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If quantum mechanics hasn’t profoundly shocked you, you
haven’t understood it yet.

Niels Bohr

Whether we like it or not, modern ways are going to alter
and in part destroy traditional customs and values.

Werner Heisenberg,
Physics and Philosophy:

The Revolution in Modern Science
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Some like it hot!
I assume that readers share a curiosity about quan-
tum things, but they may have different levels of
mathematical proficiency, if any. Therefore, I have
put warning symbols next to the section headings.
Some people like it hot & spicy and they presumably
feel attracted to the sections that are marked with
three hot peppers. The book is conceived such that
the quite hot 2- and 3-pepper sections can be left
aside without corrupting the main line of argument.
Bon appetit !
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A preface of prefaces xi

A preface of prefaces

We all agree that your theory is crazy. The question
which divides us is whether it is crazy enough to
have a chance of being correct.

Niels Bohr (addressing Wolfgang Pauli)

The title Power of the invisible could cover a lot of pos-
sible subjects, ranging from ordinary gossip to the most
elevated of spiritual teachings, as well as from the Earth’s
magnetic field to the invisible microcosmos. It underscores
the plain fact that most things are actually invisible, unseen
by the naked eye.The subtitle of this trilogy The quantes-
sence of reality makes clear that in this book we limit our-
selves to a world that is inaccessible to the human eye in
a physical sense: A world that was only made visible hun-
dreds of thousands of years after human history started
through the development of science and technology. Hu-
mans have always been aware of the sky and the heav-
ens, but only relatively late did they realize that there was
a universe as vast, diverse and mysterious on the inside of
things. The title mainly refers to the power of that hidden
microcosmos, and the tremendous forces that are at work
within it.

The word quantessence is a neologism which means ‘the
quintessence of quantum,’ referring to phenomena that can
only be explained in terms of quantum theory. A theory
is a model, a symbolic representation of (a part of) the
world and supposedly explains in a logically coherent way
how that works. In that sense it is a visualization, an ab-
stract reconstruction of that invisible microcosmos in terms
of mathematical symbols and equations. And this is what
most scientific explanations in the end tend to boil down to.
And it is also this underlying network of relations and fun-
damental principles which govern reality that represents
the power of the invisible.

The path towards such a model has been provided by

an incredible interplay between science and technology,
where ever more refined instruments were conceived and
constructed to make discernible what was invisible before.
In this way humankind has for millennia managed to push
the boundaries of what is observable forward in an objec-
tive sense. And that process has fundamentally changed
the nature of human existence. That is how we became
aware of the tremendous power of the invisible and the
quantessence of reality. The beautiful phrase ‘Humans be-
came aware, or learned about, or understood,’ covers up
the sobering fact that the lucky humans who are referred
to unfortunately form a tiny fraction of humankind: a nerdy
caste of scientist, as high priests of scientific knowledge.
They are a tiny fraction in spite of the fact that everybody is
invited to come and share their collective wisdom by read-
ing books or engaging otherwise. And that turns out to be
not so easy.

Scientific textbooks take pride in being as impersonal as a
brick. It provides them with an aura of objectivity. Ques-
tion: what do Bethe, Baym, Bohm, Davies, Dirac, Feyn-
man, Greiner, Griffiths, Gottfried, Kemble, Kramers, Lan-
dau, Leblond, Levy, Lipkin, Mandl, Martin, Matthews, Merz-
bacher, Messiah, Mott, Omnès, Pauling, Schiff, Sakurai,
Shankar,Tannoudji and Weyl have in common? Indeed,
each of them has (co-)authored a textbook or two on quan-
tum mechanics. Let me tell you how this works. If you have
to teach a course on quantum theory, you can choose from
more than fifty textbooks: an impressive oeuvre that bears
witness to a profound love for our deepest knowledge. It
doesn’t stop many a teacher from adding their own little
masterpiece to it. For students it is often a great relief to
discover that the overlap between these books is so im-
mense, that complete bookcases in the library effectively
shrink to a tiny pile of classics. If you’ve read one, you’ve
read many.

The personal view of the author usually becomes clear in
their limited choice of subjects, and if everything is well,
they should apologize for that in the Preface. That by itself
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xii A preface of prefaces

is not so exciting, in spite of being universal. Sometimes
however – and that is what concerns us here – the Pref-
ace has far more to say. It appears to be the only place
where the author is allowed to make their personal views
known, and indeed I must admit that those are harder to
embed in a treatment of, say, angular momentum. In the
preface the author may bare their soul. It may articulate
the zeitgeist and even deteriorate into a manifesto of prin-
ciples. The innocent looking preface may actually just be a
hidden persuader for personal prejudices: a mission state-
ment, which might amount to little more than the scientific
equivalent of what politicians call corridor talk. Actually, it
is a place where scientist publicly tell each other the truth.
Therefore this ‘preface of prefaces’ is a virtual quantum
dialog between some of the masters which is concocted
from their outspoken prefaces. This is a small quantum
correction to the immaculate status of some of our quan-
tum classics.

In 1924 the first version appeared of the standard work
Methoden der Mathematische Physik by Courant and Hil-
bert (this book evolved into the monumental work in two
parts that was printed in 1938). It appeared in the Ger-
man university city of Göttingen at the time when the men-
tal landslide that quantum mechanics was took place. As
a matter of fact the books covered classical mathemati-
cal physics but treated the subject of differential equations
and in particular eigenvalue problems in great detail, which
then played a central role in solving for example the Schrö-
dinger equation. After Courant fled Germany, long before
the Second World War, the Nazi’s blocked distribution of
the book (as you may read in the preface to the 1953 edi-
tion). Let me share a somber quote from the original 1924
version:

So kommt es dass viele Vertreter der Analysis das Be-
wusstsein der Zusammengehörigkeit ihrer Wissenschaft
mit der Physik und anderen Gebieten verloren haben,
während auf die andere Seite oft den Physikern das

Verständnis für die Probleme and Methoden der Mathe-
matiker, ja sogar für deren ganze Interessensphäre und
Sprache abhanden gekommen ist. Ohne Zweifel liegt
in dieser Tendenz eine Bedrohung für die ganze Wis-
senschaft überhaupt; der Strom der wissentschaftlichen
Entwicklung ist in Gefahr, sich weiter und weiter zu verästeln,
zu versickern und auszutrocknen.1

Courant therefore had no lack of drive to write a beautiful
book. Another early classic (but in many ways modern)
about quantum theory is The Principles of Quantum Me-
chanics by Paul Dirac (first edition in 1930). He was well-
known to be a man of few words:

Mathematics is the tool especially suited for dealing with
abstract concepts of any kind and there is no limit to its
power in this field. For this reason a book on the new
physics, if not purely descriptive of experimental work,
must be essentially mathematical.

The book then continues to present quantum theory in a
form that he referred to as the ‘symbolic method’, a method
used all over the place today:

. . . I have chosen the symbolic method, introducing the
representatives later merely as an aid to practical cal-
culation. This has necessitated a complete break from
the historical line of development, but this break is an
advantage through enabling the approach to the new

1As a result, many practitioners of mathematical analysis have lost
the awareness of their science’s affiliation with physics and other fields,
while on the other hand, physicists often have lost the understanding
of the problems and methods of mathematicians, and indeed of their
whole sphere of interest and language. There is no doubt that this
trend poses a threat to the whole of science; the stream of scientific
development is in danger of becoming more and more branched out, to
seep away and to become dehydrated.
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A preface of prefaces xiii

ideas to be made as direct as possible.

The physicists who were of the opinion that Dirac’s ap-
proach was too mathematical were silenced by the quite
outspoken preface of the Mathematische Grundlagen der
Quantenmechanik by John von Neumann (1932). The open-
ing line makes it unambiguously clear what the goals are
and what the standards to be maintained throughout:2

Der Gegenstand dieses Buches ist die einheitliche, und,
soweit als möglich und angebracht, mathematisch ein-
wandfreie Darstellung der neuen Quantenmechanik,. . .

And later on he even makes a compliment:

Eine an Kürze und Eleganz kaum zu überbietende Darstel-
lung der Quantenmechanik, die ebenfalls von invariantem
Character ist, hat Dirac in mehreren Abhandlungen sowie
in seinem kürzlich erschienenen Buche gegeben.3

that turns out to be a prelude to a less generous passage:

Die erwähnte, infolge ihrer Durchsichtigkeit und Eleganz
heute in einen grossen Teil der quantenmechanische
Literatur übergegangene Methodik von Dirac wird den
Anforderungen der mathematische Strenge in keiner Wei-
se gerecht – auch dann nicht, wenn diese natürlicher-
und billigerweise auf das sonst in der theoretischen Physik

2The subject of this book is the unified, and as far as possible and
appropriate, mathematically rigorously correct representation of the
new quantum mechanics.

3An account of quantum mechanics, which can hardly be surpassed
in brevity and elegance, and which is also of an invariant character,
has been given by Dirac in several papers as well as in his recently
published book.

übliche Mass reduziert werden.4

Kramers in his Quantum Mechanics from 1937 holds a
view rather orthogonal to Von Neuman’s, where he returns
to the more heuristic, physically oriented approach of Bohr:

The apparent lack of mathematical morals which is con-
tritely pointed out repeatedly in the text is not exclusively
due to the incompetence of the author. Physical morals,
even (or rather especially) in their purest form, that is,
unencumbered by pedagogic afterthoughts, do not live
happily together with their mathematical relations in the
restricted mansion of the human mind – and neither in
the restricted volume of a monograph.

The famous Russian physicists Landau and Lifschitz set
their own magnificent standard in their course on Theo-
retical Physics, which consists of more than ten volumes.
These are the books from which our Russian colleagues
loved to recite. If you got into a heavy-duty technical argu-
ment with them, they would exclaim: ‘But don’t you know
this? Is well-known exercise in the chapter five, of the vol-
ume eight of the Landau Lifschitz!’ Little less than the So-
viet equivalent of a bible, it managed quite well to spread
its profound physics wisdom. The first edition dates back to
1947. In the preface to volume three, Quantummechanik
the authors note the following:5

4The methodology of Dirac mentioned above, which, owing to its
transparency and elegance, has today been carried over to a large part
of the quantum mechanical literature, does in no way justice to the re-
quirements of mathematical rigor, even if the standard is lowered to the
more natural and reasonable one typical for theoretical physics.

5I apologize for quoting the German version which was for sale for a
dollar or less in the former Soviet Union, at least on the rare occasions
that it was not sold out. No easy reading because the formulas were
set in Fraktur - the old German alphabet.
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Man kann nicht umhin festzustellen, dass die Darstel-
lung in vielen Lehrbüchern der Quantenmechanik kom-
plizierter als in den Originalarbeiten ist. Obwohl eine
solche Darstellung gewöhnlich mit grösserer Allgemein-
heit und Strenge begründet wird, ist jedoch bei aufmerk-
samer Betrachtung leicht zu erkennen, dass sowohl das
eine wie die andere tatsächlich oft illusorisch sind, was
sogar soweit geht, dass sich ein beträchtlicher Teil der
‘strengen’ Sätze als fehlerhaft erweisst. Da uns eine
solche komplizierte Darstellung völlig ungerechtfertigt
erscheint, haben wir uns umgekehrt um denkbar mögli-
che Einfachkeit bemüht und haben vielfach auf die Orig-
inalarbeiten zurückgegriffen.6

David Bohm also regrets in the preface to his Quantum
Theory from 1951 the loss of qualitative, imaginable phys-
ical concepts. Bohm was well aware of the subtleties and
essential role of the measurement process in quantum me-
chanics. And it should be said that the whole arsenal
of rather puzzling, if not controversial, Gedanken Exper-
imente which have in the meantime descended into the
blood, sweat and tears in the lab, form a vindication of his
cry to further elucidate the fundamental concepts underly-
ing the theory:

So strong is this contrast [between classical and quan-
tum physics] that an appreciable number of physicists
were led to the conclusion that the quantum properties
of matter imply a renunciation of the possibility of their
being understood in the customary imaginative sense,

6One cannot help but notice that the presentation in many textbooks
of quantum mechanics is more complicated than in the original works.
Although such a statement is usually justified by greater generality and
rigor, it is easy to see, after careful consideration, that both are often
illusory, and this even goes so far as to state that a considerable part
of the ‘rigorous’ statements prove to be faulty. As in our view such
a complicated presentation appears to be completely unjustified, we
have, conversely, tried to stay as simple as possible and have often
resorted to the original works.

and that instead, there remains only a self-consistent
mathematical formalism which can, in some mysterious
way, predict the numerical results of actual experiments.
Nevertheless, . . . , it finally became possible to express
the results of the quantum theory in terms of compar-
itively qualitative and imaginative concepts, which are,
however of a totally different nature from those appear-
ing in the classical theory.

In this anthology we have to include the celebrated Feyn-
man Lectures, as they form a most original and inspiring
treatment of the theoretical basis of the physics curricu-
lum.7 To my knowledge it is also the first book written in
first person reflecting his outspoken aversion to formality
and distance. Therefore in his Lectures you will find reg-
ularly statements that are unmistakably Mr. Feynman like
(from Part III, Chapter 1: Quantum behavior ):

This would mean, if it were true, that physics has given
up on the problem of trying to predict exactly what will
happen in a definite circumstance. Yes! Physics has
given up.

In the preface the legendary teacher shows himself ac-
countable for his pedagogical adventures (no need for the
evaluation jungle that tends to stifle modern educational
institutions):

The question, of course, is how well this experiment
succeeded. My own point of view – which, however,
does not seem to be shared by most of the people who
worked with the students – is pessimistic. I don’t think
I did well by the students. When I look at the way the

7The quite accessible first chapter of his book with Hibbs about
Quantum mechanics and path integrals and his popular booklet called
QED are also a must.
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majority of the students handled the problems on the
examinations, I think that the system is a failure. . . . But
then, ‘The power of instruction is seldom of much effi-
cacy except in those happy circumstances where it is
almost superfluous.’ (Gibbons)

There are more recent attempts to pick up the innovative
approach in the presentation of quantum mechanics, for
example in the book Quantics of Lévy-Leblond and Bal-
ibar. The term ‘quantique’ is apparently slang for ‘quantum
mechanics’ used by French students. The English ver-
sion ‘quantics’ has not seen a similar popularity among the
youth educated in English, and if it is used, it is rather in
in the world of data analysis and consultancy. There is a
species of whizzkids called ‘quants’, who make money in
investment banking. No quantum theory required. Yet.

Nobody really dares to base an entire course in the spirit
of these textbooks [the Feynman and Berkeley series],
and often they are only used to breathe an extra bit of
spirit (in some physical sense, let us say) into the tra-
ditional abstract and scholastic way of teaching. The
teaching method of Feynman and Wichman is not, after
all, taken seriously.

Further on in the preface we read:

One often hears research workers expressing the de-
sire to widen their professional culture, to deepen or re-
juvenate their primary education. Such an aspiration
does not come from an abstract desire to become gen-
erally cultured. Rather, it reflects the desire to increase
their ability to picture, interpret and understand physics
– their physics. To satisfy this need, these researchers
all too often have at their disposal daunting and sophis-
ticated treatises, which they find intimidating, since they

have the impression that they would only find abstract
answers to their concrete questions.

It was this exploration of prefaces that provided me with
one of the principal motivations for writing this book. In the-
oretical physics and quantum theory in particular, there is
always a tension between mathematical rigor and physical
understanding, between formal arguments and intuition,
between abstract representations and physical reality. If
we look back at the development of quantum theory, we
see from observational evidence that classical physics was
failing us; we had to first develop a mathematical frame-
work for the quantum world. The physical intuitions, of
which the physicists were so proud, were so deeply rooted
in the classical experience that they led them completely
astray in the quantum world and made the development of
a suitable theory very hard.

Today however, we are armed with the outcomes of a broad
spectrum of real lab experiments that in the early quantum
days only could be dreamt of as far-out gedanken experi-
ments. There is a wide variety of quantum phenomena we
have in the meantime become so ‘familiar’ with, that prac-
titioners have developed a sort of quantum intuition – in
the sense of adaption, being a healthy blend of experience
and common sense. And, with that, a ‘quantum heuristics’
came into being – where whatever was considered eso-
teric speculation before, kind of turned into a bunch of ‘no
brainers’. This ‘quantum heuristics’ has at least informally
gained some respectability and legitimacy. It is not quite so
visible in textbooks but it is certainly predominantly present
when physicists argue in front of their blackboards. I ex-
pect that this perspective will percolate through in future
quantum books. One might object that this may introduce
even more quantum vagueness in our quantum conversa-
tions. Apparently quantum uncertainties have made it all
the way up to the heart of our ontology and epistemology,
a remarkable recursion indeed.
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This being said, you now know where I found the courage
to produce yet another semi-popular book on quantum phys-
ics and information. You need no longer ask: ‘Who ordered
that?’.8

This book aims to demonstrate the ‘Power of the invisi-
ble,’ where that power refers to the ‘essence’ or better the
‘quintessence’ of quantum. This assumes that we, after
more than a century of study, do know what the essence
of quantum is. What we know for sure is that it is extremely
powerful, in spite of being to a large extent concerned with
the ‘invisible.’

Talking about the essence of something requires a certain
depth, not just conveying facts, but creating the appropri-
ate reference frames and language. This quantessential
perspective will be presented in the following Introductory
chapter which also provides a roadmap to this book.

Complementary reading:

- The Quantum Physicists
W.H. Cropper
Oxford University. Press (1970)

8This is what Nobel laureate Isodor Rabi quipped in the mid-thirties,
when informed about the discovery of the muon particle, a heavy
brother of the electron that at that time seemed to have no purpose,
and no reason to exist.

Further reading.
Some of the classics mentioned in this chapter:

- Methods of Mathematical Physics
D. Hilbert and R. Courant
Wiley-VCH; 2 Volumes (1989)

- The Principles of Quantum Mechanics
P.A.M. Dirac
Oxford University Press; 4th edition (1961)

- Mathematical Foundations of Quantum Mechan-
ics:
J. von Neumann
Princeton Univers. Press; New edition (2018)

- Quantum Mechanics
H.A. Kramers
Dover Publications (1964)

- Quantum Mechanics (Non-Relativistic Theory)
L.D. Landau, E.M. Lifshitz
Pergamon Press; 3rd edition (1981)

- Quantum Theory
D. Bohm
Dover Publications Inc (1989)

- The Feynman Lectures on Physics
R.P. Feynman (Author), R.B. Leighton (Contribu-
tor), M. Sands (Contributor)
Pearson P T R; (3 Volume Set) 1st edition (1970)

- Quantics: Rudiments of Quantum Physics
J-M. Levy-Leblond F. Balibar
North Holland (1990)
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Introduction

When it comes to atoms, language can be used
only as in poetry. The poet, too, is not nearly so
concerned with describing facts as with creating
images.
Niels Bohr, ‘Atomic Physics and the Description of
Nature’ (1934)

In this introduction we show how the book is structured and
give some advice on how to read it.

Mathematics as a language of Nature. Quantum theory
is known to be a difficult subject and becomes completely
unfathomable if you have to rely entirely on our feeble nat-
ural language to describe it. Therefore I hope that you will
not be scared away by the book’s rather mathematical ap-
pearance, particularly the second volume which looks as
if it is full of equations. Don’t put the book aside just be-
cause of its intimidating appearance. Natural language is
not the optimal means precisely because in quantum the-
ory we enter realms of reality that are quite remote from
our everyday experiences and preconceptions. Our cher-
ished ‘common sense’ appeared to be of limited use and
easily led us astray. Some call the quantum world mysteri-
ous or alien, while others see it as elusive or unfathomable;
indeed one may easily get drowned if the message is com-
municated to you in words only.

Mathematics is here to rescue us; it allows us to con-
struct smart and elegant notions that perfectly fit nature’s
needs and it comes with a beautifully efficient notation.
The lengthy descriptions one would need in natural lan-
guage to convey the essentials of quantum reality would

The quantum leap. This art work called ‘The running knot’ is
located in the city park of Kanazawa, Japan. (Source: Eryn Vorn,
FLICKR)

too easily clutter the mind and lead to the utmost confu-
sion, as I have seen happening in quite a few ‘no formula’
expositions of the quantum world to the layperson. So
there are ample reasons to be courageous and go ‘sym-
bolic.’

Great narratives choose their own language. The heart
of music is in the sound and a verbal substitute would not
do. And as we all know, it takes guidance to learn how
to hear what it expresses. The same is true for the vi-
sual arts. It is hard to imagine a book about Picasso with-
out pictures. And this is what Sagredo in the Dialogos of
Galileo confided: ‘If I were again beginning my studies,



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page xviii — #20 i
i

i
i

i
i

xviii INTRODUCTION

I would follow the advice of Plato and start with mathe-
matics.’ Yes, the narrative of Nature expresses itself most
eloquently in mathematics. So, we take Sagredo’s advice
to heart and will gently introduce some of the quantessen-
tial mathematical concepts along the way, but always in a
rather pedestrian way9. Math, as a language of nature, as
a means for understanding, but not as a purpose on its
own. To that end I have included several so-called Math
Excursions at the end of the third volume. These excur-
sions explain in a user-friendly way what the math in the
main text is about and will tell you all you need – but maybe
never wanted – to know about matters like functions, com-
plex numbers, matrices, algebras or vectors. Checking
out these excursions will help you to get more out of this
book.

The best part of climbing a mountain is often the splendid
view from the top. In a similar way we work our way up
to some of the quantessential equations, not in praise of
rigor, but in praise of clarity and beauty. I tell my students
that equations love people and they better do because they
owe their existence to them. Bearing that in mind, isn’t
it amazing that this man-made language of mathematics
turns out to be the most ‘natural’ after all? This fascinating
fact inspired the famous mathematical physicist Eugene
Wigner to write an interesting essay about this paradox ti-
tled: ‘The unreasonable effectiveness of mathematics in
the natural sciences.’ And as I intend to remain your trav-
eling companion all along the winding road to the quan-
tum world, I hope that you will be patient with some of the
math that we will encounter along the way. Think of it as
the poetry of reality: a sublime shorthand endowed with a
built-in integrity. A minimal yet powerful representation of
reality. There is some truth in what John von Neumann,
as keynote speaker at the first national meeting of the As-
sociation for Computing Machinery in 1947, quipped: ‘If

9As we will indeed encounter many of the fundamental equations of
physics along the way, the interested reader who is not at all versed in
these equations may want to look at my popular science book entitled
The Equations: icons of knowledge (Harvard University Press, 2005).

Figure 1: Adinkra symbol. Adinkras are symbols of the people
of the Ashanti Kingdom in West Africa (Ghana) that represent
concepts or wise sayings (aphorisms). This adinkra is called
‘nea onnim no sua a, ohu,’ which translates as ‘he/she who does
not know can become knowledgeable through learning.’ I hap-
pen to see many interlocked copies of the letter ‘E’ , from Edu-
cation, a striking coincidence!

S. James Gates, Complex ideas, complex shapes (2012)

people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.’

To whom am I talking? One of the first questions a po-
tential publisher will throw at you as potential author is
about who your perceived audience is. Who is going to
read (or rather, buy) this book? So many pages, so many
topics, so many equations, who the hell do you think....If
you cannot kill your darlings they will kill you! My answer
is encrypted in the symbolic aphorism depicted in Figure
1 saying: ‘he/she who does not know can become knowl-
edgeable through learning’. Keeping in mind that this holds
true for basically everybody, it stands for the notion of edu-
cation permanente, which advocates a broader spectrum
of conceivable audiences for books on knowledge. There
is the questionable dichotomy that books about science
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have, for some reason, to belong to either the categories
‘popular’ or ‘textbook’, with basically nothing in between.
From my teaching experience, I know that there are many
audiences between those of laypeople and Harvard grad-
uates. And these present us with a need for books that
try to bridge the intellectual pseudo gap I just mentioned.
And with the availability of internet sources like Wikipe-
dia and Youtube there is still a clear need for in-between
books that give a broad coherent account with some the-
oretical depth. My hope is that this book provides an ex-
ample thereof. So who are the would-be members in this
perceived audience: students of various backgrounds and
disciplines, from motivated high school whizzkids to mul-
tidisciplinary college students, as well as their teachers. I
think of students in the disciplines neighbouring physics in
the natural sciences, as well as engineering, mathematics
and information science. I think of journalists and of the
growing group of seniors who finally have time to get to
grips with some of the deep scientific subjects that over
the last century through technological developments have
so radically transformed the world around them. I dedicate
this work to the bright young people throughout the world
who share that insatiable hunger for true knowledge and
I hope that it will inspire their honorable quest. Students
tend to be overwhelmed by the ’how to’ questions, which
means that the ’why’ and ’what does it mean’ questions are
neglected. Let me close with a quote from the early muslim
polymath Al Kindi10, who lived around 850 AD:

We should not be ashamed of recognizing truth
and assimilating it from whatever source it may reach
us, even though it might come from earlier gener-
ations or foreign peoples. For him who seeks truth
there is nothing of more value than truth itself. It
never cheapens or abases him who searches for
it, but ennobles and honors him.

10Al Kindi wrote more than 250 books. His Manuscript on Deci-
phering Cryptographic Messages, in which he laid the foundation of
crypto-analysis using statistical interference and frequency analysis, is
remarkable.

Nature is quantized

Quantum theory is not a theory of one particular system
like the atom; it is a set of universal principles that applies
to all of nature.
We present an overview of how this elaborate field is struc-
tured as a whole and thereby motivate the lay out of the
book.

Quantum theory is based on a set of fundamental princi-
ples that nature appears to obey at basically all scales and
therefore underlies all of physics, and more indirectly also
all of chemistry and biology. The dictum is ‘One Nature,
One Science’. Deep down all physical theories have to be-
have according to the quantum rules and therefore all our
theories have to be ‘quantized,’ somewhat like kids have to
be potty-trained, and dogs have to go to obedience school
to learn not to bark. The quantum postulates forced us
to reinvent the whole of fundamental physics from a new
conceptual basis. We have quite successfully quantized
particles and mechanics, electrodynamics including op-
tics, and liquids, solids and other condensed forms of mat-
ter. But also unified theories describing subnuclear phys-
ics have been successfully quantized and led to the cele-
brated Standard Model. And finally, not so long ago, we
realized that even information should be quantized. This
ongoing quantization process has led to a much deeper
understanding of the fundamental structure of nature, but
also to a huge number of breathtaking applications and
quantum technologies that have only just started to take
off. Indeed, technologies involving quantum information
processing are expected to generate a highly disruptive
transition with a huge socio-economic impact. Yet, this
having been said, there are still many fundamental chal-
lenges, like the quantum interpretation of gravity, the oldest
known force, which are required to be tackled in order to
understand the origins of the universe or how black holes
work.
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Figure 2: Three volumes. Quantum theory was introduced to physics at the atomic level. From there it started spreading into the
other levels of physics, at both larger and smaller scales.
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Three volumes. Quantum theory basically originated at
the level of the atom, and by modern standards that is
an intermediate length scale. From there the applications
of the basic theory developed in two opposite directions,
as indicated in the left column of Figure 2. On the one
hand to ever smaller distances, all the way down to mod-
ern particle physics, and on the other hand to ever larger
distances, moving up all the way to modern (bio)chemistry
and condensed matter physics. The arrows pointing up-
ward underscore the basic fact that quantum effects are
by no means restricted to the microscopic domain. There
are many research fields devoted to the study of quantum
principles on macroscopic scales, which amounts to ap-
plying quantum theory to collective phenomena. In that
sense every cell phone is full of quantum.

Even though I will restrict myself to the ‘quantessentials’,
the subject is so vast that the book is divided into three
parts, i.e. volumes, which – as also indicated in Figure 2 –
can be characterized as follows.

The first volume of the book, called The journey: from clas-
sical to quantum worlds, starts with the highlights of clas-
sical physics and informatics after which it descends into
the quantum world. It is the narrative guided by man’s pas-
sionate quest for the most basic building blocks of nature
and their interactions. We start with marbles and end up
with quarks and even superstrings.

In the second volume of the book, called Quantessence:
how quantum theory works, we delve deeper into the struc-
ture of the theory and present some of its mathematical
representations. And we will talk about the conceptual is-
sues concerning quantum states, observables and mea-
surements that we encounter along the way. There we will
be concerned extensively with mind-boggling notions like
entanglement, particle interference and quantum telepor-
tation.

In the third and final volume called Hierarchies: the emer-

gence of diversity, we discuss quantum theory as it ap-
plies to the structural hierarchy of matter from the atomic
level to chemistry and the quantum physics of condensed
states of matter. We not only consider the hierarchy in a
spatial sense but also how that hierarchy arose in a tem-
poral sense during the early stages of cosmic evolution. It
closes with a chapter on scaling, discussing notions such
as self-similarity, scale invariance and renormalization of
theories in order to understand their asymptotic behavior if
one imagines the behavior of theories as models of nature,
at ever smaller or larger scales. We conclude this quantum
trilogy by offering a concluding chapter with a more general
science-driven perspective.

Physics, mathematics and concepts

If you look long enough, anything becomes abstract
Diane Arbus

This section presents a meta-perspective on how to read
this quantessential book. The quantum world can be tra-
versed in many ways, all pertaining to a certain ‘logic’. Tak-
ing a single path will enlighten certain aspects but may ob-
scure others. Therefore it is better to combine different
paths to get an optimal feeling for the quantum landscape.
To get to the quantessence, one would have to add up the
contributions of all the different paths11.

Once a field of science (like physics) has matured suf-
ficiently, one can learn something interesting about the
structure of scientific knowledge in general. This is indi-
cated in the layered structure of quantum knowledge in the
scheme of Figure 3, in which the three columns refer to the
three layers of knowledge that I like to distinguish between
and which will be explained shortly.

11In a symbolic – if not ironic – sense, you could call this a ‘path
integral approach to the understanding of quantum theory.’
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Figure 3: Three layers. In quantum physics one may distinguish three layers displayed here as columns. From left to right, (A) is
about the phenomenology of systems in which quantum theory manifests itself, (B) is the layer of mathematical representations or
realizations and (C) is the layer of quantum concepts and principles. Note that the layers are coupled together as a whole, not via
their individual components.
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Theoretical physics is basically about constructing optimal
mathematical models of reality. It usually starts by effec-
tively describing certain regularities apparent in some ob-
served physical phenomena. The next step – if possible –
is to relate different phenomena through the model. This
amounts to reducing the number of independent param-
eters in the models. Finally, one hopes that it will make
predictions and suggestions as to where to look for unique
signatures of new phenomena. Over time this modelling
has been done in an ever more sophisticated way, exploit-
ing existing as well as developing new mathematical and
computational tools.

A first step in modelling a physical system is to just identify
which degrees of freedom are relevant to the phenomena
one wants to study and understand. A second crucial step
is to identify what the relevant interactions between these
basic degrees of freedom are. For the moment these are
just words referring to basic notions, which have to find
their way into some symbolic representation or mathemat-
ical framework. We may, in the end, have to extend our set
of basic concepts and rules, our grammar so to speak, in
order to accommodate new phenomena and new underly-
ing principles.

In the development of quantum theory over the past cen-
tury, this is exactly what happened. It turned out that we
needed new mathematical realizations and ever more so-
phisticated representations of the material world. It is a
multitude of unfolding insights intertwined with the dramatic
growth of our experimental means to probe physical real-
ity that marked the advances in theory over the last cen-
tury. And finally, once the mathematical, maybe somewhat
pragmatic modeling has advanced sufficiently, one should
try to come to a more fundamental insight as to what these
models imply for the logical structure of the underlying
physical reality. Here we enter a realm with philosophical
ramifications, where we move from the syntax anchored in
the mathematical consistency of the model, to its seman-
tics and interpretation. We can pose ontological questions

about what is ’to be and/or not to be’, as well as questions
about the epistemology and about what is ’knowable’. We
enter the territories of beables and knowables: in short,
the realm of meaning.

Three layers. Quantum theory at large comprises a huge
body of knowledge I like to think of as consisting of three
layers as depicted in the columns of Figure 3. The A-layer
comprises the physical realizations and manifestations of
quantum matter, the B-layer is about mathematical rep-
resentations and realizations, and finally the C-layer con-
cerns underlying concepts and principles, and their logical
structure and interpretation. Indeed it is only after one has
a mathematically consistent formulation of the theory that
conceptual questions force themselves on us in a way that
we can make sense out of them. Yet, one cannot avoid
switching between the layers if one is to give a coherent
account of the subject as a whole.

The first layer A refers to quantum phenomenology, the
body of observational evidence concerning the broad spec-
trum of quantum phenomena that we will consider in this
book. It is in fact the same as the first column in Figure 2,
but note that the other columns of the two Figures refer to
qualitatively entirely different things.

The second layer B refers to mathematical representations
or models. This is already more abstract, as we ascend to
the mathematical modeling of the observed phenomena.
One might for example think of quantum states being el-
ements of some vector space referred to as the Hilbert
space, or of the mathematics of a qubit, or of a wave func-
tion. Or consider physical observables as represented by
operators that act on that Hilbert space, like matrices or
differential operators. And we may think of the dynamics
of the quantum system described by famous differential
equations, such as the Schrödinger, Heisenberg and Dirac
equations.

And indeed, in the middle column from bottom to top we
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see increasingly complex realizations of the same quan-
tum principles, which are stated in the first step at the bot-
tom. It is a hierarchy of degrees of freedom. We start
with the discrete case of qubits and ‘qubit mechanics’, and
move one step up to the simple continuous case of a single
quantum particle. In the next step we face the problems of
many particles of one single type or species, and the in-
teractions between these species, which leads us to the
theory of quantum fields. This level includes multi-particle
states, and the creation and annihilation of particles; fur-
thermore the forces are included and quantized. We finally
end up with theories (and so far only theories) that attempt
to combine all types of fields (or particle species) in the
spectrum of a unique quantum (super)string. At this level
space-time is included and quantized. So what we have
indicated in the second column is the idea that states rep-
resenting the physics at one given level form a small sub-
space of the set of states in the next step. It represents a
modelling hierarchy.

We have mapped the system onto a mathematical model
that allows us to make calculations and predictions, but
models also pose new challenges for finding out what the
essential concepts are that underlie all those quantum phe-
nomena. We like to understand what the generic features
are that set the quantum world apart from what we were
used to in classical physics. That is what the next layer is
about.

The third layer C is concerned with the conceptual impli-
cations of the mathematical framework, where we are re-
quired to interpret the basic mathematical entities back into
physical terms. You may compare this to coming home
from an exciting journey to some unknown country, and
being forced to describe to your colleagues what the ex-
quisite, extremely exotic food tasted like. You may think
of mathematical models that manage to successfully de-
scribe and predict measurement outcomes, but at the same
time force us to reinterpret what the very nature of physical
reality is. There is the saying cherished by many theorists

that ‘equations speak for themselves’, but that is often not
the case. For example, you may know that the mathemat-
ics of special relativity is surprisingly simple, but its phys-
ical ramifications are certainly not ; it forced us to funda-
mentally redefine our concepts of space and time. Some-
thing similar happened in the realm of quantum theory with
respect to the true nature of what we, for convenience, call
‘matter’, or ‘radiation’, or ‘energy’, or ‘information’. Here
we encounter the necessary consequences of the Hilbert
space formalism, such as the existence of quantum en-
tanglement and quantum interference. And we have to
cope with non-commuting observables leading to funda-
mental uncertainties in measurement outcomes. These
unambiguous consequences of the mathematical formal-
ism, which by itself is clear cut, will, as we will show, pose
quite formidable epistemological and philosophical ques-
tions. It suffices to refer to the infamous Einstein, Podolsky,
Rosen (EPR) paradox, which lies at the heart of the well-
known Einstein–Bohr debate about how quantum theory
defines what we call ’reality.’ This debate has been going
on for three quarters of a century and only now appears
about to be settled.

Going from left to right in Figure 3 is, in some sense, a per-
spective marked by experimental discoveries and as such
a rather historical perspective. Going from left to right is
therefore hard because it is erratic, and it moves slowly ex-
cept for sudden jumps. It is highly unpredictable because
it basically lacks internal logic: there is no strictly logical
path from classical to quantum physics. The path from left
to right is the historic one, and therefore bumpy, but also
paved with would-be miracles and intriguing misconcep-
tions, which indeed make a wonderful narrative with ample
heroism and drama.

But once the subject has matured, there is the other pos-
sibility, namely to start on the right with the concepts and
a logical, abstract framework, and from there move back
to the left. A theorist like myself naturally prefers a pre-
sentation from right to left, which in a sense is highly anti-
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chronological, but would be more comprehensive because
it has an internal logic and systematics. I believe that
once things are understood, going from right to left is easy.
Moreover, it would give the author the freedom to limit
himself to the quantessence of a coherent body of knowl-
edge.

Yet, in spite of this argument, it would be a bad idea to
really treat the three layers sequentially from right to left,
because you need the stuff on the left to appreciate the
content of the right column. This suggests the option of a
left-right compromise, or left-right coalition, just like that is
often the case in the politics of healthy democracies.

Combining parts and layers: the outline. After some
reflections on the general structure of the book, let me
now just give a more detailed description of the layout of
the chapters. As mentioned, I have divided the book in
three parts or volumes, as indicated in Figure 2. Volumes
I and III are primarily descriptive and do not require much
math, since they are phenomenologically-oriented. So in
the context of the layers, Volumes I and III mainly deals
with A with some attention to layer B. Volume II, with a
title that refers to the ‘quantessence’, focusses more on
the mathematical and conceptual structure of the theory,
and covers the layers B and C. As a matter of fact, quan-
tum lovers with an outspoken fear of formulas may prefer to
read only Volumes I and III as a single coherent descriptive
account of what quantum theory has achieved. The follow-
ing preview may help you to make up your mind.

Volume I talks about The journey, where we follow a path
starting at the level of atoms, and descending deeper into
matter to the worlds of nuclei and elementary particles and
their interactions. This part is so to speak inward bound.
But before we embark on this descent in Chapter I.4, we
give a review of what classical physics is about in Chap-
ter I.1. Chapter I.2 deals with the very breakdown of clas-
sical physics, from which crises the theories of relativity
and quantum emerged. Here we also included a section

on the physics of geometry and a section on the notions of
information and computation, highlighting another funda-
mental turning point in twentieth century science and tech-
nology. In Chapter I.3, on units, scales and universal con-
stants, we obtain surprisingly deep insights in the domains
of validity of our cherished theories by applying what we
call ‘dimensional analysis.’ It provides us with a heuristic
quantitative sense of what the characteristic scales in na-
ture are, and why. In Chapter I.4 we describe the quest for
the basic building blocks of matter all the way from atoms
down to the most fundamental constituents of matter and
radiation.

In Volume II – called Quantessence: how quantum theory
works – we give an accessible introduction to the mathe-
matical modelling tools and representations that comprise
quantum theory, including those which led to a number of
remarkable conceptual and semantic puzzles. This part
emphasizes the two deeper layers I alluded to before, i.e.
the layers B and C of Figure 3.

This second part also leads us deeper into the subjects
of quantum information and computing. To that end we
first have to contrast the setting of quantum theory with
its classical counterpart. In Chapter II.1, the first of Vol-
ume II, we start by introducing quantum states as vec-
tors in Hilbert space. I discuss the structure of Hilbert
space for qubits and quantum information in quite a lot
of detail. In the second Chapter II.2, I discuss the quant-
essence of observables, why we think of them as opera-
tors acting on Hilbert space, and what it means to make
a quantum measurement. In this chapter the Heisenberg
uncertainty relations are also introduced. In Chapter II.3 I
talk about the measurement process more extensively with
a particular focus on quantum interference phenomena.
Chapter II.4 examines quantum entanglement and some
of the modern experiments addressing the profound ques-
tions of cloning, Schrödinger’s cat, hidden variables, as
well as quantum teleportation and computation. In Chap-
ter II.5 I explain the concepts of quantum particles, fields
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and strings. There, the famous equations of Schrödinger,
Heisenberg and Dirac that describe the time evolution of
states and observables, will be introduced. I also explain
properties like quantum spin, quantum statistics and their
relationships. In Chapter II.6, the final chapter of Volume
II, we introduce the notions of symmetry and symmetry
breaking which play a central role in all of modern phys-
ics. The notion of symmetry served as a powerful guiding
principle in our quest to understand nature.

In the third and final Volume of the series we return to
model physical reality but we now move upwards from the
atomic scale. In Chapter III.1 we discuss how matter se-
quentially evolved in the very early universe, from quarks,
to nucleons, to atoms, and from simple molecules to the
basic (bio)chemistry concerning the molecules of life.

Chapter III.2 and III.3 are devoted to the splendid diversity
of quantum phenomena in the physics of many body sys-
tems that are manifest in gaseous, liquid as well as solid
phases. Where in Chapter III.2 we consider the atomic and
nuclear lattices and to what extent these are ordered, the
focus in chapter III.3 is on the electronic behavior in solids
and the quantum phenomena they display.

In Chapter III.4, we touch upon the quite advanced notions
of scale dependence and renormalization. Part III could
well be called outward bound, certainly if reasoned from
the atomic scale where quantum theory made its first ap-
pearance. The criteria of inward and outward bound refer
to the arrows in the left column of Figure 2.

In the concluding Chapter III.5, we zoom out and look at
the meaning and impact of quantum in the broader context
of science, technology and society.

After the concluding chapter you find a set of Math Ex-
cursions, appendices in which we offer rather minimal but
tailor-made introductions to the mathematics used through-
out the book.

Choosing the structure of a three-volume book means that
we couple together the layers of Figure 3 so as to enable
a coherent presentation of the quantessence as a whole,
which is accessible without being too superficial. What you
see is that quantum theory, even when you restrict yourself
to the quantessence, is a huge field. and that is why I
divided the book up in three volumes.

As you may be aware, an impressive number of Nobel
prizes have been awarded in the course of the past cen-
tury to quantum discoveries in physics and chemistry. We
list most of them in an appendix (on page 644) at the end
of the final volume. There we also provide some of the
chronology, and list the names of many of the influential
thinkers who made seminal contributions to the field. It
may also help you to follow up specific topics that have
caught your interest while reading.

I like to think of the three parts of the book as a kind of a
triptych, where the central panel covers the deeper quan-
tum scenery, while the side panels are more descriptive
and discuss lots of real physics, from quarks all the way up
to bio-chemistry and the splendid diversity we encounter in
the condensed states of matter.
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The Journey: From Classical to Quantum Worlds

We start this volume by a brief explanation of the core results of classical physics and how observations necessarily led
to the turning points of quantum and relativity. There is a chapter on the age of geometry and information and one on the
fundamental constants of nature and their meaning, where we to a certain extent we cover Big Bang cosmology and black
holes. We then describe the magnificent race to the bottom of discovering ever more elementary layers of particles and
the fundamental forces between them culminating in the Standard Model. More speculative subjects like grand unification,
superstring theory and the multiverse are finally also touched upon.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page — #31 i
i

i
i

i
i

Volume I

The journey:
from classical to quantum worlds
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Chapter I.1

The gems of classical physics

Mission almost completed

Don’t laugh! There is a special section in purgatory
for professors of quantum theory, where they will
be obliged to listen to lectures on classical physics
ten hours every day.’

Paul Ehrenfest (in a 1927 note to Einstein)

In this chapter we recall the great theories of classical
physics with an emphasis on their underlying principles.
You could call them ‘classessential.’ One by one they rep-
resented turning points in our understanding of Nature.
First there are the four fundamental laws of Newtonian
mechanics and gravity, which open the door tto the pre-
cise description and modeling of general dynamical sys-
tems through systems of differential equations. The sec-

ond pillar corresponds to Maxwell’s four laws of electro-
magnetism, describing all classical electromagnetic phe-
nomena including those of light and radiation. The third
component consists of the macroscopic laws of thermody-
namics and how they are explained from the underlying mi-
croscopic dynamics by the theory of statistical mechanics.
It is here that the notion of entropy emerges as a measure
of information or disorder.

Towards the end of the nineteenth century, physics almost
came to an end. The physics community seemed opti-
mistic and self-confident. Most of the observed natural
phenomena appeared to be accounted for in the estab-
lished framework of classical physics, at least in principle.
It was hard to imagine what else could present itself to
their curious minds. And indeed, after many centuries of
scientific research, there had been not only highly impres-
sive technical achievements, but fundamental laws of na-
ture had also been established.

I like to warn agains the sloppy use of terminology when
it comes to words like ‘models,’ ‘theories’ and even ‘laws
of nature.’ It is rule rather than exception among scientists
to treat these concepts as basically interchangeable. We
refer to the theories of Newton and Einstein, by which we
mean the mathematical description of certain theoretical
models of nature’s behavior, which in fact have been so
successful that they are often also referred to as ‘laws of
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6 CHAPTER I.1. THE GEMS OF CLASSICAL PHYSICS

nature.’ Yet they are not true in any absolute sense, there
is no guarantee that we will not one day find that nature
violates such a law of nature in a domain of reality that we
cannot yet observe. So, on the one hand, one might as
well put these cherished ‘laws’ in the category of ‘working
hypotheses’ in view of the fact that we can never fully ex-
clude the possibility that they are conceivably false. On
the other hand, the ‘laws’ have proven to be remarkable
robust quantitative statements on the workings of nature
that have survived centuries of ever more extensive (and
expensive) experimental tests. In that sense they express
some of the core messages carried by nature about our
world, about what and who we are, and how things ended
up this way. They may not tell us why we are here but at
least how we got here. It appears that modern science in
many ways liberates us from the narrow anthropocentric
views that are as dominant as they are questionable in the
debate of what the place and future of humankind in this
universe may be.

When I talk about the breakdown of classical physics, I
refer precisely to the type of breakdown where the de-
clared universality of laws turned out to primarily express
our overconfidence. The term breakdown here is not as
much a matter of whether a theory is right or wrong, but
rather marks the limited domain of validity of any particular
theory. In any pragmatic sense there is nothing wrong with
classical physics as long as you apply it to problems within
its domain of validity. You may compare it to the situation in
biological evolution where it is evident that we have passed
beyond the stage of bacteria, but that doesn’t stop them
from being around and still playing a crucial role.

What the notion of classical physics refers to depends on
the context in which it is discussed. Often ’classical’ is
contrasted with ’quantum’, and in that case we can con-
sider the theory of relativity to be part of classical physics.
We could however also contrast ‘classical’ with ’modern’,
and in that case we can draw the line at the end of the
nineteenth century and count both relativity and quantum

Figure I.1.2: Newtonia: Composition with bound orbits. (Image
constructed using visualization & graphics tools of the Mathemat-
ica package.)

theory as parts of ’modern’ physics. It is this latter dis-
tinction that we will make in this chapter. The use of the
word ‘modern’ will strike you remarkably inappropriate be-
cause this ‘modern’ physics was to a large extent formu-
lated a century ago; ‘modern’ in this context clearly does
not mean contemporary. Modern theory in this context ap-
parently just means that we have not yet encountered the
limits of its domain of validity. In this chapter we start by
briefly recalling the core messages of the classical theo-
ries of mechanics and the gravitational force, of the theory
of electromagnetism and light, and of the theories of ther-
modynamics and statistical physics.
In the next chapter we briefly summarize how certain crises
in classical physics seeded two fundamental turning points
in our thinking about nature: relativity and quantum phys-
ics. In that chapter we also introduce the basic concepts
of information theory, as this branch of science is now also
heading towards a quantum revolution.
In the third chapter we delve deeper into the notion of the
domain of validity of a model and discuss how the partic-
ular values of the universal constants that appear as pa-
rameters in physical models basically set the scale of our
universe.
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NEWTONIAN MECHANICS AND GRAVITY 7

The fourth chapter gives an account of our progressive in-
sights in what the basic building blocks of nature are, from
the atomic level all the way down to superstrings.

Newtonian mechanics and gravity

Newton’s work lead to the unified description of terrestrial
and heavenly mechanics and involved the creation of the
mathematics of change, called differential calculus, which
in turn gave rise to the birth of the general theory of dy-
namical systems.

Four laws only

Back to the achievements of classical physics. Firstly there
are Newton’s four laws described in his genial Principia
Mathematica published in 1667. Three of those laws con-
stituted the foundations of mechanics: (i) the law of inertia,
(ii) the force law and (iii) the the law of action and reaction.
The fourth law is the law that defines the gravitational force
between two masses.

The first law: the law of inertia. The law of inertia postu-
lates that if a body is at rest or moving at a constant speed
in a straight line, it will remain at rest or keep moving in a
straight line at constant speed unless it is acted upon by a
force. This property is called inertia. We have illustrated
the distance traveled x(t) for a body of some mass m, for
two constant velocities v1 < v2 in Figure I.1.3. In the ab-
sence of a force the distance traveled is proportional to the
elapsed time, in other words: x(t) = vt .1 The first law led

1We adopt the notational convention where symbols denoting
vector-like quantities like position, velocity, momentum and force are
given in bold except when we are dealing with one spatial dimension.
For the length and the length squared of a vector we write |v| ⌘ v and
v · v ⌘ |v|2 ⌘ v2 . Scalar quantities like mass are set in the default
typeface.

Figure I.1.3: Newton’s first law. In the absence of a force a body
will move at a constant velocity and momentum. In the figure the
distance traveled as a function of time x(t) for a body of mass is
plotted for two constant momenta p1 and p2, corresponding to
the two arrows.

to the fundamental notion of momentum, where the mo-
mentum p of an object is defined as the product of its mass
m and its velocity, p = mv . This linear relation between
momentum and velocity is depicted in Figure I.1.4 , where
the slope of the line by definition equals the mass. Momen-
tum is also referred to as the ‘amount of motion,’ and if you
don’t have a feeling for it, think of it as impact. If somebody
throws a large brick to you the impact will be much larger
than when that same person would have thrown a piece of
foam of the same shape with the same velocity. The first
law states that in the absence of a net force on an object
its momentum will not change. Zero force means that mo-
mentum is conserved, and this implies that the velocity is
constant.

The second law: the force law. The second law, called
the force law, is the well-known relation between the force
F applied to a body, and the resulting acceleration a , given
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8 CHAPTER I.1. THE GEMS OF CLASSICAL PHYSICS

Figure I.1.4: Definition of momentum. Newton defined
momentum as the ‘quantity of motion’ directly proportional to
the velocity of the object, the proportionality constant equals the
mass m of the object.

by the fomula F = ma .2 As acceleration is the rate of
change in velocity, the force is then equal to the rate of
change in momentum. A brilliant aspect of this equation is
that at first glance it doesn’t seem to hold. I remember as
a kid pulling other kids on a sled through the snow: yes I
had to pull to get the sled moving but if I stopped pulling
it did not keep moving with constant velocity as I thought
should be concluded from the law. No force, no change in
momentum. But the sled immediately came to a halt after
I stopped pulling it. I had to conclude that there should
be another force in action, and indeed there was, it was
the resistive force of the snow. Now that is a funny force
that opposes motion, the greater the velocity, the greater
the force in the opposite direction. It is as subtle as the
workings of the opposition in parliament. But postulating

2Actually it should be written as F = dp/dt , where strictly speaking
there is an extra contribution because dp/dt = vdm/dt +mdv/dt .
The first term proportional to the change in mass is considered to be
zero because for a single particle one assumes a constant mass. But
for a rocket burning its fuel this is no longer true.

Figure I.1.5: Newton’s second law. We have drawn a segment
of the orbit in 2 dimensions of a particle with mass m under a
constant force F in the x1-direction. This could be a particle with
charge q in a constant electric field E exerting a force F = qE .
Note that the momentum p at time t points along the slope of the
particle’s trajectory x(t) . Because the force F points in the x1-
direction, only the component p1- will increase while p2 remains
constant.

a force with such a subtle adaptive power, is that not just
postulating what you see, postulating the facts you wished
to explain? Well don’t put the book aside yet, there is more
to come.

The third law: action is reaction. A simple example of
the law of ‘action is reaction’ is provided by a book at rest
on a table as depicted on the left in Figure I.1.6. Gravity
pulls the book down (light blue arrow) attached to centre
of mass pointing down), it equals the force of the book on
the table (dark blue arrow pointing down) and indeed, the
book would fall down were it not for the table exerting an
equal but upward directed normal force on the book It is
this balance of forces that act on an object, which is the
main topic of statics. It means that the net force, but also
the net torque, on an object should be zero and that does



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 9 — #39 i
i

i
i

i
i

NEWTONIAN MECHANICS AND GRAVITY 9

Figure I.1.6: Newton’s third law. The third law Action = Re-
action applies to a chicken at rest on a table. The downward
gravitational force can be represented by the large light blue ar-
row attached to its centre of mass. Through its legs it exerts in
two places a force on the table, and the table exerts a reaction
force exactly equal and opposite at the points of contact. The
net force, which is the sum of the light and dark blue arrows on
the chicken, is zero and its change in momentum will be zero so
it doesn’t move. But why are the forces of the two legs unequal?
That is to make sure that the chicken doesn’t fall over sideways.
This requires that the torque on the chicken has to be zero as
well, so that its angular momentum does not change.

not only explain the stability of architectural structures like
bridges, arches or cathedrals, but also the stability of the
chicken at rest on the table at the right-hand side of the
figure.

A more subtle example of the third law is provided by a
game called ‘arm wrestling.’ Two individuals (still mostly
men) sit at opposite sides of the table and fix their elbows
on the table and try to push each other’s hand towards the
table. For quite some time nothing seems to happen, in
spite of the fact that both individuals do their utmost best
to get the fists moving. As long as nothing happens the net
forces of the hands are in perfect balance, a situation that

Figure I.1.7: Newton’s third law. The third law Action = Reac-
tion applies to arm wrestling, also when the balance of power
is broken and the ‘red’ force is larger than the ‘grey’ force. An
explanation is given in the text.

is called a static equilibrium. This lasts until the balance is
broken, leading to a net force in one direction causing both
fists to start moving, until one hand is forced on the table
and somebody has to order a round of beer.

The question you may wrestle with is whether in such a
dynamic situation the action-is-reaction-law still holds. So,
let us look more closely at how to apply the fundamen-
tal action-is-reaction-law in such a dynamic setting. This
is explained in Figure I.1.7, where we give a schematic of
the forces involved. We identify three different instances
where the third law can be applied. Firstly, on the left side
we have the force of the red arm r on the ‘red’ hand R (de-
noted by FrR), which indeed equals the opposite force of
the red hand on the red arm (FRr). In the middle we have
the force of the red hand on the grey hand (FRG), and the
force of the grey on the red hand (FGR), these have to be
equal because of the third law applied at the interface be-
tween the hands. On the right side we have the force of the
grey arm (FlG) on the grey hand and the equal and oppo-
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10 CHAPTER I.1. THE GEMS OF CLASSICAL PHYSICS

Figure I.1.8: Newton’s fourth law. This is Newton’s famous
‘inverse square law’ for the gravitational force between two mas-
sive objects as a function of their distance r . The force only has
a radial component, which is negative meaning that the force is
attractive.

site force (FGl). So we see that the third law should be ap-
plied three times referring to three different forces. If both
hands move with an acceleration a we can firstly apply the
force law to the red hand telling us that the net force on it
is FrR - FGR = ma , applying it to the grey hand it yields
FRG-FlG = Ma . Next we use the result that FRG = FGR

to ascertain that the net force FrR - FlG = (m + M)a ,

which is the force law applied to the system of both hands.
This argument shows that the hands can be in accelerated
motion, not in spite of, but rather thanks to the fact that the
law of ‘action is reaction’ remains valid all along. It illus-
trates the important fact that ‘action is reaction’ is a gen-
eral law, that is applicable as long as the objects exerting
force on each other stay in contact.

The fourth law: the law of gravitation. Newton’s fourth
law is his celebrated universal law of gravitation,

Fr = -
GNm1m2

r2
, (I.1.1)

Figure I.1.9: Conic sections. The general solution for the orbits
of a planetary object around a star can be obtained by inserting
the gravitational force in the second law. The resulting orbits
correspond to the conic sections depicted above.

expressing the attractive gravitational force between two
masses m1 and m2 as proportional to the inverse square
of their distance r . The force as a function of the distance,
is depicted in Figure I.1.8. Note that here the principle of
‘action is reaction’ is indeed respected implicitly, because
it is the force ‘between’ two objects, they experience an
equal force in opposite directions. Indeed it is so universal
that it applies with the same constant GN equally well to a
pencil dropping on the floor (the earth) as to the motions in
the solar system or to the motion of stars in the Milky Way.
It was justly said that Newton with this law unified celestial
and terrestrial mechanics. Substituting this gravitational
force in the second law, one can solve the system for gen-
eral planetary orbits around a star. They correspond to the
well-known conic sections depicted in Figure I.1.9, where
the top two are the bound circular or elliptic orbits, and the
bottom two are the unbound parabolic and hyperbolic or-
bits.
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Dynamical systems

Let me say a little more on how these laws of Newto-
nian mechanics furnished a first and powerful description
of what nowadays is called a dynamical system, a sys-
tem described by a set of variables whose values change
over time. Thinking about mechanics that way, one would
rewrite the laws in a different way that illuminates the dy-
namical system’s perspective.

Phase space. First we say that if we look at a particle as a
system, then it has at any instant in time a state that is la-
beled by two variables, its position x and its momentum p .

So, we may think of the state of the system as correspond-
ing to a point in (x, p)-space. This space is usually called
the phase space Pph of the system. For a particle mov-
ing in ordinary space Pph is six-dimensional, because we
have to specify the three components of its position and
the three components of its momentum. The dynamics of
the system can be envisaged as a trajectory (x(t), p(t)) of
the point that represents the state of the system, through
Pph . This trajectory is then specified by giving the rule
which tells you where the system goes if you give the point
at some initial time t0 .

Differential equations. This rule is like an incremental
prescription, it specifies an infinitesimal change by using
the notion of a (time) derivative (d/dt) as a measure of
change:

d Something
dt

���
t0

=
⌦ change of that 0Something0

per unit time at t = t0.

Equations involving this (time) differential are called dif-
ferential equations, to contrast them with algebraic equa-
tions – like the quadratic equation ax2 + bx + c = 0 –
in which algebraic expressions in the variables appear but
no derivatives. If the equations involve time derivatives, we
speak of the equations of motion. If the system is closed,
the change will depend only on the state of the system at
earlier times. In the quite common case that the system

Figure I.1.10: Dynamical system. We display the vector field
corresponding to a particular example of (I.1.2). This means that
in each point (y1, y2) we plot the vector (arrow) with compo-
nents dy1/dt = -y2 + cos 2y1 and dy2/dt = y1 + sin 2y2 .
Solutions of the system correspond to trajectories that start from
a given point in (y1, y2)-space, following the arrows. In this case
we give some trajectories starting on the y1 axis that converge
either to the blue or the red limit cycle.

has no memory – like the system of the sun and the earth
in the Newtonian picture – the change at some particular
time t only depends on the state of the system at time t. It
is generally agreed upon that sun and earth do not wrestle
with sleepless nights caused by bad memories. So the dy-
namical system with a set of N independent variables {yi}

with i = 1, . . . ,N would look like a set of N coupled equa-
tions describing the change of the system by specifying
the N components fi of the change vector, each of which
may in turn depend on the set of all variables {yj}:

dyi

dt
= fi({yj}) . (I.1.2)

The functions fi(yj) encode the interactions between the
different variables, In other words, these variables include
their mutual dependence and of course a number of exter-
nal parameters which typically appear as the coefficients
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of the terms specifying the interactions. The fi(yj) cor-
respond to the components of the ‘change vector’ at any
point in phase space, which means that they define a vec-
tor field over the configuration or ({yi}) space. This vec-
tor field forms a powerful mathematical representation of
the dynamical system as a whole. It depicts the phase
space as a fluid flow. If we drop autumn leaves into the
flow, they will start to move, following the particular flow
lines which correspond to the particular solutions of the
dynamical system. We have depicted a particular vector
field in Figure I.1.10 , which also shows two sets of tra-
jectories described by solutions of the dynamical system
for different starting points on the y1-axis. The trajectories
are obtained by locally following the direction of the vector
field. The dictum is indeed: ‘go with the flow.’ The orbits
are seen to converge on one of two different closed limit
cycles.

Yet another way to look at a dynamical system is that it
represents an algorithm that takes input information, the
vector defining the initial point in phase space and moves
or ‘processes’ it, to some final state.

Writing Newtonian mechanics in this format the first and
second laws look like,

dx
dt

= p/m ,

dp
dt

= F . (I.1.3)

They completely specify the motion of the point in phase
space, where the force F = F(x,p) may in general depend
on the position and velocity of the particle. It is custom-
ary to treat the earth-sun system by keeping the sun fixed
in the origin (a good approximation because the sun has
a huge mass) and let the earth move through the grav-
itational force (the fourth law) that only depends on the
length of the position vector r = |x| . The third law is ba-
sically a constraint on the system: if we had included the
position and momentum of the sun as independent vari-
ables, then the third law would require that the same force

F would appear with the opposite sign in the equations for
the sun and for the earth respectively. From this example it
is also clear that the functions on the right-hand side of the
equations do not only depend on the variables, but also on
certain parameters that set the strength of the couplings
or interactions. These parameters, like the masses or the
Newton’s gravitational constant, are supposed to be con-
stant but must of course be varied to find the best fit to the
experimental data. They are the input parameters of the
model. It is here that Occam’s razor – the principle of ra-
tional minimalism – applies, decreeing that if two models
perform equally well, the one with the fewest parameters
is to be preferred.

Conservation laws

The tears of the world are a constant quantity. For
each one who begins to weep, somewhere else
someone stops. The same is true for laugh.

Samuel Becket – Waiting for Godot

Note that with the dynamical laws for the fundamental vari-
ables, one can also calculate the time evolution of other
(x- and p-dependent) dynamical variables. One such
variable is the energy, often called the Hamiltonian and
denoted as H . It should be thought of as a function H =
H(x,p) of the basic state variables x and p . Another such
variable is the angular momentum L = x⇥p , which is basi-
cally the amount of rotational motion, or the rotational mo-
mentum. We will return to these quantities shortly.

Under certain circumstances it may happen that some dy-
namical variables are conserved, meaning that they do not
change over time. These are often called constants of the
motion. For example in Newtonian mechanics, if there
is no force, that is we have that F = 0 , then the equa-
tion (I.1.3) tells us immediately that the momentum does
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not change, it stays constant and is thus ‘conserved.’ On
the other hand, if the force only depends on the distance
and not on the direction (as is the case in Newton’s grav-
itational force), then the angular momentum will be con-
served as we will explain shortly. So, if the time derivative
of some physical quantity Q equals zero:

dQ

dt
= 0 , (I.1.4)

we call the equation a conservation law for Q , because
the amount of Q is constant in time.

Energy conservation. Of special interest is the case of
energy conservation because it is of general validity and
applies to basically all observed processes in nature that
are physically based. Let us for convenience restrict our-
selves to a (one-dimensional) situation which is simple but
also surprisingly common, where the energy H consists of
two parts, a kinetic energy part U(p) which only depends
on the momentum, and a potential energy part V(x) that
only depends on position:

H(x, p) = U(p) + V(x) . (I.1.5)

Then its time derivative can be calculated:3

dH

dt
=

dU

dt
+

dV

dt
=

dU

dp

dp

dt
+

dV

dx

dx

dt
= F

dU

dp
+

p

m

dV

dx
.

We see that the energy will be conserved if the terms on
the right-hand side cancel each other. This requires that
the following equalities have to hold:

dU

dp
= p/m , (I.1.6a)

dV

dx
= -F . (I.1.6b)

3The second equal sign involves the use of a mathematical identity
called the chain rule which says that if U(p) depends on t only through
its dependence on p(t) , the time change can be found by first calculat-
ing the change in U because of a change in momentum, multiplied by
the change in time of the momentum. It roughly means that one may
cross out the dp factors of the numerator and denominator.

The first condition leads to the well-known expression U =
p2/2m while the second restricts the force in that it has to
be equal to minus the spatial change of some potential en-
ergy function V . Such a force field is not surprisingly called
conservative, exactly because its action ‘conserves’ the to-
tal energy of the system. Whereas a ‘conservative force’ is
standard physics jargon, I have never come across terms
such as ‘liberal’ or ‘progressive’ forces, though if we get to
the strong nuclear force, other evocative terms will surface,
like ‘asymptotic freedom’ and ‘infrared slavery.’

Applying a (net) force means doing work. If we apply
a force F to a mass m, the mass will accelerate and over
time its kinetic energy will change. If we push a stroller,
we do work by applying a force on it. If we put a charge in
an electric field, the charge will start moving because it is
the field that exerts a force that causes the motion and it is
the field that does the work. The change in kinetic energy
�U by definition equals the amount of work �W that the
force has done. If the force is constant, this means that
�W = F · �x. If the mass moves through a conservative
force field F(x) and it moves along a certain path � from x0
to x1, we know from conservation of the total energy that
�E = 0, and thus �U = - �V = V(x0) - V(x1). The
amount of work in an arbitrary force field can be expressed
as the line integral of the force field along a path of motion
� :

W =

Zx1

x0

F(x) · dl ,

where the line element dl is the infinitesimal vector tangent
to the path � in the point x. For a conservative force field
we get,

W = -

Zx1

x0

rV(x) · dx = V(x0)- V(x1) ,

and we see that the change in potential energy equals the
difference of the potential energies at the endpoints of the
path, consistent with the conservation of total energy E.
The fact that the difference only depends on the endpoints
means that the increase of energy is not dependent on the
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Figure I.1.11: A line integral. In the upper picture we give a two-
dimensional potential surface V(x) . The force field is defined as
F(x) = -rV(x) . If we choose a path from point x0 to x1 , we
can integrate F along that path. This means that we need to
integrate the component that is tangential to the path. This line
integral yields the value W = V(x0) - V(x1) which equals the
work performed by the force, which in this case is negative. We
had to perform a force to go uphill and therefore the potential
energy was increased. Note that the outcome is independent of
the path chosen.

particular path chosen. If you want to climb to the top of a
mountain, you can choose between a path that is long and
not so steep or a very short, very steep path, in either case
you would have to deliver the same amount of work.

The harmonic oscillator. A simple example of a conser-
vative force is the one-dimensional elastic force, applied
to a mass m hanging on a spring attached to a beam as
depicted in Figure I.1.12,

F = -kx , (I.1.7)

where x is the deviation of the mass from its equilibrium
position, k is the elastic constant that characterizes the
spring and the minus sign indicates that the force the string
exerts is opposite to the displacement. The force tends to

Figure I.1.12: The oscillating mass . A model system con-
sisting of a mass m attached to a spring. The inset shows the
oscillatory motion of the mass in configuration (x, t)-space.

restore the equilibrium state. Because the force increases
linearly with the distance x , and according to the equa-
tion (I.1.6) it has to equal minus the derivative of the po-
tential energy, we may conclude that the corresponding
potential V satisfying that condition has to grow quadrati-
cally with x (up to an irrelevant constant term):

V(x) =
1

2
kx2 . (I.1.8)

We have depicted the energies V , U and H correspond-
ing to the resulting oscillatory motion in Figure I.1.13. The
spring keeps oscillating with a fixed frequency, which is
equal to

p
k/m , a fixed amplitude and a fixed total en-

ergy H . These motions correspond to the configuration
space picture of Figure I.1.12, and phase space picture
of Figure I.1.14. This harmonic oscillator is quite ubiq-
uitous, because systems are most of the time in equilib-
rium. And if we perturb such a system, it typically starts
oscillating around its equilibrium configuration and in real
cases it usually relaxes back to equilibrium because of fric-
tional forces. So the harmonic potential is the simplest
approximation that corresponds to the ‘linear’ response of
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Figure I.1.13: The harmonic oscillator. The harmonic potential
V(x) = -1

2
kx2 in red. The equilibrium point is at the origin,

the resulting force is F = -kx and is always directed towards
the equilibrium point. If there is no friction, the position x will
oscillate around the origin with a fixed amplitude and a fixed
total energy H .

the system, which should hold as long as the perturbations
are small. This quadratic potential is crucial and will also
show up in many different guises at all levels of (quantum)
mechanics.

Newton’s gravitational potential. The most well-known po-
tential is the gravitational potential due to a mass M lo-
cated at the origin in Newton’s theory, defined as:

V(r) = -
GNM

r
, (I.1.9)

where we are now in three dimensions and r denotes the
length of the position vector r = |x| Note that the potential
energy is taken to be zero at infinity. The potential en-
ergy of a mass m at a position at a distance r equals V =
mV(r) . And it does indeed lead to Newton’s celebrated ‘in-
verse square’ law (I.1.1). If we let the particle go at some
position r , it will move radially inward thereby lowering the
potential energy, but at the same rate increasing its ki-

Figure I.1.14: Periodic orbits. The phase space vector field cor-
responding to the harmonic oscillator with m = k = 1 becomes
(dx/dt, dp/dt) = (p,-x) . The orbits correspond to limit cy-
cles. The origin is a fixed point that coincides with the particle at
rest.

netic energy so that the total energy remains the same.
The conclusion of this part of the story is that if the con-
ditions (I.1.6) are met, the total energy will be conserved if
the system evolves according to Newton’s laws.

Angular momentum. Another important conserved quan-
tity (in a problem with spherical symmetry) is the angular
momentum L , which is a vector quantity just like position
or momentum (velocity) and has three components, each
of which is conserved. You experience that conservation
law if you are cycling. If the wheels spin fast, the angular
momentum vector will be directed perpendicular through
the axes of the wheels, and the conservation law is re-
flected in the stability of the bike at high speed. Kids ap-
parently know about this law because they like to take both
hands off the handlebars. However, if they slow down, they
have to be careful to not tripple over sideways, as small ex-
ternal disturbances may cause a torque that changes the
angular momentum, breaking the conservation law.
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Figure I.1.15: The Like-rule. The defining relation of ‘angular
momentum,’ or the ‘amount of rotation’ of a particle in some or-
bit. It is given by the vector L = x ⇥ p where the ‘times’ symbol
⇥ is called the vector product, which is a well-defined multipli-
cation rule for three-dimensional vectors. Whether you like it
or not, the Facebook inspired ‘Like’ symbol on the left symbol-
izes the ‘Like-rule’ that tells you in which direction the resulting
L vector is pointing. The instruction is also called the right-hand
or corkscrew rule and their importance derives from the fact that
they unambiguously link a direction to a rotation.

We have illustrated the defining relation L = x ⇥ p in Fig-
ure I.1.15. So L is a vector perpendicular to the surface
spanned by the vectors x and p . Whether it is pointing
up or down is determined by the right-hand rule, which in
modern parlance could be better termed the right ‘Like’ or
‘L’ rule: point your right-index in the direction of the first
vector x , bend your fingers in the direction of the second
vector p , then the resulting vector L will point in the direc-
tion of your thumb. This rule explains the meaning of the
vector or cross product or ⇥ sign for vectors. The length
of L is given by the product of lengths of x and p times the
sine of the angle between them, implying that

|x⇥p| = |x||p| sin ✓ =

�
0 if x and p parallel

|x||p| if x and p perpendicular .
(I.1.10)

The vector product of two vectors is a vector that is point-
ing perpendicular to the plane defined by the two vectors,
and indeed the product better be zero if the vectors are
pointing in the same direction, because then they do not
even define a plane.

In three dimensions we have two types of products for vec-
tors. The dot, inner, or scalar product, which maps a pair
of vectors into a number, a ·b = |a||b| cos ✓ , and the cross,
exterior, or vector product which maps a pair of vectors
into another vector. These definitions may at first sight
seem contrived, but the opposite is true: all this symbol-
mumbo-jumbo is mostly there because it offers notational
convenience, efficiency and transparency.

This crash course of high school and first-year classical
mechanics underscores once more that Newton laid the
foundations of a general approach to dynamical systems
irrespective of what they precisely describe. The variables
could refer to either mechanics or to fluid- or electrody-
namics, but for that matter they could equally well refer to
ecology or economics. By creating the language and syn-
tax of dynamical systems, Newton opened a monumental
gateway into scientific thinking and modelling. Indeed, we
are standing on the shoulders of giants. ⌅

Classical mechanics for aficionados

In this addendum we present two alternative ways in which
classical mechanics can be cast. The reason to do so is
that these formulations, though more abstract, are relevant
if we move into the quantum domain.

Canonical (Hamiltonian) structure. Let us first recast
the setting of classical mechanics in a – what is called –
Hamiltonian form. It is just a matter of reformulating the
same physics in a slightly different but convenient mathe-
matical form. First we note that from the alternative form of
the equations (I.1.5-I.1.6), we learn that dU/dp = @H/@p
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and dV/dx = @H/@x.4 Now we can write the equations of
motion (I.1.3) in their Hamiltonian form as

dx

dt
=
@H

@p
, (I.1.11a)

dp

dt
= -

@H

@x
. (I.1.11b)

This form of the equations is also called canonical and the
x and p variables are called canonically conjugate.

Poisson structure. Having pushed the juggling with deriva-
tives this far, it pays to go yet one step further and add
one more element, which will present classical Hamilton-
ian mechanics in yet another elegant form. This formu-
lation in terms of Poisson brackets was much preferred
by Paul Dirac as it brings the classical theory tantalizingly
close to its quantum descendants. We should first note
that for an arbitrary function on phase space f(x, p) we can
derive its time evolution as a first-order dynamical system
like:

df

dt
=
@f

@x

dx

dt
+
@f

@p

dp

dt
=
@f

@x

@H

@p
-
@f

@p

@H

@x
, (I.1.12)

where we used the equations (I.1.11). Next we may define
the Poisson bracket of two arbitrary functions f(x, p) and
g(x, p) by

{f, g}pb ⌘ @f

@x

@g

@p
-
@g

@x

@f

@p
. (I.1.13)

It is an expression which is antisymmetric in f and g , as
{f, g}pb = -{g, f}pb . With this definition we can write the
time derivative of any function on phase space (i.e. any
dynamical variable) as the Poisson bracket with the Hamil-
tonian:

df

dt
= {f,H}pb . (I.1.14)

We say that the Hamiltonian ‘generates’ the time evolution
of the dynamical variables. For a conserved quantity Q we

4We introduce the curly or partial derivatives which mean that for a
function of several independent variables you only take the derivative
with respect to one of them (keeping the others fixed).

have by definition that dQ/dt = 0 , which by the equation
above implies that {Q,H}pb = 0 . A trivial instance is the
case Q = H , where dH/dt = {H,H}pb = 0 as it should.
In this way, we may also observe that the equations

@f

@x
= {f, p}pb and

@f

@p
= -{f, x}pb , (I.1.15)

hold as well. The first one states that the x derivative, i.e.
the effect of an infinitesimal translation in x-space on f ,

is ‘generated’ by the momentum p . Finally I should also
point out the remarkable relation

{x, p}pb = 1 . (I.1.16)

Variables which satisfy this relation are called canonically
conjugate. These classical equations involving Poisson
brackets have striking quantum lookalikes in the form of
commutators as we will explain in the second Volume of
the book.

Lagrangian formulation of mechanics. There is another
formulation of classical physics that is of great importance,
particularly if one turns to relativistic systems. When we
think of simple particle mechanics, the formulation uses
the coordinate x(t) and the velocity v(t) = dx/dt as dy-
namical variables. The central quantity now is not the en-
ergy but rather the Lagrangian L(x, v) defined as:

L(x, v) =
1

2
mv2 - V(x) , (I.1.17)

where we have assumed that the time dependence is fully
contained in the position and velocity variables. Of partic-
ular interest is the so-called Action functional S[x(t)] cor-
reponding to the time integral of the Lagrangian:

S[x(t)] ⌘
Z t1

t0

L(x, v) . (I.1.18)

The action is not just a function of x but a so-called func-
tional of the function x(t). You may think of the variable
as being the path taken by a particle that from a position
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x0 = x(t0) to some other position x1 = x(t1). So if you
give me x(t) for all t then I can calculate v = dx/dt and
therefore also S, and that is why S is functional of x(t).
The Newtonian force law of mechanics can now be de-
rived from a variational argument with respect to the pos-
sible paths. The variational principle says that the action is
stationary under a small variation of the path. It is like say-
ing that the extremum of a function corresponds to points
where the derivative of that function is zero, indeed at a
maximum or minimum of a function the slope of that func-
tion is zero. For the functional the equivalent statement is
to say that an extremum for the action of a particle to go
from A to B along a path corresponds to paths for which
the variation in the action vanishes. So, if we make a local
change of the path x0(t) = x(t)+�x(t) , then that will lead
to a change in the action S0(x(t) ⌘ S(x0(t)) = S + �S.
The requirement that the variation �S = 0 gives rise to the
so-called Euler-Lagrange equation(s) which reads:

@t
�@L
@v

�
-
@L

@x
= 0 . (I.1.19)

One easily verifies that for the particle Lagrangian (I.1.17)
one obtains Newton’ second law, mdv/dt + dV/dx = 0 .

To go from the Lagrangian to the Hamiltonian formalism
involves the definition of the generalized or canonical mo-
mentum p and the Hamiltonian H(p, x)as follows,

p ⌘ @L

@v
H(p, x) ⌘ pv- L . (I.1.20)

There are two reasons to introduce the action one is that
for relativistic systems the action is a Lorentz or relativistic
invariant quantity while the energy or Hamiltonian is not,
and the second has to do with quantum mechanics. There
is a formulation of quantum theory, the so-called path inte-
gral formalism in which the quantum probability amplitude
to go from x0 to x1 is given by a weighted sum (or integral)
over all possible paths between the two points, and where
the statistical weight depends on the action.

Finding the shortest path. If light or
a photon goes from point A to point
B, it presumably follows the shortest
path and that path is a straight line be-

tween the two points. However if you use a navi-
gator in your car, it may ask you to specify whether
you mean the shortest route in a spatial sense (the
cheapest) or the shortest route in time (the fastest).
Knowing that ‘time is money’ this can be a tough
decision to take.
A kindergarten model for calculating the fastest
path is to show kids a chopstick and stick it into
a bowl filled with water. Hey! What’s happening?
It looks like the stick is broken! So you pull it out
again and ‘no’ it is not broken. You hear their brains
rattling. ‘If there is no water it’s not broken,’ says
one. ‘It breaks at the surface,’ says another. ‘I think
that the light ray is broken instead,’ says a girl in the
back. Bravo! That must be it!

The answer is given in the figure below. We have a
landscape with two countries; point A is situated in
the one with a maximum speed of c1 = 120 km/hr

and point B is in the other where the maximum
speed is c2 = 140 km/hr. Clearly the straight
line segment AB is the spatially shortest connec-
tion. However if we want the path that takes the
shortest time, we have to make a little calculation.
We have indicated that the car after a distance s1
crosses the border at a point F, which is at position
x after which it goes a distance s2 in the other coun-
try. So we choose as our action the time T it takes
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to get from A to B. From the figure that

s1 =
q
h2
1 + x2 and s2 =

q
h2
2 + (d- x)2

Then the calculation of T proceeds as follows:

T(x) =

ZB

A
dt =

ZB

A
(dt/ds)ds (I.1.21)

=

Z F

A
(1/c1)ds+

ZB

F
1/(c2)ds (I.1.22)

= s1(x)/c1 + s2(x)/c2 , (I.1.23)

To find the minimum of T(x) we have to solve for the
x-value where the derivative of T vanishes:

dT(x)

dx
=

1

c1

x

s1
-

1

c2

d- x

s2
= 0 . (I.1.24)

We observe that the two quotients correspond to
the sines of the angles i and r respectively, so that
the condition implies the simple identity:

sin i

c1
=

sin r

c2
, (I.1.25)

which is known as Snell’s law for the refraction of
a light ray at the interface of two media. And that

brings us back to the deep connection between a
broken chopstick and Google maps. After the only
adult in the room had explained all this, the girl in
the back still had a question: ‘How does the photon
know which path to choose, as I presume it doesn’t
know how to take a derivative?’

⇤

Somehow in quantum theory there are corrections to the
classical picture, those are contributions that correspond
to paths that are classically forbidden. ⌅ ⌅

Maxwell’s electromagnetism

It appears to me therefore, that the study of elec-
tromagnetism in all its extent has now become of
the first importance as a means of promoting the
progress of science.

James Clerk Maxwell, 1873

The Maxwell equations give a unified description of elec-
tricity, magnetism and electromagnetic waves such as light
or radio waves. Electromagnetism introduced the powerful
concepts of a field and of field dynamics. After we discuss
some of the familiar electromagnetic phenomena in rela-
tion to the Maxwell equations, we will introduce the gauge
potentials which reveal two fundamental symmetries that
turned out to underlie all of modern physics. The first is the
so-called Lorentz invariance which lies at the root of spe-
cial relativity, and the second refers to the notion of gauge
invariance, a principle that underlies the description of all
fundamental interactions.

Besides gravity there are basic natural phenomena of an
essentially different nature to be accounted for, those re-
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Figure I.1.16: Rainbows over Holland. Light and all its optical effects like rainbows are fully described by Maxwell’s equations. Note
on the right that in the barely visible secondary rainbow the sequence of colors is inverted. This is due to a third reflection of the light
ray in the vapor droplets (Photo: V. de Vries).

lated to electricity and magnetism. For these the univer-
sal laws in their splendid generality were written down in
a treatise by James Clark Maxwell almost two centuries
after Newton’s seminal contributions in about 1865. His
four laws were universal as well, as they accounted for all
electric and magnetic phenomena observed to that date
and as a bonus turned out to also describe the propaga-
tion of electromagnetic waves in its many guises such as
light, radio waves or X-rays. Maxwell created for us the
grand synthesis of many of the laws that were proposed
earlier on by Coulomb, Ampère, Faraday, Lenz and many
others. And a unified picture emerged of what once were
considered entirely disconnected phenomena: electricity,
magnetism and optics.

Electromagnetic Fields. Maxwell’s theory is formulated
in terms of a magnetic field B and electric field E , which
depend on space and time. So at any instant in time at
any point in space, the fields have a particular strength
(E(x, t),B(x, t)) . You may think of them as two little ar-
rows (vectors) pointing in some directions in space. The
Maxwell laws describe in detail how electric currents cause
magnetic fields, and how changes in magnetic flux result in
currents which counteract that change. The laws also de-
scribe how accelerated charges emit electromagnetic ra-
diation. From a more formal point of view they brought the
fundamental but rather abstract concept of a field to life,
in the sense that this concept was promoted from a mere
mathematical abstraction and calculational tool to a phys-
ical reality. Electromagnetic fields by themselves propa-
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gate through space and time as waves and radiation, and
turned into physical entities carrying energy and momen-
tum. When you spend a day on the beach and forgot your
sunscreen, you learn the hard way how much energy the
electromagnetic waves emitted from the sun can carry. But
also the beauty of a rainbow on a both sunny and foggy
day is a manifestation of the electromagnetic interaction of
light rays with the tiny vapor droplets in the fog.

The Maxwell equations

I am going to write down the Maxwell equations in their
full glory: in other words, in their gory detail. Not to scare
or impress you but because they are truly iconic. I think
you need to have seen them, otherwise it is like going to
Paris for the first time and missing out on the Eiffel tower,
that would presumably make you mad at your tour opera-
tor. The comments I will make are rather general and de-
scriptive which hopefully makes showing them less daunt-
ing. These are the four equations that could equally well
be called ‘the four Maxwell laws of electromagnetism and
light.’ These equations are usually presented in the follow-
ing form:5

r · E = ⇢ , (I.1.26a)

r · B = 0 , (I.1.26b)

r⇥ B =
j
c
+

1

c

@E
@t

, (I.1.26c)

r⇥ E = -
1

c

@B
@t

. (I.1.26d)

We see that the equations, besides the E and B fields,
depend on the charge and current densities ⇢(x, t) and
j(x, t) , and on the velocity of light c. That the charges and
currents appear in these equations is no surprise as they

5The way they look depends on the precise choice of units, here I
work in Heaviside-Lorentz units because that choice makes them look
simpler. The physical parameter is the velocity of light c, and as we will
see it will pop up in most relations.

Figure I.1.17: Coulomb’s law. If we put a positive charge at
rest at the origin, then the first Maxwell equation correspond-
ing to Coulomb’s law will yield an electric field pointing radially
outward. The strength of the field (given by the length of the vec-
tor) falls off as 1/r2 in three dimensions. This equation by itself
describes what is called electro-statics. The second Maxwell
equation tells you that the magnetic equivalent of such a radial
field does not exist.

are the sources of the fields.
The first equation is often called Coulomb’s or Gauss’ law,
and it determines the electric field that is caused by a
given charge distribution. It says in particular that a single
charge causes a radial electric field around it, as illustrated
in Figure I.1.17.
The second equation is the magnetic analogue of the first

equation for isolated magnetic ‘North’ or ‘South’ charges.
The right-hand side is put to zero, for the excellent reason
that magnetic monopoles have never been observed, at
least up until now. This is the ‘no monopole’ equation, but
one sees that the system could be adapted to a situation
where monopoles would show up, a situation that cannot
be excluded a priori.
The third equation, also called Ampère’s law, states that
a current (or moving charge) causes magnetic fields and
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Figure I.1.18: Ampère’s and Faraday’s laws. This figure illus-
trates the two Maxwell equations involving the curl of the fields.
The left picture refers to Ampère’s law for the case of magneto-
statics, where a straight current yields an axially symmetric B
field. The picture on the right depicts Faraday’s or Lenz’s law
describing how a changing magnetic field or flux gives rise to
an electric field. If we think of the E loop as a closed conduct-
ing loop, a current would start flowing so as to counteract the
change in the magnetic field.

a changing electric field. In other words, given the dis-
tribution of charges and currents in space and time, the
Maxwell equations tell you exactly what the electromag-
netic fields will look like. The third and fourth equation in-
volve the so-called curl of a magnetic and electric field. In
Figure I.1.18 we have indicated how the fields indeed ‘curl’
around the source which is a vector like the current. It is
another instance of the ‘Like-rule.’
The fourth equation, also called Faraday’s or Lenz’s law,
describes how a changing magnetic field causes (induces)
an electric field, which in turn can give rise to a current. If
you take a conducting loop and you change the magnetic
flux through that loop, then that change induces a current
through the loop. If the loop is made of a superconduct-
ing material, the current will keep running forever. Also
in this equation we note that a potential ‘magnetic current

term’ is manifestly absent for the same reason as before.
It is this absence of magnetic monopoles and currents that
breaks the would-be symmetry between electric and mag-
netic phenomena.
All the magnetic phenomena we have observed up to now
are understood as caused by currents, meaning moving
electric charges. Indeed, the second equation tells you
that there are no magnetic purely radial monopole fields,
while the third equation tells you that if you make a tiny
closed current loop, it will act like a tiny magnetic dipole,
and the overall configuration is a magnetic ‘dipolar’ field.
You guessed it: all real magnets correspond to zillions of
microscopic current loops, all neatly lined up. With the
well-known consequence that if you break a bar magnet
in half, you do not get a separated North and South pole,
you just get two smaller dipolar bar magnets.

Linearity. It is important to observe that the system of
Maxwell equations is linear in the fields. This means that
one can simply add different solutions. In other words if I
have any set of solutions, then any linear combination of
these would again be a solution. This is illustrated in Fig-
ure I.1.19 This linearity of the dynamical system basically
means that the electromagnetic field does not interact with
itself.

Electric-magnetic duality. We have emphasized that the
asymmetry of the Maxwell equations reflects the asym-
metry of nature with respect to the existence of electric
charges and magnetic monopoles. Indeed if we restrict
the equations to a source-free situation, meaning that ⇢
and j are zero, then the equations exhibit a manifest sym-
metry which is referred to as electric-magnetic duality. The
system of equations is in that case invariant under the
dual transformation or mapping, where we simultaneously
make the replacements E ! B and B ! -E . This map-
ping transforms the first pair of equations into each other,
and similarly likewise the second pair.

Light as an electromagnetic wave. The most impressive
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(a) Electric dipole field resulting from two opposite charges. The electric
field lines are red, and the equipotential lines are blue.

(b) Magnetic dipole field caused by a bar magnet. They are made visible
byputting the magnet on a table and spread some iron filings around it.

Figure I.1.19: Dipolar fields. If we put two opposite point charges at some distance of each other, the resulting field becomes
dipolar, meaning that the field lines start at the positive charge (magnetic north) and end on the negative charges. In (a) we have the
electric dipole field and in (b) we have the magnetic example. The second is approximated by an ordinary dipolar bar magnet. The
field configuration is because of the linearity obtained by just adding at every point the two coulomb fields of the single charges as
depicted in Figure I.1.17

and surprising achievement of Maxwell was the great dis-
covery that even in the absence of sources, the equations
allowed for solutions describing electromagnetic waves that
propagate through empty space at the velocity of light.
This explains why the only parameter that appears in these
equations is the velocity of light. We will return to these
electromagnetic waves shortly.

It is gratifying to see how much ‘truth’ about physical real-
ity can be described with so few symbols. You could say
that the ultimate elegance of nature is most manifest once
it is expressed in the powerful language of mathematics.
Awesome indeed!

Partial differential equations. The equations form a system
of partial differential equations, partial because the fields

depend on space and time variables, and the derivatives
that appear are with respect to the spatial coordinates as
well as time. This explains also the appearance of the ‘del’
or ‘nabla’ operator r , which is just the ‘vector of spatial
derivatives,’

r = {
@

@x1
,
@

@x2
,
@

@x3
} . (I.1.27)

To systematically solve equations involving the vector op-
erator r , mathematicians have developed a special sub-
ject called vector calculus. That is what physics students
have to study and are supposed to master, and as such, it
is far beyond the scope of this book. You will believe me if
I say that many shelves in our university libraries are full of
books and journals that are stuffed with explicit solutions
of the Maxwell equations for virtually any imaginable situ-
ation. With all due respect, we will stay far from those im-
pressive halls of wisdom, though we discuss some funda-
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mental theorems involving the nabla operator r in a Math
Excursion at the end of Part III on page 621. My narra-
tive only tries the convey the overall structural aspects of
the theory, which by the way does not force my story to
become superficial, in fact quite the contrary.

A dynamical systems perspective. We may elevate the
dynamical systems’ pespective of the previous section on
mechanics to the Maxwell equations and say that the dy-
namical ‘variables’ are now the components of the E and B
fields which satisfy certain dynamical equations or equa-
tions of motion,

dB
dt

= fB(E,B) , (I.1.28a)

dE
dt

= fE(E,B) . (I.1.28b)

Locality. These are indeed only two of the four Maxwell
equations, those with time derivatives in them. Note that
on the right-hand side I have for convenience suppressed
the dependence on the spatial derivatives of the fields, be-
cause at a given time t these can be calculated from the
field themselves at time t .The main point here is that the
equations are local: loosely speaking one could consider
the fields as an infinite collection of independent variables
which are only locally coupled.

Constraints. The other pair of equations without time deriva-
tives are constraint equations; in order for the system to
be consistent, these have to be obeyed at all times. So if
these equations are satisfied at some initial time t = 0 ,

then consistency of the system requires that they remain
valid for all t , and this requires that the time derivatives of
those equations should vanish.

This, in turn, can be proven from the Maxwell equations.
For the second equation the argument is quite straightfor-
ward: one finds that by taking the time derivative of that
equation one obtains the same expression as by taking
the divergence of the right-hand side of the fourth equa-

tion. The latter, in turn, equals r · (r ⇥ E), which van-
ishes identically, meaning that it is zero for any field E .

This is discussed in the Math Excursion on vector calcu-
lus on page 621 of Part III. For the first and third Maxwell
equations a similar argument can be applied, comparing
the time derivative of the first and the divergence of the
third equation we see that consistency requires the follow-
ing relation to hold:

@⇢

@t
= r · j . (I.1.29)

This equation is the continuity equation for electric charge,
it relates the time derivative of the charge in a given vol-
ume with the current through the surface bounding that
volume. In other words, it is the local conservation law
for electric charge. The conclusion is that the consistency
of the Maxwell equations requires local charge conserva-
tion.

Constraint equations can be used to reduce the number of
independent degrees of freedom, fields in this case. What
that means is that electromagnetism does not really have
two times three equals six independent field components
as the two equations above suggest. Maxwell’s first and
second equations express two local – (x, t) dependent
‘constraints,’ which reduce the number of independent field
variables from six to four. And these correspond to the four
gauge potentials we will get to shortly. Nevertheless, from
this dynamical systems point of view there is a remarkable
structural similarity between the mechanical and electro-
magnetic systems.

The electromagnetic force exerted on a charge. The
Maxwell equations feature external sources in terms of
charges and currents. Clearly these refer to charged par-
ticles or collectives thereof. So to complete the dynami-
cal system approach we should also include the dynamics
of the charges and currents. This in turn means that we
specify the forces that these are subject to in given elec-
tric and magnetic fields. The expression for this so-called
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Figure I.1.20: Motion of charge in an electromagnetic field.
This figure illustrates how the Lorentz force works on a charged
particle. We show that the force has two contributions: one pro-
portional to and in the direction of the electric field and one pro-
portional to the magnetic field and the velocity in a direction per-
pendicular to the field and the velocity.

Lorentz force exerted on a charge at a point (x, t) by the
fields E(x, t) and B(x, t) is the following:

F = q(E +
v
c
⇥ B) . (I.1.30)

The first term is a force in the direction of the electric field
that any charge will feel, and the second term is the mag-
netic, so-called Lorentz force, which is orthogonal to the
velocity of the charged particle. It is proportional to the
magnitude of the current j = qv and clearly vanishes when
a particle is at rest. The fact that the magnetic component
of the force is perpendicular to the velocity means that that
component is always perpendicular to the trajectory, and
consequently implies that the magnetic field cannot do any
work on the charge. A charge in a constant magnetic field
perpendicular to its velocity would therefore move in a cir-
cular orbit as we depicted in Figure I.1.21.

Clearly, the dynamical system to be solved is the cou-
pled system of Newton’s and Maxwell’s equations where

Figure I.1.21: Motion of charge in a constant magnetic field.
This figure shows the orbit of a charged particle with a velocity
perpendicular to the field. The force is constant and perpendic-
ular to the velocity and will cause the particle to have a circu-
lar orbit. As the force is always perpendicular to the orbit the
magnetic field does not do any work, and the magnitude of the
velocity remains constant.

Newton’s equations have to include the Lorentz force and
the charge(s) and their currents have to be included as
sources in the Maxwell equations. This system is of course
non-linear because of the feedback caused by the interac-
tion terms.

We will later show how the electromagnetic interaction af-
fects the energy function or the Hamiltonian of a charged
particle, but that is more conveniently expressed in terms
of the gauge potentials that we will introduce shortly.

Field energy and momentum. If we put a charged parti-
cle in a constant electric field, the field will exert a constant
force on the particle which will therefore start to acceler-
ate uniformly. This in turn means that its energy will in-
crease. Now if we want to maintain the sacred principle
of overall energy conservation, then one is forced to as-
sume that the electromagnetic field also carries energy.
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Indeed, the mere fact that the Maxwell equations with-
out any charges and currents describe propagating waves
means that the fields should carry both energy and mo-
mentum. Furthermore, once properly defined, it turns out
that both the total energy and momentum for the whole
system including charges and currents and fields is con-
served again, assuming of course that the fields evolve
according to Maxwell’s equations.

Because the electric and magnetic fields as fundamental
variables are space-time dependent – we say that they de-
scribe local degrees of freedom, it is then natural to define
field energy and field momentum densities. This means
that in order to get the total energy/momentum within a
given volume one has to integrate the densities over that
volume.
The expression for the energy of the electromagnetic field
is basically the sum of (or better the integral over) the
contributions in all points in space of a field energy den-
sity

"(x, t) =
1

2
(|E|2 + |B|2) ,

which is quadratic in E and in B , where you may think
of the first term as corresponding to the ‘kinetic energy’
and the second to the ‘potential energy.’ This total energy
is conserved. The fields also carry a momentum density,
which is called the Poynting vector S(x, t) = c (E ⇥ B)
and an angular momentum density L(x) = (x ⇥ S)/c2

in complete analogy with particle angular momentum L =
x ⇥ p . This comes out most clearly in the electromag-
netic wave solutions to the Maxwell equations illustrated
in Figure I.1.23, which shows that the fields form propagat-
ing waves that are transversal, meaning that at any point in
space the vectors E and B are mutually perpendicular, and
also perpendicular to the direction of propagation. From
the figure one verifies that the field momentum density S
is, as expected, directed along the propagation direction of
the wave.

Three fundamental principles. The remainder of this

section is devoted to two fundamental symmetry principles
underlying the Maxwell equations of electromagnetism.
The first principle refers to the notion of Lorentz invariance
which forms a key link with the theory of relativity.
The second principle refers to the notion of gauge invari-
ance which amounts to a hidden redundancy that is present
if we describe electromagnetism in terms of E and B fields
as we usually do.
The third principle concerns the quantum nature of elec-
tromagnetism, of which the most basic manifestation is
that we have to think of electromagnetic fields in terms of
particle-like excitations or quanta, called photons. The lat-
ter principle is the main subject of the book and will be fully
explored in the forthcoming chapters; we will not discuss it
any further here.

The Maxwell equations refer to the fields E and B, because
these fields are the physical fields we can measure quite
directly. The equations are beautiful, but that beauty has
its price in the sense that the description is highly redun-
dant and therefore basically inefficient! The reason we al-
ready touch on these rather sophisticated symmetry prin-
ciples here is that in hindsight it turns out that these two
invariances, combined with the principles of quantum the-
ory, really form the conceptual backbone of all of modern
fundamental physics. The tremendously successful Stan-
dard Model of fundamental forces and particles is a partic-
ular expression of these three underlying principles. More-
over, understanding these principles played an essential
guiding role in discovering the Standard Model.

Electromagnetic waves

The source-free Maxwell equations can be recast in the
form of wave equations. The wave equations manifestly
display the underlying Lorentz or relativistic invariance of
the Maxwell theory. In that sense Maxwell theory was the
cradle of relativity.
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Relativistic wave equations.
By mathematically manipulating them we can cast the Max-
well equations (I.1.28) in an alternative form. In the case
of vanishing sources – with zero charges and currents in
other words – they take the form of two wave equations:
one for the electric and and one for the magnetic field.6

These wave equations are Lorentz and therefore relativisti-
cally invariant, which means, as we will discuss later in the
corresponding section on page 60, that they will take the
same form for different observers that move at a constant
speed with respect to one another. Such observers have
coordinate frames that are different, but the statement is
that the frames of two such observers are related by a so-
called Lorentz transformation, which depends on their rel-
ative velocity. An alternative way to express the fact that
the equations ‘look the same’ for the different observers is
to say that the equations are invariant under Lorentz trans-
formations.

Four-vectors. Let us look at this a little closer. In ordinary
space we can define a coordinate vector x , and then we
know that a rotation will change the direction it is pointing.
What does not change is the dot product or the length of
the vector, x · x = x2 . The length of any vector is invari-
ant under rotations, and this also holds therefore for the
square of the vector operator r . To explain the notions
of Lorentz invariance and of space-time we do something
similar. First we define a space-time coordinate four-vector
xµ = {x0, x} with x0 ⌘ ct , the factor c is there to also
give x0 the dimension of a length. Next we define the rel-
ativistic ‘length’ or space-time interval s of that coordinate
vector by the relation s2 ⌘ xµxµ ⌘ x20 - x · x , where
indeed the repeated upper and lower µ index by definition
means that we have to sum over its range 0, ..., 3 , with the
minus sign for the spatial components included. The no-
tion of Lorentz invariance refers now to the fact that the

6A typical ‘wave equation’ is discussed in the Math Excursion at the
end of Volume III on page 613.

Figure I.1.22: Aurora Borealis. The Northern Lights are caused
by collisions of charged particles coming from the sun and gas
particles from the earth’s atmosphere. The most common au-
roral color, a pale yellowish-green, is produced by oxygen mol-
ecules located about 60 miles above the earth. Rare, all-red
auroras are produced by high-altitude oxygen, at heights of up
to 200 miles. (Source: Wikimedia)

space-time interval is invariant under Lorentz transforma-
tions, just like the length of an ordinary vector is invariant
under rotations. So Lorentz transformations are the gen-
eralization of ordinary rotations in three-dimensional Eu-
clidean space to four-dimensional space-time (also called
Minkowski space).

The box-operator. The wave equations feature second or-
der spatial and time derivatives in a unique relativistically
invariant combination denoted by

⇤ ⌘ @µ@µ ⌘ 1

c2
@2

@t2
-r2 . (I.1.31)

The electromagnetic wave equations can then simply be
written as

⇤E = 0 , (I.1.32a)

⇤B = 0 . (I.1.32b)
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Figure I.1.23: Electromagnetic wave. This is a propagating
wave of periodic electric and magnetic fields. The polarizations
of the electric and magnetic field are orthogonal, and both are
orthogonal to the direction of propagation which is along the di-
rection of the field momentum S .

In the ‘box operator’ ⇤ we see that time and space ap-
pear on an equal footing, which amounts to saying that
this operator is relativistically invariant. The ‘box’ operator
is the relativistic wave operator, and the equations above
are the equations for electromagnetic waves. And indeed,
it was this property of invariance of the Maxwell equations
under the Lorentz transformations, named after its discov-
erer, the Dutch physicist and early Nobel laureate Hendrik
Antoon Lorentz, which was a crucial key used by Einstein
to unlock the gateway to the world of relativity.

Basic properties of waves. Like all waves, the electromag-
netic waves are characterized by a wavelength � , a fre-
quency ⌫ , and a velocity v which in this case of course
equals the speed of light, |v| = c . These three quantities
are not independent, since they satisfy the relation ⌫ =
c/� . So electromagnetic waves are special in that they al-
ways travel with the speed of light, you can’t speed them
up or slow them down. If you put more energy into the

Figure I.1.24: Electromagnetic radiation spectrum. Classi-
cal electromagnetic waves can have any wavelength, from very
long wavelength radio waves to the ultra short wavelength hard
gamma rays. Visible light represents a narrow range in the cen-
ter.

waves, two things may happen: (i) the amplitudes of com-
ponents may go up (the signal becomes more intense),
and/or (ii) the frequency may increase, meaning that the
colour (in the case of light) will be shifted towards the blue.
In the quantum world where we think of photons or par-
ticles of light, the corresponding mechanisms are, (i) that
we can create more particles of light, or (ii) we can give
the particles themselves more energy by increasing the
frequency.

We have depicted the characteristic spatial structure of a
classical electromagnetic wave in Figure I.1.23, and one
sees that for such waves the directions (or polarizations)
of the electric and magnetic field amplitudes are orthog-
onal and orthogonal to the propagation direction as well.
The discovery of these wavelike solutions was a seminal
contribution to electromagnetic theory, because it unified
electromagnetism with the field of optics. The waves can
in principle have any frequency or wavelength. We have
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sketched the spectrum of electromagnetic radiation in Fig-
ure I.1.24 , from which we see that spectrum of visible light
only covers a narrow range in the center. At the long wave-
length side the spectrum continues via the infrared into
the micro and radio waves. On the short wavelength side
it continues in the ultraviolet via X-rays into hard gamma
rays. This side of the spectrum corresponds to ionizing
radiation, where ionizing means that the electrons in the
outer shells of atoms and molecules will be kicked out so
that positively charged ions stay behind. This among other
things means that this radiation is very damaging to bio-
logical tissue and one should avoid being exposed to it.
In other words, avoid spending the weekend on a tropical
beach without sunscreen.⌅

Lorentz invariance: the key to relativity

We introduce the electromagnetic gauge potentials, and
rewriting the electromagnetic fields in terms of these re-
duces the number of independent equations to four. In
this form the invariance of the system under Lorentz trans-
formations becomes manifest, establishing that the sys-
tem is fully relativistic. This and the following section ba-
sically show a form in which the Maxwell equations can
be cast that maximally exhibits their fundamental structure
and beauty.

Gauge potentials. It is interesting that in the context of
quantum theory it is far more profitable to use a different
parametrization of the electromagnetic field in terms of so-
called gauge potentials denoted by Aµ(x, t) . As before,
the index µ runs from 0, ..., 3 , with 0 the time component
and 1, 2, 3 the space components.

The four-vector Aµ = (V,-A) are the electromagnetic po-
tentials where V is often referred to as the electrostatic or
scalar potential and A as the vector potential. From these
potentials the electric and magnetic field can be calculated

directly through the defining relationships:

B = r⇥ A , (I.1.33a)

E = -rV -
1

c

@

@t
A . (I.1.33b)

Let us indicate how these expressions come about. One
may show that for any magnetic field configuration B with
zero divergence, meaning that it satisfies equation (I.1.26b),
there is a vector field A that satisfies equation (I.1.33a).
In fact that A is not unique as we’ll see later. Indeed
one finds that the equality r · (r ⇥ A) ⌘ 0 holds for
any A; it is a mathematical identity which basically follows
from the definition of the vector derivative r. If we pro-
ceed by substituting this expression of B into the equation
(I.1.26d), we get an equation of the type r⇥ C = 0 , with
C = E+ 1

c
@
@tA. Now there is another identity that says that

any field C , whose rotation vanishes, can be written as a
gradient of some scalar field V . This means that we may
write C = rV , from which the equation (I.1.33b) then
follows. So by changing from the E and B fields to the
potential Aµ = (V,-A) we have identically satisfied two
of the four Maxwell equations. From the other two follow
equations that the gauge potentials have to satisfy.

The electromagnetic field strength. You might wonder
why I – clearly being in love with relativity – don’t come
up with four vectors Eµ and Bµ . Alas, ‘It ain’t necessarily
so....’ Better even, ‘it just ain’t gonna work!’ The appro-
priate relativistic place for the electric and magnetic fields
is that they correspond to the components of an antisym-
metric two index object (a tensor) called the field strength
Fµ⌫:

Fµ⌫ = @µA⌫ - @⌫Aµ . (I.1.34)

The three spatial components Fij correspond with the com-
ponents of B , and the space-time components F0i corre-
spond with the components of E . The µ- ⌫ antisymmetry
can be visualized more conveniently by writing F as an an-
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tisymmetric 4⇥ 4 matrix:

F =

0 E1 E2 E3

-E1 0 -B3 B2

-E2 B3 0 -B1

-E3 -B2 B1 0

. (I.1.35)

It clearly shows how the components of the E and B fields
are not part of four vectors, which means that the E and B
components may mix if we make a Lorentz transformation
from one reference frame to another, just like the space
and time components of the position four-vector do. This
mixing is not entirely unexpected, since if we can transform
a particle at rest in one frame to a moving particle in an-
other frame, then the static particle has a pure radial elec-
tric field. The moving charge, however, is like a current and
generates a magnetic field as well. So one expects that
under a Lorentz transformation the E and B fields should
mix. And if each of them was a four-vector, transformations
would not mix the two sets of components.

From the manifestly relativistic definitions above, we see
that the symmetry between electric and magnetic fields is
particularly special to four-dimensional space-time. If we
consider what the matrix Fµ⌫ would look like in different di-
mensions, this becomes very clear: (i) in two-dimensional
space-time there is only a single electric field component
along the space direction and there is no magnetic field; (ii)
in three dimensions we have an electric vector field with
two components and a single component magnetic field
which is therefore like a (pseudo) scalar.

We can now also write the Maxwell equations in manifestly
relativistic form. The equations with sources (I.1.26a) and
(I.1.26c) will then read:

@⌫ Fµ⌫ =
1

c
jµ , (I.1.36)

where a repeated upper and lower index implies a sum-
mation over that index from 0, ..., 3 . On the right-hand side
we have the current jµ , which is now also a four-vector. Its

time component j0 is equal to the charge density ⇢ times
the velocity of light c , and the spatial components ji are
the components of the usual electric current-density vec-
tor j :

jµ = (c⇢, j). (I.1.37)

The other two – sourceless – Maxwell equations can also
be written in a manifestly Lorentz invariant way as,

@⌫ eFµ⌫ = 0 . (I.1.38)

Where we have constructed the dual field strength eFµ⌫
marked with a ‘tilde,’ by applying the electric-magnetic du-
ality transformation discussed on page 22, to Fµ⌫ , yield-
ing,

eF =

0 B1 B2 B3

-B1 0 E3 -E2

-B2 -E3 0 E1

-B3 E2 -E1 0

. (I.1.39)

Again these sourceless equations are solved identically by
substituting the field strength in terms of the gauge po-
tentials. In other words, by substituting the expressions
(I.1.33) of E and B in terms of the gauge potentials into the
equation (I.1.38).

The action for the Maxwell field. We have, in the closing
subsection about classical mechanics, highlighted the im-
portance of the concept of an action (and Lagrangian) for
relativistic systems. As the Maxwell system is a relativistic
system with the fields and their derivatives as fundamen-
tal degrees of freedom, we should ask whether there is a
suitable form of the Lagrange formalism in this case. The
answer is affirmative, so let us show what it looks like. First
of all let us introduce the Lagrangian density which corre-
sponds to the Lorentz invariant expression that is quadratic
in the derivatives of the field:

L(Aµ,@⌫Aµ) = -
1

4
Fµ⌫F

µ⌫ - jµA
µ . (I.1.40)

The Lagrangian L would be given by the integration over
space of the density L, and the action S is obtained by
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an additional integration over time. This yields the fully
covariant expression,

S[Aµ] =

Z
L(Aµ,@⌫Aµ)d

4x . (I.1.41)

One may show that the Maxwell equations (I.1.36) corre-
spond to the Euler-Lagrange equations for this action.

Current conservation. The previous equations require
that the current jµ is conserved, which means to say that

@µ jµ = 0 . (I.1.42)

The substitution of the definitions yields the continuity equa-
tion which expresses the local conservation law for electric
charge,

@⇢

@t
= r · j . (I.1.43)

Integrating this equation over some volume V , it states
that the increase of the charge in V per unit time (and di-
vided by c) equals the net electric current flowing inward
through the closed surface that bounds that volume.

A way to think about this is to consider an office building
where people go in and out. Then if we state that the num-
ber of people in the building is locally conserved, it means
that the total number of people in the building is equal to
the number that are already in there, plus or minus the
people who enter or leave the building. It is local because
you can apply it to any volume, for example the law also
applies to any floor of the building, or any individual room
for that matter.

The energy of a charged particle. A good reason to
introduce the gauge potentials is that the coupling of the
electromagnetic field to charged particles and fields takes
a particularly simple form. The correct expression for the
interaction with a charged particle is directly obtained by
replacing, in the non-interacting particle theory, the mo-
mentum vector p of the particle by p + qA/c , and the

energy E by E - qV , where q is the charge of the parti-
cle. The energy function or Hamiltonian H for the charged
particle simply becomes:

H- qV =
1

2m
(p +

q

c
A)2 . (I.1.44)

From this expression for the Hamiltonian, one obtains the
equation of motion for a charged particle, which yields as
one might expect the Newton force law featuring the Lorentz
force:

dp
dt

= q(E +
1

c
v ⇥ B) . (I.1.45)

What has become clear from my exposition so far is that
the electromagnetic ‘field’ as we know it in classical phys-
ics basically corresponds to a system with an ‘infinite’ num-
ber of degrees of freedom, namely the A , or B and E fields
that can vary at any point in space, so that a field repre-
sents a degree of freedom in any point of space. We have
emphasized the dynamical systems perspective because
it is significant if we consider the quantum theories of fields
and want to compare them to the quantum theory of parti-
cles. ⌅

The charge degree of freedom. If we speak of ‘a charge,’
we commonly imagine a point-like particle carrying a cer-
tain charge, and as far as we know that charge q is quan-
tized in units of the fundamental electron-charge -e. If the
charge q has a velocity, it corresponds to a current j = qv ,

localized at the position of the particle. Often, though, we
think of a charge density which is taken to be a continuous
distribution.

The charge and current density (c⇢, j) become the charge
and current of a point charge q and j, multiplied by a dis-
tribution function f2, which specifies how the charge and
currents are spread around xµ(t).

A preliminary leap into quantum mechanics. At this
point it may be illuminating to jump ahead into the quantum
domain where things are so very different. For one thing,
in quantum theory a charged particle is represented by a
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the complex function, the so-called wavefunction  (x, t),
which describes the quantum states of the particle. ‘Com-
plex’ here means that the wavefunction has a ‘real’ and
‘imaginary’ part, and we may write the wavefunction there-
fore as  (x, t) = e-i↵ f(x, t) , the product of a local factor
with a phase ↵(x, t) and a real function f(x, t) . Whereas
the state at some time t of a classical particle is deter-
mined by specifying its position, velocity (and parameters
like mass and charge), in quantum physics the state is
specified by the wavefunction which is defined over all of
space. This means that the Lorentz equation of motion for
a charged particle (I.1.45) will turn into the famous Schrö-
dinger equation for the wavefunction  . Quite a difference
indeed, and in the second Volume of the book we will fully
explore what it all implies.

In quantum theory for a single particle the momentum p is
represented by the differential operator p = -ih̄r which
is supposed to act on the wavefunction. And it is basically
here that the famous Planck constant ‘h-bar’ h̄ ⌘ h/2⇡

enters the mathematical formalism. The coupling with the
vector potential is, as mentioned before, implemented fol-
lowing the minimal replacement p ) p + qA/c , mean-
ing the in the quantum world we have to replace the ordi-
nary vector derivative r with the covariant derivative D ⌘
r+ iqA/h̄c.

The distribution | |2 =  ⇤ = f(x, t)2 represents the prob-
ability density of finding the particle at the position x upon
a position measurement at time t. This distribution is in-
dependent of the phase ↵. So it is not the charge which
is distributed over space, it is the probability of finding all
of that charge at a certain location in a position measure-
ment of the particle. That is what ‘charge density’ means
in the quantum theory of a charged particle. Similarly, the
electric current density takes the form:

j = -ih( r ⇤ -  ⇤r ) = (h̄r↵)f2 , (I.1.46)

proportional to the same distribution, and in some indirect
sense ‘proportional’ to the momentum which brings in the

factor of h̄ and the phase ↵ . We will return to this wave-
function towards the end of this section where we discuss
the ‘quantization’ of charge which can be linked to this par-
ticular quantum representation of a particle.

The wave equation for the potentials. Having defined
the field strength in terms of the potentials in the equation
(II.6.8) , one finds that (in a suitable gauge) the Maxwell
equations (I.1.36) reduce to the relativistic wave equation
for the potentials:

⇤Aµ =
1

c
jµ . (I.1.47)

Also this form of the equations manifestly displays the rel-
ativistic invariance of the system: the potentials, and the
charge density and current, are neatly organized in four-
component relativistic vectors. The wave depicted in Fig-
ure I.1.23 corresponds to one of the solutions of the equa-
tion (I.1.47) in empty space (without charges or currents).

The solutions of the wave equation are not surprisingly the
transversal electromagnetic waves. The wave solution for
the gauge potential will look like Aµ ' "u exp(ik · x -!t)
with the polarization four-vector "µ, the so-called wave-
vector k and angular frequency !. Substitution in the
wave equation shows that we have to impose the condi-
tion that |k|2 -!2/c2 = 0 . The solution corresponds with
a wave that propagates in the direction of the vector k ,

where it has a wavelength equal � = 2⇡/|k| , and a fre-
quency ⌫ = !/2⇡. And as expected, the wave condition
⌫ = c/� is satisfied.

To see the link with the wave depicted in Figure I.1.23, we
have to do some more work. First we have to realize that
the derivative vector nabla acting on the gauge potential
just brings down a factor ⇠ k while the time derivative
brings down a factor ⇠ !. Then we can look at the def-
initions (I.1.33) to conclude that B ' k ⇥ A, while we can
choose k ·A = 0 which gives E ' !A. With these choices
we have ascertained that the three vectors E,B and k are
mutually orthogonal and that indeed the field momentum
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is in the direction of k as S ' (E ⇥ B) ⇠ k. By finally not-
ing that the waves for A, E and B are in phase, we have
verified all the features of the figure.

This wave equation for the potentials creates the best start-
ing point for the ‘quantization’ of the electromagnetic field.
As we will see later, the A fields are preferred for two rea-
sons. Firstly, if one wants to quantize the electromagnetic
field, it is convenient to think of the Ai fields as generalized
‘coordinates,’ while the electric fields Ei ' @Ai/@t are like
the ‘momenta’ of the field.

It is actually a quite remarkable fact about the Maxwell
equations that as equations they survived both the rela-
tivity and the quantum revolution. As we will see it is in
the interpretation of going from classical fields to those of
quantum that the great revolution took place.

Gauge invariance: beauty and redundance

The introduction of gauge potentials naturally leads to the
notion of gauge invariance. In one sense it signals a resid-
ual redundancy in the formulation of the theory. This prin-
ciple is worth exploring as it plays a crucial role in the for-
mulations of all theories that describe fundamental inter-
actions.

Once you write the equations in terms of the gauge po-
tentials, another fundamental but somewhat elusive prop-
erty becomes apparent. We have successfully reduced
the electromagnetic field from six to four components, by
introducing the potentials Aµ , but what we will argue next
is that there is still a redundancy in the definition of the sys-
tem. Whereas giving the gauge potentials yields a unique
answer for the physical E and B fields, the converse is not
true: a given set of E and B fields does not uniquely fix
the gauge potentials, and this redundancy is called gauge
invariance.

Figure I.1.25: Gauge transformations of the author as Mr Vec-
tor Potential. The pictures illustrate the idea of smooth local
transformations. The information content (the person) is the
same but the representations or copies are different.

Let us change the gauge potential by – yes indeed – a
gauge transformation involving an arbitrary function ⇤ =
⇤(x, t) as follows:

Aµ ! A 0
µ = Aµ - @µ⇤ , (I.1.48)

where ⇤ is an arbitrary function. If we calculate the trans-
formed fields E 0 and B 0 , we learn that the field compo-
nents are invariant: E 0 = E and B 0 = B , because for any
pair of indices µ and ⌫ we have that @µ@⌫⇤ - @⌫@µ⇤ = 0 .

In other words the contributions of the gauge function can-
cell.

Let me note that the gauge transformations form a group:
they satisfy the group property that two successive trans-
formations, form again a gauge transformation (where⇤ =
⇤1 + ⇤2).7 The observable physics, which resides in the
E and B fields, is independent of ⇤ , and therefore the the-
ory is said to be gauge invariant. In other words, we have

7The curious reader may like to jump ahead and look at the Math
Excursion on groups on page 635 of Part III.
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the freedom to choose any convenient function ⇤ to de-
scribe the physics, which is referred to as the freedom to
choose a ‘suitable gauge.’ This choice is useful for exam-
ple if one needs to construct explicit solutions, but if one
has to quantize the electromagnetic field, then this bless-
ing becomes a burden. You could say that the description
of the physics in terms of the gauge potentials is elegant
but at the same time redundant. It obscures to a certain
extent what exactly the real physical degrees of freedom of
the (quantized) electromagnetic field are. The wave equa-
tion for each of the four components of the vector potential
suggests that there are four independent components to
the field, yet looking at the electromagnetic wave of Fig-
ure I.1.23 we see that in fact it has only two physical com-
ponents. This further reduction of degrees of freedom from
four to two is due to the gauge invariance of the equa-
tions.

Gauge symmetry and charge conservation. The Maxwell
equation (I.1.36) and the fact just mentioned that the field
strength is gauge invariant means that this system is only
consistent if the current itself is also gauge invariant. This
property can be used to show that the continuity equation
@µjµ = 0 follows from gauge invariance. In other words
the conservation of charge is a consequence of the gauge
symmetry.

A nice way to show this more directly is by noting that the
interaction term between the current and the gauge po-
tentials has to be (i) local, (ii) Lorentz-invariant, and (iii)
has to give rise to the correct Maxwell equations, which
means that it has to be of the form

R
Aµj

µ d4x . If we now
make the gauge transformation (I.1.48), the coupling term
acquires an extra term

R
(@µ⇤)jµ d4x , which has to vanish

if the theory is gauge invariant. This term can be recast in
a convenient form using the following mathematical iden-
tity:

Z
@µ(⇤ jµ)d4x =

Z
(@µ⇤)j

µ d4x+

Z
⇤(@µj

µ)d4x,

which is just writing the derivative of a product of two func-
tions as a sum of derivatives on the individual factors and
then integrating over space-time. The first term can be
integrated to yield the integrand integrated over the three-
dimensional boundary of the space-time volume, but on
the boundary of space-time we assume the current jµ will
vanish and therefore so does the integrand. And as the
integral of zero is zero, the left-hand side of the equation
above is zero. This in turn means that the effect of the
gauge transformation on the interaction term equals:

Z
(@µ⇤)j

µ d4x = -

Z
⇤(@µj

µ)d4x. (I.1.49)

Now the elegant argument continues by saying that be-
cause the gauge function ⇤(x, t) can be chosen arbitrar-
ily, and this means that the integral condition has to be
satisfied locally, thus we have to require @µjµ = 0 every-
where.

Stated in words, what we have shown is that imposing
local gauge invariance requires the current to which the
electromagnetic field couples to be conserved locally. This
means that net charge can move around obeying the con-
tinuity equation, but it cannot just disappear into nothing.
This is a not so surprising but vital result that resonates
with our earlier observations that the conservation laws of
momentum and angular momentum were a consequence
of the space-time symmetries being translational and rota-
tional invariance. In that sense one can say that the gauge
transformation is like a rotation in a kind of ‘internal space’
of allowed gauge transformations. This discussion will be
taken up in more detail and generality in Chapters I.2 and
II.6 where we will have more to say about the geometry of
gauge invariance.

A non-local observable: the loop integral of A . Clearly
the gauge potentials, as they are gauge-choice depen-
dent, cannot be real observables, the physics resides in
the gauge invariant observables being the electric and mag-
netic fields. These quantities are local in that they can be
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Figure I.1.26: The line integral of the vector potential Aµ . The
line integral of the four-vector potential Aµ from point x0 to x1
along a curve � . It ‘adds’ the projections of Aµ along the tangent
direction dxµ(�) of the curve for all points along � .

measured locally at a given point xµ . We may, however,
also consider other fundamental gauge invariant quanti-
ties, which are intrinsically non-local and involve the line
integral of the gauge potential Aµ along a closed curve in
space-time.

Let us just start by considering a line integral of the vector
potential along some curve � starting at a space-time point
x0 and terminating at point x1 as depicted in Figure I.1.26 .
We write this as follows:

I(�; x0, x1) ⌘
Zx1

x0

Aµ dx
µ(�) . (I.1.50)

Now let us look what a gauge transformation does to this
line integral:

I(�; x0, x1) ! I0(�; x0, x1) =

= I(�; x0, x1)-

Zx1

x0

@µ⇤(x
⌫)dxµ =

= I(�; x0, x1)-⇤(x1) +⇤(x0) . (I.1.51)

Clearly the path dependent expression is only affected by
the transformation at the start and end point. This implies
that if we choose the start and end point to be the same,
the resulting ‘loop integral’ will be gauge invariant as the
gauge function ⇤ drops out. Let us take the example of a
closed curve for a fixed time
I

@D
A · dx =

Z

D
(r⇥ A) · n̂ d2S =

Z

D
B · n̂d2S ⌘ � ,

(I.1.52)
where n̂ is the unit vector perpendicular to the surface ele-
ment d2S = dxdy of the surface D bounded by the curve
@D . The first equality is an application of the ‘Stokes the-
orem,’ which is a mathematical identity explained in the
Math Excursion on vector calculus at the end of Part III.
The second equal sign follows from using the defining rela-
tion (I.1.33b) between the vector potential A and the mag-
netic field B . Because the contribution of the gauge trans-
formation drops out, this loop integral is gauge invariant
and corresponds therefore to a physical and observable
quantity, which is not so surprising once you realize that it
‘measures’ the total magnetic flux � through any surface
D bounded by the curve, which is a gauge invariant quan-
tity.

Gauge versus topological invariance. Yet, there is some-
thing quite remarkable about this result. Let us for simplic-
ity consider a two-dimensional plane and have some non-
vanishing magnetic flux piercing through the surface area
bounded by – say – the unit circle, depicted as the dark re-
gion in Figure I.1.27. Outside the unit circle the physical E
and B fields are zero but that does not imply that the gauge
potentials have to be zero there as well. It only requires
that the gauge potentials are pure gauge: Aµ = @u⇤ , in
other words, that they are a gauge transformation of field
Aµ = 0.

Then the result above tells us that you can measure the
total magnetic flux � through any finite domain, by taking
the line integral of the gauge potential around a closed loop
which is arbitrarily far removed from that domain. You can
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Figure I.1.27: The loop integral of the vector potential. A line
integral of the vector potential A along a closed spatial loop is
a gauge invariant but non-local quantity. The dark region inside
the loop is the region where the magnetic field is non-zero, so,
everywhere along the loop there is zero magnetic field, yet the
line integral will yield a non-zero magnetic flux � .

measure the total flux without ever entering a region where
the magnetic field B is non-zero. Indeed there is a non-
local, gauge invariant quantity, corresponding to a mea-
surement outcome that may assume any non-zero value,
and that involves probing only a region of space where all
physical fields are zero! Quite remarkable indeed!

Imagine we choose the closed loop around a big circle
at infinity (the boundary of space) parametrized by (r =
1,'), then we find for the loop integral simply:

I(� = S11) = ⇤(' = 2⇡)-⇤(' = 0). (I.1.53)

Here we run into an apparent contradiction, because on
the one hand we argue that the gauge function has to
be single-valued meaning that the right-hand side of the
above equation should vanish, but on the other hand the
left-hand side of the equation is nothing but the loop inte-
gral (I.1.52) which equals the total flux � !

The resolution of this paradox lies in the appreciation of
what we precisely mean by a gauge transformation. We
keep the definition simple: a gauge transformation ⇤(x, t)
is a smooth, single-valued function. Indeed, under such
a transformation the value of the loop integral (I.1.52) can-
not change. The converse also holds true, if we make a
transformation that is not single valued, we by definition
do change the outcome of the loop integral and thereby
somehow have changed the magnetic field through the
loop.

Let us illustrate this by a simple example: imagine some-
body tells me that they have chosen ⇤(x, t) = b', a con-
stant times the polar angle '. than the loop integral would
give a flux� = ⇤(2⇡)-⇤(0) = 2⇡b, this does not corre-
spond to a proper gauge transformation because it is not
single valued. Now it is a matter of semantics what you
want to call this transformation; some physicists call it a
‘singular’ gauge transformation, and others call it a ‘topo-
logically non-trivial’ gauge transformation. Presumably this
is intended to emphasize that it looks like a gauge transfor-
mation while strictly speaking it is not, since it is singular
at the origin of the plane (r = 0) where ' is not well de-
fined. And indeed such a ‘transformation’ would ‘create’
a magnetic flux-line through the point (or the line) where
r = 0 .

In Chapter I.2, in the section on the geometry of gauge
invariance on page 96 in, we will see that there is a rig-
orous topological characterization of the values that the
loop integral traversing a vacuum region (or ground state
region of some medium) can acquire. The physical situa-
tion is determined by a mapping of the closed loop (which
is topologically equivalent to a circle S1') in space into the
gauge group G. The outcomes are now determined by the
number of topologically distinct ways we can do this and
that depends on the global structure of the group-space of
G.

For the case of electrodynamics where we have quan-
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tized charges the gauge group is the phase group which
is also topologically a circle S1↵. The elements can be rep-
resented as g(↵) = ei↵ . The constraint that follows is that
↵(') = n', meaning that if we go around once in real
space then we have to go around an integer n times in
the gauge group (so that g(2⇡) = g(0) . So the distinct
classes are labeled by this integer n with -1 < n < +1.
So in this theory both the electric charges and the mag-
netic fluxes would be quantized in suitable units. And be-
cause this number is fixed topologically, it is extremely ro-
bust. It will not change under any smooth deformation of
the gauge potentials – not just gauge transformations. The
winding number n is therefore a conserved quantity under
any smooth deformation, but because it is conserved and
quantized for a topological reason, it is called a topological
quantum number.

We will see later that both gauge invariance and topologi-
cal invariance play a fundamental role in quantum theory.
The loop integral we just discussed is an observable quan-
tity that can be measured as a shift in the interference
pattern in a double-slit experiment with electrons, and is
known as the Aharonov-Bohm effect effect, which is ex-
amined in Chapter II.3, after the theorists who proposed
this experiment. This effect is a special case of a gener-
alization known as the Berry phase which we cover in the
same chapter. In an entirely different context the topologi-
cal invariance of the loop integral can also be linked to the
all-important feature of the quantum statistics properties of
different particle types, like bosons, or fermions as we will
discuss in Chapter II.5. ⌅ ⌅

Monopoles: Nature’s missed opportunity?

Charge quantization and magnetic monopoles. There
is a brilliant, rather early use of the gauge invariance and
parallel transport arguments we just presented, by Paul
Dirac. In a famous 1931 article he boldly proposed the ex-
istence of magnetic monopoles, and proved that the mere

Figure I.1.28: Dirac in doubt. This is a fragment from a let-
ter of Dirac to Abdus Salam from 1981, declining an invitation
to attend a monopole meeting at the ICTP in Trieste. (Source:
Proceedings of Monopoles in QFT, ICTP, Trieste, 1981.)

existence of just a single magnetic monopole in the whole
universe would suffice to explain the observed quantiza-
tion of electric charge! We have already mentioned that
a magnetic monopole has never been observed, but that
fact by itself does not really exclude the possibility that they
somehow exist. May be they once existed and subse-
quently disappeared through some annihilation process,
given that to our knowledge that was what happened to
anti-matter, for example. ‘To be or not to be,’ that is the
question, because just being there would suffice!

Dirac’s proof goes in fact one way: he shows that if a
monopole would exist, then electric charge would have to
be quantized in integer multiples of some minimal charge
e . In the concluding section of his 1931 article, after not-
ing that the charges we have observed in nature are quan-
tized, he modestly states: ‘One would be surprised if na-
ture wouldn’t have made use of it.’

In practice we can of course do without monopoles be-
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cause all magnetic phenomena that have been observed
can be explained as being caused by electric currents,
moving charges in other words. In all observed magnetic
phenomena, there are always a combination of north and
south poles involved. If you break a bar magnet into two
pieces, you get two bar magnets, not a separated north
and south pole. And that rule so far holds on all scales,
even the smallest accessible. As we mentioned before,
this is also the reason that the the sourceless Maxwell
equation for the magnetic field reads r · B = 0 , where
the zero on the right-hand side expresses the merciless
verdict: ‘No monopoles!’ In theory there could have been
a ‘magnetic’ source term there, but there is none. How-
ever, the price for it not being there is that the observed
quantization of electric charge for the moment remains a
mystery. A mystery that has not even been resolved by
today’s Standard Model of elementary particles and fun-
damental forces.

