

The Nature of Physical Computation

OXFORD STUDIES IN PHILOSOPHY OF SCIENCE

General Editor:
P. Kyle Stanford, University of California, Irvine

Founding Editor:
Paul Humphreys, University of Virginia

Advisory Board
Anouk Barberousse (European Editor)
Robert W. Batterman
Jeremy Butterfield
Peter Galison
Philip Kitcher
James Woodward

Recently Published in the Series:
Mathematics and Scientific Representation
Christopher Pincock
Simulation and Similarity: Using Models to Understand the World
Michael Weisberg
Systematicity: The Nature of Science
Paul Hoyningen- Huene
Causation and Its Basis in Fundamental Physics
Douglas Kutach
Reconstructing Reality: Models, Mathematics, and Simulations
Margaret Morrison
The Ant Trap: Rebuilding the Foundations of the Social Sciences
Brian Epstein
Understanding Scientific Understanding
Henk de Regt
The Philosophy of Science: A Companion
Anouk Barberousse, Denis Bonnay, and Mikael Cozic
Calculated Surprises: The Philosophy of Computer Simulation
Johannes Lenhard
Chance in the World: A Skeptic’s Guide to Objective Chance
Carl Hoefer
Brownian Motion and Molecular Reality: A Study in Theory- Mediated Measurement
George E. Smith and Raghav Seth
Branching Space- Times: Theory and Applications
Nuel Belnap, Thomas Müller, and Tomasz Placek
Causation with a Human Face: Normative Theory and Descriptive Psychology
James Woodward
The Nature of Physical Computation
Oron Shagrir

1

The Nature of Physical
Computation

ORON SHAGRIR

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and certain other countries.

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America.

© Oxford University Press 2022

Some rights reserved. No part of this publication may be reproduced, stored ina retrieval system,
or transmitted, in any form or by any means, for commercial purposes, without the prior

permission in writing of Oxford University Press, or as expressly permitted by law, by licence
or under terms agreed with the appropriate reprographics rights organization

This is an open access publication. Except where otherwise noted, this work is distributed under
and subject to the terms of a Creative Commons Attribution Non Commercial No Derivatives 4.0

International License (CC BY-NC-ND 4.0) a copy of which is available at
https://creativecommons.org/licenses/by-nc-nd/4.0/

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Library of Congress Cataloging-in-Publication Data
Names: Shagrir, Oron, 1961– author.

Title: The nature of physical computation / Oron Shagrir.
Description: New York, NY, United States of America : Oxford University Press, [2022] |

Series: Oxford studies in philosophy of science |
 Includes bibliographical references and index.

Identifiers: LCCN 2021027461 (print) | LCCN 2021027462 (ebook) |
ISBN 9780197552384 (hardcover) | ISBN 9780197552407 (epub)

Subjects: LCSH: Computer science—Philosophy. | Semantic computing. | Computers—Philosophy.
Classification: LCC Q A76 . 167 . S53 2021 (print) | LCC Q A76 . 167 (ebook) | DDC 006—dc23

LC record available at https://lccn.loc.gov/2021027461
LC ebook record available at https://lccn.loc.gov/2021027462

DOI: 10.1093/ oso/ 9780197552384.001.0001

Printed by Integrated Books International, United States of America

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://lccn.loc.gov/2021027462
https://lccn.loc.gov/2021027461

Contents

Introduction 1

 1. Desiderata of a Theory of Computation 6
 1.1 Scope 6
 1.2 Features 10
 1.3 Summary 24

 2. Turing’s Computability 26
 2.1 The 1936 Affair 27
 2.2 Turing’s Analysis 33
 2.3 Who Is “the Computer”? 39
 2.4 Effective Computability and Machine Computation 46
 2.5 Summary 48

 3. Preamble to Machine Computation 49
 3.1 Gandy’s Account of Machine Computation 49
 3.2 Generic Computation 55
 3.3 Algorithmic Computation 60
 3.4 Physical Computation 70
 3.5 Summary 87

 4. Computation as Step- Satisfaction 88
 4.1 Cummins’s Account of Computation 89
 4.2 Is Step- Satisfaction Necessary for Computation? 95
 4.3 Neural Computation 103
 4.4 Summary 118

 5. Computation as Implementation 119
 5.1 Triviality Results 120
 5.2 Avoiding Triviality 129
 5.3 From Implementation to Computation 137
 5.4 Summary 144

 6. Computation as Mechanism 145
 6.1 An Outline of the Mechanistic Account 145
 6.2 What Is “Mechanistic” in the Mechanistic Account? 148
 6.3 Computational and Mechanistic Explanations 151
 6.4 Rules, Medium- Independence, and Teleological Functions 167
 6.5 Summary 174

vi Contents

 7. The Semantic View of Computation 175
 7.1 What Is a Semantic View of Computation? 175
 7.2 Objections to the Semantic View 189
 7.3 Summary 200

 8. An Argument for the Semantic View 201
 8.1 Simultaneous Implementation 201
 8.2 The Master Argument: From Simultaneous Implementation to

the Semantic Individuation of Computational States 207
 8.3 Objection 1: Computational Individuation Is More Basic 214
 8.4 Objection 2: Externalism Without Content 221
 8.5 Summary 228

 9. Computing as Modeling 229
 9.1 What Is Modeling? 229
 9.2 The Modeling Notion of Computation 238
 9.3 Others Who Have Linked Computing to Modeling 243
 9.4 The Methodological Role of Modeling 249
 9.5 Computational Explanations 253
 9.6 Summary 263

Conclusion 264

Acknowledgments 267
Bibliography 271
Name Index 301
Subject Index 307

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0001

Introduction

From laptops to smartphones, computing systems are everywhere today. Even
the brain is thought to be a kind of computing system. What does it mean,
however, to say that a physical system computes? What is it about laptops,
smartphones, and nervous systems such that they are deemed to compute— and
why does it seldom occur to us to describe stomachs, hurricanes, or rocks in this
way? Answering these questions turns out to be a notoriously difficult task, and
scholars have put forward very different accounts of physical computation. Some
have even described this situation as a foundational crisis. While I am not sure
I would go that far, it is certainly true that clarifying the nature of computation
is key to laying the conceptual foundations of the computational sciences, in-
cluding computer science and engineering, as well as the cognitive and neural
sciences. Not surprisingly, philosophers have increasingly focused their atten-
tion on the nature of computation. They ask whether computation is objective, to
what extent it is pervasive or even trivial, what the precise relations are between
computation and representations, and more. In recent years, many philosophers
have settled on the mechanistic account (discussed in Chapter 6).

In this book, I offer an extended argument for a variant of the semantic view of
computation. This view states that semantic properties are involved in the nature
of computing systems. Thus, laptops, smartphones, and nervous systems com-
pute because they have certain semantic properties. Stomachs, hurricanes, and
rocks, for instance, which do not have semantic properties, do not compute. The
variant of the semantic view defended here consists of three elements. One is
implementation: a physical computing system implements a formalism of some
kind, such as an abstract automaton (elaborated on in Chapter 5). Another el-
ement is representation: some of the system’s physical magnitudes represent
objects and properties in a target domain, such as in the individual’s physical en-
vironment (discussed in Chapter 7). The third and final element is mirroring: the
computing system preserves certain relations in the target (or “represented”) do-
main (the topic of Chapter 9). These three elements are related in that the input-
output function of the implemented formalism underlies the mirroring relation
between the computing system and the target domain (explained in Chapter 9).
I call this characterization the modeling account of computation.

Alongside my positive thesis for the semantic view, I also argue against
three premises that have stood in the way of an adequate account of physical

2 The Nature of Physical Computation

computation. The first of these— the logical dogma— is that there is a strong
linkage between the mathematical theories we find in logic and computer sci-
ence (e.g., computability theory, automata theory, proof theory) and physical
computation. Scholars have described physical computing systems as syntactic
engines (Stich 1991) and automatic formal systems (Haugeland 1981b) as being
“illuminated by the idea of a Turing machine” (Crane 2016: 70), while they
have described computing processes as executions of programs (Cummins
1988), algorithms (Copeland 1996), and effective procedures (Crane 2016), or
as implementations of automata. I claim that while these notions are perfectly
sound in their original contexts, they lead us astray when applied in the con-
text of physical computing systems. When it comes to characterizing physical
computation, we should be careful about using these notions— or entirely re-
frain from using them. To clarify, I do not deny that physical computing sys-
tems can be seen as implementing some formalism. Rather, I contend that the
implemented formalism need not be tied to the type of formalism found, for ex-
ample, in mathematical theories of computability. Much of the first part of the
book is devoted to refuting this dogma.

A second premise— the architectural dogma— is that the difference between
computing and non- computing physical systems has to do (at least in part) with a
distinct abstract causal structure. This is not meant to imply that non- computing
physical systems lack such a structure, but rather to say that they lack the right
kind of structure. Another way to put it is that computing systems possess the
right kind of architectural or functional profile. This distinct profile is often as-
sociated with discrete, digital, or stepwise architectures, which are usually mark-
edly different from more continuous and dynamic ones. Physical computing
systems have thus been said to have “specific architectural” properties (Newell
and Simon 1976: 117) and are defined as physical symbol systems (Newell and
Simon 1976). Physical computation has been characterized as “the generation
of output strings of digits from input strings of digits in accordance with a ge-
neral rule” (Piccinini 2008b: 34),1 and computing processes have been described
as step- satisfaction (Cummins 1988) or as syntactic processes (Fodor 1980; Stich
1983)— meaning (roughly) that they occur “in a languagelike medium” (Fodor
1994: 9) or in classical architectures (Fodor and Pylyshyn 1988).

Architectural accounts, as I call them, share the view that possessing the right
kind of architectural profile is a necessary condition for computing; therefore,
systems that lack this select profile do not compute. These accounts diverge,
however, on the question of whether the select architecture is also a sufficient
condition of computation. Some say yes, while others identify other (necessary)

 1 More recently, however, Piccinini (2015) confines this characterization to digital computation
only (as discussed in Chapter 6).

Introduction 3

features. Some architectural accounts even impose a semantic criterion on
computation in addition to the select architecture— namely, that computation
operates on semantically evaluable entities (see, e.g., Fodor 1980; Pylyshyn 1984;
Fodor and Pylyshyn 1988). I argue (mainly in Chapter 4) against the necessity of
architectural profiles. These profiles play a minimal role, if any, in distinguishing
computing from non- computing physical systems: either the proposed archi-
tectural profile excludes paradigmatic cases of computing or it encompasses too
much by applying to virtually every physical system.

It is worth mentioning that I do not deny that computational vehicles are
identified with architectural profiles (etc.). In fact, I think that computations
are, in some sense, abstract and medium- independent (as will be discussed in
Chapters 5 and 6). What I do reject is the notion that computation favors certain
kinds of architectural profiles (e.g., digital ones) over others (e.g., more contin-
uous ones). Additionally, I do not deny that architectural profiles are relevant to
characterizing various types of computation (e.g., digital computation). Instead,
I claim that they are much less relevant to characterizing computing systems.
More generally, I deny that the features that are relevant to the distinction be-
tween different kinds of computing systems are also relevant to the distinc-
tion between computing and non- computing systems (see also Sprevak 2018;
Lee 2021).

The third premise is that an account of computation must be substantive in
some sense, at least if the account is meant to provide solid foundations for the
computational sciences. While I believe that my account advances a substan-
tive notion of computation, I think that the initial stipulation of a substantivity
premise— that is, starting from the premise that computation is substantive—
often leads to overly strong requirements for an account of computation. I will
caution against three such requirements that are sometimes associated with a
substantivity premise (I discuss a fourth requirement, about the explanatory role
of computation, in Chapter 2).2 The first pertains to the objectivity of compu-
tation. Some scholars have argued that computation must be objective. But, as
I note in Chapter 2, we can resist a strong form of objectivity about computation
without compromising the idea that scientists discover the computational prop-
erties of physical systems. A second requirement is that computation should be
naturalized. This naturalistic constraint underpins some philosophical theories
about the nature of the mind— the computational theory of mind, computational
functionalism, and computationalism— and is yet another reason to insist that
computation is non- semantic (see Chapter 7). However, I will suggest that there

 2 Coelho Mollo (forthcoming), for example, who is sympathetic to the substantivity premise,
says: “Given its central place in the computational- representational basic framework of the cognitive
sciences, philosophers aim to produce naturalistic theories that yield a robust, objective, non- trivial
notion of computation in physical systems.” He also recommends avoiding pancomputationalism.

4 The Nature of Physical Computation

is very little evidence that computation plays this naturalizing role— and even if
it does, the naturalistic assumption is consistent with the semantic view. Lastly,
many accounts of computation seek to avoid pancomputationalism— namely, the
claim that every physical system performs computations. There are several forms
of pancomputationalism, some with more devastating consequences than others
(see Piccinini and Anderson 2018). I suggest that we can live with modest forms
of pancomputationalism. The account that I propose is consistent with very lim-
ited pancomputationalism (my term)— namely, that every physical system could,
under certain circumstances, perform some computation (Chapter 7).

Some authors have called for a more pluralistic approach to computation
(e.g., Chalmers 2012; Lee 2021). I am sympathetic to this call. Given that rapid
developments in theory and technology have significantly altered the meaning
of the term computation over the past century or so, it is inevitable that one will
encounter different meanings and uses of the word. In fact, over the years, the
concept of computation has indeed undergone dramatic changes. Nonetheless,
pluralism about computation cannot mean that everything goes. We have good
reason to prefer one conception of computation over another if the latter is in-
coherent or applicable only in a very narrow domain. My argument for the se-
mantic view proceeds along these lines. While this view does not cover every
single meaning or use of the term computation that has emerged over the years,
I argue that it is more effective than non- semantic accounts in distinguishing
computing from non- computing physical systems. Indeed, the semantic view
is far more applicable than assumed by its opponents: it is hospitable to new
paradigms of computing, and it is especially suited to the use of computation in
the contemporary cognitive and neural sciences.

The book consists of three parts, each of which is made up of three chapters.
Part I provides general background. Chapter 1 deals with the desiderata of an ac-
count of physical computation; Chapter 2 addresses Turing’s analysis of human
computability; and Chapter 3 distinguishes between different kinds of ma-
chine computation. Although varying in scope, these chapters have a common
theme— namely, that the linkage between the mathematical theory of com-
putability and the notion of physical computation is weak (see also Copeland
et al. 2016).

Part II reviews existing accounts of physical computation. While aiming
to cover most major accounts, I analyze three influential accounts in greater
depth: Robert Cummins’s step- satisfaction account (Chapter 4), David Chalmers’s
implementing- an- automaton account (Chapter 5), and Gualtiero Piccinini’s
mechanistic account (Chapter 6). I focus on these accounts for several reasons.
First, they explicitly analyze physical computation. Second, they have been exten-
sively discussed in the literature on physical computation. Third, these accounts
are good representatives of non- semantic accounts: Chalmers’s and Piccinini’s

Introduction 5

are explicitly non- semantic, while Cummins’s account is non- semantic at least
regarding physical functions. Last, and most importantly, I argue that while
none of these accounts is satisfactory, each highlights certain key features of
physical computation that I eventually adopt in my positive account. While I re-
ject Cummins’s characterization of computation in terms of step- satisfaction,
my account relies on his notion of simulation representation (also known as
input- output representation). I agree with Chalmers that medium- independence
(which he characterizes in terms of organizational invariance) is necessary for
computing, but I also agree with Piccinini that it is insufficient for computing
(although for different reasons than those cited by Piccinini). I therefore agree
with Piccinini that medium- independence must be supplemented with another
feature that defines computation, but, unlike Piccinini, I doubt that a teleolog-
ical function is the missing element. This paves the way for the semantic view of
computation.

Part III focuses on the semantic account. I first explain its primary claim—
that semantic properties are involved in the nature of computation— and distin-
guish it from other, closely related views. I also address various arguments for
and against the semantic view (Chapter 7). I then present and defend what I de-
scribe as the master argument for the semantic view (Chapter 8). This argument
has been challenged by Piccinini (2008a, 2015), Coelho Mollo (2018), Dewhurst
(2018a), and others, and I respond to their objections. In Chapter 9, I introduce
and defend the mirroring aspect of my account and argue that it is at least central
to current computational approaches in the cognitive and neural sciences. With
this, I complete the modeling characterization of computation.

In summary, the book defends a variant of the semantic view of computation.
In the first part of the book, I set the stage for an adequate account; in the second,
I highlight some difficulties with extant non- semantic accounts; and in the final
part, I articulate and defend the semantic view, and advance a specific (mod-
eling) account.

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0002

1
Desiderata of a Theory of

Computation

In this chapter, I outline the various demands that arise in a philosophical ac-
count of computation. This task is important for two reasons. One is that dif-
ferent lists of demands may lead to different accounts of computation. This can
explain why certain accounts of computing that are successful in one domain
fail to apply in other domains. The second reason is that some lists of demands
set the threshold too high, and thus eventually lead to dead ends. We need a list
of desiderata that sets the stage for a doable project, one that is not overly ambi-
tious and therefore ends up with too little. In this chapter, I discuss the two lists
of desiderata put forward by Brian Cantwell Smith (1996, 2002) for a general
theory of computation and by Gualtiero Piccinini (2007, 2015) for an account of
physical (concrete) computation. These authors differ in approach: while Smith
focuses on the theory’s scope, Piccinini formulates a set of features that should be
included in the theory. I discuss each of these approaches in turn.1

1.1 Scope

Smith (2002: 24ff.) states that a comprehensive theory of computing must meet
three criteria. The empirical criterion is to do justice to real- world examples of
computing (such as calculators and desktops). The conceptual criterion is to ac-
knowledge related concepts such as interpretation, representation, and semantics.
The cognitive criterion is to provide solid grounds for the computational theory
of mind and for cognitive science.2

The account I propose in this book aims to meet these criteria, at least to some
degree. The first aim is to account for physical computation (a goal parallel to
Smith’s empirical criterion)— namely, to relate both to real- world examples of
computing, such as laptops and smartphones, and to more recent technologies
such as neural, quantum, DNA, membrane, and other styles of computing. The

 1 See also Fresco (2008) for a discussion of Smith and Piccinini.
 2 In his On the Origin of Objects, Smith (1996: 4– 13, esp. 5) mentions only two, in which the “con-
ceptual” refers to what he later labels as “cognitive.”

Desiderata of a Theory of Computation 7

second aim is to pay special attention to the claim that cognitive and/ or neural
systems compute. This aim is similar to Smith’s cognitive criterion. As for Smith’s
conceptual criterion, I agree that an account of computation should acknowledge
closely related concepts such as interpretation, representation, and semantics.
This, of course, does not mean providing accounts for these notions, which is
even harder than accounting for computation— but rather explaining how these
notions relate to computation.

That said, we must restrict the scope of the account. Setting an overly wide
scope by trying to account for too much may lead to despairing conclusions
(Fresco 2008). Smith himself famously summed up his project with the gloomy
remarks that “computation is not a subject matter” (1996: 73); that “there will
never be a satisfying and intellectually productive ‘theory of computation’ of the
sort I initially set out to find” (1996: 74); and that “we will never have a theory of
computing because there is nothing there to have a theory of ” (2010: 38).

One restriction is that we do not have to account for every use of the term com-
putation, or every real- world example of it. Neither will I distinguish between the
derivatives of computation— that is, computing, computational, etc.— nor, by the
same token, will I make too much of the differences between computing entities,
such as agents, systems, processes, states, events, and so forth. I will also refer to
calculation and its derivatives as synonymous with computation. This is not to
say that there are no differences between these terms, but I will draw attention to
such differences only when they are important.

A second restriction pertains to various types of theses that state that the
physical universe is best modeled as a giant computer or as a network of compu-
tational processes of one sort or another (such as a deterministic cellular autom-
aton). The most renowned thesis in this genre was put forward by the computer
pioneer Konrad Zuse (1967). Zuse’s thesis states that the physical universe is fun-
damentally a cellular automaton. Whether this thesis is true is an open question,
though many believe it to be false.3 In any event, my account of physical compu-
tation does not address these theses. The account is not about the fundamentals
of the physical universe, but about the fundamentals of physical computing
systems.

A third restriction concerns the use of computer models, simulations, and
other tools in the sciences. Here we must distinguish between two meanings, or
uses, of the term computation in the computational sciences. In one use, compu-
tation refers to the extensive use of computer models, simulations, and methods
in the study of systems and functions. Computational astrophysics, for example,

 3 See Wheeler (1990); Schmidhuber (2000); Wolfram (2002); Dodig- Crnkovic and Müller (2011);
Dodig- Crnkovic (2017); Copeland, Sprevak, and Shagrir (2017); Copeland, Shagrir, and Sprevak
(2018); and Piccinini and Anderson (2018).

8 The Nature of Physical Computation

refers to the use of these computing tools in studying the heavens. In another
use, computation refers to the view that the studied system itself computes. This
is often the case in the cognitive and brain sciences (and computer science as
well), where the nervous system itself is often described as computing. In some
sciences, we find only the former use of computation. In computational astro-
physics, for example, no one describes the modeled systems— the heavens, plan-
etary systems, atmospheres, and so on— as computing systems. In other sciences,
we find both uses of computation. Take, for example, Stern and Travis’s introduc-
tion to the Science 2006 special issue on computational neuroscience, in which
they define computational neuroscience as the employment of computer models
and simulations to study the brain:

Computational neuroscience is now a mature field of research. In areas ran-
ging from molecules to the highest brain functions, scientists use mathemat-
ical models and computer simulations to study and predict the behavior of the
nervous system. Modeling has become so powerful these days that there is no
longer a one- way flow of scientific information. There is considerable intellec-
tual exchange between modelers and experimentalists. The results produced in
the simulation lab often lead to testable predictions and thus challenge other
researchers to design new experiments or reanalyze their data as they try to
confirm or falsify the hypotheses put forward. (Stern and Travis 2006: 75)

This excerpt is in line with the former meaning of computation— namely,
the use of computational tools (such as models and simulations) in neuro-
science. Immediately thereafter, however, Stern and Travis assert that the
modeled nervous system itself computes, reflecting the latter meaning of com-
putation: “Understanding the dynamics and computations of single neurons and
their role within larger neural networks is at the center of neuroscience. How do
single- cell properties contribute to information processing and, ultimately, be-
havior?” (2006: 75).4

In the present work, I focus on the latter meaning of computation— namely,
that a given modeled system performs computations. The aim is to account
for the (alleged) fact that laptops, smartphones, brains, and perhaps other sys-
tems compute. Thus, henceforward, whenever I use the term computation, I am
referring to a computing system (unless explicitly stated otherwise). In partic-
ular, I will treat computational models, computational descriptions, and com-
putational explanations as models, descriptions, and explanations that refer to

 4 A similar dual position can be found in Churchland and Sejnowski (1992); Koch (1999); O'Reilly
and Munakata (2000); and Dayan and Abbott (2001).

Desiderata of a Theory of Computation 9

computing systems.5 This is not to say that there are no interesting relationships
between the two definitions of the term computation, but rather that the account
presented here will not dwell upon the use of computer models and simulations
in science (i.e., the former definition of computation), which is a separate area of
study in its own right.6

Yet another restriction pertains to Smith’s cognitive criterion— namely, pro-
viding “intelligible foundation for the computational theory of mind . . . that
underlies traditional artificial intelligence and cognitive science” (2002: 24).
While my aim is certainly to explicate the concept of computation in the cogni-
tive (and other relevant) sciences, this should be distinguished from other goals
that are not necessarily part of an account of physical computation (or at least are
not my goals here). This is for three reasons. First, I am not seeking to provide
arguments in favor of the computational enterprise in cognitive (or any other re-
lated) science, but rather to understand the conceptual framework that underlies
the computational enterprise. This understanding may help us to assess the
prospects of computational approaches in cognitive, neural, and other sciences.
But, ultimately, whether or not these approaches prove to be useful (and if so, to
what extent) is largely an empirical issue.7 Second, I will not be dealing with the
question “What kinds of computations are carried out by a system?” One may get
the impression that I am seeking to argue in favor of a certain type of neural com-
putation, as opposed to more classical approaches (to use Fodor and Pylyshyn’s
label). However, this is not the case. Rather, my aim is to make sense of the notion
of computation that appears in non- classical approaches, not to endorse the the-
oretical and empirical virtues of those approaches. Whether or not the cognitive
system is classical is a question to be settled by further scientific investigation—
not by a philosophical account of computation.

Third, my aim is not to provide solid grounds for philosophical theories about
the mind. Smith says that a theory of computation “must provide a tenable foun-
dation for the computational theory of mind” (1996: 5). But I want to distinguish
the claim that the mind/ brain computes from certain philosophical pictures about
the computing mind/ brain— in particular, from the influential computational
theory of mind,8 which maintains certain assumptions and agendas that may

 5 But see Piccinini (2015), who distinguishes between computational explanations that are always
about computing systems and computational descriptions that might not be.
 6 For a discussion of the philosophy of computer models and simulation, see, e.g., Humphreys
(2004); Frigg and Reiss (2009); Winsberg (2010); and Weisberg (2013).
 7 Among those who advance arguments against, or alternatives to, computational approaches to
cognition are Dreyfus (1972); Searle (1980; 1992); van Gelder (1995); Chemero (2009): Hutto and
Myin (2012, 2017); and Hutto et al. (2018). See also Orlandi (2018), who argues that certain theories
in perception are only compatible with some accounts of computation.
 8 According to the latter view, “the mind literally is a digital computer” (Horst 2015); more specif-
ically, “thinking is a computational process involving the manipulation of semantically interpretable
strings of symbols, which are processed according to algorithms” (Schneider 2011: 13). In particular,

10 The Nature of Physical Computation

or may not reflect the theoretical framework and empirical practices of cogni-
tive science. My aim, therefore, is not to provide “a tenable foundation for com-
putational theory of mind”; if anything, my account undermines some of this
theory’s underlying premises about computation (see my reply to Objection 5 in
Chapter 7). Instead, I seek to account for the actual usage of the term computa-
tion in the cognitive and neural sciences.

While all this is, I admit, still very loose and tentative, the scope will become
clearer when we look at the desired features of such an account.

1.2 Features

Piccinini (2015: 11– 15) lists six desired features of an account of computing: ob-
jectivity, explanation, the right things compute, the wrong things don’t compute,
miscomputation is explained, and taxonomy. I will discuss these features in
a somewhat wider perspective, labeling the desiderata a bit differently. The
meaning desideratum, as I will call it, is to explain what it means to say that a
physical system computes (Section 1.2.1). The ontological desideratum is to ex-
plain the objectivity status of computing systems (Section 1.2.2). The utility de-
sideratum is to elucidate the role (such as an explanatory role) of computational
descriptions (Section 1.2.3). While this book is mainly concerned with fulfilling
the first desideratum, I will also say something about the others.

1.2.1 Meaning

When we say that certain systems, modules, processes, or mechanisms compute,
we mean that they are similar in certain respects to each other. Even more impor-
tantly, we want to emphasize that they are different in some respects from other,
non- computing systems. Thus, the meaning desideratum boils down to classi-
fication conditions that correctly classify cases of computation as well as non-
computation. Piccinini formulates this demand in terms of two criteria:

The right things compute. A good account of computing mechanisms should
entail that paradigmatic examples of computing mechanisms, such as digital
computers, calculators, both universal and non- universal Turing machines,
and finite state automata, compute. (2015: 12)

mental operations, as computing processes, are causally sensitive to the syntactic, non- semantic, and
non- intentional structure of the symbol (Schneider 2011: 12).

Desiderata of a Theory of Computation 11

The wrong things don’t compute. A good account of computing mechanisms
should entail that all paradigmatic examples of non- computing mechanisms
and systems, such as planetary systems, hurricanes, and digestive systems, don’t
perform computations. (2015: 12)

As Piccinini implies, it is unrealistic to have a precise formulation of necessary
and sufficient conditions that will clearly classify every system into one of the
two classes. There are disputable and borderline cases, such as lookup tables. We
would be extremely pleased if our conditions were to correctly classify “paradig-
matic examples” of computing and non- computing cases.

Now, what you include in the class of computing systems— and, even more
importantly, in the contrast class of non- computing systems— pretty much
determines the account of computing you end up with. Changing the context,
that is, the systems included in each class, can lead to very different accounts
of computing. To illustrate the point about the relationships between the inclu-
sive (things- that- compute) and contrast (things- that- don’t- compute) classes that
you start with, on the one hand, and the account of computation you end up
with, on the other, we must digress a little and compare two characterizations of
computation.

Gödel characterizes computation procedures as being “mechanical,” which he
describes as “purely formal, i.e., refer only to the outward structure of the for-
mulas, not to their meaning, so that they could be applied by someone who knew
nothing about mathematics, or by a machine” (1933: 45). Jack Copeland provides
a somewhat similar characterization of a mechanical computation procedure,
saying that it is one that “demands no insight or ingenuity on the part of the
human being carrying it out” (Copeland 2015).9 In contrast, Sejnowski, Koch,
and Churchland claim that “mechanical and causal explanations of chemical
and electrical signals in the brain are different from computational explanations.
The chief difference is that a computational explanation refers to the information
content of the physical signals” (1988: 1300). These two characterizations are
strikingly different. Gödel views computation as mechanical procedures that are
blind to content, while Sejnowski, Koch, and Churchland argue that computa-
tional explanations refer to informational content, while mechanical ones do not.
Leaving aside the validity of these characterizations, it is worth noting that they
arrive at very different, and indeed contrasting, characterizations (assuming, of
course, that computational explanations and computational procedures are re-
lated). I would like to suggest that the characterizations are different partly be-
cause they are made in very different contexts.

 9 Copeland and Gödel also refer to certain finiteness constraints; these are discussed in detail in
Chapter 2.

12 The Nature of Physical Computation

Gödel thought about computation in the context of logic and mathematics,
and more specifically in the context of formal systems. He contrasted modes,
methods, and procedures that are part of mathematical thinking. One class
includes the effective computational procedures, or, as Gödel often calls them,
mechanical procedures. The contrast class of non- computational or non-
mechanical procedures includes other modes of mathematical understanding,
thinking, and creativity, which are sometimes referred to as “intuition” or “inge-
nuity.”10 Following his incompleteness results, Gödel’s concern was the extent to
which non- computational methods can be expressed by computational ones—
or, in other words, whether mathematical thinking can be formalized.11 In this
context of logic and mathematics, it is natural to view computation— that is, me-
chanical procedures— in terms of blindness to the content of the formulas. When
performing computations, the mathematician attends to the “outward structure
of the formulas, not to their meaning.” When intuition or ingenuity is involved,
the mathematician might also take into account the content and the meaning of
mathematical expressions.

Like Gödel, Copeland (2015) places the notion of a computation (mechan-
ical) procedure in the context of logic and mathematics. He writes, “The Church-
Turing thesis concerns the notion of an effective or mechanical method in logic
and mathematics. ‘Effective’ and its synonym ‘mechanical’ are terms of art in
these disciplines.” For Copeland, the procedure demands “no insight or inge-
nuity on the part of the human being carrying it out,” which underscores that the
relevant context here is related to “the human being.” The agent that carries out
the computation procedure is an (idealized) human being. Gödel also alludes
to a human computer when referring to “someone who knew nothing about
mathematics.” This does not mean that only a human can carry out a mechanical
procedure. In fact, Gödel explicitly raises the possibility of computation “by a
machine.”12 But this possibility only points to the default, which is human cal-
culation; the benchmark for computability is that which can be calculated by a
human, though he or she can be replaced by a machine. The contrast class of
non- computing includes modes of thinking that do demand “insight or inge-
nuity.” If we extend the non- computing class beyond the mathematical domain,
we could perhaps add to the non- computing class other phenomena, methods,

 10 These rubrics are taken from Turing’s (1939) characterization of mathematical thinking.
 11 Gödel’s answer to this question is a cautious no. This answer is a consequence of his incomplete-
ness results, which indicate that no formal system captures (in the sense of derivation) all mathemat-
ical truths, and of his inclination toward rational optimism, which is the view that the mathematician
can in principle prove any mathematical truth. Gödel discusses these issues at greater length in his
Gibbs lecture (Gödel 1951).
 12 In a 1963 note added to his 1931 paper on incompleteness, Gödel writes that the “characteristic
property [of a formal system] is that reasoning in them, in principle, can be completely replaced by
mechanical devices” (p. 195 n. 70).

Desiderata of a Theory of Computation 13

and processes— such as imagining, hallucinating, dreaming, and feeling— all of
which are non- mechanical in the sense that they are sensitive to meaning.

Crucially, the term computation, as applied in the context of physical systems,
is no longer contrasted with personal- level phenomena, such as insight, inge-
nuity, intuition, and perhaps dreaming and hallucinating. We contrast physical
computing systems with other physical systems— such as planetary systems,
hurricanes, and digestive systems— that do not compute (to use Piccinini’s
examples). Even when we say that neural or cognitive processes “compute,” we
are not ascribing computation to personal- level processes, but rather arguing
that the subpersonal, non- conscious processes underlying personal- level phe-
nomena compute. For example, we mean that the non- conscious processes un-
derpinning what we see, attend to, recognize, learn, create, and perhaps even
dream and intuit are computing processes. The claim, in its strongest form, is
that these subpersonal computing mechanisms underpin all personal- level phe-
nomena, computing and non- computing alike. Not surprisingly, the contrast
class of the non- computing cases undergoes a similar change. When we claim
that the subpersonal mechanisms are computing, we are contrasting them not
with the personal- level cases of insight, ingenuity, and intuition, but with pro-
cesses that are “merely” electrical, chemical, and biological. This is the context
of physical computation. We want to distinguish physical processes that are
described as computing from those that are not described as such.

Sejnowski, Koch, and Churchland’s characterization should be understood in
the context of physical computation. They aim to identify the properties that dis-
tinguish computational descriptions (and explanations) from other “mechanical
and causal” descriptions that merely refer to the chemical and electrical signals
in the brain. They appear to claim that these computational properties are rel-
evant to cognition— even to the personal- level phenomena that Gödel classi-
fied as non- computing. This claim is perfectly consistent with the assertion that
mathematical intuition and ingenuity, when considered at the personal level, is
non- computing. The claim, once again, is that the computational properties of
the subpersonal neural processes underlying personal- level phenomena are rele-
vant to, and perhaps even constitute, mathematical intuition and ingenuity.

Let us set aside the question of whether or not Sejnowski, Koch, and
Churchland’s characterization of computation is correct; it is undoubtedly con-
troversial. The point is that their characterization and that of Gödel make sense
in the context in which they were made, but less so in other contexts. Gödel’s
characterization of computing procedures— as referring to the “outward struc-
ture of the formulas, not to their meaning”— seems quite reasonable in the con-
text of mathematical (and perhaps other personal- level) thinking, where we
want to distinguish computation, which is mechanical in this sense, from intui-
tion, insight, and ingenuity, which seemingly are not. In the context of physical

14 The Nature of Physical Computation

computation, however, it is not as helpful to characterize computation as me-
chanical, as “mechanical” does not immediately differentiate computation from
other electrical, chemical, and biological descriptions. After all, the latter pro-
cesses are mechanical— that is, blind to meaning— too (indeed, Sejnowski, Koch,
and Churchland refer to the non- computing descriptions as “mechanical”).

Sejnowski, Koch, and Churchland’s suggestion— that computational
descriptions allude to the informational content of the cells— is plausible in the
context of physical computation, where we want to distinguish computation
from other, non- computational descriptions. While one may not endorse this
characterization of computing, it is at least the sort of characterization that we
should take seriously, given that non- computational descriptions— such as elec-
trical, chemical, and biological descriptions— do not seem to refer to informa-
tional content. However, Sejnowski, Koch, and Churchland’s characterization
makes little sense in the context of personal- level thinking. It is very odd to char-
acterize computation, in this context, in terms of descriptions that refer to in-
formational content, as it is nonsense to say that non- computing personal- level
processes (e.g., intuition, ingenuity, and dreaming) do not refer to informational
content.

The upshot of this digression is that our eventual account of computation cru-
cially depends on the classes of the- right- things- compute and the- wrong- things-
don’t- compute with which we began. Different classes can lead us to very different
answers to the question of meaning. When we compare human personal- level
computation with other (non- computing) human capacities, we end up with one
answer. When we compare computational with non- computational properties of
a physical system or a process, we may end up with a very different answer.

What, then, should be included in the classes of the- right- things- compute and
the- wrong- things- don’t- compute? Given that we are aiming to account for phys-
ical computation, I would modify Piccinini’s paradigmatic examples of com-
puting systems. As for the class of computing systems, we would surely want to
include digital computers and calculators in this class. I also think that analog
computers are paradigmatic the- right- things- compute cases: although they have
proven less useful than digital computers, they do have a long and interesting
history and, more importantly, a great deal of relevance to current computational
work in cognitive science— as the nervous system is no more digital than it is
analog.13 Conversely, I think we had better not include the abstract automata
and Turing machines as obvious paradigmatic cases of computing systems, since
they are not physical or concrete systems (though we should surely say some-
thing about them).

 13 See Piccinini and Bahar (2013) and Maley (2018).

Desiderata of a Theory of Computation 15

My view is that we should also include the nervous system in the class of com-
puting systems. One might argue that including the nervous system among the
computing systems from the start prejudges the question of whether the nervous
system is computational, which is an empirical question. I would still insist on
its inclusion, for three reasons. First, the view that nervous systems compute
is very widespread. True, we are more confident that laptops compute (one
might even take this to be an analytic supposition), but the view that the brain
computes is deeply entrenched in the cognitive and neural sciences.14 Second,
the aim of an account of physical computation is not to vindicate the claim that
brains compute, but rather to explicate the widespread assertion that they do.
Indeed, it might turn out one day that this assertion is false and that the brain
does not compute— but this also applies to other cases of computing and non-
computing systems. It might turn out that hurricanes compute. Yet we under-
stand hurricanes as paradigmatic cases of non- computing systems, as we aim to
explicate the widespread (albeit perhaps false) assertion that hurricanes do not
compute. Lastly, we cannot ignore the numerous attempts, both in philosophy
and in the sciences, to establish a link between laptops and brains— namely, to
point out a number of interesting commonalities between brains and computing
systems such as laptops. Consequently, those who develop accounts of physical
computation aspire to highlight these commonalities. We might find out, while
developing these accounts, that there are actually no such commonalities; in that
case, we might then decide to exclude brains from the class of computing sys-
tems. That said, it makes sense to start with the understanding that motivated
our accounts of physical computation in the first place— namely, the promise
that laptops and brains both belong to the class of computing systems.15

What about the contrast class— that of the- wrong- things- don’t- compute?
Piccinini cites planetary systems, hurricanes, and digestive systems as paradig-
matic cases of non- computing systems; one could add to the list rocks, toasters,
and perhaps other systems. I do not think that Piccinini’s examples are contro-
versial. We could agree that moving- in- orbits, storming, and digesting are non-
computing processes. What is more controversial is whether these systems have
computational properties at all. If they do, it may well mean that these systems
compute under other descriptions (other than the descriptions moving- in- orbits,
storming, and digesting). This controversy is directly related to the thesis of
pancomputationalism— namely, the claim that every physical system computes (I

 14 Christof Koch, e.g., says: “The brain computes! This is accepted as a truism by the majority
of neuroscientists engaged in discovering the principles employed in the design and operation of
nervous systems” (1999: 1). See also the statements by Stern and Travis earlier in this chapter.
 15 One might think about this process, in which we start from a class of paradigmatic examples
(“intuitions”) but remain open to revising this class as we attempt to formulate a coherent account, in
terms of reflective equilibrium (Daniels 2020).

16 The Nature of Physical Computation

discuss this thesis in detail in Chapter 5). Piccinini appears to hold the view that
planetary systems, hurricanes, and stomachs do not have computational proper-
ties at all.16 Chalmers (2011) is more open to the possibility that stomachs (etc.)
compute. He thinks that the important difference is that stomachs do not digest
in virtue of their computational properties, whereas “with cognition . . . the claim
is that it is in virtue of implementing some computation that a system is cogni-
tive” (332– 333).

I suppose that those who take the first approach— that digestive systems
(stomachs) lack computational properties— tend to characterize the contrast
class in across- system terms. Thus, Piccinini contrasts computing systems with
other physical systems, such as planetary systems, hurricanes, and digestive
systems, which we do not refer to as computing systems. Those who adopt the
second approach— that digestive systems possess computational properties—
might prefer to characterize the contrast class in within- system terms. Sejnowski,
Koch, and Churchland, for example, contrast computational explanations with
“mechanical and causal explanations of chemical and electrical signals in the
brain.” Thus, they take the contrast class of computing mechanisms to be non-
computing mechanisms of the same computing systems. They assert that the
computational properties (or explanations) of the (neural) mechanisms extend
beyond their chemical and electrical properties. But I would not make too much
of this distinction. One can follow the across- system convention without sub-
scribing to the notion that digestive systems lack computational properties; in
that case, the computational properties would not be part of the description (and
explanation) of digestive, qua digestive, processes (this is perhaps closer to how
Chalmers describes the contrast class).

To recap: First, an account of physical computation should identify paradig-
matic examples of non- computing systems. Most scholars, I think, would agree
with Piccinini that digestive systems (etc.), qua digestive, are non- computing.
Second, the question as to whether or not the paradigmatic examples of non-
computing systems have computational properties at all is more controversial.
An account of computation need not decide about this issue in advance— both
approaches make sense, at least until one develops arguments for and against
them. Third, there is the question of whether to characterize the contrast class in
within- system or across- system terms. Here too, I do not think that the charac-
terization makes too much of a difference, as long as the computation account is
clear about the distinction between computing and non- computing.

 16 More recently, Piccinini has put forward a more nuanced position about this, saying that “we
accept that there is a sense in which a physical system may perform computations even though
it . . . does not have the function to compute” (Piccinini and Anderson 2018: 24).

Desiderata of a Theory of Computation 17

Piccinini advances two more desiderata— explaining miscomputation and
taxonomy— that are relevant to the identity conditions of computation. I deal
with these two desiderata only briefly and focus instead on the classification cri-
teria discussed previously. Explaining miscomputation is formulated as follows:

Explaining miscomputation . . . A good account of computing mechanisms
should explain how it’s possible for a physical system to miscompute. (2015: 14)

When we define a computational capacity (or norm) of a system, we also want
to indicate when the system fails to exercise that capacity. The miscomputation
desideratum allows us to explain this failure. Piccinini provides one account of
miscomputation; others have provided somewhat different ones (Fresco and
Primiero 2013; Dewhurst 2014; Tucker 2018; Colombo 2021). Although I agree
that computation is normative, I will not address this (important) desider-
atum here.

The taxonomy desideratum is articulated as follows:

Taxonomy. Different classes of computing mechanisms have different capaci-
ties. . . . Any account of computing systems whose conceptual resources explain
or shed light on those differences is preferable to an account that is blind to
those differences. (2015: 14)

This desideratum seeks to explicate the criteria for individuating types of
computation. These criteria should pertain not only to systems or mechanisms
as a whole, but also to types of events, states, and interactions that may be part
of the system or mechanism. Although a systematic account of different kinds
of computing systems, such as digital versus analog computation, is certainly
important, I do not attempt to provide one. I do discuss, however, the distinc-
tion between the criteria for distinguishing computing from non- computing
systems (the- right- things- compute and the- wrong- things- don’t- compute) and
the criteria for classifying different kinds of computation. These two sets of
criteria are not identical (see also Lee 2021 and Sprevak 2018). I argue that
while architectural profile is relevant to the individuation of computational
types (kinds), it is irrelevant to the individuation of computation as such— that
is, distinguishing computing from non- computing systems (Chapter 4). Some
scholars claim that while semantic properties are relevant to the individuation
of computation, they are irrelevant to the individuation of computational types
(see Chapter 7). I argue, to the contrary, that semantic properties are relevant
both to the individuation of computation and to the individuation of compu-
tational types.

18 The Nature of Physical Computation

1.2.2 Ontology

A second desideratum is to clarify the extent to which computation is objective.
Some scholars have insisted that the distinction between computing and non-
computing is a matter of fact. Piccinini, for example, puts this demand in the
form of the following desideratum:

Objectivity. An account with objectivity is such that whether a system performs
a particular computation is a matter of fact. (2015: 11)

In my view, concerns about objectivity are overrated. There is no reason to
impose very strong objectivity constraints on an account of physical computa-
tion (see also Fresco 2015). What is meant here by objectivity, or “a matter of
fact”? One option is to contrast objectivity with observer- dependence. On this
understanding, if computers are objective, then they are in the company of other
(“natural”) kinds such as electrons, neurons, and proteins, which are presum-
ably observer- independent. When scientists study these systems, they appeal
to “empirical facts about these systems” (Piccinini 2007: 503). If they are not
objective— that is, if they are observer- dependent— then computers have more
in common with toasters, chairs, and credit cards, whose identities at least partly
depend on the (supposedly intentional) properties of those who observe, use, or
design them.17

Why should it be a matter of concern that computation is observer-
dependent? The answer is mainly that such a denial of objectivity contradicts
standard practices and assumptions in the computational sciences, where
scientists arguably discover observer- independent facts about the systems they
study. I address this concern by drawing a distinction between two subclasses
of computing systems. One subclass includes computing systems whose com-
putational properties are all objective; we can call these objective computing sys-
tems. The nervous system might be included in this class. The other subclass
is that of conventional computing systems. Some of the computational proper-
ties of these systems are not objective. We might want to include in this class
smartphones, laptops, and some artifacts. Other artifacts, such as robots, may
be objective computing systems; I leave that to the reader to decide. This distinc-
tion, between objective and conventional computing systems, is not outlandish.
Consider the closely related notion of representation. Most of us would agree that
there are many things whose representational power is a matter of interpretation

 17 This sense of observer- relativity is introduced, e.g., by Searle, who says that “there is a distinc-
tion between those features that we might call intrinsic to nature and those features that exist relative
to the intentionality of observers, users, etc.” (1995: 9). I discuss other, more nuanced views in my
reply to Objection 4 in Chapter 7.

Desiderata of a Theory of Computation 19

(“derivative”) and not a matter of fact. Examples might include words, maps, and
even data structures in my laptop. This does not mean that all representations
are derivative. Dretske (1988), for one, suggests that there are natural (“objec-
tive”) systems of representations alongside the conventional (“non- objective”)
ones; brains are perhaps natural systems of representations. The same distinction
between objective and conventional might apply within the overall category of
computing systems.

Let us start with the former class, that of objective computing systems. In refer-
ence to minds and brains, Piccinini writes that “psychologists and neuroscientists
are in the business of discovering which computations are performed by minds
and brains. When they disagree, they address their opponents by mustering em-
pirical evidence about the systems they study” (Piccinini 2007: 503). The de-
nial of objectivity, however, does not imply that the computational properties of
minds and brains are not objective. There may be conventional computing sys-
tems whose computational properties (or at least some of them) are not a matter
of fact: these properties are derivative, or a matter of interpretation. However,
this does not imply that the computational properties of minds and brains are
non- objective. It may well be that minds and brains (and perhaps other systems)
are objective computing systems. If that is the case, scientists have good reason to
search for, and discover, their (objective) computational properties.

If I am right about this, we should distinguish between two claims about
objectivity:

Strong objectivity (SO): Every computational property of every (computing)
physical system is objective.

Partial objectivity 1 (PO1): Every computational property of some (computing)
physical systems (e.g., brains) is objective.

Clearly, satisfying PO1 is enough to meet the desideratum that the computa-
tional properties of minds and brains are objective. There is no reason to adopt
SO— that is, to assume that the computational properties of all computing sys-
tems are objective.

Let us turn to the class of conventional systems, which may include laptops,
smartphones, and other machines. One could insist that the computational
properties of these systems are also a “matter of fact.” As Piccinini puts it:

Computer scientists and engineers appeal to empirical facts about the sys-
tems they study to determine which computations are performed by which
mechanisms. They apply computational descriptions to concrete mechanisms
in a way entirely analogous to other bona fide scientific descriptions. (2007: 503)

20 The Nature of Physical Computation

If this is the case, the distinction between SO and PO1 is not helpful, since,
arguably, there are no conventional computing systems whatsoever. Even
smartphones and laptops are objective computing systems.

I agree with Piccinini that computer scientists and engineers discover com-
putational properties of smartphones and laptops, and that these properties are
objective. However, this does not yet imply that all the computational proper-
ties of these systems must be objective. Assume, for the sake of argument, that a
system computes if (a) it implements a finite automaton, and (b) it operates on
representations. It follows that being computational depends on two features
(properties): implementation and representation. Assume, further, that sat-
isfying the former feature (implementation) is always a matter of fact, but
satisfying the latter, semantic condition is a matter of fact in some cases, but
conventional in others (as described previously). If one does not like this ex-
ample, one can always replace implementation and representation with other
features, such as medium- independence and teleological function. The identity
of the features is not important for the point that I am making. The point is that
a conventional computing system can possess some objective computational
properties (implementation) alongside non- objective computational proper-
ties (some representations).18

Arguably, smartphones, laptops, and some other artifacts are conventional
computing systems, in that their representational capabilities are observer-
dependent. They depend on our interpretation of their states as representing
chess pieces, next month’s salaries, and so on. However, some of their com-
putational features are objective: they implement, as a matter of fact, certain
finite- state automata. If this is indeed the case, then there is something to dis-
cover about conventional systems— that is, the objective features of implementa-
tion. Scientists aim to do so and may well study and discover the finite automata
implemented by the conventional systems.

If this is true, we should distinguish between SO (strong objectivity) and a
weaker (partial) objectivity condition:

Partial objectivity 2 (PO2): Some computational properties of every (com-
puting) physical systems (e.g., laptops) are objective.

Clearly, PO2 is consistent with PO1. Thus, the conjunctive claim (PO1 &
PO2)— that all the computational properties of minds and brains are objective,
as are some of the computational properties of laptops (etc.)— is a consistent one.

 18 This category, of conventional systems with objective properties, is not distinctive to com-
puting systems. Dretske’s conventional representational systems Type II have natural (objective) signs
(indicators) whose function (representational power) to indicate is conventional (Dretske 1988).

Desiderata of a Theory of Computation 21

The upshot is this: Even if there are good reasons to think that computation is
observer- independent, there is no need to adopt a strong objectivity (SO) con-
straint for an account of physical computation. We can be satisfied with a weaker
desideratum, namely, PO1 & PO2. My account meets this weaker desideratum.

Another way to understand objectivity is by contrasting it with “free inter-
pretation” (Piccinini 2015: 11). As an example of free interpretation, one may
mention the triviality results (discussed in Chapter 5), which enable us to apply
any computational description to any physical system. On this understanding,
computers are objective in the sense that there are some strict constraints on the
way we can assign computational descriptions to physical systems. Assuming
that there are also strict constraints on the way we apply toaster- descriptions
(etc.) to physical systems, computers might belong to the class of toasters, credit
cards, and chairs, and yet be considered objective. More importantly, these
constraints leave little room for the scientist (or an observer who is not neces-
sarily a designer or user) to decide whether something is a computer and, if so,
what it computes.19

I believe that my account meets this objectivity desideratum. I will suggest
that there are strict constraints on whether a physical system does or does not
compute. However, I am hesitant to impose any objectivity desideratum from the
start. One might still insist that some computational descriptions are observer-
dependent20 or loosely constrained by empirical facts about the systems,21 and
yet that they serve as a useful tool in the computational sciences. I see no compel-
ling reason to rule out these more instrumental and less committal approaches
in advance. It might turn out that computational descriptions are useful, even if
they are not objective at all.

1.2.3 Utility

The utility desideratum’s purpose is to explicate the relevance and role of com-
putational properties (descriptions). The utility desideratum goes beyond the
meaning desideratum. The meaning question is what we mean when we describe
a system as a computer, and it arises irrespective of whether or not we actually

 19 Coelho Mollo (forthcoming) draws a useful distinction in this context between thin
perspectives, which are relatively unconstrained, and thick perspectives, which are more constrained.
 20 See Schweizer (2019b), who argues that “computational descriptions of physical systems are not
founded upon deep ontological distinctions, but rather upon interest- relative human conventions.
Hence physical computation is a ‘conventional’ rather than a ‘natural’ kind” (p. 27).
 21 See Cao (2018), who argues that “neural computation and neural representation are, in practice,
thinner, more liberal, and more observer- relative notions than the types of computation and repre-
sentation often assumed in theoretical psychology or computational cognitive science” (293).

22 The Nature of Physical Computation

apply computational descriptions (or refer to computational properties). The
utility question complements the meaning question by asking why we apply
computational descriptions (or refer to computational properties) in certain
contexts.

The utility question arises regardless of whether or not computational prop-
erties are objective. Being objective does not make properties useful. The mass
and odor of retinal nerve cells are presumably objective properties, but we do
not refer to these properties when describing the contribution of these cells to
the visual task of edge detection. Nor do we assume, like Chalmers (2011), that
every concrete physical system, including stomachs, has objective computational
properties. The alleged fact that these properties are objective does not neces-
sarily make them useful in the context of digestion. The utility question, then,
is: Why do we refer to the computational properties of neural processes, but not
to the computational properties of digestive processes? Why refer to computa-
tional properties of nerve cells and not, say, to their mass and odor?

Being conventional does not render properties useless. Words (i.e., the phys-
ical marks on my paper) are representational entities that are (presumably) con-
ventional but are very useful for purposes of communication. The computational
properties of laptops and smartphones, even if partly or wholly conventional,
are surely useful. Even if every computational property is conventional, we do
not actually apply a computational description to every system. In reality, we
apply computational descriptions to very few systems. The utility question, then,
is why we should apply computational descriptions to some systems and not to
others. In other words, what is the utility of computational properties in certain
contexts and not in others?

The utility of computation can be more, less, or not at all substantial. We
might use the term computation in a certain metaphorical sense, or perhaps to
attract more attention to certain fields, increase the likelihood of winning grants,
and so forth.22 But utility may play a more substantial role in the study of cer-
tain systems. Presumably, when we describe the nervous system as computing,
we assume that its computational properties play a substantial role, such as in
cognizing. Chalmers (2011), for example, alludes to central conceptions in the
philosophy of mind, where computational properties play a formative role in
cognition.

Piccinini highlights the explanatory role of (physical) computation by
invoking the following desideratum:

 22 See Boden (2006) and Miłkowski (2013: chap. 2) for a discussion of the “computer metaphor” of
the mind.

Desiderata of a Theory of Computation 23

Explanation . . . A good account of computing mechanisms should say how ap-
peals to program execution, and more generally to computation, explain the
behavior of computing systems. (2015: 12)

Like Piccinini, I also refer to the explanatory role of computation, although
my answer differs significantly from those of Piccinini and others. The question
I wish to raise at this point, however, is whether or not an account of computation
should assign a substantive role for computation. While I do think that computa-
tion has a substantive explanatory role, I want to suggest that this substantivity is
not a desideratum of an account of computation.

William Ramsey (2007) argues for the substantivity of the notion of mental
representation. He says that any account of representation should meet “the job
description challenge.” A successful job description of representation should
“enable us to distinguish the representational from the non- representational and
should provide us with conditions that delineate the sort of job representations
perform, qua representations, in a physical system” (p. 27). He further argues
that a successful account should indicate how the possession of content is
“relevant to what it does in the cognitive system” (p. 27), and “how it is used”
(p. 27). Admittedly, Ramsey does not come up with a crisp formulation of these
conditions, but states that the posited notion must perform “important explan-
atory work in a given account of cognition” (p. 3).23 Although his emphasis is
on representation rather than computation, it would be helpful to fine- tune the
utility requirement by comparing it with Ramsey’s job description challenge.

I agree that an account of a theoretical concept— be it representation, compu-
tation, or any other— must clarify its contribution to the scientific investigation.
An account of computation should clarify the contribution of computational
properties to certain functions, and in particular to cognitive functions. This
is precisely what the utility requirement is. But there may be some differences
between Ramsey’s requirement and mine. One possible difference has to do
with the demand that the notion will play the role “qua representation” (p. 27)
or be “distinctively representational” (p. 31), respectively, with computation.
A possible way to understand this qua- phrase is that the account should clearly
“distinguish the representational from the non- representational” (p. 27) and de-
lineate the sort of job done by these representations in a physical system. I agree
with this requirement. The account should provide classificatory criteria for
distinguishing between computing and non- computing systems— which is the
meaning requirement. It should also outline the sort of job done by the systems
classified as computing systems— which is the utility requirement. Perhaps a
further way to understand the qua- phrase, however, is in terms of the demand

 23 For further discussion, see Ramsey (2007: 27– 34).

24 The Nature of Physical Computation

that the theoretical notion is somehow related to our pre- theoretical concep-
tion.24 I would qualify this demand, however: while I do think that an account
of computation should relate the theoretical notion to some features of the pre-
theoretical conception, I also insist that it is wrong to decide in advance which
pre- conceptual features should be reflected in the theoretical notion. As we saw
earlier, invoking the pre- theoretical notion of “mechanical,” as used in logic and
mathematics, can lead us astray when characterizing physical computation.

A second possible difference has to do with Ramsey’s requirement that the
utility of the notion must be substantive— namely, that it must, for example, per-
form real explanatory work.25 I do not impose such a demand in advance. Our
goal is not to require an explanatory role, but to clarify whether the notion of
computation has one. As philosophers of science, our job is to uncover the role,
substantial or otherwise, of computation by examining how the notion functions
in scientific theories. I especially resist the requirement to substantiate certain
philosophical agendas, such as naturalism (see Chapter 7).26 Whether or not
these agendas are part of the scientific investigation is something to be explored
rather than presumed.

It is true that some will find it disappointing if it turns out that computational
properties are idle, and that their descriptions do not have a distinct explana-
tory role. It is also true that if two accounts of computing adequately distinguish
computing from non- computing systems, and one assigns a substantial utility to
computation and the other does not, we might favor the former over the latter.
My point is just that we do not have to commit to substantivity in advance, as it
may not be present at all.

1.3 Summary

I have attempted to delineate the scope of an account of physical computation
by calling for certain limitations on the proposed inquiry. I have also (re-)for-
mulated the list of desiderata for such an account. A key (meaning) desider-
atum is to formulate the classification criteria that distinguish computing from
non- computing physical systems, and ones that distinguish between types of
computation. A second desideratum is to clarify to what extent computation is
objective. I proposed that the familiar concerns about the (non-)objectivity of

 24 See Ramsey (2007: 10– 14).
 25 Opponents of this view might include Schweizer (2016, 2019a), who advocates for a sort of com-
putational instrumentalism, and Cao (2018), who proposes that the explanatory virtues of computa-
tion in neuroscience might not go beyond those of computational modeling.
 26 Ramsey writes that the agenda is to clarify “how representation can be part of a naturalistic,
mechanistic explanation” (2007: 26– 27).

Desiderata of a Theory of Computation 25

computation are assuaged by a weaker objectivity condition, and that we should
be open to the possibility that computational properties are not objective at all
(although I will not advocate that latter position). A third desideratum addresses
the utility of computation. The aim is to specify the role, that is, the explanatory
role, of computational descriptions (or properties) when applied to physical sys-
tems. Here too, we do not demand in advance that this role be substantive.

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0003

2
Turing’s Computability

Many philosophical accounts of computing subscribe, in one way or another,
to the notion that “to compute” is to follow or to execute an effective procedure
or an algorithm. I use the terms effective computation, effective calculation, and
algorithmic computation interchangeably in reference to any computation (cal-
culation) performed by means of an effective procedure or an algorithm of this
sort (in Chapter 3, however, I consider drawing a distinction between effec-
tive procedures and algorithms). Similarly, a function (of positive numbers) is
deemed effectively computable (calculable) if, as Church puts it, “there exists an
algorithm for the calculation of its values” (1936a: 102). In the following chapters,
my aim is to cut through the tight relationship between algorithms and physical
computation. The first step, made in this chapter, is to separate the notions of al-
gorithmic computation, as studied by Church, Turing, and the other founders of
computability, and that of machine computation (at this point I will use the more
general term machine; however, I will gradually disambiguate it to distinguish
between physical systems and other kinds of machines).

This chapter focuses on Turing’s analysis, which reduces effective computa-
bility to Turing machine computability (Turing 1936: sec. 9). Turing’s analysis is
of interest for several reasons. First, Turing provided a precise characterization
of what is effectively computable (in terms of Turing machine computability).
Second, while there were others who offered a precise characterization of effec-
tive computability around the same time, Turing’s characterization stands out
in that it involves an analysis of the process of computing. Third, Turing intro-
duced the notion of an automatic machine (now known as a Turing machine).1
This notion lies at the heart of computability theory and automata theory even
today. Turing also introduced the notion of a universal Turing machine: a Turing
machine that can simulate the operations of any particular Turing machine, and
can thereby compute any function that is computable by any Turing machine.
This notion has inspired the development of general- purpose digital electronic
computers that now dominate virtually every activity in daily life.2

 1 Turing referred to it simply as a- machine. The term Turing machine was coined by Church
(1937a) in his review of Turing (1936). The current format of the Turing machine is mainly due to
Post (1947).
 2 See Copeland (2012) for a detailed discussion of the impact of Turing’s ideas on the developments
of the modern computer.

Turing’s Computability 27

Turing’s ingenious work richly deserves the appreciation it has garnered.
However, I wish to draw attention to a major limitation of his analysis. As others
have already noted, Turing analyzed a restrictive class of computations— namely,
the calculations that can be carried out by a human computer, an idealized human
who calculates the values of a function by using (perhaps) a pencil and paper
(e.g., Kleene 1952; Gandy 1988; Sieg 1994; Copeland 1997). While this analysis
is of immense theoretical and practical importance, it cannot be taken to be the
basis of machine computation.

This chapter proceeds as follows. First, I place Turing’s 1936 paper in its his-
torical context (Section 2.1), then give an outline of his analysis (Section 2.2).
Next, I digress to engage in a discussion of the nature of human computation
(Section 2.3). Finally, I discuss the scope of Turing’s analysis with respect to ma-
chine computation (Section 2.4), arguing that the constraints Turing imposes
on effective computation are too restrictive to be applied to computation more
generally.

Some guidance for the reader: The material in Sections 2.1 and 2.2 certainly
deserves a more fully developed review. I use the notes to expand on certain
pertinent points and to suggest further reading. I recommend Sieg (2009), who
provides an extensive discussion of much of the material presented in Sections
2.1 and 2.2, and Copeland (2004b), who provides a detailed guide to the ma-
terial on Turing presented in Section 2.2. Much of what I say in these sections
relies on their work. Those who are less interested in the historical and technical
background of computability can skip these sections, reading only the summa-
rizing paragraphs of each section. Readers who are less interested in the discus-
sion pertaining to the nature of human computation are advised to skip Sections
2.3.1– 2.3.3.

2.1 The 1936 Affair

Four pioneering papers were published in 1936, each of which provides a pre-
cise mathematical characterization of effective computability. Alonzo Church
(1936a) characterized the effectively computable functions (over the positives)
in terms of lambda- definability— an undertaking he began in the early 1930s
(Church 1933), and which was carried on by Stephen Kleene and Barkley Rosser.
Kleene (1936) characterized the general recursive functions, based on the ex-
pansion of primitive recursiveness by Herbrand (1931) and Gödel (1934).3 Emil

 3 Church (1936a) also refers to this characterization. Subsequently, Kleene (1938) expanded the
definition to partial functions. For a historical discussion, see Kleene (1981), as well as Adams (2011),
who also discusses some early history.

28 The Nature of Physical Computation

Post (1936) in New York described “finite combinatory processes” carried out
by a “problem solver or worker” (p. 289). Meanwhile, young Alan Turing in
Cambridge provided a somewhat similar characterization, but offered the precise
characterization in terms of Turing machines. Although Turing was referring to
the computability of real numbers, he remarked that “it is almost equally easy to
define and investigate computable functions” (p. 58) of countable domains.4 All
these precise characterizations were quickly proven to be extensionally equiva-
lent, as they all define the same class of functions.5

Church and Turing— and to some degree Post— formulated versions of what
is now known as the Church- Turing thesis (CTT). Church’s classic formulation
was as follows:

We now define the notion, already discussed, of an effectively calculable func-
tion of positive integers by identifying it with the notion of a recursive function
of positive integers (or of a λ- definable function of positive integers). (Church
1936a: 100)

Kleene coined the term thesis and formulated the thesis as follows:

Thesis I. Every effectively calculable function (effectively decidable predicate) is
general recursive. (Kleene 1943: 60)6

In this book, we will adhere to Kleene’s formulation. The statement is called a
“thesis” because it links a pre- theoretical notion— that of effective (algorithmic)
calculability— with the precise notion of general recursiveness, or Turing ma-
chine computability.7 Arguably, due to the pre- theoretical notion, such a state-
ment is not subject to mathematical proof.8 But we will leave aside questions of
provability and focus on what is meant by “effective computation.” To address
this, we should first explicate the motives that prompted the attempts to charac-
terize computability, which culminated in the so- called 1936 Affair.

 4 Many scholars have noted that the Turing machine operates on strings of symbols (e.g., digits),
and therefore its applicability to functions of natural numbers requires interpretation (see the dis-
cussion in my reply to Objection 2 in Chapter 7). I will not discuss here the interesting debate on ac-
ceptable and “deviant” interpretations (see, e.g., Shapiro 1982; Rescorla 2007; Boker and Dershowitz
2009; Copeland and Proudfoot 2010).
 5 See Kleene (1981) for the historical details.
 6 It should be noted that, in Kleene’s characterization, the “easy part” of the thesis is omitted. Later,
Kleene (1952) discusses Church’s thesis and Turing’s thesis, but today this formulation is known as
the Church- Turing thesis.
 7 Some have described the notion as “intuitive” or “vague,” rather than “pre- theoretic”— see the
discussion in Shapiro (2013).
 8 The claim that CTT is not provable has been challenged, e.g., by Mendelson (1990), but see also
the discussion in Folina (1998, 2006) and Shapiro (1981, 1993, 2013); for further discussion, see
Copeland and Shagrir (2019) and Boker and Dershowitz (forthcoming).

Turing’s Computability 29

The use of algorithms in solving mathematical problems goes back at least as far
as Euclid. Its use as a method of proof is found in Descartes, and its association with
formal proof is noted by Leibniz. But algorithms came to the fore of modern math-
ematics only toward the end of the nineteenth century and the early twentieth. This
development had two related sources. The first was the publication of various foun-
dational works in mathematics that explored the concept of the algorithm, starting
with Frege and culminating in Hilbert’s finitistic program in the 1920s. Although
there are substantive differences between these enterprises, they share one core idea,
which is to provide mathematics with epistemological foundations by means of log-
ical calculus.9 The term calculus refers to a system of logical axioms and inference
rules whose constructions are “effective”— namely, that there is an algorithm (ef-
fective procedure) that one can use to decide whether or not a string of symbols is a
(formal) proof or derivation. In the 1920s, Hilbert also required that there be a meta-
theoretic consistency proof of the axiomatic system, notably of the one (supposedly)
embedding number theory.10 The demand was that the meta- theoretic proofs ex-
ploit only finitistic means, of which effective procedures were considered to be a
major, if not the only, resource. As is well known, the prospects of Hilbert’s program
were dashed with the publication of Gödel’s incompleteness results in 1931.11

The other source was the growing number of decision problems that attracted
mathematicians.12 The most pertinent problem was the Entscheidungsproblem
(“decision problem”), which concerned the decidability of logical systems. It was
raised by Hilbert and his students during the 1920s; Hilbert and Ackermann
(1928) specifically introduced the Entscheidungsproblem with respect to the
restricted functional calculus (first- order predicate logic), describing it as
the “most fundamental problem of mathematical logic.”13 The problem asked
whether there was an algorithm for deciding whether or not a formula in the
calculus is derivable;14 such an algorithm, it was hoped, would provide a decision

 9 See Sieg (2009) for further historical exposition of the early works on computability.
 10 See, e.g., Hilbert (1926); for a survey and discussion, see Sieg (2013a) and Zach (2019).
 11 When he published his paper, Gödel commented that his results did not undermine the
prospects of Hilbert’s program (1931: 195)— but apparently changed his mind about this not
long after.
 12 Thus, in his review of Turing (1936), Church (1937a) refers to:

the notion of effectiveness as it appears in certain mathematical problems (various forms of
the Entscheidungsproblem, various problems to find complete sets of invariants in topology,
group theory, etc., and in general any problem which concerns the discovery of an algo-
rithm). (p. 43)

 13 Hilbert and Ackermann, Grundzüge der Theoretischen Logik (1928). See the translation
in Gandy (1988: 58). The problem appears to have been formulated by Behmann as early as 1921
(Gandy 1988: 57; Mancosu 1999: 320– 321).
 14 Establishing the completeness of first- order logic (Gödel 1929), the problem applies equally well
to the validity of formulas.

30 The Nature of Physical Computation

procedure for the provability of any mathematical sentence.15 Turing (1936) and
Church (1936a, 1936b) aimed at this problem in 1936, and both proved, inde-
pendently of each other, that there was no such algorithm for the derivability (or
validity) of any formula in first- order predicate logic.

Before Church and Turing, however, there was no agreement on the precise
definition of effective computability, and therefore of decidability. Indeed, there
was not even a unified terminology. In formulating his famous 10th problem— of
deciding any Diophantine equation with rational coefficients— Hilbert refers to
“a process according to which it can be determined by a finite number of opera-
tions whether the equation is solvable in rational integers” (1902: 458). Church,
as we have seen, used the term effective calculation, as well as effectively calcu-
lable function (1933, 1936a). Gödel, who used the terms mechanical procedure
and finite procedure, defined the procedure’s properties in the context of formal
systems.16 The property of being mechanical was spelled out in Gödel’s 1933 ad-
dress to the Mathematical Association of America, “The Present Situation in the
Foundations of Mathematics.” Gödel opened the address with a rough character-
ization of formal systems:

The outstanding feature of the rules of inference being that they are purely
formal, i.e., refer only to the outward structure of the formulas, not to their
meaning, so that they could be applied by someone who knew nothing about
mathematics, or by a machine (p. 45).

We discussed this property in Chapter 1. The property of being finite is stressed
in Gödel’s Princeton 1934 address, where he characterized a “formal mathemat-
ical system” as follows:

We require that the rules of inference, and the definitions of meaningful for-
mulas and axioms, be constructive; that is, for each rule of inference there shall
be a finite procedure for determining whether a given formula B is an imme-
diate consequence (by that rule) of given formulas A1, . . . , An, and there shall be
a finite procedure for determining whether a given formula A is a meaningful
formula or an axiom. (p. 346)

 15 A nice illustration is provided by von Neumann (1927):
The very day on which the undecidability does not obtain any more, mathematics as we
now understand it would cease to exist; it would be replaced by an absolutely mechanical
prescription [eine absolut mechanische Vorschrift] by means of which anyone could decide
the provability or unprovability of any given sentence. Thus we have to take the position: it is
generally undecidable, whether a given well- formed formula is provable or not. (Translation
in Sieg 2009: 526)

 16 Gödel often vacillated between the terms mechanical procedure and finite procedure when refer-
ring to formal systems (see discussion in Shagrir 2006a). But in his 1972 note— in which he states that
it is clear that he does not take the two to be synonymous— he talks about finite but non- mechanical
procedures.

Turing’s Computability 31

At this point, in 1934, Gödel understood the finite procedures to be the (prim-
itive) recursive ones but did not assert that the latter was a precise definition of
the former.17

Given the centrality of effective computability in logic and mathematics, it
is perhaps surprising that the attempts to characterize it were not as extensive
prior to the 1930s. In any event, this situation changed with the publication of the
incompleteness results (Gödel 1931), which shattered the collective optimism
about certain decidability questions, and, consequently, called for a more accu-
rate definition of the notion of effective computability. As Martin Davis explains,
“A positive solution to a decision problem consists of giving an algorithm for
solving it; a negative solution consists of showing that no algorithm for solving
the problem exists” (1958: xvi). When the problem has a positive solution, we
“simply” have to find a pertinent algorithm for it— namely, an algorithm that
solves the problem (we then might have to explain, or even prove, why there is
a match between the proposed algorithm and the problem). When the problem
has a negative solution, however, we must show that no algorithm solves it, and
this already calls for a precise characterization of the notion of algorithm.

Two issues about undecidability are often mentioned in the context of the
search for the precise characterization. One is the generality of the incom-
pleteness results. The results were proved with respect to the system P and its
extensions. The system P is “essentially the system obtained when the logic of
PM [Principia Mathematica] is superposed upon the Peano axioms” (Gödel
1931: 151). The extensions are the “ω- consistent systems that result from P when
recursively definable classes of axioms are added” (p. 185 n. 53). At the time,
it was still an open question whether the undecidability results apply to every
formal system; the question, in other words, was whether the recursively defin-
able classes encompassed the relevant, effectively definable classes. But to de-
termine the answer to this question, one would need a precise definition of the
latter. Gödel himself wrote the following on this point:

 17 In fact, in a letter to Martin Davis (February 15, 1965), Gödel denies that the 1934 paper antici-
pated the Church- Turing thesis:

It is not true that footnote 3 is a statement of Church’s thesis. The conjecture stated there only
refers to the equivalence of “finite (computation) procedure” and “recursive procedure.”
However, I was, at the time of these lectures, not at all convinced that my concept of recur-
sion comprises all possible recursions; and, in fact, the equivalence between my definition
and Kleene’s [1936] is not quite trivial. (Quoted in Davis 1982: 8)

In a letter to Kleene (dated November 29, 1935), Church, who had apparently met Gödel early in
1934, reports Gödel’s note to Davis:

In regard to Gödel and the notions of recursiveness and effective calculability, the history is
the following. In discussion with him the notion of lambda- definability, it developed that
there was no good definition of effective calculability. My proposal that lambda- definability
be taken as a definition of it he regarded as thoroughly unsatisfactory. (Quoted in Davis
1982: 9)

32 The Nature of Physical Computation

When I first published my paper about undecidable propositions the result
could not be pronounced in this generality, because for the notions of mechan-
ical procedure and of formal system no mathematically satisfactory definition
had been given at that time. This gap has since been filled by Herbrand, Church
and Turing. (193?: 166)18

Subsequently in that paper, and many times after, Gödel attributed the most
convincing characterization of mechanical procedure to Turing. In a 1963 note
added to the 1931 paper, Gödel wrote that Turing’s characterization established
the generality of the incompleteness results:

In consequence of later advances, in particular of the fact that due to A. M.
Turing’s work a precise and unquestionably adequate definition of the general
notion of formal system can now be given, a completely general version of
Theorems VI and XI [the incompleteness results] is now possible. That is, it
can be proved rigorously that in every consistent formal system that contains
a certain amount of finitary number theory there exist undecidable arithmetic
propositions and that, moreover, the consistency of any such system cannot be
proved in the system. (1963: 195)

In a paragraph in the 1964 postscript to his 1934 paper, Gödel adds that
“Turing’s work gives an analysis of the concept of ‘mechanical procedure’
(alias ‘algorithm’ or ‘computation procedure’ or ‘finite combinatorial proce-
dure’). This concept is shown to be equivalent with that of a ‘Turing machine’ ”
(1964: 369– 370).

The other problem is the Entscheidungsproblem. Given incompleteness, it was
very likely to be undecidable.19 But, again: to demonstrate unsolvability, one
must show that no effective (algorithmic) procedure, of which there are infinitely
many, solves the problem. One must therefore come up with a precise definition
of effective computability. As previously noted, Church and Turing aimed to do
just that. Church eventually proved the unsolvability of the Entscheidungsproblem
by means of the notions of lambda- definability and recursiveness. Turing came
up with a different approach: he reduced the concept of an algorithmic proce-
dure to that of a Turing machine, then proved that no Turing machine could
solve the Entscheidungsproblem.

In summary: We have briefly reviewed the fascinating events within the
world of logic and mathematics that led to the precise mathematical characteri-
zation of effective computability. In this historical context, the characterization

 18 Davis dates the article to 1938. See his introduction to this paper in Gödel (1995).
 19 See Gandy (1988) for discussion.

Turing’s Computability 33

of computability is tightly linked to the development of rigorous definitions for
the notions of formal system and decision procedure. These were required in
order to establish central undecidability results— in particular, the generality of
Gödel’s incompleteness results and the insolvability of Hilbert and Ackermann’s
Entscheidungsproblem.

2.2 Turing’s Analysis

The Church- Turing thesis asserts that every effectively computable function
is a general recursive function (or Turing machine computable). But what are
the grounds for this thesis? In his book, Kleene (1952) lists four kinds of jus-
tification. The first two are the arguments of confluence and of non- refutation,
which are prevalent in current textbooks in computability, logic, and automata
theory. The confluence argument states that many characterizations of compu-
tation that differ in their goals, approaches, and details nonetheless encompass
the same class of computable functions. As we have seen, the confluence of four
such characterizations appeared in 1936, and many more characterizations have
followed.20 The non- refutation argument states that the thesis, though refutable,
has not been refuted despite the many efforts and attempts to find a counterex-
ample.21 Both arguments are of an inductive nature: the more examples you have
(either of yet another precise characterization of computability, or of yet another
computable function that turns out to be recursive), the more the thesis is con-
firmed. Indeed, these arguments strengthen the impression that the thesis is not
subject to mathematical proof.

The other two arguments are more direct, in that they deal, in one way or an-
other, with the process of computing.22 One argument, put forward by Church
(1936a: 100– 102), is known as the step- by- step argument.23 Using Gödel’s notion
of representability (Gödel 1931; Kleene 1936), Church characterizes an effec-
tively computable function as one that is calculable in logic. As he puts it:

 20 Boolos and Jeffrey write: “Indeed, given any other plausible, precise characterization of comput-
ability that has been offered, one can prove by careful, laborious reasoning that our notion is equiva-
lent to it in the sense that any function which is computable according to one characterization is also
computable according to the other” (1989: 20).
 21 Boolos and Jeffrey write: “It [CTT] is refutable by finding a counterexample; and the more ex-
perience of computation we have without finding a counterexample, the better confirmed the thesis
becomes” (1989: 20).
 22 Quinon (2021) further suggests that Turing’s and Church’s arguments are examples of
Carnapian explication.
 23 The label is Gandy’s (1988). The argument is analyzed in detail by Sieg (1997). The argument has
two versions; here I mention the second one. A variant of this version also appears in Turing 1936
(sec. 9, II), and is elaborated and discussed in Kripke (2013).

34 The Nature of Physical Computation

Let us call a function F of one positive integer calculable within the logic if there
exists an expression f in the logic such that {f}(μ) = ν is a theorem when and only
when F(m) = n is true, μ and ν being the expressions which stand for the posi-
tive integers m and n. (1936a: 101)

The rationale behind this characterization is the tight relationship be-
tween effective computation and logical derivation. A function is (intention-
ally) effectively computable only if there is a derivation of the corresponding
(“representing”) logical formula (“expression”), when we replace the number
values m and n with the corresponding constants m and n. This characterization
highlights the close kinship that existed between formal systems and effective
computability at the time. On the one hand, a formal system is characterized
in terms of effective computability; on the other, effective computability is de-
fined in terms of formal derivability. A variant of this characterization appears
in Turing (1936), Hilbert and Bernays (1939), Church (1941: 41), and Gödel
(1946).24 Given this characterization, Church proceeds to show that if each step
of the derivation is general recursive, then the defined function is recursive as
well. What is left open, however, is the assumption that these basic steps must be
recursive.25 As Sieg points out, this argument is “semicircular in the sense that he
[Church] assumed without good reason that the necessarily elementary calcula-
tion steps have to be recursive” (2006: 193).

Our focus here, however, is Turing’s argument for the thesis, known as Turing’s
analysis. The argument is explicated by Kleene (1952), who refers to the con-
clusion as Turing’s thesis (p. 376). For many years, this argument was not well
known, so logic and computer science textbooks, even today, often ignore it.26
One notable exception was Gödel (193?, 1951, 1964; Wang 1974), who said that
Turing’s analysis produces a “correct and unique” definition of “the concept of
mechanical” in terms of “the sharp concept of ‘performable by a Turing ma-
chine’ ”— and that it is “absolutely impossible that anybody who understands the
question and knows Turing’s definition should decide for a different concept”

 24 In a footnote added to his 1946 address (for the Davis anthology), Gödel defined a computable
function f in a formal system S “if there is in S a computable term representing f” (1946: 84).
 25 Church views the argument not as a conclusive proof, but as a “positive justification . . . for the
selection of a formal definition to correspond to an intuitive notion” (1936a: 100).
 26 Turing’s argument is mentioned in the early days of automata theory— e.g., by McCulloch
and Pitts (1943); Shannon and McCarthy (1956) in their introduction to Automata Studies; and
Minsky (1967: 108– 111), who cites it almost in full in his Finite and Infinite Machines. However,
even Minsky asserts that the “strongest argument in favor of Turing’s thesis is the fact that . . . sat-
isfactory definitions of ‘effective procedure’ have turned out to be equivalent” (p. 111). Apart from
Minsky, I know of no other mention of Turing’s argument in logic and computer science textbooks.
The two arguments typically given for the Church- Turing thesis are the confluence (equivalence) of
definitions and the lack of counterexamples.

Turing’s Computability 35

(Wang 1974: 84).27 But Gödel does not explain here, or elsewhere, why the anal-
ysis is so convincing.28 Turing’s analysis has been fully appreciated more recently
by Gandy (1988), Sieg (1994), and Copeland (2004b). Gandy (1988) and Soare
(1996) even use it to prove the Church- Turing thesis.29 Here, I will only provide
an outline.30

Turing begins his 1936 paper by stating that “the ‘computable’ numbers may
be described briefly as the real numbers whose expressions as a decimal are cal-
culable by finite means” (1936: 58). He proposes an explicit definition of comput-
ability with (Turing) machine computability, arguing that its “justification lies
in the fact that the human memory is necessarily limited” (p. 59). Turing then
compares “a man in the process of computing a real number to a machine which
is only capable of a finite number of conditions [configurations]” (p. 59). After an
informal exposition of the machine’s operations, Turing comments that it is his
“contention that these operations include all those which are used in the compu-
tation of a number” (p. 60).

In section 9, Turing returns to justify the identification of (effective) com-
putability with Turing machine computability. He provides three arguments,
remarking that “all arguments which can be given are bound to be, fundamen-
tally, appeals to intuition, and for this reason rather unsatisfactory mathemati-
cally” (p. 74). The first argument, discussed here, is a “direct appeal to intuition”
and “is only an elaboration of the ideas of [section] 1” (p. 75). It is presented in
part I of section 9, and then a modification is added in part III. The second argu-
ment, in part II, is a variant of the step- by- step argument noted previously. The
third argument, in section 10, consists of “examples of large classes of numbers
which are computable” (p. 75).

Turing’s analysis (i.e., the first argument) rests on two ingenious ideas. One
is that in order to characterize the computable functions (or numbers, or re-
lations) we should focus on the computational processes: “The real question at
issue is ‘What are the possible processes which can be carried out in computing

 27 In his Gibbs lecture, Gödel said:
There are several different ways of arriving at such a definition, which, however, all lead to
exactly the same concept. The most satisfactory way, in my opinion, is that of reducing the
concept of finite procedure to that of a machine with a finite number of parts, as has been
done by the British mathematician Turing. (Gödel 1951: 304– 305)

For further discussion, see my “Gödel on Turing on Computability” (Shagrir 2006a).
 28 See also Church, who describes Turing’s identification of effectiveness with Turing machine
computability as “evident immediately” (1937a: 43), “an adequate representation of the ordinary no-
tion” (1937b: 43), and as having “more immediate intuitive appeal” (1941: 41), but does not say why it
is more convincing than other arguments.
 29 The rediscovery of Turing’s analysis is underscored by Martin Davis’s comment (1982: 14
n. 15) that “this [Turing’s] analysis is still very much worth reading. I regard my having failed to men-
tion this analysis in my introduction to Turing’s paper in Davis (1965) as an embarrassing omission.”
 30 For a detailed exposition, see Copeland (2004b, 2006) and Sieg (1994, 2002, 2008, 2009).

36 The Nature of Physical Computation

a number?’ ” (p. 74). This idea is supported by the fact that the computable
functions are the products of certain computational (i.e., finite and mechan-
ical) processes; thus, if we want to exhaust the set of computational functions, we
must be clear about the set of processes that lead to those functions.

Turing puts forward three underlying assumptions about these processes.
One is that they are symbolic processes, in the sense of writing and erasing
symbols: “Computing is normally done by writing certain symbols on paper”
(p. 75). He adds that we can assume that the paper is one- dimensional (that is,
like a tape) and divided into squares, although this is not essential for the argu-
ment. A second assumption is that the process is step- wise, in that it consists of a
sequence of steps; each such step involves a change in symbolic configurations.
The number of steps in a single run is finite but unbounded when the function
is defined for a certain input; otherwise, it consists of infinitely many steps (“not
halting”). A third assumption is that there is an agent carrying out this compu-
tation; arguably, this agent is a human computer. Turing says that “we may com-
pare a man in the process of computing a real number to a machine which is only
capable of a finite number of conditions” (p. 59). For now, I will use the more
neutral term the computer for the computing agent and discuss its relationship
with human computers in Section 2.3.

The first idea, then, is to focus on processes. The problem with this direction,
however, is that it is unclear how one might characterize all possible processes,
given that there are an infinite number of them. Turing’s truly wonderful (second)
idea is to formulate a finite set of restrictive constraints that apply to each step of
each process. These constraints should have two properties. The first is that they
must be general enough and thus their truth is almost self- evident. The second
property is that a Turing machine can mimic the operations restricted by these
constraints. We can think of these constraints as “axioms of computability.”31

Overall, the analysis can be described as a two- premise argument
(Shagrir 2002):

Premise 1: “The computer” operates under the restrictive conditions 1– 5 (to be
specified in what follows).

Premise 2 (“Turing’s theorem”): Any function that can be computed by a(ny)
computer that is restricted by conditions 1– 5 is Turing machine computable.

Conclusion (“Turing’s thesis”): Any function that can be computed by “the
computer” is Turing machine computable.

 31 This is in line with Gödel’s suggestion to Church (in Church’s 1935 letter to Kleene) to “state a
set of axioms which would embody the generally accepted properties of this notion, and to do some-
thing on that basis” (Davis 1982: 9). That Turing’s analysis fulfills Gödel’s desideratum is suggested by
Sieg (2002: 400).

Turing’s Computability 37

Turing (somewhat informally) enumerates several constraints that can be
summed up by the following restrictive conditions:

 1. “The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his ‘state of mind’ at that moment”
(p. 75).

He then formulates boundedness conditions on each of the two determining
factors— namely, the observed symbols and states of mind:

 2. “There is a bound B to the number of symbols or squares which the com-
puter can observe at one moment” (p. 75).

 3. “The number of states of mind which need be taken into account is finite”
(p. 75).

There are certain “simple operations” (behavior) that the computer may per-
form at any given moment (computation step): a change in the symbols written
on the tape, a change of the observed squares, and a change in state of mind.
Turing then applies boundedness conditions on the first two kinds of operations
(assuming that the number of states of mind is bounded):

 4. “We may suppose that in a simple operation not more than one symbol is
altered” (p. 76).

 5. “Each of the new observed squares is within L squares of an immediately
previously observed square” (p. 76).

Let us examine the rationale behind these constraints a little more closely.
Turing does not give reasons for the first condition: he apparently takes it to be a
sine qua non of the concept of effective computation. The reason for the second
condition, he says, is that the computer can observe only a bounded region, and
that there is a lower bound on the size of the symbols: “If we were to allow an in-
finity of symbols, then there would be symbols differing to an arbitrarily small
extent” (p. 75). Hence, presumably, “the computer” cannot tell one from another.
As for the third condition, Turing says that “the reasons for this are of the same
character as those which restrict the number of symbols. If we admitted an in-
finity of states of mind, some of them will be ‘arbitrarily close’ and will be con-
fused” (pp. 75– 76). Following this somewhat obscure statement, Turing stresses
that the restriction regarding states of mind “is not one which seriously affects
computation,” and that we can always replace states of mind with “writing more
symbols on the tape” (p. 76). In part III, Turing suggests avoiding states of mind

38 The Nature of Physical Computation

altogether “by considering a more physical and definite counterpart” (p. 79) such
as written symbolic configurations.

At first glance, the fourth condition might appear too restrictive, as we might
be able to change more than one symbol at a time. But it is apparent that we can
extend the condition as long as “one symbol” is replaced with another number
that serves as a fixed limit on the number of symbols that can be altered at any
one moment. Following Turing, we may assume, without loss of generality, “that
the squares whose symbols are changed are always ‘observed’ squares” (p. 76).
As for the fifth condition, Turing says that it is reasonable to suppose that the
distance between current and previously observed squares “does not exceed a
certain fixed amount” (p. 76).

It is often said that a Turing machine is a model of a computer, arguably a
human computer.32 We can now see that this statement is imprecise. A Turing
machine is a letter machine: at each point it “observes” only one square on the
tape. “The computer” might observe more than that (Figure 2.1). Other proper-
ties of a Turing machine are also more restrictive. The machine can perform pre-
cisely three kinds of bounded operations at each step: it can change the observed
symbol alone; it can change the observed square (and symbol) that is either
immediately to the left or immediately to the right of the current square; and
it can change the state of the finite program. “The computer,” however, might
change something other than the observed symbol, shift eyes to non- adjacent
squares, and so forth. A Turing machine is therefore more restrictive than “the
computer”: its restrictive conditions are tighter than conditions 1– 5.

The aim of the second premise in the analysis is to demonstrate that the re-
strictive conditions 1– 5 are nonetheless bounded by the Turing limit— namely,
that the operations performed by any computing agent that satisfies conditions
1– 5 can be reduced to a finite series of successive operations performed by a
Turing machine. A change in a bounded region of symbols can be reduced to a
(possible) change in each of the single symbols that make up this region, and a
bounded change of the observed square can be reduced to a sequence of shifts
of one observed square. Turing provides an outline of the reduction, and Kleene
(1952) and others provide more detailed demonstrations. Based on Gandy’s
insights, Sieg (2002) formulates the conditions in formal terms as mathematical
axioms (we will return to these points in Section 2.3.2).

To summarize the argument (of Turing’s analysis): the first premise
encapsulates a novel characterization of effective computation— namely (to put
it in Gödel’s terms), a characterization of computation as a mechanical and fi-
nite procedure. The mechanical part is described in terms of the operations

 32 Thus, see Gödel’s quote cited earlier, in which he says that the concept of mechanical procedure
“is shown to be equivalent with that of a ‘Turing machine’ ” (1963: 369– 370).

Turing’s Computability 39

on symbolic configurations; the operations refer to the form (“syntax”) of the
symbols, while making no direct reference to semantic properties. The finite part
is captured in the terms of the conditions 1– 5, which are explications of the fi-
nite means. The second premise states that every function that is effectively com-
putable is also Turing machine computable. The conclusion (“Turing’s thesis”) is
that the effectively computable functions— that is, those functions computable
by “the computer”— are Turing machine computable.

2.3 Who Is “the Computer”?

The claim that Turing’s analysis essentially applies to human computers was
underscored by his student Robin Gandy.33 In his 1980 paper on computability,
Gandy wrote:

Both Church and Turing had in mind calculation by an abstract human being
using some mechanical aids (such as paper and pencil). The word “abstract”
indicates that the argument makes no appeal to the existence of practical limits
on time and space. (1980: 123– 124)

In his historical 1988 paper, Gandy once again emphasized that Turing’s “com-
putability” relates to calculations by an ideal human, and that Turing “makes no

(a)

(b)

Figure 2.1 A human computer versus a Turing machine. (a) A Turing machine
“observes” only one square on the tape at any given moment. (b) “The computer”
can observe only a bounded number of squares at any given moment, but this might
include more than a single square (from Shagrir 2016: 20).

 33 See also Kleene (1952); Sieg (1994, 2002, 2008); and Copeland (2004b, 2006).

40 The Nature of Physical Computation

reference whatsoever to calculating machines” (Gandy 1988: 83). In Gandy’s
posthumously published introduction to the 1936 paper, he wrote that Turing
“considers the actions of an abstract human being who is making a calculation”
(2001: 11).

