIVITIES IN NEW DIRECTIONS

11.9.1  engineeRing gsTs foR fine-ChemiCal synThesis

GSTs are generally promiscuous in their acceptance of alternative substrates, and 
catalyze alkylation, arylation, thiocarbamoylation, transacylation, reduction, trans-
nitrosylation, isomerization, and various addition reactions with different efficien-
cies dependent on their structure (Kurtovic et al., 2008). For possible biotechnical 
applications, it may therefore be possible to enhance a desirable function by pro-
tein engineering and in vitro evolution. For example, the catalytic activity of GST 
M2-2 with indene 1,2-oxide, relevant to the synthesis of the drug Crixivan (indi-
navir), was enhanced approximately 100-fold by iterative saturation mutagenesis 
(Norrgård et al., 2011). The highest indene 1,2-oxide activity was obtained with the 
double mutant Thr210→Gly/Ile10→Cys. However, with five alternative substrates, 
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undergoing mechanistically different reactions, other mutants displayed higher 
activity. It is noteworthy that the stereoselectivity of epoxide reactions can be manip-
ulated by simple chemical modifications of suitable side chains in the GST structure 
(Ivarsson et al., 2007).

11.9.2  evoluTion of gsTs foR PRodRug aCTivaTion

Human GSTs have been shown to activate different thiopurine prodrugs to release 
6-mercaptopurine, which subsequently serves as an antimetabolite interfering 
with nucleotide metabolism and nucleic acid biosynthesis. Azathioprine (Imuran), 
6-[(1-methyl-4-nitro-1H-imidazol-5-yl)thio]-1H-purine, has been in clinical use 
for more than half a century. It is activated most efficiently by GSTs A1-1, A2-2, 
and M1-1, whereas 10 other human GSTs were significantly less effective or lacked 
detectable activity (Eklund et al., 2006). Other prodrugs releasing 6- mercaptopurine 
are cis-6-(2-acetylvinylthio)purine and trans-6-(2-acetylvinylthio)-guanine, but 
with these compounds GSTs A1-1 and A2-2 are not particularly active, whereas GST 
M1-1 is an efficient catalyst (Eklund et al., 2007). Clinical data show that GSTM1 
positive patients are more liable to adverse side effects of azathioprine than patients 
presenting with the GSTM1 null genotype (Stocco et al., 2007). This observation 
can, at least in part, be attributed to higher total GST activity resulting in elevated 
release of 6-mercaptopurine and more extensive consumption of glutathione in the 
presence of the GST M1-1 enzyme.

For potential therapeutic purposes (see Section 11.14), it was considered worth-
while to enhance the GST activity with azathioprine. GST A2-2, the most efficient 
enzyme with this substrate (Eklund et al., 2006), was therefore subjected to various 
mutational strategies (Modén et al., 2014). The allelic gene variant GSTA2*E, encod-
ing the most efficient GST protein, was engineered by a structure-based approach in 
which three of its H-site residues were mutated. The resulting focused mutant library 
consisting of 864 possible amino acid combinations was screened with azathioprine, 
and several highly active triple-point mutants were isolated (Zhang et al., 2012b). 
The most active variant displayed 70-fold higher catalytic efficiency than the paren-
tal GSTA2-2*E enzyme.

In order to map the theoretically available evolutionary trajectories leading, one muta-
tion at a time, from the parent GST A2-2 to the most efficient mutant, all six interme-
diate mutants were constructed and assayed with eight alternative substrates in addition 
to azathioprine (Zhang et al., 2012a). Conspicuously, all of the six  trajectories showed 
a monotonically increasing activity with azathioprine, but monotonically decreasing 
activities, or peaks and valleys, with some of the other substrates in the multidimen-
sional fitness landscape. Furthermore, epistatic effects of the mutations on  catalytic 
activity were noted, which were variable in sign and magnitude depending on the sub-
strate used, showing that epistasis is a multidimensional quality (Zhang et al., 2012a).