The charge quantization puzzle would actually be resolved
if the so-called Grand Unified Theories or GUTS turned out
to be correct. These theories unify all non-gravitational in-
teractions in one overarching model, as we will discuss
in Chapter I.4 . This means that different particle types
like quarks and electrons belong to a single representa-
tion which links their relative charges. Believe it or not, this
is precisely the case because those models necessarily
contain magnetic monopoles in their spectrum as was bril-
liantly shown by Gerard ’t Hooft and Alexander Polyakov
independently in 1974. And indeed in these models elec-
tric charge is quantized. However, these Grand Unified
monopoles would be so heavy, of the order of 1015 pro-
ton masses, that there is no hope making them, even in a
fancy lab like CERN. Yet, never say never, may be Dirac
will turn out to be right after all. This in spite of the doubt
that Dirac himself cast over his prediction towards the end
of his life, as expressed in the short note to Abdus Salam
depicted in Figure I.1.28.

Dirac’s argument. Dirac’s argument for charge quanti-

zation is sketched in Figure I.1.29. Imagine if we put a
monopole with magnetic charge g in the origin, then the
magnetic field would point radially outward. The total flux
going out through any surface enclosing the monopole is
then equal to g . Now imagine the situation sketched in
Figure I.1.29, where I draw a sphere around the monopole
and I take a charge q and make a closed loop on the sur-
face. Clearly the product of the charge and the gauge in-
variant loop integral equals the charge times the flux going
through the loop. Let me first look at the flux going through
the ‘northern’ surface segment, giving me a flux going up-
ward, say �N = ↵ . However, I could also have taken the
flux through the ‘southern sector’ going down, then that
flux would be �S = -(g/c - ↵) . The phase factors have
to be the same (because the flux through any two surfaces
bounded by the loop has to be) so we get the following
condition on the phases themselves:

q

h̄c
↵ = -

q

h̄c
(g- ↵) + 2⇡n ) qg = 2⇡nh̄c . (I.1.54)

Indeed the flux ↵ drops out as it should, because the argu-
ment holds for any arbitrary closed loop on the surface.
Dirac used the argument exactly the other way around:
if there somewhere exists a minimal magnetic charge g ,

then qg = 2⇡nh̄c . This in turn implies: q = ne , so that
e g = 2⇡h̄c , where e is the minimal electric charge. There-
fore he showed that the existence of a magnetic monopole
implies the charge quantization that we observe in nature.

Conversely, it is also true that if there existed two particles
with incommensurate charges, meaning to say that their
ratio would be some non-fractional real number like ⇡ orp
2 , then that fact by itself would exclude the existence of

magnetic monopoles. So we are left with a stunningly sim-
ple and profound explanation of the observed quantization
of electric charge, except for the slightly inconvenient fact
that we haven’t seen any monopole (yet)!

The monopole or Hopf bundle. We have been some-
what cavalier about the precise argument. You could even
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Figure I.1.29: Electric charge quantization. This figure il-
lustrates Dirac’s 1931 argument for the quantization of elec-
tric charge based on the hypothetical existence of a magnetic
monopole. To describe the monopole field with potentials re-
quires at least two overlapping patches with potentials A± .

claim that I arrived at the correct answer by incorrect rea-
soning. You see, the moment I put a magnetic source on
the right-hand side of the magnetic Maxwell equation, then
it is no longer sourceless. In that case the mathematical
identity that r.(r ⇥ A) ⌘ 0 of equation (A.11a) can no
longer hold, which appears to imply that you cannot write
the magnetic field in terms of potentials if monopoles are
present. Fortunately the situation is not that bad, because
the proper use of the potentials turns out to be more subtle.
In fact you can still use them, but only locally, as there is
a topological obstruction to write a single potential to give
the magnetic field everywhere on a surface fully enclosing
the monopole. Somewhere on that surface that potential
would become singular and the description in terms of a
gauge potential would break down. There is a mathemat-
ical resolution however, but it is somewhat complicated,
and it reveals a fundamental aspect of gauge theories in
general. And that is the reason to explore this.

What I am going to to describe you is the mathematical
concept of a fibre bundle, and we will describe these in
more general terms in the section on the ‘Physics of ge-
ometry’ in the next chapter. You could say that we have to
enlarge the mathematical framework to that of fibre bun-
dles to allow for situations we couldn’t properly cope with
before, like having magnetic monopoles.

We start by introducing two coordinate patches S+ and S-
that cover the sphere, each having the topology of a disc,
that have an overlap region with the topology of a cylin-
der. This is depicted in Figure I.2.30 on page 86 for the
sphere S2 , with the blue and green patches S+ and S- ,

and their overlap region containing the equator. Then we
define two gauge potentials, say A+ and A- on these two
patches that exactly give the magnetic fields present on
the patches. So we don’t care what A± do outside their
patch, they well may develop a singularity there but as we
don’t use them there it doesn’t matter. In the overlap region
these potentials define strictly identical magnetic fields and
therefore have to be related by a gauge trasformation. This
is shown in Figure I.1.29, where in the overlap region the
two gauge potentials have to be gauge transformations of
each other. In terms of equations the statement just made
read:

for x 2 S± r⇥ A± = B± , (I.1.55a)

x 2 (S+ \ S-) B+ = B- = B , (I.1.55b)

A- = A+ -r⇤ . (I.1.55c)

Note that although locally the potentials produce the same
magnetic field, what is also clear from the figure is that
when we take the loop integral in the overlap region –
around the equator for example – then for eA+ , we get the
monopole flux through the northern hemisphere eg/2hc

, but for A- we get the flux through the southern hemi-
sphere which has to yield the opposite -eg/2hc. This
means that the loop-integral over the gauge transforma-
tion has to be equal to their difference:

e

h̄c

I
@⇤

@'
d' =

e

h̄c
(⇤(2⇡)-⇤(0)) =

eg

h̄c
. (I.1.56)
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Figure I.1.30: Parallel transport of charge vector or phase.
around the equator in the monopole field. The phase shifts
�± calculated from A± in the northern/southern hemisphere re-
spectively have opposite signs. The requirement for a U(1) bun-
dle is that the transition function f(') = ei� has to be single
valued and has in this minimal case a winding number m = 1
because �(2⇡) = 2⇡ .

If we have a field carrying a charge e it will have an elec-
tromagnetic phase factor ei↵, with a local defined phase
↵ = ↵(x). This phase will change under a gauge trans-
formation ⇤ according to ↵ ! ↵ 0 = ↵ - e⇤/h̄c . We may
now impose that this charged field is single valued in which
case it follows from he eqution (I.1.56) that we to impose
eg/h̄c = 2⇡n , the Dirac quantization condition.

In Figure I.1.30 we show an explicit configuration of the
phase factors for a charged field. For the elementary n = 1

monopole the angles �±(') are defined as

�± =
e

h̄c

Z'
A± · dl = ±'

2
. (I.1.57)

We learn that the difference between the two line integrals
is given by � = �+ - �- = ' . The loop integrals are
gauge invariant and �(2⇡) = 2⇡ , which means that the
transition function f(') ⌘ ei� is single valued.

Topological sectors. The existence of this non-trivial U(1)
fibre bundle corresponding to the fundamental monopole
with f(') = ei�(') = ei' was discovered independently
by the German mathematician Heinz Hopf, amusingly in
1931, the same year that Dirac wrote his monopole pa-
per. It took about forty years before the Chinese American
physicists Tai Tsun Wu and Chen Ning Yang discovered
the mathematical equivalence of these remarkable works
of the mind. The bundle space describing the fundamen-
tal monopole is basically the three-sphere S3 , and Hopf
showed that you can consider S3 as an S1 (which equals
the group U(1)) bundle over a base manifold S2 . We will
return to this topological classification of bundles in the
next chapter.

So the fibre bundle perspective adds an essential insight
into our understanding of electromagnetism as a gauge
theory. It is the discovery and classification of topologi-
cally non-trivial sectors in the theory. These sectors are
defined by mapping of boundaries (or overlap regions) of
real space (which themselves are always spaces without
boundary) into the gauge group or more generally some
‘internal space.’ These maps can be non-trivial, and if
they are, they label certain topological sectors which de-
fine some discrete ‘topological charge.’ These charges
are therefore quantized and conserved for a topological
reason which is not directly related to the standard sym-
metry type argument. Indeed in electrodynamics with mo-
nopoles the conservation of electric charge is a conse-
quence of gauge invariance, and the conservation of mag-
netic charge is topological in nature.

If you look at the monopole as a two-dimensional version
of electrodynamics on a closed surface, then the total in-
tegral of the magnetic field strength over that closed sur-
face would always have to be an integer in the appropriate
units. The total flux is a topological invariant of the gauge
field A , because you can make any smooth deformation
of the gauge field over the surface – not just gauge trans-
formations – and that integer would stay the same. This
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total flux which equals the magnetic charge is a topologi-
cal invariant characterising the gauge field on the surface
and is called the Chern number. So, indeed, on the two-
sphere the discrete values of the magnetic total magnetic
flux label different topological sectors of allowed electro-
magnetic fields. These topological features of gauge the-
ories play an important role in many subfields of physics,
for example in understanding the (integer) Quantum Hall
effect.

To appreciate the subtlety of the argument let us once
more step back and see how it is (quantum) physics that
dictates the result. This has to be the case because how
else could Planck’s constant show up in the charge quan-
tization fomula. That can’t be accidental! We see that we
map the circle in real space S1' into the gauge group which
we was also a circle S1�. The topological sectors are la-
beled by the winding number of this map, telling you that
�(' = 2⇡) = 2⇡n. The compactness of this group tells
you therefore two things: (i) that the permitted charges are
labeled by integers corresponding to the unitary represen-
tations of the group, and (ii) that there are topological sec-
tors corresponding to quantized magnetic charges. If na-
ture had given us particles with arbitrary electric charges
like ⇡e or e

p
2 besides e itself, then that would have im-

plied that the gauge group could not have been the com-
pact U(1) but would have been the non-compact group R1.
It’s unitary representations are not labeled by integers, so
there would be no charge quantization. But at the same
time the argument for the existence of non-trivial topologi-
cal sectors would also collapse. Any mapping of the circle
S1' into a line are all contractable to a point, meaning that
they are all topologically equivalent, and consequently that
there is only one sector in the theory. The world would be
without a discrete conserved magnetic charge: no mono-
poles!

As we will see later the state space of a qubit is also a
three-sphere and we will also use the representation of
the three-sphere as a bundle space in that context. We will

Figure I.1.31: The charge-pole system. The charge-pole
system is static but has a angular momentum nevertheless.
The total angular momentum can be calculated to be equal to
J =

eg

4⇡c2
, which with the Dirac’s quantization condition yields

values J = (1
2
, 3

2
, 5

2
· · · )h̄ .

return to and expand on these more extended geometrical
and topological concepts in Chapter I.2 in the section on
The physics of geometry. We emphasize these topological
features of our mathematical representations of physical
systems, because after all topological data refer typically to
class labels which are in many cases discrete. In a sense
this is a form of quantization that is may be less familiar
but certainly no less quantessential. ⌅ ⌅

A remarkable case of ‘static’ angular momentum.

The system of a spatially separated electric charge – mag-
netic monopole pair has a curious property first pointed out
by J.J. Thomson and presented it as a problem in the Cam-
bridge University Tripod exam in the late 1890s. In Figure
I.1.31 we have depicted the situation with the charge and
pole located on the z-axis. At two points symmetric with re-
spect to the z-axis we have the electric and magnetic fields
E and B, and the resulting Pointing or field-momentum vec-
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tor S. The contribution to the angular momentum around
the z-axis is clearly pointing along the charge-pole direc-
tion. When we integrate all the contributions, we find that
the total angular momentum is non-zero and in fact ex-
actly equal to the quantized product of e and g values in
the appropriate units. A static system with a non-zero to-
tal angular momentum, a value that is quantized in half
integral units and does not depend on the distance be-
tween the two sources is remarkable indeed. We will re-
turn to these properties in Volumes II en III where we dis-
cuss the spin and statistics properties of particles in two
dimensions. ⌅

Statistical Physics: from micro to macro

This section is about macroscopic systems consisting of
very large numbers of atoms or molecules and focusses
on the link between microscopic and macroscopic behav-
ior, between individual and collective (equilibrium) degrees
of freedom. The physics of macroscopic phenomena ev-
idently started as a phenomenologically driven discipline,
and it followed the Newtonian approach, by applying an-
alytical methods using differential equations to describe
continuous media like gases, liquids and to some extent
solids. It lead to a rich variety of equations for thermo- ,
hydro- and aerodynamics. A crucial turning point came
with the acceptance of the molecular hypothesis, the real-
ization that all forms of matter are made up of tiny mol-
ecules. This posed a new challenge, namely to derive
and explain all the known macroscopic physics starting
from applying basic Newtonian mechanics on the molec-
ular level. As one is not interested in the detailed behav-
ior of the individual atoms, statistics serve as a powerful
bridge between the incoherent individual dynamics and the
often perfectly coherent dynamics of the collective. This
led to a fundamental branch of theoretical physics called

statistical mechanics, which is considered the third great
achievement of classical physics. This approach allowed
us to understand numerous so-called emergent phenom-
ena - the properties of the collective that are not present on
the level of the individual atoms. In this section we focus
on thermodynamics: we will first give its macroscopic def-
inition and its three basic laws, and then we will show how
a statistical physics approach enables a deeper and uni-
fied understanding of the subject. The reason why we are
focusing on thermodynamics is that it was within that field
that the all-important concept of entropy as a measure of
disorder and information originated.

Thermodynamics: the three laws

Thermodynamics is a general theory that started with the
noble aim to systematically improve the performance of
steam engines and the like, but has now also found no-
table applications for less down-to-earth systems like black
holes. A thermodynamical system – think of a fridge or a
steam engine, or just an amount of gas in a container –
can work and exchange heat or energy with other systems
or its environment. Thermodynamics studies the relations
between heat, energy and the ability of the system to do
work.

Thermodynamics is a macroscopic theory; nowhere does
it refer to the specific microscopic structure of the system.
However, when we introduce the subject, it is easiest to en-
visage a simple gas in equilibrium in a container with par-
ticular values for the macroscopic state variables, pressure
P , volume V , temperature T as depicted in Figure I.1.32.
The fourth state variable, the entropy S, is more hidden as
it provides a link between temperature and heat as we will
see. This system has an internal energy U(T) which is the
total energy of its internal degrees of freedom.

The essentials of thermodynamics are expressed in three
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Figure I.1.32: Gas in thermal equilibrium. Gas in a container
with a movable piston kept at a given temperature T and pres-
sure P, yielding a certain volume V . The three state variables
are not independent but satisfy an equation of state. For an ideal
gas that relation is given in the next figure.

famous laws. In fact there is a fourth law, which is usually
referred to as the zeroth law of thermodynamics, presum-
ably because it is considered to be self-evident.

The zeroth law introduces the notion of thermodynamical
equilibrium, and stipulates that it is a transitive property,
that is to say that if system A is in equilibrium with B, and
A is also in equilibrium with C, then B and C are also in
equilibrium. This allows you to define the thermodynamical
(absolute) temperature of a system.

The first law is basically the statement that energy is con-
served. This is expressed in a relation stating that adding
some heat dQ to the system will result in an increase of the
internal energy dU and the ability for the system to do me-
chanical work, which for the gas in the container equals the
pressure times the change in volume dW = PdV :

dU = dQ- PdV . (I.1.58)

Figure I.1.33: Ideal gas law. This graph shows the ideal gas
law PV = kNT , expressing the dependence between the ther-
modynamical variables P, V and T , with k the Boltzmann con-
stant and N, Avogadro’s number.

The second law is the most famous: it features the notion
of entropy, denoted by S, which is defined by the following
relation between heat and temperature:

dQ ⌘ TdS . (I.1.59)

This fundamental state variable of any thermodynamical
system was introduced by Rudolf Clausius around 1850,
as was the second law. The law states that for a closed
system (say a fixed quantity of gas in a thermally isolated
vessel) entropy can never decrease in time:

dS

dt
� 0 . (I.1.60)

lim
T!0

S = 0 . (I.1.61)

More precisely it goes to a constant which measures the
ground-state degeneracy of the system.

Entropy is a sort of measure for disorder: the law boiled
down to the familiar phenomenon that (closed) systems
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Figure I.1.34: Ludwig Boltzmann’s epitaph. The expression for
the entropy S of a macroscopic state in terms of the number W
of microscopic states corresponding to it appears as epitaph on
Boltzmann’s tomb stone in Vienna’s Zentralfriedhof, where he
was buried in 1906. (Source: Wikimedia.)

have a natural tendency to become maximally messy or
mixed. This applies to teener rooms as well as to tea parti-
cles in a pot filled with hot water. As the entropy reaches its
maximum value the system reaches an equilibrium state.
So, if we put a droplet of ink in a bowl of water, and nei-
ther change the amount of water, nor the temperature, nor
the volume, then we still see the distribution of the ink mol-
ecules through the water changing. In this process the
entropy increases until the ink is completely mixed and
distributed uniformly and equilibrium is reached. So in-
creasing entropy, you could say, is linked to this process of
increasing ‘disorder.’ To get a deeper understanding of the
entropy concept it is necessary to include the microscopic
structure of the system whatever that may be. This is our
next topic.

Understanding entropy.

The fundamental expression for the entropy S of a given
macroscopic state was derived by the great Austrian physi-
cist Ludwig Boltzmann, who stated that it is proportional to
the logarithm of the number of microscopic states W cor-
responding to the macroscopic state under consideration.
So

S = k logW , (I.1.62)

where k is not surprisingly called the Boltzmann constant.
Now logW is a pure number and therefore k has units
Joule/Kelvin. This famous expression was the precur-
sor of the general notion of the information capacity of a
system as the logarithm of the number of available states,
as it was defined by Claude Shannon in his 1948 founda-
tional paper on information theory. Shortly we will gener-
alize the formula as to establish an explicit connection be-
tween statistics and entropy. This relation between entropy
and information theory will also be taken up again in the
section The physics of information in Chapter I.2.

Context dependence of the entropy. To illustrate some
features of the entropy concept, we start with some ex-
amples of pure configurational entropy. Take a system of
N boys and N girls that can be located in any of 2N po-
sitions. If we furthermore assume that the macroscopic
observer is pretty much blind and would have no possibil-
ity of distinguishing between boys and girls, nor how many
people sit at a given position. So there is no constraint on
the configurations and there is only a single macro state.
In this case the question is to count the number of pos-
sible configurations of 2N people on 2N positions. Now
we have to specify the conditions that the micro states
have to satisfy. If the people were distinguishable (have
names) then the number of possible (micro) states would
be W1 = (2N)2N as any person can be in any of 2N po-
sitions. If we assume they are indistinguishable, then we
count a micro state where two people are interchanged
as the same state, for 2N people we have 2N factorial
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different orderings that count as one, and the number of
configurations is therefore reduced by this number: W2 =
(2N)2N/(2N)! . If we are now on the microscopic level,
we could add the distinction between boys and girls, we
can exchange the same gender only, and we have to re-
place the 2N! with the much smaller number N!N! , yield-
ing W3 = (2N)2N/(N!)2. Next we may add the constraint
of exclusion meaning that only one person per position is
allowed (they behave like fermions), which for the system
at hand means that all positions are taken. With name
identification the number of configurations is equal to the
number of permutations of 2N names given by (2N)!. With
gender identification only we identify the N! permutations
of boys and girls separately, yielding W4 = (2N)!/(N!N!) .

The effect of resolution and/or constraints. What this lit-
tle exercise conveys is that the definition of entropy is very
much context dependent. Firstly there is the microscopic
context of what the degrees of freedom are that one wants
to take into account and what the microscopic restrictions
are (like distinguishability, exclusion etc.), and secondly
there is the macroscopic context determined by what the
macroscopic observer is able to distinguish, resolve, or
measure (names, gender, spatial compartments etc). So,
in general the system has two levels and the entropy is a
quantity that basically relates the resolutions (the set of
observables and the precision with which these can be
probed) and the constraints that determine which states
are accessible at each level, and how these observables
at the two levels are related. Again, in the examples given
above, (i) there was only a single macroscopic state for any
given N, and (ii) on the micro level we saw that more res-
olution leads to more states, while more constraints lead
to fewer accessible states. In that sense within a given
closed system, indeed, eliminating a constraint leads to
‘more disorder’ and also a larger number of accessible
micro states and thus to an increase of the entropy. In
the sequence above we have W1 > W2 (less resolution),
W2 < W3 (more resolution), and W3 > W4 (adding a con-
straint).

The common statement that ‘higher entropy means more
disorder’ is actually quite subtle, and to get a better un-
derstanding of this question we add one further structural
element to the above example.

Maximal entropy. We consider the previous system with
2N positions, but take there to be two compartments, with
N positions each separated by a gate, and in each position
sits one person. The basic interaction is one where two
people exchange position. We start with a special (histor-
ically determined) initial state or configuration with all the
red-haired girls on the left and the blue-eyed boys on the
right. The boys and girls have no names, so exchanging
two boys and/or two girls does not change configuration.
This means that the initial strict gender separated configu-
ration is a unique one: there is only one such state and it
has minimal entropy S = k ln 1 = 0. Next we open the gate
in the middle and boys and girls start mixing. I am vaguely
suggesting that we are talking about a college dormitory
complex in the 1950s, say with N = 103 . The level of
frustration among students about the gender separation is
like a temperature, and when that becomes high enough,
the youngsters start jumping the fences everywhere to go
coed. Nice analogy, but now you ask me why this col-
lege only admits blue-eyed boys and red-haired girls. I
haven’t thought about a suitable interpretation for this but
no doubt there is one. Physicists, I fear, prefer to think
of an ideal gas consisting of equal number of red and blue
atoms where N = 1023. Let us now increase the resolution
of the macro observer and assume that they can some-
how measure the number n of boys/girls that are in the
‘other’ compartment, so the macro-states are labeled by
n. Now we ask how many microscopic possibilities there
are to realize that particular macro state. The question
is to distribute 2N youngsters over two partitions. Let us
start with one boy/girl jumping the fence: the boy and girl
can each come from any of N positions, so for state with
n = 1 we have N ⇥ N = N2 possible configurations (or
micro-states). In the second cross-barrier move, the boy/-
girl has only N - 1 positions to come from or go to, which
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Figure I.1.35: Gender mixing. The initial state is the one with
all red-haired girls in the left and all blue-eyed boys on the right.
When we let them interact through some random girl/boy ex-
change mechanism, the entropy will increase; equilibrium is
reached when the left and right colors have become equal.

means there are [N(N - 1)]2 possible n = 2 configura-
tions, but now we over-count configurations: we should not
have counted the gender neutral exchange of two boys or
of two girls as different, so we still have to divide by a fac-
tor 4 . What we see is that the number of configurations
increases extremely rapidly as function of n. The general
answer is not too hard to understand from the previous ex-
amples:

Wn =

✓
N

n

◆2

⌘
h N!

n! (N- n)!

i2
, (I.1.63)

where the notation
✓

N

n

◆
stands for the binomial coeffi-

cient N over n. Note that this function is symmetric under
interchange of n and (N - n) . Furthermore we observed
that the function increases for growing n, then these ob-
servations imply that the maximum for Wn is achieved for
n = N - n = N/2. Thus, if all micro-configurations are
equally probable, the macro-state with n = N/2 has the

largest number of possible micro-states and therefore the
largest entropy:

Smax = k lnWN/2 = 2k ln
✓

N

N/2

◆�
.

This means that if we let the random dynamics run for a
sufficiently long time from any initial macro-state, and we
then probe the system, that we will almost certainly find a
configuration with n = N/2. So the remarkable insight we
gain is that a random process drives the system to a par-
ticular macroscopic state, namely the state that is the most
probable because it has the most microscopically distinct
realizations, which is the state with the highest entropy.
And this is the second law of thermodynamics at work. A
system has the natural tendency to move from a less to
a more probable macro state. That state is the maximally
mixed and therefore maximally disordered state that is ad-
missible.

This process is schematically illustrated in Figure I.1.35.
To give you a feeling for the numbers involved we have
listed the binomial coefficients for various modest values
of N and n in Table I.1.1 . If N is large, we may approxi-
mate the logarithm of a factorial using the famous Stirling
formula, which says that, ln N! ' N ln N . With this for-
mula one can show that S in the above equation is well
approximated by Smax ' 2N ln 2 , and this in turn implies
that in equilibrium the number of micro-states is a number
with roughly 0, 6N digits. This implies that the probability
for finding the completely gender-separated initial macro-
state when the system is in equilibrium is of the order of
p0 = 10-0.6N . If you take into account that N is of the or-
der of Avogadro’s constant ⇠ 1023 , p0 is extremely small
indeed.

The arrow of time. There is something rather profound
going on in this red-blue dynamics. If you look on the
micro-scale all the interchanges are equally probable. In
fact any move is its own inverse, and therefore the micro
dynamics is invariant under time reversal. If you would re-
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n
✓

50
n

◆
N

✓
N

N/2

◆

1 1 10 252

10 1.0⇥ 1010 20 184756

20 2.2⇥ 1012 50 0.12⇥ 1015

25 1.2⇥ 1014 100 0.10⇥ 1030

30 2.2⇥ 1012 1000 0.27⇥ 10300

40 1.0⇥ 1010 . . . . . .

50 1 N ⇠ 100.3N

Table I.1.1: The binomial coefficients. We have listed some val-
ues of the binomial coefficients

✓
N

n

◆
to demonstrate the steep

increase as a function of n on the left, and the maximum value
of the distribution as a function of N on the right.

verse the time direction you wouldn’t see the difference in
individual moves. On the microscopic level time has no
direction! Interestingly, if you look at the macroscopic be-
havior it clearly has a time direction (namely defined by
the increasing entropy) that is not an abstract something or
other, this is directly observable. From a macroscopic point
of view, when N is large, you see the red compartment
slowly turning blueish and the blue compartment slowly
turning reddish, but the process stops at a point where
both halves have acquired the same purple color. So,
somehow the system has created its own arrow of time,
whatever macro-state you start with it will always move to-
wards the uniform purple color distribution with maximal
entropy.

This ‘coarse graining’ mechanism (see Figure I.1.36) lies
at the basis of the time arrow in the real world as well, be-

Figure I.1.36: Coarse graining a portrait. We average the color
content over larger and larger (overlapping) squares. In the
‘blurring’ process the image looses resolution and is therefore
hiding ever more information content. The entropy is increas-
ing and the process is irreversible. The entropy is a measure
for the amount of micro level information that is ‘hidden’ for the
macroscopic observer.

cause, as we have shown in the previous sections, both
Newton’s and Maxwell’s equations are time reversal invari-
ant if the interactions are. What this means is that given a
solution to the equations, turning the time around, mean-
ing that we replace t by -t , also produces a solution (but
may be a different one). On a microscopic level playing
the film backward would show another, equally acceptable
sequence of events, but on a macroscopic level this is not
true. If I drop my bowl of yogurt, fruit and granola on the
floor, showing that sequence of events in reverse order, it
may be hilarious but it is certainly not of this world. Indeed,
this elementary example teaches us that the direction of
time is emergent, since it has everything to do with the rel-
ative number of micro-states belonging to a given macro-
state. A randomly propagating system tends to move from
a less to a more probable state, and reaches equilibrium
in the most probable maximal entropy state.
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Two cultures. The second law of ther-
modynamics paradoxically owes part
of its fame to the fact that it is so lit-
tle known. This was poignantly pointed

out by the author (and physicist) C.P. Snow in his
provocative essay entitled Two cultures published
in the New Statesman in 1954, in which he bit-
terly complained about the scientific illiteracy of the
cultural elite, and where he used the manifest ig-
norance about the second law of thermodynamics
(which in his opinion had a cultural importance com-
parable to the works of Shakespeare) as a criterion
to underpin his criticism. Let me say that Snow’s in-
tervention on behalf of thermodynamics did not turn
Boltzmann into a Shakespeare. Some years later,
however, it did at least provoke a strongly worded
reaction from the literary critic F.A. Leavis making
the mutual incomprehension even more acute. In a
remarkable piece of word craft Leavis stated: ‘Snow
doesn’t know what he means, and doesn’t know he
doesn’t know.’ ‘The intellectual nullity’ he added, ‘is
what constitutes any difficulty there may be in deal-
ing with Snow’s panoptic pseudo-cogencies, his pa-
rade of a thesis: a mind to be argued with – that is
not there; what we have is something other.’ ‘But
what else to expect from a crappy writer like Snow?’
’As a novelist,’ wrote Leavis, ‘he doesn’t exist; he
doesn’t begin to exist. He can’t be said to know
what a novel is.’
The sad point about the situation described by
Snow is that it has barely changed over the past
half century. So don’t ask friends to recite the sec-
ond law in public, your popularity will most probably
instantly plummet. ⇤

This being said we should be cautious, in any given system
there will be fluctuations where the entropy actually de-
creases. The micro-dynamics do not preclude such moves,

but on average it is not possible.

It is an awesome idea but certainly correct that in the sys-
tem we just studied, there is a non-zero albeit inconceiv-
ably small probability for the system to pass through the
same initial state again!

But that was a state with a lower entropy! The existence
of such a recurrence time was proven by Henri Poincaré in
1890. A rough estimate for this recurrence time will be of
the order ⌧ ' 10N = 1010

23

sec , which is of the order of
1022 times the age of the universe. In whatever units you
like to express this truly dazzling number, it is evident that
this recursion is not an event to just sit-and-wait for!

This amusingly may remind you of the problems that peo-
ple who have no understanding of statistics and probability
encounter. Events, like the spontaneous gender separa-
tion under the given random dynamics in our example, is
logically not excluded, but it would take for ever! Assigning
outrageously large probabilities to events which are log-
ically not excluded but highly improbable is a specialty of
so-called conspiracy theorists. Indeed, it would take a con-
spiracy of extreme proportions to realize such super im-
probable events, like having all air molecules accumulate
in one tiny corner of the room, and you dying because of a
lack of oxygen.

Statistical mechanics

The molecular hypothesis. A major step forward was the
acceptance of the molecular hypothesis, implying that all
matter is ultimately build up from microscopic, molecular
or atomic constituents. One of the strongest protagonists
for this hypothesis was Ludwig Boltzmann. For the number
of particles in such macroscopic systems the scale is set
by the constant of Avogadro of the order of 6 ⇥ 1023 the
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number of atoms in a mole of some gas,8 a number that
makes even strong people quiver. This molecular perspec-
tive raised the fundamental challenge for physicists to es-
tablish an explicit connection between microscopic phys-
ics (mechanics and electromagnetism) and the aforemen-
tioned macroscopic laws. The molecules obey the classi-
cal laws, and one - pretty naive - way to think about ad-
dressing this challenge would be to face the problem head
on and try to solve ⇠ 1023 coupled Newtonian equations for
the individual particles simultaneously. Hmm, apart from
the computational power needed, this doesn’t sound like
a very smart idea, does it? Particularly since we are not
at all interested in the precise behavior of every individual
particle.

Statistical approach. A successful approach is the sta-
tistical one, where one links the macroscopic properties
like pressure, temperature and entropy to certain average
properties of the collective of molecules. Indeed, with such
huge numbers statistical methods become extremely pow-
erful and precise as any insurance company can tell you.
What properties of the molecular collective could be mean-
ingfully lifted to relevant variables at the macroscopic level?
These would typically be the conserved quantities like en-
ergy, momentum and particle number. The energy is con-
served and for a closed system would be just an additive
quantity: the energy of the macroscopic system is just the
sum of the individual particle energies and their interac-
tions. The total energy is rigorously conserved: in other
words, constant.

Open and closed systems. One is not limited to closed
systems, and one might also consider an open system that
is coupled to an energy reservoir kept at a fixed tempera-
ture (also called a ‘heat bath’), which means that one al-
lows for energy (heat) flows between the system and the
reservoir as we depicted in Figure I.1.32. If we raise the

8 As explained in Chapter I.3, a new definition as of May 20, 2019,
of Avogadro’s number or constant sets it exactly equal to NA =
6.02214076⇥ 1023 .

temperature of the reservoir, heat will flow to the system,
raising the internal energy and allowing it to do a certain
amount of work. And this gives you an idea of how the
first law of thermodynamics can be derived from the mi-
croscopic laws. In other words, temperature is the exter-
nal parameter that sets the average energy of the system,
and in that sense imposes an external constraint on the
system. For the particle number an analogous reasoning
holds. Here one may couple the system to a particle reser-
voir which is kept at a fixed chemical potential µ. This po-
tential corresponds to the energy it costs to add one more
particle to the system. These considerations can be made
very precise and are part of the field of statistical mechan-
ics, developed by physicists like Boltzmann, Maxwell and
Gibbs.

Equipartition of energy. One can show that for a system in
equilibrium, on average, the energy is equally partitioned
over the individual particles, which means that the notion
of temperature is linked to the average energy per particle
in the system. In fact the correct way to say this is that
the energy is equally distributed over the degrees of free-
dom, where for a system in equilibrium at temperature T ,
each degree of freedom gets an energy h"ii = kT/2. A
particle in three dimensions has three independent veloc-
ity components and therefore three degrees of freedom.
Consequently, for a system of N particles the average en-
ergy will be hEi = 3NkT/2.

Phase space representations of a multi-particle sys-
tem. Imagine we have a gas that consists of N identical
particles in a volume V , then there are two distinct phase
space representations of the system possible. One is rele-
vant if one wants to study the average single particle prop-
erties or (auto)correlations and refers to the one-particle
phase space, while the other concerns the distribution over
different multi-particle micro-states that correspond to a
single macro-state.
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� - space. Let us start with the one-particle phase space
� = (x,p), and represent the state of each particle in
the system as a point. This yields a certain density of
points, corresponding to a distribution f(�, t).9 If the sys-
tem is in equilibrium, then we expect: (i) the particles to
be uniformly distributed in ordinary x‘-space, (ii) the distri-
bution to be time independent, and (iii) the momentum de-
pendence to be isotropic. This tells us that in equilibrium
f(x,p, t) ! f(|p|), which gives rise to the famous Maxwell
– Boltzmann distribution, which is a Gaussian distribution
in p space with the exponent equal to minus the energy:
-"/kT = -p2/2mkT . Why the exponential energy sup-
pression factor? There are two elementary requirements
which make this plausible. If for a simple system like an
ideal gas where the particles do not interact and are inde-
pendent, we look at two particles, then the joint probabil-
ity to find one of them with p1 and the other with p2, we
would just be the product of the one-particle probabilities:
f2(p1, p2) = f(p1)f(p2). In other words the two-particle
configuration should then be weighted by the total energy
which is the sum of the two energies. This should hold
for any partitioning of non-interacting components which
means that the exponential factor is the unique answer, be-
cause by multiplying two exponentials the exponents add.

� -space. We can also define the phase space for the
whole system, that total phase space is defined as the
Cartesian product of the N individual spaces. This multi-
particle phase space �N = {(x)N, (p)N}, of N coordinates
and momenta, is 6N-dimensional, as each particle has
three position and three momentum components. This is
a very high-dimensional space, and at any given instant
the system as a whole is represented by a single point in
that space. The particles will bounce around which means
that the point representing the system will move around in
that space and to study the macroscopic properties of the
system we would have to consider long-time averages of

9I refer readers who are not familiar with the basics of probability
theory to the Math Excursion ‘On probability and statistics’ on page
626 of Part III.

those properties. Clearly variables defining macro-states,
like for example the total energy, define a constraint on the
micro-states, which means that these variables will define
certain subspaces or strata in � . The micro-states in such
a domain can be quite different but cannot be macroscop-
ically distinguished.

Ergodicity. A basic assumption of statistical mechanics,
called the ergodic principle, is that we can replace the time
averages of the system with � -space averages using the
appropriate distribution representing the equilibrium micro-
states. The principle is supposed to hold in the thermody-
namic limit, where time, volume and the particle number
go to infinity (keeping n = N/V fixed).

In this setting one may with a single equilibrium state of the
macro-system associate a stationary distribution of points
corresponding to the probability for the different micro--
states representing that macro-state to occur. One intro-
duces a weight function ⇢(�) which may depend on ex-
ternal parameters like temperature or particle number that
represent the macroscopic conditions one imposes. Now
⇢(�) defines what is called an statistical ensemble of micro-
states. If the system is closed (fixed total energy), we
speak of the micro-canonical ensemble. if we couple it
to a thermal bath, we have the canonical ensemble with
weight function, ⇢(�) = e-H(�)/kT , where H(�) is the en-
ergy function (Hamiltonian) for the multi-particle system.
If we also let the number of particles N vary, we get the
grand canonical ensemble. It was the American physicist
Josiah Willard Gibbs who introduced the notion of an ‘en-
semble’ of micro-systems, and the ‘ensemble distributions,’
to calculate the desired averages in all types of macro-
states.

May be to illustrate these rather abstract notions it helps to
extend our red-eyed/blue-haired, excuse me red-haired/-
blue-eyed youngster model to include variables like ‘money’
and ‘group size.’ Clearly the group size is just the number
N, we introduced before and we could make it a variable
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by coupling to a reservoir of similar pairs who are allowed
to join. The amount of money would be the social equiv-
alent of energy, and in a closed system money would be
conserved, people could exchange money as long as the
total amount of money stays conserved.

If you don’t like the analogy, you certainly have a point:
whereas in the world of particles there is such a wonder-
ful thing as the equipartition of energy, that is to say that
on average every particle has an equal energy, the same
does not to seem to hold in the world of money. It’s quite
the opposite: we witness a process of wealth accumula-
tion. This is a non-equilibrium situation which tends to re-
sult in a macabre final state where presumably one person
owns all the money. In this case one could speak of the
capitalist singularity whereas for the particles one ends up
with a socialist uniformity. In this analogy the thermal bath
would be represented by the central banks who can raise
the fiscal ‘temperature’ by printing money. I invite the am-
bitious reader to think about how to include taxation in the
model. What these analogies try to convey is that for all
these systems there is a notion of a phase space, of exter-
nal parameters and a statistical ensemble that describes
the probability distribution of micro-states depending on an
external parameters.

The partition function. The partition function of a many-
body system is now defined as a phase-space integral,
Z =

R
� ⇢(�)d� . You could say that the partition function

gives the ‘volume’ of the domain in �-space, correspond-
ing to the external (macro) parameter choices made in ⇢.
For example, with ⇢ describing the canonical ensemble,
for a system in contact with a heat bath kept at a tempera-
ture T , the partition sum would depend on T as an external
parameter.

Emergence. Let us also point out another interesting fea-
ture of this statistical approach to systems consisting of
many degrees of freedom (particles). In many ways this
perspective allows one to introduce ‘mean fields’ as an

approximation to the many body system that underlies it.
One passes from a corpuscular perspective to a contin-
uous one. From the macroscopic point of view, a water
flow in a river would be described by a mass density field
⇢(x, t) , a velocity field v(x, t) , and an energy density or
temperature field "(x, t). These continuous fields are de-
fined by smearing out the local average properties of many
particles. You may say that this assumes the existence
of a local equilibrium in the system. One may show that
these local fields have to obey certain specific dynamical
field equations called the laws of hydro-, aero- or plasma-
dynamics. These field equations follow from averaging the
continuity equations for the locally conserved quantities of
the interacting micro system. The resulting laws are ‘emer-
gent ’ and describe approximately many novel so-called
emergent collective properties, in the case of water, you
should think of waves and vortices.10 Water waves are a
phenomenon of which the individual water molecules have
no idea, the wave property is not present at the constituent
level, and it is in that sense that people like to say that
the ‘whole is more than the sum of its parts.’ And it is for
that reason that water waves are called an ‘emergent’ phe-
nomenon. In the simple red-haired-girls/blue-eyed-boys
model, we saw the arrow of time emerging, and the emer-
gent (phenomenological) law was telling us that the two
colors would uniformly change to the same color purple.

Statistical thermodynamics.

Let us return to thermodynamics. In the statistical ap-
proach to a system in thermal equilibrium, say, a fixed
quantity of gas in a container that we keep at a fixed tem-
perature T , we think of the macro-states labeled by the
thermodynamic state variables P, V, S,N and T . In this
situation heat can flow from and to the heat reservoir, which

10It is striking to see that Maxwell himself believed that his own elec-
trodynamics was an effective description of the collective behavior of
an underlying molecular world. As we will see later on, the quantum
theory of fields is in a certain way a vindication of that point of view.
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means that in thermal equilibrium the energy of the mi-
croscopic system is not constant. It will typically fluctuate
around the thermal average U = hEi = 3NkT/2. The rel-
evant energy variable is the (Helmholtz) free energy which
is defined as:

F = U- TS , (I.1.64)

and should be thought of as a function of T and V , because
it follows from the first law that a change in the free energy
is given by

dF = dU- SdT - TdS = -PdV - SdT . (I.1.65)

Note that from its definition, minimizing the free energy
combines the natural tendencies to minimize the internal
energy U and maximize the entropy S.

Let us consider a simple discrete model where each macro-
state corresponds to a well-defined set of different configu-
rations on the microscopical level called micro-states. This
example aims to illustrate how the link between micro- and
macro-physics is established. These micro-states are la-
beled by an index ‘i’ and each have a certain energy Ei .

The probability pi that a micro-state occurs is again pro-
portional to the Boltzmann weight wi = exp(-Ei/kT),
which says that the high-energy states are exponentially
suppressed.

We may then write that the probability is:

pi =
e-Ei/kT

Z
, (I.1.66)

where Z is the partition sum defined as

Z =
X

i

e-Ei/kT . (I.1.67)

Note that the sum of all probabilities indeed equals one.
The link between the macroscopic and microscopic states
is established by giving the expression for the free energy
in terms of the partition sum:

F = -kT lnZ . (I.1.68)

From this relation the thermodynamical quantities can be
derived. For example with this link it is possible to calculate
the famous expression first derived by Gibbs, for the en-
tropy in terms of the probability distribution. Subsequently
using equations (I.1.68) and (I.1.66) we obtain

F =
X

i

piF = -kT
X

i

pi lnZ

=- kT
X

i

pi(-
Ei

kT
- lnpi) =

X

i

piEi + kT
X

i

pi lnpi .

Given that by definition U ⌘ hEi =
P

i piEi , we find
from (I.1.64) that the entropy can be expressed as

S = -k
X

i

pi lnpi . (I.1.69)

This is the famous expression for the entropy due to Gibbs
which was (re)derived by Shannon, and being the formal
definition of information (entropy), forms the basis for in-
formation theory. At this point it is important to empha-
size the remarkable generality of this result, as it assigns
an entropy or information capacity to any given probability
distribution or statistical ensemble.

Note that in equation (I.1.69), for a isolated system with
fixed energy (not in contact with a heat bath), the energies
Ei become equal, and thus pi = p = 1/W. This repro-
duces the Boltzmann result (I.1.62) for the entropy. As-
signing equal probabilities is like saying that you have no
a priori information about the states, so you are not impos-
ing any constraint, and thus you get the maximum value
for the entropy, the one given by Boltzmann. There is a
formal, less physics restricted, method for constructing the
maximal entropy distribution as defined in equation (I.1.69)
which allows for the systematic inclusion of additional con-
straints or prior knowledge. This is called the maximal en-
tropy principle and is further discussed in the Math Excur-
sion ‘On probability and statistics’ at the end of Part III on
page 626. ⌅

The energy distribution. To further elaborate on the sta-
tistical interpretation of thermodynamics, it is illuminating
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to look at the energy variable and to derive the energy
weight function s(E) from ⇢ . In the integral over the en-
semble of all micro-states, we break the integral up into
subsets of equal energy where state i and j belong to the
same subset if Ei = Ej = E . We call n(E) the volume of a
thin shell at energy E .This allows us to write the partition
function over all micro-states as

Z =

Z
s(E)dE =

Z
n(E)e-E/kT dE

=

Z
e-E/kT + lnn(E) dE . (I.1.70)

It is illuminating to go through this calculation for the simple
case of an ideal gas, as we will do next.

The ideal gas.

Let us consider the ideal gas to show how explicit expres-
sions for the thermodynamical functions in terms of micro-
physical variables can be obtained by using statistical me-
chanics. We have N particles in a container with volume V

in thermal equilibrium at a temperature T . The total inter-
nal energy of a configuration, given by E , equals the sum
over one particle kinetic energies: E =

P
n(p

2
n)/2m . To

get to the energy distribution we have to integrate (or sum)
the general phase space distribution ⇢(�) over all 6N vari-
ables except the total energy. In an equilibrium state the
spatial distribution is uniform and therefore integrating all
the coordinates gives a factor VN. The integral over the 3N

momenta components has to satisfy the energy constraint
that the total kinetic energy equals E. All 3N-dimensional
momentum vectors that satisfy this condition have a length
|p| =

p
2mE . So the integral yields the area of a (3N-1)-

dimensional spherical surface of a 3N-dimensional ball of
radius R =

p
2mE . This means that the density of states

takes the form:

n(E) = CNV
NE

3

2
N , (I.1.71)

where we have dropped a negligible term equal to 1/2 in
the exponent. The constant CN is the area of the (3N-1)-

Figure I.1.37: Phase space distribution. The rapidly decaying
density of points in phase space (in blue). A fixed energy surface
(in red) is a very high-dimensional spherical surface. Adding up
the points in a narrow shell yields an extremely steeply rising
function n(E).

dimensional unit hypersphere.11

At this point we can make the connection with thermody-
namics, by noting that the entropy of the system is given
by:

S(E, V) = k lnn(E) = k lnCN + kN ln
�
V E

3

2

�
. (I.1.72)

Solving this equation for the internal energy U(S, V) = E

yields:

U(S, V) =
1

V
2

3

e

2

3kN
(S- k lnCN)

. (I.1.73)

If we now use the first law in the form dU = TdS - PdV ,

11The actual expression, which does not enter our considerations, is:
CN = 3N(⇡)

3
2
N/( 3

2
N)! .
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we can determine T and P:✓
@U

@S

◆

V

= T =
2U

3kN
(I.1.74a)

-

✓
@U

@V

◆

S

= P =
2U

3V
=

kNT

V
. (I.1.74b)

The first equation gives the familiar expression relating the
internal energy to the temperature and should be read
here as a definition of the temperature in terms of the
micro-state energy. From this we may also get the ex-
pression for the specific heat denoted as cv, which is the
energy needed to raise the temperature by one degree. It
is defined as (@U/@T)V , which in this case yields: cv =
3Nk/2 . The second equation gives the equation of state
for the ideal gas, better known as the ideal gas law PV =
RT , where the universal gas constant R is defined as R =
Nk . It is an equation of state because it relates the three
different thermodynamic state variables P, V, and T . It
defines a constrained surface of allowed thermodynamic
states, in the space of these three state variables. This
basically concludes our first principles derivation of some
high-school formulae that apply to the ideal gas.

It is instructive to reflect a bit more on the overall energy
weight function s of equation I.1.70. On the one hand, we
know that the density of points in the space drops expo-
nentially because of the Boltzmann factor. However, the
‘volume’ n(E) of the layers grows extremely fast like E3N/2,
because of the huge value of N. The overall weight, being
the product of the two functions, becomes

s(E,N) ⇠ CNV
NE

3

2
Ne-E/kT . (I.1.75)

To determine the maximum of s(E,N), we set its derivative
equal zero:

✓
@s

@E

◆

N

=
� 3N

2Em
-

1

kT

�
s(Em,N) = 0 . (I.1.76)

This yields the value Em ' 3
2NkT = hEi , confirming our

expectation that for a very narrow and highly peaked func-
tion one expects the maximum and the average to coin-
cide.

Figure I.1.38: Energy weight function. There are three curves,
one represents the Boltzmann exponential suppression factor in
blue, The density of states n(E;N) in red, and their product, the
energy weight function s(E;N) in purple, are plotted near the
origin for N = 8 .

In the Figures I.1.38 and I.1.39 we have illustrated how the
resulting weight function s(E) (in purple) emerges as the
product of the very steeply rising entropy driven density
of states n(E) (in red) and the exponential energy sup-
pression (in blue). We have plotted the case where N =
8, which is not quite representative! Indeed it is strik-
ing that a narrow peak results: on the left the peak is
driven high up by the degeneracy or entropy factor n(E),
and on the right it is forced down again by the energy
dependent exponential suppression factor. For large N

the position of maximum grows proportional to n: Em ⇠

N , its maximum height increases exponentially: s(Em) ⇠

(const.)N , while the width grows only with the square
root: �E ⇠

p
N. So for large N the relative width de-

creases like �E/Em ⇠ 1/
p
N , and this implies that the

weight function becomes proportional to a narrow Gaus-
sian or rather a delta function. And this means that the
essential behavior is very well represented by the narrow
red band (the hyper-spherical shell) we have drawn in Fig-



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 55 — #85 i
i

i
i

i
i

STATISTICAL PHYSICS: FROM MICRO TO MACRO 55

Figure I.1.39: Ensemble energy weights. The weight function
s(E;N) is the integrand of the partition function. Its maximum
increases like ⇠ (const.)N, the location of the maximum grows
⇠ N , while the width grows only as

p
N . In the limit of very large

N , s(") becomes proportional to a delta function. The micro
states that matter sit all in an extremely narrow energy band as
indicated in Figure I.1.37.

ure I.1.37. Effectively these estimates also show that the
energy fluctuations in the canonical ensemble will be very
small, which in turn means that effectively the canonical
and micro-canonical ensembles are equivalent if we choose
E = Em . ⌅ ⌅

Classical versus quantum probabilities. We have cho-
sen to highlight this statistical approach to classical many-
body physics because we will see that also quantum the-
ory is probabilistic and statistical at heart. And the com-
parison of the classical statistical physics perspective with
the statistical aspects of quantum theory is illuminating.
In quantum theory the probabilistic interpretation is forced
upon us right from the start at the level of a single parti-
cle, and is encoded in the ‘wavefunction’ description of a
quantum particle. The wavefunction is a ‘probability am-
plitude,’ and its absolute square represents a distribution.

That distribution gives the probability density ⇢(x, t) to find
the particle at position x at time t, and in that sense it has
some mathematical resemblance to the case of statistical
mechanics, where the canonical distribution for example
gives the probability p(Ei) to find the many body system
that has an energy Ei.

There is, however, a fundamental difference between clas-
sical and quantum probabilities; in classical physics a prob-
ability generally reflects a lack of knowledge about the sys-
tem, which we in principle could eliminate by making more
precise measurements. In quantum physics it reflects a
fundamental indeterminism, meaning that even if we have
complete knowledge of the quantum state, a property like
the spin component along a certain axis for example need
not be uniquely fixed. In spite of this difference in inter-
pretation we will see that there are numerous mathemati-
cal concepts that can be carried over from statistical phys-
ics to quantum theory, and (information) entropy is one of
them.

The path integral formulation of quantum theory. From
a fundamental perspective a profound yet very direct rela-
tion between quantum and classical physics is established
through the framework of the (Euclidean) path integral for-
mulation of quantum theory proposed by Feynman follow-
ing an idea of Dirac. The fundamental entity in quantum
theory is the probability amplitude Aif for the system to go
from an initial state labeled i to a final state labeled f. The
probability pif for the transition to take place is then given
by the square: Pif = |Aif|

2. The amplitude for a quan-
tum particle to go from A at time ti to B at time tf can
in general be written as a weighted sum over all possible
paths L(t) in classical configuration space that satisfy the
boundary conditions L(ti) = A and L(tf) = B. As it in-
volves the integration of all possible classical paths or field
configurations, the mathematics is quite complicated and
in many cases lacks a rigorous mathematical foundation.
Yet it is a powerful method that in many ways shows strik-
ing mathematical parallels to statistical mechanics if one
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makes some substitutions like replacing the energy func-
tion with the action functional in the statistical weight, the
temperature by the product h̄ and some coupling. The no-
tion that the ‘free energy’ is equal to the log of the partition
function translates in the statement that the ‘effective ac-
tion’ is the log of the unconstrained path integral over clas-
sical configuration space. We return to this topic towards
the end of the book in Chapter III.4, after we have gained
more familiarity with the quantum world.

Conclusion. Our guided tour along some of the highlights
of classical physics has come to an end. To conclude this
first chapter, we observe that towards the end of the nine-
teenth century, many physicists thought that the physical
universe was basically fathomed, with only minor details
remaining to be settled. The fundamental laws had been
laid down by a bunch of geniuses and the program was re-
duced to merely applying them, skilfully applying them to
be sure. That appeared to be a matter of diligent devotion,
more something like stamp collecting than facing the chal-
lenge of building another Rome in one day...
Indeed, mission almost completed, but as we will see, not
quite. Stated differently: Hell was about to break loose!

Further reading.
Some introductory textbooks on classical physics:

- Classical Dynamics of Particles and Systems
S.T. Thornton, J.B. Marion
Saunders College Publications; 4th edition (1995)

- Classical Mechanics
J.E. Taylor
Cambridge University Press (2008)

- Electricity and Magnetism
E.M. Purcell
Cambridge University Press; 3rd edition (2013)

- Introduction to Electrodynamics
D.J. Griffiths
Cambridge University Press; 4th edition (2017)

- Fundamentals of Statistical and Thermal Physics
F. Reif
Waveland Press Inc (2008)

- An Introduction to Thermal Physics
D.V. Schroeder
Oxford University Press (2020)

Complementary reading:

- The Equations
S. Bais
Harvard Univiversity Press (2005)
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Chapter I.2

The age of geometry, information and quantum

And the continuity of our science has not been af-
fected by all these turbulent happenings, as the
older theories have always been included as lim-
iting cases in the new ones.

Max Born

In spite of the prevailing scientific optimism towards the
end of the nineteenth century, some of the most radical
changes in our thinking about the workings of nature were
about to surface. The monumental edifice of classical phys-
ics started to show cracks which would turn out to be fa-
tal. The crisis in this would-be infallibility centered around
some phenomena that were not just hard to explain but
were in manifest contradiction with the cherished classical
dogmas. The limited domains of validity of classical phys-
ics became apparent through the turning points of relativity
and quantum theory.
This chapter aims to provide a broad perspective on the
new opportunities that opened up for science and technol-
ogy in the twentieth century, and were derived in some way
or another from the turning points that occurred early on.
The subsequent sections cover introductions to the phys-
ics of relativity, the physics of geometry, and the physics of
information. We conclude this chapter with some general
remarks on quantum theory.

Canaries in a coal mine

Challenges, contradictions and tuning points. It is in-
teresting to note that already towards the end of the nine-
teenth century, there were some rather well-known exper-
imental observations that seemed to challenge aspects of
the central dogmas of classical physics. We may call these
the canaries in the coal mine. Let us start with two results
that were puzzling at the time and were only resolved by
the radical shift in perspective caused by the theories of
relativity, though Einstein himself never emphasized them
as sources or motivations for his work. Then we move on
to puzzles that pushed us toward quantum theory.

The Michelson–Morley experiment. This experiment suc-
ceeded in measuring the effect of the so-called ether (an
all-pervading medium through which classical electromag-
netic waves supposedly would propagate) on the propaga-
tion of light. A non-zero effect was anticipated because the
earth would be in motion with respect to the ether and this
would cause some dragging of the light in the direction
of the relative motion of the ether. Light would therefore
propagate at different velocities in different directions. The
measurements of Michelson and Morley showed, however,
that there was no such effect, leading to the conclusion
that the ether was a delusion. It was Einstein who abol-
ished the idea of an ether in his special theory of relativity
of 1905.
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The (anomalous) perihelion precession of Mercury. It
had been observed as early as 1860 that the elliptical or-
bit of Mercury as a whole rotated very slowly in its orbital
plane. This was a problem that even Newton’s laws could
not account for, even when perturbations like the other
planets (even assuming the existence of a novel planet
named Vulcanus), as well as the oblateness of the sun
were taken into account. But it turned out that the ob-
served anomalous part of the precession agreed to a high
precision with the calculation using the general theory of
relativity, the new theory of gravity formulated by Einstein
in 1915. The anomalous perihelion precession thereby fur-
nished one of the earliest experimental confirmations of
general relativity.

Let us now turn to four early puzzles that could only be
resolved with quantum theory.

The black body radiation law. If we heat a body, it starts
to radiate. For a black body kept at a given tempera-
ture the classical formula describing the radiation inten-
sity as a function of frequency due to Rayleigh and Jeans
failed to describe the data, and in fact predicted an un-
physical limit towards the high frequency end of the spec-
trum referred to as the ultraviolet catastrophe (see Fig-
ure I.2.1(a)). This all came about because one applied the
classical equipartition of energy among the various modes
of the electromagnetic field. The resolution of this problem
by Max Planck in 1900 was based on the bold assump-
tion that the minimal energy of a mode E is equal to the
frequency ⌫ times a fundamental constant denoted by h ,

according to his famous formula:

E = h⌫ . (I.2.1)

It is here that the proportionality constant h named after
Planck entered physics as a new universal constant of na-
ture. It is extremely small, in ordinary units the reduced
Planck’s constant – called h-bar – equals

h̄ = h/2⇡ = 1.05⇥ 10-34 Joule seconds. (I.2.2)

This tiny constant had a huge impact, since this innocent
looking quantization formula marked the very beginning of
the tumultuous quantum era.

The classical radiation formula can be obtained from the
quantum formula by taking the limit where h̄ tends to zero,
and in that sense quantum theory clearly marks the limited
domain of validity of its classical predecessor.

The structure of the atom. It was known at the time that a
gas of atoms of a particular type, like hydrogen or sodium,
would absorb or emit light with a specific, discrete spec-
trum of frequencies. Only narrow lines of particular colors
would appear in the spectrum (see Figure I.2.1(b)). Within
the classical framework of Newton and Maxwell there was
no way to account for this phenomenon, because even ac-
cepting the structure of the atom with a positive nucleus
and orbiting electrons, there would be no discrete energy
levels. Worse still: the electron would radiate and there-
fore lose more and more of its energy and finally fall into
the nucleus. This fundamental instability was basically re-
solved by Niels Bohr in the quantum mechanical atomic
model he proposed, and therefore the stability of all matter
we observe is a direct consequence of its quantum nature.
Bohr’s model for an atom predicted an infinite but discrete
set of bound states with a single unique ground state with
the lowest energy. And this discreteness accounted for the
discrete set of lines in the atomic spectra.

The Compton effect. This effect refers to the fact that
when scattering a high frequency X-ray off a charged par-
ticle like the electron, the radiation itself behaves much like
a particle with an energy E and momentum p given by the
Planck formula, i.e.

E = cp = h⌫ . (I.2.3)

Furthermore, the conservation laws of energy and mo-
mentum were respected in such scattering processes (see
Figure I.2.1(c)). This clearly suggested the later step made
by Einstein who postulated the existence of the photon as
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(a) Planck’s spectrum of black body radiation solves the ultraviolet
(short wavelength) divergence of classical theory.

(b) Discrete lines in atomic spectra, indicating discrete energy levels of
the atom.

(c) Compton scattering, showing the particle properties of radiation. (d) Photo-electric effect with the frequency threshold for the current to
flow.

Figure I.2.1: Meeting the challenge. Four crucial phenomena that early quantum theory successfully accounted for and where
classical physics failed bitterly.

the ‘particle of light’ with precisely the energy and momen-
tum properties just mentioned.

The photo-electric effect. This amounts to the effect that
if we direct a light beam to a metal surface in a constant
electric field parallel to the surface, a current might run
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because electrons get excited from the surface and flow
through the circuit (see Figure I.2.1(d)). The surprise was
that the magnitude of the current did not depend on the in-
tensity of the radiation in the way predicted by the classical
theory. It turned out that a current would only start running
if the frequency of the light in the beam passed a certain
critical value. If the frequency was below that threshold,
there would be no current irrespective of the intensity of
the beam.

This behavior was beautifully explained by Einstein in his
1905 paper, using the particle-like interpretation of the ra-
diation. Only if the energy of a single photon (given by
Planck’s formula) became larger or equal to the binding
energy of an electron in the metal, would the electron be
liberated by absorbing the photon. The rest of the energy
would be converted into the kinetic energy of that elec-
tron.

This concludes our brief summary of some of the deep
crises that hit classical physics and that seeded the new
paradigms of relativity and quantum theory. These consti-
tute two turning points in our thinking that are unequalled in
the history of science in the sense that they extended our
understanding of the physical universe far beyond what we
as humans could experience and perceive by direct sens-
ing or observation. And to test these radical new ideas
many new instruments and experimental techniques had
to be developed as powerful extensions of the quite limited
innate human ability to probe nature at very small or very
large scales. Indeed, these radically new insights started
a century of amazing progress, not only in physics and as-
tronomy, but also in chemistry, material science and com-
puter/information science.

The physics of space-time

The theories of special and general relativity, both largely
connected with the person of Albert Einstein, showed that
there is no objective way to separate time and space, there-
by introducing the concept of space-time. In the special
theory of 1905, this implied the unique role of the veloc-
ity of light as a universal constant, and the equivalence
of mass and energy. The general theory of 1915 further-
more showed that space-time could be curved and had
to be thought of as something dynamical. The concept
of space-time changed from an external mathematical ab-
straction to a physical entity, which itself carried energy
and momentum. Einstein found the dynamical equations
for the universe as a whole, as the inevitable consequence
of this line of thinking. This means that we have to think
of the universe we live in as a particular solution of the
Einstein equations.

Special relativity

The theory of special relativity is based on two assump-
tions: (i) the laws of nature should look the same for any
set of observers that move with constant relative velocity
with respect to each other, and (ii) the velocity of light in
vacuum is exactly the same for all such observers. These
assumptions, which have been confirmed by a wide vari-
ety of precise experiments, have far-reaching implications:
for example that the relative velocity between two moving
objects can never exceed the speed of light c , but also
that moving clocks tick slower. Probably the most well-
known consequence is the equivalence of mass and en-
ergy, so concisely expressed by the magnificent equation
E = mc2 . This equation opened the possibility of predict-
ing processes, where mass could turn into other forms of
energy such as radiation, and the other way around, where
for example a high-energy photon could create a particle
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Figure I.2.2: Einstein. (Source: Wikimedia.)

anti-particle pair. These processes found ample applica-
tions in quantum physics, in particular nuclear and par-
ticle physics, as well as in the medical world – think of
positron-electron tomography, or PET-scanning, as a di-
agnostic tool.

Space-time four-vectors. From a conceptual point of view
Einstein’s special theory of relativity introduced the notion
of a flat four-dimensional space-time (also called Minkowski
space-time) with four coordinates. These are usually de-
noted by xµ = (ct, x) with the index µ = 0 . . . , 3 where
the zero index denotes the time component. A point in
space-time labels an instantaneous event that takes place

at time t at a point x in space. Correspondingly, Ein-
stein defined a four-momentum pµ = (E/c,p) for a par-
ticle,1 where the energy became the time component of
the four-momentum, with the usual spatial component p =
mv .

If two observers move with constant relative speed, their
four-vectors that label a specific event, turn out to be ob-
server dependent in a specific way. They would vary, but
for the different observers the ‘length’ of the four-vectors
has to be the same. This means that the space-time in-
terval s for a given event, defined as s2 = c2t2 - |x|2 has
to be the same for different observers. And similarly, one
may define the notion of rest mass m0 , for a particle as
m2

0c
4 = E2 - |p|2c2 , which is invariant, that is to say that

it takes the same value for all relativistically equivalent ob-
servers.

The special theory of relativity makes the statement that
the physics may look different for different observers, but
a complete description can always be given in the frame
of any observer. Furthermore, the theory tells you how to
calculate what one observer should see if you know the
observations from another one. It tells you how to trans-
late any four-vector from one frame of reference to another.
And equally important, it also tells you which are the in-
variant quantities that will be the same in all frames. I em-
phasize this point about frames here because interestingly
enough we will encounter similar challenges if we are to in-
corporate properties and frames of observers in quantum
theory in a consistent way.

Relativistic versus rest mass. Let us dwell a little more
on the equivalence of mass and energy. We have so far
given two expressions for the energy: one is the canonical
E = mc2 , and the other E2 = m2

0c
4 + |p|2c2 , involving its

rest mass. The latter formula is depicted in Figure I.2.3.

1The appearance of the velocity of light c , with units [m/s] in the
above definitions, is natural as it ensures that the units of the four com-
ponents of a relativistic vector are identical.
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Figure I.2.3: Relativistic particle energy. The relation between
energy E , rest mass m0 and momentum p and its limiting be-
havior for p ⌧ m0c and p � m0c .

The dashed red curve corresponds to the non-relativistic
(Newtonian) limit with E = m0c

2 + |p|2/2m0 , whereas
the dashed blue line corresponds to the ultra-relativistic
limit where the energy is just proportional with the mo-
mentum, E = pc . Indeed, the latter formula is just the
expression for a massless particle like the photon. The
picture demonstrates nicely how the properties of a rel-
ativistic particle smoothly interpolate between Newtonian
particle behavior and a photon. One can also say that the
dispersion E = E(|p|) of the particle goes from quadratic
to linear.

From the two energy expressions, there follows a relation
between the relativistic mass m and the rest mass m0 ,

reading: m2 = m2
0 + m2|v|2/c2 . The conclusion is that

in contrast with the rest mass m0 , which is an invariant
quantity characterizing the particle, the relativistic mass m

is momentum, thus frame and observer dependent. The
equation above tells us that m2 = m2

0/(1 - v2/c2) .2 If

2From hereon we replace |v|2 simply by v2 for convenience.

Figure I.2.4: Mass curves the surrounding space. Comparing
the Newtonian paradigm, where masses cause a gravitational
attractive force between sun and planet, and the Einsteinian
paradigm where mass curves the space, and the gravitational
interaction is induced by way the curved space affects the mo-
tion of the planet.

you want to accelerate a particle by applying a force, it is
the relativistic mass m that comes in, and therefore parti-
cles become effectively extremely massive if their velocity
tends to the velocity of light. This in turn implies that to ac-
celerate them further will cost ever more energy. A fact that
people who run big accelerators are painfully reminded of
every time they receive their utility bills! To be fair I should
mention that in an accelerator a large fraction of the energy
is lost due to the particles radiating. The relation between
masses tells us that the relativistic mass goes to infinity if
the velocity approaches the speed of light. No wonder we
cannot push particles beyond that universal value!

General relativity

The general theory of relativity – often called GR by physi-
cists – is the fundamental theory of gravity proposed by
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Albert Einstein in 1915, where the gravitational force is a
direct manifestation of the curvature of space-time. In Fig-
ure I.2.4 we have indicated the paradigm shift between the
Newtonian and Einsteinian perspective on planetary mo-
tion. In the Newtonian paradigm the sun and planet have a
mass that causes a gravitational force between them, and
that attractive force causes the planet to move in an ellip-
tic orbit. In Einstein’s picture the masses curve the space
around them which is therefore no longer flat. The planet
then just feels the curvature of the space it is moving in
which causes it to move in an (almost) elliptical orbit. The
gravitational interaction is then induced by the curvature
of space, like the trajectory of a marble on a rubber sheet
deformed by the mass of a heavy bowling ball placed on
it. The gravitational interaction manifests itself though the
curvature of space-time.

With GR, space-time became a dynamical part of our phys-
ical universe. It was lifted from a bunch of silly coordinates
to a fully interacting participant. Space-time was promoted
from merely a static mathematical arena in which phys-
ics unfolded, to a dynamical physical entity, representing
physical degrees of freedom carrying energy and momen-
tum itself. You could call it the ‘emancipation’ from passive
mathematical framing to active physical reality.

This development is analogous to electrodynamics, where
initially the electromagnetic fields were considered as math-
ematical constructs that could be used to calculate forces
between charges and currents, and only with Maxwell’s
treatise did it become clear that the fields themselves in
a very direct sense represent the physics of electromag-
netic radiation. Mentioning this analogy prompts the ques-
tion of whether a gravitational analog of electromagnetic
radiation exists. The answer, as we will see shortly, is af-
firmative!

General relativity demanded the use of a mathematics that
was quite remote from the practicing physicist’s repertoire.
The language in which gravitational physics was formu-

Figure I.2.5: Bending of light by a mass. In a curved space-
time light moves along shortest distance curves. This means for
example that a light-ray emitted by a distant star will be bended
if it passes the sun. This effect provided one of the early experi-
mental confirmations of GR.

lated changed from the Newtonian dynamical systems per-
spective to full fledged Riemannian differential geometry.
Relativity marked the beginning of a new golden age of
geometry in physics. That is a good reason to include a
separate section, following this one, entitled The physics
of geometry, which provides an introduction to the basic
concepts in the mathematics of curved spaces. Concepts
that have proven to be as elegant as useful in many do-
mains of modern physics.

Seven predictions. The theory of General Relativity made
seven almost independent predictions that in the past cen-
tury have, one after the other, been confirmed experimen-
tally. They are now part of the vast body of experimental
evidence supporting the theory. We list them here with a
brief explanation:

(i) Bending of light. Generally the geometry of space-time
depends on the energy and momentum distribution of radi-
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Figure I.2.6: The perihelion precession of Mercury.

ation and matter in it, and in turn that geometry influences
the motion of that matter and radiation as through the grav-
itational force acting on them. We have indicated this ef-
fect in Figure I.2.5. This was measured by the British as-
tronomer Sir Arthur Eddington’s expedition in 1918 during
a solar eclipse, and provided one of the first solid confir-
mations of Einstein’s theory.

(ii) The perihelion precession of planetary orbits. Another
notable aspect of General Relativity is that it predicts a
deviation from the strictly elliptic orbits for planets. In the
Newtonian picture the axes of the ellipse are fixed in space,
while in the Einsteinian picture the ellipse rotates slowly in
the plane of the orbit as we have schematically illustrated
in Figure I.2.6 . One way to understand this is that in Gen-
eral Relativity the effective gravitational force that a static
source like the sun exerts on an orbiting planet differs from
the Newtonian one. If one expands the potential in powers
of (|L|/mcr)2 , one finds that:

F =
GmM

r2
�
1+

3|L|2

m2c2r2
+ . . .

�
, (I.2.4)

where m and M are the earth’s and solar masses, and |L|

Figure I.2.7: Gravitational redshift. If a photon loses energy
to the gravitational field moving away from a star its wavelength
will increase and gets redshifted. Similarly, due to the expansion
of the universe the wavelength of light emitted from far away
objects is also shifted towards the red.

is the angular momentum of the earth. The thing to note is
that the Newtonian inverse square law gets a 1/r4 correc-
tion. The effect is the largest for the inner planets (small r),
for Mercurius the precession amounts to 43 seconds of arc
per century. This very slow precession had in fact already
been observed before the advent of GR at the end of the
19th century.

(iii) Gravitational redshift. In GR matter and radiation in-
teract with space-time, which means that there will be an
exchange of energy between the gravitational and non-
gravitational degrees of freedom. So if a photon is emitted
from a nearby heavy object like a star and moves radially
out to some distant observer, it has to climb out a grav-
itational potential well and will thereby lose energy. For
a single photon this means that the frequency will come
down and therefore the wavelength has to increase. The
light will therefore be shifted towards the long wavelength
or the red end of the spectrum. This effect is called grav-
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itational redshift denoted by z where the ratio between
observed and emitted wavelength is defined by the red-
shift like 1 + z = �obs/�em . This gravitational redshift is
also predicted to exist for photons coming toward us in an
expanding universe, and was the crucial ingredient in the
demonstration by Edwin Hubble that our universe is actu-
ally expanding. This will be discussed in far more detail in
the next subsection.

(iv) Gravitational waves. In a moment we will discuss how
these waves were discovered in 2015, exactly one hun-
dred years after their existence was predicted. Gravita-
tional waves are waves in the fabric of space-time that
travel with the speed of light. As we have seen the gravita-
tional coupling constant, which is Newton’s constant GN ,

is extremely small compared to the electromagnetic cou-
pling e . This implies that one needs violent motions of
enormous masses to generate gravitational waves that are
energetic enough to be detected. For example when black-
holes form or collide, there will be huge amounts of en-
ergy converted to space-time degrees of freedom. The
existence of the waves was one of the early predictions of
Einstein’s theory, by making a linear approximation to the
empty space Einstein equations one does indeed find lin-
ear wave equations very much like the equations for elec-
tromagnetic waves. It took about a century before this type
of radiation was first observed directly on 14 September
2015 by two gravitational wave detectors in the US.

The LIGO project proposed to detect gravitational waves
with the use of two giant interferometers. An impressive
international effort by the US, the UK, Germany and Aus-
tria, that altogether took some 30 years to complete, re-
sulted in the LIGO observatory. Each interferometer takes
a laser beam, splits it in two and sends it down two legs
at right angles to each other see Figure I.2.9. At the end
of each of the legs are mirrors, which bounce the beams
back to the center. If there is any difference in the leg
length, say caused by the passing of a gravitational wave,
the two recombined laser beams create an interference

Figure I.2.8: Two colliding massive objects. The wavelike
space-time profile caused by two extremely massive objects, like
black holes, colliding. (Source: LIGO)

pattern. The LIGO setup was extremely sensitive: it could
detect a change in the length of a leg (' 103m), on the
order of the diameter of a proton (' 10-15m).

The researchers managed to work out the source of the
signal, because their model fitted the data so well. Sup-
posedly it was two black holes, 29 and 36 times heavier
than the sun merging into a single black hole of 62 solar
masses (see Figure I.2.8) meaning that 3 solar masses
were emitted in the form of gravitational radiation! As a re-
sult of the fundamental importance of the discovery meant
that in 2017, the Nobel prize in Physics was awarded to
Rainer Weiss, the other half jointly to Barry C. Barish and
Kip S. Thorne, ‘for decisive contributions to the LIGO de-
tector and the observation of gravitational waves.’

We know that electromagnetic radiation when quantized is
directly linked with a massless particle called the photon.
Likewise, gravitational waves correspond to a massless
quantum particle called the graviton. As I have said, it cou-
ples extremely weakly and therefore will not play any role
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Figure I.2.9: A LIGO gravitation wave detector. An aerial pho-
tograph of one of the two gravitational wave interferometers. A
laser beam gets split after which the beams travel forth and
back through two orthogonal legs. If a gravitational wave passes
through one of them, the two signals show a detectable phase
difference after returning. (Source: Advanced LIGO)

in ordinary high-energy accelerator experiments. There is
a second fundamental difference between the photon and
the graviton: the former is a spin-one particle, and the lat-
ter has spin two. This comes about because electromag-
netic waves are dipolar, while gravitational waves have a
quadrupole moment. In modern views on gravity people
tend to think of the gravitational interactions as an emer-
gent phenomenon, which means that Einstein’s equations
correspond to an effective theory of space-time. It could be
that there are more fundamental degrees of freedom (like
so-called superstrings or D-branes) that space-time is re-
ally composed of. In that case the quantization of gravity
would start from there, and the graviton would rather be a
collective excitation, a so-called quasi-particle.

The remaining three predictions of GR are:
(v) The existence of black holes,
(vi) The expanding universe,
(vii) A cosmological constant.

These are of fundamental interest in modern physics and
therefore we will discuss them separately. The expand-
ing universe and the role of the cosmological constant are
the subject of the next subsection on cosmology, while we
will discuss some aspects of black holes in the concluding
section of next chapter on page 139 .

Big Bang cosmology

The Einstein equations are nothing less than a set of equa-
tions for space-time as a whole, which means that our uni-
verse should correspond to one of the solutions. These
equations have played a glamorous role in 20th century
physics and created the astoundingly successful field of
observational cosmology. There are many good reasons
to present the modern view on the cosmological evolution.
It corresponds to the hot Big Bang model described by the
Friedmann equation, generalized by Lemaître to include
the effect of the cosmological constant. This model de-
scribes the dynamical arena in which the world became
the way we know it. In the third part of the book we de-
scribe in more detail the physical processes that took place
at the very early stages of the universe. We will come
to appreciate that the combination of understanding ba-
sic quantum physics, and cosmology based on GR, leads
to an impressive account of the evolutionary process to-
wards an increasing complexity in inanimate matter that
preceded the Darwinian biological evolution. Indeed it took
the universe billions of years to produce the chemical build-
ing blocks of life.

The Friedmann–Lemaître equation. GR in its full gen-
erality is quite complicated. However, with a number of
simplifying (yet entirely justifiable) assumptions about the
structure of our universe, the general equations can be
reduced to two strikingly simple equations. The assump-
tions are referred to as homogeneity and isotropy, where
the meaning of the first is that the universe is the ‘same’
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at any place at any given instant in time, and the second
means that the universe looks the same in any direction
at any given instant. And in fact one can show that the
second assumption is implied by the first but not the other
way around. The first of the resulting equations basically
expresses the conservation of energy. The second is the
so-called Friedmann equation, named after the versatile
Russian mathematician and engineer Aleksandr Aleksan-
drovich Friedmann, who proposed the equation in 1922.3

The equation reads:
⇣da
dt

⌘2
=

8⇡GN⇢

3c2
a2 - kc2 , (I.2.5)

where a = a(t) is the scale factor, a measure for the rela-
tive size of the spatial universe. You may think of a as the
relative average distance between two galaxies, meaning
that the distance d(t) between the two galaxies at time t

would be proportional to a(t): d(t) = a(t)d0 . The dis-
tances between objects co-moving with respect to the ex-
pansion grow proportional to a(t), where in addition we
have made the choice that a(o) = a0 = 1. On the right--
hand side we have the total energy density ⇢ = ⇢(a) .
Clearly, this is the equation that governs the possible dy-
namics of homogeneous/isotropic universes. The ‘curva-
ture constant’ k , which can be scaled to take the values
1, 0 or -1 , determines whether the space is closed like
a sphere, flat, or open like a hyperboloid as illustrated in
Figure I.2.10. As we will see the k-value also decides
whether the universe will ultimately end in a big crunch
(k = 1), keeps expanding (k = -1), or sits in the critical
state (k = 0) just in between.

Friedmann sent the equation to Einstein, showing that it
had no static solution but did have a solution correspond-
ing to an expanding universe originating from an initial sin-
gularity. Einstein didn’t like the equation, while acknowl-
edging that it was mathematically correct, he thought it was
unphysical and ‘suspicious’ exactly because it predicted

3Many physicists also link the names of Lemaître and De Sitter to
this law.

Figure I.2.10: Curvatures. The closed, open and flat curva-
tures corresponding to k = 1, -1, and 0 , respectively.

an expanding universe. He then put considerable effort in
neutralizing the expansion by adding the so-called cosmo-
logical constant ⇤ , without much success. Important work
generalizing Friedmann’s work including the cosmological
constant in 1927 by the Belgian priest and mathematical
astronophysicist Georges Lemaître confirmed the expan-
sion.

The real breakthrough came with the mind- and universe-
blowing 1929 observations of Edwin Hubble in , which pro-
vided the experimental confirmation of the expansion. It
was only then that Einstein realized the great importance
of Friedmann’s work and how he had missed a unique op-
portunity to make one of the greatest predictions in the
history of science. Later in his life he called the intro-
duction of the cosmological constant in his striving for a
static universe the ‘biggest blunder in my life.’ After the
expansion was established the new parameter alias cos-
mological constant silently faded away, until recently when
it rather ironically made a glorious and dramatic comeback
in a more subtle guise as a term representing the vacuum
or dark energy.
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Figure I.2.11: Hubble law. Plotting recession velocity of distant
galaxies versus their distance gives the linear relation v = H0d
which is Hubble’s law. H0 is thus the tangent of the angle which
the line through the data points makes with the horizontal axis.

The Hubble parameter. An important observable quan-
tity is the Hubble parameter, or expansion rate, or relative
expansion velocity defined as:

H(t) ⌘ 1

a

da

dt
. (I.2.6)

So, if we observe the present value H0 for the Hubble pa-
rameter and we determine the total energy density ⇢0 , and
put those values back into the Friedmann equation, that
would tell us whether k is positive or negative or zero. So
in that sense the density determines our destiny. The in-
between k = 0 case at present (t = t0) defines a critical
density :

⇢crit ⌘
3c2H2

0

8⇡GN
. (I.2.7)

Let me first go back to the definition of the Hubble param-
eter in equation (I.2.6). If we write it out explicitly for the
present time it has a nice interpretation:

da

dt

����
0

= H0 a0 ) v = H0 d . (I.2.8)

I read the correspondence as follows: looking from any
fixed point in space, I see distant objects at distance d =
a0 receding from me with a velocity v = (da/dt)0 then the
relation just reads: v = H0d . This is the celebrated Hub-
ble law, and depicted in Figure I.2.11. Clearly the slope
in the observed v - d plot gives you the observed value
for H0 . The redshift observations by Hubble in 1929 was
one of the great discoveries of 20th century (astro)physics
because it implied that our universe was expanding. A fact
that – as mentioned – Einstein himself up to that moment
did not believe to be possible.

A mechanical analogue. To get a better understanding
of the expanding universe we are going to massage the
Friedmann equation into a more familiar form, so that we
can apply some of our conventional intuitions. Let us first
put the constant H0 back into the Friedmann equation and
write it as follows:

(
da

dt
)2 = -H2

0 V̂(a)- kc2 , (I.2.9)

where V̂ = a2⇢(a)/⇢crit is some effective ‘cosmological’
potential. In the modern approach the (relative) energy
density has three parts, referring to radiation, matter and
the vacuum respectively, thus we write:

V̂(⇢, a) = -(
⌦r

a2
+
⌦m

a
+⌦va

2) . (I.2.10)

where the omega’s are the present values fo the relative
energy parameters to be obtained from observation. As
I alluded to before, the vacuum term is a remake of Ein-
stein’s cosmological constant. It has to be added because
other dramatic recent observations have shown that the
term is actually there. To understand what all of this means
we have plotted the potential for equal values of the ⌦’s in
Figure I.2.12. The qualitative behavior is rather easy to
understand: as indicated in the figure, for small a the ra-
diation component dominates, because it comes with the
1/a2 factor. For large a it is the vacuum term which dom-
inates as it comes with the a2 factor. Note that the vac-
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uum energy causes an expansive force, it remarkably cor-
responds to a gravitational repulsion or a negative pres-
sure. The potential is certainly unusual because it has no
stable minimum, it runs off to minus infinity, both for a go-
ing to zero and for a going to infinity. It is strikingly different
from, say, the good old harmonic potential of Figure I.1.13.
It is inverted, we have turned it upside-down!

To nevertheless make sense out of it let me remind you of
equation (I.1.5) from Chapter I.1, where we derived the ex-
pression for the conserved total energy of a particle mov-
ing in a potential as:

E =
1

2
mv2 + V(x) , (I.2.11)

where the total energy E is a sum of the kinetic energy and
potential energy V(x) . But, lo and behold, that is – up to
some substitutions (m = 2/H2

0, x = a, v = da/dt , and
the conserved E = -kc2/H2

0) – exactly the same as the
Friedmann equation (I.2.9).

How remarkable, we have ended up with a one-particle
mechanical analogue in 1-dimension for the 4-dimensional
universe! That is apparently what cosmic scenarios look
like: just kicking a marble and looking at how it is running
up and down hill! I don’t know who ordered that pizza, but
I’ll certainly eat it!

The effective cosmological potential V̂(a) looks generically
like the dark blue curve in Figure I.2.12. As we have men-
tioned, this potential has no stable minimum and in fact has
two singularities, one at a = 0 and the other at a = 1 .

Apparently there is no fixed scale for the marble-universe
to come to rest. Now this is the joy of analogues, they force
you to think about what these strange singular features
could possibly mean. Cognitive laziness does not suffice,
we have to think! Figure I.2.13 shows what the equations
are trying to tell us. Well, the singularity at a = 0 rep-
resents the dramatic event which we called the Big Bang.
You could think of it as a marble being shot uphill with con-
siderable kinetic energy so that it can climb the mountain

Figure I.2.12: The effective cosmological potential. The three
terms in the generic cosmological potential V̂(a) . The regions
in a where the different contributions dominate are indicated
(meaning that they are closest to the dark blue curve represent-
ing the total potential). For small a radiation dominates, for in-
termediate scales it is the matter term, while for large values of
a the repulsive vacuum term takes over.

from the left. How high? Well, that depends on how hard it
gets kicked. If it is kicked a little, it will roll back, and if we
slam it hard it will move all the way up, go over the hill and
start an infinite descent into another special state. In the
latter case the marble-universe keeps accelerating if the
vacuum energy density is non-vanishing, causing a race
to the bottom on the other side of the potential, a bottom
that isn’t really there! It describes a state where the uni-
verse keeps expanding in an accelerating mode forever,
and the matter and radiation will thin out forever with their
densities approaching zero.

In Figures I.2.13 and I.2.14 the same three scenarios are
depicted: the first shows the potential energy as function
of scale factor, and the second the scale factor as function
of time. They show three distinct possibilities (with non-
vanishing vacuum energy):
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Figure I.2.13: Evolution scenarios in the potential energy land-
scape. The universe with total energy equal to the lines labeled
k = ±1 . For negative energy (⇢ > ⇢crit) the evolution follows
the green arrows and the universe starts climbing up the poten-
tial barrier up to the green line and starts falling back towards a
big crunch. If the energy is positive, (⇢  ⇢crit ,) corresponding
to the red (k = -1) and blue (k = 0) arrows, the universe easily
climbs over the hill and starts accelerating indefinitely.

(i) The green scenario with ⇢ > ⇢crit or k = +1 is ending in
a Big Crunch, because the total energy corresponding to
-k/H2

o = -1/2H2
0 is not enough to get us over the top. At

the point where the marble is turning around, its velocity is
zero, which means that all the energy is just potential en-
ergy. Consequently the point where the total energy line,
corresponding to k = +1, intersects with the blue poten-
tial energy curve is precisely the turning point of the green
arrow that represents the trajectory of the universe.
(ii) In the red scenario with ⇢ < ⇢crit , or k = -1 the mar-
ble moves over the top after which the expansion will go
on forever. In this case, there is not enough matter (and
radiation) energy to pull the matter back in.
(iii) The k = 0 case is of particular interest. If there is a
non-vanishing vacuum energy, the top of the potential is at
an energy below zero, which means that in the k=0 case

Figure I.2.14: Cosmological evolution scenarios. The solutions
for the cosmic scale factor a as a function of the time for different
choices of the (non-zero) relative mass and vacuum densities.
The green scenario is a collapsing universe ending up in a Big
Crunch. The blue graph on top represents our so-called Big Chill
universe, it keeps expanding. Compare with the previous figure.

the marble still has a non-vanishing velocity at the top and
will therefore move over hill entering the domain of eternal
expansion.

The Einstein universe. One could imagine cooking up a
special case where the top of the potential would exactly
touch the k = +1 line In this case the marble would end up
exactly on the top, where in principle it could stay forever.
Forever? But wait, this is like putting a marble on top of a
bald head, there is indeed a fixed point, but it is clearly un-
stable, as any little perturbation will make the marble move
one way or the other. In that special case the decision on
the fate of our universe would be postponed! The future
of the universe would boil down to tossing a coin! The
very special solution where the universe just sits forever
on top corresponds to the completely static universe that
motivated Einstein to introduce the cosmological constant
(or vacuum energy term) in the first place. He apparently
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didn’t check the stability of the solution.

Figure I.2.15: De Sitter and Einstein in 1932. De Sit-
ter and Einstein discussing some non-static solutions for the
universe. (Source: https://repository.aip.org/islandora/object-
/nbla:288847.)

Vacuum energy. From the last figures it is also clear that
the vacuum energy term is peculiar in that it causes an out-
ward directed force: it acts like a negative pressure term.
It is apparently a form of energy that gravitationally repels!
You might be tempted to think of anti-matter, but that can’t
be it because anti-matter has positive mass, so gravita-
tionally it is attractive like ordinary matter, but this vacuum
stuff is peculiar and is really repulsive! In the top-blue and
red scenarios we see that for large times the behavior is
completely determined by this vacuum contribution, so let

us see what happens to the scale parameter in that case.
If we go back to the Friedmann equation (I.2.9) and only
put in the dominant vacuum contribution (⌦v = 1, k = 0)
and bring the a2 factor to the other side, we get:

H(a)2 = H2
0 , or

1

a

da

dt
= H0 . (I.2.12)

This equation is simple to solve4 and yields an exponential
expansion:

a(t) = a0e
H0t . (I.2.13)

This exponentially expanding solution is called the De Sit-
ter universe, after Willem de Sitter, the Dutch astronomer
who came up with the solution already in 1917. So in the
third picture we see the top-blue and red arrow indeed
starting to go up exponentially. This solution played an
important role in the debates that Einstein and De Sitter
(see Figure I.2.15) had about the various non-static uni-
verses.

Cosmic event horizon. Expanding universes have the
interesting but somewhat puzzling property that if things
move away from me at a velocity proportional to their dis-
tance, then inevitably at some distance things recede with
a faster then the speed of light. This clearly happens as
soon as r > RH, where

RH =
c

H0
. (I.2.14)

Can it then be that ‘things’ move faster than the speed of
light? Doesn’t that make Einstein turn in his grave? Actu-
ally he will not, as his velocity veto concerns relative veloc-
ities at a given point in space-time. So indeed, expansion
velocities of remote parts of space exceeding c are ad-
missible, and are inevitable in expanding universes. They
have a clear physical interpretation, in that they imply the
existence of a cosmological horizon. In Figure I.2.16 we
have sketched the situation. We imagine ourselves to be
at the centre with concentric spheres around us. Points on

4We will solve it in the Math Excursion on functions in Part III.
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Figure I.2.16: The cosmic event horizon. This horizon is de-
fined as the surface around us where the speed due to the ex-
pansion equals the speed of light c . Messages sent now from
any point in the black region beyond the horizon would never
reach us.

the sphere with radius r move away with the Hubble veloc-
ity v = H0r and the horizon corresponds therefore to the
sphere with r = RH = c/H0 . What this means is that if
somebody beyond that horizon decides to send us a light
signal at this very moment, that signal will never be able to
reach us, because it will not be able to cross the horizon.
This horizon is at a distance of about 13.7 Giga light years,
‘far out’ so to speak. Very far away and nothing to worry
about. That’s what you would think, but after Stephen
Hawking’s great discovery that horizons have very physical
properties: they are a source of thermal black body radia-
tion. Therefore adventurous physicists have been specu-
lating about the conceivable roles this horizon might play
in the explanation of contemporary cosmological observa-
tions like dark matter and dark energy. We will comment
on these ideas later on.

Cosmic inflation

Problems with the standard expansion model.

Particle horizons. We now turn to the phenomenon of a
particle horizon. This type of horizon should not be con-
fused with the cosmic event horizon, as it has a very differ-
ent origin; the existence of a particle horizon derives from
the fact that the universe had a beginning. That means
that for any observer at any given instant in time, there is a
specific ’particle horizon.’ Light emitted from points beyond
that horizon never had time enough to reach us. Basically
the particle horizon defines the size of the observable uni-
verse at any given instant, and the definition naturally im-
plies that the observable universe grows as time goes by.
This is schematically illustrated in Figure I.2.17. The par-
ticle horizon is just the intersection of our past light cone,
with the spatial surface where the time equals zero. This
figure also illustrates the notion of a causally connected
domain, since it has half the radius of the particle hori-
zon. It is the domain in which any point would have had
enough time to communicate with any other point in the
domain. It is important to note that the younger the uni-
verse is the smaller the size of a causal domain. So our
observable universe breaks up into ever more causal do-
mains if we go back in time. And this leads to a problem
with the standard big bang model and observations that
we turn to next.

The (particle) horizon problem. The ever smaller size of
particle horizons at earlier epochs of the universe create
a notorious paradox known as the ‘horizon problem.’ This
problem concerns a conflict between present-day observa-
tions and the original Friedmann-Lemaître expanding model
of the universe. We at present observe the cosmic back-
ground radiation from all directions in the sky. This ra-
diation was emitted at the moment that electrically neu-
tral atoms formed, when the universe was about 300,000
years old. That radiation did not interact ever since, it de-
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Figure I.2.17: Particle horizons. We have sketched the particle
horizon, which defines the size of the observable universe, at
present (t = t0) and an earlier instant (t = t1) . It is defined as
the present size of the domain that at t = 0 was contained in
our past light cone, the dark blue arrow. For conceptual clarity
the figure features a flat universe with a beginning. It illustrates
the fact that our present causal domain breaks up in many inde-
pendent domains at early times.

coupled from the matter. And that is the reason why we ob-
serve a perfect thermal spectrum now, which is redshifted
because of the expansion of the universe after the decou-
pling took place. It constitutes the strongest direct obser-
vational evidence for the expansion of our universe. It ap-
pears exactly as predicted. However, there is something
puzzling here: the radiation that comes to us from oppo-
site sides of the universe shows exactly the same spec-
trum apparently originating from the same thermal plasma.
How can that be? Because at the time the photons decou-
pled, the places where that radiation originated were not
within one causal domain. To get an idea, let us ook at
Figure I.2.17. If we imagine the radiation to be released at
t = t1, then it can have equilibrated over distances cor-
responding to the size of the causal domain with radius
Robs(t1) as indicated in the figure. My causal domain con-

Figure I.2.18: Causal domains. The inflationary universe has a
brief inflationary epoch of less then 10-30 s shortly after the big
bang, in which it expanded exponentially with a factor of 1027 .

sists of all the points from which information could reach
me within the age of the universe t0 . That would mean
that at present we would be able to make observations all
the way out to Robs(t0), a much larger domain. Thus we
would not expect the perfect black body spectrum we hap-
pen to observe. In other words at the time of decoupling
the region corresponding to our presently observable uni-
verse contained many causal domains. At that age of the
universe, there had not been time enough to reach ther-
mal equilibrium over distances that comprise the total ob-
servable universe at present. This is an irrefutable fact if
we assume that the standard expansion of the universe is
correct. And this fact poses a serious problem for the stan-
dard Friedmann-Lemaître model. This problem has been
resolved by making a major amendment to the course of
events in the very early universe, This is a fundamental
update: the expanding universe 2.0, also called the infla-
tionary universe. But before we get into that we want to
first mention another problem with the standard cosmolog-
ical model.
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The flatness problem. The flatness problem is posed by
the observation that fitting the model to the data the con-
clusion is that we live in a universe where the curvature
constant k is very close to zero. From a theoretical point
of view there is no reason to expect it to be zero, it must
have been zero all along. From the fact that our universe
after 13.7 billion years has a k value so close to zero, one
may show by calculating backward that this would impose
a very unnatural initial condition on the universe. One finds
that the value of the curvature constant would have to be
fine-tuned to zero to some sixty decimal places! That is
considered to be an exceptional choice, which begs for an
explanation. It turns out that there is a satisfactory solution
to this problem and again it involves the vacuum energy
and the De Sitter solution.

If you go back to the Friedmann equation (I.2.9) and look
at the right-hand side, you see that the vacuum energy
is a constant positive part of the density ⇢ . However this
constant is multiplied by a2 , and thus this term (if present)
will under all circumstances grow faster with respect to the
second term that corresponds to the curvature constant k .
What this means is that a universe that goes through such
an exponential phase will blow up and effectively become
flat. The situation is somewhat analogous to the claim by
some Dutch people that their country is flat; it is indeed ef-
fectively flat, but not really. It is better to say that the curva-
ture radius of the earth is much larger than their visual hori-
zon. Going back to the universe, what this means is quite
interesting. If you could turn the vacuum energy on for a
limited amount of time, the exponential expansion would
basically flatten out the universe. This is a vital observa-
tion because it would furnish a dynamical mechanism by
which the universe drives itself to that unique point in the
solution space where k is effectively zero! The universe
would end up being flat, becoming open independent of
the initial situation.

What do the experiments tell us? The data unequivocally
suggest that there must have been a brief period in the

Figure I.2.19: Cosmic inflation. Inflation makes the present ob-
servable universe fit in the expanded image of a causal domain
of subnuclear size.

very early universe, where it expanded exponentially. And
that brief period of cosmic inflation as it is called is the
reason we find ourselves in a flat (k = 0) universe now.
We have pointed out two serious problems where the stan-
dard cosmological model clashes with the data, and both
are resolved in the inflationary scenario to which we turn
next.

The inflationary scenario.

The inflationary scenario involves a non-vanishing vacuum
expectation value of a so-called inflaton field, presumably
some scalar field that has not really been identified. In a
very, very early stage of the universe, say, at t ' 10-35

seconds, due to the cooling of the universe this inflaton
field gets stuck in a metastable vacuum state. This means
that it generates a constant vacuum energy in the universe,
and this will last for about t ' 10-32 seconds, after which it
will decay to a new lower zero energy ground state. During
this period with the non-vanishing vacuum energy present,
the universe would inflate the linear dimension of the uni-
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verse by a factor of 1027 (corresponding to 1081 for the vol-
ume). Inflating a causal domain by such a huge factor
solves the horizon problem as is indicated in Figure I.2.19.
The epoch ends with a phase transition of the early uni-
verse as a whole. The latent heat released in this transi-
tion will be converted into ordinary matter. Such a scenario
implies a drastic revision of the very early stages of the
standard cosmological model. Note that though the time
periods appear to be extremely short, this is only relative,
the inflationary epoch lasts a 1000 times the age of the
universe at that time! You could therefore equally well say
that it took ‘ages.’

There is one other observational aspect of early universe
cosmology that this scenario gives an answer to. The enor-
mous inflation factor basically implies that our whole ob-
servable universe originates from an extremely small do-
main before inflation started. The domain would be so
small that the physics within that domain would be gov-
erned by quantum theory. That particularly implies that
within such a domain of size�x there are substantial quan-
tum fluctuations, and that these fluctuations have a flat,
scale invariant spectrum, meaning that their amplitude is
independent of their wavelength. These small wavelength
fluctuations (�  �x) are blown up to large-scale inhomo-
geneities by the inflation. And it is believed that these inho-
mogeneities are the seeds of large-scale structures in the
subsequent evolution of the universe. Knowing the initial
spectrum at the end of the inflationary epoch allows one to
predict what the inhomogeneities and anisotropies in to-
day’s cosmic background radiation would be. And indeed
the scale invariant initial spectrum evolves in a highly non-
uniform distribution with damped oscillations which agrees
extremely well with what has been observed by space ob-
servatories like WMAP and PLANCK as is shown in Figure
I.2.20.

This surprising scenario combines knowledge from the mi-
croscopic realms of quantum field theory, with knowledge
from general relativity and cosmology and allows for a so-

Figure I.2.20: CMB anisotropy. The inflation blows tiny quan-
tum fluctuations in the initial causal domain, up to large-scale
inhomogeneities that are believed to be the seeds of larg- scale
structure in the present universe. These show up in the angular
correlations in the spectrum of temperature anisotropies of the
cosmic background radiation. From this data the three energy
parameters and the cosmic curvature constant in the model can
be determined. (Source: PLANCK mission)

lution of both the horizon and the flatness problem of stan-
dard cosmology. Scenarios of this type were proposed and
developed in the early 1980s by Alan Guth from MIT, An-
drei Linde presently at Stanford University, and Paul Stein-
hardt presently at Princeton University.

Splendid observations. Having presented these fasci-
nating theoretical considerations, let us briefly review the
stunning progress that has been made in observational as-
tronomy and cosmology. The fundamental observational
parameters in the cosmological models are the energy den-
sities⌦i , and the Hubble constant and these basically tell
you what the curvature constant k is. Two completely dif-
ferent techniques have been used:

(i) The measurement of very distant Supernovae type I
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events. These are basically very remote sources that al-
low us to extend the Hubble law plot of Figure I.2.11. A
great experimental effort by Saul Perlmutter and collabora-
tors (1998) managed to expand the diagram by a factor of
ten, and the spectacular discovery they made was that the
plot does no longer stay linear but is curving upward. This
means that at large distances we see the expansion ac-
celerate. They fitted the data and extracted the ⌦ values,
and clearly obtained a positive contribution for the vacuum
term. With Adam J. Riess and Brian P. Schmidt, Saul Perl-
mutter was a co-recipient of the Nobel prize for Physics in
2011, and the prize was awarded ‘for the discovery of the
accelerating expansion of the Universe through observa-
tions of distant supernovae.’

(ii) The measurement of the curvature through measur-
ing the anisotropy in the Mmcrowave background radia-
tion also gives – among many other things – the⌦ values.
There have been a number of space telescopes to do this
kind of work: first the COBE (1992), then WMAP (2003)
and most recently the PLANCK (2013) mission, with again
startling results. For this line of research the Nobel Prize
in Physics of 2006 was awarded jointly to John C. Mather
and George F. Smoot of the COBE collaboration ‘for their
discovery of the blackbody form and anisotropy of the cos-
mic microwave background radiation.’

Concerning the relative energy densities, the upshot of
these experiments is summarized in the energy piechart
depicted in Figure I.2.21. After the PLANCK mission the
preferred fractions are: 68.3 % is in the form of vacuum
or dark energy, 26.8 % in the form of dark (not luminous)
matter and only 4.9 % is in the form of ordinary luminous
matter. The conclusion is crystal clear: we are living in
a vacuum dominated, flat universe! What that means ul-
timately is also not hard to understand. The remarkable
message is that 95 % of all the energy in the universe re-
sides in the dark matter and energy components, and is
therefore in a form that is unknown to us! It reminds us of
the words of the Chinese philosopher Lao Tzu: ‘The more

Figure I.2.21: The energy piechart. A piechart of the relative
contributions of dark (vacuum) energy, dark matter and ordinary
matter as determined by the WMAP and PLANCK space obser-
vatories. Conclusion: our universe is vacuum dominated.

we know, the less we understand!’ More than anything
else, science is the story of work in progress, every time
reminding us of our ignorance, and forcing us to cope with
it. Or to find creative ways to beat it. Indeed, science will
always run into new walls, or to be more encouraging: new
profound challenges.

Today’s challenges. We have to conclude that looking at
the presently available data, this consistent and convinc-
ing, evidence-based inflationary model of the evolution of
the universe still leaves us with some big puzzles.

Dark matter. The first is the question what actually is dark
matter. Clearly this is a question that has been taken up
by the particle physicists who built their Large Hadron Col-
lider (LHC) at the European accelerator center CERN in
Geneva. They are presently hunting for a new particle
type that would fit the profile of dark matter. Such particles
should be ‘sterile,’ meaning that they interact very weakly
with ordinary matter and they should be massive in order
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to cause the gravitational effects we observe. They are
expected to form a species of so-called WIMPs: Weakly
Interacting Massive Particles. Theoretical candidates are
for example the species of lightest supersymmetric parti-
cles (a necessary ingredient of String Theory), or various
types of massive particles that are called ‘sterile’ neutrinos
(fitting in certain Grand Unified Theories).

Dark energy. The second even more profound puzzle is
the observed non-zero value of the cosmological constant,
or vacuum energy. It is ‘small’ but definitely non-zero, and
the question is wheter we can find a theoretical explana-
tion for its existence and its magnitude. The irony is that
physicists have for quite some time been looking for argu-
ments why it would have to be strictly zero exactly because
there was an extremely strong bound on it from observa-
tion. They looked for a principle that would protect the zero
value of the cosmological constant, like the gauge principle
protects the zero mass property of the photon. Needless
to say that they didn’t succeed, fortunately in fact, because
now we know that it is not zero to start off with. Answering
this question requires a fundamental insight into the nature
of the vacuum, and so far there is no way to calculate the
quantum energy of the vacuum from first principles. Such
an explanation should also allow us to make a first esti-
mate of its magnitude, because in spite of the fact that it
is the dominating energy content of the universe, its actual
value is mesmerizingly small: ⇤ = 1.1 ⇥ 10-52 m-2. This
mass energy density is about four protons per cubic meter,
which amounts to ⇢vacuum = 5.9⇥ 10-27 kg/m3 .

From a theoretical point of view, the conclusion is that the
De Sitter solution, which was discarded for a long time
as physically irrelevant, has made a glamorous comeback,
and presently plays a vital role in understanding the deep
past, as well as the present and future of our universe.
Remarkable!

Figure I.2.22: Magritte: the pilgrim (1966). My title for this
intriguing surrealistic painting would be: ‘Let’s face the void, and
void the face.’ If that isn’t a deep thought, then neither is its
negation! (Source: c�‘Photothèque Magritte / Adagp Images, Paris)

Much ado about nothing. The
handicap of generalists is that they
know virtually nothing about almost
everything, and the handicap of nerds

is that they know virtually everything about almost
nothing. What? Knowing everything about nothing?
I wish it were true. Closer inspection shows that
the science in-crowd knows little to nothing about
nothing. Scientists remain silent, but spend sleep-
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less nights worrying about nothingness. Imagine
some DOE Innovation Initiative inspection team
performing a lab raid and asking what you are
doing with all that taxpayers’ money, and you would
have to answer that you are working on ‘nothing.’
Oh yes, you are just mucking around, are you?
That would undoubtedly result in you taking a deep
dive in the cool lake of depression. Career-wise I
would avoid talking about the void.

You would think that empty space – the vacuum,
the void, nothingness – is a trivial no-brainer not
worth pondering about. Note however, the following
important remark that the legendary physicist
John Archibald Wheeler made at some point: ‘No
point is more central than this, that empty space
is not empty. It is the seat of the most violent
physics.’ Here, a deep truth appears to be lurking.
A quantum truth.

The reason we don’t need to talk about it in physics
is because in real experiments we are always
dealing with energy differences. We compare
energies and the energy of the vacuum ‘drops out.’
We therefore can set it equal to zero if we would
like to do so. This is fortunate, because we do not
know how to calculate the vacuum energy from
first principles, and all ‘serious’ efforts to do so
typically give infinity as an answer. This means
that the void is challenging our deepest scientific
intuitions. General relativity is a comrade in arms,
because as we saw, it is sensitive to something
that other theories would not detect. Space-time
itself allows for an absolute measurement of the
energy including that of the vacuum. And moreover,
space-time measurements have just told us that
the vacuum energy is not just non-zero, it is in
fact the dominant form of energy in our universe!

This much is certain, ‘nothing’ does not exist and
the notion of nothingness is an apparent delusion.
What does exist is our ignorance about it.

So, what’s so tricky about nothing? An average fish
would reply: ‘Well, no fellow-fish, no water-plants,
no play-rock and no gravel on the bottom.’ But what
the average fish would never say is: ‘no water.’ The
fact that nothing is something in which he couldn’t
exist doesn’t enter his fishy head. The average per-
son by now understands damn well that without air
he is going to choke, but apparently in nineteenth
century educational institutions, that simple fact still
had to be demonstrated by putting a little bird under
a glass bell and pumping out the air. Just to prove
that ‘nothing’ can also be quite harmful. Causing
all sorts of panic because of the ‘unbearable heavi-
ness of not-being.’ ‘To be or not to be,’ remains the
question. Having answered that, ‘to understand or
not to understand’ is the next question. ⇤

The physics of geometry

With the advent of the theories of relativity and gauge the-
ories for the description of the fundamental forces, a new
golden age for geometry in the realm of physics emerged.
This section on ‘the physics of geometry’ will give you an
introduction to the basic notions of geometry that have
played a crucial role in modern physics.

We will talk about the notion of curved spaces (smooth
manifolds) and which concepts are essential if one wants
to do physics on and with them. Some aspects of topology
are mentioned like homotopy, because it leads to an alter-
native way of understanding why certain physical quanti-
ties turn out to be quantized and conserved.
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Introducing regular coordinates on curved spaces often
forces us to define overlapping patches or charts. One
may introduce vectors that live in the tangent space of
some point, whereas the collection of the base manifold
and all its tangent spaces form the so-called tangent bun-
dle of the space. Now we may study the transport of vec-
tors along paths. This leads to the notion of holonomy
which is linked to the integrated curvature over a region of
space. We complete this lightning review by summarizing
the relations between the metric, which provides a local
sense of distance and size, a connection which connects
vectors in different points, and a local curvature which is
very much like the field strength in a gauge theory.

After this pure geometrical part we show the close relation-
ship of gauge theories, describing the non-gravitational in-
teractions, with fiber bundles. This provides a geometrical
understanding of the gauge potential or connection Aµ and
a gauge invariant field strength or gauge curvature Fµ⌫ .

This representation of gauge theories opens the door for
understanding their topological features, like the existence
of magnetic fluxes or monopoles, and more generally to
the notion of topological charges and quantum numbers.
This section aims to highlight the intimate relationship be-
tween physics, geometry and quantum theory.

Living in flatland. When you talk about a space, most
people have the natural inclination to think of a flat Euclid-
ean space, like the plane denoted by R2 . And on a plane
life is simple not only for the Danes and the Dutch, but
also for physicists. It is simple to choose a coordinate grid
to label the points in the space. The shortest distance be-
tween points are straight lines, and to define vectors like
momenta and the forces of electric fields is also simple.
You just draw arrows based at a point in the space be-
cause a flat Euclidean space is also a vector space. There
is no distinction; you may think of vectors as living in the
‘same’ space as you. On flat Euclidean space we can de-
fine functions and derivatives of functions (basically vec-
tors), as well as their integrals. If we have a particle mov-

(a) Triangle in flat space, sum of angles is 180o .

(b) Parallel transport of a vector in the plane.

Figure I.2.23: Carrying vectors around. Parallel transporting
around a closed loop in a flat space has no net effect on the
orientation of the vector.

ing on the plane in a potential U(x) then it will experience
a force F(x) = -rU(x) which corresponds to a field of
vectors over the plane. In other words we can do calculus,
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and therefore flat space is the basic example of a space or
manifold that is differentiable.

Parallel transport of vectors. In Figure I.2.23 we show a
Master Chef and two of his branch managers running an-
nexes in other parts of town. He wants to send a secret
recipe around in the form of a vector, and it is in the orien-
tation of the vector in which the subtle balance of spices
that earned the Chef his Michelin star is encoded. So, it is
crucially important to preserve the direction the direction in
which the vector points, implying that the Chef cannot send
the recipe by mail. He decides to hire a messenger, an
apprentice so to say, in a grey suit and with a leather brief-
case to carry around the vector. The messenger should
take care to parallel transport the vector. This is not hard:
while moving along the shortest route consisting of straight
line segments, he has to ensure that the angle between the
vector and the direction of his motion (the path) stays the
same. The Chef has ordered him to pass by again at the
end of the trip, so he can check whether he did the parallel
transporting correctly. And as you see the apprentice suc-
ceeded in perfectly performing his task, as is confirmed by
the independent juror standing in the corner.

In this subsection we have mentioned some features of
flat space that are so natural that you wouldn’t think of
them as particularly interesting. However, what we will ex-
plore in the remainder of this section is that in a curved
space, these simple concepts will become much more in-
volved

Curved spaces (manifolds) and topology

Modern physics makes use of the mathematical knowl-
edge about curved spaces or manifolds, both in the theory
of relativity, but also in the theories that describe gauge
interaction between elementary particles. What we want
to introduce are what is known as differentiable manifolds,

curved spaces that look locally like flat Euclidean space
and therefore globally allow for defining functions and their
derivatives (and vectors). These are spaces on which one
can consistently define calculus, a necessary tool to de-
scribe dynamical systems in such spaces. And that is what
physicists like to do. We start by defining some elementary
notions of topology , and then add the ingredients of differ-
ential geometry like coordinate systems, vectors, metric
and curvature.

Positive and negative curvatures. It is easy to imagnine
curvatures of a surface when we embed it in a higher di-
mensional Euclidean space. The surface can be defined
by an algebraic equation.

Consider for example spheres Sn, these are defined by an
equation x2 + y2 + . . . = 1 in (n + 1)-dimensional Euclid-
ean space En+1. In Figure I.2.24 we show the spheres S0

(two points), S1 and S2.These spaces are finite or compact.
They can be obtained from one another by suitable rotation
in the Euclidean space two dimensions higher.

Spaces of negative curvature are for example hyperbolic
spaces. In Figure I.2.25 we depicted two hyperbolic sur-
faces H2 and the corresponding equations to contrast them
with the two-sphere. One of the hyperboloids consists
of two disconnected sheets while the other has only one
sheet. These spaces are infinite. These two spaces can
be generated by rotating a given hyperbola in the plane
about an appropriate axis in that plane. The sphere is
by definition the set of all points that have a fixed Eu-
clidean distance to the origin. The double-sheeted hyper-
boloid can be thought of as the set of all events in three--
dimensional Minkowski space, at a fixed space-time inter-
val from the origin. The sheets also represent the three-
dimensional energy momentum vectors (E,p) of a particle
with finite rest mass m satisfying E2 = m2 + p2.

Topological features. A topological feature or character-
istic is one that doesn’t change under a continuous de-
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Figure I.2.24: Three spheres. This figure shows the spheres
and their embedding equations. The ‘zero’-sphere S0, described
by the equation x2 = 1, consists of two points. The circle or one-
sphere S1 is defined by the equation x2 + y2 = 1, and S2 by its
natural higher-dimensional extension.

formation of the space. Cutting and pasting the space is
not allowed. Topology is like rubbersheet geometry where
stretching and shrinking in any direction is allowed but tear-
ing the sheet is not. Two spaces are topologically equiv-
alent if they can be continuously transformed into each
other.

Boundaries and holes. Let us start with one-dimensional
spaces like smooth curves. For example a line segment is
smooth and has two point-like boundaries. But we could
also consider a closed curve. It may look like a circle or
the number zero which has no boundary, but it has a hole.
The figure ‘eight’ is also closed (has no boundary) and it
has two holes but now it is not a one-dimensional space
because it has a singular point where the lines split and
where it therefore is locally not like R1.

Connectivity. The spaces just mentioned are all path-wise
connected, meaning that for any two points one chooses

Figure I.2.25: Hyperbolic planes. This figure shows two dif-
ferent two-dimensional hyperbolic spaces and their embedding
equations. They are closely related to the equation for the two-
sphere, and differ by additional minus signs. The sphere has
positive curvature, while the hyperboloids have negative curva-
tures.

there is a path connecting them. The number ‘I0’ as a
space is not connected it has two disconnected compo-
nents: the ‘I’ and the ‘0’. One open component ‘I’ has two
point-like boundaries, and the closed component has no
boundary. If we consider any two points on the line seg-
ment then these can be connected by some path, and all
paths can be continuously deformed into each other. Tak-
ing two points on the ‘0’ or a circle, we find that there are
many possible paths that connect the two points. These
paths may wind an arbitrary number of times around the
hole and such paths cannot all be continuously deformed
into each other. We say that the ‘I’ is simply connected
whereas the figure ‘0’ is multiply connected because there
are topologically distinct paths. So we are invited to fur-
ther refine the notion of connectivity. Let us do that after
we have moved the discussion one dimension up and con-
sider smooth two-dimensional surfaces.
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The simplest finite, two-dimensional spaces have the topol-
ogy of a disc. It is simply connected and it has one bound-
ary with the topology of a circle. Note that a boundary in
two dimensions in general is a disconnected union of one-
dimensional closed curves, which are topologically speak-
ing circles. If the boundary has more than one component,
the space becomes multiply connected.

To imagine a curved space one may for instance think of
the two-dimensional surface of a sphere or torus as em-
bedded in a three-dimensional flat Euclidean space R3 .

If you look at a small neighborhood of any point in these
curved spaces S2 or T2, you see that locally, it is every-
where like the flat space R2 .

It is only after you enlarge your horizon that it becomes
clear that the sphere and the torus are quite different glob-
ally from flat space and from each other. Indeed the study
of curved spaces descended on us with the insight that the
earth turned out to be not flat. Both are globally compact
meaning that they are finite: it takes a finite amount of paint
to cover the two-sphere for example, whereas flat space
is infinite and non-compact. Similarly a three-dimensional
sphere would have a finite volume.

Spheres and tori are finite spaces, and they also have
the property that they have no boundary. Indeed curved
spaces can be finite and not have a boundary. Yet, they do
have a different topology ; for example the two-torus has
a hole in it while the two-sphere has not. This means that
the connectivity properties will differ and this in turn implies
that the physics in the one space may exhibit features dif-
ferent from the other.

For two-dimensional manifolds without boundaries (also
called closed Riemann surfaces) the number of holes is
the only topological invariant characterizing the manifold.
A pretzel is therefore distinct from a donut, not only qua
substance and taste but also topologically, as it has two
holes.

Figure I.2.26: The pretzel-transformation. This figure shows
in clockwise steps how a self-linked pretzel (top left) can be
smoothly unlinked (left bottom). It is a nice example of a topo-
logical deformation as prsented by Martin Gardner in his book
(1987) on mathematical recreations.

In spite of the pretzel’s simplicity its topology is surprisingly
counter-intuitive as we have illustrated in Figure I.2.26 .
One can clearly imagine the left and right parts of the pret-
zel to be interlinked like the real pretzel in the center and
schematically depicted at the top on the left. It appears
like yet another two-dimensional closed surface which is
topologically distinct with some two holes and a half! Is it
really? The answer is: No! There is a well-known smooth
topological deformation that corresponds to a smooth un-
linking of the pretzel. In the figure we depicted the subse-
quent steps in the so-called pretzel-transformation which
shows how a self-linked pretzel can smoothly be unlinked.
I always imagined that this somehow must be of use if you
end up in the unfortunate situation of being handcuffed
for some reason, for example because of stealing pret-
zels!

Homotopy. An important topological characteristic is de-
noted as the connectivity of a space, which can be probed
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Figure I.2.27: The two-sphere is simply connected. If we take
a point and consider closed loops starting and ending in that
point, all possible loops can be smoothly deformed into each
other, and all loops are contractable to the point. There is only
one trivial homotopy class, denoted by [0] .

by studying maps of closed paths or loops into that space.
The loops that can be continuously deformed into each
other are called homotopic. Homotopy is an equivalence
relation. Two loops are either homotopic or not. Having
such a relation allows you to divide the space of all maps of
loops into distinct classes, homotopy classes in this case.
For example if you draw a closed loop on a sphere, this
loop can always be smoothly contracted to a point. The
popular wording of this fact is that ‘You cannot lasso a
basketball.’ From Figure I.2.27, we see that all loops on
the sphere can indeed be deformed into each other and
can smoothly be contracted to a point, so there is only one
homotopy class, the trivial class denoted by [0] .

However, if you look at closed curves on a torus, then there
are many possibilities. There are loops that can be simply
contracted to a point, then there are loops that wind around
the big hole, like the big circle on the outside, or closed
curves that wind around that hole an arbitrary number of

Figure I.2.28: The two-torus is multiply connected. We have
depicted three loops through a point. The yellow one is con-
tractable and belongs to the trivial class [0, 0] . The green (red)
one winds once around the large (small) hole and is non-
contractable, and it belongs to the class [0, 1] ([1, 0]).

times. There are also loops ‘perpendicular’ to the previ-
ous ones, going around the small hole a certain number of
times. We have illustrated the situation for the torus in Fig-
ure I.2.28, where we have drawn three examples. The yel-
low loop is contractable and therefore belongs to the trivial
class which we denote by [0, 0] . The green loop encircles
the large hole once: it is non-contractable and belongs to
the class [0, 1] . The red loop encircles the small hole once,
and cannot be deformed to either of the other two, since
it belongs to another class [1, 0] . In general a loop that
winds m times around the small hole, and n times around
the big hole belongs to the class [m,n] . Think for exam-
ple of a hiking boot as a closed two-dimensional surface: it
may have ten holes for the shoe lace to go through. When
I have tied the knot I should have created a closed loop
belonging to a non-trivial class.

Having defined and labeled these classes in a systematic
way we can go one step further and ask if additional prop-
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erties can be assigned to them. The first thing that comes
to mind is: can we assign an orientation or direction to
them. This can be done by putting an arrow on them, and
this allows you to assign negative winding numbers.

The first homotopy group. A nice property of closed paths
is that we can compose them by connecting the end point
of the first loop to the beginning of the second loop and so
create a new closed path. This composition rule induces a
map, or more precisely a multiplication rule for the homo-
topy classes: [...]1� [...]2 = [...]3 . So here we have a set of
objects (a set whose elements are classes) that we know
how to multiply but there is not such a thing as addition
defined. This means that this set forms a discrete group
where the unit element corresponds to the trivial class of
contractable loops, while the inverse element is the class
corresponding to the opposite winding number. This group
is called the first homotopy group, or fundamental group
and can be determined for any manifold.

A question that may come to mind is: What does this have
to do with physics? The answer is: quite a bit. In fact we
have already seen examples of it. The notion comes up
if you want to discuss line integrals of some field along a
closed curves, as we did for example with the vector po-
tential. The loop integral corresponded to the enclosed
magnetic field, or the magnetic flux going through the loop.
The group structure tells you how these magnetic fluxes
‘add.’ And as it turns out these fluxes can have highly
unexpected composition rules once one studies phases,
not of electrodynamics, but of non-abelian gauge theories.
These considerations have also important applications in
the study of quantum interference effects and the quan-
tum statistics of particles. These are topics we will get to
in later chapters of the book.

Higher homotopy groups. In higher dimensions there are
more possibilities to consider. For one you may think of
higher dimensional holes that correspond to non-contract-
able maps of higher dimensional spheres into the man-

ifold, and these in turn form higher dimensional homo-
topy classes. So the second homotopy group tells you
how many topologically inequivalent ways there are to map
a two-sphere (a closed two-dimensional surface) into the
manifold and how those maps can be composed. Finally,
the zero-dimensional homotopy classes label the discon-
nected components the space under consideration.

Coordinate systems. You may wonder why it took so long
for mankind to figure out that the Earth’s surface we are
living on is a space that is not flat but curved. The reason
is that on a local scale the world is basically flat and our
naive expectations work well as long as you stay nearby.
So, if we live in a curved space it has to be a space that
is locally like Euclidean space. A space that is everywhere
‘locally flat’ is a space that we call smooth because we
can systematically extend the whole mathematical appa-
ratus of calculus concerning differentiation and integration
of functions which we originally defined on flat space. So
we may expect to be able to give adapted mathematical
descriptions of the physical laws if we move from flat to
curved spaces, as relativity tells us to do.

Euclidean space and coordinates. The first question that
arises is to choose coordinates on the space. The choice
of coordinates are often naturally suggested by the sym-
metries of the space. You could think that the symmetries
generate the whole space from a single point, an ‘origin.’
For example, flat space has translation symmetry, we can
move from any point to any other by performing a transla-
tion. Rn has n independent orthogonal directions in which
a given point can be moved, and the natural choice for
coordinates is therefore the Euclidean coordinate system
{x1, x2, . . . , xn} .

Curvilinear coordinates. But nobody forces us to use that
coordinate system. In fact as soon as we start consider-
ing a particular setting in that space, for example, we may
single out a particular point as the center of our space.
Think of how we used to put the Earth in the center, and
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Figure I.2.29: Spherical coordinates. The definition of spheri-
cal coordinates in R3, denoted by r, ✓, and ' .

after the Copernican revolution we put the Sun in the cen-
ter and so on. Fixing one point as special, we break the
translational symmetry, but still have the rotational sym-
metry which leaves that point fixed. And that symmetry
naturally suggests another choice of coordinates, the sys-
tem of spherical coordinates {r, ✓,'} , as depicted in Fig-
ure I.2.29 . It is as if we think of R3 , as built up of a point
plus a continuous stack of concentric spheres around it.
Similarly we may want to use cylindrical symmetry with
coordinates {⇢, z,'} , where we think of the space built
up from a line with a continuous stack of concentric cylin-
ders around it. And we have already seen that in many
physical applications such orthogonal curvilinear coordi-
nate systems are much more convenient; they lead to a
convenient framing of the problem that makes it easier to
obtain solutions. For example, if I have a current through
a straight wire along the z-axis like in Figure I.1.18, the
problem becomes cylindrically symmetric, and the mag-
netic field B(x) will have only a '-component that will only
depend on the radial coordinate: B = B'(⇢) ê' .

Spherical coordinates. The observation that we think of

spaces generated by symmetries is useful if one wants to
think of typical curved spaces which exhibit those symme-
tries. Indeed if we think of the three-dimensional rotations
just mentioned, and we take an arbitrary point in R3 , that
point will indeed trace out a two-sphere, which is a highly
symmetric two-dimensional space. So if we ‘throw away’
the radial coordinate, we are left with an orthogonal coor-
dinate system on the sphere consisting of the two angles,
the polar angle ✓ , running from 0 to ⇡ and the azimuthal
angle ' running from 0 to 2⇡ , as we have been using all
along. Do these coordinates cover the sphere well? Not
really, it turns out.

Coordinate singularities. The north and the south pole are
clearly problematic. In these points the coordinate system
breaks down, whereas the ✓ coordinate is well defined,
the ' angle is not. There is no sensible way to assign a
definite ' angle to the poles. Note that the real geometry
of the sphere is completely smooth at those points. The
poles are regular points just like any other point on the
sphere. The problem is not the space, but the coordinate
system we have chosen. To solve this coordinate problem
in general one first has to accept that it is not possible to
choose a single coordinate system that covers the whole
sphere without singularity. There is a topological obstruc-
tion to doing that following on from the hairy ball theorem.
This theorem states the easy to imagine fact that it is not
possible to comb a hairy sphere. Just try doing it and you
will quickly find out that there is always a point in which the
hairs meet in opposite directions. This means that there is
no globally defined, non-zero tangent vector field, or con-
versely, that any vector field on a sphere has to vanish at
least in one point. And that fact implies that we cannot
have a single globally defined coordinate frame of orthog-
onal unit vectors on the two-sphere.

Patches or charts. Knowing this fact, the best we can do is
to cover the sphere by defining two coordinate patches or
charts, that together cover the sphere and have an over-
lap so that we can identify points on the two maps that
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Figure I.2.30: Two coordinate patches. The two-sphere is cov-
ered by two overlapping coordinate patches S± to avoid coor-
dinate singularities. There is a transition map which identifies
points (and tangent vectors) in the overlap region. In this case
we have '+ = ' and '- = -' . and ✓- = ✓+ = ✓.

correspond to the same points on the sphere. For exam-
ple, one may define one patch covering a little more than
northern hemisphere and call it S+ , and the other a little
more than the southern hemisphere and call it S- , as in-
dicated in Figure I.2.30. The overlap between the patches
is then a narrow band with the equator in the middle. Each
patch has the topology of a disc and so we can put a reg-
ular coordinate grid on it. Now we can define a transition
map on the overlap, which provides a map between the
coordinate systems in both patches. And this map should
be smooth as well. At this point we have succeeded in
making an atlas of the sphere consisting of two charts,
each of which can be smoothly mapped onto a flat page
by a stereographic projection, which you may have en-
countered in high school geography classes. This is the
way to deal with the complications that arise in defining
coordinates on a sphere, and this allows us to globally de-
fine smooth functions and their derivatives, to define paths
and vectors, all the things physicists and mathematicians

need and love. With this construction we have shown that
the two-sphere also is a differentiable manifold, a curved
space where we can do calculus. A differentiable manifold
is a space that is locally like Euclidean space, and globally
looks like a smooth patchwork of pieces that are much like
flat space, sewn together in a consistent way by a network
of smooth transition (sewing or gluing) functions.

Distance and path length. So far we have talked about
topological characteristics of manifolds but that leaves the
important aspect of form and scale undetermined. How
long do I have to walk to get from A to B, that’s the ques-
tion! Mathematicians like to say that to settle it we have
to add more structure to the space. In order to introduce
the concept of size or distance we have to define a metric
on the space. In flat space we know that the shortest dis-
tance between two points corresponds to the straight line
between them. And the distance is calculated by apply-
ing the Pythagorean theorem. If we consider any smooth
path in flat space, we can calculate its length by succes-
sively applying the theorem to infinitesimal segments of
the path and adding the results. If the points are nearby,
we have for the distance ds , that ds2 = dx2 + dy2 . If
we start by defining a smooth path as a one-parameter
curve �(t) = {xµ(t)} , the tangent vector to the curve at
the point x(t0) = �(t0) is just like the ‘velocity’ vector
v(t) = dx/dt

��
t0
. The length Lab of the curve between

two points �(a) and �(b) is now quite naturally defined as
the integral:

Lab ⌘
Zb

a
|v(t)|dt . (I.2.15)

in a different, more familiar wording, the distance traveled
is just the magnitude of the velocity integrated along the
path over the appropriate time interval. It is this notion of
path length that we like to generalize to curved spaces.

Metric and line element. To calculate the path length in a
curved space we need a local definition for the infinites-
imal distance ds which specifies the local (x-dependent)
definition of an infinitesimal length. Once we have chosen
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Figure I.2.31: Shortest distance. The shortest path between
two points A and B on the sphere is given by the segment of
the yellow ‘great circle’ which is defined as the intersection of
the plane through A ,B , and the center of the sphere C, and the
surface of the sphere. The blue and red circles are smaller and
yet yield longer paths between the points A and B.

coordinates {xi} on the space, where i runs from 1 to d, the
dimension of space, then we formally define the so-called
line element ds as:

ds2 = gij(x)dxi dxj (I.2.16)

where the symmetric matrix gij(x) is the so-called metric
tensor. In flat space we saw that ds2 = dx2 + dy2 and
the metric thus corresponds to the unit matrix everywhere.
If we choose polar coordinates r and ', the line element
would be ds2 = dr2 + r2d'2, and the metric a diagonal
matrix (1, r2).

If we put a symmetric mass distribution around the origin,
then the space would be curved as we illustrated in Fig-
ure I.2.4, where the two-dimensional surface embedded
in R3 would be defined by fixing z = f(r) with a func-
tion f interpolating between some constant f(0) = -a

and f(r ! 1) = 0. The radial length measured along

the surface will now change, and indeed the metric would
change in that grr = 1+ (df/dr)2. The metric on the two-
dimensional surface is induced from the trivial metric on
R3 by substituting dz = (df/dr)dr.

It is important to realize that in principle there are many
possible choices for the metric on a manifold, the only re-
striction being that it is smooth and compatible with the
topology of the space. These choices lead to different ge-
ometries in the sense of distances, geodesics etc. In the
case of the S2 example we can make the ‘natural’ choice
of metric as we did just before by inducing it from the stan-
dard everyday metric in the space R3 in which we have
embedded the two-sphere. Squashing the sphere would
naturally change the metric. What makes that choice nat-
ural is that our visual intuitions on vectors and path-length
and angles still make complete sense.

Shortest distances: geodesics. We now are in a position
to answer the question of what the shortest path between
two points on a sphere is. That will again be the path along
which photons and free particles living on S2 would travel.
Just like the route your child would presumably take on
their way to the nearest two-dimensional ice-cream par-
lour. We will answer this question in more detail later, but
let us first get a feeling and an intuitive idea of the solution.
In Figure I.2.31 I have marked two points A and B on the
surface, and drawn various paths between them, each of
them corresponds to a segment of a circle on the surface.
It is evident from the drawing that the bright yellow con-
nection in the middle is the shortest, and it corresponds
to a segment of the equator. The other paths are also
segments of circles, but what sets the yellow one apart is
that it is a segment of a ‘great circle,’ a circle of maximum
size on the sphere whose radius equals the radius of the
sphere itself. Great circles are defined as the intersection
of a plane through the centre of the sphere (the point C in
the figure) and the spherical surface. These great circles
are so-called geodesics on the space S2 , and correspond
to what straight lines are on the plane, they correspond
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to the trajectories of free particles like photons. Shortly
we will discuss the equations that geodesics have to sat-
isfy.