There are several reasons to support this human- oriented line of interpre-
tation. One is the fact that the computers at the time of Turing’s statements
were humans, not machines: “It is not surprising that Turing does not mention
machines. Numerical calculation in 1936 was carried out by human beings”
(Gandy 2001: 12).34 The first programmable, general- purpose computers were
only manufactured in the 1940s. A second reason is the highly anthropomor-
phic language that Turing uses to describe “the computer.” “Turing’s analysis
is quite explicitly concerned with calculations performed by a human being;
there is no reference to machines other than those which he introduces to im-
itate the actions of a human computor” (Gandy 2001: 12). Third, the analysis
essentially exploits the limitations of human computers, not of machines in ge-
neral: “Turing’s analysis of computation by a human being does not apply di-
rectly to mechanical devices” (Gandy 1980: 123), and “There are crucial steps in
Turing’s analysis where he appeals to the fact that the calculation is being carried
out by a human being” (p. 124).

A decisive point in favor of the human- oriented interpretation, in my view, is
that it places Turing’s pioneering work on effective computability in its appro-
priate historical and philosophical context— namely, the role of effective compu-
tation in logic and mathematics (as discussed in Section 2.1). In this regard, the
notion of effective procedure is tightly connected to us— the human computers.
The notions of decidability, formal derivability, and formal systems are closely
linked to what a human can or cannot do, at least in principle, when using an
effective procedure. This does not mean that a machine cannot compute effec-
tively, but rather that the benchmark of what counts as effectively computable is
the human computer: something is effectively computable only if it can be com-
puted by an idealized human being. To ignore the human connection is to miss
a key and distinct aspect of the notion of effective computation in the context of
logic and mathematics.

I would like to stress, however, that my main claim about Turing’s analysis
does not depend on whether Turing, Church, and other pioneers of computa-
bility were essentially referring to human calculation or not. Following Gandy,
my claim (to be elaborated in Section 2.4) is that Turing’s finiteness conditions
are too restrictive with respect to machine computation. The human interpreta-
tion explains why Turing formulated finiteness conditions that do not apply to
machine computation in general (the explanation being that Turing had human

 34 See, e.g., Grier (2005).

Turing’s Computability 41

calculation rather than machine computation in mind). Nevertheless, the human
interpretation itself invokes real issues about the nature of the human computer
that have yet to be resolved. A full discussion of these issues is beyond the scope
of the present work; for now, I will make a few pertinent comments that will later
be expanded in the context of physical computation (the impatient reader can
skip to Section 2.4).

2.3.1 Abstractness

There appears to be a disparity between algorithms (i.e., effective procedures),
Turing machines, and computable functions— all of which are abstract, mathe-
matical objects— and human computers, which are concrete or non- abstract.35
This disparity is evident in the first premise of the analysis, where “the com-
puter” equates the notion of algorithm with that of calculation. It also arises in the
second premise, where the restrictions on computers are compared with those of
Turing machines.

One way to reconcile this disparity was implicitly suggested by Gandy (1980),
and more explicitly by Sieg (2008, 2009). They think about the restrictive
conditions 1– 5 as mathematical constraints or axioms that abstract from the lim-
itations imposed on the human computer. The idea is that these mathematical
axioms precisely capture the notion of algorithm (or effective procedure, or effec-
tive/ algorithmic computation). This is because these conditions model a human
computer. The human computer, one might say, is an implementation or con-
cretization of the mathematical axioms (and by extension, human calculation is
an implementation of a specific algorithm).36

One advantage of this approach is that it does not limit effective computa-
tion to human computers, but rather allows it to be executed by non- humans as
well— or even by machines. This is simply because the mathematical axioms can
be applied to (or model or implemented by) a variety of different systems. The
systems in question may be tangible (e.g., human computers) or abstract (e.g.,
Turing machines); they may be human or non- human. In other words, the ax-
ioms define a particular class of (computing) systems— namely, those that satisfy
the restrictions, irrespective of whether or not they are human. They can be seen

 35 An additional and notoriously hard question is how to draw the abstract/ concrete distinction.
I discuss some of these difficulties in the context of computing physical systems in Chapter 3; see
Rosen (2020) for a more general discussion. A further question is whether physical computing sys-
tems have abstract properties. I think that they do, but I will remain neutral here about this ontolog-
ical question (see also the relevant discussion about medium- independent properties in Chapters 5
and 6).
 36 Dresner (2010) argues that this abstraction relation is no different from the relation between
measurement schemes (e.g., real- number scales) and physical objects.

42 The Nature of Physical Computation

as defining a certain kind of mathematical scheme (or set of abstract computers)
that is applied to different systems (which can be seen as “implementing”
them)— one of which is the human computer. However, the notion of algorithm
is essentially tied to human calculation, because this mathematical scheme is ab-
stracted from a human computer. Once abstracted, it can be applied to many
other kinds of computing agents that are also said to compute effectively.

Another advantage of this approach is that it treats the second premise in
Turing’s analysis as a mathematical theorem. This premise links two different
mathematical notions: the class of systems defined by the mathematical axioms
1– 5, and that of the Turing machine. This is perhaps what Gandy meant when
he said that Turing had proved a theorem (1980: 124) and called it “Turing’s the-
orem” (Gandy 1988: 83; Sieg 1994).

2.3.2 Idealization: Competence and Performance

One may rightly argue that no real human can have unlimited time and space to
complete the computation; in this sense, the restrictive conditions are perhaps
too liberal.37 But the human computer is an idealized entity.38 The idealization
can take one of two very different forms. One is an idealization in terms of the
practical, real- world limitations of space, time, and material aids (e.g., pencils
and paper). In principle, the human can use as much time and space as it takes to
complete the computation. One might define this kind of idealization in terms
of the competence/ performance distinction (Chomsky 1965): performance is al-
ways limited by the amount of paper potentially available in the universe and by
a given time span (e.g., the lifetime of a person, planet, or universe). Competence,
however, goes beyond this: under ideal conditions, the human could, in prin-
ciple, transcend these limitations. This kind of idealization appears to be re-
quired if computation is associated with surveyability— since there is no upper
limit on the length of a formal proof, other than that it must be finite.39

The second sort of idealization concerns normativity. When the human
follows an algorithm for addition, the assumption is that he or she is following
it “properly”— calculation mistakes, inattention, forgetfulness, distractions,

 37 This assertion is associated with the claim that the “easy part” of CTT is false, as no human can
have the real powers of a Turing machine.
 38 I contrast idealized with abstract— hence, idealization and abstraction. In particular, idealized
might refer to real non- abstract systems. Idealization refers to the system (or one might say a different
system; see Norton 2012) operating under ideal conditions. Thus, when Gandy talks about an ab-
stract human being, I take it that he means an idealized human being.
 39 There are those who challenge the relationship between these idealizations and proofs. Some
argue that very long computer- generated “proofs” are not available in practice to the human com-
puter, as in the four- color problem (Tymoczko 1979; Teller 1980). More recently, some have pointed
out that proofs must be polynomially bounded; otherwise, they cannot be surveyed (“in practice”) by
humans (Aaronson 2013).

Turing’s Computability 43

and so forth are immaterial to the computation process. These mistakes are of a
different kind from the previous ones. In the preceding cases, real humans will
never be able to add very large numbers: they will die or run out of material aids
beforehand. This is not the claim here. When asked to calculate “67 + 58,” even
in the actual world, the human computer usually replies “125.” The problem is
that occasionally the human— when tired, distracted, or the like— might some-
times reply “126.” Idealization is therefore required to tell which reply is the cor-
rect one. Here too, one can describe the difference in terms of the competence/
performance distinction. Competence is associated with the correct application
of the (specific) set of instructions, whereas performance is associated with the
actual application, which might involve all kinds of faults.40

2.3.3 Cognitive Versus Non- Cognitive

The restrictive conditions 1– 5, as their name suggests, restrict human computers
to the means that they can use, or the resources they are allowed to use.41 But
what does it mean to say that the human computer is allowed to use these re-
sources? Who allows it? And why is it that the human is allowed to use only com-
putational resources that are limited to these restrictive conditions? Why these
restrictive conditions and not others? In examining how others have addressed
these issues (more implicitly than explicitly), we find two very different answers
to the questions, which we have labeled as the cognitive and non- cognitive
approaches (Copeland and Shagrir 2013).

According to the cognitive approach, the (permitted) restrictive conditions
1– 5 essentially reflect the upper limitations on humans’ cognitive capacities—
“essentially” in the sense that the correctness of the restrictive conditions is
grounded in, or is justified by, those capacities. In this cognitive approach, the
truth of the first premise in Turing’s analysis (that the human computer operates
under the restrictive conditions 1– 5) depends on empirical facts about human
cognition. The claim, however, is not that the restrictive conditions reflect the
limitations of general human mental processes, or not even of those mental pro-
cesses involved in mathematical thinking in general.42 Rather, the claim is that

 40 The two quests for idealization can be equated with Kripke’s Wittgenstein infinity and norma-
tivity arguments, which, Kripke argues, cannot be satisfactorily answered in dispositional terms
(Kripke 1982). See discussion in Boghossian (1989).
 41 This section extracts from Copeland and Shagrir (2013).
 42 Gödel famously argued that Turing (1936) “gives an argument which is supposed to show that
mental procedures cannot go beyond mechanical procedures” (1972: 306). But Turing clearly did
not hold this strong cognitivist position (Piccinini 2003a; Copeland and Shagrir 2013; Sieg 2013b).
Kreisel (1972) distinguished between human computers and machine computers, and apparently
identifies the former with the wider class of constructive methods (p. 319). But this is an odd use of
human effective computation: the constructive proposals Kreisel mentions (and which he attributes
to Gödel) are considered non- effective, even by Gödel himself.

44 The Nature of Physical Computation

they reflect the limitations of the cognitive capacities involved in the process
of calculation, or the faculty of calculation (which does not necessarily refer to
a designed cognitive module, but to the capacities involved in calculating the
values of functions or numbers).43

According to the non- cognitive approach, the restrictive conditions 1– 5 need
not reflect the limitations of the human condition. Whether or not they reflect
the upper limits of the faculty of calculation is irrelevant to the analysis of com-
putability. Conditions 1– 5 are simply an explication of the concept of effective
computation as it is used and functions in a certain context. The relevant con-
text is that of logic and mathematics, in which the concept is tied to decision
procedures, formal systems, and generating epistemically reliable, trustworthy
results.

The cognitivist would agree, of course, that Turing explicated the “axioms of
computability” by analyzing the concept of human computability as it is prop-
erly used and as it functions in the discourse of logic and mathematics. However,
the cognitivist would argue that in addition to explicating the conditions, Turing
grounds or justifies their correctness on the limitations of human cognitive-
calculative capacities. In contrast, the non- cognitivist would maintain that the
analysis offers no such justification for the conditions. In fact, according to the
non- cognitivist, a call for further justification has no place whatsoever in the
analysis of computability.

The difference between the two approaches can be made clear by consid-
ering the consequences for the extension of the concept of computability should
the human faculty of calculation be found to violate one or more of conditions
1– 5.44 Imagine that scientists were to discover that human memory could in-
volve an unbounded number of states, and, moreover, that this would result in
hypercomputational mental powers— that is, in humans being able to calculate
the values of functions that are not Turing machine computable. Would these
discoveries threaten Turing’s analysis of computability? The cognitivist and the
non- cognitivist give different answers.

The cognitivist answers yes. If it is found that humans can, as a matter of cog-
nitive fact, encode an infinite procedure, perform infinitely many steps in a finite
span of time (a supertask), or even observe an unbounded number of symbols at
any given step when calculating a value of a function, cognitivists would regard

 43 Also note that the approach is not “psychologistic” in taking those facts to be exactly those
cognitive properties involved in the performance of calculation. The approach is cognitive in the
sense that it ties effective calculability to the competence of the faculty of calculation (as discussed
previously).
 44 Gödel explicitly challenges the (third) restriction about the boundedness of the number of
states of mind (Gödel 1972). He also raises the possibility of accelerated processing in a somewhat
enigmatic sentence (Wang 1974: 325).

Turing’s Computability 45

this as undermining the analysis. If some of the constraints among 1– 5 do not
reflect actual upper limits on the faculty of calculation, then in the cognitive ap-
proach these constraints have no place in the analysis.

According to the non- cognitivist, however, the answer is no: discoveries
about the human mind have no bearing on the analysis of computability. The
non- cognitivist does not exclude the empirical possibility of the discovery that
human memory is unbounded; the non- cognitivist simply denies that effective
calculability is synonymous with this kind of cognitive calculability. Effective
computability is calculability by finite means. Hence, the analysis of computa-
bility invokes a finite number of states of mind, because the analyzed concept is
that of computation by means of a finite procedure. The focus is on what can be
achieved by “finite means,” not on whether human beings are actually limited to
finite means.

There is not necessarily a clear delineation between the cognitive and non-
cognitive approaches. One might contend, for example, that some of the restric-
tive conditions reflect the limitations on cognitive capacities, while others arise
from the nature of anything properly describable as “finite means.” Emil Post has
one foot— or possibly even both feet— in the cognitive camp, saying that the pur-
pose of his analysis “is not only to present a system of a certain logical potency
but also, in its restricted field, of psychological fidelity” (1936: 105). Post refers to
Church’s identification of effective calculability with recursiveness as amounting
“not so much to a definition or to an axiom but to a natural law” (p. 105), adding
that “to mask this identification under a definition hides the fact that a fun-
damental discovery in the limitations of the mathematicizing power of Homo
Sapiens has been made” (p. 105 n. 8).45 Gandy appears to understand Turing’s
analysis in cognitivist terms, saying that Turing arrives at the restrictions “by
considering the limitations of our sensory and mental apparatus” (2001: 11).
Turing’s position, however, is more nuanced. On the one hand, he says that “for
the present I shall only say that the justification lies in the fact that the human
memory is necessarily limited” (1936: 59), which looks very much like a cogni-
tive position. On the other hand, he later comments that we can sidestep states
of mind altogether “by considering a more physical and definite counterpart”
(p. 79), such as written symbolic configurations, which might suggest that he is
taking the non- cognitive route after all. Church, Gödel, and Kripke appear to be
far closer to the non- cognitive camp.46

 45 See De Mol (2012) for a detailed discussion of Post’s views about this.
 46 See Copeland and Shagrir (2013).

46 The Nature of Physical Computation

2.4 Effective Computability and Machine
Computation

It has been claimed that Turing characterized effective computability in terms
of Turing machine computability. The question is whether, and to what extent,
this characterization captures the notion of machine computation in general and
physical computation in particular. When addressing this issue, we are now in a
position to prevent two potential mistakes.

One mistake is to identify computability with computing (this point pertains
not only to effective computation, but to any kind of computation). The term com-
putability refers to the functions (numbers, predicates) that can be computed.47
The term computing refers to the processes by means of which these functions
are carried out. As such, we can hardly expect computability to coincide with
computing, namely, with the process of computation. Take a computable func-
tion, such as the zero function, whose output is zero for every input. It is comput-
able in the sense that there is a computing process by which one can arrive at its
values. But presumably there will also be many other, non- computing processes
by which one arrives at the values of this (computable) function. Thus, computa-
bility cannot distinguish between the computing and non- computing processes
that lead to the same (computable) function. Computability distinguishes be-
tween computable and non- computable functions. It does not distinguish be-
tween the computing and non- computing processes by which we can arrive at
the values of the computable functions. As for effective computability, I do not
think that it even provides a necessary condition for computing. As we have pre-
viously implied (Section 2.3.3), there are cases of hypercomputation— namely, of
computing functions that are not Turing machine computable at all. In Chapter 3,
we will discuss more cases of physical hypercomputation in detail.

The second mistake to avoid is the application of Turing’s characterization
of effective computation to machine computation in general.48 As previously
noted, Turing analyzed effective calculation— namely, calculation by a human
being who is following an effective (that is, finite and mechanical) procedure.
In particular, constraints that apply to the human computer do not apply to
mechanical devices in general. One might challenge the human interpretation
underpinning Turing’s analysis. However, even those who do not accept this in-
terpretation seem to agree that constraints 1– 5 are too restrictive to be applied to
computation in general. Gandy (1980), for example, stressed that Turing’s anal-
ysis does not apply to machines that perform parallel computation, in which the

 47 Shapiro (1984) also notes that computability is a modal notion: it refers to what can be com-
puted, rather than to what is actually computed.
 48 See Copeland (2015: sec. “Misunderstandings of the Thesis”) for a long list of philosophers and
computer scientists who have committed this error (some of whom are also mentioned in Chapter 3).

Turing’s Computability 47

number of processing units is unbounded. A simple example of parallel compu-
tation is the well- known Game of Life (hereafter “Life”). Life is a potentially infi-
nite two- dimensional grid of cells, each of which is in one of two possible states,
alive or dead. Every cell interacts with its eight neighbors— that is, the cells that
are horizontally, vertically, or diagonally adjacent. At each moment in time, the
following transitions occur:

 • A live cell with fewer than two live neighbors dies (loneliness).
 • A live cell with two or three live neighbors stays alive (survival).
 • A live cell with more than three live neighbors dies (overcrowding).
 • A dead cell with exactly three live neighbors becomes a live cell (birth).

The initial pattern is any arbitrary arrangement of live/ dead cells. The first
generation is created by applying the preceding rules simultaneously to every cell
in the grid; births and deaths occur simultaneously. The rules continue to be ap-
plied repeatedly to create further generations. It would seem that this evolution
is a clear case of a computational process, although it does not conform to all of
Turing’s restrictions.

Specifically, Life does not satisfy Turing’s fourth condition. As Gandy pointed
out, Turing assumed that “a human being can only write one symbol at a time,”
and this assumption cannot be carried over to a parallel machine that “prints an
arbitrary number of symbols simultaneously” (1980: 124– 125). In Life, there is
no upper bound on the number of cells that make up the grid, yet the symbols
in all the cells are updated simultaneously. Thus, there is no upper limit on
the number of changes (“change of cell”) that can take place at each step. This
is precisely the difference between the human computer and Life: even if the
human computer can run computation in parallel, there is an upper limit on
the number of parts that operate in parallel. Life is a parallel machine with no
such limit.

Life therefore indicates that Turing’s conditions 1– 5 are too restrictive with
respect to machine computation in general. Life performs computations but
does not satisfy all of Turing’s restrictive conditions. This does not mean that
we cannot extend Turing’s condition in a way that will include Life and other
parallel machines. It also does not mean that Life cannot be seen as an effec-
tive or algorithmic computation in some extended sense. We will discuss pre-
cisely these possibilities in Chapter 3. The conclusion, rather, is that Turing’s
conditions on human computation cannot be taken as a characterization of
machine computation. Assuming that Life, and other parallel machines,
are instances of physical computation, we can also conclude that Turing’s
conditions fall short of capturing physical computation (I will elaborate on this
as well in Chapter 3).

48 The Nature of Physical Computation

2.5 Summary

I have reviewed Turing’s analysis of effective calculability, in which Turing
formulates a set of constraints (“axioms”) on effective calculability and shows
that its scope does not exceed Turing machine computability. The conclusion
is that Turing’s analysis pertains specifically to human calculation, and that his
analysis is too restrictive to apply to computing in general. One might be encour-
aged at this point to relax Turing’s conditions so that they might apply to more
computing systems. But while this expansion is appealing with respect to some
kinds of computation, I suspect it is fruitless with respect to characterizing phys-
ical computation. In Chapter 3, I will develop this line of argument in detail.

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0004

3
Preamble to Machine Computation

There have been a number of attempts to characterize machine computation,
both in philosophy and in computer science. As it turns out, however, some
of these characterizations target different kinds of machine computation. In
this chapter, I examine the inclusion relations between three kinds of machine
computation (leaving the notion of computation very much unanalyzed at this
point): generic computation (Section 3.2), algorithmic machine computation
(Section 3.3), and physical computation (Section 3.4). My methodology is to
compare different versions of the theses pertaining to the computational limits of
these machines. The differences among the theses correlate with the differences
among the kinds of machine computation.

My starting point is the account advanced by Robin Gandy in his paper
“Church’s Thesis and Principles for Mechanisms” (1980). Gandy provides a com-
prehensive and precise mathematical characterization of machine computation.1
The gist of the account is summarized in Section 3.1. I use Gandy’s account to
distinguish between the different kinds of machine computation: generic com-
putation, algorithmic machine computation, and physical computation. In
particular, I argue that, conceptually speaking, the account falls ambiguously be-
tween the different kinds of machine computation and fails to fully capture any
of them. As before, I advise readers who are only interested in the main argument
as to which sections they can safely skip.

3.1 Gandy’s Account of Machine Computation

Gandy, who was Turing’s student, explicitly sought to expand his advisor’s
ideas from human calculation to machine computation by weakening cer-
tain constraints in Turing’s analysis that did not apply to machines in general.2
Specifically, he modified Turing’s constraints so that they could be applied to par-
allel computations, such as the Game of Life.

Gandy starts with a very general thesis (to which we will return in Section 3.2):

 1 The account was subsequently simplified mathematically and explicated conceptually by Sieg
(2002; Sieg and Byrnes 1999).
 2 This section is based on Copeland and Shagrir (2007).

50 The Nature of Physical Computation

Thesis M. What can be calculated by a machine is [Turing machine] computable.
(1980: 124)

He immediately narrows this statement, stating that he will consider only
deterministic discrete mechanical devices, which are, “in a loose sense, digital
computers” (1980: 126). In particular, he says: “I exclude from consideration
devices which are essentially analogue” (Gandy 1980: 125). Thus, Gandy is actu-
ally arguing for the following:

Gandy’s thesis: Any function that can be computed by a discrete deterministic
mechanical device is Turing machine computable.

The first step in Gandy’s argument is to formulate the notion of a discrete
deterministic mechanical device in terms of precise axioms, which he calls
Principles I– IV. The first principle— “form of description”— describes a de-
terministic discrete mechanical device as a pair <S,F>, where S is a potentially
infinite set of states, and F is a state- transition operation from Si to Si+1. Gandy
chooses to define the states of the machines in terms of subclasses of hereditarily
finite sets (HF) over a potentially infinite set of atoms that is closed under iso-
morphic structures (such subclasses are termed “structural classes”); he defines
the transformations as structural operations over these classes. Leaving aside the
technicalities of Gandy’s presentation, the first principle can be approximated as
follows:

I. Form of description: Any discrete deterministic mechanical device M can be
described by <S,F>, where S is a structural class, and F is a transformation from
Si to Sj. Thus, if S0 is M’s initial state, then F(S0), F(F(S0)), . . . are its subsequent
states.

In Life, for example, the state (configuration) at each moment is completely
determined by the previous state and by the four simple rules of transformation
that constitute F (see section 2.4).

Principles II and III place boundedness restrictions on S. They can be infor-
mally expressed as follows:

II. Limitation of hierarchy: Each state Si of S can be assembled from parts,
which can be assemblages of other parts, etc., but there is a finite bound on
the complexity of this structure. In Gandy’s terminology, this amounts to the
requirement that the states of a machine be members of a fixed initial seg-
ment of HF.

Preamble to Machine Computation 51

In Life, the grid can be arbitrarily large, but the complexity of the structure of
each state is very simple, and can be described as a list of pairs of cells— or, more
generally, as a list of lists of cells, since each listed pair of cells is itself a list of cells.
In general, we can picture a Gandy machine as storing information in a hierar-
chical way, such as lists of lists (Gandy 1980: 131), but Principle II states that for
each machine there is always a finite bound on the structure of this hierarchy.

III. Unique reassembly: Each state Si of S is assembled from basic parts of
bounded size. There is, however, a bound on the number of types of basic parts
(atoms) from which the states of the machine are uniquely assembled.

The grid of Life can be assembled from pairs of consecutive cells and their
symbols (e.g., [“on,” “off ”], [“on,” “on”], etc.). We need only a limited number of
pairs like these to construct any configuration of the grid.

Principle IV, “local causation,” puts restrictions on the types of transition op-
erations available. It says that each changed part of a state is affected by a bounded
neighborhood:

IV. Local causation: The parts from which F(Si) is assembled are causally af-
fected only by their bounded “causal neighborhoods”: the state of each part is
determined solely by its local neighborhood.

In Life, the grid is assembled from parts— cells— each of which is either “on”
or “off ” at any given moment. A cell’s state— “on” or “off ”— is determined only by
the bounded causal neighborhood consisting of its eight adjacent cells.3

The first three principles might be motivated by what is meant by a discrete
deterministic device. Principle IV, according to Gandy, is an abstraction of two
“physical presuppositions”: “that there is a lower bound on the linear dimensions
of every atomic part of the device and that there is an upper bound (the velocity
of light) on the speed of propagation of changes” (1980: 126). If the propagation
of information is bounded, an atom can transmit and receive information in its
bounded neighborhood in bounded time. If there is a lower bound on the size
of atoms, the number of atoms in this neighborhood is bounded. Taking these
together, each changed state, F(x), is assembled from bounded, though perhaps
overlapping, parts of x. In Life, each cell affects the state of several cells, that is,
the neighboring ones.

The second step in Gandy’s argument is to prove a theorem asserting that any
function computable by a device that satisfies Principles I– IV is Turing machine

 3 The local environment need not be understood geometrically or topologically. The important
point is that the number of cells, or components, that affect the computation of each cell is bounded.

52 The Nature of Physical Computation

computable. The proof goes much further than the (relatively trivial) reduction
of some given number of machines working in parallel to a single Turing ma-
chine that performs all of those machines’ actions. The class of “Gandy machines”
(i.e., machines conforming to Gandy’s principles I– IV) includes machines with
an arbitrary number of processing parts that work on the same regions— such as
printing on the same cells of a tape.

We can summarize the argument as follows:

Premise 1: “Thesis P. A discrete deterministic mechanical device satisfies
Principles I– IV.” (1980: 126)

Premise 2: “Theorem. What can be calculated by a device satisfying Principles
I– IV is [Turing machine] computable.” (1980: 126)

Gandy’s thesis: What can be calculated by a discrete deterministic mechanical
device is Turing machine computable.

Overall, Gandy’s argument has the same structure as Turing’s. The first
premise states axioms of computability for discrete deterministic mechanical
devices (Turing formulated axioms for human computers). The second premise
is a reduction theorem that shows that the computational power of devices
constrained by these restrictive conditions (“Gandy machines”) are bounded
by the Turing limit (Turing put forward a reduction theorem with respect to
machines that satisfy his restrictions 1– 5). The conclusion (“Gandy’s thesis”) is
that the computational power of discrete deterministic mechanical devices is
bounded by Turing machine computability (Turing’s thesis is the claim about the
scope of human computability).

The main difference between Gandy and Turing pertains to the restrictive
conditions. Gandy’s restrictions are weaker than Turing’s 1936 conditions on
human computability, as they allow for state- transitions that result from changes
in an arbitrary number of bounded parts (in contrast, Turing allows changes in
only one bounded part). This way, Gandy’s characterization encompasses par-
allel computation: “If we abstract from practical limitations, we can conceive of
a machine which prints an arbitrary number of symbols simultaneously,” and
“proofs of Thesis M must take parallel working into account” (Gandy 1980: 124-
125). Gandy’s formulation takes into account computing systems whose state-
transition involves simultaneous changes in an unbounded number of parts.
As noted in Chapter 2, the grid of Life might consist of nine cells, or a hundred
cells, or billions of cells, whereas in each of them all the cells are simultaneously
updated. Thus, there is no upper bound on the number of parts (i.e., cells) that
are updated at any given time.

Preamble to Machine Computation 53

Gandy, however, does set a boundedness restriction on the state- transition
of each part. This is Principle IV of local causation. Each such state- transition
is bounded by the local environment of this part. In Life, the configuration of
each cell is completely determined by the previous configuration of itself and
that of eight adjacent neighboring cells; thus the state- transition of each part—
that is, each cell— is bounded to the configuration of nine cells (and four rules of
operation). Turing, as we have seen, has a similar boundedness constraint. But
while Turing’s condition is related to human calculation, Gandy bases Principle
IV on presuppositions about the physical world. The presupposition about the
lower bound on the size of atomic parts derives from the premise that the system
is discrete. The presupposition about the speed of propagation is a basic prin-
ciple of relativity. Indeed, Gandy remarks that his Thesis P is inconsistent with
Newtonian devices: “I am sorry that Principle IV does not apply to machines
obeying Newtonian mechanics” (1980: 145). He points out that such machines
may contain “rigid rods of arbitrary lengths and messengers travelling with ar-
bitrary large velocities, so that the distance they can travel in a single step is un-
bounded” (1980: 145).

3.1.1 Gandy Machines, Turing Machines, and
HUMAN Computers

Gandy machines are those that satisfy the set of Principles I– IV. We can think
of these principles as mathematical axioms, and of Gandy machines as the
devices that satisfy these axioms. This is in line with the approach to princi-
ples 1– 5 as mathematical axioms abstracted from the limitations imposed on
human computation (see the discussion in Section 2.3.1). I will use the label
HUMAN computers for the class of machines satisfying the restrictive conditions
1– 5, which includes human computers (since the restrictive conditions argu-
ably model them) as well as other machines that satisfy these principles (see
Chapter 2). Now, HUMAN computers constitute a proper subclass of Gandy
machines (Figure 3.1), since, as we have seen, the class of Gandy machines
clearly includes the class of HUMAN computers, while other machines, such as
Life, are Gandy machines but not HUMAN computers (Chapter 2). The class
of Turing machines is a proper subclass of HUMAN computers.4 As noted in
Chapter 2 (and indicated in Figure 2.1), Turing machines operate on one cell at a
time, whereas HUMAN computers can operate on broader (but bounded) parts
at a time.

 4 We can think here of Turing machines as the class of machines— abstract or not— that satisfy the
mathematical definition.

54 The Nature of Physical Computation

Notably, these inclusion relations— between Gandy machines, Turing
machines, and HUMAN computers— pertain to the computing machines,
rather than to the functions computed by the machines. Turing’s and Gandy’s
theses actually assert that there are no such gaps when it comes to the com-
puted functions. Turing’s thesis asserts that the functions computed by HUMAN
computers are also Turing machine computable. Gandy’s thesis extends that re-
sult, asserting that the functions computed by Gandy machine are also Turing
machine computable.

3.1.2 Summary

Gandy defines a class of computing devices (“Gandy machines”) by formulating
a set of Principles I– IV, and he proves that their computational power is bounded
by Turing machine computability. He further argues that these principles expli-
cate the notion of a discrete deterministic mechanical device, and hence that the
class of Gandy machines coincides with the class of discrete deterministic me-
chanical devices. This argument is the basis of his thesis (“Gandy’s thesis”) that
every function that can be computed by a discrete deterministic mechanical de-
vice is Turing machine computable. The real question is about the significance of
the class of Gandy machines to machine computation. I will argue that Gandy’s
principles do not fully capture the notions of generic (Section 3.2), algorithmic
(Section 3.3), and physical computation (Section 3.4). This discussion will en-
able us to clarify some of the relationships between these three notions (as sum-
marized in Section 3.5).

HUMAN computers

Life

Turing
machines

Gandy machines

Figure 3.1 The inclusion relations between Turing machines, HUMAN computers,
and Gandy machines. The class of Turing machines (machines satisfying the
mathematical definition) is a proper subclass of the class of HUMAN computers
(machines satisfying Turing’s conditions 1– 5), which in turn is a proper subclass of
the class of Gandy machines (machines satisfying Gandy’s Principles I– IV).

Preamble to Machine Computation 55

3.2 Generic Computation

In his Stanford Encyclopedia of Philosophy entry on the Church- Turing thesis,
Copeland (2015) remarks that the Church- Turing thesis has been roundly
misinterpreted—including by theoreticians, practitioners, and philosophers. He
cites some scholars who have even taken it as a thesis about computation in ge-
neral. Dennett, for example, writes that “Turing had proven—and this is prob-
ably his greatest contribution—that his Universal Turing machine can compute
any function that any computer, with any architecture, can compute” (1991: 215).
This description is also found in the writings of computer scientists: “The
Church- Turing thesis says that, from a theoretical standpoint, all computers have
the same power. This is commonly accepted; the most powerful computers in
the world compute the same things as Turing’s abstract machine could compute”
(Astrachan 2000: 397). Another bold statement of this sort is put forward by
Allen Newell: “That there exists a most general formulation of machine and that
it leads to a unique set of input- output functions has come to be called Church’s
thesis” (1980: 150).

Let us call this kind of description the bold Church- Turing thesis:

CTT- Bold (CTT- B): Any function that can be computed by any machine is
Turing machine computable.

This bold thesis can be equated with Gandy’s Thesis M (which states that
whatever can be calculated by a machine is Turing machine computable). Gandy,
however, does not equate Thesis M with the Church- Turing thesis. Moreover, he
eventually argues for a more limited thesis— Gandy’s thesis— that pertains to de-
terministic discrete mechanical devices. The bold thesis refers to any computing
machine whatsoever. While neither Church nor Turing formulated this thesis,
these and other misinterpretations reflect the dramatic shift in the sort of agents
and problems associated with computation. The main difference is that the term
computer is no longer associated, at least essentially, with humans, but rather
with machines and systems in general.

Following Piccinini (2015), I will use the term generic computation to refer
to this very general concept of machine computation. Piccinini himself may
have confined the concept to physical computation, but I extend it to notional
machines as well. A notional machine “abstracts from the issue of whether or not
[it] . . . could exist in the actual world” (Copeland 2000: 15). I will expand on the
notional/ physical contrast in Section 3.4.1.

It is generally agreed that CTT- B is false, at least under most accounts of com-
putation. There are many examples of notional machines that compute non-
recursive functions; these are hypercomputers. As Copeland puts it, “there are

56 The Nature of Physical Computation

notional machines that generate functions that no Turing machine can generate”
(Copeland 2000: 15).5 Some have attributed to Turing (1939) the first example
of hypercomputers, the so- called oracle machines (or o- machines).6 I will de-
scribe another kind of hypermachine known as the infinite- time Turing machine
(Hamkins and Lewis 2000; Hamkins 2002). These machines are of interest for
two additional reasons: they are taken as a model of some physical supertask
computation (Section 3.4.4), and they are, in some sense, deterministic discrete
mechanical devices (Section 3.2.2).

3.2.1 Infinite- Time Turing Machines

Infinite- time Turing machines extend the operations of ordinary Turing
machines to transfinite ordinal time.7 The idea is to allow a Turing machine to
carry out and complete computations that involve infinitely many computation
steps. These computation steps proceed in time much like the ordinal numbers: if
the computation does not halt at any of the finite stages 0, 1, 2, 3, . . . , then it
arrives at the first infinite stage ω, continuing with stages ω +1, ω +2, ω +3, . . . and
so on, eventually arriving at the second limit stage ω + ω, and continues through
the ordinal numbers. The configuration of the machine at each stage is deter-
mined by the earlier configurations and the operation of a fixed finite program.8

Like a classical Turing machine, an infinite- time Turing machine features a
head moving back and forth, reading and writing 0s and 1s on a tape according
to the instructions of a fixed finitely- many- states program. In between the or-
dinal limit stages, the machine operates in the classical way, in the sense that
“the classical procedure determines the configuration of the machine . . . at any
stage α + 1, given the configuration at any stage α” (Hamkins 2002: 526). What is
new is the behavior of the machine at the limit ordinal stages. At each such stage,
the machine “is placed in the special limit state, just another of the finitely many
states; and the values in the cells of the tapes are updated by computing a kind
of limit of the previous values that cell has displayed” (p. 526). These new limit
states enable the machine to compute beyond the Turing limit.9

Consider, for example, the famous halting problem— that is, the question
whether there is a (classical) Turing machine that computes the halting function.
The halting function accepts as an argument the pair (m,n) and returns 1 if the

 5 For a discussion of hypercomputation, see, e.g., Copeland and Sylvan (1999); Copeland (2002c);
and Syropoulos (2008).
 6 See Copeland (2002c).
 7 The next two subsections draw on Copeland and Shagrir (2011).
 8 See also Cohen and Gold (1978).
 9 See Hamkins (2002) for a detailed presentation of these machines.

Preamble to Machine Computation 57

mth Turing machine halts on input n, and otherwise returns 0 (one may think
of m as the code of the machine, or as the index of the machine in some enu-
meration). The halting function is an example of something that cannot be com-
puted by a universal Turing machine. If the Church- Turing thesis is true, then
the halting function is not computable by means of any algorithm whatsoever.
A universal Turing machine can simulate the operations of the mth Turing ma-
chine operating on input n. It can also check, after each simulation step, whether
the mth machine halted or not. Thus, our universal Turing machine can tell,
within a finite number of steps, whether an arbitrary Turing machine m halts
when operating on input n. Nonetheless, it does not compute the halting func-
tion: if the mth machine never halts, then the simulation keeps going forever,
meaning that the simulating machine returns no output.

However, a universal infinite- time Turing machine that travels in transfinite
time could “see” that the simulated machine, m, never halted. It could return
the values of the halting function. By way of illustration, imagine a universal
infinite- time Turing machine, which we supplement with a special limit state at
the ordinal stage ω. This machine— which I will dub ITTM (infinite- time Turing
machine)— computes the halting function as follows. Take a “designated square”
on the tape to indicate whether or not m has halted (when operated on input n).
This designated square is (for the sake of the argument) the first square to the left
of the block of digits comprising the description of m, followed by the digits of
the input number n. Once ITTM is set, its first action is to position the scanner
over the designated square and print 0 (meaning “m does not halt”). The next
step of ITTM, which is a universal machine, is to simulate m, performing every
operation that m does and in the same order (albeit interspersed with sequences
of operations not performed by m). If ITTM discovers that m halts, then ITTM
returns to the designated square and changes the 0 written there to 1 (meaning
“m halts”). Otherwise, the value in the designated square is calculated, in the
limit ω stage, as the limit of the previous values that the square has displayed. If
the square displayed the value 0 in all the (infinitely many) stages that preceded
the limit stage, then the value at the limit- state is set to 0; ITTM halts at this
point, returning the value 0 (meaning “m does not halt”).10

Does ITTM disprove CTT- B? That depends on whether or not we consider the
machine’s activity computing. Those who devise such machines think that they
compute. Hamkins, for example, writes that infinite- time Turing machines “pro-
vide a natural model of infinitary computability” and are “computing machines”
(2002: 521); Cohen and Gold (1978) titled their paper “ω- Computations on
Turing Machines,” Löwe (2001) entitled his “Revision Sequences and Computers

 10 See Hamkins and Lewis (2000, sec. 2) for a discussion of the power of infinite- time Turing
machines.

58 The Nature of Physical Computation

with an Infinite Amount of Time,” and Koepke (2005) called his “Turing
Computations on Ordinals.” Moreover, the claim that ITTM computes is con-
sistent with most accounts of computation— including the semantic account
(Shagrir 2006b; Sprevak 2010), the mechanistic account (Miłkowski 2013; Fresco
2014; Piccinini 2015), the causal account (Chalmers 2011), and the BCC (broad
conception of computation) account (Copeland 1997).

3.2.2 Why Infinite- Time Turing Machines Are Not
Gandy Machines

Infinite- time Turing machines raise interesting questions in the context of
Gandy machines (those machines that satisfy Principles I– IV). On the one hand,
infinite- time Turing machines are obviously not Gandy machines, since they can
exceed the Turing limit. On the other hand, they appear, at least in some sense,
to be discrete deterministic mechanical devices. They are discrete in the sense
that they operate on separable elements and according to a finite program with
finitely many separable states. They are deterministic in that the configuration of
the machine at each stage is completely determined by the earlier configurations
and the operation of a fixed finite program. They appear to be mechanical in the
sense that they operate according to a fixed rule or program. Gandy says that he
will “distinguish between ‘mechanical devices’ and ‘physical devices’ and con-
sider only the former” (1980: 126). Mechanical devices are those that satisfy
Principle IV, the principle of local causation. ITTM does satisfy this condition—
at least if, instead of “accumulating” the values in the designated square, there is
some indicator of the number of changes that occurred in this square since the
first step (“print 0”) of the computation process; ITTM would then return 0 if the
indicator shows no changes.

So why would the infinite- time Turing machine, ITTM, not be considered
a Gandy machine? Merely appealing to the fact that infinitely many steps are
involved does not provide an answer. Gandy’s postulates allow for processes
comprising infinitely many steps; so do classical Turing machines. Rather, the
difference is that ITTM allows terminating processes that consist of infinitely
many steps, whereas Gandy’s proof assumes that processes consisting of infi-
nitely many steps do not terminate. The fact that ITTM exhibits such processes
is apparent: while the simulated Turing machine does not halt, ITTM halts after
the infinitely- many- steps simulation, producing 0 as its output. But this raises
the question of which of Gandy’s principles is violated by ITTM.

The answer lies in an ambiguity in the term deterministic (Copeland and
Shagrir 2007, 2011). Gandy says that by deterministic he means that “the
subsequent behavior of the device is uniquely determined once a complete

Preamble to Machine Computation 59

description of its initial state is given” (1980: 126). In that sense, ITTM is cer-
tainly deterministic: its halting state, whether it halts on 0 or 1, is uniquely
determined once a complete description (“configuration”) of its initial state
(“stage”) is given. But Gandy assumes more than that: he requires that the be-
havior at each stage (except the first one) is to be uniquely determined by the
configuration of the previous stage. This stronger requirement is present in the
formulation of Principle I, which requires that the process can be described as
a sequence S0, F(S0), F(F(S0)), . . . (where S0 is the initial state, and F is the state-
transition function).

If we define deterministic thusly, ITTM is not deterministic. Consider
the halting state of ITTM. If ITTM halts before reaching the limit stage, then
its subsequent behavior is deterministic in Gandy’s sense; but if it reaches the
limit stage, its behavior is no longer Gandy- deterministic. To count as Gandy-
deterministic, its behavior at the limit stage must be completely determined by
the configuration of the previous stage. However, there is no such last previous
stage— in other words, there is no stage that is the one that comes just before the
limit stage. After each (classical) stage of ITTM, there are infinitely many others
that precede the limit stage.

For precisely this reason, ITTM is also not a Turing machine. A Turing ma-
chine is Gandy- deterministic: what it does at each stage is completely determined
by the configuration at this stage (and thus the configuration of the machine at
each stage α+1 is completely determined by the configuration of the machine at
the preceding stage α). It is therefore misleading to call ITTM an infinite- time
Turing machine. If anything, it is an example of a non- Turing machine.

As we have noted, there is a thoroughly reasonable account of determinism
according to which ITTM is deterministic. It is deterministic in that its config-
uration is uniquely determined by the machine’s initial configuration at every
moment. In particular, its configuration at the limit stage is a limit of previous
configurations. On this account, ITTM is deterministic in that its end stage
is the limit of the previous configurations (in the other stages, it is Gandy-
deterministic). This sense of determinism is in good accord with the physical
usage, whereby a system or machine is said to be deterministic if it obeys laws
that invoke no random or stochastic elements.

The upshot is that Principles I– IV do not cover all instances of generic (ma-
chine) computation. They might not even cover all instances of deterministic
discrete mechanical machines. Infinite- time Turing machines may be seen as
deterministic discrete mechanical devices, but they are not deterministic in the
sense of Principle I. Thus, the class of Gandy machines— that is, machines that
satisfy Principles I– IV— comprises a proper subclass of generic (computing)
machines, namely, the class of computing machines in general (Figure 3.2).

60 The Nature of Physical Computation

3.3 Algorithmic Computation

Within computer science, in the disciplines of computability theory, theories of
automata and formal languages, computational complexity, and so forth, com-
puting is explicitly associated with algorithms.11 In computer science, however,
algorithms are primarily associated with machines, not with humans (more pre-
cisely, human computers are considered one type of machine). Even the Church-
Turing thesis is formulated in terms of machines in most computer science
textbooks. Consider the following:

Today the Turing machine has become the accepted formalization of an ef-
fective procedure. Clearly one cannot prove that the Turing machine model
is equivalent to our intuitive notion of a computer, but there are compelling
arguments for the equivalence, which has become known as Church’s hypo-
thesis. (Hopcroft and Ullman 1979: 147)

Because the Turing machines can carry out any computation that can be carried
out by any similar type of automata, and because these automata seem to cap-
ture the essential features of real computing machines, we take the Turing ma-
chine to be a precise formal equivalent of the intuitive notion of “algorithm.”
(Lewis and Papadimitriou 1981: 223)

The claim, called Church’s thesis or the Church- Turing thesis, is a basis for the
equivalence of algorithmic procedures and computing machines. (Nagin and
Impagliazzo 1995: 611)

HUMAN computers

ITTM

Turing
machines

Gandy machines

Generic machines

Figure 3.2 Generic machines. The class of generic machines includes the class of
Gandy machines (and its proper classes).

 11 Parts of this section are excerpted from Copeland and Shagrir (2019).

Preamble to Machine Computation 61

In light of these and many other statements, we can reformulate the thesis in
terms of algorithmic computation by machines:

CTT- Algorithm (CTT- A): Any function that can be algorithmically computed
by a machine is Turing machine computable.

This formulation can be contrasted with the original thesis, which ties algo-
rithmic computation to a human computer:

CTT- Original (CTT- O): Any function that can be algorithmically computed
by an idealized human computer is Turing machine computable.

As implied by the textbook statements just cited, CTT- A is widely believed
as well. The main arguments for the thesis, however, no longer tie it to human
calculation, nor to formal derivation (as noted in Chapter 2, Turing’s analysis
is rarely mentioned in computer science textbooks). The two arguments for the
thesis that appear in most textbooks are the argument from confluence and the
argument from non- refutation. The argument from non- refutation, we recall,
states that the thesis has not been refuted, even though it is refutable.12 The argu-
ment from confluence asserts that many characterizations of computation that
differ in their goals, approaches, and details nonetheless encompass the same
class of computable functions.13

This shift in argumentation also implies that the notion of algorithmic ma-
chine computation encompasses a wide range of algorithms, including some
that do not satisfy Turing’s restrictive condition on human computation. The
Game of Life is one example of algorithmic computation that does not satisfy
the (humanly) restrictive conditions 1– 5, but there are many others: “In addition
to classical sequential algorithms, in use from antiquity, we have now parallel,
interactive, distributed, real- time, analog, hybrid, quantum, etc. algorithms”
(Gurevich 2012: 32).14 This expansion of the concept of algorithm is not an
unusual phenomenon; in fact, concept expansion is pervasive, including in

 12 A common formulation of the argument in computer science textbooks runs as follows:
Church’s thesis could be overthrown at some future date, if someone were to propose an
alternative model of computation that was publicly acceptable as fulfilling the requirement
of “finite labor at each step” and yet was provably capable of carrying out computations
that cannot be carried out by any Turing machine. No one considers this likely (Lewis and
Papadimitriou 1981: 223).

 13 Here is one formulation of the argument:
Turing machines can be imitated by grammars, which can be imitated by μ- functions, which
can be imitated by Turing machines. The only possible conclusion is that all these approaches
to the idea of computation are equivalent (Lewis and Papadimitriou 1981: 224).

 14 See also Brabazon, O'Neill, and McGarraghy (2015), who discuss algorithms inspired by sys-
tems and phenomena (e.g., genetic algorithms) in the natural world.

62 The Nature of Physical Computation

mathematics itself.15 The concept of number, for example, was once limited to
positive integers— including zero— and then the negative integers. Gradually,
it has expanded to include rational, real, and now complex numbers. Even
the concept of human computation has undergone an expansion: initially, the
founders of computability defined it with respect to total functions alone, such
as the general recursive functions (Gödel 1934; Church 1936a; Kleene 1936),
and only later expanded it to partial functions (Kleene 1938). In the latter case,
mathematicians realized that some algorithmic processes do not terminate.16 Yet
another example is the extension of effective calculability to cover functions over
the real numbers (see Section 3.4.2).

How broad is the notion of algorithmic machine computation? Here we find
at least two dramatically different approaches. Within computer science— at
least in the textbook characterizations cited earlier— it is assumed that the
functions computed by algorithms (in the expanded sense), at least to date, are
all Turing machine computable. This approach limits algorithms to machines
that stay within the ballpark of Turing’s conditions— namely, Turing’s conditions
are relaxed, but only up to a degree (as in, e.g., Gandy 1980 and Dershowitz
and Gurevich 2008).17 We still think of algorithmic process in terms of state-
transition: each state consists of atomic parts, the number of atomic part types
is bounded, the transition function is defined across these atomic types, and
the number of transitions in each terminating process is finite.18 When talking
about algorithmic machine computation in this chapter, I refer to this approach.
A second approach identifies algorithms with very general rules of opera-
tion. According to this approach, even hypercomputers— machines that com-
pute non- Turing computable functions— execute algorithms. This approach
maintains that algorithms define computation in general, namely, generic com-
putation. It is adopted by Copeland, who writes that “to compute is to execute an
algorithm” (1996: 335).19

The labels matter little here. My substantive claim is that the notion of algo-
rithm is not constitutive of physical computation under either approach. With

 15 See Buzaglo (2002) and Shapiro (2013) for a pertinent discussion about the evolution of mathe-
matical concepts; Shapiro refers to human computation in particular.
 16 In Gödel’s opinion:

The precise notion of mechanical procedures is brought out clearly by Turing machines pro-
ducing partial rather than general [i.e., total] recursive functions. In other words, the intui-
tive notion does not require that a mechanical procedure should always terminate or succeed.
A sometimes- unsuccessful procedure, if sharply defined, still is a procedure, i.e., a well deter-
mined manner of proceeding. (Quoted in Wang 1974: 84)

 17 Thus Gurevich (2012: 33) writes that “none of the other known kinds of algorithms seem to
threaten the thesis.”
 18 For earlier characterizations, see Kolmogorov (1958); Kolmogorov and Uspensky (1963); Knuth
(1973: 4– 6); and Gurevich (2000).
 19 Gurevich (2019), too, seems to adopt this approach.

Preamble to Machine Computation 63

respect to the former approach, I argue (in Section 3.4) that although highly im-
portant in some contexts (e.g., computer science), algorithmic computation does
not entirely coincide with physical computation: some algorithmic computations
are not physical, and some physical computations are not algorithmic. With re-
spect to the latter approach (Copeland), I argue (in Chapter 4) that the notion
of algorithm, even in its broader sense, does not help in distinguishing between
computing and non- computing physical systems. First, however, I want to fur-
ther clarify the notion of algorithmic machine computation.

3.3.1 What Is an Algorithm?

The nature of algorithms is a matter of debate within computer science. One
question concerns the ontology of algorithms.20 The dominant view is that
algorithms are abstract mathematical entities— but the question as to which ab-
stract entities are algorithms is moot.21 The difficulty is that the very same al-
gorithm can be “executed” by different machines using, say, different marks
or memory systems. Similarly, the same algorithm can be “expressed” by dif-
ferent programs— say, one written in Lisp and another in C++. Therefore, most
theoreticians view algorithms as abstract entities that are invariant under isomor-
phism.22 Moschovakis (1984, 1998, 2001) defines algorithm in terms of abstract
recursion,23 Gurevich (2000) in terms of abstract- state machines, and others
in terms of equivalent classes of abstract machines (Milner 1971; Moschovakis
1998) or programs (Yanofsky 2011).24 Vardi suggests that an algorithm is both
abstract- state machine and recursor (Vardi 2012). We can say that the notion of
algorithmic computation refers to machines that “implement” an algorithm, or
that “execute” a program that “expresses” the algorithm.25

It is debatable whether an algorithm should be physically implementable,
at least in principle. The dominant view is that it does not need to be. Thus,
Moschovakis and Paschalis say that their approach adopts “a very abstract

 20 The nature of algorithms is addressed informally by, e.g., Knuth (1973: 1– 9), Rogers (1987: 1– 5),
and Odifreddi (1989: 3), alongside the others mentioned in what follows.
 21 See also Dean (2016) for a criticism of the view that algorithms are essentially abstract.
 22 Gandy’s (1980) characterization also invokes this concept of invariance under isomorphism.
 23 However, see Gurevich (2012) for a criticism of this view.
 24 For a criticism of this view— namely, that algorithms are equivalence classes of programs— see
Blass, Dershowitz, and Gurevich (2009).
 25 Within computer science, this distinction is sometimes highlighted in terms of the abstract/ con-
crete distinction— abstract referring to a high- level description of a machine (such as a specification
that is invariant under isomorphism), and concrete usually pertaining to a lower- level description of
a machine, e.g., a specification that is not invariant under isomorphism. Importantly, a concrete ma-
chine can be quite abstract (in the non- physical sense); see, e.g., Pnueli, Siegel, and Singerman (1998)
and Tucker and Zucker (2004).

64 The Nature of Physical Computation

notion of algorithm that takes recursion as a primitive operation and is so wide
as to admit ‘non- implementable’ algorithms” (2008: 87).26 But others do men-
tion physical implementation— even if only as a theoretical or feasible possi-
bility. David Harel, for example, maintains that

any algorithmic problem for which we can find an algorithm that can be pro-
grammed in some programming language, any language, running on some
computer, any computer, even one that has not been built yet but can be
built . . . is also solvable by a Turing machine. This statement is one version of
the so- called Church/ Turing thesis. (1992: 233)27

Another question about algorithms concerns definability. Gurevich (2012)
argues that the notion of algorithm cannot be rigorously defined in full gen-
erality, mainly because it keeps evolving: “New kinds of . . . algorithms may
be introduced” (2012: 32). Nonetheless, Gurevich claims, the open- ended na-
ture of algorithms does not imply that a rigorous definition of algorithms is
hopeless: “Some strata of algorithms have matured enough to support rigorous
definitions” (p. 33). Turing (1936) provided a rigorous, if highly restricted,
definition of one stratum of sequential (non- parallel) algorithms.28 Gurevich
(2000) himself provides a rigorous definition of sequential algorithms, which
was later extended to parallel algorithms, and which is arguably more general
than Gandy’s.29 But, according to Gurevich, even this characterization is not
the final one. The concept of algorithm keeps evolving, creating ever more
strata that cannot be captured by a single characterization— at least for the
time being.

The last comment is about the relations between effective computation and
algorithmic computation. Here we find three approaches. One is to keep ef-
fective procedures and algorithms together, even in the broader context of
machine computation. In their reference to effective procedures (mentioned
earlier), Hopcroft and Ullman seem to take this route. A second approach is
to understand effectiveness in the sense of a practical or physical procedure.

 26 See also Gurevich (2019), who distinguishes between algorithms that are “real- world” (“effec-
tive”) and those that are not (“non- effective”).
 27 The requirement of physical implementability is prevalent among theorists of quantum com-
puting. See discussion in Section 3.3.2.
 28 Gurevich associates Turing’s notion with “symbolic” (symbol- pushing, digital) sequential
algorithms.
 29 The axiomatic definition was extended to synchronous parallel algorithms in Blass and
Gurevich (2003), and to interactive sequential algorithms (Blass and Gurevich 2006, 2007a,
2007b). Dershowitz and Gurevich (2008) derive the Church- Turing thesis from axioms of sequen-
tial algorithms; see Boker and Dershowitz (forthcoming) for further discussion of the axiomatic
definitions.

Preamble to Machine Computation 65

This approach is taken by Gurevich (2019), who equates effectiveness with
something that works in practice or that can be found in the real world, and
to some extent by Cleland (1993), who analyzes effective procedures in terms
of mundane procedures.30 According to this approach, algorithms and effec-
tive procedures are different entities. Gurevich talks specifically about non-
effective algorithms; he offers oracle algorithms as an example. Cleland says
that Turing machines are abstract entities, and therefore cannot carry out mun-
dane (“effective”) procedures. A third approach is to reserve effective procedures
to the notion analyzed by Turing, Church, and the founders of computability—
namely, that of human computation. This approach is advocated by Copeland
(2015; Copeland and Shagrir 2019). Like Gurevich (2019), Copeland adopts a
broader understanding of the notion of algorithm. But unlike Gurevich, who
equates effectiveness with real- world procedures, Copeland maintains the
original meaning of effectiveness in its logical- mathematical context. I side
here with Copeland and prefer to reserve the term effective computation for
human computation.31

Before comparing algorithmic computation with other kinds of machine
computation, we will take a short detour through computational complexity,
with its extended Church- Turing thesis. The uninterested reader can skip this
and go directly to Section 3.3.3.

3.3.2 Computational Complexity

Much of theoretical computer science today is about complexity, not com-
putability. The birth of computational complexity dates back to the early
1960s (Fortnow and Homer 2003).32 Its main concern was the functions
(or problems) that have an efficient or feasible algorithm. This is in contrast
to functions (or problems) that are algorithmically computable, but none
of whose algorithms is efficient. The assumption here is that efficient means

 30 Cleland defines a mundane procedure as a fixed and finite set of instructions that reliably
produces a certain kind of outcome when followed (see Cleland 1993: 186ff.; 2002: 167). Cleland
argues that mundane procedures, such as recipes, are effective in this sense.
 31 Maintaining the original sense of effective procedures, we can state the original version of the
Church- Turing thesis as follows (Copeland and Shagrir 2019):

CTT- Original (CTT- O): Any function that can be computed by the idealized human
computer— i.e., can be effectively computed— is Turing machine computable.

 32 The issue of complexity was raised by Gödel in a 1956 letter to von Neumann (by the time von
Neumann received it, Gödel had already passed away); for discussion, see Urquhart (2010). In the
letter, Gödel notes that if the complexity of a derivation is not polynomially bounded, then a human
(computer) would not be able to complete the derivation, even if it exists. For this and other philo-
sophical implications of complexity, see also Aaronson (2013) and Dean (2019).

66 The Nature of Physical Computation

polynomial time (namely, that its time complexity— say, the number of compu-
tation steps it takes to produce the output) is upper- bounded by a polynomial
of the size of the input. The main issues and open questions in computational
complexity pertain to (non-)reducibility relationships between complexity
classes of computable functions.

I will not say much about complexity in this book. However, I want to distin-
guish CTT- A— which is about the bounds of algorithmic computability— from
another thesis, which is about complexity. In complexity theory, the time com-
plexities of any two general and reasonable models of computation are assumed
to be polynomially related: if a problem’s time complexity is t in some (general
and reasonable) model, then its time complexity is assumed to be poly(t) in the
single- tape Turing machine model (Goldreich 2008: 33). This premise has var-
ious names in the literature: Goldreich (2008) called it the Cobham- Edmonds
thesis (following Cobham 1964 and Edmonds 1965), while Yao (2003) intro-
duced the term extended Church- Turing thesis. The thesis is of interest only if P ≠
NP, as otherwise it is trivial.33

Quantum computation researchers also use a variant of this thesis, expressed
in terms of probabilistic Turing machines. Bernstein and Vazirani say:

Just as the theory of computability has its foundations in the Church- Turing
thesis, computational complexity theory rests upon a modern strengthening
of this thesis, which asserts that any “reasonable” model of computation can be
efficiently simulated on a probabilistic Turing machine (an efficient simulation
is one whose running time is bounded by some polynomial in the running time
of the simulated machine). (Bernstein and Vazirani 1997: 1411)

Aharonov and Vazirani (2013) offer the following formulation of this premise,
which they dub the extended Church- Turing thesis— although it is not quite the
same as Yao’s earlier thesis of the same name, which did not refer to probabilistic
Turing machines:

CTT- Extended (CTT- E): “Any reasonable computational model can be simu-
lated efficiently by the standard model of classical computation, namely, a prob-
abilistic Turing machine.” (Aharonov and Vazirani 2013: 329)

 33 P is the class of problems (functions) for which there is a deterministic Turing machine polyno-
mial solution. NP is the class of problems for which there is a nondeterministic Turing machine poly-
nomial solution. The term non- deterministic can be interpreted as referring to a type of deterministic
(branching) machine; see Goldreich (2008) and Arora and Barak (2009) for discussion.

Preamble to Machine Computation 67

We can think of the extended thesis in terms of invariance. Just as the Turing
machine is a general model of algorithmic computability (the subject of CTT- A),
the Turing machine is also a general model of time complexity (the subject of
CTT- E). The computational complexity of a “reasonable” model of computation
can be very different from that of a Turing machine, but only up to a point: the
time complexities must be polynomially related.

What is a reasonable model of computation? Bernstein and Vazirani say that
they take “reasonable to mean in principle physically realizable” (1997: 1411).
Aharonov and Vazirani (2013) interpret “reasonable model of computation” as
“physically realizable model of computation” (p. 331). This requirement of phys-
ical realizability is prevalent among theoreticians of quantum computation, and
for a reason: quantum computing has attracted much attention in theoretical
computer science due to its potentially dramatic implications for computational
complexity. In their paper, Bernstein and Vazirani proceed to give formal
 evidence that a quantum Turing machine violates CTT- E. Another renowned
example from quantum computation that might violate the extended thesis is
Shor’s factoring algorithm (Shor 1994, 1997).

3.3.3 Algorithmic Machine Computation and
Generic Computation

The notion of algorithmic machine computation is narrower in scope than that
of generic computation. As implied in Section 3.3.1, it does not encompass
infinite- time Turing machines such as ITTM; otherwise, ITTM would have been
understood to refute CTT- A. As we have seen, however, CTT- A is considered
by almost everyone in theoretical computer science to be true. I have also previ-
ously indicated that ITTM is not algorithmic, as one of its terminating processes
consists of infinitely many steps. If the simulated machine does not halt, then the
(terminating) process that indicates this fact by returning 0 consists of infinitely
many steps.

This is not to say that infinite- time Turing machines do not act in accord-
ance with any rule. They surely do: ITTM is governed by a fixed “program”
with finitely many states. My suggestion is that these rules are not considered
“algorithms” in the sense of that word in theoretical computer science today
(“the first approach”). In this respect, algorithmic computation is more restric-
tive than generic computation. There are systems (such as infinite- time Turing
machines) that compute, but not algorithmically. It is an open question whether
this or other rules will be further relaxed, changed, or finalized at some point. To
a large extent, the answer appears to depend on developments in the theory of
algorithms, and perhaps on other factors as well.

68 The Nature of Physical Computation

3.3.4 Algorithmic Computation and Gandy
Machines

The notion of an algorithmic computation is broader in scope than that of
HUMAN computation. There are algorithmic machines, such as Life, that
do not satisfy all of the restrictive conditions 1– 5. The more interesting ques-
tion concerns the relationship between algorithmic computation and Gandy
machines (those that satisfy Principles I– IV). Gandy machines are algo-
rithmic: Gandy (1980) provides a characterization of (some) parallel synchro-
nous algorithms. The question is whether Gandy’s characterization captures the
notion of algorithm in its full generality— in other words, whether every algo-
rithmic process satisfies Principles I– IV.

I agree that Gandy provides a very general characterization of algorithmic
computation.34 Moreover, as I have previously implied, I also believe that the
expansion strategy that Gandy adopts (namely, weakening constraints) reflects
the evolution in the concept of algorithm. But it is precisely for these reasons
that Gandy’s characterization is apparently not the last word in this expansion
process. Indeed, there are asynchronous algorithms that do not satisfy Principle
I.35 We can think of a machine that we might call Life*— which is almost iden-
tical to Life, with the exception that at each step, only a fixed number of cells are
updated, and the identity of the updated cells is chosen according to different
clocks or even at random. This machine, Life*, is just a simple example of an
asynchronous algorithm. Another example is that of interactive or online (al-
gorithmic) machines that constantly interact with the environment while they
compute.

There might also be parallel synchronous algorithms that violate Principle IV.
Gandy himself mentions Markov normal algorithms: “The process of deciding
whether a particular substitution is applicable to a given word is essentially
global” (1980: 145). The term global here means that there is no bound on the
length of a substituted word; hence the demand for locality (Principle IV) is not
satisfied. The theory of neural networks provides further examples. In Chapter 4,
we discuss in detail a network for solving the n- queens problem (Shagrir 1992)—
the problem of locating n queens on an n × n chessboard, such that there is no
more than one queen on each row, column, and diagonal. In this network, each
“cell” receives “global” information at each update from all other cells, of which
there are unboundedly many. This is in contrast to Gandy machines, whose parts
are affected by their local environment.

 34 See also Sieg (2002: 390; 2009: 528).
 35 See Copeland and Shagrir (2007) and Gurevich (2012) for examples.

Preamble to Machine Computation 69

In short, it seems that Gandy appears to have characterized only a proper
subclass of algorithmic machine computation. This should not be too sur-
prising. As previously noted, Gandy was concerned with discrete deterministic
(synchronous) mechanical devices, and links mechanical to the “two physical
suppositions” that underpin Principle IV, the principle of local causation. It will
be of interest, then, to see whether Gandy captures the notion of physical compu-
tation. But first, a short summary is in order.

3.3.5 Summary

We will conclude this section by stating that the notion of algorithmic machine
computation is more restrictive than that of generic computation, but less re-
strictive than that of computation by Gandy machines. On the one hand, some
infinite- time Turing machines lie outside the scope of algorithmic computation;
on the other, there are apparently non- Gandy machines that compute algorith-
mically (Figure 3.3).

HUMAN computers

ITTM

Turing
machines

Generic
machines

Algorithmic
machines

Life*

Markov normal
algorithms

Gandy machines

Figure 3.3 Algorithmic machines. The class of algorithmic machines is more
restrictive than the class of generic machines, but less restrictive than the class of
Gandy machines.

70 The Nature of Physical Computation

3.4 Physical Computation

Questions about the computational limits of the physical world were raised more
explicitly in the mid- 1980s.36 Stephen Wolfram described “a physical form of
the Church- Turing hypothesis” (1985: 735), and stated it as follows: “universal
computers are as powerful in their computational capacities as any physically
realizable system can be, so that they can simulate any physical system” (p. 738).
David Deutsch, who laid the foundations of quantum computation, provides a
somewhat similar formulation, calling it “the physical version of the Church-
Turing principle” (1985: 99).37

Piccinini (2011) distinguishes between bold and modest versions of the phys-
ical Church- Turing thesis. The bold thesis is about physical systems and pro-
cesses in general— not necessarily restricted to the computing ones:

Physical Church- Turing thesis- Bold (PCTT- B): “Any physical process is
Turing [machine] computable” (p. 746).

The formulations by Wolfram, Deutsch, and others fall within this cate-
gory: they do not refer to the physical process as a computing one, but rather as
one that can be simulated by a Turing machine.38

The modest thesis concerns physical computing systems and processes. It can
be formulated as follows:

 Physical Church- Turing thesis- Modest (PCTT- M): Any function that can be
computed by a physical system (process) is Turing machine computable.39

Before considering the theses, we should say something about the meaning
of physical in this context, and about computability in relation to real numbers
(after all, it seems that the dynamics of physical systems are often described with
respect to real- number values).

 36 Parts of this section are excerpted from Copeland and Shagrir (2019).
 37 For other formulations, see Earman (1986); Pour- El and Richards (1989); and Pitowsky
(1990, 2002).
 38 Piccinini emphasizes, however, that the “bold” versions proposed by different writers are often
“logically independent of one another,” and exhibit “lack of confluence” (2011: 747– 748).
 39 Piccinini (2011) formulates the thesis as follows: “Any function that is physically computable
is Turing-computable” (p. 734). I have adapted the formulation to the format shared by the other
versions of the Church- Turing theses mentioned previously.

Preamble to Machine Computation 71

3.4.1 What Is Physical?

Our overall concern is with the meaning of physical computation, and in par-
ticular with the distinction between physical computing and non- computing
systems. In this section, I will say something about the physicality of computa-
tion, and about the distinction between physical and non- physical computation.
In one sense, there is no particular problem with the physicality of computa-
tion: whether or not a computation is physical depends on whether or not the
computing system in question is physical. One condition of being physical is
that the system has physical properties (or descriptions). Another condition,
which perhaps follows from the first, is that the dynamics of the system con-
form to physical laws. We also want to include in this class idealized physical
systems— namely, systems that operate in certain idealized conditions. The
idealizations invoked in the context of physical computing systems usually per-
tain to unbounded resources and computing time. We usually allow the phys-
ical system to use, for instance, unbounded memory and unbounded time when
necessary— even though the actual machine under consideration is bound to ex-
haust memory resources and break down before the computation is completed.

We also want to include in this class not just actual machines, but also physi-
cally possible machines— namely, physical machines (whether idealized or not)
that do not exist in the actual world, but that did exist, will exist, and even could
have existed (or that do exist in some physically possible world). Of course, there
is no consensus as to what is considered an actual, idealized, or possible physical
system. But this is less of a concern for us here, as it is no more problematic for
the physicality of computation than it is for physicality in general.

Things get a bit murkier when we try to contrast physical computation with
non- physical computation. The most common contrast is with abstract compu-
tation. Smith, for example, invokes the physical/ abstract contrast when he asks
whether computation is “a concrete (physical) or abstract notion” (2010: 1). In the
section entitled “Abstract Computation and Concrete Computation,” Piccinini
(2017) also identifies physical with concrete, saying that concrete computation
is “computation in concrete physical systems such as computers and brains.”
Concrete— that is, physical— computation is then contrasted with abstract com-
putation, which is associated with algorithms, Turing machines, and other (ab-
stract) automata. The two are related, according to Piccinini, through the notion
of implementation: “We speak of physical systems as running an algorithm or as
implementing a Turing machine” (Piccinini 2017). In other words, a computing
physical system is one that implements an abstract computation.

Leaving aside this particular characterization of physical computation for
now, I would like to make a few comments about the physical/ abstract contrast.
First, I take it that physical systems or machines are those that have physical

72 The Nature of Physical Computation

properties. However, there is no question that we apply abstract descriptions to
these systems; some would further say that physical systems have abstract prop-
erties. The physical/ abstract contrast hinges on the assumption that abstract enti-
ties (presumably, algorithms and Turing machines) have only abstract— that is,
mathematical and logical— properties, and no physical ones.

Second, the identification of the term concrete with physical is somewhat
misleading. The concrete/ abstract distinction is sometimes invoked in different
contexts, where concrete refers to a lower- level and fairly detailed description of
a system, whereas abstract refers to a higher- level and less detailed description
that omits or ignores some or even many of the properties. In other words, ab-
stract means taking into account only certain properties or features of a system,
whereas concrete means taking in account more, most, or all of these features
(the distinction, of course, being a matter of degree). However, in principle, an
abstract description might take into account some, or even only, physical prop-
erties (while omitting others)— in contrast to the stronger sense of abstract
adopted here, which is restricted to mathematical and logical, non- physical
properties (see also the discussion in Section 2.3.1). Similarly, the concrete de-
scription might refer to some, or even only, mathematical and logical proper-
ties. Indeed, the term concrete is often invoked in computer science to denote a
lower- level specification of a computing system, which in itself can be abstract in
the stronger sense— namely, it may have only mathematical properties (see note
25). I shall therefore refrain from using the term concrete in the sense of strictly
physical, and use the term, if at all, in the detailed- description sense. By way of
distinction, when referring to a specific system as defined by its physical descrip-
tion alone, I will use the term concrete physical.

Third, Piccinini’s statement that “we speak of physical systems as running an
algorithm or as implementing a Turing machine” calls for a distinction between
three classes of computing systems, not two (Figure 3.4). The first class is that
of physical (computing) machines— including actual, idealized, and possible
physical systems. A second class is that of physically realizable or implementable
machines (with the notions of implementation and realization unanalyzed at this
point). This class is more inclusive than the class of physical machines: it includes
physical systems that are realized in the actual world or in some possible world, as
well as non- physical computing machines, such as abstract machines that, though
they have no physical properties and are therefore considered non- physical, are
physically realizable, at least in principle. Piccinini mentions in this context the
Turing machine (when viewed as a purely mathematical entity). These are the
machines that “can be built” (Harel 1992: 233) or that are “in principle physically
realizable” (Bernstein and Vazirani 1997: 1411). The Gandy machines (those sat-
isfying Principles I– IV) also belong here. Some of the Gandy machines may be

Preamble to Machine Computation 73

abstract (e.g., Turing machines), yet they are physically realizable (“mechanical,”
in Gandy’s terms) in the sense that they conform to local causation.

The third class is the systems that are not physically realizable. One example
of a machine that belongs to the third class is the “infinitely accelerating Turing
machines,” of which there is no “evidence that they can be constructed.”40
Piccinini calls them “purely notional” machines. Copeland (2000), too, invokes
these notional machines in order to distinguish between realizable and non-
realizable computing machines (although he does not use the latter terms). He
distinguishes between two senses of a machine. The narrow, this- worldly sense
refers to “a machine that conforms to the physical laws (if not to the resource
constraints) of the actual world” (p. 15). The broader sense “abstracts from the
issue of whether or not the notional machine in question could exist in the actual
world” (p. 15). If a machine conforms to the physical laws, then it is physical— or
at least physically realizable. If a notional machine could not exist in our world,
then presumably it does not conform to physical laws and hence is not physically
realizable. It is less clear, however, whether purely notional machines coincide
with abstract ones. It appears that notional machines are, as their name suggests,
merely notions or concepts of machines. In addition, they appear to be concepts
not of physically realizable machines, but of something that is almost physically
realizable— the “almost” meaning that many of their properties are physically re-
alizable (as in the case of the accelerating Turing machines discussed later).

Non physically
realizable
machines

Physical
machines

Physically realizable machines

Figure 3.4 Physical and non- physical machines. The class of physical machines—
including actual, idealized, and possible physical systems— is more restrictive
than the class of physically realizable machines, which might also include abstract
machines. The latter class is to be separated from machines that are not physically
realizable at all.

 40 By constructability Piccinini means “physical constructability” (2011: 744; 2017).

74 The Nature of Physical Computation

Lastly, the abstract/ physical computation distinction is far from univer-
sally accepted. Smith, who asks whether computation is “a concrete (physical)
or abstract notion” (2010: 1), replies that “computing is fundamentally and
ineliminably concrete: a direct consequence of the physical nature of patches of
the world” (2010: 23). We can have abstract mathematical theories— such as com-
putability theory— of these concrete physical systems. But these theories are no
more mathematical than theories in physics. They use mathematical structures,
Smith says, to “model that physical reality”; they are mathematical models of a
concrete, physical computation. There is no reason, however, to think of these
modeling structures as (abstract) computing devices.

While I am sympathetic to much of Smith’s claim, I think that he may have
taken his conclusions too far. First, I agree that many of the mathematical
structures, including the abstract machines, that constitute computability theory
are models of other domains. This is a fairly widespread view within theoretical
computer science, where we find a lot of talk about models of computation. It
is also common to think that the modeled target domains are real- world pro-
cesses. Thus, Aharonov and Vazirani (2013) say that some conceive of a Turing
machine as “an idealized model for a mathematical calculation (think of the in-
finite tape as an infinite supply of paper, and the Turing machine control as the
mathematician, or for our purposes a mathematical physicist calculating the
outcome of an experiment)” (p. 330), whereas others understand them to “rep-
resent the evolution of physical systems in the classical world” (p. 331). In both
cases, the Turing model is viewed as describing, representing, or modeling some
other domains: one is the calculating mathematician, and the other is the evo-
lution of physical systems. However, this view is consistent with the claim that
the Turing machine model itself is an abstract computing machine. This dual
role— of a model and a computer— is in no way unique to abstract systems. There
are many models of real- world processes where the modeling system itself is a
physical computing device.41

Second, the claim that “computing is fundamentally and ineliminably con-
crete” does not entail that every computing device must be physically realizable.
As stated previously, there might be notional machines such that most— but
not all— of their operations are constrained by the physical laws of our world.
Accelerating computing machines are a nice example: they violate the special rel-
ativity principle regarding the constancy of the speed of light, since at some point
the speed of signal propagation exceeds this limit. If special relativity theory is
true, then the accelerating machines are not physically realizable. Yet in many
other respects, the operations of these machines are constrained by (or are a

 41 See, e.g., Frigg and Hartmann (2020).

Preamble to Machine Computation 75

“direct consequence of ”) how real- world computing devices operate. They are
constrained by “the physical nature of patches of the world.”

The next two sections focus on the extensions of Turing computability to real-
value functions (Section 3.4.2) and on whether the bold physical Church- Turing
thesis is true (Section 3.4.3). The material in these sections is pertinent but not es-
sential to the rest of the chapter. The uninterested reader can skip these sections and
move directly to Section 3.4.4, which discusses the modest thesis.

3.4.2 Computability over the Reals

Some physical computing systems presumably operate on real- valued magnitudes.
The best- known example is that of analog computers that operate on real- valued
variables.42 It is thus advisable to consider computability over the reals. The exten-
sion of computability to real- value domains (or non- denumerable domains more
generally) requires some explanation.43

The starting point is the notion of a computable number. The basic definition is
already found in Turing’s paper “On Computable Numbers” (1936), in the state-
ment that the “ ‘computable’ numbers may be described briefly as the real num-
bers whose expressions as a decimal are calculable by finite means” (p. 58). A real
number is effectively computable only when there is an algorithm for calculating
its nth expansion (in its expression as a decimal) for any n. Turing then suggests
that “there is an algorithm” can be replaced with “there is a Turing machine”; hence,
the effective computability of real numbers can be replaced with Turing machine
computability.44

The next step is to define real- valued computable functions.45 Here, there
are basically two approaches. One is in terms of approximation computability,
which we will consider here;46 another is in terms of the real- RAM machine

 42 Piccinini and Bahar (2013) clarify that analog computers operate on real- valued variables. The
difference is that the values of variables are always to some degree approximate.
 43 As Papayannopoulos (2018) notes, however, the extensions of computability to real- value
domains were not developed as theories of analog computation. Conversely, there are theories of
analog computation that look very different from theories of real computability. Only more re-
cently have scholars proved (e.g., Bournez et al. 2006) that certain characterizations of real comput-
ability and of analog (GPAC) computability are equivalent. See Papayannopoulos (2018) for further
discussion.
 44 Gherardi (2011) highlights the problems with this definition (e.g., it represents the numbers
in reverse order used for standard algorithms, e.g., for addition). He also points out that Turing
refrained from this definition and presented the admissible representation in the correction note for
the 1936 paper (Turing 1937).
 45 Gherardi (2011: 418ff.) notes that Turing (1936) provided a (problematic) definition of comput-
able real functions alongside the Turing machine (approximation) model.
 46 Definitions that fall within this model are provided by Grzegorczyk (1955, 1957); Lacombe
(1955); Mazur (1963); and Pour- El (1974; Pour- El and Richards 1989). More recently, definitions
have been offered by Weihrauch (2000), whose characterization is known as Type 2 theory of

76 The Nature of Physical Computation

model.47 We will examine the first approach. One condition of a computable
function is that it maps sequences of computable numbers to sequences of com-
putable numbers. There is no computable number(s) input i whose output f(i)
is not computable number(s). However, this condition cannot suffice. The set
of computable real numbers is (obviously) enumerable, since the set of Turing
machines is enumerable. Thus, real- valued (computable) functions also map
many non- computable numbers to non- computable numbers. For example, the
real- valued (computable) function plus maps computable number pairs (x,y) to
a computable x + y— but it also maps even more non- computable number pairs
(x,y) to a non- computable x + y. We therefore need another constraint, one that
can distinguish between computable and non- computable mappings of non-
computable numbers (assuming that the first constraint is satisfied).

For example, we want to distinguish the computable plus function from
the non- computable plus* function: plus* behaves like plus with respect to the
computable numbers but is absolutely erratic and arbitrary with respect to the
non- computable numbers. We cannot invoke the idea of Turing machine ap-
proximation once again, as this, as we have seen, can support only enumerably
many mappings. What may do the trick, however, is some continuity constraint.
There are several (non- equivalent) characterizations of this constraint. Let us
look at the one offered by Grzegorczyk (1955, 1957).48

We start with numbers:

Definition 1: A sequence of rational numbers {xn} is said to be effectively com-
putable if there exist three Turing computable functions (over N) a,b,c such that
xn = (− 1)c(n) a(n) ÷ b(n).

Definition 2: A real number r is said to be effectively computable if there is an ef-
fectively computable sequence of rational numbers that converges effectively to
r. (Converges effectively means that there is an effectively computable function d
over N such that |r – xn| < 1 ÷ 2m whenever n ≥ d(m).)

Now to functions:

effectivity (TTE), and Braverman and Cook (2006), who extend it to what they call bit computability.
These definitions are related but not equivalent. See Avigad and Brattka (2014) for a detailed review
of these and other definitions and the relations between them.

 47 An early definition that falls within this approach is provided by Blum et al. (1998). Gherardi
(2011: 423ff.) notes that this approach is also founded on Turing’s work (Turing 1948). See also
Feferman (2013) and Papayannopoulos (2020a), who discuss the relationship between the two
approaches.
 48 The exposition here is adopted from Earman (1986).

Preamble to Machine Computation 77

Definition 3: A function f is an effectively computable function of the reals
if: (i) f is sequentially computable: for each effectively computable sequence {rn}
of reals {f(rn)}is also effectively computable

(ii) f is effectively uniformly continuous on rational intervals: if {xn} is an
 effective enumeration of the rationals without repetitions, then there is a three-
place Turing computable function g such that | f(r) – f(r′)| < 1 ÷ 2k whenever
xm < r,r′ < xn and |r – r′| < 1 ÷ g (m,n k) for all r,r′ ∈ R and all m,n,k ∈ N.

If we confine f to a closed and bounded interval with computable endpoints,
then Definition 3 simplifies, no enumeration is necessary, and g is only a func-
tion of k. Earman suggests extending the definition to allow some discontinuities
(1986: 119– 120). The basic idea is that we converge on the discontinuous func-
tion through a sequence of Grzegorczyk computable functions.

3.4.3 Is the Bold Physical Church- Turing
Thesis True?

The bold thesis (PCTT- B) states that the behavior of every physical system can
be simulated (to any required degree of precision) by a Turing machine. Deutsch,
Wolfram, and others who formulate the bold thesis clearly mean that the phys-
ical processes (might) involve arbitrary real- number values. They therefore ask
whether the mathematical equations (functions) describing these processes are
real- valued computable functions. Speculation that there may be physical pro-
cesses whose behavior cannot be calculated by the universal Turing machine
stretches back over several decades (Scarpellini 1963; Komar 1964; Kreisel 1965,
1967). Roger Penrose (1989, 1994) conjectures that some mathematical insights
are non- recursive. Assuming that this mathematical thinking is carried out by
certain physical processes in the brain, PCTT- B must then be false. But Penrose’s
conjecture is highly controversial.49

Interestingly, it appears that by and large, the (known) physical laws give rise
to Turing machine computable (real) functions. A well- known exception was
discovered by Pour- El and Richards (1981), who showed that the wave equation
produces non- computable sequences for certain computable initial conditions
(input computable sequences). In this respect, the wave equation violates the first
condition in the definition of a real computable function (Definition 3 in the pre-
vious section). Pour- El and Richards also show an example where the solution

 49 See also Bringsjord and Zenzen (2003) and Bringsjord et al. (2006), who advance an argument
for the claim that the human mind is hyper- computational.

78 The Nature of Physical Computation

to the equation maps computable sequences of reals to computable sequences
of reals— yet the mapping violates the second constraint (continuity) in the def-
inition of a real computable function. But their results are at the mathematical
level. It is an open question as to whether the initial conditions, in both examples,
are physically realizable (see, e.g., Pitowsky 1990). Whether the initial conditions
properly encode all the relevant information is also a matter of debate— it has
been argued that when the inputs include all the information, then the Pour- El
and Richards example does not refute PCTT- B.50

Piccinini (2011) raises two challenges to PCTT- B that are also relevant to
PCTT- M. One challenge derives from the postulate of genuine physical random-
ness (as opposed to quasi- randomness). A random element is one that generates
random sequences of bits. It is argued that if physical systems include systems
capable of producing unboundedly many digits of an infinite random binary
sequence, then the bold thesis is false (see also Copeland 2000, 2004c; Calude
and Pavlov 2002; Calude and Svozil 2008; Calude et al. (2010). Copeland fur-
ther argues that a digital computer under unboundedness conditions and using
a random element would constitute a counterexample to PCTT- M (Copeland
2002c). However, it is an open question as to whether or not genuine random
elements— which are able to generate unboundedly many digits of random bi-
nary sequences— exist, or even could exist, in the physical universe.

A second challenge to PCTT- B stems from the continuous nature of phys-
ical magnitudes. Piccinini (2011) notes that “if our physical theories are correct,
most transformations of the relevant physical properties are transformations
of Turing- uncomputable quantities into one another” (p. 748). He then states
that “a transformation of one Turing- uncomputable value into another Turing-
uncomputable value is certainly a Turing- uncomputable operation” (pp. 748–
749). It follows from these two premises that PCTT- B is false (assuming that
some computers operate on Turing uncomputable values, this argument
also challenges PCTT- M). Piccinini is right in some sense. A Turing machine
cannot transform a specific, exact Turing uncomputable input into a specific,
exact Turing uncomputable output. In fact, it can receive at most a denumer-
able number of different inputs. But the definitions of real- valued computable
functions aim to address the cardinality gap between the physical functions (de-
fined over non- denumerable domains) and the Turing computable functions
(defined over denumerable domains). According to Grzegorczyk’s definition
of computability stated earlier, the transformation of one Turing uncomputable
value into another Turing uncomputable value can be a Turing computable op-
eration. The real- valued function of plus is Turing machine computable, even
though it maps some Turing uncomputable arguments to Turing uncomputable

 50 See Weihrauch and Zhong (2002) and Gherardi (2008).

Preamble to Machine Computation 79

values. When x and y are computable, so is x + y (satisfying condition (i) in
Definition 3). In addition, plus is effectively uniformly continuous on rational
intervals (hence satisfying condition (ii) in Definition 3). Thus, contrary to the
second premise, the fact that there are transformations of Turing uncomputable
values into other Turing uncomputable values does not mean that these trans-
formations are Turing uncomputable operations.

Lastly, Copeland, Shagrir, and Sprevak (2018; Copeland and Shagrir
2019) have recently introduced a stronger form of physicality thesis that is re-
lated to undecidability in physics. Unlike the bold thesis, this super- bold phys-
ical Church- Turing thesis concerns not only the ability of the universal Turing
machine to simulate the behavior of physical systems to any required degree of
precision, but also further decidability questions about this behavior. Examples
of such decidability questions are “Is the solar system stable?” and “Is the mo-
tion of a given system, in a known initial state, periodic?” (Pitowsky 1996: 163).
The physical processes involved in these scenarios— the motion and stability of
physical systems— may, so far as we know at present, be Turing computable: it
is possible that the motions of planets in the solar system can be simulated by
a Turing machine to any required degree of accuracy. However, the answers to
certain physical questions about the processes— namely, if the motion is peri-
odic (under ideal conditions) or will terminate at some point— are, in general,
uncomputable. The situation is similar in the case of the universal Turing ma-
chine itself: the machine’s behavior (consisting of the physical actions of the
read/ write head) is always Turing machine computable, since it is produced
by the Turing machine’s program, but the answers to some questions about the
behavior— such as whether or not the machine halts given certain inputs— are
not computable. The interested reader is referred to our papers (mentioned pre-
viously) for a formulation of the super- bold physical thesis and the arguments
for and against it.

3.4.4 Relativistic Computation

Let us turn now to the modest thesis (PCTT- M), which states that every phys-
ical computing processes yields only Turing computable functions. Is the thesis
true? In this section, I discuss the relativistic machines that are considered the
main threat to PCTT- M. These machines are of interest for several reasons. First,
broadly speaking, they belong to the class of the infinite- time Turing machines
we mentioned earlier. Second, they are (arguably) non- algorithmic— and there-
fore drive a wedge between the concepts of algorithmic computation and phys-
ical computation. Third, they are “mechanical” in Gandy’s sense of satisfying
Principle IV. Whether or not these devices are truly physically realizable is debat-
able (see Section 3.4.5).

80 The Nature of Physical Computation

Relativistic machines are a type of supertask machines. A machine performs
a supertask if it completes infinitely many operations in a finite span of time
(Manchak and Roberts 2016). Russell (1915) and Blake (1926) discuss the po-
tential realization of an arbitrary process in which each step takes half the time of
the previous step. Weyl considered a machine that is capable of completing

an infinite sequence of distinct acts of decision within a finite amount of time;
say, by supplying the first result after 1/ 2 minute, the second after another
1/ 4 minute, the third 1/ 8 minute later than the second, etc. In this way it would
be possible . . . to achieve a traversal of all natural numbers and thereby a sure
yes- or- no decision regarding any existential question about natural numbers.
(1949: 42)

In this instance, Weyl describes an accelerating machine that completes
the first operation in 1/ 2 of a given time period, the second in 1/ 4 of that pe-
riod, the third in 1/ 8 of a period, and so on. Since 1/ 2 + 1/ 4 + 1/ 8 + . . . + 1/ 2n +
1/ 2n+1 + . . . is less than 1, an accelerating machine can perform infinitely many
operations within a moment of operating time.51 More recently, Ian Stewart
(1991) mentioned accelerating Turing machines, asking us to “imagine a Turing
machine with a tape that accelerates so rapidly that it can complete an infinite
number of operations in one second” (1991: 664).52

An accelerating machine is perhaps the most obvious example of a machine
that performs a supertask. But there are other kinds of supertask machines. For
instance, shrinking machines produce another machine that is (say) half the size
of the original one as part of their operations; the speed of information propaga-
tion is constant, but the distances between the units are shorter in the offspring
machine.53 I focus here on relativistic machines. These machines are compatible
with the two “physical presuppositions” that underpin Gandy’s principle of local
causation (which, as we recall, are an upper bound on the speed of signal prop-
agation, and a lower bound on the size of atomic constituents). The accelerating
machines are incompatible with the first presupposition, since they presume
no upper bound on the speed of signal propagation. The shrinking machines
are incompatible with the second presupposition, since there is no lower bound
on the size of atomic constituents. The accelerating and shrinking machines are

 51 The concept is also implicit in Boolos and Jeffrey (1989), who envisaged Zeus attacking
problems in mathematical logic by enumerating infinite sets “in one second by writing out an infinite
list faster and faster” (p. 14).
 52 Copeland was perhaps the first to coin the term accelerated Turing machine (Copeland
1998: 151); he subsequently replaced the term accelerated with accelerating (Copeland 2002b).
However, the term accelerated is still common— e.g., Calude and Staiger (2010) and Potgieter and
Rosinger (2010).
 53 Intriguing setups are suggested in Davies (2001) and Beggs and Tucker (2006). There are also
examples of quantum mechanical supertasks (e.g., Norton 1999).

Preamble to Machine Computation 81

arguably compatible with (idealized) Newtonian mechanics54— however, Gandy
excludes them, on the grounds that “Principle IV does not apply to machines
obeying Newtonian mechanics” (1980: 145). Rather, he considers relativistic
machines— namely, those that obey the principles of relativity theory. In partic-
ular, the signal propagation in these machines is bounded by the speed of light.

The construction of a relativistic machine was proposed by Pitowsky (1990),
who described a machine with extreme acceleration that functions in accord-
ance with special relativity. He suggested that similar setups could be repli-
cated by spacetime structures in general relativity.55 Hogarth (1992, 1994) and
Malament provided examples of such spacetime structures (e.g., anti– de Sitter
spacetimes). Hogarth also pointed out the non- recursive computational powers
of such devices, and suggested that the class of computable functions (in the
broad sense) depends on the properties of the spacetime.56 More recently, Etesi
and Németi (2002), Hogarth (2004), Welch (2008), Button (2009), and Barrett
and Aitken (2010) further explore the computational powers of these devices,
within and beyond the arithmetical hierarchy.

In essence, these setups are based on the observation that there are solutions
to Einstein’s equations whereby there are spacetimes that possess a future endless
curve λ with a past endpoint p and a point q, such that the entire stretch of λ is
included in the chronological past of q (Figure 3.5). Such spacetimes facilitate
what is known as bifurcated supertasks. The bifurcation is at the point p, where
two agents start their travel— one along the endless curve λ, and the other along
the trajectory from p to q. The latter agent can detect a signal sent from the first
agent. Assume that the first agent performs some non- terminating computation
that consists of infinitely many steps: this entire computation process is included
in the chronological past of the second agent, who is traveling on the edge from
p to q. Assuming that the second agent is somehow informed about the infinite
computation, we have a supertask. The supertask is defined with respect to the
infinite computation performed by the first agent, which takes a finite span of
time in relation to the second agent.

I discuss a machine for computing the halting function (Figure 3.6). The ma-
chine, RM (relativistic machine), consists of a pair of Turing machines, or of their
physical implementations. The two Turing machines— TA and TB— are in commu-
nication with each other. TB moves along λ, and TA moves along a future- directed
curve that connects the beginning point p of λ with q. The time it takes TA to travel
from p to q is finite, while during that period TB completes the infinite- time trip
along λ. This physical setup permits the computation of the halting function. One

 54 See Copeland (2002b: 289) and Earman (1986: 34) for a discussion of accelerating machines,
and Davies (2001: 672) for a discussion of shrinking machines.
 55 Pitowsky (1990) is based on a lecture he gave in 1986— about the same time that Istvan Németi
proposed his construction of relativistic computation (Andréka et al. 2018).
 56 See Hogarth (1994: 127– 133).