11.10  EVOLVING QUASI-SPECIES OF ENZYMES

The examples of mutagenesis aforementioned are based on well-reasoned rational 
aspects, but in nature, mutations are largely caused by stochastic processes. The 
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rationale of the latter is that mutants are more or less randomly produced and those 
found useful are retained. Based on the studies of populations of evolving RNA 
viruses, Eigen and coworkers (Eigen et al., 1988) proposed that survival of the fittest 
should apply not to an individual but to a population of related mutants called the 
quasi-species. The concept of quasi-species was adopted for the evolution of GSTs in 
mutant libraries obtained by DNA shuffling of homologous sequences (Emrén et al., 
2006; Runarsdottir et al., 2010). Importantly, this approach incorporates informa-
tion about activities with several alternative substrates, a multivariate scheme that in 
many aspects reflects natural evolution. Both the design of iterative mutagenesis for 
new generations of enzymes and the analysis of evolutionary trajectories in multivar-
iate dimensions are facilitated by regarding the quasi-species, rather than the “best” 
enzyme variant, as the relevant evolving unit (Mannervik et al., 2009).

11.11  INFOLOGS AS NOVEL INFORMATION-OPTIMIZED 
MUTANTS FOR ENZYME EVOLUTION

Natural evolution is based on stochastically generated quasi-species. By contrast, a 
rational primary-structure-guided approach of directed enzyme evolution has been 
designed (Govindarajan et al., 2015). Suitable amino acid substitutions are selected 
by phylogenetic analysis and combined, via chemical gene synthesis, into a set of 
maximally information-rich gene variants called infologs. The relative contribution 
of each substitution is determined across multiple catalytic dimensions, providing 
the basis for predictive functional models with broad applicability for bioengineering 
(Musdal et al., 2017). This novel method for enzyme engineering combines machine 
learning and synthesis of a modest number of genes and provides multivariate mod-
eling of protein sequence-function in a cost-effective manner.

11.12  EXPRESSION OF GSTS IN PLANTS 
FOR PHYTOREMEDIATION

A variety of biochemical and biological approaches are drawing on enzymes that 
catalyze the biotransformation of organic pollutants, such as pesticides, explosives, 
and other xenobiotic substances occurring in the environment (Abhilash et al., 2009). 
Appropriate biotransformation render these chemical compounds nontoxic and facil-
itate their elimination. Genomics studies have demonstrated that GSTs in rice, during 
various stages of development, can counteract many of the stress challenges indi-
cated earlier (Jain et al., 2010) suggesting that plants could be engineered with suit-
able GSTs and be used for phytoremediation. For example, overexpression of GSTL2 
in rice provided resistance to the herbicides glyphosate and chlorsulfuron (Hu, 2014), 
and experiments involving transgenic overexpression of rice GSTU4 afforded toler-
ance to salinity and oxidative stress in Arabidopsis thaliana (Sharma et al., 2014). 
These and other investigations demonstrate the importance of GST enzymes to 
 resistance against various chemical challenges, not only in animals but also in plants.

An example relevant to phytoremediation applications involves the explosive 
2,4,6- trinitrotoluene (TNT). The environmental pollutant TNT has for decades 
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spread over large areas as a result of large-scale military and industrial activities. 
TNT can be metabolized by GST-catalyzed glutathione conjugation, and A. thali-
ana plantlets overexpressing one of its GST enzymes deplete the growth medium of 
TNT and inactivate the compound (Gunning et al., 2014). However, the plant GSTs 
have modest activity and GSTs optimized by methods of biochemistry and molecu-
lar genetics are in demand (Figure 11.2).