Vectors on curved spaces.

And the curved space said: ‘Vectors don’t live here
anymore.’

Tangent space. Assuming that physicists are also living on
that sphere, they need vectors to describe what’s going on:
momentum vectors, forces, electric fields, and also quan-
tum states. On a sphere, those vectors cannot live ‘in the
space’ itself, because the sphere is not a vector space. In
a curved space the notion of a ‘position vector’ makes no
longer sense. To stay close to our flat space experience
we do the following: to define a vector at some point on
the sphere, we first construct the tangent plane to the sur-
face at that point, and then put the vector there. Because
the tangent space is a copy of R2 we can add, subtract
and take products of vectors there. So we attach a vec-
tor space to every point on the sphere. If we have a well-
defined system orthogonal curvilinear coordinates, then lo-
cally, in any point x we can construct a set of orthonormal
tangent vectors along the coordinate axes, and those de-
fine a smooth (othonormal) frame at any point in the patch.
Having a set of smooth transition functions allows us to ex-
tend such frames over the whole manifold.

Parallel transport of vectors. Knowing how to deal with
vectors at every point in space is not enough. We want to
compare vectors at different points, and we want to move
them around. We need to ‘parallel transport’ the vectors or
frames from one tangent space to another. The question
we are now equipped to answer is: what happens if we
do the exercise with the Master Chef we did in ‘flatland’
before?

We put three people standing at the corners of a spherical
triangle, then we draw the shortest paths between them

and ask the apprentice, the messenger, to bring copies of
the Chef’s vector around. What happens is depicted in the
Figure I.2.32 . The instruction is the same, in the point on
the geodesic we first construct the vector tangent to the
curve, which lies in the tangent space of the point. The
Chef’s vector to be transported makes a well-defined angle
with the tangent vector. Parallel transport is now defined
by keeping the angle between these two vectors constant
while moving forward along the geodesics. The result of
carefully parallel transporting a vector along the triangle is
depicted in Figure I.2.32(d). On the first segment of the tri-
angle the angle is 0 , on the second segment it is ⇡/2 , and
on the third it is ⇡ . It seems to work fine, except that when
the apprentice returns to the Chef, the boss is furious. It is
not hard to see why. Comparing the initial and final, par-
allel transported vector, we see that they are not parallel
at all! The transported vector has rotated over an angle of
⇡/2 . The apprentice is shocked: how could this have hap-
pened? He did after all perfectly follow the instructions all
along, oh my! But the Chef is unrelenting: ‘You are fired!
Out through the backdoor you fool!’

Holonomy. What we may learn from this mini-drama be-
comes clear when we turn the story around. It is appar-
ently simple to find out whether you live in a curved space,
without stepping outside into the embedding space; it suf-
fices to just walk around some closed paths and parallel
transport a vector along with you, and see wether it is ro-
tated upon return. So each closed path on the manifold
induces a map of the tangent space onto itself which cor-
responds to a rotation. This intrinsic property of a space is
called holonomy and an important characteristic of curved
spaces. For the example at hand we see that the vector is
rotated by an amount that equals the solid angle bounded
by the loop. The total area of a sphere is 4⇡r2 , so 4⇡ for
the unit sphere. And indeed, the triangle covers the area
(or solid angle) of an octant which equals 4⇡/8 = ⇡/2 .

It is easy to check that this solid angle-holonomy corre-
spondence also holds for other simple closed paths. If we
for example extend the triangle by moving the two points
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(a) Rotations generate translations on the two-sphere S2 . Triangle
on curved space has more than 180o .

(b) Vectors at a point in a curved space live in the tangent space
(⇠ R2) at that point.

(c) Carrying a frame around a triangle on a sphere. (d) Parallel transporting a vector along a closed loop on a sphere
rotates the vector.

Figure I.2.32: The geometry underlying the tangent bundle of S2 . Using the equivalence of S3 with a line bundle over the two-sphere.
Moving a point over S3 is the same as carrying a tangent vector over S2 .

on the equator southwards to the South Pole, we obtain a
non-trivial two-angle (!). Going around this two-angle will
yield a holonomy of ⇡ as it should. A more general way
to state the result is to say that for any closed loop in any

curved space the holonomy equals the net curvature on
any surface bounded by the loop, after proper normaliza-
tion. As the (scalar) curvature of a sphere is a constant
that equals 2, the curvature enclosed in the loop is then
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Figure I.2.33: An optical fiber bundle. A bundle of optical fibers,
each like a finite light ray, isomorphic to the unit interval: F =
[0, 1]. The base manifold M is just a finite disk with a circular
boundary. Every fiber can be projected down to a point in the
base manifold. This bundle is ‘trivial’ in the sense that the bundle
space is just global product, E = M⇥ F .

equal to two times the solid angle.

Fiber bundles. In a proper description of many physical
systems the most basic ingredients are some space(-time)
manifold M that may or may not be curved, and there will
be certain physical variables like temperature, a fluid flow,
or whatever one is interested in. We assign functions (or
fields) to those variables. For the temperature we define a
function T = T(x) which is a map from the base manifold
to the real numbers: T : M ! R . For the velocity field
this would be a vector field (also called a vector-valued
function) v(x) which you can think of as a map v : M !
R3 .

Let us now introduce an upgraded setting for the previous
paragraph, and start with a big space E = M ⇥ Rn. So
the space looks very much like a bundle of fibers F = Rn

because above any point x 2 M we have erected a copy
of the fiber. Now a function on M which takes its values in

Rn can be viewed as taking a cross-section of the bundle.
In other words, giving S(x) corresponds to drawing some
curved surface above M that intersects with every fiber
only once. Figure I.2.33 gives an intuitive idea of such a
fiber bundle. We start with a base manifold M, the physi-
cal space. In this case the base manifold is a simple two-
dimensional disc. Above each point of x 2 M we erect a
fiber Fx which is isomorphic to the reference fiber (drawn
on the left) and in this case is a finite ray of unit length.
The fibers Fx in E are transformed images of the refer-
ence fiber. In the picture we also show local (x-dependent)
map S(x) : M ! F . Such a map S(x) is called a section
of the bundle, indeed we obtain a deformed surface above
M which is literally a cross-section of E . In this particular
example there is a smooth map from E ! M ⇥ F from
the bundle space to the global product of base and fiber,
which means that the bundle is trivial.

More generally, if we think of the base manifold M as the
space or space-time manifold, then we usually define all
kinds of fields f(x, t) on it. These fields often take values
in some vector space V or an algebra, meaning that we
have a map f : M ! F . A natural setting to describe both
the space M and such a function on it is to extend the
manifold to a fiber bundle E , which locally for any neigh-
bourhood Ui ⇢ M has a direct product structure Ui ⇥ F .
The point is now that globally this is not necessarily the
case. It may be that a basis cannot be extended smoothly
over all of M ; In such a situation the fiber bundle frame-
work is very powerful and versatile.

Let us illustrate this difference with another simple exam-
ple. Consider the case where the base manifold M is a
circle, M = S1, and the fiber F the unit interval F = I =
{0  y  1} . The ‘trivial bundle’ would be a cylinder, cor-
responding to the global direct product E = S1 ⇥ I . But
we could also identify the fibers as (' = 0, y) ⇠ (' =
2⇡, 1 - y) , in which case we get a Möbius band. This
band has locally the same structure as the cylinder, which
means that if you only were allowed to explore your direct
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Figure I.2.34: The Möbius band. We have depicted the trivial
bundle over the circle with the unit interval as fiber, which is a
cylinder. The tangent bundle of the circle corresponds to an infi-
nite cylinder: E = S1 ⇥R . On the right we give the topologically
non-trivial bundle corresponding to the Möbius band.

neighbourhood, you would not be able to decide whether
you lived on a cylinder or on a Möbius band. But glob-
ally the situations are very different, walking along the in-
side, you end up on the outside and vice versa. In other
words there is no such thing as an inside or outside as
they are smoothly connected. The Möbius band is a non-
orientable manifold with a single boundary. We have il-
lustrated the trivial cylinder and the non-trivial, ‘twisted’
Möbius band in Figure I.2.34. The bundle picture allowed
us to clearly set apart two spaces that are locally the same
but globally (topologically) different. The cylinder is a two-
dimensional flat space in that it needs only one coordinate
patch, it has an inside and an outside separated by two
one-dimensional boundaries. It is topologically like a disc
with the origin taken out; it has no hole and two bound-
aries. If you live on the inside and your relevant-other on
the outside, than that is bad news because you cannot
run into each other. Remarkably, on the Möbius band that
problem is non-existent.

This simple example gives a hint as to how natural and
powerful the geometrical construct of a fiber bundle is. Ex-
actly because for the base space and the fiber there are
very many choices, and each of them gives rise to a sub-
category of bundles with their own specific properties. You
will find that there is a great variety: line bundles, vector
bundles, principle bundles, tangent bundles, frame bun-
dles, and many others. This world has vigorously been
explored by the mathematicians, and they have developed
a beautiful and rigorous framework in which many physical
applications can be embedded. Books have been written
about the subject and it is not our goal to delve too deeply
into it, except to explore its relevance to the physics sub-
jects treated in this book.

Tangent bundles.
As we mentioned already, to have parallel transport and
have a proper definition of distance on a curved manifold,
we need extra ingredients. Having the coordinate patches
with transition functions, we can draw continuous curves
and parallel transport vectors. With these attributes we
cannot only construct a tangent space at every point of our
base manifold M , but we can also define what is called
the tangent bundle of M . The tangent bundle is a smooth
2n-dimensional manifold E , which consists of M and all
its tangent spaces. It has the structure of a fiber bundle,
because above every point x of the base manifold x 2 M
of dimension n , we have erected a fiber F which is a copy
of the tangent space Rn . This bundle itself is a smooth
manifold of dimension 2n . For flat space M = Rn the
bundle space would just be E = Rn ⇥ Rn = R2n . And
as we saw for the circle, the tangent bundle is just a two-
dimensional (infinite) cylinder: E = S1 ⇥ R, it is the global
direct product and therefore a trivial bundle.

The S2 tangent bundle. The construction of the tangent
bundle of S2 is more complicated because it is topologi-
cally non-trivial. The two-sphere and various local tangent
planes are sketched in Figure I.2.35, where we have also
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Figure I.2.35: Tangent bundle of S2. The base manifold is the
two-sphere. The fibers are just copies of R2. We have indicated
the ortho-normal frames which are rotated with respect to a ref-
erence frame on the left. The structure group of the otho-normal
frame bundle is just the group of rotations in the two-dimensional
plane, denoted as SO(2) . We have indicated the transition map
from the tangent frames referring to the two patches in the point
x = A .

shown how each fiber is related to the standard plane by
some map �(✓,'). This map basically tells you how the
basis for the fiber as vector space in each point on the
sphere is rotated with respect to some reference frame.
So � corresponds to the angle by which the frame is ro-
tated. It means that in general in this construction of the
tangent (or simpler: the related otho-normal frame bun-
dle) there is always a rotation group involved. This map
is smooth on each patch, and one obtains the transition
function to go from the frame for S+ to one for S- at a point
x in the overlap, by applying the product map �+-(x) =
�-(x)�+(x)-1. Now why is this bundle non-trivial? This
is the question we turn to next.

To find out whether the bundle is trivial we focus on the
transition map or gluing function in the overlap region. The
result is depicted in Figure I.2.36. We start by choosing the

Figure I.2.36: Transition map of coordinates and frames. The
two-sphere covered by two coordinate patches S± , We have
parallel transported a vector from the North Pole along the light
blue meridians in S+ and from the South Pole in S- to points
on the equator. Going around the equator we see that the white
vectors rotate clockwise and the pink vectors anti-clockwise by
an angle �± = ±' . This yields the transition function � =
�+ -�- = 2' . The topology of the tangent bundle is therefore
non-trivial and has winding number m = 2 .

white vector (but think of it as a frame) on the North Pole
and transport it along the meridians down to the equator,
there the transported white vectors are found to make an
angle �+(') = ' with respect to the vector at ' = 0 (par-
allel transported along the equator to the tangent space
at the same point). Subsequently we carry the vector at
' = 0 on its meridian all the way south, resulting in the
pink colored vector at the South Pole. And from there
we transport that pink vector upward along all the merid-
ians in S- again to the equator, yielding the pink vectors
making an angle �- = -' , with the pink vector trans-
ported from ' = 0 . What we have constructed is a glob-
ally smooth section of the frame bundle. The frames in
the overlap region (the equator) on the two patches differ,
and are related by a local rotation in the respective tangent



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 93 — #123 i
i

i
i

i
i

THE PHYSICS OF GEOMETRY 93

planes. We see that the transition function corresponds to
a transition angle �(') , which satisfies �(') = 2' . If we
walk full-circle around on the equator once then the angle
�(2⇡) = 4⇡, has gone around twice. This means that the
bundle is topologically non-trivial, because it is similar to
the non-trivial twist of the Möbius band, but we here have
a relative winding number m = 2 .

Let us lift this discussion to the n-dimensional spheres Sn.
The bundle is an example of a frame bundle, this bundle
is linked to the group of rotations (denoted by SO(n)) that
maps all possible ortho-normal frame choices for the tan-
gent spaces Rn into each other. We cover the sphere by
two overlapping disc-like patches, then the overlap is a
sphere Sn-1 times the interval. Then the transition function
is a map from the overlap region into the group SO(n-1) .
If this map is contractible, meaning that its homotopy class
is trivial, then the bundle is topologically trivial.

For the two-sphere we had a transition map from the equa-
tor with coordinate ' to the frame group SO(2), which is
also a circle, parametrized by the angle �. These classes
of such maps are labeled by the elements of the first ho-
motopy group ⇡1(SO(2)) = ⇡1(S1) = Z, the integer n 2
Z is often called the winding number. This means that
�(2⇡) = 2⇡n and for the frame bundle of the two-sphere
we found n = 2. This winding number is a topological in-
variant that characterizes the bundle in question. We can
now also answer the corresponding question for the three-
sphere, this boils down to a mapping of the two-sphere
(the ‘equator’) into the group SO(3) of three-frames. The
homotopy group in question, ⇡2(SO(3)) = 0. So the group
has only one element, which means that all the maps are
contractible from which we conclude that this frame bun-
dle is trivial. And this in turn means that the three-sphere
is ‘parallelizable.’

There is one other observation we want to make, which
links this frame bundle of the two-sphere to the bundle that
we studied in connection with the Dirac magnetic monopole.

Let us recall that for the monopole we basically dealt with
two vector potentials A± defined on two patches on the
two-sphere, linked by a gauge transformation.5 In other
words we considered a map from the equator (S1) into the
gauge group of electrodynamics (which is the group phase
group U(1) which also corresponds to a circle: U(1) '
SO(2) ' S1). We gave the explicit formula for that map
�(') = ' in equation (I.1.57) , meaning that the winding
number for the monopole bundle equals n = 1.

The bundle space E in the monopole case corresponds to
the manifold S3 , interpreted as a S1 or phase bundle over
S2 . The bundle is exactly the one described by Hopf in
1931. As we will point out in Chapter II.1, also the quan-
tum state space of a single qubit corresponds to such a
three sphere.

What we have learned is that the monopole and frame bun-
dle are both realizations of a circle bundle over the two-
sphere, but they are topologically distinct because they
have winding numbers equal one and two respectively. The
bundles with higher winding numbers correspond for ex-
ample to multiply charged Dirac monopoles satisfying eg =
2⇡n. But the most gratifying is perhaps that in spite of their
quite different physical origins these two situations could
be related within the framework of fiber bundles.

Differential geometry.
In this section we have demonstrated that for most physics
applications which involve geometry we need extra struc-
ture on the manifold which allows us to properly define
functions and their derivatives or integrals, and of vectors
and vector fields. The structural ingredients we need are
a metric, a connection or covarariant derivative, and a def-
inition of the curvature tensor. This takes us to the basic
definitions of Riemannian or more generally of differential
geometry.

5We talk about the concentric spherical shells for a fixed radius
larger than zero.
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Figure I.2.37: The geometry of the sphere. The yellow point
has spherical coordinates (r, ✓,'). The length of the equator
(red circle in xy-plane) on the sphere equals 2⇡r . The red and
blue arcs therefore have equal lengths sr = sb = r✓; with angle
expressed in radians (2⇡ radians = 360o) . The green-colored
segment of a horizontal spherical disc with radius a = r sin ✓ .
For the length of the green arc follows sg = 'r sin ✓.

Metric. We introduced the metric with the definition of the
line element in equation (I.2.16), which in general reads:

ds2 = gµ⌫dx
µdx⌫ (I.2.17)

The metric is a symmetric ‘tensor’ with two indices which
you can think of as a matrix gµ⌫ depending on x ,

The metric also gives a local definition of the length |v| of a
vector vµ in the tangent space at a point x as follows:

|v|2 = v · v = gµ⌫v
µv⌫ = vµv

µ , (I.2.18)

where in the expressions we have adopted the standard
convenient ‘Einstein convention,’ which says that if in any
expression with repeated upper- and lower indices, these
are automatically summed over, so, vµvµ ⌘

P
µ vµv

µ .

For example on a two-sphere with radius r with coordi-
nates (✓,') the standard metric has two non-vanishing

components: g✓✓ = r2 and g'' = r2 sin2 ✓ . The line ele-
ment ds follows from:

ds2 = gµ⌫dx
µdx⌫ = r2(d✓2 + sin2 ✓d'2) (I.2.19)

Looking at Figure I.2.37 it is not hard to see why. You
may verify that, (i) for ' fixed the arc or path length on
the sphere corresponding to an angular displacement d✓ ,
corresponds to r d✓ (as ✓ runs along a big circle), (ii) for
fixed ✓ , the path length corresponding to the angular dis-
placement d', equals r sin ✓d' (as the ' variable runs
along a ‘lateral’ circle with radius r sin ✓). What this means
is the following: if we change the coordinate ' for an arbi-
trary point on the sphere by an infinitesimal amount d'
then the length of the corresponding displacement vec-
tor is ds = r sin ✓d'. So the metric tensor locally links
infinitesimal changes in coordinates to infinitesimal path
lengths in the space.

Path length. The length Lab of the curve �(t) paramet-
rized by t , between two points �(a) and �(b) is naturally
defined as the integral:

Lab ⌘
Zb

a
|v(t)|dt , (I.2.20)

in a different more familiar wording, the distance traveled is
just the magnitude of the velocity component along the tra-
jectory integrated over the appropriate time interval. So for
example if we choose the lateral green circle (with ✓ con-
stant) in Figure I.2.37 , we would have �(t) = {✓,'(t)}:

L =

Z
r sin ✓

d'

dt
dt = r('(b)-'(a))sin✓ , (I.2.21)

as it should.

Frames. We like to mention that there is a slightly different
formulation for dealing with Riemannian geometry due to
Cartan. This formulation is close to the standard form in
which gauge theories of the non-gravitational interactions
are presented. We start by introducing an ortho-normal
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basis or frame in the tangent space by writing:

gµ⌫ ⌘ ⌘abeaµeb⌫ , (I.2.22)

where ⌘ab is the usual flat space metric (or inner-product),
and the funny objects eaµ are the so-called solder forms or
‘vielbeine’ that convert vectors from the curvilinear coor-
dinate components to the ‘flat’ components. So for the
spherical surface we could simply choose e1✓ = r and
e2' = r sin ✓ and all others equal zero. These define what
is called a local orthonormal frame {ea} ⌘ {eaµ dx

µ} .

With these definitions the inner product can be rewritten
as:

v · w = gµ⌫v
µw⌫ = ⌘abe

a
µe

b
⌫ v

µw⌫ = ⌘abv
awb , (I.2.23)

with the flat space vector components defined as va ⌘
eaµv

µ .

Connection. Given the metric g or the frame {e} we de-
fine the so-called metric connection ! , which written in
components would read !µ

a
b , meaning that it is like a

space(time) (row) vector and acts like a matrix in ‘a - b’
space. This connection is defined by the linear set of equa-
tions:6:

de+!^ e = 0 . (I.2.24)

Specifying the metric, the metric connection or the set of
‘vielbeine’ are equivalent characterizations of the manifold.
Knowing the frame {e} , one can solve equation (I.2.24) for
the connection in terms of the vielbeine and their deriva-
tives. For the two-sphere the result for the connection is
simply !'1

2 = -cos✓ . Note that it has two flat indices
and therefore it acts like a matrix in flat space. We intro-
duce the connection!µ , because it is similar to the gauge
potential Aµ in gauge theory. The gauge transformations
in the case of general relativity would correspond to lo-
cal orthogonal (or Lorentz transfomations) rotations of the

6We use the quite compact index free notation because it makes the
underlying structure more transparent. With indices the above equation
would look quite daunting: @µea⌫ - @⌫e

a

µ +!µ
a

b
eb⌫ -!⌫

a

b ebµ = 0 .

frame that leave the metric in other words the angles and
lengths of vectors invariant,

e0 a = ⌦a
be

b . (I.2.25)

Curvature. To complete this lightning review of non-Euclid-
ean or Riemannian geometry, we have to add a final ingre-
dient, which is the Riemann curvature tensor or two-form
R , which is the strict analogue of the ‘field strength’ F in
gauge theories. It can be calculated from the connection
as follows:

R = d!+!^! . (I.2.26)

This Riemann curvature is an object with four indices. We
will refrain from descending any further in this myriad of
indices except for at least giving the result for the two-
sphere. There is basically only one component that is
non-zero: R1

2 = R1
212 e

1 ^ e2 = 1
r2
e1 ^ e2 . From this

Riemann curvature one finds the Gaussian curvature as
RG ⌘ Rabab = 2/r2 . We say that the Gaussian curva-
ture of the sphere is constant. It does not depend where
you are on the sphere, it only depends on the radius of
the sphere. If that radius becomes large the curvature
tends to zero. In other words the space becomes effec-
tively flat.

The main point of this subsection is to show that the an-
alytical structure of differential geometry is highly canon-
ical. It involves three subsequent defining equations: it
involves three subsequent defining equations: (i) for the
metric (I.2.22) or the frame, (ii) for the connection in terms
of the frame (I.2.24) and (iii) for the curvature in terms of
the connection (I.2.26) . Our aim is not to make any real
computations but merely to get across that at this level of
analysis it is evident that general relativity and gauge the-
ories share an underlying geometric structure. Roughly
stated, both involve a connection and a curvature defined
in terms involving derivatives of the connection.

The geodesic equation. Geodesics are the paths along
which free particles move. We have asked what the short-
est path between two points is on a sphere and found it
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to be a segment of a great circle. In general that question
can be answered by minimizing the path length Lab under
variations of the path. From the metric one can directly
construct a free particle Lagrangian, which is a function of
the coordinates and their time derivatives:

L(xµ, dx
µ

dt
) =

1

2
mgµ⌫

dxµ

dt

dx⌫

dt

=
1

2
mr2

�
(
d✓

dt
)2 + sin2 ✓(

d'

dt
)2
�

=
1

2
mr2(v2✓ + v2') (I.2.27)

Minimizing the time integral of L ⇠ |v|2 (instead of Lab) one
obtains the so-called Euler-Lagrange equations. On the
two-sphere one obtains:

d

dt

�d✓
dt

�
- cos ✓ sin ✓

�d'
dt

�2
= 0 ,

d

dt

�
sin2 ✓

d'

dt

�
= 0 . (I.2.28)

These are the Newtonian equations of motion for a parti-
cle on a sphere in the absence of an external force as dis-
cussed in the section on Newtonian mechanics in Chapter
I.1. All terms have two time derivatives, among them are
the pure ‘accelerations’ in the ✓ and ' directions. There
is no potential as such and the extra terms that appear
are a consequence of spherical geometry. So like in flat
space, where a force would typically curve the orbit, and
straight lines (describing shortest distances) are obtained
by setting the force equal zero, something similar is true in
curved spaces where free particles move along geodesics
and they do independently of their mass or momentum.

Let us check a few simple solutions. For example, if we
assume that the velocity component in the ' direction,
sin ✓d'/dt vanishes, we obtain the solutions d✓/dt =
constant . These describe a particle moving with con-
stant velocity along any meridian (where ' = constant).
This shows that the meridians are indeed shortest paths.
Choosing d✓/dt = 0 , on the other hand, gives the solu-
tion, ✓ = ⇡/2, d'/dt = constant , which corresponds to

the particle moving with constant velocity along the equa-
tor, again a ‘big’ circle or geodesic.

These calculations confirm our previous observations with
respect to the Figures I.2.31 and I.2.32, where we saw that
the shortest path between two points is always a segment
of a great circle. That allowed us to also draw a triangle on
the sphere as we did in Figure I.2.32, and what we see is
that the triangle has three 90o angles. In other words that
the sum of the three angles of this triangle is 270o which is
far more than the 180o of a planar triangle. It is amusing to
note that if you move the two lower points of the triangle to
the South Pole, you get a non-trivial ‘two-angle.’

Let us finally note also that all shortest paths from the
North to the South Pole, in other words all meridians, are
in fact ‘parallel,’ because they all are perpendicular to the
equator. Indeed, in a curved space ‘parallel lines’ may
cross. Boy! Yet another reason why life on Earth is so com-
plicated. My devise would be, be prepared: think global
and act local, rather than the other way around. ⌅ ⌅

The geometry of gauge invariance

A gauge theory is the prototype model for all fundamental
interactions, where the gauge field may either describe the
electromagnetic field corresponding to the photon, or the
fields mediating the strong interactions corresponding to 8
gluons, or the weak interactions described by the W± and
Z bosons, and finally it may describe general relativity cor-
responding to the gravitational interaction mediated by the
graviton. The gauge symmetry principle is therefore a fun-
damental and universal hallmark of nature. Gauge invari-
ance imposes a strong constraint on the system of fields
involved. In particular it completely fixes how the force car-
rying fields just mentioned interact with the ‘charge’ carry-
ing fields or constituent particles like the the electon, the
muon, the neutrinos or the quarks. On the other hand this
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physically based gauge principle is deeply linked to the
geometry of fiber bundles of which the tangent bundle we
discussed is only one example.

The topic of gauge invariance will pop up in this book at
regular intervals. Here we give some of the mathemati-
cal background of the gauge principle which corresponds
to the geometry of fiber bundles. In Chapter I.4 on the
quest for the basic building blocks of matter we discuss
how the gauge theory approach has led to the standard
model of the fundamental interactions between elemen-
tary particles. And in Chapter II.6 on symmetries and their
breaking we describe in more detail what the equations for
gauge theories look like and how they implement the idea
of a local gauge invariant dynamics.

The charge degree of freedom. To get a better feeling
for the notion of charge and its connection to gauge invari-
ance it may help to explicitly introduce a model for electric
charge. Think of particles carrying an extra periodic coor-
dinate � that labels points in some ‘internal space’ that in
this case corresponds to a tiny circle. You may think of �
in that sense as an extra charge degree of freedom, and
the charge q = ne as a kind of momentum in this internal
electromagnetic dimension with coordinate � . The particle
carries along a charge-phase factor

fn(�, x) = ein�(x) . (I.2.29)

If we split this phase factor in its real and imaginary parts
by writing it as cosn�+ i sinn� , we represent the phase
factor as a little two-dimensional unit vector making an an-
gle n� with the real (horizontal) axis.7 Note that if we vary
� from 0 to 2⇡ , then the phase of the particle with charge
number n changes by 2⇡n , so the corresponding little vec-
tor rotates n times as fast.

You may say that the charge-number corresponds to the
7If you are unfamiliar with the notion of a complex phase factor you

might want to look at the Math Excursion on complex numbers at the
end of Part III on page 630.

‘momentum" in the � direction because it is proportional to
the beta derivative -ie@�fn = q f , and as there is no �-
dependent potential or force, the �-momentum (= charge)
is conserved. The dynamics in beta-space is therefore en-
tirely trivial and that is precisely why nobody talks about it
in the first place. But it at least explains the terminology
that charge corresponds to an internal degree of freedom.
I think that it is also quite helpful for getting a better under-
standing of the notion of gauge invariance. And moreover,
if we would treat this little charge-degree of freedom as
a quantum particle on a circle, the momentum (= charge)
would be quantized as well. It would look like the Bohr
model applied to the quantization of charge.

Gauge transformations. The best way to think about (lo-
cal) gauge transformation is as a position- and time- de-
pendent rotation, not in real space but in some internal
vector space, that is carried by each of the matter fields.
To clarify this let me return to electromagnetism. Another
way to look at the local charge-phase factor we introduced
is that it is the phase of a field �(x) = fn(x)�(x) hav-
ing a charge q = ne . In quantum theory a particle with
charge q = ne is described by a complex wavefunction
�(x) = fn(x)�(x), and fn(x) represents the local phase
of that wavefunction and the function �(x) its magnitude.
Formally a gauge transformation acts on the fields (in fact
on the phase factor) as follows:

fn ! f0n = Un fn with : Un(⇤) ⌘ ein⇤(x) . (I.2.30)

The transformation Un corresponds to a unitary represen-
tation of the group U(1) labeled by the integer n 2 Z. It is
unitary because U⇤U = U-1U = 1 . And the gauge group
of the theory is therefore naturally called U(1) , because a
phase factor can be thought of as a (1⇥ 1) unitary matrix.
If you prefer to talk about the little vector, then you should
refer to the gauge group SO(2), the group of rotations in
the two-dimensional plane, but that group is the same as
(or isomorphic to) U(1) because its elements are also la-
beled by an angle.
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(a) Charge-phase factor f1 in the trivial gauge
�(x, y) = 0 .

(b) Charge-phase factor f1 in the gauge given
by ⇤ = xy .

(c) Charge-phase factor f01 in the gauge given
by ⇤ = 2⇡ cos(x + y) .

(d) The gauge potential yields A = (1, x) ,
yields a constant magnetic field in the z-
direction.

(e) The vector potential after the transforma-
tion U = ei⇤ . With A0 = A -r⇤ with the ⇤
given above.

(f) The vector potential in a gauge with ⇤

given above.

Figure I.2.38: Gauge transformations The effect of two different local gauge transformations on the phase factor ei�(x,y) and on the
gauge potential A = (Ax, Ay) . All describe the same uniform magnetic field that is directed out of the page to the front.

So, properly speaking, the phase factor fn(x) of the wave-
function is an element of a one-dimensional complex, or
two-dimensional real vector space Rep, on which the uni-
tary representation of the gauge group U(1) with label n
acts as a transformation. In brief, if I make a gauge trans-
formation ⇤(x), the phase factor of the field will trans-
form by multiplication with a phase factor exp

�
in⇤(x)

�

and therefore its phase gets shifted by n⇤(x). And the
gauge potential transforms like indicated in the formula
(I.1.48).

What gauge invariance means is that we are free to choose

a frame of basis for the two-dimensional vector space in
which unit charge vector fn(�, x) lives, at every point x
independently. Very much like the tangent spaces we dis-
cussed before. In other words at any point x we have the
choice of which point on the circle we call the origin to
which we assign the value � = 0 . Gauge invariance is
the statement that the physics does not depend on that lo-
cal choice. This implies that the physics doesn’t change if
we shift � at each point x by an amount ⇤(x). We have
illustrated this in Figures I.2.38 , where we have depicted
both the phase �(x) and A(x) in three different gauges
for a situation in two spatial dimensions. These images
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underscore the great generality of local gauge transforma-
tions, and in spite of looking so different, the magnetic field
B = r⇥ A is the same for all three configurations. It is a
gauge invariant quantity and corresponds in this case to a
uniform field in the positive z-direction.

The reasoning above clarifies the use of the term ‘gaug-
ing.’ If you think of a little pointer moving over a dial, then
applying a gauge transformation amounts to redefining the
label ‘zero’ on the dials located at different positions x . It
is like calibrating the dials in all of space-time.

Gauge covariant derivative. Let us now consider the fol-
lowing question. I have a space with some electromag-
netic fields (or potentials) in it, and I take a charge that sits
at x = x0 and move it slowly along some path � to an-
other point x1 . What will happen? I was careful enough to
not disturb the fields, but as the charge interacts with the
fields along the way, did something happen to that phase
perhaps? Well, certainly, and what will happen is that the
phase � will change on its way to x1 . By what amount
does it change? And does that change depend on the
path I choose? These are the questions that we turn to
next.

Let us take small steps at a time, or better even, infinitesi-
mal steps! So, suppose we want to know what the charge-
phase would look like at a nearby point, then we can make
a linear approximation only keeping the first derivative:

fn(x
0) = fn(x+4x) ' fn(x) +4x

dfn
dx

��
x
+ · · · , (I.2.31)

but this does not take care of the change in the frame in
which the phase is expressed, by which I basically mean
the orientation of the real and imaginary axes of fn at dif-
ferent points x . That basis change is determined by the
gauge connection Aµ(x), which means that we have to
replace the ordinary derivative with the so-called gauge
covariant derivative:

@µ ! Dµ ⌘ @µ + iqAµ . (I.2.32)

The added gauge connection literally connects the frames
in neighbouring points. It is not sufficient to just calcu-
late the phase; in order to compare the phases at different
points you need to know how the bases at those points are
related.

Why the term covariant derivative? It is like the deriva-
tive in a co-moving frame, and therefore the appropriate
term indeed. This becomes clear if we look at how this
derivative transforms under gauge transformations given
that the field transforms as given in (I.2.30) and the poten-
tial like that given in (I.1.48) as Aµ ! A0

µ = Aµ - @µ⇤ .

We find:

Dµfn ! [Dµfn]
0 = (@µ+ iqA0

µ )f
0
n = Un[Dµfn] . (I.2.33)

which shows that this derivative transforms covariantly in-
deed, in other words, just like the fn itself. This is an im-
portant observation because one sees that quantities like
|Dtfn|

2 and |Dfn|
2 will be gauge invariant and these are

terms that appear in the expression for the energy density
of the field fn. And this in turn implies that to get an invari-
ant energy the interaction between the charged field (or
particle) has to be of a form involving the gauge-covariant
derivative. That is what it means to say that gauge symme-
try dictates the detailed nature of the interactions!

Suppose we have a function h(x), imposing that dh/dx =
0 implies that h = constant . Something similar can be
defined for the covariant derivative. The equation for what
is called a covariantly constant charge vector reads

Dµfn = 0 . (I.2.34)

The solution to this equation amounts to expressing a path
dependent relation between the phase at two points, cor-
responding to the parallel transport of the charge-phase
along a given curve. Let us look at this statement in more
detail.

The gauge connection. To carry the phase factor around
we need a somewhat fancy expression involving the gauge
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connection Aµ . Let me recall the line integral I(�; x0, x1)
of the gauge field along a curve � given in (I.1.51) and
depicted in Figure I.1.26. To parallel transport the phase
along some curve � going from x0 to x1, we need to use
not just the line integral I(�; x0, x1), but rather its exponen-
tial:

Wn(�; x0, x1) ⌘ ein I(�;x0,x1) . (I.2.35)

This path dependent phase factor carries exactly the frame
from x0 to x1 so that:

fn(�, x1) = Wn(�; x0, x1) fn(�, x0) . (I.2.36)

This expression furnishes the general solution to the equa-
tion (I.2.34) for the covariantly constant charge-phase fn .

It transports the phase in a gauge covariant way, that is
to say in such away that under a gauge transformation we
have that

Wn ! W0
n(�; x0, x1) = Un(x1)Wn(�; x0, x1)U

†
n(x0),

and this means that in the equation (I.2.36), the combined
effect of a gauge transformation on all factors is the same
on the left- and right-hand side. The net effect is a multi-
plication by Un(x1) from the left, as it should be according
to (I.2.30). So we have answered both questions: how the
charge-phase will change and that it does so depending
on the path chosen. The gauge ‘connector’ is nothing but
the path dependent phase factor Wn .

Gauge theory and principal fiber bundles. The central
concept describing both the gauge potentials and the un-
derlying space-time manifold M is called a principle bun-
dle denoted by E , consisting of a space which locally can
be thought of as a direct product of the gauge group G and
the base manifold E : G⇥M .

In Figure I.2.39 we have given a simple example in which
the base manifold is a circle M = S1 parametrized by an
angle ' (the red circle). For the group we have chosen
the group of rotations in the plane denoted by SO(2), pa-
rametrized by an angle ⇤ making the group space also a

Figure I.2.39: A principle bundle associated with a gauge
group G . Here the group is the phase group U(1), which is a
circle (in brown) parametrized by 0  ⇤ < 2⇡ . The base space
M is also a circle (in red) with 0  ' < 2⇡ . Above each point
in the base space we have a fiber that is a copy of the group
G labeled by an angle ⇤ . Choosing a gauge corresponds to
choosing a (cross) section of the bundle: a particular choice for
⇤ = ⇤(') as indicated on the right.

circle G = S1 (the purple circle). This group is the same as
the phase group U(1), and as we saw this group is actually
the gauge group of electrodynamics. Above each point of
M we have a copy of G with an angle ⇤ = ⇤(') .
The point is now that any electromagnetic field configu-
ration corresponds to a particular bundle, and choosing
to write down the configuration of the potentials explicitly
we have to ‘choose a gauge’ which amounts to choosing
a particular cross-section through the fibers specifying a
particular choice of ⇤ = ⇤(') . And this is for example
done in the picture on the right-hand side.

Charge carrying fields and associated bundles. Often the
gauge field is called the gauge connection, because it con-
nects local coordinate frames at different points with each
other. In general a charge carrying field carries a repre-
sentation of the gauge group and these correspond to so-
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called associated bundles, where we have attached a copy
of the representation space Rep of the group G, to every
point of the base manifold in some smooth way.

Returning to our previous example a field carrying a charge
q = ne would be described by a complex field say  n(x) ,
which has a magnitude and a charge-phase that again
may depend on position, so,

 n(x) = exp(in�(x))⇢(x) .

Gauge transformations on such a field act as a local phase
transformation; we multiply the field with the local phase
factor Un

�
⇤(x)

�
:

 n(x) !  0
n(x) = Un

�
⇤(x)

�
 n(x) . (I.2.37)

Examples are depicted in the Figures I.2.39, and I.2.40,
which give you an impression of the case where M '
S1, G ' U(1) . The representations act on the fn(�('))
and the representation space can be depicted by the lit-
tle charge vector. In Figure I.2.39 you see that the fiber
corresponds to the orbit of the charge vector under ro-
tations, and a specific bundle is obtained by choosing a
particular gauge which means that above every point of
M, you choose a particular vector making sure that the
overall configuration is smooth. This is appropriately called
choosing a (cross) section of the bundle. This leads to for
example the configurations depicted in Figure I.2.40 of a
number of smooth closed ribbons. The configuration on
the left represents the constant phase �(') = 0, corre-
sponding to the connection A = 0 of the trivial bundle. The
other phase configurations are smooth deformations that
correspond to gauge transformations. So all three repre-
sent the same physical situation in different gauges. They
are gauge equivalent configurations. It clearly demon-
strates the local character of the gauge transformations,
because at any point of the base manifold we can choose
a different rotation, as long as the overall deformations cor-
respond to smoothly ‘wiggling’ the configuration.

Figure I.2.40: Gauge equivalence. Here we have depicted
gauge equivalent configurations of the charge-phase factor
ein�(') on a circle. On the left we have the trivial configura-
tion �(') = 0 . Gauge transformations correspond to ‘wiggling’
the configuration. The configurations above are related by a
periodic transformation ⇤(') so that � ! � 0 = � + ⇤, with
⇤(0) = ⇤(2⇡) .

Gauge invariant characteristics. You may wonder if it is
possible in reality to ‘drag’ a state vector along a closed
loop like we described and whether the resulting phase
change can be measured. The answer is yes and the
fact is that what I have described is known as the Berry
phase after the British mathematical physicist who discov-
ered that it was possible to identify it in certain setups with
time- or space-dependent Hamiltonians. The effect is also
closely related to the much older Aharonov-Bohm effect as
will be discussed in Chapter II.3. This interference pattern
depends on the solid angle that the path H(�) has covered
on the sphere.8 Interestingly the Berry phase is apparently
a purely geometric phase depending only on the geometry
of the space of Hamiltonians.

8The path is oriented and the orientation decides whether to take
the solid angle ! or 4⇡ - !, which with equation (II.3.4) amounts to
Rk(✓) ! Rk(-✓) .
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Other gauge groups. We have in this subsection exhib-
ited the structure of a principal fiber bundle and the vector
bundles associated with its representations, but only for
the rather modest example of the group U(1) . This may
have come across as a demonstration of how to crack
a peanut with a sledgehammer. We want to stress that
the fiber bundle description is quite universal as it is the
framework in which most classical physics involving local
symmetries can be cast. For example the Standard Model
involves U(1), SU(2) and SU(3) gauge fields describing
the electromagnetic, weak and strong interactions respec-
tively. And the Grand Unified Theories (GUTs) that we will
discuss in Chapter I.4 have even larger gauge groups like
SU(5) or SO(10) involving more gauge interactions.

It means that the fields take a value in a representation
space which is a vector space V = Rep which is typically
Cn or Rn. And the corresponding unitary representation
of the group works in this space as a linear transformation
(say, a rotation). The group can be any compact group
like the groups of unitary or orthogonal (N ⇥N) matrices
denoted by SU(N) or SO(N) respectively. The label n
on the field refers to the dimension of the vector space
on which some irreducible (unitary) matrix representation
of that gauge group acts. The Math Excursion on groups
on page 635 of Part III gives a basic introduction to group
theory. As we saw the group U(1) is special in that all
representations are one-dimensional, meaning just phase
factors.

For the group SO(3) the unitary representations are la-
beled with a semi-positive integer l, where the group is
then represented by (2l+ 1)⇥ (2l+ 1) matrices. This rep-
resentation acts as a transformation group on a (2l + 1)-
dimensional vector space. A field in this SO(3)) gauge the-
ory will take a value in one of these vector spaces and is
said to carry integer spin l. When the spin equals one we
have the standard three-dimensional vector but one that
lives in a Rep = R3 internal space.

For SU(3), the gauge group related to the strong interac-
tions, the quarks and antiquarks transform as 3-dimensional
representations (color triplets and anti-triplets), while the
gluons form an 8-dimensional representation. This indeed
means that SU(3), the group of 3 ⇥ 3 unitary matrices
with a unit determinant, also has a representation by 8⇥ 8

unitary matrices, which is irreducible, meaning that it can-
not be reduced to a lower dimensional (for example three-
dimensional) representation. This representation acts on
the eight-dimensional vector field, which describes the glu-
ons. A major achievement in mathematics has been that
in the early twentieth century all these continuous groups
and their representations were classified. The results have
found a rich variety of applications in physics as we will
show in Chapter I.4 where we discuss the phenomenol-
ogy of the ‘Standard Model.’

In the previous subsection we argued that to describe vec-
tor fields on curved spaces one needs to introduce the
so-called ‘tangent bundle’ of the manifold. This means
that also general relativity can be cast as a gauge theory
where the local gauge group is the symmetry group of the
local structure of space-time. Locally our space-time is flat
Minkowski space-time with its translation and the Lorentz
symmetries. The corresponding group is called the inho-
mogeneous Lorentz or Poincaré group. The field strength
in that case corresponds to the local curvature tensor R

of the manifold and the connection would be the so-called
metric connection!µ that we introduced in equations I.2.26
and I.2.24. It is gratifying to see that these phenomenolog-
ically so different fundamental interactions that we have
encountered in nature share this underlying structure of
gauge invariance, mathematically represented by the con-
cept of a fiber bundle. We must add the important fact
though, that the physics itself resides in the field equations,
being the Maxwell (more generally, the Yang-Mills) and
Einstein equations. We return to the Yang–Mills equations
in Chapter II.6 on symmetries and their breaking. The
bundle picture makes the mathematical setting transparent
and clarifies some of the physical features. ⌅ ⌅
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The physics of information

It would appear that we have reached the limits
of what is possible to achieve with computer tech-
nology, although one should be careful with such
statements, as they tend to sound pretty silly in 5
years.

John von Neumann (1951)

Computation necessarily involves information storage and
the manipulation of information on some underlying physi-
cal substrate, so far mostly based on semiconductor tech-
nology. Information is stored in the states of the system
and one can manipulate the states by interacting physi-
cally with that system. If the scaling down of basic com-
ponents is to continue as is predicted by Moore’s law, then
entering the quantum domain is inevitable. So, there is a
quantessence to information as well. This has profound
consequences for how we should think about information
and information processing. It turns out that quantum com-
putation offers fundamentally different options for tackling
certain classes of hard problems.

A bit of information. Volumes are typically measured in
liters, gallons, pints or cubic meters; and the unit chosen
strongly depends on the local context. For information,
however, this does not hold; it is universally measured in
bits. This canonical character derives from the fact that
the introduction of computers was right from the start a
global affair. The ‘bit’ is the smallest unit of information and
forms the basis for digital memories and data processing
devices. One bit can be represented in many ways, for
example like a switch that is on or off, or a single digit bi-
nary number being either one or zero, or equivalently as
a magnetic spin pointing either up or down, or a number
that is either plus or minus one (see Figure I.2.41). If I
want to qualify for a discount on a public transportation
ticket for example, only one bit of information concerning
my age will do. I only have to answer one yes-or-no ques-

Figure I.2.41: The bit. Various representations of a bit of infor-
mation. It is a two-state system such as a switch, a particle that
can be in either of two states, or a classical spin that can point
up or down.

tion: are you younger or older than 65? In answering a
single yes-or-no question you provide one bit of informa-
tion. Generally quantitative thinking is based on working
with variables that can be assigned numerical values; we
attach numbers to them even though these may be only
approximate. Those finite approximations can always be
converted to finite base-2 or binary numbers, only contain-
ing one’s and zero’s, and any calculations that you would
like to do with the original numbers can also be performed
in base-2. And we all know that such calculations can be
extremely well and swiftly performed by today’s digital de-
vices, at least if an efficient algorithm is available.

Information and entropy

State counting, entropy and information. In all informa-
tion devices the information is carried by a physical sub-
strate representing a certain number of bits. The amount
of information that can be stored in a physical system is de-



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 104 — #134 i
i

i
i

i
i

104 CHAPTER I.2. THE AGE OF GEOMETRY, INFORMATION AND QUANTUM

Figure I.2.42: Entropy and information. Counting the number
of states of a digital memory. Shannon defined the information
capacity of a system in bits as the logarithm of the number of
states, therefore information is directly proportional to the notion
of entropy in physics as defined by Boltzmann in the nineteenth
century.

termined by the number of distinct states that the system
can be in. Let us think of a memory consisting of an array
of little magnets that can point either up or down. Then we
can count the number of states of such an array of bits as
we did in Figure I.2.42. For one bit we have 2 states, for
two bits it is 2 ⇥ 2 = 4 states, and for n bits it is clearly
2⇥2⇥ ...⇥2 = 2n states. This shows that there is a direct
relationship between information capacity, i.e. the number
of bits, and the number of states. This is an exponential
relation,

n bits , 2nstates (exponential relation) . (I.2.38)

This implies that the converse relationship between infor-
mation capacity and the number of accessible states is a

logarithmic one: 9

# bits = log2(# states) (logarithmic relation) .
(I.2.39)

This relationship provides a precise and general quantita-
tive definition of information that forms the very basis of
information theory. The relation should remind you of the
expression for the entropy S = k logW of a physical sys-
tem, derived by Stefan Boltzmann, which links the entropy
S as a state variable of a macroscopic system to the total
number of distinct microscopic states W that correspond to
that given macroscopic state, as we discussed in Chapter
I.1 in connection with equation (I.1.62). So, entropy quan-
tifies the microscopic diversity hidden in what we see as
a single macroscopic state. In information theory, entropy
is a measure for information capacity, the information that
can be stored.

Entropy and probability. At this point it is interesting to
refine this relation between available states and informa-
tion by explicitly introducing the notion of probability. In
the previous derivation we have tacitly assumed that given
a single macroscopic state, the probability of finding the
system in any of the corresponding microscopic states is
uniform. With N states that would mean that pi = 1/N

because the total probability should add up to ⌃N
i pi = 1 .

In thermodynamics this distribution would correspond to a
closed system at fixed (conserved) energy, and where one
assumes the equipartion of energy.

9The information unit bit is linked to the logarithm base-2. If
S = log2 N this means that 2S = N . Thinking binary means that you
reason in base-2. If I say a number is 21 in base-10, I make the state-
ment that that number equals 21 = 1⇥ 100 + 2⇥ 101 = 1 + 20 = 21 .

If I say a number is 21 in base-2, that statement makes no sense
because the symbol ‘2’ isn’t there. To convert the number 21 in
base-10 to base-2, I have to expand the number in powers of 2 , so,
21 = 16+ 4+ 1 = 1⇥ 24 + 0⇥ 23 + 1⇥ 22 + 0⇥ 21 + 1⇥ 20 , 10101 .

In base-10 the digits run from zero to 9 , whereas in base-2 you only
have 0 and 1. So the number 1011 in base two equals 1+2+8 = 11 in
base 10 . This way, all integers can be uniquely encoded in any integer-
based number system.
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In general though, the probabilities will not be equal and
one should introduce a probability distribution {pi} over the
microscopic states, as we did in the section on statisti-
cal thermodynamics in Chapter I.1. There for a system
in thermal equilibrium at temperature T , we introduced a
probability pi which was dependent on the energy "i of the
microsystem labeled by ‘i.’ For that case we showed that
the expression (I.1.69) for the thermodynamic entropy was
first given by Gibbs, and now we see that it corresponds to
an information entropy or information capacity (in bits) of
the system given by the fundamental expression:

S = -⌃i pi log2 pi . (I.2.40)

We mentioned already that the entropy of the system, as
defined above, is equivalent to its information carrying ca-
pacity as it was defined by Claude Shannon. While work-
ing at Bell Labs he published in 1948 a groundbreaking
paper on the transmission of information, that by many is
considered to be the birth of information science. The im-
portant contribution from our point of view is firstly that he
proved that it was the unique solution that satisfied some
general constraints on information, and secondly that it ap-
plied in a general context that transcended its physical ori-
gins as thermodynamic entropy. So, that is where the term
information entropy originated from.

Let us see what happens if we apply the formula to the two-
spin situation where we have a set of four states which we
denote as {11, 10, 01, 00} . We may turn on a weak mag-
netic field so that, say, the state 11 with both spins up is
energetically preferred, for example leading to a distribu-
tion: {p11 = 1/2, p10 = p01 = p00 = 1/6} . Then the
corresponding information capacity would be S = 1

2(1 +
log2 6) = 1.79 bits , which is clearly smaller than the
uniform case with all pi = 1/4 , yielding S = 2 bits .

The point I want to make here is that the uniform dis-
tribution is the maximally unbiased distribution, and it is
that distribution which maximizes the information entropy,
precisely because there is no additional constraint on, or
in other words, ‘additional knowledge’ about, the system.

Adding a priori knowledge reduces the information con-
tent, or the amount of surprise the outcome of measure-
ments could provide. Constraints always reduce the num-
ber of allowed states for the system and therefore lower
the entropy.

The Landauer principle. Talking about the relation be-
tween information and physical entropy it may be appropri-
ate to briefly mention the principle proposed by Rolf Lan-
dauer in 1961, which is a particular formulation of the sec-
ond law of thermodynamics which directly applies to infor-
mation theory and computation. The principle expresses
the fact that erasing information necessarily involves pro-
ducing heat, thereby increasing the entropy. So, in other
words, the principle governs the intimate relationship be-
tween information processing and the production of heat.
This is of great importance, and it explains why large server
parks tend to move up further north to colder environments.
The heat produced by computers can certainly be reduced,
but the improvements are bounded by the second law of
thermodynamics.

We have illustrated the principle in Figure I.2.43. Consider
a ‘gas’ consisting of a single atom in a symmetric container
with volume 2V in contact with a heat bath. We imagine
that the position of the particle acts as a memory with one
bit of information, corresponding to whether the atom is on
the left or on the right.

Erasing the information amounts to resetting the device
to the ‘reference’ state |1i independent of the initial state,
and therefore reinitializing the system rather than making
a measurement. This can be done by first opening the di-
aphragm in the middle, then moving the piston from the
right in, and finally closing the diaphragm and moving the
piston back. In the first step the gas expands freely to
twice the volume. The particle doesn’t do any work, the en-
ergy is conserved, and therefore no heat will be absorbed
from the reservoir. For that reason this is an irreversible
free expansion process by which the entropy S of the gas
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Figure I.2.43: The Landauer principle. An illustration of the
Landauer principle using a simple ‘thermodynamical system’
consisting of a single particle in a vessel. See text for expla-
nation of the successive steps.

increases by a factor k(ln(2V) - lnV) = k ln(2V/V) =
k ln 2 . (The number of states the particle can be in is just
the volume; the average velocity is conserved because of
the contact with the thermal bath and will not contribute to
the change in entropy). In the second part of the erasure
procedure we bring the system back to a state which has
the same entropy as the initial state. We do this through a
quasi-static (i.e. reversible) isothermal process at temper-
ature T . During the compression the entropy decreases by
k ln 2 . This change of entropy is nothing but the amount
of heat delivered by the gas to the reservoir divided by
the temperature, i.e. �S = �Q/T . Therefore the heat
produced �Q equals the net amount of work W that has
been done in the cycle by moving the piston during the
compression. The conclusion is that during the erasure of
one bit of information the device had to produce at least
�Q = T�S = kT ln 2 of heat. This argument shows
that actually the heat computers generate is a necessary
byproduct of them destroying information. It directly links
the destruction of logical information with the thermody-

namical generation of heat. This is a powerful result as
it holds independent of the specific device one is talking
about.

To summarize, you could say that ‘forgetting’ has its price
(in heat). And that raises an interesting question about
computation in general: can one avoid the heat by do-
ing computation reversibly? The answer to this question
was given by Charles Bennet in 1982, and is affirmative.
However, reversible computation necessarily employs re-
versible gates only, but the familiar AND and OR gates (to
be discussed shortly) are not reversible because they re-
duce a two-bit input to a one-bit output, producing at least
kT ln 2 units of heat upon acting. A reversible computer
doesn’t pay the price of heat, but as all information has
to be stored, the price of reversible computation is the re-
quirement of ever-expanding memories! Not so cheap ei-
ther.

Models of computation

Computing is normally done by [a person] writing
symbols on paper. [...] I assume that the cal-
culation is carried out on one-dimensional paper,
i.e., on a tape divided into squares. I shall also
suppose that the number of symbols [...] is finite.
[...] The behaviour of the computer at any moment
is determined by the symbols which he is observ-
ing, and his ‘state of mind.’ [...] We may suppose
[...] the number of states of mind which need to
be taken into account is finite. ...the use of more
complicated states of mind can be avoided by writ-
ing more symbols on the tape [...] Every [simple]
operation consists of some change in the physical
system consisting of the computer and his tape.

Alan Turing,
On Computable Numbers with an Application to
the Entscheidungsproblem, Proc. Lond. Math. Soc.
2: 42. (1937)
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Turing machines. Armed with a precise and operational
definition of what information is, we should spend some
time on computation or the processing of information. What
are the basic underlying principles upon which the opera-
tion of all our computational devices is based?

We distinguish an input fed to a ‘machine’ that somehow
processes that input leading to the desired result. To achie-
ve this, the computer follows a sequence of instructions ac-
cording to a certain procedure; an algorithm, or a program
to produce the output. In a formal sense one could say that
the device computes the output as a function of the input.
As we have seen one can always present information in a
binary way as a sequence of zeros and ones. So comput-
ers basically evaluate a function of the input, correspond-
ing to the output. And a basic question concerning com-
putation is to model this process in its full generality and
determine what kind of functions can be calculated.

This is where the notion of a Turing machine comes in,
which is a formal device satisfying certain specifications
that can execute computations in the sense that it takes
input and produces the desired output. It is not a machine
in the ordinary sense but rather a fundamental model of
computation. It does not address the question of the possi-
ble physical implementation of the models, of how to make
them into real machines. It cannot care less whether you
build it with rods and wheels, or like a fluid system with
pipes and valves, or with Lego, or with elementary elec-
tronic semiconductor components called transistors.

Turing’s starting point was in fact a rather natural and intu-
itive one based on the notion of an effective computation.
A computation, procedure, or algorithm is called ‘effective’
if it satisfies the following criteria:

(i) it is specified in terms of a finite number of exact instruc-
tions,
(ii) if the instructions are carried out without errors, the de-
sired result is obtained in a finite number of steps,

Figure I.2.44: Turing machine transitions. The four possible
actions of the R/W head in a transition: (r) if it writes it cannot
move in the same step, and the state may either change or not;
(l) if it does not write it can move at most one step either to the
left or to the right, but cannot change the state .

(iii) the instructions could in principle be carried out by a
person only using using paper and pencil,
(iv) this person does not need any particular insight or in-
genuity to carry out the instructions.

Note that there is no restriction on the amount of paper
(memory), nor on the time it might take to perform the
computation, apart from it being finite. The computation
is ‘effective’ but not necessarily ‘efficient.’

The Turing machine can in principle perform any such ‘ef-
fective computation’ and is defined as follows:

(i) it has a (half)infinite tape containing cells labeled by an
integer p , each cell contains a symbol ↵ taken from an
alphabet A . In the following we will just take the alphabet
to be {0, 1} , meaning that the tape is just a binary string
which has a non-trivial input that starts on the left and may
end with only zeros on the right.
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(ii) a read/write head which is positioned at a given cell
where it can read and (re)write the tape if instructed to do
so. There are restrictions on what the head at any stage
can do.
(iii) At any given time the machine is in some definite inter-
nal state Sj which is an element of some finite state space
FS . The program or algorithm corresponds to a table that
precisely specifies for every state what transition it has to
make if the head reads either a zero or a one. This instruc-
tion specifies (a) what the head has to do, and (b) to what
state the machine is supposed to go.
(iv) At the start of the computation, the input is the binary
string on the tape. The head is located at the p = 0 cell
and the machine is in the internal state S0 . The program
halts if it reaches a final state (the output) where it finds no
further executable instructions. So this is how a Turing ma-
chine computes a binary output function from some binary
input.

From the fact that for any effective computation there is a
Turing machine, one can prove the existence of a univer-
sal Turing machine that can perform all effective compu-
tations. This machine defines the set of Turing-calculable
functions.

This rather intuitive definition of Turing-computability is the
subject of the Church-Turing thesis which is central in the
theory of computation. The Church-Turing thesis states
that Turing computability is equivalent to the much more
formal definition of computability based on recursive func-
tions and Abacus machines. We are not going to dwell on
these topics as they are really outside the scope of this
book. The thesis cannot be proven as it links formal to
intuitive notions. It is actually a hypothesis and all that
can be said is that no counter example has been found
so far.

At this point it is probably helpful to describe a basic ver-
sion of the machine in some detail. In Figure I.2.44, we
have the computer in some state Sj and we show the tape

Figure I.2.45: Turing machine state diagram. The state dia-
gram for the digital adder described in the text. In this program
the machine goes through four states before it halts; in each
state the move or write instructions on what to do if the head
reads a 0 or a 1 are indicated.

with the R/W head at some position p . The program tells
the head what to do but the possibilities are very restricted.
There are only four possible transitions for the head/ma-
chine to execute:

(i) it stays at position p and does not change the entry with
Sj ! Sj ,

(ii) it stays at position p and does change the entry on the
tape, in which case it also may or may not change the state
of the system Sj ! (Sj or Sk) ,
(iii) it moves to the right (p ! p+ 1) with Sj ! Sj ,

(iv) it moves to the left (p ! p- 1) with Sj ! Sj .

The permitted transitions are schematically depicted in Fig-
ure I.2.44.

A Turing machine can also be represented by a finite state
diagram. This diagram is a directed network where the
nodes are the states Sj and the directed edges represent
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the instructions. Instructions where the state does not
change correspond to lines returning to the same state.
The number of arrows leaving the node equals the num-
ber of symbols in the alphabet (in our case there are only
two).

In Figure I.2.45 we have depicted the state diagram corre-
sponding to a program that can add two positive integers
m and n . We should think of the input as the two numbers
in unial coding (this means that a number k is represented
by a sequence of k+ 1 symbols 1) separated by a 0 , with
also zeros on the left and on the right. So the input se-
quence on the tape would look like:

000[11...11]m+10[11...11]n+1000.

The head should then walk along the string of symbols
starting from the most left 1 , and then moves to the right
till it hits the in-between 0 , changing that 0 into a 1 , so that
the sequence then looks like:

000[11...11111...11]n+m+3000.

Next the head should move to the left till it hits the first 0
on the left, then moves right again changing the first two 1

symbols into 0’s. The result yields the required sequence
representing the desired outcome.

000[11...11111...11]m+n+1000.

You may verify that this sequence of steps is indeed per-
formed by the machine depicted in Figure I.2.45, by follow-
ing the sequence step by step.

We see that this simple problem already needs a quite
complicated diagram. It is therefore more convenient to
work in terms of logical gates, to which we now turn.

Logical gates. A computation is formally the calculation of
a function f of many binary variables, so f(a1, a2, . . . an) =
b . The circuit for f should after entering an input of any set
of a values return a binary number b . In practice one starts

Figure I.2.46: Logical gates. The one-bit NOT gate, some two-
bit gates, and their logical tables.

with a universal set of simple logical gates that compute
certain basic functions. By combining many of those in
specific parallel and serial arrangements, arbitrarily com-
plicated functions can be composed. Diagrams with logi-
cal gates are simpler and more practical than going all the
way back to the underlying Turing state diagrams.

The basic gates typically have only one- or two-bit inputs
and a one-bit output, like:

(i) the NOT gate inverting the value of a single bit, meaning
that if the bit contains a 1, then it is changed to a 0 and vice
versa;
(ii) the OR and the AND gate. These are 2-bit gates, they
are irreversible because they reduce the information of the
2-bit input to a 1-bit output.

One may prove that the set of these three gates is uni-
versal, in that they allow you to make machines to per-
form all the effective computations as defined by Turing.
There are many other gates possible and these may be
preferred depending on the problem one wants to solve,
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Figure I.2.47: Multiplication. A multiplication for two 2-bit num-
bers ‘by hand’ and the corresponding digital multiplier schematic
composed of six AND gates and two XOR gates. The two
lines of multiplication are performed in parallel, and the subse-
quent additions are sequential, so one therefore needs a total of
2n- 1 = 3 time steps.

for example the exclusive OR gate also called XOR gate.
It returns zero if both input bits are equal and one if they
are different. These simple gates compute simple binary
functions which can be represented in so-called truth ta-
bles where the possible input values (the arguments) are
given on the left whereas the function value appears on the
right. For the basic gates these tables are given explicitly
in Figure I.2.46.

In Figure I.2.47 we demonstrate for example how to multi-
ply two 2-bit numbers. We calculate 3 ⇥ 3 = 9 , which in
binary terms reads 11 ⇥ 11 = 1001 . On the left we show
how this is done by ‘hand’ with pencil and paper, and on
the right how it is done by a logical device consisting of
some AND and XOR gates. Using the truth tables it is quite
straightforward to follow the lines and put the bit-values on
them, and convince oneself that it indeed works.

Going quantum

Until recently, most people thought of quantum me-
chanics in terms of the uncertainty principle and
unavoidable limitations on measurement. . . The ap-
preciation of the positive application of quantum ef-
fects to information processing grew slowly.

Nicolas Gisin

Once we have come to appreciate the basic fact that infor-
mation capacity is directly related to the ‘number’ of avail-
able states of a system, it is immediately clear that if we are
to descend to the level of quantum mechanics, we have to
think in terms of quantum states. As we will see, quan-
tum states are quantessentially different from their classi-
cal precursors, and therefore we should be prepared to go
back to the drawing board and define from scratch what
we mean by information. The space of states has a com-
pletely different structure indeed, and that forced the scien-
tists to start developing what is nowadays called quantum
information theory.

It is in that way that a turning point in our understanding
of what matter really is on the microscopic level induced
a radical change in our basic notion of information. It was
the eminent physicist Richard Feynman who maybe for the
first time pointed out some of the basic principles in a well-
known paper entitled There is plenty of room at the bottom.
The change did not just affect the abstract, software side of
information theory, but also the hardware side. The crucial
challenge is nowadays to develop new types of quantum
technology that allow us to store and manipulate quantum
information. Without exaggeration one may say that this
constitutes a new holy grail for experimental physics and
engineering.

There are basically two reasons why information will go
quantum. The first is that information science has to con-
front quantum physics at some point because of Moore’s
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Figure I.2.48: Moore’s law. This law states the astonishing fact
that over the last half a century the power of computing has dou-
bled every 18 months. The continuous downscaling of the basic
components forces us to enter the gates of quantum domain.
(Source: High Tech Forum)

law. The second is that scientists who looked more thor-
oughly into the equations governing quantum information
made the astounding discovery that for a number of tasks
the quantum computer is extremely more powerful than its
classical digital counterpart.

Moore’s law. This is an empirical ‘law’ which refers to the
spectacular fact that our computational power over the last
half a century has increased at an incredible rate: on av-
erage it has doubled every 18 months, as you can see in
Figure I.2.48. This implies that it has been growing expo-
nentially for more than half a century! We are now at a
stage where a single active component of an integrated
digital circuit has a size of about 10 nanometer, very small
indeed. Once you realize that atoms are of the size of a
nanometer, it is clear that Moore’s law has to break down if
we don’t succeed in entering the quantum domain. In other
words the continued scaling down in the size of the hard-
ware components forces us to enter the quantum world

Figure I.2.49: RSA-2048. RSA-2048 is a number with 2048
binary and 617 decimal digits. The factorization has not been
found yet.

one way or another!

A tough problem: integer factorization. But going quan-
tum also means that we turn something that at first sight
looks like a crisis into a tremendous opportunity. Quantum
mechanics is so fundamentally different, that it would allow
for a quantum computer to solve problems that would be
intractable on our classical digital computers.
A famous example is the factoring problem: I give you a
very large integer N of n digits which I tell you can be writ-
ten in a unique way as the product of two other integers
M0 and M1 . I don’t tell you what they are, but instead ask
you to find M0 and M1 . This turns out to be an extremely
hard problem not only for people but also for very, very big
computers. Hard in the sense of time needed to find the
answer. Numbers of this type, that can be factorized into
two prime factors are called RSA numbers and they have
important applications in cryptography.

That may surprise you but let us get a rough idea of why
this is so.
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A simple way to find the divisors is the method of ‘trial di-
vision’ which goes back to the medieval Italian mathemati-
cian Fibonaci. To know whether a number N has a divisor
M you start with N and keep subtracting M until after k
steps you get a number smaller than M, if that number
happens to be zero then M is a divisor of N . You start do-
ing this by choosing M = 2 and that takes care of all even
divisors. Clearly the next number M we have to check for
would be the next prime number but that requires that the
list of primes is known. To get a rough estimate what we
can do is to check divisibility for all odd divisors. One addi-
tional observation that simplifies the search is the fact that
if the two prime factors are unequal then one will be larger
than

p
N and the other smaller. We thus have to check

the divisor property only up to
p
N. Knowing that apart

from the number 2 all prime numbers are odd we have to
only search for odd divisors, which leads to a further re-
ductions. An estimate for the maximum number of simple
subtractions P⇤ in such a worst case scheme would give:

P⇤(N) =
p
N
⇣1
2
+

p
NX

k=1

� 1

2k+ 1

�⌘
(I.2.41a)
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1

� 1
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2

�
dx

⌘

'
�n
2

ln 2
�
2n/2 . (I.2.41b)

In the last line we have assumed the number N to be a
n-bit number, N ' 2n, and kept only the leading term in
n. The key conclusion we draw from this rough estimate
that the core time needed to factorize an n-bit RSA num-
ber grows exponentially with n. It is no surprise then that
children find factorizing to be much harder than multiplica-
tion, and that is why in the pre-calculator-era they had to
learn the multiplication tables (which are also factorization
tables) from 1 to 20 by heart, like it concerned the first few
couplets of a universal human anthem! And with comput-
ers we do now the same thing, reading values from tables,
whether they like it or not. A realistic example of such a

Figure I.2.50: RSA-768. RSA-768 is a number with 768 bi-
nary and 232 decimal digits. The factorization given below was
obtained through a heroic effort by an international collective of
experts. It would have taken a powerful super-computer some
2000 years, but they managed to do it in just two years.

gigantic number is RSA-2048 shown in Figure I.2.49, hav-
ing 617 digital or 2048 binary digits. It is a public challenge
to factorize it into two primes, and if you meet the chal-
lenge you get US$ 200.000 – unfortunately the number
of dollars does not come near N , nevertheless making it
worth to give it a try! But wait is that true? We just calcu-
lated that the amount of processor time would typically be
t⇤(2048) ' P⇤(n = 2048) ⇥ (10-10 sec) > 10300 yr . this
is a clear warning that you have to come up with a rather
smart idea.

An example of an integer number that – in a heroic effort by
an impressive international collective of computer experts
and mathematicians, using a tremendous amount of algo-
rithmic ingenuity and digital power – has been successfully
factorized in its two prime factors, is called RSA-768 with
768 binary or 232 decimal digits. The result is displayed in
Figure I.2.50.
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Quantum factorization. We concluded that with a classi-
cal computer the typical time it takes to factor N in its prime
factors grows exponentially with its size n , but the Ameri-
can applied-mathematician Peter Shor proved in 1994 that
with a quantum computer the job can be done in polyno-
mial time. We will discuss the (quantum) algorithm he con-
structed in more detail towards the end of Chapter II.4 in
Volume II.

The factorization problem is in a strange way asymmetric:
finding the integers M0 and M1 is kind of exponentially
hard, but if you give me those integers, you and I can sim-
ply check wether you are right by just multiplying them us-
ing a large calculator, in a time of order t ' n . Factoriza-
tion is one of the main tools in cryptography, so it is not just
a matter of academic interest. It is of prime interest to all
those who are concerned about security and safe transac-
tions via the internet, like banks (and their clients), medical
services, intelligence agencies and twittering celebrities.
In fact, with today’s world in a severe state of cybernation,
all of us are highly dependent on a secure internet!

To see the huge importance of exponential vs. polynomial
scaling, suppose an elementary computational step takes
�t seconds. If the number of steps increases exponen-
tially, factorizing a number with n-bit will take �t 2an sec-
onds, where a is a constant that depends on the details
of the algorithm. We have depicted some of the differ-
ent computation time behaviors in Figure I.2.51. The take-
home message there is the huge qualitative disparity be-
tween polynomial and exponential behavior that becomes
manifest for large n .

For example, if �t = 10-6 and a = 0.1 , factoring a num-
ber with n = 1, 000 binary digits would roughly take 1037

seconds, which is much, much longer than the lifetime of
the universe (which is a mere 4.6⇥ 1017 seconds). In con-
trast, if the number of steps scales as the third power of
the number of digits, the same computation takes a 0�t n3

seconds, which with a 0 = 10-2 is 104 seconds or a little un-

Figure I.2.51: Computational complexity. The classes P and
NP refer to the growth of time needed to solve a problem of size
n . Problems in P can be solved in polynomial time (t ⇠ n↵

for some number ↵) and problems in NP cannot. These might
grow exponentially (⇠ 2n) or super-exponential (like the factorial
⇠ n! .) (Source: C. Moore, SFI)

der three hours. Of course the constants a , a 0 and �t are
implementation dependent, but because of the dramatic
difference between exponential versus polynomial scaling
for sufficiently large n , there is always a huge qualitative
gap in speed that cannot be compensated for by adding
more pieces of conventional hardware.

I should add that for the factoring problem as such, the
situation is in fact more subtle: at present the best avail-
able classical algorithm does significantly better than expo-
nential, it would require O

�
exp(n1/3 log2/3 n)

�
operations,

whereas an available quantum algorithm provided by Shor
needs O

�
n2 log(n) log(logn)

�
operations. To give you an

impression we give a log-linear plot of the two factorization
times in Figure I.2.52, and you can see that the behavior
for large n is qualitatively drastically different with slopes
tending to 1/3 (classical) and zero (quantum).

Factorization is only one of several problems that could
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Figure I.2.52: Factorization algorithms. A log-linear plot of
the estimated time it takes to factor an n digit number with the
best available classical and quantum algorithms mentioned in
the text.

potentially benefit from quantum computing. The impli-
cations of quantum information even go beyond quantum
computing, and include diverse applications such as quan-
tum cryptography and quantum communication, which by
the way is intrinsically secure.

The quantum leap to such mind-boggling speed-ups arises
from two main sources. Firstly from the intrinsically paral-
lel nature of quantum mechanics, which in turn is a conse-
quence of a quantessential feature called the linear super-
position principle. This parallelism basically derives from
the fact that state vectors have many components, and a
quantum interaction or operation or gate affects all com-
ponents simultaneously. Secondly from the existence of
so-called entangled states that are unique to quantum the-
ory. Particles that are in an entangled state can be cor-
related in a way which is not possible in classical phys-
ics. We will talk in quite some detail about these quantes-
sential notions in Volume II. The actual workings of quan-
tum theory were apparently sufficiently subtle that it took

many decades after the discovery of quantum mechan-
ics before anyone realized that its computational poten-
tial was fundamentally different and quite powerful indeed.
The huge interest in quantum information and computation
in recent years has caused a thorough re-examination of
the concept of information contained in physical systems,
spawning the field that is referred to as ‘quantum informat-
ics.’

Computational complexity. One of the deeper issues in
the theory of computation is to try and quantify what we
mean by computational complexity. Roughly speaking a
measure of the complexity of a problem would be the time
it takes to solve the problem on a computer running an
optimal program (algorithm) for that problem. The time it
takes to multiply two n-digit numbers on a computer for
example would naively grow quadratically with their size
n, because you have to do of the order of n2 basic multi-
plications (plus order n additions). You can gain a factor n
by parallelizing the algorithm: the multiplications giving the
n ‘rows’ in the standard multiplication chart can be done in
parallel, and the subsequent additions have to be done se-
quentially, as indicated in Figure I.2.47. The classification
of complexity is now linked to the functional dependence
of the computation time on n .

There is a crucial distinction to be made here. Firstly,
there are problems that can be solved in polynomial time,
meaning that time is bounded by some simple power law
t  nk . Such a problem is by definition in the ‘polynomial’
class P , but one believes that there are many problems
that do not belong to P and they belong to a larger set con-
taining P as a subset denoted by NP . Note that NP does
not just mean ‘not polynomial.’ The set NP contains prob-
lems of the ‘find-the-needle-in-a-haystack’ type. These are
hard to solve because you basically have to do an exhaus-
tive search of the whole stack and that takes a hell of a
lot of time. The distinguishing property for NP is that once
you have found an answer it is straightforward to check that
your answer is right or wrong. Easy, because a needle is a
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Figure I.2.53: Complexity classes. Hypothetical hierarchy of
computational complexity classes and some standard problems
belonging to them. Note that the integer factorization and graph
isomorphism problem are classically believed to be not in P but
in NP while in quantum informatics they belong to QP. (Source:
M. Freedman et al.)

needle, isn’t it? The formal statement is that the answer to
an NP problem can be checked in polynomial time.

The hardest problems in NP are called NP-complete. The
NP complete problems are in an abstract way equivalent,
meaning that they can be mapped onto each other in a
one-to-one way. If you solve one, you have solved all of
them. Integer factoring is believed to be in NP but not in
P . Furthermore the problem is not considered to be NP-
complete; it is believed to belong to an intermediate class.
The complexity of complexity theory is that we do not a
priori know that a super smart algorithm does not exist to
factor large integers into their prime factors in polynomial
time, but that we just have not been able to find the algo-
rithm yet, nor have we found a formal proof that such an
algorithm does not exist. We find ourselves in a serious
catch-22 situation. Therefore one likes to say that certain
problems are ‘believed’ to be NP-complete.

P versus NP . Indeed, the million dollar question really is
whether NP in the end is not just equal to P! Here we just
have to wait for some real or arificial computer genius to
strike. That question by the way is considered to be so
fundamental, that it appears on the illustrious list of seven
Millennium problems of the Clay Institute for Mathematics
in the US, which were announced at a meeting in Paris,
held on May 24, 2000 at the Collège de France. Just solve
it and they will pay you that million dollars!

Clearly the advent of quantum information theory calls for a
new complexity classification scheme, with new categories
denoted as QP and QNP . And therefore the complexity
analysis becomes even more intricate. Whereas factoriza-
tion is believed to be classically NP it is in quantum QP

as we have indicated in Figure I.2.53. Nevertheless, as
things stand now, there is still a remote but dramatic pos-
sibility that the content of this complexity picture in the end
collapses to a single point!

We will return to what a qubit, the fundamental building
block of a quantum computer, exactly is, as well as to the
basics of quantum communication in Part II of the book.
Quantum computation as a branch of science nowadays
involves sophisticated and highly specialized subfields of
experimental physics which are beyond the scope of this
introductory book. We want to restrict ourselves to the
quantessence after all. One quantessential conclusion we
want to draw here is that information will go quantum not
too long from now. Or, to quote Nelson Mandela: ‘It’s al-
ways impossible until it’s done.’

Quantum physics: the laws of matter

[The homeland] looked strange to us returned sol-
diers. . . The civilians talked a foreign language. I
found serious conversation with my parents all but
impossible.

Robert Graves, Goodbye to All That.
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Understanding the deep structure of matter has led to a
new conceptual basis for all of physics. A basis that gov-
erns the laws of new fundamental particles and force fields
but also of new phases of condensed matter, of chemistry
and finally the laws of quantum information.

Surprisingly, this section is the shortest of this chapter.
The reason is simply that we still have a whole book in
front of us on the subject. Quantum theory has the names
of many great scientists associated with it, and not just
because of the saying that success always has many par-
ents. Roughly speaking one distinguishes three genera-
tions of quantum physicists. The first generation consists
of people like Max Planck who coined the idea that energy
of heat radiation be quantized, Albert Einstein who, follow-
ing Planck, postulated the existence of a particle of light,
which he called a photon and explained the photoelectric
effect using this new particle, and finally, Niels Bohr, the
great Danish physicist whose model for the atom proved
it to be a tremendous breakthrough. A second generation
consists of great names like Erwin Schrödinger, Werner
Heisenberg, Paul Dirac and others, who managed to give
a mathematical foundation for the theory and derive its fun-
damental equations. Many other luminaries like Wolfgang
Pauli, Max Born, Enrico Fermi and John von Neumann
greatly enhanced our understanding and interpretation of
the theory (see Table B.1 on page 645 of Part III).

After the Second World War a third generation took the
stage, with the development of quantum field theory as the
most outstanding fundamental contribution. Great physi-
cists like Richard Feynman, Julian Schwinger and Sin-Itiro
Tomonaga completed quantum electrodynamics shortly af-
ter the war, and during the sixties and seventies a long list
of distinguished scientists constructed the Standard Model
of elementary particles and fundamental forces (see Ta-
ble B.3 on page 647 of Part III).

Parallel to these developments many new research direc-
tions opened up such as quantum chemistry, quantum con-

densed matter theory, quantum material science and quan-
tum optics (see Table B.2 on page 646 of Part III). We
would also like to mention the fundamental progress in our
theoretical understanding of quantum principles that these
three generations and generations after them have left us
with. This book is of course completely devoted to these
matters and we will discuss what the central ideas of quan-
tum theory are and how counter-intuitive and therefore un-
believable these ideas must have appeared at the time of
their inception. You might experience some of that same
uneasiness as you read along. As a matter of fact quan-
tum physicists all around the globe have acquainted them-
selves with the theory to such a degree that most of them
have developed some kind of ‘quantum intuition.’ And yet,
in spite of that they are still regularly taken by surprise with
what nature is telling them.

The development of quantum theory is one of the most
astonishing achievements of twentieth century science to
which a large number of gifted characters have contributed
in the period of time encompassing the two world wars. It
paved the way for a multitude of technological advances
and even now we feel that the era of quantum technologies
has only just started. This is exemplified by the promis-
ing developments where quantessential principles are ex-
ploited to create a totally new type of information science,
involving quantum computing, quantum teleportation and
quantum cryptography. Such is the power of truly new fun-
damental insights in the workings of nature: what at first
appears as pastimes for absent minded eggheads, ends
up as core ingredients of radical innovations and new tech-
nologies. Innovations that have offered new options for
society, and often have deeply affected the human condi-
tion.

This book is quite voluminous, but that should not surprise
you once you realize that – as is in full display in the tables
at the end of the book – so many Nobel prizes have been
awarded in this incredibly prolific field of science.
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Further reading.
On relativity:

- Very Special Relativity: An Illustrated Guide
S. Bais
Harvard University Press (2005)

- Exploring Black Holes: Introduction to General
Relativity
E.F. Taylor and J.A. Wheeler
Addison Wesley (2000)

- General Relativity
R.M. Wald
University of Chicago Press(2010)

- Gravity: An Introduction to Einstein’s General Rel-
ativity
J.B. Hartle
Cambridge University Press (2021)

On the physics of geometry:

- Flatland: a Romance of Many Dimensions
E.A. Abbott
Penguin Group (2020)

- The Geometry of Physics: An Introduction
T. Frankel
Cambridge University Press (2011)

On the Physics of Information:

- Introduction to the Theory of Computation
Sipser
Cengage India (2014)

- The physics of information
F.A. Bais and D. Farmer
Chapter in Philosophy of Information
P. Adriaans and J. van Benthem (Eds)
Elsevier Publishers (2008)
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Chapter I.3

Universal constants, scales and units

Is man the measure of all things?

Physicists have come to appreciate the existence of cer-
tain universal constants of nature like the velocity of light,
Newton’s constant, the elementary charge, Planck’s con-
stant etc. These are numbers that cannot be calculated
from first principles. They have to be obtained from mea-
surements and their values set the scales that character-
ize our universe. First we show how these constants can
be used to define a complete and consistent system of
units. In the second section, we take a step back and
ask whether these constants are really universal, or just
the parameters that appear in our theories and therefore
only reflect the present state of science. In the third sec-
tion, we play around with these constants to explore to
what extent these natural scales mark the domains of va-
lidity of particular theories. We conclude by describing the
Planck system of ‘natural’ units and discuss its interpre-
tation. Indeed, the arguments presented in this chapter
suggest that man is not the measure of all things, rather
the arguments constitute a modest plea to bid farewell to
anthropocentrism.

Isn’t it a pity that we have lost many of those good old
home and kitchen units, such as the thumb, the ell, or
the foot, the knifepoint, the stone, the cloud, the crate, the
walking hour, or horse power? The ‘foot’ is an example of
where man was taken as the measure of all things; in fact

Figure I.3.1: The international prototype of the kilogram. Up
to 2019, this was the standard of mass, kept under three glass
bells in the Bureau International des Poids et Mesures in Paris.
(Source: Wikimedia)
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it was in the middle ages around 1100 that King Henry I
decreed that his foot would be the unit of length. A nice il-
lustration of the amusing fact that even only one man could
be the measure of all things, with the clear disadvantage
that that unit undoubtedly changed over time and further-
more one may assume that he took this ‘standard foot’ with
him in his grave. Since the era of the Enlightenment we
have been ‘decimalized,’ as the powers of ten are natu-
rally built into our common number system and our metric
unit system, and they are now by far superior, not least be-
cause they are pretty much shared globally. However as
you know there are many remnants that don’t fit in. I am
not just talking of astronomers or atomic physicists claim-
ing that they only live 10-13 parsecs or 1013 angströms re-
spectively from their work, because such jargon is presum-
ably rather a measure of their ‘professional deformation,’ or
should I say devotion? A brief history of time may clarify
what I mean.

On time

It’s about time. In spite of the globally accepted met-
ric supremacy, there remains ample room for exceptions.
Think of our units of time for example. As you know, these
are mostly dictated by the dynamics of our solar system,
with the year that refers to the earth’s rotation around the
sun, while the month is set by the moon’s rotation around
the earth and the day is fixed by our rotation around the
axis of the earth. In fact the system of time divisions was
primarily inspired by the geometry of the circle, which has
360 degrees, approximately one degree per day. The cir-
cle exactly encloses six adjacent equilateral triangles with
all angles equaling 60 degrees, and when you cut this par-
tition in half – which one can do with only ruler and protrac-
tor – you would account for the division of a year in twelve
months. The solar system’s periodic motions serve as a
celestial clock, with the almost natural choice of 24 hours
to the day. It is better to think of twelve hours for the day

and twelve for the night, which is a division believed to go
back to the Egyptians who did their arithmetic in base 12.
From the hour down, the minute and the second are then
counted in the base-60 numbering1, and below the sec-
ond we talk milli- and nanoseconds and we unanimously
convert to base-10 numbering. At the opposite end of the
scale we think also in powers of ten centuries and millen-
nia. So, indeed, our common time units are quite archaic
and convoluted.

Unifying the incommensurate. The numbers given to us
by Mother Nature are far from accurate because they may
vary. Moreover, they inhibit implementing the geometric
precision we just alluded to, because there is no physi-
cal reason why the units of year, month and day should
have anything to do with each other as they refer to en-
tirely different dynamics which are almost completely de-
coupled. And that’s of course why the year is approx-
imately 365.2422... days. To put it in perspective, it is
like decreeing that from now on there are approximately
9.893... cents to the dime and 9.734 dimes to the dollar!
Such incommensurate units would lead to a lot of prob-
lems at the check out, I am sure!

To arrive at an orderly bookkeeping of time it took nothing
less than a pope – Gregory XIII to be precise – to decree
in 1582, much like a well-trained engineer, that we should
make successive approximations. First we put 365 days
in the year, but to make up for the other decimals we add
one day – let’s pick the 29th of February – every four years,
and call that a leap year. That brings us up to 365.25 days
per year on average. Now the next step in our approxi-
mation is made by skipping one leap year at the turn of
the century, which brings the leap day contribution down
by a factor 1/25 so we drive at 365.24 days per year on
average. In the next step, we don’t skip every 400 years

1The base-60 or sexagesimal number system goes back to the
Babylonians as far as about 3100 BC. They later even introduced a
positional notation marking for empty places (like our zeros) to keep
track of additional powers of 60.
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which gives us a score of 365.2425.The subsequent cor-
rections are accounted for in a rather ad hoc manner by
the introduction of what are called leap seconds.

We see the disparity and feel the tension between nature’s
innate rhythm and the strictly rational recipes we would like
to impose. It reminds us of that funny story of a governor
of a southern state in the US, who thought he could ren-
der his community a great service by decreeing that the
number ⇡ from then on would be set equal to 3 in order
to simplify life! But as the number ⇡ is defined as the ra-
tio of the circumference to the diameter of a circle, there
is not much room for decreeing anything about it. With
the millennium debacle still fresh in our minds, when lots
of computer software went haywire because of hardwired
calendar settings which couldn’t handle the number 2000,
we may have to anticipate future troubles simply because
the trivial accounting of the Gregorian calendar has not
been implemented correctly.

It is amusing to learn that the decimal metric system, which
goes back to the French Revolution, was also originally
intended to cover the measurement of time. In 1793 ap-
parently the French Republican Calendar was introduced,
with weeks of 10 days, lasting 10 hours, with 100 minutes
to the hour, and 100 seconds in one minute. This caused
massive protests, not in the least by the church authori-
ties, who felt they were losing influence and didn’t want
to reshuffle their Holy days, which were shared anchor
points for people’s sense of time. It was only in 1805 that
Napoleon decided to abandon the system.

The system of time units is, like our DNA, the outcome of
a contingent sequence of improvements that for the case
at hand co-evolved with us humans. Our common units of
time unmistakably reflect the subsequent stages of human
scientific awareness and technological advancement.

Reinventing the meter

An optimal system of units should be complete and consis-
tent, but also precise. This implies that the most advanced
measurement of the universal constants of nature, or com-
binations thereof, have to be used to define units. Ac-
cording to the Système International (SI) of units, it distin-
guishes 7 base units and more than twenty derived units.
The 7 (independent) base units are: the second (time), the
meter (length), the kilogram (mass), the ampère (current),
the kelvin (temperature) the mole (amount of substance)
and the candela (luminosity).

The measurements by which these units have to be de-
fined should not only be precise, but should also be rela-
tively easy to reproduce, so as to make it easier to share
the system of units in a practical way. These criteria are
ever more relevant, as many of our daily activities depend
on a great precision of measurement that makes our de-
vices work, think for example of using the Global Position-
ing System (GPS). These criteria also make it mandatory
that the system of units has to be upgraded from time to
time so as to take advantage of the newest scientific and
technological advances, not unlike the operating systems
of our computers.

Let us return to our brief history of time, and see what hap-
pened to the definition of the second as a unit of time in the
course of time. We started with time units inspired by the
heavenly mechanics and the observations thereof. It may
surprise you, but indeed, up to 1960 the second was de-
fined as ‘the fraction 1/86400 of the mean solar day.’ The
exact definition of ‘mean solar day’ was left to astronomers.
Apart from the fact that the rotation of the earth has irreg-
ularities, the measure itself was ad hoc. In 1967, it was
finally switched from an astronomical to an atomic time
standard as it is both far more precise and much easier
to reproduce.
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When the Saints go marching in...
Given the plain fact that the human
length is of the order of a meter, their
weight is in the range of kilograms,

their hart ticks at the rate of seconds we should
not be surprised that we have ended up with some-
thing nice like the metric SI (Systeme International
d’unités) – or MKS (Meter-kilogram-second) system
as the measure of measures. And with it come the
prefixes, the formal powers of ten, from picosec-
onds to terabytes and beyond.This metric thinking
suggests that scientists have lifted their quantitative
thinking entirely to the rational norm.
But alas, it is exactly in their ranks that irrational
alternatives flourish. Extensive use is made of de-
rived units that pay tribute to their ancestors and
perhaps – who knows – one day to themselves. Ex-
perts thus actively employ the Newton, Joule, Pas-
cal, Coulomb, Watt, Farad, Ångström, Tesla, Gray,
Henry, Fermi, Ohm, Siemens, Weber, Hertz, Oer-
sted, Becquerel, Rydberg, Curie, Fahrenheit, Rönt-
gen, Stokes, Millikan, Gray, Sievert, and whatnot.
What’s in a name, you may wonder. However, note
that we should have typeset these names in lower
case, to avoid any suggestion that they might re-
fer to individuals. After all, the force of 3 Newtons
is quite something else than 3 newton. If only we
could have 3 Newtons! It reminds me of the dis-
claimers made in the preface of some classic nov-
els: ‘all similarities with persons alive or dead are
purely accidental.’
Count your blessings though: in the nineteenth cen-
tury, just to communicate about temperatures, one
had to convert between a rich variety of what I
would like to call tribal scales. Not only the famil-
iar degrees Fahrenheit, Celsius and Kelvin, but also
degrees Réaumur, Rømer, Rankine and Wedge-
wood ! Fortunately there is only one nature, mean-

ing that whatever units you happen to invent, they
always can be converted to more sensible ones.
So, referring to obscure units is more a matter of
name-dropping highly-esteemed colleagues, than
using double standards. ⇤

Today the second is defined as:

the duration of exactly 9192631770 periods of
the radiation corresponding to the transition be-
tween two hyperfine levels of the ground state
of the Caesium-133 atom.

This we may write as an exact defining equation:

⌫Cs ⌘ 9, 192, 631, 770 s-1 . (I.3.1)

This definition of the second refers to the frequency asso-
ciated with the radiation that is transmitted if the Caesium
atom makes the transition between two well-defined quan-
tized energy (hyperfine) sub-levels. You could say that a
Caesium clock gives about 9.2 billion ticks a second. That
quantity can be measured with great precision, meaning
that if you compare the outcomes of a great many carefully
performed measurements, the spread of outcomes will be
extremely small. In other words it is the spread of these
measurements which determine the number of significant
(reliable) digits. By defining the second as a fixed number
times a physical observable, the number of significant dig-
its in the definition of the unit equals that of the best possi-
ble measurements. The central point here is that the units
inherit the precision of the measurements and they there-
fore necessarily co-evolve with the state of the art in ex-
perimental physics, without the need to redefine the units
all the time.

You may not be surprised to hear that at present physicists
are in the process of developing devices which will allow us
to define the unit of time by a factor 100,000 times more
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precise’, by using so-called femto second lasers, that de-
liver tiny pulses about 1015 per second. This technique
uses a so-called frequency comb, produced by a pair of
frequency locked optical lasers. It is a quantum optical de-
vice for which the Nobel prize was awarded in 2005 to the
American physicist John Hall and his German colleague
Theodor Hänsch. Indeed the definition of time is getting
outdated all the time and a switch to the new quantum op-
tical standard is to be expected in ten years’ time.

In quantum theory many observable quantities like energy
levels, currents, fluxes, charges and so on turn out to be
quantized, meaning that they only can take on discrete val-
ues, exactly equal to integer multiples of certain combina-
tions of universal constants. This ‘quantization’ property
allows them to be measured with extreme precision and
that makes them particularly suitable for defining units. We
should devise definitions for a set of base units linked to
the universal constants of nature so that we can measure
the best, and then use those to define the other derived
units.

Also in that vein the unit of length, the meter, was redefined
in 1983 as:

the distance traveled by light in vacuum in ex-
actly 1/299792458 of a second.

Another way to say it would be to state that,

c ⌘ 299792458 m/s , (I.3.2)

again exactly, no decimals to be added! This definition to-
gether with the definition of the second then defines the
meter. We need no longer refer to the International Proto-
type Meter kept at the Bureau International des Poids et
Measures in Paris, as the distance between two marks on
a Platinum-Iridium bar that was kept at the freezing tem-
perature of water.

Now, it may come as a surprise to you that the definition

of the kilogram as the unit of mass was up to 2019 linked
to an artefact, the International platinum-iridium kilogram
kept at the aforementioned Bureau in Paris, and shown in
Figure I.3.1. It comes across as indeed somewhat archaic,
and fortunately this artefact has been replaced by a more
adequate and operational definition involving Planck’s con-
stant, again referring to precise measurements of quantum
behavior.

The definition of ampère also used to be somewhat cum-
bersome and hard to implement. It was defined as:

the constant current which, if maintained in two
straight parallel conductors of infinite length,
of negligible circular cross-section, and placed
1 meter apart in vacuum, would produce be-
tween these conductors a force equal to 2 ⇥
10-7 newton per meter of length.

Imagine entering the store and asking for two infinite wires
of zero cross section: ‘Oh yes, Sir, uh, let me see, oh no,
it’s not in the catalogue. I am really sorry Sir. And by the
way, Sir, may I ask also you to be so kind as to leave my
store immediately please.’

As to the notion of temperature, the definitions were linked
to phase transitions in matter systems, as for example the
Celsius degree which was defined as 1/100 of the tem-
perature difference between the boiling and freezing tem-
peratures of water under ‘normal’ conditions. Since 1954,
the kelvin has been defined as exactly equal to the frac-
tion 1/273.16 of the thermodynamic temperature of the
triple point of water, which is the point at which water,
ice and water vapor co-exist in equilibrium. That is a very
useful definition because for water at a specific pressure,
the triple point always occurs at exactly a temperature of
273.16 K. Yet also there it was agreed to couple the defi-
nition with a universal constant – the Boltzmann constant
k – which links energy and temperature according to the
formula E = kT . The new 2019 definition reads:
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The kelvin, symbol K, is the SI unit of ther-
modynamic temperature; its magnitude is set
by fixing the numerical value of the Boltzmann
constant to be equal to exactly 1.380649⇥10-23

J/K [joules per kelvin].

As a matter of fact the most accurate measurements of k
(about one part in a million) have been obtained by acous-
tic thermometry, which relies on the fact that the speed
of sound in a gas is directly dependent on its tempera-
ture.

Can we change? Yes, we can! What has happened
over the last half-century is that we have been replacing
units defined by certain sacred artefacts kept in highly-
esteemed institutions, with units based on precision mea-
surements of certain universal constants or combinations
thereof.

The diagram depicted in Figure I.3.2 gives a comprehen-
sive scheme of the newly proposed definitions of the base
SI units. The proposal was prepared by the Comité inter-
national des Poids et Mesures and was officially adopted
in 2019. This is quite a substantial upgrade, much like the
upgrades of your computer software, except that I would
guess that here we talk about version 26 or so, because
the first versions go back to about 1875. The base units
are represented as colored nodes, and the fundamental
constants of nature used to define them correspond to
the surrounding brown nodes. The grey arrows indicate
how the definitions are hierarchically linked to each other.
There are seven fundamental units, and therefore seven
constants are needed to fix them. The proposal is inter-
esting in that these seven constants are given exact values
when expressed in the base units, and therefore this guar-
antees a consistent set of definitions if we follow the arrows
in the appropriate way. To understand how a unit is defined
you look at the arrows coming in to the corresponding node
and see where they come from. One arrow comes from an
adjacent constant of nature and possible others come from

Figure I.3.2: New SI-Units The update of the definition of the
base SI units adopted by the Comité international des Poids et
Mesures in 2019. The brown nodes represent integers defining
the constants and the arrows indicate the dependencies in the
definitions. You start by defining the second in terms of the fre-
quency of the ground state Caesium hyperfine transition. Then
you move on to the meter, the kilogram and the ampère, all of
which involve one additional constant, and then you move on to
the kelvin and candela. (Source: Emilio Pisantly, on Wikipedia.)

units that have been defined before.

Let us consider the definition of the ampère A . We start
with the gray arrow coming from the elementary charge
e , that arrow represents the exact value of e in terms of
A :

e ⌘ 1.602176634⇥ 10-19 A s .

The other arrow comes from the ‘second,’ which is the unit
we already defined in terms of the caesium frequency, and
therefore A is defined in terms of the observed values of e
and ⌫Cs .

For the kilogram the prototype is no longer used, but refer-
ence is now made to the exact value of Planck’s constant
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h:
h ⌘ 6.62607015⇥ 10-34 kg m2 s-1 ,

which now also involves the meter (referring to c and sec-
ond) and second (referring to ⌫Cs). So the definition of the
kilogram relies on the measurement of the constants h, c

and ⌫Cs .

The remaining question is how, and in what combinations,
are these constants determined experimentally. For exam-
ple magnetic flux� that pierces through a two-dimensional
superconductor happens to be quantized directly in terms
of fundamental constants: � = n�0 = nh/2e , from which
the Josephson constant KJ = 2e/h can be measured ex-
tremely precisely. On the other hand, in a so-called quan-
tum Hall system, the Hall-conductivity, which is a trans-
verse conductivity, is quantized in units �H = ne2/h that
allow for a precise determination of the Von Klitzing con-
stant, RK = h/e2 . Measuring these two constants yields
an accurate determination of the fundamental constants e

and h . Another important observable defined in terms of
fundamental constants, which can be measured very pre-
cisely, is the fine structure constant ↵ ,

↵ =
1

4⇡"0

e2

h̄c
. (I.3.3)

Indeed the choice of universal constants forms a fair re-
flection of the depth and precision to which science has
managed to descend, and the way they are used in the
definition of SI units strikes the optimal balance between
precision and reproducibility.

How universal is universal?

Universality is a beautiful, ambitious, but also vulnerable
concept, because how do we know whether some con-
stants of nature are universal or not? In mathematics we
know such numbers exist, but in physics it is harder to

define and establish universality. One should at least re-
quire that such would-be universal numbers are the same
throughout the (our) universe. But how do we know they
are or are not?

Universal constants are – if not God-given – at least Mother-
Nature-given-numbers. They happen to be equal to what
they have been found to be in human experiments. Their
values are believed to be universal, that is, independent of
space and time. As you know too well, that doesn’t hold for
all Mother-Nature-given-numbers, like todays value of your
body-mass index for instance, or the viscosity of some ex-
pensive French Cognac. If I use phrases like ‘the same ev-
erywhere and for all time,’ I in fact mean everywhere and
for all time in our universe, or even better, just nearby in
our universe in our present age. Because if we happen to
live in a multiverse – and there is no fundamental reason
why not – then one of the clues about multiverses is that in
each separate universe the laws of physics could be quite
different. They would represent very different points in the
space of possible theories that we have come up with so
far. This would imply that there might be entirely different
sets of universal constants or known constants could take
different values.

Fundamental constants as model parameters. A more
pragmatic approach would be to postulate that the univer-
sal constants are the numerical input parameters that ap-
pear in our theories, such as the masses of elementary
particles and the strengths of the fundamental forces. The
latter, like Newton’s gravitational constant and the elec-
tron charge, are also called coupling constants because
they set the strength of the forces between particles car-
rying mass and/or charge. The very fact that they ap-
pear as input parameters means that they cannot be calcu-
lated within that theory; their value can only be determined
through experiment. And for all we know these numbers
are completely independent.

In mathematics we have universal numbers that are ab-
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solute as they can be rigorously defined. The number ⇡
for example is defined as the ratio of the circumference
of a circle and its diameter. It is a dimensionless number
that cannot change and is absolute within the framework
of mathematical axioms. One might be tempted to link the
dimensionless ratios of physical universal constants to an
expression in terms of the universal numbers of mathemat-
ics only, much like Plato in his cave would have liked it. In
spite of the fact that there is quite an industry actively pur-
suing these ideas, I consider that somewhat premature. I
can only envisage such a step as a final one where the
ultimate unified physical theory would be obtained. But
nobody promised us such a paradise in the first place so
let’s go back to the parameters in our current fundamental
physical theories.

Reducing the number of fundamental constants. From
the perspective of physics it makes complete sense to ask
how fundamental these would-be fundamental constants
really are. Over time, physical theories get more and more
unified in their description of physical phenomena, imply-
ing that fewer theories with a smaller number of parame-
ters suffice to account for the same or an even larger body
of experimental data. This means that the number of inde-
pendent fundamental constants has to decrease because
we discover relations among them.

Think for example of Maxwell’s theory unifying the descrip-
tion of electricity, magnetism and light into a single frame-
work. That theory has in fact three fundamental constants
(i) the dielectric constant of the vacuum ✏0 featuring in
the Coulomb law that gives the force between two electric
charges (ii) the magnetic permeability of the vacuum µ0

featuring in Ampère’s law that gives the force between two
current carrying wires and (iii) the velocity of light c . Now
it turned out that there is a relation between these con-
stants that follows from Maxwell’s equations, that relation
is just c = 1/

p
✏0µ0 , and it is this relation which allowed

us to write the Maxwell equations (I.1.26), with only the ve-
locity of light appearing in them. This is a nice illustration

of the fact that the more unified the perspective, the lower
the number of independent fundamental constants. This
insight forces us to accept that our universal constants are
not so universal after all, and it makes us wonder where
this game will end.

Where do we stand? Constants that at present are con-
sidered to be universal are for example the strength of the
gravitational and electric forces GN , and e2/4⇡✏0 , the ve-
locity of light c , Plank’s constant h̄ , and Boltzmann’s con-
stant k . These constants are dimensionful ; they are not
pure numbers like ⇡ , because they have some units linked
to them, like c has units length/time. That may disappoint
you because we are talking about universal constants and
they change already if we go from measuring lengths in
meters to lengths in inches and the like.

But the good news is that they, exactly because they have
units, provide universal – Mother Nature given – links be-
tween those different types of units. Such links allow you to
eliminate specific units, for example we can use c to con-
vert to units where spatial distance is measured in sec-
onds, light seconds to be precise. A distance of one
light second is defined as the distance a light pulse would
travel in one second, so generally the distance d in meters

corresponds to a distance d/c in light seconds. This is
what we discussed extensively in the previous section. In
these units the sun is eight light minutes away while the
Andromeda galaxy 2.5 million light years. Planck’s con-
stant h appears in the fundamental relation linking energy
and frequency postulated by Einstein reading E = h⌫ , and
has units joule⇥ second , the velocity of light links mass
and energy (E = mc2) but also space and time as we saw.
Boltzmann’s constant links temperature to energy through
the relation defining the thermal energy E = 1

2NkT . Hav-
ing all these relations we could do away with all conver-
sion factors, meaning that you can choose units in which
the universal constants (h, c and k) would become equal
to unity, and then measure everything in powers of only
joules (energy) or only meters (length) or only seconds
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(time). We will come back to this system of ‘natural units’
shortly.

Time dependence of fundamental constants? The com-
ments made so far suggest that we take a more pragmatic
stand on this question of universality. On a deeper level the
value of many would-be universal constants could for ex-
ample depend on some underlying, hitherto unknown dy-
namical mechanism, which typically means that they are
probably not constant in space and time. Instead they are
like fruit or peanut butter, in that they have an expiration
date. They turn from external input parameters of the old
theory into calculable output parameters of the underly-
ing new theory. They move from the pool ‘fundamental’ to
the pool ‘effective.’ But if this is the way it works it sug-
gests that we should go out and measure whether there
are universal constants that do actually vary in time and
space. We know for example that the fine structure con-
stant ↵ = e2/4⇡h̄c sets the scale for the separation of lines
in the atomic spectra, and one could try to make observa-
tions of the spectra emitted from atoms that are very, very
far away in the universe and check whether the fine struc-
ture constant was exactly the same or different at the time
the signal was emitted. Experiments of this nature were
proposed by John Barrow et al. in 2002. The results of
such experiments have so far not confirmed the idea but
did produce some upper limit on the relative shift of ↵ of
10-17 per year in 2008.

The narrow window of opportunity for life. It is the set
of values that these constants of nature have, which turns
out to be essential for our universe to be what it is. How do
we know? Can we go to other universes to check this out?
No, not quite, but having reliable theories in which these
numbers feature allows us to ask what would have become
of our universe if the parameters had had different values.
The result of such an exercise is quite surprising not to say
startling: it is only in a very narrow window of parameter
values that a universe like ours, with its structural complex-
ity and diversity as expressed through the chemistry of life

What to do if somebody tells you
that they weigh 1052 Hertz? If you be-
friended a music lover and they tell you
that their mass is 1052 Hertz (1 Hz =

1 inverse second), then you might want to call them
crazy, but if they know about universal constants
what they say may make complete sense. You can
always go back and restore the more familiar units
by multiplying with a particular simple combination
of fundamental constants. In this case you start with
inverse seconds and want to get back to kilograms:
M = 1052[second-1] = M ⇥ h [joule] = M ⇥
h⇥c-2 [kg] . So, the upshot is that the combination
hc-2 converts [sec-1] into [kg] . The numerical fac-
tor involved equals 6⇥10-34/9⇥1016 = 0.66⇥10-50

[sec kg] . So having a mass of 1052 Hz is actually
quite OK. Indeed, units are a matter of convention; if
somebody on a market ordered 50 troy ounces of
Gouda Cheese, you would not be surprised if I told
you that this person was an English jeweler honey-
mooning in Amsterdam, would you? ⇤

for example, would be possible. We have touched upon
some of these aspects in the section about Big Bang cos-
mology. And others will be mentioned in a section on the
ascent of matter in Chapter III.1.

Turning the argument around one could say that choos-
ing the values of the universal constants at random, the
chance to end up with an inhabitable universe would be
vanishingly small. We expect universes equipped with fancy
observers like ourselves to be extremely rare. Lucky us!
The anthropic principle – a philosophical principle – refers
exactly to the attempt to apply the arguments just pre-
sented in the opposite order. It tries to derive the struc-
ture of our actual universe solely from the fact that we,
homo sapiens, are here. In a qualitative sense this is of
course an interesting question, but as a quantitative ap-
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proach it strikes me as naive and doomed. Think of the
calculation from quantum first principles, of the anomalous
magnetic moment of the electron, which agrees with ex-
periment to twelve significant decimal places! It is hard
to imagine getting such precision out of a qualitative ap-
proach like the anthropic principle. To understand the uni-
verse you need to use far more facts from nature than our
mere existence.

Theories outside their comfort zone

Scientific progress can be measured by how effective our
theories are. The more physics we explain with the fewer
theories, the better. In this section we are going to play
some heuristic games with numbers. The observed nu-
merical values for our universal constants tell us what the
relevant scales in nature are. At the same time these num-
bers provide insight in the domains of validity of some of
the well-established theories. Surprisingly, naive reason-
ing and dimensional analysis leads to suggestive qualita-
tive insights with respect to fundamental physics. These
arguments underscore the value of heuristics. We have
listed some of the fundamental scales with the formulas
related to them in Table I.3.2 on page 147.

Domains of validity. Given the values of the universal
constants, it is enlightening to cook up other numbers from
them which in turn can be interpreted as characteristic
scales that play a significant role in our universe. Such
scales not only follow from the observed values, but also
from assumptions underlying the theories in which they ap-
pear as parameters. This number cooking game often in-
volves extrapolating the ‘laws of nature’ to uncomfortable
extremes and exactly for that reason this game can yield
some information on what the domain of validity of such
theories really is.

Some devil’s advocate, a malign adversary or even a bright

student may within the context of a certain model come up
with some well-defined, yet, really nasty questions. Ques-
tions, which the theory may fail to answer correctly, or may
cause the theory to get stuck in a recursive loop that points
to a profound confusion or persistent contradiction in our
current understanding. Contradictions of a type that faith-
ful teachers sometimes hide, ignore, or even deny. Yet,
there always appears to be a moment of truth when it is
no longer possibly to deny that the theory fails to give a
straight answer to a straightforward question, not even in
principle.That is why such Q&A sessions are worth pursu-
ing in spite of their heuristic if not speculative nature. For-
tunately many of the theorists I met in my life were always
willing and – even eager – to randomly ‘shoot the breeze’
and ask creative ‘what if’ questions.

This freedom to let the collective mind wander should be
cherished as it is at the heart of scientific progress. And
scientific progress is basically about pushing the limit on
the ranges of the validity of theories further and further.
After each turning point or paradigm shift, the new theory
usually provides clear-cut quantitative restrictions on the
domain of validity of the old theory; that is why we can
speak of scientific progress in the first place2.

The virtue of heuristics

All we need is the back of an envelope.

Do electrons love or hate each other? We have so
far discussed some aspects of the classical theories and
some of the salient features of the relativity and quantum
domains. And we have commented on the universal con-
stants of nature that we have measured and that feature as

2Some devil’s advocates therefore argue that particular religions, as
systems of knowledge, lack an internal mechanism or stimulus through
which they might learn about their limited domain of validity. It is my
opinion that the imperative of open questioning and self-improvement
sets science apart in the history of human endeavors.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 129 — #159 i
i

i
i

i
i

THEORIES OUTSIDE THEIR COMFORT ZONE 129

Figure I.3.3: Interacting electrons. Two electrons in outer
space repel because of their equal charges and attract because
of their masses. Yes, and they do fly apart!

external input parameters in our models, like the strength
of certain forces and the masses of certain fundamental
particles. Combining such numbers and the simple laws
in which they appear gives interesting information about
the characteristic scales that we observe in nature. That
information is at best qualitative and heuristic, but it does
provide useful insights about the expected domain of va-
lidity of our theories.

In this subsection we limit ourselves to the electromagnetic
and gravitational force and what we can conclude from
them with respect to the scales that we should associate
with them, then we will add some quantum wisdom to it.
These two forces are remarkable in that they both have an
infinite range and the laws describing them are so-called
‘inverse square laws.’ For the gravitational force between
two masses we have Newton’s law, while for the electric
force between two charges we have Coulomb’s law:

FG = -GN
m1m2

r2
and Fe =

1

4⇡✏0

q1q2

r2
. (I.3.4)

One might ask: Is there a way to compare these forces?

Yes and no; they talk about essentially different things like
masses and charges, so it’s like comparing apples and
pears. However, it is not as bad as that because nature
has given us particles that have both mass and charge –
they are both apples and pears so to speak – and these
allow us to compare the strengths of the two forces in a
meaningful way. In Figure I.3.3 we show two electrons
which have charge e and mass me . They attract because
of their masses and they repel because they have equal
charges. If they met in outer space they would experience
two opposite forces, so the key question is: will they pair
up or fly apart? To get the answer, we have to take the
ratio of the magnitudes of the two forces,

FG
Fe

=
4⇡✏0GNm1m2

q1q2
' 10-43 . (I.3.5)

This shows that the gravitational force is phenomenally
weaker than the electric force. Note that this ratio does not
depend on the distance; it is a fixed number. How sad for
the electrons, it is not only hard to stay together; it would
even be extremely hard to meet in the first place. The or-
der of magnitude of this number holds for any fundamental
particle which carries both mass and charge, though the
actual number could differ of course.

An electromagnetic size: how big is an electron? Given
the force between two charges one can calculate the in-
teraction energy of two charges that are separated by a
certain distance. One may also define what is called the
seif-interaction energy of a particle due to the force field.
This electrostatic self energy is the energy it costs to build
up a charge e on a sphere of radius r , and is of the order
of e2/4⇡✏0r . Building up a charge means that you bring in
infinitesimal amounts of charge from infinity and calculate
the interaction potential. Equating that potential energy to
its mass energy mec

2 according to the famous Einstein
formula yields the classical electron radius in terms of its
mass:

re =
e2

4⇡✏0mec2
= 2, 8⇥ 10-15 m.
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This expression is directly obtained from combining certain
constants of nature known from experiments with naive di-
mensional analysis, and begs for an interpretation even
though it would be heuristic. It certainly is a size one
can naturally assign to a charged particle as it reflects the
energy of the total electric field carried by a charge on a
sphere of radius re . Note that the electromagnetic size of
a charge grows with charge but decreases with increas-
ing mass. So the lightest particle having a certain charge
yields an upper-bound for the electromagnetic size of such
a charge. Note the paradoxical nature of this classical rea-
soning, it would produce an infinite potential if one would
assume the particles to be point like. This fact stood out
as a fundamental limitation of the classical theories in the
description of a charged particle, and as we’ll see in Vol-
ume III, Chapter III.4, quantum field theory provided an es-
sential new perspective on this question that exploited the
sophisticated notion of renormalization. Anyway, accord-
ing to the reasoning we have followed so far, a particle of
zero charge could still be considered point-like.

A gravitational size: know your horizons! As for a neu-
tral particle electromagnetic considerations are void, so
one could maybe make use of the gravitational interaction
to set a scale, and assign a classical gravitational radius
to any mass m. One repeats the argument and replaes
Coulomb’s law by Newton’s gravitational law, ignoring for
the moment the sign difference3, so the potential energy of
a mass m at radius r would be E ⇠ GNm

2/r , and equating
this to the mass energy E = mc2 , we get rg ⇠ GNm/c2 .

This relation sets a scale for the applicability of classical
Newtonian gravity, and indeed, remarkable enough it is
(up to a factor 2) equal to the Schwarzschild radius of a
particle of mass m defined as:

Rs =
2GNm

c2
; (I.3.6)

3The sign would translate in the statement that the the potential cor-
responds to the energy needed to gradually bring the mass to infinite
radius.

that is ⇠ 10-57 m for the electron. This is an excruciatingly
small number, far outside of the scope where our physi-
cal intuition has any experience, let alone any bearing. It’s
like somebody getting up and starting to talk to you about
what they are planning to get done in the next one billionth
of a second! Stay normal please! The Schwarzschild ra-
dius is where the gravitational horizon around a black hole
with mass m is located, and according to the general the-
ory of relativity, there is no information that we, as outside
observers, can obtain about the interior of the black hole.
Talking about a particle’s properties beyond that scale is
problematic. If you would send a willing observer to check
out the interior they would not be able to report back to
you, as they are doomed to a not so gracious exit facing
the singularity at the origin.

No escape: apocalypse you! To clarify this peculiar prop-
erty of black holes, it suffices to repeat the thought experi-
ment that the French mathematician Pière-Simon Marquis
de Laplace described in 1796, and that lead him to the no-
tion of the corps obscur, which in modern parlance is just
a black hole4. You probably are familiar with the notion of
escape velocity, if you throw this book straight up in the air
it will under most circumstances drop on your head some
time later. Yet, if you throw it with a speed of more than
11 kilometers per second, then it would never return. As
you see it is not so simple to get rid of a book, they tend
to stick around. Far away it would still feel the gravitational
force caused by the mass M of the Earth, but it can es-
cape because the kinetic energy would be larger than its
gravitational binding energy to the earth. Equating the ki-
netic energy and the binding energy gives the equation for
vesc , we obtain:

mv2esc/2 = mGNM/r ) vesc =
p
2GNM/r . (I.3.7)

Note that this velocity does not depend on the mass m

of the book, so anything you throw up with a velocity ex-
ceeding 11 km/s will be gone for ever. You see that the

4A British natural scientist, John Mitchel, had already made a similar
argument in 1783. He called the objects dark stars.
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Figure I.3.4: A black hole. General relativity tells us that if we
put a lot of mass in a tiny volume that mass will collapse under
its own weight and form a black hole. Black, because its escape
velocity exceeds the speed of light and – at least classically –
no information can escape. A virtual sphere called the event
horizon will form outside of the mass, and its radius corresponds
to the Schwarzschild radius (I.3.6).

escape velocity would increase if we would decrease the
radius of the Earth while keeping its mass fixed. And in-
deed, knowing that the velocity of light was approximately
300.000 km/s , Laplace basically asked himself the ques-
tion: to what radius do we have to shrink the size of the
Earth in order that the escape velocity would become equal
to the velocity of light? And beyond that radius, he argued,
even light would not be able to escape from the Earth’s
surface – the Earth having the size of a marble by the way.
No light signals could be sent to some far away observer,
at least they would not get very far. The Earth would be
black: a black hole so to speak. Though this tiny Earth
would be invisible, you would still be able to probe its pres-
ence gravitationally. If the Sun were a black hole, you
wouldn’t be able to see it but the planets would move in
their orbits all the same. Going back to the formula (I.3.7),
you’ll also agree that an object with any given mass M

Figure I.3.5: A black hole picture. This is a real picture of a
black hole in the galaxy M87 about 5 ⇥ 1020km away. It mea-
sures 4 ⇥ 1010km across, and has a mass corresponding to
6.5 billion solar masses. The picture was captured by the Event
Horizon Telescope (EHT), a network of eight linked telescopes
on Earth.

will have an event horizon once its size is small enough.
With black holes one tends to think of super massive ob-
jects like heavy stars. After having burned up their nuclear
fuel they would collapse under their own gravitational at-
traction in a supernova event. The compact object staying
behind would indeed be a black hole. Astrophysicists have
in the meantime identified large numbers of them. They
also are located at the center of galaxies. There one sus-
pects the presence of a giant black hole gobbling loads of
stars for breakfast. At first nobody could think of compact-
ifying a chunk of matter like the Earth to within a radius
smaller then its horizon of less than a centimeter. The
concept of a black hole was so totally inconceivable that
it was discarded as a brilliant fiction of the mind – clearly
an artefact of fancy mathematics. The idea was that a con-
densed state of matter, like the space inside of a stone or
a lead block, would be ‘filled up’ completely. It would be
only compressible to a limited extent, which seemed evi-
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dent from just experimenting with it. There would be no
room for such extreme collapses was the prevailing opin-
ion, which was even held by influential astrophysicists like
Sir Arthur Eddington.

In fact the story went the other way around. With the ad-
vent of the quantum understanding of the deep structure
of matter, it was that intuitive idea that matter fills space,
which turned out to be a fiction of the mind. Quantum the-
ory taught us exactly the opposite, that matter is mostly
empty space. The mass of a stone is carried mostly by
the tiny nuclei inside the atoms and the spacing between
those nuclei is about a million times larger than their size.
Removing that space, you could in principle compress the
Earth to the size of a meter across – the density would then
correspond to the density of a neutron star. Astrophysicists
have systematically studied the processes of stellar evolu-
tion, including their dramatic ending. A star will, depend-
ing on its mass, end up as a compact object, like a white
dwarf, a neutron star, or a black hole. Most black holes ob-
served have masses between five and several tens of solar
masses, and the lightest known black hole has a mass of
around 3 solar masses.

A second comment to make is that small masses also
have a horizon, which makes it possible to study mini black
holes in order to find out to what extent they could be pro-
duced and would be stable. Maybe also these hypotheti-
cals – fictions of the mind – will be found one day in spite
of them being ‘invisible.’

The age of our universe. Before continuing our black
hole adventure where science is running into at least one
of its own horizons – if not a brick wall – we briefly return
to the other side of General Relativity (GR) connected with
the Friedmann cosmology, which we discussed quite ex-
tensively in the previous chapter. The question we want to
address is a question that has puzzled humankind already
for millennia, but at the same time it is also a question that
children start asking when they are in elementary school.

Did the world always exist, or was there a beginning – a
moment of creation? And if so, when was that? Such
questions that everybody encounters at some point in their
life create a demand for answers, and where there is de-
mand, economists tell us that there will be supply. And so
there was!

There is a great history of estimating the age of the uni-
verse. The early estimates from a smart clergyman who
managed to argue from The Scriptures that the week of
creation was about 4000 years ago are well known. The
story is that the Bishop James Ussher around 1650 came
even with a precise date: Sunday 23 October 4004 BC!
What you can say about the history of would-be answers
is that there was an overall trend to ever increasing num-
bers.

It is interesting to recall the involvement of the great biolo-
gist Charles Darwin who estimated the age of the earth by
using geological arguments combined with the time needed
to have the complexity of life evolve, to be a few hundred
million years. This estimate was heavily criticized by Lord
Kelvin who argued that the age of the sun, based on the
state of knowledge – or ignorance – of the day, could not
be more than say 20 or 30 million years. His knowledge
typically comprised Newtonian gravity, chemistry and ther-
modynamics, and his ignorance was hidden in the fact
that he didn’t know that he didn’t know. The unknown un-
knowns concerned the whole field of nuclear physics, be-
cause there was none in those days. And to understand
the age of the Sun you have to understand the nuclear
processes that keep the Sun shining. This was an exem-
plary scientific debate, where Darwin got much closer to
the correct answer for reasons that are clear now. In the
second half of the twentieth century the astronomers en-
tered the game using a variety of observational and cal-
culational methods. This caused the numbers to go up
dramatically into billions of years. Fortunately the results
also started to converge.
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Let us try to make a crude estimate of the age of the uni-
verse starting from the Friedman equation (I.2.9). For sim-
plicity we assume that the universe is flat (k = 0) and has
only matter in it. The matter density drops inversely with
the volume, so:

⇢m = ⇢crit
⌦m

a3
.

with ⇢crit the critical energy density and ⌦m the present
relative matter constant. The equation then simplifies con-
siderably and we get:

p
a
da

dt
= H0

p
⌦m . (I.3.8)

As you can check by differentiating, the solution is a =
�t2/3 where � is some constant. This yields for the Hubble
parameter H(t) = 2/(3t) . Evaluating this for t0 we obtain
H0 = 2/(3t0) , resulting in the estimate,

t0 =
2

3H0
' 9.3⇥ 109 yr ,

where we have used the value H0 = 70kms-1 Mpc-1 .

This crude calculation thus shows that the age of the uni-
verse is of the order of the inverse Hubble parameter. The
best value available today, extracted from the 2018 data of
the Planck space telescope is:

t0 = (13.781± 0.020) ⇥ 109yr .

Note the amazing precision here, which shows the tremen-
dous progress in the field of observational cosmology! This
means that the Hubble parameter is a fundamental ob-
servable as it sets the scale for the age of the expanding
universe.

Going quantum

The quantum size of a particle. So far we used the equa-
tions of classical physics and relativity, which involved the
fundamental constants Gn , e , and c . What happens if we

include some of the basic quantum relations? This would
add Planck’s constant h (or its reduced version h̄ = h/2⇡ ,

denoted as ‘h-bar’) into our deliberations.

A nice starting point is the expression that Louis de Broglie5

in 1923 proposed for the wavelength � of the ‘matter wave’
associated with a particle of mass m moving with velocity
v or momentum p = mv , which simply reads � = h/mv .

Combining this formula with Einstein’s dictum that nothing
can move faster than light implying that v  c , we arrive
at a ‘minimal wavelength’

�c =
h

mc
, (I.3.9)

for a quantum particle, which is called its Compton wave-
length. The Compton wavelength for the electron is 2.43⇥
10-12 m , which on a heuristic level can be interpreted as a
measure for the ‘quantum size’ of the electron. For scales
much larger than the Compton wavelength we can safely
consider the electron as a well-defined localized ‘particle’
whereas when we approach the Compton wavelength we
have to take its wavy nature into account and treat it quan-
tum mechanically. In other words also in quantum theory
the notion of a point particle breaks down beyond a certain
scale. A rigorous way to define the Compton wavelength is
to say that it equals – following Einstein – the wavelength
of a photon whose energy equals that of the rest energy of
a particle: E = hc/� = mc2 . This is certainly true but less
straightforward to interpret.

Alternatively we may invoke Heisenberg’s uncertainty rela-
tion �x �p � h̄/2 , which in words amounts to the state-
ment that in a given quantum state of a particle the uncer-
tainty in the outcome of a position measurement times the
uncertainty in the outcome of a momentum measurement
equals at least h-bar over two. And if we then interpret
mc as the maximum uncertainty in momentum that leads
to the Compton wavelength as the minimal uncertainty in

5In fact I should have said: Louis-Victor-Pierre-Raymond, the 7th
Duke of Broglie!
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Figure I.3.6: The Rutherford model of the atom. The canon-
ical picture of the atom proposed by Ernest Rutherford, with a
positively charged nucleus consisting of protons and neutrons,
with some negatively charged electrons orbiting the nucleus. It
is a symbolic representation, which is misleading in two ways.
The relative sizes are totally out of proportion, since the size
of the orbits is about 100,000 times larger than the size of the
nucleus. So if you take the nucleus as depicted in this figure
the electron orbits would be about a kilometer in size! Further-
more, in the stationary states of the atom, the electrons are not
at all localized like point particles. The states rather correspond
to the ‘standing’ wave patterns proposed by Bohr as indicated
in the next figure. They represent the smeared out probability
distributions for finding the electron at a given location.

position of the particle. As we will see later this scale is di-
rectly linked to the width of the ‘wave packet’ representing
the electron in quantum theory. And with a quantum leap
in vagueness you could argue that minimal uncertainty in
position indicates the effective size of the quantum equiv-
alent of a particle.

Heuristics and reasoning by analogy is a dangerous game
but can be enlightening and yields a rough sense of the
scales involved with little work, not more than that. There-
fore very useful!

Figure I.3.7: The Bohr atom. This model has quantized orbits,
satisfying the constraint that the electron wave would fit an in-
teger number of times on the orbit. This condition n� = 2⇡rn
leads to states with quantized energy and angular momentum.
The radii of the successive orbits scale quadratically (⇠ n2 ).

.

An atomic size: the Bohr radius. There is one more
quantum scale that we should mention at this point. It is
the first quantum estimate of the atomic size called the
Bohr radius. In 1911 Rutherford had shown that the atom
has an almost point-like positively charged nucleus with
the electrons orbiting around it. This brought Niels Bohr to
his famous atomic model that, with its simple but radical
starting point, immediately led to an astonishingly deep in-
sight in the line structure of atomic spectra. Indeed, it is
one of the most outstanding results of early quantum the-
ory. The argument used the wave character of the electron
(say De Broglie’s formula) to quantize atomic orbits, and
thereby also its energy levels. From these energies the
frequencies of the lines in the spectra could be calculated
directly.

Bohr used the idea of particle-wave duality, and put it into
practice by assuming that the stationary electron states in
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the tiny atomic environment would correspond to standing
waves on a supposedly classical orbit. That wave should
not destructively interfere with itself and therefore Bohr de-
manded that the electron wave would fit an integer number
of times on the orbit of the electron, which led him to the
‘quantization condition’: n� = 2⇡r with n = 1, 2, 3, . . . .

If you now use the relation of De Broglie between mo-
mentum and wavelength you get p = h/� = nh/(2⇡r) =
nh̄/r . A straightforward exercise in Newtonian mechanics
shows that in order to have a circular orbit you need a cen-
tral force Fc = ma = mv2/r , which in this case is provided
by the Coulomb force Fe of equation (I.3.4). So, from the
equation Fc = Fe one finds the possible radii rn :

mv2

r
=

p2

mr
=

n2h̄2

mr3
=

e2

4⇡"0r2
,

from which Bohr derived the quantization rule:

rn = a0n
2; with ao ⌘ r1 =

4⇡"0h̄
2

me2
⇠ 5.3⇥ 10-11 m ,

where the constant a0 in honor of its creator is called the
Bohr radius. In Figure I.3.7 we have sketched the periodic
electron waves for the first few orbits.

It is no surprise that the quantization of the orbits implies
that other physical quantities are also quantized, notably
the energies and the angular momentum. To start with the
latter, for a circular motion we have that the angular mo-
mentum L = rp , and just substituting the quantized value
for p given above, one gets L = nh̄ , showing the basic
integer quantization condition for orbital angular momen-
tum, which indeed has the dimensions [kg m2/s] of angu-
lar momentum. Substituting the radius in the expression
for the total energy E = Ekin + Epot = p2/2m + VCoul ,

one finds that the energy is quantized as

En = E1/n
2 , (I.3.10)

where the ground state energy is given by:

E1 =
me4

32⇡2"20 h̄
2
' -13.6 eV . (I.3.11)

We see that the energies of the hydrogen atom are neg-
ative (meaning that they are bound states) and that for
large n the states pile up towards E = 0 . An essential
feature of the model which, also depicted in Figure I.3.7,
is the proposition that when an electron makes a transi-
tion from a higher to a lower orbit, the energy difference
�E will be carried away by a photon that has a frequency
h⌫ = �E . We return to the Bohr model and its relation-
ship with the observed atomic line spectra in the section
on atomic structure in the next chapter.

Further gaming with fundamental scales. Returning to
typical length scales related to the electron, we have so
far cooked up three sizes: (i) the classical electromagnetic
size (= the classical electron radius) re ⇠ 10-15 m , (ii)
the gravitational radius (= the Schwarschild radius) Rs ⇠

10-57 m , and (iii) the quantum scale (= its Compton wave-
length) �c ⇠ 10-12 m . One thing these numbers clearly
suggest is that in worrying about the size of the electron
we should first take into account quantum effects, before
entering into profound debates on the meaning of its clas-
sical electromagnetic or gravitational radii.

What else can we do with these length scales? We could
take their ratios and try to interpret them. We can for exam-
ple define the dimensionless ratio of the (i) and (iii). This
number (up to the factor h/h̄ = 2⇡) is denoted as ↵ and
called the fine structure constant ↵ = e2/4⇡✏0 h̄c ; it is
indeed a pure number and equals ↵ ' 1/137. This con-
stant is a clean measure of the interaction strength of the
electromagnetic interaction in (relativistic) quantum theory,
which is not so surprising because the fundamental con-
stants e , c and h̄ feature in it.