1. Accept the input (m, n) arrived from TA.
2. Simulate the operations of the mth Turing machine operating on n.
3. If halted, send a signal to TA.

1. Print 0 in the designated output square.
2. Send (m, n) to TB.
3. Wait an hour.
4. While waiting: If a signal arrived from TB replace the 0 with 1.
5. Halt.

1 1 1

(m, n)

1 10

TB

TA

0

Figure 3.6 Computing the halting function. The relativistic machine RM, consisting
of two communicating standard Turing machines TA and TB, computes the halting
function.

q

p

λ

Figure 3.5 A setup for relativistic computation (adapted from Hogarth 1994: 127).
In this relativistic Malament- Hogarth spacetime, the entire stretch of λ is included
in the chronological past of q. (From Hogarth, Mark L. 1994. “Non-Turing
Computers and Non-Turing Computability.” Proceedings of the Biennial Meeting of
the Philosophy of Science Association 1: pp. 126–138. Published by The University of
Chicago Press on behalf of the Philosophy of Science Association, Copyright 1994,
The Philosophy of Science Association).

Preamble to Machine Computation 83

feeds TA with input (m,n). TA prints 0 in its designated output cell, then sends a
signal with the pertinent input to TB. TB is a universal machine that mimics the
computation of the mth Turing machine operating on input n. In other words, TB
calculates the Turing- computable function f(m,n) that returns the output of the
mth Turing machine (operating on input n) if this Turing machine halts— and no
value if this Turing machine does not halt. If TB halts, it immediately sends a signal
back to TA; if TB never halts, it never sends a signal. Meanwhile, TA “waits” during
the time it takes TA to travel from p to q (say, one hour). If TA has received a signal
from TB, it prints 1, replacing the 0, in the designated output cell. One way or the
other, the output cell shows the value of the halting function after one hour (of
TA). It is 1 if the mth machine halts on input n, and otherwise it is 0.

3.4.5 Does Relativistic Computation Refute the
Modest Thesis?

I have described a physical system that computes beyond the Turing limit, that is,
the halting function. It arguably violates PCTT- M. Or does it? The answer depends
on whether RM computes, and on whether its entire operations are physically pos-
sible. As for the computation issue, what has been said about the infinite- time
Turing machines applies here as well: RM computes in the sense of the term com-
pute as set out in the semantic, the mechanistic, the causal, and the BCC (broad
conception of computation) accounts. According to all these accounts, if RM
is physical, it represents a counterexample of PCTT- M. This shows that the con-
cept of physical computation accommodates relativistic computation (and, in-
deed, hypercomputation). This conceptual possibility drives a wedge between the
concepts of physical and algorithmic computation— for even if it transpires that RM
is not physically realizable, RM indicates that executing an algorithm (in the sense
just described) is not necessary for the concept of physical computation. This is
because, as I will go on to argue, RM does not perform algorithmic computation.

What about the physicality of RM? Németi and his colleagues provide the
most physically realistic construction, placing machines like RM in setups that
include huge slow- rotating Kerr black holes (Andréka et al. 2018), and empha-
sizing that the computation is physical in the sense that “the principles of
quantum mechanics are not violated” and RM is “not in conflict with presently
accepted scientific principles” (Andréka, Németi, and Németi 2009: 501). They
suggest that humans might “even build” their relativistic computer “sometime in
the future” (Andréka, Németi, and Németi 2009: 511).

Naturally, all this is controversial. Earman and Norton (1993) point out that
the physical plausibility of relativistic computation depends on “a resolution of
some of the deepest foundations problems in classical general relativity, including
the nature of singularities and the fate of cosmic censorship” (1993: 40– 41). They

84 The Nature of Physical Computation

note that communication between the agents is no trivial matter and is sub-
ject to blue- shift effects. One problem is that the halted signal would destroy
the receiving agent.57 Another problem is that infinitary computation requires
infinite— and not merely unbounded— memory.58 Yet another related problem is
that the infinitary computation would require an unbounded amount of matter-
energy, which appears to violate the basic principles of quantum gravity.59 These
issues cast heavy doubt on the physical possibility of relativistic computation. At
this point, we can say that it is unclear whether relativistic computation is physi-
cally possible— and, accordingly, whether PCTT- M is true or false.

3.4.6 Supertasks and Algorithmic Computation

I have suggested that RM presents a challenge to PCTT- M. Does it also challenge
the algorithmic version of the Church- Turing thesis (CTT- A)? I will suggest that
it does not— simply because RM does not carry out algorithmic computation in
the sense assumed in this chapter.

At first blush, RM appears to be merely a pair of communicating Turing
machines— and, as such, carries out an algorithmic computation. A pair of com-
municating Turing machines, under standard time scales, computes no more
than what is computable by a single Turing machine. Our RM computes beyond
the Turing limit, it seems, because it performs a supertask. In other words, per-
forming a supertask appears to be the only difference between RM and a standard
communication between Turing machines; this difference is the feature respon-
sible for the computational leap from the computable to the uncomputable.

This first impression, however, is misleading. Performing a supertask is not
the only difference. Let us look more carefully at the computational structure of
RM. One feature of RM is that it always reaches an end stage. After one hour, the
halting state of the simulated machine is displayed in the designated output cell
of TA; at this moment, as we recall, TB no longer exists. A second feature of RM
is that it consists of two machines, TA and TB, and some communication devices.
Thus, when talking about the configurations of RM, we must take into account
the configurations of TA and TB. We cannot ignore the configurations of TB, for
example; if we do, we cannot say that RM has performed a supertask and com-
puted the halting function. Likewise, we must take into account communication
between the two machines— in particular, how and when the configuration of
one machine determines the configuration of the other.

 57 See Etesi and Németi (2002), Németi and Dávid (2006), and Andréka, Németi, and Németi
(2009: 508– 509) for proposed solutions to the signaling problem.
 58 The memory problem is discussed in Shagrir and Pitowsky (2003: 88– 90).
 59 See Németi and Dávid (2006) for a proposed solution to the energy problem.

Preamble to Machine Computation 85

A third feature of RM is implied by the first two. It is that the end stage of
RM cannot be described as a stage α + 1 whose configuration is completely de-
termined by the preceding stage, α. This is simply because there is no such pre-
ceding stage, α— at least not when the simulated machine never halts. What
would be such a preceding stage α? It cannot be the initial “print 0” stage, as it
was followed by infinitely many stages of TB. And it cannot be some stage of TB,
since each such stage was followed by infinitely many others. One could stipu-
late a “decision moment” of TA, in which it is decided whether or not to replace
the 0 with 1 (as in Shagrir and Pitowsky 2003). However, this merely shifts the
problem to the “decision moment”; now it is this “decision moment” that cannot
be described as an α + 1 stage.

We may conclude, therefore, that RM cannot be described in terms of
standard communication between Turing machines. When the communication
is standard, each stage of the communicating machines is an α + 1 stage, whose
configuration is completely determined by that of the previous stage α (only the
initial stage need not satisfy the requirement). For this reason, RM is neither a
Gandy machine nor an algorithmic one. These concepts, as we have seen, as-
sume a very specific notion of determinism, in which the configuration of each
α + 1 stage is determined by that of the previous α stage. RM is certainly deter-
ministic in another sense— namely, that the state of TA- halting- on- 0 is uniquely
determined by the initial state of the machine. This is because the state of TA-
halting- on- 0 is a limit of previous states of TB (and TA), of which the relevant
feature is their not- sending a signal to TA. In this account, RM is deterministic in
that the TA- halting- on- 0 state is in part the limit of the previous no- signal- being-
sent states of TB. This sense of determinism accords well with the physical usage,
whereby a system or machine is said to be deterministic if it obeys laws that in-
voke no random or stochastic elements. RM is deterministic in the same sense
that an infinite- time Turing machine is deterministic. In fact, RM may be seen as
a physical realization of an infinite- time Turing machine. We can therefore con-
clude that even though RM behaves according to a fixed and finite rule, it is not
algorithmic in the sense of algorithm as described earlier— and is therefore not a
counterexample to CTT- A.60

3.4.7 Physical Computation and Gandy Machines

Gandy admits that his account does not encompass physical computation in
general, and he states that “Principle IV does not apply to machines obeying

 60 Note that I do not claim that the performance of supertasks is incompatible with being algo-
rithmic; on the contrary, the point is that we must distinguish between supertask machines that are
algorithmic and supertask machines that are not algorithmic (Copeland and Shagrir 2011).

86 The Nature of Physical Computation

Newtonian mechanics” (1980: 145). Relativistic machines are of interest because
they apparently satisfy Principle IV (aside from the problems of physical real-
ization, there is a lower bound on the size of atomic constituents and an upper
bound on the speed of signal propagation). As just noted, these machines violate
Principle I (“form of description”), and therefore they are not Gandy machines.

3.4.8 The Relationship Between Physical and
Other Notions of Computation

Figure 3.7 sums up the inclusion relationship between the various notions of
computation that we have considered. On the one hand, physical computation

RM

(Some) Accelerating machines

(Some)
analog

machines

Generic machines

Algorithmic
machines

Physically
realizable
machines

Markov
normal

algorithms

HUMAN computers

Turing
machines

Gandy machines

Figure 3.7 Relations between classes of computing machines. The class of
physically realizable machines might include RM (if physically realizable) and
some analog machines that are not algorithmic in the sense assumed here. The
class of algorithmic machines might include systems (“global algorithms”) that are
not physically realizable. Both classes are more restrictive than the class of generic
computation, which includes accelerating machines, some of which are arguably
neither algorithmic nor physically realizable. Both classes are more inclusive than
that of Gandy machines.

Preamble to Machine Computation 87

(the class of physically realizable computation) is more restrictive then generic
computation, assuming that there are computations that are not realizable. On
the other hand, physical computation includes physical machines that are not
Gandy machines (such as analog computers). The more interesting conclusion,
however, is that there is only a partial overlap between physical and algorithmic
computation. On the one hand, the general concept of algorithm is so broad
today “as to admit ‘non- implementable’ algorithms” (Moschovakis and Paschalis
2008: 87). By way of example, we examined a few algorithms whose basic steps
are “global”— namely, that at each step each component takes into account in-
formation from every other component (note that these machines are not reali-
zable in their “global” form— but of course every “global” step can be broken into
several physically realizable steps). On the other hand, there are physically real-
izable computations that are not algorithmic— such as, arguably, some analog
computers, as Gandy points out. My focus here was relativistic machines, some
of which compute functions that are not Turing machine computable. Whether
these machines are physically realizable is debatable— but even if they are not,
their conceivability indicates that being algorithmic is not a requirement of a
physical computation.

3.5 Summary

I have used Gandy’s account of machine computation to discuss and differentiate
between three notions of computation: generic computation, algorithmic com-
putation, and physical computation. As it turned out, the class of machines that
Gandy characterized— that is, the Gandy machines— is more restrictive than the
classes of generic, algorithmic, and physical computation. He captured none of
these notions (the extent to which Gandy fully captures the physically realizable
algorithmic computation is left an open question). But his account helps us to see
more clearly the differences between generic computation, algorithmic compu-
tation, and physical computation.

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0005

4
Computation as Step- Satisfaction

This chapter deals with Robert Cummins’s account of computation as set out in
Meaning and Mental Representation (1989; see also 1983, 1996). In this work,
Cummins devotes only a few pages to the characterization of computation.1
This is unsurprising because the book is about mental representation, not com-
putation. Despite the brevity of this account, computation plays a central role
in the book for two reasons. One is that Cummins aims to account for the no-
tion of mental representation as it appears in computational theories of cog-
nition. The second reason is that the specific account of computation he puts
forward is pivotal in his positive account of mental representation (whereas
most of the book is devoted to presenting and rejecting other accounts of
mental representation). Cummins calls this account of representation interpre-
tational semantics.

Cummins’s account is typical of earlier accounts of physical computation. He
associates computation with a certain notion from computation theory— namely,
program execution (this is the logical dogma mentioned in the Introduction). He
then associates program execution with a select (architectural) feature of the
causal structure of the physical system— namely, step- satisfaction (this is the ar-
chitectural dogma mentioned in the Introduction). In previous chapters, I chal-
lenged the first stage, attempting to dissociate physical computation from the
canonical notions of computation theory. My aim in this chapter is to challenge
the second stage: I will argue that step- satisfaction is not helpful in meeting the
classification criteria. Depending on how it is understood, step- satisfaction ei-
ther excludes important cases of computing physical systems, or is empty and
applies to virtually every physical system. Either way, this shows that step-
satisfaction is not an essential condition for computation, as it plays no role in
distinguishing computing from non- computing physical systems. I believe that
this strategy of argumentation applies to other accounts that ground computa-
tion in certain architectural properties.

 1 See mainly Cummins (1989: 91– 92ff.). See also a detailed discussion of some of the relevant
notions (mainly of instantiation and program execution) in Cummins (1983: 34– 51 and 163– 191).

Computation as Step-Satisfaction 89

4.1 Cummins’s Account of Computation

Cummins is perhaps the first philosopher who explicitly aims to account for
physical computation— namely, computation in physical systems. He develops
his account in two steps. The first step is to say how physical systems satisfy and
instantiate (but do not necessarily compute) functions. The second step is to say
how physical systems also compute functions.

4.1.1 Satisfaction and Instantiation

According to Cummins, a physical system satisfies a function g if it produces o
as its output on input i just in case g(i) = o— where the term produce refers to
some causal process that starts from an input i and terminates with the output o.
This scope of satisfaction is broad in one sense and narrow in another. It is broad
in that satisfaction applies to any physical system whose dynamics or mech-
anism proceeds in accordance with the laws of nature. The digestive processes
in the stomach, the trajectories of planets in the solar system, and the cycles of
washing machines are all examples of satisfying functions. In short, I think it is
safe to say that every physical system— no matter whether its processes are al-
gorithmic, continuous, digital, or analog— satisfies a mapping function from its
input- physical properties to its output- physical properties.

The scope of satisfaction is narrow in that the mapping function g relates only
physical entities and properties. In other words, physical systems satisfy only
physical functions that map input physical properties i to output physical prop-
erties o. They do not— and cannot— satisfy, say, such mathematical functions
as plus, which relates a pair of number arguments <m,n> and the number value
m + n. The plus function, according to Cummins, relates abstract mathematical
properties, which are not physical properties and as such cannot be satisfied by a
physical system. A (satisfied) function, g, only relates physical properties.

At first blush, the fact that the notion of satisfaction is tied to physical
functions appears to render it redundant if we want to account for physical sys-
tems that deal with, let alone compute, mathematical functions such as plus. If
the notion of satisfaction is tied to physical functions— that is, functions that
map physical properties— then how can we use it to account for physical systems
that somehow deal with mathematical functions? At this point, Cummins (like
many others) turns to the notion of instantiation. True, the satisfied function g
links together physical, non- abstract properties— but these related physical enti-
ties can be representations. They can be numerals— namely, physical entities that
represent numbers. Thus, a physical system is an adding machine not because
it operates on numbers. A physical system only satisfies g, which maps physical

90 The Nature of Physical Computation

properties to physical properties. A physical system is an adding machine when
it satisfies a function g that maps representations of numbers. It is an adding ma-
chine, according to Cummins, when it instantiates the plus function:

What an adding machine does is instantiate the plus function. It instantiates
addition by satisfying the function g whose arguments and values represent the
arguments and values of the addition function, or in other words, have those
arguments and values as interpretations. (1989: 89)

The picture we get is what Cummins dubs the London- Tower Bridge (Figure
4.1). The bottom span is the satisfied function, g, which maps physical states of
the system (e.g., button- pressing sequences) to other physical states of the system
(e.g., displays of certain states). The top span is the mathematical function plus,
which maps pairs of numbers <m,n> to the values m + n. The vertical arrows
stand for the so- called interpretation function, which maps the physical states of
the system to numbers. Specifically, it maps the pair of physical buttons <M,N>,
which are numerals, to the pair of numbers <m,n>, and the physical display D,
another numeral, to the value m + n. According to this interpretation, the system
is an adding machine in the sense that it instantiates the top- span function plus
by satisfying the bottom- span function g, whose arguments and values represent
the arguments and values of the plus function.

4.1.2 Step- Satisfaction

Up to this point, Cummins talks about satisfaction and instantiation, and
even about representation and interpretation, but not about computation.

+: (m, n) m + n

g: <M, N> D

in
te

rp
re

ta
tio

n

in
te

rp
re

ta
tio

n

(satisfaction)

Figure 4.1 The London- Tower Bridge. The bottom span is the satisfied function g,
which maps physical inputs (e.g., button- pressing sequences) to physical outputs
(e.g., displays of certain states). The top span is the mathematical function plus,
which maps pairs of numbers <m,n> to the values m + n. The vertical arrows stand
for the interpretation function, which maps the physical states of the system to
numbers.

Computation as Step-Satisfaction 91

Computation, he argues, is a special way of satisfying functions. In his words,
“to compute a function g is to execute a program that gives o as its output on
input i just in case g(i) = o. Computing reduces to program execution” (p. 91).
Program execution, in turn, “involves steps,” and so “program execution reduces
to step- satisfaction” (p. 92). The bottom line, then, is that computation is a step-
satisfaction process: it proceeds by means of steps. Each single step is satisfied,
but the entire process— which consists of series of (satisfied) steps— is not only
satisfaction but also computation.

As with satisfaction, computation operates on a function g that relates phys-
ical inputs and outputs. It does not operate on abstract entities such as numbers.
However, a physical machine can still compute an abstract function such as
plus. A physical computing machine is an adding machine when the (physical)
arguments and values of g are representations of numbers. It is an adding ma-
chine when it instantiates the plus function— in which case the system computes
a function g, whose arguments and values represent the arguments and values of
the plus function, the way it does earlier (Figure 4.2). The only difference between
the two figures is that the bottom span in Figure 4.2 stands for step- satisfaction,
hence computation, whereas the bottom span in Figure 4.1 stands for satisfac-
tion, but not necessarily for step- satisfaction.

A major motivation of Cummins’s account is to link this notion of compu-
tation to cognition. Here, his general idea is that “what works for addition will
work for cognition” (p. 111). A cognitive system is merely one that “computes
representations whose contents are the values of the cognitive function, and
computes these from representations of the function’s arguments” (p. 109).
According to Cummins, we can have the London- Tower Bridge scheme for
describing cognitive systems, whereby the bottom span consists of a se-
quence of physical states that involve representations. We might think of these
representations, for example, as physical symbols whose syntactic structure
enables us to infer certain conclusions (such as q) from certain premises (e.g., p

+: (m, n) m + n

g: <M, N> D

in
te

rp
re

ta
tio

n

in
te

rp
re

ta
tio

n

(step-satisfaction)

Figure 4.2 Computing addition. The bottom span stands for step- satisfaction,
hence computation. The rest is as in Figure 4.1. The arguments and values of g are
interpreted as representing the arguments and values (numbers) of the plus function.

92 The Nature of Physical Computation

and p → q). The upper span is a sequence of interpretations of these bottom- span
events, such as the corresponding propositions. This cognitive system computes
in the sense that the process at the bottom span is state- transition (“step-
satisfaction”)— that is, it satisfies certain epistemic (e.g., rational) constraints.
Cognition, in other words, is computation of a physical function that instantiates
a cognitive function.

4.1.3 The Essentials of the Account

Let me highlight the essentials of Cummins’s account. First, Cummins ac-
counts for computation in the context of physical systems. Moreover, he stresses
that such an account should meet the classification criteria (see Section 1.2.1).
Specifically, in his terms, the account should distinguish between two kinds
of physical systems that satisfy functions: those that satisfy functions by com-
puting them, and those that satisfy functions without computing them. As pre-
viously noted, virtually every physical system satisfies some sort of function, but
“functions need not be computed to be satisfied. Set mousetraps satisfy a func-
tion from tripping to snapping without computing it, and physical objects of all
kinds satisfy mechanical functions without computing them” (p. 91). The aim
of an account of computation is to state the conditions under which a physical
system not merely satisfies a function, but also computes it.

Second, Cummins draws the distinction between computing and non-
computing by invoking the theoretical notion of a program. Specifically, he claims
that the difference between a physical system that satisfies a function by com-
puting it and one that satisfies a function without computing it is that the former
“executes a program” and the latter does not. But what exactly does it mean to
say that one physical system executes a program while another does not? At this
point, Cummins appeals to the notion of step- satisfaction: a physical computa-
tional process consists of a disciplined stepwise process, whereas a stand- alone
step on its own is only satisfied, not computed. A non- computational physical
process apparently proceeds in a non- stepwise, perhaps continuous fashion.

Cummins’s characterization of computation falls within the first two dogmas
I identified earlier, in the Introduction. The first stage involves the logical dogma,
which is to associate computation with one or another theoretical notion from
logic or computer science (an algorithm, program, procedure, formal proof or
rule, automaton, etc.). Cummins’s favorite is program execution. The second stage
involves the architectural dogma: Cummins associates the theoretical notion—
that is, the execution of a program— with a distinct architectural property that is
characteristic of computing physical systems. This architectural property is dis-
ciplined step- satisfaction, which apparently refers to processes that proceed in a

Computation as Step-Satisfaction 93

stepwise fashion. This architectural property is a necessary feature of computing
systems: processes that do not possess it are not of the computing type.

This pattern of characterization is typical of earlier accounts of computation.
As I noted in the Introduction, it is found in the characterizations put forward
by Newell and Simon (1976), Haugeland (1978), Fodor (1980, 1994; Fodor and
Pylyshyn 1988), Stich (1983), Copeland (1996), Crane (2016), and others. Thus,
Copeland (1996) associates computation with the theoretical notion of an algo-
rithm (“To compute is to execute an algorithm” [p. 335]), and he understands an
algorithm to typically consist of “step- by- step applications of a certain propa-
gation rule” (p. 337). However, Copeland (and others) also think that unless we
add to this step- by- step feature a certain type of mapping relationship (which he
dubs honest modeling) that is stronger than Cummins’s instantiation, we will end
up with unlimited pancomputationalism.

Third, elsewhere Cummins (1975, 1983, 2000) presents a certain style of
explanation— which he calls functional analysis— and argues that it is typical of
psychological, specifically computational explanations. In functional analysis,
a capacity or disposition of a system is explained by means of an analysis that
breaks down the capacity into a set of simpler capacities that are arranged in a
way that allows the capacity to be explained. In some cases, these subcapacities
may be assigned to the components of the system— but in other instances, they
are assigned to the system as a whole. One example of the latter is a Turing ma-
chine: “Turing machine capacities analyze into other Turing machine capacities”
(Cummins 2000: 125). Another example can be found in some of our arithmet-
ical abilities: “My capacity to multiply 27 times 32 analyzes into the capacity to
multiply 2 times 7, to add 5 and 1, and so on, but these capacities are not (so far as
is known) capacities of my components” (Cummins 2000: 126).

Cummins does not mention functional analysis in his account of computa-
tion, but there are notable affinities between the two accounts. As we have just
seen, he uses examples of computation to explain the idea of functional analysis.2
More importantly, the notion of a program plays a key role in his account of func-
tional analysis. Cummins says:

Functional analysis consists in analyzing a disposition into a number of less
problematic dispositions such that programmed manifestation of these ana-
lyzing dispositions amounts to a manifestation of the analyzed disposition. By
“programmed” here, I simply mean organized in a way that could be specified
in a program or flowchart. (2000: 125)

 2 Computations, however, are by no means the only examples of functional analysis. Another ex-
ample is a cook’s ability to bake a cake (Cummins 2000: 125).

94 The Nature of Physical Computation

If computation is an execution of a program, as Cummins suggests, then
computational processes are natural candidates for functional analysis (as the
preceding examples indicate). Moreover, by describing a physical system as a
computing system, we naturally explain it by means of functional analysis. For
example, when describing a cognitive system as a Turing machine, we tend— or
perhaps are even bound— to explain its capacity in terms of a programmed man-
ifestation of subcapacities. Thus, computational descriptions have an important
explanatory role in cognitive science.

Fourth, Cummins characterizes computation as program execution, and
further asserts that “program execution is surely disciplined step satisfaction”
(1989: 92). But what is meant by “disciplined”? On the one hand, discipline looks
like just another constraint on computation, in addition to the steps; on the other,
when seeking to explain the discipline, Cummins says that the “discipline takes
care of itself ” (p. 92)— implying that a computing system need not have a special
control or program unit, as in a Turing machine. It is enough, he argues, for the
causal relations to be such that the satisfaction of one step follows the satisfaction
of another (as in a flowchart). If that is the case, the discipline does not appear to
add a substantial constraint on computation beyond step- satisfaction (this ob-
servation is discussed in more detail later).

Lastly, Cummins distinguishes between computation (and satisfaction) of dif-
ferent kinds of functions. A system can satisfy/ compute a physical function g that
links together physical inputs and outputs— but it can also satisfy/ compute an
abstract or cognitive function. The difference is that the computation of math-
ematical, cognitive, and perhaps other functions invokes the notion of instan-
tiation. A system computes an abstract or a cognitive function f by computing
a physical function g that instantiates f, whereas instantiation (etc.) stands for a
mapping relation between g and f. The important point is that the distinction be-
tween computation and satisfaction does not hinge on the distinction between the
kinds of functions that are being computed. Physical systems can either compute
or satisfy abstract/ cognitive functions: a physical system may satisfy an abstract/
cognitive function by computing it, but it may also merely satisfy that function
without computing it. This suggests that the notion of instantiation does not play
a role in the difference between computation and mere satisfaction. The differ-
ence between computation and satisfaction is wholly dependent on the feature of
disciplined step- satisfaction.

It is worth noting that Cummins’s notion of instantiation is broader than
the notion of implementation, which is the focus of Chapter 5 of this book.
Instantiation is much like implementation, in that it assumes an isomorphism
relationship between g and f. Instantiation is broader than implementation, in
that the instantiated function f need not be mathematical (abstract): f can be a
non- abstract (e.g., cognitive) function. This is perhaps why Cummins also uses

Computation as Step-Satisfaction 95

the terms interpretation and, subsequently, simulation representation to describe
this instantiation relationship; following Ramsey (2007), I will use the term
input- output representation. This does not, however, render the account of com-
putation a semantic one. As we have seen, the notion of instantiation (etc.) is
not necessarily invoked in the contexts of physical computation. According to
Cummins, a physical system computes just in case the process that is mediating
inputs and outputs is of the step- satisfaction type. The notion of instantiation is
invoked in contexts where the computed function is mathematical or cognitive,
and perhaps for other functions as well.3

My view is that Cummins got things exactly backward. Input- output repre-
sentation plays a central role in characterizing computation, especially in cogni-
tive and neural systems, whereas step- satisfaction plays no role in distinguishing
between computing and non- computing. I return to the former claim, about
input- output representation, in Chapter 9. The rest of this chapter is devoted to
my negative claim about step- satisfaction.

4.2 Is Step- Satisfaction Necessary for
Computation?

Cummins argues that computation is step- satisfaction. In assessing this claim,
we need to ask whether step- satisfaction constitutes a necessary and sufficient
condition for computation. I think that it is clear that step- satisfaction is not suf-
ficient for computation: there are many physical processes that are of the step-
satisfaction type but do not constitute computation, even when described this
way. Cooking a pie, the evolutionary development of traits, the workings of
the human body, and manufacturing processes in factories are all described in
terms of sequential step- satisfaction operations— but they are not computations.
Cummins himself mentions some of these processes (such as cooking) as ones
that are explained through functional analysis, and, hence, as step- satisfaction.
But even when they are explained this way, we do not see them as computation.

One might suggest that adding instantiation to step- satisfaction would re-
sult in a sufficiency criterion. But this suggestion has two difficulties. One— just
mentioned— is that, according to Cummins, some physical systems compute
without instantiating at all. Another difficulty is that some physical systems will
not compute even when instantiating in Cummins’s sense (Copeland 1996). In
Chapter 5, I argue that even stronger notions of instantiation would not yield a

 3 Moreover, the role of simulation representation, according to Cummins, is to naturalize the se-
mantic content that occurs in the context of a computing system. This is made possible, he argues,
because simulation representation is defined not in semantic terms, but in terms of isomorphism.
For further discussion on this subject, see chap. 8 of Cummins’s book (1989).

96 The Nature of Physical Computation

sufficiency criterion. In the rest of this chapter, I focus on the necessity element—
namely, the claim that step- satisfaction is necessary for computation— and argue
that it is in fact not necessary. Step- satisfaction plays no role in delimiting phys-
ical computation.

According to Cummins, step- satisfaction appears to draw the line between
computing and non- computing based on the number of steps satisfied. An
input- output process that consists of two steps appears to be computation— or
at least the beginning of computation, because it involves the satisfaction of two
steps— and the more steps you have, the merrier. However, drawing the com-
putation/ non- computation boundary along the one- step/ two- steps distinction—
namely, that a one- step process is not computation, but a process of two or more
steps is— has its problems. This one- step/ two- steps distinction runs counter to
how computation is perceived in computer science, as there is no pertinent dif-
ference between (say) a Turing machine that operates in one step and those that
work in two or more steps. They all compute, even if in the former case the com-
putation is trivial. More importantly, we can easily think of quite a few cases of
physical computation— such as analog computation— that satisfy a function in
one go, as it were.

One might suggest, at this point, including one- step processes in the defini-
tion of computing. But this route has its problems as well. If we consider one- step
processes computation (albeit trivial), then virtually every physical process, it
seems, is computation, since every physical process satisfies a physical function
by means of a process comprising at least one step. If so, the criterion of step-
satisfaction is pointless, as it does not help to distinguish computing from non-
computing. Indeed, the whole point of the distinction between satisfaction and
computation is that satisfying a function in one fell swoop is not computation—
rather, computation might start when the process consists of two or more steps
that are being satisfied.

To understand the nature and scope of this dilemma, let us examine a simple
yet compelling example put forward by Itamar Pitowsky (1990).

4.2.1 Pitowsky’s Average Machine

Consider the following machine for averaging three numbers (Figure 4.3).
Imagine we have an insulated container divided into three equal sections by
insulated removable barriers. We put a thermometer in each section, and set
the temperature in each section to a temperature equal to the corresponding
three numbers k, m, and n. We now remove the barriers simultaneously and
wait until the temperatures equalize. This process is a thermodynamic one, and

Computation as Step-Satisfaction 97

usually described by a set of differential equations. However, its output is always
(k + m + n) / 3.

Consider another scenario. We repeat the process with k, m, and n— but this
time we (or some other mechanism) remove only one barrier, and wait for the
temperature to equalize ((k + m) / 2). Only then do we remove the second bar-
rier. The final output is clearly the same as in the first scenario, but this time it
involves a two- step process:

Basic step 1. Average k and m:
[(k, m) → (k+m) / 2];
Basic step 2. Operate on the output of step 1, output1(k,m), and n:
[(output1(k,m), n) → 2/ 3 ⋅ output1(k,m) + n / 3].

In other words, in the first scenario the device averages k, m, and n in a single-
step process, whereas in the second scenario it does so through a two- step
process.

Now, let us ask whether the one- step process, as described in the first scenario,
is computation. Consider, first, that the answer is no— meaning that the aver-
aging, one- step process is not computation. Assuming that the two- step aver-
aging process, as described in the second scenario, is deemed to be computation,
we get the arguably absurd conclusion that computing depends on moving the
barriers of the thermal machine twice instead of once. It seems very odd to deem
the two- step process to be computation and the one- step averaging process not

Figure 4.3 Pitowsky’s machine for averaging three numbers. The device is divided
into three equal sections by insulated removable barriers with a thermometer in
each section. The temperature in the sections is set to correspond to k, m, and n.
Removing the barriers will result (output) in the average (k + m + n)/ 3.

98 The Nature of Physical Computation

to be. It is much more reasonable to think that if the two- step process is com-
putation, so too is the one- step process. Indeed, the device serves to compute
the average of three numbers, regardless of whether the barriers are moved once
or twice.

Now let us consider the yes answer— namely, that the averaging, one- step pro-
cess is worthy of being considered computation.4 The trouble here is that if this
thermodynamic one- step process is computation, then we surely must accept
that other thermal processes— such as tornado storms and boiling water, which
also are described by thermodynamic equations— are forms of computation as
well. Indeed, by that definition, it is hard to see what physical dynamics is not
computation. But if all these processes are also computation, then the concept
of step- satisfaction plays no effective role in distinguishing computation from
other physical dynamics.

I maintain that this kind of dilemma challenges the accounts that associate
computation with a particular architecture. One horn of the dilemma is that the
select architectural profile (e.g., step- satisfaction) excludes important classes of
computing systems; the other horn is that attempting to include such computing
systems by weakening the architectural constraint causes too many physical sys-
tems to meet that constraint, and therefore the chosen architectural profile plays
no role in distinguishing computing from non- computing.

4.2.2 A Way Out of the Dilemma?

Let us review several potential attempts to escape the dilemma— beginning with
those that take the second- horn escape route, in which the one- step process is
counted as computation. One could say that the averaging process is computa-
tion in that it is (one)- step satisfaction. Nevertheless, the reply goes, there are
many other processes that do not involve steps in any essential way— such as
processes that have no inputs or outputs, or processes that are not deterministic
and involve some sort of randomization. The argument should be that all these
processes are instances of satisfaction, but not of computation, as they involve
not even a single step.

The difficulty with this proposal is that it is not clear why such no- step pro-
cesses cannot be computation too. Many instances of computation do not in-
volve inputs and outputs in any essential way— for example, finite- state automata
without inputs and outputs, as well as various kinds of cellular automata, such

 4 Copeland (1996) appears to suggest this when he characterizes computation as the execution of
an algorithm that comes down to “the performance of some sequence of the primitive (or ‘atomic’)
operations made available in the architecture” (p. 337). He adds that “the sequence may consist of a
single operation” (p. 337).

Computation as Step-Satisfaction 99

as some instances of the Game of Life, neural networks, and so forth. There are
non- halting computing machines that receive inputs but emit no defined output.
The same goes for processes that are not deterministic. There are many instances
of probabilistic computation,5 and ones involving physical randomness.6 With
the rise of Bayesian approaches in cognitive science, randomness is also consid-
ered an integral part of neural computation.7 These counterexamples indicate
that we cannot contrast step- satisfaction (as computation) with processes that
lack inputs/ outputs and/ or that are not deterministic (as non- computation).
Some computations also lack inputs/ outputs and/ or are not deterministic.

Another attempt to differentiate the one- step computing process of averaging
from non- computing processes is grounded in the instantiation relationship.
Thus, one could point out that from Cummins’s point of view, the averaging
process satisfies a particular mapping physical function— mapping input phys-
ical magnitudes to output physical magnitudes— and this physical function
instantiates the mathematical function of averaging— namely (k,m,n) → (k +
m + n) / 3. However, the physical processes that take place in stomachs, torna-
does, and mousetraps, though they can be described by mathematical functions,
do not instantiate these functions, so they do not compute the mathematical
functions. There are constraints on instantiation that the averaging process
meets, but the other processes do not.8

This proposal, however, is also not very helpful. First, Cummins talks about
the computation of physical functions— which does not invoke the notion of in-
stantiation. We can therefore describe Pitowsky’s device as operating on physical
properties without introducing the mathematical function of averaging. We will
thus face the same dilemma with respect to the physical function. Second, let us
assume, for the sake of argument, that there are constraints on instantiation that
differentiate the (computing) averaging machine from other physical processes,
at least with respect to mathematical functions. The problem with this proposal
is that it nullifies the notion of step- satisfaction. Hitherto, we thought that step-
satisfaction was capable of distinguishing computing from non- computing— but
it now turns out that it does no such thing. Stomachs, tornadoes, and mousetraps
also involve one or more step- satisfaction processes— but the reason that they do
not compute, whereas the averaging machine does, is not step- satisfaction, but

 5 For a review see, e.g., Gurari (1989: chap. 6). Probabilistic computation involves certain random
choices. Thus, there is a certain probability (chance) that the program gives wrong answers; the trade-
off is a reduction in the speed of computation.
 6 See, e.g., Calude and Pavlov (2002).
 7 See, e.g., Chater, Tenenbaum, and Yuille (2006); Griffiths et al. (2010); and Clark (2013).
 8 This might be Copeland’s approach when he suggests that the required instantiation relationship
should be that of adding to this step- by- step feature a certain kind of mapping relationship that he
calls honest modeling (see also the discussion in Chapter 5).

100 The Nature of Physical Computation

rather (arguably) instantiation. Thus, step- satisfaction is an empty notion with
respect to the distinction between computing and non- computing.

Let us turn now to the attempts to escape the dilemma by the first horn—
namely, by insisting that the averaging one- step process is not computation. One
tempting move in this direction would be to insist that the two- step process is
also not computation— as then there would be no need to solve the puzzle of why
the two- step process is computation but the one- step process is not. The difficulty
with this proposal is that it undermines the role of step- satisfaction in delimiting
computation. The number of steps satisfied— be it one, two, or more— does not
help to capture the computing processes. In other words, it does not really matter
whether a given process consists of one, two, or more steps: what makes it com-
putation or not is determined by yet other features.

One might contend that the one- step process is non- computing, and the two-
step process is computing, on the grounds of the analog/ digital distinction (the
term analog here used in the sense of “continuous”).9 Thus, the one- step, analog
process would be deemed non- computing, as it consists of a single continuous
dynamic, while the second process is less analog (and perhaps more digital) in
that it consists of two somewhat discrete, continuous dynamics. In the two- step
process, then, we have the beginning of computation— and when many steps are
involved, we get a full- fledged computation.

Crucially, I do not deny that step- satisfaction might capture an important dif-
ference between different kinds of computation— the one- step process being an
instance of analog computation and the two- step process an instance of digital
computation. If this were the case, then step- satisfaction would play a role in
differentiating analog from digital computation. However, my point is that this
difference between one- step and two- step processes is immaterial to the differ-
ence between computation and non- computation. It is counterintuitive— not
to say absurd— to say that the two- step averaging process is computation but
the one- step averaging process is not, since moving the barriers one at a time
does not make the process more of a computation than moving them simultane-
ously. Either way, we can use the device (or not) to compute the average of three
numbers.

This point can be generalized to other attempts at characterizing computa-
tion based on the analog/ digital distinction.10 The problem of distinguishing
between digital and analog is notoriously challenging, and there are several

 9 The other sense of analog, in terms of mirroring, is discussed in Chapter 9.
 10 Gandy (1980) provides an account of digital computation, which Sieg (2008, 2009) sees as a ge-
neral account of machine computation. Piccinini (2007) and Fresco (2014) offer accounts of compu-
tation that mainly apply to digital computation; both of them have subsequently attempted to extend
their accounts so that they apply to at least some cases of analog computation (Fresco and Wolf 2014;
Piccinini 2015).

Computation as Step-Satisfaction 101

intriguing proposals as to how it may be done.11 I have no qualms here about
such proposals. Moreover, I think that the fact that the digital/ analog distinction
is difficult to make should not discourage us from making it. While the distinc-
tion is perhaps not as clear as we would like it to be, this does not necessarily
indicate that it makes no sense or that it is insignificant. My claim against step-
satisfaction is that even if it plays a role in distinguishing analog from digital (and
it may certainly do so here), it plays no role in distinguishing between computa-
tion and non- computation. The same claim, I maintain, applies to other accounts
that seek to characterize computation based on the digital/ analog distinction.
Architectural features— be they step- satisfaction or something else— might play
a role in distinguishing digital from analog, but they do not play the same role in
distinguishing computing from non- computing. The two distinctions— analog
versus digital and computing versus non- computing— do not overlap. The aver-
aging machine is only one of many analog devices that we view as computing.12

One might point out that an essential difference between the one- step and two-
step processes lies in how they are described. We describe the averaging results of
the one- step process in terms of thermodynamic equations. We describe, and ex-
plain, the averaging results of the two- step process not only through equations,
but also by appealing to the recursive relations between the inputs and outputs
of the first step and the inputs and outputs of the second step. We emphasize that
the outputs of the first step are the inputs of the second step, and we describe the
recursive relationship between the arguments and values of each step. Moreover,
one could relate the different descriptions to what Cummins (1975, 2000) sees as
different styles of explanation: when we describe the one- step process in terms
of thermodynamic equations, we are explaining the average result in terms of
the initial conditions and thermodynamic equations, which might fit with the
deductive- nomological model. The description of the two- step process, however,
might be the beginning of a functional (task) analysis. We explain the capacity of
the device— of averaging three numbers— by appealing to the subcapacities of
averaging two numbers, and how they are arranged to yield the average of three
numbers (the “program”). In this way, the difference between computing and
non- computing is grounded, at least to some extent, in the way we describe and
even explain the process— and it is this difference that is captured by the notion
of step- satisfaction.

 11 Goodman (1968) and Haugeland (1981a) draw the analog/ digital distinction along the distinc-
tion between continuous and discrete. In Haugeland’s terms, a digital system is a set of (input, output,
and perhaps other) types, whereby the reading and writing procedures of the tokens of those types
are positive and reliable— see also Pylyshyn (1984) and Goel (1991) for further discussion. Under
this proposal, the one- step average process is analog, whereas a one- step flip- flop operation is dig-
ital. Lewis (1971), Fodor and Block (1973), and Demopoulos (1987) associate digital with high- level
physical properties and analog with the basic physical properties expressed by physical laws.
 12 See Maley (2018) for a useful survey of analog computers; see also Chapter 9.

102 The Nature of Physical Computation

In replying to this claim, one could dismiss the attempt to link computa-
tion to description and explanation by pointing out that every process could be
described and explained as step- satisfaction— namely, as a process consisting of
a series of steps— and hence as computation. At some level, we could also de-
scribe the first process (of moving the two barriers at once) as stepwise— and
hence, too, as computation. We could also describe it in terms of moving and
bouncing particles, whereby each change in the direction of a particle would be
considered a new step. Notably, however, this reply— regardless of its merit— is
not my reply. I agree that it may well be that, at some level, everything could
be described as step- satisfaction, and therefore as computation. But this is no
reason to automatically dismiss such an account of computation. Rather, I would
respond to the claim by asserting that the differences among descriptions and
explanations at best reflect a difference among various types of explanation, but
not a difference between computing and non- computing. We might explain the
two- step process by means of a functional analysis, whereas we might not do this
with respect to the one- step process. This difference may also be related to the
claim that the two- step process is more digital than the one- step process. But this
difference in explanatory styles, important as it is, does not mean that the one-
step process is not computation— only that computation can be associated with
different styles of explanation. Some computations are described and explained
through functional analysis, others in terms of dynamical equations ranging
over real- valued variables, and yet others might combine these different explan-
atory styles. Put more succinctly, moving the barriers one at a time might call for
a different style of explanation, but that does not change the computational status
of the process. I return to discuss this issue in Chapter 6, in the context of mech-
anistic explanations.

There may be other reasons for counting the one- step process as non-
computation. It could be claimed that one- step processes are much like lookup
tables— perhaps the most known example being the slide rule, which is arguably
not computation (Churchland and Sejnowski 1992: 71).13 The problem with this
proposal is that the one- step averaging process is not a lookup table— because
the average is not read off, but generated by the thermal process. It could also
be argued that one- step analog processes are not really computations. We call
the averaging device a computer simply because we use it to obtain the average
of three numbers, but we do not really view the (analog) process itself as com-
puting. So there is a difference between the term computer— which refers to
devices we use to systematically produce results— and the term computation,
which refers to how those results are achieved. In other words, analog devices are

 13 See Ulmann (2013) and Papayannopoulos (2020b) for further examples; of course, we can say
that we compute addition, multiplication, etc. through the use of slide rules and other instruments.

Computation as Step-Satisfaction 103

computers, but they do not compute. However, I see little reason to accept this
proposal. Although we use slide rules to get certain results, we do not see them
as computers (they are lookup tables). Finally, one can bite the bullet and simply
declare that one- step analog processes are not really computing. In Section 4.3,
I will attempt to show that this stance is implausible, at least in the context of
neural computation.

4.3 Neural Computation

In the final section of this chapter, I discuss the difficulties faced by Cummins’s
account in the context of neural computation. I will focus on a special kind of
networks known as attractor neural networks. After reviewing several theoretical
issues about neural networks in general (Section 4.3.1), I highlight the essentials
of attractor neural networks (Section 4.3.2), then describe an attractor neural
network that solves the n- queens problem (Section 4.3.3). I then turn to dis-
cuss the dilemma raised by attractor neural networks with regard to Cummins’s
account (Section 4.3.4). In some sense, the dilemma is a reiteration of the one
discussed in Section 4.2. Finally, I will conclude with attempts to solve the di-
lemma, after discussing replies by Cummins and others (Section 4.3.5).

4.3.1 Neural Networks

Neural networks have played a key role in the computational theory of cognition
at least since McCulloch and Pitts (1943).14 Over the years, these studies have
received various names: neural computation, neural networks, neurocomputing,
and more.15 The field saw a certain decline in the 1960s and 1970s but reemerged
with renewed vigor in the 1980s under the titles of PDP (parallel distributed pro-
cessing) and connectionism.16 It was seen as a new paradigm, challenging the
classical computational approaches in AI and cognitive science.17 Today, neural
networks dominate the fields of AI, computational neuroscience, and compu-
tational cognitive science. More importantly for our purposes, these networks
have posed a challenge to accounts of computation that associate computation
with a particular architectural feature.

 14 See Piccinini (2004a) for a discussion, including of the work on neural networks that preceded
McCulloch and Pitts (1943).
 15 For a useful collection of the classical papers, see Anderson and Rosenfeld (1988) and Anderson,
Pellionisz, and Rosenfeld (1990).
 16 Many attribute this decline to the criticism by Minsky and Papert (1969).
 17 See the two volumes issued in 1986 by the PDP research group (Rumelhart and McClelland
1986; McClelland and Rumelhart 1986).

104 The Nature of Physical Computation

Crucially, the term neural network does not necessarily refer to actual biolog-
ical neurons or to biological networks. Rather, neural networks are “neural” in
the sense that their basic units (“neurons”) display information- processing beha-
vior that is similar to the information- processing behavior of real neurons. Each
unit typically receives different information from various input channels, but
sends the same information values (output) to many other units (Figure 4.4). In
addition, the signals received from other units are modulated through inhibitory
or excitatory (“synaptic”) weights. The total input to each unit is typically meas-
ured by the sum Σ

i
wji⋅ai— where wji is the value of the “synaptic” weight from uniti

to unitj (the value is positive if the connection is excitatory, and negative if inhibi-
tory), and ai is the activation value (“action potential”) of uniti. The output of each
unit, aj, is some function defined over this input; typical functions are threshold,
linear, sigmoid, and others. In a threshold function, for example, the output of the
unit aj is 1 (“fires”) if the total input, Σwjiai, exceeds a certain threshold (θ), and 0
otherwise. The important point is that these information- processing, many- to-
one- signal units need not be biological at all. They can be made out of any mate-
rial that satisfies these conditions.

Another important distinction is between abstract and physical neural
networks. This is not very different from the distinction between abstract and
physical Turing machines. The abstract network is often seen as a description,
representation, or model of the physical system, and sometimes the physical
system is seen as an implementation or realization of the abstract system (these
relationships between the abstract and the physical will be further discussed in
Chapter 5). Constructing physical neural networks is often a tedious, even un-
feasible task, as they might consist of many units, and many more connections
between them. Nor is it always easy to come up with the suitable hardware to
implement an abstract neural network. Instead, we often use standard digital

Wj1

Wj2

Wj3

Wjn

aj >θ ?

Output

a1

a2

a3

an

Inputs

Σ aiWjiaj =
i = 1

n

Figure 4.4 Computational properties of a “neural” cell. The cell receives different
information from various input channels that are modulated by the “synaptic”
weights, and emits a single output value that is propagated to other cells.

Computation as Step-Satisfaction 105

computers (e.g., desktops and laptops) to simulate the behavior of an abstract
neural network. This is indeed the case with the network described in Section
4.3.2, which solves the n- queens problem. In other words, what we do is use dig-
ital computers to produce the output of the network for a given input, although
the mediating (computing) processes may be very different from the process
taking place within the (simulated) network.

This discrepancy between abstract and physical networks might pose a dif-
ficulty. Our concern here is the computational properties of physical systems—
hence of physical neural networks. We do not ask whether the desktop computers
and laptops that simulate the abstract networks compute. They surely do: the
desktop computer that simulates the abstract n- queens network does compute
a solution for the problem. Our question is whether a physical neural network
computes a solution to the n- queens problem. In particular, we ask whether the
physical network reaches the solution by means of a computing process or by
means of another, non- computing physical process. But if all we have available
is the abstract network and the simulating desktop, then the question about the
physical neural network may not make sense.

Fortunately, this difficulty can be easily overcome. The queries about the phys-
ical networks do make sense, at least in most cases. The fact that we do not always
construct physical networks does not mean that they are not physically con-
structible. Often, we do not construct a physical network even though we can—
because it simply takes too many resources to construct one, at least one that
can be operated efficiently. There may be physical networks whose constructions
are beyond our technological capabilities— but even in those cases the networks
are physically constructible, in the sense that their construction is in accordance
with the laws of physics. Thus, when asked whether neural networks compute,
we can always refer to physical neural networks (unless explicitly specified oth-
erwise), or at least to physically constructible neural networks.

A final, and related, concern is the term neural network model, which is wide-
spread in cognitive neuroscience. A neural network model is seen as a model
that is itself a neural network. But there are some complications. First, neural
network models can be abstract (e.g., mathematical) or physical objects (this is
arguably true of other scientific models too).18 Second, to achieve various data
and results, we very often run a simulation of the abstract or physical model on a
standard digital computer— and sometimes refer to this as a model as well. Third,
when we use a neural network model to describe cognitive and neural pro-
cesses, we often view the modeled system itself— namely, the cognitive/ nervous

 18 For a review and discussion of these issues, see Weisberg (2013) and Frigg and Hartmann
(2012).

106 The Nature of Physical Computation

system— as a neural network, too. In one sense, this is not very surprising, at least
if we assume that the modeling and the modeled systems must be similar in some
sense.19 What is surprising is this: some neural network models assume that the
nervous system itself is a neural network, even though it is also assumed that the
modeling network is not “biologically plausible.” Nonetheless, the assumption
is that the modeled system itself is a biologically plausible neural network, in
that it employs some kind of biological mechanism that is not represented by the
model.20

These issues deserve further discussion that digresses from the topic of this
chapter. For our purposes, it is important to maintain the distinction between
the neural network model and the (modeled) neural network system. When, in
the context of neural network models, we ask whether the system computes, we
are referring (unless otherwise specified) to the modeled neural network, rather
than to the modeling one.

The neural networks that captured the most attention in the 1980s were the
feed- forward nets that used various learning methods (such as back- propagation)
to model various cognitive tasks.21 These learning methods have significantly
improved over the years. Today’s networks, which use deep learning and
other techniques, are at the forefront of computational neuroscience, machine
learning, and AI.22 Our focus here, however, is on another type of network that
was reinitiated in the 1980s, known as attractor neural networks (ANNs). The
seminal work in this area was performed by the physicist John Hopfield (1982),
who introduced the notion of energy function.23 But as Hertz, Krogh, and Palmer
(1991: 7– 8) put it, the real power of statistical mechanics was brought to the fore-
front in the work of Amit, Gutfreund, and Sompolinsky (1985; Amit 1989). These
networks bear close links to dynamical systems such as the spin- glass magnetic
systems studied in statistical mechanics. I will use this linkage to undermine the
attempts to draw a distinction between computing and dynamical systems by
appealing to program execution, step- satisfaction, and their logical and architec-
tural siblings.

 19 See Frigg and Hartmann (2020) for a discussion of these issues .
 20 E.g., Zipser and Andersen (1988) invoke the back- propagation method to train a neural net-
work model on the behavior of cells in area 7a of the posterior parietal cortex (PPC) of monkeys (the
model is discussed in Chapter 9). But they caution: “That the back- propagation method appears to
discover the same algorithm that is used by the brain in no way implies that back propagation is actu-
ally used by the brain” (p. 684).
 21 See Rumelhart, Hinton, and Williams (1986).
 22 See Krizhevsky, Sutskever, and Hinton (2012); LeCun, Bengio, and Hinton (2015); and
Schmidhuber (2015).
 23 See Hertz, Krogh, and Palmer (1991) for a brief review of the earlier history.

Computation as Step-Satisfaction 107

4.3.2 Attractor Neural Networks

ANNs are typically fully recurrent networks. All the units (“cells”) have the same
role. There are typically no designated input, hidden, or output units. Every unit is
typically interconnected to all other units, and is updated according to the infor-
mation it receives from all other units. Much like in the feed- forward networks, the
total information is modulated through the synaptic weights and is often presented
by the term Σwjiai, and the activity of the cell is then determined by a certain func-
tion (e.g., threshold), with Σwjiai as its argument. The total activity of all cells, at any
given moment, is known as the state of the network, and the state- space is described
by the so- called energy function. This energy function is the evolution of the net-
work with respect to time, and captures possible trajectories, depending on the ini-
tial state of the network.

An initial state of ANN can be seen as an “input state,” after which the states often
change with each iteration (each state consisting of the cells and their respective ac-
tivity at a given moment). An iteration involves the updating of one or more cells at
a time (“asynchronous”) or all cells at once (“synchronous”); in the asynchronous
case, the updated cells are typically chosen at random. The network does not have a
designated output state and, in principle, can change states ad infinitum. Hopfield
(1982), however, showed that if an ANN satisfies certain constraints, it will always
reach an equilibrium point (“attractor”)— namely, its state will never change un-
less we stimulate the cells with new, external stimuli.24 Moreover, Hopfield showed
that these attractors are precisely the minima points in the energy function/ space of
the network. As previously noted, Hopfield imported the idea from statistical me-
chanics. In the spin- glass magnetic system, particles (which are analogous to cells)
spin in certain directions (analogous to activities), depending on the magnetic force
of other cells (analogous to the weighted input to the cell). If certain conditions are
met, the system eventually relaxes into an equilibrium point that is a minimum
point in its energy space (Figure 4.5). The energy is often the temperature of the
system, so the equilibrium points are the states in which the system has cooled off.

4.3.3 A Neural Network for the n- Queens Problem

ANNs have been used to model various cognitive and AI tasks having to do
with memory, problem- solving, and so forth.25 Here I shall briefly describe a

 24 More specifically, it is known (following Hopfield 1982) that when the weights of the net are
fixed, symmetric (wij = wji), and a- reflexive (wii = 0), and the values of the units are updated one at a
time (asynchronously), it is guaranteed that the net will always relax.
 25 For memory networks, see Hopfield (1982); Amit and Fusi (1994); and Seung (1998). For
problem- solving, see Hopfield and Tank (1985) and Rumelhart, Smolensky, McClelland, and Hinton

108 The Nature of Physical Computation

problem- solving network designed to solve an AI task known as the n- queens
problem (Shagrir 1992). I chose this example because it is relatively easy to com-
prehend, but any other ANN could be used to illustrate my claims. The n- queens
problem is the task of placing n queens on an n × n chessboard so that no two
queens are placed on the same row, column, or diagonal (Figure 4.6).

It is known that the problem has at least two solutions for every n ≥ 4; the
task is to find one solution at a time. The problem has a simple backtracking al-
gorithm that requires an exponential time. More efficient solutions have also
been proposed.26 A natural way to approach the problem is with an ANN. The
n × n board is represented by a fully recurrent net of n × n units, with each unit
representing one square on the board. An activated unit represents a queen on
the cell, and an inactivated unit represents an empty square. The designer’s task is
to devise the weights such that when the network starts from an initial arbitrary
state, it will advance toward a stable state (attractor), which is a solution to the n-
queens problem. In other words, the dynamical evolution of the network should
gradually lead to an attractor state in which exactly n units are activated, and
those units represent squares in different rows, columns, and diagonals.

The space state of the network can be represented by an energy function such
as the following:

Figure 4.5 The dynamics of an attractor neural network. Each arrow is a potential
trajectory of the network towards an attractor. Each point on an arrow is a “total
state” of the network, and the emphasized black points are the attractors. Starting
from an initial state (a point on one of the arrows), the dynamics of the network
proceeds along this arrow toward the attractor.

(1986). For these and other tasks— such as learning, control, classification, and so forth— see also
Amit (1989); Eliasmith and Anderson (2003); and Eliasmith (2013).

 26 See Sosic and Gu (1990, 1991) and Fernau (2010).

Computation as Step-Satisfaction 109

(1) A ⋅ ∑ ∑ ∑
≠x k j k

axk ⋅ axj + B ⋅ ∑ ∑ ∑
≠k x y x

axk ⋅ ayk + C ⋅ (∑ ∑
x k

axk – n)2 + D ⋅ ∑ ∑ ∑
≠x k m 0

axk ⋅ ax+m,k+m

+ E ⋅ ∑ ∑ ∑

≠x k m 0
axk ⋅ ax+m,k- m

Here, axk stands for the activation value of the unit in row x and column k.
When the constants A, B, C, D, and E are positive numbers, the global minimum
of (1) is 0. It occurs when, and only when, all the terms are 0. The first triple sum
is 0 when there are no two queens in the same row; the second is 0 when there are
no two queens in the same column; the third is 0 when there are exactly n queens
on the board; and the fourth and fifth are 0 when there are no two queens in any
diagonal line.

I showed that no simple Hopfield net provides a general solution to the
problem— the reason being that there are many local, non- zero, minima points
of the energy function, (1), and these points are not solutions to the problem
(Shagrir 1992). The level of energy in Hopfield nets, however, constantly
decreases. Thus, the net stabilizes when it reaches a local minimum. To over-
come this difficulty, I suggested allowing every unit to inhibit itself— that is,
wii < 0. With this additional feature of self- inhibition, the energy level can also
go up, thus enabling the net to escape the local minima. I proved that, under ap-
propriate parameter values, the level of energy remains low enough so that the
net always rapidly finds a solution to the n- queens problem, irrespective of the
initial state or the dimension n. I also showed that the density of global minima
(solutions) among the minima points in the energy space of the net is 1 / n2. Thus,
after arriving at a low- energy space in about log(n) iterations, the net randomly

Figure 4.6 A solution to the 8- queen problem. Eight queens are placed on the board
such that no pair of them is on the same row, column, or diagonal.

110 The Nature of Physical Computation

travels through that space until it stabilizes at a global minimum point (in about
n2 iterations).

4.3.4 Do Attractor Neural Networks Compute?

Focusing on ANNs, we can now turn to ask: Do neural networks compute? Does the
n- queens network compute a solution to the problem? Let us assume that the ab-
stract ANN is implemented in some appropriate physical, fully interconnected net-
work with n2 physical cells. Using Cummins’s scheme, we can say that the “input”
state of the physical network can be interpreted as representing the initial state of
the n- queens network, and the “output” state can be interpreted as a solution to
the problem. We can also assume that the mediating physical process implements
the evolution of the abstract network. The question is whether this physical pro-
cess computes. More generally, the question is whether attractor neural networks
compute.

I suggest that the question poses a real dilemma to accounts of computing that
at least partly identify computing with a particular architectural profile. Let us as-
sume that neural networks compute.27 This means that neural networks possess a
select architectural profile, such as step- satisfaction, that differentiates them from at
least some non- computing systems. However, the architecture (e.g., functional or-
ganization) of the networks looks similar to the architectures of dynamical systems
that we do not consider computing. As we saw, ANNs are designed with an eye to
exploiting and reflecting the kind of dynamics found in random magnetic systems.
These systems also consist of a lattice of particles (“cells”) and the magnetic forces
between them (“weights”). Moreover, the dynamics of the network is described and
explained in terms of dynamical equations (e.g., energy function) found in statis-
tical mechanics. For example, the behavior of the n- queens network is described
and explained in terms of finding the global minima points that constitute a solu-
tion to the problem. Even the proofs that the n- queens network solves the problem
are based on an analysis of the energy function, (1), described previously. This
means that if neural networks possess the required architecture, then virtually every
dynamical system possesses it too. But then the select architectural profile does not
play a role in differentiating computing from non- computing. It is vacuous.

Let us assume, then, that neural networks do not compute.28 This assump-
tion is quite costly. First, almost all the computational work today in AI and

 27 An assumption supported by many, including Churchland (1989, 2007); Churchland and
Sejnowski (1992); Bechtel and Abrahamsen (2002); O'Brien and Opie (2006); and Hinton and
Anderson (2014).
 28 Among those claiming that neural networks do not compute are Pylyshyn (1984); Fodor (1994,
2000); and Gallistel and Gibbon (2002).

Computation as Step-Satisfaction 111

computational and cognitive neuroscience incorporates neural networks of one
kind or another.29 Excluding these networks from the computational domain
runs against the current practices in these computational sciences. An account
of computing that disregards neural networks as computing seems irrelevant to
the modern developments in AI and computational neuroscience. Moreover,
the architecture of neural networks is similar in many interesting ways to the
architecture of finite-state automata and other computing systems.30 Excluding
neural networks from the computational domain also endangers the status of
these other systems as computing. There are some who are willing to consider all
of these systems non- computing.31 But this is an extreme view that is detached
from current computational approaches.

In summary, neural networks challenge accounts that identify computation with
architectural profile. If neural networks satisfy the architectural condition, then the
architectural profile seems to have no role in distinguishing computing from non-
computing. If neural networks do not satisfy the architectural condition (and thus
do not compute), the architectural profile seems to exclude important classes of
computing systems. In the rest of the chapter I discuss in more detail some attempts
to address this challenge, focusing on accounts that associate computation with pro-
gram execution.

4.3.5 A Way Out of the Dilemma?

Cummins characterizes computation in terms of program execution, which is in
turn reduced to step- satisfaction. The dilemma mentioned earlier is summarized
by Piccinini as follows: “Either connectionist systems execute programs, or they
do not compute” (Piccinini 2008c: 312). Cummins (1989: chap. 11; Cummins
and Schwarz 1991), who foresees the difficulty, offers two optional answers to the
question of whether neural networks compute. One is that neural networks do
execute programs and, hence, compute. Cummins calls this option “conservative
connectionism,” and appears to opt for this route.32 The second option is that

 29 See also Koch (1999); O'Reilly and Munakata (2000); and Shadmehr and Wise (2005).
 30 In his seminal book Finite and Infinite Automata, Minsky (1967) even defines finite-state
automata in terms of McCulloch and Pitts networks (which he considers computing).
 31 Pylyshyn (1984: 70– 71), e.g., draws the line between computers and non- computers along the
architectural property of possessing a functional distinction between program and memory. A Turing
machine, he says, is a computer because it possesses this property; finite- state automata and the “new
connectionist” machines (his term), however, do not, and so they are not computers.
 32 Cummins writes: “What I really hope is that the conservative connectionist will turn out to be
on the right track” (1989: 155).

112 The Nature of Physical Computation

neural networks do not compute.33 Another route, discussed later on, is to deem
some neural networks as computing and others as non- computing.

We will examine the first two options in turn. Following Cummins, I will
focus on connectionist systems (which are one style of neural networks). My
aim in this examination is not to undermine Cummins’s conclusions about
connectionist computation; my aim is to show that Cummins’s step- satisfaction
condition leads to further undesirable, even fallacious results, so this condition
cannot really support his conclusions, even about connectionist computation.

The first option proposed by Cummins is that connectionist systems compute
because they execute programs. However, the claim that connectionist systems
execute programs is somewhat odd, because we usually attribute program exe-
cution to machines that maintain a functional distinction between program and
memory, such as Turing machines.34 Friends and foes of connectionism, how-
ever, repeatedly emphasize that connectionist systems typically do not main-
tain a program/ memory distinction; the program and memory are blended in
the same functional components.35 In the n- queens network, for example, both
“program” and “memory” are encoded in the very same (“synaptic”) weights
that link the units together. So, in what sense do connectionist systems execute
programs?

It follows, then, that Cummins clearly holds a notion of program execu-
tion that is not committed to a functional distinction between program and
memory.36 As previously noted, program execution ultimately boils down to
“disciplined” step- satisfaction (1989: 92)— the “discipline” in this context being
the requirement that the satisfied functions (“steps”) are carried out in the right
order. However, this discipline need not come from a different program- stored
unit. As Cummins puts it, “the discipline takes care of itself ” (p. 92): all that is
required is for there to be some mechanism ensuring that the correct order of
operations is maintained. If we think of the program as a flowchart with boxes
and arrows (p. 92), and there is an arrow from box1 to box2, then the mechanism
makes sure that the output of box1 is the input of box2 (presumably, each box
satisfies each function in a single step).

According to this notion of program execution, the n- queens network might
be viewed as executing a program. Each iteration of the network can be viewed as

 33 This option is proposed in Cummins and Schwarz (1991). Cummins (1989) proposes a third
option: that connectionist systems execute programs (compute) but do not compute cognitive
functions. I will not discuss this option, as it does not differ from the first option with respect to
computation. I will only comment that the proposal is fairly radical, and that Cummins and Schwarz
themselves remark that they “know of no connectionist research that consciously seeks to exploit this
possibility” (1991: 68).
 34 See, e.g., Pylyshyn (1984).
 35 See, e.g., Fodor and Pylyshyn (1988: 34– 35) and Schwarz (1992).
 36 See Cummins (1989: 165– 166 n. 5), where he discusses various notions of program execution.

Computation as Step-Satisfaction 113

a single step and the process as a whole as step- satisfaction, and therefore as com-
putation. True, the discipline in the network is more relaxed than that described
earlier, since the unit being updated is chosen at random. In addition, the flow-
chart diagram with boxes and arrows is not a perfect model for the network. In
a boxes- and- arrows flowchart, each box usually stands for a component in the
target system. In the n- queens network, a single- step, state- transition satisfaction
is from one total state (“energy level”) of the network to another. Nevertheless,
the overall dynamics can be seen as disciplined step- satisfaction, in the sense
that what we have here is a series of iterations in which one iteration’s “output”
(which is a total state of the network) is the next iteration’s input.

Putting aside for the moment the question of whether this characterization
is faithful to the notion of program execution (I shall return to this point when
discussing Roth’s proposal later), I argue that this characterization of program
execution is a non- starter as a criterion for distinguishing computing from
non- computing. One problem, as we mentioned earlier, is that if we count the
n- queens network as performing step- satisfaction (“program execution”), then,
it seems, we must consider virtually every physical dynamics phenomenon
to be executing a program. The dynamics of particles on a lattice is also step-
satisfaction, as it proceeds from one energy state to another. The same goes for
the stages in the digestive process or of planetary movements, or the successive
cycles of a washing machine: they all appear to execute programs, and thereby to
compute functions. Indeed, almost every physical process would appear to fulfill
the criterion of disciplined step- satisfaction in this sense. If that is the case, the
notion of executing a program plays no real role in distinguishing computing
from non- computing.

Another problem is that sometimes we do want to count a single- step
process as computation. This problem surfaced earlier, when we noted that
drawing the distinction between computing and non- computing along the
boundary between one and two- or- more steps does not make much sense. In
the context of neural networks this problem is even more acute, as there are
networks that complete their operations in a single step. Indeed, these are the
kind of networks that Cummins has in mind when discussing connectionist
computation— feed- forward connectionist networks with only two layers,
input and output. In these networks, the dynamics consists of a single step,
whose input is the activation values of the network’s input units, and whose
output is the activation values of the network’s output unit. Rumelhart and
McClelland’s network for past- tense acquisition (1986) is a well- known ex-
ample: in their (trained) network, the inputs encode the verb’s present- tense
form, and the outputs encode the verb’s past- tense form. Yet this single- step
input- output mapping is often viewed as a paradigm example of connectionist
computation (Buckner and Garson 2019).

114 The Nature of Physical Computation

Martin Roth (2005) proposes to deal with this problem by offering a different
construal of program execution. According to Roth, a system might execute a
program even if the satisfaction process does not consist of successive steps, and
it might execute a program even if it generates outputs from inputs in a single
step. Roth relaxes the requirement that going through the temporal sequence of
states that corresponds to the order of functions specified by the program is nec-
essary for the execution of a program. Rather, he proposes the requirement that
the weights of the connectionist system mirror the functional dependencies spe-
cified by the program; in the flowchart diagram, this means that functional de-
pendencies refer to the dependencies of the inputs of one subroutine (“box”) on
the outputs of another subroutine. But the weights need not mirror the causal-
temporal order of the program. All that is required is that the weights be derived
from the functional dependencies of the program. If the weights are derived from
a partial product program, the network computes multiplication by virtue of exe-
cuting a partial product program; if they are derived from successive additions,
the network computes multiplication by executing the successive- additions pro-
gram. As long as the weights are derived from a program, the network executes
the program, regardless of whether it does so in a single step or in two or more
steps. The technique of deriving weights from a program is based on the work of
Smolensky, Legendre, and Miyata (1992; Smolensky and Legendre 2006).

Piccinini (2008c) criticizes Roth’s construal on several grounds. His main
complaint is that under Roth’s construal, the notion of program execution is
completely detached from its original meaning, as conceived in computer sci-
ence.37 He says that “the connectionist system computes the function defined by
the program without executing the program” (p. 314).38 In this respect, I would
add that Roth provides an account of how a network implements a program, not
of how a network executes a program. However, I am not sure that proponents
of connectionist computation would be happy with the view that connectionist
theory is a theory of implementation.39

Piccinini (2008c) also contends that Roth’s proposal applies only to a spe-
cial case of networks, not to all networks— and therefore his notion of program
execution cannot be taken as a comprehensive account of connectionist com-
putation. On this point, I would add that Roth classifies computing systems ac-
cording to the types of programs they execute. However, he does not delineate
clearly between systems that execute programs and those that do not, nor does

 37 Piccinini (2008c) notes that “acting in accordance with a program is hardly sufficient for pro-
gram execution” (p. 314).
 38 Piccinini also notes (2008c: 314 n. 5) that this is exactly how Smolensky and Legendre (2006: 72)
themselves describe the situation.
 39 See, e.g., McClelland, Rumelhart, and Hinton (1986: 10– 11), who insist that the PDP models
belong to the cognitive level.

Computation as Step-Satisfaction 115

he tell us under what conditions a physical system does or does not execute a
program. Therefore, he does not really account for the difference between com-
puting and non- computing systems. Returning to the n- queens network, we can
derive (in one way or another) the weights of the network from a given program.
The problem is that we can also derive the “weights” of a magnetic (presumably
non- computing) system from a program— and the same goes for virtually every
physical system. In a nutshell, Roth does not account for physical systems that do
not execute programs. Thus, his construal of program execution cannot be ac-
cepted as a satisfactory account of physical computation.

The point of this discussion is not that neural networks do not compute— I
think that they do. The point is that the notion of program execution— at least
when reduced to a designated architectural feature— does not provide the re-
quired account of computation. It does not help us in differentiating computing
networks from other, non- computing systems. So far, I have discussed one archi-
tectural account (Cummins’s) at some length, and provided a brief discussion of
another (Roth’s). But as I have already mentioned, the difficulties in accounting
for connectionist computation are, I believe, symptomatic of the attempts to as-
sociate computation with some single architectural feature or another.

Let us turn, then, to the second option put forward by Cummins— namely,
that neural networks do not compute. Cummins and Schwarz supply the fol-
lowing reasoning for this option:

Representational states, while causally significant, are states in a dynamical
system whose characteristic function— the function defined by its dynamic
equations— is not itself computable. This, of course, is more than a mere pos-
sibility. A network whose representational states are real- valued activation
vectors and weight matrices, and whose dynamics is given by a set of differen-
tial equations, is in general, going to be just such a system. (1991: 69)

The reasoning here seems to be this: (1) a pertinent connectionist system that
operates with states that are “real- valued activation vectors and weight matrices,
and whose dynamics is given by a set of differential equations” is likely to be
characterized by a function that is not Turing machine computable; (2) if the
characteristic function of the system is not Turing machine computable, the
system does not compute. Hence, the connectionist system in question does not
compute.

The premises in the argument are flawed, however. With regard to the first
premise, the fact that a characteristic (input- output) function is defined over
real- valued parameters does not mean that the characteristic function is not
Turing- computable. There are extensions of Turing computability to real-
valued magnitudes; when these extensions are in place, it is in fact very likely

116 The Nature of Physical Computation

that the characteristic (real- valued) function of a physical system is Turing
computable (see Section 3.4.2). As for the second premise, there may be phys-
ical (hypercomputing) systems that compute functions that are not Turing com-
putable (see Chapter 3). In the present context, I would cite the work of Hava
Siegelmann (1995, 1999), who introduces real- valued (analog) neural networks
whose characteristic function is not computable. Many do count these networks
as computing non- Turing computable functions.40 Thus, as they fail to establish
the premises, Cummins and Schwarz’s conclusion is not supported.

A third possibility is to argue that we are presented with a false dilemma. It
is a mistake to assume that either all neural networks compute or they do not.
In truth, some neural networks compute, and some do not. Networks that op-
erate with discrete values, for example, compute; networks that operate with
analog, continuous values do not.41 I have already discussed the proposal to ex-
clude analog systems from the domain of computing. But I would like to high-
light two points that were made in the previous section about analog and digital
in the context of neural networks. One is that it is hard to draw a clear line be-
tween analog and digital networks. A neural network system might be analog
in some parameters and digital in others. One parameter is the activation func-
tion of cells: threshold and bi- stable functions might be conceived of as digital,
while other (e.g., sigmoid) functions might be seen as analog. Things get more
complicated if we add spiking rates (which might be seen as digital) and sto-
chastic elements to the equation.42 Another parameter is the weight values of the
system. In some networks we find only two values— inhibitory (− 1) and excita-
tory (+1)— which makes the scale digital; in other networks the values can as-
sume any rational or even real value between − 1 and +1, which makes the scale
more analog. Yet another parameter is the process itself. As we noted earlier,
some processes are described as consisting of “steps” (e.g., iterations), while
others comprise a single step; the former process, then, might be seen as digital,
and the latter as analog. Some of these processes are described in terms of dif-
ferential equations, but others might be described in terms of automata theory
(as in Minsky’s 1967 book). Here, too, there are complications pertaining to sto-
chastic elements, such as synchronous and asynchronous updating. Another pa-
rameter has to do with the energy landscape. Some energy landscapes consist
of separable point attractors; these are typical of Hopfield networks, and can be
seen as digital. But other landscapes can consist of line, ring, or plane attractors.43

 40 For a pertinent review see, e.g., Copeland (2002c).
 41 Piccinini (2008c) makes this claim more explicitly, but he has apparently since changed his
mind (2015). I discuss his views in Chapter 6.
 42 Further examples are provided by Maley (2018), who shows that the (analog) time and rate be-
tween spikes serve as representations.
 43 See Eliasmith (2007) for a useful review.

Computation as Step-Satisfaction 117

In Chapter 9 I discuss a neural network with a line attractor, in which all the (in-
finitely many) fixed points lie on a continuous line. This landscape can be seen
as analog— and here, too, there are many more varieties of attractor (and non-
attractor) networks.

For example, the n- queens network can be seen as digital: the activation values
are determined by a threshold function; the weights can be either +1 or - 1; the
process consists of a series of iterations; and the landscape function consists of
separable fixed- point attractors. Nonetheless, the overall dynamics is described
in terms of differential equations. Hopfield and Tank (1985) describe a network
for the “computation of decisions in optimization problems” (p. 141), such as
the traveling salesman problem. Their network is digital, in that it consists of
separable units and separable attractors— but it is analog in its activation re-
sponse and weight values. The oculomotor memory system (to be discussed in
Chapter 9) can be seen as mostly analog: it consists of real- valued activation and
weight values; the process is governed by differential equations; and the energy
landscape incorporates a line attractor. Nonetheless, the process ranges over
spike trains and consists of iterations. One could also construct a network that
has bi- stable activation values and a continuous scale of weight values. In this
network, the process consists of a series of steps, yet it is described by a set of dif-
ferential equations. Such a network is neither analog nor digital, but rather (so it
seems) somewhere in between. There is no clear line between analog and digital
neural networks.44

The second point concerns the claim that the digital/ analog distinction
does not correspond to the computing/ non- computing distinction. The
reason for this disparity is not the vagueness of the digital/ analog distinc-
tion: had the digital/ analog distinction aligned with the computing/ non-
computing distinction, then the latter distinction would be vague too. We
certainly cannot rule out the possibility that there is no fine line between com-
puting and non- computing in the physical world. Rather, the reason for the
disparity is something else. It does not seem right that when you turn one pa-
rameter from digital to analog, you make the system less computing. Take, for
example, the n- queens network: turning the activation- value function to non-
linear and analog (as in the Hopfield- Tank network) makes the network less
digital and more analog— but it does not make the network the slightest bit
less computing, as the Hopfield- Tank network computes a solution for opti-
mization problems just the same. Changing parameters from digital to analog
might make the system less robust, more sensitive to noise, and sometimes

 44 Piccinini and Bahar (2013) argue that computation in the brain is neither analog nor digital:
“Current neuroscientific evidence indicates that typical neural signals, such as spike trains, are

graded like continuous signals but are constituted by discrete functional elements (spikes); thus, typ-
ical neural signals are neither continuous signals nor strings of digits” (p. 453).

118 The Nature of Physical Computation

intractable. But nowhere in the scientific literature on neural networks has the
network been considered less computing. The same goes for the neural ocu-
lomotor memory network (Chapter 9): it is more analog than the Hopfield-
Tank network, in that it is a line attractor network— but it is not considered
less computing than any other neural network.45 One could, by fiat, decide to
exclude all networks from the computational domain— but, as we noted ear-
lier, such an approach is not very interesting with regard to understanding the
role of computation in the computational sciences.

4.4 Summary

This chapter has focused on Cummins’s account of computation. As in
many earlier accounts, Cummins defines computation in two stages: first, he
associates computation with a theoretical notion in computer science (pro-
gram execution), then he reduces that notion to a select architectural property
in the physical world (step- satisfaction). In Chapter 3, I disassociated physical
computation from theoretical notions of logic and computer science. In this
chapter, I addressed the second stage, arguing that the architectural feature of
step- satisfaction plays no role in distinguishing computing from non- com-
puting. Under some interpretations of step- satisfaction, it excludes important
instances of computing systems, while under other interpretations it is mean-
ingless, in that it can be applied to virtually any physical system. To support
this claim, I described two cases of computing systems: Pitowsky’s averaging
machine, which is representative of many analog computers, and attractor
neural networks, which are used extensively in AI and in the cognitive and
neural sciences. While I have dealt mainly with Cummins in this chapter, my
argument— that architectural features play no essential role in characterizing
physical computation— can be extrapolated to other architectural accounts of
computation.

 45 A similar point is made by Piccinini and Bahar (2013) about computation in the brain. As men-
tioned in note 44, processes in the brain are computations, regardless of whether they are analog,
digital, or something else (sui generis).

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0006

5
Computation as Implementation

Many accounts of computation associate it with the implementation of some ab-
stract structure such as an automaton, algorithm, or program. David Chalmers
(1996, 2011) offers the most detailed account of this approach. In developing
it, he sought to undermine the triviality results put forward by Hilary Putnam
(1988) and John Searle (1992). These results are often thought to amount to
unlimited pancomputationalism— that is, the claim that every physical object
performs every computation. Many have responded to Putnam and Searle,
arguing that their notion of implementation is far too liberal. Whether these
responses are successful remains a matter of dispute.

This chapter addresses Chalmers’s account of implementation and compu-
tation (Chalmers 2011).1 My own view about this account is nuanced. On the
positive side, I suggest that his notion of implementation— perhaps with some
modifications— successfully circumvents the dire consequences of Searle’s and
Putnam’s triviality results. However, while I believe that implementing some for-
malism (in Chalmers’s sense) is necessary for computing, I will argue that it is not
sufficient for computing.

I start the chapter by reviewing Searle’s and Putnam’s triviality results and their
implications (Section 5.1). I then discuss Chalmers’s response to these results—
suggesting that, by and large, it manages to avoid overly strong triviality (Section
5.2). I next ask whether Chalmers’s notion of implementation can serve to define
physical computation (Section 5.3). I suggest that implementation is a necessary
condition of computation— with two qualifications, which Chalmers appears to
accept (Section 5.3.1). One qualification (which runs against the logical dogma)
is that the implemented structure can be any kind of dynamical formalism, even
if that formalism is not part of computability theory. The other qualification
(which runs against the architectural dogma) is that the implemented formalism
is not to be located in certain architectural properties of the implementing phys-
ical system. I finally argue that implementation is not a sufficient requisite for
computing (Section 5.3.2); many physical systems— such as rocks, stomachs,

 1 Chalmers developed his response to triviality results (1994, 1996) into an account of computa-
tion that provides foundations for the study of cognition. The unpublished account was aired in 1994
and received significant attention. It was later published in a special issue of the Journal of Cognitive
Science (Chalmers 2011), followed by twelve articles and a reply (Chalmers 2012).

120 The Nature of Physical Computation

and hurricanes— do not compute, even when they implement a formalism of
some sort.

5.1 Triviality Results

An early version of triviality results (from the 1970s) is attributed to Ian
Hinckfuss. Hinckfuss points out that under a suitable categorization of states, a
bucket of water sitting in the sun (“Hinckfuss’s pail”) can be taken to implement
the functional organization of a human agent.2 However, triviality results are
mainly associated with Hilary Putnam (1988) and John Searle (1992). Putnam
(1988) put forward the claim that every physical system that satisfies some min-
imal conditions implements every finite- state automaton. Searle (1992) asserted
that the wall behind him implements the Wordstar program, and that a large
enough wall implements any program one would wish. Putnam and Searle took
these results to undermine a number of theses about the relationship between
computation and mind, in particular the view that “the brain is a computer and
mental processes are computational” (Searle 1992: 198). We will return to the
more general arguments in Section 5.1.3. Let us begin, however, with the trivi-
ality results themselves.

5.1.1 Searle’s Triviality Results

Here is how Searle puts the results in The Rediscovery of the Mind:

On the standard textbook definition of computation, it is hard to see how to
avoid the following results:
1. For any object there is some description of that object such that under that

description the object is a digital computer.
2. For any program and for any sufficiently complex object, there is some

description of the object under which it is implementing the program.
Thus for example the wall behind my back is right now implementing the
Wordstar program, because there is some pattern of molecule movements
that is isomorphic with the formal structure of Wordstar. But if the wall is
implementing Wordstar then if it is a big enough wall it is implementing any
program, including any program implemented in the brain. (1992: 208– 209)

 2 See Lycan (1981: 39) and Cleland (2002). See also the discussion in Sprevak (2018), who provides
a useful summary of various triviality arguments.

Computation as Implementation 121

Searle’s argumentation is somewhat loose. First, he does not clearly distin-
guish between two different results. One states that every object under some
description is a digital computer. If Searle assumes that a digital computer is a
universal machine, then the result amounts to the claim that every object can
simulate the operations of every algorithm. But if Searle understands a digital
computer to be an object that implements (or executes) an algorithm (or a pro-
gram), then the result amounts to the claim that every object implements at least
one algorithm (or program). A second result refers to specific objects: Searle
refers to the wall behind him, which does not appear to involve many changes
or complex dynamics. He claims that even this fairly simple object implements a
complex Wordstar program. Searle next says that a big enough wall implements
any program— here, the size apparently enables the implementation of more op-
erations and/ or memory.

Second, Searle does not say much about the notion of implementation.
He mentions in brief that the implementing physical structure should be iso-
morphic to the implemented formal structure of the program. Presumably,
he means that there is a structure- preserving mapping relationship between
the pertinent physical object (such as the wall) and the pertinent program
(e.g., Wordstar). Another way to put it is that the implementing physical ob-
ject and the program have “the same structural or formal features” (Swoyer
1991: 457): they share a high- order formal or mathematical structure called a
shared structure.

To be a little more precise: Let D and D be two domains, each of which
comprises individuals and relations. We would say that the two domains are iso-
morphic just in case the following two conditions hold: (a) there is a one- to-
one function f from the full domain of relations of D onto that of D which maps
each R- relation of the first to some R- relation of the same type in the second, and
(b) the function f is structure- preserving— that is, for every n- ary relation R and
n- tuple of individuals (in D) the following is true:

<x1, . . . , xn> ∈ R if and only if < f (x1), . . . , f (xn)> ∈ f (R).

When talking about implementation, one should add two caveats. One is
that isomorphism should be replaced with the weaker condition of homomor-
phism. Like isomorphism, homomorphism is structure- preserving, but it need
not cover the full domain of relations of the implementing physical object.
Some relations in the physical object might not play any role in implementing
the program. It is mandatory, however, that the function f covers the full do-
main of relations of the program— and that f is structure- preserving. Another
caveat is that the typical relations in the implemented program must be of the
 state- transition type. Thus, a state- transition relation of the program from

122 The Nature of Physical Computation

P to Q (sometimes represented as P → Q) is mirrored by a transition of states
from p to q— whereby p and q are states of the implementing physical object,
and f (p) = P and f (q) = Q.

Searle does not justify these results. His argument goes as follows (Searle
1992: 205– 210): Philosophers of mind invoke the multiple realization argument
to support computationalism (the view that “the brain is a computer and mental
processes are computational”). The multiple realization argument is the claim
that mental states can be realized in a great many different physical structures,
and thus mental states are not reducible to any one of their realizing physical
structures.3 One well- known version of this claim associates mental states with
computational states (“computationalism”). But this notion of realization—
according to which a physical system implements a program— also leads to triv-
iality results that undermine computationalism.4 Searle, however, provides no
proof of this result.

Copeland (1996) explicates and directly proves Searle’s (stronger) result
under certain assumptions. Copeland’s idea is roughly this: Let SPEC be a
specification of an architecture of a machine (such as axioms describing an
architecture) and of an algorithm, α, for that architecture. Let <e, L> be an
ordered pair, where e is some entity, and L is a labeling scheme for that en-
tity. We will say that e implements (executes) the algorithm α iff <e, L> is a
model of SPEC, a model here being basically a structure- preserving function.
Finally, we will say that e computes the function f if and only if it implements
(executes) an algorithm α for f. In section 4 of his paper, Copeland proves
Searle’s theorem: For a given entity e (with a sufficiently large number of dis-
criminable parts) and for any architecture- algorithm specification SPEC,
there exists a labeling scheme L such that <e, L> is a model of SPEC. Copeland
shows that if SPEC is the architecture of register machines, and if the registers
can occupy different parts of the physical object at different times, then there
will always be a one- to- one mapping (“model”) of SPEC to the labeling L of
e. We will not get into further details here, but rather focus on Putnam’s ar-
gument for (his) triviality results. Suffice it to say that Copeland, who is not
happy with the triviality results, goes on to criticize the notion of implementa-
tion that underlies Searle’s result.

 3 The multiple realization argument is one of the most- discussed topics in philosophy of mind. See
Putnam (1967) and Fodor (1975) for early versions of the argument in which mental states are con-
sidered as computational states; see Aizawa and Gillett (2009) for a more recent defense of multiple
realization. See also Polger and Shapiro (2016) for an extensive and sober overview of the argument
and its scope.
 4 I will assume (following Searle and Putnam) that implementation is the realization of formal/
abstract properties by a physical system; I will use only the term implementation unless discussing the
arguments of others.

Computation as Implementation 123

5.1.2 Putnam’s Triviality Results

Putnam notes early on that “everything is a Probabilistic Automaton under some
description” (1967: 435). Like Searle, he maintains that the multiple realization
argument is a double- edged sword. We used to think that multiple realization
supplied more reasons to believe in computationalism, but it now appears that
multiple realization of an automaton extends to the implementation of every
automaton— which undermines computationalism. Putnam provides an ex-
tensive argument for the universal realization claim. In fact, in the appendix to
Representation and Reality (1988: 121– 125), he proves that every ordinary open
system that satisfies two minimal principles is an implementation of every ab-
stract finite automaton. The principle of continuity states that electromagnetic
and gravitational fields are continuous; this principle is fairly natural, at least
in classical physics. The principle of non- cyclical behavior states that the phys-
ical system is in different maximal states at different times; “a ‘maximal’ state is a
total state of the system, specifying the system’s physical makeup in perfect de-
tail” (Chalmers 1996: 310). The truth of this principle is less obvious. But even
in its absence, the result applies to a great number of systems whose behavior is
noncyclical.5

Putnam’s theorem addresses finite- state automata (FSA) without inputs/
outputs (I/ O). Here is an outline of the proof. Take the FSA that runs through the
state- sequence PQPQPQP at a given time interval. Here, P and Q are the states of
the FSA. Let us see how a rock realizes this run in a 6- minute interval— say, be-
tween 12:00 and 12:06. Assume that the rock is in a maximal physical state p0 at
12:00, p1 at 12:01, and so forth. Assume also that the states differ from each other
(this is Putnam’s principle of non- cyclical behavior). Now let us define a phys-
ical state a as p0 ∨ p2 ∨ p4 ∨ p6, and define b as p1 ∨ p3 ∨ p5. The rock implements
the FSA in the sense that the causal structure of the rock “mirrors” the formal
structure of the FSA. The physical state a corresponds to the logical state P, the
physical state b corresponds to the logical state Q, and the transitions from a to
b correspond to the computational transitions from P to Q. A complete proof
would require further elaboration and assumptions.

I will add three quick comments about Putnam’s result. One is that— much like
Searle— Putnam assumes that implementation is exhausted by some homomor-
phism between the implementing physical system and the implemented autom-
aton. The second is that Putnam’s proof takes the (implementing) states of the
physical objects to be total, “maximal” states of the objects. The state- transition
in the physical object is between two total states. Searle and Copeland, in con-
trast, appeal to the inner structure of the physical object, such as registers that

 5 See Chrisley (1994, sec. 5), who discusses the scope of the principle of noncyclical behavior.

124 The Nature of Physical Computation

change places within the physical object. Lastly, Putnam observes (p. 124) that
the proof cannot be immediately extended to FSA with inputs/ outputs (I/ O). If
the I/ O are functionally individuated, then the I/ O can be treated much like ab-
stract internal states, and the extension is natural. In that case, we get the result
that (almost) every physical object implements every finite automaton. If the I/
O are individuated by their physical biological properties (as some functionalists
might hold), then we slide into behaviorism: in that case, what distinguishes a
rock from a brain is only I/ O (since both implement every automaton without I/
O).6

To recap: both Searle and Putnam aim to show that (almost) every physical
object that satisfies certain minimal conditions implements (almost) every pro-
gram (Searle), algorithm (Copeland), or automaton (Putnam). Their arguments
for these (triviality) results are similar. They equate implementation with a
simple structure- preserving mapping function (homomorphism) and argue that
(almost) every physical object is homomorphic to every automaton (etc.).

The triviality argument, then, bears the following structure:

 1. Every physical object is homomorphic to every automaton (etc.) .
 2. A physical object s implements an automaton SC if s is homomorphic to SC.
 3. Triviality: Every physical object implements every automaton (from 1

and 2).

Putnam justifies the first assumption by providing a proof that pertains to
finite- state automata. Searle does not provide such a detailed proof for his con-
struction, but Copeland does later on.

5.1.3 Implications of Triviality Results

What follows from these triviality results? If true, these results have far- reaching
and devastating consequences for the notions of implementation, computation,
and mind. Let us review them in turn.

Implementation. One implication pertains to the notion of implementation. If
every physical object implements every program (Searle), algorithm (Copeland),
or automaton (Putnam), then the notion of implementation is in danger of being
rendered trivial (hence the name triviality results). If a rock, a chair, a laptop, or a
mind are all the same at implementing every automaton (etc.), then the notion of
implementation does not appear to have the important theoretical and practical
role that we thought it had. We used to think that the notion of implementation

 6 See Putnam 1988: 124– 125.

Computation as Implementation 125

was what differentiated rocks and chairs from laptops and minds— namely, the
former did not implement the kind of automata implemented by the latter. But
it now transpires that there is no such difference— they all implement the same
class of (i.e., all) automata.

This outcome not only is counterintuitive, but also undermines a major
working hypothesis in the theory and practice of computer science. Computer
scientists make a huge effort to find ever more efficient algorithms for solving
theoretical and practical problems, with the aim of implementing them in
objects (such as laptops) that will then solve those problems. The exhaustive-
search algorithm for factorization— the problem of decomposing an integer
into the (unique) product of primes— is exponential. There is apparently no effi-
cient, polynomial- time algorithm for the problem, but there are sub- exponential
algorithms that improve the search considerably.7 The backtracking algorithm
for the n- queens problem is exponential. But there are also efficient polynomial-
time algorithms that can solve the problem fairly quickly (see the discussion in
Chapter 4). However, if triviality is true, then this effort is redundant, since even
rocks implement all these algorithms. A rock, therefore, solves the n- queens
problem with the exponential- time algorithm, and simultaneously solves the
same problem with a polynomial- time algorithm. The same goes for factoriza-
tion and other problems. Indeed, a rock simultaneously provides all the possible
solutions to all these problems! The notion of implementation therefore loses its
theoretical and practical significance.