The insect enzymes GSTE6 and GSTE7 from Drosophila melanogaster were 
demonstrated to be orders of magnitude more efficient in the detoxification of TNT 
than the available plant GSTs (Mazari et al., 2016). The gene encoding GSTE6 was 
therefore expressed in A. thaliana to obtain a phytoremediation model system. Plants 
transgenetically expressing the Drosophila GSTE6 were more resistant to TNT than 
both unmodified plants and the Arabidopsis lines overexpressing the plant GSTU24 
and GSTU25 (Tzafestas et al., 2017). Also, the uptake of TNT from the growth 
medium was enhanced in plants expressing the transgene. For actual field applica-
tions plants more robust than Arabidopsis will obviously be required. 

11.13  INTERCELLULAR TRAFFICKING OF GSTS

In a study of protein transduction domains using a Schistosoma japonicum GST 
as intended cargo to be delivered into COS7 cells, the GST protein was unexpect-
edly taken up even in the absence of an added protein transduction domain (Namiki 
et al., 2003). Similar cellular GST uptake was demonstrated with the cell lines HeLa, 
NIH3T3, and PC12. In an investigation using members of different classes within 
the GST structural superfamily and numerous additional cell lines, the results were 
extended (Morris et al., 2009). Experiments also indicated that the GSTs enter cells 

Growth of transgenic A. thaliana
expressing GSTE6 from D. melanogaster

on agar plates with 15 µM TNT
wt DmGSTE6

FIGURE 11.2 Comparison of Arabidopsis thaliana wild-type plantlets (left) and  transgenic 
plantlets expressing Drosophila melanogaster GSTE6 (right) grown in the presence of 
1,3,5-trinitrotoluene (TNT) showing the protective effect of the GST transgene. (From collab-
orative study with the laboratory of Neil Bruce, York University, UK; cf. Tzafestas et al., 2017.)
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through an energy-dependent process involving endocytosis, and GST protein was 
found to colocalize with transferrin in the cells implying that the endocytosis process 
involves clathrin-coated pits. Further, incisive studies of truncated forms of human 
GST M2-2 showed that the globular C-terminal domain (GST-C) is responsible for 
the cell translocation. In particular, it was noted that alteration of the conformational 
stability of GST-C, governed by the α6-helix, can significantly influence cellular 
uptake efficiency (Morris et al., 2011). GST-C has possible medical applications in 
the treatment of heart arrhythmia, since it binds selectively to the ryanodine receptor 
RyR2 (Hewawasam et al., 2010; Samarasinghe et al., 2015) and influences contrac-
tility and calcium transients in cardiomyocytes (Hewawasam et al., 2016).

We have verified the remarkable phenomenon of GST uptake in several cell lines 
including neuroblastoma SH-SYS5 cells (Figure 11.3). The wild-type GST proteins 
are taken up in a catalytically functional state in the SH-SYS5 cells, as demonstrated 
with human GST M2-2 and the neurotoxic orthoquinone substrate aminochrome 
(Cuevas et al., 2015). Uptake of GST M2-2 provided protection against cell death 
caused by aminochrome, and the protective effect was counteracted by antibodies 
directed to the enzyme. Remarkably, the protective outcome was obtained not only 
by administration of the purified recombinant GST M2-2, but also by the enzyme 
secreted into the culture medium by astrocytoma U373MG cells. GST M2-2 occurs 
as a constitutive enzyme in the U373MG cells, in which it acts as an endogenous 
protective agent (Huenchuguala et al., 2014). The conclusion is that the two cell 
types can communicate via excreted GST M2-2 such that U373MG cells can protect 
SH-SYS5 cells against the toxic aminochrome (Cuevas et al., 2015). By extrapola-
tion, astrocytes could similarly protect neurons via intercellular GST trafficking in 
the nervous system.