Another dimensionless ratio one can take is the Compton
wavelength over the Bohr radius, giving an idea as to what
extent the electron would fit in the atom. One finds that
�c/a0 = 2⇡↵ , which is again proportional to the fine struc-
ture constant. This indicates that the two scales are not
vastly different, particularly if one takes into account that
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the electron in the Bohr-atom is non-relativistic and that the
Compton wavelength is an underestimate for its quantum
size. This underscores once more that we should treat the
problem of atomic structure with quantum theory.

We could also define a gravitational fine structure constant
as ↵g = Gm2

e/h̄c , which would equal ↵g = 1.75⇥ 10-45 .

The ratio of these two ‘structure constants’, which also
equals the ratio of (iii) and (i), brings us back to the intrinsic
difference in coupling strength that we mentioned before:
the gravitational attraction of two electrons is weaker than
their electromagnetic repulsion by some 43 orders of mag-
nitude.

A quantum bound on processing speed. The uncer-
tainty relations allow one to construct heuristic quantum
bounds on various dual observables like momentum and
spatial extent, or energy and time. The former yielded the
Compton length, and the latter allows us for example to
set an ultimate bound on processing speed. If we take the
energy corresponding to a mass E = mc2 and relate that
energy to a fundamental frequency according to E = h⌫

and interpret this frequency as the number of logical op-
erations per second, we arrive at the formula proposed by
Seth Lloyd in a 2000 paper for the maximal number of tran-
sitions N⇤ per unit mass per unit time.

N⇤ ' ⌫ = c2/h . (I.3.12)

Putting in the numbers one arrives at the ultimate pro-
cessing speed of a ‘one kilogram laptop’ as some 1050

logical operations per second. To give you an idea of
what this means: typical estimates for the human brain
yield 1015, while the most powerful super computers run
at 10 - 100 ⇥ 1015 flops. These comparisons are rather
misleading because of the very different structure of these
‘machines;’ the brain has a relatively low clock speed of
about 100Hz but works in a highly parallel mode.

Nuclear forces: the story of weak and strong. Later on
in the book we will discuss two other forces which are not

of the inverse square type: the strong and weak nuclear
forces They differ in an essential way in that they effec-
tively only act over small distances – meaning, small com-
pared to the size of an atom – and that is why we don’t see
or feel them. These forces can be approximated by a in-
verse square law, which is cut-off at a certain characteristic
scale, called the strong and weak scales respectively. The
effective potential of a weak or strong charge corresponds
to the so-called Yukawa potential:

VY = gY
1

r
e-r/�c . (I.3.13)

We see that the inverse 1/r potential standard for grav-
ity and electromagnetism with a strength gY is multiplied
with a negative exponential of the distance. The interac-
tion potential is said to be screened and becomes vanish-
ingly small past the typical scale �c , appearing as an addi-
tional fundamental parameter in the theory. Such screen-
ing effects make the interactions effectively short range.
The particle’s experience would be comparable to driving
in a dense mist or calling each other in the crowd, the
interaction between entities is only effective at short dis-
tances. We have depicted the Yukawa potential in Fig-
ure I.3.8. The interpretation of the characteristic scale �c
is, that it is inversely proportional to the mass mc of the
particle that is mediating the nuclear force, like the photon
mediates the electromagnetic force. The natural relation
between a mass and a characteristic length is the quantum
scale or Compton wavelength of the particle as pointed out
before.

To complete this short interlude on the nuclear forces, let
us just give you the scales involved. The strong nuclear
scale is in the first approximation associated with the ex-
change of so-called pion particles, their masses are of
order m⇡ ' 1

10mp , yielding a length scale of approxi-
mately 10-14cm , which typically is the size of a nucleus.
For the weak nuclear force the mediating particles are the
W and Z bosons with masses MW ' 100mp and con-
sequently the weak force has a tiny range of the order of
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Figure I.3.8: The Yukawa potential. The purple curve is the
product of a (-1/x) potential in blue (like the one of electro-
magnetism or gravity) and an exponential suppression factor
(exp -x) in red. What results is an attractive potential for the
weak and strong interactions, which is effectively short-range
because of the exponential cut-off.

�W ' 10-17cm .

At this point we may also mention that setting the mass
of the mediating particle to zero we get back to the for-
mulas of electromagnetism and gravity (the blue curve in
Figure I.3.8). This confirms our earlier claim that these
long range force fields are associated with the exchange
of massless particles such as the photon and the gravi-
ton. In that case the potential is a simple power law re-
flecting the scale free nature of the long range interaction.
The power law potential exhibits therefore what in modern
parlance is called a long or fat tail, which refers to the be-
havior clearly visible on the right in Figure I.3.8 where the
blue power law curve is much larger than the exponentially
suppressed purple and red curves.

Where the quantum collective rears its head. We started
in Chapter I.1 by summarizing the fundamental theories of

classical physics, and we have indicated in this chapter
how quantum theory enters to indicate the boundaries of
the domain of validity of the classical theories of mechan-
ics, gravity and electromagnetism. It will not surprise you
that the theory of statistical or thermal physics has also
an intrinsic parameter that tells you when quantum phe-
nomena should be expected to become relevant in multi-
particle systems such as gases and liquids. The inter-
esting thing here is that these phenomena even occur in
‘ideal’ systems where we ignore inter particle interactions.
The central observation is again based on a simple dimen-
sional argument. If one considers an ideal gas of mas-
sive atoms in equilibrium at some temperature T , then the
average thermal energy per particle is Eth = 3kT/2 . So
we can define a thermal momentum pth through the rela-
tion:

p2
th

2m
=

3kT

2
. (I.3.14)

Next we use the De Broglie relation to define a thermal
wavelength as �th = h/pth = h/

p
3mkT . This length

scale depends on h and defines the size of the wave pack-
ets related to the thermal excitations of the particles in a
gas. For the case of particles in a gas at room temper-
ature the thermal wavelength is typically of the order 0.1
ängström or 10-11 meters. When does this scale become
relevant? It clearly matters if it becomes of the order or
larger than the typical inter-particle distance d , which is
determined by the particle number density n defined as
n = N/V . Classical considerations (even in the absence
of interactions) should break down if:

�th � d ) hn1/3

p
3mkT

� 1 . (I.3.15)

The conclusion is that we enter the quantum domain at
high density and/or low temperature. As we will discuss
later on, this is intimately linked to spectacular quantum
phenomena like superfluidity, (super-)conductivity, and Bo-
se-Einstein condensation. A rough indication of some ex-
amples where the quantum laws are inescapable can be
found in table I.3.1.
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Table I.3.1: Thermal wavelengths and domains*

System T [K] �th/d domain

Air at room temperature 300 0.006 classical
Liquid nitrogen (4He) 77 0.10 classical
Liquid helium (4He) 4 1.16 quantum
Electrons in copper 300 18.9 quantum

* R. Baierlein, Thermal Physics, Cambridge Un. Press (1999).

Natural units c�1898 Max Planck

We conclude by discussing a system of natural units in-
troduced by Max Planck. The price to pay is to give up
anthropocentricity, at least on the level of units.

Can we please finish this endless talk about units? Yes, we
can! It was already pointed out by Max Planck how to do
this in the Fünfte Mitteilung, Über irreversible Strahlungs-
vorgänge, to the Preussische Akademie in 18986:

Alle bisher in Gebrauch genommen physikalischen
Maßsysteme, auch der sogenannte absolute C.G.S.-
System, verdanken ihren Uhrsprung insofern dem
Zusammentreffen zufälliger Umstände, als die Wahl
der jedem System zu Grunde liegenden Einheiten
nicht nach allgemeinen, notwendig für alle Orte und
Zeiten bedeutungsvollen Gesichtspunkten, sondern
wesentlich mit Rücksicht auf die speziellen Bedürfnisse
unserer irdischen Kultur getroffen ist.

In the Mitteilung he devised a system of units that de-
serves the qualification natural like no other. These Planck-

6English translation (by author): All physical systems of measure-
ment, including the so-called absolute CGS system, which have hith-
erto been used, owe their existence to accidental circumstances, in that
the choice of the units on which each system is based does not depend
on general points of view that necessarily hold for all places and times
but takes only in consideration the special needs of our earthly culture.

units are all directly linked to the simple universal con-
stants that we discussed before:

– the gravitational constant GN with units [kg-1m3s-2] ,
– the speed of light c ⇠ [ms-1] ,
– Planck’s constant7 h̄ ⇠ [kgm2s-1]
– and Boltzmann’s constant k ⇠ [kgm2s-2] .

Some juggling with dimensions leads quite unambiguously
to the following natural units: the Planck-unit of length or
the Planck length,

lp =

r
h̄GN

c3
= 1.62⇥ 10-33 cm ;

the Planck mass,

mp =

s
h̄c

GN
= 2.18⇥ 10-5 g ;

and the Planck time,

tp =

r
h̄GN

c5
= 5.39⇥ 10-44 s .

If we include the Boltzmann constant k as another funda-
mental constant, we may add the Planck unit of tempera-
ture:

Tp =

s
h̄c5

k2GN
= 1.42⇥ 1032 K .

Divine units indeed! Imagine, adopting these as the units
of length, mass, time and temperature amounts to set-
ting all the above expressions in terms of the fundamen-
tal constants equal to one, which implies that we have
to set h̄ = c = k = 1 in all formulas and calculations!
What a relief for the students who have to remember them.
I am afraid though that in the real world of construction
and electrical engineers these units would be despised

7In Planck’s original paper this or better his constant was actually
called b and not h̄ .
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except in the rare instance where one is involved in build-
ing universes8. This is precisely the case because using
these divine units would involve such huge conversion fac-
tors that you would lose a common sense of scale.. On
the other hand, dragging along all these fundamental con-
stants all the time makes formulas far less transparent and
that clutters the mind. I challenge the entrepreneurial read-
ers to choose natural units for the rest of this chapter,
which means that you set the universal constants every-
where equal to one. You will find that the resulting formulas
become stunningly simple indeed.

Ahead of the crowd. The natural units beg for an interpre-
tation and maybe it is just that they mark the domain of va-
lidity of the theories of Einstein and/or quantum theory. Or
better, they mark a domain where quantum and relativity
typically meet. Problems at the Planck scale involve phe-
nomena where quantum gravitational effects have to be
included. And if we do not have a complete understanding
of what the quantum theory of gravity is, our calculations
will be unreliable to say the least, and may give unsatis-
factory answers to sensible questions. Referring back to
the scales we discussed before we see that for a funda-
mental particle with a mass equal to mp , the Compton
wavelength and the Schwarzschild radius become roughly
equal since:

h̄/mpc = GNmp/c
2.

This expresses the fact that for a particle with a mass of
the order of the Planck mass the quantum uncertainty in
its spatial extent is the same as its ‘gravitational’ uncer-
tainty. This gravitational uncertainty is due to the strong
gravitational field which causes that it is impossible to ex-
tract information on the outside of that tiny horizon about
what happens inside. The equal sign in the above equa-
tion, inspired by matching uncertainties, basically makes
the bold hypothesis that both uncertainties are somehow

8Surprisingly, quite a few engineers appear to do so in their spare
time. I would rather have engineers constructing universes, than
philosophers building airplanes!

due to the same underlying mechanism. Such a mecha-
nism would have to be accounted for by a would-be theory
of quantum gravity.

It is worth remembering that heavy objects have a Comp-
ton wavelength that is negligible, for example for the earth
we get that �� = h/m�c ' 10-67 cm, while its Schwarz-
schild radius still is a respectable R� = 0.9 cm. And be-
cause both are so much smaller than the actual size of the
object Earth, it is not in terrestrial physics that this funda-
mental contradiction will leave any mark. For the electron
the situation is the opposite, �e = h/mec ' 10-12 cm (in-
deed its non-local character manifests itself on the atomic
scale), while the Schwarzschild radius is an excruciatingly
small Re = 2GNme/c

2 ' 10-57m . The conceptual conflict
between relativity and quantum theory as encountered at
the Planck scale signals the crisis our notion of space-time
suffers in the light of the quantum postulates. On the other
hand, one might hope that also this crisis will be the seed
for a new fundamental paradigm.

Black holes

The question is not whether black holes ‘exist’. They
exist as classical objects. The question is, what is
the quantum mechanical equivalent? It is well pos-
sible that in quantum mechanics black holes are
no longer strictly distinguishable from more con-
ventional forms of matter.

Gerard ’t Hooft, Physica Lecture (1995)

It is widely believed that black holes are rather esoteric, far-
fetched, out of this world, nerdy gadgets and therefore not
so relevant. Wrong! It has become ever more clear that
they are the principal key to a new and much deeper un-
derstanding of what gravity and thus space-time are really
about. It introduced the concept of information into phys-
ics in a fundamental way. Indeed, some people say that
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Figure I.3.9: Information loss? Does information get lost for-
ever when it falls into a black hole? Detail of the remarkable
sculpture Le Nomade in Antibes (France) created by the Span-
ish sculptor Jaume Plensa

‘black holes’ are for the theory of gravity, what the ‘hydro-
gen atom’ was for quantum theory. Gravity’s fundamental
properties and problems really show up in the unexpected
intricacies of black hole geometry. There is more to grav-
ity than dropping a teaspoon on the floor, or keeping the
moon in orbit. We have already seen in the previous sec-
tion the peculiar property of horizons predicted by GR. But
just saying that there is a horizon is not sufficient. When
you start thinking about it seriously, a lot of hard questions
come your way, questions that probe the deeper grounds
of GR and go beyond it. This section touches upon the
remarkable research by many of the brightest brains of re-
cent generations, attempting to bridge the gap between
curved space-time and quantum theory. This appears nec-
essary to get a complete and consistent picture of these
miraculous outposts of reality. Yes, horizons mark an im-
portant frontier, but to what?

Stephen Hawking: Quantum black holes are not black!
We have discussed the essential feature of GR that ev-

ery mass M has a Schwarzschild radius Rs associated
with it. If the size of the massive object is smaller than its
Schwarzschild radius, then there will be a horizon around
the mass located at Rs . It is called a horizon because if a
chair or for that matter Shakespeare’s collected works fall
into the black hole through their gravitational attraction to
its mass, then once they pass the horizon, there is no pos-
sibility for them to return. Falling into a black hole there is
a point of no return. And the points of no return form by
definition the horizon. That raises the question what hap-
pens to all that stuff disappearing in the black hole. Ein-
stein’s theory says without further ado that it disappears in
the ‘singularity’ located at the origin. But that is not what
a far away observer sees, because they can not look be-
yond the horizon. They only see the books approaching
the horizon at an ever slower rate. Here a strange com-
plementarity of perspectives arises, because for the in-
falling ‘Hamlet’ or ‘Midsummer night’s dream’ nothing spe-
cial happens as they would smoothly sail though the hori-
zon. From that moment on their fate is decided, they will
be swallowed by the singularity; no pardon can be granted,
there is just no escape!

So, altogether the physics of black holes was for a long
time highly enigmatic, but also unsatisfactory, strangely in-
complete and paradoxical to say the least. On the one
hand, Einstein’s theory inescapably posed their existence,
but on the other hand failed to answer many of the basic
questions it posed. From the 1970s, fundamental break-
throughs have been achieved in our understanding of black
holes. Indeed it turned out that quantum theory had to
come in to rescue and resolve some of the bizarre con-
tradictions that black holes confronted the physicists with.
Actually it was both quantum theory and information the-
ory that played essential roles. It has become clear that a
deep understanding of how black holes work on quantum
level could provide the essential keys to a broad under-
standing and interpretation of what a consistent quantum
theory of gravity may ultimately look like.
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Black hole thermodynamics

It is natural to introduce the concept of black hole
entropy as the measure of information about the
black hole interior.

Jacob Bekenstein (1972)

At first there was the development of a ‘thermodynamics
of black holes’ by Jacob Bekenstein and Stephen Hawk-
ing. Subsequently Hawking made the seminal discovery
that when quantum processes are taken into account, the
black hole is no longer black! Quantum processes that
take place at the horizon and which are not allowed by
classical physics mean that the black hole will lose energy
due to radiation coming of the horizon. Hawking was able
to calculate the spectrum of this radiation and that turned
out to exactly be the black body spectrum explained by
Planck’s quantum hypothesis. It means that the myste-
rious object changed from a black hole into a radiating
black body. The black hole is rather like a black ball kept
at a certain temperature – appropriately called the Hawk-
ing temperature, TH . Let us try to get a grasp of the main
components of the argument by recalling some basic con-
cepts:

(i) the thermodynamic relation due to Clausius between
heat produced and entropy

dQ = TdS ; (I.3.16)

(ii) the Boltzmann definition of entropy in terms of the num-
ber of states

S = k lnW ; (I.3.17)

(iii) the Schwarzschild radius

Rs =
2GNM

c2
; (I.3.18)

and (iv) the Planck length,

l2p =
h̄GN

c3
. (I.3.19)

Figure I.3.10: Information on the horizon. An artist’s impres-
sion of bits of information on the horizon of a black hole. The
information capacity would be one bit, or rather nat, per square
Planck length.

We start with the observation that classically, nothing can
come out of the black hole, so if you drop an object with
a certain energy and entropy into the black hole, the only
thing you may observe is that the mass increases (and
therefore the Schwarzschild radius), but the information
content would be lost forever. The idea now is to asso-
ciate the mass-energy Mc2 with the heat term in equation
(I.3.16) and the area of the horizon A with the entropy term
on the right.

Let us talk about spherical black holes, then A = 4⇡R2
s . To

convert this area into some entropy, let me define a Planck
area ap , which we will choose as ap = 4l2p . The comment
here is that the Planck length is the smallest length scale
that is physically meaningful, which means that this Planck
square is the smallest physically accessible area (as I am
giving a heuristic argument I allowed myself to put in the
extra factor 4 for convenience). This means that we as-
sume that a single Planck square corresponds to one nat
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of information9,

S = k
A

4l2p
= k

Ac3

4 h̄GN
, (I.3.20)

which is exactly the expression first written down by Beken-
stein and Hawking. In this perspective a black hole would
look more like a spherical digital memory as indicated in
Figure I.3.10.

This is a surprising result, because, as entropy is asso-
ciated with the number of degrees of freedom of the sys-
tem, you would expect that in three dimensions the entropy
within a volume bounded by some horizon would grow pro-
portional to the volume and not to the area. This suggests
that this rather fictitious, mathematically defined surface
will somehow acquire an important physical interpretation
if we take quantum processes into account.

Hawking temperature.

Quantum mechanical effects cause black holes to
create and emit particles as if they were hot bodies.

Stephen Hawking (1975)

Next, we want to find the temperature of the black hole
as a thermodynamic system. The internal energy is given
by U = Mc2 and the entropy S is given by the previous
equation. That equation allows us to calculate:

dS

dM
=

dS

dRs

dRs

dM
=

8⇡R2
s

M

c3k

4 h̄GN
, (I.3.21)

which relates a change in mass with a change in entropy.
We may obtain the temperature by using the first law of
thermodynamics dU = dQ - dW where the last term on
the right-hand side is absent because a black hole doesn’t

9With N states the information entropy is H =2 logW [bits], the
thermodynamical information entropy is defined by S/k = lnW [nats].
We choose the nat-unit because we want to make the link to the natu-
ral logarithm appearing in thermodynamics.

Figure I.3.11: Pair creation at the horizon. In a vacuum one
always has quantum fluctuations in energy. As a consequence
of Heisenberg’s uncertainty principle virtual particle anti-particle
pairs will be created. Normally these have to recombine but
on the horizon there is the possibility that one member of the
pair falls in the black hole and the other escapes. This is the
microscopic origin of the Hawking radiation.

do any work, while for the first term we will use the expres-
sion of (I.3.16). This yields the following expression for the
internal energy:

dU = d(Mc2) =
h̄c

4⇡Rsk
dS .

from which the temperature follows,

TH =
h̄c

4⇡Rsk
=

h̄c3

8⇡GNMk
. (I.3.22)

This is indeed the temperature Hawking derived in his fa-
mous paper from 1975, and which was therefore named
after him.

We only took the shortest and easiest route which sug-
gests the result, but Hawking really proved that a black
hole would radiate as a black stove at that temperature.
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Figure I.3.12: Hawking radiation. A black hole is not black as
depicted in Figure I.3.4 , but rather as depicted here: a black
body at a Hawking temperature TH, emitting thermal radiation.

The idea was simple but brilliant and the calculation notori-
ously hard. The starting point of the original derivation was
the production of virtual particle – anti-particle pairs in the
gravitational field near the horizon. He basically calculated
the probability that one of the two would fall in, then they
could not recombine, and the other particle would have to
‘become’ real and would be able to escape. The quantum
black hole would indeed start radiating and would lose en-
ergy. Talking in terms of pictures, we should thus replace
the image of the classical black hole of Figure I.3.4 with
the quantum version of Figure I.3.12.

Power emitted and life time estimate. The total power emit-
ted by a black body, is given by the radiation law of Ste-
fan Boltzmann (the ‘other’ Boltzmann) which states that
the emitted power would be proportional to the tempera-
ture to the fourth power and of course also proportional to
the surface area, P ⇠ AT4, which using equantion (I.3.22)
implies that the power emitted would be inversely propor-
tional to the second power of its mass P ⇠ M-2. The black
hole loses mass because of the Hawking radiation but the

more mass it has lost the more it radiates. The final stages
are therefore more like an explosion. A black hole would
not be black anymore; on the contrary, left on its own in
outer space it would evaporate until nothing, or may be
only some unknown type of remnant, would be left! From
the power dependence on the mass, we can make a rough
estimate of the life time ⌧ of a black hole, with the following
calculation:

Z t(0)

t(M0)
dt =

Z 0

M0

� dt

dM

�
dM ⇠ M3 . (I.3.23)

The conclusion is that the life time of a black hole would
grow with its mass to the third power.

To put this discussion of black hole evaporation in per-
spective let us mention that the Hawking temperature for
a solar-mass black hole would only be 60 nano Kelvin.
Such a black hole presently located somewhere in our uni-
verse would absorb far more radiation than it would emit,
because the universe itself has at present a background
temperature of 2.7K. This in turn is a consequence of
the cooling of the universe by expansion, and is in fact a
leftover from the hot Big Bang. So the Hawking radiation
phenomena is profound but hypothetical in so far as there
is little hope of being able to directly observe it. Conse-
quently, though considered by many to be one of the great
discoveries of twentieth century physics, Hawking was not
eligible for a Nobel prize.

Surface gravity. The beauty of Hawking’s discovery is that
it strongly suggests that it is the horizon where the inter-
esting physics of a black hole really takes place. But at the
horizon we are still far away from the singularity and space
time is smooth. This suggests that we should try to link
the emerging temperature of the horizon to a local gravi-
tational concept. The natural candidate would be what is
called the ‘surface gravity,’ which is basically the gravita-
tional acceleration denoted by g at the horizon. We mean
the ‘universal’ gravitational acceleration Galilei was talking
about. Indeed, an observer located at the horizon has to
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be accelerated to stay there. Just like we are at rest at the
earth’s surface. The reason we are not freely falling is be-
cause the Earth’s surface accelerates us radially outward
by exerting a normal force. The gravitational acceleration
or surface gravity at the horizon is just given by (minus)
Newton’s law: g = GM/R2

s . Substituting the Schwarz-
schild radius and comparing with the Hawking temperature
we find that the relationship between the Hawking temper-
ature and the surface gravity is strikingly simple:

TH =
h̄g

2⇡ck
. (I.3.24)

It appears that what matters is the transformation from the
frame of the observer, freely falling into the black hole for
whom nothing special is going on, to the accelerated frame
of the observer at rest near the horizon.

Accelerated observers and the Unruh effect

The above suggests that we should look at the world ac-
cording to an accelerated observer. This yields another
interesting, even more basic link between the structure of
space-time and entropy/information known as the Unruh
effect. Let us first establish that an accelerated observer
perceives an horizon. If you transform flat Minkowski space
to an accelerated frame you get the so-called Rindler coor-
dinates which is depicted in Figure I.3.13. The world lines
of the accelerated observers are time-like hyperbolae. To
be precise you should say that the world lines correspond
to observers who experience a ‘constant force,’ because
with F = ma and the fact that the mass in this formula
is the relativistic mass increasing with the velocity, the ef-
fective acceleration becomes smaller so that the velocity
never exceeds c, as the figure shows. And that is exactly
why the horizon is there. The future light cone of any point
beyond the horizon (like the yellow arrow in the dark re-
gion) does not intersect with the world line of the acceler-
ated observer and therefore cannot be observed.

Figure I.3.13: Accelerated observers. A space-time diagram
for an accelerated frame of reference. The parameter s = c2/g
is the inverse of the acceleration g. The world lines of observers
initially at rest on the x-axis are time-like hyperbolae that asymp-
totically approach the light cones. The white region is the Rindler
space-time and has a future and past horizon. Light signals
emitted from points in the dark region travel along straight lines
under 45o, these do not intersect any world lines and therefore
can never be observed by the accelerated observer.

This suggests that also in this case including quantum pro-
cesses à la Hawking will turn that horizon into a black body
with a temperature given by the very same formula (I.3.24),
linked to the acceleration g = c2/s of the observer. This
remarkable result is known as the Unruh effect, named af-
ter William Unruh who first presented the calculations lead-
ing to the formula (I.3.24) in 1978. The proof for this case
of an accelerated observer amounts to a rather straightfor-
ward (quantum) calculation. We start in the rest frame with
a quantum field describing some species of scalar parti-
cle. The field is in a zero energy state, usually called the
vacuum. In this state no particles are present, and that is
what the observer at rest perceives. If then we make the
transformation to an accelerated frame, the transformed
distribution for the density of states corresponds to a ther-
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mal energy distribution. This means that the accelerated
observer will perceive a highly excited state with many par-
ticles present. The spectrum obtained corresponds ex-
actly to the Planck spectrum, the direct consequence of
the quantization of energy. This is the spectrum that was
hailed as one of the nails in the coffin of classical physics!
This calculation by the way beautifully illustrates the rela-
tivistic proverb: ‘truth is in the eye of the beholder,’ and in
particular depends on his frame of reference.

Pair creation of charges. In this context it is illuminating to
think of the original Hawking argument. Consider a sim-
ple two-dimensional (x.t) space-time where one may in-
troduce a constant background electric field, say E0 ⇡ F01
in the positive x-direction. This – in two space-time dimen-
sions – corresponds to a Lorentz invariant background en-
ergy. In such a background field there is a certain quantum
probability that charged particle anti-particle pairs can be
created. Clearly these pairs would split up, the positive
charge moving to the right and the negative charge to the
left. They would experience a constant force F = ±eE and
therefore accelerate, and both would correspond to ideal
‘Rindler observers.’

The situation is depicted in the space time diagram of Fig-
ure I.3.14 with the two particles accelerating in opposite
directions, with their velocities asymptotically approaching
the speed of light. They are causally separated from the
moment of their creation. The probability of the pair cre-
ation depends on the threshold energy which corresponds
to the sum of their masses, 2mc2 , and the electrostatic
energy of the pair depending on their distance d. The
remarkable result is that the spectrum corresponds ex-
actly to a thermal distribution matching the Unruh temper-
ature.

One other quantum aspect of profound interest in this ex-
ample is the fact that in the quantum state in which the
pair is created, the particles are entangled. The informa-
tion of one member of the pair is inaccessible to the other

Figure I.3.14: Pair creation. In a background electric field, a
particle anti-particle pair might be created spontaneously and
the members of the pair would accelerate in opposite directions,
being causally disconnected from their inception, each living in
its own Rindler bubble. However in the quantum world the pair
would be entangled which leads to a situation where each of
them is dealing with a so-called mixed state.

because it is hidden behind a horizon. This manifests itself
in that each of the particles perceives being in a mixed or
’thermal’ state with a characteristic entanglement entropy.
We will return to these concepts in chapter II.1 but want to
mention them already here.

The fate of information. Thermal radiation is completely
random (thus maximally uncorrelated and unconstrained)
and therefore has maximal entropy. Here we arrive at a
familiar point where by solving one question we pose the
next one. The idea that quantum processes preserve all
entropy and therefore information leads to a non-trivial up-
grading of the information-paradox: If we throw the entire
Encyclopedia Brittanica in a black hole it will be converted
into pure thermal radiation according to Hawking. Clearly
that cannot be the case, where did all the correlations
present in the incoming state go?
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If we take a step back, we could compare the formation of
a black hole (putting more and more mass on a star, until
it becomes a black hole), and its successive evaporation,
with a more familiar process (proposed by Sydney Cole-
man) where we know that quantum processes conserve
both energy and entropy. Imagine a piece of coal at zero
temperature in a pure state where by definition S = 0, that
gets irradiated with a fixed amount of high entropy radia-
tion, which we assume is absorbed completely. It brings
the coal into an excited state at a finite temperature. As a
consequence the piece of coal starts radiating, it will even-
tually return to the zero temperature state, with zero en-
tropy. As the process of absorbing the initial radiation and
emitting the outgoing radiation is a quantum process, it
follows that the emitted radiation should have exactly the
same entropy as the incoming radiation. And therefore no
information could have gotten lost!

The black hole instability. The conventional narrative is that
by throwing an encyclopedia into a black hole, all informa-
tion would be lost. With the appearance of quantum theory
at the horizon, however, our view has radically shifted in
the sense that the real physics of black holes is the quan-
tum physics taking place at the horizon. Consequently the
question of what happens to the information in the quan-
tum context needs to be critically re-evaluated.

The quantum principles tell you that if you were able to re-
ally perform the full quantum calculations including the de-
tailed effects of entanglement, which we haven’t discussed
yet, then in that case you could in principle recover the en-
tire incoming state. In other words, in the quantum domain
it is extremely hard to really get rid of information, it may
be hiding, but it still should be out there somewhere. By
the way, to people having a Facebook account, this story
may sound unpleasantly familiar.

In principle black holes may exist for any mass, hence one
may also consider microscopic black holes to rid oneself of
the many astrophysical complications that are irrelevant in

Figure I.3.15: The magic cube. Universal constants and the
domains of validity of some fundamental theories.

this context. The statement is that mini-black holes would
evaporate very rapidly and therefore be very short-lived. In
other words these mini black holes are states of matter that
are bound gravitationally, but are unstable, just like many
other massive ‘bound states’ happen to be. This instability
gives rise to a finite life time, and the formation and decay
process is a quantum process, often referred to as a ‘res-
onance.’ In such quantum processes information is pre-
served, much like the other conservation laws that physics
obeys, like the conservation of energy, angular momentum
and charge. So, Hawking’s crucial discovery has in the
end led to a fundamental overhaul of our concept of black
holes. And as a consequence the present view is there-
fore that quantum theory supersedes general relativity in
that information has to be preserved somehow. Yet, at this
moment, a fully quantum mechanical account of the for-
mation and subsequent evaporation of a basic black hole,
which is the litmus test for claiming an understanding of
quantum gravity, has not yet been achieved. Though with
the advent of string theory as a serious candidate for such
a theory, the perspective on black holes has progressed
in impressive ways as we will indicate towards the end of
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the next chapter. But the fact remains that science at any
stage is just ‘work in progress.’

The magic cube

The magic cube of turning points. Our story of scien-
tific progress and hope, linked to the successive identifi-
cation of fundamental constants of nature, is depicted in
the ‘magic cube’ of Figure I.3.15, which is a cube in the
space of ideas. The magic cube has classical Newtonian
physics on the back lower edge with the laws of mechan-
ics (like F = ma) on the left, and his law for gravitation
on the right. The constant GN linking the two appears as
the universal constant setting the scale for the strength of
the gravitational interaction. The bottom square is the rel-
ativity plane where the fundamental constant c (or better
1/c) is added. The boundary of the domain where New-
tonian physics is valid is reached as velocities become of
the order of the velocity of light. The Newtonian limit cor-
responds to 1/c ! 0 . Newton’s gravitational force law is
instantaneous and therefore incorporates the notion of ’ac-
tion at a distance’. This notion is incompatible with special
relativity, where information and thus disturbances cannot
propagate faster than the velocity of light. So special rel-
ativity vetoes instantaneous non local interactions. This
conflict was then brilliantly resolved by Einstein’s theory of
gravity, the theory of general relativity.

The vertical dimension opened up with the advent of quan-
tum theory through the universal constant h̄ . The classical
(non-quantum) limit corresponds to h̄ ! 0 . The vertical
square on the left-hand side includes the modern unified
quantum theories for all known forces and matter, except
for the gravitational force. The top plane would include a
quantum theory of gravity like string theory which so far
has not been able to generate predictions that could be
tested by experiment. A string theorist may argue that if
you had started by postulating string theory, you would

Table I.3.2: Some fundamental sizes and scales.

Notion Formula Size [m]

Class. electron radius re =
e2

4⇡✏0mec2
⇠ 10-15

Compton wavelength �c =
h

mc
⇠ 10-12

(e-)

Strong nuclear scale �⇡ =
h

m⇡c
⇠ 10-15

Weak nuclear scale �W =
h

mWc
⇠ 10-18

Bohr radius ao =
4⇡"0h̄

2

mee2
⇠ 10-10

Schwarzschild radius Rs =
2GNm

c2
⇠ 10-2

(Earth)

Planck length lp =

r
h̄GN

c3
⇠ 10-35

Age of the universe t0 =
3

2H0
⇠ 1010 yr

Thermal wavelength �th =
hp

3mkT
⇠ 10-11

gas 300K

have predicted gravity and the other interactions. Such
theories unify the notions of matter and radiation with that
of space-time. The magic cube illustrates how inconsisten-
cies led the way to fundamental paradigm shifts. Such are
the blessings of the inconvenient truths that keep popping
up along the winding road of science.

Conclusion. In this chapter we have celebrated the ‘back
of the envelope’ philosophy and advocated for the virtue
of heuristics and approximations. In science the ‘truth’ is
a moving target, elusive like a holy grail because science
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is by definition ‘work in progress.’ And if your work is in
progress the notion of truth makes you feel extremely un-
comfortable. Every new theory or model is just the next –
more sophisticated – working hypothesis. But, as we have
shown in this chapter, there is – as every engineer can tell
you – a certain pleasure as well as value in playing with
the numbers given to you, and applying some dimensional
analysis to them. A purist may call it ‘recreational physics.’
And indeed, that’s what we were concerned with so as to
get an idea of the relevant scales that are linked to the spe-
cific values of our ‘universal’ constants. This game has
provided us with some surprisingly deep insights about
where quantum effects will rear their heads.

Further reading.
On scales in nature:

- Mr Tompkins in Paperback
George Gamow
Cambridge University Press,
Reprint from 1939 and 1944 editions (2012)

- Knowledge and Wonder
Victor F. Weisskopf
MIT Press (1979)

- In Praise of Science: Curiosity, Understanding,
and Progress
Sander Bais
MIT Press (2010)

On black holes:

- Gravity’s Fatal Attraction: Black Holes in the Uni-
verse
Mitchell Begelman and Martin Rees
Cambridge University Press (2020)

- The Little Book of Black Holes
Steven S. Gubser and Frans Pretorius
Princeton University Press (2017)
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Chapter I.4

The quest for basic building blocks

If, in some cataclysm, all of scientific knowledge
were to be destroyed, and only one sentence passed
on to the next generations of creatures, what state-
ment would contain the most information in the fewest
words? I believe it is the atomic hypothesis (or the
atomic fact if you wish to call it that) that all things
are made of atoms – little particles that move around
in perpetual motion, attracting each other when they
are a little distance apart, but repelling upon being
squeezed into one another.

R.P. Feynman (1961)

A splendid race to the bottom

The notion of what the basic building blocks of nature are
has repeatedly shifted over time. Every time when a new
layer of structure is uncovered a new set of ‘basic’ build-
ing blocks is postulated. That way we turned from chem-
ical elements to atoms, from atoms to the understanding
of nuclear structure, and from nuclear structure to the ele-
mentary subnuclear particles we know today.

Three levels of simplicity. In Figure I.4.2 we have indi-
cated the subsequent paradigm shifts with respect to the
fundamental building blocks of matter. It depicts the fron-
tier of knowledge at three typical moments in the past cen-

Figure I.4.1: The human quest for understanding nature.

tury, which one could call ‘three levels of simplicity.’ The
first is the level of atoms. The second, nuclear level stands
out for its simplicity with only the electron, proton and neu-
tron making up the atoms. The electromagnetic binding of
the electrons to the nucleus was provided by the photon
while the protons and neutrons were believed to be held
together by a nuclear force that was mediated by the pion.
But this picture is misleading because I left out the ‘zoo’
of other nuclear particles to be discussed, of which the
proton, neutron, and pion are only the most basic and rel-
evant. Finally, at the next level there is the Standard Model
of quarks, leptons and force-mediating particles. The fig-
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ure provides a bird’s eye view of the path of science that
brought us ever deeper into matter, and that path is what
we are going to run through fast in this section, and explore
in more detail in the remainder of this chapter.

The periodic table: atoms. Around 1900 the chemical
elements were considered the basic building blocks of all
matter. Neatly catalogued by the Russian chemist Dmitri
Mendeleev in the periodic table that he proposed in 1869,
the table that has decorated most high-school chemistry-
classrooms ever since. These elements are the smallest
entities carrying well-defined chemical properties, and as
such are indeed the basic building blocks of all of chem-
istry. The strict order present in the periodic system hinted
at an underlying organizing principle that – as we know
now – is nothing but the atomic structure with a nucleus
in the center and electrons ‘orbiting’ around it, the struc-
ture that was uncovered by Ernest Rutherford in 1908 and
was so successfully described by the new quantum the-
ory. As we explained in the introduction, quantum physics
basically entered our thinking at the atomic level. In this
part of the book, and this chapter in particular, we will – as
advertised – go down from the atomic level to the physics
of the nuclei and the underlying structure of elementary
particles.

Matter matters: nuclei. Once it was realized that the
atoms were composite and therefore not truly fundamen-
tal, physics turned to the study of the atomic nuclei, which
led us to a picture on even smaller scales where we distin-
guished the proton and neutron as the building blocks of
the nuclei, and of course the electron needed to complete
the atoms. And to understand the binding of protons and
neutrons in the nucleus a relatively light particle type was
identified, the pion, that was assumed to be the carrier of
the strong nuclear force. It was assumed to play the same
role as the photon did for the electromagnetic interactions.
Furthermore, it was discovered that the free neutron was
in fact unstable; through the so-called �-decay process it
would decay into a proton, an electron and another funda-

mental particle that had to be postulated to save energy
and momentum conservation. This elusive particle was
called the neutrino, a remarkable particle with somewhat
ghostlike properties in that it was for a long time believed
to have neither mass nor charge, and therefore extremely
hard to detect directly.

What doesn’t meet the eye: the nuclear particle zoo.

If I could remember the names of all these parti-
cles, I’d be a botanist.

Enrico Fermi

During the 1960s and 1970s experiments demonstrated
the existence of an ever-growing list of so-called elemen-
tary nuclear particles which was referred to as the particle
zoo, a term expressing a mild form of despair. Instead of
bringing the number of fundamental building blocks back to
an ever smaller number, that number seemed to grow with-
out limit. All of these nuclear particles were called hadrons.
One class consisted of fancy brothers and sisters of the
proton and neutron, collectively denoted as baryons. A
second class contained a large number of relatives of the
pions, and those were called mesons. Feynman, in one
of his popular lectures, quipped that the business of par-
ticle physics basically boiled down to a fancy equivalent
of smashing watches into a wall, in an attempt to find out
what was in them and how they worked.

Law and order regained: the eightfold way. All these
new baryons and mesons turned out to be composite as
well. It was quite a mess until Murray Gell-Mann (and inde-
pendently George Zweig) in 1964 created order by apply-
ing a beautiful symmetry principle, which Gell-Mann called
the eightfold way. This term added a spiritual dimension to
elementary particle physics as it alluded to the teachings
of Buddha, in particular a fragment from the first sermon
after his enlightenment, which reads:

And what, monks, is the middle path, by which
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(a) Anno 1900. Mendeleev’s iconic periodic table of
the chemical elements. The elements are ordered by
increasing atomic mass in subsequent lines, and the
columns give elements which have similar chemical
properties. This structure is a direct consequence of
applying quantum mechanics to the atom.

(b) Anno 1950. The building
blocks of nuclei are the proton
and the neutron, and together
with the electron they make the
atoms. While the electromagnetic
force is carried by the photon de-
noted as � , the strong nuclear
force was believed to be carried
by particles called the pion, de-
noted by ⇡± and ⇡0 . The neu-
trino had to be included to ac-
count for nuclear �-decay.

(c) Anno 2000. The constituent
and force particles of the Standard
Model. The quarks and leptons
form three families of constituent
particles of which only the top row
is stable and used to make ordinary
matter of the sort listed in the pe-
riodic table. Notice that the Higgs
particle has a special place in the
scheme of things.

Figure I.4.2: Three levels of ‘simplicity. Three successive levels of reductionism spanning a century of quantum physics. The basic
building blocks (a) of chemistry, (b) of nuclear physics and (c) of subnuclear particle physics. The atomic nuclei are built from protons
p and neutrons n which each consist of three quarks, with p = (uud) and n = (udd) . So the first element hydrogen 1H for example
has a nucleus consisting of a single proton, while the the second element helium 4He has a nucleus made up of two protons and two
neutrons.

the one who has thus come has gained enlighten-
ment,
which produces knowledge and insight,
and leads to peace, wisdom, enlightenment, and
nirvana?
This is the noble eightfold way, namely,
right understanding, right intention,
right speech, right action, right livelihood,
right attention, right concentration,
and right meditation.

Buddha, sermon

The eight ‘rights’ mentioned correspond to the corners of
the octagon that fits in the big wheel, as shown in Fig-
ure I.4.3.

The ‘eightfold way’ à la Gell-Mann is based on a mathe-
matical group of symmetries known as SU(3) .1 Now, this

1SU(3) is the group of rotations in three-dimensional complex
space. Indeed, there is one sentence that always applies to quantum
whatever: things become complex! If not in the real sense then at least
in the mathematical sense. Numbers, parameters, functions, spaces,
transformations, all of it turns complex when you go quantum! You need
a tolerance for ‘complexification’ to avoid quantum allergy.
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elegant scheme served not only as a meticulous book-
keeping device, and just like Mendeleev’s system the eight-
fold way also made definite predictions for the existence of
certain particle types that were discovered subsequently.
More importantly, however, was that the SU(3) structure
hinted at the existence of yet a new layer of fundamental
particles. Particles from which all known types in the parti-
cle zoo could be assembled. Gell-Mann coined the name
quarks for these new basic building blocks, referring to a –
by now famous – quote from the novel Finnegans Wake by
James Joyce:

Three quarks for Muster Mark!
Sure he hasn’t got much of a bark
And sure any he has it’s all beside the mark.
But O, Wreneagle Almighty, wouldn’t un be a sky of a lark
To see that old buzzard whooping about for uns shirt in the dark
And he hunting round for uns speckled trousers around by
Palmerstown Park?
Hohohoho, moulty Mark!

James Joyce, Finnegans Wake

The pronunciation of this elusive particle’s name is ‘quork’
rather than ‘quark’, which presumably is the one intended
by Joyce as it rhymes with Mark and bark. Irish friends
I trust have explained to me that the first exclamation is
paraphrasing a typical order in a pub: ‘Three quarts (of
beer) for Mister Mark!’ In German ‘quark’ refers to a dairy
product, and one would interpret it like: ‘Three quarks for
Master Mark!’ It probably is no accident that Gell-Mann in
his later life turned to the study of linguistics and in partic-
ular to phonetics, in an attempt to trace back the evolution
of languages and in some sense reconstruct the ‘mother’
of all languages. He always had an exceptional fascination
and talent for language, as he spoke about twenty of them,
and I remember him always taking extreme care to make
sure he pronounced the rather unpronounceable names of
– in my case, Dutch – colleagues like ‘Gerard ’t Hooft’ or
‘Peter van Nieuwenhuizen’ perfectly, followed by an exege-
sis of its meaning and origins!

Figure I.4.3: The eightfold way. In Buddhism the ‘eightfold
way’ refers to a very basic principle that brings the eight primary
teachings together. It was unfolded in Buddha’s first sermon af-
ter his enlightenment. Presumably it was the symmetric geom-
etry of the above ‘wheel of wisdom’ that must have suggested
the term to Gell-Mann.

To be or not to be: quarks. According to this scheme
the quarks carried a new quantum number which is nowa-
days called flavor. In the original theory there were three
‘flavors,’ up, down and strange, denoted by the letters u ,

d and s . Later on additional flavors were discovered –
charm, top and bottom, denoted by c , t and b – to make
a total of six. This would mean that the symmetry group
would be the much larger group SU(6) . The fact is that the
last three quark types are much heavier particles and very
unstable, so they do not play a prominent role in ‘ordinary’
physics. The physicists say that the SU(6) flavor symmetry
is ‘broken’ to the much smaller Gell-Mann SU(3) .

The nucleons (and in fact all baryons) consist of three
quarks: the proton for example corresponded to (uud)
and the neutron to (ddu) . The mesons like the pion would
consist of quark anti-quark pairs. From this assignment it
is not hard to see that these quarks have to carry fractional
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electric charges: you have two equations for two charges
qu and qd , and if you solve them you find that qu = 2e/3

and qd = -e/3 .

Splendid unification: the Standard Model. After these
new basic building blocks were postulated, it took almost
another decade before the real theory for the binding of
quarks into the other nuclear particles was developed and
the idea of quarks really caught on. What kept the quark
idea from general acceptance was the question of ‘to be or
not to be,’ in the sense that these elusive quarks were not
observed as free particles. With their fractional charges
they would have been easy to identify. For some reason
they apparently could not be knocked out of the protons or
neutrons. They lived in peaceful coexistence with their ‘not
being there’ so to say. Later we understood that this con-
finement or imprisonment property of quarks was a con-
sequence of the nature of the so-called ‘color-force’ be-
tween them. This new fundamental, strong nuclear force
between quarks indeed exhibited the desired feature that
it imprisons the quarks in threesomes (the baryons) or in
quark-antiquark pairs (the mesons).

It was not until the 1970s that a slow paradigm shift car-
ried us to the Standard Model of quarks and leptons and
of the particles that mediate three of the four known funda-
mental forces. This Standard Model has in the meantime
been confirmed in impressive detail by a large number of
experiments performed at the major particle accelerators
all over the world.

Fatal attraction: forces yield structure

A description of nature does not stop with the inventory
of building blocks or basic constituents. One also likes to
know why the building blocks stick together the way they
do. What we need to know in other words are the forces
between the constituents, and how they act. Because it is

Figure I.4.4: Gravity at work. The solar system with its seven
(in fact nine) planets moving in bounded elliptic orbits around
the Sun. (Source: Getty images)

through interactions between constituents that new struc-
tures emerge. This is an all-important ingredient of build-
ing models of the world at any level, and we will start with a
pedestrian expose, which will deepen along the way in the
book. Attractive forces acting between particles may lead
to the formation of bound states between the constituents
and thus to the formation of structure. Bound systems are
only stable when the attractive force is balanced by a repul-
sive force at small distances. The phenomenon of gravita-
tional binding in Newtonian physics is most familiar. Here
we show that our naive classical intuitions fail when talk-
ing about the atomic binding of electrons to nuclei caused
by the electromagnetic force, and of the nuclear binding
of protons and neutrons in the nucleus. We got stuck but
quantum mechanics came in to rescue us.

The Earth orbits the Sun in a slightly elliptic orbit: this bind-
ing is caused by the attractive gravitational force as de-
scribed in the section about Newtonian mechanics. The
first question is: why don’t we drop into the Sun as the
force is attractive all the way in? The force-law corre-
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sponds to an infinitely deep gravitational potential well; and
so why does the Earth not fall down? Deep wells may pro-
voke deep thoughts. The reason that the Earth doesn’t
drop in is that it has a tangential velocity, and that veloc-
ity induces a outward directed so-called centrifugal force
that balances the gravitational attraction. More precisely,
that tangential velocity component implies that the Earth
– Sun system has a certain non-vanishing angular mo-
mentum, because as you remember L = x ⇥ p and it is
the p-component perpendicular to x that matters. New-
ton’s dynamical laws decree that angular momentum is
conserved, basically because the force is directed to the
Sun, i.e. in the radial direction, and therefore that force
cannot change the tangential component of the velocity.2

The expression for the energy of a particle in the gravita-
tional field can be written as:

E(r) =
p2
r

2m
+

L2

mr2
-

GNmM

r
. (I.4.1)

The first term contains the radial motion, while the tan-
gential components give rise to the second term, where
L is the magnitude of the angular momentum that is a
fixed number for each orbiting planet. The last term is the
Newtonian gravitational potential. We note that the second
term is positive and acts as a repulsive term for decreasing
r , while the last is attractive. We have depicted them sep-
arately, as well as their sum in Figure I.4.5. The resulting
purple curve has a minimum that corresponds to a situ-
ation where the radius is fixed and the motion is circular,
and the velocity entirely tangential (pr = 0) .

Turned the other way around, one may ask what would
happen if we put the Earth at rest at a certain distance
from the Sun and let go, then clearly a disaster would be in-
evitable as the Earth would drop straight into the Sun.

2There is something far beyond the scope of our present exposé
to worry about, however, if we include Einstein’s relativity the system
would start to radiate gravitationally, which means that the bound sys-
tem would lose energy and therefore in the end would collapse anyway.
This effect of energy loss due to radiation has been observed in spec-
tacular detail in a certain double (neutron) star systems.

Figure I.4.5: Balancing attraction and repulsion. The radial po-
tential U(r) corresponds to the last two terms of equation (I.4.1)
and represents a central force field which drops off as the in-
verse square of the radius. The terms are drawn separately as
well as their sum for a particular choice of the parameters. The
shape of the potential with a repulsive and an attractive part is
universal in situations where we have both bound states with
E < 0 , and scattering states with E > 0 . The E = 0 case repre-
sents the parabolic orbit. In the minimal energy (orange dot) the
radius is fixed and the motion is circular. If the energy is higher,
the orbit can be elliptical (yellow dashed line) with two turning
points at different radii.

With L = 0 there is no angular momentum barrier to save
the system from collapse! The potential would correspond
to the blue curve in the figure. Well this presents us with a
puzzle from a principle point of view, if we take the naive
approach and consider the idealized situation where we
treat the Earth and Sun as point particles. Then the Earth
while approaching the Sun would feel an ever stronger at-
tractive force giving the Earth an ever-growing acceleration
and speed! And by falling in, the Earth would gain an ‘in-
finite’ amount of energy, and as its speed would be limited
by the speed of light it would acquire an unlimited amount
of mass.

What actually happens in such radial approaches may cer-
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tainly be violent as we know from falling meteorites hitting
us from time to time, but due to the finite size of the objects
colliding the acceleration towards the center is stopped
and the kinetic energy is converted into structural damage,
debris flying around, and heat.

Infinities call for new physics. What these examples
teach us is that other, non-gravitational physics takes over
and saves the day. This is often the cavalier way physi-
cists wave their hands about the singularities in their theo-
ries that keep pestering them, and that most non-physicist
audiences are most curious about. It must be said that
the physicists have been unreasonably successful with this
pragmatic approach. As far as we know nature is non-
singular, and the moment it threatens to become singular,
it usually amounts to a wake-up call to go and search for
new physics and new theories that avoid the singularities
and thereby save serious science from demise.

This is exemplified by applying the gravitational force to
the different case of a radially collapsing star. If we look
at an extremely massive star, the gravitational attraction
is directed to the center and is kept in balance by the re-
pulsive force, caused by the outwardly directed pressure
generated by the nuclear burning processes in its core.
However, as we’ll discuss later on, the amount of nuclear
fuel is finite and even a massive star will one day stop shin-
ing, after which a gravitational collapse to some compact
object is unavoidable. Depending on the mass of the orig-
inal star, this final state can be a white dwarf, a neutron
star or a black hole. In the first two cases a new repul-
sive force working at smaller inter-particle distances halts
the collapse and allows for a new balance thereby avoiding
the singularity. The most dramatic possibility is the forma-
tion of a black hole. But a black hole is surrounded by a
horizon that keeps us from knowing what happens to the
mass inside and whether there is anything singular going
on. A horizon seems to save the day, or better the hori-
zon masks our ignorance about what precisely is going
on! Putting things behind the horizon sounds like the sci-

entific equivalent of sweeping things under the carpet. Yet,
that is apparently the way in which nature prefers to keep
some of its secrets. This property is referred to as Cosmic
censorship.

In the previous chapter we mentioned the direction in which
progress is made to handle this problem. It is again by
shifting the attention from the singularity in the origin to a
deeper quantum mechanical understanding of what a hori-
zon really is. In principle black holes come in all sizes and
a Planck-mass black hole would have a horizon as well,
and could therefore be considered as the ‘hydrogen atom’
of quantum gravity. We just don’t know yet how this works
precisely, as we have no fully consistent quantum theory
of the gravitational force. But taking the essential idea of
Hawking radiation from the horizon as a guiding principle,
black holes would be unstable states of matter, bound to
somehow evaporate completely. And that would turn the
embarrassment of its singularity in some kind of red her-
ring. For the moment however, black holes remain in the
category of ‘unsolved problems’.

The quantum stability of matter. In the case of colliding
ordinary objects it is the much stronger electric force that
keeps the balance, and prohibits the infinite energy gain of
two point particles colliding gravitationally. But what if we
have two point particles with opposite charges, say a posi-
tively charged proton and a negatively charged electron,
which make up the familiar hydrogen atom? Now both
forces are attractive, and yes there can again be an an-
gular momentum barrier, or better a repulsive core due to
the angular momentum that dominates over the attraction
for small distances. But what about the lowest state where
the angular momentum would be zero.

Classically the same 1/r singularity – as it is called – would
certainly rear its head again, and maybe you would ex-
pect a mini-blackhole to form. No, this is certainly not what
happens, and yes, there is other physics – quantum phys-
ics to be precise – that saves the day. The lowest quantum
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state with zero angular momentum turns out to be perfectly
stable and well behaved. It has a wavefunction that corre-
sponds to a spherically symmetric probability distribution
for the electron to be at a finite distance from the nuclear
core. It is one of those ‘life saving’ manifestations of the
Heisenberg uncertainty relation. This relation does not al-
low a quantum particle to just sit at the bottom of a ‘quan-
tum bowl’; being at rest and completely localized is a no-
go. Heisenberg prohibits a particle from falling down to the
origin. This result is all-important because what it means is
that quantum theory guarantees atomic stability. Stability
means that the energy of a quantum system is somehow
bounded from below. The atom can radiate away electro-
magnetic energy by emitting photons until it gets down to a
lowest angular momentum and lowest energy state which
is perfectly regular and stable.

Having made this victorious claim I should sit back for a
moment and scratch my head. What about an atom with
more than one electron? Just take any. Would this atom
not decay into a state where all electrons descend to their
lowest possible, so-called, ground state, one may ask?
Certainly if we ignore the electric forces between elec-
trons. But is this what we see happening?

The answer to this well-posed question is a fully-fledged
‘No’! We see that different atoms behave quite differently
from a chemical point of view, and that fact is at the root
of all diversity in nature. How could that ever be if all elec-
trons would be sitting in the same state? This disturbing
shortcoming of naive quantum theory is resolved by an ad-
ditional – at first sight magical – quantessential principle,
that prohibits particles like electrons to occupy the same
state! When Wolfgang Pauli introduced this exclusion prin-
ciple it was certainly a rather ad hoc rule, a veritable deus
ex machina. But it did in one blow bring theory back into
excellent agreement with the observations. According to
this principle you should think of electrons a bit like people
at a pop festival in desperate need of a toilet. The simple
truth is that a ‘seat’ is either free or occupied and there is

no in-between; if occupied, you have to go and look for the
nearest free seat, which may be way out. Electrons are
permanently involved in playing some game like ‘musical
chairs.’ A notable aspect of this mutual exclusion is that it
only concerns exclusion of the same type of particles, not
particles of a different type. Moreover not all particle types
are subject to the exclusion principle. The particles which
are like electrons are called fermions, while the particles
that are not, like the photon, are called bosons. We will
return to this topic in a forthcoming section. First we turn
to a more detailed description of the atom.

Atomic structure

One of the early icons of quantum theory is the Bohr model
of the atom that we discussed in the previous chapter. It
makes it clear in a transparent way how a rather simple
but radical idea that can be directly implemented leads to
a very non-classical behavior, explaining qualitatively the
physics we are observing. This heuristic device was then
turned into a mathematical precise framework by Heisen-
berg, Schrödinger, Dirac, Born and many others. This
work revealed a complete set of quantum numbers label-
ing the states including the spin of the electrons. To com-
plete the model of the atom Pauli’s exclusion principle also
had to be invoked The study of the atom taught us what
quantization really means, and at the same time raised the
intricate epistemological questions that haunted the theory
and its practitioners for almost a century thereafter.

The Bohr atom: energy quantization

In the subsection on the Bohr-radius on page 134 of the
the previous chapter, we introduced the Bohr model for
the atom with its characteristic quantized orbits depicted in
Figure I.3.7, and its quantized energy levels. In this sec-
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tion we want to look at these quantized energy levels and
point out how they are related to the observed discrete
line spectra of light emitted by atoms. The connection that
Bohr established was that if an atom makes a transition
from some excited state to a lower one, it would emit a
photon with a frequency given by the Planck – Einstein re-
lation, so �E = h⌫ . Conversely, an atom could absorb a
photon if its frequency matched the energy for an electron
to move up. The schematic of such processes is given in
Figure I.4.6, where it is also indicated that for the hydrogen
atom the transitions to the ground states have frequencies
that correspond to the ultraviolet, while the transitions to
n = 3 correspond to the infrared end of the spectrum. So
only the transitions to the n = 2 levels are in the visible
domain. Clearly having a simple model that could account
for these discrete line spectra was a major success for the
early quantum physicists. These line spectra can be con-
sidered as an atomic barcode, if you hand it to me I can
tell you which atom you were looking at.

The Schrödinger atom: three numbers

After the Bohr model was introduced in 1913, it would
take another thirteen years until Schrödinger and Heisen-
berg published their fundamental equations for quantum
physics. The first called the theory wave mechanics and
the second matrix mechanics, but in fact they were fully
equivalent descriptions of the quantum states and their
observables, as was later shown by Dirac. The Schrödin-
ger equation is a wave equation in three dimensions, that
could be solved exactly for simple atoms and that yielded
the full spectrum of atomic states with all its quantum num-
bers. It went much further than the Bohr model, but to a
certain extent it incorporated the same simple idea in a full
three-dimensional model for the atom. In the Schrödinger
picture the states correspond to wavefunctions  (x) that
are defined over all of the position space, x 2 X = R3 .

And from the wavefunction of a state the related proba-

Figure I.4.6: The origin of light. If the electron makes a transi-
tion between the energy levels, the fixed energy difference �E
translates into the photon frequency; �E = h⌫ . This determines
the color of the lines of the spectrum, which can be observed in
absorption (left) or in emission (right).

.

bility distribution of where to find the electron can be de-
rived.

The equation: a guided tour..
So, let me step back and try to give you an idea what the
Schrödinger equation is about, and what it looks like. Let
us call it a ‘guided tour.’ In an operational, maybe even
opportunistic, sense, going from classical to quantum me-
chanics, is mathematically speaking not that hard. Once
you accept that momentum is represented as a spatial
derivative operator, p = -ih̄r , and the energy or Hamil-
tonian as a time derivative H = ih̄d/dt , one can translate
the classical functions into corresponding quantum opera-
tors or equations just by substitution. For example:

E =
p2

2m
+ V(x) ! ih̄

d

dt
= -

h2

2m
r2 + V(x) , (I.4.2)

on the left we have the Newtonian expression of the energy
and on the right we have the Schrödinger ‘wave opera-
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tor’, which when we let it work on a (wave) function  (x, t)
yields the Schrödinger equation in all its glory:

ih̄
d (x, t)

dt
=

�
-

h̄2

2m
r2 + V(x)

�
 (x, t) . (I.4.3)

For now we don’t want to get too deep into the mathemat-
ics of the equation but let us at least make some observa-
tions which are not so hard to digest:
(i) The equation expresses a simple truth, namely that the
energy (operator) generates the time evolution of the sys-
tem.
(ii) Quantum states are described by wavefunctions  that
satisfy this equation.
(iii) The wavefunction is complex meaning that it has a
phase factor in it, and it describes a probability amplitude.
(iv) Squaring the amplitude gives the probability density
p(x, t) for finding the electron in a small volume element
d3x around the position x and at a time t . We defined
p(x, t) = | |2 , so that the overall phase of the amplitude
drops out. It doesn’t affect the probability, which is where
the physics is.
(v) Indeed, the notion of probability apparently enters al-
ready on this basic level in the theory, where we are still
talking about the state of a single particle.

The quantization. Of great importance are the so-called
stationary states, meaning that the physical properties do
not change in time. You would think that the wavefunction
has to be time independent in that case but that is not quite
true. What is true is that the time dependence has to sit
in the phase factor �(t) which is going to drop out anyway
in the probability density. The answer is to write  as a
product of a phase factor which depends on t only, and a
time independent wavefunction  (x) that describes a time
independent stationary state. We write

 (x, t) = �(t) (x) = e-iEt/h̄  (x) , (I.4.4)

and substitute it in the Schrödinger equation. If you take
the derivative, you get that the time dependence drops out

completely and you are left with a nice time independent
equation for  (x):

�
-

h2

2m
r2 + V(x)

�
 (x) = E  (x) . (I.4.5)

where E is the constant energy value of the stationary state
 . The crucial point here is that you first have to solve
the equation to find out which values of E make quantum
sense. It turns out that only specific values give a solu-
tion for which the square of  gives an acceptable prob-
ability function. This means that the solutions have to be
square integrable; the integral over all of space of the ab-
solute square of the function has to be finite. This inte-
gral can then be normalized to one to obtain an appropri-
ate probability density. This type of mathematical problem
is called an eigenvalue problem; the values E that occur
in equation (I.4.3) are called eigenvalues and the corre-
sponding functions  (x) are called eigenfunctions. This
really is the stage at which the quantization ‘takes place’ in
the Schrödinger approach, and the eigenvalues are often
called quantum numbers. Hopefully this helps you to also
imagine what people mean when they talk about ‘quan-
tizing’ some (classical) system. They perform the substi-
tutions as we did in equation (I.4.2) and then look for the
eigenvalues and the corresponding eigenfunctions charac-
terizing the quantum states of the system. ⌅

A free quantum particle. Let us consider the simple case
where V(x) = 0 that corresponds to a free particle. The
solutions are periodic plane waves:

 k(x) ' eik·x . (I.4.6)

The meaning of the vector k (which appears here as a
vector of free parameters defining the solution) becomes
clear if we substitute the solution in equation (I.4.5) with
V = 0 , which yields:

Ek =
h̄2|k|2

2m
. (I.4.7)

This is just the classical expression for the kinetic energy
once we use the fact that the momentum is given by p =
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Figure I.4.7: Quantum particle in a box. A state of a two-dimen-
sional quantum particle in a box of length L. The wavefunctions
 (x) have to vanish on the boundary, and are of the form

 n1n2
⇠ sin(n1x1⇡/L) sin(n2x2⇡/L) .

We have plotted the wavefunction  and corresponding proba-
bility density p for finding the particle corresponding to quantum
numbers n1 = 3 and n2 = 4 .

h̄k . There is an annoying technical complication here, if
you calculate the probability density for the particle, you
find p(x) = | |2 = 1 , which is unacceptable because it
cannot be normalized to ‘1 0 . If you take the integral over
over a constant non-zero probability density then you would
find the total probability to be be infinite! The way out is to
put the particle in a box, say a cube of size L , so that
the wavefunctions have to vanish on the boundary where
xi = L . This in turn means that the momentum values be-
come quantized: pi = h̄ki = ⇡h̄ni/L with integer-valued
ni . The space of admissible momenta corresponds there-
fore to an infinite three-dimensional cubic lattice, where the
energy levels grow as the length of the momentum vector
squared: En ⇠ n2 .

In Figure I.4.7 we have depicted a particular solution for a
two-dimensional particle in a box, where the wavefunctions

Figure I.4.8: Spherical harmonics. The spherical coordinates
r, ✓ , and ' of the (yellow) point x are defined on the left. On the
right the angular distribution ⇢l,m(✓,') =

��Yl m
��2 , for a state

with quantum numbers l = 3, m = 1 is plotted.

that satisfy the boundary conditions are of the form:

 n1n2
(x) = N sin(n1x1⇡/L) sin(n2x2⇡/L) , (I.4.8)

with N a normalization factor. In the figure we plotted
the wavefunction and the corresponding probability den-
sity function for the case n1 = 3, n2 = 4. Note that this
wavefunction describes a one-particle state, but that that
particle has a rather outspoken preference for certain po-
sitions which sit on a periodic lattice inside the box. We
will in Volume II go much deeper into what this probability
interpretation of the wavefunction exactly means. For ex-
ample, looking at the figure the obvious question: ‘Where
is the particle?’ begs for an answer. As it turns out that
answer is far from obvious!

The hydrogen atom. Let us return to the question of what
the states look like for an atom. With the nucleus in the
origin the electron moves in the spherical Coulomb field
caused by the positive charge of the nucleus. The poten-
tial has a rotational symmetry, which means that it is ad-
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Figure I.4.9: What the quantum states of hydrogen look like.
The angular dependencies of the hydrogen wavefunctions cor-
responding to the so-called spherical harmonics Yl

m(✓,')
where n, l and m are the discrete quantum numbers which la-
bel the state. Each state can hold at most two electrons, one
with spin up and one with spin pointing down. The first quantum
number n labels the energy level corresponding with a triangle
in the Figure. At each level we have states where angular mo-
mentum l runs from 0 to n - 1 along the vertical axis and for
each l the component m runs horizontally from -l to l .

vantageous to rewrite the Schrödinger equation in terms of
a radial (r) coordinate and two angular coordinates (✓,')
(see Figure I.4.8). The equation then basically separates
into three independent equations depending again on cer-
tain discrete quantum numbers. The radial quantum num-
ber n = 1, 2, . . . linked to energy level is basically the or-
bital quantum number introduced by Bohr. And the en-
ergy eigenvalues E we just discussed are quantized like
E ⇠ 1/n2 . The angular dependence of the states intro-
duces two more quantum numbers: l = 0, . . . , n - 1 and
-l  m  +l , both of which are related to angular mo-
mentum. The wavefunctions corresponding to the states
are usually written like  nlm(r, ✓,') = Rnl(r)Ylm(✓,')
where the radial and the angular dependences are sep-
arated. In Figure I.4.9 we have depicted the angular de-

Figure I.4.10: Charge distributions. Light color indicates high
probability.The charge or electron probability distribution in the
xz-plane shows the ✓ and r dependence. Depicted are the
n = 4, l = 3 states, with m = 0, ..., 3 . These states corre-
spond to the states on the bottom line of the previous figure.
The shapes of the probability distributions are all-important for
understanding the chemical binding properties.

pendencies by plotting (the real part) of the functions Yl
m

for all admissible l and m values up to principle quantum
number n = 4.

Degeneracies. It turns out that the states  nlm(x) are
highly degenerate, meaning that different states will have
the same energy. For every energy level (labeled by the
quantum number n) there are a total of 2n2 different angu-
lar momentum states which all have the same energy. In
Figure I.4.9 these degenerate states correspond to the an-
gular (l,m)-states within each triangle labeled by n . The
extra factor two comes from the two possible electron spin
states that will be discussed shortly. Plotting this discrete
spectrum one would get a three-dimensional discrete lat-
tice filling a triangular pyramid (or is it a nicely decorated
Christmas tree?). These degeneracies are not acciden-
tal: they are the consequence of certain symmetries in
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this problem. These symmetries lead to certain conserved
quantities and these in turn lead to degeneracies in the en-
ergy spectrum. We will return in more detail to this topic in
Chapter II.6.

Lifting degeneracies. These degeneracies corresponded
exactly to the observations that the Dutch physicist Pieter
Zeeman made some 25 years earlier (almost simultane-
ous with Planck’s quantization hypothesis). He discovered
that by turning on a magnetic field the degeneracy of the
different angular momentum eigenstates was lifted, which
is reflected in the splitting of the spectral lines correspond-
ing to one energy level into many different lines. So you
could count the multiplicity of the degeneracies. For the
discovery of this ‘Zeeman splitting’ he shared the Nobel
prize with Hendrik Antoon Lorentz in 1902.

With the Bohr model in mind it is intuitively not too hard
to interpret these splittings. Clearly Bohr had only used
circular orbits but if we think of negatively charged elec-
trons orbiting the positively charged nucleus, these would
create a magnetic moment like a circular electric current
would do. This magnetic moment would be proportional to
the angular momentum of the electron state. What caused
the Zeeman effect was that the different magnetic moment
or angular momentum states would acquire an extra en-
ergy contribution from the interaction of that moment with
the external magnetic field. And interpreted this way, his
measurements showed direct evidence for the quantiza-
tion of the component of the angular momentum along the
magnetic field in integer multiples of mh̄ , where for given
l there was naturally the restriction -l  m  +l . Need-
less to say that none of these quantization rules can be
understood from a classical point of view.

This splitting, which could be completely accounted for
within the framework of the Schrödinger or Heisenberg
equation, is called the normal Zeeman effect. However,
Zeeman did actually discover an additional quantessential
feature in the spectra, which is referred to as the anoma-

lous Zeeman effect, to which we turn next.

The discovery of spin

The Pauli principle was published early in 1925.
.... Well, I had introduced those quantum numbers
but, if I had been a good physicist, then I would
have noticed already in May 1925 that this implied
that the electron possessed spin. But I was not a
good physicist and thus I did not realize this... Then
Uhlenbeck appears on the scene ... he asked all
those questions I had never asked ... When the
day came that I had to tell Uhlenbeck about the
Pauli principle – of course using my own quantum
numbers – then he said to me: ‘But don’t you see
what this implies? It means that there is a fourth
degree of freedom for the electron. It means that
the electron has a spin, that it rotates’... I asked
him: ‘What is a degree of freedom?’ In any case,
when he made his remark, it was luck that I knew
all these things about the spectra, and I said: ‘That
fits precisely in our hydrogen scheme which we
wrote about four weeks ago. If one now allows the
electron to be magnetic with the appropriate mag-
netic moment, then one can understand all those
complicated Zeeman – effects.’

Samuel Goudsmit (1971)

As announced, there was another quantessential treasure
hidden in Zeeman’s spectral data that caused a great deal
of confusion among the early quantum physicists. It is
known as the anomalous Zeeman effect, and was observed
in the spectrum of Sodium, where a line in the absence of
an external magnetic field already appeared split: this is
because of the coupling between the spin and orbit mag-
netic moments. When Zeeman turned on the field, he
found further splittings in an even number of lines as indi-
cated in Figure I.4.11. These splittings implied that quan-
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Figure I.4.11: The discovery of spin (and the qubit). This
shows the anomalous Zeeman effect discovered in 1898, the
same year that Planck introduced his constant. The line spec-
trum of Sodium, corresponding to the arrows in the figure, was
split due to the spin of 1/2 of the electron. Without the mag-
netic field, the level l split up into levels with total spin j = l± 1

2

(on the left). Turning on a weak magnetic field he observed the
hyperfine structure because the spin degeneracy was lifted.

tum theory would somehow also admit half-integral values
for the angular momentum (as 2j + 1 is only even if j is
half-integral).

In 1925 the resolution was proposed by two young Dutch-
men, Samuel Goudsmit and George Uhlenbeck who were
still graduate students at Leiden University. They came
up with the bold proposal that the electron was spinning
around its axis and that that ‘spin’ would account for the
so-called hyperfine splittings observed in the anomalous
Zeeman effect. It may remind you of the good old solar
system with the Earth rotating about its axis while orbiting
the Sun! The idea implied that the observations had noth-
ing to do with an extra feature of the atom as a whole, but
rather with a totally new feature of the electron itself.

Behind the scenes. Wolfgang Pauli
had already come across this prob-
lem in 1925 and had understood that
the quantum numbers of atomic states
were basically related to the radial and

the angular motions of the electron. Indeed, three
dimensions gave rise to three quantum numbers:
n = 1, 2, . . . for the radial direction, and l =
0, 1, . . . , n-1 and -l  m  +l for the angular mo-
tions. But he also noted that to get things right he
needed a fourth quantum number which he some-
what desperately called Zweideutigkeit, meaning
something like ‘double valuedness’. The story of
how the all-important discovery of spin unfolded is
a kind of amusing, but for the young researchers
involved in fact rather traumatic.
Goudsmit and Uhlenbeck, discussed their spin-idea
with their Leiden advisor Paul Ehrenfest, who liked it
and proposed that they should write it up. They did
so and showed their work to the grand old Leiden
professor Lorentz who had earlier developed a so-
phisticated theory of the electron, but entirely within
the classical framework. A thing he could do well
was to calculate the rotational speed the electron
would need to have in order to produce the mag-
netic moment corresponding to (1/2)h̄ , and that
turned out to exceed the speed of light by orders
of magnitude. This is in clear contradiction with
the theory of relativity. Understandably, this argu-
ment knocked down the confidence of the students
and they went back to Ehrenfest to humbly withdraw
their paper that contained this incredible stupidity.
Alas, it turned out that Ehrenfest had already sub-
mitted the paper, and didn’t seem to take it too se-
riously, making the consoling remark: ‘Sie beiden
sind jung genug sich eine Dummheit leisten zu kön-
nen.’ (‘The two of you are still young enough that
you can afford yourself such a stupidity’). Actually it
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seems that Bohr when he heard about the proposal
liked it and Einstein also apparently judged it rather
mildly.
It actually turned out that somewhat before that
time, a young American physicist, Ralph de Laer
Kronig, had also thought of the electron spin (amus-
ingly, I took my first quantum mechanics course with
Kronig in Delft in 1966). To his misfortune, he hap-
pened to show the idea to Wolfgang Pauli, who in-
stantly demolished it, so that Kronig ended up not
working on it any further. The issue of who should
and who should not be credited with the discov-
ery/invention of spin remains hidden in darkness.
It is this strange story with a touch of tragedy that
may explain why a Nobel prize was never awarded
for the discovery of the quantessential property of
spin as an intrinsic property of particles. It also
shows that the advice of even the greatest ‘advi-
sors’ should sometimes be taken with the neces-
sary pinch of salt. ⇤

The electron possessed a new property called spin! It
could only exist in a spinning state with intrinsic angular
momentum values s = 1/2 in units of h̄ . In Figure I.4.11
we show how this conjecture did in a rather spectacular
way resolve the special properties of those particular ‘D-
lines’ in the spectrum of Sodium. The idea was to think
of a new total angular momentum quantum number de-
noted j = l±1/2 , basically expressing that the spin would
either be aligned or anti-aligned with the orbital angular
momentum. In that case the component along the field
of j denoted as j3 could run from -j  j3  +j . Hence
the 2j + 1 energy levels of the right-hand side of Figure
I.4.11 is an even number since j = 1/2 and 3/2 respec-
tively. And that does the job if you assumed in addition that
the transitions could only take place if they obeyed the rule
�j3 = -1, 0, 1 , that followed naturally if you took into ac-
count that the outgoing photon itself had spin one.

Let us conclude with a comment on the splittings of the
energy levels. If we would have refined our model to in-
clude the interaction of the magnetic electron spin degree
of freedom with the magnetic moment due to the orbital
motion of the electron, the so-called spin-obit coupling, we
would have found the fine splitting of the left column in
Figure I.4.11. Furthermore if we would have included the
interaction of the electron spin with the nuclear magnetic
moment, we would have found the hyperfine splittings, on
the right of the figure.

Fermions and bosons

There are many macroscopic phenomena that can only be
understood from underlying quantum principles of matter.
One of the quantum principles which has a tremendous ex-
planatory power is Wolfgang Pauli’s exclusion principle: it
decrees that two electrons cannot occupy the same quan-
tum state. This exclusion property is instrumental, for ex-
ample for understanding the atomic structure of the ele-
ments and the magnificent chemical diversity that derives
from it. Not all particles obey the principle though: the par-
ticles that have half-integral spin do obey and are called
fermions, while the particles that have integral spin do not
and are called bosons.

Having made a strong plea for the microscopic domain
as the realm where the laws of quantum theory are in-
dispensable, I should hasten to correct myself. This is
a severe understatement. Quantum theory manifests it-
self on all scales, but could only be discovered on the mi-
croscopic level where it is omnipresent, manifest and in-
escapable. Once that is recognized, however, it turns out
that there is a host of macroscopic phenomena that can-
not be explained without a deep understanding of quan-
tum theory. This is so because macroscopic systems are
made up of large numbers of microscopic quantum parti-
cles. One might expect that there are particular proper-
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Figure I.4.12: The exclusion principle. The exclusion principle
applied in the game called musical chairs. (Source: wikiHow)

ties of the microscopic constituents, which are specifically
quantum mechanical and have a strong bearing on inter-
actions between the particles, and therefore also on their
collective behavior. Consequently there are many macro-
scopic phenomena which are not obviously quantum, but
nevertheless can only be understood if one takes the un-
derlying quantum physics into account.

Going from the microscopic to the macroscopic domain
does not necessarily erase all quantum traces. A striking
example is the property of spin and the exclusion principle
of Pauli that – as we mentioned – decrees on the quantum
level that particles with half-integral spin cannot occupy
the same quantum state. We will have much more to say
about this in Chapter II.5 of Volume II , but for the moment
we will state the basic facts about it. Whereas the photon
is a boson, the electron is a fermion and so are the pro-
ton and neutron. So, fermions don’t like each other, they
like to claim territory and chase away intruders, and they
not only try but have to avoid each other. In spite of hav-
ing no genes they certainly come across as rather selfish!
Fermions are permanently involved in playing a kind of mu-

Figure I.4.13: The struggle to unravel structure. Mendeleev’s
periodic table of chemical elements in a historical perspective.
The dark red color indicates the elements which were known
already in antiquity. Adding the light pink entries you arrive at
Mendeleev’s table. Including the blue colored elements brings
us up to 1945 (Seaborg’s table) and the yellow elements were
discovered after that. Many entries are thus post-Mendelevian.
(Source: Sandbi - Wikimedia Commons)

sical chairs (see Figure I.4.12). For bosons the behavior is
the opposite, if the system is at very low temperature and
there is no energy to excite the bosons, they love to join
each other, and all settle in the same ground state. They
will form what is called a condensate, a Bose-condensate
to be specific. These are macroscopically coherent collec-
tive quantum states which may exhibit spectacular proper-
ties. This form of quantum coherence manifests itself in
for example a laser beam, but also in phenomena like su-
perfluidity and superconductivity. We will return to these
properties in Chapter III.3 of Volume III.
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Figure I.4.14: The left step Janet periodic table. This is a logical representation of the periodic table in direct correspondence with the
quantum classification of atomic states, as depicted in Figure I.4.9. Starting from the right each block corresponds to an increasing
integer value of the angular momentum as is indicated in the left column, where letters are used with l = 0 $ s, 1 $ p, 2 $
d, 3 $ f . And each block contains 2(2l+ 1) states, i.e. 2, 6, 10, 14, ... . In comparison with the standard Mendeleev representation of
Figure I.4.2(a), one sees that the extra rows added (of the Lanthanides and the Actinides) at the bottom of the Mendeleev table get a
natural place as l = 3 blocks in the Janet table.

Atoms: the building blocks of chemistry

The connection between Mendeleev’s periodic table of the
chemical elements depicted in Figure I.4.13, and the sys-
tematics of atomic states of Figure I.4.9 is not immediate.
This is so because the Mendeleev table was conceived
prior to quantum mechanics. This begs for alternative rep-
resentations of the periodic table in which the underlying
quantum structure is manifest.

The rich structure of the periodic table of atomic elements
underlying all the structural diversity of chemistry is a direct
consequence of the fermionic nature of the electron. Be-
cause in an atom with more than a single electron, not all
the electrons can sit in the lowest possible state, they have
to successively fill the higher energy states of for example
Figure I.4.6. And as the chemical properties of the ele-

ments are mostly determined by the outer electrons, they
will be different because the charge distributions associ-
ated with the states of the outer electrons may have quite
different shapes, as we saw in Figure I.4.9.

With our knowledge of quantum theory we might prefer
to draw the periodic table differently, for example following
Janet as we did in Figure I.4.14. In that non-standard vi-
sualization there is a direct correspondence with the way
the atomic quantum states are labeled as we depicted in
Figure I.4.9. The quantum states at a given energy En are
organized into shells labeled by the angular momentum
quantum number l that runs from 0 to n - 1 . Quantum
theory tells us how things work on the microscopic scale
but as a consequence thereof it leaves indelible marks on
much larger scales in fields like chemistry and material sci-
ence. We will have to say a lot more on chemistry and
condensed matter in Volume III.
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Nuclear structure

Nuclei consist of a certain number of protons and neu-
trons that are kept together by the strong nuclear force.
Nuclei that occur in nature are relatively stable for the ex-
cellent reason that they wouldn’t be there otherwise, but
not all nuclei we find in nature are stable. There are many
metastable isotopes that can decay in a variety of ways,
either by the emission of protons, neutrons, ↵ particles, or
by �± or � radiation. Many of these occur spontaneously
in nature and have important applications, for example in
the context of carbon dating. Short-lived �+ radiators are
for example used as radioactive tracers for PET scanning
purposes.

An atom consists of a positively charged massive nucleus
in the core and a number of electrons ‘orbiting’ around it,
making the overall charge of the atom zero. The natural
next step in the quest for fundamental building blocks was
to proceed to the structure of the nucleus itself. As always
in science, if one observes regularities in structure, one
tries to figure out an underlying mechanism that explains
those regularities. Here it was not different. The ques-
tion was open ended in the early days of quantum the-
ory, and it might have happened that one entered a realm
where even quantum theory would fail. How exciting! But
alas, that didn’t happen, physics in the nuclear domain ap-
peared to fully obey the quantum laws. The mechanism
underlying nuclear binding is similar to that of the atom in
some aspects, but different in others.

Nucleons: Protons and neutrons. Nuclear fission exper-
iments demonstrated that nuclei are composed of particles
called nucleons, of two types, the proton or the neutron.
From Table B.4 at the end of the book about the discov-
eries of fundamental particles, we learn that the neutron
was discovered by James Chadwick as late as 1932, for
which he received the Physics Nobel prize in 1935. but
remarkably we also learn nothing about the discovery of

Figure I.4.15: The nuclear potential between protons as a func-
tion of their distance. The potential is given by the purple curve,
which is the sum of a long-range electromagnetic repulsion (in
red) and a short-range attractive part due to the strong nuclear
force ( in blue). Once the particles get close enough they are
strongly bound.

the proton as such. That discovery was implicitly made
with the discovery of the atomic nucleus by Rutherford in
1911, where the proton is defined as the nucleus of the
simplest atom, hydrogen. Rutherford, the great physicist
and chemist from New Zealand who spent most of his ac-
tive research years in Canada and Britain, is often called
the ‘father of nuclear physics.’ He was awarded the No-
bel prize for Chemistry in 1908, ‘for his investigations into
the disintegration of the elements, and the chemistry of
radioactive substances.’ The neutron was discovered rel-
atively late, presumably because it is unstable as a free
particle: it decays under emission of an electron (and an
invisible (anti-)neutrino) into a proton! This process was
at the root of all radioactive � decay processes of nu-
clei, discovered by Henri Becquerel as early as 1896 and
dramatically expanded by Marie and Pierre Curie. If nu-
clei are made of protons and neutrons, the first question
that comes to mind is: how can positively charged pro-
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tons stick together so closely in a tiny nucleus if they all
carry the same positive charge? Equal charges repel and
repel more strongly if they get closer to each other, be-
cause the Coulomb force is inversely proportional to their
squared distance. So, how come nuclei don’t fly apart?
What keeps them together?

A looming crisis leading to a considerable number of gifted
Desperado’s in search of new physics! A simple but bold
idea would be to bluntly postulate a new strong ‘nuclear’
force that would be stronger than the electromagnetic force
so that it could overcome the electromagnetic repulsion
and cause a net attraction. If we in addition assume that
this strong nuclear force works equally strongly on protons
and neutrons, this could in principle explain the nuclear
binding. And indeed, that is the way it worked out!

The picture looks like Figure I.4.15, where we have plot-
ted the interaction energy of two protons as a function of
their distance. It is important to note that there are two
contributions, one from the electromagnetic repulsion (the
red curve), which is long range and typically falls inversely
proportional to the distance, and one from the attractive
nuclear force (the blue curve), which is strong but acts
only over a short range. These two contributions add up to
the interaction energy corresponding to the purple curve
where one sees that the repulsion dominates for large dis-
tances. Compare these curves for the nuclear binding
energy with those we gave for the atomic binding in Fig-
ure I.4.5, where the ingredients are similar but work out
very differently; in the atomic case the attraction dominates
the long distance behavior.

Of course also the instability of neutrons had to be in-
cluded into this picture as well, and that involves postu-
lating yet another force, the so-called weak nuclear force,
which will be discussed on page 196.

Isotopes and nuclear decay modes

Isotopes are nuclei that differ from their standard stable
composition by having more or less neutrons. This means
that these are metastable under various forms of emission.
Some are short-lived, and some are long-lived. Nuclear
isotopes have important applications.

Isotopes. Nuclei are characterized by two labels, one is
the atomic number (basically the nuclear charge in units of
the elementary charge e) and the other is the mass num-
ber. These labels can be easily converted into the number
of protons, np , and the number of neutrons, nn , in the
nucleus, as follows

atomic number = np (I.4.9)

mass number = np + nn (I.4.10)

The basic question was to understand the stability of the
well-known atomic nuclei corresponding to the chemical
elements. It turned out to be a matter of striking balances.
For a chemical element the atomic number in the peri-
odic table is clearly identified with the number of protons
in the nucleus. In principle one would expect that, given
the electric charge (⇠ np), there could be different num-
bers of neutrons and therefore one could expect different
atomic weights for a given element. This is indeed the case
and we speak of different isotopes of the element, where
the atomic number is the same but the mass number dif-
fers. As their charge configuration would be the same, their
chemistry would also be, because that is basically gov-
erned by the electronic states around the nucleus. Well-
known examples of isotopes are deuterium and tritium, the
heavy forms of hydrogen. In addition to the proton, they
have one and two neutrons respectively, and are therefore
often denoted as 2H and 3H as to distinguish them from
ordinary hydrogen, H = 1H .

Another important isotope is the carbon isotope 14C , to
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Figure I.4.16: Stable and unstable isotopes. The array of nu-
cleotides or nuclear isotopes with on the horizontal axis the num-
ber of neutrons and on the vertical one the number of protons.
The narrow black band in the middle of the colored region marks
the stable nuclei. The other colors refer to nuclear decay types
explained in the next figure.

be distinguished from the stable isotope 12C . The former
occurs naturally but is unstable, due to the decay-process
into nitrogen-14,

14C ) 14N+ e- + ⌫̄ , (I.4.11)

where it emits an electron and an anti-neutrino. This de-
cay is very slow with a half-life ⌧1/2 of 5730 years. It is this
slow decay that is put to use in carbon-14 dating meth-
ods to determine the age of sediments, fossils and antique
art objects. How nice, a nuclear instability that renders
an important service to society, as it helps to unambigu-
ously separate real from fake when it comes to providing
quantitative, archeological, historical and anthropological
evidence about the age of objects.

In Figure I.4.16 we display the array of isotopes, with the
number of neutrons on the horizontal axis and the number
of protons (i.e. atomic number) on the vertical one. The

Figure I.4.17: Nuclear decay modes. The basic decay modes
of nuclei correspond to moves in the diagram: �- decay cor-
responds to the emission of an electron, �+ to the emission of
a positron. ↵-radiation corresponds to the emission of a 4He
nucleus consisting of two protons and two neutrons.

stable nuclei form the black curve through the center of
the colored band, below and above is a band of unstable
nuclei that may or may not occur in nature. Note that the
line of stable elements is below the np = nn line, which
indicates that ever more neutrons are needed to stabilize
the nucleus with increasing charge. The line of stable ele-
ments ends, indicating that beyond a certain atomic num-
ber all isotopes become unstable (around np = 82).

Nuclear decay modes. At any point in the chart of iso-
topes there are a number of conceivable instabilities cor-
responding to moving to neighboring spots as indicated in
Figure I.4.17. The nearest neighbors, found by moving,
down or sideways in the chart, correspond to adding or
getting rid of a single neutron or proton. But we may also
think of other so-called transmutation modes; for example
the nucleus may emit ↵-radiation, which just means that it
emits a (stable) 4He nucleus consisting of two protons and
two neutrons. In our diagram this implies that the nucleus
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moves two steps to the left and two steps down. Another
possibility is that a neutron in the nucleus decays by �-

decay into a proton and emits an electron (and an anti-
neutrino) in which case we move one step up and one to
the left. This is because the net charge increases by one
unit, meaning that the nucleus would move one step up in
our chart, but at the same time it moves one step to the left
as the number of neutrons is decreased by one.

For each isotope the dominant decay mode is color coded
in the chart of Figure I.4.16, and as expected the dominant
decay tends to move the isotope to the black line of stable
elements.

The chart shows that away from the stable nuclei marked
as black, we have a rather broad band of metastable nu-
cleotides or isotopes, but that band is bounded. On the
very right of the table we get into a region where the would-
be elements have no stable isotopes at all. These are com-
pounds that do not occur in nature. But that didn’t keep
physicists like Glenn Seaborg at Berkeley from cooking
them up in the lab. And as you see the nuclear physicists
have filled out the periodic table up to an atomic number
of about 120 by now. The new elements carry legendary
names like Einsteinium, Curium, Bohrium, and so on. An
ironic footnote is, that, while named after scientists whose
names may well live forever, the corresponding elements
themselves are only extremely short-lived.

Half-lives count. We mentioned already in passing the
quantessential notion of a half-life or a decay time usually
denoted as ⌧ and it may deserve some explanation. If we
take for example a number of N of the of metastable 14C

nuclei which have a certain probability to decay, then the
number of nuclei that will decay will be proportional to N .

This statement can easily be translated in an equation for
the decay rate per unit time dN/dt:

dN

dt
= -N/⌧ . (I.4.12)

The solution (see also the Math Excursion on page 612 of

Figure I.4.18: Half-life versus decay time. In the case of expo-
nential decay, the half-life ⌧1/2 is the time needed for half of the
initial number N0 particles to have decayed. After a decay time
⌧ , (which chose equal 2) only N0/e are left. In the figure we
have chosen a scale N0 = 6⇥ 10large .

Volume III) can be written as

N(t) = N(0)e-t/⌧ , (I.4.13)

where N(t) is the number of 14C nuclei at time t . You see
that the decay is exponential, and the rate equals 1/⌧ . The
reader may be more familiar with the notion of a half-life
⌧1/2 , the relation is simply ⌧1/2 = ⌧ ln 2 . This makes the
decay go like 2-t/⌧1/2 . so that after time t = ⌧1/2 only half
the number of nuclei are left. In Figure I.4.18 this relation
is visualized. What is remarkable about nuclear decays is
that their half-lifes can be immense, even as big as the life-
time of the universe! How can a microscopic mechanism
with very short characteristic timescales like inside the nu-
cleus produce such incredibly slow processes. Thinking
quantum mechanically you would expect a ground state of
a certain energy E0 to typically oscillate with a frequency
of order ⌫ = h/E0 , and for a nucleus E0 = 1 keV which
yields a frequency of 1017 Hz or an oscillation time of or-
der 10-18 s . This value has to be contrasted with the decay
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time of order 1011 s for carbon for example. That is a factor
of about 1029!

Imagine: you are an electron and want to get out and you
only succeed after banging on the door 1029 times! In-
deed it is exponentially hard to escape because there is a
high potential barrier that wants to keep you inside, the de-
cay is exponentially suppressed, because it proceeds via
a process called quantum tunneling, a fully quantessential
mechanism that has no classical analog at all. Classically
the electron would have to climb over the mountain, but it
has not enough energy to do that, and there is no escape
possible. But quantum mechanically it is more subtle be-
cause there is a ‘certain uncertainty’ in the energy of the
particle thanks to Heisenberg. This means that a version
of the uncertainty relations applies, reading �E·�t � h̄/2 .

You may loosely paraphrase it by saying that the parti-
cle can ‘borrow’ energy for a brief period of time. It’s like
magic, if you do the trick fast enough nobody will notice
and miracles are possible! Anyhow this means that there
is a small probability that the electron will have sufficient
energy to get away. That probability is exponentially small
though, and depends on the height and width of the bar-
rier. And that explains the enormous factor 10-29 . We will
say more about quantum tunneling in Part II of the book.

Positron-emission tomography (PET)

Positron-emission tomography is a medical imaging tech-
nique for diagnostic purposes. In particular to learn about
the functioning of organs. It makes use of specific radioac-
tive isotopes that are injected into the patient. The scanner
then traces how the radioactive component is transported
through the body.

With the use of isotopes in the medical arena one cer-
tainly wants to reduce the exposure of patients to poten-

tially harmful radiation and therefore the isotopes needed
for this purpose are typically short-lived positron (�+) emit-
ters. So here it is anti-matter that matters! If a positron is
emitted, it will run into an electron in the detector, and to-
gether they will annihilated into a pair of high-energy pho-
tons that move out back-to-back. These photons get de-
tected and from their momenta one can reconstruct where
the positron was located.

The suitable radio isotopes are thus to be found in the or-
ange region under the black line of stable nuclei in Fig-
ure I.4.16. Typical isotopes with short half-lives are carbon-
11 (⌧1/2 ⇠ 20 min), nitrogen-13 (⌧1/2 ⇠ 10 min), oxygen-15
(⌧1/2 ⇠ 2 min), or fluorine-18 (⌧1/2 ⇠ 110 min). These so-
called tracers are added to compounds the body uses nor-
mally, such as sugars, water and sometimes just the air we
breathe (oxygen-15).

Transmutation: Fission and fusion

Nuclei aren’t good or bad, it’s what people do with
them we have to worry about.

We discuss the basics of nuclear fission and fusion pro-
cesses, emphasizing their peaceful applications. This in-
cludes the large global initiative, ITER, to construct a work-
ing net energy producing fusion reactor.

In Figure I.4.19 we show the binding energy per nucleon
as a function of atomic mass number. The natural ten-
dency is to minimize the energy: the system will mini-
mize its total binding energy assuming there are no unsur-
mountable energy barriers that block access to that min-
imal energy configuration. The graph clearly shows the
remarkable and important fact that elements of low mass
number tend to lower their binding energy through fusion
into heavier nuclei, whereas on the other side we see that
at high mass number, nuclei can lower their binding energy
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Figure I.4.19: Fusion and fission. The binding energy per nu-
cleon inside a nucleus as a function of its mass number. Favored
processes are those where this binding energy per nucleon de-
creases. The light elements tend to fuse, while the heavy ones
tend to break up.

by decaying or fission into lighter nuclei. Note also that in-
terestingly the elements 4He, 12C and 16O are relatively
stable. In the following subsections we will focus first on
fission and then on fusion.

Fission.

The fundamental point in fabricating a chain react-
ing machine is of course to see to it that each fis-
sion produces a certain number of neutrons and
some of these neutrons will again produce fission.

Enrico Fermi

The heavy elements on the right of Figure I.4.19 with a
high binding energy per nucleon are typically unstable with
respect to decay or fission processes. In these processes
the total mass number (np+nn) has to be conserved. We
start with fission because it was easier to achieve than fu-
sion – not only in reactors, but also in rather singularly dra-

Figure I.4.20: Fission of uranium, By absorbing a neutron the
235U isotope changes to the unstable uranium isotope 236U that
splits into a 141Ba and a 92Kr nucleus plus three neutrons.

matic experiments – like the making of nuclear bombs. In
applications, whether it is in the deplorable nuclear weapon
industry, or in fission reactors, or in hospitals, one always
needs nuclei that are ‘fissible’. ‘Good fissibility’ means that
their fission after absorbing a neutron will also produce,
apart from the heavy fission products, additional neutrons
that can then destabilize neighboring nuclei. This way
one can start a chain reaction. And clearly if that is not
extremely well-controlled it will turn into an exponentially
growing decay process, a meltdown or nuclear explosion,
depending on the circumstances. History bears witness to
quite a few of such cataclysmic events, and nuclear safety
and disarmament should remain a primary concern for all
of us. We have to find a responsible balance between prof-
itability and safety and the price is high if we don’t get it
right.

In Figure I.4.20 we have illustrated the fission of a uranium-
235 nucleus after the absorption of a neutron into the nu-
clei of barium-141 and krypton-91 plus three neutrons. The
nuclear process is given by the following reaction equa-
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tion:3

1
0n+235

92U ! 141
55Ba+92

36Kr+ 3 1
0n . (I.4.14)

It is clear that the emitted neutrons can ignite other ura-
nium nuclei and this will keep the process going, provided
that there is a sufficient concentration of uranium-235.

Natural uranium is found in ore deposits in many places
around the world. It is predominantly a mixture of the two
isotopes uranium 238 (99.27%) and uranium 235 (0.72%),
and therefore to make nuclear fuel that can be used in re-
actors, one has to increase the 235 fraction by an ‘enrich-
ing’ process, for example by using centrifuges to get rid
of the heavier 238 isotope. In a fission reactor the pro-
cess is moderated by neutron absorbing materials such as
graphite, water or heavy water (where the hydrogen is re-
placed by deuterium). The uranium-235 itself has a natural
half-lifetime of 703,800,000 years, so no wonder there is
still a lot left from the original amount stocked in the Earth
crust. It naturally decays by emitting an ↵ particle, pro-
ducing a thorium-231 which in turn then decays rapidly in
protactinium-231 and so on. It winds up in a long chain
of successive reactions of which some are fast and oth-
ers slow, with half-lives of thousands of years. The reac-
tion chain of uranium-235 ends with the element lead-207
(20782Pb), which is stable. However, if we get the uranium-
235 to absorb a neutron, it turns into a uranium-236, and
that is unstable so it breaks up in krypton and Barium plus
three neutrons, and that can keep a chain reaction go-
ing.

Fusion. Going back to the binding energy curve of Fig-
ure I.4.19 we now turn to the left side, where we see that
energy can be gained if we manage to fuse light nuclei
(like hydrogen) into a stable nucleus with higher atomic
number (like helium-4). This is not so simple because one
has to ‘overcome’ the electromagnetic Coulomb repulsion

3We use the notation A

ZX with X= chemical element, A= mass num-
ber and Z= atomic number.

between for example two protons. Now in an accelerator
this certainly could be done but to do this on a larger scale
one has to achieve physical conditions which are quite ex-
treme. So, to get fusion going has turned out to be very,
very difficult. In spite of numerous experts who have been
raising expectations, the timescales for achieving fusion
have been repeatedly extended by decades. To go from
‘scientific feasibility’ to ‘successful technology’ sometimes
takes a long time and may be hard to estimate. This leads
to the familiar situation where either the optimists or the
pessimists are ridiculed!

The Lawson criterion. How extreme the conditions are
that have to be met in order to get fusion to work can
be

Chrysopoeia: transmutation into
gold?

There was a lot more to magic, as Harry
quickly found out, than waving your wand

and saying a few funny words.
J.K. Rowling, Harry Potter and the Philosopher’s Stone.

Making gold is the alchemist’s dream! In alchemy,
the term chrysopoeia means transmutation into
gold. It comes from the Greek words �⇢µ�o� ,
khrusos, meaning ‘gold,’ and ⇡o◆✏◆⌫ , poiëin,
meaning ‘to make.’ The term refers to the creation
of the stone of wisdom or the philosopher’s stone.
In the early days of alchemy, in Egypt and Greece
there was a serious quest for the stone, as it
would allow you to turn any metal into gold. It
apparently led to a kind of primordial gold rush. For
example, Zosima’s formula of the crab, supposedly
constituted a kind of recipe to brew gold out of
copper and zinc. If only copper, zinc and a Bunsen
burner would do! This ‘recipe’ would instantly turn
any ‘nitwit’ into a billionaire, for as long as they
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managed to keep it secret of course! In Egyptian
antiquity there must have been loads of books
on alchemy, and – from a historical point of view
– unfortunately, almost all of them have been
lost. It was an ‘executive order’ by the Roman
Emperor Diocletian in AD 296, which decreed
that all alchemy books on making gold had to be
burned. Anyway, we all know that the true heirs of
alchemy are of course our friends the stockbrokers.
Or should I say the Silicon Valley tech-billionaires
who turn doom scrolling addictions into gold!

Now you ask, can nuclear physics revive the old
gold-plated dream in a more mundane way? The
answer is a clear ‘yes!’ Gold was first synthesized
from mercury by neutron bombardment in 1941, but
the isotopes of gold produced were all radioactive,
so the gold produced had an expiration date, and
that is precisely what you don’t want. You don’t
want a fragile ‘bread and butter’ like commodity to
be your gold standard. Actually there is only one
stable gold isotope, 197Au , so to produce desirable
gold, nuclear reactions must create this isotope.

It can be done, but unfortunately it is way more
expensive than just buying gold. Gold can actu-
ally be manufactured in a nuclear reactor by irra-
diation of mercury with neutrons. For this to work
you need the mercury isotope 196Hg , which oc-
curs with a frequency of 0.15% in natural mer-
cury. That isotope can be converted into gold, by
first absorbing a neutron and then through electron
capture decaying into 197Au with some slow neu-
trons. I think we can be sure that, all those painfully
negotiated and maintained nuclear nonproliferation
agreements are not made out of fear that bad peo-
ple might embark on breeding a nuclear goose pro-
ducing golden eggs ad infinitum. ⇤

Figure I.4.21: Energy gain by fusion. The net energy gain
from a fusion of four protons into a 4He nucleus, as it hap-
pens in the Sun. One atomic mass unit or amu corresponds
to 931.5 MeV/c2 = 1.661⇥ 10-27 kg $ 1.49210

-10 joule .

expressed by the so-called Lawson criterion. John Law-
son, a young engineer working on nuclear fusion, decided
in 1955 to work out exactly how hard it is to achieve fu-
sion. Although his colleagues were quite optimistic about
their prospects, he wanted to prove it to himself. He found
that the conditions for fusion power relied on three vital
factors. By calculating the requirements for more energy
to be created in the plasma than is put in, he came up with
a dependence on three quantities: temperature (T ), den-
sity (n) and confinement time (⌧). He derived a lower
bound on the triple product, L ⌘ n ⌧ T which would de-
pend on the type of process and the type of machine.
For the deuterium-tritium fusion one typically needs L �
1021 keV s/m3 and that is what the international fusion
project ITER in France is expected to achieve. The techno-
logical promise of a fusion reactor based on the Tokamak
concept, where an extremely hot nuclear plasma is con-
fined to a toroidal reaction chamber by very strong mag-
netic fields, has been clearly established. So far no stable,
net energy producing fusion device has been constructed,
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Figure I.4.22: Fusion in the Sun. This is the chain of nuclear
fusion processes that takes place in the core of the Sun. It is
a three step process, leading from protons via deuterium and
helium-3 to the stable helium-4 nuclei. The net result is that four
protons are converted into a single helium-4 nucleus.

but we will discuss the ITER project shortly. It is a sober-
ing thought that it is not us who invented fusion, of course
nature did. And we have learned a lot from studying and
understanding the energy production in the Sun which ba-
sically is a gigantic nuclear fusion reactor.

Let the Sun shine.

... No more falsehoods or derisions
Golden living dreams of visions
Mystic crystal revelation
And the mind’s true liberation ...
Let the sun shine, let the sun shine in!

The fifth dimension in the musical Hair (1967)

The extreme pressure caused by the gravitational force in
the core of stars turns them into extreme pressure cookers,
allowing for all kinds of fusion processes to take place. Ev-
ery second, our Sun turns 600 million tons of hydrogen into

Figure I.4.23: The life cycle of the Sun. An average star like
the Sun has sufficient hydrogen to burn by fusion so as to keep
shining for about 10 billion years. It will then form a red giant
after which the core collapses to a white dwarf about the size of
the Earth.

helium, releasing an enormous amount of energy. Achiev-
ing fusion on Earth has required a different approach since
we lack a natural pressure cooker to achieve the densi-
ties and temperatures needed. The temperature at the
Sun’s surface is 6,000 degrees, while at its core it is 15
million degrees. Temperature combines with density in
the Sun’s core to create the conditions necessary for the
fusion reaction to occur. The gravitational forces of our
stars cannot be recreated here on Earth, and much higher
temperatures are necessary in the laboratory to compen-
sate.

The basic process of burning hydrogen to produce helium
through the chain of fusion processes is depicted in Fig-
ure I.4.22. The hydrogen nuclei are just protons, so, in
the first step we make deuterium under emission of a neu-
trino and a positron. The second step is to have the deu-
terium and a proton fuse into helium-3 under emission of a
photon. Finally two helium nuclei can fuse into the stable
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Figure I.4.24: The basic ITER process. The basic fusion pro-
cess: 2H +3H !4He + n is delivering the energy in the ITER
fusion reactor. The difference in mass between the total incom-
ing and out-coming nuclei is converted into energy according to
Einstein’s formula E = mc2 .

helium-4 nucleus under emission of two protons. The net
energy delivered in such a process is what is calculated in
Figure I.4.21: it amounts to about 4.0 ⇥ 10-12 joules per
helium-4 nucleus produced. In other words, burning 1 kg
of fuel this way would produce about 2.3⇥107 MWh . This
is comparable to what a 100 MW energy plant produces
in 26 years!

Having analyzed the energy production of the Sun, we
have also answered the question whether the Sun will keep
shining forever. The answer is a firm ‘no’, because the Sun
will simply run out of fuel at some point. The long-term per-
spective for life on Earth looks quite dim. In some 5 billion
years the Sun will first blow up to form a red giant that
will swallow the inner planets (including the Earth). The
core will then collapse to a compact stellar object called a
white dwarf while the outer parts will be blown off in space.
The life cycle of the Sun is schematically depicted in Fig-
ure I.4.23. So, beware: our days are counted!

Figure I.4.25: ITER. The international fusion reactor located
in France. The reaction chamber contains the plasma which is
enclosed in a toroidal magnetic field configuration, where it is
heated up to temperatures of a few hundred million degrees so
that fusion can take place. (Source: ITER)

ITER: the nuclear fusion reactor

ITER will be the first fusion device to produce net energy
and it will be the first fusion device to maintain fusion for
long periods of time. Furthermore, it will be the first fusion
device to test the integrated technologies, materials, and
physics regimes necessary to enable a commercial pro-
duction of fusion-based electricity.

The ITER project comprises a truly global collaboration,
where China, the European Union, India, Japan, Korea,
Russia and the United States are now engaged in a 35-
year project to build and operate the ITER experimental
device. The goal of the program is to produce a net gain of
energy and deliver a prototype for the fusion power plant
of the future. It has been designed to produce 500 MW of
output power for 50 MW of input power – or ten times the
amount of energy put in. The current record for released
fusion power is 16 MW (held by the European JET facil-
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ity located in Culham in the UK). In the ITER Tokamak,
where the plasma is confined by strong magnetic fields
into a toroidal reaction chamber, temperatures will reach
150 million degrees, that is ten times the temperature at
the core of our Sun!

The 180-hectare ITER site in Saint Paul-Les-Durance, in
the south of France, has a 42-hectare platform the size of
60 soccer fields. Building began in August 2010. The hope
is that the reactor will be completed around 2030.

Field theory: particle species and forces

A major achievement in quantum physics in the second
half of the twentieth century is the development of quan-
tum field theory (QFT). It is a general formalism that en-
compasses both quantum theory and special relativity, and
dramatically shifted our perspective on what particles deep
down really are. It made us understand the origins of spin,
and of the exclusion principle and its related particle statis-
tics properties. These developments culminated in the
Standard Model which comprises precise and explicit new
theories that describe the strong and weak nuclear interac-
tions, as well as electrodynamics. Quantum theory opened
the door to the microcosmos, and quantum field theory
appears to correctly describe all processes down to the
smallest scales we have been able to probe so far.

Our quest to understand nature at ever smaller scales,
forced us to study elementary processes at ever higher
momenta and energies. This is a direct consequence of
Heisenbergs uncertainty relations. Making �x small re-
quires making �p and thus p and E large. To achieve such
extreme energies one had to build big particle accelera-
tors like CERN near Geneva and Fermilab near Chicago.
Imagine, the energy consumption of one such machine is
comparable to that of a medium-size city!

When the energies become of the same order as the rest
masses of the elementary particles involved, one neces-
sarily has to take special relativity into account. In partic-
ular, in view of the equivalence of mass and energy, we
have to anticipate processes occurring where energy will
be converted into mass and the other way around. On the
one hand we expect the production of massive particles
out of pure energy, and on the other hand the creation of
pure radiation energy out of particle anti-particle annihi-
lation. To make further progress in understanding these
processes a theoretical framework that is consistent with
both quantum mechanical and (special) relativistic princi-
ples was needed. The problem was in fact twofold: one
was to find the relativistic generalization(s) of the Schrö-
dinger equation, and the other was to develop a formalism
for many particle states, where particles could be created
and annihilated and converted into pure energy in the form
of photons for example. Implementing these two require-
ments together gave rise to the (relativistic) quantum field
theory formalism.

Relativistic wave equations. Let me recall that the clas-
sical Maxwell theory is already relativistically invariant. In
fact, it was electromagnetism that pointed Einstein the way
to relativity because it was hidden in there. You could say
that the Maxwell equations are relativistic but not really
quantum yet. With the Schrödinger equation the problem
is the other way around, it is quantum but not relativistic.
It is not, because it is based on the Newtonian – there-
fore non-relativistic – definitions of energy and momentum.
We looked at the basics of the Schrödinger equation in
a previous section and constructed the Schrödinger wave
equation by means of a substitution where we replaced
the classical E and p variables with differential operators,
as shown in equation (I.4.2).

That exercise showed that the Schrödinger equation is not
relativistically invariant. It is a wave equation, but quite
different from the electromagnetic wave equation (I.1.47),
which features the relativistic wave or ‘box’ operator, we
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introduced in equation (I.1.31). Indeed, in the electromag-
netic wave equation discussed in Chapter I.1 , space and
time are treated on equal footing, and that is not the case
for the Schrödinger equation because it has a first-order
time derivative, but second-order spatial derivatives.

Naively following the same approach, we could start with
the relativistic expression for the particle energy and make
the same substitutions:

E2 = p2c2 +m2c4 ! (h̄2⇤+m2c2)� = 0 . (I.4.15)

Not surprisingly, we now meet again our old friend the rela-
tivistic wave operator ⇤ , and in addition a mass term. This
seems quite straightforward, and in fact it is. This equation
was already written down by Schrödinger himself, who dis-
carded it for reasons that we will point out shortly. The
resulting equation is called the Klein – Gordon (KG) equa-
tion, and after all the dust of field theory settled, it turned
out to have a consistent interpretation: it describes a scalar
particle, or a particle without spin, such as for example the
pion.

No ground state, no physics! On the level of a quan-
tum equation for a single particle, interpreting the Klein –
Gordon like the Schrödinger equation, gave rise to a real
problem with it. Let me digress a little on what that prob-
lem was about. If I tell you that b = 2 is true, you may
say: ‘fine, so be it’, then I square that equation and say
b2 = 4 , and again ask you what is b? Well then, if you,
once upon a time, had dutifully executed your homework
assignments, you would not answer b = 2 , but b = +2 or
b = -2 . By squaring the equation, I have smuggled in an
extra negative solution. I managed to somehow double the
truth! How shrewd, the logic is impeccable but not always
reversible. The quadratic equation is less restrictive.

What this means is that the quadratic relation for the en-
ergy (and the corresponding wave operator), in the KG
equation also introduces negative energy solutions, after
all the solutions are E = ±

p
p2c2 +m2c4 . So we do not

add just one, but infinitely many negative energy solutions.
Well, nothing wrong with that, if we go back to the bound
states in the hydrogen atom. we see that also there we had
an infinity of negative energy bound states. The significant
difference, however, is that the negative energy values ob-
tained from the Klein-Gordon equation are not bounded
from below because the magnitude of the momentum is
unlimited. In other words, there would be no ground state,
and the particle it describes would be unstable. Unfortu-
nately, no ground state means no physics!

People got stuck in the Klein – Gordon theory, because
it seemed impossible to interpret satisfactorily. And in-
deed to do relativistic quantum mechanics correctly, one
had to go beyond writing down a wave equation for a sin-
gle particle. One would have to go to quantum field theory
to resolve the apparent inconsistencies with these equa-
tions. Nevertheless, the idea of somehow producing a
sensible relativistically invariant first-order equation as a
kind of ‘square root’ of the Klein – Gordon equation was
on the table, and the hope was that that would resolve the
problems of that equation.

The Dirac equation: matter and anti-matter

Dirac was the strangest man who ever visited my
institute. During one of Dirac’s visits I asked him
what he was doing. He replied that he was trying
to take the square-root of a matrix, and I thought to
myself what a strange thing for such a brilliant man
to be doing. Not long afterwards the proof sheets
of his article on the equation arrived, and I saw he
had not even told me that he had been trying to
take the square root of the unit matrix!

Niels Bohr
(Quoted in Kurt Gottfried, P.A.M. Dirac and the Dis-
covery of Quantum Mechanics.)



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 178 — #208 i
i

i
i

i
i

178 CHAPTER I.4. THE QUEST FOR BASIC BUILDING BLOCKS

The remarkable features of the electron, like having an in-
trinsic angular momentum called spin and being subjected
to the mysterious Pauli exclusion principle, all fell into place
after Dirac wrote down his beautiful, relativistically invari-
ant, first-order wave equation for the electron. But the
biggest surprise was its prediction of the existence of anti-
matter.

The relativistic equation for the spin one-half electron was
published in 1930, and Paul Adrian Maurice Dirac shared
the Nobel prize with Erwin Schrödinger three years later.
This equation, for the electron and its anti-particle the posi-
tron, and the Maxwell equations describing photons, forms
the back-bone of a theory called Quantum Electrodynam-
ics (QED), which constituted the first example of a consis-
tent relativistic quantum field theory. With the completion
of this theory shortly after the Second World War, a fully
relativistic and quantum mechanical treatment of the elec-
tromagnetic interactions of electrons, positrons and pho-
tons was achieved.

On taking square roots. To get some appreciation for one
of the most beautiful equations of physics, it is illuminating
to go back to the Klein – Gordon equation as a starting
point. We would like to take the positive root, so to say, of
the Klein-Gordon, but that is hard. On the mechanics side
on the left of (I.4.15), with the algebraic relation it is easy,
you just take the root on both sides and only keep the pos-
itive root by choosing4 E = +

p
p2 +m2 . But on the Klein-

Gordon side of the story, you would have to take the root
out of the ⇤ operator and that is hard to define, because
you have to define what you mean by the square root of
a derivative. Strictly speaking you could express it as an
infinite series of ever higher powers of the momentum op-
erator but that is not what you want, because that would
involve taking ‘infinite order derivatives’ and that makes
even strong people quail! What you really would like to
have is an expression linear in E , p and m that squares

4To make the argument and formulas more transparent we choose
natural units where h̄ = c = 1 in this subsection.

to the Klein-Gordon operator. And that is what Dirac bril-
liantly achieved by making use of matrices in defining this
miraculous ‘square root’.

A matrix root: the Weyl equation Let me take one step
at a time and first indicate why using matrices dramati-
cally enlarges the space of possibilities for taking a square
root.5 Let us pose ‘taking the square root’ as a matrix prob-
lem. Suppose that instead of the equation b2 = 4 , which
of course has solutions b = ±2 , I would have considered
the matrix equation B2 = A with A being 4 times the 2⇥ 2

unit matrix:

A = 4 · 1 =

✓
4 0

0 4.

◆

If I ask you to solve the equation for B , then you could have
come up with 4 independent solutions. If you start with the
set {Xµ} ,

X0 =

✓
1 0

0 1

◆
, X1 =

✓
0 1

1 0

◆
,

X2 =

✓
0 -i

i 0

◆
, X3 =

✓
1 0

0 -1

◆
, (I.4.16)

then 4 independent solutions would be Bµ = 2Xµ . We
may go one step further and check that the much stronger
identity holds:

(p0X
0 + p · X)(p0X

0 - p · X) = (p2
0 - p2)1 , (I.4.17)

because of the special properties of the set of matrices
{Xµ} . Multiplying out the left-hand side you get 42 = 16

terms that are quadratic in both the X-matrices and the
momentum components pµ . Equating the coefficients of
the six different momentum combinations pµp⌫ , one ob-
tains six equations that the matrices have to satisfy. Firstly,
we have the condition that the symmetric products or anti-
commutators of the matrices have to satisfy {Xi, Xj} ⌘

5This calculation uses a little bit of the material out of the Math Ex-
cursion on complex numbers at the end of Part III. Here it suffices to
know that i denotes the ‘imaginary unit’ and that it by definition squares
to minus one: i2 = -1 .
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XiXj + XjXi = 2�ij . Secondly, we have the condition that
the antisymmetric products or commutators have to sat-
isfy [X0, Xj] ⌘ X0Xj - XjX0 = 0 . And as you may check,
the matrices Xµ do exactly that! This special set of ma-
trices, are called the Pauli-matrices or spin-matrices that
are often denoted as �µ . The reason they are called the
spin-matrices will become clear shortly.

So, we succeeded in writing the four-momentum squared,
as a product of two matrices linear in the momentum, that
is without using square roots. But this nice construction
can be applied to equations as well. If we have a mass-
less relativistic particle, its momentum satisfies pµp

µ = 0 ,

leading to a massless Klein-Gordon equation for a (spin
zero) scalar field of the type ⇤ (x⌫) = 0 . However, with
what we just learned one could also introduce a linear first
order matrix equation. This is just the so-called Weyl equa-
tion, named after the German mathematician, theoretical
physicist and philosopher Hermann Weyl, who wrote this
relativistic wave equation down in 1929:

(iXµ@µ)  (x⌫) = 0 , (I.4.18)

where  is a two-component, so-called spinor, on which
the matrices work. The wave-like solutions are of the form:

 ⇠ u(p)e-ipµ·xµ , (I.4.19)

with u(p) a spinor. Substituting this in the Weyl equation
we get an algebraic equation for the two-component spinor
u(p):

(X · p) u(p) = 0 ! X · p u(p) = p0 u(p) . (I.4.20)

This is an eigenvalue equation with two independent solu-
tions u(p) = ⌘±(p) and eigenvalues p0 = E± = ±|p|:

X · p ⌘± = E± ⌘
± . (I.4.21)

This positive energy ⌘+ mode describes a massless par-
ticle with spin one-half, with its spin polarized parallel to
its momentum. It is a particle with a fixed positive helic-
ity which therefore is also called a right-handed particle.

The negative energy ⌘- -component describes the corre-
sponding anti-particle which necessarily has the opposite
helicity.
The first factor on the left-hand side of equation (I.4.17),
also describes a two-component spinor which can be ob-
tained from the one we just discussed by flipping the sign
of the energy p0 , so it will describe a left-handed or negati-
ve-helicity particle, and its anti-particle.

The first thing we have to conclude is that the Weyl equa-
tion describes a relativistic spin one-half particle. We did
however not get rid of the negative energy solutions, but
presumably these have to be interpreted as describing an
anti-particle. We will return to this picture shortly.

For a long time it was believed that neutrinos would be
massless, left-handed particles described by a Weyl equa-
tion, but we have in the meantime learned that neutrinos
have a small mass after all. They therefore have to be de-
scribed by a Dirac equation where the two chiralities get
coupled through the mass term.

The Dirac matrices and algebra. Dirac managed to do
something similar for a massive particle. He started with
the quadratic relativistic energy-momentum relation (times
the unit matrix), and wrote it as a product of two matrix
factors linear in the momentum. To succeed he needed
to introduce four 4 ⇥ 4 matrix coefficients �µ . Using the
standard, very convenient, ‘slash’ notation p/ ⌘ pµ�

µ (in-
troduced by Feynman), we may write:

(p/+m1)(p/-m1) = (E2 - p2 -m2)1 . (I.4.22)

Again, multiplying out the left-hand side out you get 42 =
16 terms that are quadratic in both the gamma matrices
and the momentum components. To satisfy the equation,
the diagonal terms require (�0)2 = 1 and (�i)2 = -1 ,
while the six terms with a product of two different momen-
tum components should all vanish. The matrix coefficients
correspond to the anti-commutator of the corresponding



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 180 — #210 i
i

i
i

i
i

180 CHAPTER I.4. THE QUEST FOR BASIC BUILDING BLOCKS

gamma-matrices:

{�µ,�⌫} ⌘ �µ �⌫ + �⌫ �µ . (I.4.23)

The upshot is that conditions on the gamma matrices that
follow from the requirement that equation (I.4.22) is satis-
fied are summarized by the equation:

{�µ,�⌫} = 2⌘µ⌫1 , (I.4.24)

where ⌘µ⌫ = diag(1,-1,-1,-1) is the relativistic Lorentz-
ian space-time metric we encountered before. Matrices
satisfying an algebraic relation like the one above form a
so-called Dirac or Clifford algebra.

The Dirac equation. We are ready to tackle the four-com-
ponent Dirac equation which in its most compact and ele-
gant form can be written as:

(i@/-m1) (xµ) = 0 , (I.4.25)

This first-order system is relativistically invariant, because
one can show that the matrices do indeed also transform
like a four-vector. It has wave-like solutions multiplied by a
four-component spinor u(p) . The 4⇥ 4 � matrices act on
the components of the spinor. For positive energy (E > 0)
the solutions look like:

 (xµ) ⇠ u(p)e-ipµxµ , (I.4.26)

substituting this in the Dirac equation yields the algebraic
equation for u(p):

(p/-m1)u(p) = 0 . (I.4.27)

The negative energy solutions can be written in a similar
way as:

 (xµ) ⇠ v(p)e+ipµxµ (I.4.28)

and it yields an equation for the spinor v(p):

(p/+m1)v(p) = 0 . (I.4.29)

Comparing these equations we see that the Klein – Gor-
don equation factorizes into a product of two first-order

equations. These two equations are then combined again
in the single four-component Dirac equation, which admits
positive and negative energy solutions: the former corre-
spond to the electron and the latter to the hole (or positron)
degrees of freedom respectively.

It is important to remark that the four components of the
wavefunction not form a four-vector; they form a four-com-
ponent spinor which transforms differently under Lorentz
transformations. Another way to say this is, that of the four
components, two states correspond to an electron with its
two spin states, while the other two would correspond to
a positron with its two spin states. But as the gamma-
matrices are not diagonal the equation mixes all compo-
nents. There is a lot of beautiful and important mathe-
matics hidden in the Dirac equation that we will not ad-
dress here at all. Our goal was to get to know the magnifi-
cent equation that provided such a deep understanding of
quantessential properties of matter like spin, the exclusion
principle and the necessity of anti-matter. ⌅

The spectrum. Let us first look at the energy spectrum
of the free Dirac particle as depicted on the left in Fig-
ure I.4.26. The first thing that strikes us in this picture is
that the negative energy states have not disappeared. So,
again it looks like there is no lowest energy state, and tak-
ing the square root of the equation has not eliminated the
negative energy states in any obvious way. Consequently
one would think that this feature would make the model in-
consistent and useless. But, no! Dirac brilliantly argued
that because his particles necessarily have spin one-half,
they would have to satisfy the exclusion principle. But if
that is the case, he could decree that all negative energy
states would be filled, and there would be no problem.
There would be a lowest energy state for the next elec-
tron to come in. So Pauli’s exclusion principle acts like a
deus ex machina here.

The second point to observe is that there is an energy-gap
of �E = 2mc2 between the highest negative energy state
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Figure I.4.26: The spectrum of the Dirac field. The energy
spectrum of the Dirac equation for a spin 1/2 particle of mass
m. It has positive and negative energy states. The negative
energy states are all filled and form the ‘Dirac sea.’ A high-
energy photon ( E � 2mc2) can excite an electron out of the
sea into a positive energy particle state, and the hole that stays
behind is just an anti-particle with opposite charge and opposite
momentum.

and the lowest positive energy state. In the field theory
context this means that exciting an electron from a neg-
ative energy state to a positive state would cost at least
2mc2 , and effectively produce both a particle and a ‘hole’.
There is no such thing as only creating a particle. The
‘hole’ is nothing but the anti-particle or positron, having the
same mass and the opposite charge. So from the ‘vacuum’
state, corresponding to the completely filled ‘Dirac sea’
of negative energy states, one may create particle anti-
particle (electron-positron) or particle-hole pairs. This is in-
dicated on the right-hand side of the Figure I.4.26 . A bub-
ble chamber shown in Figure I.4.27 clearly shows the suc-
cessive creation of two pairs from a high-energy photon.
Understanding of the Dirac equation leads therefore in-
evitably to the prediction and discovery of anti-matter.6

6Dirac himself hoped initially that the positively charged particle

Figure I.4.27: Pair creation. This is bubble chamber picture of
a high-energy photon which enters from the left, and is not visi-
ble because it has no charge). It knocks out an electron thereby
also creating a relatively low energy pair. Later the photon pro-
duces a second pair with more energy. A strong magnetic field
is applied perpendicular to the page, which causes the particle
trajectories to curve depending on their charge and energy. A
perfect way to split the electron and positron tracks therefore.

Condensed matter. It is quite gratifying to see that 80
years after Dirac wrote his equation down, it is still alive
and kicking. This equation is there to stay! Apparently
Dirac himself once quipped that the equation was far more
intelligent than its author. And indeed, it has found many
important and fundamental applications. Firstly, the equa-
tion or variants thereof not only describe the electron, but
in fact all elementary constituent particles like the leptons
(electrons, muons, neutrinos etc.), and the quarks. Not
so surprising as all of them have spin one-half and are
fermions. Secondly, the Dirac equation and the field theo-
retic concepts that come with it are also extremely relevant

would correspond to the proton, so that the equation would some-
how describe the complete hydrogen atom. It was Robert Oppen-
heimer, then at Princeton University, who pointed out that the oppositely
charged particles had to have the same mass and therefore the equa-
tion implied a new species of particles, now denoted as anti-matter.
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in condensed matter physics. This is somewhat surprising
because a priori that is at low energy and you would not
expect excitations to satisfy a relativistic equation. Yet, in
a conductor the electrons fill the available energy states
up to a level which is called the Fermi level. And there
you have a situation which is like the Dirac vacuum, and
indeed you can excite an electron which means that you
effectively create a particle-hole pair.

Majorana fermions. There are even closer analogies,
since quite recently so-called topological phases of matter
have been predicted in which boundary excitations occur
that are effectively behaving like massless Dirac modes,
thus behaving like relativistic particles. An example is the
so-called Majorana fermion, which is a special case where
the particle is its own antiparticle. So it has only two com-
ponents. The theory of the Majorana fermion goes back to
thirties of the twentieth century, to a brilliant young Italian
physicist who proposed the model, but then mysteriously
disappeared. In fact his disappearance has never been
fully resolved or explained. Whereas his person remains a
mystery, his equation fortunately does not.

The mathematics of the Dirac operator. Finally, the no-
tion of the Dirac operator, which is the first-order differen-
tial operator that defines the Dirac equation, plays an im-
portant role in pure mathematics. For example the index
of the massless Dirac operator on smooth curved mani-
folds is directly linked to certain topological invariants of
that manifold, through the so-called Atiyah–Singer index
theorem. We will return to the Dirac equation in somewhat
more detail in the next Volume.

Quantum Electrodynamics: QED

Quantum Electrodynamics is the first and very successful
example of a quantum field theory. We outline some of its
basic structure and properties, and mention states, opera-

tors and Feynman diagrams. This theory, starting from first
principles, made some impressive, precise predictions that
agreed with experiment up to 12 significant digits!

The first milestone in relativistic field theory was the formu-
lation of Quantum Electrodynamics (QED), a completely
consistent quantum theory of electrons, positrons, pho-
tons and their interactions. The theory was completed just
after the Second World War, quite independently, by the
American physicists Richard Feynman and Julian Schwin-
ger, as well as the Japanese Sin-Itiro Tomonaga. They
jointly received the 1965 Nobel prize in Physics for this
work. This success generated further developments in
field theory which during 1970s culminated in the formu-
lation of the successful Standard Model of all the known
elementary particles and the fundamental forces between
them.

Particles and force fields. In classical physics there is
a clear (ontological) distinction between, on the one hand,
constituent particles carrying mass and charge (like elec-
trons and protons), that are often considered ‘point-like’,
and on the other hand the force fields through which they
interact like the electromagnetic field, and which spread
out over all of space-time. In relativistic quantum field the-
ory this distinction disappears. Particles correspond to ‘
wavefunctions’ or states of quantum fields which can be
spread out. But the arrow goes both ways, so classical
force fields (like the electromagnetic field) when quantized
have particle-like excitations (like the photon). And we say
that the forces are carried or mediated by those particles.
Particle-wave duality is lifted to a particle-field duality at a
higher (or should I say, deeper) level.

So, the electron and its anti-particle the positron are de-
scribed by a Dirac-type quantum field, as are the neutri-
nos and the quarks. A state of the electron quantum field
may describe any number of electrons and/or positrons.
So, there is one field for all electrons. In fact, every par-
ticle type has its own quantum field. But, also the force
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fields of the strong and weak interactions have their own
quantum fields, whose particle-like quanta we call gluons
and W and Z bosons, respectively. In other words, there is
a universal particle-field correspondence on the quantum
level if we take relativity into account. Quantum field theory
transcends the distinction between particles and forces in
an essential way, yet the quantum fields describing con-
stituent particles and force fields have distinctive features,
because the constituents are fermions with spin one-half,
and the force fields are bosons with spin one.

States and operators. A distinguishing feature of the
quantum field theory framework is that it allows for the
creation and annihilation of particles. Let me try to give
a flavor of how that works. The first important ingredient
is the existence of a vacuum or a ground state denoted
as the zero state |0i , that is the state without any parti-
cle in it. The second ingredient is that quantum fields can
be expressed in terms of particle creation and annihilation
operators that can act on the vacuum, or any other state,
and create or annihilate a particle in that state. A generic
state is in fact a multi-particle state that is labeled by the
number of particles present in the state and what their en-
ergy, momentum and spin-polarizations are. For example
a state,

|n�(✏
µ, kµ), ne(s, p

µ), np(s
0, p 0 µ)i

would correspond to a state with n� photons in a state with
four-momentum kµ and polarization vector ✏µ , and so on.
The electrons and positrons have spin one-half, and their
spin-polarization is encoded in the variables s (s0) .