Computation. A second consequence of triviality results concerns compu-
tation. Let us start with the accounts of computation that assume that compu-
tation is the implementation of an automaton, a program, or an algorithm.8 If
triviality is true, and assuming that performing a computation C corresponds to
implementing an automaton SC, then every physical object performs every com-
putation (unlimited pancomputationalism).

The reasoning, in a nutshell, goes as follows:

 3. Every physical object implements every automaton (triviality).
 4. A physical object s performs a computation C iff s implements an autom-

aton SC.
 5. Every physical object performs every computation (unlimited

pancomputationalism) (from 3 and 4).

 7 Computational complexity is discussed in Section 3.3.2.
 8 This is an assumption held by Putnam and Searle. Searle takes his characterization of implemen-
tation to be the “standard textbook definition of computation” (1992: 208).

126 The Nature of Physical Computation

Today, we distinguish between limited and unlimited pancomputationalism.9
Limited pancomputationalism is the claim that every physical object (system)
performs at least one computation. Unlimited pancomputationalism is the
claim that every physical object (system) performs every computation. Limited
pancomputationalism seems to undermine the distinction between computing
and non- computing physical systems, as it implies that every physical system
computes (but see the discussion in Section 5.3; see also Chapter 1). Unlimited
pancomputationalism seems to undermine, in addition to the computing/ non-
computing distinction, the notion of computational equivalence— namely, the dis-
tinction between different types (kinds) of computing systems. It implies that rocks,
chairs, desktops, and minds are all computationally equivalent, as they perform ex-
actly the same— in fact, all— computations.

Triviality results also endanger accounts of computation that assume that
implementing an automaton, a program, or an algorithm is necessary for com-
puting. These accounts do not immediately face the challenge of pancomputa-
tionalism: there might be other features that exclude rocks and chairs from the
computational domain and/ or from computing everything. However, triviality
results imply that implementation is an empty condition— that is, a condition that
appears to provide no additional information as to whether or not something is
a computer, or whether or not objects are computationally equivalent. After all,
every physical object satisfies the condition.

Triviality results are also worrisome for those who think that implementing
an automaton (etc.) is neither sufficient nor necessary for computation. Even the
proponents of such accounts usually accept that there are many physical computers
that do implement some automata (etc.), and that this fact plays at least some
role in determining the computational identity (and hence, the computational
equivalence) of physical objects. But, as we have just seen, triviality implies that
implementing automata (etc.) contributes nothing to determining computational
equivalence.

The upshot, then, is that triviality results, if true, have dire consequences for practi-
cally every account of physical computation.

Mind. Triviality results have another important set of implications pertaining
to certain theories of mind and cognition that associate mentality with compu-
tation. One cluster of theories assumes what Chalmers (2011) calls the compu-
tational sufficiency thesis (CST). CST states that implementing “the right kind of
computational structure suffices for the possession of a mind, and for the posses-
sion of a wide variety of mental properties” (p. 326).10 Triviality results appear

 9 See Piccinini and Anderson (2018) for recent discussion.
 10 There are two important caveats here. One is that CST is not committed to the claim that com-
putational structure determines every aspect of mentality: the content of mental states might be at
least partially determined by external factors, and therefore does not supervene on computational

Computation as Implementation 127

to challenge CST: if every physical object implements every automaton, then,
if CST is true, every physical object implements the automaton that suffices for
the possession of a mind.11 Hence, every physical object is a cognitive system. In
other words, if CST is true, then rocks, chairs, and hurricanes all possess the kind
of mind that we do. But assuming that rocks, chairs, and hurricanes do not pos-
sess minds, triviality results indicate that CST, and theories of mind that assume
CST, are simply false.

This argument can be put as follows:

 3. Every physical object implements every automaton (triviality).
 6. If CST (the implementation of the right kind of automaton suffices for the

possession of a mind), then rocks, chairs, and hurricanes— as physical
objects— possess minds (from 3).

 7. Rocks, chairs, and hurricanes do not possess minds.12

 8. CST is false (from 6 and 7).

Searle and Putnam reason along these lines when arguing against cer-
tain theories of mind and cognition that assume CST. Searle argues against
“computationalism,” which is the view that mental processes and states are en-
tirely computational.13 This strong form of computationalism is obviously com-
mitted to CST. Putnam’s critique is aimed at the view known as computational
functionalism— namely, the view that mental types are individuated by their
functional role, which is determined by the causal relationship between mental
states, inputs, and outputs (or “functional organization,” in Putnam’s words).14
Computational functionalism identifies this functional organization with the
computational structure of the system,15 and therefore assumes CST.16 Thus,

structure. The second caveat is that “sufficiency” in this context refers to nomological sufficiency, not
metaphysical sufficiency. According to Chalmers, phenomenological properties supervene nomo-
logically but not metaphysically on computational structure.

 11 I equate computational structures and automata here for the sake of argument (in Section 5.3,
however, I will argue against this equivalence).
 12 Some panpsychists, however, might contend this premise, or at least insist that the rock’s funda-
mental parts have mental properties (Goff, Seager, and Sean 2020).
 13 As Piccinini (2009) notes, however, most computationalists are not committed to the claim that
mental processes are entirely computational.
 14 See Levin (2018) for an explication of this view. Broadly speaking, functionalism identifies
kinds of mental states by their functional role.
 15 This view, also known as machine functionalism, was once put forward by Putnam (1967) and
Fodor (1975). Only later did Putnam come around to criticizing it. See Shagrir (2005) for a critical
review of the evolution of Putnam’s view of computational functionalism.
 16 Computational functionalism can be seen as CST plus the view that types of mental states are
identified by their functional, i.e., computational properties. Like CST, however, computational func-
tionalism is not committed to the view that every aspect of mentality, such as mental content, is
identified functionally. The identification of mental content with functional properties is known as
functional- role semantics (Block 1986).

128 The Nature of Physical Computation

triviality results, if correct, undermine computational functionalism as well—
because they imply that rocks, chairs, and hurricanes all implement a computa-
tional structure sufficient for possessing a mind.

Triviality results also threaten theories of mind and cognition that do not as-
sume CST. Indeed, all the theories that state that some brain states are compu-
tational (without assuming that being computational is sufficient for mentality)
would appear to be in jeopardy. If triviality results are true, then these theories
are stating something quite trivial, since everything possesses a computational
structure— in fact, every computational structure.

Searle says that triviality has even worse consequences for computation and
cognition. It indicates that “syntax is essentially an observer- relative notion”
(1992: 209) and thus that “computation is not an intrinsic feature of the world.
It is assigned relative to observers” (p. 212). But if computation is not intrinsic to
physics, Searle argues, then the claim that the brain is a computer “does not get
up to the level of falsehood. It does not have a clear sense” (p. 225). The reason is
that we make an empirical claim about the brain, but the decision as to whether
or not something is a computer is a matter of assigning a computational inter-
pretation. And further consequences follow for computational cognitive science.
Searle argues that “there is no way that computational cognitive science could ever
be a natural science” (p. 212). Computational cognitive science is in the business
of investigating whether, what, and how the brain computes— but if it transpires
that computation is not an intrinsic feature of the world, there will be nothing to
discover.17

The conclusion is that triviality results have potentially devastating
implications for the notions of implementation and computation, as well as for
philosophical and empirical theories of mind and cognition that associate men-
tality with computation. How can these implications be blocked? The strategy
taken by most critics is to avoid the triviality results themselves (i.e., premise
(3)). This approach is entirely reasonable: even if you think that triviality results
do not lead to devastating consequences about computers and minds, you might
still want to salvage the important notion of implementation, given its immense
theoretical and practical importance. Thus, some people— including Searle and
Putnam themselves— qualify the claim about the extent of homomorphism
(premise (1)): Searle requires a big enough wall to implement every program,
while Putnam requires continuity and non- cyclical behavior, and focuses on
finite- state automata. However, these qualifications alone do not appear to be
sufficient to circumvent the consequences of triviality results. Most critics, then,

 17 Putnam, too, thinks that his argument has unsettling consequences for cognitive science, but he
does not flesh them out in Representation and Reality. He does, however, present functionalism and
cognitive science as complementary projects (1967: 434– 435) and implies that cognitive science is no
less than science fiction (1997, 1999: 118– 119).

Computation as Implementation 129

go after premise (2), and accuse Putnam and Searle of assuming an overly lib-
eral notion of implementation, arguing that it takes more than simple homomor-
phism to implement an automaton.18

5.2 Avoiding Triviality

As we have just stated, most responses to Putnam and Searle argue that the triv-
iality results rest on an overly liberal notion of implementation (known as the
simple mapping account [Godfrey- Smith 2009]). They claim that it takes more
than a simple mapping to implement an automaton, algorithm, or program.19
These critics, however, disagree over the constraints on implementation that
should be added to the simple mapping account. Some require the implementing
physical states to be causally connected, meaning that the mirroring state-
transition, p → q, between two physical states is a causal relation.20 Others re-
quire the implementation relation to have some modal force, meaning that it
supports relevant counterfactuals.21 Even more restrictions are placed by the dis-
positional account22 and the mechanistic account.23 Yet another condition that is
sometimes invoked pertains to the grouping of physical states, which places some
restrictions on the ways in which we lump together physical objects and prop-
erties into types of states.24 Other people mention pragmatic constraints, which
link the implementing automaton to a particular function of the object.25

 18 Searle himself admits that a more adequate, restrictive notion of realization does not lead to
triviality results: “I think it is possible to block the result of universal realizability by tightening up our
definition of computation” (1992: 209).
 19 But see Schweizer, who defends the simple mapping account (2014) and argues that it is con-
sistent with a reasonable version of the computational theory of mind (2019b).
 20 See Chrisley (1994); Melnyk (1996); and Chalmers (1996, 2011). But, for criticism of the causal
constraint, see also Copeland (1996); Bishop (2009); and Schweizer (2014, 2019a).
 21 See Chalmers (1996, 2011); Copeland (1996); and Scheutz (1999, 2001). But see also Schweizer
(2014, 2019a) for criticism of the modal constraint. Copeland, e.g., says that while a sufficiently
large wall might implement Wordstar in Searle’s sense of implementation, it does not implement
Wordstar in the adequate sense that involves counterfactual scenarios (pp. 347– 350). Copeland thus
redefines the notion of implementation. He says that e implements (executes) the algorithm α iff
<e,L> is an honest model of SPEC. The wall is a non- standard (not- honest) model of the specification
of Wordstar. An honest model is one in which the labeling is not specified ex post facto as labeling,
and supports counterfactuals about the behavioral consequences of the implemented algorithm
(pp. 350– 351).
 22 See Klein (2008).
 23 See Piccinini (2007, 2015) and Miłkowski (2013).
 24 See Scheutz (1999, 2001, 2012) and Godfrey- Smith (2009). Copeland’s requirement that “the
labelling scheme must not be ex post facto” (p. 350) falls into this category and constitutes, together
with the counterfactual (discussed previously), an honest model of the system.
 25 See Egan (2012); Fresco (2015); and Matthews and Dresner (2017). See also Millhouse (2019),
who proposes a formal simplicity constraint.

130 The Nature of Physical Computation

One easy way to avoid triviality is to go the semantic route. Under this ap-
proach, we require that the implementation be an interpretation or repre-
sentation function as well— even if only in a very minimal sense, whereby the
implementing physical states represent the states of the implemented autom-
aton.26 Thus, if the states of the rock do not represent the states of an automaton
S, then the rock does not implement S (of course, something has to be said about
the representation function).27 Now, if it turns out that the only way to avoid too
strong a triviality is through the semantic route, then triviality results can serve
as the basis of a formidable argument for a semantic account of computation. But
many argue that we can minimize the magnitude of the triviality results without
appealing to semantic factors. Let us examine one attempt to do just that.

5.2.1 Chalmers’s Account of Implementation

I focus on Chalmers’s (non- semantic) account of implementation (Chalmers
1994, 1996) for several reasons. First, it is perhaps the most fully developed and
influential account of implementation. Second, it includes causal, modal, and
grouping constraints, and is therefore a good representative of many other ac-
counts of implementation. Moreover, other accounts rely on and build upon
Chalmers’s account. Lastly, it appears to have managed to circumvent Putnam’s
and Searle’s triviality results.

Chalmers agrees with Putnam and Searle that implementation is a mapping
or mirroring relation: “A physical system implements a given computation when
the causal structure of the physical system mirrors the formal structure of the
computation” (2011: 326). More specifically:

A physical system implements a given computation when there exists a
grouping of physical states of the system into state- types and a one- to- one map-
ping from formal states of the computation to physical state- types, such that
formal states related by an abstract state- transition relation are mapped onto
physical state- types related by a corresponding causal state- transition relation.
(p. 326)

This passage highlights that the implementation of an abstract automaton
(“computation”) by a physical system involves a structure- preserving mapping

 26 See, among others, Rapaport (1999); Sprevak (2010); and Blackmon (2013).
 27 It should be noted that this semantic route is perfectly in accord with Putnam and Searle.
Putnam and Searle do not urge us to embrace triviality. They use triviality for a reductio argument
against certain views about the mind that assume that computation is non- semantic. They argue that
this assumption leads to the absurd consequence that rocks and chairs possess minds.

Computation as Implementation 131

(homomorphism) between the physical system and the automaton. But it also
states that the mirroring physical states are grouped into state- types, and that the
state- transition relations between these physical states are causal relations.

In his criticism of Putnam, Chalmers argues that the state- transition relations
should also have some modal force. Indeed, this is his main criticism of Putnam’s
notion:

The problem, I think, is that Putnam’s system does not satisfy the right kind
of state- transition conditionals. The conditionals involved in the definition of
implementation are not ordinary material conditionals, saying that on all those
occasions in which the system happens to be in state p in the given time period,
state q follows. Rather, these conditionals have modal force, and in particular
are required to support counterfactuals: if the system were to be in state p, then
it would transit into state q. (1996: 312)

More specifically, the actual state- transitions of the implementing system
fail to satisfy conditionals that are associated with both the exhibited and the
unexhibited state- transitions of the implemented automaton. With regard to
the exhibited states, Chalmers acknowledges that Putnam assumes that these
transitions are meant to be causal; his criticism is that the implementing states are
not reliable. The physical state- transitions from p to q are entirely independent
on actual environmental conditions at the time of the run. They are not sensitive
even to slight changes in the environmental conditions. They do not ensure that
if the environmental conditions were slightly different (causing the system to still
be in p), the behavior would be slightly different as well (and be counted as q).

The more interesting case pertains to unexhibited state- transitions (where
these occur). The causal structure of the physical object should mirror all pos-
sible formal state- transitions of the implemented FSA. In Putnam’s proof, how-
ever, the rock implements only a single run (the transition from P and Q and
back), not other runs that might exist. If the FSA has other state- transitions (e.g.,
P1 → P2 and P2 → P1), these transitions should also be mirrored by the rock’s
dynamics.

Chalmers concludes that the notion of implementation should be formulated
in terms of a stronger condition:

A physical system implements an inputless FSA in a given time- period if there
is a mapping f from physical states of the system onto formal states of the FSA
such that: for every formal state- transition P → Q in the specification of the
FSA, if the physical system is in a state p such that f(p) = P, this causes it to
transit into a state q such that f(q) = Q. (1996: 315)

132 The Nature of Physical Computation

Chalmers argues that Putnam’s proof does not meet this condition. At the
same time, he notes that it can do so with only a slight revision. Ignoring en-
vironmental conditions helps to solve the first problem, as clocks are often in-
sensitive to environmental variations. Having enough (different) physical states
solves the second problem. This can be as simple as dials (e.g., various marks on
a rock). Chalmers proves that every physical system containing a clock and a dial
implements every input- less FSA (p. 317). This triviality result does not apply to
every physical system, but it does apply to a large number of them.

Next, we will examine FSAs with inputs and outputs. Inputs and outputs
(I/ O) require the satisfaction of further dependencies— since a certain state with
one input (i1, P) leads to one state and an output (P1, o1), but the same state with
a different input (i2, P) might lead to a totally different result, e.g., (P2, o2). These
dependencies can be accommodated if we add to the machine an input memory
that records all possible inputs.28 Such a machine (with a dial) would implement
every FSA with I/ O. This moves us well beyond universal realization, but it is still
troublesome: input memories are not hard to instantiate, so a rock with some
input- recording device implements an FSA for primality- testing.29 This result
also raises the specter of collapsing functionalism to behaviorism: if two systems
have the appropriate I/ O devices and satisfy the strong conditionals, they satisfy
all FSAs with inputs and outputs (p. 324).

The final, yet key, measure put forward by Chalmers concerns the notion of
combinatorial state automaton (CSA). Broadly speaking, a CSA is much like an
FSA, except that it has a more complex, combinatorial internal structure. Each
state is a combination of substates, and any state transition is sensitive to the
combinatorial structure of the previous combined state (p. 324). Thus, whereas
an internal state of an FSA is monadic, the internal state of a CSA is a vector
of values or substates. In a Turing machine, for example, this vector (“config-
uration”) includes the symbols written on the memory tape. The definition of
implementing a CSA is as follows:

A physical system P implements a CSA M if there is a vectorization of internal
states of P into components [s1, s2, . . .], and a mapping f from the substates
sj into corresponding substates Sj of M, along with similar vectorizations and
mappings for inputs and outputs, such that for every state- transition rule
([I1, . . . , Ik], [S1, S2, . . .]) → ([S′1, S′2, . . .], [O1, . . . , Ol]) of M: if P is in internal state
[s1, s2, . . .] and receiving input [i1, . . . , in] which map to formal state and input
[S1, S2, . . .] and [I1, . . . , Ik] respectively, this reliably causes it to enter an internal

 28 Godfrey- Smith (2009) proposes an even simpler alternative to resolve the I/ O issue.
 29 In a response to Brown (2012), Chalmers (2012) adds the requirement that the input memory
and dial should be causally and counterfactually connected to the outputs (p. 236).

Computation as Implementation 133

state and produce an output that map to [S′1, S′2, . . .] and [O1, . . . , Ol] respec-
tively. (2011: 329)

These CSAs, according to Chalmers, are not at all easy to implement, as this
requires a complex internal causal structure of the sort found in very few phys-
ical systems. While rocks might still implement simple FSAs, they do not imple-
ment more complex combinatorial state automata (CSA), which are more likely
to be minds implemented by brains.

This concludes the main components of Chalmers’s theory of implementa-
tion. In this way, he argues, we can settle on a non- semantic theory of implemen-
tation and computation that avoids the consequences of triviality results.30 Let
us now examine whether implementation, as Chalmers defines it, indeed escapes
these consequences. In Section 5.3, we will examine whether Chalmers provides
an adequate theory of computation.

5.2.2 Weak Triviality and Its (Non-)Consequences

Let us begin by distinguishing between strong and weak triviality. Strong triv-
iality is what I referred to as triviality earlier (Premise 3)— namely, that every
physical object implements every automaton. Weak triviality is the claim that
a great many— perhaps all— physical objects implement some automaton.31 We
can think of strong and weak trivialities as lying at either end of a spectrum, with
many options between them. Chalmers does not seek to provide an account of
implementation that sidesteps triviality altogether: he acknowledges that, ac-
cording to his account, even rocks might implement a very simple (e.g., one-
state) automaton, and therefore he is willing to accommodate weak triviality.
His aim is to block the dire consequences of strong triviality for implementation,
computation, and cognition. In assessing Chalmers’s account, then, we want to
examine (a) whether weak triviality (or something very similar to it) blocks the
dire consequences of strong triviality to the notions of implementation, com-
putation and cognition, and (b) whether Chalmers’s account manages to avoid
overly strong triviality. I address the first issue in this section, and the second
issue in Section 5.2.3.

Let us assume, then, that every physical object implements an automaton.
Objects such as rocks and chairs implement very simple automata, perhaps

 30 Chalmers writes: “It will be noted that nothing in my account of computation and implementa-
tion invokes any semantic considerations, such as the representational content of internal states. This
is precisely as it should be: computations are specified syntactically, not semantically” (2011: 334).
 31 If implementation is equated with computation, then this distinction amounts to the distinction
between limited (“weak”) and unlimited (“strong”) pancomputationalism (“triviality”).

134 The Nature of Physical Computation

even one- state automata. Other objects, such as minds, presumably implement
automata that are more complex. What are the implications of this thesis of weak
triviality for implementation, computation, and cognition? Does it have the dire
consequences implied by strong triviality? I agree with Chalmers that the answer
is no: weak triviality does not have devastating implications for implementation,
computation, or cognition.32

Let us start with the notion of implementation. Strong triviality implies that
implementation does not distinguish between rocks and chairs on the one
hand, and laptops and minds on the other. They all implement the same set
of automata— namely, the set of all automata. But weak triviality has no such
consequences: (Chalmers’s) implementation does distinguish between phys-
ical objects. A rock implements (say) a simple one- state automaton, whereas a
laptop implements a far more complex one. Computer scientists— theoreticians
and practitioners alike— would quite happily admit that very simple objects im-
plement simple automata, such as the automaton whose only state- transition is
P → P, or the one whose sole state- transition is P → Q. The force of the notion of
implementation is not in denying this harmless result, but in distinguishing be-
tween rocks, chairs, laptops, and minds. Weak triviality is perfectly compatible
with these distinctions.

What about computation? Strong triviality has some undesired results for
the notion of computational equivalence, because it implies that the automata
implemented by a system play no role in determining the system’s type of com-
putational identity (and thereby in determining whether or not two systems are
computationally equivalent). Once again, this is because every physical object
implements every automaton— so implementation cannot play a role in classi-
fying computing systems. Moreover, assuming that computation is an imple-
mentation of an automaton, strong triviality implies that every physical object
performs every computation (unlimited pancomputationalism). Weak triviality
has no such consequences, but rather only implies that different objects imple-
ment different automata. Minds might implement one automaton, rocks an-
other. If so, the notion of implementation might play a role in classifying rocks
and minds into different computational types, and we do not reach unlimited
pancomputationalism.

Finally, let us consider mind and cognition. Strong triviality, when
supplemented with the sufficiency thesis, implies that rocks and humans have the
same mentality. Weak triviality has no such consequences, since it does not entail
that rocks and humans implement the same kind of computational structures—
e.g., that rocks implement the complex automaton necessary to qualify as

 32 See also Chrisley (1994), who thinks that weak triviality is harmless, and that computation is
never vacuous, even if it is universally realizable.

Computation as Implementation 135

possessing a mind. Moreover, weak triviality bears none of the consequences
that Searle mentions with respect to cognitive science. Weak triviality is con-
sistent with the claim that cognitive science is an empirical science that is in the
business of discovering computational properties. Cognitive science might not
discover that the brain computes. However, cognitive science is still in the busi-
ness of discovering which automata are implemented in the brain, and which
of them are relevant to cognition. Relatedly, weak triviality is consistent with
the claim that implementation and computation are objective and intrinsic to
physics. The claim that everything implements an automaton does not mean that
implementation and computation are not objective— just as the fact that every
physical object has a mass does not mean that mass is not an “objective” and “in-
trinsic” feature of the physical world (see the discussion in Chapter 1).

5.2.3 Does Chalmers’s Account Avoid the
Consequences of Strong Triviality?

As we have seen, reducing triviality from strong to weak is enough to avoid the
dire implications of strong triviality. The next question is whether Chalmers’s ac-
count indeed avoids the results of overly strong triviality. According to some,
it does not: without further constraints on the grouping of physical types, they
argue, we have not improved much on the results of Putnam and Searle.33 There
are two types of further constraints mentioned by the critics. One is that each
variable (substate) of the automaton maps to an independent element of the
implementing physical system.34 Another is that the disjoint physical states that
are grouped together to form a single physical type (which in turn maps to a
formal state) must be similar35 in some non- trivial sense.36 Thus, Scheutz (2012),
for example, argues that “without a notion of ‘legitimate grouping of physical
states’ all sorts of physical systems would implement unintended computations”
(p. 75). Scheutz (2001) also suggests that implementation should be defined in
the context of a fixed canonical physical theory (such as circuit theory), in which
the grouping into physical types is already given. Miłkowski (2011) requires that
the grouped physical states belong to the relevant causal structure, which he
identifies with the isolated level of a mechanism. Godfrey- Smith (2009) argues

 33 See Brown (2012); Scheutz (2012); and Sprevak (2012).
 34 See Godfrey- Smith (2009) and Sprevak (2012).
 35 As Godfrey- Smith rightly remarks, we need not suppose that the disjoint physical states that are
grouped together are identical.
 36 Copeland (1996) deals with this problem by ruling out ex post facto labeling systems.

136 The Nature of Physical Computation

that the substates that are grouped into coarse- grained categories should be
physically similar.37

In his response to this criticism, Chalmers associates the “independent
elements of the physical system” with spatially separable components of the
system38— but admits that this requirement may be too strong, as it rules out
certain good implementations.39 This addresses the quest for the first constraint.
As for the grouping of physical types, Chalmers tentatively mentions other per-
tinent constraints, such as a naturalness constraint on physical state- types or a
uniformity constraint on physical state- transitions. The naturalness constraint
suggests that the grouped physical types are somehow natural; the uniformity
constraint signifies that the causal mechanism is uniform. However, Chalmers
also states that it is not obvious how to formulate the required constraints in a
clear and precise way.40 An alternative way to strengthen the notion of imple-
mentation is to place more restrictions on inputs and outputs. Chalmers says
that “it is generally useful to put restrictions on the way that inputs and outputs
to the system map onto inputs and outputs of the FSA” (2011: 329). The question
is how to specify I/ O and where to locate them (i.e., proximal or distal); this is by
no means easy to resolve.41

I leave to the reader to decide whether Chalmers’s responses are satisfactory.
My view is that Chalmers has gone a long way toward avoiding overly strong
triviality. He appears to show that rocks and walls (as described by Putnam
and Searle) do not implement every automaton, and, apparently, do not imple-
ment complex automata at all. At the very least, Chalmers demonstrates that
the proofs for these effects are not valid when the notion of implementation is
supplemented with additional constraints. If we impose certain causal and coun-
terfactual constraints on the implementing system, we can rule out certain triv-
ialities. If we add even further constraints regarding the spatial separation of the
implementing substate components and the grouping of physical states (e.g., nat-
uralness and uniformity), we rule out other trivialities. Thus, those who insist
that rocks and walls indeed implement every automaton should come up with
modified proofs— and this, to the best of my knowledge, has not yet been done.

 37 Godfrey- Smith (2009) also requires that the inputs and outputs be of the right physical kind.
But this requirement is more suitable to functionalist theories of mind (which have their problems
too, as Putnam points out), not to implementation in general. Godfrey- Smith then argues that even
this requirement does not discharge triviality altogether.
 38 Also, in a response to Scheutz (2012), Chalmers (2012) excludes a temporal individuation of
physical states.
 39 See Chalmers 1996: 329– 330. But see also criticism by Sprevak (2012) and a response by
Chalmers (2012).
 40 See, e.g., Chalmers (1996: 312; 329).
 41 Broadly speaking, functional specification is subject to different schemes of individuation.
Physical specification is too restrictive, and intentional specification undermines the main goal of
CST, which is to account for minds in non- semantic and non- intentional terms.

Computation as Implementation 137

If this is correct, then the consequences of strong triviality do not automatically
follow from the modified notion of implementation.

5.3 From Implementation to Computation

I have suggested that Chalmers’s (non- semantic) account of implementation
appears to circumvent an overly strong triviality and its consequences. As such,
I believe that this account (perhaps with some modifications) is a good basis for
a theory of implementation. The next, and more pertinent, question to ask is
whether this account of implementation can serve as an account of computa-
tion. Chalmers assumes that it can. He takes his account of implementation to be
an account of physical computation. I would beg to differ: while I actually agree
that implementation, as Chalmers defines it, is necessary for computation under
certain qualifications (to be discussed in Section 5.3.1), I do not believe that it is
sufficient for computation (Section 5.3.2).

My claims about implementation and computation rest on the premise that
we can keep the notions of implementation and computation apart. That said,
such separation is not of the essence at this juncture: if someone were to insist
that computation is implementation, so be it.42 My argument in this case would
also imply that Chalmers’s account is not good for implementation either.

For the rest of this chapter, when using the term implementation I will be refer-
ring to Chalmers’s notion of it, and will argue that implementation is necessary,
but not sufficient, for computation.

5.3.1 Is Implementation Necessary for Computation?

I think that the answer is a qualified yes. One qualification is that implemen-
tation is not confined to specific formalisms such as finite- state automata. The
implemented formal structures can be Turing machines, (abstract) neural
networks, continuous formalisms (as is the case in some analog computa-
tion), or any other formalism that describes physical dynamics of some sort. In
short, I would agree that implementing some formal structure is necessary for
computation— however, it is not necessary for the implemented structure to be a
formalism related to the standard mathematical theories of automata, computa-
bility, and so forth.

 42 This view is explicitly expressed by Chalmers (2011); Piccinini (2017); Sprevak (2018); and
many others.

138 The Nature of Physical Computation

I underline this point because some have argued that the combinatorial state
automaton model cannot serve as a general account of implementation (or, as a
consequence, as a necessary condition for computation). They say that the CSA
model does not cover all sorts of computation, and even does not describe Turing
machines.43 Chalmers (1996, 2011) concedes that the translation from Turing
machines and other automata to CSA has some difficulties, but maintains that
the account could potentially be modified and extended to handle other models
of computation. He declares that “computations are generally specified relative to
some formalism, and there is a wide variety of formalisms: these include Turing
machines, Pascal programs, cellular automata, and neural networks, among
others” (2011: 326). Among the other formalisms are the ones found in dynamic
systems, evolution, and artificial life, including continuous mathematics; he says
that “the current framework can fairly easily be extended to deal with computa-
tion over continuous quantities such as real numbers” (2011: 347). When talking
about subsymbolic computation and neural networks, Chalmers says:

Note that the distinction between symbolic and subsymbolic computation does
not coincide with the distinction between different computational formalisms,
such as Turing machines and neural networks. Rather, the distinction divides
the class of computations within each of these formalisms. Some Turing
machines perform symbolic computation, and some perform subsymbolic
computation; the same goes for neural networks. (2011: 352)

I leave to the reader to decide whether or not, and to what extent, Chalmers’s
account of implementation can be extended to cover other formalisms, or
whether we have to develop another theory that will cover these formalisms.
The important point is that computation is not confined to specific formalism.
A computing physical system has to implement some formalism.

Another qualification concerns the computational properties (or descriptions)
of the implementing physical systems. The qualification is that these proper-
ties cannot be architectural. As I argued in Chapter 4, architectural properties
cannot constitute a necessary condition for computation. This qualification is re-
lated to the first one: those who propound an architectural account would often
identify computation with the implementation of specific formalisms such as
automata— and this would then be identified with specific architectural proper-
ties such as digital structures. My counterclaim is that if implementation can be
reduced to certain architectural properties, then implementation is not neces-
sary for computation.

 43 See Brown (2012); Klein (2012); Miłkowski (2011); and Sprevak (2012). Some of them also
doubt that the CSA model is a good model of cognition.

Computation as Implementation 139

Chalmers himself does not take the architectural route. Rather, he argues that
computational properties are organizational invariants, regardless of their ar-
chitecture. He first characterizes the causal topology of a system in terms of the
abstract causal organization of the system— namely, “the pattern of interaction
among parts of the system, abstracted away from the make- up of individual parts
and from the way the causal connections are implemented” (2011: 337). He then
defines an organizationally invariant property as one that preserves the causal
topology of the system. For example, replacing biological neurons with silicon
neurons might preserve the causal topology of the brain, assuming that the
patterns of interactions (such as excitation and inhibition) between the neurons
remain the same.44 According to Chalmers, flying, digesting, and most other
properties are not organizational invariants: replacing biological parts of the sto-
mach with pieces of metal while preserving causal patterns would no longer be
an instance of digestion, according to Chalmers.

Following Piccinini (2015), I will use the more general term medium-
independence. While Chalmers characterizes medium- independence in terms
of organizational invariance, Piccinini and others provide a slightly different
characterization (to be discussed in Chapter 6). Both characterizations aim to
capture two important (and related) features of computation. One is that com-
putational properties are abstract in the strong sense— non- physical or even
formal or mathematical. Chalmers talks about abstract causal organization,
which I take to be very close to functional organization. The other feature is
that the same abstract causal organization can be found in systems with very
different physical, chemical, or even biological properties. Chalmers uses the
term organizational invariance to highlight this feature; others talk about mul-
tiple realization.

What is the difference between medium- independence and architec-
tural profile? They are similar in that both refer to the functional organiza-
tion (or abstract causal structure or architecture). But there is an important
difference as well: architectural accounts refer to specific kinds of functional
organizations— for example, those that are step- satisfaction. Accordingly, they
exclude systems that lack these specific kinds of functional organization— for
example, those that are more continuous and do not proceed in steps. In con-
trast, medium- independence embraces all sorts of functional organizations

 44 Chalmers enumerates the changes that preserve topological organizations as follows:
(a) moving the system in space; (b) stretching, distorting, expanding and contracting the
system; (c) replacing sufficiently small parts of the system with parts that perform the same
local function (e.g. replacing a neuron with a silicon chip with the same I/ O properties);
(d) replacing the causal links between parts of a system with other links that preserve the
same pattern of dependencies (e.g., we might replace a mechanical link in a telephone ex-
change with an electrical link); and (e) any other changes that do not alter the pattern of
causal interaction among parts of the system. (2011: 337– 338)

140 The Nature of Physical Computation

and does not associate computation with specific organizations. Medium-
independence excludes processes that do not exploit this functional
organization, such as flying and digesting. Different accounts of medium-
independence provide different understandings of what exploitation means in
this context. According to Chalmers, flying and digesting are not computing
processes, since they do not proceed by virtue of their organizationally in-
variant properties— that is, their organizationally invariant properties are not
causally relevant to flying and digesting. When put in terms of implemen-
tation, we can say that flying and digesting do not occur qua implementing
formalisms.

I agree with Chalmers that organizational invariance (or medium-
independence) is a necessary condition of computation. In the following section,
however, I argue that it is not sufficient: the stomach and other systems of that ilk
do not compute, even qua implementing formalisms.

5.3.2 Is Implementation Sufficient for Computation?

The main argument against the sufficiency of implementation to computa-
tion is from limited pancomputationalism— namely, the claim that every phys-
ical system performs some computation. I argue that this claim misplaces the
problem with Chalmers’s account: the real problem is not with the claim that,
under some description, rocks, hurricanes, and stomachs compute. Rather, the
problem is that these systems do not compute even under the description that
they implement some type of formalism.

Let us start with the argument from limited pancomputationalism.
Chalmers’s notion of implementation accommodates weak triviality— namely,
the claim that every physical system implements at least one automaton, even
if only of the one- state variety. But if we assume that implementing an autom-
aton is sufficient for computing, the conclusion is that every physical system
computes (limited pancomputationalism). Many have preferred to avoid lim-
ited pancomputationalism; they see it as a flaw, even if not a disastrous one.
The flaw is that limited pancomputationalism violates the classification crite-
rion: rocks, hurricanes, and stomachs do not compute. The way to avoid limited
pancomputationalism is to reject the assumption that implementation is suffi-
cient for computation.45

 45 Versions of this argument appear in Miłkowski (2013) and Piccinini (2015).

Computation as Implementation 141

The argument then goes like this:

 1. Every physical system implements at least one automaton (weak triviality).
 2. Some physical systems do not compute (denying limited

pancomputationalism).
 Conclusion: Implementation is insufficient for computation (from 1 and 2).

As noted earlier, Chalmers is not put off by limited pancomputationalism.
In his view, we can concede that rocks, chairs, stomachs, and hurricanes have
computational (i.e., organizationally invariant) properties. We can even admit
that when describing these computational properties, stomachs (etc.) compute
(hence, he rejects Premise 2). But, he continues, limited pancomputationalism is
consistent with the claim that digestion is not computation: stomachs also have
non- computational— perhaps physical, chemical, and biological— properties.
Assuming that digestion relies— even if only in part— on some of the non-
computational properties, we have no reason to refer to digestion as compu-
tation. To put it another way: while one might say that the stomach computes
qua (or in virtue of) implementing some formalism, it does not digest qua
implementing this formalism. Implementing a formalism, hence computing,
plays no role in digestion. The same goes for rocks, chairs, hurricanes, and most
physical systems. While these systems might compute under some description,
they do not compute under their “normal” description.

I think that Chalmers’s reply is quite reasonable, and that he shows nicely
that limited pancomputationalism is consistent with the claim that diges-
tion is not computation. The problem with Chalmers’s account lies else-
where: stomachs, rocks, and hurricanes are not taken to compute even when
described as implementing. Chalmers can insist that stomachs do not digest
qua implementing— but he cannot say that stomachs do not compute qua
implementing. If stomachs do not compute qua implementing— if they do not
compute when described as implementing— then Chalmers must relinquish his
claim that implementing is sufficient for computing.

To make the point more clearly, let me modify Premise 2 in the argument
against the sufficiency of implementing for computing. Instead of saying that
stomachs do not compute, we would settle on the weaker claim that stomachs do
not compute even when described as implementing. In that case, the modified
argument looks like this:

 1. Every physical system implements at least one automaton (weak triviality).
 2* Some physical systems do not compute, even when described as

implementing.

 Conclusion: Implementation is insufficient for computation.

142 The Nature of Physical Computation

But why should we accept Premise 2*? The main observation behind 2* is
that scientists often describe stomachs, rocks, and so on in terms of mathe-
matical formalisms (which the systems implement)— and yet no one describes
such systems as computing, even under these implementation descriptions.
Consider our neural n- queens network. I agree with Chalmers that when
a system is described as computing, we are referring to its causal topology—
namely, the fact that it consists of n × n units, that the units are interconnected,
that the connections are symmetrical, that units on the same row inhibit each
other, and so on. Moreover, we describe the dynamics of the network in terms
of an energy- function formalism, and show that with these topological proper-
ties, the system converges to fixed points (“attractors”) that are global minima
points of the energy function. These fixed points are solutions to the n- queens
problem. So far, so good— as this means that both implementation and compu-
tation are present here.

However, consider a spin- glass magnetic system, which is a lattice of particles
whose abstract causal structure is identical. As I noted in Chapter 4, the field
of attractor neural networks was developed by physicists who imported the
formalisms developed in statistical mechanics into the world of neural networks.
Noting that the causal topology of spin- glass systems is similar to that of in-
terconnected networks, they applied the mathematical principles in statistical
mechanics to that of fully interconnected networks. In particular, the organiza-
tionally invariant properties of magnetic systems— their interconnections, sym-
metry, and so on— are also found in attractor neural networks, and the energy
function that describes the stabilization of magnetic system on minima points
through a gradient descent process (“reducing temperature”) also describes the
dynamics of the networks.

Let us focus on the abstract causal structure of the spin- glass system: its
components, organization, and dynamics. If Chalmers is correct, under this de-
scription the spin- glass system is a computing system. But it is not— or at least,
physicists do not refer to its dynamics as computation. We do not view the lattice,
even when referring to its organizationally invariant properties, as computing.
While I agree with Chalmers that the lattice implements the pertinent network/
energy- function formalism, we do not take such a system as computing, even
qua its causal topology. The very same scientists (Hopfield 1982; Amit 1989) who
describe the neural networks as computing do not describe the spin- glass sys-
tems as such. Again, I agree with Chalmers that when we describe the process
of reducing the temperature of the spin- glass system at its points of equilibrium,
we are not describing it as computing (much as we do not describe digestion as
such). My point is that we do not describe such a system as computing even when
we abstract from its physical details and focus only on its organizationally in-
variant properties. The same goes for other physical systems: merely describing

Computation as Implementation 143

the causal topology of stomachs, hurricanes, or rocks does not make them com-
puting systems.

Note that I do not deny that the magnetic system implements a formalism
of some sort. Nor do I deny that under certain circumstances, the lattice can be
used (or described) as computing. My point is that the departure from imple-
mentation to computing requires further conditions (such as representing the
numbers) that the magnetic system may or may not satisfy.

Of course, one is always free to insist that the magnetic system computes.
My claim is that considering the lattice (qua its causal topology) as computing
reflects neither the practices of scientists, nor how most of us refer to computing.
Therefore, if there is an alternative account that does conform to these practices,
it would be preferable to Chalmers’s account. What kind of account would this
be? The easy route is to add one or more constraint(s) to the account that rocks,
stomachs, and hurricanes do not satisfy. As noted earlier, many have proposed
strengthening Chalmers’s notion with other constraints. Most of those, however,
will not help in excluding our lattice from the computational domain. The indi-
viduation of the states of lattice is no less “natural,” uniform, or appealing to spa-
tially separable components of the system.

Another candidate for an additional constraint is an architectural property.
Copeland (1996), for example, characterizes implementation of an algorithm
partly in terms of step- by- step applications of a certain propagation rule. This
step- by- step constraint, he argues, rules out many physical systems as com-
puting: “According to an account that takes the notion of an algorithm and its
supporting architecture seriously, the solar system does not compute” (p. 351).
This architectural route is not viable, however. As argued in Chapter 4, the archi-
tectural property cannot differentiate between the neural network and the spin-
glass system, as they both have the same architecture.46 At one point, Chalmers
suggests that we can solve the problem of limited pancomputationalism by
stating that computation is the implementation of sufficiently complex automata
(Chalmers 1994: 400; 2012: 242). According to this proposal, rocks, chairs, and
many other physical objects presumably have too- simple architecture— because
they only implement (e.g., one- state automata)— and therefore do not com-
pute. But this proposal excludes only very simple objects. It does not exclude
hurricanes, stomachs, or spin- glass systems, which presumably implement more
complex formalisms.

A more recent contender is a teleological constraint (Piccinini 2015; Coelho
Mollo 2018). According to this proposal, the network computes because it has
the (teleological) function of computing— whereas the spin- glass system does

 46 See also Campbell and Yang (2019), who advance a similar claim while specifically targeting
Copeland’s account.

144 The Nature of Physical Computation

not compute because it lacks such a function. We will consider this proposal
in Chapter 6. Finally, proponents of the semantic view are happy to point out
that the missing constraint has something to do with the content of the states.
Thus, the n- queens network computes because its states carry certain content re-
garding the location of the queens on the chessboard. Conversely, the lattice does
not compute, because its states carry no content. When we assign certain content
to the particles (numbers, queens, etc.), the lattice might be seen as computing.
But when we do not assign it content, it cannot be said to compute. We address
this semantic view in Chapter 7.

5.4 Summary

In this chapter, we considered the thesis that computing is implementing, with a
particular focus on Chalmers’s account. Starting with the much- discussed triv-
iality results, we saw that it is possible to avoid overly strong triviality results. If
we impose certain causal and counterfactual constraints on the implementing
relation, we can rule out certain trivialities. If we add even further constraints
on the spatial separation of the implementing substate components and on the
grouping of physical states such as naturalness and uniformity, we rule out yet
more trivialities. We are still left with some trivialities, but these trivialities no
longer endanger the notions of implementation and computation— or not com-
pellingly so. Moreover, as Sprevak (2018) remarks, the remaining weaker trivial-
ities impose important constraints on the adequacy of accounts of computation.
In the final section of this chapter, I cited one kind of weak triviality— that every
physical system implements an automaton of some sort— to argue that imple-
mentation, at least of the sort proposed by Chalmers, is not sufficient for compu-
tation. In Chapter 8, I will invoke another kind of triviality (that some physical
systems simultaneously implement more than one automaton) in order to pro-
vide another argument for the insufficiency claim. These results, with some fur-
ther considerations, will be taken to prompt a semantic view of computation. But
before turning to the semantic view, let us consider the view that computation is
a mechanism.

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0007

6
Computation as Mechanism

The mechanistic account of computation has evolved into a formidable theory
of physical computation. Its main advocate is Gualtiero Piccinini, who began de-
veloping this approach in his doctoral dissertation (Piccinini 2003b), then fur-
ther articulated and shaped it in a series of papers (in particular, Piccinini 2007,
2008b), culminating in an overarching and comprehensive account of computa-
tion in his book Physical Computation: A Mechanistic Account (Piccinini 2015).
Another mechanistic account has been put forward by Marcin Miłkowski, who
advances it in the context of mind and cognition (Miłkowski 2013). Yet another
account is proposed by Nir Fresco (2014), who seeks to promote an account of
concrete digital computation as a foundation for cognitive science. David Kaplan
(2011; Kaplan and Craver 2011) provides a mechanistic account in the frame-
work of computational models in neuroscience.1 Boone and Piccinini (2016),
Dewhurst (2018a), Coelho Mollo (2018), and others provide more recent
articulations of the account. The mechanistic account is apparently the domi-
nant view about computation today.

This chapter focuses on Piccinini’s account, which is the most comprehen-
sive and detailed account of physical computation to date.2 After presenting and
reviewing the account (Sections 6.1– 6.2), I discuss what I believe to be its two
main shortcomings (Sections 6.3– 6.4). My conclusion is that, despite its salient
virtues, the mechanistic account falls short of satisfying the key classification and
explanation desiderata of an account of computation.

6.1 An Outline of the Mechanistic Account

The term mechanism has various uses and meanings. The mechanistic account
of computation, however, should be understood in the context of the recent

 1 Kaplan, however, focuses on the computational model, rather than on the computing mech-
anism. His account analyzes the relationships between the computational properties of the model
(e.g., being a computer simulation) and the properties of the target (modeled) system. Our interest is
in the accounts that analyze the target system as a computing system; see the discussion in Chapter 1,
and also the pertinent discussion in Rusanen and Lappi (2016).
 2 I review Miłkowski’s work in more detail elsewhere (Shagrir 2014).

146 The Nature of Physical Computation

mechanistic wave in philosophy of science.3 As Piccinini puts it: “The mecha-
nistic account begins by adapting a mechanistic framework from the philosophy
of science. This gives us identity conditions for mechanisms in terms of their
components, their functions, and their organization, without invoking the no-
tion of computation” (2015: 3). This framework emphasizes the centrality of the
so- called mechanistic explanations in the sciences, especially in biology and neu-
roscience. Computation and computational explanations should be accounted
for within this framework. In Piccinini’s words:

The central idea is to explicate computing mechanisms as systems subject to
mechanistic explanation. By mechanistic explanation of a system X, I mean a
description of X in terms of spatiotemporal components of X, their functions,
and their organization, to the effect that X possesses its capacities because of
how X’s components and their functions are organized. To distinguish systems
whose capacities are subject to mechanistic explanation in the present sense
from other systems, I call them mechanisms. To identify the components,
functions, and organization of a system, I defer to the relevant community of
scientists. (Piccinini 2007: 506)

According to this proposal, computational explanations are mechanistic
explanations, computational processes are mechanisms, and computational
properties are mechanistic properties. However, clearly not all mechanistic
explanations and properties are computational. Computational explanations,
properties, and mechanisms have their distinctive mark. As Piccinini puts it in
the introduction to Physical Computation:

A mechanistic account of computation must add criteria for what counts as
computationally relevant mechanistic properties. I do this by adapting the
notion of a string of letters, taken from logic and computability theory, and
generalizing it to the notion of a system of vehicles that are defined solely
based on differences between different portions of the vehicles. Any system
whose function is to manipulate such vehicles in accordance with a rule,
where the rule is defined in terms of the vehicles themselves, is a computing
system. (2015: 3)

In the course of the book, Piccinini sets out the three main elements that iden-
tify computational mechanisms. One is a teleological function. Another is the

 3 The loci classici are Bechtel and Richardson (1993); Machamer, Darden, and Craver (2000);
Glennan (2002); and Craver (2007). For more recent expositions, see Illari and Williamson (2012)
and Andersen (2014a, 2014b).

Computation as Mechanism 147

manipulation of vehicles; Piccinini refers to this feature as medium- independence.
The third is a rule. He concludes Physical Computation with a concise character-
ization of computation:

A physical system is a computing system just in case it has the following
characteristics:

 • It is a functional mechanism.
 • One of its functions is to manipulate vehicles based solely on differences

 between different portions of the vehicles according to a rule defined over
the vehicles. (2015: 274)

It should be noted that Piccinini’s account has undergone a number of
modifications over the years. Most importantly, it began as a version of an archi-
tectural account, identifying computation with some form of digital mechanism.
As such, in 2008 he defined computation as follows:

A computation . . . is the generation of output strings of digits from input strings
of digits in accordance with a general rule that depends on the properties of
the strings and (possibly) on the internal state of the system. Finally, a string of
digits is an ordered sequence of discrete elements of finitely many types, where
each type is individuated by the different effects it has on the mechanism that
manipulates the strings. Under this account, strings of digits are entities that are
individuated in terms of their functional properties within a mechanistic expla-
nation of a system. (2008b: 34)

This definition, however, suffers from the same difficulty faced by other archi-
tectural accounts (see Chapter 4)— which is that, according to this account, com-
puting machines, such as analog computers, are not computing mechanisms:

Given the generality of the mechanistic account, it may be surprising that it
excludes so called analog computers (in the sense of Pour- el [1974]). Analog
computers do not manipulate strings of digits. Rather, they manipulate real
(i.e., continuous) variables. Hence, they are left out of the present account. But
analog computers can be given their own mechanistic account in terms of their
components, functions, and organization. (2007: 519– 520)

In a similar vein, connectionist systems and neural networks compute to the
extent that they manipulate strings of digits according to a rule. Piccinini argues
that most connectionist systems perform computation in this sense, but not all
of them do (2007: 518). In his paper “Some Neural Networks Compute, Others

148 The Nature of Physical Computation

Don’t” (2008c), Piccinini makes a similar claim about neural networks in ge-
neral. The term compute in the title refers to the manipulation of strings of digits
according to a given rule. Most neural networks compute in this sense of compu-
tation, but others don’t.

At some point, however, Piccinini extends his account to other forms of com-
putation. He introduces the very general notion of generic computation, which
includes both analog and digital computation. His definition of computation
in terms of manipulations of strings of digits becomes the definition of digital
computation (2015: 177– 178), and his new definition of generic computation is
put in terms of vehicles, which are either variables or specific values of a vari-
able (2015: 121). In this new, extended definition, all neural networks compute,
although some perform non- digital computations (2015: 221– 223). Physical
computation is now defined in terms of medium- independence more generally,
regardless of whether computation is digital or not: “Concrete computations and
their vehicles can be defined independently of the physical media that imple-
ment them” (2015: 122).

In this chapter, I discuss the more recent account of generic computation.
Piccinini argues that this account fulfills the required desiderata set for an ac-
count of computation, objectivity, explanation, classification (“the right things
compute,” “the wrong things don’t compute”), miscomputation, and taxonomy.
I focus on the classification and the explanation criteria, and raise two kinds of
criticism against the account. One is that there are computational explanations
that do not satisfy the norms of mechanistic explanations (Section 6.3). The other
is a set of critical comments about the elements of the account, and in particular
against the proposed criterion of teleological function (Section 6.4). Before that,
I clarify the role of the mechanistic approach in the proposed account of physical
computation (Section 6.2).

6.2 What Is “Mechanistic” in the
Mechanistic Account?

A major advantage of the mechanistic account is that it does not rely on the-
oretical notions from logic and computer science such as algorithm, program,
effective procedure, automata, formal proof, and others. Instead, it appeals to
the mechanistic framework in the philosophy of science. One might wonder,
however, to what extent the proposed mechanistic account really fits in with
the mechanistic framework. It appears that mechanistic plays a different role
in Piccinini’s account than that played by semantic, mapping, architectural, and
other notions in rival accounts. Semantic, mapping, and architectural properties
play a classificatory role in accounts of computation. They are used to exclude

Computation as Mechanism 149

certain non- computing processes; they contribute to meeting the wrong- things-
don’t- compute desideratum. According to semantic accounts, processes that
do not involve semantic properties do not compute. According to mapping ac-
counts, processes that do not “implement” (i.e., bear mapping relationships to)
an abstract structure (e.g., an automaton) do not compute. According to archi-
tectural accounts, processes that do not possess the required architectural pro-
file (e.g., step- satisfaction) do not compute. The term mechanism, however, is
not used to exclude systems that do not compute; it plays no role in meeting the
wrong- things- don’t- compute desideratum. Of course, in mechanistic accounts all
computations must be mechanistic, just as in semantic accounts all computations
must be semantic (etc.); in that sense, being mechanistic is a prerequisite of com-
putation, much as properties such as being semantic (or step- satisfaction, etc.)
are meant to be prerequisites of computation. But in Piccinini’s account, being
mechanistic (unlike being semantic, etc.) does not do any classificatory work—
for non- computing systems are also mechanisms. Indeed, according to Piccinini,
the mechanistic account of computation aims to distinguish between computing
and non- computing mechanisms:

The main challenge for the mechanistic account is to specify proper-
ties that distinguish computing mechanisms from other (non- computing)
mechanisms— and corresponding to those, features that distinguish computa-
tional explanations from other (non- computational) mechanistic explanations.
(2015: 120)

What are the properties that distinguish computing mechanisms from other,
non- computing mechanisms? If we refer to the definition, three are apparent: the
teleological function, which excludes planetary systems, the weather, and many
other systems (p. 145); medium- independence, which excludes cooking and
cleaning (p. 122) as well as digestive processes (pp. 146– 147); and the gov-
erning rule, which excludes random- number generators (p. 147). But what is
also apparent is that none of these properties— teleological function, medium-
independence, or rule— bears a special relationship to the mechanistic frame-
work: they can be, and indeed have been, adopted in non- mechanistic accounts
of computation. According to Fodor (1994), computational (i.e., syntactic)
properties are conceived as high- order physical properties, and in this sense
are medium- independent.4 Hardcastle (1995) discusses computation in certain

 4 See also Haugeland (1978), who talks about medium- independence in the context of automatic
formal systems, and Edelman (2008: 7) and Chalmers (2011), who talk about organizational invari-
ance (see also Chapter 5).

150 The Nature of Physical Computation

teleological terms. Copeland (1996) and many others associate computation
with a rule (e.g., algorithm).

Another key feature of the mechanistic account is that it is non- semantic:

At the origin of the mechanistic account are two central theses. First, compu-
tation does not presuppose representation. Unlike most accounts in the phil-
osophical literature, the mechanistic account does not appeal to semantic
properties to individuate computing mechanisms and the functions they com-
pute. In other words, the mechanistic account keeps the question whether
something is a computing mechanism and what it computes separate from
the question whether something has semantic content and what it represents.
(2007: 502)5

But, again, being non- semantic is not a distinctive feature of mechanistic ac-
counts. There are many accounts of computation that are neither mechanistic
nor semantic— such as mapping and syntactic accounts. Moreover, it seems that
an account of computation can be both mechanistic and semantic (Miłkowski
2017). For example, in Piccinini’s definition of computation, we can replace the
teleological function with a semantic function (or at least need a reason to refrain
from such a replacement). Another, more tangible example would be the com-
putational analysis of the navigational capacities of rats in terms of the represen-
tational functions of cells (“place cells”) in the hippocampus (O'Keefe and Nadel
1978). This analysis is arguably both mechanistic and semantic.6

None of this undermines the adequacy of Piccinini’s definition. The upshot,
rather, is that central features in the account— teleological function, medium-
independence, rule, and being non- semantic— are not in and of themselves tied
to the mechanistic framework. There are mechanistic analyses that lack these
features, and non- mechanistic analyses that do have them. In other words, we
could do without the term mechanism altogether, and replace it with the term
process or dynamics in the definition of computation. We could say, for example,
that a physical system is a computing system/ process/ dynamics in the case that
its teleological function is to manipulate vehicles based solely on differences
between different portions of the vehicles according to a rule defined over the

 5 See also Piccinini (2008a, 2015); Miłkowski (2013); and Fresco (2014).
 6 Why, then, contrast the two? My guess is that the answer is something like the fol-
lowing: Advocates of the mechanistic accounts seek to block the appeal of semantic accounts, which
arises from the failure of other non- semantic accounts— such as causal (Copeland 1996; Chalmers
2011) and syntactic (Fodor 1980; Stich 1983) accounts— to deal with certain problems, in partic-
ular the problem of computational implementation, which leads to triviality results and the risk of
pancomputationalism (see Chapter 5). They see the mechanistic account as adequately addressing
the computational implementation problem, thereby salvaging the non- semantic route. Indeed, this
articulation is quite explicit in Fresco (2014) and Piccinini (2015, chs. 2 and 3; 2017).

Computation as Mechanism 151

vehicles (the same point applies to Piccinini’s earlier account, where the vehicles
are strings of digits).

So, in what sense is the proposed account mechanistic? Piccinini writes:

The present account is mechanistic because it deems computing systems a
kind of functional mechanism— mechanism with teleological functions.
Computational explanation— the explanation of a mechanism’s capacities in
terms of the computations it performs— is a species of mechanistic explanation.
(2015: 118)

As I understand it, the claim that computation is a mechanism is designed
not so much to exclude non- computing systems (which are also mechanisms),
but rather to include computations within the set of mechanisms. This is a con-
tentious goal, given that many researchers have contrasted computations with
mechanisms and computational explanations with mechanistic explanations.
But once this goal is achieved— which is the purpose of Piccinini and Craver
(2011)— it is natural to analyze computation and computational explanations
from within the mechanistic explanatory framework. The mechanistic frame-
work would then provide the tools to explicate computational explanation, as
well as the features (medium- independence, teleological function, etc.) that de-
fine the computing mechanism in general. It would provide the tools needed to
distinguish computational explanations from other, non- computational mech-
anistic explanations, and, accordingly, between computing and non- computing
mechanisms. In other words, Piccinini’s account is mechanistic in the sense that
computing systems (much like non- computing systems) are mechanisms, and
the mechanistic framework naturally provides the means to account for com-
puting mechanisms and their (mechanistic) explanations.

If this is correct, the assessment of the mechanistic account of computa-
tion can be divided into two parts. One has to do with the assertion that com-
putational explanations are mechanistic (Section 6.3), and the other with the
claim that computing mechanisms are characterized by teleological function,
medium- independence, and rules (Section 6.4).

6.3 Computational and Mechanistic Explanations

The upshot of the previous section is that the success of the mechanistic account
of computation largely depends on the claim that “computational explanation—
the explanation of a mechanism’s capacities in terms of the computations it
performs— is a species of mechanistic explanation.” This is in no way an obvious
assertion. Many have argued that there is even a tension between the mechanistic

152 The Nature of Physical Computation

framework and computational explanations. As a teaser, it would be interesting
to note that in his influential book Explaining the Brain, Carl Craver (2007) does
not even mention the central role of computational approaches in the study of
brain and cognitive sciences.7 This might certainly give the impression that com-
putational approaches do not fit squarely within the mechanistic framework.
Beyond this somewhat anecdotal point, however, there are many who view, and
even contrast, computational explanations with mechanistic explanations. Thus,
some philosophers view computational explanations as types of functional ana-
lyses, and argue that the latter are autonomous and distinct from mechanistic
explanations.8 Functional analyses specify functional properties, whereas mech-
anistic explanations specify structural properties and components that realize
the functions.9 Cognitive neuroscientists also often contrast computational and
mechanistic explanations; as Chirimuuta (2014) remarks, this distinction is
commonplace in neuroscience.10

It is not surprising that the mechanists (Piccinini and Craver 2011; Miłkowski
2013; Piccinini 2015, chap. 5) address this concern directly by disputing the dis-
tinction between functional analysis and mechanistic explanations. Both func-
tional analysis and mechanistic explanations are taken to be decompositional
and constitutive. They explain certain capacities (e.g., an input- output function)
by showing how these capacities are constituted of more basic capacities (in-
cluding their functions, behaviors, or activities) organized together. Some func-
tional analyses also locate the subcapacities in subcomponents of the system,
which are individuated functionally. Mechanistic explanations, however, always
specify these components; most importantly, they specify the structural prop-
erties of the components, including their location, trajectory, size, and shape.
Another way to put this is that functional analyses specify functional properties,
whereas mechanistic explanations specify structural properties that realize those
functions.

Piccinini and Craver (2011), however, resist the view put forward by
Fodor (1968), Cummins (1983, 2000), and others that functional analyses are
explanations that are autonomous and distinct from mechanistic explanations.

 7 The term computation is mentioned only once, in the context of an information- processing task;
see Levy (2009), who comments on this in his review of the book.
 8 See also the discussion in Chapter 4 about functional analysis, and how it relates to computation.
 9 See, e.g., Cummins (1983, 2000) and Fodor (1968). Cummins, e.g., says:

It is therefore important to keep functional analysis and componential analysis [i.e., mech-
anistic explanation] conceptually distinct. Componential analysis of computers, and prob-
ably brains, will typically yield components with capacities that do not figure in the analysis
of capacities of the whole system. (2000: 125)

 10 See also Chirimuuta’s interpretation of Carandini and Heeger (2012): “It is unlikely that a
single mechanistic explanation [for normalization phenomena] will hold across all systems and spe-
cies: what seems to be common is not necessarily the biophysical mechanism but rather the computa-
tion” (p. 141).

Computation as Mechanism 153

On the contrary, they argue that functional analyses “gain their explanatory force
by describing mechanisms (even approximately and with idealization) and, con-
versely, that they lack explanatory force to the extent that they fail to describe
mechanisms” (p. 284). More specifically, they claim:

Functional analyses are sketches of mechanisms, in which some structural
aspects of a mechanistic explanation are omitted. Once the missing aspects are
filled in, a functional analysis turns into a full- blown mechanistic explanation.
By this process, functional analyses are seamlessly integrated with multilevel
mechanistic explanations. (p. 284)

What about computational explanations? Piccinini and Craver (2011) might
have given the impression that computational explanations are sketches of
mechanisms.11 This is a reasonable interpretation if we understand computa-
tional explanations to be types of functional analyses (which are described as
sketches). Moreover, Piccinini and Craver classify Marr’s computational and
algorithmic levels— the only example of computational explanations in their
paper— as sketches.

In Physical Computation, however, Piccinini (2015) states explic-
itly that computational explanations can be full- blown mechanistic
explanations: “Computational explanations count as full- blown mechanistic
explanations, where structural and functional properties are inextricably mixed”
(p. 124). True, computational explanations specify medium- independent prop-
erties. Nevertheless, Piccinini argues that

such an explanation is still mechanistic: it specifies the type of vehicle
being processed (digital, analog, or what have you) as well as the structural
components that do the processing, their organization, and the functions they
compute. So computational explanations are mechanistic too. (p. 98)

One might wonder how computational properties can be both medium-
independent and structural (e.g., implementational) properties at the same time.
Piccinini’s answer is that computational, medium- independent properties “place
structural constraints on the media that realize them and the mechanisms that
operate on them” (p. 124). Elsewhere, he adds that “structural and functional
properties are not neatly separable within a mechanism. There is no such thing
as a purely functional component, or purely functional property” (p. 99). The

 11 This interpretation is attributed to them by Chirimuuta (2014); Rusanen and Lappi (2016); and
Shagrir (2016).

154 The Nature of Physical Computation

bottom line, then, is that computational explanations are full- blown to the extent
that they refer to relevant functional and structural properties.

How well do computational explanations fit within the mechanistic frame-
work? Do they satisfy the constraints imposed on mechanistic explanations?
There are four kinds of objections to the premise that computational
explanations are mechanistic, all aimed at showing that at least some compu-
tational explanations do not entirely conform to the norms of mechanistic
explanations. The first objection is that some computational explanations are not
decompositional (Section 6.3.1). The second objection is that at least some full-
blown computational explanations do not refer to structural properties (Section
6.3.2). The third objection is that the computational level does not integrate
squarely within the mechanistic- implementational hierarchy (Section 6.3.3). The
last, and perhaps most interesting, objection is that some aspects of computa-
tional explanations are not in the business of revealing causal structure (Section
6.3.4). As we shall see, some of these objections concern the scope of mechanistic
explanations more generally, but I will keep the discussion closer to computa-
tional explanations.12

6.3.1 Computational and Decompositional
Explanations

Mechanistic explanations are decompositional: they explain a phenomenon
by breaking down the phenomenon into subcapacities and/ or subcomponents
whose activities and organization constitute the phenomenon. Scholars have
noted that some explanations do not involve componential analysis, hence are
not mechanistic. They do not break down the explanandum capacities into
subcomponents and their organization. Rathkopf (2018) argues that mecha-
nistic explanations apply to nearly decomposable systems (Simon 1962), where
nodes in a network have more and perhaps stronger connections with each other
than with nodes outside the module. Many network models, however, provide
non- decompositional explanations for non- decomposable systems where part-
whole decomposition is not possible. For example, a network model that ac-
counts for patterns of traffic in a road network explains the amount of traffic in
each road based on dependence relationships that span the entire network. Thus,
the reason that a certain road connecting two edges has lighter traffic depends on

 12 Some might argue that computations are not mechanisms as understood within the mecha-
nistic framework, and therefore computational explanations are not mechanistic. Others might
argue that even if computing processes are mechanisms, their (computational) explanations are often
not mechanistic. Rather than distinguish between these claims, I shall simply consider what they
have in common— that not all computational explanations are mechanistic explanations.

Computation as Mechanism 155

the structure and organization of the entire network, and cannot be explained by
decomposing the network into separate components and their organization. In
a similar vein, Weiskopf (2011) notes the existence of non- componential models
in cognitive science; Huneman (2010) argues that in some cases the explanation
appeals not to causal structure, but rather to the topological or network proper-
ties of the system; and Levy (2013) claims that decomposition (and localization)
plays a lesser role in population genetics, ecology, and other macro- biological
populational disciplines.

One can extend this point to the analysis of computing systems as well
(Rathkopf 2018). Consider the attractor neural network for the n- queens
problem discussed in Chapter 4. The network, as we recall, converges to a so-
lution, which is a configuration in which exactly n queens are located on the
n × n board, and no two queens are on the same row, column, or diagonal. This
means that in every fixed point, exactly n cells are activated, and no two cells
among them are on the same row, column, or diagonal. This network is in no
way a nearly decomposable system: each cell in the network contributes to the
activation of any other cell in the network. In other words, the dependence (“syn-
aptic”) relationships span the entire network. Moreover, there are no modules of
cells in which the connections between cells are stronger than others. There are,
of course, strong inhibitory connections between cells that are “on the same row,”
but each cell in this row has also strong inhibitory connections with a different
set of cells (that are “on the same column”). The set of cells that are on a specific
row, coupled with their same- column cells, comprises the entirety of the cells in
the network.

How does the network converge to a solution for the n- queens problem? Is
the analysis (explanation) of its behavior decompositional? In my view, it is
not— at least not entirely. One can certainly decompose the system into its
subcomponents (cells), their activity (which is exactly the same for every cell),
the relevant (i.e., inhibitory or excitatory) relationships between the cells, and
their organization (which cells activate other cells). Moreover, you can use this
decomposition to explain certain features: one can tell how any given cell is about
to behave by observing the current activity of all other cells and their relationship
with that cell. One can also tell if a certain configuration of the network (where
some cells are active and other not) will be followed by another configuration.

Nonetheless, this explanation falls far short of accounting for the main features
we want to explain. It does not explain why the network relaxes at all (and, after
all, many networks never relax); it does not clarify why, when starting from some
(arbitrary) initial configuration, the network gradually— over many iterations—
arrives at a fixed point (attractor). Most notably, it does not account for why the
attractors of the networks are precisely the solutions for the n- queen problem. In
other words, it does not explain why the attractors are configurations in which

156 The Nature of Physical Computation

exactly n cells are activated, but there is no pair of activated cells on the same row,
column, or diagonal.

As we saw in Chapter 4, in order to explain these features, one must know
something about the topological structure of the network. Relaxation is
explained by certain topological features (e.g., that the weights between cells are
symmetrical), while solutions are explained by other topological features of the
network, such as strong inhibitory relationships. When one knows something
about these features, it is easier to explain the behavior of the network. Some
mathematical theorems that refer to the topological properties explain the relax-
ation of the network on some fixed point. They also show that these fixed points
are “minima points” of the energy landscape. When one looks at the energy func-
tion (eq. 1 in Chapter 4), one can further understand why these minima points
are the solution to the problem: the minima points of the summations are zero
points, and it is not hard to see that these zero points are achieved exactly when
n cells (“queens”) are activated, and none of them are on the same row, column,
or diagonal. This insight is achieved not through decompositional analysis, but
through an analysis of the energy function, which is completely blind to the con-
tribution of each specific cell. The analysis examines the relationships between
the values of the energy function, whereby each value represents the total activity
(“energy”) of the system.

Craver (2016) argues that the non- decomposable networks considered by
Rathkopf are causal networks composed of nodes and interactions. This is also
true of the queens model that consists of n × n cells (“components”) and their (in-
hibitory and excitatory) relationships. The non- decomposable networks appear
to be explanatory because they refer to this “base level”— namely, a set of causally
organized parts, or a mechanism. In the case of the queens model, it is certainly
true that the explanation refers in part to the cells, their activity, and their in-
teraction. Some part of the explanation also refers to the fact that the minima
points are those in which no two cells on the “same row” are activated. But it is
also true that referring to the cells, their activity, and their interaction alone fails
to explain the behavior of the network that we want to explain— namely, its re-
laxation on solutions. As we have just seen, the explanation of this feature must
refer to the topological structure of the system. One might insist that the mere
reference to the activity of the cells, their activity, and their interaction classifies
them as mechanistic. This may be fine: the debate here is not over labeling. I am
willing to concede that the analysis of the network is mechanistic, in the sense
that it includes some decompositional analysis. The point is that another part of
the analysis, which is not decompositional, is nevertheless computational. And
if I am right about this, then it becomes less attractive to identify computational
explanation solely with decompositional— and hence mechanistic— analysis.

Computation as Mechanism 157

The upshot is that there is (at least occasionally) a gap between computational
explanations and decompositional analysis. This gap is exemplified in the ex-
planation of (some) computing networks. The queens network can definitely be
decomposed. This decomposition reflects the basic causal structure of the network
and contributes to the explanation of its behavior. The point is that at least a substan-
tial part of the computational explanation relies on a state- space (“global”) analysis
of its energy function. This analysis does not get into the activation values of each
cell, the relationships between pairs of cells, and so on, but rather takes into account
the topological features of the network and the relationships between the “total”
states (configurations) of the network.

6.3.2 Abstract Explanations and Structural Properties

It has been argued that at least some computational explanations can be full- blown
explanations, even if they do not refer to structural properties and therefore are not
mechanistic. One premise of this argument is that mechanistic explanations essen-
tially refer to structural properties of components— such as their location, size, di-
rection, mass, and so forth. This criticism pertains to abstract explanations more
generally: abstract explanations can be full- blown (i.e., not sketches), even if they
make no reference to structural properties. Some of the claims refer to functional
analyses, which belies the claim that functional analyses are sketches (Weiskopf
2011; Levy and Bechtel 2013; Barrett 2014; Shapiro 2017), whereas others specif-
ically discuss computational explanations (Chirimuuta 2014; Egan 2017). These
authors do not deny that some abstract explanations track causal structure. Rather,
they argue that these abstract explanations can be full- blown explanations without
referring to structural properties of the causal structure in question. Some relate
these explanations to multiple realization, pointing out that the same abstract ex-
planation applies to systems with different structural properties (Haimovici 2013;
Barrett 2014; Chirimuuta 2014). Others do not link these abstract explanations to
multiple realization (Shapiro 2016; Egan 2017).13

A word about abstraction is in order at this point. Abstract explanations can
refer to explanations that omit certain details of the described causal structure;
these details can be structural, functional, or of other types (Weisberg 2013).14
Some have interpreted the mechanists as expounding the “more details, the

 13 Shapiro is famously skeptical about the scope and significance of multiple realization (Shapiro
2000; Polger and Shapiro 2016). He says that “even if functional properties are not multiply realizable,
functional analysis can be autonomous from mechanistic explanation, and psychological explana-
tion can be autonomous from neuroscientific explanation” (2017: 1057). Egan (2017) emphasizes the
normative aspect of computational explanations.
 14 We assume that computational explanations are abstractions in a stronger sense— namely, that
they are formal, e.g., mathematical descriptions. Whether these formal descriptions really refer to

158 The Nature of Physical Computation

better” (MDB) premise— which states that the explanatory force of the mech-
anistic analysis is proportional to the amount of detail that it provides about
the mechanism (Levy and Bechtel 2013, Chirimuuta 2014). Thus, they view the
mechanists as downplaying the explanatory force of any kind of abstract explana-
tion. Piccinini (2015) clarifies, however, that he rejects the MDB premise: mech-
anistic and computational explanations— even ideally complete ones— can
be, and often are, abstract. They aim to specify as many relevant properties as
possible— namely, the features that are relevant to produce the explanandum
phenomenon. The mechanists only insist that some of the relevant properties
must be structural.15

The more interesting criticism, however, is that abstract explanations can be
full- blown explanations without referring to structural (e.g., implementational)
properties at all. Thus, Shapiro (2017), for example, argues that Sternberg’s task-
analysis explanation of the recall process of strings of numerals is full- blown,
even though it ignores any implementational details of the task. Shapiro does
not deny that functional properties place structural constraints on any mech-
anism that implements them (and vice versa). He claims that placing structural
constraints does not render the constraining properties structural or the expla-
nation mechanistic. Every abstract explanation is constrained to some extent
by implementational details (Shapiro 2017). Moreover, while implementational
properties can serve as evidence in support of candidate explanatory models
and of distinctions between them, this does not make them an integral part of
the explanation. The norms of confirmation and explanations are not the same
(Weiskopf 2011; Shapiro 2017). Thus, Shapiro (2017) concludes that “the bold-
ness of the claim that all explanations in the cognitive sciences must be mech-
anistic depends on being able to show that alternative forms of explanation
contain at least tacit commitments to mechanisms. But these commitments,
even if tacit, should be substantive (p. 1054). Otherwise, says Shapiro, “the dis-
pute between the mechanistic hegemonists and the functionalists threatens to
descend into one over labelling” (2017: 1056)

As previously noted, Piccinini agrees that abstract explanations can be full-
blown mechanistic explanations, insofar as they specify the relevant properties
of the explanandum phenomenon. In particular, computational explanations
are full- blown mechanistic to the extent that they specify relevant medium-
independent properties of the mechanism. He argues that some of these
medium- independent properties are structural, or at least have structural

abstract (e.g., medium- independent) properties or objects depends on one’s view about the ontology
of abstract entities in physical systems.

 15 See also Boone and Piccinini (2016); Craver (2016); Kaplan (2017); and Craver and Kaplan
(2020).

Computation as Mechanism 159

aspects. In fact, he dismisses the functional/ structural distinction altogether.
Thus, computational explanations can be full- blown mechanistic even though
they do not specify other structural properties; in fact, they may not specify
implementational (“medium- dependent”) properties at all. The same line of rea-
soning applies to functional analyses more generally: these can be full- blown
mechanistic even without specifying implementational, medium- dependent
properties, and they are full- blown to the extent that they specify the rele-
vant properties of the mechanism. The specification must include some struc-
tural properties— but these properties need not be implementational, that is,
medium- dependent. If this understanding is correct, then the claim is not that
functional analyses must be sketches, but rather that many— even all— available
explanations that are described as functional analyses are in fact sketches.

This reply is somewhat vague with respect to the substantive commitments of
mechanistic explanations. Can Sternberg’s task analysis be considered a mech-
anistic explanation? It certainly does not refer to implementational, medium-
dependent properties. But it does arguably capture the actual causal structure
of memory. I think that we are still in the dark with respect to what counts as a
medium- independent structural property. Piccinini says that a computational
explanation is mechanistic to the extent that “it specifies the type of vehicle being
processed (digital, analog, or what have you) as well as the structural components
that do the processing, their organization, and the functions they compute”
(2015: 98). But many analyses appear to satisfy the requirement of being full-
blown, despite the fact that they are described by Piccinini as “sketches.” Piccinini
refers to Marr’s computational and algorithmic levels as sketches, although they
appear to satisfy the requirement of being full- blown mechanistic. The compu-
tational theory of edge detection states that the elements in the visual systems
that perform edge detection are retinal ganglion cells, as well as LGN cells and
the pyramidal cells in V1, and that their relevant activity is the activation of these
cells. It also specifies the organization of the cell (e.g., feed- forward) and its rele-
vance to the computation. The algorithmic level specifies the type of analog- to-
digital vehicle and how this structure is relevant to the computation. As such, it
appears to provide a complete account (in the abstract) of the operations of the
mechanism.

Another concern with Piccinini’s response is that his dismissal of the functional/
structural distinction revives the argument that computational explanations
are distinct and autonomous. Although computational explanations can be
full- blown mechanistic, they are nevertheless distinct from implementational
mechanistic explanations: the former refer to medium- independent (functional
and structural) properties, whereas the latter refers to medium- dependent,
implementational, properties. In other words, we can reformulate the distinct-
ness thesis around the medium- independent/ medium- dependent distinction,

160 The Nature of Physical Computation

rather around the dismissed functional/ structural distinction. Computational
and implementational explanations— be they mechanistic or not— are distinct,
as they specify different properties of the mechanism. To clarify, the suggestion is
not to return to the anachronistic picture, which Piccinini and Craver rightly re-
ject, in which the computational level (e.g., computational psychology) and the
implementational level (e.g., neuroscience) are completely detached from each
other. We have seen a great deal of conversation between disciplines over the
past few decades, not to mention the key role played by cognitive neuroscience
and computational neuroscience in brain research today. Rather, the claim is
that the two explanations are distinct in the sense that they specify very different
kind of properties, that is, medium- independent (computational) and medium-
dependent (implementational).

To summarize, it seems that there is some tension between computational
explanations (which are abstract) and mechanistic ones. Some computational
explanations can be full- blown abstract without appealing to structural prop-
erties, such that they do not satisfy the norm of referring to structural proper-
ties. In response, Piccinini says that computational explanations can refer to
medium- independent properties that are structural: the more important dis-
tinction is between medium- independent (computational) properties and
medium- dependent (implementational) ones. One concern with this reply
is that it blurs the distinction between sketches and full- blown mechanistic
explanations. Another is that it reintroduces the divide between computational
explanations and implementational ones. Even if both are (full- blown) mecha-
nistic, computational explanations are still distinct and (perhaps) autonomous
from implementational explanations. In the next section, we discuss another
facet of this computational/ implementational divide.

6.3.3 Computational and Implementational
Hierarchies

According to the mechanistic view, mechanistic explanations are hierarchical.16
This means that there is a hierarchy of mechanistic explanations whereby each
component in an explanation is itself explained mechanistically. This claim
raises the following question about the mechanistic view of computation: how
are computational and implementational explanations related? Piccinini points
out the problem when referring to Marr’s renowned tri- level framework: “His
‘levels’ are not levels of mechanisms because they do not describe component/

 16 This section relies on Elber- Dorozko and Shagrir (2019); see also Harbecke (2020), who also
raises the question of integration between the hierarchies.

Computation as Mechanism 161

subcomponent relationships. The algorithm is not a component of the compu-
tation, and the implementation is not a component of the algorithm” (2015: 98).
Indeed, the realization relationship— of medium- independent properties by
some implementational, medium- dependent properties— is not a relationship
of part and whole. The 0s and 1s in the digital computer might be implemented
by certain specific voltages, but the realizing voltages are in no way parts of
the 0s and 1s; the two are perhaps correlated, or even identical. So how are
the computational and the implementational levels related within the mecha-
nistic framework? Moreover, assuming that we can have computational and
implementational hierarchies, how are these hierarchies integrated or related to
each other?17

To see the point more vividly, consider the figure from Botvinick, Niv, and
Barto (2009), in which they describe models of reinforcement learning in the
context of decision making (Figure 6.1).18 On the left side we see an actor-
critic computational (“abstract”) model in which both the action strengths and
the value function are learned through an interaction with the environment.
On the right side we see an implementation model (“neural correlate”) of the
implementing neural structures.19

As we can see, the implementational model is not a lower mechanistic level
of the computational model. The implementational, medium- dependent
components are not parts of the computational, medium- independent parts.
This means that the two models cannot be two separate levels of a single mecha-
nistic hierarchy. So how should we understand the relations between the models
within the mechanistic hierarchy? Moreover, each model can be thought of as a
level within a part- whole relation hierarchy. It can be argued that the components
of the computational model can be further analyzed in terms of computational
subcomponents and their relations,20 whereas the implementational components
can be further analyzed in terms of implementational subcomponents and their

 17 According to the mechanistic framework, a complete explanation at each level would include all
(and ideally only) the causally relevant relationships and activities that constitute the explanandum
phenomenon.
 18 I will not enter here into the details of the model. See Elber- Dorozko and Shagrir (2019), where
we describe some models of reinforcement learning from computational neuroscience.
 19 Botvinick, Niv, and Barto talk about “the computational and neural underpinnings of . . .
behavior” (p. 262).
 20 Piccinini (2015) describes the computational hierarchy in computers as follows:

Computing systems, such as calculators and computers, consist of component parts
(processors, memory units, input devices, and output devices), their functions, and their
organization. Those components also consist of component parts (e.g., registers and
circuits), their functions, and their organization. Those, in turn, consist of primitive com-
puting components (paradigmatically, logic gates), their functions, and their organization.
(pp. 118– 119)

162 The Nature of Physical Computation

relations.21 We can then ask: how do these two hierarchies, the computational
and the implementational, relate to each other?

There are two ways that the mechanist can address these questions. One is
lumping together the implementational and the computational models. This
means that the relevant computational properties are lumped together with
their implementational properties. In this picture we do not really have two sep-
arate levels (and hierarchies), but only one: the relevant computational proper-
ties are brought together with their implementational properties on the same
level(s) of explanation. This simple solution suggests that computational and
implementational properties figure together in the same explanation and in the
same level(s) of the mechanistic hierarchy. This solution fits in quite nicely with
the picture in which computational explanations are sketches of mechanisms.
In that picture, the computational sketches become full- fledged mechanistic
explanations only when we complement the sketches with the same- level
implementational properties. When both kinds of properties are mentioned, we
have a full- fledged mechanistic explanation— and hence a level of mechanism.
The mechanistic hierarchy simply embeds within it a subhierarchy of computa-
tional sketches. Some argue, however, that this view is inconsistent with scien-
tific practice, which often appeals to computational explanations as full- fledged

 21 See also Botvinick, Niv, and Barto (2009) and Elber- Dorozko and Shagrir (2019), who describe
two hierarchical models, computational and implementational, in the context of reinforcement
learning.

Actor Actor
st

at
e

(s
) action

action

st
at

e
(s

)

Critic Critic

Environment Environment

p(s)

δ

V(s) VS

DLS

HT+ DAR(s)

Figure 6.1 Computational and implementational models of reinforcement learning,
side by side. R(s): reward function; V(s): value function; δ: reward prediction error;
π(s): policy (action- selection function); DA: dopamine; DLS: dorsolateral striatum;
HT+: hypothalamus and other structures; VS: ventral striatum (From Botvinick,
Matthew M., Yael Niv, and Andrew G. Barto. 2009. “Hierarchically Organized
Behavior and Its Neural Foundations: A Reinforcement Learning Perspective.”
Cognition 113: pp. 262–280. Reproduced with permission from Elsevier).

Computation as Mechanism 163

ones (Haimovici 2013). As noted, Piccinini (2015) also refrains from the view
that computational explanations are essentially sketches.

A second option is to keep the two models apart. The two models com-
prise complete mechanistic explanations that are related through the imple-
mentation relationship: each computational component of the computational
model is mapped to (implemented by) an implementational component of the
implementational model. The same goes for the two hierarchies. Each level in
each hierarchy is a complete explanation of the phenomenon at the level above
it. In addition, the computational properties in the computational hierarchy
are implemented by implementational properties in the implementational hi-
erarchy (in reality, there may not be a perfect match between the two hierar-
chies, and computational properties at the same level may be implemented
by implementational properties at different levels). This solution can more
readily accommodate the notion that there is a multiple realization of cogni-
tive functions, since the same computational hierarchy can be related to (i.e.,
implemented in) different implementational hierarchies.

This picture fits in quite nicely with the functional view of computational ex-
planation, according to which computational explanations are full- fledged func-
tional (yet non- mechanistic) explanations. According to this functional picture,
computational explanations are distinct and autonomous from mechanistic
explanations (Cummins 1983; Fodor 1968), which fits in with the solution in
which the two hierarchies are distinct. Computational and implementational
properties do not figure together in the decompositional explanation of the same
capacities. Instead, only computational properties are part of the decomposition
of computations. Implementational properties can still figure in explanations of
computations, but these explanations would not be mechanistic, because there is
no part- whole relationship between the explanans and explanandum.

What about the view that computational explanations are both abstract and
full- fledged mechanistic explanations? It would be difficult to see how the first
solution could be consistent with this view. If computational explanations are
complete mechanistic explanations, why do they require additional implemen-
tation details of the same mechanistic level of explanation? The second solution
is not necessarily inconsistent with the view that computational explanations
are both abstract and full- fledged mechanistic explanations. For example, if one
understands computational states and properties to have causal powers, one
can view the computational hierarchy as a hierarchy of complete mechanistic
explanations. However, the role of the implementational hierarchy has yet to be
explicated. One possible way to elucidate this complex picture is to maintain that
the implementation relation is part of the computational explanation; its role is
to explain how the more abstract (functional) hierarchy is implemented (Kaplan
2017; Coelho Mollo 2018). But we would still note that this implementational

164 The Nature of Physical Computation

explanation of abstract capacities cannot be mechanistic, since the implementa-
tion is not a part- whole relation.

The upshot is that there is a tension between computational explanations
and the idea that mechanistic explanations are hierarchical. The mechanist can
choose the one- level (and one- hierarchy) picture, at the price that computa-
tional explanations essentially become sketches of the mechanism. Alternatively,
he or she might opt for the level- apart (and two- hierarchy) picture, but then
this picture would fit better with the view that computational explanations are
functional.

6.3.4 Information Processing and Causal Structure

The most pressing objection to the mechanistic account, in my view, is that it
downplays the central role of informational or representational aspects in the
cognitive and neural sciences. In those contexts, it is difficult to understand the
relevance of computation when isolated from its informational or representa-
tional context.22 In Chapter 9, I argue at some length that an important chunk
of computational theory in cognitive science and neuroscience is devoted to
addressing certain why questions whose explanations do not seem to involve
causal mechanisms. These explanations (models) do refer to causal structure.
The point is that they do not aim to track (only) causal relationships, but rather
aspects related to the fact that the described system is information- processing. In
this section I will review this criticism in brief.

Chirimuuta (2014) locates these why questions in the so- called interpreta-
tive models (Dayan and Abbott 2001). Dayan and Abbott note that in addition
to phenomenal (descriptive) and mechanistic models, theoretical neuroscience
also invokes interpretational models. These models “use computational and
information- theoretic principles to explore the behavioral and cognitive signif-
icance of various aspects of nervous system function, addressing the question of
why nervous systems operate as they do” (2001: xiii).23 Chirimuuta argues that
answering these why questions involves explanations that typically make refer-
ence to efficient coding principles. Her chief example is the normalization equa-
tion, which models cross- orientation suppression of simple cell responses in

 22 Rescorla (2016) emphasized this point in his review of Piccinini (2015).
 23 Chirimuuta (2014) distinguishes between A- minimal models and B- minimal models. The models
described in Section 6.3.2 are A- minimal models. These models are abstract yet “causal- mechanical”
explanations in the sense that they track the causal structure of the system. The B- minimal models
are abstract explanations, yet they are not causal- mechanical. According to Chirimuuta, at least some
computational models, e.g., the interpretative models, are B- minimal models.

Computation as Mechanism 165

the primary visual cortex and other systems (Carandini and Heeger 1994, 2012;
Heeger 1992).

Very briefly, while cells in V1 were found to selectively respond to bar- shaped
stimuli in a preferred orientation (Hubel and Wiesel 1962), it turns out that this
response is significantly reduced (“suppressed”) if stimuli with a non preferred
orientation are superimposed on the preferred stimuli. Heeger (1992) proposed
the normalization model to account for this phenomenon. The idea is that in
addition to the excitatory input from LGN, each V1 cell also receives inhibitory
inputs from its neighboring V1 cells, which are sensitive to bars at different an-
gles. As Chirimuuta emphasizes, this normalization equation— which quan-
titatively describes the cells’ responses— has subsequently been found in other
parts of the nervous system (Carandini and Heeger 2012). This raises the ques-
tion “Why should so many systems exhibit behavior described by a normal-
ization equation?”— to which the answer is that “for many instances of neural
processing individual neurons are able to transmit more information if their
firing rate is suppressed by the population average firing rate” (Chirimuuta
2014: 143). This answer, it seems, makes reference to computational principles
(in this case, a certain analysis from information theory), rather than to causal
structure: “My key claim is that the use of the term ‘normalization’ in neurosci-
ence retains much of its original mathematical- engineering sense. It indicates
a mathematical operation— a computation— not a biological mechanism”
(Chirimuuta 2014: 142). Of course, no one doubts that the normalization func-
tion is implemented within some neural structure, and that the implementa-
tion is important to the overall understanding of the functioning of the nervous
system.24 The point is that some aspects of the explanation— the ones associated
with computational principles— are not mechanistic.25 As Chirimuuta puts it,
the explanation of why the normalization function is useful for the organism
“departs fully from the model- to- mechanism mapping framework that has been
proposed as the criterion for explanatory success” (p. 129).26

 24 See Kaplan (2017), who shows how the normalization equation is implemented differently in
different species.
 25 Chirimuuta concludes with an endorsement of a claim for the distinct nature of computational
explanation in neuroscience. She argues that while Piccinini and Craver (2011) and Kaplan (2011)
correctly reject an anachronistic version of the distinctness thesis by some philosophers of mind,
they fail to notice that many computational neuroscientists justifiably and clearly “distinguish be-
tween mechanistic and computational explanations, and that this distinction is characterised by effi-
cient coding explanations, rather than generic functional explanations” (Chirimuuta 2014: 147).
 26 Chirimuuta refers to Kaplan’s model- to- mechanism mapping (3M) requirement (Kaplan 2011;
Kaplan and Craver 2011). According to this requirement: “(a) the variables in the model correspond
to components, activities, properties, and organizational features of the target mechanism that
produces, maintains, or underlies the phenomenon, and (b) the (perhaps mathematical) dependen-
cies posited among these variables in the model correspond to the (perhaps quantifiable) causal rela-
tions among the components of the target mechanism” (Kaplan and Craver 2011: 611).

166 The Nature of Physical Computation

William Bechtel and I have put forward a somewhat similar claim, while fo-
cusing on Marr’s computational- level theories (Shagrir 2010; Bechtel and Shagrir
2015; Shagrir and Bechtel 2017).27 We argue that computational- level theories
link the computed mathematical function and the explanandum information-
processing task. They aim to explain why the computed mathematical function
(e.g., derivation) is appropriate to the explanandum information- processing task
(e.g., edge detection). This explanation, we suggest, has to do with the system-
environment relationships, and not with an internal mechanism.28 The upshot
is that mechanistic accounts focus on how the mathematical operations are
implemented and performed. Computational explanations, however, also aim
to account for the relationship between those operations and the information-
processing task at hand. We return to this claim in Chapter 9.

6.3.5 Summary

One of the promises of the mechanistic view of computation is to provide an
overarching explanatory framework from which we can understand and ac-
count for the explanatory role of computational explanations. When we view
computational explanations as mechanistic explanations, we can under-
stand their explanatory role, as well as what distinguishes them from non-
computational mechanistic explanations. In this section, I have challenged
this claim. I agree that at least some computational explanations satisfy at least
some of the norms of mechanistic explanations. I have argued, however, that
computational explanations do not sit squarely with the mechanistic frame-
work. Some computational explanations are seemingly non- decompositional;
some computational explanations do not clearly refer to structural properties;
computational explanations do not naturally integrate within the mechanistic-
implementational hierarchy; and some aspects of computational explanations
do not aim to track causal structure, but rather to answer certain questions
about information processing. Although these claims are controversial, I believe
that when they are taken together, they indicate that the mechanistic framework
is not the natural place to account for computational explanations of physical
systems.

 27 Rusanen and Lappi (2016) also associate the why questions with Marr’s computational level the-
ories and argue that computational theories provide explanations that express formal, non- causal
dependencies.
 28 Rusanen and Lappi (2016) and Egan (2017) argue that Marr’s computational- level theories pro-
vide explanations that express formal, non- causal dependencies.