FIGURE 11.3 Uptake of human GST T1-1 in living neuroblastoma SH-SYS5 cells. The 
cells were incubated for 1.5 h in DMEM with 400 nM hGST T1-1 labeled with Oregon Green 
488 (OG) in 37°C and 5% CO

2
. Trypan Blue was used to quench any extracellular fluores-

cence remaining after washing of the cells.
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Extracellular vesicles, first described in the form of prostasomes in prostatic 
fluid (Ronquist et al., 1985), occur in several physiological settings. The vesicles 
could be single-membrane exosomes (Van Niel et al., 2018) or multivesicular bodies 
(Von Bartheld et al., 2011) and may be relevant to normal as well as pathological 
states, including blood coagulation, inflammation, neuronal communication, and 
tumorigenesis. The GST excretion described earlier may possibly occur via exo-
somes or other membrane vesicles, and the uptake into cells may be effected via the 
reverse process. Considering the well-known ligandin function of GSTs (Litwack 
et al., 1971) intercellular trafficking of bound ligands might thus be mediated by 
GST proteins.

11.14  BIOMARKER APPLICATIONS OF GSTS

Early studies of carcinogenesis in rat liver demonstrated that foci (Kitahara et al., 
1984) and preneoplastic nodules (Jensson et al., 1985) express a protein, now known 
as GST P1-1, which is not present in normal hepatocytes. Even if the same GST 
phenotype was not observed in the development of human hepatocarcinoma, the 
use of anti-GST P1-1 antibodies to detect hepatic lesions was found useful in immu-
nochemical tests of potentially genotoxic agents in the rat model system. However, 
many human neoplasias other than primary liver cancer do express elevated GST 
P1-1 concentrations, and diagnostic tests for other tumors have been proposed 
(Kodate et al., 1986). The finding that different regions of the kidney diverge in their 
composition of the multiple GSTs present opportunities for differential diagnosis for 
various lesions (Rozell et al., 1993) using body fluids in additioin to histology (Hao 
et al., 1994). However, the release of GSTs is quite variable and can depend on vari-
ous factors, not all of which indicate disease.

A more robust method applicable to diagnosis of prostate cancer is based on mea-
surement of the methylated promoter region of the GSTP1 gene, which is a signature 
for the downregulation of the enzyme in this tumor (Wu et al., 2017). Prostate cells 
are shed in the urine, and their DNA can be analyzed for the hypermethylation char-
acterizing the cancer cells.

11.15  ANTIBODY DIRECTED ENZYME 
PRODRUG THERAPY (ADEPT)

A recent promising development in oncology is the use of biologicals, in particular 
monoclonal antibodies with specificity for epitopes that distinguish tumors from 
normal tissues (Bhutani et al., 2013). Some therapeutic antibodies themselves 
afford significant antitumor activity, but new generations of antibodies carry pay-
loads such as a drug, a radionuclide, or a toxin in order to achieve enhanced 
therapeutic effects (Teicher et al., 2011). Examples of antibodies conjugated with 
proteins include the use of ADEPT that releases the toxic agent from a prodrug 
to the targeted tumor (Afshar et al., 2009; Tietze et al., 2009). ADEPT has the 
potential to significantly improve drug efficacy and reduce adverse side-effects 
(Sharma et al., 2017).
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It should be possible to target cellular tumor receptors by binding proteins fused 
with a highly active GST followed by administration of the prodrug. The high GST 
activity will give a focused and concentrated release of the active cytotoxic drug 
in the tumor tissue. Among the several novel GST-activated drugs (Ruzza et al., 
2013), the prodrug TLK286/Telcyta has a particular advantage (Morgan et al., 
1998). The activation of Telcyta occurs without involving glutathione as a cosub-
strate and is therefore independent of the ambient concentration of glutathione. By 
contrast, the reactions of GSTs with most other substrates require glutathione in a 
 concentration-dependent manner.

The underlying rationale for the development of the glutathione derivative Telcyta 
was its selective affinity for GST P1-1 (Lyttle et al., 1994), the GST enzyme that is 
often overexpressed in cancer cells (Mannervik et al., 1987). Linking the GST to 
a target-seeking antibody would increase the selectivity of action and obviate the 
requirement of high expression of the enzyme in the targeted tumor (Figure 11.4). 
The prodrug is activated by the GST to release an active phosphoramide mustard 
similar to the alkylating agent released from cyclophosphamide, a drug widely used 
in cancer chemotherapy. Telcyta has undergone multiple clinical trials in cancer 
patients and not demonstrated toxicity above that of other alkylating drugs.