Particle creation and annihilation.7

The physics we want to describe involves the creation and
annihilation of particles and this is implemented by cre-
ation and annihilation operators we just mentioned. The

7I have had the pleasure of running into creationists and nihilists,
but so far not into any annihilists.

photon field, for example, corresponding to the vector po-
tential Aµ(x, t) , has a linear expansion in photon creation
and annihilation operators, which are denoted a†(✏�, k⌫)†

and a(✏�, k⌫) . If the creation operator acts on a state, it
creates a particle in the corresponding state, so for exam-
ple:

a†(✏�, q⌫) |0i = |n�(✏
�, q⌫) = 1i

Here the creation operator acts on the vacuum and creates
a new state in which there is one photon present (n=1),
with the specified polarization and energy-momentum. If
you apply the annihilation operator to the vacuum, you
would simply get zero:

a(✏�, k⌫) |0i = 0 ,

because there is no particle to be annihilated. If there had
been a particle with the corresponding properties in the
state, that particle would be annihilated and we would end
up with the vacuum state. But if we act on the vacuum
state there is no particle to annihilate and the result is the
number zero – the operator ‘annihilates the vacuum’ is the
jargon.

In general one considers rather elementary processes, with
a few incoming particles creating an incoming state, then
these particles interact with each other (so typically par-
ticles will be annihilated and created), and what we want
to know is what the possible final states are and what the
probabilities are that they occur. To do these calculations,
demands a lot of skill, since they tend to be extensive and
it takes even the largest computers days to do the job. But
the hardest part is also to set up the calculation and figure
out in all detail which sub-processes will be there, and how
important they are. It involves also an incredible amount of
book keeping which of course has to be performed impec-
cably, and one therefore has to build in all kinds of checks
and balances to see whether the extremely rigid laws are
completely obeyed at any stage of the computation. Ex-
periments like those at CERN are also at the forefront of
all kinds of AI applications, both on the data analysis side
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Figure I.4.28: Propagators. Particle propagation lines or prop-
agators for various particle types. The arrow on the fermion line
keeps track of the charge or better of the particle versus anti-
particle degrees of freedom of the field.

as on the theoretical, calculational side, where we have
to distinguish the numerical methods from the highly auto-
mated algebraic manipulation technology.

The language of Feynman diagrams. At this point the
diagrammatic language created by Feynman becomes an
indispensable tool. Let me give you an impression of how
this methodology works. We have mentioned the (in- and
out-coming) states, and these are represented as lines en-
tering or leaving the diagram, where each particle type
has its own type of ‘propagation’ line as illustrated in Fig-
ure I.4.28. The interactions are represented by diagrams
where the particles that interact come together at a vertex.
For example in Figure I.4.29 we see an electron emitting
or absorbing a photon, where the electron moves on but
with a different momentum.

The theory is relativistically invariant which means that you
can make space-time ‘rotations’ or Lorentz transformations.
This implies that you can also rotate the diagram clockwise

Figure I.4.29: Interaction vertex. The unique QED interaction
is given by the interaction vertex of a photon with a charged
particle, like an electron or quark. The strength of the coupling
equals the coupling constant ‘e’.

over 90 degrees (as in Figure I.4.30 on the left), and you
get the diagram for a photon coming in and an electron
coming out and – help – what is that? It looks like an elec-
tron moving backwards in time! You may think so, but that
is indeed what a positron is. A negative charge (electron)
moving backward in time is the same as a positive charge
moving forward in time, because that is the way the Dirac
equation works. At the vertex – the red dot, the interac-
tion takes place with a strength of the charge e , and in the
interaction the energy, momentum and charge have to be
conserved. So, what goes in, has in some form to come
out again. If you had rotated the diagram counterclockwise
instead (as in the same figure on the right), you would have
obtained a diagram representing electron-positron annihi-
lation into a photon, and indeed the total charge is zero at
all times.

As far as QED is concerned these are roughly the fun-
damental rules but the diagrams may become arbitrarily
complicated.
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Figure I.4.30: Interaction vertex. The rotated diagram gives
the coupling for the creation of an electron-positron pair on the
left, and the annihilation of an electron-positron pair on the right.
The convention is that in the diagram time goes upward. Note
that the electron (negative charge) moving backward in time is
the same as a positron (positive charge) moving forward in time.

That is the quantessence of the trade: you know what
comes in and presumably also what comes out, and then,
in principle, you have to construct all possible diagrams
that – obeying the rules – can be drawn in between. You
can of course order the diagrams by the number of vertices
they have and if the coupling is small, then the contribution
of higher-order diagrams becomes ever smaller. So, you
stop after a few orders and get a sufficiently accurate re-
sult. You calculate the diagrams one by one and then add
the results to obtain what is called the total quantum prob-
ability amplitude for the process.

As the word probability amplitude suggests, you have to
square this expression to obtain the probability for the pro-
cess to take place. In Figure I.4.31 we for example give
one the (two) leading, lowest order diagrams that contribute
to the probability amplitude for electron-electron scatter-
ing. What I am trying to convey is that the diagrams fur-

Figure I.4.31: Photon exchange. A lowest order photon
exchange diagram contributing to the amplitude for electron-
electron scattering.

nish a powerful and precise symbolic language which rep-
resents an intricate mathematical structure. The Feynman
rules give you the unique translation of the diagrams into
complicated but very explicit mathematical expressions that
then have to be evaluated (mostly by computer) to get the
real probabilities out.

Doing precision measurements means doing critical pre-
cision tests on theoretical models and that is the core of
empirical science. Realistic precision calculations may in-
volve hundreds or thousands of diagrams, and so even
the generation of all the allowed diagrams is done by com-
puter. In this field a lot of pioneering work in symbolic ma-
nipulation by computers has been done. Nobel laureate
Martinus Veltman was the first with his program named
‘Schoonschip’ which literally means ‘clean ship’, though in
Dutch it actually means ‘cleaning up the mess.’ This pro-
gram has gone through many upgrades and extensions
and is still a program used by many practitioners. The
most well-known outcome of such physics inspired arti-
ficial intelligent systems is the magnificent and versatile
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symbolic manipulation and graphics platform Mathematica
developed by Stephen Wolfram.

Subnuclear structure

The Standard Model

The Standard Model is a theoretical model for the basic
constituent particles of all ordinary (meaning, not-dark) mat-
ter. Think of the leptons such as the electrons and neu-
trinos, and the quarks that make up the protons and neu-
trons, but think also of the force-carrying particles that bind
the constituents together. The model gives a unified de-
scription of three of the four fundamental forces: the elec-
tromagnetic, and the weak and strong nuclear forces. Grav-
ity, however, is not included in the Standard Model. The
model has made numerous precise predictions that so far
have been vindicated by a variety of large-scale experi-
ments in the world’s biggest accelerators.

The Standard Model was completed in the early 1970s.
The experimental verification of many of its predictions took
another forty years and still continues. A landmark was the
discovery of the W and Z bosons at CERN (and somewhat
later at Fermilab) in 1983. Another highlight was the dis-
covery of the Higgs particle at CERN as recent as 2012.
It was the last missing entry in the particle table of the
model. The Higgs particle is a unique ingredient because
it provided the explanation for the mass of other particles,
in particular the masses of the weak force carrying W and
Z particles. The presence of these masses is reflected in
the fact that the corresponding interactions are short range
as we discussed in the section on nuclear potentials and
the Yukawa potential on page 166.

Figure I.4.32: This work of the Belgian surrealist painter René
Magritte is entitled Les Jeunes Amours (1963). A more pro-
saic title, well fitting our sub-nuclear narrative would have been
A Color Triplet of Apple Quarks. There is even a Dirac sea in
the background. (Source: c�‘Photothèque Magritte / Adagp Images,
Paris)

Flavors, colors and families

To understand the structure of the Standard Model, let us
look at Figure I.4.35, and explain what information is en-
coded in the colorful tables. In each of the figures, the
top panel contains the force-mediating particles and the
Higgs particle, these are all bosons, i.e. they have an in-
tegral spin. We shortly describe these in detail but it is
more convenient to first turn to the content of the lower
panels.

Particle families. The lower panels list the constituent
particles: these are all fermions, and have spin one-half.
There are three families of constituent particles denoted by
three different colors as depicted in Figure I.4.35(b). Only
the first family is stable, it consists of the up and down



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 187 — #217 i
i

i
i

i
i

SUBNUCLEAR STRUCTURE 187

quarks and the electron and its neutrino. These are the
building blocks that make up all forms of stable (ordinary)
matter in our universe. The other families consist of heav-
ier but unstable copies of the light family, and sure enough
they also play a crucial, albeit more hidden, role in our uni-
verse, such as processes inside stars or in the early uni-
verse. We first look more closely at the quarks and there-
after at the leptons.

Quarks: flavors and colors. The first thing to note about
quarks is that they carry fractional electric charges. Those
in the left column have a charge +2e/3 , whereas the ones
in the right column have -e/3 , so that the proton which
corresponds to two ‘ups’ and one ‘down’ has indeed a
charge e , while the neutron made up from one ‘up’ and two
‘downs’ has zero charge. Besides their spin and charge,
we distinguish two other intrinsic properties that were brief-
ly mentioned before: flavor and color.

Flavors. The so-called flavor index corresponds to one of
the six letters (u, d, s, c, t, b) 0 which in turn refers to their
names up, down, strange, charm, top and bottom.

Besides the lightest nuclear particles or hadrons like the
proton, neutron that make up stable matter, there are many
nuclear particles that also involve quarks of flavors other
than the up and down, but as those quarks are heavier,
the particles in which they appear tend to be unstable. By
the way, I always found the use of the word ‘flavor’ in this
context a bit strange. What is ‘up’ or ‘down’ supposed to
taste like, you wonder. The peculiar collection of flavor
names for quarks has repeatedly given rise to exotic if not
funny, even sexist expressions in titles of articles (involv-
ing topless or bottomless particle models etc.), which after
submission were of course instantly refused by the editors
of the established journals.

Flavor symmetry: the ‘eightfold way.’ From a historical
point of view it is interesting to restrict ourselves to the
three-flavour case. It is the case described by Gell-Mann

Figure I.4.33: The SU(3) way. Gell-Mann’s eightfold way is
based on the symmetry group that classifies the flavor proper-
ties of the particles making up the ‘particle zoo.’ The geometric
patterns by which the particles are labeled actually have a three-
or sixfold symmetry rather than an eightfold one. The observed
particles are the ones on the outer hexagon and the three par-
ticles at the origin, together they form the meson nonet. The
symmetry has two fundamental three-dimensional representa-
tions corresponding to the two triangles in the center, which
suggested the existence of three quarks (u, d, s) and their anti-
particles (ū, d̄, s̄) .

in his ‘eightfold way’, based on a SU(3) flavor symmetry
group. To give you a flavor we have depicted some of
the geometric representations in which the particles are
classified according to this SU(3) scheme in Figure I.4.33.
This representation is called the meson nonet, referring to
the nine possible quark anti-quark combinations of the up,
down and strange flavors, which gives 3 ⇥ 3 = 9 combi-
nations. This representation is one of the examples that
makes up the aforementioned ‘particle zoo’ of nuclear par-
ticle states. The fundamental particles form a triplet repre-
sentation of quarks and an anti-triplet of anti-quarks, and
these correspond to the blue and red triangles in the cen-
ter.
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Figure I.4.34: Quarks and SU(3). A beautiful early Islamic
tiling from the Real Alcázar (Royal Palace) in Sevilla in Spain,
exhibiting the sixfold symmetry characteristic for the group
SU(3). The black stars represent the weight-lattice of states cor-
responding to the group SU(3) The representations correspond
to certain triangular or hexagonal subsets of states centered at
the origin.

Quarks have never been observed as individual, freely mov-
ing particles; they are confined to composites that con-
sisted of quark anti-quark pairs (the mesons) or (anti) quark
triples (the baryons). The nonet consists of nine mesons
made up of one of the three quarks paired with one of the
three anti-quarks in the figure. These scalar (spin zero)
particles, are, as you see, siblings of the pions we have
mentioned before. The three particles in the center corre-
spond to different linear combinations of the ūu , d̄d and s̄s

pairs. Why the ‘eightfold way’ you are inclined to ask, while
the picture clearly exhibits a sixfold symmetry? It turns out
that eight of the nine mesons basically form an octet, that
is a larger irreducible representation of the group, mean-
ing that under the SU(3) transformations those particle
states would be transformed into each other. The ninth
(⌘0) particle is all by itself and invariant under the symmetry
group. In the era when this scheme was proposed all the

observed particles could be catalogued in certain SU(3)
representations (like the octet mentioned before), and this
of course shifted the quest for fundamental building blocks
to the underlying level of the quarks.

If the symmetry was exact, then that would imply that the
baryons or mesons that belong to a single representation
of the symmetry group should have the same mass; the
particles should be degenerate. This turns out not to be
the case here, and therefore we say that flavor is only an
approximate symmetry. Nevertheless having the symme-
try patterns and the observed particles and their masses,
Gell-Mann could see that certain particles were missing
from the observations, and that way he could make quite
precise predictions of their properties and therefore also
say where to look for them. An example is the ⌦- particle
belonging to the decuplet representation of baryons and
discovered in 1964. This is indeed reminiscent of the story
of Mendeleev and his periodic table.

It is actually somewhat ironic that the SU(3) or the much
larger SU(6) flavor symmetry does not really feature in the
Standard Model as we see from the panels in the figure.
The flavors are there but they come in pairs, which refers
to the weak interactions as we will explain shortly. The
‘eightfold way’ is completely accidental from the Standard
Model perspective. Nevertheless the family structure is
very much present and even required for the consistency
of the model. But that family structure as such is not ex-
plained by the model. It is one of the challenges to look for
yet more involved schemes.

Color. The second property of quarks refers to what is
called their color. Each flavor comes in three different ‘col-
ors’, usually denoted as red, green and blue. In the figure
that is visualized by the stack of three quark panels on
top of each other. This ‘color’ quantum number is some
kind of charge to which the strong nuclear force couples,
and needless to say, has nothing to do with ordinary color.
This nomenclature is at least consistent, which cannot be
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(a) The constituent particles, quarks and lep-
tons are fermions. The particles mediating the
forces are bosons, and the Higgs boson gener-
ates mass for the particles.

(b) The constituent particles come in three families. All ordinary
matter is made of the first family of lightest and therefore stable
particles.

(c) The electromagnetic force mediated by
the photon affects all particles that carry
electric charge.

(d) The strong nuclear force only medi-
ates between the three different colors of
quarks and does not distinguish flavor. It
binds quarks into color neutral nuclear par-
ticles.

(e) The weak nuclear force affects all con-
stituents, but it does not mix quarks with
leptons within a family.

Figure I.4.35: The standard model. Constituent particles and how the basic forces act between them.
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said of the flavors.

The excellent ‘artist impression’ of flavor and color prop-
erties of quarks is given by the Magritte painting of Fig-
ure I.4.32. The painting dates from 1963, one year before
Gell-Mann and Zweig proposed the existence of quarks,
but well before the color property of quarks was postulated,
implying that the quite striking correspondence is entirely
coincidental.

Leptons: electrons and neutrinos. In the bottom pan-
els on the right in Figure I.4.35 , we have listed the three
families of leptons: the electron, the muon, and the tau
family, including their respective neutrinos. The neutri-
nos have pretty ghostly properties in that they have no
charge and were long believed to be massless. It has
quite recently been established, however, that they have
tiny masses. They only interact weakly (and gravitation-
ally), which means that we don’t see or feel them, in spite
of the fact that we are permanently bombarded by billions
of these neutrinos per second. They basically fly unhin-
dered through most things, like the Earth for example. The
evidence for their existence was for a long time just based
on their absence, since the amount of missing energy and
momentum in weak-decay processes pointed to the exis-
tence of a massless, neutral particle – a neutrino there-
fore. A tiny brother of the neutron. To catch a few of
them we have to build detectors consisting of an incred-
ible number of steel plates with very special (so-called flat
wire chamber) detectors in between, and that is how af-
ter a long time their existence was established in a direct
fashion. The electron neutrino was the first to be discov-
ered in 1956 by Frederick Reines and his collaborators.
He shared the 1995 Nobel prize for Physics for this dis-
covery with Martin Perl who discovered the tau-neutrino
in 1974, quite some time after Leon Lederman, Melvin
Schwartz and Jack Steinberger received the prize for the
muon-neutrino in 1988.

The matching of the lepton and quark panels in the fig-

ures is essential for the consistency of the model. But
it is not known whether the family structure can be ex-
plained by some underlying mechanism, where the dif-
ferent family levels are excited levels of some underlying
structure.

Force mediators. In the top panels we see the force me-
diating particles and the Higgs particle. The force carri-
ers have spin one, which means that they are vectors like
the electromagnetic gauge potentials. The Higgs has spin
zero; it is a scalar particle without spin degree of freedom.
To see what interactions these force particles mediate, it
is best to look at the three figures at the bottom. On the
left in Figure I.4.35(c), we have the familiar electromag-
netic interaction mediated by the photon denoted by � ,
which is described by the QED part of the Standard Model.
Electromagnetism only affects the blue-colored particles,
which are the particles that carry electric charge. Note,
that all constituent particles carry charge except the neutri-
nos. And that is exactly the reason we can’t observe them
very easily. The force particles (including the photon itself)
are electrically neutral except for the W± particles which
carry a unit of charge. In the middle figure, we display
the strong nuclear force which only works between quarks
mediated by the gluons denoted by g . This brings us to
the theory of the strong interactions to which we now turn.
We will discuss the weak interactions of Figure I.4.35(e) in
more detail thereafter.

The strong interactions

Quantum chromodynamics (QCD). The quantum theory
for the strong nuclear force is called Quantum Chromody-
namics (QCD). The strong force is mediated by 8 gluons,
which are described by 8 color gauge potentials, that man-
ifest themselves in the presence of 8 ‘color-electric’ and
‘color-magnetic fields.’
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Figure I.4.36: Self-interaction of gluons. The photon (�) has
no self-interaction. The gluons (g) have self-interactions, which
makes the theory very much nonlinear and much harder to deal
with. The three gluon vertex is represented differently on the left
of the next figure.

Self-interactions. A crucial difference with QED is that the
gluons themselves also carry color charge like the quarks.
This means that they interact with themselves and that un-
derstandably leads to complex nonlinear behavior. The
reason why electromagnetism is so much simpler is pre-
cisely that the photon does not carry electric charge and
therefore does not interact with itself. This means that pure
electromagnetism without charges and currents is a linear
theory and indeed the source-free Maxwell equations are
linear as we saw in Chapter I.1. These have simple sinu-
soidal wave-like solutions, which on a quantum level corre-
spond to freely propagating photons. The essential differ-
ence between the non-self-interacting photon and a self-
interacting gluon is indicated in Figure I.4.36. In addition,
the effective strength of this color coupling is large, so it
is hard to make successive approximations to higher order
in the coupling. The language of Feynman diagrams loses
much of its power because it is an approximation scheme
that involves successive powers of the coupling constant.

Figure I.4.37: Color-flow diagram in QCD. A nice way to visu-
alize the interactions in QCD. Quarks carry a single color line,
while gluons carry two (different) lines. In the vertices the color
charge is conserved, so, the colors and arrows have to match.
Upper index goes into the vertex, lower index goes out.

If that coupling is small the series is expected to converge
and it suffices to only keep a limited number of lower or-
der contributions to obtain a meaningful result. If that cou-
pling becomes large the successive contributions keep in-
creasing and one loses the convergence and hence the
ability to make meaningful calculations and reliable predic-
tions.

An alternative way to think about gluons, quarks and the
way they interact with one another, is given in Figure I.4.37,
where the (anti-)quarks are denoted by a single directed
color line, and the gluons as an oppositely directed pair
of lines. The picture is illuminating in that it shows very
clearly what it means to say that color (charge) is locally
conserved. The figure is not meant to imply that the gluons
are actually made up of (anti-)quarks. Though they can
manifest themselves in the same color anti-color ‘chan-
nel’, the gluons represent independent physical degrees
of freedom. The fact that strong self-interactions lead to
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Figure I.4.38: Free electric charges. The electric field lines
connecting the arrows go from the positron to the electron but
they spread out widely over space. The electric charges are
therefore not confined and we can observe them as free parti-
cles.

unexpected behavior may not sound unfamiliar to us hu-
mans. Anyway, it is this feature in QCD that made it so
hard to see from the basic structure of the theory what the
resulting physics and phenomenology of quarks and glu-
ons would be.

Confinement. The binding mechanism between two quarks
is very different from the attraction between to opposite
electric charges. This is illustrated in Figures I.4.38 and
I.4.39. In the first figure we see that the electric field be-
tween two opposite charges spreads over all of space, re-
flecting the 1/r2 force law. It is as if the field lines repel
each other. In this case we can give one of the charges
enough energy that the pair breaks up into two free charges.
The second figure shows what the color-electric fields be-
tween a quark and an anti-quark look like. The field lines
are squeezed into a narrow tube that connects the pair. It
is as if the field lines attract each another. The energy per
unit length of the electric flux tube is constant because the

Figure I.4.39: Confined color charges. In QCD the color elec-
tric fields do not spread but are forced into a narrow tube which
leads to the confinement quarks. It is a consequence of the
highly non-trivial nature of the ground state of QCD which be-
haves like a color magnetic superconductor.

tube is everywhere the same. This in turn implies that the
interaction energy of the pair grows linearly with their sep-
aration. It would increase indefinitely if not the energy at a
certain point exceeds the energy needed to create a new
quark anti-quark pair somewhere in between. Then what
we basically have done is to create two pairs out of one
pair! We cannot create a separate quark. because as a
source it always has to stay connected to a tube.

More in general it turns out that the color force works in
such a way that only color neutral composites of quarks,
denoted as ‘color singlets,’ can exist as free particles. And
therefore these are the nuclear particles that we observe
in nature. The way this usually is expressed is to say
that color is confined. The property of color is hidden.
Quarks and gluons are for ever imprisoned. The simplest
singlets are either made-up of three quarks with different
colors (these are the baryons like the proton and neutron
mentioned before), or of color anti-color quark pairs (the
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mesons like the pions). And the same is true for the gluons
themselves, because they carry color charge; they only
appear in color neutral composites which are called glue
balls. It is this constraint of color neutrality that explains
quarks and gluons are confined and why we cannot ob-
serve them as free individual particles like electrons.

The confinement phenomena presents us with a unique,
paradoxical situation we did not encounter before. QCD
is a theory formulated in terms of fundamental physical
degrees of freedom (quarks and gluons) that are not dis-
cernible, so that from a philosophical point of view you are
tempted to question their very existence. ‘To be or not to
be, that is the question!’

Asymptotic freedom: how strong becomes weak. What
does it mean to say that interactions are strong? In this
case it is a relative statement in that it is a force between
protons and neutrons, or on a more basic level between
quarks, that is strong enough to overcome the Coulomb
repulsion so as to make nuclear binding possible. This
implies that the coupling strength of the interaction is con-
siderably larger than that of electromagnetism. What we
mean to say is that the effective dimensionless number
characterizing the strength of the interactions must be much
larger, and this amounts to saying that the analogue of the
electromagnetic fine-structure constant ↵ = e2/(4⇡h̄c) '
1/137) , which for the strong interactions is called ↵s , is
of order unity. This tells us that at the relevant nuclear
scale of 1 fermi = 10-15 m the effective coupling is
large.

The confinement picture I.4.39 shows that the color fields
emanating from the quark are forced into a narrow tube
that terminates at some antiquark. The tube has a cross-
section which is typically of the confinement scale, say,
one fermi squared. So here is how we should think about
this. For distances much larger than one fermi, the quarks
are confined, which means that the complicated nonlinear
self-interactions of the gluons have collectively created an

effective environment that causes the confinement. How-
ever, for distances much smaller than one fermi the quarks
are effective moving ‘freely,’ in the sense that the effects of
the self-interactions are negligible. In fact on such scales
one could treat the strong interactions more like a type of
electromagnetic interactions. The color field lines go radi-
ally out of the quark and bend over in the confining tube
at a distance of about one fermi. On that small scale one
could use the perturbative approach in terms of Feynman
diagrams to calculate the dynamics.

It is interesting to look at the result of such intricate cal-
culations of the effective coupling strength as a function of
momentum transfer (or inverse distance) both for ↵ (QED)
and ↵s (QCD). For QED one obtains,

↵(q2) =
↵

[1- (↵/3⇡) ln(q2/m2)]
for q2 � m2 ,

(I.4.30)
where ↵ = 1/137 and m denotes the relevant mass scale
one is interested in. For QCD one obtains,

↵s(q
2) =

12⇡

(33- 2f) ln(q2/⇤2)
for q2 > ⇤2 (I.4.31)

where f = 6 equals the number of flavors and ⇤ sets a
mass scale at which one is interested. We have plotted
these curves in Figure I.4.40. There are two striking differ-
ences between the two curves: (i) the relative difference
in strength on the scales we are interested in is indeed
big, about a factor of one hundred, and (ii) the strong inter-
action is decaying substantially for increasing momentum
and thus for smaller distances. The strong interaction gets
weak at small distances! This property is called asymptotic
freedom. It is of crucial importance because it allows for
precise calculations of high-energy scattering processes
where you probe very small distances and compare those
to the experiments.

So what happens if two quarks collide head-on in a col-
lider? They may strongly scatter and the outgoing quarks
or gluons may get a high transverse momentum. These
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Figure I.4.40: Asymptotic freedom. Plots of the effective cou-
pling strength as a function of momentum (or probing distance)
for QED and QCD. Note the scales differ by a factor one hun-
dred. The fact that the blue QCD strength becomes weaker at
short distances is called asymptotic freedom. It means that in
the high-energy regime the theory can be studied by the dia-
grammatic (perturbation theoretic) method.

individually colored particles have to pick up companions
to make color singlets at a scale of one fermi and will in
the end cause a so-called jet of outgoing singlet particles.
This highly collimated shower of particles has a total mo-
mentum equal to that of the originally scattered quark, so
that individual quark momentum is an observable in the
above sense.

We can also turn the story around and start at very small
distances where the theory is very well behaved and our
intuitions make sense because the system is weakly cou-
pled. If we move up in scale towards the infrared the cou-
pling becomes stronger, and when the coupling becomes
of order unity the system becomes strongly coupled and
our predictive ability breaks down. Now what this quite of-
ten means is that something drastic like a phase transition
is going to happen. The ground state of the system be-

comes unstable and will change. For example a non-trivial
condensate may form, and in fact in a sense the nature of
the condensate in QCD is quite well understood and inves-
tigated (by computer simulations). The idea is that there is
a condensate of magnetic degrees of freedom, monopoles
and fluxes, so that the ground state of QCD is very much
like a magnetic superconductor, a medium which would
indeed confine color electric charged particles, like quarks
and gluons.

To get some understanding of this mechanism we should
look at ordinary (electromagnetic) superconductivity (type
II) which will be discussed in Chapter III.3 in Volume III.
The ground state of an type II superconductor corresponds
to a condensate of electron (so-called Cooper) pairs. These
cause the so-called Meissner effect, which means that mag-
netic fields are expulsed from the medium. If you turn on a
strong magnetic field over a slab of superconducting mate-
rial, then thin filaments of one unit of flux will penetrate the
superconductor. Now imagine that I have magnetic mo-
nopoles to play around with and suppose that I drag that
monopole into the superconductor, what would happen?
Indeed, the magnetic flux of exactly one unit emanating
from the monopole would be forced into one such narrow
filaments and look for a way out at the boundary of the su-
perconductor where the field would spread out again. But
that is nothing but saying that monopoles would be con-
fined in such a superconducting medium! And the dual
of this mechanism is operative in QCD, a color-magnetic
condensate confines the color-electrically charged quarks
and gluons.

A final comment on this beautiful theory. Can we not in
some way reformulate the theory in what we call a strong
coupling regime where one over the coupling constant is
the new coupling, which then can be taken to be small.
This question was answered by Kenneth Wilson from Cor-
nell University, and it amounted to a formulation of gauge
theories on a discrete space-time lattice. in terms of link-
variables like the ones we considered on page 35 in Chap-
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Figure I.4.41: Lead-ion collisions. A simulation of a lead-ion
collision event for the ALICE detector at CERN, producing an
enormous number of particles. To find what you are looking
for is far worse than searching for a needle in a haystack! In
these experiments one tries to recreate the conditions that were
present throughout the universe shortly after the Big Bang.

.

ter I.2, where we discussed the line integral of a gauge po-
tential. In this formulation one can make a very controlled
and systematic strong coupling approximation to QCD, and
the most immediate success is that confinement is there
right from the start. This means that in this approach the
lowest order calculation of the interaction energy between
two external quarks yields a linear potential between them,
and that is what confinement means. In Figure I.4.39 we
see that the field energy per unit length is constant. Then
the question became to prove that there was no disconti-
nuity (a phase transition) between the weakly coupled and
strongly coupled regimes. This turned out to be the case
and with that the lattice approach to QCD has become an
indispensable tool in the study of the strong interactions.
Wilson was awarded the physics Nobel prize in 1982 for
his profound work on phase transitions, which is embod-
ied in his fundamental work on the renormalization group,

Figure I.4.42: The Large Hadron Collider at CERN. The largest
accelerator at this moment is the Large Hadron Collider (LHC) at
CERN in Geneva. The protons are accelerated in two oppositely
directed circular beams. The circumference of the large ring is
27 km. Pre-acceleration happens in the older Proton Synchro-
ton (PS) and the Super Proton Synchroton (SPS) accelerators.

.

a very general approach to studying the scaling properties
of physical systems that we will return to in Chapter III.4.
This work established a deep connection to the work on
phase transitions in statistical and condensed matter phys-
ics by Michael E. Fisher and Leo Kadanov, and the renor-
malization program in quantum field theory going back to
the early days of QED.

The quark-gluon plasma. If we shoot two protons with
very high-energy onto each other, they surely break up,
and what comes out are avalanches (called jets) of color-
singlet particles – nuclear, but also leptons. Indeed in mod-
ern experiments the energies are so gigantic that thou-
sands of particles are created in a single collision, as in-
dicated in Figure I.4.41 showing (simulation of) a high en-
ergy event in the ALICE detector of CERN. In this exper-
iment the physicists are trying to create a new high den-
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Figure I.4.43: Beta-decay. The diagrams for the beta-decay
process. On the left a diagram at the level of nuclear physics,
and on the right the resolution of the same diagram at the finer
scale of the Standard Model. Note that the single vertex on
the left corresponds to a pair on the right where the process is
involving a W- particle mediating the weak nuclear force.

.

sity state of matter denoted as the ‘quark-gluon plasma’,
a state that may have existed in the very early universe
directly after the Big Bang. They do that by banging lead-
ions with very high energy into each other so that thou-
sands of new particles are created, and for a fraction of a
second these form a strongly interacting hot plasma made
up of quarks and gluons with striking properties that should
resemble the state of matter at the very early stages of the
universe.

The electro-weak interactions

The W and Z particles. Let us return to the tables repre-
senting the Standard Model and to the elecrtro-weak in-
teractions in particular. In Figure I.4.35(e) we focus on
the weak nuclear force, mediated by the charged W± and

Figure I.4.44: Higgs production. A standard model diagram
representing a particular process by which the Higgs particle is
produced from the scattering of two quarks. The experimental
signature of this process is provided by the two tau leptons in
which Higgs instantly decays.

neutral Z particles. It affects all constituent particles in
an interesting way, the W bosons induce horizontal tran-
sitions in the table, because they are electrically charged.
Their interaction vertices, allow for fundamental processes
like:

u+W- ! d , (I.4.32)

e+W+ ! ⌫e , (I.4.33)

µ+ Z ! µ . (I.4.34)

The horizontal moves stay within the (color)panels, so red
quarks to red quarks, electron to its neutrino and so on. A
transition from a lepton to a quark is not possible because
the W bosons have unit charge and that doesn’t match
the fractional difference in charge between a quark and a
lepton. This in turn implies that the net number of quarks
and the net number of leptons are separately conserved
in these interactions. Take for example the process of ‘�-
decay’ of the neutron where:

n ! p+ e+ ⌫̄e , (I.4.35)
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as depicted on the left in Figure I.4.43. Recalling the com-
positions n = (udd) and p = (uud) , the decay process
above is in the Standard Model perspective composed of
two non-trivial vertices on the constituent level:

d ! u+W- , (I.4.36)

W- ! e+ ⌫̄e , (I.4.37)

and this process is depicted on the right-hand side of the
figure. The ‘weakness’ of the transitions comes about be-
cause the probability of creating an intermediate W and Z

particle is very low due to their large mass. That results
in an energy barrier which suppresses the transition pro-
cess.

The Higgs particle. Finally, in Figure I.4.44, we show the
complicated diagram of a process that contributes to the
production of a Higgs particle (H) in the collision of two
protons (or better, two quarks), where these exchange a
weak W/Z boson, which can radiate from a Higgs. This
Higgs is extremely short-lived and is not directly observed.
The signature of the Higgs production in the out-coming
state is the presence of two ⌧ leptons. The Higgs was
found in 2012 by two large international experimental col-
laborations: ATLAS and CMS in the Large Hadron Collider
(LHC) at CERN.

The Higgs particle is an essential ingredient of the stan-
dard model as it is involved in a mechanism by which the
masses of the W and Z particles are generated. This is
discussed in more detail in Chapter II.6 on symmetries and
their breaking.

This concludes our lightning review of what the cherished
Standard Model of particle physics is about. In the next
section we further explore the unification process in the
successive formulations of fundamental physics at the sub-
sequent stages of understanding.

A brief history of unification.

There are two possible outcomes: if the result con-
firms the hypothesis, then you’ve made a measure-
ment. If the result is contrary to the hypothesis,
then you’ve made a discovery.

Enrico Fermi

We have so far talked mainly about the fundamental build-
ing blocks and that translates into an inventory of what has
been observed in experiments up to now. We have also
reflected on the models for the interactions between these
building blocks that account for the spectrum and the hier-
archy of physical states. It is then interesting to step back
and look at the history of theories, which is indeed also a
history of concepts in theoretical physics. In Figure I.4.45
we have depicted this historical account focussing on the
unification concept.

On the bottom line we list the basic classes of physical
phenomena concerned, and going upward we also ob-
serve how they are linked to the fundamental forces, but
we see also a progressing unification in the description of
the fundamental physics. The two lines at the top repre-
sent theoretical developments which are still considered to
be speculative and for which we eagerly await new experi-
mental clues. This figure nicely illustrates the fundamental
paradox of how ultimate reductionism may well lead to a
form of ultimate holism!

Returning to the unification aspect, the first example is
Newton’s theory of gravitation (1687) that unified heavenly
and terrestrial mechanics. Another beautiful example is
provided by Maxwell’s theory of electromagnetism (1865),
which clearly unites electric and magnetic phenomena in
one framework, but also includes electromagnetic fields
and radiation like light, and therefore the subject of op-
tics.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 198 — #228 i
i

i
i

i
i

198 CHAPTER I.4. THE QUEST FOR BASIC BUILDING BLOCKS

After the Second World War we learned to appreciate and
include the quantum principles as in Quantum Electrody-
namics (QED), the theory of photons, electrons and their
anti-particles the positrons. This highly successful theory
motivated theorists to find theories for the weak and strong
nuclear forces based on similar principles.

The starting point was an approximate phenomenological
model for the weak force proposed by Fermi in 1932. In the
late 1960’s this was replaced by a consistent unified quan-
tum theory for both the electromagnetic and weak forces.
Many names are actually connected to this development,
firstly Sheldon Glashow, Abdus Salam and Steven Wein-
berg, who formulated the theory including the particle con-
tent including the weak force mediating particles. For this
work they shared the Physics Nobel Prize in 1979.

This model was then augmented with the all-important in-
gredient of the Higgs field by Peter Higgs, Robert Brout
and Francois Englert. Brout died in 2011, and therefore
Higgs and Englert shared the Physics Nobel prize in 2013,
shortly after the particle was discovered at CERN. Finally
we should mention the seminal contributions of Gerard ’t
Hooft and Martinus Veltman, who constructed the consis-
tent mathematical framework which enabled them to prove
that the electro-weak theory was renormalizable, and which
made comparisons of detailed predictions of the electro-
weak theory with precision experiments possible. They re-
ceived the 1999 Nobel prize for Physics for this work.

The developments for the strong interactions took place
partly at the same time. Chen Ning Yang and Robert Mills
proposed in 1954 the fundamental generalization of the
Maxwell theory by extending the notion of the electromag-
netic gauge invariance from the simple U(1) group to the
non-abelian group SU(2). This led to a totally new, very
beautiful non-linear system of equations, not surprisingly
called the Yang-Mills equations. But it took quite some time
before it was recognized that these equations formed the
basis for the theories of both the strong and weak nuclear

forces. In the section on Gauge symmetries of Chapter
II.6, we discuss these symmetries and equations in more
detail.

One of the leading scientists in the particle physics devel-
opments was the American Murray Gell-Mann who pro-
posed the existence of quarks at the same time as but
independently from George Zweig in 1964. Gell-Mann re-
ceived the Physics Nobel prize for this and other contribu-
tions in 1969. After that he also formulated Quantum Chro-
modynamics (QCD) with his collaborators Heinrich Leut-
wyler from Switzerland and Harald Fritzsch from Germany
in 1973. This theory is based on the Yang-Mills equa-
tions for the color gauge group SU(3). The binding mech-
anism and confinement of quarks was largely proposed
by Yoichiro Nambu who received the Nobel prize in 2008.
The property of QCD called asymptotic freedom made it
possible to make sensible predictions for the strong inter-
actions at high energies, This was discovered in 1973 by
the American physicists David Gross, David Politzer and
Frank Wilczek who received the Nobel prize for their work
in 2004. We will say more about this shortly.

Forces of nature, Unite! Let me once more emphasize
that the unification in the description of such a wide variety
of physical phenomena in the Standard Model was pos-
sible because the different components are based on the
same conceptual principles. These principles are those of
quantum theory, those of special relativity, and the prin-
ciple of local gauge invariance. The latter principle mani-
fested itself in Maxwell’s theory as we discussed in Chap-
ters I.1 and I.2, in Einstein’s general theory of relativity, and
also in the Yang-Mills equations. Gauge invariance is a key
ingredient because it is strongly tied-in with the notion of
a force field and completely fixes what the interactions be-
tween the forces and particles look like.

In Figure I.4.45 you see that we have added two more
rows on top. They express some powerful ideas lead-
ing to further unification, ideas that go beyond the Stan-



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 199 — #229 i
i

i
i

i
i

SUBNUCLEAR STRUCTURE 199

Figure I.4.45: The well-established paths of unification that have led to the Standard Model, and conceivable paths beyond.
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Figure I.4.46: Forces Unite! A call for the United Forces of
Nature.

dard Model but have not (yet) been vindicated by experi-
ment and should therefore be labeled as speculative. The
Standard Model has left us with a number of open ques-
tions that strongly hint in the direction of a single overarch-
ing quantum gauge theory that comprises the three non-
gravitational interactions. Models of such type are called
Grand Unified Theories or GUTs, but the proposals made
so far have not been very successful. An example of such
a hint is that the electric charges of proton and electron
match perfectly, but within the Standard Model there is no
a priori reason that they should have the same magnitude.
Except when there would be magnetic monopoles around,
but these are not part of the Standard Model; however in
GUTs they exist. Another hint is that the family structure is
not explained; it may possibly result from some underlying
structure.

The theory of gravity remains a case apart. In spite of the
tremendous successes of Einstein’s theory, it has so far
withstood all attempts to make it consistent with the princi-
ples of quantum theory. This is a highly non-trivial matter
and seems to require a radical change of perspective. On

the other hand it should not be too surprising: it is unique
because it directly concerns the primary notions of space
and time itself.

The line of development starting around 1970 centered
around a few additional concepts: the first is the notion
of rigid supersymmetry, the second was that of local or
gauged supersymmetry which gave rise to supergravity
theories, and finally the basic step from point particles to
extended objects like strings and so-called branes. We
close this chapter by a lightning review of some of the
salient features of these developments.

Supersymmetry

From bosons to fermions and back. The gauge symme-
tries we have discussed so far transform certain particle
types into each other. The SU(3) color group for example
transforms the quarks of different colors into each other.
The weak SU(2) transforms up and down quarks or elec-
trons and their neutrinos into each other. But these gauge
transformations always transform bosons into bosons and
fermions into fermions. Supersymmetry is an intricate sym-
metry which involves generators which themselves are fer-
mionic with the crucial property that they transform bosons
into fermions and back. It entails a drastic extension of the
notion of symmetry. Its discovery and early development
goes back to the early 1970s. If we call the super charge
(or generator of the supersymmetry) Q, it has the following
properties:

Q2 = 0

Q |bosoni = |fermioni ; Q |fermioni = |bosoni .

One may add more supercharges, in which case we speak
of extended supersymmetries. In four dimensions we have
a maximum of N = 8 supersymmetries. The more super-
symmetry the more constrained the theory will be. Like
with other symmetries particle types fall into representa-
tions of the various supersymmetry algebras and these
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representations will contain both bosons and fermions. The
smallest representation of N = 8 extended supersymme-
try contains a spin-two particle which is a natural candidate
for the graviton. So in that sense there is a fundamental
link between supersymmetry and gravitation.

The Dirac equation predicted the existence of anti-matter,
and in a similar way supersymmetry predicts the existence
of super mirror images of all the known particles. Bosonic
particle species would have fermionic superpartners and
vice versa. These partners are generally denoted as spar-
ticles: squarks and sleptons, while the superpartners of
the force particles are called gauginos, like the photino,
the Winos etc. The corresponding fields are labeled by
the same letters with a tilde on top and we have displayed
some of them in Figure I.4.49. In that figure they are de-
picted as belonging to the massless sector of superstring
theory that will be discussed shortly.

A Minimally Supersymmetric Standard Model (MSSM).
One thing we can conclude immediately is that unfortu-
nately the presently observed bosons and fermions (the
inhabitants of the Standard Model listed in Figure I.4.35(a))
cannot be each other’s superpartners, because the other
properties do not match. It is like the situation with the
Dirac equation where the proton could not be identified
with the anti-electron because they have different masses.
The proton (field) has its own Dirac equation. For a su-
perpartner all intrinsic properties are the same except for
the spin which differs by half a unit. So to make the world
supersymmetric the very minimal thing one may do is con-
struct the simplest N = 1 supersymmetric extension of the
Standard Model, and that means just doubling the pan-
els of I.4.35(a) and put tildes on all the particle symbols.
This Minimal Supersymmetric Standard Model (MSSM) is
actively studied and a lot of effort is devoted to ‘hiding’
the unwanted partners and finding possible experimental
signatures that show up in high-energy experiments. You
see that, in particular with extended supersymmetries, one
is forced to accommodate large numbers of new particle

species. And to break the supersymmetry even more par-
ticles have to be added. We will refrain from discussing the
MSSM in more detail.

The principal motivation to build the LHC at CERN was
to find the Higgs particle, a crucial ingredient of the Stan-
dard model that lacked experimental vindication. But the
physicists had another deep motivation and that was the
hope that the LHC would allow for the much more rev-
olutionary discovery of supersymmetry as an underlying
principle of nature. So far there has been no evidence for
this. If the ‘sparticles’ are really there, they would make
up a shadow world, which is extremely weakly coupled to
our discernible world. Not having seen them up to now
means that the supersymmetry would have to be badly
broken in our universe, because breaking can give a con-
siderable mass to the super partners. It is a bit like the
‘Higgs breaking’ mechanism that gives mass to the W and
Z particles that mediate the weak interactions in the Stan-
dard Model.

Yet, from another perspective it is not inconceivable that
supersymmetry is a blessing in disguise. The lightest su-
persymmetric particle is absolutely stable by construction,
and it has been suggested that this lightest supersymmet-
ric particle, for example the photino (the super partner of
the photon), is a candidate for the elusive particle that
makes up dark matter. It couples very weakly, is neutral
and massive, and makes a perfect WIMP, a Weakly Inter-
acting Massive Particle, that is favored in many cold dark
matter scenarios. We briefly discussed this in the section
on cosmology in Chapter I.2 on page 76. What we may
conclude at this point is that the discovery of superpart-
ners in a lab like CERN or Fermilab would be a spectac-
ular discovery in its own right, but would also put string
theory (and supergravity) in a far more credible position as
these theories predict their existence as a necessary in-
gredient of nature. We have to wait and see. One of the
reasons science is demanding, is that it requires so much
patience.
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Figure I.4.47: Montonen-Olive duality. The electric-magnetic
charge lattice of the N = 4 supersymmetric SU(2) Yang-Mills
theory. This is in the weak coupling regime with on the horizon-
tal axis a triplet of gauge bosons W± masses MW = ef and
W0 = � which remains massless. On the vertical axis there
is the same massless photon and two magnetically charged
monopole M±, these are solitons with mass MM = 4⇡f/e. The
electric-magnetic Montonen-Olive duality corresponds to mirror-
ing the lattice through the diagonal, interchanging the role of
gauge particles and solitons and also interchanging e $ 4⇡/e;
a strong-weak or S- duality.

To illustrate the power and beauty of supersymmetry, we
briefly discuss two further examples: one is the N = 4

supersymmetric Yang-Mills theory, and the other is super-
gravity which plays a vital role in modern superstring the-
ory.

N = 4 supersymmetric Yang-Mills. Let me briefly talk
about a wonderful, somewhat exceptional class of models,
which brings together a number of fundamental concepts
that have been taking the stage in theoretical physics from
the mid 1970s. The theories I am talking about are N = 4

supersymmetric Yang-Mills theories.

The marvel is that because of the N = 4 supersymme-

try these theories are so constrained that their quantum
behavior is well understood, even beyond the perturba-
tive diagrammatic Feynman approach. This also implies
that they exhibit an unusual kind of simplicity, which for the
theorist makes them an ideal laboratory for testing novel
ideas. It is for quantum field theorists what the roundworm
C. Elegans is for geneticists so to speak. So it is not the
theory on its own that is of particular relevance but its ex-
traordinary properties are of interest

Let us consider the simplest case where the gauge group
is G = SU(2). The particle or field content of this N = 4

gauge theory consist of a single spin-one super-multiplet
that transforms as a triplet or vector representation of the
SU(2). Because of the supersymmetry, one can generate
a super-multiplet by acting with the supersymmetry gener-
ators. The fields have the following spin content: there
is one spin-1 field (these are the gauge bosons of the
theory), there are four spin-12 and six spin-0, scalar and
pseudo scalar fields. All of them transform in the triplet
representation of the gauge group.

The scalar fields act like a kind of Higgs field and break the
SU(2) gauge symmetry to U(1), which we call electromag-
netism in analogy with the electro-weak theory. Because
of the symmetry breaking two things happen:
(i) the gauge bosons W± acquire a mass mW = ef, and
W0 = � is the massless U(1) ‘photon’. The parameter f
has dimension [mass] and sets the scale of the breaking.
There is also a neutral massless scalar particle that sur-
vives in the breaking.
(ii) this theory has non-trivial classical soliton solutions,
corresponding to the so-called ’t Hooft-Polyakov magnetic
monopoles. These are regular, finite energy classical field
configurations that are stable for a topological reason, im-
plying that magnetic charge is also strictly conserved. The
monopoles M± have a magnetic charge g = ±4⇡/e (twice
the minimally allowed Dirac value) and have a mass (= en-
ergy of the classical field configuration) equal to mM =
gf = 4⇡f/e . Note that these magnetic monopoles are a



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 203 — #233 i
i

i
i

i
i

SUBNUCLEAR STRUCTURE 203

necessary ingredient of this theory, and you are not free
to leave them out. They represent magnetically charged
‘particle like’ objects in the theory and what one may show
is that upon quantization these monopoles also form spin-
one supersymmetric representations.

Electromagnetic duality regained. What is striking in this
theory is that on the quantum level it exhibits a dual sym-
metry between the electric and magnetic sectors of this
theory. This is the non-abelian analog of the electric-mag-
netic duality of the source-free Maxwell equations that we
mentioned in Chapter I.1, and is called the Montonen-Olive
duality. We have depicted the duality transformation on
the electric-magnetic charge lattice in Figure I.4.47, which
shows the electrically charged gauge bosons W± and the
charge neutral (self-dual) photon in the origin, as well as
the magnetic monopoles M± on the vertical axis. The
spectrum also allows for dually charged sectors called dy-
onic labeled D(n,m). This remarkable symmetry is a strong-
weak or so-called S-duality. Indeed if we take the elec-
tric coupling weak (e < 1), then the magnetic coupling is
strong (g = 4⇡/e > 1). So, this theory is like the pure
Maxwell theory self-dual; it maps one to one onto itself
under the duality transformation. The upshot is that we
have two fully equivalent formulations of the same phys-
ics, one as the standard ‘electric’ gauge theory with mas-
sive W±-bosons, a massless photon, and gauge coupling
e, and the other as a ‘magnetic’ gauge theory with gauge
bosons M±, a massless photon and a gauge coupling
g ⇠ 1/e.

Imagine what this means, if you turn up the coupling pa-
rameter e then you expect the strongly coupled theory to
no longer be controllable and predictable. But in this case
we have an alternative, not an alternative reality because
there is only one reality, but an alternative perspective or
description where that would-be violent and uncontrollable
reality is very well behaved, completely calculable and pre-
dictable.

This special property derives from the fact that the theory
is not only supersymmetric but also has conformal symme-
try. This implies that the charges do not renormalize, and
they do not develop a momentum dependence, like in the
case of ‘asymptotic freedom’ of Figure I.4.40. The fact that
the coupling constant has no dependence on momentum
or distance means that this quantum theory is scale invari-
ant (r ! �r) and in fact conformally invariant because it is
also invariant under inversion (r ! 1/r). It is a supercon-
formal gauge theory.

There is one more point about this superconformal gauge
theory which makes it even more exceptional. Remember
that we mentioned that in addition to the massless photon
we have also a massless scalar particle in the theory. This
particle mediates an attractive force between the other par-
ticles with a coupling strength equal to the gauge coupling
(the only coupling constant in the theory). Imagine we
have two identical monopoles then we expect there to be
a Coulomb repulsion due to the photon, but now there is
the attractive scalar force which is exactly equal but op-
posite. And as you may have guessed, these two forces
cancel each other out and that is truly remarkable. So, if
you bring two monopoles together very slowly, they don’t
feel any force pushing them apart. The mass of a multiply
charged monopole with charge mg scales exactly linearly:
Mmg = mMg. This implies that also the masses are not
renormalized, and the classical mass formulas turn out to
be exact. But adding a monopole with opposite magnetic
charge is another story, because now the two forces add
and the anti-pole feels an attractive force that is twice as
strong. It is an unstable configuration, a monopole anti-
monopole pair would annihilate and be converted into pure
energy. And by the way for the charged particles like the
W+ the same story holds.

So, that’s the marvel: a supersymmetric , gauge and con-
formally invariant quantum field theory! A remarkable out-
lier, and indeed, some theorists feel tempted to quote Dirac’s
1931 monopole paper, saying ‘One would be surprised if
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Nature wouldn’t have made use of it.’

We will see that if not nature, then at least the string the-
orists have made use of it in a marvel called the AdS/CFT
holographic correspondence that we will discuss later on.

Local supersymmetry: supergravity. A first important
and profound generalization of Einstein’s theory is a the-
ory called supergravity, proposed in 1976 by Daniel Fried-
man, Sergio Ferrara and Peter van Nieuwenhuizen. Su-
pergravity theories are invariant under local supersymme-
try (or extended supersymmetry) transformations, and this
means that the supersymmetry is gauged. It contains the
Einstein theory but in addition to the graviton it predicts
the existence of a fermionic partner called the gravitino
with spin 3/2. These ideas have been worked out and ex-
tended in great detail ever since by a sizable community
of devoted theoretical physicists. Extended supergravity
theories would also encompass gauge symmetries of the
Grand Unified type and were considered as candidates for
a Theory of Everything. The maximally extended super-
gravity in four dimensions, which features 8 supercharges,
is related to a unique supergravity theory in 11 dimensions,
which was constructed by Eugène Cremmer, Bernard Julia
and Joël Scherk working at the Ecole Normale Supérieure
in Paris. The non-gauged N = 8 theory in four dimen-
sions can be obtained from the eleven dimensional one by
compactifying seven dimensions on a seven-dimensional
torus.

The sobering fact is that there was no support from the
phenomenological side (no super symmetric partners ever
showed up in experiments), and there is a myriad of extra
particles that have to be accommodated (or better, elim-
inated) somehow. Moreover, the ultraviolet behavior of
these theories of gravity kept causing problems. It turned
out that they are not renormalizable, because of unwanted
infinities that kept showing up in certain calculations. And
this was resolved until much later, when around 1995 it
was recognized that supergravity was the low energy ap-

proximation to a theory called M-theory living in eleven
dimensions. This Meta theory, is the Mother of all ten--
dimensional superstring theories which we will talk about
shortly.

A Theory of Everything?

Even if there is only one possible unified theory,
it is just a set of rules and equations. What is it
that breaths fire into the equations and makes a
universe for them to describe? The usual approach
of science of constructing a mathematical model
cannot answer the questions of why there should
be a universe for the model to describe. Why does
the universe go to all the bother of existing?

Stephen Hawking, A Brief History of Time (1988)

Let us recapitulate the big steps we have discussed in this
chapter: we started with classical particles and classical
fields like the electromagnetic field. Then we introduced
the quantum theory, where we described basically a sin-
gle particle in a fixed external force field and that produced
an extremely successful model for the atom with electrons
in orbits around the nucleus. Then we moved on to include
the kinematics of special relativity and that brought us to
quantum field theory where the distinction between force
fields and particles was lifted, since both are described by
quantum fields whose spectrum consists of states with an
arbitrary number of particles of the type described by that
field. This program culminated in the highly unified Stan-
dard Model. In their quest for an all-overarching Theory
of Everything (TOE), that would also include gravity, the
physicists took one step further and started moving in var-
ious directions, all of which led up to the study of super-
strings.

What if ....? The unification Figure I.4.45 at least suggests
that a Theory of Everything is certainly not excluded. Hith-
erto a physical or logical veto that would prohibit such an
overarching theory has not been disclosed. The term ‘ev-
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erything’ is unfortunate, because it is not the pretension
that such a theory would explain all observable physical
phenomena, rather it would specify all the necessary and
sufficient ingredients on a fundamental level, which would
suffice to make a universe like ours. Still, you might won-
der what it means, if such a Theory of Everything (or TOE)
exists.

Most people think of it as a set of principles from which
everything we do and do not know about nature would
uniquely follow. We would take nothing for granted, not
the existence of light nor certain particles, or even the ex-
istence of space and time. But maybe the starting point
could be the notion of energy or information or of observ-
ability. As I said, everything is a lot, and practitioners aim
a little lower. A TOE marks the end point of the quest for
ever more fundamental and basic building blocks that are
the subject of this chapter.

The discovery of a (or should I say the) TOE would mark
the closure of basic physics. This would be both an impres-
sive and a surprising achievement. Nature would have a
true bottom so to speak. Yet, from a practical point of view
such a completion is not such a big deal really. It proba-
bly would make physics a more boring place to be. Par-
ticle physics would at best become some kind of tourist
trap, which one might want to avoid because the interest-
ing characters lived there a long time ago. A monument
for intelligence! And beauty, yes of course! Lots to admire
and enjoy. But adventure? Alas, no!

But now I am talking like the physicists at the end of the
nineteenth century who thought that the completion of ba-
sic physics was imminent. And it certainly was not! Quite
the opposite, the twentieth century turned out to be one
of the most revolutionary, inspiring and successful eras in
physics ever. A century of relativity (geometry), of informa-
tion and of quantum, as we argued in Chapter I.2.

Around 1980 it became clear that theories of 1-dimensional

extended objects called strings provided a drastically dif-
ferent perspective on the problem of gravity. They have
been center stage from 1984 onwards, but these theories
have so far not been able to impress with resolving exist-
ing problems or with predictions that were confirmed by
experiment. The relevance of string theory as a theoreti-
cal laboratory is fully recognized as a powerful extension
of quantum field theory, and it has helped us to understand
such elusive concepts as quantum black holes and quan-
tum phase transitions. And superstring theory keeps alive
the hope for a Theory of Everything, a Holy Grail of parti-
cle physics. Therefore we will conclude this chapter with
a section on this topic which is still very much in a state
of flux. As will become clear once more: beauty has its
price.

Superstrings

And so we face a contradiction between quantum
field theory and general relativity similar to the con-
tradictions that led to quantum mechanics. Many
physicists believe that this contradiction contains
the seeds of an upheaval as profound in its own
way as the discovery of quantum mechanics and
relativity

Edward Witten, Nature (1996)

String theories in their present formulation are quantum
theories of extended objects, like strings, and (mem)bran-
es of different dimensions. Mathematical consistency of
the this theory requires two conditions to be fulfilled, (i) the
theory should be supersymmetric, and (ii) the theory lives
in ten or eleven dimensions. A closed formulation of the
theory that may exist in eleven dimensions, and for some
mysterious reason is called M-theory, is not available, but
a small set of ten-dimensional limiting descriptions of that
theory are known, and these correspond to the five differ-
ent superstring theories.
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Figure I.4.48: String worlds. What the world might look like at
' 10-35 m .

Just like a single quantum field describes an arbitrary num-
ber of particles of a given type, the basic property of the
fundamental (super)string is that it describes an infinite
number of fields, or particle types! Most of them corre-
spond to extremely massive particles that cannot be pro-
duced in our accelerators. Crucial for phenomenology and
falsifiability are the ‘massless’ fields that the theory pre-
dicts.
The one outstanding fact is that the theory includes grav-
ity. The gravitational field obeys an equation to which Ein-
stein’s equations are an approximation. This makes the
theory a serious candidate for a quantum theory of all fun-
damental particles and interactions including gravity. An
important – quantessential – step forward, but many hur-
dles still have to be overcome. Most importantly, it is still
not known how the beloved Standard Model fits in, though
all the ingredients appear to be there. The problem so far
is that the theory describes more than we need.

Understanding gravity. Our understanding and interpre-
tation of gravity has through history made dramatic turns.
Of course it started with the idea of a force leading to the

whole Newtonian dynamical framework including his ‘uni-
versal law of gravitation’. The second grand turning point
came with Einstein’s theory of General Relativity, where
it was shown that the gravitational force was just a mani-
festation of the curvature of space-time. Further searches
were driven by the strongly perceived necessity to bridge
the gap between quantum theory and general relativity.

This turned into the elaborate field-theoretical edifice of
supergravity in all its diversity. That approach turned out
to have serious shortcomings and at some point seemed
doomed, but then it gave way to superstring theory in which
supergravity again found a safe haven.

String theory, as a possible overarching quantum theory of
all interactions including gravity, has passed through some
major revolutions after its inception dating from the early
1970s. It is customary to distinguish three eras of super-
string theory:

1st era (...–> 1984): String theory as an attempt to de-
scribe the strong interactions (Veneziano, ...).
2nd era (1984-1995): Superstring theory as a theory of
quantum gravity (Scherk et al, Schwartz, Green, Witten,
...).
3rd era (1995-present): Extended objects or D-branes,
M-theory and the holographic AdS/CFT correspondence
(Polchinski, Witten, ’t Hooft, Susskind, Maldacena, Stro-
minger, Vafa,...).

We see that string theory, as a would-be unified theory of
all fundamental interactions including gravity, was launched
in 1984. In that theory the gravitational field equations are
derived from imposing conformal invariance on the under-
lying string degrees of freedom that live on the world-sheet
of the string. In that perspective gravity is an effective long-
distance description of an underlying string dynamics and
in that sense is an emergent phenomena.

However, in spite of its intrinsic beauty and elegance, string
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theory did not quite deliver. It forced us to accept many
hard to swallow extras like supersymmetry, a 10-dimen-
sional space-time, and quite some extra degrees of free-
dom, of which no hint showed up in experiments. A del-
uge of extra degrees of freedom that ‘nobody had ordered’
so to speak. But moreover it appeared that string theory
had no direct answers in store concerning very important
questions like how to treat realistic black holes quantum
mechanically, and how to address the even more urgent
questions concerning the direct experimental evidence for
dark matter and dark energy.

And that takes us to the present engagement of string the-
ory, in particular with the idea of holography which culmi-
nated in Juan Maldecena’s rather stunning Anti-de-Sitter/-
Conformal-Field-Theory (AdS/CFT) correspondence. This
radical proposal was published in 1997 in a paper which is
considered one of the most influential of the present era.
It is often referred to as the gauge/gravity duality or Malda-
cena duality.

The gauge/gravity duality refers to a rather specific setting
of the Anti de Sitter space-time (in various dimensions), but
suggests a profound and generic aspect of string theory.
The canonical example refers to the situation of string the-
ory in the 5-dimensional Anti de Sitter (AdS) space-time.
This space-time has a cosmic boundary, which is a flat
4-dimensional Minkowski space-time. On that boundary
lives a four-dimensional conformal quantum field theory
(CFT), which is a large N copy of the N = 4 SU(N) gauge
theory that we discussed in the previous section. The du-
ality says that the full string theory in the AdS background
is exactly dual to the CFT on the boundary. Thus the the-
ories are fully equivalent; they describe the same physical
reality in two different perspectives. So for example if we
have the formation and subsequent evaporation of a black
hole in the Anti de Sitter universe, this process could be
completely understood as some unitary time evolution in
that boundary conformal quantum field theory.

If you want, you can read the AdS/CFT correspondence
in an even more – literally – ‘outlandish’ way, namely, that
gravity and space-time are elevated to a holographic illu-
sion! If we know everything about the conformal theory on
the d-dimensional boundary, we would be able to recon-
struct all conceivable (gravitational) physics in the (d+1)-
dimensional space. This prompts the interpretation that
gravity as such doesn’t really exist as a fundamental force.
How elusive can reality be? If it doesn’t really exist, then
it certainly wouldn’t have to be quantized. The quantum
behaviour is emulated in a quantum field theory living on
the boundary of space-time. Let me paraphrase this ironic
state of the universe as an ironic state of mind: or we are
an illusion, or the theory that claims that we are an illusion
is an illusion.

Strings: all fields in one?

What is a string? Let us start with the most elementary
type of string which directly connects with our intuition. A
string is like an idealized one-dimensional tiny piece of a
rubber band that moves through ordinary space and time.
The motion of a string can be broken down into the motion
of its center of mass, and a relative internal motion. For
closed strings the relative motion corresponds to waves
moving in either direction along the string. But you can
also have open strings that have to satisfy certain bound-
ary conditions, which basically say that its endpoints have
to move with the velocity of light or that they have to be at-
tached to some higher dimensional physical object called
a D-(mem)brane. These boundary conditions ensure that
the string has a certain tension which is an energy per unit
length. This tension makes these strings very much like
the strings on a violin that have oscillatory modes, known
as standing waves that correspond to its basic, harmonic
overtones.

It is not hard to imagine how a string model is supposed to
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represent particles, if we are far away – we cannot resolve
the internal structure of the string, and we see the string as
a point-like object with a certain mass and momentum and
there may be other internal quantum numbers like charge
or spin. Therefore strings manifests themselves as parti-
cles at large scales and low energies. The apparent mass
of that particle corresponds to the energy of the internal
(relative) oscillations of the string.

E2 = (Pcom)2 + ⌃k(p
rel
k )2 ' P2 + ⌃km

2
k . (I.4.38)

Clearly, the different oscillatory modes (labeled by k) have
to correspond to different particle species, but the mass
scale of the masses mk would be humongous. If the string
is tiny, say of the order of the Planck length, then its in-
ternal modes are extremely hard to excite. You need an
energy of the order of the Planck mass which we intro-
duced in Chapter I.3, i.e. mk ' 1019 proton masses! We
have to conclude that all the particles we know and love
should correspond to different modes in the lowest energy
or massless sector of the string. It is here that the su-
perstring is important because it has a huge internal sym-
metry group which means that the massless sector is also
extended, containing all spin values starting at two (the
graviton) all the way down to zero. The zero mass sec-
tor of superstrings corresponds to the particle content of
certain supergravity theories.

The take home message at this point is merely that a sin-
gle string carries an infinite number of different particle de-
grees of freedom, of which only the massless sector is of
phenomenological importance. So, one type of superstring
may represent all different particle types and their super-
partners as we have indicated in Figure I.4.49 . So you
should think of all the fields related to the particle types
we have been discussing previously, corresponding to dif-
ferent modes of a single type of superstring. The higher
mass modes are crucial to ensure that the theory is math-
ematically consistent, they help in making the theory well
behaved at high energies. And that makes sensible calcu-
lations on the quantum level possible.

Figure I.4.49: Superstrings. All known particle types plus many
more such as the superpartners or sparticles should correspond
to different lowest energy modes of a superstring. These par-
ticle types were already ingredients of the earlier supergravity
theories.

.

The world-sheet. If a point particle moves through space-
time, we call its trajectory a world-line. Similarly if a string
moves along in space-time, it traces out a two-dimensio-
nal surface embedded in space-time, a surface which is
called a world-sheet. The world-sheet has one space-like
dimension along the string and one time-like dimension to
allow the propagation of the string.

There are two related geometries in the formulation of string
theory: one is the two-dimensional intrinsic geometry of
the world-sheet and the other is the geometry of the back-
ground space-time also called the target-space in which
the string is moving. The world-sheet is parametrized by its
space- and time-like coordinate (�, ⌧) and its geometry is
determined by a world-sheet metric g↵�(�, ⌧) . This world-
sheet is embedded in a ten-dimensional space-time with
coordinates (Xµ;µ = 0, ..., 9) with its own metric gµ⌫(X�) .
The world-sheet is therefore described by its embedding,
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Xµ = Xµ(�, ⌧) , that specifies its position in space and
time. If you give me a point (�0, ⌧0) on the world-sheet, the
embedding yields a corresponding point Xµ

0 = Xµ(�0, ⌧0)
in space-time. A three-dimensional impression of what
that looks like is given in Figure I.4.51. The embedding
provides a relation between the two geometries in the sense
that the embedding induces a metric on the world-sheet
from the space-time metric. Just like we can construct the
metric on the surface of a sphere by inducing it from the
metric of the R3 in which we embedded the sphere, as we
did in Chapter I.2 .

The modeling of a string propagating in space-time in-
volves an action (or Hamiltonian) that has all the required
invariances and couplings, and loosely speaking it corre-
sponds to the ‘area’ of world-sheet. This is not too sur-
prising if you remember that the string has a tension and
therefore wants to minimize its length and therefore energy
(energy = length ⇥ tension).

What I want to get across here is that the expression for
the ‘area’ of the world sheet involves the induced metric
on the world-sheet which is an expression that in turn de-
pends on the � and ⌧ derivatives of the space-time coor-
dinates Xµ(�, ⌧). What this means is that in this formula-
tion of string theory, the string dynamics is like a quantum
field theory defined on the world-sheet, where the space
time coórdinates Xµ play the role of a set of (d+ 1) scalar
fields. So, yes, we are indeed quantizing space-time in
the sense that we quantize the coordinates. For super-
strings the story is similar, a superstring moves in super-
space which has also fermionic coordinates, and those
provide fermionic field degrees of freedom on the world-
sheet.

The string action has to be a scalar quantity and therefore
will also involve the space-time metric gµ⌫ , which depends
on the space-time coordinates and makes the action highly
nonlinear in the scalar fields. But let us for a moment
assume we study the string in flat space-time then with

gµ⌫ = ⌘µ⌫ is constant. Then the action will be invariant un-
der space-time translations and Lorentz-transformations,
and therefore we expect that the spectrum of the theory
will reflect that and can be interpreted as representations
of the Lorentz group and these label the space-time fields
that the string theory produces. And that is for example
how the graviton, as a massless spin-two representation,
shows up in the spectrum of the string.

Background dependence. String theory goes fundamen-
tally beyond General Relativity, because according to this
theory space-time itself is supposedly made up of strings.
In the actual formulation of superstring theory we have to
deal with this paradox that on the one hand the strings
propagate in a given background space-time, and on the
other the actual background space-time is made up of strings.
The background should be the outcome of the theory, it
has to be predicted. This leads to certain consistency re-
quirements. Space-time, as we experience it, is a man-
ifestation of the collective behavior of strings, a kind of
background or ground state. It would imply that space and
maybe even time are ‘emergent’, an idea that would have
tremendous philosophical implications as well.

In the massless sector of superstring theory we also find
spin-one-half fermionic constituent particles, as well as the
known spin-one force fields. Moreover these fields would
couple in the correct way because the gauge symmetry
principles that underly both the Standard Model and Ein-
steins gravity theory are naturally built into string theory.
In a sense, string models have too much symmetry and
therefore predict many extra particle types. We do not
want these particles because we do not see them in na-
ture; this implies that certain sectors of the theory have to
be suppressed or even removed. To do that in a consistent
way is a challenge.

As I have mentioned, for string theory to make sense two
strong theoretical constraints have to be met. Number one
is the existence of supersymmetry and number two a strin-
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gent condition on the dimensionality of space-time. For su-
perstrings the space-time dimension is ten. Indeed these
conditions seem quite unnatural and make you worry, be-
cause neither supersymmetry nor ten-dimensional space-
time have been observed. Yet from a mathematical consis-
tency point of view there is no doubt about the necessity
of imposing them from the start.

String interactions. In field theory the basic interactions
are represented by interaction vertices where three or more
particle lines meet and there is a coupling constant asso-
ciated with each vertex. As strings represent all particle
types their interactions should somehow take care of all
particle interactions. In Figure I.4.50 it is clear that for the
closed strings there is only one type of interaction vertex
which corresponds to the joining and splitting of two strings
and henceforth there is only one string coupling constant,
called � . The external legs of the string diagram, which
represent the incoming and outgoing particles, are taken
to be in the desired particle modes. This is how the dif-
ferent modes get coupled together and the complicated
bookkeeping of labels is in some sense implicitly done by
simply drawing the corresponding string diagram. A higher
order string diagram with a number of incoming and out-
going strings is depicted in Figure I.4.51 .

String quantization.

Optimal paths. If you use Google maps it helps you find the
shortest route. It offers you the choice between the short-
est route in distance or the shortest route in time. What
do particles do? If we take a photon, it will move from A
to B along a path of minimal action, but what does that
mean? The photon will certainly move along a straight line
but that is the shortest in both time and distance. To re-
ally find out we have to do one more step. We know that
in a medium like water or glass light moves slower than in
vacuum or air. So, if A is under water and B above water
the photons do not move along a straight line from A to B,
they take a route that consists of two straight sections that

Figure I.4.50: String interactions. Strings have only one fun-
damental interaction vertex consisting of breaking or joining
strings. So all different particle interaction diagrams of a given
topology can be represented by a single string diagram.

.

make an angle at the surface. This is the problem we dis-
cussed in detail at the end of Chapter I.1 on page 18. The
angle depends on the refraction indices in the two media,
which are inverses of their velocities. The path that takes
the shortest time is not the straight line from A to B, but
rather a line that is broken at the surface. So the classical
trajectories are optimal in the sense that they are minimal
action trajectories, they correspond to local minima of the
action.

That raises the interesting question that all school kids ask:
How does a photon know which path to take? It can’t do
the necessary calculations, can it? No it can’t! So it does
not use Google’s algorithm, which amounts to calculating
most of the nearby paths in a restricted domain and choos-
ing the optimal one. The photon, being a quantum parti-
cle does in fact a quantum computation it takes all paths
simultaneously let them interfere and what comes out is
weighted sum over possible paths the photon could have
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Figure I.4.51: Joining and splitting strings. Artist impression
of strings moving in space-time and interacting by joining and
splitting. It illustrates the geometric nature of string interactions.
This string world-sheet has holes (handles) and closed bound-
aries which represent the incoming and outgoing closed strings.

taken. In short the photon performs a path integral.

The path integral. If we make the step to the quantum
description of the particle, then we have to include all pos-
sible paths from A to B. The quantum propagation is now
a weighted sum over paths, which is the famous Feynman
path-integral. The probability amplitude to go from A to B
is a superposition of amplitudes, the contribution of each
path is weighted by an exponential phase factor where the
phase is exactly the classical action of the path divided by
h̄.

So indeed in quantum mechanics these contributions can
reinforce each other if they are in phase at B or dampen
each other if they are out of phase; quantum particles in-
terfere with themselves!

Going Euclidean. Here is another interesting aspect of
path-integrals. In general they involve paths or configu-

rations in space-time, which has a Lorentzian and not a
Euclidean signature. However, what physicists often do
when calculating or defining these integrals is to ‘deform’
them to Euclidean space, hence the term Euclidean path-
integral. We calculate the Euclidean action of the paths
and those with high action are exponentially suppressed
with an exponent that equals minus the action divided by h̄.
One interesting consequence of this is that if we take the
Euclidian action of a (d+1) dimensional physical system,
we are summing over spatial configurations in a (d+1)-
dimensional Euclidean space. But, as we argued in Chap-
ter I.1 this is very much like doing statistical mechanics
in (d+1) dimensions, where we for example calculated the
partition function of the system as a sum of all possible
configurations weighted by the Boltzmann factor which was
also an exponential of minus the energy divided by kT .
This correspondence expresses a profound relation be-
tween calculations in quantum field theory in d spatial and
1 time dimensions and calculations in statistical physics in
(d+1) spatial dimensions. We will return to this connection
in Chapter III.4.

From particles to strings. I tell you this particle story, be-
cause it helps to understand how string theory can be for-
mulated as a generalization of a theory of point particles
to a theory of one-dimensional extended objects. A clas-
sical path would typically correspond to a minimal action
configuration of the world-sheet which corresponds to an
extremal (‘optimal’) area of the word-sheet. The Euclid-
ean equivalent for a closed string world sheet would be a
soap bubble surface between two solid rings. And we know
that a real soap bubble chooses the ‘minimal energy’ sur-
face. It also showed what the fluctuations about the min-
imal energy configuration (the straight cylinder) look like:
the string moves at intermediate times about its equilibrium
position. There could also be wiggles running transversely
– meaning along the string – but those have higher en-
ergy and unfortunately could not be excited with the soap-
bubble kit I gave my daughter for her birthday in a failed
attempt to make her study physics a long time ago.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 212 — #242 i
i

i
i

i
i

212 CHAPTER I.4. THE QUEST FOR BASIC BUILDING BLOCKS

Figure I.4.52: String propagator. On the left the classical prop-
agation of a string in space-time corresponding to the minimal
action world-sheet bounded by the initial and final state. On
the right the quantum propagation as a weighted sum over all
string world sheet configurations bounded by the initial and final
states. On the left there is a unique intermediate state, while on
the right we have a superposition of many.

A string amplitude implies summing over all possible world-
sheets satisfying the appropriate boundary conditions. This
is illustrated in Figure I.4.52, where on the right we have a
superposition of configurations that contribute to the prop-
agation from the initial (left) to the final (right) configuration.
The action is basically the area, which depends on the
metric on the world-sheet. The problem then boils down
to the construction of a correct and well-defined measure
for doing this integral over the ‘space of all metrics’, with-
out leaving metrics out, but at the same time not over-
counting. This is a complicated mathematical problem be-
cause of the huge symmetries in the problem.

This basically concludes my ham-handed introduction to
the quantization of strings including small world-sheet fluc-
tuations.

Figure I.4.53: Euclidean world-sheet. Woman keeping up the
Euclidean appearance of ‘vacuum bubble,’ a contribution to the
vacuum-to-vacuum amplitude for a closed string. (Source: Ate-
lier bulles geantes)

Weakly and strongly coupled strings. An important ques-
tion at this point is, what are the world-sheet configura-
tions that matter most, and will dominate the path-integral.
In the figure just mentioned I have clearly limited myself
to rather small fluctuations around minimal area classical
configuration. So this is what a cheap navigator in your
car would do, it misses out on surprising not so obvious
shortcuts. You see for example that the topology of the
world-sheets I included are all of the trivial cylindrical type.
I have apparently not allowed for string interactions, mean-
ing splitting and joining of tubes, and creating holes in the
world sheet, like we depicted in Figure I.4.53 . What this
basically means is that I have assumed that the string in-
teractions are weak. The stronger the string interactions
are, the easier (more probable) the excitation these com-
plicated surfaces of high genus will be.

A full string amplitude requires summing over all possible
world-sheets that satisfy the appropriate boundary condi-
tions, which means that you end up with a sum over genera
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(the number of holes) that label the topological class of the
world sheet, and for any given genus you have to sum over
all compatible metrics.

So as a relevant example let us consider the vacuum-to--
vacuum amplitude for closed strings, This involves sum-
ming over all closed (no boundary) two-dimensional sur-
faces of arbitrary genus: these are called Riemann sur-
faces. They are embedded in (d+1)-dimensional Euclid-
ean space and weighted by the negative exponential of
their area. One such configuration with some holes fea-
tures in Figure I.4.53 .8 So this particular amplitude is now
equivalent to an interesting problem in statistical physics:
the calculation of the partition sum of random 2-dimensional
surfaces in a d-dimensional space.

What these considerations make clear is that our naive in-
tuitions about string theory really only apply to the case of
weak string coupling, and nobody knows what a strongly
coupled string theory actually means. That is to say, up
to about 1995 nobody understood, but after the so-called
second string revolution in the present era of string the-
ory, we know much better what’s going on. We will discuss
some of this shortly.

Five superstring theories. You would maybe hope that
with such outlandish requirements string theory would be
highly unique, after all how could a Theory of Everything
not be unique! But this appeared not to be the case. There
are five different superstring theories in ten dimensions,
which differ very much by the symmetries they have. Let
us list these theories without further going into detail about
their specific features: we distinguish: Type I, Type IIA,
Type IIB, Heterotic E8 ⇥ E8, and Heterotic SO(32). We
have depicted these superstring theories and how they
are connected to each other and with M-theory, to be dis-
cussed shortly, in Figure I.4.60 .

8A not-so-nice colleague suggested that this was part of a job appli-
cation ceremony.

So, either these theories are wrong, or we have to work
very hard to understand how our not-so-supersymmetric,
not-so-ten-dimensional world can be interpreted as a not-
so-simple solution to the equations that govern string the-
ory. In that sense the theory does make very strong pre-
dictions, which at least in principle are falsifiable. This im-
plies that we cannot just go out and do a decisive exper-
iment, however, Predictions that have spent ages in wait-
ing rooms are not uncommon in science, and this now also
applies a fortiori to the very fundamentals of the quantum
gravity world.

So far we have discussed (extended) supersymmetry as
a distinguishing feature of supersymmetric gauge theories
and super gravity theories. The next question is what the
additional requirement that space-time be ten-dimensional
means.

Ten-dimensional space-time? The second consistency
condition of string theory is that space-time has to be 10-
dimensional; this is in strong contrast to the 4-dimensio-
nal version we are all familiar with. At first this require-
ment sounds too outrageous to be true, and is all day
convincingly falsified by our daily experience! But for the-
orists nothing appears as unsurmountable, they bear in
mind Einstein’s consoling words: ‘Subtle is the Lord but
malicious He is not.’ And they have cooked up scenar-
ios of how to get rid of six of those ten dimensions by a
procedure called compactification. This amounts to tightly
‘rolling up’ the extra dimensions into a variety of compact
manifolds like spheres or tori or combinations thereof.

Kaluza – Klein theory. This way of effectively reducing the
dimension of space has a long history, and goes back to
the first quarter of the twentieth century. Theodor Kaluza
and Oskar Klein independently proposed a geometrical
unification of the gravitational and electromagnetic forces,
by looking at General Relativity in five dimensions, where
they assumed that the fifth dimension would be curled up
into a tiny circle. Interestingly, the extra components of
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Figure I.4.54: Compactification. Here we give an idea how
one spatial dimension can be compactified to a circle. The ro-
tational U(1) symmetry of the circle results in the existence of
U(1) gauge field in the large dimension. The relative coupling to
the matter fields is inversely proportional to the radius R of the
internal circle. In this perspective taking a weak coupling limit is
like opening up an extra dimension (R ! 1). This is the orig-
inal dimensional compactification scheme of Kaluza and Klein,
which plays also a role in going from 11-dimensional M-theory
to 10-dimensional superstring theories.

the curvature tensor you get in going from four to five di-
mension would correspond to the degrees of freedom of
the electromagnetic field in four dimensions (and an extra
scalar field). The extra components of the metric would be
‘gµ5 = g5µ .’ These generically correspond to the gauge
potential Aµ, with g55 being an extra scalar field. Further-
more, the whole 5-dimensional system of Einstein’s equa-
tions, after compactification, correctly reproduces the cou-
pled Maxwell-Einstein equations in four dimensions. The
momentum component in the fifth dimension of a moving
particle basically corresponds to its electric charge. Ein-
stein actually liked the idea but it was hard to reconcile
with quantum theory and therefore slid into decline.

In science, attractive ideas that don’t quite work can be

safely stored away in a kind of fridge. This fridge consists
foremost of the collective memory of the scientific com-
munity, and the written records of course. Ideas can hi-
bernate for years or even for a century or so, before get-
ting rediscovered and making a glamorous come-back in
a novel context. Compactifying dimensions à la K-K is
such an idea. The extra dimensions would probably be too
tiny to see with present-day accelerators. To probe such
small sizes you need correspondingly small wavelengths,
which mean very high energies. So in that way you escape
the manifest presence of those dimensions. But there is
one feature that would be manifest at low energies. If the
compactified space has symmetries – and it usually has –
those symmetries after quantization give rise to massless
particles that would clearly manifest themselves, also at
low energies. It is precisely the rotational symmetry of the
circle geometry of the fifth dimension that generates the
massless photon in the Kaluza-Klein scenario!

Suppose we compactify one dimension of space into a cir-
cle then that has important consequences for the allowed
states of a quantum particle. Remember that the spec-
trum of the momentum or energies for a free particle in flat
space is continuous, and the wavefunction for a fixed mo-
mentum (p) state corresponds to a sinusoidal wave with
the wavelength � = h̄/p. With the compactified dimension
being a circle the particle momenta are quantized exactly
as in the old Bohr model we discussed in Chapter I.3 on
page 134, because we have the periodicity condition that
the wave has to fit on the circle: n� = 2⇡R and there-
fore (relativistic) En = pn ⇠ n/R . And in the original K-K
model this component of the momentum is just the charge
of the particle, that charge is thus quantized. The attentive
reader now will ask whether here we have a model with-
out monopoles where charge would be quantized. How
come? The answer is that in this model topologically sta-
ble monopole configurations do exist as solitons much like
in the supersymmetric gauge theory we discussed before.
So Dirac does not have to turn in his grave!
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Figure I.4.55: T-duality. The non-oscillating modes of a of
(bosonic) closed string on a circle with compactification radius R.
The energy E = Em + En ' mR+

n

R
, where m is the (topolog-

ical) winding number and n the momentum which is also quan-
tized. We have drawn the vertical lines for fixed R, demonstrat-
ing that the energy spectrum for radius R and 1/R are identical
if we interchange m and n, making the spectra identical. Tak-
ing the limit R ! 1 is decompactifying, which is like opening
up an extra dimension. This means that the topological sector
disappears and the momentum becomes continuous.

T-duality. If we have a string theory and we compactify
one dimension, something interesting happens with the
states of a simple string in that dimension. Of course
the string can oscillate, but we are not interested in those
states at this point. We want to look at the zero-modes.
The string can move around the circle and behave like a
particle, and that gives the spectrum we just discussed
En ⇠ p ⇠ n/R , but for a string there are distinct topo-
logical sectors as the (closed) string can wind an inte-
ger number m times around the circle with radius R . This
gives a contribution to the energy of the string propor-
tional to its length so that gives a topological contribution
Em ⇠ mR . So, for a string we arrive (choosing appropriate
units) at a simple formula for the energy spectrum of the

Figure I.4.56: Compactification, the story of six inner dimen-
sions. Compactification means that space-time has four large
and six compact or internal dimensions. Here we show two
three-dimensional projections of possible six-dimensional com-
pactifying spaces. It is evident that these so-called Calabi-Yau
spaces have intricate geometries. (Source: Polytope24)

non-oscillatory modes: E = En + Em = n/R +mR . This
spectrum is remarkable because it has an exact symmetry
under the inversion R ! 1/R , as is shown graphically in
Figure I.4.55 .

And as the circle is part of the space-time, the target space
in which the string moves, this symmetry or map is called
‘T-duality ’ or target space duality. Here we showed the ele-
mentary example where the duality was actually a symme-
try, a self-duality, but the duality as a map plays an impor-
tant role in the mapping of different 10-dimensional super-
string theories onto each other as we will see shortly.

Note that we have encountered two types of duality: the
first was called ‘S-duality’ or ‘strong-weak duality’ which
may apply to both supersymmetric particle and string theo-
ries. Secondly we have ‘T-duality’ or ‘target space duality’,
which makes only sense for string theories.
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Calabi-Yau compactifications. An interesting quite special
class of compact six-dimensional spaces over which the
superstring can be compactified is the class of 6-dimen-
sional Calabi-Yau manifolds, used in the compactification
from ten to four space-time dimensions. These spaces
have a number of very special properties that we will not
discuss here. In Figure I.4.56 we exhibit two-dimensional
views of three real dimensional cross-sections of these six-
dimensional spaces. They are of interest for certain su-
perstring theories, because they ensure that the resulting
four-dimensional theory closely resembles a super exten-
sion of the Standard Model.

The multiverse. A weakness of the compactification sce-
narios in string theory is that nobody has been able to
show that compactifications – if any – would be gener-
ated dynamically by this prospective Theory of Everything.
This is a pressing issue because what looked like a unique
and universal theory turns out to have an astronomical
proliferation of conceivable compactifications. But to each
compactification would correspond a different type of four-
dimensional universe, with its own cosmic history, parti-
cle content and set of forces, in short, its own Not-So-
Standard Model! Some of these universes could collapse
before anything interesting would happen. Others may ex-
pand too fast for stars to form, let alone life to develop. In
some of them there would be light, while in others none,
or maybe many sorts of light. In fact a mind-boggling uni-
verse of universes is opening up, which is called the multi-
verse.

String theory so far is a theory of many possible theories,
a theory of a multiverse in which wildly differing types of
physics could manifest themselves, even in parallel. And,
yes, ours would be just one of them. This is quite orthog-
onal to the basic motivation of most scientists who search
for a unique universal theory of Nature. The common prej-
udice used to be that the Theory of Everything would come
up with our dear universe as the unique or at least strongly
favored solution. We like to think of our world as the unique

Figure I.4.57: A multiverse? An artists impression of the mul-
tiverse. A two-dimensional projection of a ten-dimensional com-
pactification scheme. (Source: Forum Futura)

expression of the universal principles underlying that the-
ory. It would have left the Creator but one option. It came
somewhat as a shock that, after a promising start in that
all-overarching direction, string theory moved in fact the
opposite way. Maybe it is trying to tell us something con-
trary to our expectations, and for that science has excel-
lent credentials. After all, the existence of a multiverse is
yet another step away from our old anthropocentric dream
of us being (in) the center of THE universe. THE universe?
What are you talking about? Such a dramatic form of rel-
ativism would indeed constitute the ultimate irony of sci-
ence, or of human existence.

It is not by accident that a strong protagonist of the multi-
verse, Leonard Susskind of Stanford University who wrote
a popular book called The Multiverse about it, claims that
the proper interpretation and main prediction of string the-
ory is precisely that we live in a multiverse. The nasty as-
pect of this view is that the existence and properties of our
own universe become extremely hard to predict from such
a premise and in that sense not much progress has been
made. It is an example of where contingency and evo-
lutionary thinking enters physics at the most fundamental
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level. It is analogous but much worse than asking a physi-
cist to precisely predict the number and sizes of the plan-
etary orbits in our solar system from Newton’s laws. That
can’t be done. Newton’s equations describe all sorts of
planetary systems. And indeed, all observed systems do
fit in his framework, but asking to predict them would be
many bridges too far. And to be fair we don’t expect that
because we know that the details of the solar system are
the outcome of a highly contingent, non-universal histori-
cal process and not simply calculable from first principles.
To put it differently, all dogs are animals but not all animals
are dogs, that’s the problem! The biological conundrum,
we know what an animal is and what the species on Earth
look like, but predicting them from single-cell organisms
using genetics is somewhat harder.

M-theory, D-branes and dualities

It was believed for many years that there were five
possible string theories, prompting the question:
if one of these describes our universe, who lives
in the other four worlds? But recently it has be-
come clear that those five string theories are limit-
ing cases of one majestic and mysterious theory.

Edward Witten, Nature (1996)

D-branes. Whether they liked it or not, string theorists
discovered that strings are not enough to make a con-
sistent quantum theory of gravity. In fact 11-dimensional
supergravity had a somewhat uncomfortable ‘living apart
together’ relation with the 10-dimensional string theories.
This supposedly low energy approximation of string theory
lived one dimension up and had features that were lack-
ing in string theory. These were stable soliton like classi-
cal solutions called branes, to be thought of as p-dimen-
sional generalizations of membranes. This quite naturally
prompted the question what the role of these p-branes in
string theory would be.

Figure I.4.58: D-branes and strings. A stack of three flat D2-
branes. Open strings have to end on branes, by connecting
them they represent nine U(3) gauge fields living on the bran-
es. This figure is reminiscent of Figure I.4.37 with the bi-colored
lines representing gluons propagating. Closed strings are not
connected to branes and correspond to gravitons.

Strings are one-dimensional extended objects, and indeed,
a question that came up already early-on was: why if you
give up the unique particle notion as the fundamental start-
ing point, stop at one-dimensional extended objects? Why
not include membranes and other higher dimensional ex-
tended objects? It was part of the second string revolu-
tion around 1995 that Joe Polchinski of the Kavli Institute
for Theoretical Physics in Santa Barbara had the crucial
insight that higher dimensional objects he called D-bran-
es had to be included indeed. He intoduced D-branes in
string theory as the end points of open strings. They could
therefore in principle have dimensions p running from zero
to nine. D-branes could be flat of infinite extent, or curled
up into compact objects like black holes for example, they
could be single or stacked up. Each type of string the-
ory would allow for D-branes of specific dimensions. In
superstring theory these p-dimensional D-branes, or Dp-
branes, are dynamical objects which in the appropriate su-
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pergravity limit correspond with the very heavy soliton-like
p-banes.

In Figure I.4.58 we have depicted a stack of three colored
D2-branes, and we have also drawn open strings ending
on them. Let us discuss this picture in the weak coupling
low energy limit of string theory, then it is known that open
strings carry a vector representation of supersymmetry al-
gebra. These open string states correspond to fields car-
rying one space-time index µ in this case running from 0

to p = 2 , and carry two ‘internal’ (color) indices labeling
the branes to which they are connected, in other words
they beg to be identified as gauge fields Aab

µ . In the figure
there are nine possible color combinations, making up a
three-dimensional U(3) ‘color’ gauge theory. The picture
clearly shows that the gauge theory is attached to the Dp-
brane and therefore (p+1)-dimensional. From the branes
point of view the strings between them are like excitations
of the branes, they describe the brane dynamics. If the D-
brane is embedded in a higher dimensional space then we
have that the closed strings live in a higher-dimensional
(d > p) space then the gauge fields as indicated in the
figure. This fact posed yet another conundrum one had to
face. One additional comment on the figure, imagine the
the D-branes to be so-called black branes meaning that
they would correspond to some horizon then one could
imagine the open strings pairing up to make some closed
strings which could then leave the D-brane. The brane
would radiate!

M-theory and superstring dualities.

This theory, which is sometimes called M-theory
(according to taste, M stands for magic, mystery,
marvel, membrane or matrix), is seen by many as
a likely candidate for a complete description of na-
ture.

Edward Witten, Nature (1996)

In Figure I.4.60 we give a bird-eye’s view of the model-

Figure I.4.59: Duality. In this painting of the Renaissance Mi-
lanese painter Guiseppe Arcimbolo (1526 – 1593), we see that
a given physical vegetarian reality, this particular painting called
Verdure or Vegetables, has two different interpretations which
are dual to each other. In the weak coupling limit it is a veg-
etable basket, in the – I presume – strong coupling limit it turns
into a vegetable face. The transformation is a rotation over an
angle of ⇡. (Source: c�Photo Scala, Florence.)

ing landscape in ten and eleven dimensions. Who is living
where and how they are related. The precursor of string
theory was 11-dimensional supergravity: it did have attrac-
tive features like for example classical 2- and 5-brane so-
lutions but seemed to not be fully consistent. In the fig-
ure it has moved a bit to the background because it is
presently understood to be the low energy approximation
of M-theory. The magic theory that remains in many ways
a mystery, as there is no explicit formulation available, and
we don’t even know if such a formulation exists. And there-
fore the most fundamental principle underlying M-theory
may still be hidden as well.

M-theory is known because of its low energy supergrav-
ity manifestation and through other limits which manifest
themselves as the five superstring theories in ten dimen-
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Figure I.4.60: M-theory.and string dualities. M-theory is a the-
ory in eleven dimensions. It contains all five 10-dimensional su-
perstring theory types. These ten-dimensional theories can be
related through certain S- and T-dualities.

sions. These limits are related to compactification of one
space dimension. For example the low energy limit – su-
pergravity – can be compactified over a circle to ten dimen-
sions, where the supergravity 2-brane is wrapped around
that circle, which reduces the 2-brane to a string. And the
resulting theory could be identified as the weakly coupled
ten-dimensional Type 2A string theory. In the strong cou-
pling limit of the string theory the compactified dimension
would open up as we have discussed before. Furthermore,
in the Type IIA string theory one could do a T-duality trans-
formation (like R ! 1/R), which turns the theory into the
Type IIB string theory. So it is in this sense that many con-
nections between the various models were established,
and indeed this network of dualities clearly demonstrated
that these five theories are basically five different guises of
one underlying theory, which has been named M-theory.
Quite a mind-boggler!

At this point of the tour we have arrived at the center of
the third string era, and I could imagine that if you are

a ‘freshman’ reader, not at all familiar with these ideas,
this narrative will come across as an arcane, brilliant but
bizarre endeavor. A type of excursion in domains of the
mind that you would not expect in a book about physics, a
discipline that stands out for its factual rigour and its exem-
plary strong empirical basis.

The reason that I include these developments is exactly
because this is what the struggle of science at the frontiers
of knowledge may look like and should look like. It should
be explorative in all conceivable ways, as long as it is not
plainly stupid. This holds for the experimental as well as
theoretical domain. It was Einstein who in 1934 made the
following remark:

The theoretical scientist is compelled in an increas-
ing degree to be guided by purely mathematical,
formal considerations [...]. The theorist who under-
takes such a labor should not be carped at as “fan-
ciful”; on the contrary, he should be granted the
right to give free rein to his fancy, for there is no
other way to the goal.

Let us in this vein explore a final set of fancy ideas that got
a spectacular impetus out of string theory.

Holography and the AdS/CFT program

We would like to advocate here a somewhat ex-
treme point of view. We suspect that there simply
are no more degrees of freedom (inside a volume)
to talk about than the ones on can draw on its sur-
face as given by S = A/4 . The situation can be
compared with a hologram of a three-dimensional
image on a two-dimensional surface. The details
of the hologram on the surface are intricate and
contain as much information as it is allowed by the
finiteness of the wavelength of light–read the Planck
length.

Gerard ’t Hooft Salamfestschrift (1993)



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 220 — #250 i
i

i
i

i
i

220 CHAPTER I.4. THE QUEST FOR BASIC BUILDING BLOCKS

Holography. We are going to discuss a profound novel
correspondence that is of interest to physics and mathe-
matics of many sorts. It is the holographic idea, that all the
information contained in a space of (d+1) dimensions can
be faithfully represented on a holographic screen of d di-
mensions. In the context of gravity, this conjecture was first
put forward in the quantum understanding of black holes
by ’t Hooft as early as 1993 and taken up shortly after by
Susskind in the context of string theory. We have talked
about black hole entropy and the information paradox in
the section on black holes in the previous chapter on page
139. The current narrative is that information cannot get
lost but instead is somehow encoded, ‘frozen in’, on the
horizon. The horizon keeps track of all things that pass
by, so to say. This information content corresponds exactly
with the Bekenstein-Hawking entropy that is also located
on the horizon of the black hole. It would allow for the
possibility that the information would ultimately be carried
away again as hidden correlations in the Hawking radia-
tion. So the information carried by things that have fallen
into a black hole can – in principle at least – be retrieved.
In particular in a consistent quantum mechanical descrip-
tion of the black-hole formation and evaporation process
this has to be the case.

Black hole holography. The study of holography applied
to black holes in the context of string theory culminated
in a 1997 paper by Juan Maldacena at the Institute for
Advanced study in Princeton, in which he made a strong
claim of an exact dual relation between a superstring the-
ory in a 5-dimensional Anti de Sitter space denoted as
AdS5, and an N = 4 supersymmetric SU(N) gauge the-
ory for large N defined on the boundary of AdS5, which is
equivalent to four-dimensional flat Minkowski space. This
exceptional claim has in the meantime been substantiated
and extended in many very convincing ways.

It brings together a number of ideas that we have touched
upon in this book: the idea of symmetric curved space-
times that are solutions to Einstein’s equations, the idea

Figure I.4.61: AdS/CFT correspondence. The superstring the-
ory compactifed over S5 to a five-dimensional Anti de Sitter
(AdS) space-time, which corresponds to the interior of the cylin-
der. That space has a 4-d boundary which is a flat Minkowski
space (the cylindrical surface) on which a conformal field theory
(CFT) lives, which is the hologram, a fancy encoded but faithful
representation of the five-dimensional string theory in the inte-
rior.

of supersymmetry and supergravity, the N = 4 super-
conformal gauge theories, and the ideas of string theo-
ry/supergravity compactification. Indeed a more encom-
passing confluence of ideas is hard to imagine and it may
rekindle dark memories of some horrifying final exam that
you once failed. I am sorry!

To be slightly more specific we are discussing the 10-di-
mensional IIB string and supergravity models, which are
defined on a 10-dimensional space-time M = AdS5 ⌦ S5,
then on the AdS space one ends up not with 8 but 4 su-
persymmetries, the other four get broken by the compact-
ification. Furthermore the background space AdS5 is a
very special space that has a large symmetry group which
corresponds with the four-dimensional conformal group,
and this yields a space-time theory with a N = 4 super-
conformal symmetry.
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Figure I.4.62: AdS/CFT correspondence. An artist’s impres-
sion of the holographic principle as it is operative in a compacti-
fication from ten to five dimensions. The superstring theory lives
in a five-dimensional Anti de Sitter (AdS) space-time (inside the
bowl). That space has a 4-d boundary which is a flat Minkowski
space (the blue bowl) on which a conformal field theory (CFT)
lives, which is the hologram, a fancy encoded but faithful rep-
resentation of the five-dimensional string theory in the interior.
(after A.T. Kamajan)

This string theory has actual open and closed strings but
also D4-branes and we put a stack of N at the bound-
ary, so producing an N = 4 super-conformal SU(N) gauge
theory at the boundary. Note that the symmetries of both
theories coincide and therefore that will facilitate the iden-
tification of string states in the bulk with particular observ-
ables in the quantum field theory.

This gauge/gravity duality is a strong-weak type duality,
which means that the low energy weakly coupled gravi-
tational theory tells us about the strong coupling behavior
of the quantum field theory. And as there is a complete
equivalence the converse is also true, so the weakly cou-
pled gauge theory should teach us about strongly interact-
ing string theory.

If you look at the Hilbert space of states or the spectrum
of the string theory on AdS5 , you get an impression how
involved and surprising this Maldacena correspondence
must be. For very low energy the theory of gravity just is
the Einstein equations linearized around the background,
and the excitations are gravitational waves. If we move to
string theory, we get the closed strings which represent the
massless supergravity degrees of freedom and if the back-
ground has D-branes we will excite open strings attached
to branes. After that massive string modes will also be ex-
cited. When we go up even further in energy we will enter
the regime where D-branes will be created. And if they are
sufficiently heavy, they may start to form small black holes.
And the more energy we put in the heavier and larger the
black holes become. This process can continue until the
horizon coincides with the boundary of a very large black
hole. To imagine that this great variety of interacting de-
grees of freedom can be faithfully mapped to a large N

super-conformal gauge theory is quite miraculous. What
I can tell you is that a great variety of checks has been
performed (involving very extensive computations of par-
ticular features) and all of these have confirmed the ex-
pectations.

However, the real shortcoming of this correspondence is
that it only seems to work in this quite exceptional geom-
etry with the serious problem that it involves the Anti de
Sitter space which has a negative cosmological constant.
This is in direct contradiction to the well-established fact
that our universe has a small but definitely positive cosmo-
logical constant. This appears to pose a serious challenge
to the AdS/CFT programme. The question is whether there
is some version of a duality that holds also in De Sitter
space.

Emergent gravity. This brings us to a brief description of
the still rather controversial idea of ‘emergent’ or ‘entropic
gravity’ and its protagonists like Erik Verlinde and collab-
orators. They have addressed the question of what could
happen if we move from an Anti de Sitter to a De Sitter
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background with positive cosmological constant. It is sug-
gested that a rigorous holographic image on the boundary
is no longer what happens, instead the speculation is that
the entropy will acquire a volume term and spread from the
boundary into the space, maybe causing deviations from
Newtons laws that look like the effects of dark matter and
dark energy. If confirmed by further analysis that would
certainly constitute another truly stunning result.

At home in the quantum world

Before I came here I was confused about this sub-
ject. Having listened to your lecture I am still con-
fused. But on a higher level.

Enrico Fermi

We have come to the end of the first part of the book. This
part was devoted to the basic concepts and contents of
quantum theory and its classical roots, as it developed over
the last century. We of course always have lived in a quant-
essential world, but it is only now dawning upon us what
that means. We started by describing the gems of classical
physics, which ran into a number of serious troubles that
could only be resolved by embracing the quantum princi-
ples. In this chapter we described the subsequent suc-
cesses of applying the quantum principles to ever deeper
layers of the microscopic world. A journey that as we saw
is by no means completed.

Quantum theory entered our thinking on the atomic scale,
say at 10-10 meters, and from there it started spreading.
We recall that there are two ways to go from there and
extend the results. The first is to go to ever smaller scales,
and that is the route we have followed in this first part of
the book. We went all the way down from the atom, via the
nuclear structure to the elementary quarks and leptons,
to a scale of about 10-20 meters, the scale accessible to
modern accelerators like the LHC at CERN.

Figure I.4.63: It fom Bit. In a famous essay John Archibald
Wheeler pondered over the philosophical ramifications of the
idea that Information lies at the basis of our universe. Is it possi-
ble that All of Nature grew out of information only? The Cosmic
Code as an all-embracing Hyper Genetics. This intriguing image
also symbolizes evolution, or how Nature seems to be in search
of itself, through the human effort of scientific inquiry, which by
definition is part of that Nature.

The other way is to go up and apply quantum theory on
scales corresponding to chemistry, or the many other forms
of condensed matter that we find in nature or create in the
lab. We save this part of the quantum story for the final Vol-
ume. The next, middle part of the book is called quantes-
sence, and is devoted to the more formal aspects of quan-
tum theory. We will expose some of its very rich logical
and mathematical structure and comment on it. I think it
would be a poor choice to leave it out, exactly because it is
a central part of quantum theory. We can’t really do with-
out because what makes the theory so attractive is that
on a conceptual level it is so counter-intuitive. And where
confusion reigns it is vital to keep the language as clean as
possible as to be sure about what the questions are and
what the answers mean. I don’t know of any theory where
the mathematical framework is so rich and unambiguous,
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and at the same time the narratives and interpretations are
so paradoxical and hard to grasp. This makes the theory
exciting and we will discuss a number of well-known but
stupefying paradoxes in the next Volume. We are all set to
start climbing the amazing mount quantum.

If the world ‘out there’ is writhing like a barrel of
eels, why do we detect a barrel of concrete when
we look? To put the question differently, where is
the boundary between the random uncertainty of
the quantum world, where particles spring into and
out of existence, and the orderly certainty of the
classical world, where we live, see, and measure?
This question...is as deep as any in modern phys-
ics. It drove the years-long debate between Bohr
and Einstein. . . . Every physical quantity derives
its ultimate significance from bits, binary yes-or-no
indications, a conclusion which we epitomize in the
phrase, it from bit.

John Archibald Wheeler,
Geons, Black Holes & Quantum Foam (1998)

Further reading.
On nuclear physics:

- Introductory Nuclear Physics
Kenneth S. Krane
Wiley (1988)

On particle physics:

- Introduction to Elementary Particle Physics
Alessandro Bettini
Cambridge University Press (2014)

- Concepts of Elementary Particle Physics
Michael E. Peskin
Oxford University Press (2019)

On string theory:

- The Elegant Universe - Superstrings, Hidden Di-
mensions, and the Quest for the Ultimate Theory
Brian Greene
W. W. Norton & Company (2010)

- The Little Book of String Theory
Steven S. Gubser
Princeton University Press (2010)

Complementary reading:

- The Second Creation: Makers of the Revolution in
Twentieth-Century Physics
Robert P. Crease
Page (1991)
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Quantessence: How Quantum Theory Works

In this volume we delve deeper into the mathematical structure underlying the theory. It focusses on the quintessence of
quantum and is also the most conceptual. We introduce the space of states, the notion of observables, and cover subjects
like qubits, entanglement, interference, and uncertainty relations. We reflect on the great paradoxes, the great equations,
and their meaning.
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Quantessence:
how quantum theory works
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The other side is usually a dark place?

Not necessarily. I think it has more to do with
curiosity. If there is a door and you can open
it and enter that other place, you do it. It’s just
curiosity. What’s inside? What’s over there?
So that’s what I do every day. [...,] once I start
writing, I go somewhere else. I open the door,
enter that place, and see what’s happening
there. I don’t know–or I don’t care–if it’s a re-
alistic world or an unrealistic one. I go deeper
and deeper, as I concentrate on writing, into
a kind of underground. While I’m there, I en-
counter strange things. But while I’m seeing
them, to my eyes, they look natural. And if
there is a darkness in there, that darkness com-
es to me, and maybe it has some message,
you know? I’m trying to grasp the message.
So I look around that world and I describe what
I see, and then I come back. Coming back is
important. If you cannot come back, it’s scary.
But I’m a professional, so I can come back.

The Japanese author Haruki Murikama in
an interview by Deborah Treisman in The New
Yorker (2019)
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Chapter II.1

The quantum formalism: states

There’s no sense in being precise when you don’t
even know what you’re talking about.

John von Neumann

Quantum theory has kept the community of physicists un-
der its spell for over a century. It has opened new hori-
zons for understanding a myriad of fundamental phenom-
ena that were observed at ever deeper levels of nature,
and it has produced a huge quantity of crucial results for
the applied sciences. It has manifested itself in virtually all
subfields of physics and from there entered into other ad-
jacent fields like chemistry, engineering, informatics and
even biology. And this process is still going on.
In this Volume we focus on the ‘quantessential’ features of
the theory. This means that we will go into more detail with
respect to the mathematical formalism underlying the the-
ory. For pedagogical reasons we will apply it only to simple
systems, and this may well give the impression that I am
using a sledgehammer to crack peanuts.

The basic structure of the theory we are about to explore
has far-reaching logical consequences. It will keep us busy
in the following chapters on qubits, measurements, inter-
ference, entanglement and dynamics. We develop these
concepts starting from the perspectives of classical phys-
ics, quantum physics and information physics. The starting
point is always to define the system by the identification
of its ‘degrees of freedom’ or basic dynamical variables.

These can be ‘external’, like position, momentum, angular
momentum or energy, or ‘internal’ where one may think of
electric charge or something more exotic like intrinsic spin,
isospin or color charge.

In Chapter II.1 we focus on the basic notions related to
quantum states, such as state vectors, Hilbert space, sep-
arable versus entangled states, pure versus mixed states
and the concepts of a density matrix and quantum entropy.
In Chapter II.2 we discuss the notions of observables as
operators, and the probabilistic nature of a quantum mea-
surement. We also introduce the concept of incompatible
observables, frames of reference and the Heisenberg un-
certainty relations.
Chapter II.3 is about quantum interference in various dou-
ble slit type of experiments, but also its manifestation in the
so-called Berry phase.
In Chapter II.4 we turn to quantum teleportation and quan-
tum computation. Teleportation is the consequence of the
quantessential possibility of entangled states, which will be
illustrated in a number of famous experiments and para-
doxes. The results of recent experiments lead to the in-
escapable conclusion that quantum theory is correct. This
means that theories built on hidden variables and local re-
alism are no longer tenable in view of these experiments.
Concerning quantum computation we introduce the no-
tions of quantum gates and circuits, and discuss the fac-
torization algorithm of Shor in some detail.
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In Chapter II.5 we turn to the quantum theory of particles,
fields and strings and illustrate a number of quantessential
properties, such as the quantum statistics of particles and
the spin-statistics connection. Volume II closes with Chap-
ter II.6, where we give an overview of the role that symme-
try and symmetry breaking play in physics and quantum
physics in particular.

Quantum states: vectors in Hilbert space

If we describe a physical system in the classical realm, the
relevant variables like position, velocity or momentum and
energy are part of the definition of the system. They are
observables in that we can measure them, thereby pro-
ducing dimensionful values as an outcome.
We have mentioned what in quantum physics the states
look like: they are vectors in some rather abstract state
space called the Hilbert space, and in this section we will
show how and to what extent the ordinary physical vari-
ables can be retrieved from the state vector.
The crucial fact is that in the quantum formalism observ-
ables are not represented by just numbers but are defined
as matrices or operators acting on the state space. That
sounds complicated, and yes, it is. It illustrates a remark
made by Paul Dirac who stipulated that matters, which at
a certain moment may be considered merely as pastimes
for mathematicians and logical thinkers, may turn later into
tools that are indispensable for understanding nature. And
if understanding nature is our goal it may be worthwhile
to familiarize ourselves with these mathematical concepts,
just like the pioneers of quantum theory had to do a cen-
tury ago.

In this chapter we point out the quantessential differences
between classical and quantum systems for the simplest
of all quantum systems, the quantum spin or qubit. This
two-level system plays a fundamental role in many appli-
cations of quantum theory, but is also a favorite toy-model.

The ability to control and manipulate arrays of qubits is the
holy grail of quantum technology as it entails the produc-
tion of quantum information processing devices that en-
able for novel applications, varying from quantum key dis-
tribution and teleportation to quantum computation. It is a
major challenge to find physical implementations of a ba-
sic qubit that can be reliably manipulated and at the same
time can be scaled to large arrays.

Reader alert. Remarkably, in talking
about quantum concepts and mean-
ing, formulas are often easier to under-
stand than words. However, if you are

not familiar with the notion of operators and matri-
ces, don’t despair! The philosophy of the book is
not to shy away from them, but to plug and play
with them in the simplest imaginable cases to gain
familiarity with them. As with driving lessons, you
don’t have to drive all the way from Spokane to Mi-
ami Beach and back to get a proper appreciation for
what a highway is. I kindly request that you accept
the definitions for what they are, then we will play
around a bit so that you will end up throwing matri-
ces around like ordinary numbers.
I will supplement the rather abstract algebraic lan-
guage of matrices and the like, whenever possi-
ble, by more geometric images; for most people
imagery provides more insight and is easier to re-
member. And talking about vectors and matrices, I
should like to remind you of the respective Math Ex-
cursions at the end of Volume III, because those in-
tros will make understanding the forthcoming chap-
ters a lot easier. The use of a symbolic language
will at least keep us from slowly getting lost in a
dense fog of ever more cryptic quantum terminol-
ogy and quantum vagueness. Take my word, or
rather, my equations for it. ⇤
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This challenge is approached from many different angles,
like quantum optical systems, superconducting devices,
atoms in optical latices, ions in traps, and topologically or-
dered phases. Progress is rapid which means that quan-
tum devices exploiting the fundamental features of quan-
tum theory may well be with us in a decade or two.

Quantum versus classical

I think it is safe to say that no one understands
quantum mechanics. Do not keep saying to your-
self if you can possibly avoid it: ‘But how can it be
like that?’ because you will go down the drain ‘into
a blind alley from which nobody has yet escaped.
Nobody knows how it can be like that.’

Richard Feynman

We start by comparing the quantum and classical world
generally. The fundamentally different concepts and for-
mulations have profound consequences for the logical and
deductive structure of the theories. Where do these worlds
meet or separate? Actually, do they?

Classical systems. In classical physics it is usually quite
obvious what the system consists of and what the possi-
ble states are. If we talk about a particle for example we
will typically specify the state by assigning it a mass m, a
position x , and a velocity v . Given the state at some ini-
tial time, Newton will tell us what the state will be at any
later time, provided we know the forces that act on the par-
ticle along the way. For a field like the electromagnetic
field we specify the field configuration, by which we mean
that we give the electric E and magnetic B fields over all
of space. Then the Maxwell equations tell you all about
the time development of that initial field configuration, pro-
vided we know what the external charges and currents,
usually called sources, are. The evolution of the gravita-
tional field is described in a similar way by the Einstein

equations. Subsequently we have to combine the frame-
works of Newton, Maxwell and Einstein to get the actual
time development of the complete classical system of par-
ticles with and without charge and gravitational and elec-
tromagnetic fields. The structure of the theory is absolutely
unambiguous, based on a clear methodology.

Yet, the coupling of the different components of fields and
sources makes the system extremely nonlinear and there-
fore hard to solve explicitly. For example there is the in-
tricate problem of the ‘back reaction’: the fields will not
only change as a consequence of the movement of the
charges, but in addition the accelerated charges will radi-
ate. There are certain simple cases that can be dealt with
analytically through closed expressions in terms of stan-
dard functions, but mostly that is not the case. Whereas
we can solve the Newtonian two-body problem analytically,
this is not the case for the three-body problem. One has
to resort to numerical procedures which can become ex-
tremely cumbersome, if one insists on high accuracy, which
is the case if one wants to make predictions about the be-
havior of the system on long time-scales. This point leads
us to an additional observation that should be made con-
cerning classical physics.

Nonlinear dynamics and deterministic chaos. We just
stated that if we know for example the position and veloc-
ity of a particle at a given instant in time, the time evo-
lution is completely fixed by Newton’s laws provided we
know the forces acting on the particle. This implies that
any uncertainty in its evolution is driven by the limited ac-
curacy of the initial conditions. This is not as innocuous as
it sounds even if one has a huge zoo of advanced com-
puters at one’s disposal. What we have learned in the
last half century from studying simple nonlinear systems
is that already on a classical level, such systems – in spite
of being completely deterministic – can exhibit chaotic be-
havior. In such situations it is not possible to make precise
long-term predictions, because small initial uncertainties
can be amplified exponentially in time by the chaotic dy-
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namics of the nonlinear system. These systems exhibit an
extreme sensitivity on initial conditions often referred to as
the butterfly effect, meaning that a tiny change in the initial
condition may lead to vastly different consequences a rel-
atively short time afterwards. However, what concerns us
here is that within classical physics there is no fundamen-
tal limit on the accuracy of measurements – by measuring
more and more carefully, we can predict the time evolu-
tion of a system more and more accurately. The system is
fundamentally deterministic. This is no longer true in the
quantum world because there we will run into a fundamen-
tal limit on the accuracy of the simultaneous measurement
of physical observables.

The correspondence principle

Where classical and quantum meet. At the most basic
level there are fundamental differences between the classi-
cal and the quantum frameworks. On macroscopic scales,
meaning relatively large scales of space, time and energy,
where we know classical physics works well, the predic-
tions of classical and quantum theories of course have to
agree. This requirement is known as the correspondence
principle. There is no logical path that brings you from
classical physics to quantum physics, but the converse is
certainly possible and even mandatory. We should insist
on understanding the emergence of all of classical physics
from the underlying quantum description. This turns out
not to be straightforward at all, but then, nobody promised
us it would be. In Figure II.1.2 we have symbolically in-
dicated the classical and quantum worlds. We contrast
the direction of the historical process of scientific evolu-
tion, moving us out of the classical into the quantum do-
main, versus the direction of logical deductions and im-
plications which go the opposite way. It warns us that
we should not strive for an interpretation or representa-
tion of quantum content in classical terms, that would be
a terribly misguided effort indeed. So, historically, quan-

Figure II.1.2: Classical versus quantum. We were born in
a classical world, but after exploring the nature of things we
have discovered the existence of a much larger quantum world.
Once these discoveries were made, we understood that the
logic should be reversed: it is the classical world that can be
logically deduced from the quantum world, and not the other
way around.

tum theory emerged out of the classical theories, but logi-
cally it is the other way around, and that is inherent to the
way knowledge transcends itself in the process of scientific
progress.

Classical phenomena with quantum explanations. As
we discussed in the previous Volume, for example in Chap-
ter I.2 , the scale of the quantum regime is set by Planck’s
constant h , or h-bar defined as h̄ ⌘ h/2⇡ , which has di-
mensions of energy⇥time (or equivalently momentum⇥
length). Because of the tiny value of this constant, we ex-
pect the quantum properties to become manifest at small
time and length scales, and low temperatures. However,
collective macroscopic behavior is to a large extent an indi-
rect manifestation of the properties of the basic constituents
of the system, and of the interactions between them and
the environment. After all, not withstanding the striking
similarities between an ant colony and human society, the
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even more striking differences between them can be largely
traced back to the differences between an individual hu-
man being and an individual ant. Looking at matter in
a similar way, one expects that radically different prop-
erties at a microscopic scale (say at the level of atomic
and molecular structure) may in turn lead to fundamentally
different collective behavior of these basic building blocks
and therefore to different emergent properties on a macro-
scopic scale. So, one certainly should expect quantum
manifestations on a macroscopic scale after all. Indeed,
most phases of condensed matter realized in nature, such
as crystals, ordinary conductors, semiconductors, super-
conductors or magnetic materials, all involve forms of col-
lective behavior that can only be understood from a quan-
tum perspective. The (meta-)stability and structure of mat-
ter is intimately linked to the quantum behavior of its fun-
damental constituents.

The quantum domain. Returning to the question of states,
as we will see in this and the following chapters, the quan-
tum states of bits, particles or fields are very different from
their classical precursors and in the beginning it was even
far from evident what the space of states would be. How-
ever, once we found out, we learned that the structure of
the state-space tells us a lot about the generic features of
quantum systems and how these may radically differ from
their classical analogues. Studying the underlying mathe-
matical structure will enable us to anticipate what we might
expect in real physical situations. With some exaggeration
one could say that everything that is not forbidden is com-
pulsory, and henceforth will manifest itself somewhere in
Nature. Nature is quantum.

Many exotic quantum features like particle interference or
entanglement derive directly from its underlying structure,
but that didn’t make it any easier to demonstrate these fea-
tures through experiment. Many predictions of quantum
theory have lingered on the margins, waiting for experi-
mental techniques to develop to the required level of pre-
cision. There are quite a few examples where it has taken

more than half a century before predictions could be put to
the test. Science requires not only brilliance but also pa-
tience. Nowadays, many quantessential phenomena can
be beautifully demonstrated by experiments exploiting su-
perconductivity and quantum optics. There is still much
more to discover, which is why we want to explore these
quantum state spaces and their remarkable properties in
this separate second volume. Whereas the present state
of modeling real systems in nature within the quantum me-
chanical framework is described in the Volumes I and III,
this volume is dedicated to the ‘cosmic code’ itself.

Classical states: phase space

The state at some time t of a classical system is speci-
fied by assigning values to a minimal subset of dynami-
cal variables from which all possible other variables can
be calculated. We say that the state of the system corre-
sponds to a point in phase space Fph . We are going to
discuss the case of a basic particle and work out the dis-
crete ‘Newtonian’ dynamics of an Ising spin or classical bit
as an example.

Phase space. To specify the state of a simple particle,
which may have a mass m and a charge q , we have to
give its position x and its velocity v or momentum p =
mv . The space of positions is usually called configuration
space and denoted as X . In three-dimensional space both
position and velocity have three components because they
are vectors , and thus the phase space Fph ' {x,p} has
six dimensions. From the point of view of particle dynam-
ics, mass and charge are just fixed external parameters.
Note that other dynamical variables of a particle, like its
energy or angular momentum, can be expressed in terms
of velocity and position and therefore can be calculated
once the point in phase space is given.

A property corresponds to a subspace of the phase space.
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A state of the system can be assigned a property, in the
sense that one can decide whether a property is true or
false by determining whether the point representing the
state of the system is lying in or outside that subspace.

The dynamical system will develop in time according to
some dynamical equations like Newton’s equations of mo-
tion, and the point describing the state will move in phase
space correspondingly. Furthermore in classical physics it
is assumed that the point can in principle be determined
to arbitrary precision by a simultaneous measurement of
the basic variables thereby fixing the point in phase space.
And one also assumes that observations can be made
which do not disturb the system, and hence do not affect
the trajectory in phase space. These assumptions are an
essential Volume of the classical physics paradigm.

The mechanics of a bit

Let us now turn to a system even simpler than a single
particle, which I call a dynamical bit. We are going to do
a bit of bit mechanics. I have chosen this system because
it links basic classical mechanics to basic information the-
ory, and defines a simple quantum system as well. As we
all know, a bit has two states (positions) labeled z = 0

and z = 1 , so its configuration space consists of two iso-
lated points. Introducing a discrete time step (like the clock
in a computer) allows us to define a discrete dynamics.
We distinguish two possibilities: after the time step the bit
changed to the other state or it stayed where it was. This
begs for an additional binary state variable which we ap-
propriately call the bit-momentum p . So its value labels
two distinct states of motion, where p = 0 means ‘at rest’
or p = 1 meaning ‘on the move.’

Both the classical position and the classical momentum
space consist of two points, and therefore both bit-position
and bit-momentum are binary variables, which means that

Figure II.1.3: Phase space. The phase space of the dynamical
bit consists of four points.

all values can be added mod 2 , meaning in particular that
1+ 1 = 0 .

Binary mechanics. The phase space for this dynamical
bit corresponds to four points

Fph ' {p, z} = {0, 0; 0, 1; 1, 0; 1, 1}

as indicated in Figure II.1.3. To push the comparison with
Newtonian mechanics even further, one could say that the
dynamical state in the absence of further interactions would
be characterized by the conservation of momentum. Then
with p = 0 the bit would be ‘at rest’ indefinitely, in which
case the position is conserved as well, but with p = 1 ,

the bit stays constantly hopping between the two position
states. Depending on the initial condition one finds two
fixed points and one two-cycle. The phase space picture of
the possible dynamics is given in Figure II.1.4 (top). Maybe
you have already noted the amusing possibility of intro-
ducing a bit-force F , defined à la Newton as the change
in bit-momentum. Also F takes a binary value; F = 0

leaves the momentum unchanged, while with F = 1 the
momentum value changes, which leads to a different dy-
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Figure II.1.4: Bit mechanics. Phase space picture of ‘Newto-
nian’ bit-dynamics with a binary force F being either 0 (top) or 1
(bottom). For F = 0 there are two fixed points and one two-cycle,
for F = 1 there is only one four-cycle.

namic consisting of the four-cycle depicted in Figure II.1.4
(bottom). These variables are elements of a Boolean al-
gebra, discussed in the Math excursion on algebras in Vol-
ume III.

Complementary representations. The system is clearly

completely deterministic, because given the initial binary z

and p values, its future states after an arbitrary number of
time steps can be calculated. These discrete dynamics are
like a little automaton, an updating procedure for the z-bit
that depends on the p-bit. Updating means that the states
of the two-bit system change and therefore the dynamics
define a logical gate in the sense of digital computation.
So we have arrived at four alternative ways to characterize
the dynamics of the bit:
(i) as an updating algorithm or iterative map |ini ! |outi ,
(ii) as a diagram representing the gate,
(iii) as a two-bit to two-bit input-output table,
(iv) and as a 4 ⇥ 4 matrix acting on the column vector of
two-bit in-states (p, z) = {0, 0; 0, 1; 1, 0; 1, 1} .
For F = 0 this looks as follows: (i) the algorithm generating
the dynamics is just,

(p, z) ! (p, (z+ p) mod 2) ,

which corresponds to the (ii) diagram, (iii) state map, or (iv)
the (block-diagonal)matrix as given in Figure II.1.5.

Gates and information dynamics. From the picture we
learn that the two-bit dynamic is in fact generated by a
two-bit gate which is well known as the controlled NOT-
or CNOT-gate. The diagram should be read as follows:
the horizontal lines correspond to the two incoming (left)
and outgoing (right) bits. It is a conditioned gate, which
is indicated by the vertical line from the p-bit to the z-bit.
The encircled plus symbolizes a NOT-gate acting on the
z-bit, but its action is conditioned on the value of the p-bit:
it is activated if p = 1 and not if p = 0 . The dot on the
p-line indicates that it is the control bit, not changing value
by passing the dot. With this interpretation it is straightfor-
ward to compute the entries of the input-output table. One
puts the input state on the lines at the left and then follows
the lines through the diagram to the right performing the
instructions one encounters.

This matrix acts like a permutation matrix on the input col-
umn vector of two-bit in-states. Indeed, we see that on the
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Figure II.1.5: Three representations. The F = 0 bit dynamics
is generated by the CNOT-gate. In the ’block-diagonal’ matrix
representation on the right, we marked the two fixed points and
the two-cycle.

top two entries it acts like a unit matrix, while on the bottom
two entries (x) it acts like a NOT-gate.

The NEWTON gate. Imagine that we also include the ‘bit-
force’ we defined as a third force-bit F . Then we obtain
an interesting three-bit gate for the complete dynamics of
the system. One finds that it can be characterized by the
updating algorithm:

(F, p, z) ! (F, (p+ F) mod 2, (z+ p) mod 2) ,

which corresponds to the diagram and state map of Fig-
ure II.1.6 and the matrix in equation (II.1.1).

On the first four rows it acts like a CNOT, and in the second
block it performs some sequence of permutations. In that
sense this NEWTON-gate actually computes something
on three bits, but from the diagram we see that it is not
an irreducible three-bit gate, rather it is composed of two
sequentially applied CNOT-gates. It has the following 8⇥ 8

Figure II.1.6: NEWTON-map. The three-bit NEWTON-gate
and the corresponding |ini ! |outi map acting on the column
vector of (F, p, z) states.

matrix structure in a basis given by the first three columns
of the |ini states of the table in Figure II.1.4 . Note that
due to the four bottom entries corresponding to F = 1 ,

the fourth power of the NEWTON-gate is equal to the unit
matrix. Hence, the dynamics generated has indeed pe-
riod four, as one would expect if the force is constant. That
causes p to hop with period two and z with period four. It is
the dynamics of the bottom diagram in Figure II.1.4 .

NEWTON :

0

BBBBBBBBBBB@

|1| 0 0 0 0 0 0 0

0 |1| 0 0 0 0 0 0

0 0 |0 1| 0 0 0 0

0 0 |1 0| 0 0 0 0

0 0 0 0 |0 0 1 0|

0 0 0 0 |0 0 0 1|

0 0 0 0 |0 1 0 0|

0 0 0 0 |1 0 0 0|

1

CCCCCCCCCCCA

. (II.1.1)

The matrix corresponding to this NEWTON-gate, displayed
above, is unitary in the sense that the transpose of the ma-
trix is indeed its inverse. But the matrix is not symmetric,
meaning that it is not a time reversal invariant process, be-
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cause then the matrix would have to be its own inverse.
This, however, is the case for the CNOT-gate represented
by the matrix in Figure II.1.5 .

Conserved energies. In classical Hamiltonian mechan-
ics one may derive the equations of motion, or the time
evolution once the energy function is given, as we showed
in Chapter I.1 . In the case of discrete dynamics it is less
straightforward as we cannot take derivatives in the nor-
mal way. Because all variables are binary, small variations
are nonexistent! The role of the Hamiltonian is played by
the updating algorithm because that generates the time
translation of the system. It is that mapping, which by
repeated application maps out the time trajectory of the
system in phase space. In these discrete cases one may
invert the question by asking whether there is a (binary)
energy function E(p, z) that is conserved in the time se-
ries, i.e. whose value does not change for the subsequent
points on a given orbit in phase space.

Let us look at some simple candidates. These can come
across as slightly unusual, exactly because the energy is
also a binary variable, implying that it can take only two
possible values. The good thing about that is that the en-
ergy stays always bounded and therefore the system is
always well-defined.

Example 1: E = p . You would expect the energy of a free
particle to be proportional to p2, and since p is Boolean
variable we have that p2 = p . The free particle does not
experience any force and so one expects that the Newto-
nian dynamics rule (p, z) ! (p, z + p) will apply. This is
indeed the case where F = 0 which we discussed before
and p is preserved. It has two fixed points with E = 0 and
one periodic orbit of length two with E = 1:

(0, 0) ; (0, 1) and (1, 0) $ (1, 1)

Example 2: E = F = 1 This is the case of a non-zero con-
stant force conserved under the Newtonian rule (p, z) !

(p+ 1, z+ p) . Its action corresponds to one periodic orbit
of length four with energy E = 1 .

(0, 0) ! (1, 0) ! (0, 1) $ (1, 1) ! (0, 0) ! · · ·

Example 3: Q = p + z . The function Q is a conserved
’charge’, or ’constant of the motion’ under the clearly not
Newtonian rule (p, z) ! (p + 1, z + 1) . Again it has two
periodic orbits of length two which are now along the diag-
onals of the phase space, one with E = 0 and the other
with E = 1:

(0, 0) $ (1, 1) and (1, 0) $ (0, 1)

Quantum states: Hilbert space

We discuss the generic setting of a quantum system. For
a quantum system we have a set of states denoted {| i} ,
which are vectors that correspond to elements of the so-
called Hilbert space H of the system. The basic quantum
setting introduces two novel ingredients, one is the com-
plexification, and the other the linear superposition princi-
ple of states. These have dramatic consequences.

The Hilbert space of states. To explain the basic ideas of
quantum theory, or for that matter of quantum information,
we will in this section restrict our attention again mainly to
the qubit, which can be viewed as the basic building block
of quantum information systems. The physical state of a
quantum system is described by a wavefunction which
can be thought of as a vector in an abstract multidimen-
sional space of states, called the Hilbert space denoted by
H . For the moment, this is just a finite dimensional vector
space where the vectors have complex, rather than real,
coefficients, and where the length of a vector is the usual
length in such a space, i.e. the square root of the sum of
the (absolute) squares of its components along the axes.
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Hilbert space replaces the concept of phase space in clas-
sical mechanics. Collections of observables, or measur-
able variables such as spin, charge, position, or momen-
tum, can be used to set up an orthogonal basis for the
Hilbert space.