Computation as Mechanism 167

6.4 Rules, Medium- Independence, and
Teleological Functions

Piccinini’s definition of computation includes three main elements— namely,
rule, medium- independence, and teleological function. He invokes them in order
to exclude non- computing systems. As noted in Section 6.2, these conditions are
not tied to the mechanistic approach, and so are not affected by the criticism
thereof. It is therefore essential to examine whether they constitute an adequate
account of computation.

Rules. The appeal to governing rules plays a relatively minor role in the mech-
anistic account. It is chiefly invoked to exclude random- number generators from
the domain of physical computing systems. The requirement of rules is fairly
modest: a rule “is a map from inputs (and possibly internal states) to outputs”
(Piccinini 2015: 121). Like Cummins, Piccinini does not require the system to
represent the rule. A system that acts in accordance with dynamic equations, for
example, satisfies the requirement. The meaning of inputs and outputs is not spe-
cified in detail. When discussing stomachs, Piccinini says that their “inputs” and
“outputs” might not be of the same kind, but he admits that this is not a deci-
sive objection to the rule requirement (p. 147). I would relax the requirement
even further, as I am not sure that inputs and/ or outputs are required at all (see
Chapter 4).

Now consider random- number generators. Obviously, some computing sys-
tems include some stochastic or probabilistic elements (“randomness”) and
run probabilistic algorithms (p. 147). Moreover, the notion of a probabilistic
Turing machine is pivotal in computability theory. Thus, some randomness must
comply with the rule requirement. The degree of randomness that designates a
system as non- computing is left open. A genuine random generator, however,
does not compute: “There is no rule for specifying which digit it will produce at
which time” (p. 147).

I agree that genuine random- number generators do not compute. But I am
not sure that the rule requirement helps much in their exclusion. In some sense,
random- number generators act according to rules. They might receive an
input (e.g., pressing a button) and they produce outputs (i.e., strings of digits).
Moreover, genuine random- number generators, if they exist at all, are care-
fully crafted to generate real randomness, and they act in accordance with the
laws (“rules”) of nature. It is true that these rules do not specify what digits are
produced at what time, but these rules certainly specify which outputs they
produce— namely, digits.

Ultimately, the outcome of this discussion is that the rule requirement is not
crucial. Computation proceeds according to certain rules— but so do almost
all (or even all) other physical systems. Piccinini says that the rule requirement

168 The Nature of Physical Computation

helps to exclude random- number generators— but it is not clear that even this is
true, as genuine random- number generators also follow certain rules.

Medium- independence. A more fundamental requirement is that computing
processes are medium- independent. Piccinini attributes medium- independence
to the vehicles of computation:

A vehicle is medium- independent just in case the rule (i.e., the input- output
map) that defines a computation is sensitive only to differences between
portions (i.e., spatiotemporal parts) of the vehicles along specific dimensions
of variation— it is insensitive to any other physical properties of the vehicles.
(p. 122)

Piccinini also states that “the rules are functions of state variables associ-
ated with certain degrees of freedom” (p. 122). Coelho Mollo (2018, 2019) also
uses the notion of degrees of freedom— characterizing them as “dimensions of
variation of physical variables: for instance, a rigid robot that can only move
forward, backward, left, and right, has two degrees of freedom, insofar as its po-
sition can vary only along two spatial dimensions” (2019: 436). Coelho Mollo
remarks that this characterization of medium- independence is closely related to
Chalmers’s notion of causal invariance (discussed in Chapter 5). He says that in-
sofar as causal- invariant properties “are individuated in a way that fully abstracts
away from the physical constitution of their realisers, they are individuated in
medium- independent terms” (2019: 447).

As noted in Chapter 5, medium- independence is related to two key features of
computation: that computing processes are abstract, and that they are multiply
realizable. What links these two features together is implementation (“realiza-
tion”): a physical computation implements an abstract structure (e.g., an autom-
aton), but “a given computation can be implemented in multiple physical media”
(Piccinini 2015: 122). Computations are therefore medium- independent in that
they “can be defined independently of the physical media that implement them”
(p. 122). Notably, medium- independence is stronger than multiple realization.
While the former entails the latter, the opposite is not true: a process can be mul-
tiply realizable without being medium- independent (Piccinini 2015: 122– 123;
Coelho Mollo 2019). Computing systems have the highest degree of multiple re-
alizability: their individuation places no constraints on the physical medium that
implements them— only on their degrees of freedom (Coelho Mollo 2019).

According to this account, medium- independence plays a significant role in
classifying computing and non- computing systems and processes. Detecting
edges (by desktops and brains) is defined in terms of the medium- independent
properties, and, as such, they satisfy the requirement for computing. Cooking,
cleaning, exploding, and so on are not medium- independent, since they “are

Computation as Mechanism 169

defined in terms of specific physical alterations of specific substances” (Piccinini
2015: 122). The same goes for digestive processes, which are defined “in terms
of specific chemical changes to specific families of molecules” (p. 147) and are
therefore medium- dependent. Coelho Mollo makes a similar point, noting that

weather systems are not medium- independently characterized— to be a
weather system involves being composed of large amounts of gas molecules
of certain kinds (depending on atmospheric composition) and having causal
powers that depend on their intrinsic physical properties (e.g. density, temper-
ature). (p. 438).

I agree that medium- independence is a necessary condition for compu-
tation; I also agree that medium- independence is the source of the abstract
nature and multiple realizability of computation. But, notably, medium-
independence alone does not rule out non- computing processes such as
digesting, cleaning, and cooking (etc.) as computing. As noted in Chapter 5,
these processes might have medium- independent (organizationally invar-
iant) properties too. If every physical process (system) implements some type
of formal structure, then every physical process— such as digesting, cleaning,
or cooking— has medium- independent properties. In this respect, non-
computing systems are no different from computing systems: conceivably,
there is a description by which the stomach possesses degrees of freedom no
less than other computing systems. What makes the difference is that diges-
tive processes, qua digestion, are medium- dependent and, as such, do not
compute. The same applies to cooking and cleaning. Cognitive processes—
detecting edges, recognizing faces, multiplying numbers, and so forth— are
(arguably) cognitive by virtue of processing medium- independent properties
and, therefore might be deemed to compute.

To be sure (and as emphasized in Chapter 5), I do not claim that focusing
on the medium- independent properties of the stomach renders it a computing
system. On the contrary: we can abstract from the medium- dependent proper-
ties of the stomach and describe its processes in terms of rules that are sensitive to
degrees of freedom alone. But this description does not render the stomach— or
any other physical system— a computing system. According to the mechanistic
account, what excludes the stomach and other physical systems from the compu-
tational domain is the teleological function: the stomach, like many other phys-
ical systems, lacks the teleological function to carry out medium- independent
processes— namely, processes that are sensitive to degrees of freedom alone. In
other words, even if the stomach carries out these medium- independent pro-
cesses under some description, it lacks the teleological function to carry them
out, and hence it does not compute.

170 The Nature of Physical Computation

If all this is correct, then medium- independence plays a lesser role in deeming
physical systems non- computing. The stomach, the weather, and other physical
systems are not computing, but not because they lack medium- independent pro-
cesses. Actually, every physical system carries out such medium- independent
processes, at least under some description. These systems do not compute be-
cause they lack the appropriate teleological function. And this means that it is
the teleological function, not the medium- independence, that does the job of
excluding these systems from the domain of computing systems.

One could argue that medium- independence does the job of distinguishing
digestive and medium- independent processes within the stomach, and in this
sense it deems a digestive process as non- computing. Medium- independence
might also do the job of distinguishing between computing and non- computing
processes within a computing system. It might deem, for example, some neural,
medium- dependent processes within our visual system as non- computing. This
might well be correct. I do not want to undermine the importance of medium-
independence. My point is that the mechanistic account puts a heavy burden on
the teleological function: in most cases, you must conjoin medium- independence
with the teleological function to exclude non- computing systems. It is time to ex-
amine whether or not the teleological function can carry the burden.

Teleological functions. Piccinini views computation as a mechanism with
teleological functions. Most importantly, one of its functions, according to his
account, is to perform computation— namely, “to manipulate vehicles based
solely on differences between different portions of the vehicles according to a
rule defined over the vehicles” (p. 274). What is a teleological function? Piccinini
devotes a lengthy discussion to this question (2015: chap. 6; Maley and Piccinini
2017) and adopts a goal- directed (dispositional) approach:

A teleological function (generalized) is a stable contribution to a goal (either
objective or subjective) of organisms by either a trait or an artifact of the
organisms. (p. 116)

This characterization encompasses both biological systems (e.g., brains) and
artifacts (e.g., laptops and smartphones). Possible goals include survival and re-
production, among others.

Teleological functions play a major role in the classification of computing
and non- computing systems. According to Piccinini, planetary systems, the
weather, and many other systems do not compute because they have no teleo-
logical function (p. 145; Coelho Mollo 2019). Planetary systems (and the like)
satisfy the rule and medium- independence conditions, at least under some de-
scription: they manipulate vehicles based solely on differences between various
parts of the vehicles according to a defined rule. However, they do not compute

Computation as Mechanism 171

because, even under this description, they fulfill no teleological function whatso-
ever. What about cooking, cleaning, and digesting? Much like planetary systems,
these processes satisfy the rule and medium- independence conditions, at least
under some description. However, unlike planetary systems, they do have some
teleological functions— and yet stomachs do not compute, because they lack the
right kind of teleological function. They do not have the teleological function to
manipulate vehicles based solely on differences between different portions of the
vehicles according to a defined rule.

An example of a computing process is our visual system. Our early visual
processes detect visual edges in the retinal images. These visual edges repre-
sent “physical edges” in the perceiver’s visual environment (visual field), such
as object boundaries. According to some computational theories (Marr 1982),
our visual system detects edges by computing the zero- crossings of second-
derivative operations (this theory is discussed at greater length in Chapter 9).
According to Piccinini, the system does not only compute this mathematical
function because the detection is achieved through medium- independent pro-
cesses. It computes because the teleological function of the visual processes is to
carry out these medium- independent processes.

While I agree with Piccinini that computing is related to a task or goal of some
kind, I am more skeptical about the need for teleological functions. Teleological
functions are not a natural fit with computation (Dewhurst 2016). Piccinini
himself rules out two approaches to teleological functions that cannot be used
to account for computation. He excludes etiological or historical theories (e.g.,
Millikan 1984; Neander 1991, 2017) because he thinks that computation is
grounded in the current causal powers of the system. In particular, these theo-
ries cannot account for spontaneous computations: the visual system computes
differentiation, according to Piccinini, even if this computation has no historical
roots. Perspectival theories (e.g., Hardcastle 1999; Craver 2013) are also ruled
out, because they introduce a dimension of observer- relativity that Piccinini
aims to avoid.

Another difficulty with teleological functions is their alleged tension with
medium- independence. Medium- independence states that the identity
conditions of computation are not tied to any physical medium, whereas tele-
ological functions are defined in terms of specific causal powers of physical sys-
tems (Coelho Mollo 2019). According to Coelho Mollo, resolving this tension
requires adopting some version of functionalism.

My main criticism, however, is that Piccinini’s account does not show in suf-
ficient detail how the teleological function correctly classifies computing and
non- computing systems. The account of teleological functions is suggestive
and detailed— but is also very general, and seldom refers to computing systems.
When applied to computing systems, important details are left unspecified— such

172 The Nature of Physical Computation

as the goals of a computing system, or how these goals constrain the individua-
tion of medium- independent processes. Instead, the account assumes that such
constraints are imposed when the system is computing, and are not imposed
when the system is not. But this simply amounts to assuming that the teleological
function fulfills its purpose, rather than demonstrating that it does.29

In fact, I would argue that when we analyze the applicability of the proposed
teleological functions to physical computing systems, we see that these functions
do not fulfill their classification task very well. Let us start with non- computing
systems. We do not typically attribute goals to galaxies and planetary systems,
but if survival is a goal, then we should be told why not- collapsing (“surviving”)
cannot be a goal of a galaxy. Unlike gas leaks (discussed by Maley and Piccinini
2017), galaxies also “reproduce” new stars and “pursue [their own] inclusive fit-
ness” in the sense that they extract energy from their environment in order to
maintain their internal stability. Presumably, some topological and geometrical
(“medium- independent”) properties contribute to the survival of galaxies and
planetary systems. Remove the geometrical relationships between the planets
and the sun— such as those described by Kepler’s laws— and the planetary system
would vanish. And yet planetary systems do not compute.30

Next, consider stomachs. It is not controversial that stomachs have teleolog-
ical functions and that digestion (which is medium- dependent) is a stable con-
tribution to the survival of organisms. But what about the medium- independent
processes that take place within the stomach? Do they also contribute to the sur-
vival (or other goals) of organisms? Perhaps they do and perhaps they do not—
we certainly cannot rule out the possibility that they do. Assume, for the sake
of argument, that they do: let us say that there are certain topological proper-
ties (such as points of equilibrium) in the stomach that are important for the
organism’s well- being. Would we deem the stomach to be a computing system in
that case? I think we would not (see also Chapter 5). But even if I am wrong about
this, it is the task of the mechanistic account to demonstrate why we would view
the medium- independent processes in the stomach as computing.

Let us turn to computing processes such as edge detection. According to com-
putational theories of vision, it is agreed that the early visual processes compute;
they compute the zero- crossings of second- derivative operations. It is also agreed
that this computation contributes to the well- being of biological organisms and
artifacts. But what is the teleological function of medium- independent visual
processes? Many would agree that the visual process has the teleological func-
tion of detecting edges— namely, producing representations of physical edges

 29 See also Dewhurst (2018b) for another criticism along these lines.
 30 This and perhaps the other difficulties mentioned later might be dealt with by a different, e.g.,
etiological, account of functions.

Computation as Mechanism 173

(outputs) from representations of light intensities (inputs). Achieving this task
further contributes to the survival of organisms in their environment. Piccinini,
however, refrains from a semantic characterization of computation; his account
is non- semantic. He says that “a physical computing system is a mechanism
whose teleological function is computing mathematical function f” (p. 121).
In the case of edge detection, the system not only computes second- derivative
operations (as we agreed). Its teleological function, according to Piccinini, is to
compute this (non- semantic) mathematical function. But why think that the
teleological function that defines computation is the mathematical function?
In what sense does it contribute to the survival of the organism more than the
mathematical functions performed by the stomach? And why isn’t the semantic
task sufficient for the survival of the visual system?31

Another case in point is the immune system. There is a rich literature on the
medium- independent (“computational”) properties of immune systems (Jerne
1974); some have even compared them to the topology of neural networks
(Dasgupta 1997). These topological properties contribute to the ability of im-
mune systems to attack invaders. In some cases, immune networks are not char-
acterized as computing systems (Hoffmann 2008), even though they have the
kind of teleological function that should result in them being considered as such.
In other cases, natural and artificial immune networks are characterized as com-
puting, especially when they are viewed as information- processing.32 Here, too,
it is far from obvious that it is the mathematical and not the semantic function
that makes the immune network a computing one (or not).

Piccinini provides a philosophical analysis of the nature of teleological
functions, but as far as I can tell, this analysis falls short of showing that the tele-
ological function that is relevant to computing systems is mathematical and not
semantic. In Chapter 8, I provide an argument for the claim that the semantic
task is crucial to the individuation of computation. If I am right about this,
then characterizing computation solely in terms of non- semantic teleological
functions is inadequate.

In summary, the three stated conditions for computing have their virtues, but
also their limitations. It is doubtful that the rule requirement fulfills its limited
role of excluding random- number generators. The medium- independence re-
quirement has its merits, but plays a lesser role in distinguishing computing from
non- computing systems. The bulk of the account falls on the shoulders of the

 31 It should be noted that the semantic (representational) task itself is often defined in terms of
a teleological function. In fact, according to Piccinini (Morgan and Piccinini 2018), the “shared
conception” is that a representation is an internal entity that “has the function of responding to, or
tracking, the distal entity” (p. 10).
 32 Dasgupta writes: “The natural immune system is a subject of great research interest because of its
powerful information processing capabilities. In particular, it performs many complex computations
in a highly parallel and distributed fashion” (1993: 5).

174 The Nature of Physical Computation

teleological function requirement. However, it has yet to be shown that this re-
quirement adequately distinguishes computing from non- computing systems.

6.5 Summary

This chapter addressed the mechanistic account, particularly as set out in
Piccinini’s Physical Computation. I raised two kinds of criticism. The first
was that some computational explanations do not satisfy the norms of mech-
anistic explanations (Section 6.3). The second was that the main criteria of
the account— rules, medium- independence, and teleological functions— do
not appear to constitute an adequate characterization of physical computation
(Section 6.4).

Nonetheless, the mechanistic account has many advantages in its favor. It is
the most systematic and detailed account of physical computation to date. It is
the first account that clearly disengages physical computation from logic and
computability theory, thereby sidestepping many of the pitfalls of earlier ac-
counts. In its most recent iteration, it abandons the architectural approach and
appropriately characterizes computation in terms of medium- independence (in-
cluding a detailed and sound characterization of medium- independence). Last
but not least, it recognizes that computation cannot be characterized solely in
terms of medium- independence, and that another crucial element is missing. It
proposes that teleological functions are the missing element. However, as I have
shown, there are reasons to doubt that these functions are up to this task. Instead,
I argue that the missing element is in fact the semantic properties of computa-
tional states and processes. This is the focus of the final part of this book.

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0008

7
The Semantic View of Computation

A semantic view of computation asserts that semantic properties are an essen-
tial aspect of the nature of physical computing systems. A primary motivation
in favor of the semantic view is that it arguably meets the classification criterion
of distinguishing computing from non- computing physical systems. Computing
systems such as desktops and brains appear to involve representations, be they
derivative or natural. Many instances of non- computing systems— such as
stomachs, hurricanes, and rocks— do not involve semantic properties, and there-
fore cannot be deemed to be computing. If this is correct, then the semantic view
is superior to the existing non- semantic views reviewed in previous chapters.
Another argument (“the master argument”) for the semantic view is presented
in Chapter 8. In this chapter, my aim is twofold: to explain what is meant by the
semantic view (Section 7.1), and to defend it in the face of a long list of objections
that have been raised against it (Section 7.2). I will further develop my own ac-
count in the next two chapters.

7.1 What Is a Semantic View of Computation?

A semantic view of computation states that semantic properties are somehow
essential to the nature of computation. Philosophers have used terms such as in-
volve, bear upon, inform about, is relevant to, and have (semantic properties) to
capture the tight linkage between semantic properties and computation.1 But
what do they mean? After all, everyone agrees that computation often involves
information or representation, whether in manufactured systems or in natural
ones— yet this is perfectly consistent with non- semantic views.2 In order to

 1 Sprevak identifies the semantic view with the claim that “computation essentially involves rep-
resentational content” (2010: 261). Rescorla writes that “on the semantic view, all physical compu-
tational systems have semantic or representational properties” (2014: 1298). Piccinini says: “I call
any view that computational states are representations that have their content essentially a semantic
account of computation” (2015: 27).
 2 Thus, Frances Egan (who holds a non- semantic view) writes that “computational theories treat
human cognitive processes as a species of information processing” (1995: 181). Piccinini, who also
argues against the semantic view, writes: “In our everyday life, we usually employ computations to
process meaningful symbols, to extract useful information from them” (2015: 26).

176 The Nature of Physical Computation

answer this and other questions, we must characterize the semantic view in more
detail.

7.1.1 Essential Involvement

Those who discuss the semantic view understand the locutions of the terms
involve, have, and so forth in terms of individuation. Thus, both proponents
and critics of the semantic view describe it as a claim about the individuation,
taxonomy, or identity conditions of computation— whereby the individuated
entities can be systems (Piccinini, Rescorla), processes (Sprevak, Dewhurst),
states (Piccinini, Dewhurst), or events. The claim is that the individuation of
these systems (etc.) takes into account their semantic properties— namely, that
these play a role in determining whether a given system is computing or not;
whether two systems are computationally similar or computationally different;
whether or not changes in semantic properties alter computational identity;
and so on.

I have associated the locution involve (etc.) with individuating computation.
Next, we ask what is meant by essential in the phrase “essentially involve.” The
simple answer is that essential means always, whereby always refers to any com-
putation, actual or possible.3 So the semantic view asserts that semantic prop-
erties always impact the individuation of computation. The demand is not that
the individuation takes into account all semantic properties, or only semantic
properties (Piccinini 2015: 27), but rather that some semantic properties, per-
haps with certain non- semantic properties, always affect (or “impact,” “play a
role in,” or “enter into”) the individuation of computation.

7.1.2 Non- Semantic Views

The semantic view asserts that semantic properties always affect computational
individuation. This assertion gives rise to a variety of views that are not semantic.
A non- semantic view asserts that semantic properties never affect computational
individuation. As previously noted, such a view is consistent with the claim that
computation often involves semantic properties, insofar as it asserts that compu-
tational individuation never considers these semantic properties (see, e.g., Egan
2010; Piccinini 2015; Dewhurst 2018a).

 3 We might ask about the scope of the possible— namely, if it refers to any computation that is
physically, metaphysically, or even logically or conceptually possible. Given that our focus is physical
systems, we can be satisfied with physically possible computations.

The Semantic View of Computation 177

An important brand of non- semantic views associates computational indi-
viduation with certain semantic terms (e.g., intentionality, representation, in-
formation). These theories do not necessarily make substantial claims about
content— such as that it can be naturalized, eliminated, and so on (discussed
later). Rather, they simply deny that the so- called semantic terms are about se-
mantic properties. Miłkowski (2013), for example, argues that computation is
information- processing, but that the term information is not a semantic en-
tity: “Information processed by a computer need not refer to, or be about, any-
thing in order to be the inputs or outputs of a computation” (p. 48). He further
states that the inputs and outputs always carry information in the trivial sense
of causal nexus, but need not be representational or carry information “in the
normal sense” (p. 48). Miłkowski does not deny that computing systems ever
carry informational content in the normal sense, or that informational content is
real. Rather, he claims that a computing system is information- processing even if
the system does not carry any informational content in the normal sense. Fresco
(2014) identifies concrete digital computation with the processing of instruc-
tional information— but, like Miłkowski, he does not appear to require that this
information have content. Stich (1983), who is an eliminativist about intentional
content, suggests that intentional terms such as belief and desire refer to syntactic
properties.

Some philosophers argue that computational individuation takes into account
semantic properties in some cases, but not in others. We might call this view nei-
ther semantic nor non- semantic (NSNNS). Rescorla (2013; 2017) explicitly argues
in favor of NSNNS. He suggests that the semantic view is prevalent in computa-
tional cognitive science, and that the non- semantic view dominates computer
science. Burge appears to subscribe to this view as well: on the one hand, he fa-
mously argues that visual content affects the individuation of computational-
cognitive states (1986; 2010); on the other, he also says, in relation to a specific
computation, that “here we have computation without representation” (Burge
2010: 424). Thus, both Rescorla and Burge do not uphold the semantic view. But
they also seem to think that in the context of cognitive science, where computa-
tion involves cognitive representation, the content of the representation affects
computational individuation— and in that regard, they do not support the non-
semantic view.4

 4 Lee (2021) proposes a pluralistic view of computational identity that is similar to NSNNS in its
claim that semantics affects computational individuation in some cases but not in others.

178 The Nature of Physical Computation

7.1.3 Variants of the Semantic View

As it turns out, there are at least two different variants of the semantic view that
relate to computational individuation. According to one version, semantic prop-
erties play a role in distinguishing between computing systems (such as brains
and desktops) and non- computing systems (such as stomachs and hurricanes).
According to the other version, semantic properties play a role in distinguishing
between different kinds of computing systems— for example, between brains
and desktops. In both views, semantic properties are a factor in the identity
conditions, or the individuation, of computation. In the former version, se-
mantic properties are part of the identity of a system as a computing system, and
as such are essential to rendering it a computing system. In the latter version,
semantic properties determine computational equivalence— namely, the classi-
fication of (computing) systems, processes, events, and states into computational
types, or varieties.5

The former version of the semantic view asserts that semantic properties are
essential to meeting the classification desideratum— namely, to distinguishing
between computing and non- computing systems. Let us call this version the C-
semantic view (whereby C stands for classification). The second version asserts
that semantic properties are essential to meeting the taxonomy desideratum—
namely, to distinguishing between different types of computation. In this ver-
sion, semantic properties play an essential role in computational equivalence, as
they determine (perhaps in conjunction with other factors) whether or not two
instances (tokens) of computation belong to the same type of computation. Let
us call this version the E- semantic view (whereby E stands for equivalence).

On the face of it, there is no reason to uphold one version and reject the other.
But there are those who do. Fodor adopts the C- semantic view. He says more
than once that there is “no computation without representation” (Fodor 1975: 34;
1980: 122) and “no representations, no computations” (1975: 31). According to
Crane, Fodor adopts this criterion in order to distinguish between computing
and non- computing systems:

According to reductionists like Fodor . . . what distinguishes systems that are
merely describable as computing functions (such as the solar system) from sys-
tems that genuinely do compute functions (such as an adding machine) is that
the latter contain and process representations— no computation without repre-
sentation. (Crane 2016: 154)6

 5 This distinction is also emphasized by Sprevak (2018) and Lee (2021).
 6 Fodor himself says that “the solar system is not a computational system, but you and I, for all we
now know, may be” (1975: 74 n. 15).

The Semantic View of Computation 179

Fodor, however, rejects the E- semantic view (see, e.g., 1994: 7–16). According
to him, computational kinds are individuated by their syntactic properties,
whereas syntactic individuation does not appeal to semantic properties. I will
leave aside the question of whether this claim— adopting the C- semantic view
but rejecting the E- semantic view— is consistent.

In principle, one could hold the E- semantic view without adopting the C-
semantic view. Arguably, this is indeed Burge’s view: he believes that semantic
properties are essential to the individuation of computational- cognitive states
while conceding that, in other cases, “we have computation without represen-
tation.” But, in fact, there is not much sense in adopting the E- semantic view
without adopting the C- semantic view. If semantic properties always affect
the individuation of computational kinds (E- semantic view), this implies that
there is no computation without representation. And if there is no computation
without representation, this would strongly suggest that the semantic properties
of representations play a role in the identity condition of computing versus non-
computing systems (C- semantic view). It would therefore make more sense to
attribute a variant of the NSNNS view to Burge (as we did earlier), whereby the
individuation of computational kinds (equivalence) takes semantic properties
into account when computation operates on representations, but does not do
so when computation involves no representation. I myself would argue here for
both the C- semantic and E- semantic views.

7.1.4 Semantics

The semantic view refers to semantic features, usually properties. But what is
meant by semantic? This is a notoriously hard question when considering seman-
tics in general. The short answer, however, is that when confined to computing
systems, semantic properties refer to representational or informational content.
The semantic view claims that the individuation of computational systems (etc.)
makes an essential reference to the content of the states of the system.

What is this content? Most would agree that content involves aboutness. The
states of computing systems that have content denote or refer to certain other
objects, events, properties, and so on. These entities can be located in the en-
vironment of the (computing) system; in distant, counterfactual, or abstract
domains; or within the system itself. Some identify content with the referents
themselves, while others identify it with certain perspectives of these referents
(such as “senses”). All agree, however, that aboutness implies directionality: while
objects with content refer to certain other entities, those entities might not refer
back to them, nor might they have semantic properties at all.

180 The Nature of Physical Computation

Next, we ask what kinds of content play a role in computing systems. Following
others, I suggest taking a pluralistic stance. One aspect of this pluralism is that dif-
ferent computing systems might operate on different kinds of semantic properties
(Piccinini and Scarantino 2011; Piccinini 2015: chap. 14). Some computations
operate on so- called representations whose content is interpretative— in the
sense that it is derived by an observer, designer, or user (usually external).
Laptops operate on semantic properties that are defined, at least in part, by the
user of the machine. Other computations might operate on representations
whose content is non- derivative. Most people would argue that the content of
the computations that take place in our brain, for example, is not defined by the
interpretation of an external observer.7

Another aspect of pluralism pertains to the factors that determine con-
tent.8 In classical cognitive science, the content of a computing system might
receive a functional, model- based treatment.9 Others— specifically neural
computations— might operate on representation or information whose content
is at least in part causally based, or so it is often assumed in cognitive neurosci-
ence.10 It may turn out that there is a single account of the content of computing
systems.11 The semantic view is perfectly consistent with this scenario. But it is
also consistent with the far more reasonable scenario that computation allows
for various kinds of semantic properties.

Sprevak (2010) suggests that the semantic properties involved with computing
systems might not always have a particularly complex structure (minimalism).
Some computations operate on propositional and compositional representa-
tional systems, while many others appear to operate on representational systems
that lack these rich structures. (Cells in V1, for instance, do not appear to have a
complex propositional structure.) Another facet of minimalism pertains to in-
ternal representations: some computations involve internal representations, but
others do not. Two- layer feed- forward networks map input representations to

 7 Another motivation for the pluralistic stance is the fact that computation is associated with dif-
ferent semantic terms, such as representation, information, content, coding, and encoding— as well as
symbols, signs, signals, denotations, and data structures, to name only the most popular terms.
 8 Some philosophers, e.g., Cummins (1989), further distinguish between the identity conditions
of representations (i.e., what facts make something a representation— namely, having some content)
and the identity conditions of content and/ or information (i.e., what facts determine the specific
content of, or the information carried by, that entity). Fodor (1987) answers the first question in
functional- computational terms and the second in causal- based terms; see also Ramsey (2016). I will
not get into this distinction. Instead, when I talk about semantic properties, I refer to representational
or informational content.
 9 See Cummins (1989) and Ramsey (2007).
 10 David Marr (1982), e.g., writes that “the apocryphal grandmother cell” (p. 15) is “a cell that fires
only when one’s grandmother comes into view” (p. 15n.); a comprehensive treatment of the causal
view (augmented with a teleological component) is provided, e.g., by Dretske (1981, 1988).
 11 Some philosophers, including Cummins (1989) and Ramsey (2007), argue that computation
forces us to identify representation in only one way— usually some form of functional- based account.

The Semantic View of Computation 181

output representations, but the mapping involves no internal (“hidden- layer”)
representations. Finally, some computations, while operating on internal com-
plex propositional structures, do not have mental content.

Some philosophers think that the semantic properties involved in compu-
tation have a normative aspect (Cummins 1989; Ramsey 2007). Normativity
implies that the representation may be right or wrong, and that there is a possi-
bility of misrepresentation. My representation of cow, R, might be tokened by a
horse under some darkish conditions. This does not necessarily mean that R is a
representation of cow- or- horse. R is still a representation of cow; in the described
case, R misrepresents the horse as a cow.12 The normativity of semantic proper-
ties is usually associated with a certain function, in the sense of a goal or purpose.
In the computers we design, such as desktops, the purpose or function of rep-
resentation is derived from us, the designers or users. In some natural systems,
however, the function may evolve from an adaptive process, such as evolution
(Millikan 1984) or learning (Dretske 1988). My view is that the representational
or informational content in computing systems is always normative— in the
sense that there is an issue of correctness in their application. I will not argue
for this claim explicitly, although I do think that it follows from the argument in
favor of the semantic view that will be presented in Chapter 8.

To sum up, by semantic we refer to the informational or representational con-
tent of computation (states, systems, processes, etc.), which means that these
states come with directional reference (aboutness). We do not require there to
be a single account of the content of all computing systems: there might well
be different kinds of content, as well as different determinants of content (plu-
ralism). The relevant representation or information might not be mental, prop-
ositional, or compositional— nor even internal (minimalism). According to
some philosophers, content always involves the possibility of misrepresentation
(normativity).

7.1.5 Non- Semantic Accounts of Semantic
Properties

Before moving on, I should say something about the so- called non- semantic
accounts of semantic properties (as opposed to non- semantic views of compu-
tation). How should we treat these accounts with respect to the semantic view

 12 Dretske (1988) distinguishes between semantic properties that have a normative aspect (“repre-
sentation”) and semantic properties that do not (“information”). Hence, according to Dretske, there
is no misinformation: R carries the information that there is a horse in front of me, even under the
darkish conditions in which I misrepresent this horse as a cow. Other scholars do not accept this dis-
tinction and introduce instances of misinformation (Piccinini and Scarantino 2011).

182 The Nature of Physical Computation

of computation? If these accounts abolish semantics, do they not nullify the se-
mantic view of computation? I will distinguish between three sorts of accounts.

Naturalistic theories. Naturalistic, or reductive, accounts aim to
recharacterize semantic properties (such as content) in non- intentional and
non- semantic terms. They aspire to reduce content to some other more natural
property; Fodor famously captures this goal in the slogan “If aboutness is real, it
must really be something else” (1987: 97). Many philosophers have developed nat-
uralistic accounts of content.13 Some identify content with functional role (Block
1986), or with isomorphism- based structures (Cummins 1989; Ramsey 2007).
Others have turned to causal- based accounts (Fodor 1987; 1990), and some have
augmented it with an adaptive (learning or evolution) component (Dretske 1988;
Millikan 1994). These accounts are often taken to compete with each other with
respect to mental content. But, as previously noted, when it comes to the context
of computation, different accounts might describe different kinds of computing
systems (Floridi 2011; Piccinini and Scarantino 2011).

At first blush, these theories of content, if successful, appear to blur the dis-
tinction between semantic and non- semantic accounts of computation, since
the features that make the semantic accounts semantic are really not semantic
(they are “something else”). However, I do not think that the semantic view is
under any real pressure. First, the semantic view of computation, though con-
sistent with a naturalistic approach to content, is not committed to naturalism
(and, given pluralism about content, it is certainly not committed to one specific
account of content). The semantic view is amenable to the possibility that the
content of at least some computing systems cannot be naturalized at all. Second,
the idea that computational content can be naturalized is rather hypothetical. It
is very doubtful that we can naturalize the (apparently derivative) content in the
systems that we design. It is also far from certain that mental content can be nat-
uralized. None of the competing theories of mental content has provided a fully
satisfactory account of mental content. So, even if computational content can be
naturalized— something that is very much in doubt14 — we are not there yet.

Third, and most importantly, the debate between semantic and non- semantic
views of computation is about the nature of computation, not about the nature
of content. The debate is about the features that play a role in the individuation
of computation. The semantic view says that the individuation of computation
always takes content into account; a view that is not semantic (e.g., non- semantic
views) denies this. Whether content itself can be identified in non- semantic
terms is an important but separate issue. To compare: Consider the debate on

 13 In the context of information, these accounts are known as semantic theories, as they target the
informational content or meaning of information.
 14 Thus, Sprevak notes that “many contemporary philosophers suspect that representation simply
cannot be naturalized” (2013: 547).

The Semantic View of Computation 183

whether or not computation is sensitive to content. As far as I can tell, this issue is
orthogonal to the debate between naturalists and their opponents. Computation
would be sensitive to content (or not) regardless of whether content can be nat-
uralized. The same applies to computational individuation. Content would (or
would not) affect computational individuation regardless of whether content can
be naturalized. Thus, the semantic view is viable, irrespective of whether content
can be naturalized.15

Formal theories. Formal accounts characterize in formal (i.e., logical, mathe-
matical, or statistical) terms the ways that semantic properties are communicated,
are transformed, relate to each other, are composed, and so forth. The most well-
known theory of this kind is Shannon’s theory of communication, which intro-
duced a “non- semantic” notion of information (Shannon 1948; Wiener 1948;
Shannon and Weaver 1949). It does not appear to recharacterize information
or informational content in non- semantic terms— rather, it takes informational
content as given: “Frequently the messages have meaning; that is they refer to or
are correlated according to some system with certain physical or conceptual enti-
ties. These semantic aspects of communication are irrelevant to the engineering
problem” (Shannon 1948: 379). The engineering problem concerns the channels
of information; more specifically, its aim is to account for the amount of infor-
mation that can be transmitted in those channels under various circumstances.16
There are other formal theories that belong to this sort of non- semantic account.
Algorithmic information theory, for example, concerns the amount of informa-
tion (“complexity”) encoded in string or other data structures.17 Operational
semantics provides axiomatic systems to prove certain properties of computer
programs, such as correctness and validity.18 Denotational semantics constructs
mathematical objects (“denotations”) that represent the operations of computer
programs.19 And there are others.

All these theories aim to give a formal treatment of aspects that are related to
semantic properties. There are two ways to interpret these theories. In one inter-
pretation, these theories aim to formally characterize certain non- semantic (e.g.,
syntactic) aspects of the structures that carry informational or representational
content. This interpretation may be more faithful to the first two theories of in-
formation. Apparently for this reason, these theories are said to introduce a non-
semantic notion of information. In another interpretation, the mathematical

 15 It is nevertheless true that if one is a naturalist about computation (or even just mental computa-
tion), then one’s motivation to adopt the semantic view would depend on whether or not we success-
fully naturalize mental content.
 16 Fresco (2014: 135– 136); Piccinini (2015: 226– 229).
 17 Algorithmic information theory was developed independently by Kolmogorov (1965); Chaitin
(1977); and others.
 18 See Plotkin (2004).
 19 See Scott and Strachey (1971).

184 The Nature of Physical Computation

theory provides the meaning of the computer programs. Such an interpretation
might be more faithful to denotational semantics and other theories of formal
semantics.

In any event, the formal theories do not appear to undermine the viability of
the semantic view of computation. In the first interpretation, they simply char-
acterize some non- semantic features, leaving the semantic properties intact. In
the second interpretation, they provide a certain non- semantic (e.g., formal) ac-
count of semantic theories, and as such fall under the category of naturalistic ac-
counts.20 Under neither interpretation do the formal theories deny the existence
of semantic properties or their role in computational individuation. Thus, formal
theories and the semantic view of computation can happily coexist.

Eliminativist theories. Some accounts take an eliminative strategy: they deny
that the defining semantic properties “are real” (as Fodor puts it), in the sense
that they really exist or conform to real kinds. Quine (1960) famously denied
that meanings and intentional states actually exist. The Churchlands deny that
beliefs and desires, with their intentional content, are real (Paul Churchland
1981; Patricia Churchland 1986). Stich (1983) is an eliminativist with respect to
intentional content, arguing that intentional states, such as beliefs and desires,
should be defined in syntactic terms. Ramsey (2007) argues that there are no real
non- classical (e.g., neuroscientific) representations. Such eliminativist theories
have certain affinities with instrumentalist theories that are similarly not com-
mitted to the existence of semantic properties. Dennett (1987), for example, is
famous for taking this stance with respect to intentional states and content. The
main difference is that instrumentalists still think that semantic properties can
be useful for explanatory or predictive purposes, whereas eliminativists tend to
deny even that.

The eliminativist theories, if successful, pose a threat to the semantic theories
of computation. If semantic properties are not real, then semantic properties, it
seems, cannot play an individuative role in computational theories. But I see no
real threat here to the semantic view. First, the nullification of the semantic view
depends on the success of the eliminativist theories, which are very much in dis-
pute. Second, the specific theories that are on the market do not eliminate every
semantic property, only some of them. Quine and the Churchlands eliminate
intentional content, but offer alternatives. Quine talks about stimulus meaning.
The Churchlands opt for neuroscientific representational theories that posit
computational- neural states whose content is defined in isomorphism- based
functional terms (Churchland 2007). Ramsey is an eliminativist with respect to

 20 A similar point is made about Tarski’s theory of truth, which can be interpreted as a formal se-
mantic characterization of the semantic notion of truth, or as a “non- semantic” theory about how
the bearers of truth (i.e., sentences) relate to each other with respect to preserving truth (see Sher
1991, 1996).

The Semantic View of Computation 185

non- classical theories, but opts for classical theories that posit computational-
representational states, whose content is also defined in isomorphism- based
functional terms (Ramsey 2007). These claims are in accord with the semantic
view. The proponent of the semantic view can say that in the domains where
there are no real semantic properties, there is no real computation; computation
occurs only in the domains where there are real semantic properties. Yet another
option is to adopt a computational (instrumentalist) stance— namely, that com-
putation occurs only in domains where there are useful, albeit not real, semantic
properties. This computational stance is, as far as I can tell, also in accord with
the semantic view of computation.

To recap, none of the reviewed theories appears to put real pressure on the
semantic view of computation. Naturalistic theories aim to reduce semantic
properties to non- semantic ones. The semantic view is not committed to nat-
uralism about content, but is consistent with it. The semantic view is the claim
that semantic properties play a part in the individuation of computational states,
whether or not they are naturalized. Formal theories can be interpreted as ac-
counting for some of the non- semantic properties of computation (and perhaps
other processes). As such, they are perfectly consistent with the semantic view.
They can also be interpreted as formal theories of content, and, as such, can be
considered a species of naturalistic theories. Eliminativist theories are very con-
troversial, and usually do not target every kind of content. They are therefore
consistent with the semantic view that wherever we have real content, that con-
tent affects computational individuation.

7.1.6 What the Semantic View Is Not

It is important to distinguish the semantic view from other, closely related
approaches. First, the semantic view of computation is consistent with a non-
semantic view of implementation. A non- semantic view of implementation
asserts that the relation of implementing formalism (e.g., an automaton) by a
physical system does not involve semantic properties. A semantic view of com-
putation is consistent with this assertion. Of course, if you think that computa-
tion is nothing but the implementation of a formalism, then you cannot hold a
semantic view of computation and a non- semantic view of implementation at
the same time. But the semantic view of computation is not committed to the
identification of computation with implementation. Proponents of the semantic
view of computation are free to maintain that the implementation of formalisms
is non- semantic, but that counting the implementing physical system as com-
puting essentially involves semantic properties. I return to this issue later, in my
reply to Objection 1.

186 The Nature of Physical Computation

The semantic view can also be distinguished from the view that computational
descriptions (such as those in theories and explanations) make explicit reference
to semantic properties. Proponents of the semantic view are free to maintain that
computational descriptions are themselves formulated in formal (e.g., mathe-
matical) terms and do not make explicit reference to semantic properties. The
semantic view is the claim that considering the described system as computing
essentially involves semantic properties. I discuss this issue in greater detail later,
in my reply to Objection 2.

The semantic view of computation is distinct from the view that computing
processes are insensitive to semantic properties.21 One widespread view is that
the computing processes in my laptop operate on symbols or bits— and yet these
processes are completely “blind” (as opposed to “sensitive”) to how we inter-
pret the symbols, that is, to their semantic properties. In that regard, computing
processes are not sensitive to semantic properties. There are those who invoke
this blindness when objecting to the semantic view, on the assumption that the
claims about individuation and sensitivity are closely related. I shall address this
claim in my reply to Objection 9. For now, suffice it to say that the semantic view
is a claim about the sort of properties that matter to the individuation of compu-
tation, rather than about the properties to which computation is sensitive.

Finally, the semantic view differs from externalism about computation—
the claim that the individuation of computation essentially takes into account
features that are external to (that is, located outside) the computing system. Both
of these approaches are concerned with individuation. However, externalism is
not committed to the claim that the external features are semantic, whereas the
semantic view is neutral about the semantic internalism/ externalism debate.22

7.1.7 The Gist of My Account

Since I will gradually develop my own account of computation in Chapters 8 and
9, it seems advisable to highlight its distinctive features at this point. My account
differs from other semantic accounts (e.g., Churchland and Sejnowski 1992;
Ladyman 2009; Sprevak 2010) in one or more of the following aspects. First,
I distinguish between implementation, which I take to be a non- semantic rela-
tion (see Chapter 5), and computation, which I take to be semantic. Moreover,

 21 See also Piccinini (2008a); Sprevak (2010); and Rescorla (2012).
 22 Authors who argue for externalism, without committing (or even objecting) to the semantic
view, include Bontly (1998); Horowitz (2007); Piccinini (2008, 2015); and Shea (2013). We can also
distinguish externalism about computation from computational externalism. Computational (or
wide) externalism is a claim about the location of the vehicles of computation (e.g., Wilson 1994),
whereas externalism about computation is a claim about what individuates computational states, re-
gardless of where they are located.

The Semantic View of Computation 187

I take it that while a physical system typically implements at any time more than
one formalism, only one of these formalisms typically serves to identify the com-
putational structure (or vehicle) of the system in a given context. Take, for ex-
ample, a device that outputs three physical properties, L, M, and H (the detailed
examples are provided in Chapter 8). Ignoring other properties, we can group
these properties in different ways: {L,M,H}, {L+M,H}, {L,M+H}, and so on. Each
grouping might be mapped to (“implement”) a different formalism. Typically,
however, only one of them is relevant to the computational structure of the
system in a given context.

Second, my view is semantic in that the content of physical states or proper-
ties determines their computational individuation. If, for example, the physical
properties L and M have CONTENT1 and H has CONTENT2, then the relevant
grouping, for the purposes of computational individuation, is {L+M,H}. We
will say that the device has two computational, “abstract” properties: COMP1
and COMP2. COMP1 is associated with the physical properties L+M and with
CONTENT1. COMP2 is associated with the physical property H and with
CONTENT2. One can say (correctly) that there is no computational difference
between {L+M,H} and {L,M+H}, as the latter also leads to two computational
types. However, in Chapter 8, we will see that when also considering inputs
and internal states, these two groupings can yield very different computational
structures.

Third, I do not think that every change in content alters the individuation of
computational structure. Assuming that the physical properties L and M have
CONTENT3 and H has CONTENT4, the relevant grouping, for the purposes of
computational individuation, is still {L+M,H}. If, however, L has CONTENT1
and M and H have CONTENT2, then the relevant groupings, for the purposes of
computational individuation, will change to {L,M+H}. In Chapter 8, I will show
that these alterations in groupings can also result in different computational
structures. The important point, however, is that in all these cases, the sameness
and differences of the content of physical properties play a role in the formation
of computational types.

Fourth, I take it that computational descriptions, explanations, and theo-
ries are all formal in that, as a general rule, they do not explicitly mention the
contents of computational states, but only their medium- independent prop-
erties. Nevertheless, these descriptions (etc.) are computational, rather than
merely mathematical, only if they refer to medium- independent structures
that were grouped (individuated) via their contents (as just discussed). These
medium- independent structures— the ones that are grouped (individuated) via
their contents— are the computational structures or vehicles of the system. This
will be further clarified in Chapter 8.

188 The Nature of Physical Computation

Last, I take it that another important element of computation is a modeling
component, which I discuss in Chapter 9. This component helps to exclude rep-
resentational systems that are non- computing, and is also key to understanding
the distinctive features of computational explanations.

7.1.8 Supporting the Semantic View

There are several arguments in favor of the semantic view.23 Two of them are
more central than the others. The standard argument (mentioned at the outset
of the chapter) is that semantic properties are enormously helpful in distin-
guishing computing from non- computing systems.24 The standard argument
supports the C- semantic view. It goes like this: The semantic view helps to sat-
isfy the-right- things- compute part of the classification criterion (Premise 1).
This is because the paradigm cases of computing systems carry informational
or representational content— they are information- processing systems. The
paradigm cases include cognitive, neural, and perhaps other natural systems,
as well as artificial computing systems (artifacts) such as chess machines, air
traffic controllers, word processors, and smartphones and laptops more gener-
ally. No less importantly, the semantic view helps to satisfy the-wrong-things-
don’t-compute part of the classification criterion (Premise 2). This is so because
semantic properties exclude many systems that do not carry informational or
representational content, such as stomachs, hurricanes, solar systems, rocks,
and many others. Lastly, advocates of the semantic view point out that the non-
semantic accounts face serious difficulties in meeting the classification crite-
rion, as I have pointed out in the previous chapters (Premise 3). If all these three
premises are correct, then the semantic view has an edge on its non- semantic
counterparts (conclusion).

The opponents of the semantic view might challenge each of those three
premises. Regarding the first premise, they might argue that there are still many
representational systems that do not compute. But this objection does not im-
mediately undermine the semantic view. The semantic view asserts that se-
mantic properties are necessary for the individuation of computation. It is not
committed to the claim that semantic properties are sufficient for the individu-
ation of computation. It would be nice, of course, to see a semantic account that
excludes the alleged representational systems (I return to this task in Chapter 9).

 23 See Sprevak (2010), who lists some of them.
 24 A version of this argument is put forward, e.g., by Crane, who concludes: “What distinguishes
systems that are merely describable as computing functions (such as the solar system) from systems
that genuinely do compute functions (such as an adding machine) is that the latter contain and pro-
cess representations— no computation without representation” (2016: 154).

The Semantic View of Computation 189

One could also say that the semantic condition is empty— because every physical
system is, in some sense, representational. I discuss this contention in the reply
to Objection 3. Many have challenged the second premise on the grounds that
there are computations without representations, which are wrongly excluded
in the semantic view. I address this challenge in my replies to Objections 1 and
2. Finally, one can still debate the third premise, on the grounds that an adequate
non- semantic account of computation can be, or has already been, found.

The master argument for the semantic view aims to show that semantic prop-
erties essentially affect the classification of physical systems into computational
types. Allegedly, it shows that semantic properties play a role in determining
whether any two physical systems are computationally the same or different.
This argument directly supports the E- semantic view, as it shows that semantics
matters when it comes to computational equivalence. Given that there is little
reason, if any, to embrace the E- semantic view and reject the C- semantic view,
the master argument also supports the C- semantic view. Chapter 8 is devoted to
the master argument. Together, the standard argument and the master argument
provide a solid support for both versions of the semantic view.

Supporting the semantic view also requires removing some powerful
objections to it. In the following section, I will address what I take to be the most
pressing objections.

7.2 Objections to the Semantic View

In this section, I will reply to nine objections to the semantic view. These
objections deserve more discussion than provided here; my aim is to say in brief
how these objections can be addressed by proponents of the semantic view.25

Objection 1: There Are Computations Without Representations
The most common objection to the semantic view is raised in examples of
computations that involve no semantic properties whatsoever. Rescorla relies on
Block’s vending automaton (Block 1978; Godfrey- Smith 2009) as an example:

As a counter- example to the semantic view, consider a simple, finite- state
vending machine discussed by Godfrey- Smith (2009). The machine has two
inputs (I1 = 5 cents, I2 = 10 cents), three outputs (O1 = null, O2 = Coke, O3 = Coke
& 5 cents), and three internal states S1, S2, and S3, governed by the transition
table [not presented here]. Call this machine “VEND.” The implementation
condition for VEND does not seem to involve meaning, representational

 25 Some of the objections receive a more detailed treatment by Sprevak (2010).

190 The Nature of Physical Computation

content, or “aboutness.” A physical system can implement VEND even if its
states lack any semantic interpretation. Of course, one might impose represen-
tational talk upon the system. For instance, one might say that a system en-
tering into state S2 thereby “represents” that five cents more are required for a
Coke. At best, such representational attributions reflect a Dennettian “stance”
towards the system (Dennett [1987]), not a genuine constraint the system must
satisfy to implement VEND. Nothing about VEND itself seems to require that
we attribute representational import to states S1, S2, and S3. Nothing about
VEND’s transition table assigns any essential role to semantics, representation,
or content. (2013: 684)

In another paper, Rescorla (2014) says the same thing about an automaton
dubbed ELEV, which, when implemented, can be used to operate elevators.

Reply: Rescorla talks here about the semantic view of computational imple-
mentation, thus identifying computation with implementation. As I noted ear-
lier, the semantic view of computation is not committed to the semantic view
of computational implementation. It is in fact consistent with a non- semantic
view of implementation. I actually agree with Rescorla that the implementa-
tion conditions of VEND (and ELEV) do not involve semantic properties such
as “meaning, representational content, or ‘aboutness.’ ” As I noted in Chapter 5,
I agree that the notion of implementing an automaton (and a formalism more
generally) is non- semantic.26 Implementation, however, is different from, and an
insufficient condition of, computation, as demonstrated by Rescorla’s example.
As noted in Chapter 5, virtually every physical system— rocks, hurricanes,
stomachs, and ventilators— implements some automaton of that sort, perhaps
even more than one, and yet we do not treat them as computing systems. In fact,
we do not deem old- style vending machines to compute, even though they im-
plement VEND: they emit cans and coins upon receiving the correct amount
of money, but they compute nothing. The same goes for elevators that imple-
ment ELEV. If we treat all these systems as computing, the notion of computing
becomes useless and trivial, adding nothing to the notion of a physical process.
Computing starts when we “impose representational talk upon the system.” But
as long as we do not impose semantic properties on the vending machine (and
I agree with Rescorla that we don’t), the machine, though it implements VEND,
is not computing.

 26 Subscribing to an NSNNS view, Rescorla thinks that in some cases the implementation
conditions involve semantics. I think that implementation is never semantic.

The Semantic View of Computation 191

Objection 2: Computer Science and Its Branches Individuate Computation
Non- Semantically
Many suggest that we should examine how computer science treats computa-
tional individuation. When we do, we see that computation is individuated non-
semantically. Piccinini, for example, writes that “many readers, especially those
familiar with computer science and computability theory, will readily agree that
in those disciplines, computational states are individuated by their formal or syn-
tactic properties” (2008a: 208), and that “the whole mathematical theory of com-
putation can be formulated without assigning any interpretation to the strings
of symbols being computed” (2008a: 212). Thus, in their chapter on Turing
machines, Lewis and Papadimitriou (1981) talk about a function f from symbolic
configurations (strings) to symbolic configurations regardless of any interpreta-
tion, and then say that a Turing machine, M, computes this function (p. 175ff.).

Reply: A proponent of the semantic view might note that some branches
of computer science do actually involve semantics, and to a significant degree
(Turner 2013). Others would suggest that we put aside computer science in this
matter, as it deals with mathematical objects, not physical ones (Sprevak 2010).
My strategy is a bit different. I actually agree that many theories of computing
systems describe only formal (e.g., syntactic) properties, and not semantic ones.
However, my reply is that it does not follow that computational individuation is
non- semantic.27 But I will make two comments in advance.

First, I agree that there are formal theories that individuate the states of com-
puting systems non- semantically. In fact, in my reply to Objection 1, I even
insisted that a theory of implementation selects the implemented automaton
without appealing to semantic properties. The fact that some theories (whether
or not they are referred to as computational) focus on the non- semantic prop-
erties of computation implies nothing about whether or not the individuation
of computation is semantic. Think of the formal theories of information (such
as Shannon’s information theory) discussed earlier. These can be interpreted as
analyzing certain non- semantic properties of information processing. As such,
they individuate informational states without appealing to the informational
content of the states. But we cannot conclude from this that we can individuate
informational states, qua informational, without appealing to informational
content. Similarly, a proponent of the semantic view might concede that, at least
occasionally, automata theory describes and classifies Turing machines without
appealing to semantics by focusing on the strings of symbols, regardless of their
interpretations.28 This is because the Turing machines have very interesting

 27 See also Crane (1990).
 28 However, there are other instances where we individuate the strings by appealing to their
representing numbers (Boolos and Jeffrey 1989).

192 The Nature of Physical Computation

properties, such as halting, that are not related to the interpretation of the strings.
This, however, does not imply (without further argument) that computational
states, qua computational, are individuated non- semantically.

Second, I also agree that computational theories provide formal descriptions
of computing systems. They will, for example, describe the formalism that a
physical system implements. Yet it does not follow that this formal structure is
individuated non- semantically. The aim of the master argument for the semantic
view (see Chapter 8) is to illustrate just this: it shows that semantic properties
can determine which of the formal properties implemented by the system are
selected by computational theories and explanations. Thus, the semantic view is
at least consistent with the formal nature of computational theories.

A semanticist can thus reply to the objection as follows: Computational the-
ories apply to systems that have, or at least can have, semantic properties (and
as long as they don’t have semantic properties, they don’t compute). The talk
about the computation of non- semantic functions is just a derivative of the se-
mantic talk about computation. Thus, to return to Lewis and Papadimitriou,
their talk about the computation of string- theoretic function is a derivative of
their discussion of “Turing- computable functions from natural numbers to nat-
ural numbers” (1981: 177), where they introduce an interpretation function
from symbols to numbers. It is true that computational theories often provide
formal descriptions of computing systems without explicitly mentioning se-
mantic properties. It is also true that there are formal theories (still under the
heading of computer science) that study computing systems regardless of their
semantic properties; they focus on the non- semantic properties of computing
systems. But, as just mentioned, all this is consistent with the semantic view of
computation.

Objection 3: The Semantic View Is Consistent with Limited
Pancomputationalism
The semantic view is consistent with the claim that every physical system—
including stomachs, hurricanes, and rocks— computes. This is certainly true
if one assumes that every physical system carries information.29 But even
without making this assumption, the semantic view is arguably consistent with
pancomputationalism— simply because such systems, according to a certain
interpretation, are representational systems. For example, I can assign certain
content (such as numbers) to the states of the stomach. Under this assignment,
the stomach transforms representations of numbers into representations of
numbers. The same goes for virtually every physical system. Nothing stops me

 29 See Piccinini (2015, 2017), who points out that this assumption, together with others, leads to
pancomputationalism.

The Semantic View of Computation 193

from assigning content to the states of hurricanes, rocks, and chairs. Thus, the
semantic view is not helpful in excluding non- computing systems. It is consistent
with pancomputationalism, with all of its pitfalls.

Reply: I do not think that every physical system carries information (at least,
not in the manner that we characterized computational content in Section 7.1.4).
But let us assume, for the sake of argument, that it does. Let us even assume, for
the moment, a very liberal version of the semantic view, whereby carrying infor-
mation is a sufficient criterion for computation. In that case, the proponent of the
semantic view would indeed embrace limited pancomputationalism. But limited
pancomputationalism does not imply that the semantic view has no role in ex-
cluding non- computing processes. As Chalmers has noted, one can subscribe to
limited pancomputationalism and still deny that digestion is computation: the
fact that the stomach computes does not mean that its digestion is an instance
of computation (see Chapter 5). Following this reasoning, the proponent of
the semantic view can say that the stomach carries information (and there-
fore computes), but that digestion does not proceed in virtue of information-
processing, and therefore it does not qualify as computation. The same goes for
other non- computing processes.

As we have just noted, however, the more reasonable stance is that stomachs,
hurricanes, and rocks represent nothing. Their states convey no content whatso-
ever. In that case, according to the semantic view, these systems do not compute.
Thus, the semantic view is actually at odds with limited pancomputationalism.
What is true is that the semantic view is consistent with very limited
pancomputationalism. This even weaker thesis states that every physical system
could, under certain circumstances, be a computing system. If we assign content,
such as numbers, to the states of the stomach, we could perhaps use it to compute
the solution of certain specific equations. Of course, we would still require that
the other conditions of computation be met for the stomach to be deemed com-
puting; if those conditions were met, then the stomach would compute.

I see nothing wrong with this result, however. On the one hand, the semantic
view correctly classifies stomachs, hurricanes, rocks, and many other non-
representing systems as non- computing. On the other hand, it does not rule
out such systems as computing when we turn them into representational sys-
tems. Whether or not these systems really do compute when they are turned
into representational systems depends on other conditions of computation (as
previously noted, the semantic view does not rule out additional, non- semantic
conditions of computation): if those conditions are met, then such systems will
be considered computing, and if they are not, then they will not be (and whether
or not these conditions are met has little to do with the semantic view).

194 The Nature of Physical Computation

Objection 4: The Semantic View Is Inconsistent with the Objectivity of
Computation
Computation is objective: “That my laptop is performing a computation seems
to be an objective fact (as opposed to a fact that depends on how an observer
chooses to interpret my laptop)” (Piccinini 2015: 34). However, at least some of
the contents of computation appear to be interpreted; that is, they are derived
from an observer, designer, or user. Thus, the semantic view is inconsistent with
the objectivity of computation, and is therefore false.

Reply: As noted in Chapter 1, we can understand the objectivity requirement
in (at least) two different ways. On one understanding, objectivity is contrasted
with “free interpretations”— for example, that the observer can view the system
as implementing every formalism (triviality). But as noted in Chapter 5, the se-
mantic view is in accord with the denial of triviality. In fact, the semantic view is
consistent with the claim that there are thick constraints (to use Coelho Mollo’s
term) on the assignment of computational descriptions to physical systems.

On another understanding, objectivity is contrasted with observer-
dependence. About this I argued that there is no reason to adopt too strong
an objectivity constraint, as partial objectivity can suffice. Partial objectivity is
the conjunction of two claims: the claim that every computational property of
some computing physical system (such as brains) is objective (PO1), and the
claim that some computational properties of every computing physical system
(such as laptops) are objective (PO2). The semantic view is consistent with
PO2. Laptops might have other, non- semantic computational features that are
objective. Implementation, for example, is entirely objective, in my view. Thus,
whether a system is a universal computer or simply implements a given formal
structure is objective. Other features of computers— such as their components
and organization— are objective as well. The semantic view is also consistent
with PO1. It may well be the case that the contents of other computing systems,
such as brains, are objective (and naturalized). If this is indeed the case— that
the content of cognitive and neural computational states is objective— then we
have an important subclass of computations that are entirely objective (i.e., not
observer- dependent).

I also note that, on Piccinini’s mechanistic account, the teleological func-
tion that turns the laptop into a computer is dependent on a designer or user
(as far as it contributes to the designer’s or user’s goals). But Piccinini apparently
distinguishes between the designer/ user and the observer. This distinction is
made more clearly by Coelho Mollo (forthcoming), who says that computing
systems are not objective if they are observer- dependent— namely, if they de-
pend “on explanatory perspectives that observers take toward physical systems”
(this view is characterized as “perspectivalism”). However, Coelho Mollo also
argues that computing systems can be both mind- dependent and objective. For

The Semantic View of Computation 195

Coelho Mollo, the teleological function of laptops and other computing systems
is dependent on their designers and/ or users and yet objective, as an external ob-
server has no choice but to assign computation (or not) to the physical system.
I will leave aside the distinction between designers/ users and observers,30 and
note that the semantic view is consistent with the claim that the contents of the
laptop’s states are derived from, or determined by, the designers/ users and not by
external observers. Thus, laptops might also be observer- independent (in this
sense), according to the semantic view.

Objection 5: The Semantic View Is Inconsistent with the Naturalistic
Project of the Mind
There are various versions of this objection. In one version, the semantic view
of computation is inconsistent with the claim that there are theories of content
(and/ or mentality more generally) that are both naturalistic and computational.
A theory is naturalistic if all its explanans are non- mental and non- semantic
properties or terms; it is computational if some of its explanans are computa-
tional properties or terms. But if computational properties are semantic, even in
part, they cannot play a role in a naturalistic theory. Here is one formulation of
this objection:

One problem with naturalistic theories of content that appeal to computa-
tional properties of mechanisms is that, when conjoined with the semantic
view of computational individuation, they become circular. For such theories
explain content (at least in part) in terms of computation, and according to
the semantic view, computational states are individuated (at least in part) by
contents. (Piccinini 2008a: 222)

The circularity to which Piccinini refers implies that if naturalistic theories
provide explanations in terms of the semantic properties that define the pertinent
computation, then these theories are not truly naturalistic; hence, naturalistic-
computational theories are inconsistent with the semantic view of computation.

A somewhat stronger version of the argument states, in addition to the incon-
sistency claim, that computational theories in the cognitive and brain sciences
aim to provide a naturalistic account of mentality. This is supposed to give us
more reason to adopt the claim that there are adequate theories of the mental
that are both naturalistic and computational— and therefore to reject the se-
mantic view. Here is a formulation of that argument:

 30 But see Hemmo and Shenker (2019), who argue, to the contrary, that computing systems can be
both observer- dependent and objective (the observers being measuring devices).

196 The Nature of Physical Computation

The ultimate aim of cognitive science is to offer, not just any explanation of
mental phenomena, but a naturalistic explanation of the mind. The objective is
to explain how a system can be mental in terms that do not already presuppose
mental life. . . . To a first approximation, cognitive science’s strategy for achieving
this goal is to explain mental life in terms of computations implemented by the
brain. If this strategy is to work, then explanation in terms of implementation
of computation had better be explanation in non- mental terms. The alternative
would be incompatible with the naturalistic project. It would mean that, rather
than explaining mental life in non- mental terms— in terms of computations
implemented by the brain— cognitive science would ultimately be explaining
mental life in terms of, inter alia, other mental properties. If it turns out that
computational implementation itself needs to be explained in terms of mental
properties like our beliefs, interests, attitudes, then the naturalistic aim of cog-
nitive science— explaining mental life in non- mental terms via the notion of
computation— is doomed to failure. (Sprevak 2012: 11)31

A third version of the argument states very explicitly that there are already
 adequate theories of mentality that are both naturalistic and computational.
This claim is put forward by proponents of the philosophical theories that state
that the mind is partly or entirely computational, and hence is explained by com-
putational properties (these theories are the computational theory of mind,
computationalism, and computational functionalism).32 Add this to the inconsist-
ency claim, and the conclusion is that the semantic view of computation is false.

Reply: It appears that the proponents of the semantic view are forced to deny
that there are, or even can be, theories of content and mentality that are both
naturalistic and computational. But this is not exactly the case: a theory can be
both naturalistic and computational, according to the semanticist, provided that
the theory also naturalizes the semantic properties of the relevant computational
states. What you cannot have is a full- fledged naturalistic theory of mentality
that does not further naturalize the semantic properties of computational states.
The mistake, according to the semanticist, is to assume that the appeal to com-
putational properties buys you naturalism for free. If your naturalistic theory ap-
peals to computational properties, then it must also include an account of these
computational properties in non- semantic and non- mental terms.33 Otherwise,
as Piccinini notes, you get vicious circularity.

 31 Sprevak himself is not committed to this argument. He presents the naturalistic constraint as a
desideratum of Chalmers’s account.
 32 See Piccinini (2009) and Rescorla (2015) for critical surveys of these theories.
 33 This point is neatly put by Crane:

The notion of computation depends on the notion of representation. . . . The aim, then,
is to explain representation: we must have a reductive theory of representation if we are
going to vindicate our computational theory of cognition in accordance with the natural-
istic assumptions. (2016: 154)

The Semantic View of Computation 197

Now, it is true that the proponents of some naturalistic philosophical theo-
ries of content and mentality (such as the computational theory of mind) as-
sume that computational properties need no further naturalization. They also
often assume that these philosophical theories somehow reflect the practices
and methodological aims of the empirical computational theories of cogni-
tive and brain sciences. But I think that these assumptions are mistaken. Many
scientists— both in the classical (e.g., Pylyshyn 1984) and non- classical (e.g.,
Churchland, Koch, and Sejnowski 1990) camps— tend to characterize compu-
tation semantically. It is therefore very doubtful that computational theories in
the cognitive and brain sciences aim to account for content and mentality in
naturalistic, non- mental, and non- semantic terms. I do not deny, of course, that
computational theories in the cognitive and brain sciences account for mental
and cognitive capacities. I will suggest, however (in Chapter 9), that these theo-
ries provide explanations by individuating input and output states at least partly
in semantic terms.

Objection 6: Ascribing Content to Computational States Presupposes a
Non- Semantic Individuation of These States
Piccinini (2004b) argues that any theory that ascribes mental content to the com-
putational states of the mind/ brain is committed to non- semantic individuation
of computational states. The reason is that these theories are arguably inappli-
cable to ordinary computers (e.g., laptops), and so fail to show what computing
minds and computing laptops have in common. Thus, these theories of content,
when conjoined with the semantic view, “find themselves in a position from
which they cannot tell what minds have in common with ordinary computing
mechanisms.” The only way to tell is to adopt “a non- semantic way to individuate
computing mechanisms and their states” (p. 399).

Reply: The semantic view actually shows that the computational states of
minds and laptops have a common feature: they are all individuated with ref-
erence to their content. The semantic view is not committed, however, to the
claim that the content of computational states must be individuated by the same
standards. As said previously, it is actually more reasonable to adopt a pluralistic
approach to computational content. Informational and/ or teleological theories
might apply to the computational content of the mind/ brain, whereas other the-
ories might apply to the computational content of laptops. Thus, the semantic
view is consistent with the claim that computing systems are all individuated by
content. In fact, an advantage of the semantic view is that it can account for an
important difference between computing minds and computing laptops: they
are different kinds of computing systems because their content is individuated
by different standards. Thus, without a further argument that shows why the
semantic view is committed to a single kind of content, the conclusion of the

198 The Nature of Physical Computation

objection— that ascribing computational content presupposes a non- semantic
view— does not follow.

Objection 7: A Change in Content Does Not Change Computational
Identity
One familiar intuition is that changing content does not alter the computa-
tional identity of the system. In my calculator, the digits 0 and 1 represent the
numbers zero and one. But assigning the contents of apple to 0 and orange to
1 would not change computational identity. More generally, we would still say
that two computing systems that implement the same formal (e.g., syntactic)
structure are computationally equivalent. This demonstrates that content does
not affect computational individuation— and hence that the semantic view
is false.

Reply: Some would insist that a change in content comes with a change in
computational identity. I do not. I agree that a change of content often does not
change computational identity. In particular, changing the content of 0 and 1 in
the example just given would not alter computational identity. But this does not
falsify the semantic view. As I will show in Chapter 8, other changes in content
might lead to a change in computational identity; some changes in content alter
the formal/ syntactic structure (vehicle) that carries the content. These cases give
us reasons to reject the non- semantic view (according to which content never
alters computational identity). As I will also explain in Chapter 8, these cases, in
which changes in content alter computational identity, indicate that content al-
ways affects computational individuation.

Objection 8: The Semantic View Does Not Allow for Important
Environment- Independent Generalizations of Computational Theories
Egan (1994) observes that if computational theories of cognition are
environment- dependent, then some important environment- independent
generalizations are lost. If we want to retain these generalizations, we
must abandon the semantic view. Egan assumes (correctly) that if com-
putational generalizations are affected by broad content, then they are
environment- dependent.

Reply: This objection has certain affinities to Objection 7. Both aim to high-
light some intolerable consequences of the claim that computational identity
(or theories) is altered when the content (or environment) is changed. My reply
is therefore similar to the one I gave to Objection 7. I agree with Egan that we
must retain environment- independent computational generalizations, but I be-
lieve that retaining them is fully in line with the semantic view. The semantic
view need not assert that an environmental (or content) change is accompanied
by a change in computational identity. The semantic view thus does not imply

The Semantic View of Computation 199

that computational theories cannot generalize across different environments (or
different contents). The semantic view only implies that computational theories
cannot generalize across certain changes in the environment (or in content).
Indeed, in such instances, it is actually good that we avoid the generalization— or
so I will argue in Chapter 8.

Objection 9: Computational Processes Are Not Sensitive to Semantic
Properties
Computational individuation takes into account causally relevant proper-
ties. Semantic properties, however, are causally irrelevant to the computational
process— and therefore we can conclude that semantic properties are not taken
into account by computational individuation. Why are semantic properties caus-
ally irrelevant? Because computational processes are “formal”: even if they op-
erate on representations, they are “sensitive” to formal/ syntactic properties of the
representations, not to their semantic properties.34 My pocket calculator is sen-
sitive to the shapes (as it were) of the 0s and 1s, not to their interpretations: we
could change the interpretation, and the computational process would be just
the same. In fact, the processes would be exactly the same without any inter-
pretation at all (or indeed, without representation). This demonstrates that se-
mantic properties do no causal work, and therefore are causally irrelevant to the
computation.

Reply: One possible reply to this objection is to insist that computation is sen-
sitive to semantic properties.35 Another is to keep sensitivity and individuation
apart: computational processes are not sensitive to semantic properties, and yet
computational individuation can take semantic properties into account. These
are simply different issues. Non- sensitivity is a claim about the causal dynamics
of computational processes— namely, that the dynamics is not dependent on se-
mantic properties. The semantic view is a claim about individuation— namely,
that semantic properties play an essential role in the classification of token pro-
cesses, states, and the like into computational types. As others have already
noted, sensitivity need not affect individuation (Piccinini 2008a; Sprevak 2010;

 34 Fodor (using the term “apply to”) famously writes: “I take it that computational processes
are both symbolic and formal. They are symbolic because they are defined over representations,
and they are formal because they apply to representations in virtue of (roughly) the syntax of the
representations. . . . What makes syntactic operations a species of formal operations is that being syn-
tactic is a way of not being semantic” (1980: 64).

Following Fodor, Egan says that computational operations “are sensitive only to formal (i.e.
non- semantic) properties of the representations over which they are defined, not to their content”
(2010: 254).
 35 See Block (1990); Peacocke (1994); O'Brien and Opie (2006); Figdor (2009); and Burge
(2010: 95– 98). Rescorla (2012) argues that computation is mostly insensitive to semantics but aims to
show how it could be.

200 The Nature of Physical Computation

Rescorla 2012). The claim that it must affect individuation rests on a notion of
causal relevance that raises a host of philosophical problems and is notoriously
hard to explicate (Sprevak 2010).

Of these two approaches, I favor the latter: I think that computation is insensi-
tive to semantic properties, but that this does not undermine the semantic view.
However, I would like to propose a somewhat different explanation of why this
is so. As previously noted, those who believe in non- sensitivity maintain that
changing the content of computational states, S1, S2, etc., of the system does not
affect the causal dynamics. They therefore conclude that changing the content of
these states would not affect computational individuation: we would still identify
the computational states of the system with S1, S2, etc. I agree with this asser-
tion. But this reasoning assumes that we ascribe content to the very same states
S1, S2, etc. In the next chapter, I will show that there are other cases in which
ascribing different content would result in a different grouping of physical states
into computational states. Under this ascription, the computational states would
no longer be S1, S2, etc.— and therefore the computational identity of the system
would change as well. These cases show that change in content alters computa-
tional individuation, even though computational operations are not sensitive to
this content.

7.3 Summary

The first part of this chapter focused on the explication of the semantic view of
computation (Section 7.1): what it states (Section 7.1.1), how it contrasts with
its non- semantic counterparts (Section 7.1.2), and two of its variants (Section
7.1.3). I then sought to clarify what semantics means in computational contexts
(Section 7.1.4) and examined the impact of non- semantic theories of content on
the semantic view (Section 7.1.5). Finally, I distinguished the semantic view from
other, closely related views (Section 7.1.6), highlighted the distinctive features
of my account (Section 7.1.7), and briefly reviewed the main arguments in its
favor (Section 7.1.8). The second part of the chapter focused on nine objections
to the semantic view, and how— when more refined distinctions are made— the
semantic view can overcome these objections.

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0009

8
An Argument for the Semantic View

In this chapter, I develop and defend an argument for the semantic individu-
ation of computational states. Shagrir (2001, 2012a), Sprevak (2010), Rescorla
(2013), and others have introduced versions of this argument. Its first and central
premise is the simultaneous implementation of automata by physical systems. In
the following sections, I describe the phenomenon of simultaneous implemen-
tation (Section 8.1), followed by the argument for the semantic view (Section
8.2), and a reply to two types of objections that have been raised in the literature
(Sections 8.3 and 8.4).

8.1 Simultaneous Implementation

Simultaneous implementation is the phenomenon whereby a physical system
implements multiple formal structures at the same time, at the same location,
and even with the very same physical properties.1 The formal structures in ques-
tion are automata, but it is apparent that this phenomenon also extends to other
formalisms. Many describe automata in terms of total states (e.g., Chalmers
1996). I describe them in terms of gates (or “neural cells”), which form the basis
of real digital computing. The two descriptions are equivalent.2

Consider a physical system P, which is a tri- stable flip detector. P works as
follows: It emits 7– 10 volts if it receives voltages greater than 7 from each of the
two input channels, 0– 3 volts if it receives under 3 volts from each input channel,
and 4– 6 volts otherwise. I will use the symbols H, M, and L (high, medium, and
low) to signify these three different physical properties (7– 10 volts, 4– 6 volts, and
0– 3 volts)— which implies that the argument does not depend on these specific
physical properties. The behavior of P is summarized in Table 8.1.

We next classify an input/ output as L+M if it receives/ emits under 6 volts (in the
range of either 0– 3 volts or 4– 6 volts) and H if it receives/ emits 7– 10 volts; we as-
sign the digit 0 to the emission/ reception of L+M and 1 to the emission/ reception

 1 Fresco, Copeland, and Wolf (forthcoming) offer a systematic study of this phenomenon; they
call it the “indeterminacy of computation.”
 2 See Minsky (1967), who invokes both descriptions (he presents gates as McCulloch and Pitts
“cells”) and demonstrates the equivalence relations between them (the proof is on pp. 55– 58).

202 The Nature of Physical Computation

of H. Under this scheme, P implements an AND- gate (Table 8.2). When we
 classify inputs and outputs based on emission/ reception of L and of M+H, and
 assign the symbol 0 to the emission/ reception of L and 1 to the emission/ recep-
tion of M+H, P implements an OR- gate (Table 8.3). As a result, the same physical
system P simultaneously implements two distinct logic gates.

Let me contrast simultaneous implementation with Putnam’s and Searle’s
triviality results. Roughly speaking, Putnam and Searle assert that almost every
physical system implements every automaton (Chapter 5). As we noted ear-
lier, Putnam and Searle are accused of adopting an excessively liberal notion

Table 8.1 Physical gate P: The gate maps
voltages from two input channels, Input 1
and Input 2, into one output channel.

Input 1 Input 2 Output

7– 10 V (H) 7– 10 V (H) 7– 10 V (H)

7– 10 V (H) 4– 6 V (M) 4– 6 V (M)

7– 10 V (H) 0– 3 V (L) 4– 6 V (M)

4– 6 V (M) 7– 10 V (H) 4– 6 V (M)

4– 6 V (M) 4– 6 V (M) 4– 6 V (M)

4– 6 V (M) 0– 3 V (L) 4– 6 V (M)

0– 3 V (L) 7– 10 V (H) 4– 6 V (M)

0– 3 V (L) 4– 6 V (M) 4– 6 V (M)

0– 3 V (L) 0– 3 V (L) 0– 3 V (L)

Table 8.2 P implements AND:
Under the assignment of 1 to H
and 0 to L+M, P implements AND.

Input 1 Input 2 Output

1 1 1

1 0 0

0 1 0

0 0 0

An Argument for the Semantic View 203

of implementation. Subsequently, it has been suggested that if we place causal,
modal, or grouping constraints on the notion of implementation, we avoid such
triviality results.

Simultaneous implementation is the much weaker claim that some physical
systems simultaneously implement more than one automaton. The main differ-
ence from Putnam and Searle’s constructions is that the proposed constructions
are based on the very same physical properties of P— namely, its voltages.
Another difference is that in the cases provided by Putnam and Searle, there
is an arbitrary mapping from different physical states to the same states of the
automaton, whereas in our case, the same physical properties of P are associ-
ated with the same inputs/ outputs of the gate. The different implementations
result from associating different voltages (across implementations, not within
implementations) with the same inputs/ outputs. Within implementations, how-
ever, relative to the initial assignment, each logical gate reflects the causal struc-
ture of P. In this respect, we have a standard implementation of logical gates,
which satisfies the conditions set by Chalmers and others for implementation. It
is easy to see that implementation also accords with the suggestions to group to-
gether physical states that are spatially located, physically similar, and “natural.”
Indeed, the proposal appears to accord with the standard ways in which we im-
plement bits of 0s and 1s in physical systems.

There is nothing special about P; we could create other dual gates in a similar
fashion. Consider, for example, a physical system Q that emits 7–10 volts (H) if
it receives voltages higher than 7 volts (H) from exactly one input channel, 0– 3
volts (L) if it receives under 3 volts (L) from each input channel, and 4– 6 volts
(M) otherwise (Table 8.4). Under the assignment of 0 to emission/ reception of
L+M and 1 to emission/ reception of H, Q implements an XOR- gate (Table 8.5).
Assigning the digit 0 to emission/ reception of L and 1 to emission/ reception of
M+H, Q implements an OR- gate (Table 8.6).

Table 8.3 P implements OR:
Under the assignment of 1 to
M+H and 0 to L, P implements OR.

Input 1 Input 2 Output

1 1 1

1 0 1

0 1 1

0 0 0

Table 8.4 The physical gate Q.

Input 1 Input 2 Output

H H M

H M H

H L H

M H H

M M M

M L M

L H H

L M M

L L L

Table 8.5 Q implements XOR:
Under the assignment of 1 to H and
0 to L+M, Q implements XOR.

Input 1 Input 2 Output

1 1 0

1 0 1

0 1 1

0 0 0

Table 8.6 Q implements OR: Under
the assignment of 1 to M+H and
0 to L, Q implements OR.

Input 1 Input 2 Output

1 1 1

1 0 1

0 1 1

0 0 0

An Argument for the Semantic View 205

Another example is of a physical system R that emits 7– 10 volts (H) if
it receives voltages higher than 7 from each input channel, 0– 3 volts (L) if it
receives under 3 volts from at least one input channel, and 4– 6 volts (M) other-
wise (Table 8.7).

Grouping the inputs and outputs based on emission/ reception of L+M and
of H, and assigning 0 to emission/ reception of L+M and 1 to emission/ recep-
tion of H, R implements an AND- gate. Grouping the inputs and outputs around
emission/ reception of L and M+H, and assigning 0 to emission/ reception of L
and 1 to emission/ reception of M+H, R implements an AND- gate again! This
R system is interesting, in that the two implemented AND- gates may be in dif-
ferent “total states” under the same physical conditions. If, for example, the
inputs are M from both input channels (making the output M), then this very
same physical run simultaneously implements the (0,0) → 0 mapping under
the first implemented AND- gate, but the (1,1) → 1 mapping under the second
implemented AND- gate.

Importantly, I do not claim that each simple physical system implements
every logical gate— nor, indeed, that they implement every complex combinato-
rial state automaton. Nevertheless, one can use these physical gates (i.e., P, Q, R,
and the like) as the building blocks of physical systems that simultaneously im-
plement more complex automata. As an illustration, let us construct Ned Block’s

Table 8.7 Physical gate R. Under the assignment
of 1 to H and 0 to L+M, R implements AND.
Under the assignment of 1 to M+H and 0 to L,
R implements AND (again).

Input 1 Input 2 Output

H H H

H M M

H L L

M H M

M M M

M L L

L H L

L M L

L L L

206 The Nature of Physical Computation

device for addition (Block 1990), which consists of the two (syntactic) gates AND
and XOR (Figure 8.1). Giving the strings of 1s and 0s a binary (semantic) inter-
pretation, we can use this device to compute the addition of two- digit numbers.
Using our physical gates P and Q as our building blocks, the very same device
also implements, simultaneously, a very different automaton— namely, one that
consists of two OR gates (Figure 8.2).

The more general point is that should you want to implement a zillion- gate
automaton, you could use these and other tri- stable gates to implement another
automaton of “the same degree”— where “the same degree” means something
like “the same number of logical gates.” Automata that include finite and infinite
memory (as in Turing machines) are no obstacle to this result: we can individ-
uate the 0s and 1s in the memory, just as we individuate the inputs and outputs.
Thus, “the same degree” also means the “the same amount of memory.” Note that
I do not claim that this ability is shared by every physical system. We can assume
that physical systems often implement only one automaton of the same degree. It
might also be the case that, technologically speaking, it would be ineffective and
very costly to use these tri- stable gates. The point is rather philosophical: Given
some combinatorial state automaton (CSA), we can construct a physical system
that simultaneously implements this CSA and another CSA of the same degree.
These constructions are not just a logical or metaphysical possibility. They are
nomological possibilities; in all likelihood, they are also technologically feasible.3

AND XOR
1
1

1 0

Figure 8.1 The automaton SADD for computing (two- digit) addition (from
Block 1990).

OROR
1
1

1 1

Figure 8.2 The automaton SOR- OR that consists of two OR gates.

 3 One might think that the different Boolean function might ultimately combine into logically
equivalent functions. Fresco, Copeland, and Wolf (forthcoming) prove, however, that the likelihood

An Argument for the Semantic View 207

8.2 The Master Argument: From Simultaneous
Implementation to the Semantic Individuation

of Computational States

What follows from simultaneous implementation? Not much, in my view, for
the notion of implementation. In particular, I do not think that simultaneous
implementation gives us a reason to adopt a semantic conception of implemen-
tation. I believe that a theory of implementation (such as in Chalmers 2011) can
and does tolerate simultaneous implementation— or at least I do not assume
otherwise. I do think, however, that this seemingly innocuous claim about si-
multaneous implementation has far- reaching consequences for the theories of
computation and cognition. Elsewhere (Shagrir 2012b), I use simultaneous im-
plementation to support a premise in an argument against the computational
sufficiency thesis.4 Here, I use it as a premise for an argument for the semantic
individuation of computational states. I have advanced an earlier version of this
argument in the past (Shagrir 2001). In this section I shall present a more refined
version of the argument, and then address objections that have been raised to the
argument (Sections 8.3 and 8.4).5

The argument has the following form:

 (1) A physical system might simultaneously implement different automata
S1, S2, S3, . . .

 (2) A computational taxonomy of a physical system might take into account
one automaton, Si, in one context, and another automaton, Sj, in another
context.

 (3) There must be a constraint that determines which automaton is taken into
account by the computational taxonomy in a given context (from 1 and 2).

 (4) This constraint is (at least in part) a semantic feature— namely, the
contents of the states of the physical system.

 Therefore: A computational taxonomy (individuation) of a physical system
takes into account semantic features, that is, the contents of the system’s states.

of this scenario is close to nil for a physical system that implements a function on five or more dual
gates like this.

 4 Maudlin (1989) and Bishop (2009) advance arguments toward similar conclusions, while also
assuming a premise weaker than strong triviality. Hemmo and Shenker (2019) argue that simulta-
neous implementation undermines the validity of Landauer’s principle in physics.
 5 Note that the conclusion— of semantic individuation of computational states— does not auto-
matically undermine CST. Supporters of CST can modify the thesis to state that implementing the
right kind of automaton (as opposed to a computational structure) is sufficient for possessing a mind.
Given that implementation is non- semantic, CST might still be the basis of a non- semantic theory of
cognition.

208 The Nature of Physical Computation

Some comments: First, I assume that implementing a formal structure of
some kind is necessary for computing. This might be an algorithm, a graph, a
network, or even formal dynamics. For simplicity, my focus here is on automata;
thus, the presumption in Premise 2 is that a computational taxonomy takes into
account at least one automaton. The contentious claim of Premise 2 is that a com-
putational taxonomy might not take into account all implemented automata.
Typically, the taxonomy would take into account only one automaton in a given
context— but I do not deny that there might be instances where it would take into
account more than one. Second, I do not assume that implementing a formal
structure such as an automaton is a semantic relationship; in fact, I maintain that
the implementation is a non- semantic relationship between a physical system
and an automaton. My claim is that computation is more than (non- semantic)
implementation.6 Third, the argument is in favor of the equivalence (and seem-
ingly stronger) version of the semantic view (the E- semantic view)— namely, that
semantic properties essentially affect the process of individuation of systems,
processes, states, and so forth into computational types.

Lastly, the argument may be seen as an assertion about computational vehicles
(Rescorla 2015; Shea 2018)— that the identity conditions of computational
vehicles inextricably involve semantic properties. This does not mean that we
cannot individuate vehicles in non- semantic terms. A vehicle is an implemented
formal structure (e.g., the automaton SOR- OR), and, as such, it can be individuated
non- semantically. The claim is that when we treat this implemented automaton
as a computational vehicle (structure), semantics sneaks in. Semantics gets into
the picture when we classify the implementing physical states into computa-
tional types.

Let us now turn to the argument. The first step, as already noted, is about si-
multaneous implementation. The second step is the claim that computational
identity may vary across contexts:

(2) A computational taxonomy of a physical system might take into account one
automaton, Si, in one context and another automaton, Sj, in another context.

Take the physical machine M, which consists of the pair of physical gates
P and Q. M simultaneously implements the automata SADD (Figure 8.1) and
SOR- OR (Figure 8.2). The claim is that a computational taxonomy would take into

 6 See also the discussion in Chapter 7. Note that I have no reason to argue against a semantic view
of implementation: a semantic view of implementation would immediately entail a semantic view of
computation, which is my conclusion anyway. My aim is to show that one can argue in favor of a se-
mantic view of computation even assuming a non- semantic view of implementation.

An Argument for the Semantic View 209

account SADD in one context (e.g., when M is performing addition), but might
take into account SOR- OR in another context, when M performs some other task.7

To illustrate this point more vividly, let us compare M to another physical
system, M*, which implements SADD but not SOR- OR. Let us say that I use M and
you use M* to compute addition. In this case, we surely want the two systems
M and M* to be regarded as computationally equivalent, regardless of whether
or not M* also happens to implement SOR- OR. Assume further that at some point
M will no longer be used to compute addition, but rather will be deployed for
another task associated with SOR- OR. We would still count the two physical sys-
tems as computationally equivalent with respect to performing addition— but
we would no longer say that the machines are computationally equivalent with
respect to their current (different) tasks. With respect to their current tasks, a
computational taxonomy of M would take into account SOR- OR instead of SADD.

Alternatively, consider a sensor that implements the automaton S1, which is
used for some visual task. We would agree that implementing S1 affects the com-
putational individuation of our sensor. Assume that it turns out that this sensor
simultaneously implements another automaton S2. Assume, further, that this
sensor, which simultaneously implements S1 and S2, is removed to another en-
vironment, where it serves an auditory task.8 However, there it transpires that
the method used for this auditory task is no longer S1, but S2. I believe that it
would be quite reasonable to say that in the new auditory context, a computa-
tional taxonomy would take into account S2 and not S1. To see this more clearly,
consider another sensor that uses S2 for the same auditory task, yet does not si-
multaneously implement S1. A computational taxonomy would still count the
two sensors as computationally equivalent, since they both implement S2 with
respect to the auditory task— even though only one of them also implements S1.

The upshot is that computational taxonomies might take into account different
automata in different contexts. The computational structure— the implemented
automaton taken into account by a computational taxonomy— of a physical
system is sensitive to the task that the system performs in a given context.

It follows from (1) and (2) that

(3) There must be a constraint that determines which automaton is taken into
account by the computational taxonomy.

If a physical system might implement more than a single automaton (as per
Premise 1), and if a computational taxonomy might take into account different

 7 A task can be thought of as some capacity or function that the system performs. For the sake of
simplicity, we can assume that the task can be described as some mapping input- output function.
 8 This example is a variant on the visex/ audex thought experiment (Davies 1991).

210 The Nature of Physical Computation

automata in different contexts (as per Premise 2), there must be an additional
constraint that determines which of the implemented automata is relevant to the
computational identity of the system. If, for example, the machine M simulta-
neously implements both SADD and SOR- OR, and assuming that a computational
taxonomy counts only SADD when M is used for performing addition, there must
be another factor that determines that the computational structure of M is SADD
and not SOR- OR.

However, one may wonder if such a determining constraint is really needed.
By way of comparison, a physical taxonomy might classify a piece of wood and a
piece of metal under the same kind of temperature (assuming they have the same
temperature). But such classification does not require a further factor (“con-
straint”) that singles out temperature from the other physical properties of the
systems where they might differ (i.e., wood versus metal): the physical property
temperature is not dependent on factors other than the temperature itself. Why,
then, should computational taxonomy be any different? Why must we insist that
a computational type is defined by a further factor, above and beyond the imple-
mentation of an automaton?

I agree that classifying a piece of wood and a piece of metal under the same
kind of temperature does not call for a further constraint, above and beyond
their temperature. A physical taxonomy has no choice but to classify the piece
of metal and the piece of wood under the same kind of temperature (assuming
they have the same temperature). Similarly, the classification of two systems M
and M* under the same implementational type SADD (etc.) requires no further
features, other than implementing this automaton. An implementational tax-
onomy has no choice but to classify M and M* under the same implementational
type, SADD. A computational taxonomy, however, need not do so— even if they
implement the same automaton SADD: rather, it might classify M as a SOR- OR type
and M* as a SADD type. This shows that the fact that M implements SADD is not suf-
ficient to define a computational type. There must be a further factor involved in
computational individuation in addition to the implemented automaton.

What could this further constraint be? What would account for the fact that
computational identity is conferred by one automaton rather than another? It
is perhaps safe to say that intrinsic implementational properties— physical, bi-
ological, neural, and others— cannot play this determinative role.9 If a physical
system simultaneously implements several different automata— if its intrinsic
physical (etc.) properties simultaneously implement different automata— then
these intrinsic properties (such as voltages) alone cannot serve to account for the
system’s computational identity. They cannot tell one automaton from another.

 9 We can think about “intrinsic” properties as non- relational properties or as properties that a
system has by virtue of itself.

An Argument for the Semantic View 211

What about extrinsic properties? I will defer the discussion of non- semantic
extrinsic properties to the discussion of Objection 2 (Section 8.4). For now, I will
contend that:

(4) The relevant determining constraint is (at least in part) a semantic feature,
namely, the contents of the states of the physical system.