It can be assumed that GST bound extracellularly can fulfill its assigned role to 
kill the target cell, but also that the liberated toxic drug will cause a bystander effect 
on proximal tumor tissue (Dachs et al., 2009). Unpublished experiments (B. Sjödin 
and B. Mannervik) show that scFv-anti-CD123 fused with a GST protein is taken 
up by neuroblastoma cells in culture (cf. Figure 11.3). Specific uptake into the 
 receptor-presenting cells would make the treatment especially powerful.

In order to target diverse tumors, we have invented a generalized tripartite ther-
apeutic toolbox consisting of different combinations of prodrug (substrate)–GST 
enzyme–binding protein (Figure 11.5). A designated GST could be engineered for 
high efficiency with a preferred prodrug, as in the example of GST A2-2 and azathio-
prine (Section 11.9.2). The redesigned GST is then coupled to an antibody or another 
binding protein with selective affinity for the tumor target. 

Combined prodrug-GST-antibody attack via cellular receptor

Prodrug

Binder

ReceptorCell

Membrane

Active
drug

GST

FIGURE 11.4 Scheme of directed combination-treatment using a prodrug activated by a 
GST linked to a binding protein, which selectively recognizes a receptor or other epitope on 
the target cell. The active drug will be focused to the cell and the neighboring tissue.
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11.16  FUTURE DIRECTIONS

11.16.1  sTudies aT The moleCulaR level

GSTs can conveniently be obtained via gene synthesis and heterologous expression 
and be subjected to structural and functional investigations in combination with 
redesign and molecular evolution. Fluorophore-labeled GSTs as well as fluorogenic 
substrates (Shibata et al., 2013) will enable single-molecule characterization of the 
interactions of GSTs with alternative substrates as well as inhibitors, both in vitro and 
in living cells (Xie et al., 2008). Of particular importance are the effects induced by 
the intracellular milieu on catalysis and the interaction with inhibitors (Fu et al., 2014).

11.16.2  sTudies aT The CellulaR level

Introduction of GST proteins into living cells via endocytosis or via transfection 
from eukaryote expression vectors perturbs the composition of the proteome by 
mechanisms that appear unrelated to the catalytic activities of GSTs, which can 
be verified by treatments with incapacitated mutants. Networks of cellular signal-
ing may be influenced by GSTs and studies of proteomes as well as transcriptomes 
can explore these newly discovered phenomena in cells. Functionally important 
complexes between GSTs and c-Jun N-terminal kinase (JNK), apoptosis signal- 
regulating kinase 1 (ASK1), and other protein kinases have been reported (Singh, 
2015). Decreased GST levels can be accomplished by gene silencing or elimina-
tion performed by the CRISPR/Cas9 approach (Jinek et al., 2012). By eliminating 
defined GSTs, the possible compensatory effects of other enzymes can be evaluated.

11.16.3  The fRuiT fly as a model oRganism

Drosophila melanogaster has emerged as one of the most effective biological systems 
for investigations of gene function in eukaryotes, and is increasingly used to model 
human diseases. Remarkably, a study of Caenorhabditis elegance, D. melanogaster, 

Different prodrugs activated by GSTs can be combined with different GST
variants linked to diverse binding proteins targeting different tumor targets in
various combinations.