As we will see, a dramatic difference from classical me-
chanics with tremendous consequences is that many quan-
tum mechanical quantities, such as position and momen-
tum, or spin components along the x-axis and the y-axis,
cannot be measured simultaneously. Another essential
difference from classical physics is that the dimensionality
of the state space of the quantum system is huge com-
pared to that of the classical phase space. To illustrate
this drastic difference, think of a particle that can move
along an infinite line with an arbitrary momentum. From
the classical perspective it has a phase space that is two-
dimensional and real (a position x and a momentum p), but
from the quantum point of view the particle is described by
a wavefunction of one variable (typically the position x or
the momentum p). The state is thus determined by speci-
fying a function for all points x . As the state corresponds to
a function, the state space must be a ‘space of functions.’
Formally such a wavefunction corresponds to an element
of an infinite-dimensional Hilbert space which is a space of
functions that satisfy certain restrictions. So, we go from
two real numbers classically to a complex function of one
variable in the quantum domain. That is quite a difference
indeed! We will address the topic of quantum particles in
detail in Chapter II.5.

States of a quantum bit

Now you might have thought that this is not such a big
deal, because the classical state corresponds to a point in
phase space and that point can be characterized by a vec-
tor in phase space. But this is not the way to think about it.
We just mentioned the dynamical bit as an example of an

almost trivial dynamical system. To this classical system
corresponds a quantum system called the quantum bit or
qubit for short, and the statement is that to every point in
the configuration space of the classical bit we associate a
basis vector of the Hilbert space. So the bit-position space
consists of two points {1, 0} , and hence the Hilbert space
of the qubit is two-dimensional and may be thought of as
spanned by two orthogonal unit vectors {|1i, |-1i} .1

A general state of a qubit is described by a wavefunction
or state vector | i , also called a ket or ket vector, which
can be written as

| i = ↵|+ 1i+ �|- 1i with |↵|2 + |�|2 = 1 , (II.1.2)

where ↵ and � are complex numbers.2 Any linear com-
bination of the two basis states corresponds to an admis-
sible quantum state, as long as it satisfies the normaliza-
tion condition, meaning that the sum of the squares of the
components equals one. This means that you can think of
| i as a unit vector in the 2-dimensional complex vector
space, denoted C2 spanned by the two basis vectors |1i
and |- 1i .

The geometry of qubit state space. What we have
learned so far is that a finite state classical system will lead
to a finite-dimensional complex vector space for the corre-
sponding quantum system. Let us describe the geome-
try of the quantum configuration space of a single qubit
in more detail. The constraint |↵|2 + |�|2 = 1 says that the
state vector has unit length, which defines the complex unit
circle in C2 , but if we write the complex numbers in terms
of their real and imaginary parts as ↵ = a1 + ia2 and

1We switch from a ‘1, 0’ labeling in the classical domain, to a ‘1,-1’
labeling in the quantum domain, these are matters of notation and of
mathematical convenience as we will see later.

2For a tailor-made introduction to complex numbers and vectors see
the Math excursions on pages 630 and 632 of Volume III. It is impor-
tant for complex numbers that basic algebraic operations like addition,
subtraction, multiplication and division can be defined. It is almost like
in the musical Annie get your Gun: ‘Everything you can do I can do
better.’
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Figure II.1.7: State decomposition. Decomposition of a real
qubit state vector | i , the purple arrow, into its components ↵
and � with respect to the blue basis or frame {|+ 1i, |- 1i} . The
circle represents the subspace of the real states, and in that
case we clearly have that ↵ = sin ✓ and � = cos ✓ . We have
marked some of the other real states that we will refer to in the
text.

� = b1 + ib2 , then we obtain |a1 + ia2|
2 + |b1 + ib2|

2 =
a2
1 + a2

2 + b2
1 + b2

2 = 1 . The geometry of the space de-
scribed by the latter equation is just the three-dimensional
unit sphere S3 embedded in a four-dimensional Euclidean
space, R4 with coordinates a1, a2, b1 , and b2 . This three-
dimensional sphere is in physics referred to as the Bloch
sphere.

Complex rotations. At this point it is appropriate to make
a side comment. As the state of a qubit is a normalized
two-dimensional complex vector, the state space of a qubit
corresponds to a complex circle, which in turn equals S3 .

All states on the complex unit circle can be obtained by act-
ing with all complex rotations on a given qubit state in C2 .

This is by definition the group SU(2) and having argued
that these vectors can be transformed into each other by
the elements U 2 SU(2) , we can also conclude that the

Figure II.1.8: Configuration versus Hilbert space. A classical
system with a configuration space corresponding to a set of
three points. The quantum Hilbert space for this system would
correspond to the unit-sphere in the complex three-dimensional
space C3 . In the figure we show the restriction of that space
to real states forming a two-sphere. Classical and quantum
spaces are structurally very different. There is a ‘world’ in be-
tween which is described by the formalism we are about to ex-
plore.

space of all SU(2) transformations is in one-to-one corre-
spondence with the points on the three-sphere S3 . We will
use these geometric representations of state spaces and
transformation groups later on, because they are easier to
understand than just formulas.

Real states. For pedagogical reasons it is advantageous
to limit ourselves for the moment to the subspace corre-
sponding to real states. This means that one only con-
siders states for which ↵ and � are real and the condition
↵2 + �2 = 1 imposes that the states lie on an ordinary
circle in R2 . The real states are depicted in Figure II.1.7,
where we have also marked some special states. Many of
the formal quantum properties can be explained within this
real subspace.
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Alternative notations. We may represent the state by the
column vector of its components:

| i ,
✓
↵

�

◆
.

If you like you can also map the states of the classical con-
figuration space in the quantum picture, then the classical
bit would only have the two states |± 1i , corresponding to
the basis vectors

|± 1i ,
✓
1

0

◆
,

✓
0

1

◆
,

while the qubit can be any normalized linear combination
of these two basis states. This makes the dramatic differ-
ence between the classical and quantum setting quite vis-
ible indeed. Each point in the configuration space Z of the
classical system corresponds to an orthogonal basis vec-
tor of the Hilbert space, and consequently adding a point
to the configuration space Z adds a dimension to H . So
in this picture the classical states correspond to the cor-
ners of a unit hypercube in that higher dimensional space,
while the quantum states lie on the unit-hypersphere em-
bedded in that space. This is illustrated in Figure II.1.8 for
a three-state system.

The scalar or dot product

Ordinary, say ‘high school’ vectors are called real vec-
tors. You may remember how the length |a| of a vec-
tor a was defined as the square root of the sum of the
squares of its components |a| =

q
a2
1 + a2

2 + . . . . And the
dot or inner product of two vectors a and b , wassimilarly
as a · b =

P
a1b1 + a2b2 + . . . = |a||b| cos ✓ , with ✓ the

angle between them.

Conjugate states. For the state or ket vectors | i , we
basically want to do the same thing, but because the vec-
tors are complex, it is slightly more complicated. However,

once you understand the definition, a notation introduced
by Dirac will make it like ‘real’ vectors. We first define
the dual of the vector space in C2 with dual or conjugate
vectors, called bra vectors, that can either be represented
as row vectors with complex conjugated elements, where
↵⇤ ⌘ a1 - ia2 etc. Following the notation introduced by
Dirac we write this like,

h | = h1|↵⇤ + h-1|�⇤ . (II.1.3)

This somewhat strange nomenclature of bra and ket vec-
tors makes more sense once you realize that they allow
you to make a bracket, and this bracket is nothing but a
scalar product of two vectors.

The inner product The scalar (or inner, or dot) product
maps a bra-and-ket-pair into a complex number (the scalar).
So if we have two state vectors | i and |�i = �|1i+�|-1i
then their bracket is defined as

h�| i = h |�i⇤ = �⇤↵+ �⇤� . (II.1.4)

As the components of the state vectors are complex, the
dot product of two vectors is also, and it is thus no longer
true that it equals the product of the lengths of the vectors
and the cosine of the angle between them. But, just like
in the real case, we call two vectors whose dot product
vanishes orthogonal or perpendicular. Similarly, the inner
product of a vector with itself, which is always a real num-
ber, is defined as the length squared of that vector.

Probability amplitudes. It turns out that the dot product
of state vectors has an important physical interpretation as
a probability amplitude, and it plays a fundamental role if
we are going to talk about quantum measurements. We
will discuss this extensively later in this chapter, but it is
useful to preview here already the basic idea. Let us look
at Figure II.1.7, where we have a state | i , and if we want
the outcome with respect to the blue {|1i, | - 1i} frame,
then the probability to find the outcome +1 would be the
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probability amplitude squared:

p+1 = |h1| i|2 = h |1ih1| i = ↵⇤ ↵ = |↵|2 . (II.1.5)

This assignment of a probability to the inner product of
two state vectors is called the Born rule, after Max Born,
the quantum pioneer who proposed the probability inter-
pretation of quantum mechanics. It is also referred to as
the Kopenhagener Deutung, or Copenhagen interpreta-
tion. Clearly a similar calculation for the -1 outcome would
give the probability p-1 = |�|2 . The normalization of the
state vector is just the statement that the total probabil-
ity for finding one of the two possible outcomes is one:
p+1 + p-1 = 1 . Making a measurement means that we
get new information on the state and that affects the prob-
abilities for the measurements after that. This means that
the state vector has to change, because it has to reflect
the probabilities of measurement outcomes at any instant.
In this simple example the following happens, if we obtain
+1 the state will change to the plus one state: | i ! |1i .
So the state gets ‘projected’ on the state, which gives that
measurement outcome with unit probability. This you can
interpret as saying that if you measure a quantum system
and find a certain outcome, then if you repeat the mea-
surement immediately afterwards you will find the same
outcome.

Projectors. There is an alternative way to read equa-
tion (II.1.5). One needs to first look at the object,

P1 = |1ih1| ; (II.1.6)

this is not an inner product, but rather a projector on the
state |1i. If this operator acts on an arbitrary state | i, it
produces the projection equal to h1| i, along the |1i basis
vector:

P1 | i ! |1ih1| i .

So the probability to find an outcome +1 is also obtained
by ‘sandwiching’ the projector P1 in the state | i:

p+1 = h |P1 | i .

Figure II.1.9: Two frames. We have depicted two different
frames for the two-dimensional qubit Hilbert space. The blue
basis consists of the states {| ± 1i} , whereas the green basis
consists of the states {|±i} .

These probability and measurement definitions will be used
extensively in the next chapter.

A frame or basis

It is convenient to choose an orthonormal frame consist-
ing of unit length, mutually orthogonal basis vectors that
‘span’ the vector space. This amounts to choosing a set of
basis vectors |ii with i = -1, 1 , which have the property
that:

hi|ji = �ij , (II.1.7)

with the Kronecker ‘delta’ symbol defined as follows: �ij
equals one if i = j , and equals zero otherwise.

Note that if you think of the qubit as a spin, then the states
with spin up or down point in parallel but ‘opposite’ direc-
tions in real space but they are represented by two orthog-
onal vectors in the state space of the quantum spin. The
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state space picture therefore looks similar to that of the
two polarizations of a photon, which are also in real space
orthogonal. Yet there remains an essential difference, the
qubit is what we call a spinor while the photon is a real
vector. Note also that there are many choices of frame
possible, for example the states |+i and |-i also form an
orthonormal frame, as is depicted as the ‘green frame’ in
Figure II.1.9.

The linear superposition principle

The expression (II.1.2) is an expansion of the state vector
| i in an orthonormal basis {|ii} . This a general rule: for
any state vector in any D-dimensional Hilbert-space and
any choice of basis one may write:

| i = ⌃D
i ↵i |ii , (II.1.8)

where once more the ↵i are the components of the state
vector in that particular basis. This linear superposition
principle is a general property and is a consequence of
the fact that the Hilbert space of quantum states is a vector
space. Any linear combination of state vectors is (after nor-
malization) again a possible quantum state. It follows from
there also that any state can be expanded in a complete
set of basis vectors, a property we have used above.

We can now show what it means to say that a state vector
| i has unit length by writing:

h | i = ⌃i,j↵
⇤
j↵ihj|ii = ⌃i|↵i|

2 = 1 . (II.1.9)

With what I just said, you may get worried about the Hilbert
space for a real particle, because already in one dimension
the configuration space is a line, corresponding to a con-
tinuum of classically allowed positions. But how then can
you ever build a vector space of that continuous collection
of points? That space has to be infinite-dimensional for a
start.

Yes indeed, but in fact this can be done in a rigorous way!
Our mathematical friends have shown that the space of
functions on configuration space of the system is exactly
the infinite-dimensional (!) Hilbert space of the type one
needs to describe a particle with. The particle states cor-
respond to functions on the classical configuration space,
and as you may have guessed these are the famous wave-
functions quantum people always talk about, the functions
we introduced in Chapter I.4. The functions have to sat-
isfy the additional condition that their squares are normal-
izable, so that they can be interpreted as probability densi-
ties. We will explore quantum states for particles and fields
in more detail in Chapter II.5.

Ultimate simplicity: a single state system?

Let us make a small detour and imagine
for a moment that you were to ask the
silly question about what the quantum
theory would look like for a system that

has only a single state. A particle that only can be
in one point. Should we waste our time with such a
thing, which seems worse than thinking about how
many angels can dance on the point of a needle,
as the great theologian Thomas Aquinas appears
to have worried about in the 13th century.

The quantum formalism would then say that this
pin-point particle has a one-dimensional Hilbert
space, so there is only one complex state vector
that has to be normalized to one. It would look like:

| i = ↵|0i with |↵|2 = 1 ) ↵ = ei✓ .

There is only one phase and that phase is an overall
phase which is not observable, as it drops out of the
only possible probability amplitude h0|0i = 1, and so
that finishes off the subject.
Except if we allow ourselves a minute amount of
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freedom, maybe then....
So, let us imagine that this single state system
represents the ground state of some real physical
medium, and furthermore that possible other states
in that medium have much higher energy, unreach-
able for the system all by itself, after all where would
the energy come from? And if it were to jump up
spontaneously by some quantum magic, it would
plunge down instantly anyway. So we have a one-
state Hilbert space for this system that corresponds
to its ground state.
Now the critical readers are supposed to scratch
their head and ask whether it is permitted to have
two chunks of that material, both in that same
ground state, but of course each with its own ‘un-
observable’ phase. And they ask me: Sir, are two
unobservable phases not a bit too much of obscu-
rity? After all, what does overall phase mean in this
context? Aha! Your point is well-taken. Two chunks
making one system have one overall phase, but that
leaves us with exactly one relative phase. But what
is that good for, I may ask you in return. The puz-
zling point is indeed that we have two exactly iden-
tical pieces of exactly the same material, and we
know all there is to know about them. There is noth-
ing we can learn about them by making more mea-
surements.
Well, let us sit back for a moment, and try to imag-
ine some classical situations that are vaguely simi-
lar. I have two big chunks of material and I only talk
about one variable, say temperature. There happen
to be no thermal fluctuations because the material
has infinite thermal conductivity! What you suggest
is that we put one chunk in the freezer, and the other
we keep exactly at room temperature. Each chunk
in its own habitat is boring and stupid and nothing
happens. But imagine we bring them out in ther-
mally isolated boxes and put them on the table, and

then take away the isolation at two facing sides and
move them quite close. Sure enough the tempera-
ture difference will have an effect and heat will start
flowing from the hot chunk to the cold chunk. In
spite of the gap in between, there will be a thermal
flow which is caused by the temperature difference.
After this poor classical analogue (poor, because
the temperature (difference) is of course a directly
measurable observable for the individual subsys-
tems), we rush back to our quantum chunks each
with their own quantum vacuum phase angle. What
we did pick up is the idea that we should bring them
close together and see what happens.

The Josephson junction
Often things don’t have to be complicated to
be interesting. What I am telling you is basically
the story of the Josephson junction, referring to an
effect that explains that having two slabs of super-
conducting material in the same superconducting
ground state, but with different phase angle, one
can indeed obtain a ‘tunneling current’ from one
piece to the other! This is a truly remarkable
physical effect, entirely due to the phase difference
of two one-dimensional Hilbert spaces describing
the same ground state. In spite of the fact that the
slabs are not touching, they may quantum interact if
you bring them close. And that quantum interaction
turns the phase-difference into an observable.
So, how can we understand this more precisely us-
ing the Schrödinger equations for this system? We
have two parts to the system with wavefunctions
| ii (i = A,B) .

| ii = ei✓i |0 i .

The state is just the lowest state and is constant
over the sample, and taking the inner product gives
the Cooper pair density, the normalization is there-
fore that h i| ii = h0|0i = n , because the phases
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cancel. This state itself is a rather non-trivial affair
but that doesn’t concern us here. We just have a
well-defined single state. If there is no coupling be-
tween the two pieces of super-conducting material,
then this is the end of the story. The situation is
completely static. We find ourselves talking chunks
of superconducting material, in which nothing
happens as long as you stay below the energy
needed to break up a Cooper-pair.

(a): Josephson junction. Two ‘identical’ slabs of su-
perconductor with an insulating layer in between. The
ground states have few parameters, a homogeneous
charge density ne ' | |2 , a Potential V , and a phase
angle ✓ .

Then life gets simple again, effectively it only has
an angle which is hidden and does not really count
as a degree of freedom. Trivial! So that’s why we
discuss it here as a case of ultimate simplicity, it
really is less than a single particle, less even than
a qubit!

But, imagine we bring the two pieces very close,
then the wavefunction will decay exponentially
outside the the space in between the two pieces,

so once they are very close they can interact
quantum mechanically, but not classically, the
insulating material in between acts like a high
potential barrier. Yet, the two pieces interact, which
means that there is some weak coupling w . This
situation is depicted in figure (b) and the interaction
leads to

(b): Charge density. Potential landscape (purple curve)
and charge density (red curve). The potential is mini-
mal in the slabs, so the charges (Cooper pairs) are well
confined. But at the boundaries of the slabs the wave-
function will decay exponentially, also on the insulator
side, so if the insulator gap is narrow enough the wave-
functions of slab A and B will overlap and represent an
interaction.

cross terms in the equations as follows:

ih̄
d| Ai
dt

= eVA| Ai+w| Bi , (II.1.10)

and a corresponding equation for | Bi with the
same VB and a term -w| Ai .
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A DC current. We start by considering the case
with VA = VB . Now we don’t have to solve the prob-
lem in all detail as we mainly want to know what the
effect of the interaction on the charge densities is.
We know that the electric current(density) J is de-
fined as the time derivative of the charge (density),
where the charge density is just ⇢ = eh A| Ai ,
with -2e the charge of a Cooper-pair,

J =
d⇢

dt
= e

dh A| Ai
dt

. (II.1.11)

The right-hand side of this equation can be directly
calculated from,

dh A| Ai
dt

=
dh A|

dt
| Ai+ h A|(

d| Ai
dt

) .

After substituting the right-hand side of the equa-
tion (II.1.10) and its mirror we arrive at the following
expression for the current:

J =
-iew

h̄
(h A| Bi-h B| Ai) =

2ewn

h̄
sin(✓B-✓A) .

Defining the phase difference ✓ = ✓B - ✓A , we ob-
tain that

J = J0 sin ✓ with J0 = 2ewn/h̄ .

This is a stunning result! Apparently there is a
DC current flowing through the junction without
any potential difference, the current is basically
driven by the phase difference between the two
superconducting slabs!

An AC current. There is another important equa-
tion, which follows if we now in addition apply a volt-
age across the barrier. Then VA 6= VB , we can just
solve for the phase difference ✓ to obtain

d✓

dt
' 2e

h̄
V , (II.1.12)

where V equals the potential difference
V ⌘ VB - VA . So we see that if we apply a
voltage over the junction, the current becomes an
AC current. This Josephson junction is a quantum
device that has the remarkable feature that the
frequency of the current measures the voltage!

The power delivered to the junction. Now the
amount of energy is the power delivered to the junc-
tion over time, where the power is equal to the prod-
uct of the current and the applied voltage J V . We
can write this in terms of our fundamental angular
variable:

U(✓) =

Z t

0
J V dt =

J0h̄

2e

Z✓(t)

0
sin ✓ d✓ ,

! U(✓) =
Joh̄

2e
(1- cos ✓) . (II.1.13)

We find that this energy is periodic in the phase
difference, which is not so surprising if you realize
that the whole setup is periodic from the start.
Yet, to get to a more complete understanding we
should take another contribution to the energy into
account.

The charging energy. You can think of this
junction as a (super) capacitor, with two (super-
)conducting plates and an insulator in between. We
have an AC current J(t) going through, so that a
charge Q(t) and a related voltage V(t) will build
up on the capacitor. The defining relation for the
capacity C of the capacitor is Q = CV , and C is a
property of the junction which does not depend on
time.

There is a charging energy UQ that builds up in the
capacitor, which is given by the time integral,

UQ =

ZQ(t)

0
V dQ =

1

2C
Q2 . (II.1.14)
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A mechanical analogue. Think of the total energy
function as a Hamiltonian

H(Q, ✓) =
1

2C
Q2 +

Joh̄

2e
[cos✓- 1] .

with of course also the relation,

Q = CV =
h̄C

2e

d✓

dt
.

This reminds us of a simple particle Hamiltonian
where the first term is the like the kinetic energy
proportional to the momentum squared (the veloc-
ity being d✓/dt), and the second like a potential
energy. It describes a particle running around on
the unit circle with an (angular) momentum Q pro-
portional with the angular velocity d✓/dt in a nice
periodic potential U(✓) . This particle has a mass
proportional to C and the strength of the potential is
proportional to J0 . One can now check with the ma-
terial we discussed in Chapter I.1, with p = -Q and
q = ✓2e/h̄, that (i) the dynamical equations corre-
spond with the equations we derived for J and V ,

and (ii) that the total energy is indeed conserved for
this mechanical system.
So this, in essence, basic quantum system, could
in the end be mapped to a familiar classical system,
where one can effectively apply one’s good old
Newtonian mechanics skills and intuitions.

This closes our Josephson-junction detour. Now
you can appreciate the remarks we made in
Chapter I.2 on units, equation (II.1.12) displays a
direct relation between a frequency and the ratio
of two universal constants which is by the way the
fundamental unit of magnetic flux, �0 = h/2e . You
can use this relation to measure that ratio, but also
the other way around, knowing that ratio you can
measure voltages extremely accurately. Indeed,
this Josephson junction has many generalizations

called Josephson’s effects with ample applications.

This answers the so-called ‘silly’ question we
started off with. The answer is that by introducing
the interaction between two ‘trivial’ systems they
become one, and there is only one unobservable
phase left, while the other, relative, phase becomes
a dynamical variable and acquires physical mean-
ing of the utmost importance.

This intermezzo illustrates in my opinion something
interesting about doing physics: it is not always a
matter of taking as much as possible into account,
but rather, it is rather that after stripping the problem
back to its minimal form that essential insights are
obtained. In other words, my advice to the alert
reader would be: keep pestering your teachers
with silly questions, because as you see, they may
not be so silly after all and may lead to stunning
answers!

By the way, it was the the Welshman Brian Joseph-
son, who won the physics Nobel prize in 1973 at
33 years of age for the discovery of what is now
called the Josephson junction, which is in essence
the system we just described. He did the work in
Cambridge as a student at the age of 22. In other
words, we are never too old to learn and never too
young to make a difference! We will come back
into more detail to these matters in Chapter III.3
on condensed matter physics in Volume III of the
book.⌅ ⇤
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Figure II.1.10: Qubit realizations. Four possible qubit realiza-
tions: (i) an atom or particle that carries spin one-half like the
electron, (ii) the photon, (iii) particles trapped in optical lattices
having two well-separated levels, and (iv) spins in quantum dots.

Qubit realizations

Any well-defined two level quantum system can be thought
of as representing a qubit. This could also mean we re-
strict ourselves to a subset of two specific states of a more
elaborate quantum system. Examples of two state quan-
tum systems are:
(i) a particle that carries half a unit of spin like the elec-
tron, the proton or neutron. These possess two basic spin
states. If we measure its spin along any direction, we al-
ways find either spin ‘up’ or ‘down’. This spin-1/2 property
basically has no classical analog; we have introduced its
discovery and its meaning on page 161 of Volume I.
(ii) a photon with a fixed frequency, which possesses two
basic polarization states. The photon can oscillate in any
direction perpendicular to its direction of motion, and as
the photon necessarily moves with the velocity of light and
just cannot be put to rest, this frame is always well de-
fined. The polarization state can always be decomposed

into two perpendicular basis states, say ‘horizontal’ and
‘vertical’. We can arbitrarily designate one quantum state
as ‘spin up’, represented by the symbol | + 1i , and the
other ‘spin down’, represented by the symbol | - 1i . We
illustrated some typical polarization states of a photon in
Figure II.1.11. If both components are in phase with each
other, we say that the photon is linearly polarized. If they
are out of phase we speak of circular or elliptically po-
larized light, where we distinguish ‘left-handed’ or ‘right-
handed’ polarization.
A photon is a qubit that necessarily travels with the speed
of light. If we generate an electromagnetic wave, what we
really do is making a beam of photons, and depending on
the type of source, this beam maybe polarized or unpolar-
ized. But if we make an ultra-short light pulse, it is possible
to only produce a single photon.
(iii) A particle (say atom or molecule) in one of two lowest
energy states which are well separated from the rest of the
spectrum of states. A well-known example is the trapping
of ions in an optical lattice.
(iv) In quantum dots it is possible to individually manipulate
spin carrying degrees of freedom such as polarized elec-
trons, and therefore these can in principle be assembled
into quantum information processing devices.

Entanglement

It is in multi-particle and multi-qubit states that some of the
most counter-intuitive and powerful aspects of quantum
theory surface: in particular the notion of entanglement.
In Figure II.1.12 we give a ‘state of the union’, a schematic
overview of the multi-qubit type of states and how they are
related. This schematic summarizes the content of this
section.
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Figure II.1.11: Photon polarizations. Polarization states of the
photon decomposed into the standard basis vectors |+ 1 > and
|-1 > . The top four are linearly polarized states, while the bot-
tom two are circularly polarized. The polarizations in the three
lines correspond to the eigenstates of the basic qubit observ-
ables, Z , X , and Y which will be defined after equation (II.2.2).

Multi-qubit states

A quantum computer needs systems of multiple qubits,
called quantum registers. You may think of an array or net-
work of n particles, each with its own spin. (As stated be-
fore, the formalism does not depend on the precise imple-
mentation, and it is possible to have examples in which the
individual qubits correspond to degrees of freedom other
than spin). The quantessence doesn’t talk about how the
qubits are realized, but about their underlying structural
properties. The mathematical space in which the n qubits
live is the tensor product of the individual qubit spaces,
which we write as C2⌦C2⌦ ...⌦C2 = C2n . For example,
the Hilbert space for two qubits is C2 ⌦ C2 . This is a four-
dimensional complex vector space spanned by the vectors
|1i ⌦ |1i , | - 1i ⌦ |1i , |1i ⌦ | - 1i , and | - 1i ⌦ | - 1i .
So tensor products are not about multiplying numbers or
functions, but about multiplying spaces, where the product

refers to the dimensions: the product of an m-dimensional
and a n-dimensional space gives an (m⇥n)-dimensional
space. So multi-qubit states live in an exponentially larger
state space (d = 2n). For convenience we will often ab-
breviate the tensor product by omitting the tensor product
symbols, or by simply listing the spins. For example

|1i ⌦ |- 1i ⌘ |1i|- 1i ⌘ |1,-1i .

The tensor product of two qubit states with state vectors
| i = ↵|1i + �| - 1i and |�i = �|1i + �| - 1i is the
state

| i ⌦ |�i ⌘ | i|�i =
= ↵�|1, 1i+ ↵�|1,-1i+ ��|- 1, 1i+ ��|- 1,-1i .

An basic feature of the tensor product is that it is distribu-
tive, i.e. (�|1i+�|-1i)⌦| i = �|1i⌦| i+�|-1i⌦| i . We
emphasize once more that whereas the classical n-bit
system has 2n states, the n-qubit system corresponds to
a vector of unit length in a 2n-dimensional complex space.
It is a continuous space in fact a complex hypersphere. For
example a three-qubit can be expanded as:

| i = ↵1|1, 1, 1i+ ↵2|1, 1,-1i+ ↵3|1,-1, 1i
+ ↵4|- 1, 1, 1i+ ↵5|1,-1,-1i+ ↵6|- 1, 1,-1i
+ ↵7|- 1,-1, 1i↵8|- 1,-1,-1i .

As before it is convenient to denote the state vector by the
column vector of its complex components ↵1,↵2, ...,↵2n .

When dealing with multi-qubit states, we have to make
clear distinctions between various types of states. These
are important in discussions to come later, yet I want to
present them here all at once, without elaborating too much
on their specific roles yet. It is nice to compare them and
contrast them with each other. First of all there are the so-
called pure states and those are the states we have been
talking about so far. The pure multi-qubit or multi-particle
states break up into two types, the separable and the en-
tangled states. The notion of entanglement and its dra-
matic physical implications are the subject of Chapter II.4,
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Figure II.1.12: Multi-qubit states. An overview of the types of
multi-qubit states and the relations between them.

about the Einstein–Podolski–Rosen paradox and quantum
teleportation.

If we talk about realistic quantum systems that couple to
some environment or ‘classical’ measurement device, we
often have to deal with states that are not pure but mixed
states. To deal with both pure and mixed states it is con-
venient to introduce the density operator, which provides a
unified framework for all types of states. This concept was
introduced by Von Neumann in the early days of quantum
theory as an alternative to the wavefunction or state vec-
tor approach. These are the topics that I will focus on in
the remainder of this section.

Entangled states

When two systems, of which we know the states by
their respective representatives, enter into tempo-
rary physical interaction due to known forces be-
tween them, and when after a time of mutual in-

fluence the systems separate again, they can no
longer be described in the same way as before,
viz. by endowing each of them with a representa-
tive of its own.
I would not call that one but rather the character-
istic trait of quantum mechanics, the one that en-
forces its entire departure from classical lines of
thought. By the interaction the two representatives
[the quantum states] have become entangled.

E. Schrödinger, 1935

Entanglement is a direct consequence of the linear su-
perposition principle applied to multi-qubit or multi-particle
states. If qubits are entangled this means that successive
measurement outcomes on the two qubits will be highly
correlated, implying that quantum theory is fundamentally
non-local.

The quantum states of systems consisting of spatially sep-
arated components (e.g. two particles) can be entangled,
which implies that they can no longer be treated indepen-
dently and therefore measurements made on one can have
instantly consequences for the other! This is indeed a
quantessential feature of reality that dramatically departs
from the classical description of such a system. It is this
‘entanglement’ property that lies at the root of a zoo of so-
called quantum paradoxes, such as Schrödinger’s cat and
the EPR paradox and more generally the quantum mea-
surement problem. But it is also essential for understand-
ing the Bell inequalities which pose a rigorous quantita-
tive bound on classically allowed correlations; bounds that
have been observed to be violated in quantum systems.
Entanglement furthermore plays an essential role in fash-
ionable and promising subjects like quantum teleportation.
We return to these topics in Chapter II.4. In this section we
will merely touch on some of these aspects.
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Figure II.1.13: Bohr and Einstein in one of their debates.
(Source: (Photo made in 1930 by Paul Ehrenfest, courtesy AIP
Emilio Segrè Visual Archives)

Schrödinger’s cat

When we have more than one qubit an important practi-
cal question is when and how measurements of a given
qubit depend on measurements of other qubits. Because
of the deep properties of quantum mechanics, qubits can
be coupled in subtle ways that produce consequences for
measurement that crucially differ from classical bits. Un-
derstanding this has proved to be important for questions
relating to quantum computation and information transmis-
sion. To explain this we need to introduce the opposing
concepts of separability and entanglement, which describe
whether measurements on different qubits are statistically
independent or statistically dependent.

This notion of entanglement as a necessary consequence
of the quantum postulates led to the infamous problem of

Schrödinger’s cat. This problem was well described by
Schrödinger himself:3

‘[...]Man kann auch ganz burleske Fälle konstru-
ieren. Eine Katze wird in eine Stahlkammer ges-
perrt, zusammen mit folgender Höllenmaschine (die
man gegen den direkten Zugriff der Katze sichern
muss): in einem Geigerschen Zählrohr befindet sich
eine winzige Menge radioaktiver Substanz, so wenig,
dass im Laufe einer Stunde vielleicht eines von
den Atomen zerfällt, ebenso wahrscheinlich aber
auch keines; geschieht es, so spricht das Zählrohr
an und betätigt über ein Relais ein Hämmerchen,
dass ein Kölbchen mit Blausäure zertrümmert. [...]
’

and4

[...] Hat man dieses ganze System eine Stunde
lang sich selbst überlassen, so wird man sich sa-
gen, dass die Katze noch lebt, wenn inzwischen
kein Atom zerfallen ist. Der erste Atomzerfall wür-
de sie vergiftet haben. Die Psi-Funktion des gan-
zen Systems würde dass so zum Ausdruck brin-
gen, dass in ihr die lebende und die tote Katze

3It is also possible to construct very burlesque fables. A cat is locked
into a steel chamber, together with a poisoning contraption consisting
of a hammer and a flask (which must be secured against direct access
by the cat): and a Geiger counting tube containing a minute amount
of radioactive substance, so little that in the course of an hour perhaps
one of the atoms breaks up, but equally probably none; if it happens,
then the counting tube responds and, via a relay, releases the hammer
that crushes a little flask with blue-acid.

4[...] After one has left this whole system for an hour, one will say
that the cat is still alive if no atom has decayed, as the first atomic
decomposition would have poisoned it. The wavefunction of the whole
system would thus express the fact that in it the living and the dead cat
are mixed or smeared in equal parts. That an indeterminacy confined
to the atomic realm translates into indiscernible indeterminacy, which
can then be removed by direct observation. This prevents us, in such a
naive way, from considering such a ’washed out model’ as an image of
reality ...
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Figure II.1.14: Schrödinger’s cat state. Artist impression of a
quantum cat in the state: | cati = |alivei + |deadi . (Source:
JSTOR Daily.)

(s. v. v.) zu gleichen Teilen gemischt oder ver-
schmiert sind. Das Typische an solchen Fällen
ist, dass eine ursprünglich auf den Atombereich
beschränkte Unbestimmtheit sich in grobsinnliche
Unbestimmtheit umsetzt, die sich dann durch di-
rekte Beobachtung entscheiden lässt. Das hindert
uns, in so naiver Weise ein “verwaschenes Modell”
als Abbild der Wirklichkeit gelten zu lassen...’

A cat in our classical world can either be dead or alive,
and taking this quantum assumption to its logical extreme,
this cat could in principle be in a state that it is a linear
superposition of ’alive’ and ’dead’. This property of quan-
tum mechanics is simple to spell out but is radically differ-
ent from the way we talk about physical states in classical
physics. This difference derives directly from the quantes-
sential principle that allows us to consider linear superpo-
sitions of states, which therefore seems problematic from
the start.

The cat sits in a closed box with some food but also with

a lethal contraption consisting of a small quantity of a ra-
dioactive substance, or a single metastable atom for that
matter. If that atom decays, it emits a photon that hits a de-
tector which subsequently triggers a device which breaks
a little capsule filled with a poisonous gas that in turn will
kill the cat. This unfortunate scenario suggests that in
this situation the states of the atom labeled |decayedi or
|not decayedi are entangled with the states |alivei or
|deadi and we write:

| cati = |not decayedi⌦ |alivei+ |decayedi⌦ |deadi ,

because the other states in the atom ⌦ cat state space
have zero coefficient, and we have assumed that both terms
are equally probable. What the formula above expresses is
that the undetermined state of the atom is entangled with
the states of the cat.

It seems a far-out proposal of a fundamental theory of na-
ture to take such states seriously. At the heart of this prob-
lem lies the following question: if quantum mechanics is
the underlying reality of everyday life described by the laws
of classical physics, then it should be possible to under-
stand these classical laws from the quantum laws. There
may be no logic that leads you from classical to quan-
tum theory but there should be a derivation of the laws of
classical physics starting from the quantum laws, because
classical physics is just an approximation of quantum phys-
ics, and such approximations should be well understood.
We should compare this to how classical Newtonian me-
chanics can be obtained as the limit of relativity where we
send the speed of light c to infinity. The analogy suggests
that in quantum theory we just have to send Planck’s con-
stant h̄ to zero, and yes, in many cases this is what we
have to do, but such direct approaches do not resolve is-
sues like Schrödinger’s cat. The question has lead to nu-
merous deep philosophical arguments among physicists
and philosophers right from the inception of quantum me-
chanics in the beginning of the twentieth century, and we
will return to ‘Schrödinger’s cat’ in later chapters. For the
moment we just want to give a more accurate definition of
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the different types of states for simpler systems.

Entangled vs separable states

Let us now turn to precise definitions of multi-qubit states.
The n-qubit state is called separable if it can be written as
a single product of n single-qubit states5, i.e. if it can be
written as n - 1 tensor products of sums of qubits, with
each factor depending only on a single qubit. An example
of a separable two-qubit state is

| i = 1

2
(|1, 1i+ |1,-1i+ |- 1, 1i+ |- 1,-1i) ,

because it can be written like

| i = 1

2
(|1i+ |- 1i)⌦ (|1i+ |- 1i) = |+i |+i .

If an n-qubit state is separable, then measurements of in-
dividual qubits are statistically independent, i.e. the proba-
bility of outcomes of a series of measurements of different
qubits can be written as a product of probabilities of the
measurements for each qubit. These outcomes are un-
correlated and the overall outcome is therefore indepen-
dent of the order in which these measurements are per-
formed.

If an n-qubit state is not separable, then it is per definition
entangled. An example of an entangled two-qubit state
is,

| i = 1p
2
(|1, 1i+ |- 1,-1i) , (II.1.15)

which indeed is a linear superposition which cannot be fac-
tored into a single product. If we have a pair of qubits in
an entangled state, subsequent measurements of the in-
dividual qubits do depend on each other. If you first make
a measurement on the first bit, then that measurement will
instantaneously affect the two-bit state and possibly the

5Strictly speaking this is only true for pure states, which we define in
the next section.

Figure II.1.15: Separated pair. The state vector for the pair is
a product of the individual state vectors.

state of the other bit, even if that is spatially arbitrarily far
away. The measurement thereby influences a later mea-
surement outcome of the second bit. Now the use of that
word ‘instantaneous’ should make you feel uneasy in view
of the theory of relativity, and correctly so. Some great
physicists – like Einstein to mention one – felt the same
way and preceded you. This thought-provoking question
unleashed a deep, but also longwinded debate about the
foundations of quantum theory, already among its foun-
ders.

Let me illustrate this point for the examples we gave above.
Suppose we do an experiment in which we measure the
spin of the first qubit and subsequently measure the spin
of the second qubit. For both the separable and entan-
gled examples, there is a 50% chance of observing either
spin up or spin down on the first measurement. Suppose it
gives spin up. For the separable state this transforms the
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Figure II.1.16: Entangled pair. Artist impression of what an
entangled state of a pair would look like. It gives at least a feeling
for it, maybe more so than the formula below telling you exactly
what it is.

state vector as follows:

1

2
(|1i+ |- 1i)⌦ (|1i+ |- 1i)

! 1p
2
|1i ⌦ (|1i+ |- 1i) = 1p

2
(|1, 1i+ |1,-1i) ,

it means that the measurement projects the initial qubit
state | i on the first line onto the state | 0i in the sec-
ond line. One may verify that the probability amplitude in
analogy with equation (II.1.5) equals |h 0| i|2 = 1/2 as it
should. The same probability would have resulted for the
spin down measurement.6

So only the |1i component of the first qubit survives after
the measurement. If we now measure the spin of the sec-
ond qubit in the state | 0i , the probability of measuring
spin up or spin down is still 50% . And as mentioned be-
fore, the previous measurement on the first qubit has no

6We will deal with the observables and measurements more exten-
sively in the next chapter.

effect on the second measurement. As we have already
noted, it is a generic property of separable states that sub-
sequent measurement outcomes on individual spin states
are independent, and the outcomes do not depend on the
order in which we perform the measurements.

Let us now consider a similar experiment on the entangled
state of equation (II.1.15) and observe spin up in the first
measurement. This changes the state-vector to

| i = 1p
2
(|1, 1i+ |- 1,-1i) ! | 0i = |1, 1i . (II.1.16)

(Note the ‘disappearance’ of the factor 1/
p
2 due to the

necessity that the projected state vector remains normal-
ized). If we now measure the spin of the second qubit, we
are certain to observe spin up! Similarly, if we observe spin
down in the first measurement, we will also see that in the
second qubit with 100% certainty. For this entangled ex-
ample the measurement outcomes are completely corre-
lated – the outcome of the first completely determines the
second, and the state is therefore called maximally entan-
gled. As this also holds for entangled qubits which are light
years apart, this instantaneous effect on the state implies
a puzzling if not bizarre form of non-locality in the quantum
world that at first sight appears to violate causality.

Bertlmann’s socks. There has been a debate among
physicists like John Bell and others about what it is that
sets quantum entanglement really apart. The conundrum
goes by the name Bertlmann’s socks. Mr Bertlmann, a
real-life early collaborator of Bell at CERN, happens to al-
ways wear socks of a different color. So, Mr Bertlmann,
whose socks have risen to eternal fame, constitutes a sys-
tem which has the unusual property that if you get to see
one of his socks to be ‘red’ for example, then instanta-
neously you are able to conclude that the other sock has
the property ‘not red’. So here is a form of non-locality. You
measure one sock and are hundred percent sure about a
property of the other sock which is elsewhere. So, the con-
ditional probability given sock #1 is red, for sock #2 to be
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‘not red’, is one. Is that not a classical version of quantum
entanglement? It looks like it, the states of the socks are
highly correlated indeed, and knowing the state of the first
affects the probability distribution for the other. It doesn’t
change the socks or their color: it just affects the prob-
ability of measurement outcomes. And there is nothing
unusual, absurd or stunning about that. It is very much
true that the state of the socks is not affected. There is no
signal exchanged between the socks, since they are in a
definite state which is there to stay.

The quantessence of entanglement. The quantum catch
is that there is one additional feature in the quantum frame-
work that has no classical analogue and which sets the
EPR paradox apart. In the qubit experiment there is an ad-
ditional freedom for making the measurements, one is free
to choose the frame or polarization of a measurement. In
the example of the entangled state given in (II.1.16), we
could have chosen the measurement for the first qubit not
in the (|1i, |-1i) frame, but for example of in the (|+i, |-i)
frame. Then, given the outcome of that measurement for
example to be plus one, we know that the second qubit has
to be in the |+i state. Keeping the measurement for the
second qubit as before in the (|1i, | - 1i) frame, the prob-
ability to find the outcome to be plus or minus one is 50%
for each. This dependence of the probability of the second
outcome on the choice one makes for the first measure-
ment is what makes the situation non-local, because now,
dependent on the frame choice and the outcome plus one
for the first measurement, the second qubit flips instanta-
neously to the |1i or |+i state. And this looks very much
like an instantaneous action at a distance, the state of the
second is affected, and therefore causality should be vio-
lated. Is it?

The answer is: no! As we have already, and will explore
more extensively in the following chapters, the quantum
state is like a probability amplitude, which encodes a prob-
ability distribution for measurement outcomes. Multi-qubit
states, separable or entangled, encode all possible corre-

Figure II.1.17: CNOT gate. The circuit diagram is basically
a two-qubit interaction diagram, representing the action of the
CNOT gate on the four possible two-qubit basis states. As poin-
ted out in Figure II.1.5, the dot on the upper qubit denotes the
control and the cross is the symbol for the conditional one-qubit
NOT gate.

lations that may or may not exist between sequences of
measurement outcomes. And a closer look at the exam-
ples given above does precisely that, they show how un-
conditional probabilities, turn into conditional probabilities
which are different indeed. And since in the quantum world
there are basically only probabilities, the measurements of
entangled states are easier to grasp if you think of ‘states’
as encoding probability distributions. We return to these
questions in the section on the Einstein–Podolsky–Rosen
paradox in chapter II.4.

From separable to entangled and back

For two qubits in a separable state to get entangled they
need to interact somehow. In quantum information lan-
guage that would mean that they have to be acted upon
by some two-qubit gate. Let us take our favorite CNOT -
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gate of Figure II.1.5, it acts on the state |Ai ⌦ |Bi as fol-
lows:

CNOT : |Ai ⌦ |Bi ) |Ai ⌦ |[-AB]i .

In other words, the CNOT gate flips the state of B if A =
1 , and does nothing if A = -1 .

For convenience we give the explicit action on the basis
states in Figure II.1.17, which allows you to verify that if
we let the CNOT gate act on the separable state |+i ⌦
| - 1i it indeed generates a maximally entangled state
(II.1.15):

CNOT : |+i ⌦ |- 1i ) 1p
2
(|1, 1i+ |- 1,-1i) . (II.1.17)

Note that this gate is reversible, as one can immediately
see from the figure, CNOT2 = 1 .

In fact, from an intuitive point of view the ability to gener-
ate substantial speed-ups using a quantum computer vs.
a classical computer is related to the ability to operate on
the high dimensional state space including the entangled
states. To describe a separable n-qubit state with k bits of
accuracy we only need to describe each of the individual
qubits separately, which only requires of the order of nk
bits. In contrast, to describe an n-qubit entangled state
we need of the order of k bits for each dimension in the
Hilbert space, implying that we need of the order of 2n k
bits. If we were to simulate the evolution of an entangled
state on a classical computer we would have to process
all these bits of information and the computation would be
extremely slow. Quantum computation, in contrast, acts
on all this information at once – a quantum computation
acting on an entangled state is just as fast as one acting
on a separable state. This is exactly the type of parallelism
at the intermediate stages of computing that we referred to
before. Thus, if we can find situations where the evolution
of an entangled state can be mapped into a hard mathe-
matical problem, we can achieve spectacular speed-ups.

Mixed versus pure states

The states we have been dealing with so far were statis-
tically pure, or more simply, pure states. In spite of the
quantessential uncertainties in such states, the state vec-
tor is the most complete knowledge about a quantum state
that is available. In real life however it may prove very dif-
ficult to prepare a system in a pure state. After all, quan-
tum phenomena are not that easy to detect, which means
that pure states apparently are not so common. Somehow
a lot of the quantum stuff gets washed away in ordinary
life, quantum does not hit the eye, so to speak. The rea-
son is that quantum systems are permanently interacting
with their environment, and it is only in situations where we
take exceptional care to protect our quantum system from
those influences, that we can observe pure quantum be-
havior. This is not easy; it certainly is not the case in most
situations which arise naturally, and that is precisely why
we perceive the world around us as completely classical.
Turning this reasoning around you may ask that given the
underlying world is entirely quantum, why there is such a
thing as the classical world, and how it comes about. How
can we understand the laundering of all that quantum ex-
otica? This is the basic question one has to face in a de-
tailed treatment of quantum measurement, which has to
account for how we can start up with a quantum process
and end up reading dials and counting macroscopic sig-
nals like clicks, or pulses and what not. It is here that we
have to introduce the concept of a mixed state, and con-
trast it with a pure state whether entangled or not. And
indeed it is often through the interaction with the environ-
ment that states get ‘mixed up’, just like humans do. We
have to deal with mixed up people all the time, and we
learned to deal with that! Let us be pedantic and illustrate
the distinction between a pure and a proper mixed state
with the experimental setup depicted in Figure II.1.18. An
incoming beam is polarized and each of the particles is
in the pure state |+i i.e. with X ⇠ +1 . Now we send them
through a Z polarizer in (b). What we find behind the polar-
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|1>
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λ  = 1λ  = -1 xx
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(a) All incoming particles are in the pure state | i = |+i .
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|-1>-|-1>

-|1>

-|+>

|->
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|+>

 λ  = 1z

z

|Ψ>

 λ  = -1

(b) The incoming beam goes through a Z polarizer
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|-1>-|-1>

-|1>

-|+>

|->
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|+>

 λ  = 1z

z

|Ψ>

 λ  = -1

(c) Half of the particles in the outgoing beam are in the pure state | i =
|1i .

|1>

|-1>-|-1>

-|1>

-|+>

|->

-|->

|+>

λ  = 1

λ  = -1

z

z

|Ψ>

(d) The other half of the particles in the outgoing beam are in the pure
state | i = | - 1i .

Figure II.1.18: Mixed state. Graphical representation of how to prepare a beam of particles in a proper mixture and corresponding
mixed state. For the incoming particles in figure (a) the density matrix is given by equation (II.1.23), in the outgoing beam (c)+(d) the
particles have the density matrix of equation (II.1.24 )
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izer is a beam of particles, but now 50% of the particles is
in a pure state |1i (c) and the other 50% is in a pure state
| - 1i (d). Now we could combine the particles in single
beam (without letting them interfere), then each of the par-
ticles is still in a pure state, but the beam is now a statistical
mixture of particles in | ± 1i states. The beam represents
a classical ensemble of particles that is in a mixed state.
This is called a proper mixture to be distinguished from the
improper mixture to be discussed shortly. In the present
situation there is a non-zero probability for the particle to
be in any one of two pure states. So picking out one par-
ticle there is a 50% chance it is in a pure up-state and a
50% chance it is in the down-state, but – and this is crucial
– it is not a state corresponding to a linear superposition of
the up and down-state, that would just be the ‘plus’ state,
|+i !

This mixed state is a classical statistical mixture and not a
quantum superposition. What makes this setting a bit con-
fusing is that we now have two types of probability to keep
track of, the quantum probabilities we have been talking
about so far and in addition the probability distribution of
the classical ensemble.

To further clarify this notion, let me point out that a naive
but wrong way is to write for the state of the particle some-
thing like | mixi =

P
i pi| i > . This looks dangerously

close to the usual expansion of a pure state into a cer-
tain basis | i =

P
k ↵k| k > . But there the coefficients

are probability amplitudes ↵k leading to probabilities pk '
|↵k|

2. To put it differently, with the troublesome trial nota-
tion I just proposed we would get that the expectation or
average value7 of an observable A in a mixed state | mixi
would become h mix| A | mixi ⇠

P
pipj . . . , an expres-

sion that is proportional to probabilities squared, which
makes no sense.

7I apologize for getting ahead of myself, as observables and their
expectation values are to be discussed in detail in the next chapter on
page 285.

What we want is a weighted average over ordinary pure
state expectation values:

hAi =
X

a

pah a|A| ai . (II.1.18)

In this expansion the states | ai are some set of pure
states. These don’t have to be orthogonal, so it could
be that | 1i = |1i and | 2i = |+i for example. It is for
this reason that once we admit both mixed states and pure
states it is almost imperative to use the density matrix for-
malism because it treats both type of states on an equal
footing.

The density operator

The famous mathematical physicist John von Neumann
developed an alternative formalism for quantum mechan-
ics in terms of what is called a density operator, which
basically replaces the wavefunction, or state vector, right
from the start.

The density operator formulation, as we will see shortly,
leads in a natural way to the definition of what is called the
Von Neumann entropy for a quantum system.

Proper mixtures. Consider as we just did, a mixed state
in which there is a probability pa for the system to have
wavefunction  a and an observable A with an expectation
value (II.1.18). The density operator defined for a pure
state is just the projection operator we introduced in (II.1.6)
for that state:

⇢ = Pi = | iih i| ,

and the density operator for a properly mixed state is quite
naturally defined as:

⇢ =
X

i

pa | aih a| , (II.1.19)

which reduces naturally to the pure state case above if
pa = pi = 1 for a single value of i . To obtain the density
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matrix, we have to expand this operator in an orthonormal
basis. We start with

⇢ =
X

ajk

pa↵
(i)
j ↵

⇤(i)
k |�jih�k| ,

where the ↵(i)
j are the expansion coefficients of the pure

state | ai in the {|�ji} basis. The density matrix is defined
by the matrix elements of the density operator:

⇢mn = h�m|⇢|�ni =
X

i

pi↵
(i)
m ↵

⇤(i)
n (II.1.20)

With density matrices the notion of a trace is convenient.
Recall that the trace of a matrix is the sum of the diagonal
elements, so we have for example that,

tr ⇢ =
X

i

pi(
X

m

↵
(i)
m ↵

⇤(i)
m ) =

X

i

pi = 1 ,

because the sums over m equal one for each value of
i. The expectation value (II.1.18) is compactly expressed
as:

hAi = tr (A⇢) , (II.1.21)

and because the trace tr(A⇢) is independent of the chosen
basis this expression can be evaluated in any convenient
basis, and so provides an easy way to compute expecta-
tion values in any state. Note that for a pure state pa = 1

for one particular value of a = i⇤ , and pa = 0 for a 6= i⇤.
In this case the density matrix has rank one. This becomes
clear if we write the matrix ⇢ in a basis in which it is diago-
nal, because then there will only be one non-zero element.
When there is more than a single non-zero value of pa it is
a mixed state and the rank is larger than one.

Finally note that if we chose the unit matrix as the trivial
observable we get the trace of ⇢ itself, which equals one
by definition. This property will be used if we consider par-
tial traces, which refer to the density matrix of subsystems,
later on. The best way to think about the density matrix
of a proper mixture is as a classical distribution over pure
quantum states. It is an essential concept if we want to

understand and describe quantum measurements in more
detail. In particular if we are to include the measurement
apparatus in the analysis, and want to understand how we
get from quantum to classical physics: from a pure quan-
tum state to a macroscopic pointer on a dial.

To get a better feeling for how a density matrix works, con-
sider a few simple examples of single qubit states. First
look at a spin in a pure state with | i = |1i . The den-
sity operator corresponds to the corresponding projection
operator.

⇢ = |1ih1| , ⇢mn =

✓
1 0

0 0

◆
. (II.1.22)

The expectation of the spin polarization operator along the
z-axis becomes

tr(Z⇢) = tr
✓✓

1 0

0 -1

◆✓
1 0

0 0

◆◆
= tr

✓
1 0

0 0

◆
= 1 ,

as expected. Likewise we could construct the density ma-
trix corresponding to another pure state |+i as

⇢ = |+ih+| =
1

2
(|1i+ |- 1i)(h1|+ h-1|) , 1

2

✓
1 1

1 1

◆
.

(II.1.23)
Now the expectation value of Z is

tr(Z⇢) =
1

2
tr
✓✓

1 0

0 -1

◆✓
1 1

1 1

◆◆
=

1

2
tr
✓

1 1

-1 -1

◆
= 0 ,

as it should. If, however, the system is in a mixed state
with 50% of the population spin up and 50% spin down the
density matrix becomes

⇢ =
1

2
(|1ih1|+ |- 1ih-1|) , 1

2

✓
1 0

0 1

◆
. (II.1.24)

In this case the expectation of the spin along the z-axis,
which is tr(Z⇢) , is zero again as it should be, because the
probability for a particle in the mixed state to contribute +1

is equal to the probability to contribute -1 to the expec-
tation value. The particle represents a classical statistical
ensemble of particles that are either in a definite quantum
‘up’ or a definite quantum ‘down’ state.
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Quantum entropy

The introduction of the density matrix allowed Von Neu-
mann to extend the fundamental concept of entropy to the
quantum domain. He defined the entropy of a quantum
state in analogy with the Gibbs entropy for a classical en-
semble as

S(⇢) = -tr ⇢ log ⇢ = -
X

i

pi logpi . (II.1.25)

Where the right-hand side directly follows from the defini-
tion (II.1.19). The entropy of a quantum state provides a
quantitative measure of ‘how mixed’ a system is because
the entropy of a pure state is equal to zero, whereas the
entropy of a mixed state is always greater than zero. Let
us check this with the examples of the previous subsec-
tion. In the cases with pure states we have first consid-
ered (II.1.22) where p(+1) = 1 and p(-1) = 0 which for
the quantum entropy yields Spure = -1 log 1 - 0 log 0 =
-1 · 0 = 0 . This reflects that if you know the pure state a
system is in, you know everything there is to know about
it, and therefore there is no hidden information and the en-
tropy should be zero and happily that is true. For the prop-
erly mixed case of (II.1.24) we found p(+1) = p(-1) =
1/2 , and we obtain that Smixed = -2 · 1

2 log 1
2 = log 2 ,

which corresponds to the information of one bit. And it is
here that we make contact with the definition by Shannon
of information being proportional to the entropy as defined
by Boltzmann and Gibbs. We see quite generally that a
mixed state corresponding to an equal probability distribu-
tion over the pure states one has ⇢ = 1

N

P
|iihi| , which

will have the maximal entropy S = logN corresponding
to the good old Boltzmann formula. All this underscores
the remark that a (properly) mixed state is just a classical
distribution over quantum states.

Entanglement entropy

We just saw how the Von Neuman entropy yields a quan-
titative measure of ‘how mixed’ a quantum state is. The
entropy of a pure state (that may be entangled or not) is al-
ways equal to zero, whereas the entropy of a mixed state
is always greater than zero. So, why inventing the term
entanglement entropy if the entropy of an entangled state
is always zero? The logic is somewhat oblique in that the
term in fact refers to the entropy of a mixed state which
is obtained after one traces out ‘part’ of the density matrix
of an entangled state. For this reason such states are re-
ferred to as improper mixtures, in contrast to the proper
mixtures which refer to the cases we discussed before
where the state is a statistical mixture of pure states.

Partial traces and improper mixtures. In certain situ-
ations there is indeed a close relationship between en-
tangled and mixed states, and that is what I would like
to explain next. It entails a mechanism that plays a vital
role in explaining the all-important fact that the world we
perceive is classical rather than quantum, and this expla-
nation involves the phenomena of decoherence that we’ll
get into shortly. The crucial observation is that an entan-
gled but pure state in some higher-dimensional multi-qubit
space can appear to be a mixed state when looked at from
the point of view of a lower-dimensional subspace. Such
mixed states that may appear when restricting the density
matrix to a subspace by (partially) tracing out the other part
are referred to as improper mixtures, and these are clearly
essentially quantum because they derive directly from a
pure (though entangled) state of the system.

Take a situation where we only koot at part of the system.
It might be that we can only measure certain qubits and
not others and without being aware of it. This is frequently
the case because systems interact continuously with their
environment. Studying the quantum behavior of a system,
requires extraordinary precautions to make sure



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 276 — #306 i
i

i
i

i
i

276 CHAPTER II.1. THE QUANTUM FORMALISM: STATES

A qubit named Botzilla . Once upon
a time there were two qubits who had
nothing to do with each other and
therefore the two were in a separable
state, say |+iB ⌦ |1iA . We have a

two-qubit system where qubit Botzilla is our
object of study, while qubit Abigail is the girl
out there who wants to get entangled (a form of
quantum common-law marriage, so to speak) with
our beloved Botzilla. Abigail, having studied
equation (II.1.17), decided to bring in her charming
friend CNOT to make it happen. If you lead us
through the Gate , eternal gratitude will be yours!
And this is what happened. Both of them, not so
young, not-lovers really, went through the Gate

anyway, and came out entangled indeed. As you
may have anticipated, they did not live a long and
happy life ever after. Abigail turned out to be a
Botwoman and managed to one day disappear
from the air, leaving Botzilla behind in a severely
mixed-up state (basically making him the classical
example of a quantum divorcee).

To understand the deplorable state Botzilla finds
himself in, we have to perform what is called a par-
tial trace in the quantum jargon. The point is that he
can make only observations which concern himself,
though, whether he wants or not, he is still entan-
gled with Botwoman Abigail. This means that he
only has a small subset of observables to his dis-
posal of the type B ⌦ 1 2 O . So calculating the
expectation value of such an observable involves
tracing over the Abigail qubit. This amounts to just
establishing the fact that Abigail is still there’ with
unit probability, yet because the state is entangled,
the effect of her ‘being somewhere’ is non-trivial. it
leads to a result which can be described by saying
that Botzilla is calculating the expectation value of

just the operator B in his own system, but in a par-
ticular mixed state. So, he may ignore Abigail, but
then has to pay the price of being in a mixed state.
Let us now ‘trace out’ Abigail and see what trace
she left on Botzilla’s state. This is achieved by
summing over all the states associated with the
subspaces we want to ignore, or better, about
which we know nothing in particular. This means
that we have to add up the diagonal entries with
Abigail indices. We know already that Botzilla
and Abigail ended up in the entangled state of
equation (II.1.15), which we have to trace with re-
spect to the second (Abigail) qubit. This we do by
making use of the fact that tr(1 | ih�|) = h |�i .
Using labels A and B to keep the qubits apart, and
remembering that because we are using orthogonal
basis states the calculation can be written like,

⇢B = trA (| BAih BA|)

=
1

2
trA

⇥
(|1iB|1iA + |- 1iB|- 1iA)

(h-1|Ah-1|B + h1|Ah1|B)
⇤

=
1

2
(|1iBh1|Bh1|1iA + |- 1iBh-1|Bh-1|- 1iA)

=
1

2
(|1iBh1|B + |- 1iBh-1|B) . (II.1.26)

This is the density matrix for Botzilla in a mixed
state with probability 1/2 to either be spinning up or
spinning down. The corresponding entropy is also
higher: In base-two S = - log(1/2) = 1 bit, while
for the original pure state S = log 1 = 0 . The whole
operation of tracing out Abigail is non-unitary and
irreversible, as we moved from two qubits to one.
Indeed, exactly one bit of information got lost to the
environment (it was taken along by Abigail). In
fact we could of course also calculate the entropy
for the state Abigail finds herself in, then we have
to trace over Botzilla’s states. The situation is
entirely symmetric, and her entropy will also be 1
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bit. So there is some justice after all! This is what
happens, the system Botzilla + Abigail is in a
pure state all along and the total entropy remains
zero therefore, but looking at subsystems this is no
longer true. What remains true is that if we divide
the system up into two complementary parts, the
entropy in each of them increases equally.

Generally it is the case that if we begin with a
statistically pure separable state and perform a
partial trace we will still have a pure state, but if we
begin with an entangled state, and we perform a
partial trace, we will get a mixed state as we just
saw. In the former case the entropy remains zero,
and in the latter case it increases. It is precisely in
this sense that the Von Neumann entropy yields a
useful measure of entanglement.

This observation is relevant for the understanding
of real quantum systems, because most realistic
quantum systems are strongly entangled with their
environment. We don’t know exactly how and with
what, but it means that we tacitly trace out all kinds
of things we are not aware of. What we know is
that these systems behave quite classically in the
end, and that in fact we should not be too surprised
about that because they are in a strongly mixed
state. ⇤

that it does not engage in interactions that we have no con-
trol over. Such ‘unknown knowns’ might well wash away
the quantum effects we were looking for. Quantum effects
depend on the subtle phase relations that make quantum
states in fact highly coherent. What to do if part of our
system is out of sight? It boils down to a quantum, yet
touching variant of the Romeo and Juliet story called ‘A
qubit named Botzilla.’

Event horizons revisited. The Botzilla tale we have
just worked through may have reminded you of the black
hole information paradox,which we addressed in the sec-
tion on black holes in Chapter I.3 on page 139. We know
that the Hawking-Bekenstein analysis leads to a macro-
scopic black hole entropy and temperature of the horizon.
And we discussed that this is a property that can be as-
signed in a frame of reference where an event horizon is
perceived. Our discussion of quantum entropy clearly al-
lows for a microscopic mechanism, generating the entropy.
We imagine the creation of a particle-antiparticle pair in a
pure maximally entangled state, where one of the two par-
ticles falls through the horizon. This means that the Hilbert
space factor corresponding to the lost particle gets traced
out, which in turn tells us that the left-over particle finds
itself in a mixed (maximal) entropy state. Very much like
the Botzilla story. The entropy is the quantum entropy
that arises because we are forced to take a partial trace. I
have to admit that whether and how this perspective would
fit into the ‘quantum gravity’ scenarios is still under serious
debate.

Decoherence

Decoherence is the effect that a quantum system in a pure
state loses its quantum coherence due to interaction with a
complicated environment. It is one of the reasons why the
world around us obeys the laws of classical physics.

Of course a quantum system may be in a pure state but if
we do not take care it may quickly, through random inter-
actions with the environment, end up in a mixed state. It is
basically in a classical state where there are no quantum
interference effects left and probabilities add, not quantum
amplitudes. The quantum state ‘decoheres’.

If we talk about qubit systems, then a way to think of these
interactions is of course to think of gates that affect the
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state and thereby cause decoherence. For example we
may have a qubit in the |+i state, and have it interact with
some phase gates, like a photon going through a random
sequence of phase plates. The action of the phase-gate
Pz(✓) corresponds to the unitary operator:

✓
↵

�

◆
!

✓
1 0

0 ei✓

◆✓
↵

�

◆
=

✓
↵

ei✓ �

◆
.

Let us see what happens to the corresponding density ma-
trix:

⇢0 =
1

2

✓
1 1

1 1

◆
! ⇢(✓) = Pz ⇢0 P

⇤
z =

1

2

✓
1 -i✓

ei✓ 1

◆
.

Next we randomize the phases with some normal distri-
bution as to represent ‘the environment’. This means that
we choose the density of dephasing agents to be Gaus-
sian

f(✓) ' e-✓
2/� , (II.1.27)

and then the effect of the random sequence of gates is
obtained by averaging the above expression:
r

2i

�⇡

Z
f(✓)⇢(✓)d✓ =

1

2

✓
1 e-�/4

e-�/4 1

◆
) 1

2

✓
1 0

0 1

◆
.

What this calculation shows is that only the classical prob-
abilities on the diagonal are left and the off-diagonal phase
coherence of the quantum state ⇢0 has disappeared. By
choosing � large enough we wash out all quantum corre-
lations and end up with a classical distribution over up and
down states. This calculation merely illustrates a mecha-
nism that leads to decoherence. Clearly, one would like to
actually compute also the time-scales over which this de-
coherence takes place, this depends of course on the de-
tails of the environment or measurement apparatus.

Let us close this section by another toy model of decoher-
ence. We start with a separable two-qubit state which we
entangle using the CNOT gate as we did in (II.1.17). Then
we use the Botzilla - -Abigail mechanism by taking

the partial trace with respect to Abigail as in (II.1.26) end-
ing up with the mixed state for Botzilla. This basically turns
the story into a decoherence phenomenon.

In other words, we imagine an interaction of a qubit B

in a state | Bi with the environment (a qubit A in some
state | Ai) to generate an entangled two-qubit state | i =
| BAi from a separable two-qubit state | i = | Bi⌦ | Ai .
When viewed from the perspective of a single qubit, the
resulting state after tracing out the A qubit, becomes inco-
herent. That is, suppose we look at (II.1.17) in the density
matrix representation. Looking at the first qubit only, the
state vector of the separable state is | Bi = |+i ,, a pure
state in the density matrix representation given by equa-
tion (II.1.23),

| Bih B| = |+ih+| , 1

2

✓
1 1

1 1

◆
.

Under the action of CNOT this becomes the maximally en-
tangled state on the right-hand side of equation (II.1.17).
After partially tracing the density matrix as in (II.1.26 ) we
end up with the B qubit in a mixed state given by (II.1.24),

⇢ =
1

2

✓
1 0

0 1

◆
.

Only the ’classical’ probabilities on the diagonal are left
and the off-diagonal phase coherence of the quantum state
has disappeared due to entangling a degree of freedom in
the environment.
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Table II.1.1: Key quantum principles concerning the Hilbert space of quantum states introduced in Chapter II.1.

Keyword Description

(i) Hilbert space The complex vector space denoted by H of states of a quantum states. In this chapter
we restrict ourselves to the finite dimensional case. We refer to the Math Excursion on
complex vectors and matrices on page 632 of Volume III

(ii) State vector A pure quantum state is denoted by | i corresponding to a ket or column vector in H .

(iii) Expansion of state in a basis Any state | i has a linear expansion in the basis {|ii} given by | i =
P

i
↵i|ii , with

normalization condition
P

i
|↵i|

2 = 1 .

(iv) Probabilistic interpretation A measurement on the above state | i of the ‘property’ related to a basis {|ii} gives
outcome i with probability |↵i|

2 .

(v) Qubit state A qubit state is a two-dimensional complex vector: | i = ↵|1i + �| - 1i with normal-
ization |↵|2 + |�|2 = 1 . A realization is a spin 1/2 degree of freedom where the vector
is called a spinor.

(vi) Conjugate states The complex conjugate or dual state of | i is defined by the bra or row vector h | =P
i
↵⇤
i
hi| .

(vii) Bracket or inner product For two states | i and |�i with coefficients ↵i and �i respectively, we define the inner
product as the bracket h�| i =

P
i
�⇤
i
↵i . The orthonormal frame satisfies hi|ji = �ij .

h�| i is a complex number that satisfies h�| i = h |�i⇤ .

(viii) Multi-particle or qubit states If particle one has a state that is m-dimensional and that particle two is n-dimensional,
than the two-particle system has a (m ⇥ n)-dimensional state vector, which can be
expanded as | (1,2)i =

P
M,N

i,j
�ij|i

(1)i ⌦ |j(2)i . A two-qubit state vector is 22 = 4-
dimensional, written as: | i = ↵1|1, 1i + ↵2|1,-1i + ↵3| - 1, 1i + ↵4| - 1,-1i , with
|i, ji = |ii ⌦ |ji = |ii|ji .

(ix) Entangled and separable states A n-particle state is separable if it the state can be factorized in an n-fold product:
 (1,2,...,n)i = | (1)i| (2)i · · · | (n)i . A state is entangled if it is not separable.

(x) Mixed states A mixed state is a properly normalized (statistical) mixture of some set {| ai} pure
states: | i =

P
a
pa| ai , with probability pa that the system is in the pure state | ai .

(xi) Density matrix/operator The density operator for a mixed state | i is defined as ⇢ =
P

i
pa | aih a| For a

pure state there is only one term p = 1 .

(xi) Quantum entropy The quantum entropy of a mixed state is given by: S(⇢) = -tr ⇢ log ⇢ =
-
P

a
pa logpa . For a pure state the entropy is zero.
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Chapter II.2

Observables, measurements and uncertainty

It is wrong to think of that past [ascribed to a quan-
tum phenomenon] as ‘already existing’ in all de-
tail. The past is theory. The past has no existence
except as it is recorded in the present. By decid-
ing what questions our quantum registering equip-
ment shall put in the present we have an undeni-
able choice in what we have the right to say about
the past.

John Archibald Wheeler,
Some Strangeness in Proportion (1980)

In the previous chapter we focussed exclusively on states,
in particular the space of pure quantum states, the Hilbert
space H . In this chapter we consider the physical vari-
ables or quantum observables. These are represented by
linear operators or matrices which act on the Hilbert space.
The fact that physical variables are no longer represented
by ordinary numbers or functions like in classical physics,
but by matrices or differential operators makes quantum
theory fundamentally different. It leads to deep reflections
on the logical structure of the theory, on the nature of mea-
surements, and on the fundamental aspects of uncertainty
so concisely expressed by the Heisenberg uncertainty re-
lations. And that is what this chapter is about. It should
make you feel at home in Hilbert space.
We have summarized and specified the basic ingredients
of the mathematical framework and the jargon that comes
along with the notion of observables, which forms the sub-

ject of this chapter, in the table at the end of the chapter
on page 321.

Quantum observables are operators

Physical variables or observables in quantum theory are
represented by hermitian operators. In this section we ex-
plore what this means in general and work out most of the
details for the case of qubits. Operators have a spectrum
of eigenvalues that correspond to possible measurement
outcomes. To these eigenvalues correspond orthogonal
eigenstates (or subspaces), which can be used to define a
suitable frame for the Hilbert space. The aim of this sec-
tion is to exhibit the algebraic structure of the theory, with
the observables, projection operators and raising and low-
ering operators which play essential roles in describing the
generic properties of quantum systems.

The algebra of observables. For a quantum system we
have a set of dynamical variables called observables, O =
{A,B, . . .} . In most cases corresponding to the classical
variables, but there may be additional variables such as
the aforementioned spin , which have no classical ana-
logue. Whereas in classical physics the language of states
and dynamical variables is smoothly connected, basically
because the states are labelled by the (real) values of the
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dynamical values. This however is no longer true in the
quantum world. In quantum theory we make a clear dis-
tinction between the Hilbert space H of states and the set
of observables O. Let us start with some general proper-
ties and definitions.

1. Operators on Hilbert space. The quantum observables
are represented by linear operators, that act on Hilbert
space.1 In other words we have that O : H ! H , and
we write:

| 0i = A | i ,

with | 0i, | i 2 H and A 2 O .

You should typically think of matrices in case the Hilbert
space is finite dimensional.2 In the infinite-dimensional
case, we should think of continuous systems like a particle,
where the states are described by wavefunctions  (x, t) ,
and the operators are typically represented by a differential
operator, like the momentum and energy operators:

P = -ih̄
d

dx
and H = ih̄

d

dt
,

as we mentioned in the previous chapter.
The fact that observables are operators that ‘act on states’
implies that they may well change the physical state, and
strongly suggests the possibility that the act of measure-
ment of such an observable will affect the state of the sys-
tem.

2. Linearity. Linearity implies that for any two states and
any observable A we have that,

A (| 1i+ | 2i) = A | 1i+A | 2i .

3. Hermitian adjoint. On the algebra O we can define
1In this book we adopt the convention to represent quantum observ-

ables with uppercase letters while for their values we use lowercase.
The set {a} of allowed values is called the sample space of the observ-
able A .

2We refer to the Math Excursion on page 614 of Volume III for an
introduction to real matrices and vectors, which was extended to the
complex case in the Math Excursion on page 632.

a hermitian adjoint, or ‘dagger’ operation, denoted as † ,
where A ! A† . The definition is as follows

h�|A†| i = h�|A| i⇤ for all |�i, | i 2 H . (II.2.1)

Sandwiching the adjoint operator A† between any pair of
states yields a number, which is the complex conjugate
of the number resulting from sandwiching A . From the
definition it follows that (i) the adjoint of a product satis-
fies (AB)† = B†A† , and (ii) the dagger squares to unity:
(A†)† = A , and is therefore referred to as an involutive
automorphism of the algebra of observables. For matrices
this implies that the hermitian adjoint of A is defined as
A† = (Atr)⇤ , or in words: it is the complex conjugate of
the transpose of A .

4. Hermitian or self-adjoint operators. We require that the
eigenvalues of an observable are real numbers, as they
correspond to possible outcomes of measurements, and
that translates into conditions on the particular type of ma-
trices that can represent physical observables. As a matter
of fact the reality condition on the eigenvalues of operators
requires that the quantum observables have to correspond
to hermitian also known as self-adjoint operators or ma-
trices. This means that observables satisfy the condition
A = A† . A general hermitian matrix is a matrix M with
complex entries that can be written as M = S+ iA , where
S is real and symmetric, and A is real and antisymmetric.
For the case of a two-dimensional Hilbert space, like in
the case of a single qubit or a basic quantum spin, all ob-
servables can be expressed as a linear combination of the
unit matrix and the three Pauli or spin matrices of equation
(II.2.2).

5. Norm and boundedness. We like to talk about bounded
operators A , meaning that if they work on vectors in Hil-
bert space they do decent things. So what sets the norm
||A|| for an operator? Here is a reasonable way to do
this: (i) you let A work on all states in H , (ii) calculate
the norms of all the resulting vectors, and (iii) look at the
‘largest value’ or ‘infimum’ that occurs, which is denoted
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by inf . So, the definition of the norm of the operator A is
then:

||A||2 = inf{ h |A†A| i : 8| 2 H} .

A bounded operator has by definition a finite norm: ||A|| <

1 . If you think of A as a matrix, this statement boils down
to saying that the eigenvalues of the matrix should be fi-
nite.

6. Algebraic structure. The observables form an algebra
(we want to add and multiply observables). This is easy
to understand for matrices as we will show in the Math
Excursions just mentioned. The restrictions (of bounded-
ness and self-adjointness) are much harder to implement if
one passes to the infinite-dimensional cases correspond-
ing to physical systems like particles and fields which have
continuous variables. To properly address these problems
one needs some quite sophisticated mathematics involv-
ing concepts like Banach spaces and C⇤ (‘C-star’) alge-
bras. This allows for a mathematically rigorous and con-
sistent formulation of quantum theory. Such axiomatic ap-
proaches, however, are far beyond the scope of this book,
though one may of course argue that they are quantessen-
tial because they address foundational questions. We will
follow an operational, less rigorous approach, and com-
fortingly, it turns out that the typical notation we have in-
troduced doesn’t change much after going rigorous. We
will treat the expressions using simple rules, glossing over
the fact that we manipulate symbols which deep down may
refer to rather sophisticated notions.

The qubit observables. The Hilbert space for a qubit
is two-dimensional, and therefore the observables can be
represented by 2 ⇥ 2 hermitian matrices. A typical set of
observables would be the set of so-called Pauli matrices
{X, Y, Z} with:

X =

✓
0 1

1 0

◆
, Y =

✓
0 -i

i 0

◆
, Z =

✓
1 0

0 -1

◆
. (II.2.2)

Any one qubit observable can be expressed as a linear

combination of the three Pauli matrices and the unit ma-
trix.3

In our discussion of classical bit mechanics we already ar-
gued that the X matrix, as operator or gate, acts like a
momentum or displacement operator on the z-space of the
bit, because it acts like the NOT-gate interchanging the two
bit states |1i $ |- 1i . It shows nicely how classical phys-
ics (discrete mechanics), and now quantum theory meet
in this picture, with a correspondence between dynami-
cal maps, logical (digital) gates, and quantum observables:
they are all operators acting on a state.

q-gates. Clearly the three Pauli spin matrices above are
one-qubit gates. In classical computation the X-gate corre-
sponds to the NOT-gate, and is the only acceptable one-bit
gate. The others are not, because the Z-gate introduces
a relative minus sign (which is a phase), and the Y-gate
introduces complex components, which are both not ad-
missible for classical bits. This is a first hint that quantum
bits offer far more possibilities, so let us get back to the
qubit observables.

Sample spaces and preferred states

To each observable A corresponds a set Sa = {ai} of val-
ues it can take. In other words, it is the set of possible
outcomes of a measurement of the observable A , which
is also called the spectrum or sample space of A . If we
apply the observable A to a state | i and we get a num-
ber ai multiplying that same state, we say that the sys-
tem is in a state where A takes the value ai . A state with
this property is denoted as | i = |aii , and is called a
preferred or eigenstate (or eigenvector) of A with eigen-

3The real spin polarization operator has units and equals Sz ⌘
1

2
h̄ Z , involving an essential factor one half. Throughout the book we

discuss spin one-half directly in terms of the Pauli matrices {X, Y, Z} ,

which in most textbooks are denoted as (�x,�y,�z) .
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value ai . These statements are summarized by the fol-
lowing equation,

A|aii = ai|aii . (II.2.3)

Is the eigenvector defined this way unique? No, it is not,
we can multiply by any overall constant and it is still an
eigenvector. We take care of that by choosing the eigen-
vector to have unit length, but then there is still an overall
phase factor (ei�) possible. This factor doesn’t have any
observable consequences.

Qubit eigenstates. Recall that for the classical dynamical
bit we introduced a position z = ±1 and a momentum
p = ±1 . In the quantum realm these observables should
somehow correspond to certain operators. Let us thereto
consider the 2 ⇥ 2 matrices Z and X (related to p) which
can act on the states in H .

The basis vectors corresponding to the classical states are
indeed eigenvectors of the position operator Z:

Z

✓
1

0

◆
=

✓
1 0

0 -1

◆✓
1

0

◆
= 1

✓
1

0

◆
,

Z

✓
0

1

◆
=

✓
1 0

0 -1

◆✓
0

1

◆
= -1

✓
0

1

◆
,

and the eigenvalues z± = ±1 are the corresponding z

values. We conclude that the sample space or spectrum
of the observable Z is Sz = {±1} .

The operator X does also exactly what you would expect
of the ‘momentum’ operator; it implements the p = 1 tran-
sition |± 1i , |⌥ 1 > as one may verify explicitly:

X

✓
1

0

◆
=

✓
0 1

1 0

◆✓
1

0

◆
=

✓
0

1

◆
, etc.

We also learn that the operator X2 equals the unit matrix.
In fact we have that X2 = Y2 = Z2 = 1 , which by defini-
tion leaves all states invariant and it therefore implements
the trivial p = 0 transition. This is as far as the ‘relation’

between classical and quantum formalism can be traced.

The quantum formalism allows for more because we have
the linear superposition principle as well as the complexi-
fication of the state vectors. We have seen that the states
| ± 1i correspond to the eigenvectors of the ‘position’ op-
erator Z , but in the quantum formalism we can also ask
for the eigenvectors of other observables, for example X .

One easily verifies that these correspond to the state vec-
tors |±i = (| + 1i ± | - 1i)/

p
2 , with again eigenvalues

x± = ±1 as follows:

X

✓
1

±1

◆
=

✓
0 1

1 0

◆✓
1

±1

◆
= ±1

✓
1

±1

◆
. (II.2.4)

The eigenvectors |±i are real linear superpositions of the
basis states |±1i , and we have marked them on the circle
of real states in Figure II.1.7.

Is this all? Are we done? The answer is, no! We have
indeed identified the eigenstates of momentum, which ac-
tually do not have a classical equivalent. This shows the
quantessential possibility that the linear superposition prin-
ciple introduces. However, we have so far only explored
real states and real matrices, and it is here that the quan-
tum formalism summons us to proceed. There are other
independent choices: the one conventionally chosen is the
(complex) matrix Y:

Y =

✓
0 -i

i 0

◆
.

One may verify that Y = Y† , and we see that acting on
the basis states it indeed introduces complex coefficients
as

Y|± 1i = ± i |⌥ 1i .

So loosely speaking we could say that Y introduces a com-
plex part to the standard classical momentum variable P '
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X . We should expect its eigenstates to be complex as
well:

Y

✓
1

±i

◆
=

✓
0 -i

i 0

◆✓
1

±i

◆
= ±1

✓
1

±i

◆
,

and the eigenvalues are again y± = ±1 .

The fact that all eigenvalues square to one is not surpris-
ing if one realizes that the matrices themselves square to
the unit matrix: Z2 = P2 = Y2 = 1 . All quantum observ-
ables in this problem can be written as linear combina-
tions of the independent hermitian matrices X, Y, Z and
the unit matrix 1 . These basic observables have identi-
cal sample spaces Sx = Sy = Sz = {+1,-1} . Further-
more, as we just showed, they have no eigenvectors in
common. It signals the important fact that these three ob-
servables are incompatible with each other, a notion we
will return to later on. It raises the question of what that
means in terms of measuring these observables in such a
non eigenstate.

Expectation values. We may now also define the notion
of the expectation value of an observable A in a quantum
state | i as:

a =< A >⌘ h |A| i , (II.2.5)

which is just a number indeed. The expectation value a

is therefore a weighted average of the eigenvalues of A ,

which depends on which state | i one chooses. This is
consistent with the remark we made earlier that the square
of the coefficients are probabilities. It means that we ‘sand-
wich’ the operator between a row and column vector, for
example:

h+1| Z |+ 1i = (10)

✓
1 0

0 -1

◆✓
1

0

◆
= (10)

✓
1

0

◆
= 1 ,

and similarly:

h+1| X |+ 1i = h+1|- 1i = 0 .

An expectation value can be calculated for any observable
in any state and corresponds to some average of measure-
ment outcomes.

A Qubit is like a Barbie on a globe

We return to the qubit state space
and point out an alternative way to
parametrize qubit space by directly re-
lating it to the eigenstates of an op-
erator/observable. This amounts to

yet another geometrical representation of the state
space of a qubit or quantum spin, and that will be
useful in a variety of contexts. We start by choosing
a point on the unit two-sphere in X, Y, Z space, as
depicted in the figure (a). The point represents a
unit vector n̂ , but we want to use it to label a qubit
state, which as we saw is a point on a unit three-
sphere so we have to do a little more. First we con-
struct a unit sigma matrix n̂ · ~� , with � = {X, Y, Z} ,

which to each point on the sphere associates a
particular hermitian (2⇥ 2) matrix or observable.
This observable is proportional to the spin opera-
tor along that axis. The qubit state that we link to
the point is the eigenvector |�1i of that observable
with the highest eigenvalue (�1 = 1). However the
eigenvector is not unique: it is multiplied by a phase
factor with some angle � between zero and 2⇡ , so
to completely fix the state we have to specify the
pair {n̂,�} .
The mathematically alert reader may have experi-
enced a feeling of déjà vu since I am basically re-
peating the story I told in Chapter I.1 about the Hopf
or monopole bundle, where the three-sphere was
interpreted as a phase or circle bundle over the two-
sphere. So the three-sphere is a physically relevant
object, we have seen it appear as the bundle as-
sociated with the fundamental Dirac monopole in
Chapter I.1, as the manifold of the group SU(2) in
the Math Excursion in Volume III on Groups, and
here as the state space of a qubit.
The natural way to represent also the angle �
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in the picture is to draw the tangent plane to the
sphere at the point chosen, and define � as the
polar angle in that tangent plane as we did in the
Math Excursion on Complex numbers on page 607
of Volume III.

(a): Choosing a state of a qubit is like setting a Barbie
on a globe.. Choosing a different frame is like choosing
the North and South Poles along a different axis.

In the figure we have depicted some of the states
we discussed before, on the z-axis we have two
points with the operators ±Z with eigenvectors
| ± 1i . So the states are now represented as unit
vectors in the tangent plane at the point n̂ with
phase angle � . So in the plane at the North Pole
we find the states ±|1i at angles � = 0,⇡ .

What we have learned is that we can represent
a point on the three-sphere by choosing a point
on the two-sphere and an additional phase in that
point. This way of choosing coordinates on the
three-sphere is indeed completely equivalent to
fixing a Barbie on the earth surface by saying
where (s)he stands, and in what direction (s)he
is looking. In a more sophisticated wording one
says one picks a point on the sphere and a frame

in the tangent plane to the sphere at that point as
is illustrated in the figure. So now you don’t any
longer have to say that you cannot imagine how to
choose a point on a three-sphere, even a kid can
do it! Buy him a Barbie of some sort and a globe
and ask him to stick the Barbie on the Globe.

Note that the present picture (a) is essentially
different from Figure II.2.2 in that correspond-
ing states are located in different places. For
example the North Pole represents the states
↵ |1i = exp(i�)|1i , where � is the angle of the
arrow in the tangent plane.

This set contains in particular the real states |1i for
� = 0 and -|1i for � = ⇡ , whereas the states
±| - 1i are located on the South Pole. In Fig-
ure II.2.2 the states |± 1i are perpendicular, in Fig-
ure II.2(a) they are antipodal. Changing the qubit
state corresponds to moving around on the three-
sphere and that is nothing but walking over the
globe and looking in various directions. What is all
this good for? This alternative view of the space
of states of a qubit or quantum spin has yielded
some interesting physical insights to be addressed
in Chapter II.3 about probing the state space and
measuring the Berry phase, which is exactly like
having the Barbie in the figure walking around on
the globe. ⇤

Spin or qubit Hamiltonians

A crucial observable in physics is the energy or the Ha-
miltonian operator denoted by H . The eigenvalues En of
the Hamiltonian correspond to the allowed energy levels
of the system. The possible energy eigenstates | ni are
called stationary states, because they have a trivial time
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dependence that resides in the overall phase factor. Linear
combinations of different energy eigenstates would there-
fore have a non-trivial time dependence. Of particular in-
terest is the lowest energy state or ground state of the
system. We consider two examples for the Hamiltonian
of a spin or qubit and show their properties. Our first
choice corresponds to putting the spin in a magnetic field
in the z-direction, the Hamiltonian would be proportional to
Z:

H1 = bZ ,

and its eigenstates are | ± 1i and have eigenvalues �± =
±b . Another sensible choice for the Hamiltonian would be
what is called the total spin operator which is quadratic in
the spins:

H2 = b(X2 + Y2 + Z2) = b(1 + 1 + 1) = 3b1 ,

Indeed a bit trivial perhaps, because it is just 3 times the
unit matrix. Of course, if we act with this Hamiltonian on
any state, it will return that state with eigenvalue 3b , i.e.
H2| i = 3b| i . In this case you could say that the Hamil-
tonian is trivial, because all states have the same eigen-
value, they are what we call degenerate. Degeneracies
are a common feature and usually imply that there is some
(hidden) symmetry in the system one considers.

Frames and observables

The eigenstates |aki of a linear operator A are defined by
the equation A|aki = ak|aki . If A is a N ⇥ N hermitian
(matrix) operator, there are N independent (N-dimensional)
eigenvectors and the eigenvalues ak are real and gener-
ically different. As we will see these eigenvalues are the
possible outcomes of a measurement of that observable.
Generally the eigenstates can be chosen orthonormal, so
that

haj|aki = �jk where �ij = 1 if i = j , and �ij = 0 if i 6= j .

(II.2.6)

Figure II.2.1: Two frames. Two different frames spanning the
same two-dimensional space of real qubit states. The blue one
is the Z frame {| - 1i, |1i} and the green one is the X frame
{|+i, |-i} . The frames are related by a rotation over an angle
✓ = 45o .

This means that the set {|aii} forms an orthonormal ba-
sis or orthonormal frame for the state space – the Hilbert
space – of the system.

Qubit frames. Let us briefly illustrate this: the eigenstates
for A = Z are the column vectors

|1i ,
✓
1

0

◆
, |- 1i ,

✓
0

1

◆
,

which have eigenvalues plus and minus one respectively.
The eigenstates | ± 1i of Z form an orthonormal basis for
the space of qubit states.

If we choose instead A = X , then the normalized eigen-
states correspond to

|±i ⌘ 1p
2
(|1i± |- 1i) , 1p

2

✓
1

±1

◆

and these have eigenvalues ±1 also. Clearly, the states
|±i form an alternative basis for the qubit states. In Fig-
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Figure II.2.2: Frames and eigenvalues. The frames corre-
sponding to eigenstates of Z (blue) and X (green) respectively.
The axes are labeled by the corresponding eigenvalues. The
circle represents the normalized qubit states with real ↵ and � .

ure II.2.2 we have depicted the two frames where the unit
circle describes all the states with real coefficients ↵ and
� . This picture will return in many guises when we discuss
measurements in quantum mechanics. A priori there is
no preference for any particular basis, the best choice de-
pends on the questions you want to answer. Clearly if we
are going to measure some physical quantity, the eigen-
states of the corresponding operator will play an important
role.

What the examples just given also show is that the Z and
X operators have no eigenvectors in common. That is nec-
essarily the case because the operators do not commute,
and they are called incompatible observables. We return
to this notion in a forthcoming section.

Frame choices. When writing down an explicit expres-
sion for a qubit, or in fact for any quantum system, we first
have to choose a basis {|ii} in which the state can be ex-
panded. This basis is a matter of choice. In Figure II.2.1

Figure II.2.3: Frame rotations. Two frames spanning the space
R3 . The ‘rabbit’ and the ‘pig’ frames can be rotated into each
other. For example first rotate the z 0-axis to the z-axis, then the
x-, x 0-, y- and y 0-axes all lie in the x-y plane. So there they
can then be rotated into each other by a rotation around the z-
axis. This also holds for frames in higher dimensions because
rotations preserve the origin, the length of vectors and also the
angles between them. This in fact defines what a rotation is.

we have for example depicted the standard blue frame, but
also a different green frame consisting of the states |+i
and |-i . In Figure II.2.3 we have depicted two frames for
a three-dimensional vector space. What is quite evident
from the figures is that different frames can be transformed
into each other by a simple rotation. That is so because ro-
tations by definition not only keep the length of vectors but
also the angles between them the same.4

4A rotation in fact preserves the orientation of a frame. If we in-
terchange the x- and y-axes in Figure II.2.3, then we also have an or-
thonormal frame, but it cannot be obtained by rotating the old frame,
exactly because its orientation is opposite. The frames in the figure
are right-handed meaning to say if rotate from x to y the right-handed
rotation by the ‘like’-rule would point in the positive z-direction.
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Unitary transformations

A rotation of a vector or a frame is an operation or a trans-
formation on such a vector or frame. You may in this re-
spect think of a frame as a solid cube, under rotations its
shape is conserved, it stays congruent. In a N-dimension-
al space such rotations can be represented by a N ⇥ N

matrix that act on a vector.

An important property of rotations is that they satisfy the
group property, namely that the result of two successive
rotations is again a rotation. This is obvious in the two-
dimensional case because you just add the angles. In
three dimensions a simple way to see it is to look at the
‘rabbit’ unit vector in the z-direction in Figure II.2.3. If we
would trace out the arrow head under all possible rota-
tions, we should get the unit sphere. Any rotation of a
vector around an orthogonal axis would move the arrow-
head along a big circle over the sphere, big because it is a
circle of maximal size on a given sphere. It is also true that
the shortest distance between two points on the sphere
is exactly the unique segment of the unique big circle on
which both points lie. So, if we make first a rotation of the
vector around some axis n̂1 , the vector moves from the
first point A over a segment of some big circle to a second
point B . Next we move the resulting vector over a given
angle around a second axis n̂2 , then the vector ends up
at a third point C on the sphere. The combined rotation is
then just the rotation that moves the vector from A directly
to C over the big circle connecting them.

This is all simple to imagine, and therefore let us now trans-
late these simple geometric intuitions into a symbolic lan-
guage. We start with rotating ket vectors with rotation ma-
trices Ui:

| 2i = U1| 1i
| 3i = U2| 2i = U2U1| 1i = U3| 1i

) U3 = U2U1 . (II.2.7)

This is true for arbitrary vectors and also for arbitrary rota-
tions. Under a frame rotation U, the conjugate bra vector
will rotate like:

h 2| = h 1| U
†
1 ,

with the conjugated rotation matrix U† , that can be ob-
tained from U by interchanging rows and columns (which
is called taking its transpose Utr) and also taking its com-
plex conjugate (meaning conjugating all its matrix elements
i.e. its entries, so, U† = (Utr)⇤ . We require the length and
inner product of vectors to be preserved under rotations,
so if we simultaneously rotate arbitrary vectors | i and |�i
by U , then we have to impose:

h�2| 2i = h�1|U
† U| 1i = h�1| 1i .

From the last equality we conclude that rotations appar-
ently correspond to a unitary transformation, satisfying the
unitarity condition:5

U†U = 1 .

The rotations in N complex dimensions form a mathemati-
cal structure called a group, basically because they satisfy
the group property, equation (II.2.7). This group is called
the unitary group denoted by U(N) . More precisely it is the
special unitary group SU(N) because the rotations pre-
serve the orientation of the frame (this is the cyclic order
X, Y, Z, where by definition x̂ ⇥ ŷ = ẑ). We refer to the
Math Excursion A for further details.

Photon gates and wave plates

One can think of these unitary operations as a transfor-
mation on the qubit state vector. And changing the state

5Note that if we rotate in real space the matrices become real and
there is no complex conjugation, therefore real rotations are orthogonal
matrices O satisfying the condition that OtrO = 1 these matrices also
form a closed group under multiplication, denoted as the orthogonal
group O(N) . Indeed where quantum physicists are married to unitary
groups, classical physicists are with the orthogonal ones. It is the dif-
ference between being complex and being real.
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Figure II.2.4: Wave plates. The wave plates with optical thick-
ness of �/2 and �/4 can be used to change the polarization
state of a photon. They are unitary one-qubit phase gates, and
are the physical realizations of the transformations U described
in the text, on the states defined in Figure II.1.11. The transfor-
mations can be inverted meaning that we reverse the direction
in the picture, so, if going to the right corresponds to some U ,
then going to the left corresponds to U† .

vector really amounts to processing quantum information
as the in-state gets transformed into some out-state. Such
manipulations can be performed on real photons relatively
simply by what are called wave plates. These have two pa-
rameters: a principal axis and a given optical thickness as
is depicted in Figure II.2.4. We have shown the effect on
the polarization state of a photon when it passes through a
phase plate with its principal axis along the z-axis in the fig-
ure. The plate acts like what is called a phase-gate P(✓); it
leaves the polarization along the principal axis unchanged,
and rotates the orthogonal component by a phase corre-
sponding with the optical thickness of the plate. So in the
case at hand the action is given by,

✓
↵

�

◆
!

✓
1 0

0 ei✓

◆✓
↵

�

◆
=

✓
↵

ei✓ �

◆
.

Indeed the �/2 plate rotates the lower component over an
angle ✓ = ⇡ in the complex plane leading to the phase -1 ,

while the �/4 plate rotates by an angle ✓ = ⇡/2 giving an
imaginary factor i .

Incompatible observables

The fact that observables are represented by operators re-
flects the quantessential property that measurements may
alter the state, and therefore that the outcomes of different
measurements may depend on the order in which the mea-
surements are performed. This latter property expresses
the fact that the operators that represent observables in
quantum mechanics do not necessarily commute, by which
we mean that for the product of two observables A and B

one may have that AB 6= BA and we say that such ob-
servables are incompatible. It is pretty weird to be told
that momentum times position would not be equal to
position times momentum , but that is the way it really
is if you think of them as operators instead of numbers.
This is common in the quantum world because matrices
generically do not commute. For the simple set of qubit
observables given in equation (II.2.2), you can verify that
they do not commute with another indeed: for example
ZX- XZ = 2iY .

To illustrate this non-commutativity we have in Figure II.2.5
depicted a sequence of two 90o rotations in opposite or-
der: on the left we rotate the book first around the z-axis
and then around the x-axis, and on the right we do it in
the opposite order. At the bottom one sees that the re-
sulting orientations of the book clearly differ, meaning that
for the operations on the state of the book b one has that
RzRx 6= RxRz . For the case of a particle it turns out that the
position and momentum observables X and P do not com-
mute: one finds that XP-PX = ih̄ . This non-commutativity
of observables has dramatic consequences and lies at the
root of many of the at first sight inconvenient truths that
quantum theory revealed about the basic workings of na-
ture.
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Figure II.2.5: Non-commuting rotations. We illustrate non-
communativity of the 900 clockwise rotations Rz and Rx around
the z- and x-axes respectively. The order in which they are ap-
plied (to the book) does matter and clearly leads to a different
final state.

The labelling of quantum states. Consider a N⇥N ma-
trix observable, in the generic case it will have N different
real eigenvalues, with orthogonal eigenvectors. In general,
it may happen that two or more eigenvalues coincide, in
which case there will be more than a single (independent)
eigenvector corresponding to a given eigenvalue. We say
that the spectrum of the observable A is degenerate. In
that case the eigenvalue ai labels not just a particular state
but rather some subspace Va

i of the Hilbert space. In fact
states can be simultaneous eigenstates of other observ-
ables. The previously mentioned state may also be an
eigenvector with value bj for the observable B , and we
may label that state by the element of the combined sam-
ple space and write | i = |ai, bj, . . .i .

In general there will be many different sets consisting of
a maximal number of independent, but compatible observ-
ables and these can be used to label a particular set of ba-
sis states (a frame) of the system. Observables A and B

for which a joint set of eigenstates can be chosen, neces-
sarily commute and are therefore by definition compatible.
What makes quantum theory so special is that this is of-
ten not the case, so that we continuously have to deal with
observables A and B that are incompatible. For such in-
compatible observables Heisenberg’s uncertainty relations
impose quantessential restrictions, to which we will turn
shorty.

Quantum setting. We conclude that there are four as-
pects in which the quantum setting significantly differs from
the classical one:
(i) the set of admissible values for a dynamical variable
may differ, in particular it may be a discrete set in which
case the values would be quantized whereas in the classi-
cal case the values would be continuous;
(ii) a quantum variable may not have a classical analogue
at all, such as a particle having an intrinsic rotational de-
gree of freedom called ‘spin’, and most importantly;
(iii) in a given state of a quantum system generally incom-
patible observables cannot be simultaneously assigned a
definite value. The non-zero spread in observed values in
a given state is then governed by Heisenberg’s uncertainty
principle to be discussed later;
(iv) certain classical dynamical variables which involve prod-
ucts of incompatible variables will not have an unambigu-
ous or unique quantum analog. There may be ordering
ambiguities.

At first it seems inconceivable that such a vile theory has
become one of the crown jewels of a rigorous science
like Physics! It is remarkable that a theory can host this
very anti-intuitive notion of incompatibility without becom-
ing inconsistent. This notion of incompatibility has pro-
found repercussions on what this theory can possibly mean
and these matters will of course be discussed extensively
in the forthcoming chapters.
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Projection operators

Closely related to the notion of the state vector and a basis
{|ii} is the concept of a projector. A projector is an opera-
tor P that may act on vectors in a vector space like H and
it projects the vectors along a particular axis, or in general
on some subspace of H . By virtue of this defining prop-
erty applying a projector P twice on any vector gives the
same result as applying it once: P2 = P . Note that 1 - P

is also a projection operator as it also squares to itself. We
can rewrite this as P(1 - P) = 0 which amounts to say-
ing that P and 1 - P project on orthogonal subspaces of
H . So given a projection operator one can make an or-
thogonal decomposition of the Hilbert space. On vectors
in the first subspace the projector act as the unit operator,
and on the vectors in the orthogonal complement it acts
like the zero operator. This observation is highly relevant if
one wants to assign properties to a quantum state. A pro-
jector P assigns a truth value to a state, but only if the state
vector sits entirely in the subspace on which P projects, or
its orthogonal complement. Clearly if the state vector has
components in both, you cannot say it has the property nor
can you say that it has not. But in that case there are other
projection operators that do a better job, because there
are always subspaces which contain that state vector or to
which that vector is orthogonal. The notion of projectors
plays an important role in the theory of quantum measure-
ment as we will see in the next section.

Elementary projectors. One easily verifies that the pro-
jector Pj which projects on the axis corresponding to the
basis vector |ji is given by:

Pj = |jihj| , (II.2.8)

and indeed its square equals itself and applying it to a state
vector and using (II.2.6) yields:

Pj | i = ⌃i↵i |jihj|ii = ↵j|ji ,

which is exactly the component along the j-axis, i.e. hj| i |ji .

Note that any sum over a subset of Pi is also a projec-
tion operator (because they mutually commute), and so is
| ih | for any state | i .

Consider ‘bracketing’ an elementary projector in some state:

pi = h |Pi | i = |hi| i|2| = |↵i|
2 , (II.2.9)

it yields the component along the basis vector squared.
This is the probability pi of finding the particle in the state
|ii in an appropriate measurement. The normalization con-
dition (II.1.9) is nothing but the statement that the total prob-
ability of finding the system in some state equals one, as it
should.

Completeness. One now can also understand that the set
of elementary projection operators satisfies the so-called
completeness relation, which amounts to the statement
that X

i

|iihi| = 1 . (II.2.10)

This means that it works as the identity operator: acting
on any state vector | i it gives back the same state. The
completeness relation is also referred to as the projective
decomposition of the identity operator, since it is the oper-
ator equivalent of the statement that any state vector can
be decomposed in its components with respect to some
frame.

Observables and projectors. From the orthonormality
relations of eigenvectors {|aji} of an observable A , and
the properties of the corresponding elementary projectors
Pj , one may show that we can actually write the operator
A as:

A =
X

j

ajPj .

Needless to say that all projection operators are observ-
ables (as P = P†), but not the other way around!

Projectors on subspaces of H. It is not hard to see that
along these lines we can construct projectors that project
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Figure II.2.6: A photon polarizer. A polarizer projects the pho-
ton onto a particular polarization state. There is a calculable
probability for the photon to come through, after which it is fully
polarized in the selected direction.

on a subspace of the Hilbert space, by adding up some
subset � of elementary projectors:

P� =
X

j2�
Pj .

Such operators play an important role in the assignment of
quantum properties to states in Hilbert space.

Photon polarizers are projectors. Photons can be pro-
jected on certain subspaces of the full Hilbert space, and
these operations are quite familiar and dear to all of us.
We can use a color filter to project on a certain subspace
of wavelengths or frequencies. For example, you want to
filter out the UV component of the light if you are high up
in the mountains. But in the present context of qubits we
should rather think of a polarizer which projects the polar-
ization vector on a particular axis. As we have indicated
in Figure II.2.6 the polarizer P+1 does actually more than
just projecting the state, it projects the in-state |+i on the
chosen |+ 1i direction of the polarizer, but then renormal-

izes the state to a vector of length one, so the outstate
is | + 1i . The magnitude of the incoming component tells
you the probability that the photon will be transmitted, so
pout = (1/

p
2)2 = 1/2 . And that is what your fancy po-

laroid shades are really about. It is indeed a projector
in the sense that if we let the photons that come through
some polarizer, and subsequently let them go through an
identical polarizer then all the photons will get through. If
one rotates the second polarizer by 90 degrees, then that
projects on the orthogonal subspace, and a photon that
gets through the first polarizer will be blocked by the sec-
ond. To check this you need two Ray-Bans, or if you are
blessed with the curiosity of a true scientist you would hap-
pily break the one and only one you have in two pieces of
course.

Note that for a large number of photons the result repro-
duces the classical result, if one identifies the reduction in
the light intensity due to the polarizer with the ratio of the
number of outgoing and the number of incoming photons.
In the classical Maxwell theory, the light intensity is given
by the square of the electric field. The classical field E is
literally projected, giving the factor 1/

p
2 in the magnitude

of the projected component. And its square does give the
reduction factor 1/2 ., the same as in the quantum case.
But again, for a single photon there is no classical descrip-
tion, and to explain the single photon experimental results
one has to go quantum.

Raising and lowering operators

Let me try to make you more familiar with thinking about
dynamical variables as operators or matrices by demon-
strating a different use of the algebra of observables as
operators on states. You may think of a system having
some basic operator Q with its associated eigenvalues
and eigenstates. We also require that the system has
some ground state that we for the moment assume to be
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a unique lowest state |0i with Q|0i = q0|0i . Then we may
search for operators A± that satisfy the relation:

[Q,A±] = ±qA± . (II.2.11)

Writing this expression out we obtain the following property
of the state A±| ni ,

Q(A±| ni) = (qn ± q)(A±| ni) .

This means that starting with an eigenstate of Q , the op-
erators A± create again an eigenstate of Q with a higher
(lower) eigenvalue. Such raising and lowering operators
are extremely useful because they would in principle allow
you to create the excited states from the ground state; they
allow you to move through the spectrum of Q eigenstates
and are therefore also called laddering or step operators.
Clearly the raising operators can be written in an explicit
form as:

A+ = ⌃n|n+ 1ihn| . (II.2.12)

Such a setup works only if the eigenvalues qn are evenly
spaced, in other words if qn = q0 + nq , but this is quite
often the case.

Let us see how this works out for the example of the Ha-
miltonian H1 = Z of the previous subsection. The step
operators are now the following linear combinations:

Z+ = |1ih-1| , Z+ =

✓
0 1

0 0

◆
, (II.2.13)

and

Z- = (Z+)
† = |- 1ih1| , Z- =

✓
0 0

1 0

◆
. (II.2.14)

They are not hermitian but, as advertised, they satisfy in-
deed the commutation relations (II.5.21) with q = 2 , and
they further more satisfy:

[Z+, Z- ] = Z ,

which is just the Hamiltonian.

Now check that they step us through the spectrum of states.
The ground state is in this case the state | - 1i with low-
est eigenvalue -1 . Acting with the raising operator Z+

yields:

Z+|- 1i = |+ 1i ,
✓
0 1

0 0

◆✓
0

1

◆
=

✓
1

0

◆
,

with eigenvalue +1 . You may want to check that the raising
operator applied to the highest eigenstate |+1i yields zero
and a similar statement holds about applying the lowering
operator and the lowest energy or ground state.

We may turn the argument around and say that a lowering
operator can be used to find the ground state | 0i (up to
some constant phase factor), by requiring A-| 0i = 0 in
the present case:

✓
0 0

1 0

◆✓
↵

�

◆
=

✓
0

↵

◆
= ↵

✓
0

1

◆
) ↵ = 0 ,

from which follows that | 0i = |-1i , up to the phase factor
↵ .

The action of the step operators on the states is summa-
rized in simple spectral diagram in Figure II.2.7. Note that
the figure is also supposed to imply the fact that

Z±|± 1i = 0 ,

where the ‘0" on the right-hand side is the zero vector in
the vector space. This zero does not represent a physical
state as it has norm zero. The spectrum is bounded: it has
a so-called highest and lowest weight state.

State operators. These operators and the pictures that
represent their actions are quite useful in situations that
are more complicated than qubits. What they allow you
to do, is to give a different symbolic representation of the
general qubit state (II.1.2), as we can write:

| i = (↵+ �Z+)|- 1i =  ̂+|- 1i , (II.2.15)
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Figure II.2.7: Step operators. The action of the step operators
Z± on the basis states |±i . It is also implied that Z±|± 1i = 0 ,
where 0 is the zero vector, which is not a physical state.

or alternatively:

| i = (↵Z- + �)|+ 1i =  ̂-|+ 1i . (II.2.16)

What this equation shows is that there is a correspondence
between states and operators, if we know either a ‘lowest
weight’ or a ‘highest weight’ reference state |0i± , defined
by the conditions,

Z-|0i- = 0 or Z+|0i+ = 0 ,

which, as we saw, yielded that the lowest or ground state is
|0i- = |-1i . What we learn is that there is an equivalence
between specifying a state vector | i, and an operator  ̂
that acts on a given ground state |0i . It is this perspec-
tive which turns out to be essential for understanding the
spectrum of quantum particles and fields.

Figure II.2.8: Truth is in the eye of the beholder.Time’s eye
(1949) by Salvador Dali. ( c�Salvador Dalí, Fundación Gala-
Salvador Dalí)

Quantum measurement

Physics as a science is deeply empirical. Theories have
to be thoroughly tested by experiments and have to be
adapted or refuted if they fail to be confirmed. Experiments
involve measurements in which the features of the pro-
posed theory are observed by some means. This means
that quantum theory also features the subtle, if not ex-
otic, concepts like the linear superposition principle and
the possibility of entangled states. The basic theoretical
features were hard to put to test at the time when the the-
ory was formulated, because the experimental techniques
were not sophisticated enough to reach the necessary de-
gree of precision. The story of quantum measurement
therefore has a rich history. The first dramatic pseudo
experimental developments consisted of the well-known
‘gedanken’ or ‘thought’ experiments devised by none less
than Einstein and Schrödinger themselves. Schrödinger’s
cat addressed the problematic side of the outrageous idea
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that a cat could be in a state that is a linear combination of
a ‘dead’ and an ‘alive’ state, and we discussed it in the pre-
vious chapter on page 266. The other is the EPR paradox,
addressing the problematic aspect of non locality as a di-
rect consequence of having spatially separated particles in
an entangled state. This led to the view that quantum the-
ory would be an incomplete theory to which ‘hidden vari-
ables’ would have to be added to make it local and causally
consistent. It took fierce debates like the Einstein–Bohr
debate, and it caused a search for alternative interpreta-
tions or even theories like the ‘hidden variable’ theory of
David Bohm and the ‘many worlds’ interpretation proposed
by Hugh Everett in 1958.

Our strategy in this book is that using our knowledge of
states and observables as discussed so far, we present
the commonly adopted (called orthodox by some) Copen-
hagen interpretation of measurement in this chapter, pri-
marily because it has never been falsified, quite the op-
posite. Indeed it has been vindicated by numerous ex-
tremely refined recent experiments. Yet, not everybody is
quite comfortable with the situation and we will get to some
of the paradoxes and their (experimental) resolutions into
more detail in Chapter II.4.

The question of quantum measurement has two parts to
it: part one answers the question: given that the system
is in a state | i what can we say about the measurement
outcome of some observable A . And the second part an-
swers the question: how does a measurement affect the
state | i? We will see that in quantum theory object and
subject are, strictly speaking, no longer separable.

Probabilism.The interpretation of the wavefunction is at
first sight quite bizarre: it is a measure for where the parti-
cle may be found if one is to make a measurement. More
precisely, its square gives the probability density of finding
the particle at position x at time t . Expressed in a compact
formula it reads simply: P(x, t) = | (x, t)|2 . Probability?
What? Didn’t we completely specify the state and now at

once we start talking about the odds of finding the particle
somewhere. Is that all we can do? Can’t we do better?
Good question, so, let me quote what Richard Feynman
said on this remarkable quantum state of affairs in part
three of his famous Lectures on Physics.

We would like to emphasize an important differ-
ence between classical and quantum mechanics.
We have been talking about the probability that the
electron will arrive in a given circumstance. We
have implied that in an experimental arrangement
(even in the best possible one) it would be impos-
sible to predict exactly what would happen. We
can only predict the odds! This would mean, if it
were true, that physics has given up on the prob-
lem of trying to predict exactly what will happen in
a given circumstance. Yes! Physics has given up.
We do not know how to predict what would hap-
pen in a given circumstance, and we believe now
that it is impossible – that the only thing that can
be predicted is the probability of different events. It
must be recognized that this is a retrenchment in
our earlier ideal of understanding nature.

Richard Feynman, Lectures on Physics, Part III

This quote characterizes the dramatic change of perspec-
tive on our capability to ‘understand’ the fundamental prop-
erties of nature. It was in fact the Austrian physicist Max
Born who forcefully argued for this probabilistic interpre-
tation of quantum mechanics, and he received the Nobel
prize in 1935 for this work. This interpretation is usually re-
ferred to as the Kopenhagener Deutung, or Copenhagen
interpretation, of quantum mechanics.

Classical versus quantum measurements. Measure-
ment in classical physics is conceptually rather trivial: One
simply observes the classical state variables with a finite
precision and thereby approximates the variable as a real
number with a finite number of digits. The accuracy of
measurements is limited only by background noise and
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the precision of the measuring instrument. The crucial
assumption is that one can make any such measurement
without changing the state of the system. This implies that
the order in which one makes measurements is irrelevant,
and therefore there is no restriction on which variables
could be measured ‘simultaneously.’

In the quantum setup we describe a particle with a wave-
function which may be spread out over all of space. The
fact that the wavefunction is spread over all of space, how-
ever, does not mean that the particle is at many places si-
multaneously, or that we could observe it in different places
at the same time. It does not even mean that the particle is
actually in some definite place and that we only happen to
just not know where it is. The particle state is a probability
amplitude, referring not to the probability where the parti-
cle actually is but to where it might be found upon making
a position measurement. As we will see it basically doesn’t
make sense to talk about where the particle is before we
observe it. In general the wavefunction tells us that the
particle is, rather than where it is.

Indeed, that situation is quite different from the proposition
that we know someone is in a room behind a closed door,
and we do not know where in the room this person exactly
is, because in that case we know for sure that the person
will be definitely somewhere and we may assign a certain
probability distribution as to where she is. That distribution
however reflects our ignorance, our not-knowing the exact
state. It describes our lack of knowledge as observer, not
the actual state this person is in.

In quantum theory a given extended wavefunction speci-
fies the state of the particle completely, and knowledge of
that state does not allow us to deduce where the particle
is; its position is just not determined, in that state it has
no position a priori and it therefore makes no (quantum)
sense to talk about it! The fundamental difference between
a possible classical probability which reflects our lack of
knowledge about the system, and the inescapable

Leaving a trace. A misleading aspect
of measurement theory is that the term
measurement suggests that it is nec-
essary to have an experimenter who is

handling some intricate device to collect data. This
is not the case. As a matter of principle, it only
matters that the system interacted with something,
somewhere, at some time, and that that interac-
tion affected the state of the system. The interac-
tion may have left a trace somewhere, an indelible
mark, without any experimenter caring about it or
even being aware of it. In that sense the notion of
measurement is much more abstract, and less an-
thropocentric than you might have thought. It is like
‘forensic science,’ where one is searching for traces
of past interactions call it of ‘measurements’ – that
took place a long time ago: finger prints, car keys,
or sunglasses left on a table, or phone calls, and
photographs left on a remote server. A measure-
ment is anything that leaves some discernible trace
somewhere, at some instant in time.
So if I engage into an interaction with a particle, its
behavior may have been influenced by previous in-
teractions I have no knowledge about, and that may
in turn lead to unexpected outcomes in my experi-
ment. Something I better be aware of. It is the hid-
den constraints that often present an invisible yet
fatal flaw. We return to these questions in Chap-
ter II.4. ⇤

uncertainty that occurs even if we know the state exactly is
that the quantum probability refers to an intrinsic property
of the system and not to the state of knowledge that an
observer like you or me might or might not have about that
system. Yet, at the same time, the state limits fundamen-
tally what an observer could possibly get to know about
the system. As a consequence the measurement process
in quantum mechanics is not at all trivial.
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Another notable difference with classical mechanics is that
in many instances the set of observable states is discrete,
with quantized values for the physical variable. It is this
property that has given the theory of quantum mechanics
its name.

Maybe the most profound difference is that quantum mea-
surement typically causes a radical alteration of the state
vector. Before the measurement of an observable we can
only describe the possible outcomes in terms of proba-
bilities, whereas after the measurement the outcome is
known with certainty, and the wavefunction is irrevocably
altered to reflect this. In the Copenhagen interpretation of
quantum mechanics the wavefunction is said to ‘collapse’
when a measurement is made.

In spite of the fact that quantum mechanics makes spec-
tacularly successful predictions, the fact that quantum mea-
surements are inherently probabilistic and can ‘instantly’
alter the state of the system in such a disruptive man-
ner has caused a great deal of confusion and controversy.
In fact, one can argue that historically the field of quan-
tum computation emerged from thinking carefully about
the measurement problem.

No cloning!

If measuring a quantum state changes it, you may wonder
whether it is not a smart idea to copy such a state, be-
fore making the measurement. Take one and make two
identical ones out of it by using a quantum Xerox ma-
chine. The answer is simply that this just cannot be done.
Quantum copying is a no-go! This exceptional feature
create the possibility of a novel type of ‘quantum secu-
rity:’ Information that cannot be copied without destroying
it. This makes the no-cloning principle a blessing in dis-
guise.

What I am trying to tell you is that reading a quantum book
will change it in unpredictable ways. You might actually
want to avoid trouble with the librarian by copying the quan-
tum book before reading it. But even this precautionary
measure is obstructed by a quantum no cloning theorem,
which was first formulated by William Wootters and Woj-
ciech Zurek and by Dennis Dieks in 1982.

Suppose I have one particle in a particular state, and I
want to bring another particle into exactly the same state.
Then I have to look at the state of particle one in order to
know what state to bring particle two in. But, by doing so,
I have to affect the state of particle one. The best I can
do in general is to bring particle two in the state particle
one was in before, but then particle one is no longer in
that state. This remarkable property can be shown to hold
rigorously: quantum states cannot be copied, but they may
be transferred from one system to another. And thinking
in terms of securing information and beating our National
Security Agencies with respect to protecting our privacy,
this no-cloning may turn out to be a blessing in disguise.
And it is.

More precisely, the no-cloning theorem amounts to the
statement that for an arbitrary state | 1i on one qubit and
some particular state |�i on another, there is no quantum
device [A] that transforms |�i ⌦ | 1i ! | 1i ⌦ | 1i , i.e.
that transforms |�i into | 1i, while leaving the old | 1i un-
affected. If UA is the unitary operator representing A , this
can be rewritten | 1i| 1i = UA|�i| 1i . For a true cloning
device this property has to hold for any other state | 2i as
well, and we must also have | 2i| 2i = UA|�i| 2i . It is
not hard to demonstrate that the existence of such a device
leads to a contradiction. Since h�|�i = 1 and U†

AUA = 1 ,

the existence of a device that can clone both  1 and  2

would imply that

h 1| 2i = (h 1|h�|) (|�i| 2i)
= (h 1|h�|U†

A) (UA|�i| 2i)
= (h 1|h 1|)(| 2i| 2i) = h 1| 2i2 .
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The property h 1| 2i = h 1| 2i2 only holds if  1 and
 2 are either orthogonal or aligned meaning that either
h 1| 2i = 0 or 1 . It does not hold for arbitrary values of 1

and  2 , so there can be no such general purpose cloning
device. In fact, in view of the uncertainty of quantum mea-
surements, the no-cloning theorem does not come as a
surprise. If it were possible to clone wavefunctions, it would
be possible to circumvent the uncertainty of quantum mea-
surements by making a large number of copies of a wave-
function, measuring different properties of each copy, and
reconstructing the exact state of the original wavefunc-
tion.

The probabilistic outcome of measurements

In the formalism of quantum mechanics the possible mea-
surement outcomes of an observable quantity A are given
by the eigenvalues of the matrix A . For example, the three
Pauli matrices, defined in equation (II.2.2), all have the
same two eigenvalues �± = ±1 . This means that the pos-
sible outcomes of a measurement of the spin in any direc-
tion can only be plus or minus one. This is fundamentally
different from a spinning object in classical physics, which
can spin at any possible rate in any direction. The ob-
served value of any component of a classical spin in this
picture could be any real number between -1 and +1 .

This confirms that quantum mechanics is counter-intuitive
and subtle indeed.

If a quantum system is in an eigenstate of an observable,
then the outcome of measurements of that observable is
100% certain. For example, imagine we have a qubit in
the state with ↵ = 1 and � = 0 , so that | i = | + 1i . It is
then in the eigenstate of Z with eigenvalue z = +1 and the
measurement of Z will always yield that value. This is de-
picted in Figure II.2.9(a), and is reflected in the mathemat-
ical machinery of quantum mechanics by the fact that for
the spin or polarization operator in the z-direction, A = Z ,

the eigenvector with eigenvalue �+ = +1 is | + 1i and the
eigenvector with �- = -1 is |- 1i . In contrast, if we make
measurements in another direction, e.g. A = X , the out-
comes become probabilistic. The outcome is still +1 or
-1 , but there are calculable probabilities for each value to
occur. So the take-away message here is that it is not the
values of possible outcomes that change, only the proba-
bility by which they will occur. Quantum theory is dealing
with ‘certain uncertainties’, so to say. This is depicted in
Figure II.2.9(d). The eigenvectors of X are:

|+i =
r

1

2
(|+ 1i+ |- 1i) and |-i =

r
1

2
(|1i- |- 1i) .

In general the probability of finding the system in a given
state through a measurement is computed by first writing
the given state | i as a linear combination of the eigen-
states |aki of the matrix A corresponding to the observ-
able, i.e.

| i =
X

k

�k|aki with �k = hak| i .

The notation hak| i means that the component �k is in-
deed equal to the projection of the state vector | i on the
eigenvector |aki . The probability of measuring the system
in the state corresponding to eigenvalue ak is then given
by

pk = |�k|
2 = |hak| i|2 . (II.2.17)

As we discussed briefly before, this is why the coefficients
�k in the expansion of the state | i in a set of eigenstates
of some observable are called probability amplitudes, am-
plitudes because it is only after squaring them that one ob-
tains the probabilities for a certain measurement outcome.
And the normalization condition on the state vector is just
the statement that the total probability to find the system in
one of the allowed states, equals one. The other two pic-
tures of Figure II.2.9 give smilar distributions for an incom-
ing |+i state. In Figure II.2.10 we given the corresponding
distributions of electrons hitting the screen perpendicular
to the beam. This is what one sees preparing the beam
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in the incoming state and then measuring its polarization
along some given axis.

So, what constitutes a measurement? I have been some-
what cavalier in talking about the notion of a measurement,
while showing you nice and clean figures of some idealized
experiments. Indeed at this stage, where we for example
talk about spin polarization measurements, we have a sit-
uation in mind where we distinguish three stages in a mea-
surement experiment.

(i) A preparatory stage, where we prepare the particle(s)
so that the spin is in the desired state. For example we
have electrons coming in and by using a Stern–Gerlach
device (this will be explained in the next chapter) we can
split the beam into two with opposite polarizations along an
axis one may choose. This way one may prepare a beam
of spins in some definite and identical polarization state up
to an overall phase.
(ii) A first stage of the measurement, where we let the pre-
pared beam sequentially interact with some other devices,
which make up the experiment.
(iii) The second and final stage of the measurement, where
we actually have a ‘screen’ or other counting device. So,
in the end we measure a probability distribution that can
be compared with a theoretical prediction, and potentially
falsify our theory.

The purist may say that only the very last stage constitutes
the measurement, so where the distribution over the sam-
ple spaces of some pre-chosen set of observables is ob-
tained by projecting the outcoming particle states.

The projection postulate

In classical physics, science started from the be-
lief – or should one say, from the illusion? – that
we could describe the world, or least parts of the
world, without any reference to ourselves.

Werner Heisenberg

Apart from the probabilistic nature of measurement out-
comes, a second remarkable aspect of quantum measure-
ment is the fact that the act of making a measurement will
generically change the state of the system. It is disruptive
and will cause what is known as a ‘collapse of the wave-
function.’ The mechanism is also known as the projection
postulate, which was formulated by John von Neumann in
the early days of quantum mechanics. This postulate is at
this point an extra and in fact ad hoc postulate. Ad hoc,
because the measurement process itself is just a quan-
tum process and therefore should be completely described
within the framework of the theory. The outcome should be
‘calculable’ from first principles and cannot be decreed by
an additional postulate. In the end it is to be decided by
ever more precise measurements whether or to what ex-
tent the postulate really holds and correctly represents all
possible choices. But even then, the postulate including its
range of validity should be ‘proven’ from first principles.
This being said, the reason this is so hard is because a typ-
ical realistic measurement device is a macroscopic, classi-
cal machine. So what I just said will be extremely compli-
cated, because you have to model the effective interaction
between quantum and classical degrees of freedom, ba-
sically by going all the way down to the quantum level in
describing the apparatus.
In an operational sense the projection postulate so far has
been confirmed by basically all experiments dedicated to
test it. It is this ‘success’ which causes that the terminology
and related picture of the measurement process persist in
the mindset of most quantum practitioners .

Over the last few decades, physicists like to distinguish so-
called strong and weak measurements. Let us comment
on them subsequently.

Strong measurements. The strong measurements are
the most common ones. One observes a particular eigen-
value as we discussed, and the system makes then a tran-
sition exactly to the corresponding eigenstate. This type
of measurement does confirm the postulate by definition.
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(a) Measurement spin polarization along z-axis, of the state | i = |1i .
Outcome: probability pz(+1) = 1 and pz(-1) = 0 .

|1>

|-1>-|-1>

-|1>

-|+>

|->

-|->

|+>

 λ  = 1z

z

|Ψ>

 λ  = -1

(b) Measurement spin polarization along z-axis, of the state | i = |+i .
Outcome: pz(+1) = pz(-1) = 1/2 .

|1>

|-1>-|-1>

-|1>

-|+>

|->

-|->

|+>

λ  = 1λ  = -1 xx

|Ψ>

(c) Measurement spin polarization along x-axis, of the state | i = |+i .
Outcome: px(+1) = 1 and px(-1) = 0 .
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(d) Measurement spin polarization along x-axis, of the state | i = |1i .
Outcome px(+1) = px(-1) = 1/2 .

Figure II.2.9: Spin polarizations. Graphical representation of spin polarization along different axes. The projections of the red state
vector | i along the axes of the measurement frames gives the probability amplitude for the outcome to be plus or minus one.
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(a) Measurement spin polarization along z-axis, of the state | i = |1i .
Outcome: probability pz(+1) = 1 and pz(-1) = 0 .

(b) Measurement spin polarization along z-axis, of the state | i = |+i .
Outcome: pz(+1) = pz(-1) = 1/2 .

(c) Measurement spin polarization along x-axis, of the state | i = |+i .
Outcome: px(+1) = 1 and px(-1) = 0 .

(d) Measurement spin polarization along x-axis, of the state | i = |1i .
Outcome px(+1) = px(-1) = 1/2 .

Figure II.2.10: Spin polarization measurements. We have visualized the probability distributions discussed in the previous figure, in
counts on a z - x screen. The incoming beam is coming down along the y-axis after passing through a polarizing beamsplitter. The
width of the distribution is supposed to reflect the width of the beams.
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Figure II.2.11: Projective measurement. For the incoming state
| i there is a probability pk , equal to the projection of the state
on the eigenvector squared, to observe the (eigen)value ak .

What happens is depicted schematically in Figure II.2.11.
We start with a system in some state | i and we make
a measurement of the observable A and find a value ak ,

then the act of making the measurement changes the state
| i to the state |aki , the eigenstate of A with observed
eigenvalue ak . What this means is that if we would act with
A again immediately after, we would measure that same
eigenvalue with 100% probability, and that seems like a
reasonable thing to expect.

Weak measurements. Fortunately, one is of course free
to invent whatever smart measurement schemes one wants
to pursue, in order to – in a more subtle way – extract more
information than the projection postulate would allow you
to. This has lead to an interesting debate within the phys-
ics community about so-called weak measurements and
weak values.

The idea is to make measurements where the interaction
with the system is sufficiently weak so that it does not af-
fect the incoming state. Yet, there is the possibility to ob-

serve a ‘weak value’ which would tell us ‘something extra’
about the state of system. As the state hasn’t changed af-
ter the weak measurement, a strong measurement of an-
other incompatible observable, made right after the weak
one would not be affected. You should think of this as the
subtle changes in the screen patterns of Figure II.2.12, like
a small displacement in one of the peaks.

We have seen that a projective measurement with its col-
lapse of the wavefunction amounts to a major disruption of
the system, and here we consider the possibility to perturb
the system in a subtle way, meaning weakly. These weak
measurements may tell us something about the state of
the system without really making a complete projection.
In Figure II.2.12 we have depicted a scheme proposed by
Aharonov, Albert and Vaidman, and show what happens
to the particle distributions after we do such a weak mea-
surement. We have incoming particles in a state | i =
(|+i+

p
2|-i)/

p
3 . In Figure II.2.12(a) we have the incom-

ing beam and do no polarization measurement. In the sec-
ond Figure II.2.12(b) we measure the polarization along
the x-axis, and we see the expected splitting, with outcome
px(+1) = 1/3 and px(-1) = 2/3 . In Figure II.2.12(c) we
start with an incomplete polarization measurement along
the z-direction, which means that we apply a weak field
so that the beam does not really split. This amounts to
a small perturbation of the incoming beam. However, if
directly after the weak measurement, we measure the x-
polarization of the perturbed beam we observe a small
displacement of the weak peak in the z direction as indi-
cated in Figure II.2.12(d). The projection along the x-axis,
however, takes place as usual, but one has succeeded
in getting some extra information on the ‘incompatible’ z-
polarization. It is this tiny shift in the z direction which
amounts to the measurement of a weak value.

So here we have an example that illustrates the subtlety
of the notion of measurement, the clue being that we have
concocted a setup where we go beyond a simple projective
measurement. It underscores that all interactions in some
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(a) Measurement spin polarization of the state | i = (|+i+
p
2|-i)/

p
3 .

Polarizers are turned off.
(b) Measurement spin polarization along x-axis, of the state. Outcome:
px(+1) = 1/3, px(-1) = 2/3 .

(c) A weak measurement of the spin polarization along z-axis, of the
same state, yields a perturbed state.

(d) Measurement spin polarization along x-axis, of the perturbed state.
Outcome px(+1) = 2/3 and px(-1) = 1/3 . However the small peak is
slightly shifted.