Consider our physical system P. We recall that when assigning 0 to the emis-
sion/ reception of L+M and 1 to the emission/ reception of H, P implements AND.
However, when assigning the symbol 0 to the emission/ reception of L and 1 to the
emission/ reception of M+H, P implements OR. Which automaton is relevant to
computational individuation? I argue that if the content (e.g., the inter pretation)
of L and M is (the number) zero and the content of H is (the number) one, then P
falls under the computational kind AND. If the content of L is zero and the con-
tent of M and H is one, however, then P falls under the computational kind OR.
This indicates that content matters to the computational structure of P.

Or take the sensor that simultaneously implements two automata, S1 and S2.
Suppose that certain input/ output variables for S1 correlate with the physical
properties L and M, and the other input/ output variables for S1 correlate with the
physical property H. Suppose, further, that some input/ output variables for S2
correlate with L and the other input/ output variables for S2 correlate with M and
H. I contend that S1 would be preferred over S2 if it turns out (say) that output-
ting L+M carries one content (such as apples) and outputting H carries another
(such as oranges). I am therefore suggesting that the contents correlated with
the physical properties L, M, and H at least partly determine which automaton
is relevant for individuative purposes. A computational taxonomy would select
the automaton, such as S1, whose implementing physical states correlate with the
content of those states.

Lastly, assume that our sensor— which simultaneously implements S1 and
S2— is removed and embedded in a different environment, where the content of
the physical properties L, M, and H fit not with S1, but with S2. In this environ-
ment, the content of L and H remains the same, but the content of M is now
the same as the content of H (e.g., oranges instead of apples). In this scenario,
I believe, we would say that the automaton that is relevant for computational in-
dividuation is no longer S1, but S2. It is quite reasonable to say that in the new
environment, a computational taxonomy would take into account S2, and not S1.
In other words, it would take into account the automaton that fits with the cur-
rent content. This example shows that a change in the content of M can alter the
computational structure of the system from S1 to S2. Thus, content affects com-
putational identity.

212 The Nature of Physical Computation

One could argue that in all the examples just given, I have assumed, and not
actually demonstrated, that the systems have content. If so (according to the
complaint), then the argument for Premise 4 assumes that content affects com-
putational identity— which is precisely what that argument is meant to show. My
reply is that both the semanticist and the non- semanticist maintain that com-
puting systems very often carry content. The debate is rather over whether this
content affects computational identity (see Chapter 7). The master argument
shows that the content possessed by systems has this effect. What is true is that
I do not deal directly with contentless computing systems. So one might still say
that the argument does not defy NSNNS (neither semantic nor non- semantic
view— see Chapter 7). The argument is consistent with the view that content
enters computational individuation when the system carries content (which is
what the argument allegedly shows), but that content does not enter computa-
tional individuation when the system does not carry content.

In replying to this, I would make two points. First, as noted in Chapter 7,
my overall defense of the semantic view consists of two arguments that some-
what complement each other. The standard argument, which supports the
C- semantic view, is that computing systems always operate on semantic prop-
erties. The master argument, which supports the E-semantic view, is that these
semantic properties affect the individuation of computational types. Second,
the argument for Premise 4 does not only show how content can resolve the in-
determinacy of computation, but also eliminates non- semantic properties as
candidates for removing computational indeterminacy. I eliminated the intrinsic
implementational properties earlier; in Section 8.4, I eliminate certain extrinsic
non- semantic properties. Thus, it is up to the advocate of NSNNS to show what
non- semantic properties resolve the indeterminacy when no content is involved.

Thus far, I have associated computational identity with the content of input
and output representations (or the input- output semantic task). Often, this is
enough. But there are cases where we have no choice but to appeal to the con-
tent of internal states. For example: a given physical system simultaneously
implements two automata— but the inputs and outputs of both automata are cor-
related with the same input and output, L and H. In this case, the content of the
input and output states cannot distinguish between the implemented automata.
Instead, we must examine the content of internal states. For example, we can as-
sume that a certain physical state, p, implements a state, P, of one automaton, but
two substates of p, p1 and p2, implement the states P1 and P2 of the other autom-
aton. In that case, we would favor the first automaton over the second if only one
content is correlated with p. We would favor the second automaton over the first
if two different contents were correlated with p: one content with p1, and another
with p2.

An Argument for the Semantic View 213

I do not claim that every change in content alters computational identity
(as noted in Chapter 7). Assume, for example, that, in our visual system, out-
putting L and outputting M have green content, and outputting H has red con-
tent. Changing the content of these physical types (i.e., of L, M, and H) to apple
and orange content, respectively, would not alter the identity of the computing
system: a computational taxonomy would still consider the same S1 autom-
aton. Still, I would insist that the content of the physical states/ properties (e.g.,
voltages) always matters to computational identity, because content is always
relevant to the way we group these states/ properties together into computa-
tional types. The sameness and difference of the contents of L, M, and H (in a
given context) is a crucial factor in individuating computational types. If L and
M have one content and H another content, we will get one computational type.
If L has one content and M and H another, we will get another computational
type. Thus, altering the contents of L, M, and H, as in the case just given, would
not result in a new grouping of computational types, as L and M would still have
one content and H another. However, attributing apple content to the output
of L and orange content to the output of M and H would alter computational
identity. In this case, L would have one content and M and H another. A compu-
tational taxonomy would now take into account the S2 automaton. Either way,
content always drives the formation of physical states/ properties into computa-
tional types.

My view lies somewhere between that of Burge (1986, 2010) and that of Egan
(1995, 2010). Like Burge, I think that computational identity is content- sensitive
and can vary across contexts; unlike him, I do not assume that every change in
content makes a computational difference. Like Egan, I think that changing the
content of the states of the same computational vehicle does not affect compu-
tational identity— but unlike her, I do not take this to show that computational
identity is content- (or context-) independent. A change in content can alter the
computational vehicle, and with it computational identity.10 This is once again
consistent with the semantic view: the fact that different content sometimes
leads to different computational vehicles and sometimes to the same computa-
tional vehicles is in consonance with the semantic view, which asserts that con-
tent always determines the computational vehicle of the system. The content of
physical states/ properties (e.g., voltages) always determines how we group these
states/ properties into a computational vehicle.

 10 Egan (2014) notes that the computational vehicle carries the same mathematical content across
context. Elsewhere, I also talk about sameness and differences of specific contents in terms of formal
content (Shagrir 2001). My claim, however, is that the formal content (sameness and differences of
contents) can vary across contents, and this will alter computational vehicle and identity.

214 The Nature of Physical Computation

To recapitulate: If (1) a physical system may implement more than one au-
tomaton, and (2) a computational taxonomy may take into account different
automata in different contexts, then (3) there must be another constraint that
determines which automaton is relevant to the computational identity of the
system. And this constraint, I have argued, involves the content of the system’s
states (4). Thus, semantic features indeed impact the computational identity of
physical systems.

Let us turn now to two objections to this argument. The first objection targets
Premise 2. The mistake, it says, is in the assumption that a computational tax-
onomy takes into account one of the implemented automata— or even any
automata at all. In fact, the objection goes, the computational structure of the
system is identified with a more basic (and non- semantic) structure. The second
objection targets Premise 4. It says that we need not appeal to semantic proper-
ties for the purposes of computational individuation. Extrinsic yet non- semantic
features would do the job just as well. In the following two sections I will address
these objections in detail.

8.3 Objection 1: Computational Individuation
Is More Basic

Some scholars have argued that a physical system has a more basic (non-
semantic) computational structure than that presented in the argument.
According to this view, the mistake in the argument is in assuming that we must
choose between the implemented automata— for example, between AND and
OR. However, we do not need to make this choice, because the computational
structure of the system is not identified by any of these functions/ automata.
This does not mean that implemented automata and logical functions are not
interesting; they might be useful for all sorts of applications in computer science
and engineering. But their individuation “is over and above computational in-
dividuation . . . Computational individuation is more basic, and non- semantic”
(Coelho Mollo 2018: 3492).

What is this “more basic” structure? Several proposals are given in the litera-
ture. One is a maximal automaton: an automaton is maximal for a given system in
the case that it is not implied by another, more complex automaton implemented
by the system. For example, the maximal automaton implemented by the phys-
ical system P is the one associated with tri- stable gates (Table 8.1), and can be
described by Table 8.8.

Now, it is a mathematical fact about automata that when a system implements
some (maximal) automaton, it ipso facto simultaneously implements simpler
automata. For example, by implementing the automaton with the tri- stable gates,

An Argument for the Semantic View 215

P also simultaneously implements (under some relabeling) the simpler automata
AND and OR.11

Joe Dewhurst (2018a) has put forward another proposal. Taking the mech-
anistic viewpoint, he argues that computational identity is defined not by
the logical functions (AND, OR, etc.), but by the computing mechanism. Take
our physical system P. According to Dewhurst, the computational identity
of the system is set out in Table 8.1, which provides a description of the com-
puting mechanism— the components of the system, their functions, and their
interactions. This description tells us that the system consists of two processor
types and three digit types, and also tells us how these components interact with
one another. This is everything we need to know for the purposes of computa-
tional individuation.

Dimitri Coelho Mollo (2018) offers a third suggestion. Like Dewhurst, he,
too, adopts the mechanistic view of computation. But he correctly observes
that Dewhurst’s proposal, which links computational identity with spe-
cific implementational (structural) physical properties such as voltages, is

Table 8.8 The “maximal” automaton
implemented by physical gate P. The labels A,
B, and C stand for different equivalence classes
of inputs and outputs. The maximal automaton
implies AND under the assignments of 1 to A and
0s to B and C. It implies OR under the assignments
of 1s to A and B and 0 to C.

Input 1 Input 2 Output

A A A

A B B

A C B

B A B

B B B

B C B

C A B

C B B

C C C

 11 Chalmers (1996) and Scheutz (2001) introduce and discuss such maximal automata in the con-
text of simultaneous implementation.

216 The Nature of Physical Computation

untenable: the individuation conditions are too fine- grained. Consequently, sys-
tems whose implementational physical properties are different cannot be com-
putationally equivalent.12 Instead, Coelho Mollo (2018) suggests that we identify
the computing mechanism with the functional profile of the system P. This profile
attributes different implementational properties to the same equivalence classes,
thereby allowing for some multiple realization.13 The functional profile of P is
given in Table 8.8, where the labels A, B, and C simply stand for three equivalent
classes of implementational properties.14

Lastly, one might argue that the more “basic” structure is the set {S1, S2, . . .} of
all implemented automata.15

Reply: Let us first clarify what is at stake here. Two suggestions have been put
on the table in the face of simultaneous implementation. One is that computa-
tional individuation might take into account one of the implemented automata.
The other is that computational individuation always takes into account some
basic structure. This structure might be a maximal automaton, the mechanistic
structure of the system, its functional profile, or the entire span of implemented
automata. The debate is not so much about semantic versus non- semantic in-
dividuation as it is about less basic individuation (e.g., a non- maximal autom-
aton) versus more basic individuation (e.g., a maximal automaton). Indeed,
Piccinini— whose views are discussed in Section 8.4— thinks that computational
individuation might take into account a non- basic structure (such as OR), but
that the individuation is still non- semantic. Thus, my reply to the objection
targets the basicness aspect rather than the non- semantic aspect of the second
suggestion. I argue that the proposals grouped under the second, basic- structure
suggestion all suffer from the same drawback: they do not do justice to, and even
put at risk, the notion of computational equivalence, and, hence, of computa-
tional individuation.

Let us return to the sensor example, which simultaneously implements S1 and
S2. Assume that you have another sensor that is somewhat physically different
from mine: it implements S1, but not S2. We can assume that it implements S1 in
two different physical properties— L* and H*. Assume also that the contents of
the two sensors align (as described previously) with S1. In my sensor, one kind
of content (such as oranges) is aligned with M+H, and the other kind of content
is aligned with L (such as apples). In your sensor, one kind of content (such as

 12 See also Fresco and Miłkowski (2021).
 13 Like Dewhurst, Coelho Mollo (2018) thinks that the implementational details are part of com-
putational explanations— but he distinguishes between functional and implementational levels.
 14 See also Schiller (2018) and Fresco and Miłkowski (2021), who also propose functional solutions
along these lines. However, they consider only simpler cases of indeterminacy (e.g., Sprevak 2010).
 15 This has been suggested by Miłkowski (2013).

An Argument for the Semantic View 217

oranges) is aligned with H* and another one with L* (such as apples). There is
little doubt, in my view, that a computational taxonomy would count the two
sensors as computationally equivalent, because they both implement the same
automaton, S1, in its sensing task. Note that the individuation is not merely in
terms of representational commonalities and differences. As previously noted,
computational individuation does not require that the two sensors have precisely
the same contents. Assume that your sensor, while implementing S1, has other
color- contents; we might even consider the semantic tasks to be different. We
would still say that the two sensors are computationally equivalent, since they
implement the same automaton, S1, in their tasks.

Another way to make the point is this: Assume that we manufacture a set of
sensors that fulfill their sensing goal by implementing S1. I think that we would
happily deem them to be computationally equivalent. Even if we were to discover
one day that the manufactured devices were somewhat different and that some of
them simultaneously implemented S2, others S3, and so on, the equivalence ver-
dict would not change. Given that they all continued to sense by implementing
S1, we would still deem them to be computationally equivalent. The fact that
some sensors implemented other automata would be ignored for the purposes
of computational individuation. I think that this practice reflects the way we in-
dividuate computing systems in general. If so, then computational individuation
operates at the level of the implemented automata, at least in some cases, and not
at a more basic level.

Thus far, I have argued that computational individuation might take into ac-
count one of the implemented automata rather than a more basic structure. I now
want to argue that the proposals grouped under the second (basic- structure)
suggestion jeopardize the notion of computational equivalence— and, hence,
that of computational individuation— because they imply that different physical
systems might always turn out to be computationally distinct. All it takes is one
cell (say) flipping at one more value. For example, if our flip detector turns out
to differentiate between inputs of 0– 1 volt and inputs of 1.5– 3 volts, then we are
dealing with a system with a different “basic” computational structure— which
is computationally different from the system we started with. And, of course,
there is no reason to limit computation to digital cases. In analog cases, we can
carve up the values in many more ways, as we are no longer limited to the digital
threshold values. If that is the case— and assuming that one takes seriously the
notion of analog computation— we might find that different individual systems
always belong to different computational types.

Coelho Mollo (2018) and Dewhurst (2018a) both discuss the possibility
that different physical systems are inherently computationally distinct. Coelho
Mollo denies that this possibility presents a problem for computational
individuation:

218 The Nature of Physical Computation

In consequence, devices that differ in the number of stable states (e.g., two vs.
three), as in Shagrir’s (2001) version of the argument from the multiplicity of
computations, are never computationally equivalent. . . . This, I take, is as it
should be: given their different functional profiles, those two devices will differ
in their capacity to carry out logical and mathematical functions— having a
richer functional structure makes the tri- stable device considerably more ver-
satile. (2018: 3494– 3495 n. 20)

Importantly, Coelho Mollo thinks that the systems can be equivalent under
some other, non- computational, scheme, as does Dewhurst. In particular, they
both agree that the two systems might share semantically individuated logical
functions (and other automata). Coelho Mollo writes that the “individuation
by logical function . . . may well rely on wide functions or semantic proper-
ties” (2018: 3492). Dewhurst says that “both Shagrir and Sprevak are correct
when they point out that the logical status of a gate is indeterminate prior to
the attribution or identification of its representational content” (2018a: 107). But
both Coelho Mollo and Dewhurst insist that this individuation scheme is not
computational.

There is no dispute here that systems that differ in the number of stable states
(e.g., two versus three) are not equivalent in some respects: they differ in the to-
tality of automata they implement. I also agree that this difference is reflected
“in their capacity to carry out logical and mathematical functions.” In my view,
however, this does not obligate us to say that the system must be computation-
ally different. I shall explain my position through the notion of computational
explanation.

Take the tri- stable device that has the capacity to carry out AND and OR.
Assume, as before, that the device performs some sensing task, and that it
exercises AND to perform this task. It is reasonable to say, I believe, that the fact
that it exercises AND at least partly explains this sensing task. The explanation
itself might be blind to the fact that the device is tri- stable; we would provide
the same explanation for a bi- stable device that exercised AND to perform the
sensing task.

Note that the explanation itself is a formal one, and does not mention specific
content (such as apples and oranges). Rather, the explanation shows how per-
forming the AND function supports the sensing task. Also, note that I do not
insist that the sensing task is individuated semantically. As far as I am concerned
at this point, the task can also be individuated non- semantically (for example, as
per Piccinini’s proposal discussed in Section 8.4). The issue here is whether we
treat this AND explanation as a computational one, even though there is a more
basic, functional, tri- stable structure.

An Argument for the Semantic View 219

One option is to treat the formal AND explanation as a computational expla-
nation of the sensing task. This is the option that I favor— and in this regard,
I believe that I am in the same camp as non- semanticists such as Egan and
Piccinini, who treat such formal explanations as computational. But my guess
is that Coelho Mollo would reject this approach. In his view, this AND explana-
tion has nothing to do with computational individuation, which is more basic.
Thus, unless he concedes that computational explanation is not related to com-
putational individuation, Coelho Mollo would not treat the AND explanation as
computational.

The other option, then, is to deny that the AND explanation is computational—
on the grounds that computational explanations invoke the underlying func-
tional profile rather than the logical functions. However, although certainly
coherent, this view runs counter to computational explanations in the sciences.
We maintain, for example, that computing the zero- crossing of second- derivative
Laplacians explains the fact that the system performs edge detection (Marr
1982); that computing integration explains the fact that the system produces
signals of eye position (Robinson 1989); and that implementing AND- XOR in
Block’s machine explains the fact that the system performs addition. (Again, all
these explanations are formal ones, and must be distinguished from explanations
that refer to the specific content of the states.) These are all considered good com-
putational explanations whose adequacy is independent of whether the systems
have more basic functional profiles. Denying that these explanations are compu-
tational might ultimately leave us with a non- semantic notion of computation—
but one that is very limited in scope.

Dewhurst has a somewhat different take on the issue of computational
equivalence:

Taken to its logical extreme, this argument might imply that no two systems
are computationally equivalent. In practice, the physical structure of two com-
puting mechanisms is always going to be distinct, and it is unclear whether we
can draw any non- arbitrary boundary between the structures that are relevant
or irrelevant to computational individuation. This is a serious issue, and at this
point I am unsure how a proponent of the mechanistic account ought best to
respond. (2018a: 110)

He offers two lines of response to the challenge of computational equivalence.
One is to bite the bullet, at the risk of reductio ad absurdum. I will assume that this
is not a good option (why not adopt the semantic view instead?). A second line
of response is to point out that this problem of equivalence is one that confronts
the mechanistic account in general, and is not limited to computational mech-
anistic accounts— for no two physical systems are equivalent in all respects. In

220 The Nature of Physical Computation

practice, however, when we set out to account for a certain phenomenon, we ap-
peal to experts who can identify the system’s relevant properties. They can tell
which properties (e.g., temperature) are relevant for the individuation of these
systems— and, hence, are relevant for determining whether or not they are equiv-
alent with respect to this explanandum phenomenon. The same should be true
for computing systems: while it might be the case that no two sensors are physi-
cally equivalent, we are still free to ask the experts which properties are relevant
when accounting for these sensors. Confining ourselves to those relevant prop-
erties, we might find that our sensors are computationally equivalent— namely,
that they have precisely the same relevant computational properties.

I agree that, when we explain a certain phenomenon, we take into account
the properties that are relevant (e.g., causally) to the explanandum phenomenon.
It is therefore highly plausible that two physical systems that are not physically
equivalent with respect to the totality of their physical properties are still equiv-
alent in terms of some subclass of their physical properties. A bar of metal and
a bar of wood are different in terms of the totality of their physical properties,
as they are made of different materials. Nonetheless, the theorist can treat them
as physically equivalent if they have the same temperature and their tempera-
ture is the factor relevant to the explanandum phenomenon. But how do these
observations extend to the analogous computational case? What are the rele-
vant computational properties that are analogous to the temperature of the bars?
While our physicist can select from the reservoir of physical properties those
that are relevant to the explanandum phenomenon, we need to know the analo-
gous reservoir of computational properties.

To illustrate, take two systems (such as sensors) with different basic compu-
tational structures. What would make them computationally equivalent? What
is the reservoir of their potentially relevant computational properties? One op-
tion (advocated by Dewhurst and Coelho Mollo) is that the reservoir includes
only one such property— namely, their basic (mechanistic/ functional) structure.
According to this option, the two systems (sensors) are not computationally
equivalent, pure and simple: if they do not share the same basic structure, then
they do not share computational properties at all. And if they do not share com-
putational properties, they also do not share relevant computational properties.
In other words, the appeal to relevance has no impact on computational equiv-
alence: the two systems would be computationally distinct, irrespective of the
explanandum phenomenon.

Another option is that the reservoir of computational properties includes
more than one— and perhaps many— non- basic computational properties. This
option seems to accord with the first (maximality) and last (entire- span) basic-
structure proposals. Those proposals are consistent with the claim that the reser-
voir of the computational properties includes other non- maximal automata and

An Argument for the Semantic View 221

logical functions in addition to the basic structure. Under this option, the two
systems can be counted as computationally equivalent, since they implement
the same non- maximal automaton (or logical function). Yet this is precisely my
claim! To clarify, the objection was that computational individuation always
takes into account a more basic structure. The second option implies, however,
that computational individuation actually might not take into account the more
basic structure. A computational individuation can take into account only the
factor relevant to the explanandum phenomenon, and this factor might be one of
the automata implemented by the system. But this claim— that a computational
individuation can take into account only one of the automata implemented by
the system— is precisely the second premise of the master argument. We might
yet disagree on whether or not the factors affecting the selection of the autom-
aton are semantic (although I point out that Dewhurst agrees that “the logical
status of a gate is indeterminate prior to the attribution or identification of its
representational content”). But this is a different issue; indeed, it is the subject of
Objection 2, which we shall turn to momentarily.

In summary, Dewhurst’s appeal to relevance does not resolve the problem
of computational equivalence. Either it has no effect on computational equiva-
lence (as in Dewhurst’s and Coelho Mollo’s proposals), or it supports my claim
that computational individuation might take into account only one of the
implemented automata— namely, the one that is relevant to the explanandum
phenomenon (as in the maximality and entire- span proposals).

8.4 Objection 2: Externalism Without Content

Piccinini (2008a; 2015: 40– 44) agrees that there is a further constraint that
determines which automaton is the computational structure of a system in a
given context. He also agrees that this constraint takes into account features that
are external to the computing systems. He denies, however, that these features
must be semantic. In other words, he adopts the master argument to establish
externalism about computation— namely, the view that computational individ-
uation essentially takes into account features that are external to the system (see
also Horowitz 2007 and Shea 2013). But he refuses to accept the further step that
these external features are semantic, arguing instead that

provided that the interaction between a mechanism and its context plays a
role in individuating its functional (including computational) properties, a
(non- semantic) functional individuation of computational states is sufficient
to determine which task is being performed by a system, and therefore which
computation is explanatory in a context. (2015: 43)

222 The Nature of Physical Computation

More specifically, Piccinini argues that the master argument rests on the
premise that tasks (i.e., the explanandum input- output function) are individu-
ated semantically. But, according to him, the semantic individuation of tasks in
these cases does not entail the semantic individuation of computational states.
Tasks are also individuated functionally (non- semantically), and it is this func-
tional task description that is relevant to the computational individuation of
the systems. Piccinini says that the proponents of the semantic account give no
reason to prefer a semantic individuation of tasks to his wide functional individ-
uation. In fact, he says, we can single out a functional individuation of a task that
determines computational structure. Hence, we need not appeal to the semantic
task for the individuation of computational structure.

As previously noted, Piccinini concedes that we must take into account the
functional task in which computation is embedded, and that this task may de-
pend on the interaction between the computing mechanism and its context— for
example, on “which external events cause certain internal events” (2008a: 220).
Nonetheless, he argues that the environment need not be very wide. In artificial
computing systems, the relevant functional properties might be input devices
(such as a keyboard) and output devices (such as a display). In the cognitive case,
it might be sensory receptors and muscle fibers. This might be enough to deter-
mine whether a computation is being performed— and, if so, which one. On this
understanding, computational taxonomy selects the relevant automaton on the
basis of how the implementing mechanism interacts with events that are not part
of the computing mechanism. These external features define the functional task,
and it is the functional task, rather than the semantic one, that is essential for
computational individuation.

Reply: Piccinini has a point, of course. The argument for Premise 4
demonstrates how content can resolve indeterminacy— that is, how it can decide
which implemented automaton is relevant to computational individuation. But
if Piccinini shows that some wider functional factors (such as the factors that
define the functional task) suffice to define computational structure, then the ar-
gument for Premise 4 fails. In that case, we can always individuate computational
states without appealing to the content of the states.

My response has two parts. I will first argue that the functional task— or at
least the one proposed by Piccinini— is insufficient to resolve the indeterminacy
issue. I will then suggest more tentatively that computational taxonomy will
often favor the semantic task over the functional task, even if the functional task
removes the indeterminacies.

Let us consider more closely the functional account proposed by Piccinini.
The idea is to look at the interactions of the inputs and outputs in the context
of the surrounding external mechanism. Let us assume that our AND/ OR toy
device projects to arm movement. Assume also that the behavior of our system,

An Argument for the Semantic View 223

conjoined with the arm movement, is as given by Table 8.9: outputting L or M
produces no movement, whereas outputting H produces movement. Thus,
taking into account the interaction with movements gives us a reason to pick
out the AND automaton— where one output is implemented in H, and another
output in L and M. If that is correct, then we have a non- semantic way to individ-
uate computation.

In response, let me first remark that if this solution works, it has little to do
with the “interactions of the inputs and outputs with the surrounding external
mechanism.” The external, peripheral mechanism that connects the computing
modules and the arm makes no difference to computational identity: what
matters is the arm movement alone. This is readily apparent if we leave the
outputs of the computing module and the arm movements unchanged, and only
alter the mechanism that links the module’s outputs and the arm movements.
This alteration of mechanisms will not change the computational identity of the
module. The same goes for sensory processes. Assume, for example, that we re-
place the mechanisms that transduce the light waves hitting the retina with other
transducing mechanisms that yield the same light intensities. It is clear that the
computational identity of the sensor remains the same, as long as what is being
transduced is the same. Different external mechanisms would make a computa-
tional difference only if what they transduce is different.16

Table 8.9 Our toy example automaton interacts with arm
movement. Outputting H results in movement; outputting
L+M results in no movement.

Input 1 Input 2 Output Motor Output

H H H Movement

H M M No movement

H L M No movement

M H M No movement

M M M No movement

M L M No movement

L H M No movement

L M M No movement

L L L No movement

 16 This point is discussed at length in Harbecke and Shagrir (2019).

224 The Nature of Physical Computation

The more pertinent reply, however, is that the computational individuation
still depends on how you individuate the arm movement. Assume that further
examination shows that the no- movement actually includes some movement
(call it medium movement). Thus, overall, the H outputs are plugged to (phys-
ical) large- movement, the M outputs to (physical) medium- movement, and the L
outputs to no- movement (Table 8.10).

In that case, we can identify movement either with large-movement, or with
medium-movement-plus-large-movement. As Table 8.10 shows, if we choose
the former option, we end up with the AND automaton; if we choose the latter,
we end up with the OR automaton. How do we decide which functional kinds
are relevant to singling out a computational structure? Appealing to movement
is no longer helpful, since we do not want to identify movement with specific
physical, or even geometrical, properties, for reasons of multiple realization. In
other contexts, we can have the same functional task, even if larger movement is
associated with different physical properties. Nor can we correlate the movement
with the implemented automata or their outputs, as each implemented autom-
aton is correlated with a different individuation of movement. Thus, in this case
(and obviously in others as well), the appeal to external, non- semantic short-
arm factors does not help in choosing between the implemented AND and OR
automata.

One might suggest relating to even more external factors, such as the out-
side environment. We could say, for example, that large- movement results in
reaching apples, whereas medium- movement does not. How should we treat

Table 8.10 Our toy example automaton interacts with arm
movement. In this scenario, outputting H results in large
movement, outputting M results in medium movement,
and outputting L results in no movement.

Input 1 Input 2 Output Motor Output

H H H Large movement

H M M Medium movement

H L M Medium movement

M H M Medium movement

M M M Medium movement

M L M Medium movement

L H M Medium movement

L M M Medium movement

L L L No movement

An Argument for the Semantic View 225

this proposal? Importantly, I am not saying that there cannot be a long- arm
wide functional task— one that extends all the way into the environment— that
resolves all cases of indeterminacy. But before adopting this or any other account,
we should be convinced that the account does indeed remove these indetermin-
acies. This is not a trivial task: the phenomenon of simultaneous implementa-
tion is a special case of a broader phenomenon— namely, that we can group the
same physical states into different formal types in different ways. The construc-
tion is merely extended to include the wider functional facts. We performed this
exercise when extending the functional typing to external outputs within the
embedding system (movements), and we could further extend it to functional
typing that includes environmental factors. It might turn out, for example, that
medium- movement results in reaching small apples.17 A functional account
should show us how the wider context helps to avoid indeterminacies without
referring to the content of the system’s states— that is, without assuming that the
contents of the states are (for example) apples and oranges (which would make it
a semantic account). As far as I know, this has not yet been shown.

I have argued that the functional account fails to single out the (correct)
implemented automaton, at least in some cases. In this situation, I currently see
no reason to abandon the semantic account— which provides a simple and el-
egant solution to the issue of indeterminacy— in favor of a non- semantic one.
I could stop here, but I would like to go further. I want to argue that, at least in
some cases, we would favor the semantic proposal over the functional proposal
even if the functional proposal could always single out one implemented autom-
aton. I admit that the argument for this is brief and tentative, but I believe that it
nevertheless has some merit.

The argument goes as follows: Piccinini presents a picture of semantic and
functional tasks that compete over the impact on computational individuation,
arguing that computational individuation acts in accordance with the func-
tional task. How should we understand the relationship between these semantic
and functional tasks? One possibility is that the two tasks are coextensive: the
semantic and functional individuations always single out the same automaton.
Under this understanding, we can always replace the semantic task with the
more basic, functional task. This means that the functional, non- semantic task
naturalizes the semantic task. But, as noted in Chapter 7, this naturalization
claim can hardly challenge the semantic view. The semantic view is consistent
with, but not committed to, the view that all computational contents can be natu-
ralized. The debate between semantic and non- semantic views is over whether or
not the identity conditions of computation must involve content. If the identity

 17 See also Hemmo and Shenker (2019), who argue that this externalist- functionalist proposal
leads to an infinite regress.

226 The Nature of Physical Computation

conditions always involve content (naturalized or otherwise), then the semantic
view wins. Otherwise, it loses. Thus, if the argument is that the semantic proper-
ties that essentially affect computational individuation can be further analyzed
in non- semantic, functional terms, then, as far as I can tell, the semantic view of
computation has the upper hand.18

A second, more reasonable possibility is that the two tasks are not
coextensive— that the semantic and the functional tasks single out, at least in
some cases, different automata. Under this understanding, Piccinini’s claim
is that a computational taxonomy would prefer the functional over the se-
mantic individuation. I would like to challenge this claim. Take the tri- stable
device that simultaneously implements AND and OR. Assume that outputting
M+H encodes oranges, and outputting L encodes apples. In this case, the se-
mantic content (such as the orange- content and apple- content) implies that
the relevant computational structure is OR. As it also turns out, however,
the functional task implies that the relevant computational structure is AND
(Table 8.11). The outputs of our detector project to certain motor devices such
as arm movements. Outputs of H produce movement, and outputs of L+M
produce no movement.19

Which automaton counts for the computational identity? I think that we
would agree that if we wish to explain the semantic task— that is, how the system
categorizes the stimuli into apples and oranges— we would use the OR struc-
ture, not the AND structure. The OR helps to explain how the system categorizes
certain stimuli as apples and other stimuli as oranges— whereas the AND is ir-
relevant to the explanation, as its states are not matched with the vehicles of
apple- content and orange- content. Note that I do not deny that the AND struc-
ture might explain the wide non- semantic functional task. Nor do I deny that, in
a different context with different content, the computational structure might be
the AND rather than the OR. I also agree that we can individuate the OR mech-
anism in non- semantic terms. However, the point of the latter example is just
this: if the explanandum is the semantic task and the content is as described
in the example, then the automaton relevant to the explanation is the OR, not
the AND.

Non- semanticists therefore face a dilemma. Taking the first horn, they
can admit that the OR explanation is a computational explanation of the se-
mantic task. But in that case, the semantic task, rather than the functional one,
determines that the explanatorily relevant automaton is the OR automaton, not

 18 See also Dewhurst (2016), who notes that such a naturalistic move would be self- defeating
for the non- semantic view, as it would remove “one of the primary motivations for giving a non-
representational account of computation in the first place” (p. 797).
 19 If one is so inclined, one might further assume that movement results in reaching the object, and
that no movement means not reaching it; one may also assume that our system has never produced

An Argument for the Semantic View 227

the AND. Assuming that this determination also tells us something about com-
putational individuation, we can conclude that content plays an essential role in
computational individuation— namely, that it plays a role in determining that
the computational structure of the system is OR.

Taking the second horn, non- semanticists can deny that the OR explanation—
though a formal explanation— is a computational one. They can say, for instance,
that computational explanations do not explain semantic tasks, but rather are
formal explanations of non- semantic tasks. But, as previously noted, this view
is not consistent with the explanatory powers that scientists attribute to compu-
tational theories. Scientists do maintain that computational- formal theories in
cognitive neuroscience and computer vision explain semantic tasks such as edge
detection, shape- from- shading, structure- from- motion, and so forth.

Piccinini appears to side with the former approach: he agrees that the expla-
nandum of computational explanations is— at least in some cases— a semantic
task. But he denies that this premise leads to the semantic individuation of com-
putational states, arguing instead that computational individuation is affected
by the functional task. However, my argument shows that, on the contrary, in
cases of discrepancy a computational taxonomy would favor the semantic
individuative scheme.

Table 8.11 A discrepancy between semantic and functional tasks.
The semantic task is correlated with groupings of L and M+H.
The functional task is correlated with groupings of L+M and H.

Input 1 Input 2 Output Semantic Output Motor Output

H H H Orange content Movement

H M M Orange content No movement

H L M Orange content No movement

M H M Orange content No movement

M M M Orange content No movement

M L M Orange content No movement

L H M Orange content No movement

L M M Orange content No movement

L L L Apple content No movement

M values, so the conflict between the semantic task and the functional task has never been apparent.
Our system would still have produced M values had it encountered certain oranges, and this output
would have resulted in no movement.

228 The Nature of Physical Computation

The overall argument can be summed up as follows: We can understand
Piccinini’s claim as asserting that the semantic task is naturalized by the func-
tional task. This claim, however, is consistent with the assertion that the semantic
task affects computational individuation. We can also understand Piccinini’s
claim as asserting that the semantic and functional tasks compete in the sense
that they lead, at least sometimes, to different individuations of the system.
Assuming, with Piccinini, that computational explanations account for semantic
tasks, my reply is that the computational individuation would be affected by the
semantic task. Either way, the semantic task does affect computational individu-
ation, at least in some cases.

8.5 Summary

This chapter has put forward an argument in favor of the semantic view that is
based on the phenomenon known as simultaneous implementation (described in
Section 8.1). Specifically, I suggested that simultaneous implementation implies
(with further premises) that the events, states, and so on of a system are individ-
uated into computational types— essentially, by semantic factors (Section 8.2).
In the latter half of the chapter, I discussed and responded to objections to the
argument (Sections 8.3 and 8.4).

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0010

9
Computing as Modeling

In this chapter, I will argue that modeling is highly central to computing. This
will be done as follows: I will first explicate the notion of modeling (Section 9.1).
I will then provide a modeling characterization of physical computation (Section
9.2). Next, I will discuss others who have associated computing and modeling
(Section 9.3), and then highlight one methodological role of modeling, which is
discovering the computed function (Section 9.4). Finally, I will discuss the cen-
tral role of modeling in computational explanations (Section 9.5). The conclu-
sion is that modeling is an essential element of physical computation, at least in
current computational approaches in cognitive neuroscience.

9.1 What Is Modeling?

There is a wealth of literature about models and their role in the sciences.1 I take
here a model to be a representational system that preserves patterns of relations
in the target (represented) system. By preserving patterns of relations, I mean
that there is an isomorphism— or more realistically, something less than that—
between the representing system and the target system. Another way to put this
is to say that the model and the target domains are structurally similar, in the
sense that they have the same formal or mathematical structure (Swoyer 1991).
While many people would agree that some degree of structural similarity is nec-
essary for modeling, they would also argue that the demand for a full- fledged
isomorphism is excessive, at least when talking about tangible models. They
therefore confine the requirement to homomorphism, partial isomorphism,
or even weaker similarity or mapping relations.2 Even these weaker morphism
relations should be taken with a grain of salt. Given that we often talk about
domains— both of models and their targets— that are physical and biological

 1 See, e.g., Weisberg (2013) and Frigg and Hartmann (2020).
 2 Less- than- isomorphism characterizations are apparent in partial isomorphism (e.g., French and
Ladyman 1999), homomorphism (e.g., Bartels 2006), and similarity (e.g., Giere 2004).

230 The Nature of Physical Computation

systems, these similarity relations involve at least some degree of approximation
and idealization.

A good example of a model is a family tree (Figure 9.1). In this tree, the lines,
arrows, and double arrows preserve certain familial relations, such as a sibling
relationship, parenthood, or marriage. This does not mean, of course, that the
relations of the models are the same as the familial relations. Hopefully, being
married and being related by a double arrow are dissimilar in many respects. The
similarity is at a higher, structural level, of a mathematical or formal kind. In our
example, being married and being related by a double arrow are both symmet-
rical relations.

It is crucial to distinguish between the notions of computational model and
simulation on the one hand and computing- as- modeling on the other (see also
discussion in Chapter 1). The former notions refer to the use of computers to
model and simulate the behavior and processes of physical, biological, social, and
other systems. They do not, however assume that modeling is an essential feature
of computing; the claim is that computers can be, and are, used for modeling and
simulating other phenomena. In contrast, the notion of computing- as- modeling
is indifferent as to the actual use of computers for the purposes of modeling or
simulating other phenomena; rather, the claim is that modeling is an essential
element of the characterization of computing. Although the two notions are
clearly related, my focus here is not on computer models and simulations, but on
computing- as- modeling.

John Mary Jeff

CliffAnnJuliaFred

Jack Amy

Bart

Mo Ted

Married

Son or daughter

Sibling

Figure 9.1 A family- tree model for determining familial links (From Ramsey,
William M. 2007. Representation Reconsidered. Cambridge: Cambridge University
Press. Reproduced with permission of Cambridge University Press through
PLSclear).

Computing as Modeling 231

9.1.1 Input- Output Mirroring

I propose that computing does not require a vast amount of modeling. It is sat-
isfied with modeling of the input- output type, which is a minimal degree of
morphism. Input- output modeling consists of two components: input- output
mirroring of a given target, which is merely a morphism relation, and representing,
which is that the inputs and outputs represent some entities in the target. In this
section, I characterize the mirroring aspect.

Assuming that computing is a process of the physical system that transforms
(physical) input variables into output variables, the mirroring condition is as
follows:

Input- output mirroring: The input- output function, g, preserves a certain
 relationship, R, in a target domain: There is a mapping from the physical pro-
cess to the target domain that maps g to R, x to x, y to y, . . . , such that g(x) = y iff
<x,y> ∈ R.

Throughout this chapter, I shall use plain italicized symbols (such as x and y)
to signify certain properties of the mirroring system, and underlined italicized
symbols (such as x and y) to signify properties of the target domain. This condi-
tion amounts to saying that there is a similarity at the more abstract (e.g., formal)
level. Some might say that at the more abstract level, g and R are similar formal
relations— for example, in that both are mathematical integrations. The target
domain is to be understood in a very broad sense: it can be part of the immediate
environment of the system, but it can also be a more distant domain, as well as fu-
ture, past, or even imaginative and counterfactual scenarios. It can also be some
peripheral or internal part of the mirroring system.

This input- output mirroring requirement should be qualified. First, the
mirroring system can be embedded in (can be a module of) some other system.
In some instances, we talk about subsystems whose inputs are received and/ or
outputs are projected to other parts of the system. The inputs and outputs are
very often (magnitude) values of certain properties, such as voltages. Second,
there are some computing systems whose activity is not described in terms of
input- output processes. In these instances, the modeling relation might be char-
acterized in terms of some other type of relation. Broadly speaking, however,
it is not controversial to argue that the behavior of many computing systems is
couched in terms of input- output processes— and that is my focus in this sec-
tion. Lastly, we will see that, in many cases, the morphism relation is richer than
input- output mirroring, in the sense that internal relations in the computing
system also preserve relations in the target domain. But in other instances, com-
puting relies on the more minimal, input- output mirroring alone.

232 The Nature of Physical Computation

9.1.2 Input- Output Modeling

Input- output modeling is input- output mirroring plus the requirement that the
input and output variables, x and y, represent the features x and y in the target
domain. As said, I take it for the purposes of this work that modeling = mirroring
+ representing. Also, I’m not getting into the debate on the relationships between
mirroring and representing. Some authors argue that morphism, or a sufficient
amount of it, constitutes representation, perhaps in tandem with some other
conditions. Thus, they use terms such as input- output representation (Ramsey
2007) and structural representation or S- representation (Swoyer 1991; Ramsey
2007) to describe entities that satisfy the mirroring relations.3 A well- known
argument against the sufficiency of isomorphism to representation is that a
system that is isomorphic to one target domain is immediately isomorphic to
many other target domains without representing or modeling them. Another ar-
gument is that isomorphism is a symmetric relation, whereas representing (and
modeling) is not.4

I am not in the business of analyzing the relationship between morphism and
representation. In particular, I do not argue that morphism is necessary and/ or
sufficient for representation. I will therefore refrain from using the terms struc-
tural representation and input- output representation, which are often dogged
by the philosophical baggage that morphism is necessary and/ or sufficient for
representation. I define modeling as mirroring plus representing, which I think
is fairly uncontroversial, and I keep the notions of representation and mirroring
distinct, without any commitment to the degree of overlap between them. As
I noted earlier, I believe that it is reasonable to take a pluralistic stance with re-
spect to representation in computing systems (Chapter 7), but even this assump-
tion does not play an important role in the definition of modeling.

9.1.3 The Neural Integrator in the Oculomotor
System

Consider an example from computational neuroscience, where the neural net-
work is described as computing mathematical integration. The oculomotor
system controls eye movements. There are several types of eye movement. Gaze
stabilization movements stabilize the visual world on the retina when the head/

 3 See, e.g., Gallistel and King: “Representations are functioning homomorphisms. They require
structure- preserving mappings (homomorphisms) from states of the world (the represented system)
to symbols in the brain (the representing system). These mappings preserve aspects of the formal
structure of the world” (2009: x).
 4 See, e.g., Suárez (2010).

Computing as Modeling 233

body is moving: the vestibulo- ocular reflex (VOR) keeps the visual world stable on
the retina while the head is moving, and the optokinetic reflex stabilizes the visual
world when the head is stationary (e.g., when one is looking out of the window
of a moving train). Gaze- aligning movements include voluntary and reflexive
saccades and smooth pursuit movements that allow one to track a moving target
(Glimcher 1999; Leigh and Zee 2015). Our focus is a subnetwork of the oculo-
motor system called the neural integrator. It receives neural signals that encode
velocity as inputs, and transforms them into signals that encode position. The
neural integrator converts eye- velocity inputs into eye- position outputs, thereby
enabling the oculomotor system to move the eyes to the right position (Robinson
1989; Seung 1998; Eliasmith and Anderson 2003; Leigh and Zee 2015).

Take vestibular movements, where the eyes are moved at the same speed as,
and in the opposite direction of, the head movements. A wealth of experimental
evidence from the 1960s onward indicates that the vestibulo- ocular system
determines the new eye position based on the inertial velocity information
transduced through the canals behind our ears (the semicircular canals). In cats,
monkeys, and goldfish, the network that computes horizontal eye movements
appears to be localized in two brainstem nuclei: the nucleus prepositus hypoglossi
(NPH) and the medial vestibular nucleus (MVN).5 Robinson and others infer
that this velocity- to- position function is performed by an integrator network (I
discuss the logic behind this inference in Section 9.4). Thus, Robinson writes:

That there is indeed a second integrator is without doubt, since single unit
studies in the vestibular and abducens nuclei show that the firing of units in the
vestibular nuclei are in fact proportional to head velocity (over the bandwidth
mentioned) and single units in the abducens nuclei increase their rate of firing
in a manner proportional to eye position during the slow phase of nystagmus
for which the lateral rectus is an agonist. (1968: 1041)

Robinson (1989; Cannon and Robinson 1987) also hypothesizes that the
same neural integrator is used for vestibular, optokinetic, saccadic, and pur-
suit movements (Figure 9.2).6 The inputs arrive from different fibers that code
vestibular, optokinetic, saccadic, and pursuit velocity. The integrator system
produces eye- position codes by computing mathematical integration over these
eye- velocity encoded inputs. The eye- velocity codes, Ė, are projected directly to
the motor neurons that must produce velocity commands to move the eyes at
the right speed. But the eye- velocity codes, Ė, are also projected to the neural

 5 See Robinson (1968, 1989) and Leigh and Zee (2015).
 6 See also Goldman et al. (2002).

234 The Nature of Physical Computation

integrator that produces position codes, E. The latter eye- position codes are fur-
ther projected to the motor neurons for position commands.

Crucially, mathematical integration characterizes operations performed at
two very different locations. One is in the neural system— namely, the neural in-
tegrator, which computes integration on the neural inputs to generate neural
commands (which is why the system is known as an integrator). Another, very
different location, however, is in the target domain— in our case, the eyes. The
relation between position and velocity of the eye can be described in terms of
integration as well. The distance between the previous and current positions of
the eye is determined by integrating over its velocity with respect to time. So
what we have here is input- output modeling: the input- output function of the
representing sensory- motor neural system (the integrator) mirrors, or preserves,
a certain relation in the target domain— namely, the distance between two suc-
cessive eye positions. By computing integration, the neural function mirrors,
reflects, or preserves the integration relation between eye velocity and eye
positions.7

We can describe this morphism (mirroring) relation between the representing
neural system and the represented target domain (the eyes and their properties)
through the analogy of Cummins’s London- Tower Bridge picture (Figure 9.3).

pursuit neural integrator

optokinetic

vestibular
saccades and quick phases

∫ dt

ė ė E

E

+

Figure 9.2 The common neural integrator. The neural integrator receives as inputs
eye- velocity encoded signals, Ė, and produces eye- position encoded outputs, E.
The velocity codes, Ė, combine the vestibular, optokinetic, saccadic, and pursuit
velocities. These codes are projected directly to the motoneurons that have to produce
velocity commands, but also to the neural integrator, which produces position codes
projected to the motoneurons for position commands (From Cannon, Stephen C.,
and David A. Robinson. 1987. “Loss of the Neural Integrator of the Oculomotor
System from Brain Stem Lesions in Monkey.” Journal of Neurophysiology 57:
pp. 1383–1409. Republished with permission of American Physiological Society.
Permission conveyed through Copyright Clearance Center, Inc.).

 7 To keep things simpler, I shall use the terms distance and position interchangeably. New (hori-
zontal) position is evaluated based on the distance from the previous position.

Computing as Modeling 235

The bottom span describes a causal process in the neural system (i.e., in the
neural integrator), which transforms input values, Ė, that code eye velocity, Ė,
into output values, E, that code eye position, E.8 This input- output relation can be
described mathematically as integration— mathematically speaking, the values
E are the result of mathematical integration over Ė with respect to time. The
upper span describes a certain relation in the target domain— namely, the eyes.
The new position (which is the distance from the previous position), E, can also
be described mathematically as the result of the integration over the velocity, Ė,
with respect to time. Thus, the mapping relation, I, which maps the input values,
Ė, to the encoded velocity values, Ė, and the output values, E, to the encoded dis-
tance values, E, is a morphism relation.

9.1.4 The Neural Integrator as an Internal Model

As previously noted, in some cases the computing system entertains a much
stronger morphism to the target system. In particular, some internal relations
also preserve certain relations in the target system. The oculomotor integrator

E

E

Ė
∫Ė dt

∫Ė dt
g:Ė

I I

Figure 9.3 The oculomotor integrator as an input- output model. The lower span
describes a causal process in the neural system (i.e., in the neural integrator) that
transforms input values Ė to output values E (the physical function g). The upper
span describes the target domain— namely, the eyes. The term Ė describes the
velocity of the eye, whereas the term E describes the (horizontal) distance from the
previous eye position to the new eye position. The mapping, I, interprets the input
signals, Ė, as representing velocity values Ė, and the output signals, E, as representing
position values, E. Both domains share a formal structure, of mathematical
integration.

 8 Note that in Figure 9.2, the term E stands for both the representing (output) neural activity and
the represented eye position. Similarly, the term Ė stands for both the representing (input) neural
activity and the represented eye velocity. This presentation is customary in neuroscience, and
underscores the modeling assumption, as it is apparent that the integration relationship holds true
both in representing and represented domains.

236 The Nature of Physical Computation

is a case in point. Another task of the oculomotor system is to keep the eyes still
between movements. Experimental results show that normal humans are able to
hold their eyes stationary at arbitrary positions for up to dozens of seconds at a
time, even in complete darkness (Becker and Klein 1973; Hess et al. 1985). The
brain can track the current eye position even after the stimulus has gone; in this
respect, it employs a short- term memory of eye positions. When this memory is
damaged, there is a constant drift of the eyes to a null point.

It is hypothesized that the short- term memory is located in the same network
that computes eye positions— namely, the neural integrator (Seung 1998). When
velocity signals are received, the network produces position signals by com-
puting integration. But when the input signals are gone, the memory network
keeps producing the same position signals until new velocity signals are received.
How does the neural network implement the memory? Experimental findings
show that when the eyes are still, the pattern of neural activity is constant in time,
and that for every eye position, the pattern of activity is different and persistent.
These findings have encouraged modelers to describe the memory system as a
multi- stable (attractor) recurrent network (see Chapter 4 for a detailed discussion
of attractor networks).

The use of attractor neural networks to implement memory is widespread
(Amit 1989). The dynamics of these networks is often described in terms of an
energy landscape whose minima are stable states. To implement an eye posi-
tion, we can think of each state as encoding a different eye position. However,
the typical multi- stable networks do not seem appropriate for memory of the
eye position— because the attractors are discrete, while the encoding of the
eye position in the neural activity requires a continuous, analog- graded code.
Theoreticians have therefore suggested that the memory of eye position is
implemented in a recurrent network with continuous line attractor dynamics.
A new stimulus disturbs the state of the memory network away from the line of
fixed points, and the network gradually relaxes on a new point along the attractor
line— this point encodes the current eye position (Figure 9.4).9

Although the mathematical details are quite complex, the crucial features of
the network are easy to explain. First, the (attractor) network has no designated
input and output units: all cells are interconnected to all other units, and each cell
receives external inputs from outside (velocity signals). Second, a single cell does
not represent an eye position; only a collective, “total” state of the network is a
candidate to be such a representation. Respectively, each point in the state- space
portrait signifies not the activity of a single cell, but the activity of a collective
(“total”) state. At each moment, the memory network is at one of the points in

 9 See Canon and Robinson (1985) and Seung (1996, 1998). For a general framework, see Eliasmith
and Anderson (2003: 250ff.).

Computing as Modeling 237

the landscape portrait, but it aspires toward the line attractor; the points along
the line attractor are the collective states that encode eye positions.

Third, there are no synaptic changes (“learning”)— at least, not in the simplified
case: the weights are fixed in advance. The important idea is that the weight matrix
Wij has only positive feedbacks that are tuned to have a single unity eigenvalue
(this produces an energy function with no curvature, as in Figure 9.4). The rest
of the eigenvalues have real parts that are less than unity; this condition ensures
stability— namely, that the bottom trough of the energy function is perfectly level
(Seung 1996). In real biological systems, however, where these idealizations do not
hold, the issues of robustness and stability become acute. There are suggestions
to handle these with learning— that is, synaptic plasticity— but the effectiveness
and biological reality of these suggestions are questionable (Seung 1996, 1998).
However, we must also remember that the biological system itself is not per-
fect, and the memory of eye position is gradually corrupted over time. In human
subjects, during gaze- holding in the dark there is generally a slow, systematic drift,
usually less than one degree per second in normal subjects (Becker and Klein 1973;
Hess et al. 1985).

Figure 9.4 A recurrent network with a continuous line attractor. In this state- space
portrait (“energy landscape”), every possible trajectory of the network (an arrow)
converges to a minimum point, and these fixed points (minima) lie along a line
called a line attractor (From Seung, H. Sebastian. 1996. “How the Brain Keeps
the Eyes Still.” Proceedings of the National Academy of Sciences USA 93:
pp. 13339–13344. Copyright (1996) National Academy of Sciences, U.S.A.).

238 The Nature of Physical Computation

The important point for our purposes is that the memory network functions
as an internal model.10 The state- space of the network models the space of eye
positions. Each state, Si, along the line attractor encodes a different eye posi-
tion, and the distance between two states, Si and Sj, corresponds to the distance
between two eye positions, Ei and Ej. Thus, we have a morphism between the
representing network and the eye: the function that maps the stable states, the
Si’s, to the corresponding eye- position states, the Ei’s, is type- preserving, in that
the distances between two states mirror the distances between eye positions.11
The state- space of the network can be viewed as a map whose line attractor cor-
responds to the space of eye positions. By moving from one state, Si, to another,
Sj, one can reflect a transition from one eye position, Ei, to another, Ej. The motor
neurons “read out” the current state in order to move the eyes to a new eye posi-
tion and keep the eyes there. Thus, the network is not just an abstract byproduct
of the fact that the system goes into specific states in response to specific inputs,
but rather consists of concrete inner states that the oculomotor system can go
“look up” for the purposes of problem- solving.

9.2 The Modeling Notion of Computation

We are now in a position to proceed to a characterization of physical computa-
tion. The first step is to link modeling with implementing.

9.2.1 Modeling and Implementing

As we will see, I am not the first one to associate computing with modeling. The
distinctive feature of my account is that the relata of implementing and mod-
eling can be quite different. Implementation is a relation between the physical
computing system and a formalism. Modeling, by contrast, can be a relation
between the physical computing system and other target systems, such as the
physical world. This is the case with our oculomotor integrator. The integrator
implements a particular abstract formalism (network), whose input- output

 10 Thus, Seung writes:
According to modern computational theories, biological motor control is performed by an
internal model. . . . A wealth of experimental data indicates that the internal model used for
maintaining eye position is the integrator, which has been localized to specific brainstem
nuclei. The nature of the internal model is also known; it appears to be a recurrent network
with a continuous attractor. (1998: 1253– 1254)

 11 More formally, one can see the morphism in the formula I(S- distance(Si,Sj)) =
E- distance(I(Si),I(Sj)) = E- distance(Ei,Ej)— where I is the mirroring function, S- distance is the
 distance in state- space, and E- distance is the horizontal distance between angular eye positions.

Computing as Modeling 239

(mathematical) function is integration, while it models the eyes (“target”); in
particular, its input- output function models the velocity- position relation.

There are other similarities and differences between modeling and
implementing. The most obvious similarity is that both modeling and
implementing involve morphic mapping relations. As a kind of mirroring rela-
tion, modeling is a morphic relation from a subdomain (such as an input- output
mapping function) of a physical system, P, to a given target, T. Implementing is a
(homo) morphic relation between a physical system, P, and an abstract structure
(such as an automaton), S .12

One significant difference is that modeling is a sort of representation, whereas
implementing is not. As we saw earlier, Cummins and others apparently regard
implementation (“instantiating”) as sufficient for the representation of an ab-
stract structure. I do not. I do not deny that the implementing relation can also
be a representing relation, at least in some cases, but I do not assume that this is
always the case.13

As said at the outset of this section, the important difference between mod-
eling and implementing, at least for our purposes, is this: implementation, at
least in the context of computation, is a relation between abstract and physical
domains, whereas modeling (and mirroring) need not be. Of course, modeling
can link together physical and abstract domains: a physical system P can, and
sometimes does, model a formal structure S. But modeling can also link together
two physical (or non- abstract) domains. Often a physical system P implements S
while representing and modeling a different target T, which is the case with our
oculomotor integrator.

9.2.2 The Definition of Computing

Computing consists of implementing and modeling, while modeling, in turn,
consists of mirroring and representing. In addition, computing occurs if and
only if the modeling and implementing relations are linked in a certain way—
that is, if the shared formal structure in the input- output modeling and the
mapping relation of implemented formal structure are one and the same. The
oculomotor integrator computes because its shared formal structure with the

 12 Can we say that a physical system, P, implements a formal structure S iff P mirrors S?
Mirroring entails implementing under the assumption that mirroring satisfies other constraints of
implementation, such as causal, model, dispositional, and perhaps other constraints (Chapter 5).
Whether implementing entails mirroring depends on certain ontological commitments about the
relationships between the physical and abstract domains.
 13 See Dresner (2010) for further discussion of these issues.

240 The Nature of Physical Computation

eyes (mathematical integration) is the same as the mathematical function that it
implements, which is also integration. To put it more precisely:

A physical system P is a computing system just in case:
 (i) Input- output mirroring. The input- output function, g, of a given pro-

cess in P preserves a certain relation, R, in a target domain T: there is a
mapping from P to T that maps g to R, x to x, y to y, . . . , such that g(x) = y
iff <x,y> ∈ R. This means that g and R share some formal relation f.

 (ii) Implementing. This process of P, whose input- output function is g,
implements some formalism S whose input- output (abstract) func-
tion is f.

 (iii) Representing. The input variables x of P represent the entities x of T, and
the output variables y of P represent the entities y of T.

Our integrator (P) maps certain neural inputs to neural outputs (the func-
tion g), and this mapping input- output process mirrors the relation between
movements and positions (the relation R) of the eye (T). They both share the
mathematical relation of integration (the function f). Our integrator also
implements a certain formal structure S (such as an abstract network) whose
input- output function is integration f. Finally, the input and output signals of
the integrator represent the eye’s velocities and positions. Thus, the integrator is
a computing system. In many cases, the shared formal structure with the target
is richer and includes more elements from the implemented formal structure.
Assuming that the oculomotor integrator is an internal model of the eye that
functions as memory, both the integrator and the eye share an abstract state-
space that is implemented by the integrator. In many other cases, however, the
physical system P implements some formalism S, but this formalism (e.g., algo-
rithm) is not an internal model of the target (T); S is not shared by the physical
system P and the target T. The only requirement is that the input- output func-
tion (relation), f, of S, is shared by P and T.

As said earlier, I am not the first to associate computing with modeling and
implementing. But most who do associate them tend to characterize both im-
plementation (or instantiation) and modeling (and representation) as relations
between physical and abstract domains.14 I do not. I do think that both rela-
tions have a shared formal structure. I also think that there are cases in which
the two relations, implementing and modeling, coincide. This occurs when
the physical system not only implements the formalism, but also models (and
so represents) the formalism. In Cummins’s example (Figures 4.1 and 4.2), the

 14 Cummins (1989) is an early example of this; Horsman (Horsman et al. 2014; Horsman, Kendon,
and Stepney 2017) is a more recent one.

Computing as Modeling 241

physical addition machine both implements (instantiates) the function plus,
and also models plus in that the arguments and values of the physical machine
represent the arguments and values of plus. As noted earlier, however, there are
cases in which the computing system implements one domain (formalism) but
represents another target. Our oculomotor integrator implements mathematical
integration. However, it does not represent numbers; it represents properties of
the eyes.

The physical process that is doing the g- mapping is often called the computing
process. Interestingly, the physical input- output function, g, is seldom described
as the computed function (Cummins is a rare exception): many take that to be the
implemented mathematical function f (e.g., mathematical integration). Others
describe the computed function in representational terms. The integrator, for
example, is sometimes described as computing position- codes from velocity-
codes. Less often, it is said that it computes the velocity- position relation (R).
Lastly, while implementing a certain formalism S is essential for computing, the
kind of formalism represented by S matters only to the taxonomy of computa-
tional types. This does not mean that the taxonomy takes into account every
implemented automaton. As argued in Chapter 8, the taxonomy takes into ac-
count the automaton that matches what is being represented.

9.2.3 Is Computing Modeling?

Is computing a type of input- output modeling? How well does the modeling
definition of computation fare with the classification criteria? Let us start with
the-right- things- compute part. The oculomotor integrator is both a computing
system and an input- output model of the eye. But this can hardly support the
more general claim that computing is modeling. My aim in what follows is to
provide some support for the computing- is- modeling claim. In Section 9.3, I will
discuss the work of other researchers who have associated and even character-
ized computing in terms of modeling. In the course of this discussion, we will
review further examples of computing as input- output modeling. I will then turn
to the methodological role of input- output modeling in computational theories
in cognitive neuroscience (Section 9.4). This role is of interest because it shows
how deeply the idea that computing must be accompanied by input- output mod-
eling is entrenched— even when it is harder to pinpoint the modeling relation.
Finally, I turn to discuss the explanatory role of modeling (Section 9.5), which is
of interest because it locates the distinctive role (or so I argue) of computational
explanations. When all these are taken together, I think that we have good evi-
dence to link together computing and input- output modeling, at least in the con-
text of cognitive neuroscience.

242 The Nature of Physical Computation

What about non- computing systems— namely, those satisfying the-wrong-
things- don’t- compute desideratum? The modeling definition of computing
deems most physical systems to be non- computing. The representation con-
dition rules out stomachs, hurricanes, rocks, planets, chairs, and many other
physical systems. This does not mean that these systems cannot compute: if we
assign contents to their states in ways that fulfill the other conditions, they might
compute— but until we do so, they will not (see Chapter 7).

The combination of the mirroring and implementation conditions rules out
some non- computing representational processes. Consider an addition table for
kids; assume that there is a physical mechanism that connects the squares la-
beled by 3 and 4 to the square labeled by 7, and so on. One can insist that this
process really mirrors the plus function, at least under a very liberal notion of
mirroring.15 But even if there is such mirroring, it is very unlikely that the phys-
ical mechanism implements the plus function. The implementing mechanism is
just the same even when you relabel the squares. Another way to see this is the
following: The plus function is symmetric. Thus, our mechanism also connects
the other squares labeled by 4 and 3 to a square labeled by 7. But these latter three
squares in the lookup table are not the same as the first three squares (also labeled
by 3, 4, and 7). We could thus relabel the second 7- square to 8 without changing
the mechanism. This shows that the operations of the mechanism need not be
symmetric, in which case it does not implement plus. The same goes for many
other lookup tables: the implemented formalism does not match the function
that is (allegedly) mirrored by the system.

Or consider the process of screening a movie of the old- fashioned film-
reel type. The machine shows one frame (representation) after another— yet
screening is not computing. Even when we consider screening as implementing
a formalism, the formal function that is implemented by screening is not the
same as the outer (formal) relation between the represented scenes: the same
screening process takes place with very different sequences of representations.
You could change the order of the frames (and, thus, the outer relations between
the represented scenes), and the inner screening process (and, therefore, the
implemented function) would be just the same. The same goes for shredding
machines, which receive paper inputs with sentences and words; stamping
machines, which stamp representations; and other non- computing systems.
The inner input- output function of shredding, stamping, and so on does not
appear to mirror the outer relations in the target (represented) domain. Once
again, the modeling definition of computing does not rule out the possibility that,

 15 One way to deal with liberality is to impose on the mapping relation the same constraints that
are imposed on the implementation (mapping) relation (Chapter 5). Instead of doing this, I require
that the implemented function and the shared function (of mirroring) is the same.

Computing as Modeling 243

under certain circumstances, these systems would compute— but under current
circumstances, they do not.

9.3 Others Who Have Linked Computing
to Modeling

I am by no means the first to link computing with modeling. Cummins (1989)
presents a similar notion of input- output modeling with his famous London-
Tower Bridge diagram (as discussed in Chapter 4). However, he uses this no-
tion to advance a notion of content (“interpretational semantics”) that fits
in with computational, mainly classical theories of cognition. The crucial fea-
ture that defines computation, according to him, lies elsewhere— in the notion
of step- satisfaction. Ramsey (2007) also links computing with modeling: he
associates the notion of representation found in classical theories (in minds and
machines) with an internal model, and calls this structural representation or
S- representation. Like Cummins, Ramsey aims to account for a strong enough
notion of representation— specifically, mental representation— rather than com-
putation. Both Cummins and Ramsey argue that modeling is an essential ele-
ment in the notion of mental or cognitive representation.16

Fodor (1994) and others (Haugeland 1981b; Pylyshyn 1984) emphasize that a
digital computer (or a Turing machine) has the ability to support processes that
are truth- preserving. This means that in these systems, we can implement infer-
ence (“syntactic”) rules that mirror semantic relations such as logical validity.
Taking the inputs and outputs to be symbolic expressions (say, the input is a set of
sentences K, and the output is a sentence p), the “inner” input- output function,
which is the inferential relation of K to p, mirrors the semantic relations. In other
words, K ⊢ p iff K ⊨ p:

Well, as Turing famously pointed out, if you have a device whose operations
are transformations of symbols, and whose state changes are driven by the
syntactic properties of the symbols that it transforms, it is possible to arrange
things so that, in a pretty striking variety of cases, the device reliably transforms
true input symbols into output symbols that are also true. (Fodor 1994: 9)

Like Cummins and Ramsey, Fodor focuses on classical machines, and, re-
spectively, classical theories of cognition (Fodor and Pylyshyn 1988). Fodor also
stresses an important role of modeling: computing makes it possible to transform

 16 See also Shepard and Chipman (1970); Palmer (1978); Edelman (1998, 2008); and Gallistel and
King (2009).

244 The Nature of Physical Computation

some representations into others in ways that preserve semantic relations such as
truth. Although the system is not sensitive to the content of the expressions, it
does transform true symbolic expressions into other true symbolic expressions.
I shall discuss this type of inference in Section 9.5.

The linkage between computing and modeling is not confined to digital and
classical machines. It is central to other computational paradigms as well, in
which the representations are not symbolic expressions that have truth- values
(preserving truth might be said to be merely a special case of the morphism
relationship). Many scholars associate analog computation and representa-
tion with modeling. They note that the term analog signifies that the compu-
tation relation is analogous to some target domain.17 Thus in his book Analog
Computing, Ulmann says that a problem is solved on an analog computer “by
changing its structure in a suitable way to generate a model, a so- called analog
of the problem. This analog is then used to analyze or simulate the problem to
be solved” (2013: 2). Maley defines analog representation “to be one in which
some quantity varies with the quantity being represented in a strictly monotonic
manner, where this variation can be either discrete or continuous” (2018: 86).
Elsewhere, he defines analog representation in terms of mirroring: “The basic
idea is that analog representations are structurally isomorphic (or, in some cases,
homomorphic) to what they represent” (Maley 2020); he associates this defini-
tion with the monotonicity condition. Analog computation, according to Maley,
is “the mechanistic manipulation of analog representations” (2020). Maley does
not claim that every computation is analog, but rather aims to demonstrate that
the brain is an analog computer.

A paradigmatic case of an analog computer is a differential analyzer designed
to solve differential equations by using wheel- and- disc mechanisms that per-
form integration. One example of such an equation is md2X/ d2t + cdX/ dt + k = F,
which describes the forced response of a single degree- of- freedom spring/ mass/
damper system— where X is the displacement of mass m, supported by a spring
of stiffness k and a viscous damper of rate c, and F is an external force applied
to the mass. Another example is the tide- predicting machine designed by Lord
Kelvin and constructed in 1873. The machine determines the height of the tides
by integrating ten principal constituents. These constituents are made by means
of toothed wheels that simulate the motion of the sun, moon, earth, and other
factors that govern the tides. Ulmann (2013) and Papayannopoulos (2020b) offer
impressive surveys of analog computation. Maley (2020) provides examples of

 17 Others associate the term analog with continuous values (as discussed in Section 4.2); see Maley
(2011) and Papayannopoulos (2020b) for a more recent discussion and comparison of these two
approaches.

Computing as Modeling 245

analog representations— both in artifacts and in the brain— showing that the
representations can be discrete or continuous.

Many other scholars have noted that the notion of modeling— including that of
an internal model— is central to neural networks (e.g., Eliasmith and Anderson
2003; Ryder 2004; Churchland 2007; O'Brien and Opie 2009; Shagrir 2012c).
The oculomotor integrator is one example; another well- known example is the
cognitive maps in the hippocampus of rats, humans, and other mammals and
animals. These maps, which consist of place cells, are used for navigation and
spatial processing (O'Keefe and Nadel 1978). In his discussion of several artificial
neural networks, Paul Churchland notes that there is a similarity between high-
dimensional relations (such as geometrical congruence) in the state- space of the
representing network and high- dimensional relations in the represented domain
“in the world.” Thus, when using road maps as an example of his point, he writes
that “it is these interpoint distance relations that are collectively isomorphic to a
family of real world similarity relations among a set of features within the domain
being represented” (2007: 107). The linkage between computing and modeling is
also found in Bayesian approaches, in predictive coding, in control theories, and
in other theoretical frameworks.18 Although it is questionable whether all these
approaches use exactly the same notion of a model, they all take the computing
system to preserve relations in, and represent, the target domain.

Thus far, I have cited philosophers and scientists who associate computing
with modeling. These scholars, however, do not characterize computing in terms
of modeling. In the rest of this section, I will discuss two characterizations of
computing that share some affinities with the idea that computing is a type of
modeling; both characterizations are made in the context of computational
approaches in the brain and cognitive sciences.

9.3.1 Grush on Neural Computation

Analyzing Churchland, Koch, and Sejnowski’s (1990) characterization of com-
putation, Grush (2001) distinguishes between two components of a computing
physical system (at least in the context of computational neuroscience). One
component is the implementation of an abstract function or algorithm by the
physical system. Grush calls this an algorithm- semantic (or a- semantic) interpre-
tation. The second component is information- processing in the sense that the

 18 Thus, Griffiths, Kemp, and Tenenbaum (2008) say that the big computational question under-
lying the Bayesian approach is “How does the mind build rich, abstract, veridical models of the world
given only the sparse and noisy data that we observe through our senses?” (p. 59). Clark (2015) notes
the central role of generative models in the hypothesis that the brain is a prediction machine. Grush
(2004) highlights the role of models in control theory.

246 The Nature of Physical Computation

states of the physical system carry information about objects or states of affairs
in the environment. Grush calls this the environmental- semantic (or e- semantic)
interpretation. He next argues that a notion of computation should include both
a- semantic and e- semantic interpretations. Grush exemplifies his notion of com-
putation through case studies. Let us look at one of them— the famous Zipser
and Andersen (1988) model.

Changing reference or coordinate frames is central to many visual- motor
tasks. Andersen, Essick, and Siegel (1985) argue that the posterior parietal cortex
(PPC) of macaque monkeys is home to the information- processing task of
relocating a target in body- centered or head- centered coordinates. Experimental
results indicate that the PPC includes three types of cells: (1) cells that respond to
eye position only (15% of the sampled cells); (2) cells that are not sensitive to eye
orientation but have an activity field in retinotopic coordinates (21%); (3) cells
that combine information from retinotopic coordinates with information about
eye orientation (57%).

Zipser and Andersen (1988) hypothesize that the PPC combines retinotopic
and extra- retinal (eye- orientation) signals in order to compute target location in
head- centered coordinates, and have trained a neural network to simulate this
computation. They use a three- layer network in which the two sets of input units
model the behavior of the first two groups of cells, (1) and (2). The input layer
projects onto a layer of hidden units, which aims to model the activity of the
third group of cells, (3). The output units encode the target’s position in head-
centered coordinates; cells with this property were not found in the PPC. Zipser
and Andersen’s impressive result is that the activity of the hidden units, after the
training period, is very similar to the response properties of the third- group cells
that combine information about eye orientation and the target’s retinotopic loca-
tion. It transpires that these units function as planar gain fields, in the sense that
the Gaussian retinal receptive field is modulated (linearly) by the orientation of
the eye. Given this result, Zipser and Andersen hypothesized that there are head-
centered target- location cells somewhere in the brain that are the correspondents
of the network model’s output units.

Grush refers to the computations by the third- group PPC cells as follows: “We
can suppose that the function computed by an idealized posterior parietal
neuron is something like f = (e – eP)σ(r – ri)” (p. 161). This is the a- semantic in-
terpretation. It refers to the mathematical relation between the two groups of
“input” PPC cells. The activity of the “output” PPC cells (group (3)) is a mul-
tiplication of the activity of the groups (1) and (2). Grush also notes, however,
that this mathematical equation applies to complex relations in the environment
between the things being represented; this is his e- semantic interpretation. The
“stimulus distance from preferred direction relative to the head” (p. 161), which
is represented by the output, is a multiplication of the properties encoded by the
inputs— namely, the difference between actual and preferred eye orientation

Computing as Modeling 247

(e – eP) and (the Gaussian of) the distance of the retinal location of stimulation
from the receptive field (σ(r – ri)). This shared structure shows that there is a
morphism relation between the nervous system and the world. In fact, what we
have here is a case of input- output modeling: the input- output function (of mul-
tiplication) preserves a pattern of relation— between eye orientation and stim-
ulus retinotopic location— that can also be described in terms of multiplication.
Thus, Grush’s characterization of computing has affinities to modeling charac-
terization presented here.19

9.3.2 Marr on Computational- Level Theories

In Vision, Marr (1982) famously proposes a three- level approach to the study
of visual processes and to the study of cognition more generally. The “most ab-
stract” is the computational level (CL), which “is the level of what the device
does and why” (p. 22). The role of the what aspect is to specify what is computed;
the job of the why aspect is to demonstrate the appropriateness and adequacy
of what is being computed to the information- processing task (pp. 24– 25). The
algorithmic level characterizes the system of representations being used— for ex-
ample, decimal versus binary— and the algorithm for the transformation from
input to output. The implementation level specifies how the representations and
algorithm are physically realized. Marr’s levels are not levels of organization,
where the entities at higher levels are composed of lower- level entities; rather, he
refers to his levels as levels of analysis, whereby each such level provides a further
understanding of the visual phenomenon.

Our focus, naturally, is the top, computational level. Marr, however, never
provides a systematic and detailed account of his notion of CL. He moves on to
advance a set of computational theories of specific visual tasks that have had a
tremendous impact on vision research. The explication of a computational- level
theory was left to philosophers, who in turn provided a number of very different
interpretations.20 A more recent interpretation emphasizes the role of the envi-
ronment in Marr’s notion of computational analysis (Shagrir 2010; Bechtel and
Shagrir 2015; Shagrir and Bechtel 2017). In Shagrir and Bechtel’s interpretation,
the what element characterizes the computed (typically input- output) function
in precise mathematical terms; the why element demonstrates that this function
mirrors a relationship in the visual field, between the represented entities. I shall
return in Section 9.5.1 to discuss the explanatory aims of CL. At this point, I wish
to provide two examples of the modeling approach of CL.

 19 There are some differences as well: I do not present the first (“implementation”) relation as a se-
mantic one, and I focus only on the input- output function, not on the entire algorithm.
 20 See Shagrir and Bechtel (2017) for a detailed discussion of some of these interpretations.

248 The Nature of Physical Computation

When discussing the example of a cash register (1982: 22– 24), Marr says that
what is being computed by the device is addition. We arrive at this characteriza-
tion when noticing that the machine maps digits to digits, and that this mapping
satisfies the rules of commutativity, associativity, zero, and inverse. Marr then
turns to demonstrate why computing addition is appropriate for the information-
processing task by showing that the “external” relationship between the final bill
and the purchased items in this particular case is also that of addition. In this ex-
ample, the rules (“constraints”) of purchasing at this store define addition. These
are the rules of zero (“if you buy nothing, it should cost you nothing; and buying
nothing and something should cost you the same as buying just the something”
[p. 22]); commutativity (“the order in which goods are presented to the cashier
should not affect the total” [p. 23]); associativity (“arranging the goods into two
piles and paying for each pile separately should not affect the total amount you
pay” [p. 23]), and inverses (“if you buy an item and then return it for a refund,
your total expenditure should be zero” [p. 23]). These rules, according to Marr,
define addition uniquely. Thus, what we have here is a case of input- output mod-
eling (although Marr himself never refers to it as such). The inner function of
the cash register (addition) mirrors the outer relation between the represented
items (namely, the prices of the purchased items). Importantly, the system of
representations being used— binary, decimal, Roman, or even continuous—
makes no difference to the modeling relation. According to Marr, characterizing
the system of representations and the algorithm that transforms them is part of
the algorithmic level.

The other example is edge detection. Marr’s computational theory of edge
detection states that V1 cells detect edges by computing the zero- crossings of
second- derivative Laplacian operators. The latter operators are applied by the
ganglions and LGNs to the retinal image and are described quantitatively by the
formula ∇2G * I— where I is the image, * is a convolution operator, and ∇2G is a
filtering operator: G is a Gaussian that blurs the image, and ∇2 is the Laplacian
(∂2/ ∂x2 +∂2/ ∂y2). The zero- crossings signify extreme points (“sharp changes”)
in the arrays of intensity pixels (retinal images). This is the what element of
the theory. The why element shows that detection of the zero- crossings of the
second- derivative operators mirrors sharp changes in light reflection in the
visual field (which often occur along physical edges, such as object boundaries).
The latter changes can be described in terms of extreme points of first derivatives
or zero- crossings of second derivatives of the reflection function. Thus, what we
have here is input- output modeling. The early visual processes and certain rela-
tions in the represented visual field— such as sharp changes in light intensities
that typically occur along object boundaries— share the mathematical relation of
differentiation. This is another case of input- output modeling.

Computing as Modeling 249

9.3.3 Summary

We have seen that several scholars and scientists have associated computing with
modeling. Some have even characterized computing in terms of modeling (even
if only implicitly). In some of the examples, such as the oculomotor integrator,
the modeling is more apparent, whereas in other cases, such as the PPC network
(as described by Zipser and Andersen), it takes some effort to make the modeling
relationship explicit.

9.4 The Methodological Role of Modeling

In this section, I discuss the methodological role that input- output modeling
plays in computational theories: it helps to reveal the mathematical input- output
function that the system computes. I do not claim that modeling always plays
this role. Indeed, it usually will not, if we design the system to compute this
function— in which case, we already know what the system computes (which is
not to say that we will not try to verify that the system functions properly). This
methodology is often invoked in the context of natural systems, when we do not
know in advance what is being computed. I shall provide examples from cogni-
tive neuroscience, which show just how entrenched the modeling assumption is,
at least in this field of study.

In many cases, environmental cues are used to infer the computed function.
Input- output modeling plays a key role in this inference. Consider our oculo-
motor system. Scientists discovered that the inputs to the system are velocity sig-
nals. They also hypothesized that these signals are translated to position signals,
which are crucial to move the eyes to new positions. Assuming that the velocity-
position relation is that of integration, they inferred that there is a subsystem that
performs this transformation by computing integration. They therefore called
this system the neural integrator.

We can put the inference, somewhat crudely, as follows:

 • Electrophysiological experiments show that certain cells (input cells) en-
code eye velocity. Other cells (output cells) encode eye position.

 • The eye’s velocity- position relation in the target domain is (in the abstract)
that of mathematical integration.

 Therefore: The input- output function computed by the neural system is
integration.

250 The Nature of Physical Computation

But it may be noted that the conclusion does not follow from the premises: why
infer that the inner function is that of integration from the premise that the outer
function is that of integration? The inference becomes valid if we also assume
that the (inner) input- output function mirrors the velocity- position relation.
When making the additional (third) premise, the argument looks as follows:

 • Electrophysiological experiments show that input cells encode eye velocity
and output cells encode eye position.

 • The eye’s velocity- position relation in the target domain is that of mathe-
matical integration.

 • The computed input- output function mirrors the eye’s velocity- position
relation.

 Therefore: The (mathematical) input- output function computed by the neural
system is integration.

The advantage of this methodology is that we can learn about the inner func-
tion of the nervous system— which is often hidden and hard to decipher— from
the outer function, which is often readily apparent. This is not the end of the
scientific investigation, of course. Further studies are conducted to confirm the
conclusion and to locate the integrator in the nervous system. More studies aim
to characterize how the system performs integration— namely, the mechanisms
that conduct the input- output transformation. The important message, however,
is that the input- output modeling assumption is entrenched in cognitive neu-
roscience. Theoreticians such as Robinson, Seung, and many others are deeply
convinced that there must be an integrator within the oculomotor system that
mirrors the velocity- position relation (see the quotation from Robinson ear-
lier). They take it to be obvious that if the outer relation between the represented
entities is that of integration, the nervous system must also mirror this relation
somewhere by computing integration.

Another striking example is path integration. Homing is the ability of an-
imals and humans to return to their departure point. Animals use external
cues— environmental stimuli and events— to navigate back home.21 But exper-
imental results show that homing occurs even when all the external cues are
removed. Cues about initial reference and self- motion suffice to calculate the
animal’s relative spatial location— a phenomenon known as path integration.22
The input of the calculation is angular velocity signals, which are provided by the

 21 This ability is possessed by various animals. One well- known example is the desert ant
(Cataglyphis fortis), which returns home after venturing out hundreds of yards.
 22 See Mittelstaedt and Mittelstaedt (1982); Collett and Collett (2000); Etienne and Jeffery (2004);
Conklin and Eliasmith (2005); McNaughton et al. (2006); and Gallistel and King (2009).

Computing as Modeling 251

vestibular system or other systems. The computation of path integration mirrors
the velocity- position relation of the animal’s locomotion— and thereby enables
the system to keep track of the animal’s relative position.

In this case, there might not be a specific neural subsystem that computes in-
tegration. Nevertheless, scientists take it for granted that integration must occur
within the navigational system, even if it is spread over different parts of the
system.23 This assumption is very explicit, for example, in the following para-
graph from a review paper by Etienne and Jeffery (2004):

How is information about angular motion processed? Recently it has been
found that cells in the dorsal tegmentum code for angular velocity (Sharp et al.,
2001; Bassett and Taube, 2001), information they receive from the semicircular
canals via the vestibular nuclei. The picture that seems to be emerging is that
information about angular acceleration in the horizontal plane is collected and
converted to an angular velocity signal by the semicircular canals, then passed
on to the dorsal tegmentum and integrated again on its way through the mam-
millary nuclei and thalamus (Bassett and Taube, 2001). This provides an angular
distance measure that updates the head direction signal appropriately. (p. 183)

Etienne and Jeffery are describing here a process with two integration steps.
The inputs to the vestibular system are signals of angular acceleration; these are
converted to angular velocity signals (first integral). The latter signals are then
converted again into the angular distance measure (second integral). What the
authors describe here is a double- mirroring process. In the first step, the nervous
system converts input signals that encode acceleration to output signals that
encode velocity by computing mathematical integration. This input- output
function mirrors the acceleration- velocity relation, which is a relation of math-
ematical integration. In the second step, the nervous system converts input sig-
nals that encode velocity (these are the outputs of the first step in the process)
to output signals that encode position by computing mathematical integration.
This input- output function mirrors the velocity- position relation, which is of
mathematical integration as well. Taken together, the overall input- output func-
tion of the double integral mirrors the acceleration- position relation. This func-
tion consists of a sequence of two input- output integration functions: the first
mirrors the acceleration- velocity relation, while the second mirrors the velocity-
position relation.

What is more interesting for our purposes is that Etienne and Jeffery take it
as self- evident that the computation of input signals that encode acceleration to

 23 More recently, it has been suggested that path integration in rats is computed by the grid cells
situated in the dorsolateral medial entorhinal cortex (dMEC) (Hafting et al. 2005).

252 The Nature of Physical Computation

output signals that encode velocity is a computation of integration. They assume,
in other words, that the relevant computation mirrors the acceleration- velocity
relation and therefore must be integration. They make the same assumption
about the second integral: they take it as obvious that the computation of input
signals that encode velocity to output signals that encode position is one of inte-
gration. They infer that the nervous system must compute a double integral. This
inference— from outer relation to inner function— is valid if we also assume that
the nervous system is an input- output model of the animal’s movement. The as-
sumption, more precisely, is that the overall input- output function of the double
integral mirrors the acceleration- position relation, and that this function consists
of a sequence of two input- output integration functions— the first mirroring the
acceleration- velocity relation and the second mirroring the velocity- position
relation. Without this assumption, Etienne and Jeffery cannot reach their con-
clusion that the system computes a double integral. Again, this assumption of
input- output modeling is not made explicitly. It is an implicit assumption about
our brain- world relations that underpins their scientific investigation.

A third example is Marr’s computational theories. Marr and his students ap-
peal to physical external factors (“physical constraints”) to discover the mathe-
matical function being computed. These physical constraints are physical facts
and features in the physical environment of the perceiving individual (1982: 22–
23) that limit the range of functions that the system could compute to perform
a given visual task successfully. Shimon Ullman puts this point succinctly in
his manuscript on visual motion: “In formulating the computational theory, a
major portion concerns the discovery of the implicit assumptions utilized by the
visual system. Briefly, these are valid assumptions about the environment that
are incorporated into the computation” (1979: 3– 4).24 Returning to the example
of edge detection, the discovery that early visual processes compute differentia-
tion (whether of the first or second degree) is made through the observation that
in our perceived environment, sharp changes in light reflectance occur along
physical edges, such as the boundaries of objects. This contextual feature puts
substantial constraints on the mathematical function being computed— namely,
that it must have to do with some form of differentiation. The implicit assump-
tion, again, is that by computing differentiation, the visual system mirrors the
relevant relationship in the visual field.25

 24 See also Hildreth and Ullman, who write that a computational theory includes “an analysis of
how properties of the physical world constrain how problems in vision are solved” (1989: 582).
 25 The methodological role of the physical constraints is related to a top- down methodology,
which is often associated with Marr’s framework. The idea behind this methodology is that scientific
investigation proceeds from the top down— from the computational level down to the algorithmic
and implementation ones. A key plank of this approach is that it would be practically impossible
to extract the computed mathematical function by abstracting from neural mechanisms. Rather,
the way to go is to extract what the system computes from relevant cues in the physical world that

Computing as Modeling 253

We see, therefore, that the methodology of discovering the input- output func-
tion from outer relations in the target system is fairly common in computational
cognitive neuroscience. But it is certainly not the only way to discover the com-
puted function. When scientists do not know or are unsure about the outer rela-
tion, they cannot infer about the inner function, and therefore they use different
methodologies to discover it. Thus, in Zipser and Andersen (1988), we do not
see a progression from the outer function to the inner function; rather, the fact
that the input- output function in the nervous system is that of multiplication is
discovered through the training of the (artificial) neural network that simulates
the (real) neural computation. That the inner relation models the outer relation
is featured only later, in the analysis of the neural network. The point, however,
is that the frequent use of this methodology (as in the first three cases) indicates
that these scientists assume that computing goes hand in hand with input- output
modeling.

9.5 Computational Explanations

Many scholars have noticed that a main function of models is surrogative rea-
soning. This means that we use models to reason about the target domain; our
inferences about the target are made by looking at the model, not at the target.
Take the family tree (Figure 9.1): we can infer, for example, whether or not John
is the grandparent of Mo by examining the model alone. This is possible precisely
because the relations in the model preserve, or mirror, relations in the target do-
main.26 The flipside of this is that modeling helps to explain how a computing
system attains a certain information- processing task— in other words, how it
moves from certain input representations to the “right” output representations.
Take our neural integrator: one might ask why the inner algorithmic and
neural mechanisms of the integrator transform representations of eye velocity
into representations of eye positions. The answer, I maintain, is that the inte-
grator performs an inference that is similar to surrogative reasoning: the inner
mechanisms support an input- output function that models the velocity- position
relation. Because of this modeling relation, the inner mechanisms, when starting
with representations of eye velocity, must end up with representations of eye
position.

constrain the computed function. The modeling assumption therefore plays a central role in this top-
down approach.

 26 See Swoyer (1991) for a general discussion about the relationship between modeling and
surrogative reasoning. See Grush (2004) for a discussion about modeling and surrogative reasoning
in the brain.

254 The Nature of Physical Computation

Note that inner mechanisms alone do not provide such an explanation.
Inner mechanisms can certainly tell us how the function is being computed.
Specifying the algorithm tells us how the input values are mapped to output
values, and specifying the underlying neural structures tells us how the neural
mechanism enables this computation. But our question is not about the inner
mechanisms that give rise to the input- output function, but rather about the
system- world relations involved. The question is about the relations between
the inner input- output function and the information- processing task that is de-
fined, at least partly, by the target system— such as eyes. The question is why the
network computes integration, and not (say) factorization or exponentiation, in
order to move the eye to the new (desired) position. Saying that the computed
function leads to representations of positions only reiterates the why question.
After all, computing integration in a very different environment would not lead
to representations of positions. If you remove the neural integrator— with the
same algorithmic and neural mechanisms— to a very different environment,
one with other relations between velocity and position, then performing the
same input- output function (integration) might no longer provide codes of eye
position.

Input- output modeling answers the question of why these inner
mechanisms are appropriate for the information- processing task. The inner
mechanisms support an input- output function that preserves the velocity-
position relation— namely, the (integration) relation between eye movement
and eye position in the target domain. When you compute integration over
eye- velocity encoded inputs, you mirror the integration relation between ve-
locity and position; hence, you generate representations of a new eye position
as output. Mechanisms that support factorization, exponentiation, or other
functions would not result in moving the eyes to the right place— precisely be-
cause they do not preserve relations in the target domain that are relevant to
eye movements.

Woodward (2003) famously proposes that causal information is explanatory
by virtue of allowing answers to what- if- things- had- been- different questions.
Others have recently suggested that such what- if- things- had- been- different
questions are also valuable in non- causal contexts (Chirimuuta 2014; Rusanen
and Lappi 2016; Elber- Dorozko 2018). Input- output modeling answers relevant
what- if- things- had- been- different questions. We can see, for example, that if we
intervene in input- output modeling, then the system will no longer produce
codes of eye position. We can intervene in input- output modeling either by
changing the inner input- output function, or by changing the velocity- position
relation. In neither case does the system produce codes of eye position any
longer:

Computing as Modeling 255

 • If the system had not computed integration, but rather exponentiation, the
system would not have produced codes of eye position.

 • If the world had changed so that the eye’s velocity- position relation were not
integration, but exponentiation, the system would not have produced codes
of eye position when computing integration.27

I am certainly not the first one to assign this sort of explanatory role to mod-
eling in computing systems. As we have seen, Cummins, Fodor, Churchland,
Ramsey, and others have done just that. My further claim is that input- output
modeling is the distinctive feature of computational explanations. I do not deny
that some specification of the mediating mechanisms is part of computational
explanations. Whether this specification takes the form of functional, mech-
anistic, dynamical, or other analyses is a matter of debate. My view is that a
computational explanation is hospitable to any of these analyses. But I also main-
tain that none of these analyses is distinctive to computational explanations.
In previous chapters, I argued that we can find each of these analyses in non-
computational explanations as well. What makes computational explanations
distinctive is that the specification of mechanism is augmented with input-
output modeling— which explains why these mechanisms are appropriate to the
explanandum information- processing task.

Consider again the oculomotor integrator. A computational theory aims to
explain how the system produces position signals from velocity signals (the ex-
planandum). A computational explanation might look like this:

 • The system computes the mathematical input- output function of
integration.

 • The system computes integration by implementing a certain formalism/ al-
gorithm (e.g., Seung’s network).

 • Computing integration mirrors the velocity- position relation.

My account does not differ from other accounts with respect to the first two
components. A computational explanation of information- processing task
specifies, in formal (e.g., mathematical) terms, the computed function and the
mediating mechanism. My point is that this specification is also found in other
formal, but non- computational, explanations of physical systems. The distinc-
tive component of computational explanations is the last one. Its role is to ex-
plain why computing integration is relevant to the information- processing task.

 27 One could argue that the claim that the velocity- position relation is that of integration is physi-
cally, or even mathematically, necessary. My point here is conceptual, but at any rate, there are other
examples from visual theories in which the mirrored relations are contingent (see Shagrir 2018).

256 The Nature of Physical Computation

While I will not provide a full account of computational explanations here,
I will attempt to state the reasoning behind the explanatory role of the mirroring
component more precisely. This component aims at the following phenom-
enon: The computation starts with an input of neural values Ė that encode some
distal features Ė (that is, eye velocities). It performs a certain input- output map-
ping, g, whose output is other neural values E that encode another distal feature
E (i.e., eye positions). The explanandum question is why this mapping, which
starts from neural values that encode eye velocity, terminates in neural values
that encode eye position. To put it succinctly:

 (1) I(Ė) = Ė (the neural input activity Ė encodes Ė).
 (2) g(Ė) = E (g maps input neural values Ė to output neural values E).