Prodrug

• Telcyta
• Azathioprine
• Sulfonamides
• NO drugs

• GST P1-1
• GST A2-2
• GST M2-2

• Antibody
• Affibody
• Darpin

• CD22 (ALL)
• HER2 (breast)
• EGFR (colon)

GST Binding protein Tumor target

FIGURE 11.5 Molecular tripartite toolbox composed of alternative prodrugs, selective acti-
vating GSTs, and alternative binding proteins recognizing different tumors. Using different 
combinations of the components, the therapeutic applications can be tailored for individual 
requirements.
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and mouse (Mus musculus) demonstrated that a subset of GSTs, but not the entire 
GSTome in each species was overexpressed in long-lived animals (McElwee et al., 
2007). An integrated and comprehensive investigation of the GSTs in flies could 
clarify key issues related to longevity assurance and concomitantly provide essential 
information on biochemical processes preventing various degenerative diseases. The 
various GSTs are differentially expressed and the enzyme composition changes from 
tissue to tissue and during ontogenesis. Overexpression of GSTE7 via injection of a 
plasmid carrying the corresponding gene into fly embryos has already been accom-
plished (Mazari et al., 2014). Intriguingly, the transgenic females overexpressing 
GSTE7 demonstrated an enhanced egg-laying both in the absence and the presence 
of the toxic allyl isothiocyanate (Figure 11.6). The effect on the oviposition rate is 
independent of the presence or absence of toxic allyl isothiocyanate, and surprisingly 
also obtained with the catalytically incapacitated mutant enzyme GSTE7_S12F. The 
results demonstrate consequential cellular activities of GSTs other than catalysis of 
chemical reactions.

Underlying the expression of the proteome is the transcriptional activation of 
genes. Methods are now available for characterization of the global transcriptome 
via sequence analysis. It is even possible to study transcripts by noninvasive captur-
ing and sequencing of mRNA from live single cells (Lovatt et al., 2014). Apparently, 
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FIGURE 11.6 Significant increase in egg-laying frequency in Drosophila melanogaster 
following transgenesis with the GSTE7 gene. Overexpression of catalytically active GSTE7 
as well as the catalytically incapacitated mutant GSTE7_S12F enhanced oviposition. In the 
experiment shown, the toxic GST substrate allyl isothiocyanate was added to the standard fly 
food, but the same effect of transgenesis was obtained in the absence of allyl isothiocyanate. 
The similar effects of the active GSTE7 and the mutant show that catalytic GST activity was 
irrelevant for enhanced oviposition. (Unpublished data from A.M.A. Mazari, O. Dahlberg, 
B. Mannervik and M. Mannervik; cf. Mazari et al., 2014.)



192 Glutathione

the tissue microenvironment shapes the transcriptomic landscape of individual cells. 
Mosaicism of GST expression in kidney epithelial cells has been observed (Rozell 
et al., 1993). Incisive examination of the GSTome using transcriptome profiling of 
single cells resident in their natural microenvironment would help to illuminate the 
multitude of GST functions.

11.17  SIGNIFICANCE OF GST RESEARCH

Enzymes are key players in all cellular processes in every living organism. In spite 
of a wealth of knowledge, the entire functional scope of enzymes is still incom-
pletely understood. For example, approximately half of all pharmaceutical drugs 
are directed against enzymes, but the interactions of targeted enzymes with the full 
complement of molecules encountered in the cellular context is largely unchartered. 
The traditional biochemical approach involves isolation of the enzyme of interest and 
examination of its interaction with its cognate ligands. However, in the intracellular 
milieu, a protein is surrounded by thousands of different molecules, and we now 
understand that every enzyme molecule has to cope with both cognate and noncog-
nate partners. Noncognate interactions may give rise to malfunctioning biochemical 
systems and disease, and in the field of pharmacology, a lack of specificity may cause 
adverse side reactions that jeopardize the beneficial effects of a drug. Furthermore, 
numerous application in biotechnology are based on enzymology, and the design of 
enzymes for new purposes still presents a challenge. Many of these questions are 
relevant to the GSTs as such. However, the enzymes also lend themselves to research 
that goes beyond glutathione biochemistry and illustrate principles and phenomena 
of general significance.
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