Figure II.2.12: A weak spin measurement. The incoming beam is coming down along the y-axis after passing through a z- and/or
x-polarizing beamsplitter. The width of the distributions reflects the width of the beams. The results are explained in the text.
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Figure II.2.13: Logic and syntax. In search of semantics?

way could be called a measurement, if you are willing to
stretch the semantics of the term measurement.

Quantum grammar: Logic and Syntax

In the classical situation we speak of the phase space
of a system, to be contrasted with the Hilbert space for
quantum systems. The fundamentally different structure of
these two spaces has profound consequences for the log-
ical and deductive structure of these theories. Whereas in
the classical case properties of the system generally can
be associated with subspaces of the total phase space,
one has on the quantum level to distinguish the space
of observables from the Hilbert space, and choose from
possible consistent frameworks which are more restrictive.
Within a framework certain properties can be unambigu-
ously assigned, and deductive logic can be applied. This
is illustrated for the cases of a qubit and a particle.

Compatible observables allow for joint eigenstates and thus
for those states one may assign a point in the joint sample

space. A maximal subset of independent observables that
are mutually compatible defines a consistent framework F
to describe the system with. With the framework comes a
sampling space S which is a kind of quantum equivalent
of the classical phase space. So for the qubit example this
is clear. A consistent framework could correspond to the Z

observable, and we may describe all states of the qubit, as
(normalized) linear combinations of the basis states |± 1i
which are the eigenvectors of the Z observable as it makes
up the framework.

The framework for a quantum system is not unique, and
the choice of framework depends on what question one
wants to address and what aspect of the system one wants
to study. If you make position measurements you use the
Z-framework, and if you make momentum measurements
you choose the X-framework. Let me emphasize however
that a quantessence here is that there are observables
which are not compatible with the framework. Logically
speaking what this implies is that the observables incom-
patible with the particular framework you are using can-
not be assigned a meaning. They are meaningless in that
framework because there is no logical way one can decide
whether a property referring to the values of incompati-
ble observables is true or not. Henceforth quantum theory
has well-defined observables that have the unusual fea-
ture that they cannot be part of a logically sound deductive
argument within a given framework. Let us take a closer
look at this statement and find out what this means for a
classical particle and its quantum descendent.
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Collapse of the wavefunction. In fig-
ure (a) below we give a graphic impres-
sion of what is called ‘the collapse of
the wavefunction.’ If you think of the

wavefunction as a probability amplitude, it makes
actually a lot of sense, because you would expect
that repeating the same measurement immediately
after you have made the observation ak would give
exactly the same outcome with 100% certainty. But
that can only be the case if the state has changed
to the corresponding eigenstate |aki as decreed by
the projection postulate. So the term ‘collapse of
the wavefunction’ suggests that there is a violent
physical action at a distance going on if we make
a measurement, but that is totally misleading. The
wavefunction which indeed encodes all there is to
know about the state of the system represents a
probability amplitude, and making a measurement
can drastically change the probability of future mea-
surement outcomes.
This is a familiar phenomenon. If I know that you
are somewhere in town, I may have a rather uni-
form probability distribution for where you are that
stretches all the way to the outskirts of the city. If
you then suddenly happen to walk into my office, my
probability distribution will indeed instantaneously
collapse to some narrow spike that peaks right in
front of my desk. But that doesn’t mean that some-
thing is physically changing on the outskirts of town,
nor will you be affected.
The quantessential difference between the quan-
tum case and you is of course that the distribution
I had in my mind about you was certainly not all
there was to know about the system called ‘you!’. It
had more to say about my state of ignorance than
about you. The measurement did not affect you nor
places where you could have been. Apparently in
quantum theory the strict separation of object and

subject that reigns in classical physics is no longer
valid: no longer any neutral observers, no peeking,
or looking without touching.
In the classical context, the separation of object
and subject is based on the assumption that it
is in principle possible to make the effect of the
measurement on the system arbitrarily small. This
is no longer true in quantum theory.

(a): Collapse of the wavefunction. A state | i comes in
and a measurement of the observable A is made. This
yields with a probability pn the outcome xn 2 x , and the
state | i instantly ‘collapses’ to the state |xni .

Sure enough, given a particular state there may be
an appropriately chosen measurement that does
not change the state, but in general it does change
the state. So imagine how strange it would be if, af-
ter you read that quantum book, it changed. Never
a dull moment, but alas nobody could guarantee
you that the book would still make sense after you
read it. A recipe for great applications in social
media I think.⇤
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(b) Classically the state of a particle in one dimension is
defined by its position x and momentum p , which define
a point in its phase space Fph .

(c) The region corresponding to the proposition A: x0 <
x < x1 is shaded blue. It is true for a state if the point
representing that state is in the blue region.

(d) The proposition B: 0 < p < p1 is true for all points
in the dark red shaded region.

(e) The conjunction ‘and’ denoted as A^B corresponds
to the bright red region.

(f) The conjunction ‘or’ denoted as A _ B corresponds
to the green region.

Figure II.2.14: Propositions in classical physics. Propositions about the the position x and momentum p of a particle in one dimension
and their conjunctions.
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The case of a classical particle

Position and momentum are the basic observables that la-
bel the dynamical state of a particle which corresponds to
a point in the phase space of the particle as illustrated in
Figure II.2.14(b). These are basic because in the Newto-
nian ‘framework’ one has to specify the momentum and
position at some initial time. Then the states at any other
time would be determined provided we know the force act-
ing on the particle. The fact that the momentum and posi-
tion variables are basic also implies that other dynamical
variables like energy can be expressed in them.

We can make propositions involving properties of particu-
lar states of the particle and find a yes/no answer to whether
that proposition is true or false. Not only can we answer
questions about the elementary properties but also about
conjunctions of those. For example, we may ask whether
a state has the property A: x0  x  x1 . Then for all
points x, p in phase space in the blue shaded region of
Figure II.2.14(c) the answer is yes, and outside that region
it would be no.

So we can assign a truth value ‘1’ or ‘0’ to the proposition
A accordingly. Similarly we may ask for the p value to
satisfy 0  p  p1 and define it as proposition B , and
then we get the picture of Figure II.2.14(d). Now we can
ask for combined properties of x and p . For example, if
may ask whether the property A ^ B ( A andB) is true or
not. The truth value of this conjunction can be calculated,
and for the case at hand it equals the product of the truth
values of A and B . This assignment requires of course that
AB = BA , which means that the point has to be located
in the bright red shaded rectangle as indicated in Figure
II.2.14(e), the region that is the intersection of the shaded
regions in the two previous figures.

Similarly, one may ask whether x0  x  x1 or 0  p  p1

is valid, which means that we ask whether the property

Table II.2.1: Truth table for the propositions made in Fig-
ure II.2.14

A B A^ B A_ B
0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 1

A_ B is true or not. This proposition is in the picture rep-
resented as the union of the shaded areas, which is the
green shaded area in Figure II.2.14(f). Formally the truth
value can be calculated by the formula A + B - AB . The
figures can be summarized in a conventional truth table
as shown above, exactly as they are used in elementary
(propositional) logic. So to find the properties of the clas-
sical particle, the physicists infer these from the rules of
a simple deductive logical scheme that is mathematically
represented by a Boolean algebra with variables that can
only take two values, zero (false) or one (true).

The case of a quantum particle

Let us now sketch what happens to the particle in the
quantum arena. There is again a basic set of quantum
observables ‘X’ and ‘P’. And again one may ask at any
moment what the value of any of the observables is and
verify by measurement whether the proposition is true or
false.

Sampling spaces. Here we first have to address the ques-
tion of what the sampling spaces for these observables
are. Let us allow two possibilities for the space in which
the particle moves: it could be infinite and correspond to a
straight line or it could be finite, say, a circle. The possible
outcomes of position measurements would of course cor-
respond to points in these spaces, meaning that the sam-
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Figure II.2.15: Sample space of momentum. The sample
space Sp for the momentum observable in the quantum case
depends on the topology of the (continuous) configuration space
X in which the particle moves.

ple space Sx ' X . However, the sample space for the
momentum observable turns out to depend on the topol-
ogy of the underlying configuration space.
If the particle lives on the real line and X ' R , then the
possible values for the momentum variable are continuous
just like the position variable, Sp ' R .

On the other hand, if the configuration space would be
a circle X ' S1 , then, as Bohr told us, the spectrum of
the momentum becomes discrete and would in fact cor-
respond to the set of integers denoted by Sp ' Z . We
will treat the case of a particle on a circle in detail in the
Chapter II.5. We have indicated the two possibilities in Fig-
ure II.2.15.

There is a third possibility here, that at first may strike
you as utterly pointless but turns out to be quantessential
and should not be overlooked. Imagine that the position
space itself is discrete and infinite, like a one-dimensional
lattice Z , then, one should expect to find that the sam-
ple space for the momentum becomes a circle, Sp ' S1 .

Figure II.2.16: Sample space of position. The sample space
for the position observable is the real line. We indicated two
possible propositions A and B , and their conjunctions.

The momentum in that case becomes an angular variable
0  ✓  2⇡ .

Going yet one step further, we can also ask what hap-
pens if the position space is discrete and finite, for exam-
ple cyclic like the corners of a polygon, then interestingly
enough the sample space of the analogue of a momen-
tum observable associated with the particle hopping from
one state to another would also becomes periodic and dis-
crete. We have already run into the simplest example of
this, a space with two points being just a classical bit, or
classical Ising spin, which as we saw on a quantum level
gives rise to the qubit or quantum spin. For that case it
turned out that the position observable Z had two eigen-
values ±1 , and the same was true for the ‘momentum op-
erator’ X . As you see, we have managed to wrap a whole
lot of quantessence in a qubit, and will continue to do so.
This concludes our discussion of a first crucial difference
between the classical and quantum sampling spaces of a
‘particle’.
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Incompatible observables. The second difference is far
more dramatic. It turns out that the position and momen-
tum observables are incompatible, which means that a
consistent framework for the quantum particle can only
be based on either the momentum observable or on the
position observable.6 So, in going from classical phase
space to the quantum space one can chose the momen-
tum sample space indicated in Figure II.2.15 or for exam-
ple the position space of Figure II.2.16, and we ‘loose’ the
orthogonal dimension. The amputation of half the num-
ber of dimensions is quite an operation and I can imag-
ine that you, following our discourse, may suffer from a
kind of ‘phantom pain’ like experience. This loss implies
a quantessential restriction on what can be considered ‘a
meaningful statement’ about properties of the system, and
at the same time creates ample room for void statements
and ‘fake news.’

What we just said also means that the quantum extension
of our deductive logic gets severely restrained. Clearly if
we compare the possible properties of a classical particle
illustrated in Figure II.2.14 to the possible properties of a
quantum particle given in Figure II.2.16, these are radically
different. Most importantly we cannot assign properties to
the P and X observables simultaneously, and hence can-
not carry over the classical picture at all. What is left on
the quantum level is that we may assign properties and
ask for their conjunctions as long as they refer to one of
the two observables, and this is illustrated in Figure II.2.16
where we did define two propositions A and B pertain-
ing to the position variable and their logical conjunctions
A ^ B and A _ B . In conclusion, we note once more that
because quantum operators in general do not commute,
axes prominently present in the classical picture may be
completely absent on the quantum level. This does not
mean that the ‘lost’ observable X or P has taken the value
zero and we have left out the corresponding axes. No,

6In fact one may choose any linear combination of the two, but for
the moment we choose this simple restriction.

it says that a variable which is not part of the framework
has no meaning let alone a value, and the axis is just not
there!

We will run into these kind of situations repeatedly, where
before making any strong statements on the properties
of a state of a quantum system, we have to be explicit
about the framework we are using. In quantum theory
we apparently have one complete, consistent and rigor-
ous mathematical formalism that supports many logically
distinct frameworks. This may remind you of special rela-
tivity where one also distinguishes many reference frames
which are relativistically equivalent, as they can be trans-
formed into each other by a Lorentz transformation. But
to make an argument you better do not mix up statements
that hold in different frames. And here we are finding many
frameworks which are quantum (or unitarily) equivalent but
making a physical argument, you better stick to one if you
want to keep your physics straight.

This may at first sight look strange and unfamiliar and a
heavy load of reader unfriendly jargon, but at the same
time it is a precise, concise and explicit statement of what
states, dynamical variables and measurements in quan-
tum theory are about. And it is this core structure of the
theory that we want to extensively explore in the remain-
der of this volume. This exposition has hopefully made you
feel more comfortable with it, because from the underlying
mathematical structure lots of quantessential properties
can be derived. These quantessential properties, which
to the classical mind may appear exotic to say the least,
are falsifiable at least in principle, and have turned quan-
tum physics into a full-fledged scientific theory. The con-
struction of this solid mathematical framework was largely
the brilliant work of the second generation of outstanding
quantum physicists, like Werner Heisenberg, Erwin Schrödin-
ger, Paul Dirac, Max Born and John von Neumann to men-
tion a few.
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The case of a quantum bit

Philosophers talk about an ontology in which the quantum
reality could be understood and categorized. What are its
basic entities, what are their measurable properties and
what are the rules governing them? One likes to under-
stand what the propositions or properties are that are ei-
ther true or false. And as we have seen in quantum theory
the rules about observables appear to be rather bizarre,
and therefore it is illuminating to study their logical struc-
ture in more detail.

Projection operators. It is convenient to go back to some
of the statements we made on page 292 of the previous
section. Suppose we have some Hilbert space H and a
suitable set of observables that are mutually commuta-
tive and their common eigenvectors {|ii} span H . Or we
could construct a single observable which would be non-
degenerate and therefore satisfy

A|ii = ai|ii ,

with all its eigenvalues ai being different. Then we could
consider the elementary projectors:

Pi = |iihi| ,

which satisfy:
⌃i Pi = 1 ,

and therefore we can introduce its logical negation ¬Pi =
1 - ⌃j6=i Pj , which is of course also a projection opera-
tor that projects states on the subspace orthogonal to |ii .
These projectors all commute; furthermore the observable
A can in this basis simply be expressed as

A = ⌃iai|iihi| ,

with the eigenvalues as coefficients. The Hamiltonian op-
erator for example can be written as:

H = ⌃nEn | nih n| . (II.2.18)

Let us verify some of the equations above for the Pauli
matrices. The projection operators would correspond to
the matrices:

P1 = |1ih1| =
✓
1 0

0 0

◆
, P-1 = |- 1ih-1| =

✓
0 0

0 1

◆
.

(II.2.19)
These operators commute and indeed P1 + P-1 = 1 . The
observable Z can be expanded in the projection operators
as Z = P1 - P-1 . Just for completeness we also give the
expressions related to the observable X:

P+ = |+ih+| =
1

2

✓
1 1

1 1

◆
, P- = |-ih-| =

1

2

✓
1 -1

-1 1

◆
,

and similar properties hold.

With these projectors we may now associate properties or
propositions that may be true or false in the sense that if we
measure A and obtain some particular outcome ak , stipu-
lating that Pk is 1 (true), and all other Pi are 0 (false):

Pk|ki = 1 |ki
¬Pk|k i = (1 - ⌃j6=kPj) |ki = 0 .

You may verify this outcome from the examples above.

Non-commuting projectors. So far so good, but what
happens if we want to define elementary conjunctions be-
tween properties, say we want to ask whether P or Q

(P _ Q) is true. From Table II.2.1 one learns that such a
proposition would correspond to the truth value of the pro-
jector PQ or QP . The logical proposition P and Q , (P^Q)
has truth value P+Q-PQ , and also involves the product.
But now we run into a problem because the product of two
projectors is again a projector only if they commute. So in
quantum mechanics neither PQ nor QP can in general be
true or untrue, and this poses a fundamental problem from
an ontological point of view.

Consider in the qubit example above, for instance the propo-
sition P1_P+ . This would have to correspond to the prod-
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uct operator

P1+ = P1P+ =
1

2

✓
1 1

0 0

◆
or P+1 = P+P1 =

1

2

✓
1 0

1 0

◆
,

but these are different and moreover neither of them is a
projection operator (P2

1+ 6= P1+) to which truth values could
be assigned. In the language used before we say that Z
and X are indeed incompatible observables.

The choice of a framework. We can now avoid some
of this by demanding that we only use a set of mutually
commuting projectors or a set of compatible observables,
linked to a given basis defined by some generic observ-
able. Such a framework does indeed limit the number
of properties that can be assigned to the system. But
adopting such a framework one can use ordinary deduc-
tive logic concerning the restricted set of properties of the
system.

And conversely a state can only have or not have a prop-
erty ai if we work in a framework where we can assign a
truth value to its associated projector Pi . So, other non-
commuting observables simply have no meaning in such a
framework. And we have to think of such states in terms of
a probability amplitude over the sample space connected
to the framework one happens to be working with. There
are many inequivalent such sets and it depends on what
aspects of the theory one wants to study which one to
choose. This observation suggests the use of the notion of
a single framework, as a set in which to describe quantum
states and also the propositions about the system which
are meaningful in that framework. This defines an addi-
tional syntactic rule which forbids employing incompatible
frameworks into a single description of the properties of
the system. This is central to what is sometimes referred
to as the new quantum logic.

In this single framework setting of quantum mechanics we
return as closely as possible to a classical description of
states with definite properties and statistical distributions

over sample space. Describing the dynamics in such a
single framework makes the quantum time evolution into
some quite ordinary stochastic process as we will point
out later.

Certain uncertainties

Nothing [in quantum theory]... was more startling
than Heisenberg’s uncertainty principle, which de-
nied the possibility of simultaneously measuring cer-
tain properties of motion. The uncertainty princi-
ple introduced us to quantum fluctuations, reveal-
ing empty space to be in fact a cauldron of activity.

John Archibald Wheeler,
Geons, Black Holes & Quantum Foam (1998)

Early on in the development of quantum theory it was Wer-
ner Heisenberg who proved his fundamental uncertainty
relations stating the impossibility of simultaneously mea-
suring certain variables that characterize the state with ar-
bitrary precision. There is a fundamental limit to the accu-
racy of quantum measurements set by Planck’s constant.
These relations, more than anything else, express the pro-
found difference between classical and quantum systems.
We discuss the position-momentum uncertainty relation
for a particle state, and work out the detailed example for
a qubit.

Momentum versus position. Accepting that the state is
completely specified by a wavefunction that will only tell
you the probability amplitude for finding certain outcomes
for any given observable another question remains: what
does the wavefunction say about the momentum of the
particle? There is no mention of momentum, it doesn’t
seem to play any role whatsoever in the definition of the
state. This seems perfectly alright in view of what we have
been talking about in the previous section on compatible
observables and frameworks. All true, but could I not per-
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Figure II.2.17: Pointillism. Detail (bottom) of the pointillist paint-
ing ‘A Sunday Afternoon on the Island of La Grande Jatte’ (top)
by the French painter Georges Seurat. Painted some years be-
fore the moment when Planck made his groundbreaking quan-
tum hypothesis, this work showed how a closer look may reveal
a quantum structure.(Source: Wikimedia.)

fectly well decide to go out and just measure it, couldn’t I?
Yes, you certainly can and you would indeed get a definite
answer. But the story is the same as with the position mea-
surement. Say, if you prepare a particle in a certain state
described by some wavefunction  0(x) and you measure

a value for the momentum p = p0 . Then you could repeat
the whole procedure and somehow again prepare the par-
ticle in exactly the same initial state and then once more
measure its momentum, what would you find? Well, the
statement is that in general you would get another out-
come p1 6= p0 . How vague can a theory be? Well, in
a sense that’s precisely what quantum theory is about, it
tells you exactly how vague outcomes of measurements
are.

Certain uncertainties. Probabilities imply uncertainties
in outcome, but the magnitude of those uncertainties are
precisely determined. We have to deal with ‘certain uncer-
tainties’ so to speak. In fact there are strong bounds on the
uncertainties of different observable quantities. You might
for example try to circumvent the quantum uncertainties by
being smart. If you say, I measure the position of a particle
so that it is well localized in position space, and then im-
mediately after I measure the momentum so that I can also
localize the particle in momentum space. By doing this, am
I not arbitrarily close to the state in classical physics where
we could assign a precise position and momentum to a
particle at any instant? The stupefying answer is: certainly
not!

The Heisenberg uncertainty principle

The quantessential message on the differences between
classical and quantum observables is very clearly, con-
cisely and quantitatively encoded in what are called the
Heisenberg uncertainty relations. For the case at hand he
derived that for any state of a particle the following relation
holds for the uncertainties in position �x and momentum
�p of the particle in that state:

�x �p � h

4⇡
,

where the spread is just the width of the respective prob-
ability distributions. It relates measurement outcomes for
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the same state in different frameworks! What Heisenberg
proved was exactly that there is a lower bound on the prod-
uct of those widths. It shows unequivocally that the situa-
tion, generally assumed in classical physics, where both
widths can be taken to zero in principle (assuming ideal
measurement apparatus etc.) is not possible in quantum
theory as a matter of principle.

If we drop a marble in a bowl, it will after some oscilla-
tions settle down in the minimal energy state which means
that it will be at rest at the bottom of the bowl. Momentum
zero and position fixed exactly: no uncertainties. Clas-
sically yes, but because of the uncertainty relations, or
the particle-wave duality for that matter, this cannot be the
quantum story. A quantum marble cannot settle down in a
state where it is at rest at the bottom of the quantum bowl,
because then its position and momentum would be exactly
known, there would be no uncertainty, and that is not an
allowed state. The lowest energy state of the quantum
marble in a quantum bowl turns out to be one where the
uncertainties in position and momentum are about equal
and saturate the lower bound of the uncertainty relation. It
gets as close to the classical ideal as possible you could
say, but the truth is that the lowest energy state of the par-
ticle does not specify where it exactly is nor what its mo-
mentum precisely is.

As we will see later, there exist Heisenberg uncertainty re-
lations between any pair of observables A and B , only if a
non-trivial (non-zero) bound only occurs for an incompati-
ble (non-commuting) pair. What does this have to do with
my expose about frameworks? Surprisingly little in fact.
The uncertainty relations link the variance in outcomes of
measurements of a pair of observables in any given state.
So given a state | i of a particle, one can imagine making
many independent measurements of say the position x of
the particle in that state. This of course does not mean
that you make a simple sequence of measurements on a
single particle, because a measurement will change, what
do I say, will collapse the state! So you have to prepare

Figure II.2.18: Heisenberg’s uncertainty relation. The uncer-
tainty relations for position and momentum define the minimal
area in classical phase space corresponding to possible states
with uncertainties �x and �p .

‘identical’ particles in identical states and then make re-
peated measurements of the observables in question. You
may start with position to obtain an average or expecta-
tion value x̄ and some variance �x . Subsequently, one
could make independent momentum measurements pro-
ducing a distribution of outcomes with an average p̄ and
variance �p . Heisenberg’s fundamental relation says that
the product of these variances or ‘uncertainties’ is larger
than or equal to h̄/2 = h/4⇡ . So we do not compare in-
dividual measurement outcomes but distributions thereof.
In Figure II.2.18 we show that the product of uncertainties
in a given state corresponds to a certain rectangular area
in the (classical) phase space, the shape of the rectangle
depends on the state but its area has to be larger than the
minimal area indicated in the figure. The conclusion there-
fore is that in the quantum world there can be no states
in which both position and momentum take on precise val-
ues! It is a profound statement concerning probabilities of
measurement outcomes of different variables in any given
state, but that in itself has no bearing on the logical struc-
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Figure II.2.19: Time-frequency duality. Representation of a
sound signal as a periodic function of pressure (in red) in time:
P(t) = cos!t, or as a function of frequency P(!) with two
narrow peaks around !/2⇡ = ±f0 . A periodic signal is not
localized in time with�t !1 , but is very localized in frequency,
�f ! 0 .

ture of the quantum world we were discussing in the previ-
ous section, though it is of course consistent with it.

Non-trivial uncertainty relations exist for all pairs of incom-
patable or non-commuting observables, because these can-
not be measured simultaneously, or stated more precisely:
if the system has a definite value for the one variable, it
is not possible to assign a value for the other. One can
choose either one to quantify or describe any state of the
system but not both. We conclude that quantum states are
thus described by a maximal number of mutually compat-
ible observables that define a framework. And indeed not
all choices of sets of compatible observables are equally
convenient or practical, that depends on what you want to
know about the system.

Figure II.2.20: Time-frequency duality. The ‘clap in hands’ sig-
nal is very much localized in time, �t ! 0 and spread out very
widely in the frequency domain, �f !1 .

A sound analogy

In this subsection we take one further step trying to under-
stand what incompatible observables, and the uncertainty
relations they obey, mean. Surprisingly enough, there are
uncertainty relation look-alikes in the classical physics of
waves that may take some of the mystery away. Let us
for example think about sound. Sound is a pressure wave
that passes. At some point in space we hear a sound sig-
nal and ask how we would characterize it. One way is to
plot the pressure variations in real time, and another way
is to represent the signal in the frequency domain as a su-
perposition of sounds of different frequencies with different
amplitudes. These pictures would look quite different but
contain the same information and are just different repre-
sentations of the same signal.

Let us first look at (or listen to) a pure tone like the ‘a 0.
A truly pure ‘a 0 of 441 hertz is represented in time by a
pure sine or cosine wave of a fixed wavelength which has
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that single frequency of 441 Hz. But for a cosine to be
pure it has to last a very, very long time (compared to the
inverse frequency), as I indicated with the red curve in Fig-
ure II.2.19. So, a pure tone is very much extended in the
time domain, but if you look in the frequency domain it is
extremely narrow because the signal has only a single fre-
quency (in fact f = ±f0) as you see in the narrow peaked
blue curve in the same figure. Now, in Figure II.2.20, the
opposite happens when I clap loudly my hands once, or
shoot a gun, then the signal is extremely short in the time
domain, but in the frequency domain it is very wide.7 If I
clap my hands or bang a hammer on the table and I ask
you what the pitch was of the sound you heard, you will
answer that you could not determine any pitch because
the sound lasted for too short a time. If you were to fire
a revolver next to a piano and keep the right pedal down
then all the strings will resonate showing that basically all
the frequencies were present in the sound of the shot: an
overdose of pitch rather than no pitch. The upshot of this
exercise is that indeed duration and frequency are dual to
each other. The more accurate the frequency (i.e. the
smaller �f) in a signal, the longer it has to last (i.e. the
larger �t) and vice versa. In other words one expects a
relation like �f�t � constant to hold. This is true and
by the way the constant is 1/4⇡ . The lesson here is that
you can’t have it all: you cannot have the cake and eat it.
The physics in this example is quite comprehensible and
much what we experience in daily life, yet we encounter a
situation where we cannot ask for a signal that is precisely
localized in time and also has a well-defined pitch. These
two physical quantities are in that sense incompatible, and
this duality is intimately linked to the wave character of the
phenomenon.

Let us switch now to electromagnetic waves which are

7The two figures are not entirely symmetric because I choose to clap
at time t = 0, the exactly dual situation would be obtained by choos-
ing ! = 0 in the first figure then the cosine function would become
constant, cos 0 = 1, and the two peaks move on top of each other as
f0 = 0.

made up of many photons. Remember that photons obey
the Planck-Einstein relation E = h⌫ , so we can replace
the frequency ⌫ by the energy and obtain an energy-time
relation �E�t � h̄/2 , and that is indeed exactly an in-
stance of Heisenberg’s uncertainty relations. The interpre-
tation is that we cannot measure both variables with arbi-
trary precision simultaneously.

Heisenberg’s derivation

With the formal ingredients we have so far introduced it
turns out to be rather straightforward to actually derive the
uncertainty relation for two observables. It really is a mat-
ter of simple algebra but with objects that look awesome.
You feel like you are juggling with antique Chinese vases
but in fact they are just empty plastic bottles.

Let us consider two observables A and B , in particular we
study two vectors (A-a)| i and (B-b)| i where a = hAi
and b = hBi are real numbers. The variance (the mean
square deviation) of an operator A in a state | i is defined
in terms of expectation values as (see the Math Excursion
on Probability and statistics in Volume III):

(�A)2 ⌘< (A-a)2 >=< A2-2aA+a2 >=< A2 > -a2 .

The variance is a measure for the width of the distribution.
Note that if | i is an eigenstate of A , meaning that A| i =
a| i , then �A = 0 . Now there is a famous inequality for
vectors called the Schwarz inequality. It says that if you
have two vectors and their inner product, then the prod-
uct of their lengths squared is always larger or equal than
their inner product squared. In the familiar Euclidean set-
ting we would have |v · w|2 = |v|2|w|2 cos2 ✓ 6 |v|2|w|2 ,

which holds because the cosine squared is smaller than
one. Applied to our vectors above this yields the statement
that

h|A- a|2i h|B- b|2i � |h(A- a)(B- b)i|2 .
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Note that on the right-hand side h(A - a)(B - b)i is just
some complex number, let us call this number z . Then the
absolute value squared is

|z|2 = z⇤z = (Re z)2 + (Imz)2 ,

and clearly |z|2 � (Imz)2 , where

(Imz) =
1

2i
(z- z⇤) =

1

2i
h[A,B]i .

The commutator is the only term that survives because
z⇤ = h(A - a)(B - b)i⇤ = h(B - b)(A - a)i and all other
terms cancel out.

Putting the results of the above equations together, we ar-
rive at the desired result, the celebrated Heisenberg’s un-
certainty relation in its general form:

�A �B � 1

2
| < i[A,B] > | . (II.2.20)

Note that if A and B are hermitian then also i[A,B] is,
which makes its expectation value real. We obtain a non-
zero lower bound for the product of uncertainties in the
case the operators A and B do not commute. An imme-
diate consequence of the relation is that in any state the
uncertainty in the measurement value for two such incom-
patible variables can never be zero for both. There is a
complementarity: the more precise you know observable
A the less precise you know the value B . It is the golden
rule for giving and taking: you can’t have it all. ⌅

Qubit uncertainties

After this derivation of the precise form (II.2.20) of the un-
certainty relations it is interesting to see how these rela-
tions play out for the simple case of qubits.

We are going to check the qubit uncertainties in the cases
we considered before. If we take as two incompatible ob-
servables A = Z and B = X , then the relation would

Figure II.2.21: Spin uncertainties. Uncertainty in spin mea-
surements of Z and X denoted by � and ⌦ respectively, for the
states |1i and |+i respectively. The blue numbers are the prob-
abilities for the various outcomes. We see that where one of the
spin measurements has minimal uncertainty (� = 0), the other
is maximal (� = 1). Had we chosen an eigenstate |ri of Y then
the uncertainty in both X and Z would have been maximal, and
the uncertainty relation would again be satisfied.

read

�Z �X � 1

2
|h i[Z,X] i| = |h |Y| i| . (II.2.21)

Let us then choose for the states | i subsequently (i) |1i ,
(ii) |+i , and (iii) the eigenstate of Y with eigenvalue +1 ,

denoted by |ri . We recall that Z2 = X2 = 1 and also
that |h A i| equals either 1 or 0 for our A depending on
whether | i is an eigenstate of A or not. This makes the
calculation relatively simple for example for the left-hand
side we obtain:

(�A)2 = hA2i- (hAi)2

=

�
1- 12 = 0 (if eigenstate)
1- 02 = 1 (if not eigenstate)

,

and for the right-hand side:

|h | Y | i| =
�

1 (if eigenstate)
0 (if not eigenstate)

.
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So, for the subsequent cases we end up with the follow-
ing inequalities (i) 0 · 1 � 0 , case (ii) 1 · 0 � 0 and case
(iii) 1 · 1 � 1 , and we happily agree that in all cases the
uncertainty relation is satisfied and moreover saturates the
lower bound. In Figure II.2.21 we give the various mea-
surement outcomes with their probabilities for the Z and X

observables for the three states |1i , |+i and |ri .

Ground state energy. For a quantum
particle the lowest energy state will,
even if it is weakly localized, always

have some extra zero point energy associated with
it. Adding up all the zero point energies of all parti-
cles means that what we call the ‘vacuum’ must be
full of energy. Can’t we get it out and do something
useful with it is a question that regularly comes up.
No presumably not. All physical observables like
spectral lines and so on are related with energy dif-
ferences, and you are free to choose the ground
state level as it has no observable effect.
Having said that, you could of course scratch your
head, and modestly point out to me that there is a
notable exception, and that is Einstein’s theory of
general relativity, where the vacuum energy does
indeed cause physical effects, even of cosmic im-
portance. The shocking news has been that indeed
the energy balance in our universe is dominated by
the vacuum contribution, which amounts to some
70 percent. But it remains a complete mystery why
that number is what it is. Yet, this vacuum energy
is like a cosmological constant and it has a mind-
blowing property that it anti-gravitates and exerts an
outward gravitational pressure that makes the uni-
verse expand, and will keep the universe expanding
forever as we discussed briefly in Chapter I.2. So,
there are instances that much ado about nothing
is quite OK, especially if one understands nothing
about that nothing. ⇤

From these the variances on the left-hand side of (II.2.21)
can immediately be read.

Let me make a final comment. Let us go back to the dis-
cussion of ‘bit dynamics’ at the beginning of Chapter II.1.
There we stated that Z could be interpreted as a ‘position’
operator giving the ±1 eigenvalue for the spin-up (down)
state. In that context the X operator ‘generated’ transla-
tions (hopping in z) and as such acted like a ‘momentum’
operator. And once more we see that the two operators
do not commute and hence satisfy non-trivial uncertainty
relations. By the way, these uncertainties imply that quan-
tum computers will provide an array of potential answers,
from which the correct one has to be selected somehow.

The breakdown of classical determinism

The uncertainty relations imply strict limits on the predicta-
bility in physics. This unpredictability implies the break-
down of classical determinism. A surprising and profound
philosophical sacrifice in the realm of our material universe.

The uncertainty relations of quantum theory go further:
they imply that if we know the particle has a small uncer-
tainty in position because we just measured its position,
then it is in a state where the uncertainty in momentum
will be relatively large. If you were to ask me to tell you
where the particle would be some time after, then it would
be hard to point at a specific point. I do know its starting
position precisely, but I don’t know its momentum, and thus
it is hard to say where it goes and with what momentum.
We see that the quantum postulates, concisely expressed
in the uncertainty relations, imply the breakdown of classi-
cal predictability and determinism. This is one more truly
quantessential feature of the underlying reality.

Humankind’s limited abilities to observe have through our
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common experiences precipitated in what we call deep in-
tuitions about how the world works. And such intuitions
tend to shape our judgements and expectations. One thing
that has become inescapably clear is that quantum the-
ory has shown such intuitions to be essentially mistaken
in an essential way, a sobering thought indeed. That one
more illustrates the power of the invisible. At this point I
should remind you of the wonderful quote from the Feyn-
man’s which I included in the preface to Volume I on page
xiv.

This fundamental indeterminacy in nature has lead to nu-
merous speculations on the far-reaching consequences it
might have, varying from metaphysical hocus-pocus like
floating tables to explanations of the human free will.

Why does classical physics exist anyway?

After all this classical physics bashing, you might ask: how
come classical physics is doing so extremely well in ordi-
nary life, if it is so fundamentally wrong? How can that
be?

A golf ball. Let us consider a golf ball. If I neglect its in-
ternal structure, should I not treat it as a quantum particle
and if I do so just reproduce the classical answer? Yes, you
better do so, otherwise quantum theory would be in conflict
with direct observations. Suppose you would make an ex-
tremely accurate measurement and measure its momen-
tum in four decimal places so �p = 10-4 kgms-1 , then
substituting this into the uncertainty relation you would find
that the uncertainty in position would be a mesmerizingly
tiny �x � h/4⇡�p ' .5 ⇥ 10-30m . But wait, that is the
realm where string theorists wander. You will agree that
nobody is ever going to make a measurement of position
with such 30-decimal places accuracy, let alone of a golf
ball! Think of an ultimate machine like the Large Hadron
Collider at CERN, where physicists are able to localize par-

ticles ‘only’ up to about 10-18 meters at present. Physicists
may have their ways, but to verify the uncertainty relations
by playing golf in the LHC is not of them. So, what then
saves the day for classical physics or if you prefer, what
saves quantum physics? That is the dazzling smallness
of Planck’s constant if you express it in our anthropocen-
tric system of units, made up of meters, seconds and kilo-
grams. That is why the basic need for quantum theory, i.e.
the failure of classical theory manifests itself at first only
on small scales, and it is also for that reason that it took so
long for the quantum world to be discovered.

An electron. To appreciate the point just made, let us
replace the golf ball by an electron with a mass of about
10-30 kg . Then we could easily measure its momentum
with an uncertainty of 10-30 kg m s-1 , leaving a posi-
tion uncertainty of about one tenth of a millimeter. So,
indeed in an atom with a typical size of 10-10 m – one-
tenth of a nanometer – this uncertainty matters and there-
fore we should treat the electron quantum mechanically.
This observation by the way implies that we should no
longer think of electrons as well-localized particles orbiting
the nucleus. Indeed the way the atom is usually depicted
(see Figure I.3.6) is a severe misrepresentation inherited
from our classical intuition. Rather we should represent
the electron as a standing wave pattern of the probability
wave in the tiny volume of atomic size. Atoms are not like
tiny solar systems, but rather like tiny quantum bongos!
In fact knowing the size of the atom to be about �x ⇠

10-10 m one may use the uncertainty relations to esti-
mate the minimal momentum as p ⇠ �p = h/(4⇡�x) '
1024kgm/s , which corresponds to an electron energy of
10-19Joule ' 1 eV . And 1 electron Volt is indeed the or-
der of magnitude of atomic energy levels. It can’t be much
less and you could even say that this is one of the reasons
that matter is actually stable.

The emergence of classical physics. The macroscopic
world which obeys by definition the classical laws of phys-
ics is a world consisting of emergent phenomena, and the
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classical laws are therefore only approximately true. The
world we perceive is an incredibly coarse-grained version
of a well-shielded microscopic reality. Our world has an
incredible amount of entropy exactly because there is so
much information hidden within, and science is exactly the
systematic uncovering of that information and making it
accessible. It is a gigantic hacking operation, a gigan-
tic striptease of mother nature in which she slowly con-
fides to us her deepest secrets. There are many why -
questions one may ask on the macroscopic level that can
be answered only after they have been turned into how-
questions on the underlying quantum level. In other words,
classical physics is the emergent macroscopic manifesta-
tion of an underlying quantum world. The quantessence
comprises of the unescapable laws underlying classical
reality. This exemplifies the profound gain of progressing
insight in the long run. The process of scientific progress
is seldomly gradual and smooth, and rather proceeds un-
predictably, with sudden shocks. In evolutionary biology
Jay Gould introduced the notion of punctuated equilibrium,
which clearly echoes in the picture of long periods of ‘nor-
mal’ science, broken up by scientific revolutions, radical
turning points in our thinking leading to paradigm shifts, as
described by Thomas Kuhn in his book on Scientific Revo-
lutions. I may add that important novel cultural dimensions
have opened up, as a result of this process of progressing
insight in science as I have argued in my book In praise of
science.

Further reading on quantum measurement:

- Quantum Theory
D. Bohm
Dover Publications Inc (1989)

- Quantum Measurement Theory and its Applica-
tions
Kurt Jacobs
Cambridge University Press (2017)
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Table II.2.2: Key quantum principles introduced in this chapter on observables.

Keyword Description

(ii) Observables A physical variable a or observable is represented by a hermitian operator or ma-
trix A . To the system as a whole corresponds a set (algebra) of observables O =
{A,B, . . .} .

(iii) Eigenvalues The observable A has a set of real eigenvalues {ai} which make up the sample space
or spectrum Sa of possible measurement outcomes for A .

(iv) Eigenvectors To each eigenvalue ai corresponds an eigenvector |aii , or a subspace Va
i .

(v) Preferred frames In the non-degenerate case, the eigenvalues of A are all different, their number equals
the dimension of the Hilbert space, and the set of normalized eigenvectors {|aii} forms
an orthonormal basis for H .

(vi) Superposition Any state | i has a linear expansion in the basis of any framework. | i =
P

i �i|aii .

(vii) (In)compatibility Observables are compatible if (and only if) they mutually commute so that common
eigenvectors can be chosen. Observables that do not commute are by definition
incompatible.

(viii) Frameworks A maximal number of independent compatible observables forms a framework F . A
complete orthonormal set of joint eigenvectors of a framework forms a basis for the
Hilbert space H .

(ix) Measurement outcomes When making a measurement of an observable A on a state | i there is a probability
pk = |hak| i|2 of obtaining the result ak .

(x) Projective measurement Upon measuring the value ai in a strong or projective measurement of A, the state | i
‘collapses’ to the eigenstate |aii of A . This statement is referred to as the projection
postulate of Von Neumann.
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Chapter II.3

Interference

We have seen that a quantum particle like an electron has
wave-like features and that an electromagnetic wave has
particle-like properties as we may consider such a wave as
a collective of photons. This naturally raises the question
how quantum particles really exhibit these wave-like prop-
erties. In this chapter we focus on the question of whether
particles can show interference effects like waves do. The
answer to this question is affirmative, as is demonstrated
by the famous double slit experiments of various kinds.
In this chapter we consider classical as well as quantum
wave phenomena.

Classical wave theory and optics

Classical geometric optics treats light as straight rays that
can be deflected or reflected by different media. The strict
geometrical picture consisting of straight light rays can be
augmented by the wave-type constructions based on Huy-
gens’ principle, which states that any point on a wavefront
can be considered as a source of secondary spherical
waves. It is not only the laws and patterns of geomet-
ric optics like reflection and refraction (breaking) of light
at interfaces between different media that can then be ex-
plained, but also more subtle effects like diffraction (bend-
ing).

Figure II.3.1: Dew drop. In this lithograph of M.C. Escher, the
reflection of light causes the image of the windows of the ob-
server’s room. The refraction or breaking of light at water-air
interface yields the enlarged image of the underlying veins of
the leaf. ( c� 2023 The M.C. Escher Company.)

Basics of wave theory

Characteristics of waves. Let us recall some basics of
classical wave theory. A propagating wave can in general
be characterized by:
(i) a periodic wave pattern of subsequent maxima and min-
ima. The height of the maxima is called the amplitude of
the wave. The curves connecting adjacent maxima are
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Figure II.3.2: Wave patterns and propagation. We show the
wave pattern corresponding to propagating wavefronts from a
single point-like source, to illustrate the some basic wave con-
cepts.

called wavefronts; for the case of plane waves these are
parallel straight lines or planes, while for a single source
these are circular or spherical as illustrated in Figure II.3.2.
(ii) a pattern of rays, which are lines perpendicular to the

wave fronts. So from a point source the rays are straight
lines pointing radially out.
(iii) a wavelength � , which is defined as the distance be-
tween two subsequent wavefronts measured along a ray.
Often one uses the wavenumber k defined by k = 2⇡/� ,

instead of the wavelength.
(iv) a speed v , which is the speed at which the wavefronts
propagate. For light and other electromagnetic forms of ra-
diation propagating in vacuum, this is the universal speed
of light c . In physical media (like glass) with electrody-
namic properties different from the vacuum, however, the
velocity of light will be less than its universal value in vac-
uum. The speed of light in media may generally depend
on the wavelength (or frequency).
(v) a frequency f refers to the frequency by which every
point in the wave oscillates.

(vi) we distinguish longitudinal and transversal waves where
the medium oscillates parallel to the direction of propaga-
tion (sound), or orthogonal (light).
(vii) a polarization. Transversal waves can be (linearly)
polarized, meaning that there is a single orthogonal axis
along which the field oscillates.

Typical sizes and scales. For water waves the wave-
length may vary from micrometers to many miles. For
sound audible by the ear, in air at room temperature, the
frequency f varies from 20Hz to 20.000Hz ; and with the
sound velocity v = 343m/s , the wavelength would vary
between 1.7 cm and 17m . For visible light the typical wave-
length is thousands of angströms (⇠ 10-7 m ). It is eas-
ier to remember for microwaves, because the wavelength
you correctly guess to be of the order of micrometers. For
quantum particle waves the scale is set by the De Broglie
wavelength � = h̄/p , typically about 10-10 meters or 1
angström.

Fundamental wave relations. There is a fundamental re-
lation between the velocity, frequency and wavelength of a
wave given by v = � f . Mostly when talking about waves
one assumes these are described by a linear theory. In
such situations the linear superposition principle holds, so
to understand the wave phenomena caused by indepen-
dent sources one can simply add the wave patterns pro-
duced by the sources individually. On the one hand this
applies in general to wave phenomena, as long as the os-
cillations are small because then the linear approximation
holds well, but on the other hand we know that the Maxwell
equations describing the electromagnetic waves are linear,
and so are the Schrödinger and Dirac equations.

The physics of waves in a medium is interesting, because
a wave carries a certain amount of energy and momen-
tum. This, however, does not imply that matter somehow
moves along with the wave. Think of a wave of water, you
drop a stone in the pond which excites the water surface,
locally perturbing the equilibrium situation. It is the de-
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Figure II.3.3: Dispersion of a wavepacket. Depicted is a Gaus-
sian shaped wavepacket in x-space at t = 0 and after five
equal time intervals. The packet disperses (broadens) in time
because different components travel at a different speed.

formation energy of the (elastic) medium that causes the
perturbation (along with some characteristic deformation
energy density) to spread as a wave pattern. As the to-
tal energy of the perturbation is conserved (if we assume
that there is no dissipation), the amplitude of the circular
wave has to decrease in time because the circumference
of the wavefront increases. Anyway, for this transversal
wave the position of a water molecule stays fixed as it only
oscillates up and down. In the case of sound, the air mol-
ecules swing forth and back, but also in that case there is
no material streaming along with the wave.

With light waves the situation is different though, because
the lightwave is made up of photons, all moving with the
same speed of light. The classical wave does not corre-
spond to a single photon, rather it is a strange coherent
superposition of different states with a different number of
photons in them. They may all have the same frequency,
but the various terms can involve quite arbitrary phases.
As a matter of fact what this means is that the number of

Figure II.3.4: Group and phase velocity. We have depicted a
superposition of two linear waves with different frequencies and
momenta. The combined result shows an enveloping wave in
blue moving with the group velocity vgr , and the actual super-
position in red moving faster with phase velocity vph .

photons corresponding to a ‘classical’ wave is really not
defined. This is not meant in a statistical sense but in a
more fundamental way. To speak in the spirit of the pre-
vious chapter, their number is not defined, or better in-
definite, because the corresponding ‘number operator’ is
incompatible (does not commute) with the quantum oper-
ator that creates the classical wave configuration from the
vacuum. In other words an electromagnetic wave is not in
an eigenstate of the photon-number operator.

Dispersion. We have mentioned the fact that waves of
different wavelength or frequency may travel at different
speeds: this phenomenon is called dispersion. The most
well known is the dispersion of light in glass for exam-
ple, giving rise to separation of colors when light passes
through a prism, as in Figure II.3.8. Dispersion means that
the velocity and frequency depend on the wavelength or
the wavenumber. It is usually specified by giving the func-
tional relation between the angular frequency ! ⌘ 2⇡f
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and the wavenumber k , so by specifying ! = !(k) . And
we have seen that electromagnetic waves satisfy the lin-
ear dispersion relation ! = ck , while for the De Broglie
matter waves we have a quadratic dispersion because E =
p2/2m with p = h̄k and E = h̄! yields: ! = h̄k2/2m .

Broadening. The effect of dispersion manifests itself if
we consider the time evolution of a wavepacket, which is
just some linear superposition of components with differ-
ent wavelengths. In Figure II.3.3 we see an initial packet
that has some shape which is spatially localized with a cer-
tain width. One will find that such a packet will broaden or
spread out (disperse) during its propagation, because the
momentum components that make up the packet move at
different speeds.

Group velocity. The next question that comes to mind
is what the velocity of this wave packet is. After all it is
made up of different components that move with differ-
ent velocities. The basic answer to this question is illus-
trated in Figure II.3.4, for the simple case where we have
shown the linear superposition of two waves with differ-
ent frequencies and wave numbers, the combination can
be rewritten as a product of a difference and sum wave
with frequencies !± = (!1 ± !2)/2 and wave numbers
k± = (k1±k2)/2 . What we obtain is that the actual super-
position, which is the wave pattern in red, propagates ‘in-
side’ the slowly moving enveloping wave in blue. You could
say that the red wave with frequency!+ and wavenumber
k+ has a frequency modulated by the blue wave with !-

and wavenumber k- . The red wave moves with the phase
velocity vph = !+/k+ , whereas the envelope moves with
the group velocity vgr = !-/k- .

Dissipation. Dissipation refers to the loss of energy of
a system, for example to the environment, or by produc-
ing heat internally due to friction. For waves, dissipation is
often caused by inelasticity (viscosity) of the medium. Dis-
sipation causes the signal to die out. Note that dispersion
is not a dissipative phenomenon; it just is a consequence

Figure II.3.5: Three views. This picture offers three perspec-
tives on yours truly, from a direct, to the point, a reflective and a
refractive point of view. This can be achieved by just looking at
a glass of wine!

of the fact that different components of the wave packet
move with different velocities.

Reflection, transmission, breaking and diffraction

Huygens’ principle. To find out how the wavefront of a
propagating wave moves forward, one may consider every
point on the front as a source from which secondary waves
emanate. The envelope of the secondary wavefronts de-
fines the new wavefront. This is illustrated in the top right
picture of Figure II.3.2. Huygens’ principle is a powerful
tool to explain all kinds of generic wave phenomena, like
reflection, refraction, diffraction and interference. A nice
example of reflection and refraction on which the working
of lenses is based is provided by M.C. Escher’s lithograph
The dew droplet in Figure II.3.1.

Reflection. Light can be reflected off a surface, like in the
reflection of an ordinary mirror. The law of reflection in
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Figure II.3.6: Reflection and refraction. The picture illustrates
reflection and refraction at an interface between two media.
From the vacuum to any medium the angle with the normal to
the interface of the refracted ray r is smaller than the angle i of
the incoming beam.

geometric optics reads simply:

i = t ,

or in words the angle i of the incoming beam (with the
normal on the surface) is equal the angle t of the reflected
beam. This is illustrated in fig II.3.6.

Refraction or breaking. The law for breaking of light at an
interface between two media with relative breaking index
n is given by Snellius’ law which is also illustrated in the
same figure:

sin i

sin r
= n ,

where n is given by the ratio of the speed of lights in medium
1 and medium 2:

n =
c1(f)

c2(f)
.

The proof of both laws can be given using Huygens’ princi-
ple as we depicted in Figure II.3.7. We use the principle at

Figure II.3.7: Huygens’ principle. The construction for the
reflected and refracted beams (thin lines) and wavefronts (fat
lines) using Huygens’ principle, assuming you know the ratio of
velocities in the two media, or breaking index.

the points where the incoming rays hit the layer between
the two media, where the new front can be constructed
using the same radii in the same medium (reflection), or
reduced radii (because of the reduced speed of light) in
the dense medium.

Note that whereas in vacuum the velocity of light is uni-
versal and therefore does not depend on the frequency or
wavelength (color), this is no longer true in other media.
As a consequence the angle of refraction will be different
for different colors, as was so beautifully demonstrated by
Newton by letting a sun ray pass through a prism (see Fig-
ure II.3.8).

Bragg diffraction and reflection.

William Henry Bragg and his son Lawrence Bragg pro-
posed in 1913 a nice explanation of the reflection lines ob-
served in X-rays of crystals. The key idea of their model
was that X-rays would scatter off the individual atoms in
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Figure II.3.8: Color decomposition of white light through a
prism. The refraction of white light by passing through a prism.
The propagation speed of light of different colors (frequencies)
is different in glass and leads to different amounts of refraction.

subsequent layers of the crystal. The layers in a crystal
are equally spaced with a distance d , a distance that is
typically about 10-10 m . Requiring radiation with a wave-
length comparable to d yields that we need high frequency
X-rays indeed. The question then was to derive the condi-
tion for constructive interference of incident and reflected
waves. Assuming a monochromatic wave incident under
an angle ✓ with the surface of the crystal, the condition fol-
lows from Huygens’ principle, as is schematically depicted
in Figure II.3.9. The path length between the two rays scat-
tering from the two top layers should be proportional to an
integer m times the wavelength to obtain constructive in-
terference. The integer m is called the diffraction order.
This leads to the Bragg formula:

2d sin ✓ = nm� .

This formula is general as long as the particles in the beam
are scattered in a spherical fashion from each individual
atom in the lattice. In that sense the formula can also be
applied to matter waves, in other words, to the scattering

Figure II.3.9: Bragg reflection. The crystal consists of equally
spaced layers. Two rays from the top two layers are drawn, the
path difference between the incoming and outgoing wavefronts
of the two paths equals 2d sin ✓ , this should equal an integer
times the wavelength � .

of electrons or neutrons from crystal surfaces. By look-
ing at different plane orientations this principle turns into
a powerful technique to determine the spatial structure of
crystals.

Beamsplitters and polarization

In classical optics it was Newton who in his Opticks, pub-
lished in 1704, introduced the prism to split a beam of light
into its different light components (see Figure II.3.8), while
Huygens in his monumental Traité de la lumière, published
in 1690, emphasized the importance of double breaking by
‘Icelandic crystal’ or calcite, and explained it to a certain
extent with his wave theory of light.

These explanations were all based on the idea that differ-
ent components of ‘ordinary’ light have different velocities
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Figure II.3.10: Icelandic crystal. Double refraction of light by
an Icelandic crystal or calcite.

in various media, and therefore have a different amount
of refraction at interfaces between various media. And
this is indeed a fundamental ingredient of all beam split-
ting devices. We should be aware that in the early the-
ories of light that arose in the Enlightenment era through
the works of Descartes and later of Huygens and Newton,
many properties of light were discovered and these led to
the great dispute between the latter two about the parti-
cle versus wave-like nature of light. The property of po-
larization was not really discussed, and understanding the
transversal wave nature of light had to wait untill Maxwell
identified light as an electromagnetic waves two centuries
later.

However it is remarkable to see how tantalizing close Huy-
gens came to discovering the nature of polarization exactly
because of his particular emphasis on the phenomenon of
bi or double refraction exhibited by light passing through an
Icelandic crystal, which we have depicted in Figure II.3.10.
This phenomenon occurs basically in all transparent aniso-
tropic media. In his treatise he remarks:

Before finishing the treatise on this Crystal, I will
add one more marvelous phenomenon which I dis-
covered after having written all the foregoing. For
though I have not been able till now to find its cause,
I do not for that reason wish to desist from describ-
ing it, in order to give opportunity to others to in-
vestigate it. It seems that it will be necessary to
make still further suppositions besides those which
I have made; but these will not for all that cease to
keep their probability after having been confirmed
by so many tests.

He then goes on to describe how he studied the proper-
ties of light subsequently passing through two crystals and
makes the observation that the double refraction does not
take place at the second crystal, as is clear from his il-
lustration (see Figure II.3.11). He even goes as far as to
observe that the properties of the second refraction de-
pends on the orientation of the crystal. And his humble
conclusion reads:

It seems that one is obliged to conclude that the
waves of light, after having passed through the first
crystal, acquire a certain form or disposition in virtue
of which, when meeting the texture of the second
crystal, in certain positions, they can move the two
different kinds of matter which serve for the two
species of refraction; and when meeting the sec-
ond crystal in another position are able to move
only one of these kinds of matter. But to tell how
this occurs, I have hitherto found nothing which sat-
isfies me.

In the following we discuss various cases of how the split-
ting of a beam, dependent on the polarization state of the
particles can be achieved. First we discuss some beam
splitters for photons. Next we discuss the case of spin
one half particles like electrons, protons and neutrons in a
magnetic polarization device like the Stern–Gerlach setup.
We also introduce some other devices from which more
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Figure II.3.11: ‘A marvelous phenomenon.’ Double refraction
of light does not occur in the second crystal. Illustration taken
from Huygens’ Treatise on light.

elaborate interference experiments can be assembled. To-
gether, they form part of the toolkit for many famous ex-
periments that demonstrated how different quantum the-
ory really is, where particles can interfere with themselves,
or where certain forms of non-locality (which are strictly
forbidden in the classical realm) pertaining to entangled
states of particles can be unambiguously demonstrated.
This will be our focus in the remainder of this chapter.

Photon polarization: optical beamsplitters

In modern (quantum) optics using monochromatic lasers,
many quite stunning experiments have been performed,
demonstrating the paradoxical but quantessential features
of light and in particular its polarization. In the previous
chapter we have already discussed various filters: polar-
izers on page 293, and wave plates on page 290 through
which the polarization states can be selected and/or ma-

Figure II.3.12: A half mirror. A half-silvered mirror reflects half
the number of photons in a beam, the other half is transmitted. It
is a beam splitter (BS) that is insensitive to the polarization state
of the incoming photons.

nipulated. Now we extend the toolset with some beam-
splitters much in analogy with the Icelandic crystal. These
devices play a crucial role in experiments where proper-
ties like particle interference and entanglement can be put
to the test.

Clearly, by splitting a beam one obtains two beams which
are strictly in phase and therefore offer interesting experi-
mental possibilities.
A first splitting device would be the half-mirror, where half
the number of photons in the beam gets reflected while the
other half gets transmitted. As such this mirror is insensi-
tive to the polarization state of the photons, as we have
indicated in Figure II.3.12.
It is also possible to coat the interface with particular chem-
icals in which case we obtain a polarizing beam splitter
as depicted in Figure II.3.13; if the incoming beam is un-
polarized, the reflected photons are horizontally polarized,
while the transmitted ones are vertically polarized. We ob-
viously can rotate the polarizing cube around the incoming
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Figure II.3.13: A polarizing beam splitter (PBS). This compo-
nent is sensitive to the polarization state of the photons: the
reflected ones are horizontally polarized, the transmitted ones
vertically.

photon momentum vector, generating a split between two
other linear polarizations. This device acts much like the
anisotropic crystals causing double diffraction like the ones
Huygens mentioned. It is also similar to the Stern–Gerlach
device to split a beam of spin-1/2 particles to which we
turn shortly.

A final device we want to mention is what is called a para-
metric down converter. It is a nonlinear crystal that splits
an incoming monochromatic beam of a given frequency f;
it splits a fraction of the incoming photons into two pho-
tons with half the frequency (or energy). These secondary
photons leave the crystal under a small angle with the in-
coming beam as we have indicated in Figure II.3.14. As
we will discuss later, the remarkable property of these sec-
ondary pairs is that their polarization states are entangled.
Depending on the type of crystal this maybe parallel or or-
thogonal entanglement, where one speaks of type I or type
II down conversion.

Figure II.3.14: Two photons out of one. A parametric down
converter (PDC) is a nonlinear crystal where incoming photons
may be converted down to two photons with half the energy or
frequency. These secondary beams leave the crystal under a
small angle with the primary beam. The polarizations of the
secondary pair are entangled and can be chosen to be either
parallel or orthogonal.

Spin polarization: the Stern-Gerlach device

We have illustrated this means of polarizing the spin for
various choices of the state | i and observable A being
the spin polarization, in the Figures II.2.9. Let us comment
on their content. The green circle is the space of nor-
malized quantum states; normally this would be a three-
sphere but we have chosen the section where the coeffi-
cients ↵ and � are real, so we are left with an ordinary cir-
cle in R2 . We consider two real observables being Z and X

and combinations thereof, those have always eigenstates
that are lying on the circle. In the diagrams in the figure we
see pairs of blue axes. These axes are in the direction of
the eigenvectors of A and labeled by their eigenvalue. The
blue axes together represent thus the measurement frame
corresponding to A . Now there are five things to observe:
(i) the blue axes have a direction but are not oriented, ex-



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 332 — #362 i
i

i
i

i
i

332 CHAPTER II.3. INTERFERENCE

(a) Stern–Gerlach experiment: Measurement of spin polarization along
z-axis, of a state | i . Outcome can only be +1 or -1 in units h̄/2 with
probabilities depending on the particular state | i . The measurement
outcome affects the state of the outgoing particle.

(b) Measurement spin polarization
along z-axis, of a state | i .

(c) Measurement spin polarization
along x-axis, of a state | i .

Figure II.3.15: The Stern–Gerlach experiment. (a): Sending
the electron beam through an inhomogeneous magnetic field
will split the beam. (b) and (c): Symbolic representation of the Z
and X polarizing beam splitters that we will use later on.

pressing the fact that the opposite points ±| i have the
same probabilities. They are indistinguishable by mea-
surement. In other words they only differ by a phase, which
in this case a real phase, which can only be -1;
(ii) perhaps it is also surprising that the frames correspond-

ing to Z and X are not orthogonal, rather they only make
an angle of 45o , half the expected angle. If we were to
turn the polarizer in the minus z direction, thus rotating in
real space the polarizer in the plane by 180o , would in-
terchange the eigenvalues and consequently interchange
the axes of the measurement frame, which is equivalent to
rotating in state space by half the angle, in this case 90o .

Saying it yet differently: we have chosen the up and down
state vectors of the spin as orthogonal unit vectors. This
means that if we rotate the device by ' in ordinary x, y, z-
space, then the polarization plane will only rotate by '/2
degrees in spinor space, which in the Hilbert space for this
system means a rotation by 90o . That explains why the
choice of observable involves fixing two orthogonal axes
in state space; it is really a choice of frame rather than se-
lecting a particular direction.
(iii) Once the measurement has been made, one axis of
the frame has been singled out, and the wavefunction ‘col-
lapses’ to a normalized state along that axis. If in the ex-
ample of Figure II.2.9(d) above, we happen to measure the
X eigenvalue +1 , then the state collapses along the cor-
responding axis, meaning that we move from the state in
Figure II.2.9(d) to the state in Figure II.2.9(c).
This picture indeed allows us to make the projections on
the axes which give the probability amplitudes while the
measurement outcome labels the axis, and they also tell
you what the collapsed state looks like.

Indeed this graphical representation captures some quant-
essential features of the measurement process. We will
make use of it repeatedly later on.
(iv) The analysis we just presented underscores the subtle
meaning of the ‘state vector’ or wavefunction. Indeed it is
important to always keep in mind that it is as much defining
a state as it is a probability amplitude, which means a way
of encoding probabilities of measurement outcomes of any
given observable.
(v) Bearing the previous points in mind there is an addi-
tional remark to be made at this point. Did we make a
measurement or not necessarily? When we put a screen
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Barbie’s choice. Let us now rephrase
the measurement process in the lan-
guage of the Barbie on the globe, the

representation of spin space we introduced in the
figure on page 285 . The geometry is now some-
what different: we first have the spin in a certain
state, which means that the Barbie is located at
some point on the 2-sphere and pointing her nose
in a certain direction of the tangent plane at her lo-
cation.
Making a measurement amounts to choosing an
orientation in the X, Y, Z space, which we can
mark as a line through the center and intersect-
ing the unit sphere into two antipodal points on
the sphere. The intersection of the positive direc-
tion with the sphere corresponds to the positive
eigenvalue eigenstate, and the negative intersec-
tion corresponds to the negative eigenvalue eigen-
state. Indeed the choice of observable determines
the eigenstates up to a phase factor. So, staying
within the narrative, choosing the orientation of the
detector corresponds to installing two inspectors at
the corresponding antipodal points on the sphere.
These inspectors do not look in any specific direc-
tion, they just search around and try to spot the Bar-
bie. Once they have spotted her they both call to
her (the sphere is of course transparent – a crystal
three-sphere...) and order her to report immediately
at their place. Barbie doesn’t quite know who of the
two to choose, but she makes a choice, it doesn’t
matter who Barbie chooses as long as the probabil-
ities are in accordance with her little quantum cal-
culation. The inspectors go home and leave her on
the spot she happened to choose. That’s the state
she ends up in, and that was what the measure-
ment was.⌅

and record the electron hitting the screen we surely have
made a measurement of its spin. But you may also imag-
ine an experiment where we do not register (or measure) it
explicitly, but think of the experiment as a way to select the
initial spin state for some other experiment that makes use
of the upper or lower beam. Then it is clear that the Stern
Gerlach devise is used as a preparatory device to select
an incoming spin state.

And that naturally accommodates the fact that the state
alters after a measurement, because the information we
gather from the measurement may drastically affect the
probabilities. It is not that we as observers play a role,
because we may or may not look at the results, it is the
interaction that has or has not taken place between the
apparatus and the system, which matters.

Interference: double slit experiments

An important property of waves is that if we combine two
of them their amplitudes are added together and we get
interference: in places where the waves are in phase the
combined wave gets a maximal amplitude and where they
are out of phase they will compensate resulting in a re-
duced amplitude.

Figure II.3.16: Interference. A ‘sound’ interference experiment,
due to Georg Hermann Quincke, which demonstrates the inter-
ference of sound waves. Image from a 19th century high school
book on physics.

The interference of sound. A simple demonstration of
classical interference can be given with the sound experi-
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Figure II.3.17: Two point sources emitting waves. The two
sources are 4 wavelengths apart and are in phase.

ment devised in the nineteenth century by Georg Hermann
Quincke as shown in Figure II.3.16. In the modern guise a
tone is generated with small loudspeaker at the point a on
top, the sound (air pressure) wave splits and propagates
through both the left and right tubes. They come together
again at the point a0 at the bottom, where the two waves
interfere. The difference in length between the left and
right paths can be adjusted so as to obtain constructive or
destructive interference. In the latter case a microphone
positioned at a0 would not register any sound. The cru-
cial thing is that the total signal at the microphone is built
up from the various amplitudes along the two independent
paths and in that sense this is really a kind of double slit
experiment.

Wave interference from two point sources. Figure II.3.17
shows two point sources emitting circular waves which are
in phase. The two individual wave patterns overlap and
will therefore interfere, meaning that at certain points the
signals will amplify each other and in other points they
will cancel. A new pattern of maxima and minima will de-
velop. In Figure II.3.18 we show the pattern of water waves

Figure II.3.18: Water waves. Two slits act as sources emitting
water waves that interfere. This illustrates the geometric con-
structions displayed in the following figures.

generated by two point sources that oscillate in phase (al-
most). The pattern is obtained by literally adding up the
amplitudes of the two individual spherical patterns com-
ing from the two slits which act as point sources, incoming
are the plain waves from below and this makes that the
two sources oscillate in phase. So this is indeed a double
slit experiment and we see that the resulting pattern has
a number of striking features. We roughly see rays of out-
ward moving waves with indeed an amplitude that varies
depending on the angle.

In Figure II.3.19 we give the theoretical reconstruction of
the situation combining the two previous figures. In the
top half of this figure we could mark the points by the
path difference from the two sources (which equals an in-
teger times the wavelength) and then connect the points
with equal differences, as we did in Figure II.3.20. What
we obtain are the orange colored hyperbolic rays along
which the maximal amplitude oscillations propagate up-
wards. In between we could have drawn the zero ampli-
tude node lines connecting points where the difference is
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Figure II.3.19: Double slit interference. The slits act as sources
emitting semicircular waves that will interfere. Compare the pat-
tern with the water wave interference pattern of the previous fig-
ure.

a half-integral multiple of the wavelength. The pattern of
rays that emerges is not entirely obvious, because there is
no such thing as ‘adding’ rays; you add the wave patterns
and then construct the resulting ray pattern.

Once we have the pattern of rays we could also draw the
new wavefront picture. These correspond to the blue ellip-
tic curves in Figure II.3.21. Note that indeed the rays and
wave fronts are orthogonal in any point where they meet.
Rays and wavefronts always form what is called two or-
thogonal families of curves. What you will see is that these
wave fronts move outward. So what is the picture along
any one of these wave fronts? It crosses a fixed number of
maximal amplitude and node rays and these rays stay fixed
in time. Therefore we would encounter a one-dimensional
standing wave pattern along the wave front, and that is
what is visible in the water wave picture II.3.18.

The interference of light. In Figure II.3.22 we have de-
picted the classical experiment of Young in which he showed

Figure II.3.20: Rays. The orange maximal amplitude rays con-
nect points that have distances to the sources which differ by a
certain integer times the wavelength.

the interference of the light going through the two slits. It
only occurs if both slits are open. If only one slit is open,
one gets a single maximum comparable to that of clas-
sical particles. The result was fully consistent with Huy-
gens’ principle of light propagation following from the wave
nature of light. Comparing this experiment with the pre-
vious one on sound waves it is clear the sound measure-
ment only corresponds to a single point on the detection
screen for the light. Moving the trombone arm on the left of
Quincke’s device corresponds with moving the light detec-
tor up and down the screen, which is necessary to probe
the minima and maxima of the interference pattern.

The non-interference of marbles (classical particles).
In Figure II.3.23 we see a source shooting particles (say,
marbles) in all forward directions. Most get absorbed by
the screen but if they are directed to one of the two slits, the
particles can get through. If we count the number of parti-
cles hitting the detector screen, we typically get a distribu-
tion with two single maxima as indicated in Figure II.3.23.
This is exactly what one would expect: there is no inter-
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Figure II.3.21: Wave pattern. If we draw the elliptical curves
orthogonal to the rays, we do not get the familiar wave fronts
where the phase difference is constant. Along the curves one
obtains a standing wave with varying amplitude and wavelength.

ference of marbles, let alone that a marble would interfere
with itself.

The self-interference of a quantum particle. In Fig-
ure II.3.24 we have sketched what happens with a beam
of quantum particles such as electrons or protons or neu-
trons when they hit a screen with two narrow slits. The
quantessence is that it does not repeat the pattern of the
classical particles of Figure II.3.23 but rather that of light
depicted in Figure II.3.22. This fundamental experiment
demonstrates the wavelike nature of particles in the quan-
tum domain. The most remarkable, really quantessential
aspect of this behavior is that the phenomenon is not a
consequence of different particles in the beam interfer-
ing with each other. This would make it a collective phe-
nomenon, but no, the truly remarkable fact is that if you
shoot the electrons one by one, then the interference pat-
tern would slowly build up as is shown in Figure II.3.25.
This implies that each electron somehow interferes with it-
self, and one has to conclude that each electron has ‘knowl-

Figure II.3.22: Young’s experiment. The double slit experiment
for light as performed by Young to demonstrate the wave char-
acter of light, thereby confirming Huygens’ theory of light. On
the right the varying intensity of the light on the screen due to
the interference.

edge’ of the probability distribution as a whole.

This is indeed the case in quantum physics, as the wave-
function of the particle is exactly the probability amplitude
for finding it in any place at any time. Alternatively you may
say that in quantum theory you could calculate the proba-
bility for distinct paths from the beginning to any endpoint
on the screen separately, then the total amplitude from the
beginning to that given endpoint is the sum of those am-
plitudes. It is the linear superposition principle in a differ-
ent guise. Let us go one step further and assume that
the state  1(x) describes the wavefunction for the con-
figuration with only the left slit open, and  2(x) with only
the right slit. The (normalized) wavefunction for the ex-
periment with both slits open would then correspond to
 (x) = ( 1(x) +  2(x))/

p
2 , as we just have to add

the amplitudes. The probability of finding the particle on
a screen behind the slits is then not the same as the sum
of the probabilities of the individual left and right slit experi-
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Figure II.3.23: Marbles don’t interfere. In the double slit ex-
periment with classical particles, the number density of particles
hitting the detector screen has two separate maxima and there
is no interference.

ments, because squaring the total amplitude, yields

p(x) =
1

2
(p1(x) + p2(x)) + I(x) ,

where the interference term I(x) is defined as

I(x) =
1

2

�
 ⇤

1(x) 2(x) + 1(x) 
⇤
2(x)

�
. (II.3.1)

This is basically the one-particle quantum interference ef-
fect, a direct consequence of the particle-wave duality in
quantum physics.

In talking about quantum interference we should appreci-
ate that a single particle is described by a wave pattern that
may or may not be considered to be composed of different
components, and therefore a particle can ‘interfere with it-
self’ because of the linear superposition principle. And that
is what makes quantum interference a truly quantessential
phenomenon.

At this point there is an additional remark I would like to
make. The question whether or not an interference pattern

Figure II.3.24: Electrons are not like marbles. The double slit
experiment showing two conceivable paths that a quantum par-
ticle like the electron may have taken. The variation in the in-
tensity pattern on the screen demonstrates the wave nature of
quantum particles.

for the quantum particle will appear depends in a subtle
way on what the experimental setup is. For example, look
at the experiment of Figure II.3.26, where we have intro-
duced a source which emits pairs of entangled particles;
and particle 2 goes to the left and may or may not be de-
tected, while particle 1 goes to the right in the direction of
the double slit. The question is whether or not we will see
an interference pattern as in Figure II.3.24. The answer is,
that whether we will or will not see interference depends
on the state of particle 2, irrespective of whether we actu-
ally measure particle 2! It is the mere possibility of iden-
tifying the path that particle 1 has taken that destroys the
interference pattern. The state of the entangled particles
is basically,

| i = 1p
2
(|red1i|red2i+ |green1i|green2i . (II.3.2)

The interference term for particle 1 would come from the
red-green cross term appearing in h | i evaluated along
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Figure II.3.25: How particles make a wave pattern. Buildup
of the interference pattern of Figure II.3.24, from the successive
hits of single particles (like electrons) on the screen.

the screen:

Irg = |hred1|green1i| |hred2|green2i| ,

and this term containing the self interference of particle 1
in the first factor will vanish if the second factor for par-
ticle 2 vanishes because the |red2i and |green2i states
are orthogonal. Orthogonality here means that they have
no overlap: hred2|xihx|green2i = 0 for all x . If they are
not, (some) interference will result, but as you see this re-
ally depends on the actual setup of the experiment. As
entanglement with the environment can easily take place,
sufficient care has to be taken if one wants to demon-
strate quantum interference effects. Physicists have gone
one step further by investigating the effect of erasing the
tracking information of particle 2 , and they have shown
that if you succeed in constructing a quantum eraser in
your setup, the interference pattern will emerge. These in-
between cases have been investigated in many different
types of experiments. We will discuss one such experi-
ment for photons shortly.

Figure II.3.26: ‘Which path’ information. No interference of
particle 1 (moving to the right) if it is entangled with particle 2
and thus a path identification would be possible in principle by
measurement of particle 2.

It is the non-commutativity of observables that gives rise to
the intricacies in the quantum theory of measurement. The
predictions of quantum mechanics are intrinsically proba-
bilistic yet the theory is essentially different from classical
probability theory. On the one hand it is clear that a given
operator defines a probability measure on Hilbert space;
however as the operators are non-commuting (like matri-
ces) one is dealing with a non-commutative probability the-
ory, and complementary measures.

A basic interference experiment

We have illustrated the schematic of a typical quantum
interference experiment in Figure II.3.27 which compares
two different states and their superposition in the familiar
spin or qubit system.

In the top figure (a) we have a beam incoming identically
prepared spins that goes through a polarizer in the x di-
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(a) X polarizer and beamsplitter.

(b) X = -1 polarized in left channel. (c) X = +1 polarized in right channel.

(d) Experiment 1: Measurement Z after block-
ing right channel: p(+1) = p(-1) = 1

2
.

(e) Experiment 3: Measurement Z of left-right
interference: p(+1) = 1 and p(-1) = 0 .

(f) Experiment 2: Measurement Z after block-
ing left channel: p(+1) = p(-1) = 1

2
.

Figure II.3.27: Three experiments. Schematic of a typical quantum interference experiment. Adding the red amplitudes of left (d)
and right (f) gives the purple amplitude of (e). The corresponding probabilities do not add.
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Figure II.3.28: Adding probabilities. A different schematic view
of the three interference experiments of Figure II.3.27 using the
symbolic notation of Figure II.3.15. Adding the final probabilities
of the first and second experiment does not give the probability
of the third experiment.

rection and is split into a left and right channel with oppo-
site polarizations as shown in the two middle row figures
(b) and (c). It is important to bear in mind that what we
say next applies to each particle individually. The beam is
just there to allow us to do a series of repeated measure-
ments in each setup. In the bottom row we have depicted
the probabilities for three distinct experimental setups, all
measuring the Z polarization indicated by the blue frame.
In figure (d) we give the situation if the right channel were
blocked where we have | i = | Li = |-i corresponding to
the purple state vector, yielding equal probabilities to mea-
sure plus or minus one: pL(+1) = pL(-1) = 1

2 . Similarly
in Figure (f) on the right we have blocked the left channel,
giving | i = | Ri = |+i , corresponding to the red state
vector in the figure, and we obtain once more pR(+1) =
pR(-1) = 1

2 . Finally in the middle experiment of figure
(e) we have both channels interfere. Adding the probabil-
ity amplitudes in red of (d) and (f) yields the amplitudes in
purple of (e). Now we have to consider the (normalized)

Figure II.3.29: Adding probability amplitudes. The same
schematic view of the three interference experiments as the pre-
vious Figure II.3.28. In this figure we give the probability ampli-
tudes and now one finds that adding the total amplitudes of the
first and second experiment does give the amplitude of the third
experiment.

superposition | i = 1p
2
(| Li + | Ri) = |1i correspond-

ing to the purple arrow in figure (e), so that the probability
distribution becomes p(+1) = 1 and p(-1) = 0 . This is
notably different from the sum of the probabilities of cases
(d) and (f) which would give p̃(±1) ⌘ 1

2(pL(±1)+pR(±1))
yielding once more p̃(+1) = p̃(-1) = 1

2 . The differences
between p̃(±1) and p(±1) are indeed due to the interfer-
ence terms I(+1) = +1

2 and I(-1) = -1
2 .

In Figures II.3.28 and II.3.29 we present an alternative vi-
sualization of the same three experiments using the sym-
bols � and ⌦ introduced in Figure II.3.15 for the polarizer
settings. The left three panels give the probabilities and
one sees that they don’t add up, while in the right three
panels we give the amplitudes and one sees that they do
add up. Confirming our expectations for the interference of
the spin polarizations.
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A delayed choice experiment

A modern and clean quantum incarnation of the canoni-
cal double slit experiment is the interference experiment
using a so-called Mach–Zender interferometer. In such
a device the self-interference of quantum particles/waves,
and in particular photons, can be beautifully demonstrated.
This setup is also called a ‘delayed choice experiment’ af-
ter a gedanken proposal of John Archibald Wheeler, or a
‘which-way experiment’. The delayed choice refers to the
fact that the decision which experiment one is going to do
is taken after the incoming particles have gone through the
first polarizer thereby having chosen one of the two paths
or both. In this clever setup the device randomly chooses
between:
(i) a ‘which way’ experiment where one identifies the path
which the particle has chosen and thus no interference will
take place, or
(ii) a mode where the information on ‘which way’ is erased
and one expects interference.

In Figure II.3.30 I have sketched the schematic of such an
experiment1 by the French group of Alain Aspect, who has
pioneered this type of experiments. It consists of two com-
ponents, first an input part on the left where the polariza-
tions get split. Next the photon travels over a considerable
distance of maybe 50 meters (but recently distance of kilo-
meters have been achieved). Finally the photon enters the
output part (on the right) where one measures whether the
photon has interfered with itself or not. The two compo-
nents are space-like separated,2 so that there can be no
causal relation between the decision taken in the output
part and preparation of the photon in the input part.

Single photons enter the interferometer on the left where
they go through a polarizing beamsplitter. The horizon-

1V.Jacques et al., Science, Vol 315 (2007).
2Space-like separated means that the output component is outside

the future and past light cones of the input component.

Figure II.3.30: Delayed choice. A Mach–Zender quantum in-
terference device, involving two polarizing beamsplitters of the
type shown in Figure II.3.13, which demonstrates the quantum
interference of photons.

tally polarized component goes up and the vertically po-
larized goes straight through. Reflection by the mirrors
does not change the polarization. Then the signal trav-
els some distance. The �/2 plate with its axis under 45o ,
flips the horizontal and vertical polarizations. This is nec-
essary to allow for the beams to be joined by the second
beamsplitter. They traverse the reversed path, so in fact
the second splitter acts like a ‘joiner’. By tilting the ‘joiner’
one can also introduce a phase difference ' between the
vertical and horizontal component, where the vertical am-
plitude becomes ei'/2 and the horizontal e-i'/2 . The fur-
ther encounter depends on the random number generator
(RNG) which decides on whether or not to effectively insert
another �/2 wave plate.

Let us first assume the plate is not inserted, then the pho-
ton reaches another beam splitting prism that sends the
horizontal polarization up to detector D1 and the vertical
polarization down to detector D2 . Furthermore, there is a
device that determines whether the detectors 1 and 2 fire
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Figure II.3.31: The �/2 wave plate. Effect of the �/2 wave with
its principle axis under 22.5o with the vertical line. The compo-
nent orthogonal to the principal axis changes sign (phase= -1).
The result is that |vi = |1i ! |+i and |hi = |- 1i ! |-i .

simultaneously. So the beauty of the setup is of course
that all the counts in the detectors are recorded as well
as the random time series for the presence of the second
plate, and then a posteriori one calculates what has hap-
pened. Clearly in this mode, the polarization of the pho-
ton entering the prism carries the information about which
path the photon has taken. The D1 detects only the pho-
tons that came along the lower path, and D2 detects only
the photons that took the upper path. And indeed no in-
terference is observed as is clear from the lower graph
in Figure II.3.32. The amplitudes do not add up, and the
probabilities are 1/2 and independent of the phase ' . The
punchline here is that the whole setup in this mode just
‘measures’ which path the photon has taken. And knowing
that path the photon is just a particle and no interference
is to be expected.

In the other mode of the interferometer, an additional �/2
wave plate with its axis under an angle of 22.5o is inserted.
This has the effect that the polarizations are flipped as Fig-

Figure II.3.32: Single photon interference. The counts in the
detectors D2 (red) and D1 (blue), with and without interference.
The top graph gives the count with the wave plate in the output
channel and the bottom graph without. Taken from V. Jacques
et al., Science, (2007).

ure II.3.31 illustrates, so that Figure II.3.31 so that |1i !
|+i and |- 1i ! |-i . The important thing is that when the
photon enters the final prism the components of different
paths will mix again, the amplitudes will add and interfer-
ence will occur. This is of course assuming the photon took
both paths, which is what quantum theory predicts.

So the vertical and horizontal amplitudes become:

↵v =
1

2
(ei'/2 + e-i'/2) = cos

'

2

↵h =
1

2
(ei'/2 - e-i'/2) = i sin

'

2
.

Thus, the probability for counts in D2 becomes cos2('/2) =
1
2(1+ cos') and that for counts in D1 equals sin2('/2) =
1
2(1 - cos') . And this prediction is beautifully confirmed
by the data plotted in the top graph of Figure II.3.32. A
single photon interferes with itself, something more quant-
essential is hard to imagine.
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Figure II.3.33: The Aharonov–Bohm phase factor. If a charge
q encircles a magnetic flux � , the quantum state of the particle
will acquire a phase factor W = exp iq�/h̄c .

The Aharonov-Bohm phase.

Relative phase factors are all-important in quantum theory
and lead to quantessential observable phenomena.

One important example that comes back in many guises is
called the Aharonov–Bohm phase-factor. The correspond-
ing effect is caused by inserting magnetic flux filament in
the one electron double-slit interference experiment. The
extra phase that results is due to the line integral of the
gauge potential A along a closed loop, which we intro-
duced already in the section on classical electrodynamics
of Volume I in equation (I.1.52) and Figure I.1.27.

Let us recall that if we are in a medium where there is some
electromagnetic potential and I have a charge q which I
move along a path � from x0 to x1 , then the state vector
or the wavefunction for that matter will be transformed by

Figure II.3.34: Path-independence. The phase factor does not
change under deformations of the path, as long as the region in
between the paths is free of magnetic fields.

a phase factor:

 (x1) = W(�; x1, x0)  (x0) , (II.3.3a)

W(�; x1, x0) = exp
�
i
q

h̄c

Z x1

x0
A · dl

�
. (II.3.3b)

Here in the integral you take at every point along the path
the component of the vector potential directed along the
path. The outcome will in general depend on which path
you choose. This phase factor is an interesting object,
and we should pause for a moment to understand it bet-
ter.

Firstly note that it is what we call ‘non-local,’ and under a
gauge transformation U(x) it transforms like

W(�; x1, x0) ! U(x1)W(x1, x0)U†(x0).

If we close the loop, then the phase-factor becomes gauge
invariant, because we get U†(x0)U(x0) = U-1U = 1 , the
transformations act at the same point and therefore cancel
out.
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What does this non-local gauge invariant quantity mean?
To understand that we go back to classical electrodynam-
ics, and you have the simple property called Stokes’ law,
which tells us that if you calculate the line integral of A
around a closed loop � , then you get the magnetic flux
through (any) two-dimensional surface bounded by the loop.
So this means that the loop operator W� ‘measures’ the
magnetic flux:

W�(q,�) = eiq�/h̄c ,

which is indeed a gauge invariant quantity, as it should be.
Let us now go to a two-dimensional situation to simplify
the picture, and imagine we have a well-defined narrow
magnetic flux tube piercing through the surface as in Fig-
ure II.3.33. If we adiabatically move a charge around the
flux � the state will change according to,

|q,�i ! W�(q,�)|q,�i .

In Figure II.3.34 we show the effect of deforming the con-
tour or loop doesn’t affect the outcome as long as we do
not cross magnetic flux lines. In field free regions you
can deform the loop arbitrarily. Also, if you first go one
way around the flux and you subsequently go back around
some other loop encircling the flux in the opposite way, the
net effect will be zero.

The beauty of this story is that one can directly measure
this gauge invariant phase factor W in a one particle quan-
tum interference experiment. It is called the Aharonov–
Bohm effect, after the two theorists who proposed it in
1959 with reference to earlier work by Ehrenberg and Si-
day.3 The setup of the experiment is given in Figure II.3.35.
The gauge and path independent extra phase factor W�

appears as a relative phase factor between the  1 and  2

factors in the interference term defined in equation (II.3.1),
causing the observed shift of the interference pattern shown
in the figure.

3And maybe this credential ambiguity explains why there was no
Nobel prize awarded for this fundamental effect.

Figure II.3.35: Path-independence. The presence of a mag-
netic flux filament between the slits causes an extra phase dif-
ference between the two paths. This leads to a shift of the inter-
ference pattern from ’red’ to ‘blue’ as indicated.

Phase shift due to magnetic flux.
Let us find out how this happens. We start with the free
particle Hamiltonian and then include the coupling to the
electromagnetic field through the vector potential A, as
we did in equation (I.1.44). This amounts to replacing the
derivatives r by covariant ones D ⌘ r+ iqA/h̄c:

H = -
h̄2

2m
r2 ! H = -

h̄2

2m
D2 .

Suppose we have solved the problem with A = 0 corre-
sponding to  1(x) and  2(x) . We want to find out what
changes if we take A 6= 0. Consider the covariant deriva-
tive working on any function, then we have the following
equality:

D A(x) = r
⇣

exp
�
i
q

h̄c

Zx1

x0

Adx
�
 A(x)

⌘
,

The only way the coupling to the A field manifests itself is
through the phase factor W. In other words the solutions
are linked as follows:

 A
i (x) = W⇤(�i; x, x0) i(x) ; i = 1, 2 .
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The phase factor looks awkward in that there at once ap-
pears a point x0 and the line integral along a path �i from
x0 to x1. But the identity holds for any choice of x0 and
may depend on �, as will become clear.

Now return to the interference term I(x) defined by equa-
tion (II.3.1). One chooses for x0 the position of the source,
and for  A

1 the path �1 has to be chosen to pass through
the first slit and for  A

2 a path �2 through the second slit.
Then the first term of I(x) involves the product:

 A⇤
1 (x) A

2 (x)

= W(�1, x, x0)W⇤(�2; x, x0)ei(�2(x)-�1(x)) | 1(x)|| 2(x)| ,

where the the �i(x) are the phases of A = 0 solution. Note
that W⇤(�; x, x0) = W(�; x0, x) , in other words the conju-
gation reverses the path, but then the product of the two W

factors yields a closed path through both slits encircling the
magnetic flux giving the overall phase factor W�(q,�) =
eiq�/h̄c. Putting it all together we obtain:

I(x) = cos
�q�
h̄c

+ �(x)
�
| 1(x)|| 2(x)| ,

with �(x) ⌘ �2(x)- �1(x) .

What this calculation shows is that the position dependent
phase �(x) corresponding to the A = 0 gets shifted by
an amount proportional to the flux-charge product. This
shift is constant; it does not depend on where you are,
which means that the interference pattern generated by
�(x) gets shifted as a whole, as we have indicated in Fig-
ure II.3.35. We will return to these Aharonov–Bohm phases
on page 416 of Chapter II.5, where we talk about exotic
particle spin and statistics properties in two dimensions.
⌅

Why is this an important effect? This experiment shows
a really interesting aspect of electrodynamics. The elec-
trons in this experiment are shielded from the flux. They
only travel through regions of space where both the electric

Figure II.3.36: Super phase (A). Phase of the superconducting
condensate. This is the ground state with the trivial constant
phase equal one. This configuration has winding number n = 0 .

and the magnetic fields E and B are strictly zero. The vec-
tor potential A is non-zero but it is a gauge dependent field
and therefore not a local physical observable like the other
fields. In fact locally it is a gauge transform of the vacuum,
in other words locally the gauge potential can always be
gauged to zero! And yet, there is an observable effect! The
clue is that there is this subtle nonlocal gauge invariant ob-
servable which involves only the vector potential, namely
the loop integral, its value if non-zero cannot be gauged
away. This means that if you would like to transform the
gauge field to zero everywhere that transformation would
not be single valued and therefore not be a proper gauge
transformation. It is this gauge invariant observable that is
measured in this quantessential experiment.

Flux quantization in a superconductor. Let me point out
another crucial ‘application’ of this argument in the context
of superconductors, in particular type II superconductors.
The defining property of superconductors is that their re-
sistance is zero. If you were to move a piece of supercon-
ducting material in a magnetic field, super currents would
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Figure II.3.37: Super phase (B). Phase of the superconducting
condensate. This is again the trivial ground state but where the
phase has been changed by a local gauge transformation, but
the winding number is still zero.

start running so as to expel the magnetic field lines out the
superconductor. This is the Meissner effect. In the type
II superconductors, it is possible for flux lines to enter the
medium, but only if the amount of flux satisfies a certain
flux quantization condition. The situation is very similar to
what we are discussing here: there is a superconducting
ground state that corresponds to a condensate of pairs of
electrons. These Cooper pairs have charge 2e , and the
medium has no electromagnetic field except for the fila-
ments. The condensate is static and effectively described
by a complex scalar field  (x) that is doubly charged and
carries an electromagnetic phase factor. To say that the
pairs are condensed means that in that case the field ac-
quires a constant non-zero magnitude, and because it de-
scribes the ground state it is called a vacuum expectation
value. We write | (x)| = 1 and  is described by a pure
phase factor with angle �(x). In Figure II.3.36 we have
plotted the local phase � of the condensate in the ground
state. The gauge field is in this case globally gauged to
zero and the corresponding phase is trivial, �(x) = 0 . In

Figure II.3.38: Super phase with flux (A). Phase of the super-
conducting condensate with a magnetic flux tube in the center in
the so-called radial gauge. The phase rotates by 2⇡ after encir-
cling the flux once along a closed curve like the green one in the
figure. The winding number of this configuration equals n = 1.

Figure II.3.37 we have made a local (x-dependent) gauge
transformation which changes � ! � + ⇤(x) . If we fol-
low the phase along a closed curve like the green one, the
phase will change forth and back, but the net change af-
ter returning to the initial point remains zero. We say that
winding number of the configuration is n = 0 . This winding
number is not just gauge invariant. It a topological invari-
ant, which means that it cannot be changed by any smooth
transformation of the gauge potential or the phase �(x). If
we follow that phase around a magnetic flux line, the state
should certainly return to the same value. It should be sin-
gle valued because it is macroscopic state describing the
condensate of Cooper pairs. We discussed this briefly in
Chapter II.1 when discussing the Josephson effect. The
upshot is that only fluxes are admitted that are ‘invisible’
for the medium, or the condensate. In other words, we
want the induced phase factor to be equal one, which im-
plies:

exp(i
2e

h̄c
�) = 1 ) 2e� = 2⇡nh̄c ,
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Figure II.3.39: Super phase with flux (B). Same physical situa-
tion as in the previous figure after a local gauge transformation,
the winding number did not change.

which means that the flux is quantized according to:

� = n�o with �0 =
hc

2e
,

and �0 is called the fundamental flux quantum, which is
expressed directly in fundamental constants. In the Fig-
ures II.3.38 and II.3.39 we show the phases of the conden-
sate after a flux tube has entered. Moving along the green
curve encircling the flux, the phase changes by 2⇡ . This is
clear in the radial gauge of the first figure but remains true
after a gauge transformation has been applied.

This quantization rule is exactly what has been observed
in type II superconductors. A flux tube has a negative sur-
face energy and therefore an arbitrary flux likes to decay
in individual minimally quantized filaments. These repel
and therefore, if there is a strong magnetic field causing
many tubes, these will form a lattice, a two-dimensional tri-
angular crystal. If you keep turning up the magnetic field
strength, the pairs will break up and therefore the super-
conductive state will break down at some critical value for
the magnetic field.

The Berry phase

You may ask whether it is really possible to ‘drag’ a state
vector along a closed loop like we described and whether
the resulting phase change can be measured? The an-
swer is affirmative. In this subsection we will discuss the
Berry phase which is a substantial generalization of the
Aharanov–Bohm phase, named after the British mathe-
matical physicist Sir Michael Berry who discovered the pos-
sibility to measure holonomies in certain experimental set-
ups with a well-chosen time or space dependent Hamilton-
ian.

The question is how to translate the rather abstract pic-
tures of parallel transport into a suitable experimental set-
up. The idea behind Figure I.2.32 is clear: there is an
‘agent’ carrying the state vector, and by moving through
space the frame changes and therefore the parallel trans-
ported vector appears to be rotated with respect to the ini-
tial local frame.

In the qubit or spin-one-half context you may think of the
agent as an electron carrying a qubit (spin-one-half spinor)
around. If we apply a magnetic field, the spin will align or
anti-align with the external field as that minimizes the inter-
action energy. The ground state of the spin depends there-
fore on the orientation of the magnetic field. So to get the
spin to move through its state space, we should move the
electron in real space through an inhomogeneous mag-
netic field or we should fix its position and change the field.
And by walking around along a closed loop in real space-
time we may find the state of the spin is rotated by some
phase angle. In other words, due to the inhomogeneous
magnetic field, a closed loop in space-time gets mapped
onto a smooth path in state space that is not necessarily
closed.

In fact Berry took the approach where he looked at a time-
dependent Hamiltonian H(t). We have said that the time
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evolution of a state is generated by the Hamiltonian. If
the Hamiltonian is time=independent and the system is
in an eigenstate of that Hamiltionian, then the time de-
pendence is the time dependent phase factor | n(t)i =
exp(-iEn(t - t0)/h̄)| n(t0) . The question is now what
happens if the Hamiltonian becomes time dependent. You
can think of the Hamiltonian having a set of parameters
{ci} . For example, if we consider the coupling of a spin
to an external magnetic field, the parameters would cor-
respond to choosing the direction and the strength of that
external field. And the time-dependent Hamiltonian we are
interested in would be one where we slowly vary these pa-
rameters: H(t) = H({ci(t)}) . So the experiment is set up
to see what happens if we make a round-trip through this
parameter space or the space of Hamiltonians. The Ha-
miltonian moves between t0 and tf along a closed path
in parameter space so that H(t0) = H(tf) . The choice
of this path is of course made by the experimenter. In
Figure II.3.40 we have depicted a time-dependent closed
path (pink) through a two-dimensional coordinate space of
Hamiltonians where c(t0) = c(tf). The figure also shows
the yellow path straight up, corresponding to the time inde-
pendent Hamiltonian H = H(t0) , leading to the aforemen-
tioned phase factor exp(-iEn(t- t0)/h̄) .

The expression for the phase factor. We assume that
the Hamiltonian H(t) has a time-dependent discrete spec-
trum:

H(t)|n(t)i = En(t)|n(t)i

If we now assume that we vary the Hamiltonian slowly
so that the system smoothly (adiabatically) evolves in the
state |n(t)i , we can construct an approximate solution;

| (t)i = Cn(t) exp
�
-

i

h̄

Z t

t0

En(t
0) |n(t)idt 0

�
,

and because  (t) and |n(t)i are both normalized the co-
efficient Cn(t) can only be a phase:

Cn(t) = exp(i�n(t))

Figure II.3.40: Berry phase. A closed (circular) path in Hamil-
tonian space with coordinates c = (c1, c2). The system follows
the pink curve in time such that H(t0) = H(tf).

We can substitute this solution into the time-dependent
Schrödinger equation,

ih̄
@

@t
 (t) = H (t)

to obtain an equation for the phase:

i
@�n(t)

@t
|n(t)i = -

@|n(t)i
@t

which has the solution

�n(t) = i

Z t

t0

hn(t 0)|@|n(t
0)i

@t 0
dt 0

Berry connection and curvature. To give this phase a
direct physical interpretation let us look at the integrand
and ask what we mean by the state |n(t)i . The time de-
pendence is not the time dependence of n but rather of
the state labeled by n . The time dependence all comes
through the changing of the parameters ci(t). The appro-
priate notation is in fact to write |n(t)i = |n; {ci(t)}i =
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|n; c(t)i where I combined the parameters into a vector, a
position vector in parameter space. If I now take the time
derivative of the state, I may rewrite that as follows:

@ |n; c(t)i
@t

= rc |n; c(t)i · @c(t)
@t

,

where the nabla operator is the vector of @/@ci derivatives.
In other words the gradient operator acting on functions of
the parameter vector.

This turns the time integral for the phase into a loop in-
tegral on parameter space over a connection (or pseudo
gauge potential) C(c) named after Berry:

�n =

I
hn; c|rc |n; ci · dc ⌘

I
C · dc

In other words, the phase factor using Stokes’ theorem can
be expressed as a surface integral of the corresponding
Berry curvature F = rc ⇥ C:

�n =

I
C · dc =

Z
F · dSc .

There is a striking analogy with the Aharonov–Bohm case,
but it is also clear that the Berry analysis is much more
general.

Spin coupled to an external magnetic field.

To be more concrete about such an experiment, imagine
a closed path c(t) in time parametrized by a parameter
0  t  1 with c(0) = c(1) . The system is an electron
spin coupled to a slowly varying external magnetic field
B(t) , with a Hamiltonian

H(t) = B(t) · �,

a hermitean 2⇥2 matrix acting on the two-component elec-
tron spin.

Let first ask what the space of Hamiltonians looks like,
which is asking for a natural parametrization of all mag-
netic fields.

The field B(t) has some direction and some magnitude.
As shown in Figure II.3.43 we choose spherical coordi-
nates in B space. So the direction is parametrized by the
angular coordinates ✓ and ', while the magnitude is given
by the radial coordinate. If we only change the direction
of the external field, the space of possible Hamiltonians
would just correspond to the radial magnetic fields on a
spherical surface of constant radius. Note that this looks
like the field surrounding a magnetic monopole as we have
drawn in Figure I.1.29.

The starting point with the Berry phase experiment is to
choose the time path that gets mapped onto some closed
curve c(t) in the space of Hamiltonians, thus on the two--
sphere in this case.

The adiabatic change or ‘dragging’ of the state amounts to
parallel transporting a frame (of the tangent plane) along
the curve, like we discussed in Chapter I.2 in the section
on geometry.

As we will show shortly, the result for the acquired phase
will depend on the solid angle that the path H(t) has cov-
ered on the sphere.4 This means that the Berry phase is
a purely geometric phase (in fact a holonomy) which de-
pends on the geometry of the space of Hamiltonians, but
also on the probe (in this case a spinor).

The idea is simple: at t = 0 we start at the North Pole with
the Hamiltonian H(0) = BZ and the energy eigenstates
correspond | n(0)i = | ± 1i. Next we start rotating the
magnetic field and we assume that the initial eigen spinor
just follows. In that sense it is fair to say that the Berry

4The path is oriented and the orientation decides whether to take
the solid angle ! or 4⇡ - ! , which with equation (II.3.4) amounts to
Rk(✓) ! Rk(-✓) .
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phase probes the Hamiltonian space but also the spin or
qubit space which is a three-sphere S3 as we know.

To work this out in more detail for an electron spin or a qubit
for that matter we first look at how the rotations act on the
spinors and then we find a convenient parametrization of
the magnetic field space. ⌅

Probing the geometry of state space

To better understand what I mean by ‘probing the state
space’ of a qubit I propose we return to the ‘Barbie on a
globe’ representation of the qubit, as we introduced it in
Chapter II.2 on page 286. What you see there is that we
represent the qubit as a vector or rather spinor bundle over
a two-sphere, where a particular qubit state corresponds
to a unique tangent vector at some point on that sphere.
And the X , Y and Z operators are generating the ‘motions’
of the Barbie in that space.

Let us first visualize the actions discussed above in the
Figure II.2. We see the Barbie standing on the North Pole,
say looking West corresponding to the state -|1i . Acting
with Z does not affect her at all, but acting with X moves
her to the state -| - 1i which is the mirror image of the
initial state through the origin of the tangent space.

To probe the space in more detail we have to construct
operators that move the Barbie around on the sphere and
make her perform pirouettes. What we need are rotations
generated around various axes, and these correspond to
exponentials of X, Y and Z .

Rotation of qubits. As we will explain in more detail in
the Math Excursion on page 635 of Part III on groups,
this amounts to going from the Lie algebra of infinitesi-
mal transformations to the corresponding Lie group of finite
transformations. Here we need the explicit relation for any
of the Pauli matrices �k = X, Y or Z that we introduced in

Figure II.3.41: Effect of rotations around Y-axis on Barbie. Ro-
tating the Barbie state |1i around a large circle in the ZX-plane
by angles ✓ = ±n⇡/2 . The rotation angle in this representation
equals ✓ . As she only passes through real states, the overall
phase � , denoted by the white arrow, is either 0 or ⇡ . Rotating
over an angle 2⇡ any state goes to minus itself.

equation (A.34) of the chapter on Math Excursions:

Rk(✓) ⌘ exp
�
i
✓

2
�k

�
= 1 cos

✓

2
+ i�k sin

✓

2
, (II.3.4)

which should be compared with its one-dimensional ana-
logue, the Euler formula (A.28). At this point we recall
some important observations we made before.

1. Since the spinor or qubit is a two-dimensional com-
plex vector, the rotations are relatively simple two-
by-two unitary matrices which can be given explicitly
as you see.

2. These complex rotations form the group SU(2) .

3. The formula for Rk(✓) represents a rotation about the
k-axis over an angle ✓ . That means to say that act-
ing on an ordinary three-dimensional vector like B , it
rotates over an angle ✓ in real space. That is, under
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a rotation Rk(✓), , the Hamiltonian will rotate as:

H ! H 0 = B · � 0 = B · Rk�R
-1
k (II.3.5)

4. However, on the two-component complex state vec-
tor of a qubit the rotation acts like

| i ! | i 0 = Rk | i.

Note that it ‘rotates’ only over half that angle because
of the factor ✓/2 in the formula (II.3.4).

5. This factor one-half has dramatic consequences. For
example a rotation by ✓ = 2⇡ around any axis pro-
duces in (II.3.4) just minus the unit matrix! So, under
such a transformation the qubit state always goes
to minus itself. One has to rotate by 4⇡ before one
gets back to the unit matrix. This is indeed a defining
property for a spinor, to be contrasted with rotating
an ordinary vector about an angle 2⇡ , which always
gives the same vector back. This minus sign for a
spinor has a deep physical significance for particles
carrying half-integer spin as we will explain later. It
is one of those minus signs that does matter a great
deal.

6. Note that under the rotations the norm of the state is
preserved

h 0| 0i = h | i ,
and this is what we expect as we are moving over
a sphere, because by taking the complex conjugate
vector the transformation is going to its hermitian
conjugate, which means changing i ! -i or ✓ !
-✓ , what amounts to the same thing. This means
that the conjugate rotates by the opposite amount,
so that the net effect of the rotation on the inner prod-
uct of vector with itself (or any other vector) always
cancels.

To familiarize ourselves a bit with these rotations, let us
first restrict our attention to real qubit state vectors as in-

Figure II.3.42: Effect of rotations on the real circle of qubit
states. Same situation as previous figure, but now we have plot-
ted the states at half the angle ✓ from -2⇡ < ✓ < 2⇡ . In the
upper half-of the circle the overall phase � is for real states 0
and in the lower half it is ⇡ .

troduced in Figure II.1.7. These states form a real circle.
The operators Z and X are qubit observables which have
real eigenvectors. For Z those are ±|1i and ±| - 1i re-
spectively with eigenvalues +1 and -1 . Similarly for X we
have ±|+i and ±|-i also with eigenvalues +1 and -1 re-
spectively. We may ask which operator would move you
around in that subspace of real states, on that circle. Such
moves correspond to rotations about the Y-axis, generated
by Y and indeed, a rotation by an angle ✓ yields the real
matrix:

Ry(✓) = cos
✓

2
+ iY sin

✓

2
=

✓
cos ✓2 sin ✓

2

- sin ✓
2 cos ✓2

◆
, (II.3.6)

which indeed corresponds to a rotation of the qubit state
vector over an angle ✓/2. In other words, rotations about
the Y in the (| - 1i, |1i) plane move a state around the
circle.

So let us find out what the formula yields for rotations over
multiples of ⇡ acting on the |+ 1i state, and then visualize
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the results in the two different representations of the qubit
space corresponding to (i) the ‘Barbie on the globe’ picture,
and (ii) the real circle of Figure II.1.7.

Using the formula (II.3.6) we obtain the following values for
some (-2⇡  ✓  2⇡) rotations. For a transformation by
-⇡ we find:

Ry(-⇡)|1i $
✓
0 -1

1 0

◆✓
1

0

◆
=

✓
0

1

◆
$ |- 1i ,

and for the others:

Ry(±
⇡

2
) |1i = |⌥i, Ry(⌥⇡) |1i = ⌥|- 1i ,

Ry(±
3⇡

2
) |1i = -|±i, Ry(±2⇡) |1i = -|1i .

If we carry a spinor along a large circle over an angle of
2⇡ we obtain from (II.3.6), just a (phase)factor minus one.
We have illustrated the sequence of values just calculated
in Figure II.3.41 which should be compared with the ‘Bar-
bie on the globe’ figure on page 286. The rotations for
increasing values of ✓ correspond to the Barbie moving by
the same angle over the globe, anti-clockwise in the ver-
tical plane. The states remain real for all ✓ and the only
phase change that may occur is that it jumps from 1 to -1

or the other way around. This corresponds to a jump in
the phase angle of � = ±⇡ depicted by the white arrows
either pointing up or down in the figures.

In Figure II.3.42, the same sequence is represented in the
standard qubit decomposition that we introduced in Fig-
ure II.1.7, and we see indeed the phase jumping at odd-
multiples of ✓ = ±⇡ .

You may think of this as a holonomy effect, referring to
the concept we introduced in Chapter I.2 while discussing
parallel transport of vectors through curved space, which
is exactly what we are doing here. If the Barbie parallel
transports her spinor, it may pick up a phase factor equal
minus one. So if she starts walking along a big circle on
the sphere looking straight ahead, she will looking straight

Figure II.3.43: Radial magnetic field. The Hamiltonian land-
scape.

back upon returning. What the Figures II.3.41 and II.3.42
show is that the Barbie at ✓ = ±⇡ suddenly turned her
head by 180o ..

Magnetic field space. We choose that initially the field is
in the positive z-direction B(0) = Bẑ and the spin to be in
the aligned up |1i state, so, in the n = 1 energy eigenstate.
We change the direction of the field slowly so that the spin
stays aligned with the varying external field provided the
changes are slow.

From the figure we learn what the x, y and z components
of B are in terms of the angular variables:

Bx = B sin ✓ cos' By = B sin ✓ sin' Bz = B cos ✓

And thus the Hamiltonian of equation (II.3.5) correspond-
ing to a point on the sphere i (we set B = |B| = 1) looks in
matrix form like:

H(c) = H(✓,') =

✓
cos ✓ e-i' sin ✓

ei' sin ✓ - cos ✓

◆
.

The two eigenstates with eigenvalues plus and minus one
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Figure II.3.44: Magnetic field space. The space of a magnetic
field of constant magnitude can be represented as the field on
a sphere around a magnetic monopole. Adiabatic transport of a
spin-1/2 particle moving along a closed path (in red) in the radial
magnetic field of a pole of strength g = 2⇡h̄/e centered at the
origin (blue).

correspond to the spinors:

|1; ci =
✓

cos ✓2
ei' sin ✓

2

◆
and |- 1; ci =

✓
-e-i' sin ✓

2

cos ✓2

◆

The adiabatic process. The process of adiabatically mov-
ing over the sphere corresponds to making rotations around
the proper axis and angles. So for example to move from
the North Pole to the point (r, ✓,') one may apply the
transformation(s):

RB = Rz(-')Ry(-✓)Rz(') =

✓
cos ✓2 -e-i' sin ✓

2

ei' sin ✓
2 cos ✓2

◆
.

One checks that:

H(✓,') = RB ZR-1
B and |± 1; ci = Rb |± 1i ,

as it should be. ⌅ ⌅

The Berry connection.

Let now calculate the Berry connection which involves ap-
plying the rc operator, but the c coordinates are just the
ordinary three-dimensional spherical coordinates where the
(angular) components are given by r✓ = @/@✓ and r� =
sin-1 ✓@/@'. The Berry connection is then:

C(✓,') ⌘ hn; c|rc |n; ci =
1- cos ✓
2 sin ✓

'̂ .

This connection is exactly the gauge potential written down
by Dirac in his famous 1931 monopole paper, and indeed
its curl give the field of a magnetic monopole with mag-
netic charge eg/h̄c = 2⇡. The total magnetic flux through
the sphere is 2⇡, which is half the solid angle of the to-
tal sphere being 4⇡. And thus is the resulting phase after
closing the loop equal to the magnetic flux going through
the loop. It is nice to see how nice this subject of the Berry
phase connects with matters that we discussed in early
chapters of Volume I.

Some explicit examples. Let us now consider some spe-
cific paths and see how this works. In the first example
we start at the North Pole meaning to say that H = Z and
| (t = 0)i = |1i . Then we parallel transport vector along
a geodesic generated by rotating around X-axis over an
angle ✓ = -⇡ and bring it back along a geodesic gener-
ated by rotating around the Y-axis by ✓ = ⇡ . The path cor-
responds to the red two-angle indicated in Figure II.3.44.
This means that the Hamiltonian between t = 0 and t = 1

2

smoothly rotates in the YZ-plane from Z = H(0) to Y =
H(12) . From formula (II.3.4) we see that:

Rk(±⇡) = ±i�k .

So the overall (unitary) transformation of the state vector
corresponds to:

U = iY(-iX) = -iZ .

So the net effect on the state |1i after coming back home
is that it is rotated by an angle ✓ = -⇡/2 around the z-
axis. So the loop integral would give a magnetic flux of
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⇡/2 which is 1/4 of the total flux of 2⇡, which in turn is
consistent with the fact that the loop covered 1/4 of the
total solid angle of the sphere.

So what is the interference effect on the probabilities mea-
sured, if we start with | 1i and end up at | 2i = -iZ| 1i ?
The expression is given by the following equation for any
outcome of a measurement:

I(ai) = �(h 1|P
A
i | 2i+ h 2|P

A
i | 1i)

The outcome is the expectation value of an expression in-
volving U and PA

i :

I(ai) = �h 1| (P
A
i U+U†PA

i ) | 1i .

We obtain that in the case at hand by choosing P = PZ
± the

result is zero for all | 1i . However for PY
± we find h 1|Y| 1i

which of course may or may not be observable dependent
on the choice of the initial state.

Another example would be as sketched in Figure I.2.32.
There we have three successive rotations by ⇡/2 .

U = Ry(
⇡

2
)Rz(

⇡

2
)Rx(

⇡

2
) =

1p
2
(1+ iZ) ,

where we used that

Rk(
⇡

2
) =

1p
2
(1+ i�k) .

This generates interference in more situations than the
previous case, and applying it to | 1i = |1i we get:

U |1i = 1p
2
(1+ iZ) |1) =

1p
2
(1+ i)|1 >= ei⇡/4 ,

again this is consistent with 1/8 of the total flux. ⌅ ⌅

Quantum tunnelling: magic moves

In this chapter we have considered the consequences of
the quantessential particle-wave duality in typical wave type

Figure II.3.45: Quantum tunneling. The lowest energy state
of a particle in the presence of a potential wall shows that the
quantum particle is most probably found on the left-hand side,
but still has a small probability to be on the right-hand side. The
wavefunction decays exponentially in the wall but still has a non-
vanishing value when it arrives at the other side.

phenomena like reflection, refraction, diffraction and inter-
ference. In this section we turn to the aspect of trans-
mission, notably the effect of quantum tunneling, which
is another stunning instance where quantum theory over-
rides a classical veto. In the tunneling process we should
think of particles that can move through, or jump over a
potential wall. This happens for example in the sponta-
neous decay of bound systems, and has a great applica-
tion in scanning tunneling microscopy (STM). Such pro-
cesses are strictly forbidden by classical physics but have
finite although small (meaning exponentially small) proba-
bilities to occur in the quantum situation. It can be looked
upon as a consequence of the quantum fluctuations in the
system that ‘follow’ from the uncertainty relations.

Let us put a quantum particle in a bowl corresponding to
a potential energy landscape as given in Figure II.3.45.
Imagine the particle sitting in the origin at the bottom of



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 355 — #385 i
i

i
i

i
i

QUANTUM TUNNELLING: MAGIC MOVES 355

Figure II.3.46: The scanning tunneling microscope. Fixing the
tunneling current, fixes the distance between the tip and the sur-
face to be scanned. (Source: Flickr.)

the bowl. Then clearly, if we do not add enough energy
to overcome the height of the bowl, it will sit there forever,
since from a classical point of view it is a stable situation.
However, in the quantum world the problem is different; the
lowest energy solution for the wavefunction is sketched in
red and the important point to observe is that it is non-
zero outside the bowl. In other words, if we square the
wavefunction we get a large probability to find the particle
where we expect it, but there is a non-vanishing probability
of finding the particle outside. There is a small probability
for the particle to ‘jump’ the wall to the outside world, where
we might observe it. It jumps a wall of any height as long
as it is thin enough.

In more physical terms you may think of a situation where
a particle is bound (and thus sitting in some potential well),
but if the well corresponds to a local minimum, then there
is a (low) probability that the particle will tunnel out of the
well, meaning that the system decays and emits the par-
ticle. This is for example what happens with nuclear ↵
decay, certain nuclei will spontaneously emit an ↵ particle

Figure II.3.47: STM surface imaging. Image of scanning tun-
neling microscope of a coral of atoms deposited on a surface.
(Source: IBM.)

which is in fact just a 4He nucleus consisting of two protons
and two neutrons. It is this tunneling phenomenon that ex-
plains the extremely – exponentially – small probabilities
that are reflected in the extremely long half-life times of
certain nuclei. Long means that the process takes place
with a much lower frequency than the natural frequency f

that occurs in the state corresponding with the energy E of
the state, with E = hf .

A similar situation occurs if one sends a particle to a po-
tential barrier (a wall) then classical physics may predict
some energy and momentum transfer during the impact
by which the particle is stopped or may be reflected, but
what we never have is that the particle would have a finite
chance to of moving through the wall (without destroying
it). And this is exactly what happens in the quantum case,
where one finds a definite probability of ending up on the
other side as long as the wall has a finite size. The reflec-
tion and transition probabilities can be calculated and of
course add up to one.
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We discussed a realization of tunneling currents in chap-
ter II.1 for the Josephson junction. Another important ap-
plication is the scanning tunneling microscope (STM). The
working is schematically depicted in Figure II.3.46. By driv-
ing a constant small current through the tip to the surface
one wants to study, the tip will then precisely scan the sur-
face, all the way down to atomic scales. The tip will never
touch the surface and the ‘wall’ is provided by the thin in-
sulating layer of air between the tip and the surface. The
images taken by the microscope of the surface localizes
the presence of isolated atoms or molecules on the sur-
face. A nice example is given in Figure II.3.47. The STM
scans the contour of the charge density profile on the sur-
face. People can be stopped by virtual walls, but walking
through a real wall is quite something else, and that is what
quantum particles apparently can do.

Further reading on interference:

- QED:
The Strange Theory of Light and Matter
Richard P Feynman Antony Zee
(revised version)
Princeton University Press (2014)

- Quantum Interference and Coherence: Theory
and Experiments
Zbigniew Ficek and Stuart Swain
(Springer) (2005)
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Chapter II.4

Teleportation and computation

Entanglement and teleportation

The Einstein–Podolsky–Rosen paradox

In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen,
confronted quantum physics with a profound objection con-
cerning the quantessential property of entanglement. This
led to a fierce debate between Bohr and Einstein closely
followed by Schrödinger. In those days the problem was
presented as a gedanken experiment involving a pair of
spins or qubits which are entangled but widely separated
in space. One may think of a spin-less particle at rest (a ⇡0
particle for example) decaying into two photons, because
of momentum conservation both particles will fly off back
to back and because of spin conservation the polarizations
of the two photons have to be opposite. This means that
without interactions the particles could separate and travel
a long way, and we could imagine that one might arrive in
New York and the other in Tokyo where Alice and Bob will
make polarization measurements. The polarization state
of the entangled pair is given by:

| NT i =
1p
2
(|1,-1i- |- 1, 1i) , (II.4.1)

where the first entry refers to the NY particle and the sec-
ond to its Tokyo counterpart, and we for convenience have
assumed the particles to be polarized in z-direction. Now

Figure II.4.1: The Myth of Depth, a 1984 painting by Mark
Tensey. It makes you think of unusual, if not magical, ways in-
formation may propagate. It is the ‘Spooky action at a distance,’
Einstein was so worried about.(Source: ANP / Mark Garlick /
Science Photo Library)

Alice in New York decides to make a polarization measure-
ment. Let us suppose that she chooses to do this along
the x-axis, and let us also suppose that she finds a value
+1 . Then we know that the first spin is projected on the
|+i state. But as the spins are opposite it follows that in-
stantaneously the spin of the particle in Tokyo must have
changed to the |-i state. That this indeed has to be the
case follows from the fact that we could have written the
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initial state also in the form

| NT i =
1p
2
(|-,+i- |+ .-i) ,

and Alice’s projects on the first term as we discussed in the
previous section, so after Alice’s measurement we have
 NT ) | + .-i . If Bob also decides to measure along the
x-axis, then he will obtain the value -1 . It is clear that the
probabilities for measurement outcomes can be precisely
calculated for all possible independent choices that Alice
and Bob could make.

There is a lot at stake in this proposed experiment and in
the early days was it was too hard to perform. If the cal-
culated and observed distributions would not match, then
quantum theory would be in deep trouble, not to say falsi-
fied! As we will discuss later, starting in the 1980s, such
experiments became feasible, and in fact unambiguously
confirmed the quantum predictions.

Quantum key distribution. The above observations al-
low for a quite simple protocol to securely share a digital
key, called the BB84 protocol, which was invented by Gilles
Brassard and Charles Bennett in 1984, opened a research
field in quantum informatics called quantum cryptography.
Their protocol benefits from the fundamental principles of
quantum mechanics and enables secure communication
between parties. Nowadays, their protocol is commercially
available and forms the core of many other protocols on
quantum cryptography and quantum information in gen-
eral. Brassard and Bennett shared the prestigious Break-
through Prize in Fundamental Physics 2023 with David
Deutsch and Peter Shor.1 The Shor quantum algorithm
for prime factorization will be discussed in the next sec-
tion on quantum computation. The protocol is illustrated in
Figure II.4.4. Alice and Bob take a large sequence of mea-
surements on (in this case) parallel polarized entangled

1The Breakthrough Prize in Fundamental Physics is one of the
largest prizes in science – both qua money and prestige – and was
founded in 2012 by Yuri Milnor.

Figure II.4.2: The Einstein–Podolsky–Rosen (EPR) paradox.
Two particles are created in a polarization entangled state, and
a measurement outcome on the left particles completely deter-
mines the probabilities for the measurement outcomes on the
right in any frame. The coincidence detector is there to make
sure that measurements on members of the same pair are com-
pared.

pairs and make a list of their sequence of polarizer settings
and their outcomes. Afterward they may exchange the se-
quences of their polarization settings. If they now select
the outcomes for the pairs where the setting was identical,
then the outcomes must be the same, therefore this re-
stricted sequence represents a shared digital code quan-
tum computation as may be verified from the figure.

If one imagines an eavesdropper Eve somewhere measur-
ing one of the photons, she cannot copy it and resend it.
This means that the observed code that Alice and Bob ob-
serve will no longer coincide. So they can check whether
their communication channel is secure. Clearly Eve can-
not extract any key from her observations.

Is causality violated? Einstein’s first worry was that this
instantaneous non-local consequence of the act of mea-
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Figure II.4.3: EPR schematic. The measurement scheme for a
particularly simple choice of measurements in the EPR experi-
ment. The pair is created in the state | i with opposite polariza-
tion in the z-frame. Alice in New York measures in the x-frame,
so she finds outcome ±1 with equal probability px(±1) = 1/2 .
If Bob in Tokyo subsequently also measures in the x-frame, his
outcome, according to quantum theory is completely fixed.

surement of one of the particles of the entangled pair,
would violate causality. Some information about Alice’s
measurement outcome appears to have been transmitted
instantaneously to Tokyo, which means that it had to travel
with a velocity exceeding the speed of light. And that is a
no-go in Einstein’s relativity!

So, the first task is to actually prove that the correlations
between the measurement outcomes would necessarily
require the transfer of information faster than light. If so,
this would mean that such pairs could be used to trans-
mit information faster than light, which in turn would imply
the breakdown of special relativity in particular and of our
cherished notion of causality in general.

The question should be: what can Bob learn from Alice
making a measurement? As a matter of fact, the answer is:

Figure II.4.4: Quantum key sharing. Using a sequence of par-
allel entangled photons for key distribution through the BB84
protocol. On top in green is the sequence of polarizer choices
that Alice made and in the second line her measurement out-
comes. In the red box we give the sequence of Bob and his
outcomes. What we know for sure is that when the members
of a pair are measured in the same polarization frame, the out-
comes should be identical. And indeed, if we cross out the mea-
surements where the frames are different, we are left with two
identical sequences. If this happens not to be the case, Alice
and Bob know that an eavesdropper is active somewhere.

nothing at all, at least as long as he doesn’t know what the
polarization axis is that she has chosen for her measure-
ment, and what the outcome of her measurement was. But
she can only inform him about that by conventional means
using subluminal velocity media like email or Facebook.
So this form of information sharing does not violate causal-
ity.

Hidden variables and local realism. The proposition of
the EPR trio was that quantum theory, which clearly was
in accordance with all available observations, was maybe
not really wrong but at least incomplete. The paradox fur-
thermore implied that once completed the theory would not
need these ‘spooky’ instantaneous non-local kind of inter-
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actions. Any physically sound theory should obey the prin-
ciple of local realism. Local realism maintains that each
of the particles is always in a definite polarization state all
along, but it just happens to be so that we don’t know which
state that is. The state is always completely determined
but we don’t know how it is fixed. Maintaining local real-
ism would be possible if you say that the highly correlated
nature of the outcomes could be a manifestation of ordi-
nary statistics caused by the existence of certain hidden
variables, which would cause such correlations. The need
for that strange, non-local, instantaneous ‘action at a dis-
tance’ could be avoided if one knew these hidden variables
and would measure them. In other words, Einstein was
not arguing about the predictions of quantum theory per
se, but the proposed probabilistic formalism would only be
part of the story – a kind of effective description of nature,
and not a fundamental ingredient of the resulting complete
theory. His proposal would turn the fundamental indeter-
minacy of quantum theory merely into a lack of knowledge
about the set of state variables. A fundamentally unde-
termined state would just become a fully determined, but
unknown state.

This line of reasoning caused a rather deep controversy
about the measurement problem and the interpretation of
quantum theory. Because the tremendous successes of
quantum theory continued to unfold, this Einstein–Bohr de-
bate lingered on somewhat in the margins as a kind of pas-
time for philosophers of science, until in 1964 John Stew-
ard Bell, a British physicist working at the CERN accelera-
tor center in Geneva, made the groundbreaking discovery
that there are situations where quantum theory would di-
rectly contradict the local realist predictions. Bell turned
Local Realism into a falsifiable hypothesis! The question
was to set up a true EPR experiment and precisely mea-
sure the correlations between the measurement outcomes
for the entangled pairs. Bell’s proposal moved the question
out of the realm of abstract epistemology into that of exper-
imental physics. This deep question allowed for a definite
answer. This is the subject of the next section.

The Bell inequalities

The discussion of Bell is about the EPR pairs and the mea-
surements illustrated in Figure II.4.5. The question is in-
deed whether a hidden variable theory could ever account
for the data as predicted by quantum theory. Is there a de-
terministic scheme which respects local realism that per-
fectly mimics the quantum theory and the measurements
on entangled states? The difficulty is in some sense to
produce the extremely strong instant correlations between
measurement outcomes that quantum mechanics allows,
even if the particles are far apart.

The correlator. John Bell devised an experimental test ex-
actly based on these correlations. To stay in the language
of the previous section, Bell proposed to consider the av-
erage of the product of measurement outcomes of Alice
and Bob P(a, b) where a and b are the (real) frames of
Alice and Bob as depicted in Figure II.4.5(d). If we imagine
that they both choose the same polarization, one finds for
example that:

P(a, a) = -1 and P(a,-a) = 1 , (II.4.2)

because if they have the same frame the measurement
outcomes will be opposite and the product becomes mi-
nus one. If the polarizers a and b are in the same di-
rection but oriented oppositely, they both measure +1 and
thus the correlator is plus one. Now it is clear that to calcu-
late the correlator P(a, b) in general for the quantum case,
we just have to look at the figure, where we learn that if
the angle between the frames of Alice and Bob is � and
Alice measures +1 then Bob measures +1 with proba-
bility pb(+1) = sin2 � . This is consistent with equation
(II.4.2), because P(a, a) = - cos 0 = -1 and P(a,-a) =
- cos⇡ = 1 , and similarly pb(-1) = sin2 � . And if Al-
ice measures -1 then also the probabilities pb(±1) get
interchanged. From these considerations one obtains the



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 361 — #391 i
i

i
i

i
i

ENTANGLEMENT AND TELEPORTATION 361

(a) The electron-positron pair is produced in some frame �s in the anti-
symmetric entangled state | NT i = 1p

2
(|1,-1is - |- 1, 1is) , which is

represented by the double arrow.

(b) The electron-positron pair state in the frame �a = �z of Alice in New
York. The antisymmetric form is preserved under rotations, and we just
replace the subscript s with a.

(c) The spin measurement in �a frame of Alice in New York. She mea-
sures the eigenvalue �a = +1, and projects the New York component on
the | + 1i state.

(d) After Alice’s measurement the Tokyo component collapses to | T i =
| - 1ia , from which the probabilities for the measurement outcomes in
the �b of Bob follow.

Figure II.4.5: The Einstein–Podolsky–Rosen paradox. (a) A neutral particle decays into an entangled electron-positron pair; these
travel in opposite directions to New York and Tokyo and have oppositely polarized spins in some frame. Alice and Bob make subse-
quently measurements in frames they may choose independently and each will measure an outcome ±1 . The sequence of subfigures
explains that the final probability for Bob is sin2 � to find +1 , and cos2 � to find -1 . These probabilities depend on Alice’s choice
and are instantly fixed after Alice has made her measurement.
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following formula for P(a, b):

P(a, b) =
1

2
(1(sin2 �- cos2 �)- 1(cos2 �- sin2 �))

= sin2 �- cos2 � = - cos 2� . (II.4.3)

Introducing hidden variables. To describe the measure-
ments in hidden variable theory we can introduce two func-
tions A(a, �) and B(b, �) representing the measurement
outcomes of Alice and Bob respectively, which are strictly
local in the sense that they only depend on their own mea-
surement frame, and now also on a hidden variable � . A
value for this variable is typically set at the moment when
the particles are produced and that value stays fixed for
both in the absence of interactions. Given � and a choice
of frame a , the outcome A(a, �) is fixed. The question
is whether there exist such functions that reproduce the
quantum results of equation (II.4.3). Here Bell brilliantly
rephrased the question. Instead of just trying to directly
prove or disprove the existence, he derived a condition (in
fact a bound or inequality), which any hidden variable the-
ory would have to satisfy under quite general assumptions,
and subsequently showed that quantum theory allows for
ample situations where this condition would be violated.
Answering the question was now reduced to performing
certain experiments and seeing whether the results would
violate the inequality or not. If they do not, hidden vari-
ables would be a viable option, but if they do, that would
be the demise of the theory of hidden variables and local
realism!

The Bell inequality. Let us first agree that A and B can
only equal ±1 , because they are measurement outcomes.
The only thing we assume about � is that it can take certain
values with a probability w(�) , where we have to require
that w(�) � 0 and ⌃�w(�) = 1 . The classical ‘local re-
alist’ correlator Plr(a, b) is then defined as the weighted
sum:

Plr(a, b) = ⌃�w(�)A(a, �)B(b, �) . (II.4.4)

For the case where the frames are equal we obtain the
equality A(a, �) = -B(a, �) . To get the required inequal-
ity Bell introduced an arbitrary third frame c and consid-
ered the expression:

Plr(a, b)- Plr(a, c)

= -⌃�w(�)[A(a, �)A(b, �)-A(a, �)A(c, �)]

= -⌃�w(�)[1-A(b, �)A(c, �)](A(a, �)A(b, �)) ,

where we have multiplied the second term in the first line
with A(b, �)2 = 1 and taken out an overall factor equal to
the first term. This yields the second line, where we have
a factor in square brackets and one in parenthesis. The
factor in square brackets is always larger or equal to zero,
whereas the factor in parenthesis is either plus or minus
one, and may depend on � . The sum over � may be over
terms with alternating signs. Therefore, if we plainly set
all these signs to minus one, then the right-hand side is a
sum of only positive terms and the result is larger or equal
than the right-hand side of the equation as it stands. And
that is where the inequality comes in, we obtain a bound
for the absolute value of the left-hand side:

|Plr(a, b)- Plr(a, c)|  ⌃�w(�)[1-A(b, �)A(c, �)] ,
(II.4.5)

which yields the Bell inequality:

|Plr(a, b)- Plr(a, c)|  1+ Plr(b, c) . (II.4.6)

We see that the inequality involves three classical cor-
relators and three frames that can be chosen indepen-
dently.