Conclusion: I(E) = E.

When put this way, the question is about the inference from (1) and (2) to the
conclusion. The answer is in no way trivial: if we change the environment, then
the same mapping g (and the very same mediating mechanisms), which starts
from the same velocity- coded neural input values Ė, will still terminate with the
same neural output values E— but E might no longer encode eye position, or an-
ything else. Why, then, does mapping g, which starts from neural input values E
(which encode eye velocity), end up with neural codes of eye position?

The reasoning requires input- output modeling. The third premise states
that g preserves (mirrors) some relation R in the target system (e.g., that both g
and R are, in the abstract, integration relations), and that this mirroring is also
a representing relation. The fourth premise states that the mirrored relation, R,
relates velocities and positions:

 (3) R(I(Ė),I(g(Ė)) (g models some R).28

 (4) R(Ė,E) (R is the velocity- position relation).

From (1)– (4), we can reach the conclusion.
From (1) and (3) follows (5):

 (5) R(Ė,I(g(Ė)).

From (5) and (2) follows (6):

 (6) R(Ė,I(E)).

 28 (P3) is implied by the conjunction of the mirroring condition, g(x) = y iff <x,y> ∈ R; and the
representing condition, that I(x) = x and I(y) = y, and that the inputs, x, are Ė values (which is implicit
in (P2)).

Computing as Modeling 257

From Premise 6 and Premise 4, it follows that:

Conclusion: I(E) = E.

In the rest of this section, I compare and contrast this account of computa-
tional explanations with related accounts of computational explanations.

9.5.1 Marr’s Computational- Level Explanations

My account is inspired by Marr’s notion of computational- level explanation— or
at least by how we interpret it (Shagrir 2010; Bechtel and Shagrir 2015; Shagrir
and Bechtel 2017). Notably, Marr (1982: 22) refers to CL as a “level of explana-
tion.” He says: “The key observation is that neurophysiology and psychophysics
have as their business to describe the behavior of cells or of subjects but not to
explain such behavior” (1982: 15). He continues:

There must exist an additional level of understanding at which the character of
the information- processing tasks carried out during perception are analyzed
and understood in a way that is independent of the particular mechanisms and
structures that implement them in our heads. This was what was missing— the
analysis of the problem as an information processing task. (p. 19)

And he concludes: “It is the top level, the level of computational theory, which
is critically important from an information- processing point of view” (p. 27).

As said previously, the CL consists of two aspects, the what and the why. The
what aspect specifies the mathematical function that is being computed. In the
case of the cash register, it is addition. But Marr goes on to state that this char-
acterization is only one half of the computational explanation: “The other half
of this level of explanation has to do with the question of why the cash register
performs addition and not, for instance, multiplication when combining the
prices of the purchased items to arrive at a final bill” (p. 22). After all, we can cer-
tainly think of stores where the cashier executes multiplication and not addition.
Establishing that the relation between the purchased items and the final bill is
that of addition, Marr draws the conclusion that the input- output addition map-
ping in the cash register is appropriate for the task in this particular store. This
explanation appeals to the fact that this “internal” mapping (of addition), defined
over digits, corresponds to an “external” relation between the represented items
(in the abstract), that is, between the prices of purchased items and the final bill.

Or take edge detection. The what aspect specifies that early visual processes
compute the zero- crossings of ∇2G * I. This computation leads to the detection

258 The Nature of Physical Computation

of “visual edges” that are extracted from sharp changes in the retinal images.
But this is only part of the explanation. We still want to know why this compu-
tation and not another— factorization or exponentiation, for example— leads
to the representations of “physical edges,” for example, object boundaries.
This concern is emphasized by Marr and Hildreth, who say that “the con-
cept of an ‘edge’ has a partly visual and partly physical meaning. One of our
main purposes . . . is to make explicit this dual dependence” (1980: 211). The
role of the why aspect is to address this question. It shows that the detection
of visual edges mirrors a pertinent relation in the visual field. This mirroring
(morphism) is exemplified by the (alleged) fact that the visual system and the
visual field have a shared mathematical description (or structure). On the one
hand, the visual system computes the zero- crossings of second- derivative op-
erations (over the retinal pixels) to detect edges. On the other hand, the reflec-
tion function in the visual field changes sharply along physical edges such as
object boundaries. These changes can be described in terms of extreme points
of first- derivatives or zero- crossings of second derivatives. Thus, even if he
does not state this explicitly, Marr’s CL explanation is rooted in input- output
modeling. The what aspect specifies the mathematical input- output function.
The why aspect shows that this mathematical relation also holds between the
represented inputs and outputs.

One can argue that specifying mechanisms, especially at the algorithmic level,
is an integral part of computational explanations. I agree. Marr was a bit hasty
in contrasting computational and algorithmic explanations (and, some would
argue, also with implementational ones). However, it should also be noted that
Marr does not offer CL as an alternative to algorithmic and implementational
explanations, but rather as a complementary explanation. More importantly, by
calling the top level computational, Marr highlights what is unique and distinc-
tive in computational explanations. Mechanistic descriptions, both algorithmic
and/ or implementational, can also be found in non- computational explanations
of physical systems. The distinct character of computational explanations is in
modeling the environment, and this character is captured at the computational
level (CL).

9.5.2 Egan’s Function- Theoretic Explanations

Frances Egan (2017) argues that computational theories put forward function-
theoretic (FT) explanations. The aim of these theories is to explain a particular
information- processing capacity. They achieve this by providing a characteri-
zation of the mathematical function being computed. The computational core
(i.e., individuation conditions) of computational theories, according to Egan,

Computing as Modeling 259

is formal and non- semantic. Egan grounds her notion of FT explanation in
her interpretation of Marr’s notion of CL explanations. She associates Marr’s
“computational level” with “the specification of the function computed” (Egan
1991: 196– 197; see also 1995: 185)— namely, the input- output mathematical
function computed by the system. Thus, for example, she notes:

Marr’s (1982) theory of early vision explains edge detection by positing the
computation of the Laplacian of a Gaussian of the retinal array. The mechanism
takes as input intensity values at points in the image and calculates the rate of
intensity change over the image. (Egan 2017: 145)

From a computational point of view, this mathematical characterization is an
exhaustive description of the retina’s activity. Egan cites Marr, who says:

Take the retina. I have argued that from a computational point of view, it signals
∇2G * I (the X channels) and its time derivative ∂/ ∂t(∇2G * I) (the Y channels).
From a computational point of view, this is a precise specification of what the
retina does. (1982: 337)

Egan admits that a full- fledged cognitive explanation requires the attachment
of the FT characterization to the environment (such as a visual field) in which
the system operates. She also observes that “one way to connect the abstract FT
characterization to the target cognitive capacity is to attribute representational
contents that are appropriate to the relevant cognitive domain” (2017: 147). But
she argues that the latter attribution— of representational content— is not an in-
tegral part of the computational theory. In an earlier paper, she says:

Qua computational device, it does not matter that input values represent light
intensities and output values the rate of change of light intensity. The computa-
tional theory characterizes the visual filter as a member of a well understood
class of mathematical devices that have nothing essentially to do with the trans-
duction of light. (2010: 255)

In other words, we invoke representational content only after the
computational- level theory has accomplished its task of specifying the math-
ematical function. The cognitive, intentional characterization is what Egan
terms a gloss on the mathematical characterization provided by the computa-
tional theory. This intentional characterization “forms a bridge between the ab-
stract, mathematical characterization that constitutes the explanatory core of
the theory and the intentionally characterized pre- theoretic explananda that
define the theory’s cognitive domain” (2010: 256– 257). But beyond this gloss,

260 The Nature of Physical Computation

the representational content is immaterial to computational explanation and
individuation.29

I agree with Egan on many points. I agree that the aim of computational the-
ories is to explain information- processing capacities. I also agree that the ex-
planatory core of computational theories is formal, and that an important part
of this theory is the mathematical characterization of the computed (input-
output) function. This aspect, in my view, coincides with the what of Marr’s CL
explanations. Egan is also correct in asserting that “the intentional characteri-
zation”— that retinal photoreceptors encode light intensities and that sets of V1
cells (“visual edges”) encode physical edges— is one of the pre- theoretic explan-
anda. It is often determined long before we invoke computational theory— for
example, by electrophysiological experiments (e.g., Hubel and Wiesel 1962).
I also agree with Egan (2017) that the formal theory need not map to “mech-
anism” in the sense required by mechanistic explanations. Some (“algorithmic”)
characterization of the mediating mechanism might be an integral part of com-
putational explanation. But this characterization can take different forms— such
as functional, dynamic, and sometimes mechanistic.

Where I disagree with Egan is on one crucial point: I think that the conjunc-
tion of the formal theory with the intentional characterization (and even with
some characterization of the mediating mechanism) does not yet fully explain
the information- processing task. We see that computing differentiation (zero-
crossings of second- derivative Laplacians) leads to the activity of cells that encode
physical edges (such as object boundaries). The fact that V1 cells detect edges is
indicated by electrophysiological experiments. But what we do not see is why
that is the case. We do not understand why computing differentiation does not
lead to representation of, say, colors. And we do not understand why the system
computes differentiation— and not, say, factorization or exponentiation— in
order to generate representations of edges. Marr himself highlights these points.
When Marr says, “From a computational point of view, this is a precise specifi-
cation of what the retina does,” he refers to what the retina does— not the why.
After characterizing what early visual processes do, Marr says that “the term edge
has a partly physical meaning— it makes us think of a real physical boundary, for
example” (p. 68). He adds:

All we have discussed so far are the zero values of a set of roughly band- pass
second- derivative filters. We have no right to call these edges, or, if we do have a
right, then we must say so and why. (p. 68)

 29 Contrary to Egan, many have argued that Marr’s computational theories involve content— such
as Burge (1986); Kitcher (1988); Segal (1989, 1991); Sterelny (1990); Davies (1991); Morton (1993);
Shapiro (1993, 1997); Peacocke (1994); Silverberg (2006); and Sprevak (2010). They disagree with
one another as to whether this content is “wide” or “narrow.”

Computing as Modeling 261

In short, then, we still must address the interrelations between the formal charac-
terization of the (computed) function and the “intentional characterization” of the
inputs and outputs.

How might we answer these queries? As suggested previously, the CL theories
answer these why questions by pointing out that the input- output function also
mirrors the relation in the target, between the entities represented by the inputs and
outputs. When we see that the mathematical characterization of the external rela-
tion is also in terms of differentiation, we understand why differentiation— and not
factorization (etc.)— leads to the detection of edges rather than colors (etc.). This
additional part— the formal characterization of the morphism between the visual
system and the visual field— is a crucial aspect of computational explanations. This
mirroring relation constitutes the why aspect in Marr’s CL explanations; more im-
portantly, it is the distinctive aspect of computational theories that distinguishes
them from other, non- computational mathematical characterizations of physical
systems.

9.5.3 Chirimuuta’s Optimality Explanations

In recent papers, Mazvita Chirimuuta (2014, 2018) has introduced the notion of
I- minimal models in the context of computational explanations. These computa-
tional models are minimal in the sense that “they typically abstract away from many
biophysical details of the neural system” (2014: 128). My focus here is on the I- aspect
of I- minimal, which alludes to interpretive models (Dayan and Abbott 2001). These
models are used alongside phenomenal (descriptive) and mechanistic ones and aim
to explain why nervous systems operate as they do (see Section 6.3.4).

Although both Chirimuuta (as per Dayan and Abbott) and Marr agree that
computational theories aim to answer questions such as why nervous systems
operate the way they do, their answers go in different directions. Marr— at least
in our interpretation— answers why questions in terms of input- output mod-
eling. Chirimuuta answers why questions in terms of efficient coding princi-
ples. Her main example of such an optimality explanation is the normalization
equation that models the cross- orientation suppression of simple cell response
in the primary visual cortex and in other systems.30 According to Chirimuuta,
the computational explanation of this suppression behavior is anchored in the
fact that this behavior is more efficient (optimal) in that it enables the network to
transmit more information (see Section 6.3.4).

 30 Chirimuuta says that “the use of the term ‘normalization’ in neuroscience retains much of its
original mathematical- engineering sense. It indicates a mathematical operation— a computation—
not a biological mechanism” (2014: 142).

262 The Nature of Physical Computation

How does Chirimuuta’s account, articulated in terms of efficient coding prin-
ciples, square with my account of computation, which is in terms of modeling?
My tentative answer is that the accounts are different because the why questions
are somewhat different. But the questions are not unrelated. I am more con-
cerned with questions such as: Why is a certain function f appropriate (or not)
for a certain task? Why is f appropriate and not g or h? By contrast, Chirimuuta
is concerned with a further question: Take all the functions f1, f2, . . . that are
appropriate for the task. Why choose fi rather than the other f’s?31 To see the dif-
ference, let us return to the theory of edge detection. One question we can ask,
as Marr does, is why this computation is appropriate for detecting edges. The
answer, I have suggested, is provided by the concept of modeling. In particular,
this input- output function preserves sharp changes in reflectance and illumina-
tion in the visual field that happen to occur along physical edges (such as ob-
ject boundaries) and that can be described in terms of differentiation. Other
functions that do not preserve the pertinent relationship— such as factorization
and exponentiation— are obviously not appropriate for edge detection.

However, there are other functions that might also be appropriate for the task.
As Marr noticed, the visual system might detect edges by computing the extreme
points of first- derivative operators, the second- order directional derivatives, or
other appropriate functions. Thus, there is a further question: Why compute
the zero- crossings of second- derivative Laplacian operators rather than other
derivative (directional) operators that would also be appropriate? I think that
Chirimuuta is concerned with this further question. Assuming that the task is
responding to oriented lines (“edges”), her question is: Why compute the nor-
malization equation (cross- orientation suppression) rather than, say, a simple
linear response to the receptive- field properties?

The answer to that question often has to do with the efficiency of computation.
Given that there is a limit to the amount of information processing possible in
the brain, the expected simple- linear- response function might not be consistent
with the brain’s actual limitations. In that case, we appeal to efficient- coding prin-
ciples and other canons of information theory. Indeed, Marr discusses this point
of efficiency in some detail in his theory of edge detection (1982: 56ff.), where he
writes that “the great advantage of using it [Laplacian operator] is economy of
computation” (p. 56). The computation of the directional derivative operators is
costly, whereas the use of Laplacian operators is efficient and satisfactory.32

My tentative proposal, then, is that computational theories might be con-
cerned with a family of why questions about the operations of the system. The

 31 A similar question arises in relation to the various algorithms supporting the same func-
tion: why one algorithm is used rather than another.
 32 See van Rooij et al. (2019) for a more general discussion of intractability and cognition.

Computing as Modeling 263

more basic questions are about the appropriateness of these operations to the
task, and these are answered in terms of modeling. Other questions address the
advantage of certain appropriate (i.e., modeling) operations over other appro-
priate operations, and these questions are answered in terms of optimality. There
might be other kinds of questions as well, but they all depend, in my view, on the
basic idea that computing is modeling.

9.6 Summary

I started the chapter with a characterization of input- output modeling (Section
9.1). A process is said to input- output model a given target when its input- output
function and some relation in the target have a shared formal structure. This
characterization led to a modeling definition of physical computation (Section
9.2). According to the definition I provided, a system computes if it implements
a formalism whose input- output function is shared with a certain relation in the
target (represented) domain. The next step was to show that modeling is often
associated with computing (Section 9.3), that it plays a major methodological
role in discovering what function is being computed (Section 9.4), and that it
enhances a distinctive account of computational explanation (Section 9.5). This
may not be enough to show that this modeling notion is consistent with every
notion of computation that we have today, but it does demonstrate that the mod-
eling notion of computation is forceful and pervasive— particularly in computa-
tional approaches in cognitive neuroscience.

The Nature of Physical Computation. Oron Shagrir, Oxford University Press. © Oxford University Press 2022.
DOI: 10.1093/ oso/ 9780197552384.003.0011

Conclusion

According to the proposed account, a physical system computes just in case:

 • The system implements a formalism whose input- output function is f.
 • The system’s input- output function mirrors some relation in a target

domain.
 • The mirroring input- output function and the mirrored (target) relation

share the formal function (relation) f.
 • The system’s inputs and outputs represent the entities of the mirrored rela-

tion in the target domain.

How does this characterization square with the desiderata set out in Chapter 1?
The main desideratum of the account is to correctly classify physical systems into
computing and non- computing systems. In the category the- right- things- compute,
the account deems artifact systems such as smartphones, laptops, and robots—
as well as natural cognitive and nervous systems— to be computing systems.
In the category the- wrong- things- don’t- compute, the account deems stomachs,
hurricanes, rocks, and many other non- representational systems to be non-
computing systems. It also deems as non- computing representational systems
such as screening and stamping, whose implemented input- output function f
does not match the formal (shared) function underlying the relevant mirroring
relation (if there is one at all) between the system and the represented target. This
does not mean that these systems cannot possibly compute: if we were to assign
content to the states of the stomach, and the other conditions are met, then the
stomach could be regarded as computing. But as long as these systems do not sat-
isfy these requirements, they do not compute. This result is consistent with the
view of very limited pancomputationalism.

A key takeaway of the book is that the features that meet the classification
desiderata are not the same as those that meet the taxonomy desideratum (which
lists the features relevant to the classification of types of computation). Functional
or architectural profiles do not distinguish computing from non- computing sys-
tems (or so I argue, mainly in Chapter 4), but they do distinguish one type of
computation from another. Semantic properties, on the other hand, matter both
to the identification of computation and to the identification of computational

Conclusion 265

types. Semantic properties determine which of the implemented formalisms
constitute the system’s computational vehicle (or so I argue in Chapter 8).

The account meets a milder objectivity desideratum (PO1 & PO2). In fact,
all but one of the conditions of computation are entirely objective and non-
semantic. Both the implementation and mirroring conditions are defined in
terms of morphism, plus a few additional (e.g., causal and counterfactual)
constraints. Scientists discover which formalisms are being implemented; they
do not assign them. The semantic properties of some computations might not
be objective, however. It is reasonable to maintain that the contents of the states
of smartphones and laptops are mind- dependent, in the sense that they are
assigned by the designers or users. The semantic properties of other computing
systems might be entirely objective (mind- independent). If the contents of cog-
nitive and/ or brain states are objective, then all the computational properties of
these systems are objective as well. Thus, the account is consistent with the claims
that the computational properties of some computing systems are entirely objec-
tive (PO1) and that some computational properties of all computing systems are
entirely objective (PO2).

Finally, to the explanatory role of computation (the utility desideratum).
Arguably, the explananda of computational theories are semantic, so- called
information- processing tasks. One part of the explanation is the mathemat-
ical function that underpins the input- output semantic task (the what aspect in
Marr’s computational- level explanations). Many would argue that another part
of the explanation is the process that mediates the inputs and outputs, described
in abstract terms (which corresponds to Marr’s algorithmic level). These two
components, however, are not exclusive to computational explanations— we find
them in many mathematical explanations of physical systems. The distinctive
element of the computational explanation lies in demonstrating why the com-
puted mathematical function is appropriate to the explanandum information-
processing task (the why aspect in Marr’s computational- level explanations).
This, I have argued, is provided when we show that the mathematical input-
output function preserves (mirrors) the relation between the entities represented
by the inputs and outputs.

The proposed account meets Smith’s scope criteria, as it provides the
conditions for real- world examples of computing (the empirical criterion) and
it acknowledges related concepts such as implementation, algorithm, and the
semantic properties of computing systems (the conceptual criterion). However,
an important conclusion of the book is that an account of physical computa-
tion need not— and in fact should not— be anchored in computability theory,
automata theory, proof theory, and so on, all of which address certain kinds of
computation and do not aim at characterizing computation in the physical world.
Lastly, the proposed account aims to make sense of the claim that the mind/ brain

266 The Nature of Physical Computation

computes (the cognitive criterion), and highlights the methodological and ex-
planatory roles of computation in current cognitive neuroscience (especially in
Chapter 9). It does not aim, however, to reduce content to computation, which is
the agenda of some philosophical theories of mind. In fact, the main claim of the
book is that computation is defined by its semantic properties.

I will conclude by noting that I have left aside many important issues— such
as accounting for miscomputation; more detailed discussions of other forms
of (“natural” and “unconventional”) computation; issues of usability and other
epistemic constraints on computation; assessing the importance of compu-
tational complexity to an account of physical computation; and discussing the
ethical implications of recent AI techniques. These topics certainly warrant
careful consideration. In this book, however, my aim was more specific: to ad-
vance a semantic account that meets the basic desiderata of a theory of physical
computation.

Acknowledgments

I started to think about physical computation after reading Itamar Pitowsky’s
seminal article on the subject (1990). Itamar was my M.A. advisor at the Hebrew
University, and later on became a colleague and a close friend. Over the course
of our friendship, I was fortunate to have many significant discussions with
him, and we eventually published a joint paper on physical hypercomputation
(Shagrir and Pitowsky 2003). Itamar had a brilliant mind and an engaging per-
sonality. He passed away prematurely in 2010. His friends and colleagues miss
him greatly.

Jack Copeland and I have collaborated on many projects and papers in the
past fifteen years. Our joint work on Gandy machines, accelerating machines,
and computability theses has culminated in Chapter 3 of this book. But Jack’s
contribution goes far beyond this. During my visits to Christchurch and Jack’s
visits to Jerusalem, I had the opportunity to analyze, discuss, and argue with him
about almost every topic that appears in the book. Gualtiero Piccinini and I have
debated physical computation for almost twenty years now. Although we disa-
gree about some of the fundamentals, we have had many enjoyable conversations
over the years. Gualtiero’s comments and criticism of my work continuously
helped to shape and reshape my views. I am also grateful to Eli Dresner, Frances
Egan, Nir Fresco, Jens Harbecke, Carl Posy, Nick Shea, Wilfried Sieg, and Mark
Sprevak for intensive discussions on computation over the years.

My work has benefited from several projects and research groups. During my
doctoral studies at the University of California at San Diego, I aimed to demon-
strate that the notion of computation prevalent in computational approaches in
the brain and cognitive sciences is different from the way computation is under-
stood in central philosophical theories (computational theory of mind, compu-
tational functionalism, and so on). I was lucky to be part of a vibrant community
of philosophers and scientists who grappled extensively with issues of computa-
tion and the brain. I’m thankful to my teachers at UCSD: my supervisor Patricia
Churchland, Gila Sher, Steve Yalowitz, Paul Churchland, Philip Kitcher, Patricia
Kitcher, Sandy Mitchel, Adrian Cussins, Francis Crick, David Zipser, and others.
No less important was the interaction with my fellow graduate students, among
them Georg Schwarz, Valerie Hardcastle, Rick Grush, Jonathan Gunderson,
Bruce Glymour, Adina Roskies, Aare Laasko, Brian Keeley, Gillian Barker, Steve
Quartz, Kyle Stanford, and Joe Ramsey.

268 Acknowledgments

In the spring of 2011, I was a member of the Computation and the Brain group
at the Israel Institute for Advanced Studies (IIAS) at the Hebrew University of
Jerusalem, together with Eli Dresner, Arnon Levy, Hilla Jacobson, Bill Bechtel,
Adele Abrahamsen, Frances Egan, Bob Matthews, and Gualtiero Piccinini.
We had many lively discussions on the relationship between computational
explanations and models and other mechanistic explanations in the cognitive
and brain sciences. This has been a wonderfully fruitful experience that resulted
in two joint papers with Bill (Bechtel and Shagrir 2015; Shagrir and Bechtel
2017) and one with Gualtiero (Piccinini and Shagrir 2014). A follow- up en-
deavor was our German- Israeli research group on Causation and Computation
in Cognitive Neuroscience (2015– 2018). The group’s members were Jens
Harbecke, Vera Hoffmann- Kolss, Jan Philipp Köster, Carlos Zednik, and my
students Lotem Elber- Dorozko, Ori Hacohen, and Shahar Hechtlinger. My
work on joint papers with Jens (Harbecke and Shagrir 2019) and Lotem (Elber-
Dorozko and Shagrir 2019) played a role in my critique of the mechanistic ac-
count (Chapter 6).

In the fall of 2015, I was a member of the Computability: Historical, Logical,
and Philosophical Foundations group at IIAS, together with Jack Copeland, Eli
Dresner, Nir Fresco, Carl Posy, Diane Proudfoot, Stewart Shapiro, and Moshe
Vardi. We had extremely fruitful discussions on the relations between effective
computation, which was the focus of the work of the founders of computability,
and more recent computational paradigms; these discussions are reflected in
Copeland, Dresner, Proudfoot, and Shagrir (2017). We also intensively debated
the relations between the notions of effective computation and physical compu-
tation, the scope of triviality results, and the nature of the implementation rela-
tion. I wrote the first drafts of Chapters 5 and 8 during this time.

I was privileged to spend a sabbatical in 2004 as a fellow at the Center of
Philosophy of Science at the University of Pittsburgh; to visit the University of
Canterbury, New Zealand, three times, in 2008, 2012, and 2016 (in the latter two
years as an Erskine Fellow); and to spend the past few summers at Clare Hall
College, Cambridge, where I wrote large parts of the book.

Special thanks go to Eli Dresner, Frances Egan, Arnon Levy, and Gualtiero
Piccinini, who read and commented on the entire manuscript. I’m also grateful to
those who were generous enough to participate in the reading group on my book
in the summer of 2020: Dimitri Coelho Mollo, Joe Dewhurst, Gordana Dodig-
Crnkovic, Lotem Elber- Dorozko, Aya Evron, Nir Fresco, Ariel Furstenberg,
Ori Hacohen, Jens Harbecke, Meir Hemmo, Arnon Levy, Marcin Miłkowski,
Jonathan Najenson, Philippos Papayannopoulos, Carl Posy, Ofra Rechter, Lavi
Rosenthal, Paul Schweizer, Orly Shenker, Adam Singer, and Gal Vishne. The dis-
cussion and weekly comments mailed to me by the participants were crucial for
the final revisions.

Acknowledgments 269

In addition to those mentioned above, I benefited from intellectual inter-
action with many other scholars and scientists who contributed in one way
or another to this work: Scott Aaronson, Darren Abramson, Dorit Aharonov,
Ehud Ahissar, Merav Ahissar, Ken Aizawa, Colin Allen, Neal Anderson, Arnon
Avron, Yemima Ben Menahem, Michael Ben- Or, Udi Boker, Sacha Bourgeois-
Gironde, Selmer Bringsjord, Mark Burgin, Meir Buzaglo, Cris Calude, Doug
Campbell, Rosa Cao, David Chalmers, Carol Cleland, Matteo Colombo, Leo
Cory, Carl Craver, Ron Chrisley, Nahum Dershowitz, Yuval Dolev, Chris
Eliasmith, Jonathan Bowen, Martin Davis, Currie Figdor, Thomas Forster, Carl
Gillett, Yosef Grodzinsky, Yuri Gurevich, Amit Hagar, Amir Horowitz, Paul
Humphreys, Andreas Hüttemann, Michael John- Turp, David Kaplan, Colin
Klein, Beate Krickel, Saul Kripke, Otto Lappi, Yakir Levin, Yonatan Loewenstein,
Holger Lyre, Peter Machamer, Corey Maley, Ruth Manor, Jonathan Mills,
Vincent Müller, Tom Polger, Hilary Putnam, Paula Quinon, Michael Rabin,
Michael Rescorla, Michael Roubach, Anna- Mari Rusanen, Gil Sagi, Richard
Samuels, Andrea Scarantino, Matthias Scheutz, Susan Schneider, Larry Shapiro,
Hava Siegelmann, Aaron Sloman, Brian Smith, Haim Sompolinsky, Etye
Steinberg, Mark Steiner, Tali Tishby, Tony Travis, Ray Turner, Shimon Ullman,
Michael Weisberg, Jan Woleński, and Jonathan Yaari.

I could not have completed the manuscript without the constant encourage-
ment of the editors of the Oxford Studies in Philosophy of Science series. I’m
grateful to Paul Humphreys, Peter Ohlin, and Kyle Stanford for their patience
while I filled a number of time- consuming administrative positions during the
past decade.

Many thanks to Sara Tropper and Jonathan Orr- Stav, who edited the manu-
script; to Marc Sherman, who prepared the index; to Noa Weiss, who compiled
the bibliography; to Maya Lahat Kerman and Gili Meisler, who assisted with the
final touches; to Ori Kerman who generously offered his expertise, and advised
me with the cover design; and to Zehava Cohen, who created the original figures
and reproduced previously published figures.

This work was supported by research grants from the Israel Science
Foundation (830/18) and the German-Israeli Foundation for Scientific Research
and Development. This book was published with the support of the Israel Science
Foundation.

Parts of this work draw on previous publications. Chapter 2 draws on
(1) Shagrir, Oron. 2006. “Gödel on Turing on Computability.” In Church’s Thesis
After 70 Years, edited by Adam Olszewski, Jan Wolenski, and Robert Janusz,
pp. 393– 419. Heusenstamm: Ontos Verlag; and (2) Copeland, B. Jack, and
Oron Shagrir. 2013. “Turing Versus Gödel on Computability and the Mind.” In
Computability: Turing, Gödel, Church, and Beyond, edited by B. Jack Copeland,
Carl Posy, and Oron Shagrir, pp. 1– 33. Cambridge, MA: MIT Press.

270 Acknowledgments

Chapter 3 is based on my joint work with Jack Copeland on machine
computation: (1) Copeland, B. Jack, and Oron Shagrir. 2007. “Physical
Computation: How General Are Gandy’s Principles for Mechanisms?” Minds
and Machines 17: pp. 217– 231; (2) Copeland, B. Jack, and Oron Shagrir. 2011.
“Do Accelerating Turing Machines Compute the Uncomputable?” Minds and
Machines 21: pp. 221– 239; (3) Copeland, B. Jack, and Oron Shagrir. 2019. “The
Church- Turing Thesis: Logical Limit or Breachable Barrier?” Communications of
the ACM 62: pp. 66– 74.

Chapter 6 draws on (1) Shagrir, Oron. 2017. “Review of Physical
Computation: A Mechanistic Account by Gualtiero Piccinini.” Philosophy of
Science 84: pp. 604– 612; and (2) Elber- Dorozko, Lotem, and Oron Shagrir. 2019.
“Integrating Computation into the Mechanistic Hierarchy in the Cognitive and
Neural Sciences.” Synthese, May 13, 2019.

Chapters 7 and 8 draw on Shagrir, Oron. 2020. “In Defense of the Semantic
View of Computation.” Synthese 197: pp. 4083– 4108.

Chapter 9 draws on (1) Shagrir, Oron. 2012. “Structural Representations
and the Brain.” The British Journal for the Philosophy of Science 63: pp. 519– 545;
(2) Shagrir, Oron, and William Bechtel. 2017. “Marr’s Computational Level and
Delineating Phenomena.” In Explanation and Integration in Mind and Brain
Science, edited by D. M. Kaplan, pp. 190– 214. New York: Oxford University
Press; (3) Shagrir, Oron. 2018. “The Brain as an Input– Output Model of the
World.” Minds and Machines 28: pp. 53– 75.

I dedicate this book to my beloved family: my wife, Iris, and my sons, Tomer
and Eyal. I cannot thank them enough for their love, support, and understanding
throughout the years.

Bibliography

Aaronson, Scott. 2013. “Why Philosophers Should Care About Computational
Complexity.” In Computability: Turing, Gödel, Church, and Beyond, edited by B. J.
Copeland, C. Posy, and O. Shagrir, pp. 261– 327. Cambridge, MA: MIT Press.

Adams, Rod. 2011. An Early History of Recursive Functions and Computability from Gödel
to Turing. Boston: Docent Press.

Aharonov, Dorit, and Umesh V. Vazirani. 2013. “Is Quantum Mechanics Falsifiable?
A Computational Perspective on the Foundations of Quantum Mechanics.” In
Computability: Turing, Gödel, Church, and Beyond, edited by B. J. Copeland, C. Posy,
and O. Shagrir, pp. 329– 349. Cambridge, MA: MIT Press.

Aizawa, Kenneth, and Carl Gillett. 2009. “The (Multiple) Realization of Psychological and
Other Properties in the Sciences.” Mind & Language 24: pp. 181– 208.

Amit, Daniel J. 1989. Modeling Brain Function: The World of Attractor Neural Networks.
Cambridge: Cambridge University Press.

Amit, Daniel J., and Stefano Fusi. 1994. “Learning in Neural Networks with Material
Synapses.” Neural Computation 6: pp. 957– 982.

Amit, Daniel J., Hanoch Gutfreund, and Haim Sompolinsky. 1985. “Spin- Glass Models of
Neural Networks.” Physical Review A 32: pp. 1007– 1018.

Andersen, Holly. 2014a. “A Field Guide to Mechanisms: Part I.” Philosophy Compass
9: pp. 274– 283.

Andersen, Holly. 2014b. “A Field Guide to Mechanisms: Part II.” Philosophy Compass
9: pp. 284– 293.

Andersen, Richard A., Greg K. Essick, and Ralph M. Siegel. 1985. “Encoding of Spatial
Location by Posterior Parietal Neurons.” Science 230: pp. 456– 458.

Anderson, James A., Andras Pellionisz, and Edward Rosenfeld (eds.). 1990.
Neurocomputing 2: Directions for Research. Cambridge, MA: MIT Press.

Anderson, James A., and Edward Rosenfeld (eds.). 1988. Neurocomputing: Foundations of
Research. Cambridge, MA: MIT Press.

Andréka, Hajnal, Judit X. Madarász, István Németi, Péter Németi, and Gergely
Székely. 2018. “Relativistic Computation.” In Physical Perspectives on Computation,
Computational Perspectives on Physics, edited by M. E. Cuffaro and S. C. Fletcher,
pp. 195– 218. Cambridge: Cambridge University Press.

Andréka, Hajnal, István Németi, and Péter Németi. 2009. “General Relativistic
Hypercomputing and Foundation of Mathematics.” Natural Computing 8: pp. 499– 516.

Arora, Sanjeev, and Boaz Barak. 2009. Computational Complexity: A Modern Approach.
Cambridge: Cambridge University Press.

Astrachan, Owen L. 2000. A Computer Science Tapestry: Exploring Programming and
Computer Science with C++. New York: McGraw- Hill.

Avigad, Jeremy, and Vasco Brattka. 2014. “Computability and Analysis: The Legacy of
Alan Turing.” In Turing’s Legacy: Developments from Turing’s Ideas in Logic, edited by R.
Downey, pp. 1– 47. Cambridge: Cambridge University Press.

Barrett, David. 2014. “Functional Analysis and Mechanistic Explanation.” Synthese
191: pp. 2695– 2714.

272 Bibliography

Barrett, Jeffrey A., and Wayne Aitken. 2010. “A Note on the Physical Possibility of
Transfinite Computation.” The British Journal for the Philosophy of Science 61: pp.
867– 874.

Bartels, Andreas. 2006. “Defending the Structural Concept of Representation.” THEORIA.
Revista de Teoría, Historia y Fundamentos de la Ciencia 21: pp. 7– 19.

Bassett, Joshua P., and Jeffrey S. Taube. 2001. “Neural Correlates for Angular Head Velocity
in the Rat Dorsal Tegmental Nucleus.” Journal of Neuroscience 21: pp. 5740– 5751.

Bechtel, William, and Adele A. Abrahamsen. 2002. Connectionism and the Mind: Parallel
Processing, Dynamics, and Evolution in Networks. 2nd ed. Oxford: Blackwell.

Bechtel, William, and Robert C. Richardson. 1993. Discovering Complexity: Decomposition
and Localization as Strategies in Scientific Research. Princeton: Princeton University
Press.

Bechtel, William, and Oron Shagrir. 2015. “The Non- Redundant Contributions of Marr’s
Three Levels of Analysis for Explaining Information- Processing Mechanisms.” Topics
in Cognitive Science 7: pp. 312– 322.

Becker, Wolfgang, and Horst- Manfred Klein. 1973. “Accuracy of Saccadic Eye Movements
and Maintenance of Eccentric Eye Positions in the Dark.” Vision Research 13: pp.
1021– 1034.

Beggs, Edwin J., and John. V. Tucker. 2006. “Embedding Infinitely Parallel Computation
in Newtonian Kinematics.” Applied Mathematics and Computation 178: pp. 25– 43.

Bernstein, Ethan, and Umesh Vazirani. 1997. “Quantum Complexity Theory.” SIAM
Journal on Computing 26: pp. 1411– 1473.

Bishop, John Mark. 2009. “A Cognitive Computation Fallacy? Cognition, Computations
and Panpsychism.” Cognitive Computation 1: pp. 221– 233.

Blackmon, James. 2013. “Searle’s Wall.” Erkenntnis 78: pp. 109– 117.
Blake, Ralph M. 1926. “The Paradox of Temporal Process.” The Journal of Philosophy

23: pp. 645– 654.
Blass, Andreas, Nachum Dershowitz, and Yuri Gurevich. 2009. “When Are Two

Algorithms the Same?” Bulletin of Symbolic Logic 15: pp. 145– 168.
Blass, Andreas, and Yuri Gurevich. 2003. “Abstract State Machines Capture Parallel

Algorithms.” ACM Trans. on Computational Logic 4: pp. 578– 651.
Blass, Andreas, and Yuri Gurevich. 2006. “Ordinary Interactive Small- Step Algorithms I.”

ACM Trans. on Computational Logic 7: pp. 363– 419.
Blass, Andreas, and Yuri Gurevich. 2007a. “Ordinary Interactive Small- Step Algorithms

II.” ACM Trans. on Computational Logic 8: article 15.
Blass, Andreas, and Yuri Gurevich. 2007b. “Ordinary Interactive Small- Step Algorithms

III.” ACM Trans. Computational Logic 8: article 16.
Block, Ned. 1978. “Troubles with Functionalism.” In Perception and Cognition, edited by

W. Savage, pp. 9– 26. Minnesota: University of Minnesota Press.
Block, Ned. 1986. “Advertisement for a Semantics for Psychology.” Midwest Studies in

Philosophy 10: pp. 615– 678.
Block, Ned. 1990. “Can the Mind Change the World?” In Meaning and Method: Essays in

Honor of Hilary Putnam, edited by G. Boolos, pp. 137– 170. Cambridge: Cambridge
University Press.

Blum, Lenore, Felipe Cucker, Michael Shub, and Steve Smale. 1998. Complexity and Real
Computation. Berlin: Springer.

Boden, Margaret A. 2006. Mind as Machine: A History of Cognitive Science, vols. 1 and 2,
New York: Oxford University Press.

Bibliography 273

Boghossian, Paul A. 1989. “The Rule- Following Considerations.” Mind 98: pp. 507– 549.
Boker, Udi, and Nahum Dershowitz. 2009. “The Influence of Domain Interpretations on

Computational Models.” Journal of Applied Mathematics and Computation 215: pp.
1323– 1339.

Boker, Udi, and Nachum Dershowitz. Forthcoming. “What Is the Church-
Turing Thesis?” In Axiomatic Thinking I, edited by F. Ferreira, R. Kahle, and
G. Sommaruga. Cham: Springer.

Bontly, Thomas. 1998. “Individualism and the Nature of Syntactic States.” The British
Journal for the Philosophy of Science 49: pp. 557– 574.

Boolos, George S., and Richard S. Jeffrey. 1989. Computability and Logic. 3rd ed.
Cambridge: Cambridge University Press.

Boone, Worth, and Gualtiero Piccinini. 2016. “Mechanistic Abstraction.” Philosophy of
Science 83: pp. 686– 697.

Botvinick, Matthew M., Yael Niv, and Andrew G. Barto. 2009. “Hierarchically Organized
Behavior and Its Neural Foundations: A Reinforcement Learning Perspective.”
Cognition 113: pp. 262– 280.

Bournez, Olivier, Manuel L. Campagnolo, Daniel S. Graça, and Emmanuel Hainry.
2006. “The General Purpose Analog Computer and Computable Analysis Are Two
Equivalent Paradigms of Analog Computation.” In International Conference on Theory
and Applications of Models of Computation, edited by J. Y. Cai, S. B. Cooper, A. Li, pp.
631– 643. Berlin, Heidelberg: Springer.

Brabazon, Anthony, Mark O'Neill, and Seán McGarraghy. 2015. Natural Computing
Algorithms. Berlin: Springer.

Braverman, Mark, and Stephen Cook. 2006. “Computing over the Reals: Foundations for
Scientific Computing.” Notices of the AMS 53: pp. 318– 329.

Bringsjord, Selmer, Owen Kellett, Andrew Shilliday, Joshua Taylor, Bram van Heuveln,
Yingrui Yang, Jeffrey Baumes, and Kyle Ross. 2006. “A New Gödelian Argument for
Hypercomputing Minds Based on the Busy Beaver Problem.” Applied Mathematics and
Computation 176: pp. 516– 530.

Bringsjord, Selmer, and Michael John Zenzen. 2003. Superminds: People Harness
Hypercomputation, and More. Dordrecht: Kluwer.

Brown, Curtis. 2012. “Combinatorial- State Automata and Models of Computation.”
Journal of Cognitive Science 13: p. 51– 73.

Buckner, Cameron, and James Garson. 2019. “Connectionism.” The Stanford Encyclopedia
of Philosophy, edited by E. N. Zalta. https:// plato.stanford.edu/ archives/ fall2019/
entries/ connectionism/ .

Burge, Tyler. 1986. Individualism and Psychology. The Philosophical Review 95: pp. 3– 45.
Burge, Tyler. 2010. Origins of Objectivity. New York: Oxford University Press.
Button, Tim. 2009. “SAD Computers and Two Versions of the Church- Turing Thesis.” The

British Journal for the Philosophy of Science 60: pp. 765– 792.
Buzaglo, Meir. 2002. The Logic of Concept Expansion. Cambridge: Cambridge University

Press.
Calude, Cristian S., Michael J. Dinneen, Monica Dumitrescu, and Karl Svozil. 2010.

“Experimental Evidence of Quantum Randomness Incomputability.” Physical Review
A 82: pp. 022102- 1– 022102- 8.

Calude, Cristian S., and Boris Pavlov. 2002. “Coins, Quantum Measurements, and Turing’s
Barrier.” Quantum Information Processing 1: pp. 107– 127.

https://plato.stanford.edu/archives/fall2019/entries/connectionism/
https://plato.stanford.edu/archives/fall2019/entries/connectionism/

274 Bibliography

Calude, Cristian S., and Ludwig Staiger. 2010. “A Note on Accelerated Turing Machines.”
Mathematical Structures in Computer Science 20: pp. 1011– 1017.

Calude, Cristian S. and Karl Svozil. 2008. “Quantum Randomness and Value
Indefiniteness.” Advanced Science Letters 1: pp. 165– 168.

Campbell, Douglas Ian, and Yi Yang. 2019. “Does the Solar System Compute the Laws of
Motion?” Synthese, May 31, 2019.

Cannon, Stephen C., and David A. Robinson. 1985. “An Improved Neural- Network
Model for the Neural Integrator of the Oculomotor System: More Realistic Neuron
Behavior.” Biological Cybernetics 53: pp. 93– 108.

Cannon, Stephen C., and David A. Robinson. 1987. “Loss of the Neural Integrator of the
Oculomotor System from Brain Stem Lesions in Monkey.” Journal of Neurophysiology
57: pp. 1383– 1409.

Cao, Rosa. 2018. “Computational Explanations and Neural Coding.” In The Routledge
Handbook of the Computational Mind, edited by M. Sprevak and M. Colombo, pp. 283–
296. London: Routledge.

Carandini, Matteo, and David J. Heeger. 1994. “Summation and Division by Neurons in
Primate Visual Cortex.” Science 264: pp. 1333– 1336.

Carandini, Matteo, and David. J. Heeger. 2012. “Normalization as a Canonical Neural
Computation.” Nature Reviews Neuroscience 13: pp. 51– 62.

Care, Charles. 2010. Technology for Modelling: Electrical Analogies, Engineering Practice,
and the Development of Analogue Computing. Berlin: Springer.

Chaitin, Gregory J. 1977. “Algorithmic Information Theory.” IBM Journal of Research and
Development 21: pp. 350– 359.

Chalmers, David J. 1994. “On Implementing a Computation.” Minds and Machines 4: pp.
391– 402.

Chalmers, David J. 1996. “Does a Rock Implement Every Finite- State Automaton?”
Synthese 108: pp. 309– 333.

Chalmers, David J. 2004. “Epistemic Two- Dimensional Semantics.” Philosophical Studies
118: pp. 153– 226.

Chalmers, David J. 2011. “A Computational Foundation for the Study of Cognition.”
Journal of Cognitive Science 12: pp. 323– 357.

Chalmers, David. 2012. “The Varieties of Computation: A Reply.” Journal of Cognitive
Science 13: pp. 211– 248.

Chater, Nick, Joshua B. Tenenbaum, and Alan Yuille. 2006. “Probabilistic Models of
Cognition: Conceptual Foundations.” Trends in Cognitive Sciences 10: pp. 287– 291.

Chemero, Anthony. 2009. Radical Embodied Cognitive Science. Cambridge, MA:
MIT Press.

Chirimuuta, Mazviita. 2014. “Minimal Models and Canonical Neural Computations:
The Distinctness of Computational Explanation in Neuroscience.” Synthese 191: pp.
127– 153.

Chirimuuta, Mazviita. 2018. “Explanation in Computational Neuroscience: Causal and
Non- Causal.” The British Journal for the Philosophy of Science 69: pp. 849– 880.

Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.
Chomsky, Noam. 1980. Rules and Representations. New York: Columbia University Press.
Chrisley, Ronald L. 1994. “Why Everything Doesn’t Realize Every Computation.” Minds

and Machines 4: pp. 403– 420.
Church, Alonzo. 1933. “A Set of Postulates for the Foundation of Logic II.” Annals of

Mathematics 34: pp. 839– 864.

Bibliography 275

Church, Alonzo. 1936a. “An Unsolvable Problem of Elementary Number Theory.”
American Journal of Mathematics 58: pp. 345– 363. Reprinted in The Undecidable: Basic
Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions,
edited by M. Davis (1965), pp. 88– 107. Page references are to Davis.

Church, Alonzo. 1936b. “A Note on the Entscheidungsproblem.” Journal of Symbolic Logic
1: pp. 40– 41.

Church, Alonzo. 1937a. “Review of Turing (1936).” Journal of Symbolic Logic 2: pp. 42– 43.
Church, Alonzo. 1937b. “Review of Post (1936).” Journal of Symbolic Logic 2: p. 43.
Church, Alonzo. 1941. The Calculi of Lambda- Conversion. Princeton: Princeton

University Press.
Churchland, Patricia S. 1986. Neurophilosophy: Toward a Unified Science of the Mind-

Brain. Cambridge, MA: MIT Press.
Churchland, Patricia S., Christof Koch, and Terrence J. Sejnowski. 1990. “What Is

Computational Neuroscience?” In Computational Neuroscience, edited by E. L.
Schwartz, pp. 46– 55. Cambridge, MA: MIT Press.

Churchland, Patricia S., and Terrence J. Sejnowski. 1992. The Computational Brain.
Cambridge, MA: MIT Press.

Churchland, Paul M. 1981. “Eliminative Materialism and Propositional Attitudes.” The
Journal of Philosophy 78: pp. 67– 90.

Churchland, Paul M. 1989. A Neurocomputational Perspective: The Nature of Mind and the
Structure of Science. Cambridge, MA: MIT Press.

Churchland, Paul M. 2007. Neurophilosophy at Work. Cambridge: Cambridge University
Press.

Clark, Andy. 2013. “Whatever Next? Predictive Brains, Situated Agents, and the Future of
Cognitive Science.” Behavioral and Brain Sciences 36: pp. 181– 253.

Clark, Andy. 2015. Surfing Uncertainty: Prediction, Action, and the Embodied Mind.
New York: Oxford University Press.

Cleland, Carol E. 1993. “Is the Church- Turing Thesis True?” Minds and Machines 3: pp.
283– 312.

Cleland, Carol E. 2002. “On Effective Procedures.” Minds and Machines 12: pp. 159– 179.
Cobham, Alan. 1964. “The Intrinsic Computational Difficulty of Functions.” In Logic,

Methodology and Philosophy of Science, Proceedings of the 1964 International Congress,
edited by Y. Bar- Hillel, pp. 24– 30. Amsterdam: North- Holland.

Coelho Mollo, Dimitri. 2018. “Functional Individuation, Mechanistic Implementation:
The Proper Way of Seeing the Mechanistic View of Concrete Computation.” Synthese
195: pp. 3477– 3497.

Coelho Mollo, Dimitri. 2019. “Are There Teleological Functions to Compute?” Philosophy
of Science 86: pp. 431– 452.

Coelho Mollo, Dimitri. Forthcoming. “Against Computational Perspectivalism.” The
British Journal for the Philosophy of Science.

Cohen, Rina S., and Arie Y. Gold. 1978. “ω- Computations on Turing Machines.”
Theoretical Computer Science 6: pp. 1– 23.

Collett, Matthew, and Thomas S. Collett. 2000. “How do Insects Use Path Integration for
Their Navigation?” Biological Cybernetics 83: pp. 245– 259.

Colombo, Matteo. 2021. “(Mis) Computation in Computational Psychiatry.” In Neural
Mechanisms: New Challenges in the Philosophy of Neuroscience (Studies in Brain and
Mind, vol 17), edited by F. Calzavarini and M. Viola, pp. 427– 448. Cham: Springer.

276 Bibliography

Conklin, John, and Chris Eliasmith. 2005. “A Controlled Attractor Network Model of
Path Integration in the Rat.” Journal of Computational Neuroscience 18: pp. 183– 203.

Copeland, B. Jack. 1996. “What Is Computation?” Synthese 108: pp. 335– 359.
Copeland, B. Jack. 1997. “The Broad Conception of Computation.” American Behavioral

Scientist 40: pp. 690– 716.
Copeland, B. Jack. 1998. “Even Turing Machines Can Compute Uncomputable

Functions.” In Unconventional Models of Computation, edited by C. S. Calude, J. Casti,
and M. J. Dinneen, pp. 150– 164. Berlin: Springer.

Copeland, B. Jack. 2000. “Narrow Versus Wide Mechanism: Including a Re- Examination
of Turing’s Views on the Mind- Machine Issue.” Journal of Philosophy 97: pp. 1– 32.

Copeland, B. Jack. 2002a. “Accelerating Turing Machines.” Minds and Machines 12: pp.
281– 301.

Copeland, B. Jack. 2002b. “Hypercomputation.” Minds and Machines 12: pp. 461– 502.
Copeland, B. Jack. 2003. “Computation.” In The Blackwell Guide to the Philosophy of

Computing and Information, edited by L. Floridi, pp. 3– 17. Oxford: Blackwell.
Copeland, B. Jack. 2004a. The Essential Turing: Seminal Writings in Computing, Logic,

Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma. Oxford,
New York: Oxford University Press.

Copeland, B. Jack. 2004b. “Computable Numbers: A Guide.” In The Essential
Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence,
and Artificial Life, Plus the Secrets of Enigma, edited by B. Jack Copeland, pp. 5– 57.
New York: Oxford University Press.

Copeland, B. Jack. 2004c. “Hypercomputation: Philosophical Issues.” Theoretical
Computer Science 317: pp. 251– 267.

Copeland, B. Jack. 2006. “Turing’s Thesis.” In Church’s Thesis After 70 Years, edited by A.
Olszewski, J. Wolenski, and R., pp. 147– 174. Heusenstamm: Ontos Verlag.

Copeland, B. Jack. 2012. Turing: Pioneer of the Information Age. New York: Oxford
University Press.

Copeland, B. Jack. 2015. “The Church- Turing Thesis.” In The Stanford Encyclopedia of
Philosophy, edited by E. N. Zalta. https:// plato.stanford.edu/ archives/ sum2015/ entries/
church- turing/ .

Copeland, B. Jack, Eli Dresner, Diane Proudfoot, and Oron Shagrir. 2016. “Time to
Reinspect the Foundations?” Communications of the ACM 59: pp. 34– 36.

Copeland, B. Jack, and Diane Proudfoot. 2010. “Deviant Encodings and Turing’s Analysis
of Computability.” Studies in History and Philosophy of Science 41: 247– 252.

Copeland, B. Jack, and Oron Shagrir. 2007. “Physical Computation: How General Are
Gandy’s Principles for Mechanisms?” Minds and Machines 17: pp. 217– 231.

Copeland, B. Jack, and Oron Shagrir. 2011. “Do Accelerating Turing Machines Compute
the Uncomputable?” Minds and Machines 21: pp. 221– 239.

Copeland, B. Jack, and Oron Shagrir. 2013. “Turing Versus Gödel on Computability
and the Mind.” In Computability: Turing, Gödel, Church, and Beyond, edited by B. J.
Copeland, C. Posy, and O. Shagrir, pp. 1– 33. Cambridge, MA: MIT Press.

Copeland, B. Jack, and Oron Shagrir. 2019. “The Church- Turing Thesis: Logical Limit or
Breachable Barrier?” Communications of the ACM 62: pp. 66– 74.

Copeland, B. Jack, Oron Shagrir, and Mark D. Sprevak. 2018. “Zuse’s Thesis,
Gandy’s Thesis, and Penrose’s Thesis.” In Physical Perspectives on Computation,
Computational Perspectives on Physics, edited by M. Cuffaro and S. Fletcher, pp. 39– 59.
Cambridge: Cambridge University Press.

https://plato.stanford.edu/archives/sum2015/entries/church-turing/
https://plato.stanford.edu/archives/sum2015/entries/church-turing/

Bibliography 277

Copeland, B. Jack, Mark D. Sprevak, and Oron Shagrir. 2017. “Is the Whole Universe a
Computer?” In The Turing Guide: Life, Work, Legacy, edited by B. J Copeland, J. Bowen,
M. Sprevak, and R. Wilson, pp. 445– 462. New York: Oxford University Press.

Copeland, B. Jack, and Richard Sylvan. 1999. “Beyond the Universal Turing Machine.”
Australasian Journal of Philosophy 77: pp. 46– 66.

Crane, Tim. 1990. “The Language of Thought: No Syntax Without Semantics.” Mind &
Language 5: pp. 187– 212.

Crane, Tim. 2016. The Mechanical Mind: A Philosophical Introduction to Minds, Machines
and Mental Representation. 3rd ed. London: Routledge.

Craver, Carl F. 2007. Explaining the Brain: Mechanisms and the Mosaic Unity of
Neuroscience. New York: Oxford University Press.

Craver, Carl F. 2013. “Functions and Mechanisms: A Perspectivalist View.” In Functions,
edited by P. Huneman, pp. 133– 158. Berlin: Springer.

Craver, Carl F. 2016. “The Explanatory Power of Network Models.” Philosophy of Science
83: pp. 698– 709.

Craver, Carl F., and David M. Kaplan. 2020. “Are More Details Better? On the Norms of
Completeness for Mechanistic Explanations.” The British Journal for the Philosophy of
Science 71: pp. 287– 319.

Cummins, Robert C. 1975. “Functional Analysis.” The Journal of Philosophy 72: pp.
741– 765.

Cummins, Robert C. 1983. The Nature of Psychological Explanation. Cambridge, MA: MIT
Press.

Cummins, Robert C. 1989. Meaning and Mental Representation. Cambridge, MA: MIT
Press.

Cummins, Robert C. 1996. Representations, Targets and Attitudes. Cambridge, MA: MIT
Press.

Cummins, Robert C. 2000. “‘How Does It Work?’ Versus ‘What Are the Laws?’: Two
Conceptions of Psychological Explanation.” In Explanation and Cognition, edited by F.
C. Keil and R. A. Wilson, pp. 117– 145. Cambridge, MA: MIT Press.

Cummins, Robert C., and Georg Schwarz. 1991. “Connectionism, Computation, and
Cognition.” In Connectionism and the Philosophy of Mind, edited by T. Horgan and J.
Tienson, pp. 60– 73. Dordrecht: Kluwer.

Da Costa, Newton C. A., and Steven French. 2003. Science and Partial Truth: A Unitary
Approach to Models and Scientific Reasoning. New York: Oxford University Press.

Daniels, Norman. 2020. “Reflective Equilibrium.” The Stanford Encyclopedia of
Philosophy, edited by E. N. Zalta. https:// plato.stanford.edu/ archives/ sum2020/
entries/ reflective- equilibrium/ .

Dasgupta, Dipankar. 1993. “An Overview of Artificial Immune Systems and Their
Applications.” In Artificial Immune Systems and Their Applications, edited by D.
Dasgupta, pp. 3– 21. Berlin: Springer.

Dasgupta, Dipankar. 1997. “Artificial Neural Networks and Artificial Immune
Systems: Similarities and Differences.” 1997 IEEE International Conference on Systems,
Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 1. pp. 873– 878.

Davies, Brian E. 2001. “Building Infinite Machines.” The British Journal for the Philosophy
of Science 52: pp. 671– 682.

Davies, Martin. 1991. “Individualism and Perceptual Content.” Mind 100: pp. 461– 484.
Davis, Martin. 1958. Computability and Unsolvability. New York: McGraw- Hill.

https://plato.stanford.edu/archives/sum2020/entries/reflective-equilibrium/
https://plato.stanford.edu/archives/sum2020/entries/reflective-equilibrium/

278 Bibliography

Davis, Martin (ed.). 1965. The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems and Computable Functions. New York: Raven.

Davis, Martin. 1982. “Why Gödel Didn’t Have Church’s Thesis.” Information and Control
54: pp. 3– 24.

Davis, Martin. 2000. The Universal Computer: The Road from Leibniz to Turing. New York:
W. W. Norton.

Dayan, Peter, and Laurence F. Abbott. 2001. Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press.

Dean, Walter. 2016. “Algorithms and the Mathematical Foundations of Computer
Science.” In Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge, ed-
ited by L. Horsten and P. Welch, pp. 19– 66. New York: Oxford University Press.

Dean, Walter. 2019. “Computational Complexity Theory and the Philosophy of
Mathematics.” Philosophia Mathematica 27: pp. 381– 439.

De Mol, Liesbeth. 2012. “Generating, Solving and the Mathematics of Homo Sapiens: Emil
Post’s Views on Computation.” In A Computable Universe: Understanding Computation
& Exploring Nature as Computation, edited by H. Zenil, pp. 45– 62. River Edge,
NJ: World Scientific.

Demopoulos, William. 1987. “On Some Fundamental Distinctions of Computationalism.”
Synthese 70: pp. 79– 96.

Dennett, Daniel C. 1987. The Intentional Stance. Cambridge, MA: MIT Press.
Dennett, Daniel C. 1991. Consciousness Explained. Boston: Little, Brown.
Dershowitz, Nachum, and Yuri Gurevich. 2008. “A Natural Axiomatization of

Computability and Proof of Church’s Thesis.” Bulletin of Symbolic Logic 14: pp. 299– 350.
Deutsch, David. 1985. “Quantum Theory, the Church- Turing Principle and the Universal

Quantum Computer.” Proceedings of the Royal Society of London 400: pp. 97– 117.
Dewhurst, Joe. 2014. “Mechanistic Miscomputation: A Reply to Fresco and Primiero.”

Philosophy & Technology 27: pp. 495– 498.
Dewhurst, Joe. 2016. “Review of Physical Computation: A Mechanistic Account by

Gualtiero Piccinini.” Philosophical Psychology 29: pp. 795– 797.
Dewhurst, Joe. 2018a. “Individuation Without Representation.” The British Journal for the

Philosophy of Science 69: pp. 103– 116.
Dewhurst, Joe. 2018b. “Computing Mechanisms Without Proper Functions.” Minds and

Machines 28: pp. 569– 588.
Dietrich, Eric. 1990. “Computationalism.” Social Epistemology 4: pp. 135– 154.
Dodig- Crnkovic, Gordana. 2017. “Nature as a Network of Morphological

Infocomputational Processes for Cognitive Agents.” The European Physical Journal
Special Topics 226: pp. 181– 195.

Dodig- Crnkovic, Gordana, and Vincent C. Müller. 2011. “A Dialogue Concerning
Two World Systems: Info- Computational vs. Mechanistic.” In Information and
Computation: Essays on Scientific and Philosophical Understanding of Foundations of
Information and Computation, edited by G. Dodig- Crnkovic and M. Burgin, pp. 149–
184. Boston: World Scientific.

Dresner, Eli. 2010. “Measurement- Theoretic Representation and Computation- Theoretic
Realization.” The Journal of Philosophy 107: pp. 275– 292.

Dretske, Fred. 1981. Knowledge and the Flow of Information. Cambridge, MA: MIT Press.
Dretske, Fred. 1988. Explaining Behavior: Reasons in a World of Causes. Cambridge,

MA: MIT Press.

Bibliography 279

Dreyfus, Hubert L. 1972. What Computers Can’t Do: A Critique of Artificial Reason.
Cambridge, MA: MIT Press.

Earman, John. 1986. A Primer on Determinism. Dordrecht: Reidel.
Earman, John., and John D. Norton. 1993. “Forever Is a Day: Supertasks in Pitowsky and

Malament- Hogarth Spacetimes.” Philosophy of Science 60: pp. 22– 42.
Edelman, Shimon. 1998. “Representation Is Representation of Similarities.” Behavioral

and Brain Sciences 21: pp. 449– 467.
Edelman, Shimon. 2008. Computing the Mind: How the Mind Really Works. New York:

Oxford University Press.
Edmonds, Jack. 1965. “Path, Trees and Flowers.” Canadian Journal of Mathematics 17: pp.

449– 467.
Egan, Frances. 1991. “Must Psychology Be Individualistic?” The Philosophical Review

100: pp. 179– 203.
Egan, Frances. 1994. “Individualism and Vision Theory.” Analysis 54: pp. 258– 264.
Egan, Frances. 1995. “Computation and Content.” The Philosophical Review 104: pp.

181– 204.
Egan, Frances. 2010. “Computational Models: A Modest Role for Content.” Studies in

History and Philosophy of Science 41: pp. 253– 259.
Egan, Frances. 2012. “Metaphysics and Computational Cognitive Science: Let’s Not Let

the Tail Wag the Dog.” Journal of Cognitive Science 13: pp. 39– 49.
Egan, Frances. 2014. “How to Think About Mental Content.” Philosophical Studies 170: pp.

115– 135.
Egan, Frances. 2017. “Function- Theoretic Explanation and the Search for Neural

Mechanisms.” In Explanation and Integration in Mind and Brain Science, edited by D.
M. Kaplan, pp. 145– 163. New York: Oxford University Press.

Elber- Dorozko, Lotem. 2018. “Manipulation Is Key: On Why Non- Mechanistic
Explanations in the Cognitive Sciences Also Describe Relations of Manipulation and
Control.” Synthese 195: pp. 5319– 5337.

Elber- Dorozko, Lotem, and Oron Shagrir. 2019. “Integrating Computation into the
Mechanistic Hierarchy in the Cognitive and Neural Sciences.” Synthese, May 13, 2019.

Eliasmith, Chris. 2007. “Attractor Networks.” Scholarpedia 2: p. 1380.
Eliasmith, Chris. 2013. How to Build a Brain: A Neural Architecture for Biological

Cognition. New York: Oxford University Press.
Eliasmith, Chris, and Charles H. Anderson. 2003. Neural Engineering: Computation,

Representation and Dynamics in Neurobiological Systems. Cambridge, MA: MIT Press.
Etesi, Gábor, and István Németi. 2002. “Non- Turing Computations via Malament-

Hogarth Space- Times.” International Journal of Theoretical Physics 41: pp. 341– 370.
Etienne, Ariane S., and Kathryn J. Jeffery. 2004. “Path Integration in Mammals.”

Hippocampus 14: pp. 180– 192.
Feferman, Solomon. 2013. “About and Around Computing Over the Reals.” In

Computability: Turing, Gödel, Church, and Beyond, edited by B. J. Copeland, C. Posy,
and O. Shagrir, pp. 55– 76. Cambridge, MA: MIT Press.

Fernau, Henning. 2010. “Minimum Dominating Set of Queens: A Trivial Programming
Exercise?” Discrete Applied Mathematics 158: pp. 308– 318.

Figdor, Carrie. 2009. “Semantic Externalism and the Mechanics of Thought.” Minds and
Machines 19: pp. 1– 24.

Figdor, Carrie. 2018. Pieces of Mind: The Proper Domain of Psychological Predicates.
New York: Oxford University Press.

280 Bibliography

Floridi, Luciano. 1999. Philosophy and Computing: An Introduction. London: Routledge.
Floridi, Luciano. 2011. The Philosophy of Information. New York: Oxford University Press.
Fodor, Jerry A. 1968. Psychological Explanation: An Introduction to the Philosophy of

Psychology. New York: Random House.
Fodor, Jerry A. 1975. The Language of Thought. New York: Thomas Y. Crowell.
Fodor, Jerry A. 1980. “Methodological Solipsism Considered as a Research Strategy in

Cognitive Psychology.” Behavioral and Brain Sciences 3: pp. 63– 73.
Fodor, Jerry A. 1987. Psychosemantics: The Problem of Meaning in the Philosophy of Mind.

Cambridge, MA: MIT Press.
Fodor, Jerry A. 1990. A Theory of Content and Other Essays. Cambridge, MA: MIT Press.
Fodor, Jerry A. 1994. The Elm and the Expert. Cambridge, MA: MIT Press.
Fodor, Jerry A. 2000. The Mind Doesn’t Work That Way: The Scope and Limits of

Computational Psychology. Cambridge, MA: MIT Press.
Fodor, Jerry A., and Ned Block. 1973. “Cognitivism and the Analog/ Digital Distinction.”

Unpublished manuscript.
Fodor, Jerry A., and Zenon W. Pylyshyn. 1988. “Connectionism and Cognitive

Architecture: A Critical Analysis.” Cognition 28: pp. 3– 71.
Folina, Janet. 1998. “Church’s Thesis: Prelude to a Proof.” Philosophia Mathematica 6: pp.

302– 323.
Folina, Janet. 2006. “Church’s Thesis and the Variety of Mathematical Justifications.” In

Church’s Thesis After 70 Years, edited by A. Olszewski, J. Wolenski, and R. Janusz, pp.
220– 241. Heusenstamm: Ontos Verlag.

Fortnow, Lance, and Steve Homer. 2003. “A Short History of Computational Complexity.”
Bulletin of the European Association for Theoretical Computer Science 80: pp. 95– 133.

French, Steven, and James Ladyman. 1999. “Reinflating the Semantic Approach.”
International Studies in the Philosophy of Science 13: pp. 103– 121.

Fresco, Nir. 2008. “An Analysis of the Criteria for Evaluating Adequate Theories of
Computation.” Minds and Machines 18: pp. 379– 401.

Fresco, Nir. 2014. Physical Computation and Cognitive Science. Berlin: Springer.
Fresco, Nir. 2015. “Objective Computation Versus Subjective Computation.” Erkenntnis

80: pp. 1031– 1053.
Fresco, Nir, B. Jack Copeland, and Marty J. Wolf. Forthcoming. “The Indeterminacy of

Computation.”Synthese.
Fresco, Nir, and Marcin Miłkowski. 2021. “Mechanistic Computational Individuation

Without Biting the Bullet.” The British Journal for the Philosophy of Science
72: pp. 431– 438.

Fresco, Nir, and Giuseppe Primiero. 2013. “Miscomputation.” Philosophy & Technology
26: pp. 253– 272.

Fresco, Nir, and Marty J. Wolf. 2014. “The Instructional Information Processing Account
of Digital Computation.” Synthese 191: pp. 1469– 1492.

Frigg, Roman, and Stephan Hartmann. 2020. “Models in Science.” In Stanford
Encyclopedia of Philosophy, edited by E. N. Zalta. https://plato.stanford.edu/ .

Frigg, Roman, and Julian Reiss. 2009. “The Philosophy of Simulation: Hot New Issues or
Same Old Stew?” Synthese 169: pp. 593– 613.

Gallistel, Charles R., and John Gibbon. 2002. The Symbolic Foundations of Conditioned
Behavior. Mahwah, NJ: Erlbaum.

https://plato.stanford.edu/

Bibliography 281

Gallistel, Charles R., and Adam Philip King. 2009. Memory and the Computational
Brain: Why Cognitive Science Will Transform Neuroscience. Hoboken, NJ: John Wiley
& Sons.

Gandy, Robin O. 1980. “Church’s Thesis and Principles for Mechanisms.” In The Kleene
Symposium, edited by S. C. Kleene, J. Barwise, H. J. Keisler, and K. Kunen, pp. 123– 148.
Amsterdam: North- Holland.

Gandy, Robin O. 1988. “The Confluence of Ideas in 1936.” In The Universal Turing
Machine, edited by R. Herken, pp. 51– 111. New York: Oxford University Press.

Gandy, Robin O. 2001. Preface to “On Computable Numbers, with an Application to the
Entscheidungs Problem.” In Mathematical Logic: The Collected Works of Turing, edited
by R. O. Gandy and C. E. M. Yates, pp. 9– 17. Amsterdam: North- Holland.

Garzon, Max. 1995. Models of Massive Parallelism: Analysis of Cellular Automata and
Neural Networks. Berlin: Springer.

Gherardi, Guido. 2008. “Computability and Incomputability of Differential Equations.” In
Deduction, Computation, Experiment, edited by R. Lupacchini and G. Corsi, pp. 223–
242. Milan: Springer.

Gherardi, Guido. 2011. “Alan Turing and the Foundations of Computable Analysis.”
Bulletin of Symbolic Logic 17: pp. 394– 430.

Giere, Ronald N. 2004. “How Models Are Used to Represent Reality.” Philosophy of Science
71: pp. 742– 752.

Glennan, Stuart. 2002. “Rethinking Mechanistic Explanation.” Philosophy of Science 69:
pp. S342– S353.

Glimcher, Paul W. 1999. “Oculomotor Control.” In The MIT Encyclopedia of the Cognitive
Sciences, edited by R. A. Wilson and F. C. Kiel, pp. 618– 620. Cambridge, MA: MIT Press.

Gödel, Kurt. 1929. “On the Completeness of the Calculus of Logic.” In Collected Works
I: Publications 1929– 1936 (1986), edited by S. Feferman, J. W. Dawson, Jr., S. C. Kleene,
G. H. Moore, R. M. Solovay, and J. van Heijenoort, pp. 61– 101. New York: Oxford
University Press.

Gödel, Kurt. 1931. “On Formally Undecidable Propositions of Principia Mathematica
and Related Systems I.” Monatshefte für Mathematik und Physik 38: pp. 173– 198. In
Collected Works I: Publications 1929– 1936 (1986), edited by S. Feferman, J. W. Dawson,
Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, and J. van Heijenoort, pp. 144– 195.
New York: Oxford University Press.

Gödel, Kurt. 1932. “Undecidable Diophantine Propositions.” In Collected Works
III: Unpublished Essays and Lectures (1995), edited by S. Feferman, J. W. Dawson,
Jr., W. Goldfarb, C. Parsons, and R. M. Solovay, pp. 164– 175. New York: Oxford
University Press.

Gödel, Kurt. 1933. “The Present Situation in the Foundations of Mathematics.” In
Collected Works III: Unpublished Essays and Lectures (1995), edited by S. Feferman, J. W.
Dawson, Jr., W. Goldfarb, C. Parsons, and R. M. Solovay, pp. 45– 53. New York: Oxford
University Press.

Gödel, Kurt. 1934. “On Undecidable Propositions of Formal Mathematical Systems.” In
Collected Works I: Publications 1929– 1936 (1986), edited by S. Feferman, J. W. Dawson,
Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, and Jean van Heijenoort, pp. 346– 369.
New York: Oxford University Press.

Gödel, Kurt. 193?. “Undecidable Diophantine Propositions.” In Collected Works
III: Unpublished Essays and Lectures (1995), edited by S. Feferman, J. W. Dawson,
Jr., W. Goldfarb, C. Parsons, and R. M. Solovay, pp. 164– 175. New York: Oxford
University Press.

282 Bibliography

Gödel, Kurt. 1946. “Remarks Before the Princeton Bicentennial Conference on Problems
in Mathematics.” In Collected Works II: Publications 1938– 1974 (1990), edited by
S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, and J. van
Heijenoort, pp. 150– 153. New York: Oxford University Press.

Gödel, Kurt. 1951. “Some Basic Theorems on the Foundations of Mathematics and Their
Implications.” In Collected Works III: Unpublished Essays and Lectures (1995), edited by
S. Feferman, J. W. Dawson, Jr., W. Goldfarb, C. Parsons, and R. M. Solovay, pp. 304– 323.
New York: Oxford University Press.

Gödel, Kurt. 1956. “Letter to John von Neumann, March 20th, 1956.” In Collected Works
V: Correspondence, H- Z (2003), edited by S. Feferman, J. W. Dawson Jr, W. Goldfarb, C.
Parsons, and W. Sieg, pp. 373– 377. New York: Oxford University Press.

Gödel, Kurt. 1963. “Note Added to Gödel (1931).” In Collected Works I: Publications 1929–
1936 (1986), edited by S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M.
Solovay, and J. van Heijenoort, p. 195. New York: Oxford University Press.

Gödel, Kurt. 1964. Postscriptum to Gödel (1934). In Collected Works I: Publications 1929–
1936 (1986), edited by S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M.
Solovay, and J. van Heijenoort, pp. 369– 370. New York: Oxford University Press.

Gödel, Kurt. 1972. “Some Remarks on the Undecidability Results.” In Collected Works
II: Publications 1938– 1974 (1990), edited by S. Feferman, J. W. Dawson, Jr., S. C. Kleene,
G. H. Moore, R. M. Solovay, and J. van Heijenoort, pp. 305– 306. New York: Oxford
University Press.

Gödel, Kurt. 1986. Collected Works I: Publications 1929– 1936. Edited by Solomon
Feferman, John W. Dawson, Jr., Stephen. C. Kleene, Gregory H. Moore, Robert M.
Solovay, and Jean van Heijenoort. New York: Oxford University Press.

Gödel, Kurt. 1990. Collected Works II: Publications 1938– 1974. Edited by Solomon
Feferman, John W. Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert M.
Solovay, and Jean van Heijenoort. New York: Oxford University Press.

Gödel, Kurt. 1995. Collected Works III: Unpublished Essays and Lectures. Edited by
Solomon Feferman, John W. Dawson, Jr., Warren Goldfarb, Charles Parsons, and
Robert M. Solovay. New York: Oxford University Press.

Gödel, Kurt. 2003. Collected Works V: Correspondence, H- Z. Edited by Solomon
Feferman, John W. Dawson Jr, Warren Goldfarb, Charles Parsons, and Wilfried Sieg.
New York: Oxford University Press.

Godfrey- Smith, Peter. 2009. “Triviality Arguments Against Functionalism.” Philosophical
Studies 145: pp. 273– 295.

Goel, Vinod. 1991. “Notationality and the Information- Processing Mind.” Minds and
Machines 1: pp. 129– 165.

Goff, Philip, William Seager, and Sean Allen- Hermanson, “Panpsychism.” The Stanford
Encyclopedia of Philosophy, edited by E. N. Zalta. https:// plato.stanford.edu/ archives/
sum2020/ entries/ panpsychism/ .

Goldman, Mark S., Albert Compte, and Xiao- Jing Wang. 2009. “Neural Integrator
Models.” In Encyclopedia of Neuroscience 6, edited by L. R. Squire, pp. 165– 178.
Oxford: Academic Press.

Goldman, Mark S., Chris R. S. Kaneko, Guy Major, Emre Aksay, David W. Tank, and
H. Sebastian Seung. 2002. “Linear Regression of Eye Velocity on Eye Position and
Head Velocity Suggests a Common Oculomotor Neural Integrator.” Journal of
Neurophysiology 88: pp. 659– 665.

https://plato.stanford.edu/archives/sum2020/entries/panpsychism/
https://plato.stanford.edu/archives/sum2020/entries/panpsychism/

Bibliography 283

Goldreich, Oded. 2008. Computational Complexity: A Conceptual Perspective. Cambridge:
Cambridge University Press.

Goodman, Nelson. 1968. Languages of Art: An Approach to a Theory of Symbols.
Indianapolis, IN: The Bobbs- Merrill Company.

Graça, Daniel Silva, and José Félix Costa. 2003. “Analog Computers and Recursive
Functions Over the Reals.” Journal of Complexity 19: pp. 644– 664.

Grice, Paul. 1957. “Meaning.” The Philosophical Review 66: pp. 377– 388.
Grier, David A. 2005. When Computers Were Human. Princeton: Princeton University

Press.
Griffiths, Thomas L., Nick Chater, Charles Kemp, Amy Perfors, and Joshua B.

Tenenbaum. 2010. “Probabilistic Models of Cognition: Exploring Representations
and Inductive Biases.” Trends in Cognitive Sciences 14: pp. 357– 364.

Griffiths, Thomas L., Charles Kemp, and Joshua B. Tenenbaum. 2008. “Bayesian Models
of Cognition.” In The Cambridge Handbook of Computational Psychology, edited by R.
Sun, pp. 59– 100. Cambridge: Cambridge University Press.

Grush, Rick. 2001. “The Semantic Challenge to Computational Neuroscience.” In
Theory and Method in the Neurosciences, edited by P. K. Machamer, R. Grush, and P.
McLaughlin, pp. 155– 172. Pittsburgh: University of Pittsburgh Press.

Grush, Rick. 2004. “The Emulation Theory of Representation: Motor Control, Imagery,
and Perception.” Behavioral and Brain Sciences 27: pp. 377– 442.

Grzegorczyk, Andrzej. 1955. “Computable Functional.” Fundamenta Mathematicae
42: pp. 168– 202.

Grzegorczyk, Andrzej. 1957. “On the Definitions of Computable Real Continuous
Functions.” Fundamenta Mathematicae 44: pp. 61– 71.

Gurari, Eitan M. 1989. An Introduction to the Theory of Computation. New York: Computer
Science Press.

Gurevich, Yuri. 2000. “Sequential Abstract State Machines Capture Sequential
Algorithms.” ACM Transactions on Computational Logic 1: pp. 77– 111.

Gurevich, Yuri. 2012. “What Is an Algorithm?” In SOFSEM: Theory and Practice of
Computer Science, LNCS 7147, edited by M. Bieliková, G. Friedrich, G. Gottlob, S.
Katzenbeisser, and G. Turán, pp. 31– 42. Berlin: Springer.

Gurevich, Yuri. 2019. “Unconstrained Church- Turing Thesis Cannot Possibly Be True.”
The Bulletin of the European Association for Theoretical Computer Science 27: pp. 46– 59.

Hafting, Torkel, Marianne Fyhn, Sturla Molden, May- Britt Moser, and Edvard I. Moser.
2005. “Microstructure of a Spatial Map in the Entorhinal Cortex.” Nature 436: pp.
801– 806.

Hagar, Amit, and Alex Korolev. 2007. “Quantum Hypercomputation— Hyper or
Computation?” Philosophy of Science 74: pp. 347– 363.

Haimovici, Sabrina. 2013. “A Problem for the Mechanistic Account of Computation.”
Journal of Cognitive Science 14: pp. 151– 181.

Hamkins, Joel D. 2002. “Infinite Time Turing Machines.” Minds and Machines 12: pp.
521– 539.

Hamkins, Joel D., and Andy Lewis. 2000. “Infinite Time Turing Machines.” The Journal of
Symbolic Logic 65: pp. 567– 604.

Harbecke, Jens. 2020. “The Methodological Role of Mechanistic- Computational Models
in Cognitive Science.” Synthese, February 17, 2020.

Harbecke, Jens, and Oron Shagrir. 2019. “The Role of the Environment in Computational
Explanations.” European Journal for Philosophy of Science 9: article 37.

284 Bibliography

Hardcastle, Valerie Gray. 1995. “Computationalism.” Synthese 105: pp. 303– 317.
Hardcastle, Valerie Gray. 1999. “Understanding Functions: A Pragmatic Approach.” In

Where Biology Meets Philosophy: Philosophical Essays, edited by V. G. Hardcastle, pp.
27– 43. Cambridge, MA: MIT Press.

Harel, David. 1992. Algorithmics: The Spirit of Computing. 2nd ed. Reading, MA:
Addison- Wesley.

Haugeland, John. 1978. “The Nature and Plausibility of Cognitivism.” Behavioral and
Brain Sciences 1: pp. 215– 226.

Haugeland, John. 1981a. “Analog and Analog.” Philosophical Topics 12: pp. 213– 225.
Haugeland, John. 1981b. “Semantic Engines: An Introduction to Mind Design.” In Mind

Design, edited by J. Haugeland, pp. 1– 34. Cambridge, MA: MIT Press.
Heeger, David J. 1992. “Normalization of Cell Responses in Cat Striate Cortex.” Visual

Neuroscience 9: pp. 181– 197.
Hemmo, Meir, and Orly Shenker. 2019. “The Physics of Implementing Logic: Landauer’s

Principle and the Multiple- Computations Theorem.” Studies in History and Philosophy
of Modern Physics 68: pp. 90– 105.

Herbrand, Jacques. 1931. “On the Consistency of Arithmetic.” In Jacques Herbrand Logical
Writings (1971), edited by W. D. Goldfarb, pp. 282– 298. Cambridge, MA: Harvard
University Press.

Hertz, John, Anders Krogh, and Richard G. Palmer. 1991. Introduction to the Theory of
Neural Computation. Redwood City, CA: Addison- Wesley.

Hess, Robert F., Curtis L. Baker Jr., James N. VerHoeve, Ulker Tulunay- Keesey, and
Thomas D. France. 1985. “The Pattern Evoked Electroretinogram: Its Variability in
Normals and Its Relationship to Amblyopia.” Investigative Ophthalmology & Visual
Science 26: pp. 1610– 1623.

Hilbert, David. 1902. “Mathematical Problems: Lecture Delivered Before the International
Congress of Mathematicians at Paris in 1900.” Bulletin of the American Mathematical
Society 8: pp. 437– 479.

Hilbert, David. 1926. “Über das Unendliche.” Mathematische Annalen 95: pp. 161– 190.
Lecture given in Münster, June 4, 1925.

Hilbert, David, and Wilhelm F. Ackermann. 1928. Grundzuge der Theoretischen Logik.
Berlin: Springer.

Hilbert, David, and Paul Bernays. 1939. Grundlagen der Mathematik II. Berlin: Springer.
Hildreth, Ellen C., and Shimon Ullman. 1989. “The Computational Study of Vision.”

In Foundations of Cognitive Science, edited by M. I. Posner, pp. 581– 630. Cambridge,
MA: MIT Press.

Hinton, Geoffrey E., and James A. Anderson. 2014. Parallel Models of Associative
Memory: Updated Edition. New York: Psychology Press.

Hoffmann, Geoffrey W. 2008. “Immune Network Theory.” https:// phas.ubc.ca/
~hoffmann/ ni.html.

Hogarth, Mark L. 1992. “Does General Relativity Allow an Observer to View an Eternity
in a Finite Time?” Foundations of Physics Letters 5: pp. 173– 181.

Hogarth, Mark L. 1994. “Non- Turing Computers and Non- Turing Computability.”
Proceedings of the Biennial Meeting of the Philosophy of Science Association 1: pp.
126– 138.

Hogarth, Mark L. 2004. “Deciding Arithmetic Using SAD Computers.” The British Journal
for the Philosophy of Science 55: pp. 681– 691.

https://phas.ubc.ca/~hoffmann/ni.html
https://phas.ubc.ca/~hoffmann/ni.html

Bibliography 285

Hopcroft, John E., and Jeffrey D. Ullman. 1979. Introduction to Automata Theory,
Languages, and Computation. Reading, MA: Addison- Wesley.

Hopfield, John J. 1982. “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities.” Proceedings of the National Academy of Science, USA 79: pp.
2554– 2558.

Hopfield, John J., and David W. Tank. 1985. “‘Neural’ Computation of Decisions in
Optimization Problems.” Biological Cybernetics 52: pp. 141– 152.

Horowitz, Amir. 2007. “Computation, External Factors, and Cognitive Explanations.”
Philosophical Psychology 20: pp. 65– 80.

Horsman, Clare, Susan Stepney, Rob C. Wagner, and Viv Kendon. 2014. “When Does a
Physical System Compute?” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 470: p. 20140182.

Horsman, Dominic, Viv Kendon, and Susan Stepney. 2017. “The Natural Science of
Computing.” Communications of the ACM 60: pp. 31– 34.

Horst, Steven. 2015. “The Computational Theory of Mind.” The Stanford Encyclopedia of
Philosophy, edited by E. N. Zalta. https:// plato.stanford.edu/ archives/ sum2015/ entries/
computational- mind/ .

Hubel, David H., and Torsten N. Wiesel. 1962. “Receptive Fields, Binocular Interaction
and Functional Architecture in the Cat’s Visual Cortex.” The Journal of Physiology
160: pp. 106– 154.

Humphreys, Paul. 2004. Extending Ourselves: Computational Science, Empiricism, and
Scientific Method. New York: Oxford University Press.

Huneman, Philippe. 2010. “Topological Explanations and Robustness in Biological
Sciences.” Synthese 177: pp. 213– 245.

Hutto, Daniel D., and Erik Myin. 2012. Radicalizing Enactivism: Basic Minds Without
Content. Cambridge, MA: MIT Press.

Hutto, Daniel D., and Erik Myin. 2017. Evolving Enactivism: Basic Minds Meet Content.
Cambridge, MA: MIT Press.

Hutto, Daniel D., Erik Myin, Anco Peeters, and Farid Zahnoun. 2018. “The Cognitive
Basis of Computation: Putting Computation in its Place.” In The Routledge Handbook
of the Computational Mind, edited by M. Sprevak and M. Colombo, pp. 272– 282.
London: Routledge.

Illari, Phyllis McKay, and Jon Williamson. 2012. “What Is a Mechanism? Thinking About
Mechanisms Across the Sciences.” European Journal for Philosophy of Science 2: pp.
119– 135.

Jerne, Niels K. 1974. “Towards a Network Theory of the Immune System.” The Annual
Review of Immunology125: pp. 373– 389.

Kaplan, David M. 2011. “Explanation and Description in Computational Neuroscience.”
Synthese 183: pp. 339– 373.

Kaplan, David M. 2017. “Neural Computation, Multiple Realizability, and the Prospects
for Mechanistic Explanation.” In Explanation and Integration in Mind and Brain
Science, edited by D. M. Kaplan, pp. 164– 189. New York: Oxford University Press.

Kaplan, David M., and Carl F. Craver. 2011. “The Explanatory Force of Dynamical and
Mathematical Models in Neuroscience: A Mechanistic Perspective.” Philosophy of
Science 78: pp. 601– 627.

Kitcher, Patricia S. 1988. “Marr’s Computational Theory of Vision.” Philosophy of Science
55: pp. 1– 24.

https://plato.stanford.edu/archives/sum2015/entries/computational-mind/
https://plato.stanford.edu/archives/sum2015/entries/computational-mind/

286 Bibliography

Kleene, Stephen C. 1936. “General Recursive Functions of Natural Numbers.”
Mathematische Annalen 112: pp. 727– 742.

Kleene, Stephen C. 1938. “On Notation for Ordinal Numbers.” Journal of Symbolic Logic
3: pp. 150– 155.

Kleene, Stephen C. 1943. “Recursive Predicates and Quantifiers.” Transactions of the
American Mathematical Society 53: pp. 41– 73.

Kleene, Stephen C. 1952. Introduction to Metamathematics. Amsterdam: North- Holland.
Kleene, Stephen C. 1981. “Origins of Recursive Function Theory.” Annals of the History of

Computing 3: pp. 52– 67.
Klein, Colin. 2008. “Dispositional Implementation Solves the Superfluous Structure

Problem.” Synthese 165: pp. 141– 153.
Klein, Colin. 2012. “Two Paradigms for Individuating Implementations.” Journal of

Cognitive Science 13: pp. 167– 179.
Knuth, Donald E. 1973. The Art of Computer Programming: Fundamental Algorithms, vol.

1. Reading, MA: Addison- Wesley.
Koch, Christof. 1999. Biophysics of Computation: Information Processing in Single Neurons.

New York: Oxford University Press.
Koepke, Peter. 2005. “Turing Computations on Ordinals.” Bulletin of Symbolic Logic

11: pp. 377– 397.
Kolmogorov, Andrei N. 1958. “On the Notion of Algorithm.” Uspekhi Mat. Nauk

8 (4): pp. 175– 176 (in Russian). English translation in Selected Works of A. N.
Kolmogorov: Mathematics and Its Applications, edited by A. N. Shiryayev (1993, vol 27,
p. 1). Dordrecht: Springer.

Kolmogorov, Andrei N. 1965. “Three Approaches to the Quantitative Definition of
‘Information.’” Problems of Information Transmission 1: pp. 3– 11.

Kolmogorov, Andrei N., and Vladimir A. Uspensky. 1963. “On the Definition of an
Algorithm.” Uspehi Mat. Nauk 13: pp. 3– 28 (in Russian). English translation in
American Mathematical Society Translations, Series II (1963) 29: pp. 217– 245.

Komar, Arthur. 1964. “Undecidability of Macroscopically Distinguishable States in
Quantum Field Theory.” Physical Review 133: pp. B542– 544.

Kreisel, Georg. 1965. “Mathematical Logic.” In Lectures on Modern Mathematics, vol. 3,
edited by T. L. Saaty, pp. 95– 195. Hoboken, NJ: John Wiley & Sons.

Kreisel, Georg. 1967. “Mathematical Logic: What Has It Done for the Philosophy of
Mathematics?” In Bertrand Russell: Philosopher of the Century, edited by R. Schoenman,
pp. 201– 272. Crows Nest, Australia: George Allen and Unwin.

Kreisel, Georg. 1972. “Which Number Theoretic Problems Can be Solved in Recursive
Progressions on Π1/ 1- Paths Through O?” The Journal of Symbolic Logic 37: pp.
311– 334.

Kripke, Saul A. 1982. Wittgenstein on Rules and Private Language: An Elementary
Exposition. Cambridge, MA: Harvard University Press.

Kripke, Saul A. 2013. “The Church- Turing ‘Thesis’ as a Special Corollary of Gödel’s
Completeness Theorem.” In Computability: Turing, Gödel, Church, and Beyond, edited
by B. J. Copeland, C. Posy, and O. Shagrir, pp. 77– 104. Cambridge, MA: MIT Press.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. “Imagenet Classification
with Deep Convolutional Neural Networks.” Advances in Neural Information Processing
Systems 2: pp. 1097– 1105.

Lacombe, Daniel. 1955. “Extension de la Notion de Fonction Récursive aux Fonctions
d’une ou Plusieurs Variables Réelles III.” Comptes Rendus Académie des Sciences Paris
241: pp. 151– 153.

Bibliography 287

Ladyman, James. 2009. “What Does it Mean to Say That a Physical System Implements a
Computation?” Theoretical Computer Science 410: pp. 376– 383.

LeCun, Yann, Yoshua Bengio, and Geoffrey E. Hinton. 2015. “Deep Learning.” Nature
521: pp. 436– 444.

Lee, Jonny. 2021. “Mechanisms, Wide Functions, and Content: Towards a Computational
Pluralism.” The British Journal for the Philosophy of Science 72: pp. 221– 244.

Leigh, R. John, and David S. Zee. 2015. The Neurology of Eye Movements. 5th ed.
New York: Oxford University Press.

Levin, Janet. 2018. “Functionalism.” In The Stanford Encyclopedia of Philosophy, edited by
E. N. Zalta. https:// plato.stanford.edu/ archives/ fall2018/ entries/ functionalism/ .

Levy, Arnon. 2009. “Carl F. Craver. Explaining What? Review of Explaining the
Brain: Mechanisms and the Mosaic Unity of Neuroscience.” Biology & Philosophy
24: pp. 137– 145.

Levy, Arnon. 2013. “Three Kinds of New Mechanism.” Biology & Philosophy 28: pp.
99– 114.

Levy, Arnon, and William Bechtel. 2013. “Abstraction and the Organization of
Mechanisms.” Philosophy of Science 80: pp. 241– 261.

Lewis, David. 1971. “Analog and Digital.” Noûs 5: pp. 321– 327.
Lewis, Harry R., and Christos H. Papadimitriou. 1981. Elements of the Theory of

Computation. Englewood Cliffs, NJ: Prentice- Hall.
London, M., and M. Häusser. 2005. “Dendritic Computation.” Annual Review of

Neuroscience 28: pp. 503– 532.
Löwe, Benedikt. 2001. “Revision Sequences and Computers with an Infinite Amount of

Time.” Journal of Logic and Computation 11: pp. 25– 40.
Lycan, William G. 1981. “Form, Function, and Feel.” The Journal of Philosophy 78:

pp. 24– 50.
Machamer, Peter K., Lindley Darden, and Carl F. Craver. 2000. “Thinking About

Mechanisms.” Philosophy of Science 67: pp. 1– 25.
Maley, Corey J. 2011. “Analog and Digital, Continuous and Discrete.” Philosophical Studies

155: pp. 117– 131.
Maley, Corey J. 2018. “Toward Analog Neural Computation.” Minds and Machines

28: pp. 77– 91.
Maley, Corey J. 2020. “Analog Computation and Representation.” The British Journal for

the Philosophy of Science. Available at: https:// www.journals.uchicago.edu/ doi/ pdf/
10.1086/ 715031

Maley, Corey J., and Gualtiero Piccinini. 2017. “A Unified Mechanistic Account of
Teleological Functions for Psychology and Neuroscience.” In Explanation and
Integration in Mind and Brain Science, edited by D. M. Kaplan, pp. 236– 256.
New York: Oxford University Press.

Manchak, John Byron. 2020. “Malament– Hogarth Machines.” The British Journal for the
Philosophy of Science 71: 1143– 1153.

Manchak, John Byron, and Bryan W. Roberts. 2016. “Supertasks.” In The Stanford
Encyclopedia of Philosophy, edited by E. N. Zalta. https:// plato.stanford.edu/ archives/
win2016/ entries/ spacetime- supertasks/ .

Mancosu, Paolo. 1999. “Between Russell and Hilbert: Behmann on the Foundations of
Mathematics.” Bulletin of Symbolic Logic 5: pp. 303– 330.

Marr, David. 1977. “Artificial Intelligence: A Personal View.” Artificial Intelligence
9: pp. 37– 48.

https://plato.stanford.edu/archives/fall2018/entries/functionalism/
https://www.journals.uchicago.edu/doi/pdf/10.1086/715031
https://www.journals.uchicago.edu/doi/pdf/10.1086/715031
https://plato.stanford.edu/archives/win2016/entries/spacetime-supertasks/
https://plato.stanford.edu/archives/win2016/entries/spacetime-supertasks/

288 Bibliography

Marr, David C. 1982. Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. New York: W. H. Freeman.

Marr, David, and Ellen C. Hildreth. 1980. “Theory of Edge Detection.” Proceedings of the
Royal Society of London, Series B, Biological Sciences 207: pp. 187– 217.

Matthews, Robert J., and Eli Dresner. 2017. “Measurement and Computational
Skepticism.” Noûs 51: pp. 832– 854.

Maudlin, Tim. 1989. “Computation and Consciousness.” The Journal of Philosophy 86: pp.
407– 432.

Mazur, Stanislaw. 1963. Computable Analysis. Warsaw: Rozprawy Matematyczne.
McClelland, James L., David E. Rumelhart, and Geoffrey E. Hinton. 1986. “The Appeal

of Parallel Distributed Processing.” In Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, volume 1: Foundations. edited by D. E. Rumelhart, J.
L. McClelland, and the PDP Research Group, pp. 3– 44. Cambridge, MA: MIT Press.

McClelland, James L., David E. Rumelhart, and the PDP Research Group (eds.). 1986.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol.
2: Psychological and Biological Models. Cambridge, MA: MIT Press.

McCulloch, Warren S., and Walter H. Pitts. 1943. “A Logical Calculus of the Ideas
Immanent in Nervous Activity.” Bulletin of Mathematical Biophysics 5: pp. 115– 133.

McNaughton, Bruce L., Francesco P. Battaglia, Ole Jensen, Edvard I. Moser, and May- Britt
Moser. 2006. “Path Integration and the Neural Basis of the ‘Cognitive Map.’” Nature
Reviews Neuroscience 7: pp. 663– 678.

Melnyk, Andrew. 1996. “Searle’s Abstract Argument Against Strong AI.” Synthese 108: pp.
391– 419.

Mendelson, Elliott. 1990. “Second Thoughts About Church’s Thesis and Mathematical
Proofs.” The Journal of Philosophy 87: pp. 225– 233.

Miłkowski, Marcin. 2011. “Beyond Formal Structure: A Mechanistic Perspective on
Computation and Implementation.” Journal of Cognitive Science 12: pp. 359– 379.

Miłkowski, Marcin. 2013. Explaining the Computational Mind. Cambridge, MA:
MIT Press.

Miłkowski, Marcin. 2017. “The False Dichotomy Between Causal Realization and
Semantic Computation.” Internetowy Magazyn Filozoficzny Hybris 38: pp. 1– 21.

Millhouse, Tyler. 2019. “A Simplicity Criterion for Physical Computation.” The British
Journal for the Philosophy of Science 70: pp. 153– 178.

Millikan, Ruth Garrett. 1984. Language, Thought, and Other Biological Categories: New
Foundations for Realism. Cambridge, MA: MIT Press.

Mills, Jonathan W. 2008. “The Nature of the Extended Analog Computer.” Physica
D: Nonlinear Phenomena 237: pp. 1235– 1256.

Milner, Robin. 1971. “An Algebraic Definition of Simulation Between Programs.” In
Proceedings of the Second International Joint Conference on Artificial Intelligence, edited
by D. C. Cooper, pp. 481– 489. London: The British Computer Society.

Minsky, Marvin L. 1967. Computation: Finite and Infinite Machines. Englewood Cliffs,
NJ: Prentice- Hall.

Minsky, Marvin, and Seymour Papert. 1969. Perceptrons: An Introduction to
Computational Geometry. Cambridge, MA: MIT Press.

Mittelstaedt, Horst, and Marie- Luise Mittelstaedt. 1982. “Homing by Path Integration.” In
Avian Navigation, edited by F. Papi and H. G. Wallraff, pp. 290– 297. Berlin: Springer.

Morgan, Alex, and Gualtiero Piccinini. 2018. “Towards a Cognitive Neuroscience of
Intentionality.” Minds and Machines 28: pp. 119– 139.

Bibliography 289

Morton, Peter A. 1993. “Supervenience and Computational Explanation in Vision
Theory.” Philosophy of Science 60: pp. 86– 99.

Moschovakis, Yiannis N. 1984. “Abstract Recursion as a Foundation for the Theory of
Algorithms.” Computation and Proof Theory 1104: pp. 289– 364.

Moschovakis, Yiannis N. 1998. “On Founding the Theory of Algorithms.” In Truth in
Mathematics, edited by H. G. Dales and G. Oliveri, pp. 71– 104. Oxford: Clarendon Press.

Moschovakis, Yiannis N. 2001. “What Is an Algorithm?” In Mathematics Unlimited—
2001 and Beyond, edited by B. Engquist and W. Schmid, pp. 919– 936. Berlin: Springer.

Moschovakis, Yiannis N., and Vasilis Paschalis. 2008. “Elementary Algorithms and Their
Implementations.” In New Computational Paradigms: Changing Conceptions of What Is
Computable, edited by S. B. Cooper, B. Löwe, and A. Sorbi, pp. 87– 118. Berlin: Springer.

Müller, Vincent C., and Matej Hoffmann. 2017. “What Is Morphological Computation?
On How the Body Contributes to Cognition and Control.” Artificial Life 23: pp. 1– 24.

Nagin, Paul, and John Impagliazzo. 1995. Computer Science: A Breadth- First Approach
with Pascal. Hoboken, NJ: John Wiley & Sons.

Neander, Karen. 1991. “Functions as Selected Effects: The Conceptual Analyst’s Defense.”
Philosophy of Science 58: pp. 168– 184.

Neander, Karen. 2017. A Mark of the Mental: In Defense of Informational Teleosemantics.
Cambridge, MA: MIT Press.

Németi, István, and Gyula Dávid. 2006. “Relativistic Computers and the Turing Barrier.”
Journal of Applied Mathematics and Computation 178: pp. 118– 142.

Newell, Allen. 1980. “Physical Symbol Systems.” Cognitive Science 4: pp. 135– 183.
Newell, Allen, and Herbert A. Simon. 1976. “Computer Science as Empirical

Inquiry: Symbols and Search.” Communications of the Association for Computing
Machinery 19: pp. 113– 126.

Norton, John D. 1999. “A Quantum Mechanical Supertask.” Foundations of Physics 29: pp.
1265– 1302.

Norton, John D. 2012. “Approximation and Idealization: Why the Difference Matters.”
Philosophy of Science 79: pp. 207– 232.

O'Brien, Gerard, and Jon Opie. 2006. “How do Connectionist Networks Compute?”
Cognitive Processing 7: pp. 30– 41.

O'Brien, Gerard, and Jon Opie. 2009. “The Role of Representation in Computation.”
Cognitive Processing 10: pp. 53– 62.

Odifreddi, Piergiorgio. 1989. Classical Recursion Theory: The Theory of Functions and Sets
of Natural Numbers. Amsterdam: Elsevier.

O'Keefe, John, and Nadel Lynn. 1978. The Hippocampus as a Cognitive Map. Oxford:
Clarendon Press.

Ord, Toby. 2006. “The Many Forms of Hypercomputation.” Applied Mathematics and
Computation 178: pp. 143– 153.

O'Reilly, Randall C., and Yuko Munakata. 2000. Computational Explorations in
Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge,
MA: MIT Press.

Orlandi, Nico. 2014. The Innocent Eye: Why Vision Is Not a Cognitive Process. New York:
Oxford University Press.

Orlandi, Nico. 2018. “Perception Without Computation?” In The Routledge Handbook
of the Computational Mind, edited by M. Sprevak and M. Colombo, pp. 410– 423.
London: Routledge.

290 Bibliography

Palmer, Stephen E. 1978. “Fundamental aspects of cognitive representation.” In Cognition
and Categorization, edited by E. Rosch and B. B. Lloyd, pp. 259– 303. Hillsdale,
NJ: Lawrence Erlbaum.

Papayannopoulos, Philippos. 2018. “Computing, Modelling, and Scientific Practice:
Foundational Analyses and Limitations.” Doctoral dissertation, University of Western
Ontario.

Papayannopoulos, Philippos. 2020a. “Unrealistic Models for Realistic
Computations: How Idealisations Help Represent Mathematical Structures and Found
Scientific Computing.” Synthese, May 4, 2020.

Papayannopoulos, Philippos. 2020b. “Computing and Modelling: Analog vs. Analogue.”
Studies in History and Philosophy of Science 83: pp. 103– 120.

Peacocke, Christopher. 1994. “Content, Computation and Externalism.” Mind &
Language 9: pp. 303– 335.

Penrose, Roger. 1989. The Emperor’s New Mind: Concerning Computers, Minds and the
Laws of Physics. New York: Oxford University Press.

Penrose, Roger. 1994. Shadows of the Mind: A Search for the Missing Science of
Consciousness. New York: Oxford University Press.

Piccinini, Gualtiero. 2003a. “Alan Turing and the Mathematical Objection.” Minds and
Machines 13: pp. 23– 48.

Piccinini, Gualtiero. 2003b. “Computations and Computers in the Sciences of Mind and
Brain.” Doctoral dissertation, University of Pittsburgh.

Piccinini, Gualtiero. 2004a. “The First Computational Theory of Mind and Brain: A
Close Look at McCulloch and Pitts’s ‘Logical Calculus of Ideas Immanent in Nervous
Activity.’” Synthese 141: pp. 175– 215.

Piccinini, Gualtierio. 2004b. “Functionalism, Computationalism, and Mental Contents.”
Canadian Journal of Philosophy 34: pp. 375– 410.

Piccinini, Gualtiero. 2007. “Computing Mechanisms.” Philosophy of Science 74: pp.
501– 526.

Piccinini, Gualtiero. 2008a. “Computation Without Representation.” Philosophical Studies
137: pp. 205– 241.

Piccinini, Gualtiero. 2008b. “Computers.” Pacific Philosophical Quarterly 89: pp. 32– 73.
Piccinini, Gualtiero. 2008c. “Some Neural Networks Compute, Others Don’t.” Neural

Networks 21: pp. 311– 321.
Piccinini, Gualtiero. 2009. “Computationalism in the Philosophy of Mind.” Philosophy

Compass 4: pp. 515– 532.
Piccinini, Gualtiero. 2011. “The Physical Church- Turing Thesis: Modest or Bold?” The

British Journal for the Philosophy of Science 62: pp. 733– 769.
Piccinini, Gualtiero. 2015. Physical Computation: A Mechanistic Account. New York:

Oxford University Press.
Piccinini, Gualtiero. 2017. “Computation in Physical Systems.” In The Stanford

Encyclopedia of Philosophy, edited by E. N. Zalta. http:// plato.stanford.edu/ entries/
computation- physicalsystems/ .

Piccinini, Gualtieto, and Neal G. Anderson. 2018. “Ontic Pancomputationalism.” In
Physical Perspectives on Computation, Computational Perspectives on Physics, edited by
M. Cuffaro and S. Fletcher, pp. 23– 38. Cambridge: Cambridge University Press.

Piccinini, Gualtiero, and Sonya Bahar. 2013. “Neural Computation and the Computational
Theory of Cognition.” Cognitive Science 37: pp. 453– 488.

http://plato.stanford.edu/entries/computation-physicalsystems/
http://plato.stanford.edu/entries/computation-physicalsystems/

Bibliography 291

Piccinini, Gualtiero, and Carl Craver. 2011. “Integrating Psychology and Neuroscience:
Functional Analyses as Mechanism Sketches.” Synthese 183: pp. 283– 311.

Piccinini, Gualtiero, and Andrea Scarantino. 2011. “Information Processing,
Computation, and Cognition.” Journal of Biological Physics 37: pp. 1– 38.

Piccinini, Gualtiero, and Oron Shagrir. 2014. “Foundations of Computational
Neuroscience.” Current Opinion in Neurobiology 25: 25– 30.

Pitowsky, Itamar. 1990. “The Physical Church Thesis and Physical Computational
Complexity.” Iyyun 39: pp. 81– 99.

Pitowsky, Itamar. 1996. “Laplace’s Demon Consults an Oracle: The Computational
Complexity of Prediction.” Studies in History and Philosophy of Science Part B: Studies
in History and Philosophy of Modern Physics 27: pp. 161– 180.

Pitowsky, Itamar. 2002. “Quantum Speed- Up of Computations.” Philosophy of Science
69: S168– S177.

Plotkin, Gordon D. 2004. “The Origins of Structural Operational Semantics.” The Journal
of Logic and Algebraic Programming 60: pp. 3– 15.

Pnueli, Amir, Michael Siegel, and Eli Singerman. 1998. “Translation Validation.” In
Proceedings of the 4th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), LNCS 1384, edited by S. Bernhard, pp.
151– 166. Berlin: Springer.

Polger, Thomas W., and Lawrence A. Shapiro. 2016. The Multiple Realization Book.
New York: Oxford University Press.

Post, Emil L. 1936. “Finite Combinatory Processes – Formulation I.” Journal of Symbolic
Logic 1: pp. 103– 105. Reprinted in The Undecidable: Basic Papers on Undecidable
Propositions, Unsolvable Problems and Computable Functions, edited by M. Davis
(1965), pp. 288– 291.

Post, Emil L. 1947. “Recursive Unsolvability of a Problem of Thue.” Journal of Symbolic
Logic 12: pp. 1– 11.

Potgieter, Petrus H., and Elemér E. Rosinger. 2010. “Output Concepts for Accelerated
Turing Machines.” Natural Computing 9: pp. 853– 864.

Pour- El, Marian B. 1974. “Abstract Computability and Its Relation to the General Purpose
Analog Computer (Some Connections Between Logic, Differential Equations and
Analog Computers).” Transactions of the American Mathematical Society 199: pp. 1– 28.

Pour- El, Marian B., and Ian J. Richards. 1981. “The Wave Equation with Computable
Initial Data Such That Its Unique Solution Is Not Computable.” Advances in
Mathematics 39: pp. 215– 239.

Pour- El, Marian B., and Ian J. Richards. 1989. Computability in Analysis and Physics.
Berlin: Springer.

Putnam, Hilary. 1967. “Psychological Predicates.” In Art, Mind, and Religion, edited by
W. H. Capitan and D. D. Merrill, pp. 37– 48. Pittsburgh, PA: University of Pittsburgh
Press. Reprinted as “The Nature of Mental States.” in Mind, Language and Reality,
Philosophical Papers, vol. 2, edited by H. Putnam, pp. 429– 440. Cambridge: Cambridge
University Press.

Putnam, Hilary. 1988. Representation and Reality. Cambridge, MA: MIT Press.
Putnam, Hilary. 1997. “Functionalism: Cognitive Science or Science Fiction?” In The

Future of the Cognitive Revolution, edited by D. M. Johnson and C. E. Erneling, pp. 32–
44. New York: Oxford University Press.

Putnam, Hilary. 1999. The Threefold Cord: Mind, Body, and World. New York: Columbia
University Press.

292 Bibliography

Pylyshyn, Zenon W. 1984. Computation and Cognition: Toward a Foundation for Cognitive
Science. Cambridge, MA: MIT Press.

Quine, Willard Van Orman. 1960. Word and Object. Cambridge, MA: MIT Press.
Quinon, Paula. 2021. “Can Church’s Thesis Be Viewed as a Carnapian Explication?”

Synthese 198: pp. 1047– 1074.
Ramsey, William M. 2007. Representation Reconsidered. Cambridge: Cambridge

University Press.
Ramsey, William. 2016. “Untangling Two Questions About Mental Representation.” New

Ideas in Psychology 40: pp. 3– 12.
Rapaport, William J. 1999. “Implementation Is Semantic Interpretation.” The Monist

82: pp. 109– 130.
Rathkopf, Charles. 2018. “Network Representation and Complex Systems.” Synthese 195:

pp. 55– 78.
Rescorla, Michael. 2007. “Church’s Thesis and the Conceptual Analysis of Computability.”

Notre Dame Journal of Formal Logic 48: pp. 253– 280.
Rescorla, Michael. 2012. “Are Computational Transitions Sensitive to Semantics?”

Australasian Journal of Philosophy 90: pp. 703– 721.
Rescorla, Michael. 2013. “Against Structuralist Theories of Computational

Implementation.” The British Journal for the Philosophy of Science 64: pp. 681– 707.
Rescorla, Michael. 2014. “A Theory of Computational Implementation.” Synthese 191: pp.

1277– 1307.
Rescorla, Michael. 2015. “The Computational Theory of Mind.” In The Stanford

Encyclopedia of Philosophy, edited by E. N. Zalta. https:// plato.stanford.edu/ archives/
win2015/ entries/ computational- mind/ .

Rescorla, Michael. 2016. “Book Review: Gualtiero Piccinini// Physical Computation.” The
British Journal for the Philosophy of Science, Review of Books.

Rescorla, Michael. 2017. “Levels of Computational Explanation.” In Philosophy and
Computing: Essays in Epistemology, Philosophy of Mind, Logic, and Ethics, edited by
T. M. Powers, pp. 5– 28. Cham: Springer.

Robinson, David A. 1968. “The Oculomotor Control System: A Review.” Proceedings of
the IEEE 56: pp. 1032– 1049.

Robinson, David A. 1989. “Integrating with Neurons.” Annual Review of Neuroscience
12: pp. 33– 45.

Rogers, Hartley Jr. 1987. Theory of Recursive Functions and Effective Computability.
Cambridge, MA: MIT Press (second edition reprint of the 1967 edition).

Rosen, Gideon. 2020. “Abstract Objects.” The Stanford Encyclopedia of Philosophy (Spring
2020 Edition), edited by E. N. Zalta. https:// plato.stanford.edu/ archives/ spr2020/
entries/ abstract- objects/ .

Roth, Martin. 2005. “Program Execution in Connectionist Networks.” Mind and
Language 20: pp. 448– 467.

Rozenberg, Grzegorz, Thomas Bäck, and Joost N. Kok (eds.). 2012. Handbook of Natural
Computing. Berlin, Heidelberg: Springer.

Rubel, Lee A. 1985. “The Brain as an Analog Computer.” Journal of Theoretical
Neurobiology 4: pp. 73– 81.

Rubel, Lee A. 1993. “The Extended Analog Computer.” Advances in Applied Mathematics
14: pp. 39– 50.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning
Representations by Back- Propagating Errors.” Nature 323: pp. 533– 536.

https://plato.stanford.edu/archives/win2015/entries/computational-mind/
https://plato.stanford.edu/archives/win2015/entries/computational-mind/
https://plato.stanford.edu/archives/spr2020/entries/abstract-objects/
https://plato.stanford.edu/archives/spr2020/entries/abstract-objects/

Bibliography 293

Rumelhart, David E., and James L. McClelland. 1986. “On Learning the Past Tenses of
English Verbs.” In Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. Vol. 2: Psychological and Biological Models., edited by J. L. McClelland, D. E.
Rumelhart, and the PDP Research Group, pp. 216– 271. Cambridge, MA: MIT Press.

Rumelhart, David E., James L. McClelland, and the PDP Research Group (eds.). 1986.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol.
1: Foundations. Cambridge, MA: MIT Press.

Rumelhart, David E., Paul Smolensky, James L. McClelland, and Geoffrey E. Hinton. 1986.
“Schemata and Sequential Thought Processes in PDP Models.” In Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Vol. 2: Psychological and
Biological Models. , edited by J. L. McClelland, D. E. Rumelhartand the PDP Research
Group, pp. 7– 57. Cambridge, MA: MIT Press.

Rusanen, Anna- Mari, and Otto Lappi. 2016. “On Computational Explanations.” Synthese
193: pp. 3931– 3949.

Russell, Bertrand A. W. 1915. Our Knowledge of the External World as a Field for Scientific
Method in Philosophy. Chicago: Open Court.

Ryder, Dan. 2004. “SINBAD Neurosemantics: A Theory of Mental Representation.” Mind
& Language 19: pp. 211– 240.

Scarpellini, Bruno. 1963. “Zwei unentscheidbare probleme der analysis.” Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 9: pp. 265– 289.

Scheutz, Matthias. 1999. “When Physical Systems Realize Functions.” Minds and
Machines 9: pp. 161– 196.

Scheutz, Matthias. 2001. “Computational Versus Causal Complexity.” Minds and
Machines 11: pp. 534– 566.

Scheutz, Matthias. 2012. “What It Is Not to Implement a Computation: A Critical Analysis
of Chalmers’s Notion of Implementation.” Journal of Cognitive Science 13: pp. 75– 106.

Schiller, Henry Ian. 2018. “The Swapping Constraint.” Minds and Machines 28: pp.
605– 622.

Schmidhuber, Jürgen. 2000. “Algorithmic Theories of Everything.” ArXiv: quant- ph/
0011122.

Schmidhuber, Jürgen. 2015. “Deep Learning in Neural Networks: An Overview.” Neural
Networks 61: pp. 85– 117.

Schneider, Susan. 2011. The Language of Thought: A New Philosophical Direction.
Cambridge, MA: MIT Press.

Schwarz, Georg. 1992. “Connectionism, Processing, Memory.” Connection Science 4: pp.
207– 226.

Schweizer, Paul. 2014. “Algorithms Implemented in Space and Time.” In Selected Papers
From th 50th Anniversary Convention of the AISB, pp. 128– 135. London: The AISB.

Schweizer, Paul. 2016. “In What Sense Does the Brain Compute?” In Computing and
Philosophy: Selected Papers from IACAP 2014, edited by V. C. Müller, pp. 63– 79.
New York: Springer.

Schweizer, Paul. 2019a. “Triviality Arguments Reconsidered.” Minds and Machines 29: pp.
287– 308.

Schweizer, Paul. 2019b. “Computation in Physical Systems: A Normative Mapping
Account.” In On the Cognitive, Ethical, and Scientific Dimensions of Artificial
Intelligence: Themes from IACAP 2016, edited by D. Berkich and M. V. d'Alfonso, pp.
27– 47. Berlin: Springer.

294 Bibliography

Scott, Dana S., and Christopher Strachey. 1971. Toward a Mathematical Semantics for
Computer Languages, vol. 1. Oxford: Oxford University Computing Laboratory,
Programming Research Group.

Searle, John R. 1980. “Minds, Brains and Programs.” Behavioral and Brain Sciences 3: pp.
417– 457.

Searle, John R. 1992. The Rediscovery of the Mind. Cambridge. MA: MIT Press.
Searle, John R. 1995. The Construction of Social Reality. New York: Free Press.
Segal, Gabriel. 1989. “Seeing What Is Not There.” The Philosophical Review 98: pp.

189– 214.
Segal, Gabriel. 1991. “Defense of a Reasonable Individualism.” Mind 100: pp. 485– 494.
Sejnowski, Terrence J., Christof Koch, and Patricia S. Churchland. 1988. “Computational

Neuroscience.” Science 241: pp. 1299– 1306.
Serban, Maria. 2015. “The Scope and Limits of a Mechanistic View of Computational

Explanation.” Synthese 192: pp. 3371– 3396.
Seung, H. Sebastian. 1996. “How the Brain Keeps the Eyes Still.” Proceedings of the

National Academy of Sciences USA 93: pp. 13339– 13344.
Seung, H. Sebastian. 1998. “Continuous Attractors and Oculomotor Control.” Neural

Networks 11: pp. 1253– 1258.
Seung, H. Sebastian, Daniel D. Lee, Ben Y. Reis, and David W. Tank. 2000. “Stability of

the Memory of Eye Position in a Recurrent Network of Conductance- Based Model
Neurons.” Neuron 26: pp. 259– 271.

Shadmehr, Reza, and Steven P. Wise. 2005. The Computational Neurobiology of Reaching
and Pointing: A Foundation for Motor Learning. Cambridge, MA: MIT Press.

Shagrir, Oron. 1992. “A Neural Net with Self- Inhibiting Units for the N- Queens Problem.”
International Journal of Neural Systems 3: pp. 249– 252.

Shagrir, Oron. 2001. “Content, Computation and Externalism.” Mind 110: pp. 369– 400.
Shagrir, Oron. 2002. “Effective Computation by Humans and Machines.” Minds and

Machines 12: pp. 221– 240.
Shagrir, Oron. 2005. “The Rise and Fall of Computational Functionalism.” In Hilary

Putnam, edited by Y. Ben- Menahem, pp. 220– 250. Cambridge: Cambridge
University Press.

Shagrir, Oron. 2006a. “Gödel on Turing on Computability.” In Church’s Thesis
After 70 Years, edited by A. Olszewski, J. Wolenski, and R. Janusz, pp. 393– 419.
Heusenstamm: Ontos Verlag.

Shagrir, Oron. 2006b. “Why We View the Brain as a Computer.” Synthese 153: pp. 393– 416.
Shagrir, Oron. 2010. “Marr on Computational– Level Theories.” Philosophy of Science

77: pp. 477– 500.
Shagrir, Oron. 2012a. “Computation, Implementation, Cognition.” Minds and Machines

22: pp. 137– 148.
Shagrir, Oron. 2012b. “Can a Brain Possess Two Minds?” Journal of Cognitive Science

13: pp. 145– 165.
Shagrir, Oron. 2012c. “Structural Representations and the Brain.” The British Journal for

the Philosophy of Science 63: pp. 519– 545.
Shagrir, Oron. 2014. “Review of Explaining the Computational Theory of Mind, by Marcin

Miłkowski.” Notre Dame Review of Philosophy.
Shagrir, Oron. 2016. “Advertisement for the Philosophy of the Computational Sciences.”

In The Oxford Handbook of Philosophy of Science, edited by P. Humphreys, pp. 15– 42.
New York: Oxford University Press.

Bibliography 295

Shagrir, Oron. 2017. “Review of Physical Computation: A Mechanistic Account by
Gualtiero Piccinini.” Philosophy of Science 84: pp. 604– 612.

Shagrir, Oron. 2018. “The Brain as an Input- Output Model of the World.” Minds and
Machines 28: pp. 53– 75.

Shagrir, Oron. 2020. “In Defense of the Semantic View of Computation.” Synthese 197: pp.
4083– 4108.

Shagrir, Oron, and William Bechtel. 2017. “Marr’s Computational Level and Delineating
Phenomena.” In Explanation and Integration in Mind and Brain Science, edited by D. M.
Kaplan, pp. 190– 214. New York: Oxford University Press.

Shagrir, Oron, and Itamar Pitowsky. 2003. “Physical Hypercomputation and the Church–
Turing Thesis.” Minds and Machines 13: pp. 87– 101.

Shannon, Claude E. 1948. “A Mathematical Theory of Communication.” Bell System
Technical Journal 27: pp. 379– 423.

Shannon, Claude E., and John McCarthy (eds.). 1956. Automata Studies. Annals of
Mathematics Studies 34. Princeton: Princeton University Press.

Shannon, Claude E., and Warren Weaver. 1949. The Mathematical Theory of
Communication. Champaign, IL: University of Illinois Press.

Shapiro, Lawrence A. 1993. “Content, Kinds, and Individualism in Marr’s Theory of
Vision.” The Philosophical Review 102: pp. 489– 513.

Shapiro, Lawrence A. 1997. “A Clearer Vision.” Philosophy of Science 64: pp. 131– 153.
Shapiro, Lawrence A. 2000. “Multiple Realizations.” The Journal of Philosophy 97: pp.

635– 654.
Shapiro, Lawrence A. 2017. “Mechanism or Bust? Explanation in Psychology.” The British

Journal for the Philosophy of Science 68: pp. 1037– 1059.
Shapiro, Stewart. 1981. “Understanding Church’s Thesis.” Journal of Philosophical Logic

10: pp. 353– 365.
Shapiro, Stewart. 1982. “Acceptable Notation.” Notre Dame Journal of Formal Logic 23:

pp. 14– 20.
Shapiro, Stewart. 1984. “On an ‘Empiricist’ Philosophy of Mathematics.” Philosophia 14:

pp. 213– 223.
Shapiro, Stewart. 1993. “Understanding Church’s Thesis, Again.” Acta Analytica 11:

pp. 59– 77.
Shapiro, Stewart. 2013. “The Open Texture of Computability.” In Computability: Turing,

Gödel, Church, and Beyond, edited by B. J. Copeland, C. Posy, and O. Shagrir, pp. 153–
181. Cambridge, MA: MIT Press.

Sharp, Patricia E., Amanda Tinkelman, and Jeiwon Cho. 2001. “Angular Velocity and
Head Direction Signals Recorded from the Dorsal Tegmental Nucleus of Gudden in the
Rat: Implications for Path Integration in the Head Direction Cell Circuit.” Behavioral
Neuroscience 115: pp. 571– 588.

Shea, Nicholas. 2013. “Naturalising Representational Content.” Philosophy Compass 8: pp.
496– 509.

Shea, Nicholas. 2018. Representation in Cognitive Science. New York: Oxford
University Press.

Shepard, Roger N., and Susan Chipman. 1970. “Second- Order Isomorphism of Internal
Representations: Shapes of States.” Cognitive Psychology 1: pp. 1– 17.

Sher, Gila Y. 1991. The Bounds of Logic: A Generalized Viewpoint. Cambridge,
MA: MIT Press.

296 Bibliography

Sher, Gila Y. 1996. “Did Tarski Commit ‘Tarski’s Fallacy’?” The Journal of Symbolic Logic
61: pp. 653– 686.

Shor, Peter W. 1994. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring.” In Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pp. 124– 134. Los Alamitos, CA: IEEE Computer Society Press.

Shor, Peter W. 1997. “Polynomial- Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer.” SIAM Journal on Computing 26: pp. 1484– 1509.

Sieg, Wilfried. 1994. “Mechanical Procedures and Mathematical Experience.” In
Mathematics and Mind, edited by A. George, pp. 71– 117. New York: Oxford
University Press.

Sieg, Wilfried. 1997. “Step by Recursive Step: Church’s Analysis of Effective Calculability.”
Bulletin of Symbolic Logic 3: pp. 154– 180.

Sieg, Wilfried. 2002. “Calculations by Man and Machine: Conceptual Analysis.” In
Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman,
edited by W. Sieg, R. Sommer, and C. L. Talcott, pp. 390– 409. Natick, MA: Association
for Symbolic Logic.

Sieg, Wilfried. 2006. “Gödel on Computability.” Philosophia Mathematica 14: pp. 189– 207.
Sieg, Wilfried. 2008. “Church Without Dogma: Axioms for Computability.” In New

Computational Paradigms, edited by S. B. Cooper, B. Löwe, and A. Sorbi, pp. 139– 152.
Berlin: Springer.

Sieg, Wilfried. 2009. “On Computability.” In Handbook of the Philosophy of Mathematics,
edited by A. D. Irvine, pp. 535– 630. Amsterdam: Elsevier.

Sieg, Wilfried. 2013a. Hilbert’s Programs and Beyond. New York: Oxford University Press.
Sieg, Wilfried. 2013b. “Gödel’s Philosophical Challenge to Turing.” In

Computability: Turing, Gödel, Church, and Beyond, edited by B. J. Copeland, C. Posy,
and O. Shagrir, pp. 183– 202. Cambridge, MA: MIT Press.

Sieg, Wilfried, and John Byrnes. 1999. “An Abstract Model for Parallel Computations:
Gandy’s Thesis.” The Monist 82: pp. 150– 164.

Siegelmann, Hava T. 1995. “Computation Beyond the Turing Limit.” Science 268: pp.
545– 548.

Siegelmann, Hava T. 1999. Neural Networks and Analog Computation: Beyond the Turing
Limit. Boston: Birkhäuser.

Silverberg, Arnold. 2006. “Chomsky and Egan on Computational Theories of Vision.”
Minds and Machines 16: pp. 495– 524.

Simon, Herbert A. 1962. “The Architecture of Complexity.” Proceedings of the American
Philosophical Society 106: pp. 467– 482.

Smith, Brian C. 1996. On the Origin of Objects. Cambridge, MA: MIT Press.
Smith, Brian C. 2002. “The Foundations of Computing.” In Computationalism: New

Directions, edited by M. Scheutz, pp. 23– 58. Cambridge, MA: MIT Press.
Smith, Brian C. 2010. Introduction to Age of Significance. Available at https://

web.archive.org/ web/ 20161019202810/ http:// ageofsignificance.org/ aos/ en/ toc.html.
Smolensky, Paul. 1988. “On the Proper Treatment of Connectionism.” Behavioral and

Brain Sciences 11: pp. 1– 23.
Smolensky, Paul, and Géraldine Legendre. 2006. The Harmonic Mind: From Neural

Computation to Optimality- Theoretic Grammar, vols. 1– 2. Cambridge, MA: MIT Press.
Smolensky, Paul, Géraldine Legendre, and Yoshiro Miyata. 1992. “Principles for an

Integrated Connectionist/ Symbolic Theory of Higher Cognition.” Technical Report
CU- CS- 600- 92. Department of Computer Science, University of Colorado at Boulder.

http://ageofsignificance.org/aos/en/toc.html
https://web.archive.org/web/20161019202810/
https://web.archive.org/web/20161019202810/

Bibliography 297

Soare, Robert I. 1996. Computability and Recursion. Bulletin of Symbolic Logic 2: pp.
284– 321.

Sosic, Rok, and Jun Gu. 1990. “A Polynomial Time Algorithm for the N- Queens Problem.”
SIGART Bulletin 1: pp. 7– 11.

Sosic, Rok, and Jun Gu. 1991. “3,000,000 Queens in Less Than One Minute.” SIGART
Bulletin 2: pp. 22– 24.

Sprevak, Mark. 2010. “Computation, Individuation, and the Received View on
Representation.” Studies in History and Philosophy of Science 41: pp. 260– 270.

Sprevak, Mark. 2012. “Three Challenges to Chalmers on Computational Implementation.”
Journal of Cognitive Science 13: pp. 107– 143.

Sprevak, Mark. 2013. “Fictionalism About Neural Representations.” The Monist 96: pp.
539– 560.

Sprevak, Mark. 2018. “Triviality Arguments About Computational Implementation.”
In Routledge Handbook of the Computational Mind, edited by M. Sprevak and M.
Colombo, pp. 175– 191. London: Routledge.

Sterelny, Kim. 1990. The Representational Theory of Mind: An Introduction.
Oxford: Blackwell.

Stern, Peter, and John Travis. 2006. “Of Bytes and Brains.” Science 314: p. 75.
Stewart, Ian. 1991. “Deciding the Undecidable.” Nature 352: pp. 664– 665.
Stich, Stephen P. 1983. From Folk Psychology to Cognitive Science: The Case Against Belief.

Cambridge, MA: MIT Press.
Stich, Stephen P. 1991. “Narrow Content Meets Fat Syntax.” In Meaning in Mind: Fodor

and His Critics, edited by B. M. Loewer and G. Rey, pp. 239– 254. Oxford: Blackwell.
Suárez, Mauricio. 2010. “Scientific Representation.” Philosophy Compass 5: pp. 91– 101.
Swoyer, Chris. 1991. “Structural Representation and Surrogative Reasoning.” Synthese

87: pp. 449– 508.
Syropoulos, Apostolos. 2008. Hypercomputation: Computing Beyond the Church- Turing

Barrier. Berlin: Springer.
Teller, Paul. 1980. “Computer Proof.” The Journal of Philosophy 77: pp. 797– 803.
Tucker, Chris. 2018. “How to Explain Miscomputation.” Philosophers’ Imprint 18: pp. 1– 17.
Tucker, John V., and Jeffery I. Zucker. 2004. “Abstract Versus Concrete Computation on

Metric Partial Algebras.” ACM Transactions on Computational Logic 5: pp. 611– 668.
Turing, Alan M. 1936. “On Computable Numbers, with an Application to the

Entscheidungsproblem.” Proceedings of the London Mathematical Society, Series 2,
42: pp. 230– 265. Reprinted in The Essential Turing, edited by B. Jack Copeland (2004a),
pp. 58– 90. Page references are to Copeland.

Turing, Alan M. 1937. “On Computable Numbers, with an Application to the
‘Entscheidungsproblem.’ A Correction.” Proceedings of the London Mathematical
Society, series 2, 43: pp. 544– 546.

Turing, Alan M. 1939. “Systems of Logic Based on Ordinals.” Proceedings of the London
Mathematical Society, series 2, 45: pp. 161– 228.

Turing, Alan M. 1948. “Rounding– Off Errors in Matrix Processes.” The Quarterly Journal
of Mechanics and Applied Mathematics 1: pp. 287– 308.

Turing, Alan M. 1950. “Computing Machinery and Intelligence.” Mind 59: pp. 433– 460.
Turner, Raymond. 2013. “The Philosophy of Computer Science.” In Stanford Encyclopedia

of Philosophy, edited by E. N. Zalta. http:// plato.stanford.edu/ entries/ computer-
science/ .

http://plato.stanford.edu/entries/computerscience/
http://plato.stanford.edu/entries/computerscience/

298 Bibliography

Tymoczko, Thomas. 1979. “The Four- Color Problem and Its Philosophical Significance.”
The Journal of Philosophy 76: pp. 57– 83.

Ullman, Shimon. 1979. The Interpretation of Visual Motion. Cambridge, MA: MIT Press.
Ulmann, Bernd. 2013. Analog Computing. Munich: Oldenbourg Verlag.
Urquhart, Alasdair. 2010. “Von Neumann, Gödel and Complexity Theory.” Bulletin of

Symbolic Logic 16: pp. 516– 530.
Van Gelder, Tim. 1995. “What Might Cognition Be if Not Computation?” The Journal of

Philosophy 92: pp. 345– 381.
Van Rooij, Iris, Mark Blokpoel, Johan Kwisthout, and Todd Wareham. 2019. Cognition

and Intractability: A Guide to Classical and Parameterized Complexity Analysis.
Cambridge: Cambridge University Press.

Vardi, Moshe Y. 2012. “What Is an Algorithm?” Communications of the ACM 55: p. 5.
Von Neumann, John. 1927. “Zur Hilbertschen Beweistheorie.” Mathematische Zeitschrift

26: pp. 1– 46.
Von Neumann, John. 1958. The Computer and the Brain. London: Yale University Press.
Wang, Hao. 1974. From Mathematics to Philosophy. London: Routledge & Kegan Paul.
Weihrauch, Klaus. 2000. Computable Analysis: An Introduction. Berlin, Heidelberg:

Springer.
Weihrauch, Klaus, and Ning Zhong. 2002. “Is Wave Propagation Computable or Can

Wave Computers Beat the Turing Machine?” Proceedings of the London Mathematical
Society 85: pp. 312– 332.

Weisberg, Michael. 2013. Simulation and Similarity: Using Models to Understand the
World. New York: Oxford University Press.

Weiskopf, Daniel A. 2011. “Models and Mechanisms in Psychological Explanation.”
Synthese 183: pp. 313– 338.

Welch, Philip D. 2008. “The Extent of Computation in Malament- Hogarth Spacetimes.”
The British Journal for the Philosophy of Science 59: pp. 659– 674.

Weyl, Hermann. 1949. Philosophy of Mathematics and Natural Science. Princeton:
Princeton University Press.

Wheeler, John A. 1990. “Information, Physics, Quantum: The Search for Links.” In
Complexity, Entropy, and the Physics of Information, edited by W. H. Zurek, pp. 3– 28.
Redwood City, CA: Addison- Wesley.

Wiener, Norbert. 1948. Cybernetics or Control and Communication in the Animal and the
Machine. Cambridge, MA: MIT Press.

Wilson, Robert A. 1994. “Wide Computationalism.” Mind 103: pp. 351– 372.
Wilson, Robert A. 2004. Boundaries of the Mind: The Individual in the Fragile Sciences:

Cognition. Cambridge: Cambridge University Press.
Winsberg, Eric. 2010. Science in the Age of Computer Simulation. Chicago: University of

Chicago Press.
Wolfram, Stephen. 1985. “Undecidability and Intractability in Theoretical Physics.”

Physical Review Letters 54: pp. 735– 738.
Wolfram, Stephen. 2002. A New Kind of Science. Champaign, IL: Wolfram Media.
Woodward, James. 2003. Making Things Happen: A Theory of Causal Explanation.

New York: Oxford University Press.
Yanofsky, Noson S. 2011. “Towards a Definition of an Algorithm.” Journal of Logic and

Computation 21: pp. 253– 286.
Yao, Andrew Chi- Chih. 2003. “Classical Physics and the Church- Turing Thesis.” Journal

of the ACM (JACM) 50: pp. 100– 105.

Bibliography 299

Zach, Richard. 2019. “Hilbert’s Program.” In The Stanford Encyclopedia of Philosophy, ed-
ited by E. N. Zalta. http:// plato.stanford.edu/ entries/ hilbert- program/ .

Zipser, David, and Richard A. Andersen. 1988. “A Back- Propagation Programmed
Network That Simulates Response Properties of a Subset of Posterior Parietal
Neurons.” Nature 331: pp. 679– 684.

Zuse, Konrad. 1967. “Rechnender Raum.” Elektronische Datenverarbeitung 8: pp. 336– 344.

http://plato.stanford.edu/entries/hilbert-program/

Aaronson, Scott, 42n39, 65n32
Abbott, Laurence, 8n4, 164, 261
Abrahamsen, Adele, 110n27
Ackermann, Wilhelm, 29, 29n13, 33
Aharonov, Dorit, 66, 67, 74
Aitken, Wayne, 81
Amit, Daniel, 106, 107– 108n25, 142, 236
Andersen, Holly, 146n3
Andersen, Richard, 106n20, 246, 249, 253
Anderson, Charles, 108n25, 233, 236n9, 245
Anderson, James, 103n15, 110n27
Anderson, Neal, 4, 7n3, 16n16, 126n9
Andréka, Hajnal, 81n55, 83, 84n57
Astrachan, Owen, 55
Avigad, Jeremy, 76

Bahar, Sonya, 14n13, 75n42, 117n44, 118n45
Barrett, David, 157
Barrett, Jeffrey, 81
Bartels, Andreas, 229n2
Barto, Andrew, 161, 162
Bassett, Joshua, 251
Bechtel, William, 110n27, 146n3, 157, 158, 166,

247, 247n20, 257
Becker, Wolfgang, 236, 237
Beggs, Edwin, 80n53
Bengio, Yoshya, 106n22
Bernays, Paul, 34
Bernstein, Ethan, 55, 67, 72
Bishop, John Mark, 129n20, 207n4
Blackmon, James, 130n26
Blake, Ralph, 80
Blass, Andreas, 63n24, 64n29
Block, Ned, 101n11, 127n16, 182, 189, 199n35,

205– 206, 219
Blum, Lenore, 76n47
Boden, Margaret, 22n22
Boghossian, Paul, 43n40
Boker, Udi, 28n4, 28n8, 64n29
Bontly, Thomas, 186n22
Boolos, George, 33n20, 33n21, 80n51, 191n28
Boone, Worth, 145, 158n15
Botvinick, Matthew, 161, 161n19, 162, 162n21
Bournez, Oliver, 75n43

Brabazon, Anthony, 61n14
Brattka, Vasco, 76n46
Braverman, Mark, 76n46
Bringsjord, Selmer, 77n49
Brown, Curtis, 132n29, 135n33, 138n43
Buckner, Cameron, 113
Burge, Tyler, 177, 179, 199n35, 213, 260n29
Button, Tim, 81
Buzaglo, Meir, 62n15

Campbell, Douglas Ian, 143n46
Cannon, Stephen, 233
Cao, Rosa, 21n21, 24n25
Carandini, Matteo, 152n10, 165
Chaitin, Gregory, 183n17
Chalmers, David, 119, 119n1, 123, 126, 127n10,

129n20, 129n21, 130– 132, 132n29, 133,
133n30, 134, 136, 136n38, 136n39, 136n40,
137, 137n42, 138– 139, 139n44, 140– 144,
149n4, 150n6, 193, 201, 203, 207, 215n11

Chater, Nick, 99n7
Chemero, Anthony, 9n7
Chirimuuta, Mazviita, 153n11, 157, 158, 164,

164n23, 165, 165n25– 26, 254, 261– 263
Chomsky, Noam, 42
Chrisley, Ronald, 123n5, 129n20, 134n32
Church, Alonzo, 26, 26n1, 27, 27n3, 28, 28n6,

29n12, 30, 31n17, 32, 33, 33n22, 34, 34n25,
35n28, 36n31, 39, 40, 45, 55, 62, 65

Churchland, Patricia, 8n4, 11, 13, 14, 16, 102,
110n27, 184, 186, 197, 245

Churchland, Paul, 110n27, 184, 245, 255
Clark, Andy, 99n7, 245n18
Cleland, Carol, 65, 65n30, 120n2
Cobham, Alan, 66
Coelho Mollo, Dimitri, 3n2, 5, 21n19, 143,

145, 163, 168– 171, 194, 195, 214, 215– 216,
216n13, 217– 221

Cohen, Rina, 56n8, 57
Collett, Matthew, 250n22
Collett, Thomas, 250n22
Colombo, Matteo, 17
Conklin, John, 250n22
Cook, Stephen, 76n46

Name Index

302 name Index

Copeland, Jack, 2, 4, 7n3, 11, 11n9, 12, 26n2,
27, 28n4, 28n8, 35, 35n30, 39n33, 43, 43n41,
43n42, 45n46, 46n48, 49n2, 55– 56, 56n5– 7,
58, 60, 62, 63, 65, 65n31, 68n35, 70n36, 73,
78, 79, 80n52, 81n54, 85n60, 93, 95, 98n4,
99n8, 116n40, 122– 124, 129n20, 129n21,
129n24, 135n36, 143, 143n46, 150, 150n6,
201n1, 206n3

Crane, Tim, 2, 93, 178, 188n24, 191n27, 196n33
Craver, Carl, 145, 146n3, 151, 152– 153, 156,

158n15, 160, 165n25– 26, 171
Cucker, Felipe, 76n47
Cummins, Robert, 2, 4– 5, 88, 88n1, 89, 90– 95,

95n3, 96, 99, 101, 103, 110, 111, 111n32, 112,
112n33, 112n36, 113, 115, 116, 118, 152,
152n9, 163, 167, 180n8, 180n9, 180n11, 181,
182, 234, 239, 240, 240n14, 241, 243

Daniels, Norman, 15n15
Darden, Lindley, 146n3
Dasgupta, Dipanker, 173, 173n32
Davies, Brian, 80n53, 81n54
Davies, Martin, 209n8, 260n29
Davis, Martin, 31, 31n17, 32n18, 34n24,

35n29, 36n31
Dayan, Peter, 8n4, 164, 261
De Mol, Liesbeth, 45n45
Dean, Walter, 63n21, 65n32
Demopoulos, William, 101n11
Dennett, Daniel, 55, 184, 190
Dershowitz, Nachum, 28n4, 28n8, 62,

63n24, 64n29
Descartes, René, 29
Deutsch, David, 70, 77
Dewhurst, Joe, 5, 17, 145, 171, 172n29, 176, 215,

216n13, 217– 218, 219, 220, 221, 226n18
Dodig- Crnkovic, Gordana, 7n3
Dresner, Eli, 41n36, 129n25, 239n13
Dretske, Fred, 19, 20n18, 180n10, 181,

181n12, 182
Dreyfus, Hubert, 9n7

Earman, John, 70n37, 76n48, 77, 81n54, 83– 84
Edmonds, Jack, 66
Egan, Frances, 129n25, 157, 157n13, 166n28,

175n2, 176, 198, 199n34, 213, 213n10, 219,
258– 261

Einstein, Albert, 81
Elber- Dorozko, Lotem, 160n16, 161n18,

162n21, 254
Eliasmith, Chris, 108n25, 116n43, 223, 236n9,

245, 250n22
Essick, Greg, 246
Etesi, Gábor, 81, 84n57

Etienne, Ariane, 250n22, 251– 252
Euclid, 29

Feferman, Solomon, 76n47
Fernau, Henning, 108n26
Figdor, Carrie, 199n35
Floridi, Luciano, 182
Fodor, Jerry, 2, 3, 9, 93, 101n11, 110n28,

112n35, 122n3, 127n15, 149, 150n6, 152,
152n9, 163, 178, 178n6, 179, 180n8, 182, 184,
199n34, 243– 244, 255

Folina, Janet, 28n8
Fortnow, Lance, 65
Frege, Gottlob, 29
French, Steven, 229n2
Fresco, Nir, 6n1, 7, 17, 18, 58, 100n10, 129n25,

145, 150n5, 150n6, 177, 183n16, 201n1,
206– 207n3, 216n12, 216n14

Frigg, Roman, 9n6, 74n41, 105n18,
106n19, 229n1

Gallistel, Charles, 110n28, 232n3,
243n16, 250n22

Gandy, Robin, 27, 29n13, 32n19, 33n23, 35,
38, 39– 41, 42, 42n38, 45, 46, 47, 49– 53, 54,
58– 59, 62, 63n22, 64, 68– 69, 73, 79, 80– 81,
85, 87, 100n10

Garson, James, 113
Gherardi, Guido, 75n44– 45, 76n47, 78n50
Gibbon, John, 110n28
Giere, Ronald, 229n2
Glennan, Stuart, 146n3
Glimcher, Paul, 233
Gödel, Kurt, 11– 12, 11n9, 12nn11– 12, 27, 29,

29n11, 29n14, 30– 32, 30n16, 31n17, 32n18,
33, 34– 35, 34n24, 35n27, 36n31, 38, 38n32,
43n42, 44n44, 45, 62, 62n16, 65n32

Godfrey- Smith, Peter, 129, 129n24, 132n28,
135– 136, 135n34– 35, 136n37, 189

Goel, Vinod, 101n11
Goff, Philip, 127n12
Gold, Arie, 56n8, 57
Goldman, Mark, 233n6
Goldreich, Oded, 66n33, 66
Goodman, Nelson, 101n11
Grier, David, 40n34
Griffiths, Thomas, 99n7, 245n18
Grush, Rick, 245– 247, 245n18, 253n26
Grzegorczyk, Andrzej, 75n46, 76– 78
Gu, Jun, 108n26
Gurari, Eitan, 99n5
Gurevich, Yuri, 61, 62, 62n17– 19, 63, 63n23,

63n24, 64– 65, 64n26, 64n28, 64n29, 68n35
Gutfreund, Hanoch, 106

name Index 303

Hafting, Torkel, 251n23
Haimovici, Sabrina, 157, 163
Hamkins, Joel, 56, 56n8, 57, 57n10
Harbecke, Jens, 160n16, 223n16
Hardcastle, Valerie Gray, 149, 171
Harel, David, 64, 72
Hartmann, Stephan, 74n41, 105n18,

106n19, 229n1
Haugeland, John, 2, 93, 101n11, 149n4
Heeger, David, 152n10, 165
Hemmo, Meir, 195n30, 207n4, 225n17
Herbrand, Jacques, 27, 32
Hertz, John, 106, 106n23
Hess, Robert, 236, 237
Hilbert, David, 29, 29n10, 29n11, 29n13,

30, 33, 34
Hildreth, Ellen, 252n24, 258
Hinckfuss, Ian, 120
Hinton, Geoffrey, 106n21, 106n22, 107– 108n25,

110n27, 114n39
Hoffmann, Geoffrey, 173
Hogarth, Mark, 81, 81n56, 82
Homer, Steve, 65
Hopcroft, John, 60, 64
Hopfield, John, 106, 107, 107n24, 107n25, 109,

116, 117, 242
Horowitz, Amir, 186n22, 221
Horsman, Clare, 240n14
Horsman, Dominic, 240n14
Horst, Steven, 9n8
Hubel, David, 165, 260
Humphreys, Paul, 9n6
Huneman, Philippe, 155
Hutto, Daniel, 9n7

Illari, Phyllis McKay, 146n3
Impagliazzo, John, 60

Jeffrey, Richard, 33n20– 21, 80n51, 191n28
Jerne, Hiels, 173

Kaplan, David, 145, 145n1, 158n15, 163,
165n24, 165n25, 165n26

Kemp, Charles, 245n18
King, Adam Philip, 232n3, 243n16, 250n22
Kitcher, Patricia, 260n29
Kleene, Stephen, 27, 27n3, 28, 28n5– 6, 31n17,

33, 34, 36n31, 38, 39n33, 62
Klein, Colin, 129n22, 138n43
Klein, Horst- Manfred, 236, 237
Knuth, Donald, 62n18, 63n20
Koch, Christof, 8n4, 11, 13, 14, 15n14, 16,

111n29, 197, 245
Koepke, Peter, 58

Kolmogorov, Andrei, 62n18, 183n17
Komar, Arthur, 77
Kreisel, Georg, 43n42, 77
Kripke, Saul, 33n23, 43n40, 45
Krizhevsky, Alex, 106n22
Krogh, Anders, 106, 106n23

Lacombe, Daniel, 75n46
Ladyman, James, 186, 229n2
Lappi, Otto, 145n1, 153n11, 166n27– 28, 254
LeCun, Yann, 106n22
Lee, Jonny, 3, 4, 17, 177n4, 178n5
Legendre, Géraldine, 114, 114n38
Leibniz, Gottfried Wilhelm, 29
Leigh, R. John, 233, 233n5
Levin, Janet, 127n14
Levy, Arnon, 152n7, 155, 158
Lewis, Andy, 56, 57n10
Lewis, David, 101n11
Lewis, Harry, 60, 61n12– 13, 191, 192
Löwe, Benedikt, 57– 58
Lycan, William, 120n2

Machamer, Peter, 146n3
Malament, David, 81
Maley, Corey, 14n13, 101n12, 116n42, 170, 172,

244, 244n17
Manchak, John Byron, 80
Mancosu, Paolo, 29n13
Marr, David, 153, 154, 160– 161, 166, 166n27,

166n28, 171, 180n10, 219, 247– 248, 252,
252n25, 257– 258, 259, 260, 260n29, 261,
262, 265

Matthews, Robert, 129n25
Maudlin, Tim, 207n4
Mazur, Stanislaw, 75n46
McCarthy, John, 34n26
McClelland, James, 103n17, 107– 108n25,

111n30, 113, 114n39
McCulloch, Warren, 34n26, 103, 103n14, 201n2
McGarraghy, Seán, 61n14
McNaughton, Bruce, 250n22
Melnyk, Andrew, 129n20
Mendelson, Elliot, 28n8
Miłkowski, Marcin, 22n22, 58, 129n23, 135,

138n43, 140n45, 145, 145n2, 150, 150n5, 152,
177, 216n12, 216n14, 216n15

Millhouse, Tyler, 129n25
Millikan, Ruth Garrett, 171, 181, 182
Milner, Robin, 63
Minsky, Marvin, 34n26, 103n16, 111n30,

116, 201n2
Mittelstaedt, Hort, 250n22
Mittelstaedt, Marie- Luise, 250n22

304 name Index

Miyata, Yoshiro, 114
Morgan, Alex, 173n31
Morton, Peter, 260n29
Moschovakis, Yiannis, 63– 64, 87
Müller, Vincent, 7n3
Munakata, Yuko, 8n4, 111n29

Nadel, Lynn, 150, 245
Nagin, Paul, 60
Neander, Karen, 171
Németi, István, 81, 81n55, 83, 84n57, 84n59
Németi, Peter, 83, 84n57
Newell, Allen, 2, 55, 93
Niv, Yael, 161, 161n19, 162, 162n21
Norton, John, 42n38, 80n53, 83– 84

O'Brien, Gerard, 110n27, 199n35, 245
Odifreddi, Piergiorgio, 63n20
O'Keefe, John, 150, 245
O'Neill, Mark, 61n14
Opie, Jon, 110n27, 199n35, 245
O'Reilly, Randall, 8n4
Orlandi, Nico, 9n7

Palmer, Stephen, 106, 106n23, 243n16
Papadimitriou, Christos, 60, 61n12, 191, 192
Papayannopoulos, Philippos, 75n43, 76n47,

102n13, 244, 244n17
Paschalis, Vasilis, 63– 64, 87
Pavlov, Boris, 78, 99n6
Peacocke, Christopher, 199n35, 260n29
Pellionisz, Andras, 103n15
Penrose, Roger, 77
Piccinini, Gualtiero, 2, 2n1, 4– 6, 6n1, 7n3, 9n5,

10, 11, 14n13, 15– 16, 16n16, 17, 18, 19– 20,
21, 22– 23, 43n42, 55, 58, 70, 70n38– 39, 71–
73, 73n40, 75n42, 78, 100n10, 103n14, 111,
114, 114n37– 38, 116n41, 117n44, 118n45,
126n9, 127n13, 129n23, 137n42, 139,
140n45, 143, 145– 148, 149, 150n5, 150n6,
151– 153, 158, 158n15, 159, 160, 161n20, 163,
164n22, 165n25, 167– 169, 170– 173, 173n31,
175n1, 175n2, 176, 180– 182, 183n16, 186n21,
186n22, 191, 192n29, 194– 195, 196, 196n32,
197, 199, 216, 218, 219, 221, 222, 225– 228

Pitowsky, Itamar, 70n37, 78, 79, 81, 81n55,
84n58, 85, 96– 98, 99, 118

Pitts, Walter, 34n26, 103, 103n14,
111n30, 201n2

Plotkin, Gordon, 183n18
Pnueli, Amir, 63n25
Polger, Thomas, 122n3, 157n13
Post, Emil, 26n1, 28, 45, 45n45
Potgieter, Petrus, 80n52

Pour- El, Marian, 70n37, 75n46, 77– 78, 147
Primiero, Giuseppe, 17
Proudfoot, Diane, 28n4
Putnam, Hillary, 119– 120, 122, 122n3, 122n4,

123– 124, 124n6, 125n8, 127, 127n15, 128–
129n17, 130– 132, 130n27, 135, 136n37, 136,
202– 203

Pylyshyn, Zenon, 2, 3, 9, 93, 101n11, 110n28,
111n31, 112n34, 112n35, 197, 243

Quine, Willard Van Orman, 184
Quinon, Paula, 33n22

Ramsey, William, 23– 24, 23n23, 24n24, 24n26,
95, 180n8, 180n9, 180n11, 181, 182, 184–
185, 230

Rapaport, William, 130n26
Rescorla, Michael, 28n4, 164n22, 175n1, 176,

177, 186n21, 189– 190, 190n26, 196n32,
199n35, 200, 201, 208

Richards, Ian, 70n37, 75n46, 77– 78
Richardson, Robert, 146n3
Roberts, Bryan, 80
Robinson, David, 219, 233– 234, 233n5,

236n9, 250
Rogers, Hartley Jr., 63n20
Rosen, Gideon, 41n35
Rosenfeld, Edward, 103n15
Rosinger, Elemér, 80n52
Rosser, Barkley, 27
Roth, Martin, 113, 114– 115
Rumelhart, David, 103n17, 106n21, 107n25,

113, 114n39
Rusanen, Anna- Mari, 145n2, 153n11, 166n27–

28, 254
Russell, Bertrand, 80
Ryder, Dan, 245

Scarantino, Andrea, 180, 181n12, 182
Scarpellini, Bruno, 77
Scheutz, Matthias, 129n21, 129n24, 135,

135n33, 136n38, 215n11
Schiller, Henry Ian, 216n14
Schmidhuber, Jürgen, 7n3, 106n22
Schneider, Susan, 9– 10n8
Schwarz, Georg, 111, 112n33, 112n35, 115– 116
Schweizer, Paul, 21n20, 24n25, 129n19,

129n20, 129n21
Scott, Dana, 183n19
Seager, William, 127n12
Searle, John, 9n7, 18n17, 120, 121– 122, 123,

124, 125n8, 127, 128– 129, 129n18, 129n21,
130n27, 135, 136, 202– 203

Segal, Gabriel, 260n29

name Index 305

Sejnowski, Terrence, 8n4, 11, 13, 14, 16, 102,
110n27, 186, 197, 245

Seung, Sebastian, 107n25, 233, 236, 236n9, 237,
238n10, 250, 255

Shadmehr, Reza, 111n29
Shannon, Claude, 34n26, 183, 191
Shapiro, Lawrence, 122n3, 157, 157n13,

158, 260n29
Shapiro, Stewart, 28n4, 28n7, 28n8,

46n47, 62n15
Sharp, Patricia, 251
Shea, Nicholas, 186n22, 208, 221
Shenker, Orly, 195n30, 207n4, 225n17
Shepard, Roger, 243n16
Sher, Gila, 184n20
Shor, Peter, 67
Shub, Michael, 76n47
Sieg, Wilfried, 27, 29n9, 29n10, 30n15, 33n23,

34, 35, 35n30, 36n31, 38, 39n33, 41, 42,
43n42, 49n1, 68n34, 100n10

Siegel, Michael, 63n25
Siegel, Ralph, 246
Siegelmann, Hava, 116
Silverberg, Arnold, 260n29
Simon, Herbert, 2, 93, 154
Singerman, Eli, 63n25
Smale, Steve, 76n47
Smith, Brian, 6– 7, 6n1, 6n2, 9, 71, 74, 265
Smolensky, Paul, 107n25, 114, 114n38
Soare, Robert, 35
Sompolinsky, Haim, 106
Sosic, Rok, 108n26
Sprevak, Mark, 3, 7n3, 17, 58, 79, 120n2,

130n26, 135n33– 34, 136n39, 137n42,
138n43, 144, 175n1, 176, 178n5, 180– 181,
182n14, 186, 186n21, 188n23, 189n25,
191, 196, 196n31, 199– 200, 201, 216n14,
218, 260n29

Staiger, Ludwig, 80n52
Sterelny, Kim, 260n29
Stern, Peter, 8, 15n14
Stewart, Ian, 80
Stich, Stephen, 2, 93, 150n6, 177, 194
Strachey, Christopher, 183n19
Suárez, Mauricio, 232n4
Sutskever, Ilya, 106n22
Swoyer, Chris, 121, 229, 232, 253n26
Sylvan, Richard, 56n5
Syropoulos, Apostolos, 56n5

Tank, David, 107n25, 117
Taube, Jeffrey, 251
Teller, Paul, 42n39

Tenenbaum, Joshua, 99n7, 245n18
Travis, John, 8, 15n14
Tucker, Chris, 17
Tucker, John, 63n25, 80n53
Turing, Alan, 4, 12n10, 26, 26n1, 26n2, 27, 28,

28n6, 29n12, 30, 32, 33n22, 33n23, 34, 34n26,
35, 35n27, 35n29, 36, 36n31, 37– 40, 42, 43,
43n42, 44– 49, 52– 55, 61, 62, 64, 64n28, 65,
75, 75n44, 75n45, 76n47, 243

Turner, Raymond, 191
Tymoczko, Thomas, 42n39

Ullman, Jeffrey, 60, 64
Ullman, Shimon, 252, 252n24
Ulmann, Bernd, 102n13, 244
Urquhart, Alasdair, 65n32
Uspensky, Vladimir, 62n18

Vardi, Moshe, 63
Vazirani, Umesh, 66, 67, 72, 74
Von Neumann, John, 30n15

Wang, Hao, 34– 35, 44n44, 62n16
Weaver, Warren, 183
Weihrauch, Klaus, 75n46, 78n50
Weisberg, Michael, 9n6, 105n18, 157, 229n1
Weiskopf, Daniel, 155, 157, 158
Welch, Philip, 81
Weyl, Hermann, 80
Wheeler, John, 7n3
Wiener, Norbert, 183
Wiesel, Torsten, 165, 260
Williams, Ronald, 106n21
Williamson, Jon, 146n3
Wilson, Robert, 186n22
Winsberg, Eric, 9n6
Wise, Steven, 111n29
Wolf, Marty, 100n10, 201n1, 206n3
Wolfram, Stephen, 7n3, 70, 77
Woodward, James, 254

Yang, Yi, 143n46
Yanofsky, Noson, 63
Yao, Andrew Chi- Chih, 66
Yuille, Alan, 99n7

Zach, Richard, 29n10
Zee, David, 233, 233n5
Zenzen, Michael John, 77n49
Zhong, Ning, 78n50
Zipser, David, 106n20, 246, 249, 253
Zucker, Jeffrey, 63n25
Zuse, Konrad, 7

abstract
causal organization, 139
causal structure, 2, 139, 142
as distinct from concrete computation, 6,

41n35, 63n25, 71, 72
entities/ object, 63, 65, 72, 91, 158n14
See also explanation: abstract;

property: abstract; machine:
abstract

abstraction, 41n36, 157– 158
as contrasted with idealization, 42n38, 51

accelerating/ accelerated machine.
See machine: accelerating/
accelerated

algorithm
analog, 61
definability, 63– 65
distributed, 61
effective procedures and, 2, 26, 29, 41, 64,

65, 65n31
hybrid, 61
interactive, 61
level (algorithmic), 159, 231, 247, 248,

258, 265
non- effective, 64n26, 65
parallel, 64, 64n29
physically implementable, 64
probabilistic, 167
quantum, 61
real- time, 61
sequential, 61, 64, 64n28, 64n29
symbolic, 64n28

algorithmic (machine) computation, 26, 41, 47,
49, 60, 61– 69, 79, 83, 84, 86, 87

analog, 89, 107, 116n42, 117– 118, 153, 159, 234,
236, 244n17

computation, 17, 75n43, 96, 100, 100n10,
102– 103, 137, 148, 217, 244

computer, 14, 75n42, 87, 101n12, 118,
147, 244

digital as distinct from, 17, 100– 101, 101n11,
116, 117– 118

machine, 86
real- valued neural network, 116
representation, 244, 255

architectural accounts of computation, 2– 3,
115, 118, 138, 139, 147, 149

architectural dogma, 88, 92, 119
artificial intelligence (AI), 9, 103, 106
attractor neural network (ANN). See neural

network: attractor
automata (automaton), 60, 127n11, 133, 134,

135, 138, 143, 148, 201, 205, 206, 207, 208,
209– 210, 214, 218, 226

abstract, 1, 14, 71, 130
cellular, 7, 138
combinatorial state (CSA), 132, 133, 138, 205
finite- state (FSA), 10, 20, 98, 111, 111nn30–31,

120, 123, 124, 128, 137
implementation of, 2, 125, 126, 134, 136,

201, 208, 210, 211, 212, 214, 216– 217, 218,
221, 224

maximal, 214, 215, 215n11, 216
automata theory, 2, 26, 33, 34n26, 60, 116, 137,

91– 192, 265
automatic formal system, 2, 149n4

broad conception of computation (BCC),
The, 58, 83

Church- Turing thesis (CTT), 12, 28, 28n6,
31n17, 33– 35, 34n26, 55, 57, 60, 64n29, 65,
65n31, 66, 70, 70n39

CTT- Algorithm (CTT- A), 61, 66, 67, 84, 85
CTT- Bold (CTT- B), 55– 56, 57, 70
CTT- Extended (CTT- E), 66– 67
CTT- Original (CTT- O), 61, 65n31
See also Physical Church- Turing thesis

classical theories of cognition, 9, 103, 180, 185,
197, 243, 245

classification criteria (desiderata), 17, 24, 88,
92, 241

Cobham- Edmonds thesis, 66
cognitive criterion (desideratum), 6, 7, 9, 266
cognitive science, 3n2, 9, 10, 14, 21n21, 94, 99,

103, 128, 128n17, 135, 145, 152, 155, 158,
164, 177, 180, 196, 245, 267

communication, theory of (Shannon), 183.
See also information theory

competence/ performance distinction, 42– 43

Subject Index

308 Subject Index

computability
axioms of, 36, 44, 52
bit, 76n46
effective, 26, 27, 30, 31, 32, 34, 35, 40, 45,

46– 47, 75
founders of, 26, 62, 65, 268
human, 4, 44, 52

computability theory, 2, 25, 60, 74, 119, 146,
167, 174, 191, 265

computable function, 27, 28, 33, 35– 36, 39, 41,
46, 61, 62, 66, 75– 76, 77

computation
effective, 26, 27, 28, 34, 37, 38, 40, 41, 43n42,

44, 46, 64, 65, 268
human, 27, 47, 53, 61, 62, 62n15, 65
indeterminacy of, 201n1, 212, 216n14, 222, 225
machine, 4, 26, 27, 40– 41, 46, 47, 49, 54, 55,

59, 61– 65, 67, 69, 87, 100n10
neural, 9, 21n21, 99, 103– 117, 253
parallel, 46– 47, 49, 52
probabilistic, 99
quantum, 66, 67, 70
real- valued, 75– 76, 77, 78
relativistic, 79– 84
theory of, 6, 7, 9, 133, 191
See also abstract: as distinct from concrete

computation; algorithmic (machine)
computation; analog: computation;
digital: computation; generic (machine)
computation

computational complexity, 60, 65– 67, 125n7, 266
computational description, 8– 9, 9n5, 10, 13– 14,

19, 21, 21n20, 22, 25, 94, 186, 187, 194
computational equivalence, 126, 134, 178, 189,

216, 217, 219– 220, 221
computational externalism, 186, 186n22, 221
computational functionalism, 3, 127– 128,

127n16, 196, 267
computational model, 8, 66, 74, 138, 145, 145n1,

162, 164n23, 261
computational perspectivalism, 194
computational sufficiency thesis (CST), 126–

128, 126n10, 127n15, 136n41, 207n5
computational taxonomy, 17, 178, 207– 211,

213, 214, 217, 222, 226, 227, 264
computational theories of cognition (CTC),

88, 198
computational theory of the mind, 3, 6, 9– 10,

129n19, 196, 197, 267
computational vehicle. See vehicle
computationalism, 3, 122, 123, 127, 196
computational- level theories (CL).

See explanation: computational;
level: computational

computer model, 7, 8, 9, 9n6, 230
computer science, 1, 2, 8, 49, 62, 63, 63n25, 72,

92, 96, 114, 118, 125, 148, 177, 191, 192, 214
textbooks, 34, 34n26, 60, 61, 61n12
theoretical, 65, 67, 74

conceptual criterion (desideratum), 6, 7, 265
concrete computation. See

computation: concrete; abstract: as distinct
from concrete computation

connectionism, 103, 112
conservative, 111, 111n32
machine, 111n32
PDP (parallel distributed processing),

103, 114n39
system, 111, 112, 112n33

content, 12, 23, 95n3, 126n10, 133n30, 144, 150,
175n1, 177, 179– 180, 180n8, 181, 182, 183,
187, 188, 189– 190, 192, 193, 194, 199n34,
211– 212, 213n10, 214, 216, 218, 219, 221–
228, 259– 260, 260n29, 264, 266

adaptive- based, 182
causal- based, 182
change in, 198– 199, 200, 213
computational, 182, 193, 197– 198
formal, 213n10
as functional role, 182
informational, 11, 14, 177, 179, 180n8, 181,

182, 183, 191
intentional, 177, 184
isomorphism- based, 184– 185
mathematical, 213n10
mental, 126n10, 127n16, 181, 182,

183n15, 197
naturalistic accounts of, 182, 185
theories of, 182, 185, 195, 196, 197, 200, 243
See also pluralism: about computational

content; representation; semantics

decidability, 29, 30, 31, 40, 79. See also
undecidability

digital, 2, 64n28, 89, 138, 153, 159, 244
analog as distinct from, 17, 100– 101, 101n11,

116, 117– 118
architectural profile, 3
computation, 2n1, 3, 100, 100n10, 145, 148,

177, 217
computer, 9, 10, 14, 26, 50, 78, 104– 105, 120,

121, 161, 201, 243
mechanism, 147

edge detection, 22, 159, 166, 172, 173, 219, 227,
248, 252, 257, 259, 262

effective computation. See
computation: effective

Subject Index 309

eliminativist theories, 184– 185
empirical criterion (desideratum), 6– 7, 265
energy function, 106, 107, 108, 109, 110, 142,

156– 157, 237
Entscheidungsproblem (Hilbert and

Ackermann), 29, 29n12, 32– 33
explanation

abstract, 157– 158, 164n23
algorithmic, 258
causal, 11, 16
computational, 8, 9n5, 11, 16, 93, 146, 148,

149, 151– 157, 157n14, 158– 159, 160, 162,
163, 164, 165n25, 166, 174, 188, 216n13,
218, 219, 226– 229, 241, 253, 258, 260,
261, 263

computational- level (Marr), 257– 258, 265
(see also level: computational)

decompositional, 152, 155, 156– 157, 163
desideratum, 22– 23, 265
function- theoretic (FT) (Egan), 258– 259
implementational, 160, 258
mechanistic, 24n26, 102, 146, 147, 148, 149,

151– 154, 154n12, 157, 157n13, 158, 159,
160, 162– 164, 166, 174, 260, 268

optimality, 261, 263

functional analysis, 93– 94, 93n2, 95, 102, 152–
153, 152n8– 9, 157, 157n13, 159

functionalism. See computational functionalism

Game of Life (Life), 47, 49, 50, 51, 52– 53, 54, 61,
68, 69, 99

Gandy machine, 52, 53– 54, 58, 59, 60, 68– 69,
72– 73, 85– 86, 87

Gandy’s thesis, 50, 52, 54, 55
Generic (machine) computation, 49, 55– 60, 62,

67, 69, 86, 87, 148

halting problem/ function, 56, 57, 59, 81, 83, 84,
85, 99, 192

human computability, Turing’s analysis of, 4, 26,
27, 33– 39, 40, 41, 42, 43, 44, 46, 52, 61

human computation (calculation). See
computation: human

human computer (“computer”), 7, 8, 10, 12, 14,
18, 21, 26, 26n2, 27, 36, 38, 39– 45, 46, 47,
52, 53, 54, 60, 61, 65n31

HUMAN computer, 53– 54, 68, 86
hypercomputation (hypercomputing), 44, 46,

56n5, 83, 116
hypercomputer, 55– 56, 62

idealization, 42, 42n39, 43n40, 71, 153, 230, 237
as contrasted with abstraction, 42n38, 51

implementation
as an account of computation, 4, 119– 144

(chap. 5)
Chalmers’s account of, 119, 130– 133, 135–

137, 138, 140, 141, 143, 144
incompleteness results, 12, 12n11, 29, 31– 32,

33. See also undecidability
indeterminacy of computation. See

computation: indeterminacy of
information theory, 165, 262

algorithmic, 183, 183n17
Shannon’s, 191
See also communication, theory of

instantiation, 88n1, 89, 90, 93, 94– 96, 99,
99n8, 100

instrumentalist theories, 184, 185
intentionality, 18n17, 177
interpretation, 6, 7, 18– 19, 20, 21, 28n4, 90, 95,

130, 153, 153n11, 180, 183– 184, 191, 192,
199, 245, 246, 247, 259, 261

interpretative model, 164, 261
intuition, 12, 13, 14, 15n15, 35, 198

lambda- definability, 27, 31n17, 32
level

algorithmic, 153, 159, 247, 248, 258, 265
of analysis, 247
computational (Marr), 166, 166n28, 247–

248, 257– 258, 259, 260, 261
functional, 216n13
hierarchy of, 162, 164
implementational, 160, 161, 216n13
mechanistic, 161, 163
tri- level framework (Marr), 160– 161

local causation, Gandy’s principle of, 51, 53, 58,
69, 73, 80

logical dogma, 2, 88, 92, 119
London- Tower Bridge diagram, 90, 91, 234, 243
lookup table, 11, 102– 103, 242

machine, 19, 26, 40, 41, 46, 49, 50, 53, 55, 57, 63,
71– 72, 132, 180, 210, 242, 244, 245n18, 248

abstract, 63, 72, 74
accelerating/ accelerated, 74– 75, 80, 80n52,

81n54, 86, 267
calculating (computing), 40, 60, 54, 57,

59, 61, 72, 73, 74, 90, 91, 100n10, 178,
188n24, 241

non- physical, 73
notional, 55– 56, 73, 74
physical, 71, 72, 73, 87, 91, 208, 241
physically realizable, 72, 73
Pitowsky's (averaging), 96– 98, 101, 118
real- RAM, 75– 76

310 Subject Index

relativistic (RM), 79– 80, 81, 82, 83, 84, 85, 86
(see also computation: relativistic)

shrinking, 80– 81, 81n54
supertask, 80
vending (VEND), 189– 190
See also algorithmic (machine) computation;

generic (machine) computation; oracle
machine (o- machine)

mechanism, 17, 89, 97, 112, 153, 221, 226, 242,
244, 250, 257, 258, 259, 260

biological, 106, 165
causal, 136, 164
computing, 10– 11, 13, 16, 17, 19, 23, 197,

215, 216, 219, 222, 223
concrete, 19
external, 222– 223
inner, 253– 254
level of, 135, 160– 161, 162
model- to- mechanism mapping (3M)

framework, 165, 165n26
neural, 16, 252n25, 253, 254
non- computing, 11, 149– 150, 151
sketch of, 153, 162, 164

mechanistic account of computation, the, 1, 4,
58, 129, 145– 174 (chap. 6), 194, 219

medium- independence, 5, 20, 139– 140, 147,
148, 149, 149n4, 151, 167, 168– 169,
170– 171, 173, 174

mirroring, input- output, 231, 232, 240
miscomputation, 10, 17, 148, 266
model, 8, 74, 114n39, 154, 155, 158, 161,

162n21, 164n23, 229, 230, 240– 241, 243,
245, 245n18, 253, 261, 268

modeling account/ notion of computation, the,
1, 5, 238– 243, 263

modeling, input- output, 31, 232, 234, 239, 241,
243, 247, 248, 249, 250, 252, 253, 254, 255,
256, 258, 261, 263

See also interpretive model; computational
model; computer model; neural
networks: model

multiple realization. See realization: multiple

naturalistic constraint, 3– 4, 195– 197
naturalistic theories (of content). See

content: theories of
neither semantic nor non- semantic (NSNNS)

view, 177, 177n4, 179, 190n26, 212
neural computation. See computation: neural
neural integrator, the (in the oculomotor

system), 232– 235, 249, 253, 254
as an internal model, 235– 238

neural network, 99, 103– 110, 138
abstract, 104, 137
analog (real- valued), 116, 117
architecture, 110, 111
artificial, 245
attractor (ANN), 103, 106, 107, 110– 111, 118,

142, 236
computation and, 110– 111, 112, 115, 116,

118, 138, 142, 147– 148
digital, 117
feed- forward, 106
Hopfield, 107, 116– 117, 118
line attractor, 117, 118, 236, 237, 238
model, 105– 106, 106n20
physical, 104, 105
theory of, 173
topology of, 173
See also n- queens problem (network);

computation: neural
neuroscience (brain sciences; neural sciences), 1,

4, 5, 8, 10, 15, 24n25, 118, 145, 146, 152, 160,
164, 165, 165n25, 195, 197, 235n8, 261n30

cognitive, 111, 160, 180, 227, 229, 241, 249,
250, 253, 263, 266

computational, 8, 103, 106, 111, 160, 161n18,
232, 245

non- semantic views of computation, 4– 5, 130,
133, 137, 150n6, 175, 181– 185

See also semantic view of computation
normalization equation/ function, 164, 165,

165n24, 261, 262
normativity, 42, 43n40, 181
notional machine. See machine: notional
n- queens problem (network), 68, 103, 105,

107– 110, 112– 113, 115, 117, 125, 125, 142,
144, 155

objectivity, 3, 10, 18, 19, 20– 21, 24– 25, 148,
194, 265

oracle machine (o- machine), 56
organizational invariance/ invariant, 5, 139,

140, 149n4

pancomputationalism, 3n2, 4, 15, 126, 150n6,
192– 193, 192n29

limited, 126, 133n31, 140– 141, 143, 192– 193
unlimited, 93, 119, 125, 126, 133n31, 134
very limited, 4, 193, 264

parallel computation. See algorithm: parallel;
computation: parallel

path integration, 250– 251, 251n23
PDP (parallel distributed processing). See

connectionism: PDP

machine (cont.)

Subject Index 311

Physical Church- Turing thesis, 70, 75
PCTT- B (bold physical), 70, 77– 78
PCTT- M (modest physical), 70, 76, 78,

79, 83– 84
super bold, 79
See also Church- Turing thesis (CTT)

physical symbol system, 2
pluralism

about computation, 4, 177n4
about computational content, 180, 181, 182,

197, 232
probabilistic computation. See

algorithm: probabilistic;
computation: probabilistic

procedure
decision, 33, 44
effective, 2, 26, 29, 34n26, 40, 41, 60, 64, 65,

65n31, 148
finite, 30– 31, 31n17, 30n16, 35n27, 38, 45, 46
infinite, 44
mechanical, 11, 12, 30, 30n16, 32, 38n32,

43n42, 46, 62n16
mundane, 65, 65n30
recursive, 31n17

program, execution of, 2, 23, 88, 88n1, 91, 92,
94, 98n4, 106, 111, 112– 115, 112n36,
114n37, 118

proof theory, 2, 265
property

abstract, 41n35, 72, 122n4
extrinsic, 211
intrinsic, 210
medium- independent, 41n35, 153, 158– 159,

160, 161, 168, 169, 187
non- abstract, 89
non- semantic, 176, 185, 191, 192, 195, 212
organizationally invariant, 140, 142
semantic, 1, 5, 17, 39, 149, 150, 174, 175– 180,

180n8, 181– 186, 188, 189, 190, 191, 192,
195, 196, 199– 200, 208, 212, 214, 218, 226,
264, 265, 266

sensitivity to formal, 186, 199
structural, 152, 154, 157, 159, 160, 166
syntactic, 149, 177, 179, 191, 199, 243

quantum computation. See
computation: quantum

randomness, 78, 99, 167
realization (realizable, realizability), 72, 80, 104,

122n4, 129n18, 161, 168
multiple, 122, 122n3, 123, 139, 157, 157n13,

163, 168, 169, 216, 224

physical, 67, 70, 72– 73, 74, 78, 79, 83, 86– 87
universal, 123, 129n18, 132, 134n32

real- RAM machine model. See
machine: real- RAM

reals, computability over the, 75– 77, 78
recursive function, 27, 55, 62, 62n16
reinforcement learning, 161, 161n18, 162
relativistic computation. See

computation: relativistic;
machine: relativistic

representation
admissible, 75n44
analog, 244, 245
cognitive, 177, 243
input- output (simulation), 5, 95, 232
mental, 23, 88, 168, 236, 243, 246, 250
neural, 21
structural (s- representation), 232, 243

rule, 2, 58, 67, 85, 92, 93, 132, 143, 146, 147– 148,
149, 150, 167– 168, 170– 171, 173

semantic view of computation, the, 1, 4, 5, 144,
175– 200 (chap. 7), 208n6, 212, 213, 219,
225, 226, 228

C- semantic, 178– 179, 188, 189, 212
E- semantic, 178, 179, 189, 208, 212
master argument for, 189, 192, 207– 228
objections to, 175, 189– 201
standard argument for, 188, 189, 212
See also non- semantic views of computation

semantics
denotational, 184
interpretational, 88, 243
operational, 183
non- semantic theories of, 179– 185
See also content: theories of

simple mapping account, the, 129, 129n19
simulation, 7, 8, 9, 9n6, 57, 58, 66, 230
simulation representation (input- output

representation). See representation: input-
output (simulation)

simultaneous implementation, 201– 206, 207–
208, 207n4, 208, 215n11, 216, 225, 228. See
also computation: indeterminacy of

spin- glass system, 106, 107, 142, 143– 144
step- satisfaction, 2, 139, 149

as an account of computation (Cummins’s),
4, 5, 88– 118 (chap. 4), 243

structural representation (S- representation).
See representation: structural

substantivity constraint (premise), 3, 3n2, 3, 24
supertask, 44, 56, 80, 80n53, 81, 84– 85, 85n60
surrogative reasoning, 253, 253n26

312 Subject Index

syntactic accounts of computation, 150, 150n6
syntactic engine, 2
syntactic structure, 10n8, 91, 198. See also

property: syntactic
syntax, 39, 199n34

taxonomy. See computational taxonomy
teleological function, 5, 20, 143– 144, 146, 148,

149, 150, 151, 167, 169, 170– 174, 194,
195, 197

the- right- things- compute (desideratum), 14,
17, 148, 188, 241, 264

the- wrong- things- don’t- compute
(desideratum), 10, 11, 14, 15– 16, 17, 148,
149, 188, 242, 264

triviality results, 21, 119n1, 120, 144,
150n6, 268

avoiding, 129– 130, 133, 203
implications of, 124– 129, 133
Putnam's, 119, 123– 124, 129, 202
Searle's, 119, 120– 122, 129, 130, 202
strong, 119, 133– 134, 135– 137, 144, 207n4
weak, 133– 135, 140, 141, 144, 207n4

Turing machine, 14, 28, 41, 53, 53n4, 54, 60,
61n13, 62n16, 65, 69, 71, 72, 73, 76, 81, 82,
84, 85, 86, 112, 137, 138, 191, 206

abstract, 104
accelerating, 73, 80
infinite- time, 56– 60, 57n10, 67, 69, 79, 83
physical, 104
probabilistic, 66
universal, 10, 26, 55, 57, 77, 79

type 2 theory of effectivity (TTE), 75– 76n46

undecidability, 30n15, 31, 33, 79. See also
decidability

vehicle, 3, 146, 147– 148, 150– 151, 153, 159,
168, 170– 171, 186n22, 187, 198, 208, 213,
213n10, 265

“what- if- things- had- been- different
questions,” 254

Zipser and Andersen’s model, 106n20, 246,
249, 253

	Cover
	The Nature of Physical Computation
	Copyright
	Contents
	Introduction
	1: Desiderata of a Theory of Computation
	1.1 Scope
	1.2 Features
	1.2.1 Meaning
	1.2.2 Ontology
	1.2.3 Utility

	1.3 Summary

	2: Turing’s Computability
	2.1 The 1936 Affair
	2.2 Turing’s Analysis
	2.3 Who Is “the Computer”?
	2.3.1 Abstractness
	2.3.2 Idealization: Competence and Performance
	2.3.3 Cognitive Versus Non- Cognitive

	2.4 Effective Computability and Machine Computation
	2.5 Summary

	3: Preamble to Machine Computation
	3.1 Gandy’s Account of Machine Computation
	3.1.1 Gandy Machines, Turing Machines, and HUMAN Computers
	3.1.2 Summary

	3.2 Generic Computation
	3.2.1 Infinite- Time Turing Machines
	3.2.2 Why Infinite- Time Turing Machines Are Not Gandy Machines

	3.3 Algorithmic Computation
	3.3.1 What Is an Algorithm?
	3.3.2 Computational Complexity
	3.3.3 Algorithmic Machine Computation and Generic Computation
	3.3.4 Algorithmic Computation and Gandy Machines
	3.3.5 Summary

	3.4 Physical Computation
	3.4.1 What Is Physical?
	3.4.2 Computability over the Reals
	3.4.3 Is the Bold Physical Church- Turing Thesis True?
	3.4.4 Relativistic Computation
	3.4.5 Does Relativistic Computation Refute the Modest Thesis?
	3.4.6 Supertasks and Algorithmic Computation
	3.4.7 Physical Computation and Gandy Machines
	3.4.8 The Relationship Between Physical and Other Notions of Computation

	3.5 Summary

	4: Computation as Step- Satisfaction
	4.1 Cummins’s Account of Computation
	4.1.1 Satisfaction and Instantiation
	4.1.2 Step- Satisfaction
	4.1.3 The Essentials of the Account

	4.2 Is Step- Satisfaction Necessary for Computation?
	4.2.1 Pitowsky’s Average Machine
	4.2.2 A Way Out of the Dilemma?

	4.3 Neural Computation
	4.3.1 Neural Networks
	4.3.2 Attractor Neural Networks
	4.3.3 A Neural Network for the n- Queens Problem
	4.3.4 Do Attractor Neural Networks Compute?
	4.3.5 A Way Out of the Dilemma?

	4.4 Summary

	5: Computation as Implementation
	5.1 Triviality Results
	5.1.1 Searle’s Triviality Results
	5.1.2 Putnam’s Triviality Results
	5.1.3 Implications of Triviality Results

	5.2 Avoiding Triviality
	5.2.1 Chalmers’s Account of Implementation
	5.2.2 Weak Triviality and Its (Non-)Consequences
	5.2.3 Does Chalmers’s Account Avoid the Consequences of Strong Triviality?

	5.3 From Implementation to Computation
	5.3.1 Is Implementation Necessary for Computation?
	5.3.2 Is Implementation Sufficient for Computation?

	5.4 Summary

	6: Computation as Mechanism
	6.1 An Outline of the Mechanistic Account
	6.2 What Is “Mechanistic” in the Mechanistic Account?
	6.3 Computational and Mechanistic Explanations
	6.3.1 Computational and DecompositionalExplanations
	6.3.2 Abstract Explanations and Structural Properties
	6.3.3 Computational and Implementational Hierarchies
	6.3.4 Information Processing and Causal Structure
	6.3.5 Summary

	6.4 Rules, Medium- Independence, and Teleological Functions
	6.5 Summary

	7: The Semantic View of Computation
	7.1 What Is a Semantic View of Computation?
	7.1.1 Essential Involvement
	7.1.2 Non- Semantic Views
	7.1.3 Variants of the Semantic View
	7.1.4 Semantics
	7.1.5 Non- Semantic Accounts of Semantic Properties
	7.1.6 What the Semantic View Is Not
	7.1.7 The Gist of My Account
	7.1.8 Supporting the Semantic View

	7.2 Objections to the Semantic View
	7.3 Summary

	8: An Argument for the Semantic View
	8.1 Simultaneous Implementation
	8.2 The Master Argument: From Simultaneous Implementation to the Semantic Individuation of Computational States
	8.3 Objection 1: Computational Individuation Is More Basic
	8.4 Objection 2: Externalism Without Content
	8.5 Summary

	9: Computing as Modeling
	9.1 What Is Modeling?
	9.1.1 Input- Output Mirroring
	9.1.2 Input- Output Modeling
	9.1.3 The Neural Integrator in the Oculomotor System
	9.1.4 The Neural Integrator as an Internal Model

	9.2 The Modeling Notion of Computation
	9.2.1 Modeling and Implementing
	9.2.2 The Definition of Computing
	9.2.3 Is Computing Modeling?

	9.3 Others Who Have Linked Computing to Modeling
	9.3.1 Grush on Neural Computation
	9.3.2 Marr on Computational- Level Theories
	9.3.3 Summary

	9.4 The Methodological Role of Modeling
	9.5 Computational Explanations
	9.5.1 Marr’s Computational- Level Explanations
	9.5.2 Egan’s Function- Theoretic Explanations
	9.5.3 Chirimuuta’s Optimality Explanations

	9.6 Summary

	Conclusion
	Acknowledgments
	Bibliography
	Name Index
	Subject Index