Quantum violates the bound. The fundamental issue
is now whether we can arrange a set of quantum mea-
surements that yield correlators that may violate this in-
equality. If we succeed, those measurement outcomes
could not have been obtained from a theory with hidden
variables. It is not hard to find a simple example, let us
return to Figure II.4.5(d) for which we already calculated
that P(a, b) = - cos 2� . Let us choose a = Z, b = X ,
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and c = (X + Z)/
p
2 right in between a and b , then we

obtain P(a, b) = - cos ⇡2 = 0 and P(a, c) = P(b, c) =
- cos ⇡4 = -0.71 . Substitution of these numerical values
in equation (II.4.6) shows that the inequality is violated in-
deed: 0.71 ⇥ 0.29 !

In conclusion we may say that quantum theory is clear
about what to expect, and the really big question was to
‘just perform’ such experiments. And that is what we turn
to next.

Hidden no more

The history of EPR experiments performed since Bell pub-
lished his inequalities is interesting on its own, because it
was immensely hard to actually do the experiment in a way
that would satisfy all critics. Indeed, as the stakes were so
high all experiments were analyzed with the highest con-
ceivable level of scientific scrutiny.

There were always new loopholes that the experimenters
had to try and eliminate, and probably there always will
remain some far-fetched loopholes for example question-
ing whether the experimenters have a free will to really
choose the settings randomly etc. Fortunately, over the
last few decades impressive progress has been made, and
experiments have so much improved that it appears that
Einstein-Bohr debate is finally settled and that local re-
alism seems no longer a tenable alternative for quantum
theory.

And it is for that reason that only in 2022 the achievements
were given the highest degree of recognition as the Nobel
prize was awarded to three pioneers who successively de-
veloped the experimental set-ups that provided full proof
evidence that the hidden variable theories implementing
local realism were no longer feasible. The award went to
Frenchman Alain Aspect, the American John F. Clauser

Figure II.4.6: The Delft Experiment. The setup of the 2015,
loophole-free Bell inequality violation experiment, at Delft Tech-
nological University. The measurement stations A and B are 1.7
km apart, ensuring that the measurements are indeed spacelike
separated and causally disconnected. (R. Hanson et al. Nature,
Vol 526, 2015)

and the Austrian Anton Zeilinger, ‘for experiments with en-
tangled photons, establishing the violation of Bell inequali-
ties and pioneering quantum information science.’

The Delft experiment. One of the more recent experi-
ments is the ‘loophole-free Bell inequality violation exper-
iment’ performed in 2015 by Ronald Hanson’s group at
the Delft Technological University in the Netherlands. It
uses two electron spins in the maximally entangled anti-
symmetric state

| i = 1p
2
(|1,-1i- |- 1, 1i) .

We sketched the setup of the experiment in Figure II.4.6.
It involves three stations A, B, and C. In A and B two elec-
trons are prepared in the entangled state. First each of
them emits a photon so that the photon and electron are
entangled. The photons are then sent through an optical
fiber to station C, where they are measured in a clever way
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so that that measurement can be used to verify that the
electrons are indeed in the desired entangled state given
above. This verification of the state to be measured is one
of the loopholes that has weakened earlier attempts to cor-
ner the hidden variables option. The entangled electrons
enter measurement devices in A and B, where indepen-
dently a random choice between two distinct polarization
directions is made for each of them. In A one chooses the
observable a equal either Z or X , and in B the observable
b being either (-Z + X)/

p
2 or (-Z - X)/

p
2 . The sta-

tions A and B are 1.7 km apart, and therefore the choices
and measurements are space-like separated, implying that
there can’t be any causal relation between them. This is
indicated in the figure where the future light cones of the
random choice events and measurement events at A and
B are drawn, and one sees that they are outside each
other’s future light cones indeed. And this was another
loophole that hampered earlier experiments. So this ex-
periment really closes both the preparation and locality
loopholes simultaneously and that leaves little room for the
hidden variables scenario to survive. Again, one can cal-
culate a bound on a weighted average S of the product of
measurement outcomes x in A and y in B where,

S = |
X

ab

h |a⌦ b| i| .

The classical bound respecting local realism can be shown
to yield S  2 , whereas the quantum value can be calcu-
lated giving S = 2

p
2 ' 2.83 . The highly sophisticated

2015 Delft experiment of Ronald Hanson et al. measured
a total of 245 trials over a period of 18 days; this yielded an
average value 2.42 with a standard deviation of 0.2 .

Conclusion. We conclude that spooky action at a dis-
tance is just there and we have to live with it. Quantum
weirdness is not fake; it is rock solid! It turns out to be
a blessing in disguise, because it implies the spectacular
possibility of quantum teleportation, to which we will turn
after we have described a second experiment that also re-
futes the idea of local realism.

A decisive three photon experiment

There is one more experiment on entangled states that I
like to describe in some more detail. It is a wonderfully
conceived and designed experiment, which in a sense is
so clean and therefore easy to understand, that I think it re-
ally gave a final blow to the idea of local realism and hidden
variables. It is called the Greenberger–Horne–Zeilinger
or GHZ experiment2 and involves three (in fact even four)
photons in a maximally entangled state. At first makes it
may look dauntingly complicated, but the prediction is so
radically unambiguous, and the reasoning so straightfor-
ward that it really is a litmus test on the matter of local
realism. The answer is a clean yes or no, and does not
involve a bound that has to be violated. In this experi-
ment the outcomes predicted by the quantum hypothesis
on the one hand and local realism on the other are mutu-
ally exclusive and that makes this experiment so powerful
and attractive. It brings the inner workings of quantum the-
ory to the surface. The results unambiguously prove the
existence of entanglement and therefore of quantum non-
locality.

To give you an idea of the experimental setup, we have
reproduced the schematic in Figure II.4.7. From a pho-
ton source maximally entangled pairs are generated, each
member goes through a beamsplitter and we end up with
basically four entangled photons. One of the photons is
used as a trigger, and if the four detectors fire simultane-
ously, one knows that the three entering in the three main
detectors are in a maximally entangled GHZ-state. These
three photons can be analyzed in detectors det 1, det 2
and det 3. The detectors are space-like separated, mean-
ing that the measurements cannot influence each other in
a causal way, and they are designed such that you can

2The setup of the experiment was introduced in a paper in 1989 by
Greenberger, Horne, and Zeilinger and the experiments were carried
out by a European collaboration of Pan, Bouwmeester, Danielli, Wein-
furter and Zeilinger in 2000 (Nature, Vol 403, 2000).
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Figure II.4.7: The GHZ experiment. This exploits three en-
tangled particles to unambiguously demonstrate that quantum
theory violates local realism, thereby closing the door on the fa-
mous Bohr–Einstein debate. (Source: Nature, Vol 403, 2000)

switch between three different polarization bases, in par-
ticular the X-basis with eigenstates |±i and the Y-basis
with eigenstates |L/Ri , and the Z-basis with eigenstates
| ± 1i, the measurement outcomes can be either +1 or
-1 . If the detectors just are in the Z-basis, you can see
how the entangled state is actually prepared by the array
of beam splitters and the �/2 wave plate. The criteria for
data selection is (i) that the trigger (detector) selects the
events with �z = -1 and (ii) that indeed all four detectors
pick up a simultaneous signal. These criteria can only be
met in two distinct cases which we have depicted in the
two figures II.4.8.3

Let us now analyze the quantum predictions for the exper-
iment which starts with the three-photon GHZ state:

| i = 1p
2
(|+ 1,+1,+1i+ |- 1,-1,-1i . (II.4.7)

3To be precise detector det 3 is turned 60 degrees to invert the read-
out (= 1 $ -1).

Figure II.4.8: Contributions to GHZ. The diagrams show the
only two possible contributions to the three (or four) photon en-
tangled state with trigger on -1, to a ZZZ measurement. (Source:
Nature, Vol 403, 2000)

We can now express this state in various different bases,
and GHZ proposed to study a sequence of four measure-
ments with the detectors det 1, det 2 and det 3 in the fol-
lowing order first the cyclic variations YYX, YXY, XYY and
finally an XXX measurement. Knowing the result of the
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first three measurements both the quantum-adepts and
the local realist followers can take that data, turn their re-
spective cranks and come out with a unique prediction for
the possible outcomes of the fourth experiment and their
probabilities. The beauty of this experiment is that oppos-
ing schools of thought come out with mutually exclusive
predictions! So it is a real ‘yes or no’ for quantum versus
local realism.

So let us see how the quantum analysis goes, and it is ba-
sically what we have been doing before only a little more
of it. To determine the various possible measurement out-
comes and the probabilities we have to rewrite the GHZ-
state in the other bases, and because we know the linear
combinations this is a matter of making the appropriate
substitutions in the expression (II.4.7).

|+ 1i =
1p
2
(|+i+ |-i) ,

|- 1i =
1p
2
(|+i- |-i) ,

|+ 1i =
1p
2
(|Li+ |Ri) ,

|- 1i =
ip
2
(|Li- |Ri) .

So for example in the YYX experiment we would encounter
the state:

| i = 1

2
(|R, L.+i+|L, R,+i+|L, L,-i+|R, R,-i) . (II.4.8)

let us make some observations on this state. The proba-
bility of finding a +1 or -1 result for any of the three pho-
tons is 50% meaning that it is maximally random: it is like
throwing with a fair coin. Next note that the outcomes of
each possible pair out of the three photons also has equal
probabilities: so say for the first two detectors one has the
that the possible outcomes (+1,+1), (+1,-1), (-1,+1) ,
and (-1,-1) , each occur with 25% probability. Finally it is
also clear that given the outcome of two of the measure-
ments the third is completely fixed. If the first two give LR

Figure II.4.9: The decisive result. The predictions of quantum
theory (top) and local realism (middle) for the outcome of the
XXX experiment are mutually exclusive. The experiment (bot-
tom) strongly favors quantum theory. (Source: Nature, Vol 403,
2000)
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or (-1,+1) , the third detector would have a + , meaning
an outcome -1 for the product of the outcomes of det 1,
det 2 and det 3. It is clear that exactly half of the possi-
ble 23 = 8 possible outcomes will occur in this experiment,
and this selection is an expression of the correlations that
quantum theory produces. And of course the same holds
for the other three experiments in the sequence of four. In-
deed for the fourth XXX experiment, we should express
the state in the XXX-basis, which yields:

| i = 1

2
(|+,+,+i+ |+,-,-i+ |-,+,-i+ |-,-,+i) .

(II.4.9)
The thing to note here is that the product of the measure-
ment outcomes of the three detectors will always be +1 ,

whatever the component of equation (II.4.9) is that hap-
pens to occur.

Let us now do the analysis following the local realism line
of reasoning. The idea is that the setup is such that there
is no causal relation between them. This means that each
of the photons should carry an element of reality for both
the X and Y measurements, telling us what the outcome of
such a measurement would be. Let us call these elements
which are just numbers, xi and yi where i = 1, 2, 3 labels
the detector, where these can only equal ±1 . If we now
look at the possible outcome of the XYY measurement and
its permutations, each of the photons can carry only one
particular xi and yi , which should fit all three possibilities
in (II.4.8). This leads for the first three measurements to
the three equations:

y1y2x3 = -1 ; y1x2y3 = -1 ; x1y2y3 = -1 . (II.4.10)

The neat thing is that the solution of these three equations
completely fixes the product x1x2x3 , which then of course
is the local realism prediction for the outcome of the fourth
(XXX) measurement. If we take the product of the three
equations (II.4.10), we get that:

(y1y2x3)(y1x2y3)(x1y2y3) = (x1x2x3)y
2
1y

2
2y

2
3 = -1 .

With the squares of the yi being +1 , we get the prediction
x1x2x3 = -1 . This answer is exactly opposite to the quan-
tum prediction following from equation (II.4.9), which as we
already mentioned, gives for the product x1x2x3 = +1 ! If
we go back to the 8 possible measurement outcomes for
the XXX experiment, this would lead to what is depicted in
Figure II.4.9, for the predictions, and the actual measure-
ment outcome of the experiment showing extremely strong
support for quantum theory.

Quantum teleportation

Quantum teleportation provides a method for privately send-
ing messages in a way that ensures that the receiver will
know if anyone eavesdrops. This is possible because a
quantum state is literally teleported, in the sense of ‘beam
me up Scotty’: A quantum state is destroyed in one place
and recreated in another. Because of the no-cloning the-
orem that we discussed on page 298 of Chapter II.2, it
is impossible to make more than one copy of this quan-
tum state, and as a result when the new teleported state
appears, the original state must be destroyed. Further-
more, it is impossible for both the intended receiver and
an eavesdropper to have the state at the same time, which
helps make the communication secure.

Quantum teleportation takes advantage of the correlation
between entangled states as discussed in the previous
sections. Suppose Alice wants to send a secure message
to Charlie at a (possibly distant) location. The process of
teleportation depends on Alice and Charlie sharing differ-
ent qubits of an entangled state. Alice makes a measure-
ment of her part of the entangled state, which is coupled
to the state she wants to teleport to Charlie, and sends
him some classical information about the entangled state.
With the classical information plus his half of the entan-
gled state, Charlie can reconstruct the teleported state.
We have indicated the process in Figure II.4.10. We fol-
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Figure II.4.10: Quantum teleportation. Teleportation of a quan-
tum state using an entangled pair, as proposed by Bennett et al.
in 1993. An explanation is given in the text.

low the method proposed by Bennett et al. in 1993, and
first realized in an experimental setup by Zeilinger’s group
in 1997. In realistic cases the needed qubit states are typi-
cally implemented as left- and right-handed polarized light
quanta (i.e. photons).

The simplest example of quantum teleportation can be im-
plemented with three qubits. The (A) qubit is the unknown
state to be teleported,

| Ai = ↵|1i+ �|- 1i . (II.4.11)

This state is literally teleported from one place to another.
If Charlie likes, once he has the teleported state he can
make a quantum measurement and extract the same in-
formation about ↵ and � that he would have been able
to extract had he made the measurement on the original
state.

The teleportation of this state is enabled by an auxiliary
two-qubit entangled state. We label these two qubits B

and C . For technical reasons it is convenient to represent

this in a special basis consisting of four states, called Bell
states, which are written as:

| 
(±)
BC i =

r
1

2
(|1Bi|- 1Ci± |- 1Bi|1Ci) ,

|�
(±)
BC i =

r
1

2
(|1Bi|1Ci± |- 1Bi|- 1Ci) .

(II.4.12)

The process of teleportation can be outlined as follows
(please refer to Figure II.4.10).

1. Someone prepares an entangled two-qubit state BC

(the Entangled pair in the diagram).

2. Qubit B is sent to Alice and qubit C is sent to Charlie.

3. In the Scanning step, Alice measures in the Bell states’
basis the combined wavefunction of qubits A (the
original in the diagram) and the entangled state B ,

leaving behind the Disrupted original.

4. Alice sends two bits of classical data to Charlie telling
him the outcome of her measurements (Send clas-
sical data).

5. Based on the classical information received from Al-
ice, Charlie applies one of four possible operators to
qubit C (Apply treatment), and thereby reconstructs
A , getting a teleported replica of the original. If he
likes, he can now make a measurement on A to re-
cover the message Alice has sent him.

We now explain this process in more detail. In step (1)
an entangled two-qubit state  BC such as that of equa-
tion (II.4.12) is prepared. In step (2) qubit B is transmitted
to Alice and qubit C is transmitted to Charlie. This can
be done, for example, by sending two entangled photons,
one to each of them. In step (3) Alice measures the joint
state of qubit A and B in the Bell states’ basis, getting two
classical bits of information, and projecting the joint wave-
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function  AB onto one of the Bell states. The basis of
Bell states has the nice property that the four possible out-
comes of the measurement have equal probability. To see
how this works, for convenience suppose the entangled
state BC was prepared in state | 

(-)
BC i . In this case the

combined wavefunction of the three-qubit state is

| ABCi = | Ai| (-)
BC i =

↵p
2

�
|1Ai|1Bi|- 1Ci- |1Ai|- 1Bi|1Ci

�
+

�p
2

�
|- 1Ai|1Bi|- 1Ci- |- 1Ai|- 1Bi|1Ci

�
. (II.4.13)

If this is expanded in the Bell states’ basis for the pair AB,
it can be written in the form:

| ABCi =
1

2

h
| 

(-)
AB i(-↵|1Ci- �|- 1Ci)

+ | 
(+)
AB i(-↵|1Ci+ �|- 1Ci)

|�
(-)
AB i(�|1Ci+ ↵|- 1Ci)

+ |�
(+)
AB i(-�|1Ci+ ↵|- 1Ci)

i
.

(II.4.14)

We see that the qubit pair AB has equal probability to
be in the four possible states | 

(-)
AB i , | 

(+)
AB i , |�

(-)
AB i and

|�
(+)
AB i .

In step (4), Alice transmits two classical bits to Charlie,
telling him which of the four basis functions she observed.
Charlie now makes use of the fact that in the Bell basis
there are four possible states for the entangled qubit that
he has, and his qubit C was entangled with Alice’s qubit B
before she made the measurement. In particular, let |�Ci
be the state of the C qubit, which from equation II.4.14) is
one of the four states:

|�Ci =
✓
-↵
-�

◆
;

✓
-↵
�

◆
;

✓
�

↵

◆
; and

✓
-�
↵

◆
.

In step (5), based on the information that he receives from
Alice, Charlie selects one of four possible operators Fi and

uses it to measure the C qubit. There is one operator Fi
for each of the four possible Bell states, which are respec-
tively:

F = -

✓
1 0

0 1

◆
;

✓
-1 0

0 1

◆
;

✓
0 1

1 0

◆
; and

✓
0 1

-1 0

◆
.

(II.4.15)
Provided Charlie has the correct classical information and
an intact entangled state he can reconstruct the original
A qubit by measuring |�Ci with the appropriate operator
Fi .

| Ai = ↵|1i+ �|- 1i = Fi|�Ci . (II.4.16)

By simply multiplying each of the four possibilities it is easy
to verify that as long as his information is correct, he will
correctly reconstruct the A qubit ↵|1Ai+ �|- 1Ai .

We stress that Charlie needs the classical measurement
information from Alice. If he could do without it the tele-
portation process would violate causality, since information
could be transferred instantaneously from Alice to Charlie.
That is, when Alice measures the B qubit, naively it might
seem that because the B and C qubits are entangled, this
instantaneously collapses the C qubit, sending Charlie the
information about Alice’s measurement, no matter how far
away he is. To understand why such instantaneous com-
munication is not possible, suppose Charlie just randomly
guesses the outcome and randomly selects one of the four
operators Fi . Then the original state will be reconstructed
as a random mixture of the four possible incoming states
|�Ci . This mixture does not give any information about the
original state | Ai . The same reasoning also applies to a
possible eavesdropper, conveniently named Eve. If she
manages to intercept qubit (C) and wants ‘to measure it’
before Charlie does, without the two bits of classical infor-
mation, she will not be able to recover the original state.
Furthermore she would affect that state. If Charlie some-
how gets the mutilated state, he will not be able to recon-
struct the original state A . Security can be achieved if Al-
ice first sends a sequence of known states which can be
checked by Charlie after reconstruction.
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Superposition The strange thing
about a qubit in comparison with its
digital precursor is the fact that it can
be in a state that is a ‘superposition’ of

the ‘1’ and the ‘0’ state. This is possible because
of the all-important linear superposition principle
which is a basic ingredient of quantum theory. As a
consequence of quantum information processing,
the manipulation of qubits, i.e. changing their
states by having them interact, is like doing parallel
processing on a large scale. The exceptional
power of the quantum computers of the future is a
reflection of the ability to directly work with these
linear superpositions. Here is an analogy that may
help you understand why this is so. Imagine you
would like to make a street map of a city to find the
shortest route from point P on one side of town to
point Q on the opposite side. As a single being you
go and walk in the right direction, and to find the
shortest route you should walk in principle all the
possible routes that bring you from P to Q and com-
pare their lengths. Parallel processing would mean
that you hire a bunch of students to independently
and simultaneously take different paths from P to
Q . This certainly will save time. But now imagine
that some Dr Ghetto Blaster comes along with a
device which produces lots of sound at point P and
his business partner Dr Ghetto Digest sits down
at point Q with an impressive highly sophisticated
listening device. He turns the machine on and in
no time has reconstructed the street map. Imagine!
The remarkable thing is that this is in principle
possible because sound as an agent always takes
all possible paths through town simultaneously, and
interferes with itself on every corner, and all that
information is encoded in the changes of the signal
that we would receive in Q . It probes the street
plan not sequentially but in parallel. A fashionable

version of this story is to say that you can hear the
shape of a remote drum if somebody is playing it, or
that you can hear the shape of a tin roof by listening
to the rain pouring on it. This is so because there
are many ticks and every tick in a sense ‘contains’
all frequencies and therefore these examples are
classical analogues and show the potential power
of the linear superposition principle. ⇤

If the original and reconstructed sequence are perfectly
correlated, then that guarantees that Eve is not interfer-
ing. Note that the no-cloning theorem is satisfied, since
when Alice makes her measurement she alters the state
 A as well as her qubit B . Once she has done that, the
only hope to reconstruct the original  A is for her to send
her measurement to Charlie, who can apply the appropri-
ate operator to his entangled qubit C .

The quantum security mechanism of teleportation is based
on strongly correlated, highly non-local entangled states.
While a strength, the non-locality of the correlations is also
a weakness. Quantum correlations are extremely fragile
and can be corrupted by random interactions with the en-
vironment, i.e. by decoherence. As we discussed before,
this is a process in which the quantum correlations are de-
stroyed and information gets lost. The problem of deco-
herence is the main stumbling block in making progress
towards large-scale development and application of quan-
tum technologies. Nevertheless, the research group of
Gisin et al. at the University of Geneva demonstrated tele-
portation over a distance of 550 meters using the optical
fiber network of Swisscom in 2006.

A n important next step would be the construction of a net-
work of quantum devices with links along which entangled
states can be created and quantum information teleported
securely. In 2022 the first successful steps were reported
by the QuTech group of Hanson in Delft.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 371 — #401 i
i

i
i

i
i

QUANTUM COMPUTATION 371

Figure II.4.11: Trapped ions. Ions trapped in a linear optical
lattice. (IQO Insbruck)

Quantum computation

Quantum computation is performed by setting up controlled
interactions that cause non-trivial dynamics and succes-
sively couple individual qubits together and generate a time
evolution of the quantum state in a predetermined man-
ner. And moreover ensuring that no other interactions take
place that could corrupt the computation. A multi-qubit
system is first prepared in a known initial state, represent-
ing the input to the program. Then interactions are switched
on by applying forces, such as magnetic fields, that deter-
mine the direction in which the wavefunction rotates in its
state space. Thus a quantum program is just a sequence
of unitary operations that are externally applied to the initial
state. This is achieved in practice by a corresponding se-
quence of quantum gates. When the computation is done
measurements are made to read out the final state. Mea-
surements are non-unitary operations that can also be part
of the process.

Quantum computation is essentially a form of analog com-

putation. A physical system is used to simulate a math-
ematical problem, taking advantage of the fact that they
both obey the same equations. The mathematical problem
is mapped onto the physical system by finding an appropri-
ate arrangement of magnets or other fields that will gener-
ate the proper equation of motion. One then prepares the
initial state, lets the system evolve, and reads out the an-
swer. Analog computers are nothing new. For example,
Leibnitz built a mechanical calculator for performing multi-
plication in 1694, and in the middle of the twentieth century,
because of their vastly superior speed in comparison with
digital computers, electronic analog computers were often
used to solve differential equations.

Then why is quantum computation special? The key to its
exceptional power is the massive parallelism at intermedi-
ate stages of the computation. Any operation on a given
state works simultaneously on all basis vectors and thus
also on entangled states. The physical process that de-
fines the quantum computation for an n qubit system thus
acts in parallel on a set of 2n complex numbers, and the
phases of these numbers (which would not exist in a clas-
sical computation) are important for determining the time
evolution of the state. When the measurement is made
to read out the answer at the end of the computation we
are left with the n-bit output and the phase information is
lost.

Because quantum measurements are generically proba-
bilistic, it is possible for the ‘same’ computation to yield dif-
ferent ‘answers’, e.g. because the measurement process
projects the system onto different eigenstates. This can re-
quire the need for error correction mechanisms, though for
some problems, such as factoring large numbers, it is pos-
sible to test for correctness by simply checking the answer
to be sure it works. It is also possible for quantum comput-
ers to make mistakes due to decoherence, i.e. because
of essentially random interactions between the quantum
state used to perform the computation and the environ-
ment. This also necessitates error correction mechanisms.
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Figure II.4.12: Optical lattice. Atoms can be manipulated in a
linear optical lattice. (IQO Innsbruck)

The problems caused by decoherence are perhaps the
central difficulty in creating realistic physical implementa-
tions of quantum computation. These can potentially be
overcome by constructing quantum systems where states
are not encoded locally, but rather globally, in terms of
topological properties of the system that cannot be dis-
rupted by external (local) noise. This is called topological
quantum computing. This interesting possibility arises in
certain two-dimensional physical media which exhibit topo-
logical order, referring to states of matter in which the es-
sential quantum degrees of freedom and their interactions
are topological (see also Chapter III.3).

Quantum gates and circuits

In the same way that classical gates are the building blocks
of classical computers, quantum gates are the basic build-
ing blocks of quantum computers. A gate used for a clas-
sical computation implements binary operations on binary
inputs, changing zeros into ones and vice versa. For ex-

Figure II.4.13: Gates. Some standard one-bit quantum gates.

ample, the only non-trivial single bit logic operation is NOT ,

which takes 0 to 1 and 1 to 0 . In a quantum computation
the situation is quite different, because the states of qubits
live in a two-dimensional Hilbert space and they represent
complex superpositions of 0 and 1 . This was discussed in
considerable detail in Chapter II.1.

Single qubit gates. The set of allowable single qubit op-
erations consists of unitary transformations corresponding
to 2 ⇥ 2 complex matrices U such that U†U = 1 . The
corresponding action on a single qubit is represented in a
circuit as illustrated in Figure II.4.13.

Some quantum gates have classical analogues, but many
do not. As we mentioned, the X operator is the quan-
tum equivalent of the classical NOT gate, and serves the
function of interchanging spin up and spin down. In con-
trast, the Z operator rotates the relative phase of the two-
component wavefunction by 180 degrees and has no clas-
sical equivalent.

Let us briefly discuss the typical one-qubit logical gates of
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Figure II.4.13. First the NOT gate,

X =

✓
0 1

1 0

◆
,

as we mentioned this is the quantum equivalent of the clas-
sical NOT gate and acts by interchanging |1i and | - 1i .
The next one is

P(✓) =

✓
1 0

0 ei✓

◆
.

The P(✓) operation is called the phase gate, since it changes
the relative phase by ✓ degrees.

The third gate is the so-called Hadamard gate H ,

H =

r
1

2

✓
1 1

1 -1

◆
,

which creates a superposition of the basis states: |±1i )
|±i . In other words it flips between the Z- and the X-
frames.

The general purpose of a quantum computer is to trans-
form an arbitrary n-qubit input into an n-qubit output cor-
responding to the result of the computation. In principle im-
plementing such a computation might be extremely com-
plicated, and might require constructing quantum gates of
arbitrary order and complexity.

Universal gate sets. Fortunately, it has been shown that
the transformations needed to implement a universal quan-
tum computer can be generated by a simple – so-called
universal – set of elementary quantum gates, for example
involving a well-chosen set of one- and two-qubit gates.
Single qubit gates are unitary matrices with three real de-
grees of freedom. If we allow ourselves to work with fi-
nite precision, the set of all gates can be arbitrary well ap-
proximated by a small, well-chosen set. There are many
possibilities – the optimal choice depends on the physical
implementation of the qubits.

From the perspective of experimental implementation, a
convenient two-qubit gate to use is the CNOT gate we
have discussed before, see Figure II.1.17. The combina-
tion of the CNOT , the P(⇡/4) and the Hadamard gate
forms for example a universal set.

Shor’s algorithm

Prime factoring. An algorithm is not an equation; it is
more like an operational set of steps – a procedure – that
is guaranteed to lead to a desired result. So it usually
does involve equations and a mathematical proof. For the
Shor algorithm the problem is to factor a large number,
say of about 800 or 1000 digits, into its prime factors, in
most cases there are just two of them. So we have a
number N that can being written in a unique way as a
product of two prime numbers a and b . One way to do
this is just by trial and error. In fact by checking one af-
ter the other whether 2, 3, 5, . . . is a divisor of the number
N . And this you may do by a simple subtraction scheme
à la Euler, where you keep subtracting the candidate di-
visor and look whether you indeed hit zero. As we have
argued in Chapter I.3, such schemes end up being extrav-
agantly costly in the time it takes to actually factor a really
big number. That time is significantly longer than the age
of the universe and that should not surprise you. The one
thing it makes at least clear is that patience will not suffice.
The time dependence on N if one uses conventional digital
computers is typically exponential. The showcase exam-
ple of why quantum computers are indeed fundamentally
different, and for a task like this one far superior, is the
Shor factorization algorithm which is a quantessential al-
gorithm, because it exploits non-commutativity of opera-
tors in a clever way.

The MIT applied mathematics professor Peter Shor pro-
posed the algorithm in 1994 and was co-recipient of the
2023 Breakthrough Prize in Fundamental Physics.
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Figure II.4.14: The periodic function. We have displayed
f(x) = cxmodN (red curve). The blue points represent the
(discrete) periodic function over the integers. We have chosen
c = 2 and N = 21 . The period equals 6 .

The algorithm. The algorithm for factorization consists of
three steps.
(i) construct a particular periodic function modulo N,
(ii) determine the period of that function,
(iii) given (i) and (ii) one can use an Euler method for find-
ing largest common divisors to find the factors a and b

such that ab = N .

(i) Construction of the periodic function. Choose an integer
c and consider the function4

f(m) = cm mod N , m integer . (II.4.17)

(ii) One can show that this function is periodic with a period
we call r, so,

f(m+ r) = f(m) . (II.4.18)

After substitution of f on both sides, it then follows that

cr = 1 mod N ! cr - 1 = sN ,

4The number m = M mod N is obtained by subtracting N from M

until a number between 0 and N is obtained, which is the number m.

In other words M = m + kN for some k with 0  m < N .

where s is some integer. Now rewrite the left-hand side
as:

(cr/2 + 1)(cr/2 - 1) = sN ,

where we need r to be even for the factors to be integers.
If r happens to be odd, one has to restart by choosing a
different value for c and start all over.
(iii) The next step is to find the greatest common divisor of
the individual factors on the left with N , after which one
obtains the prime factors a and b of N . This last step can
be done with an Euler subtraction scheme.

The hard part of this solution method is to find the period
r of the function f(m) because this r may be of order N
itself. Determination can be done using a fast or integer
Fourier transform of f(m) .

As we discussed wavefunctions, and non-commuting op-
erators as hallmarks of quantum theory it is maybe nice to
paraphrase this hard side of the problem and to see that
quantum measurement is the clue. Firstly think of the func-
tion f(m) as a wavefunction on a one-dimensional lattice
corresponding to the natural numbers 0, 1, 2, 3, . . . . Now
we also have discussed a momentum operator P which
translates the position variable by one unit. And acting on
the function it acts like P f(m) = f(m + 1) . Because of
the periodicity of f(m) we also have the relation Prf(m) =
f(m + r) = f(m) from which we conclude that Pr = 1 .
From which it follows that the eigenvalues of the P oper-
ator are p = e2⇡is/r with s = 0, 1, . . . , r . In other words
doing a measurement of the momentum of the state de-
scribed by the wavefunction f(m) tells us basically what r
is!5 What we end up with is a periodic function with a sup-
port of r points on a circle and dual to that the momentum
sample space also consisting of r points. This is of course
due to the periodicity of the function. I recall the statement
about the relation between the sample spaces of position
versus momentum operators. A line is dual to a line. If the

5One may need more than one measurement, but one can check
that rather easily.
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Figure II.4.15: The Fourier transformed function F(k) . We have
displayed Re F(k) (blue curve) and Im F(k) (red curve). The
peaks at multiples of 1/6 stand out clearly, even in this crude
‘iPhone’ approximation causing some noise. This means that
the periodicity of the original function f(m) (the blue dots in the
previous figure) would be 6.

x-space is infinite discrete then the sample space of the
dual momentum is a angle or a circle, by bringing in the
periodicity only a set of r points on the circle is left corre-
sponding to the corners of a polygon. And in that case the
P and X sample spaces are again the same. There are ba-
sically two identical polygons and there is a unitary trans-
formation between the frames that correspond to the sets
of eigenvectors corresponding to the eigenvalues. Stated
differently the problem of factoring is to a large extent find-
ing the right polygon hidden in the circle and indeed there
are many (a countable infinity) to choose from.

The fast Fourier transform of a function F(n) is defined
as:

F(k) =
X

m

f(m)e2⇡ikm , (II.4.19)

which combined with the fact that f(n) has a period r leads
to a powerful conclusion on the function F(k) . For the func-

tion (II.4.17) it leads to the strong condition:

e2⇡ikr = 1 ! k = s/r ; s = 1, . . . , r .

What this means is that we ask for the transformation of a
(wave) function f(x) on a one-dimensional infinite lattice,
from the position state basis to a momentum state basis.
We know that the momentum values for an infinite discrete
space correspond to an angle 0  ✓  2⇡ where in
our case ✓ = 2⇡ k = 2⇡ s/r . So what we learn is that
the function f involves only r different momentum states.
The fast Fourier transform just measures the momentum
and determines the component of that momentum eigen-
state. The magnitude of that component is not so relevant
as what the actual allowed momenta are. So the momen-
tum state is almost everywhere zero except in points that
correspond to the corners of a polygon with r sides where
they have the value F(k) .
Wouldn’t it be fun to find an example where we would be
left with a pentagon, what do I say, THE pentagon, in mo-
mentum space? Maybe that explains the Pentagon’s inter-
est in quantum computing and maybe they knew all along
that the pentagon would play an important role somewhere....

So the data we need from the fast Fourier transform just
corresponds to one or more measurements of the momen-
tum in the state f . That will give us a value(s) p = 2⇡s/r

from which r can be determined. So it is now clear that
quantum measurements implement an extremely efficient
algorithm for fast Fourier transform on integer-valued func-
tions. You just have to measure the non-commuting ob-
servable dual to the variable of the function, and that is the
momentum. And that is the quantessence of super fast
factorization.

Let us work out a simple example, and let us try to factor
the number N = 21 with the algorithm. We first construct
the function f(x) = 2x mod N , it takes the values given in
Table II.4.1. We see that the function has a period r = 6 ,
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Table II.4.1: Tabulation of the function f(x) = 2x mod 21 .

x 0 1 2 3 4 5 6 7 8 9 10
f(x) 1 2 4 8 16 11 1 2 4 8 16

so we obtain the equation:

(23 + 1)(23 - 1) = 9⇥ 7 = 21⇥ s .

Now determine the largest common divisor from the fac-
tors on the left with 21:
21 mod 7 = 0 ! 7 is a factor of 21 , and 21 mod 9 = 3 !
3 is a factor of 21 . Thus we established the magical result
that 21 = 3⇥7 , One could say that we at least succeeded
in cracking a nut by using a magnificent sledgehammer.

But to factor a 1000 digit number into two primes you will
need this sledgehammer in the form of a sizable quantum
computer to find the period, which after all might well be of
the order of N itself!

Applications and perspectives

Quantum computation and security are challenging exam-
ples of the surprising interplay between the basic concepts
of physics and information theory. If physicists and engi-
neers succeed in mastering quantum technologies to al-
low for reliable and scalable qubits, it will mark an impor-
tant turning point in information science with profound so-
cietal consequences. We had better get ready for an era
of quantum supremacy!

Hardware developments. As we mentioned already, at
present there is a lot of work in progress trying to imple-
ment quantum computing in a wide variety of ways. I will
refrain from going into any detail here firstly because that
calls for many different types of expertise, and furthermore
the developments go so fast and still make so many unex-

pected turns that I would run the risk that this book would
already be out-of-date before it was published. It is abso-
lutely clear however that basically all big tech companies
are actively pursuing the quantum opportunities that suits
them. In principle all that is needed to make a qubit is a
simple two-level quantum system that can easily be ma-
nipulated and scaled up to a large number of qubits. The
first requirement is not so restrictive, and many different
physical implementations of systems with a single or a few
qubits have been realized, including NMR, spin lattices, lin-
ear optics with single photons, quantum dots, Josephson
junction networks, ion traps and atoms and polar mole-
cules in optical lattices.

The much harder problem that has so far limited progress
toward practical computation is to couple the individual
qubits in a controllable way and to achieve a sufficiently low
level of decoherence. Even small local perturbations due
to the environment could destroy the delicate phase infor-
mation in the linear superposition of states. With respect
to this problem, a promising venue has surfaced with the
advent of Topological Quantum Computing where quan-
tum information is stored in topological degrees of free-
dom that are insensitive to local perturbations and interac-
tions, making error correction procedures simpler to imple-
ment. This way of computing involves new states of mat-
ter, that exhibit what is called topological order. In Chap-
ter III.3 we’ll say more about this. On the software side
impressive progress has been made, building on the fun-
damental quantum algorithms we have mentioned. There
is of course also the possibility of developing hybrid classi-
cal/quantum devices. Nevertheless, with the great efforts
now taking place, future developments could be surpris-
ingly fast.

The challenge of quantum software. We are in a sit-
uation that looks like the early seventies where many in-
stitutions in what still was Silicon Valley to be, started fo-
cussing on developing software for digital devices like PC’s
and laptops, that weren’t really there yet. This major effort
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was to a large extent based on the strongly held belief that
a digital era was on its way where every individual would
own powerful devices, to play and work with. High level
languages had to be developed to allow everybody to op-
timally process data, whether it concerned text, pictures,
symbolic manipulation or music. It turned into an unprece-
dented show-case of public and private research and de-
velopment efforts, which resulted in the present informa-
tion era which in many ways has profoundly changed the
human condition.

We are now in a comparable situation with respect to quan-
tum computing. And again, even though the hardware
is still quite remote, a strong case for quantum software
should be made. If we were to have quantum comput-
ers at our disposal, the question of what miracles could
they possibly perform strongly depends on the software
that is available. We said in the introduction to this sec-
tion that there are many problems where the intrinsic mas-
sive parallelism of quantum evolution might yield dramatic
speedups in computation. The point is not that a classical
computer would not be able to do the same computation –
after all, one can always simulate a quantum computer on
a classical one – but rather the time that is needed could
drastically be reduced.

As we just discussed in some detail, a most spectacu-
lar speedup is achieved by the Shor algorithm (1994) for
factoring large numbers into their prime factors. Because
many security keys are based on the inability for digital
computers to do this, the reduction from an exponentially
hard to a polynomially hard problem has many practical
applications for breaking security codes and current cryp-
tography. This means that even today, one has already to
worry about how one should save sensitive information, to
make sure that it cannot be easily retrieved in the near
quantum future. Quantum algorithms also allow one to
provide new more secure crypto-codes that in principle al-
low users to run programs on untrusted systems and still
keeping their data secret.

Another important application is the quadratic speedup by
Grover’s search algorithm (1996) over conventional search
algorithms, addressing for example problems like the ‘trav-
eling salesman’, in which large spaces of possibilities need
to be searched and compared.

Machine learning is another hot topic where the discovery
of an exponential speedup for solving certain systems of
linear equations has led to flurry of new developments like
algorithms for core problems like data fitting and support-
ing vector machines.

Finally, a vital application is the efficient simulation of quan-
tum physical and chemical systems, which at present is
an extremely costly business taking up much of our su-
percomputer capacity. This development is of importance
to fields like chemistry, material science and high-energy
physics. In this area a quantum computer naturally would
offer an exponential speedup, which in turn would directly
feed back into the successful development of new quan-
tum technologies. Science is time and again an incredi-
ble innovation engine, we are standing at the dawn of a
new era and wonder where quantum technologies will lead
us.
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Further reading:
On the interpretation of quantum theory:

- Quantum: Einstein, Bohr and the Great Debate
About the Nature of Reality
Manjit Kumar
Icon Press (2009)

- The Interpretation of Quantum Mechanics
Roland Omnes
Princeton University Press (1994)

On quantum computing:

- Quantum Computing for the Quantum Curious
Jessica Turner et al.
Springer Link (2021)

- Quantum Information Theory
Mark M. Wilde
Cambridge University Press (2013)

- Quantum Computation and Quantum Information
Isaac Chuang and Michael Nielsen
Cambridge University Press (2011)
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Chapter II.5

Particles, fields and statistics

In fact the smallest units of matter are not phys-
ical objects in the ordinary sense; they are forms,
ideas which can be expressed unambiguously only
in mathematical language.

Werner Heisenberg

In Chapters II.1 and II.2, we mainly focussed on the qubit,
because in its simplicity it was most suitable to demon-
strate the quantessentials. In this chapter we turn to par-
ticles and fields. We start by discussing the one-particle
Schrödinger and Heisenberg equations in more detail. Next,
we turn to fields and their quantization, and explain how
the resulting Hilbert space describes multiparticle states.
We close the chapter with a discussion of the topological
origins of indistinguishability, Pauli’s exclusion. principle
and the spin-statistics connection.

Particle states and wavefunctions

Whereas the state of a single particle in classical physics
is fixed by specifying its position and its velocity, i.e. by
giving 6 numbers, the state of a quantum particle is spec-
ified by giving its wavefunction, a continuous function that
extends over all of space. How different can the quantum
world be?

Figure II.5.1: Moving particles. Various particle motions as a
function of time (t) in configuration (x) space. A particle succes-
sively: at rest (orange), moving with constant momentum (pur-
ple), in an oscillatory motion (red), and in a damped oscillation
(blue).

Phase space. Let us consider a single particle with a
given mass m and assume that it has no internal structure.
In classical mechanics we specify its state by just saying
what its position x and its velocity v or momentum p = mv

are. Once we fix its position and momentum at a given
instant in time, Newton’s laws would do the rest, given the
force they completely determine the future states of the
particle. The motion of the particle can be thought of as an
orbit or trajectory parametrized by time in ordinary three-
dimensional position or configuration space of the particle.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 380 — #410 i
i

i
i

i
i

380 CHAPTER II.5. PARTICLES, FIELDS AND STATISTICS

Figure II.5.2: Particle motions. The same particle motions as
in Figure II.5.1 as a curve parametrized by t in phase space
(x(t), p(t)) .

In the one-dimensional case we would plot the position
x = x(t) with the value x on the vertical axis as a func-
tion of t along the horizontal axis. Alternatively we may
think of the motion as a time parametrized curve through
the combined momentum and position space which is also
called the phase space of the particle. The phase space
has twice the number of dimensions, because to the d

components of the position vector one has to add the d

components of the momentum vector.

We have given some examples of one-dimensional particle
motions in the Figures II.5.1 and II.5.2, showing what they
look like in configuration as well as phase space. So far
the classical story of a particle.

Wavefunctions. The story in quantum mechanics is very
different. There the state of a particle at a given time t is
described by its wavefunction  (x, t) which is a function
that even for a single particle is defined over all of posi-
tion (configuration) space.1 Note, however, that we do not

1For readers who are not already familiar with the notion of func-
tions and what you can do with them I recommend looking at the Math
Excursion on page 607 of Part III.

specify its velocity. If we just give the wavefunction over all
of space at some initial time, then the Schrödinger equa-
tion would generate the future states given the expression
for the kinetic energy and potential energy. The Schrödin-
ger equation determines the time evolution of the wave-
function which in turn describes the particle state, and
in that sense does for a quantum particle what Newton’s
equations did for the classical particle. We encountered
this equation before in Chapter I.4 on page 158 but we will
recall some of the results here for convenience. Our in-
tuition about particles is deeply rooted in the Newtonian
paradigm in that we think of a particle having a definite
position a definite velocity, and that image is of course a
long way from specifying some smooth function over all of
space. Indeed this is nothing less then a conceptual leap
that took the brightest minds a long time, first to bridge,
and later to really swallow.

Particle-wave duality

In classical physics the particle and wave concepts are dis-
tinct and mutually exclusive. In quantum theory a particle
may manifest itself in both guises. Here the concept of
complementarity rears its head. The concept of a quantum
particle transcends the classical distinction and appears to
be both. Niels Bohr applied the wave picture to atomic or-
bits and obtained a discrete set of energy levels of which
the lowest one is stable. A new door for fundamental phys-
ics opened up.

The vastly different framework of quantum mechanics we
just outlined expresses the quantessential feature known
as particle-wave duality. The wavefunction expresses the
wave nature of a particle and the Schrödinger equation is
a wave-type equation for the matter-wave that represents
the particle in quantum theory. In the early days one re-
ferred therefore to quantum mechanics as ‘wave mechan-
ics.’ That term sounded in the classical context rather like a
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Figure II.5.3: Particle probability density. A quantum probability
density of a particle  (x, t) as a function of x and t . It describes
a particle at rest, well localized around the origin for t = 0 and
then spreading out (disperse) over space as time progresses.

contradiction in terms, because in classical physics, parti-
cles and waves are fundamentally different concepts. Par-
ticles are supposed to be very much localized, while for
waves the opposite holds, they typically are spatially ex-
tended. Particles can collide locally and exchange mo-
mentum and energy like billiard balls, while waves ‘inter-
act’ typically by interference where the combined waves
show a particular pattern of maxima and minima like water
waves in a pond. We may ask what the special proper-
ties of a wave representing a particle are, or for that matter
what the particle properties are of a wave, for example an
electromagnetic wave.

Photons. To start with the latter, it was one of Einstein’s
seminal contributions to quantum theory to postulate the
so-called photon as the quantum particle of light. Its defin-
ing properties are that this particle moves with the velocity
of light, has zero mass, and an energy E = h⌫ , where ⌫
is the frequency of the light wave.2 Thus a steady electro-

2This may at first sight seem problematic perhaps, because if a

magnetic wave of a single frequency would correspond to
a constant flux of particles with a fixed energy or momen-
tum. The quantization of energy of radiation of a given
frequency implied that the minimal amount of energy of a
wave with frequency ⌫ had to just be h⌫ , and this quan-
tization of energy was exactly what the radical postulate
of Max Planck amounted to, the postulate which started
off the whole quantum revolution. It was this assump-
tion which rescued the classical black body radiation law
of Rayleigh-Jeans from its demise in the high frequency
domain as we pointed out in Chapter I.2.

Matter waves. It was the French physicist De Broglie who
turned the relation around. He postulated the existence of
matter waves: for any particle type with a mass m, the
wavelength had to satisfy the relation � = h/p , linking the
wavelength to the momentum. This relation is consistent
with Einstein’s formula E = h⌫ once you realize that for a
massless particle according to special relativity E = cp as
we pointed out in Chapter I.2, and that for a lightwave we
have that � = c/⌫ .

The Bohr atom. Furthermore this picture of a matter wave
was at the heart of the atomic model of Bohr, where a def-
inite energy state of an electron would have a single wave-
length but to make it periodic, it had to fit exactly on the
classical circular orbit with that energy. Imposing this re-
lation lead to the quantization of the wavelength, and thus
of the momentum and therefore also to the quantization
of the allowed energy for the atomic states. Bohr’s pic-
ture of the atom predicted the discrete spectrum of energy

particle has mass equal to zero would then Einstein’s own dictum –
E = mc2 – not decree that its energy would be zero as well? Not re-
ally, because we have to make the distinction between the rest mass
m0 of a particle and its relativistic mass m. These are related by
m2 = m2

0 + (p/c)2 , showing that (i) if the momentum p = 0 indeed
m = m0 , and (ii) that if m0 = 0 then m = |p|/c . This tells us that
in the latter case where the rest mass is zero, the relativistic mass is
proportional to the momentum of the particle. Therefore, in relativity
massless particles make complete sense and the photon is the om-
nipresent manifestation of that.
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levels but most importantly also the existence of a lowest
energy or ground state for the atom. The ground state cor-
responds to the largest wavelength that would fit on the or-
bit, i.e. being equal to that orbit. This point is all-important,
exactly because the classical realization of an atom lacks
a true ground state, the system would be unstable and the
electron would fall into the nucleus in a short time, loos-
ing energy by radiating. So the extremely stable atom as
we know it in nature severely violated the laws of classi-
cal physics, and that was one of the reasons we had to
give up, not just on the naive model of the atom but on
the whole of classical physics! It was quantum theory that
provided a fundamental understanding of the stability of
matter.

Where is the particle? If a particle is represented by a
wavefunction, the first question that comes mind is: ‘but
what about the position of the particle?’ I have told you
what the momentum of the particle is but where is it? In-
deed, where is the particle if it is a kind of standing wave
spread out around the nucleus? A perfect monochromatic
wave has in principle an infinite extent. It is a periodic
function like a sine or a cosine, but how can such a func-
tion ever single out any particular position for the particle?
Well, you are right, it cannot.

The resolution of this tantalizing paradox has to do with
the interpretation of the wavefunction and what it means
to make a position measurement of a particle. We have
touched on these matters already in Chapter II.2 where we
learned that this comes about because of the incompati-
bility of different observable quantities and the frameworks
that limit the degree to which questions may or may not
have meaningful answers. For the moment we accept the
euphemism that Niels Bohr invented for this inconvenient
truth of particles being waves and vice versa: he called it
complementarity. We return to these questions explicitly
shortly.

The space of particle states

We extend the symbolic mathematical representation from
qubit to particle states. It is profitable to also think of wave-
functions as state vectors. The square of the wavefunction
defines a probability distribution of where to find the parti-
cle.

In previous chapters we looked at the space of quantum
states of a system that classically corresponds to a system
with a finite number of states, like an array of qubits. Now,
we want to extend this discussion to a system of a particle
with mass m that moves in Euclidean space. The essential
difference is that the classical configuration space is now
continuous.

Hilbert space heuristics. Essentially, making the step
involves going from a discrete to to a continuous space
and that is from a mathematical point of view a subtle mat-
ter. For that reason we will restrict ourselves here to rather
heuristic arguments. If a particle could sit only in a discrete
set of positions xi(i = 1, . . . ,N) , then of course the anal-
ysis is reduced to the one we had in the previous chapters
and we would introduce a set of corresponding basis vec-
tors |xii , which would be eigenvectors of the position op-
erator X and hence satisfy the eigenvalue equation:

X|xii = xi|xii , (II.5.1)

and the state vector would be written as | i =
P

i ↵i|xii .
The natural generalization for the continuous space case
to write the following expression for the quantum state of a
particle:

| i =
Z
 (x)|xi dx . (II.5.2)

All we know about the particle state | i is that the state
is encoded in the corresponding complex function  of
the continuous position variable x . The sum over the dis-
crete subscript i gets replaced by integral over the contin-
uous variable x , which is symbolically written as

R
· · ·dx .
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-4 -3 -2 -1 0 1 2 3 4 5
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Figure II.5.4: Harmonic oscillator wavefunctions. wavefunc-
tions of the three lowest energy states  n(x) with n = 0, 1, 2 ,
of a quantum oscillator. The label n also gives the number of
nodes: the even n functions are symmetric the odd ones are
odd under x ! -x .

And indeed,  (x) is just the famous wavefunction that ap-
pears in the well-known Schrödinger equation we will get
to later. To give you an idea we have depicted the three
lowest energy states of a particle in a harmonic oscillator
potential in Figure II.5.4. These will be discussed in more
detail shortly. Talking heuristically one may say that the
wavefunction represents nothing less than a vector in an
infinite-dimensional vector space. In fact  (x) is the ’|xi
component’ of the state vector | i which suggests that we
should write it as such:

 (x) = hx| i, (II.5.3)

leading to the expansion of the wavefunction in ‘position
eigen states’,

| i =
Z
|xihx| i dx .

We have to make sure that we impose the normalization
condition just as we did in the discrete case, in strict anal-
ogy it reads:

h | i =
Z
 (x)⇤ (x) dx =

Z
| (x)|2 dx = 1 . (II.5.4)

-4 -3 -2 -1 0 1 2 3 4 5

-1

1

Figure II.5.5: Harmonic oscillator probabilities. The n = 2
wavefunction (red) and probability density (purple). The prob-
ability P02 is given by the shaded area. We talk about these
states in detail in a later section on page 395.

So what we learn is that quantum states of particles de-
fined on a configuration space X correspond to elements
of the space H of (complex) functions on X which are
‘square integrable’, meaning that they have to satisfy the
condition (II.5.4). This space of square integrable functions
is called the Hilbert space. One can also define a scalar
product on the states that – not surprisingly – takes the
form:

h�| i =
Z
�⇤(x) (x) dx ,

completely analogous to formula (II.1.4). This once more
underscores the exceptional elegance of Dirac’s bra and
ket notation.

You could say that by going from classical to quantum de-
scription we transcend from some space of coordinates
to the space of functions on that space of coordinates.
The difference with the description of the classical state is
rather dramatic indeed, and you may wonder how to make
sense out of it. What is the link of the wavefunction which
is defined over all of space and the ordinary point-like par-
ticles we observe?
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Probability interpretation. The interpretation is also com-
pletely in line with what we expect from the discrete case:
 (x) is the (complex) probability amplitude for the proba-
bility p(x) of finding the particle at point x . The absolute
square of the amplitude p(x) = | (x)|2 defines a probabil-
ity density, and hence the probability Pab of finding the par-
ticle in the range a 6 x 6 b can be expressed as:

Pab =

Zb

a
p(x) dx . (II.5.5)

Formulas like the ones we have displayed in this section
may at first look a bit daunting, and you may ask what the
hell they mean. Well stay tuned in because it is not hard
to visualize at all; the probability Pab is just the area under
p(x) if you plot it as a function of x , between the points
x = a and x = b ; This is depicted in Figure II.5.5 and
for more details we refer to the Mathematical Excursion on
functions in Appendix A of Part III.

As a matter of fact physicists love the bra and ket nota-
tion, it is compact and convenient to work with and it also
keeps the conceptual structure of expressions remarkably
transparent. And often progress originates in designing an
optimal symbolic representation and notation.

This for the moment concludes our description of the space
of quantum states that corresponds to a classical system
with a continuous configuration space such as a particle
moving in ordinary space. We saw that it is described by a
complex wavefunction that may be considered as the com-
ponents of a vector in an infinite-dimensional vector space
of normalizable vectors which is called the Hilbert space.
And we have mentioned that the square of the wavefunc-
tion corresponds to a probability density for where the par-
ticle can be found.

There are other pressing questions that immediately come
to mind. You may ask: where did the velocity of the particle
go, it appears nowhere in the specification of the quantum
state? And what about its energy? Your point is well taken

indeed – thank you – and we will return to the question of
how, and to what extent, a precise velocity or momentum
or energy can be assigned to a particle in the next section.
But before we do so, I want to discuss an explicit example
of a set of wavefunctions for a particle that lives not only
in one dimension, but on a circle, which is a finite one-
dimensional space without boundary.

A particle on a circle

In this subsection we turn to a concrete example and look
at a quantum particle that lives on a unit circle with an an-
gular coordinate 0  '  2⇡ . This may strike you as
a particularly useless theoretical problem, but one should
be careful with those judgements. A lot of applications
of physics and in particular quantum physics have to do
with settings that are effectively low dimensional. Quan-
tum wires are one-dimensional. A particle that is confined
to the edge of a planar disc lives on a circle. In fact the
groundbreaking Bohr-model of the atom amounted exactly
to quantizing a particle on a circle, as he basically quan-
tized the particle on classical circular orbits. Another ex-
ample are ‘quantum dots’, which are basically finite two-
dimensional domains on which particles can live.

A particle on a circle will be described by some complex
wavefunction  (') that is normalized but also has to sat-
isfy a continuity or periodicity condition such that3  (') =
 ('+ 2⇡).

3It is more precise to say that this is a condition one imposes a priori
on physical grounds. If there is some defect on the boundary one could
well imagine to impose a different, non-trivial boundary condition, for
example  (' + 2⇡) = ei� (') . A more sophisticated treatment of
the problem would be to say that we extend the set of observables to
arbitrary translations x and decompose these into x = 2n⇡ + ' . The
discrete translations by 2n⇡ form an invariant subgroup Z of the group
of translations on the real line R ; the different boundary conditions form
representations of this Z group and these are labeled by the angle 0 
� < 2⇡ .
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Figure II.5.6: La Danse. Circle dance by the French painter
Henri Matisse, painted in 1910. ( c�Succession Henri Matisse.)

Momentum eigenstates. The periodic solutions are of
the form

h'|ki =  k(') =

r
1

2⇡h̄
eik' . (II.5.6)

You would expect maybe periodic functions like cosines
and sines, but as we allow complex functions it is much
more natural to write then as simple exponential functions,
and in a sense it amounts to the same thing because of
that beautiful Euler identity eik' = cos(k') + i sin(k') as
is explained in the Math Excursion about complex numbers
on page 607 of Part III. The periodicity condition leads to
the condition that e2⇡ik = 1 , which is satisfied only if k is
restricted to integer values.

Observe that these periodic states  k(') have a wave-
length � = 2⇡/k and using the relation of De Broglie � =
h/p says that in these particular periodic states the parti-
cle carries a momentum pk = h̄k . What about the energy
of the particle? If we think of a free particle with no force on
it, the energy would just be the kinetic energy of the states
Ek = p2

k/2m and therefore grows proportional to k2 . At
this point, however, we could also assume that the particle
is a relativistic particle, in which case the expression for the

Figure II.5.7: Going in circles. We have depicted the k = 5 real
wavefunction  (') = 1p

2⇡
cos(5') of a particle on a circle,

energy of the k-th mode would be Ek =
q
p2
kc

2 +m2c4

which for small momentum reduces to the previous ex-
pression but for large pk we would get Ek ' pkc which
is proportional to k . We can also immediately calculate
the probability distribution for the states to equal:

pk(') =  
⇤
k(') k(') =  -k(') k(') =

1

2⇡
.

This probability density for where to find the particle is con-
stant! This tells us that whereas the momentum of the
particle is completely fixed with zero uncertainty, the posi-
tion of the particle is maximally uncertain, because it corre-
sponds to a uniform distribution over all of space. In these
states there is no preference whatsoever for any position
or region. The conclusion is that in this momentum frame-
work the particle logically speaking has no position. A dra-
matic instance of the Heisenberg uncertainty principle. We
return to this point later on, when we will show wavefunc-
tions which to a certain extent look more like localized par-
ticles. These wavefunctions will be particular linear super-
positions of this set of momentum eigenstates.

Just like in the discrete case for a general state we may
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Figure II.5.8: Going in circles. The probability distribution
⇢(') = 1

2⇡
cos2(5') of a particle on a circle.

write a general expansion like:

| i =
X

k

↵k|k > , (II.5.7)

where the basis states |ki would equal

|ki =
Z
h'|ki |'i d' =

r
1

2⇡

Z
eik' |'i d' .

These states form an orthonormal basis, meaning that they
satisfy the orthonormality condition4

hk|k 0i =
Z
hk|'ih'|k0id' = �kk0 .

Now the sum in. the expression (II.5.7) extends over all in-
teger values of k , indeed confirming our expectation that
the quantum state of a particle on a circle is like a vector
in an infinite-dimensional space. There is also a complete-
ness relation for the basis in analogy with equation (II.2.10)
which reads X

k

|kihk| = 1 .

4To prove it you need the functional relation that 1

2⇡

R
exp(i(k -

k0)') d' = �kk0 .

Position and momentum operators

In the earlier chapters we have been talking about quan-
tum dynamical variables as operators or matrices. For
example for the qubit we showed in Chapter II.1 that we
could interpret the Pauli Z-matrix as the position operator,
and the Pauli X-matrix as the momentum operator. So the
first question that comes up if we think of particle states
as wavefunctions, what the operator valued observables
should look like. Something like infinite-dimensional ma-
trices maybe? The answer is simpler than that and quite
natural if you think of operators that have to act on func-
tions. You can multiply functions by other functions, but
more importantly we can differentiate functions. We should
expect dynamical variables to be represented by differen-
tial operators. So let us first consider the momentum oper-
ator.

Momentum. In this section we look at the definition of
momentum and position operators for a particle on a cir-
cle. The state vectors are the wavefunctions  k(') given
in equation (II.5.6), we will show that the momentum corre-
sponds to the differential operator,

P = -ih̄
d

d'
.

First observe that the functions  k(x) are eigenfunctions
of P , because,

P k(') = h̄k k(') ,

and recall that we argued in the previous chapter based
on De Broglies heuristic argument that the momentum of a
particle in the k-th state is indeed equal to pk = h̄k .

Generator of translations. At this point you might want to
look at the Math Excursion on page 607 of Part III, where it
is shown that the displacement of the state vector or wave-
function is also generated by the derivative or differential
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operator5 K = d
d' . We can formally put it in the expo-

nent, just like the sigma matrices before, having the prop-
erty:

ei✓K k(') = ei✓k k(') =  k('+ ✓) . (II.5.8)

We see that this exponential operator just shifts the argu-
ment of the function by the factor in front of K in the ex-
ponent. This equation is the precise mathematical expres-
sion of the statement that the momentum operator (in fact
P/h̄ to be precise) acting on a function ‘generates’ spatial
translations of its coordinate (position).

The position operator. What about the position opera-
tor � ? It acts on the wavefunction as �  (') = ' (') ,
i.e. by just multiplying the wavefunction by the variable ‘'’.
Note, however, that the  k(') are eigenfunctions of mo-
mentum P but not of position � (because k is a constant
and ' is not, it is a coordinate, a variable). So the posi-
tion operator ‘multiplies’ the wavefunction with the function
‘'’.

It may be useful to again point out the analogy with the
qubit case in Chapter II.2, where the would-be position op-
erator was Z and a would-be momentum operator could
be X . We could then consider the states |±i defined in
equation (II.2.4), which are eigenstates not of Z but of X ,

because X|±i = ± |±i . And indeed, acting with Z on,
for example the X eigenvector |+i would multiply each
component with a different coordinate value, leading to
Z|+i = |-i . So, acting with the coordinate operator on a
momentum eigenstate changes it to another state.

Canonical commutation relations. Being eigenfunctions
of momentum, the  k(') are also eigenfunctions of a Ha-
miltonian H = P2/2m describing a free particle of mass

5The difference between P and K is a matter of units or dimen-
sions, the dimension of the differential operator is [1/length] to get
the dimensions of momentum we have to multiply by a constant with
dimension [lenght⇥momentum] = [joule⇥ second] and yes – not
surprising – that constant is nothing but Planck constant h̄ .

m that moves on a circle. We also see that as we might
expect the momentum and position operators do not com-
mute, they satisfy the so-called canonical commutation re-
lations:

[X, P] = ih̄ . (II.5.9)

To see that this is true it is most convenient to think of the
commutator as an operator working on a (wave) function
f(x) , then we obtain:

[X, P] f(x) = -Xih̄
df(x)

dx
+ ih̄

d

dx
X f(x)

= -ih̄x
df(x)

dx
+ ih̄

d

dx
(x f(x))

= ih̄(
d

dx
x)f(x) = ih̄f(x) .

As the function appearing on both sides of the equation
is arbitrary we may conclude that the statement (II.5.9) is
true as a property of the operators.

Raising and lowering. Let us ask for the raising and low-
ering operators of this problem. Let us first try to find op-
erators Q± that satisfy the commutation relations:

[P,Q±(X)] = ±aQ±(X) , (II.5.10)

and as
PQ± -Q±P = -ih̄

dQ±
dx

,

we obtain an equation for the functions Q±(x) :

-ih̄
dQ±(x)

dx
= ±aQ±(x) .

The solutions to this equation are Q±(x) = c exp(±iax/h̄) ,
and therefore one obtains for the operators:

Q±(X) = c e±iaX/h̄ . (II.5.11)

The interpretation is now as follows. The momentum of
a particle on the circle has a discrete spectrum {h̄k} with
integers 1 < k < 1 , for clockwise and counterclockwise
moving particles. The smallest possible momentum state
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has k = 0 and the raising and lowering operators (II.5.11)
sequentially generate all the eigenfunctions  k(x) if we
choose a = 1 . We clearly have to adjust the value of a
to comply with the imposed boundary condition.

Heisenberg’s uncertainty. It is amusing to check the Hei-
senberg uncertainty relation by verifying that indeed �x =
L and �p = p0 = h̄⇡/L satisfy:

�x�p = h̄⇡ � |ih 0|[X, P]| 0i|
= h̄h 0| 0i = h̄ .

We see that these states do not saturate the lower bound
on the uncertainty relation. That lower bound is h̄/2 , as
we showed in Chapter II.2 on page 317.

Energy generates time evolution

Time evolution. If we talk about time evolution of a classi-
cal system, we think in the first place of Newton, but in the
realm of computation we also think of the physical imple-
mentation of a sequence of logical gates. A computation
is in that sense a discrete dynamical process whose rate
is set by the speed or clock time of the chip, today being of
the order of nanoseconds. We process information by ma-
nipulating it through interacting with it in a controlled way
by having logical gates acting. That is similar to applying
a force to get ourselves moving as we saw in the previous
chapters. Now even in the heyday of classical mechanics
many different approaches were formulated in attempts to
solve specific dynamical problems by people like Hamil-
ton, Jacobi, Laplace, Lagrange, Legendre and others. We
discussed some of them in Chapter I.1 on page 16.

In Figure II.5.9 we have indicated various paths that lead
from the domain of classical mechanics to the correspond-
ing quantum equations. I am going to discuss them se-
quentially, and start with the Schrödinger equation.

Wave mechanics: the Schrödinger equation

The wavefunction of a quantum system evolves in time ac-
cording to the famous Schrödinger equation. Dynamical
changes in a physical system are induced by the underly-
ing forces acting on the system and between its constituent
parts, and their effect can be represented in terms of what
is called the energy or Hamiltonian operator H . For a sin-
gle qubit system the operators can be represented as 2⇥2

matrices, for a two-qubit system they are 4 ⇥ 4 matrices,
etc. The Schrödinger equation can be written

ih̄
d| (t)i

dt
= H| (t)i . (II.5.12)

This is a linear differential equation expressing the prop-
erty that the time evolution of a quantum system is gener-
ated by its energy operator. Assuming that H is constant,
given an initial state | (0)i the solution is simply

| (t)i = U(t)| (0)i with U(t) = e-iHt/h̄ . (II.5.13)

The time evolution is unitary, meaning that the operator
U(t) satisfies UU† = 1 .

U† = exp(-iHt/h̄)†

= exp(iH†t/h̄) = exp(iHt/h̄) = U-1 . (II.5.14)

Unitary time evolution means that the length of the state
vector remains invariant, which is necessary to preserve
the total probability for the system to be in any of its pos-
sible states. The unitary nature of the time evolution op-
erator U follows directly from the fact that H is hermitian:
H† = H. Any hermitian 2⇥ 2 matrix can be written

A =

✓
a b+ ic

b- ic -a

◆
,

where a , b and c are real numbers.6

6 We omitted a component proportional to the unit matrix as it acts
trivially on any state. We speak of the part that has no trace.
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Stationary states. From equation (II.5.13) results it is also
immediately clear what the importance is of the eigen-
states of the Hamiltonian – the energy eigenstates. An en-
ergy eigenstate | ni satisfies by definition H| ni = En| ni ,
and thus for such states:

| (t)i = exp(iEnt/h̄|) (0)i . (II.5.15)

The state is not quite time-independent, but it changes
only by an overall phase factor, which means that the prob-
ability density | |2, or the expectation value of any operator
will not change over time. The state is strictly speaking not
static and therefore called stationary.

Time dependence. But if we act on a state that is not an
eigenstate of the energy, we get a time dependent solution.
For the simple example of a single qubit, suppose the initial
state is

| (0)i = |+i '
r

1

2

✓
1

1

◆
.

On the right, for the sake of convenience, we have written
the state as a column vector. Consider the energy of a spin
in an external magnetic field B directed along the positive
z-axis.7 In this case H is given by H = bZ . Now the
initial state is a linear combination of two different energy
eigenstates. From equation (II.5.13) it follows that,

U(t) = exp(
-ibt

2h̄
Z)

=

✓
exp(-ibt/2h̄) 0

0 exp(ibt/2h̄)

◆
. (II.5.16)

We obtain an oscillatory time dependence for the state, not
just a phase factor, i.e.

| (t)i =
r

1

2

✓
e-ibt/h̄

eibt/h̄

◆

=

r
1

2


cos

bt

h̄

✓
1

1

◆
+ i sin

bt

h̄

✓
-1

1

◆�
. (II.5.17)

Figure II.5.9: Ways to go quantum. Various pathways from dif-
ferent but equivalent formulations of classical mechanics to the
Schrödinger and Heisenberg – also equivalent – formulations of
quantum theory.

The state oscillates between the |+i with probability p+ =
|h+| (t)i|2 = cos2 bt/h̄ and |-i with p- = |h-1| (t)i|2 =
sin2 bt/h̄ . This simple example applies in some form or
another to numerous physically relevant two-level systems.

We see that, in contrast to classical mechanics, the time
evolution equation is first order in time and linear in the
wavefunction. In general the Hamiltonian can be a compli-
cated function of the basic dynamical variables and there-
fore it is only in rare situations that one can find an exact
analytic solution. On the other hand it is also surprising to
see how a relatively small number of exactly solved prob-
lems can serve to get a deep insight in, and feeling for,
what kind of behavior quantum systems exhibit.

7Quantum spins necessarily have a magnetic moment, so in addi-
tion to carrying an intrinsic angular momentum they also interact with a
magnetic field.
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Matrix mechanics: the Heisenberg equation

In the previous section we have considered the time evo-
lution of the state generated by some particular Hamilton-
ian which we assumed to be time independent. In that
Schrödinger type description the operators one considers
are mostly time independent and the time-dependent state
| (t)i is a solution to the Schrödinger equation with the
given Hamiltonian which characterized the system and its
interactions. There is a complementary view which was
developed by Heisenberg, it is often called ‘matrix me-
chanics’ which lead to the Heisenberg equation. In his
view, which in a sense is closer to classical dynamics, the
dynamical variables, meaning observables like matrices,
are the objects that change in time whereas the state re-
mains fixed. The simplest way to see how this comes
about is to rewrite the definition of the expectation value
of an operator A in a suggestive way as:

h (t)|A| (t)i = h (0)|eiHt/h̄Ae-iHt/h̄| (0)i
= h (0)|A(t)| (0)i . (II.5.18)

In other words we have defined time-dependent observ-
ables for the system through the relation:

A(t) ⌘ e+iHt/h̄Ae-iHt/h̄ .

By calculating the time derivative of the above expression
one arrives at Heisenberg’s quantum equation of motion:

ih̄
dA(t)

dt
= [H,A(t)] , (II.5.19)

and we have an equation that tells us that the time evolu-
tion of operators acting on the state space is generated
by the commutator with the Hamiltonian of the system.
Note that the commutation relations of observables are un-
changed by the transformation, so we still have the canon-
ical commutator [X, P] = ih̄ . I would also like to remind the
readers who happened to read my discussion on Poisson
brackets on page 16 of Part I, that there is indeed a strik-
ing similarity between the classical Poisson brackets and

the Heisenberg commutator equations. The recipe is to
make in equations (I.1.14) to (I.1.16) the following replace-
ment

{ , }pb ) -
i

h̄
[ , ] ,

to obtain the canonical quantum equations! This was by
the way the method Dirac used to ‘quantize’ systems.

It is illuminating to keep both formulations in mind. Certain
questions can be answered more easily in the Schrödinger
picture and others in the Heisenberg picture.

Symmetries and conservation laws. The Heisenberg
equation yields a direct understanding of the existence of
’constants of the motion’ or conservation laws. For physi-
cal variables described by operators Q that commute with
the Hamiltonian i.e. [H,Q] = 0 , the Heisenberg equation
teaches us that dQ/dt = 0 and thus that Q is conserved
in time. Such operators that commute with the Hamilton-
ian are by definition called symmetry operators. You see
that energy is one of them, and that had better be so, be-
cause time independence of the Hamiltonian was after all
our starting point. Depending on the system and its Hamil-
tonian we will find out about the conserved quantities this
way, like momentum, angular momentum, the Lenz vector,
charge, isospin etc. Indeed summing up these examples
one realizes how important these basic conservation laws
are, as they allow us to characterize the states by prop-
erties that are robust in time, and that allows us to label
and assign names to things! After all, your name would be
useless if it were to change every day.

Degeneracies. The other consequence of having con-
served quantities is that if Q acts on an eigenstate of the
Hamiltonian then it may well make another state, but that
state will have the same energy as the first one. You can
use the conserved quantities or symmetry operators to
generate ‘degenerate states’ in the spectrum. The state-
ment is stronger than that, because you can always find
enough symmetry operators to resolve all degeneracies
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and label the different orthogonal states that are degen-
erate in energy by labels referring to conserved quantum
numbers. We saw this principle already at work in Chap-
ter I.4 where we discussed the discovery of the electron
spin. This was achieved by lifting the degeneracy by in-
troducing an external magnetic field, which broke the rota-
tional symmetry of the system.

A framework of symmetry operators. So in choosing a
framework, we often like to include the Hamiltonian as one
of the operators. The next thing you may want to do is to
add operators that commute with H, which in other words
correspond to conserved quantities. These operators form
a closed algebra in the sense that if Q1 and Q2 commute
with H , then also their commutator [Q1,Q2] will commute
with H . This way we can construct a commutator or Lie-
algebra of symmetry operators including the Hamiltonian.
This algebra is then called the symmetry algebra for the
system.

Next we follow the instructions for a consistent framework
and select, out of all those conserved quantities, a max-
imal number which do mutually commute. That defines
a sub-algebra of the full symmetry algebra, consisting of
observables whose combined eigenvalues form the sam-
ple space, for that framework. In fact such a maximal set
of mutually commuting independent symmetry operators
is called the Cartan subalgebra of the symmetry algebra.
This algebra is named after the famous French mathemati-
cian Élie Cartan, who succeeded in completely classify-
ing all possible finite-dimensional (complex) Lie-algebra’s.
Many of those play a crucial role in quantum physics.

The next chapter is devoted to different kinds of symmetry
and their breaking, and it will become clear that the no-
tion of symmetry is one of the guiding principles that has
played a leading role in the development of modern phys-
ics.

Generators of symmetries. So we have arrived at a rather
quantessential picture linked to (continuous) symmetries.
The operators Q that are conserved generate the symme-
tries, and they can therefore be used to label the states,
and furthermore they are physical observables. If I say that
the Heisenberg equation just tells you that the Hamiltonian
generates a time translation, what I mean is that an in-
finitesimal change of an observable A in time, -ih̄ dA/dt

equals the commutator with the Hamiltonian. One can also
write for example:

-ih̄
dA

dx
= [P,A] ,

ih̄
dA

dp
= [X,A] ,

which states that the operator dependence on position or
momentum is generated by their ‘duals,’ the momentum
and position operators respectively. Similarly the commu-
tator with the angular momentum component Lz gener-
ates an infinitesimal rotation around the z-axis of the op-
erators. We see that the Heisenberg equation is in fact
one of many. It is the equation that expresses the time-
translation-symmetry of the underlying space-time, from
which energy conservation is derived.

Classical lookalikes

In our discussion of (free) particle states we have clearly
found two extremes: (i) the momentum states |ki , where
the momentum and energy have no uncertainty, but the
uncertainty in position is maximal and (ii) the position states
|'i , where the converse would hold. Neither of these
seems close to what we think about when we talk about a
classical particle moving on a circle. We know that we are
free to consider any state of the type given in (II.5.2) and
therefore we can ask whether it is possible to find a partic-
ular linear combinations of basic quantum states that look
more like the classical ones.
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Figure II.5.10: Wave packets. We make a ‘gaussian’ superpo-
sition of plane waves with momentum k given by  (k) (the blue
curve). Then the wavefunction in x-space (the red curve) is as
depicted at the bottom, and the enveloping curve of the wavy
pattern is again a gaussian.

Wave packets. This is certainly possible, as actually Schrö-
dinger already pointed out. He studied what are called
‘wave packets.’ These are smooth linear combinations of
say momentum eigenstates, which are localized in both
position and momentum space. These packets have an
average momentum k0 and an average position and look
in many aspects as extended particle-like objects.

The starting point is simple, namely to look for states where
the uncertainty in canonically conjugate (incompatible) vari-
ables is minimized and balanced, respecting the Heisen-
berg uncertainty relations. But because the Schrödinger
equation is linear we may consider arbitrary linear combi-
nations of the states, and are then time-dependent solu-
tions because the different momentum components have
different energies.

Such a wave packet can be defined by specifying a func-

tion  (k) and looking at the state

| i =
Z
 (k)|kidk .

As the formula suggests the function is just the ‘ wavefunc-
tion in momentum space’, as we may write:

 (k) = hk| i .

Now let us take a smooth gaussian (normal distribution)
centered around some momentum k0,8

 (k) = (
2↵

⇡
)1/4e-↵(k-k0)2 .

The factor in front makes sure that the state is properly
normalized, so that all probabilities add up to one. We
have displayed this function in Figure II.5.10 and indeed it
is nicely peaked with a certain width around k0 .

Now we want to see what this package deal means for
people who live in ordinary x or ' space. Using equation
(II.5.6) we calculate:

 (') = h'| i =
Z
h'|kihk| idk =

= (
1

2⇡↵
)1/4eik0'e-h̄'

2/4↵ .

What do we see? First of all we see that the wavefunc-
tion of the state is also gaussian in ' space! That is nice
because it does indeed mean that the packet is also well
localized in position space, just as we wanted it. What
we also see is that the width of that distribution is like the
inverse of the width in momentum space. To be precise
we have �k =

p
1/2↵ , and �' =

p
↵/2 , which shows

that the packet is optimal in the sense that it saturates the
lower bound on the uncertainties imposed by Heisenberg:
�k �' = 1/2 . Finally we see that the wavefunction in
position space also has a factor eik0' , which makes the

8We discussed the gaussian or normal distribution in the Math Ex-
cursion on probability and statistics at the end of Chapter I.1. There it
was also explained why this distribution pops up everywhere.
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Figure II.5.11: Wave packet dispersion. The time evolution of
the free wave packet according to the Schrödinger equation has
two generic features:(i) it moves forward with the group velocity
of the package which is the effective velocity of the ‘particle’, and
(ii) the package will broaden (disperse) over time.

function periodic (and complex). The red curve depicted in
the figure is (the real part of) the wave packet in coordinate
space.

Propagation and dispersion. Let us assume that the
configuration at t = 0 is the one we just described, then
it is interesting to see what happens in time exactly be-
cause the packet is made up of momentum components
that propagate with different speeds. The question is there-
fore what that means for the time evolution of the packet as
a whole. We don’t want to go through the calculation here,
but the important message is sketched in Figure II.5.11.
The first point to mention is that the center of the packet,
or the envelope of the wavy pattern, moves with the so-
called group velocity. This is a velocity which is differ-
ent from the phase velocity of the individual momentum
components. One typically sees the effect that the wavy
pattern moves faster than the envelope and one sees the
small wave appear on the left (increasing of amplitude) and

disappear at the right (decreasing of amplitude) of the en-
velope. The second point to mention is that the packet
broadens in time, it disperses. If one calculates the prob-
ability distribution p(') the periodicity drops out and we
get a pure gaussian that is broadening, as we displayed
already in Figure II.5.3 for a particle at rest. This disper-
sion worried among others Schrödinger himself quite a bit,
because it basically blocked a direct interpretation of the
wave packet as a particle, which basically seemed to dis-
integrate on quite short time scales. It was this aspect
that was resolved by the probabilistic interpretation (the so-
called Copenhagener Deutung) proposed by Born.

Raising and lowering operators.
Let us briefly talk about yet another way to represent the
general particle state (II.5.7), which utilizes ladder or rais-
ing and lowering operators that are completely analogous
to what we did for the qubit in (II.2.13) and (II.2.14). First
we look for an operator that can step from a state |ki to
|(k+1)i . Consider the following so-called step operators:

t± = e±i� (II.5.20)

where � is the coordinate operator given in (II.5.1) that
satisfies � |'0i = '0 |'0i . Applying t± yields

t±|ki = e±i�

r
1

2⇡

Z
eik' |'i d'

=

r
1

2⇡

Z
eik' e±i' |'i d' = |k± 1i (II.5.21)

where we let the operators act on the state |'i in going
from the first to the second line. So with t± one may step
through the spectrum.

This is not yet what we want; what we really want is oper-
ators that start from some lowest energy states. The en-
ergy of the free particle state to be equal Ek = p2

k/2m =
h̄2k2/2m then the lowest energy state is |0i with E0 = 0 .

We like the right and left moving states to be generated
from some lowest energy states. Consider then, instead of
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Figure II.5.12: Step operators. Action of the ladder or step
operators a† (raising-purple) and a (lowering-green) defined in
equation (II.5.22) on the space of states labeled by |ki . There
are two sectors: the right movers with k � 0 and the left movers
with k  -1 .

the operators t± , the two related ladder operators9:

a = e-i�P, a† = Pei� , (II.5.22)

these satisfy interesting commutation relations:

[a, a] = [a†, a†] = 0, and [a, a†] = 2P + 1 . (II.5.23)

Furthermore we see that for a free particle (with m=1) we
can write the Hamiltonian as:

H =
1

2
a†a =

1

2
P2 . (II.5.24)

If we apply the operators to some state |ki , we obtain:

a† |ki = (k+ 1)|k+ 1i , a|ki = k|k- 1i ,

which illustrates the fact that these operators basically raise
or lower the momentum of the state by one unit. These
constructions demonstrate two surprising properties of the
states and operators. With these operators you can indeed

9In the remainder of this section we set h̄ = 1 , to keep the formulas
simple.

walk through the sample space of states but you will run
into certain ‘no trespassing’ signs , where the next step
you make you would let you disappear into nothing! The
first one tells you that if you act with a you may come
down from positive k al the way down to k = 0 , but not
any further because a|0i = 0 . However if you start from
|k = -1i , then a will walk you down all the way to minus
infinity. Something similar happens with a† : it walks you
up from any negative value until you hit |-1i where it halts,
but starting at |0i it will bring you all the way to plus infin-
ity. What this means that the spectrum naturally breaks up
into two pieces: one of which you could define as the right
movers with k � 0 and the other as the left movers with
k < 0 .

State operators. We can now also construct operators
that directly create any momentum state from the ground-
state. For example the state |ki can be obtained by acting
k times with a† on the ground state |0i , as the following
calculation shows:

|ki = a†

k
|k- 1i = . . . =

(a†)k

k!
|0i .

The general state | i could also be symmetrically repre-
sented like an operator :

| i =  |0i = (↵0 + ⌃k=1
1

k!
(↵ka

†k + ↵-kb
k)) |0i ,

(II.5.25)

where we have defined what you could call a ‘particle-
state’ operator  and b is a shifted operator b = e-i�(P-
1) . The correspondence between states and these type
of step operators acting on a ‘vacuum’ or ‘ground’ state
will be of great use if we move from quantum particles to
quantum fields as we will do in the next section. ⌅
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The harmonic oscillator

Oscillators everywhere! The harmonic oscillator or the
‘particle in a harmonic oscillator potential’ is a system that
is treated extensively in any book on quantum physics and
classical physics alike. In spite of the fact that we do not
see swinging pendulums all over the place, the simple truth
is that the world around us is actually largely made up of
oscillators! One way to understand that is to realize that
most ‘things’ are in a state of equilibrium, in other words
they are in a state of minimum energy. And yes, if you per-
turb a system in equilibrium, it will start to oscillate about
its equilibrium state. You knock on the table, you drop a
stone in the lake, the days, the seasons, economic cycles,
the orientation of the Earth’s axis, the strings of your guitar
and of string theory, the rhythms of life: all are oscillatory
motions in some suitable space.

So imagine the horizontal axis describing the displacement
of some relevant variable from equilibrium, and let us call
that variable, yes indeed, x , then along the vertical axis
we plot the energy V (as a function of x). This function
generically will have a particular shape. It will have a min-
imum at x = 0 , and if we think that we study small per-
turbations we might look at V(x) close to the origin and
describe it effectively as an expansion in (positive) pow-
ers of x . The first term would be linear, but that could not
be because it would not correspond to a minimum any-
more, the minimum would have shifted away. So the first
relevant term would be the quadratic term which we write
as V(x) = 1

2!
2x2 . You get the bowl-shaped potential de-

picted in Figure II.5.14. In Newtonian mechanics this would
imply a force F = -dV/dx = -!2x , thus a linear force
trying to move the system back to the equilibrium position.
This is not surprisingly called a harmonic force. As you can
think of a marble rolling forth and back in the bowl. We dis-
cussed this dynamical system at length in Chapter I.1. It is
important to now look at quantum oscillators because the
microscopic world is also beset with them. This is a model

Figure II.5.13: The stepwell of Chand Baori. These remark-
able stepwells in India were once used to store water. Chand
Baori is made up of 3.500 steps over 13 stories. The steps look
like states forming a discrete spectrum of some quantum sys-
tem.(Source: Wikimedia.)

system that at first looks like one of these totally boring
academic, dry-nerd-drill-home-trainer kind of things. The
deadliest didactic horse ever. No! Imagine, its applications
on all rungs of the quantum ladder are quite stunning and
we will come across a few of them. So, please stay with
me for this one.

If we return to basics, our starting point is the simple Ha-
miltonian for a unit mass particle in a harmonic poten-
tial:

H =
1

2
(p2 +!2x2) . (II.5.26)

The classical equations are,

dx

dt
= p ,

dp

dt
= -!2x .

We will treat these equations in the Heisenberg picture
meaning that we have time dependent operators X(t) and
P(t) with the canonical commutation relations:10 [X, P] =

10 if we postulate them at t = 0 , the unitary time evolution ensures
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Figure II.5.14: Harmonic oscillator. Action of the ladder or
step operators a† (raising) and a (lowering) defined in equation
(II.5.29) on the space of energy eigenstates |ni . The ground
state |0i has energy E0 = 1/2! .

[X(t), P(t)] = ih̄ . Interestingly the equations can then
be solved by using (commutator) algebra only. These are
coupled equations, and you can decouple them by using
the complex linear combinations which are as we will see
raising and lowering operators:

a(t) =

r
1

2!
(!X+ iP) ⌘ X̃+ iP̃ (II.5.27)

a†(t) =

r
1

2!
(!X- iP) ⌘ X̃- iP̃ . (II.5.28)

The solutions have simple phases:

a(t) = ae-i!t a†(t) = a†e+i!t , (II.5.29)

these satisfy simple commutation relations:

[a, a] = [a†, a†] = 0, and [a, a†] = 1 . (II.5.30)

Furthermore we see that for the particle in a harmonic po-
tential we can write the Hamiltonian as:

H = !(a†a+
1

2
) . (II.5.31)

that they remain valid over time.

These operators raise or lower the energy of energy eigen-
state with one step. This follows from the commutation re-
lations:

[H,a] = -!a , (II.5.32)

[H,a†] = +!a† . (II.5.33)

Let us define the eigenstates |ni of the Hamiltonian as

H |ni = En |ni , (II.5.34)

then with (II.5.32), we obtain that applying a† to a state |ni ,
creates the state |n+ 1i , because

H {a†|ni} = (En +!){a†|ni} ,

and similarly for |ai with a minus sign on the right-hand
side of the equations. Now we can see what we have
gained with these manipulations. First we better assume
that there is a lowest energy state |0i and as the energy
cannot be lower we have to assume that the lowering op-
erator gives zero when acting on this state:

a|0i = 0 , (II.5.35)

and thus:
H |0i = 1

2
! |0i .

From this one can show other quantessential properties:

En = (n+
1

2
)! ,

and,

|ni = (a†)np
n!

|0i .

The results are summarized in Figure II.5.14. There are
a few points worth mentioning. Firstly, the spectrum is
equally spaced, and we have degenerate left and right
movers. So it easy to construct raising and lowering opera-
tors. It is worth mentioning here already that later on in this
chapter we will see an application of the oscillator algebra
in field theory, where the operators a† and a do not move
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you through the spectrum of states of a single particle, but
rather they act as creation and annihilation operators of
particles in a given state, acting on a multi-particle Hilbert
space. The second point is that the ground state has a
non-vanishing ‘zero point energy’ equal 1

2! , which basi-
cally follows from the uncertainty relations which do not
allow the quantum particle be at rest at the bottom of the
potential. The momentum (energy) cannot be zero. And
indeed if you think of a table which is made up of zillions
(or better 1025 or so) of oscillating particles you may won-
der about the energy that appears to be just sitting there.
In the cellar as it were, an incredible amount of vacuum,
energy. What if....? May be we should just be cavalier
about it and put in the same category as our friend the
‘filled Dirac sea’, where the physics basically only starts
once you are on top, at the surface.

Constructing the wavefunctions. The explicit expres-
sions for the wavefunctions  n(x) = hx|ni are most easily
obtained recursively starting from the ground state. The
ground state wavefunction can be constructed by solving
the equation (II.5.35) as follows:

a|0i = 0

) (!X+
d

dx
) 0(x) = 0 .

This is a differential equation with the (normalized) gaus-
sian solution:

 0(x) = (
!

⇡
)1/4e-

!

2
x2 .

The higher states are obtained by repeatedly applying the

raising operator a† =
q

1
2!(!X - d/dx) on this ground

state. So one just has to differentiate the ground state
which is relatively easy to do. The resulting wavefunctions
 n(x) = hx|ni for the lowest n values were already dis-
played in Figure II.5.4 on page 383.

Coherent states

Let us return to the question of constructing quantum states
that do look like a classical particle . These correspond to
a wave packet, where we start combining waves in such a
way that they have a reasonable width both in momentum
and position space. We look for states that have a minimal
spread about the average values of the variables, thereby
making the uncertainty around a corresponding point in
classical phase space in all directions as small as possi-
ble. Such states were already considered by Schrödinger
and are nowadays called coherent states. They represent
a wide class of states that just like the oscillator system
have found many applications. These vary from quan-
tum mechanics, optics, quantum chemistry, atomic phys-
ics, statistical physics, nuclear physics, particle physics,
quantum information theory, group theory, and cosmology,
to mention a few.

Let us now apply this idea to the states of a particle in
the harmonic oscillator potential. We introduced the clas-
sical version of the harmonic oscillator already in the first
chapter of Volume I on page 14. The periodic motion in
configuration space that corresponds to a circular motion
in phase space is characteristic. We now want to construct
quantum states that show similar behavior. These cannot
be the stationary energy eigenstates we have just been
constructing in this subsection.

Minimal uncertainty states. From the commutator,

[X̃, P̃] = ih̄ ,

directly follows the standard form of the uncertainty rela-
tion:

�(X̃)�(P̃) � h̄

2
. (II.5.36)

What we would like to find is a state where we have that

�(X̃) = �(P̃) = � ,

�2 =
h̄

2
.
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The states that achieve this are eigenstates of the lowering
operator a , so we have:

a |�i = � |�i , (II.5.37)

these eigenstates have the basic property that � = h�|a|�i ,
but also that:

hEi = h�|E|�i = !

2
h�|(a†a+

1

2
)|�i = 1

2
!(|�|2 + 1) .

Let us pause here for an instant. The question here is
not to construct a ground state or an eigenstate of a given
Hamiltonian, it rather is to construct eigenstates of the an-
nihilation operator, with some eigenvalue � . This problem
is analogous to the construction of the translation operator
that we discussed in equation (II.6.6). If we have an eigen-
function of position, where the expectation value of x is
given by zero, we may apply the translation operator T(a)
to it, and shift the argument of the wavefunction so that
 (x) !  (x+a) . Then the vacuum expectation value will
shift to hxi = -a . And indeed the procedure is closely re-
lated, the desired state can be made out of the vacuum by
a ‘translation’ operator built from the conjugate variable, in
this case not the translation generated by the momentum
P , but by a† :

|�i = e�a
†
|0i . (II.5.38)

So, if we write a = (X̃ + iP̃) , then such states have the
property that:

(X̃+ iP̃)|�i = (h X̃ i+ ih P̃ i)|�i = � |�i . (II.5.39)

Because for an eigenstate, the expectation value of the
operator is equal to the eigenvalue. Bringing terms to the
other side we obtain that:

|X̃- h X̃ i| = |P̃ - h P̃ i| ,

which establishes that the variances are equal: �(X̃) =

Figure II.5.15: A fuzzy particle. Phase space picture of the co-
herent state wavepacket with its fixed uncertainties for large val-
ues of � . The coherent state x and p expectation values follow
the classical trajectories but they carry a disk of uncertainties
with diameter h̄/2 along.

�(P̃) = � . From the equation (II.5.39)

ha†ai = �2 = h(X̃- iP̃)(X̃+ iP̃)i =
= h(X̃2 + P̃2 + i[X̃, P̃]i =
= hX̃2i+ hP̃2i- h̄ .

Taking the absolute square of equation (II.5.39), which con-
tains the expectation values. This gives the result:

�2 = hX̃i2 + hP̃i2 .

Combining the two previous results we obtain the equation
for the sum of the variances:

�(X̃)2 + �(P̃)2 = 2�2 = h̄ ,

giving �2 = h̄/2 which is the minimum value allowed.

A fuzzy particle. What have we learned? Firstly that it
is indeed possible to construct wave packets or coherent
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states in which the uncertainties in position � and momen-
tum n match. In fact we found a continuum of different
states |�i that satisfy those conditions, and these states
are labeled by the real parameter � . Secondly we saw that
average momentum is of order lambda, while the width
of the momentum distribution in such a state is fixed and
equal 1

2h̄ . This means that if we increase � the probability
cloud of the particle becomes relatively narrow. The result-
ing overall picture is displayed in Figure II.5.15. The radial
direction is the ‘a’ or therefore � axis with real component
x and imaginary component p . The time dependence of
a(t) is a(t) = a exp(i!t) as given in equation (II.5.29), so
!t is the angular variable in the figure. The resulting ex-
pectation values hx(t)i and hp(t)i describe the same tra-
jectory in phase space as the classical particle would do.
The classical periodic motion was depicted in Figure II.5.1
and the corresponding circular motion in phase space in
Figure II.5.2 on page 380. We have emphasized that the
uncertainties in position and momentum are fixed and in-
dependent of � , which means that the approximation of
the classical picture improves if we increase �. This ba-
sically corresponds to the limit of high momentum or en-
ergy levels, where you would indeed expect classical be-
havior because the energies are large compared to the
ground state level. However, note that as a function of
time, the packet will broaden because the various momen-
tum components move at different velocities. We depicted
this type of broadening as a function of time in Figure II.5.3.
⌅ ⌅

The energy spectrum of coherent states.
In this final paragraph of this section we show what the
states |�i look like if we decompose them in energy eigen-
states. To do so we use a cute little trick. Note that the
a operator, because of the commutation relation with a†,
can be thought of as differentiation with respect to a† . This
means that we can write:

a|ni = a(
(a†)np

n!
|0i = n(

(a†)n-1

p
n!

|0i =
p
n |n- 1i .

Figure II.5.16: Coherent states. The probability distributions
p�(n) given in equation (II.5.40) for finding energy n ⇠ �2 in a
coherent state |�i for �2 = 1, . . . , 10 .

The states |�i can be obtained by finding a recursion re-
lation for the coefficients ↵n in (II.5.25) by imposing the
defining equation (II.5.37):

a(
1X

n=0

↵n|ni) =
X

↵n
p
n|n- 1i = �(

1X

n=0

↵n|ni) .

Matching corresponding components we obtain the recur-
sion relation:

↵n =
�p
n
↵n-1 .

This means that the states are given by:

|�i = N
X

n=0

�np
n!

|ni ,

with the normalization constant11 N = exp(-|�|2/2). So
what we have constructed here are coherent states para-
metrized by a parameter � which have minimal and equal
uncertainties for both conjugate phase space variables.

11Normalization of the state gives:
h�|�i = N2

P
n=0

|�|2n/n! = N2 exp(|�|2) = 1 .
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These states have many momentum components; in fact
we can calculate the energy distribution, for large � it be-
comes:

p�(n) = |hn|�i|2 =
✓
|�|2n

n!

◆
e-|�|2 . (II.5.40)

These are so-called Poisson distributions and we have plot-
ted them in Figure II.5.16 for values �2 = 1, . . . , 10 . We
easily calculate the average :

hni = h�|n|�i = ha†ai = �2 . (II.5.41)

whereas for the average of n2 we obtain:

hn2i = ha†aa†ai = h(a†)2a2 + a†ai�2 = �4 + �2 .

Combining the two we find for the variance:

(�n)2 = hn2i- hni2 = �2 . (II.5.42)

We see that the the average of n is proportional to �2 while
the width of the distribution goes like � . This means that for
increasing � , the distribution relatively narrows . This is of
course consistent with our calculation from the uncertainty
relation (II.5.36) where we found the same variance. The
resulting situation is summarized in Figure II.5.15. ⌅ ⌅ ⌅

Fields: particle species

In this section on quantum fields we bring together a num-
ber of insights that we have touched upon in previous chap-
ters. When saying field theory, we start by thinking about
free fields, these are described for example by the Maxwell
equations, the Klein–Gordon or the Dirac equation. All of
them are relativistic wave equations and the question is
what it means to quantize them.

Let us make some observations first.
(i) Fields are defined over all of space and they typically

Figure II.5.17: A 1962 conversation between Dirac (left) and
Feynman (right) at a conference in Warsaw. (Source: Courtesy of
Caltec Photo Archives.)

have an infinite number of degrees of freedom, and in that
sense you can think of them as equivalent to an infinite
number of particles.
(ii) You can think of the fields as being the generalized
coordinates, meaning to say that the configuration space
which for a single particle is just ‘x 0-space is now the space
of field configurations.
(iii) In Chapter I.1 we have shown that for a field like the
electromagnetic field we can define an energy and a mo-
mentum density and the logic of field quantization is to run
the same program as before, and impose canonical quan-
tization conditions for fields (as coordinates) and their as-
sociated momenta.
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Thie procedure is quite involved and it took about thirty
years before the first consistent field theory named Quan-
tum electrodynamics (QED) was completed.

Field quantization. Without going through any calcula-
tions, which are generally quite messy and extensive, let
me nevertheless give you some feeling for the results which
are strikingly simple and beautiful.12 And to transcend the
swamp of words let me take the example of the simple
scalar particle described by the Klein–Gordon field�(x, t) ,
which has to satisfy the relativistic equation

(⇤+m2)�(xµ) = 0 .

This has solutions which can be expanded as a sum of
plane wave solutions with coefficients a and a⇤ look like:

�(xµ) = N
X

k

1
p
!k

[ake
ikµ + a⇤

ke
-ikµ ] ,

with the definitions xµ = (ct, x) and kµ = (!k,k) and
moreover the K-G equation imposes !k =

p
k2 +m2 .

The coefficients have to be each other’s complex conju-
gates to make the field real. In this case the momentum
field would just be ⇡(xµ) = d�/dt which is indeed the time
derivative of the ‘coordinate’ field.

Oscillators once more. In the present context the fields
are the observables! So the quantum fields are operators,
and as they are time-dependent, they are Heisenberg type
operators. What that means is that in the above expression
which is called mode expansion, the field � on left-hand
side becomes an operator, and on the right-hand side the
operator property is carried by the coefficients. The modes
are just the classical plain waves multiplied by operator co-
efficients ak and their conjugates a†

k . These act now like
creation and annihilation operators. Performing the calcu-
lational gymnastics of imposing the commutation relations
for the fields � and ⇡ in the end boils down to commutation

12In this section we have set h̄ = c = 1 for convenience.

relations between the operator coefficients. The upshot is
surprisingly simple:

[ak, ak 0 ] = [a†
k, a

†
k 0 ] = 0 , (II.5.43)

[ak, a
†
k 0 ] = �

(3)
k,k 0 . (II.5.44)

But now the air clears up! Compare this result with the
commutation relations in (II.5.30). What have we got? We
have obtained an infinite number of harmonic oscillators,
each labeled by a momentum vector k , and having a fre-
quency !k . So, one (free) quantum field is equivalent to
an infinity of oscillators and that rings an infinity of bells.
The energy or Hamiltonian H of the field is not so surpris-
ing:

H =
X

k

!k(Nk +
1

2
) ,

with Nk ⌘ a†
k ak , the so-called number operator. There is

also a total momentum vector P = {H,P} for the field:

P =
X

k

kµ(Nk +
1

2
) .

The above equations naturally combine in an energy-mo-
mentum four vector Pµ for the field.

Multi-particle Hilbert space. And what does the Hilbert
space for such a free field look like? Well, first we define
a vacuum state |0i with the defining property that is an-
nihilated by all ak operators. Now we act with a creation
operator on the vacuum:

a†
k |0i = |nki with nk = 1 .

This means that we have made a step in energy of E =
h̄! =

p
(mc2)2 + (h̄kc)2 , where I have put the constants

back in. That energy corresponds exactly to the relativistic
energy of a single particle of mass m with energy E = h!k

and momentum p = h̄k . So, we are not raising the energy
of a single particle. No, every time we work with an a†

operator we create an additional particle of the type de-
scribed by the field in the corresponding momentum state.
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Figure II.5.18: Quantum field modes. A quantum state of a
quantum field is labeled by the energy-momentum (~k) modes of
the single particle, and the number of particles nk that are in
that mode.

And the annihilation operator does exactly the opposite.
How charming and quantessential: the same algebra in
another context creates another reality! The upshot is that
we have a multi-particle Hilbert space, often called Fock
space, with states,

|{nk}i, with N |{nk}i = nk |{nk}i .

We have ended up with a clip and clear framework in-
deed.

The Klein–Gordon field is the simplest one to think of be-
cause it is just a field with one real component, but what
about the other fields, like the Maxwell and Dirac field? Yes
and no, their quantization is both similar but at the same
time very different, also because their classical content is
very different. In the Dirac case we have to understand
what it means to have the Dirac sea and how to implement
the anti-particles. Now the basic relations for the operators

are anti-commutation relations,

{bs,p , bs 0,p 0} = {b†
s,p , b

†
s 0,p 0} = 0 (II.5.45)

{bs,p , b
†
s 0,p 0} = �ss 0�

(3)
p,p 0 , (II.5.46)

and an identical set for the anti-particle creation and anni-
hilation operators d†

s,p and ds,p . The index s denotes the
spin state of the (anti-)particle. The anti-commutator is de-
fined as the symmetric product, for example:

{b†
s,p , b

†
s 0,p 0} ⌘ b†

s,p , b
†
s 0,p 0 + b†

s 0,p 0 , b
†
s,p .

This definition has a profound implication that becomes
manifest if you look let the equation for a vanishing com-
mutator work on the vacuum. It yields the result,

b†
s,p , b

†
s 0,p 0 |0i = -b†

s 0,p 0 , b
†
s,p|0i .

The two-particle states on the right and left have two parti-
cles in the same individual states but they are interchanged.
We have interchanged two identical particles and that gives
a crucial minus sign because of the anti-commutators. The
relation with the Pauli principle becomes even more direct
if you put p 0 = p and s 0 = s , because then you get that
that particular state equals minus itself, which means that
that state is equal to zero! It says that such a state is
just not there. It is not the ground state but a true no-
state: a clearer statement of exclusion is hardly imagin-
able! With the Dirac equation everything fell into place:
the spin appeared as necessary ingredient, along with the
exclusion principle after the correct quantization. And then
anti-matter as a bonus. How delightful! For the Maxwell
field, it is the gauge invariance which has caused some
profound headaches. But today all these difficulties have
been overcome, and these type of (gauge) fields and their
quantization form the basis of a consistent description of
all particles carrying forces or interactions in the Standard
Model.

Interactions. Of course if we discuss quantum field the-
ory there is more than the quantization of free fields, it is a
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multi-particle framework but the all-important interactions
are left out. Isn’t this about throwing out babies with the
bathing water? No! This is a basic framework that is an
absolutely vital starting point for any further going discus-
sion.

Perturbative approaches. We have in Chapter II.1 al-
ready described some of the interactions that are present
in the standard model. The basic interactions are charac-
terized by certain interaction vertices, diagrams where dif-
ferent particles interact at a given space-time point. That
point is where particles are annihilated and created in par-
ticular states that ensure that all the conservation laws like
energy, momentum or charge, are respected. Each com-
plete diagram then contributes to the overall probability
amplitude for the process to take place.

This approach is called a perturbative approach, which is
an iterative procedure to get ever better results, because in
the calculations you include more and more complicated,
higher-order diagrams. And as long as the coupling con-
stant is small – and for QED for example the coupling
strength is ↵ = e2/4⇡h̄c ' 1/137 – the higher order terms
become tiny.

This way relatively low-order calculations already give in-
credibly accurate answers. And this scheme has led to the
spectacular demonstrations of the power of quantum field
theory, as for example in the calculation of the anomalous
magnetic moments of the electron and the muon. The cal-
culations are up to fourth order in ↵ , and coincide with
the best observed values up to 10 significant digits. This
makes it the most accurately verified prediction in the his-
tory of physics!

Beyond perturbation theory. But in many situations it is
necessary to go beyond perturbation theory. If either the
particle density is large, or if the temperature gets very low,
or the interactions become strong, one needs other ap-
proaches. And in the past century a lot of progress

The other currency

G: Hey Orange, I really like the stuff you told me
about Dirac.
O: I am happy you liked it, Green. But you are right,
he’s a kind of a genius!
G: Yeah. That’s what I thought, but more an
anti-genius may be, chr chrr chrr!
O: He must have been very happy, with making dis-
coveries of such profound importance for mankind.
G: Yeah. Hey Orange, I presume he must have
become very, very rich.
O: You mean like Bill Gates or Warren Buffett.
G: or Prince or Picasso?
O: or Irving Stone or...
G: or Oprah!
O:Yes, you would think so Green. But no, I have to
disappoint you.
G: But Orange, if you do such great works...
O:It didn’t happen.
G: You mean that others have stolen his ideas?
O: No Green, it is not that. You have to understand
Green, for scientific achievements like Einstein’s of
Dirac’s or Heisenberg’s there are no rights.
G: Are you telling me that they forgot to manage
their copyrights or patents? These brilliant men
didn’t do their homework, is that it, chr chrr chrr.
O: Quiet down Green. Respect! Let me tell you
this: a formula isn’t like a novel, or a song, or
baseball game, or a paperclip, or a diesel engine,
or a talk show.
G: Are you saying that in the big scheme of things
it is just marginal.
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O: Yes indeed, Green, thank you. Now you under-
stand what I mean.
G: Thank you Orange, I think I am going to have a
peanut butter jelly sandwich! A Schrödinger-Dirac--
Heisenberg sandwich! chr chrr chrrr.
O: Green! Listen, the scientist have another type of
currency.
G: Like bitcoins?
O: Yes Green, but they call them citations.
G: What do those buy you?
O: Well, you know, Green, you know this game
called monopoly? You can make a lot of money ...
G: I am getting really hungry. Thanks Orange. ⇤

has been made in developing alternative non-perturbative
ways of using field theory. We will discuss some important
examples in the context of condensed matter physics in
Chapter III.3.

Often situations where perturbation theory breaks down
have to do with identifying some highly non-trivial ground
state and start from there. For example it may be that a
certain particle-type will condense in the ground state, so
that it is no longer an eigenstate of the number operators
Ns,k . In fact one finds that some number density operator
has a non-vanishing expectation value in the new ground
state. The ground state of the super conductor is a canon-
ical and beautiful example.

The phenomenon of superconductivity was discovered by
Kamerlingh Onnes, but It took more than half a century
to arrive at a really deep understanding of the underlying
mechanism. Among other things the message to science
seemed to be: ‘Never give up!’

Let us briefly indicate what it means that the ground state
of a physical system is characterized by some condensate.

Think of the electrons in a conductor: they interact over rel-
atively long distances via the lattice vibrations, which after
quantization go under the name phonons. This phonon
induced interaction between the electrons turns out to be
attractive, and leads to a pairwise binding of the electrons
of opposite spin and momentum. The electrons form so-
called Cooper pairs. These pairs having spin equal zero,
are of course bosons and therefore they can all condense
in the same state. Indeed the ground state is a coher-
ent state of Cooper pairs, which can be thought of as a
linear combination of states with all possible different num-
bers of pairs in it. The system gains an enormous energy
by dropping in this ground state, because the exclusion
principle had pushed the individual electrons up to quite
high energies. And starting from this ground state one
has been able to prove all relevant properties of supercon-
ductors, using the successful BCS theory developed by
the American physicists, John Bardeen, Neil Cooper and
Robert Schrieffer, who received the Physics Nobel prize in
1964.

Ground states as coherent states. This situation is simi-
lar to the one we encountered in the previous section about
the harmonic oscillator, looking at the phenomena of co-
herent states. In view of the almost uncomfortably close
analogies between field theory and simple oscillators, it
is imperative to ask about coherent states in field theory.
What do they look like and what would the physics be
like? Multi-particle coherence! What kind of bulk proper-
ties would that correspond to? And what low energy exci-
tations would be there? Do we recognize them? What are
interactions those ‘trivial’ agents could have engaged in, to
give rise to such weird states? Here we enter a domain of
what P.W. Anderson so beautifully characterized as ‘more
is different.’ Many identical particles can, because of the
interactions they have, give rise to highly non-trivial, highly
diverse – but also highly non-recognizable – forms of col-
lective behavior. Just like people, I am tempted to say. We
have already encountered some of them, like quark con-
finement and the Higgs mechanism, but in the final part
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of the book on structural hierarchies we will discuss many
complex collective manifestations that emerge from the as-
tonishing simplicity which we have exhibited here. The rich
diversity of the condensed states of matter is the smashing
consequence of having simple basic agents with simple
basic interactions.

Particle spin and statistics

A quantessential principle with tremendous explanatory
power is Wolfgang Pauli’s exclusion principle, decreeing
that two or more Dirac-type particles (like electrons, neu-
trino’s, or quarks) cannot occupy the same quantum state.
Not all particles obey the principle, but if the particle does,
it is called a fermion, and it also needs to have half-integral
spin, just like the usual fermions described by a Dirac like
equation. In this section we discuss a more direct and
therefore more accessible approach to quantum statisti-
cal properties, based on the topology of the two-particle
configuration space. The discourse is systematically built
up, starting from the notions of indistinguishability and ex-
clusion to describing particle interchange and the spin-
statistics connection.

Indistinguishability

In quantum field theory, the loss of particle identity
is inevitable

In quantum field theory the states correspond in general to
many-particle states. These states are described by one
field, or wavefunction, and this implies that individual par-
ticles are no longer distinguishable entities. A severe loss
of identity in the quantum world. It is a world where only
family names exist; first names are just not there.

Figure II.5.19: The Encounter. This magical etching of Maurits
Escher’s was made in 1944. ( c� 2023 The M.C. Escher Company.)

The fact that multi-particle states are related to a single
field implies an additional property, namely, that the corre-
sponding particles loose their individuality. Individual parti-
cles of a given type, described by one type of field become
indistinguishable. It may be that some state of an elec-
tron field describes two electrons, one electron in state A
and one in state B, but you cannot say that particle 1 sits
in A and particle 2 sits in B. They are like identical twins
carrying a family name only but no first name. There is
no ‘John is at home’ and ‘Peter is at school’, even though
you can say that one is at home and the other at school.
There is no ‘who is who’ in electron land (what a relief!),
just strict anonymity and for that matter perfect democracy.
Particles have a family name only. It may remind you of ex-
tremely strict school outfit rules: identical uniforms, iden-
tical shoes, and identical haircuts, in an attempt to wash
away individual differences. Not my cup of tea. Anyway,
this severe quantum loss of identity affects the counting of
the available number of ‘different states’, and therefore the
statistics properties of ensembles of such quantum par-
ticles. The statistical properties of the particles in turn
are quantessential for understanding their collective be-
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havior.

We will later return to the basic reason for that loss of in-
dividuality, being that all multi-particle/antiparticle states of
a given species correspond to states of a single field de-
scribing that species, say the electron field or the photon
field.

Exclusion

We have seen that quantization basically implies the study
of wavefunctions of the classical configuration space. So
we want to just focus on the special case that is of partic-
ular interest. Imagine that we have two particles that are
‘identical’, meaning that they are indistinguishable. These
two-particles states are described by a single wavefunc-
tion defined on the two-particle configuration space, de-
pending on the two position coordinates x1 and x2 . But
the indistinguishability of the particles implies that certain
configurations which look different at first have to be identi-
fied. If somebody asks us to count the number of different
(distinguishable) states, then we have to identify all con-
figurations where the positions of identical particles are
interchanged. Again, it’s like a class where we have an
identical twin, and we ask on how many different class
configurations there are. Assuming that the twins are in-
deed indistinguishable by all means, we would have to
count the state where twin A is in the front row and twin
B in the back row and the configuration where they have
switched places, as one and the same configuration. You
see that the condition of indistinguishability affects the way
we count the number of possible states, and therefore what
the statistical weights are that we have to assign for certain
configurations to occur.

There is however another important distinction we want to
make right from the start. We may want to implement an
exclusion rule saying that twins are not allowed to sit on the

same chair. They may like each other but their sympathy
is limited and sitting on the same chair is just out of the
question. A rare occasion where the teacher and the twins
seem to fully agree! Back to identical and indistinguishable
particles, imagine the first particle has coordinate x1 and
the second x2 . The quantum state is then described by
a two-particle wavefunction  (x1, x2) depending on both
coordinates. The question is now what we can say about
the wavefunction if the two particles get interchanged, i.e.
 (x1, x2) !  (x2, x1) . Yes, their configuration is identical
in that there is no experiment that can distinguish the two
situations from each other – the usual nightmare for all
twins. But does that imply that the wavefunctions have to
be strictly equal? That’s the question.

Unobservable phases? Taking into account all lessons
we have been exposed to so far, we can say that the two
wavefunctions can only differ by a subtle attribute that is
not observable, namely the overall phase. It is subtle and
seems completely innocuous but as we will see it is of cru-
cial importance. This sounds indeed paradoxical, a sup-
posedly unobservable phase that manifests itself. Let us
first give the argument the naive and sloppy way, and say
that the wavefunctions differ by a phase factor:

 (x2, x1) = ei↵ (x1, x2) .

We expect that if we interchange them once more we will
get back to the original state, from which it follows that we
have to demand that:

e2i↵ = 1 ,

and this constraint has two solutions (modulo 2⇡) ↵ = 0

and ↵ = ⇡ . This in turn implies that there are two differ-
ent solutions for the wavefunction under interchange of two
identical particles:

 (x2, x1) = ± (x1, x2) ,

implying that the wavefunctions are either symmetric or an-
tisymmetric under the interchange. And indeed the parti-
cles that obey the symmetric rule are called bosons, the
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antisymmetric guys are called fermions. We see that the
antisymmetric solution implies that the particles cannot sit
in the same spot, because if so that wavefunction would
have to satisfy  (x, x) = - (x, x) implying that  (x, x) =
0! This ‘unobservable’ phase has huge quite observable
consequences! This is so because the origin of this type
of phase is topological.

Because of the indistinguishability requirement, the Hilbert
space of two-particle states breaks up in two disconnected
pieces being the even and odd functions. The phase is
not the overall phase but the phase acquired under the
interchange operation, and indeed the interchange should
not change the observable probability distribution, which it
doesn’t.

Apparently fermionic particles obey an exclusion principle
and such particles behave physically totally different from
their bosonic counterparts, who are not subject to this ex-
clusion principle and may like to hang out in the same spot.
Indeed, they do like to sit on top of each other if it gets re-
ally cold!

The topology of particle exchange

Two-particle configuration space. It will turn out that
the possibility of non-trivial quantum statistics is directly
linked to the connectivity properties of the configuration
space of two identical particles and the topology of parti-
cle exchange. It is therefore worth considering in more de-
tail what this ‘two-particle configuration space’ really looks
like.

We start by taking two coordinates x1 and x2 which take
values in some ordinary space M ⇠ R3 for example. In-
stead of choosing x1 and x2 we may also choose as co-
ordinates the ‘center of mass’ coordinate X = (x1 + x2)/2
and the ‘relative coordinate’ x = (x1- x2)/2 . During inter-

Figure II.5.20: Shinkichi Tajiri: Meandering paths (1997) ‘Me-
andering paths, unavoidably returning to an empty shell.’ Look-
ing at this work from a quantum perspective it depicts the entan-
gled world-lines of particle pairs, first created and later annihi-
lated. Indeed, the net effect is a transformation of the vacuum
state. (Source: info@tajiri.nl.)

change we may keep X fixed (the origin, say), for example
by moving the two particles around the center of mass that
is located exactly half way between them. The interchange
x1 $ x2 corresponds to a move from x $ -x while keep-
ing X fixed. So, we are left with studying the ‘x’ space. This
space is again a copy of M , but not quite, because in this
space points, that are mirror images through the origin of
each other, meaning the points x and -x have to be identi-
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fied if the particles are indistinguishable. Furthermore, the
physical interchange in ordinary space corresponds to a
closed loop in this reduced x space.

Three or more dimensions. We can take care of this
doubling by cutting the space in half,13 so we take away
the bottom half of the space, say, all points with z negative
(z < 0) , as we have indicated in Figure II.5.21. This solves
the problem almost but not quite, because the space we
are left with has acquired a bottom where strange things
still happen. Indeed, in the bottom z = 0 plane we still
have to identify the mirror points. But now this is at least
something we can do ‘by hand’.

Connectivity. The connectivity of the space is determined
by studying the classes of possible loops in the space. Let
us first discuss that and then return to the question of in-
terchanges. In Figure II.5.21 I have drawn two paths. The
first one is the green loop denoted � , which is a loop that
can smoothly be contracted to the red base point, hence
it is the ‘trivial’ loop. This trivial loop means that there is
basically no exchange and therefore the phase of the two
particle state cannot change, so we conclude that � = +1 .

The second red curve is again a closed loop because the
beginning and endpoint are the same point, but now we
can not contract the loop. The smooth deformations can
only involve motions of the pair of red points into other mir-
ror pairs in the bottom plane, if you were to lift them out of
the plane they would no longer be the same point, and you
would cut the loop – not so much a smooth deformation
rather a killer move. And you cannot bring them together
through the origin, because that point is taken out. So, the
red loop is truly non-contractable and clearly belongs to a
different topological class. We conclude that the reduced
space clearly has some ‘nontrivial’ topology. The question
is to find out what values the phase ⌧ could take.

13‘Cutting the space in half’ is not a typical act that experimentalist
can perform. The point is that to make the topological argument we can
do this in our head to simplify our analysis without loss of generality.

Figure II.5.21: Topology of two-particle configuration space.
The two-particle configuration space, is R3 but with the bottom
half and the origin removed. And on the z = 0 plane a point
and its mirror image through the origin are identified. So there
are two inequivalent types of closed paths possible. The green
loop, which is contractable to a point, belongs to the trivial class;
� = 1 . The red path, which is also closed but not contractable,
belongs to the other, non-trivial class.

Interchanges As we said already an interchange x1 $ x2
corresponds to a move from x $ -x . Furthermore the
path connecting the two points in x-space is not allowed
to pass through the origin, because then they would meet
at the same point and we would like to allow for an exclu-
sion principle. An admissible move is depicted in the top
graph of Figure II.5.22. In the reduced x-space this inter-
change is schematically depicted in the lower graph of the
figure. We do allow the wavefunction to acquire some con-
stant phase factor ⌧ and that factor cannot change under
a continuous deformation of the path from x to -x through
x-space. This means that the admissible phases ⌧ label
the different topological classes of closed paths that are
possible in x-space. We have discussed these classes
before, on page 83 of Chapter I.2, and learned that these
are called homotopy classes.
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Figure II.5.22: Interchange. Particle interchange denoted by ⌧ ,
in the space of the relative coordinate x = (x1 - x2)/2 amounts
to moving from some point representing the pair, from x to -x
along some path. In this particular case we have in fact that
x = x1 (red curve) = -x2 (blue curve). The system has then
moved to an indistinguishable two-particle state which means
that the wavefunction can at most acquire a phase and we write
⌧ (x) = ei� (x) .

Let us now turn to Figure II.5.23 where we establish a re-
lation between the interchange process ⌧ and the reverse
process represented by ⌧-1 . The top-left diagram is again
⌧ and the bottom-left diagram represents by definition ⌧-1 .

Now we can do two subsequent smooth deformations of
the path: in the top-right diagram we go from red to blue
by just rotating around the blue axis, and in bottom-right
diagram we go from blue to red again by rotating along the
dark red trajectory indicated. Note that this deformation
only involves mirror points (as is evident from the interme-
diate dark red dashed loop), so the loop remains closed
and the origin is circumvented as required.

What we now learn from comparing the red path in the
bottom-right diagram and the path corresponding to ⌧-1 is
that these two paths can be smoothly deformed into each

Figure II.5.23: Topological equivalence. The phase factor ⌧ is
the same for all interchanges along (closed) paths that can be
smoothly deformed into each other. So ⌧ labels a class of paths.
In this figure we show that the class of ⌧ and ⌧-1 are actually the
same by a sequence of smooth deformations (rotations). Note
however that the first move from red to blue is only possible if
the dimension of the space is D � 3 . In that case ⌧2 = 1 or
⌧ = ±1 .

other, and therefore belong to the same class. The conclu-
sion is that we have shown the surprising fact that ⌧ = ⌧-1 ,

in other words that ⌧2 = 1 , which implies that ⌧ can only
take the values ⌧ = ±1 .

And therefore we confirmed that the quantum theory al-
lows for only two fundamental types of particles: bosons
with wavefunctions that are symmetric under particle inter-
change and fermions with wavefunctions that are antisym-
metric.

But we also have the added restriction that the fermionic
⌧ = -1 solution requires the exclusion principle, corre-
sponding to removing the origin of x- space.

Finally, let us make a crucial observation that has been
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Figure II.5.24: The two-dimensional case. We start with the
plane in which we do the interchange, the origin is excluded and
we have to identify x and -x . This lets us remove the lower half
of the plane. Then on the bottom boundary of the remaining
top half space we still have to identify mirror points through the
origin. This means the space becomes topologically a cone but
without a tip. And that is topologically equivalent to a cylinder.

for a long time overlooked. The first ‘red to blue’ deforma-
tion can only be performed if the dimensionality of space
is at least three; it requires D � 3 ! The question that re-
mains is: what is so special about the two-dimensional
case?

The two-dimensional surprise! In two dimensions the
relative ‘x’ space is a plane with the origin taken out, and
with opposite points identified. The paths of the particles
are each other’s mirror image just as we see in the top
picture of Figure II.5.24. So again we go one step further
and cut away the lower half-plane. Then we don’t have
to make any additional identifications except for points on
the boundary. It is easy to visualize what that means. You
can fold the half lines making up the boundary, together,
literally by identifying the mirror points as indicated in the
figure, and what you obtain is a cone! But: a cone without
a tip. It is more like a tipi or an Indian tent with a hole in

the top serving as a chimney to let the smoke out. Topo-
logically speaking a cone without a tip is not a cone but a
cylinder. And so, after all these topological moves we have
shown that the space M2 becomes an R2 related with X ,

times a cylinder, R ⌦ S1 , for x . The important conclusion
is that interchanges in the original two-particle space M2 ,

correspond to closed loops on this cylinder. And therefore
the question of a topological characterization of ‘identical’
particle types is then reduced to the question of equiv-
alence or homotopy classes of closed loops on a cylin-
der.

What we see is that the situation in two dimensions is spe-
cial indeed, because we can imagine closed paths that
wind around one time, two times, or n times around the
cylinder and these are all inequivalent. So there is an in-
finity of classes which can be labeled by the set of (positive
and negative) integers also referred to as winding numbers
and denoted by Z . And there is even a further property,
you can compose loops, by joining end of the first loop
(�1) to the beginning of the second (�2), then you get a
combined loop (�3 = �1 · �2). The corresponding classes
of the loops will then add: n3 = n1 + n2 .

So in two dimensions it is in principle possible to have par-
ticles which satisfy ⌧n = 1 for any n , meaning that the
phase factor of the two-particle state under interchange
would be ⌧ = exp 2⇡i/n . And that is why Frank Wilczek
coined the generic name anyons for such particles be-
cause they evidently can have any phase.

And indeed, this observation would have the bold implica-
tion that in two dimensions the statistics factor could be
any rational fraction of 2⇡, ↵ = 2⇡/N . By the ribbon argu-
ment which we explain in the next subsection, this would
also imply that the spin value should be s = 1/N . How ex-
otic: a correspondence between fractional spin and statis-
tics!

Life in lower dimension is not always less interesting ap-
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Figure II.5.25: Feynman in discussion at the Les Houches
Summerschool in 1979. Feynman urged students including my-
self (who took the picture) to try and think of a simpler explana-
tion of the exclusion principle.

parently! That can’t be right! As a matter of fact, it is true,
and there are states of matter on interfaces or with pla-
nar geometries where such particles exist. For example
as collective excitations in (quasi) two-dimensional media
like the ‘fractional quantum Hall phases,’ that are exhibited
by certain conductors at extremely low temperatures, as
we will discuss in Chapter III.3.

A historical aside. The topological nature of the par-
ticle exchange statistics goes back to work of the Nor-
wegian Physicists Jon Magne Leinaas and Jan Myrheim
from 1977. They applied the very same argument we em-
ployed in Figure II.5.22 and discovered the exceptional sit-
uation in two-dimensions. In 1980 I published a paper
where I constructed explicit soliton solutions that exhibited
fractional spin as well as (non-)abelian statistics proper-
ties. It was in the eighties that the extensions of these
ideas took off within my own group, also guided by im-
portant developments in condensed matter theory such as
the work of Laughlin and Wilczek on the fractional quan-

tum Hall effect, and string theory and topological field the-
ories by Witten. This has lead to a quite rich research field,
nowadays called topological order or topological matter, in
which these exotic features are realized and I myself was
deeply involved. This research field is expected to have im-
portant applications in scalable and controllable quantum
information processing and storage. And that is a good
reason to explore these topological arguments a little fur-
ther. It is an attractive type of physics, because it involves
global analysis, which appeals to conceptual imagination
rather than calculus type of skills. It’s fun when basic (or
fancy) physics meets basic (or fancy) mathematics; it re-
ally looks like these two fields of science are ‘convicted’ to
each other. A marriage forced by nature on the one hand
and a marriage de raison as the French say on the other,
that should be a happy one.

The spin-statistics connection

We have in previous sections mentioned the remarkable
connection between the fact that particles having half-inte-
ger spin happen to be fermions while the integer spin par-
ticles are always bosons. This spin-statistics connection
between interchange properties and spin was not at all ob-
vious from the start, and it only became clear once Dirac
wrote down his famous equation for the electron and its
anti-particle the positron that both properties were a nec-
essary consequence of the brilliant interpretation of that
equation given by Dirac.

But now we understand the topological argument for the
interchange factor from carefully looking at the two- (or
multi-) particle configuration space as we did in the pre-
vious section, one wonders whether there is not a more di-
rect argument for the connection of this factor to the spin.
There is, as we will show next, and it again turns out to
illuminate the possibility of fractional spin for those afore-
mentioned anyonic excitations.
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Figure II.5.26: Ribbon diagrams. The ribbon diagram of the
creation and subsequent annihilation of a particle anti-particle
pair, where the arrow indicates the direction of the charge cur-
rent (left). The effect of rotation of a particle on the state is
equivalent to the effect of a rotation of an antiparticle (right); the
net effect is a change of of the vacuum state by a phase factor
R(2⇡) .

Ribbons. The trick is basically to realize that a particle
with spin should be represented by a ribbon instead of a
line. Let us imagine creating a particle anti-particle pair
and subsequently annihilating it, then we get a diagram like
in Figure II.5.26. We can of course also rotate the particle
say over an angle of 2⇡ before annihilating the pair, this
corresponds to a full twist of the ribbon. What is demon-
strated in the diagram on the right, is that we can move
the twist smoothly from the particle line to the antiparti-
cle line, which shows that their spin should equal. The
rotation will change the phase of the two-particle wave-
function by an angle ↵ = 2⇡s where s is the spin of the
(anti-)particle.

To demonstrate the equivalence of a rotation by 2⇡ to an
interchange we go to the next Figure II.5.27. There we first
create two pairs, then we cut the two identical particle rib-

Figure II.5.27: Spin – statistics connection. Two pairs are cre-
ated and annihilated, corresponding to a trivial effect on the vac-
uum state. The pictures on the right demonstrate the topological
equivalence of the interchange of two identical particles with a
rotation on one of them. This implies that ⌧ = R(2⇡)| i =
±| i , where the plus sign holds for bosons and the minus sign
for fermions.

bons and reconnect them to arrive at the diagram in the
middle where the ribbons show that we interchanged the
particles. In other words we have applied the interchange
operator ⌧ to the wavefunction describing the middle two
particles. As indicated in the diagram on the right, the com-
plete exchange diagram can be smoothly deformed into
the diagram where one of the particles is rotated over 2⇡ .
This you can actually verify by taking a ribbon and literally
repeat the described actions. What this says is the wave-
function of the state is acted on by the interchange opera-
tor ⌧ shifting the phase of the state by an angle ↵, but this
phase should be equal to 2⇡s according to the topological
equivalence of the two diagrams.

So this simple argument nicely shows the topological na-
ture of the statistics factor and of the spin-statistics con-
nection. And who would have expected that you could give
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# A B C

1 1 2
2 1 2
3 1 2
4 12
5 12
6 12
7 2 1
8 2 1
9 2 1

Marbles
distinguishable
) 9 states

# A B C

1 x x
2 x x
3 x x
4 xx
5 xx
6 xx

Bosons
indistinguishable

) 6 states

# A B C

1 x x
2 x x
3 x x

Fermions
indistinguishable

exclusion
) 3 states

Table II.5.1: State counting. Counting states for 2 identical particles that can occupy one of three states. The tables list the possible
2 particle configurations for classical particles, bosons and fermions.

a ‘ham handed’ experimental ‘proof’ of the spin-statistics
connection just using two identical belts!

Statistics: state counting

We return to the standard setting of more conventional
quantum theory and illustrate how indistinguishability, ex-
clusion, and interchange properties do affect the statistical
properties of ensembles of particles. This becomes clear
if one starts counting the available ‘distinct’ states.

Let us illustrate this state counting by considering a simple
example of two identical particles labeled 1 and 2 that can
be in either one of three states A,B and C . In the tables
on the next page we have listed the distinct configurations
for classical particles (‘marbles’) which are supposed to
be distinguishable, for quantum particles that are indistin-
guishable but do not obey the exclusion principle (bosons),
and for quantum particles that do obey the exclusion prin-
ciple (fermions). Because the counting of available states

is different allowing for 9, 6 and 3 states respectively, the
probabilities are directly affected. For example assuming
equal probabilities for each allowed state, one may ask a
question like: ‘What is the probability p that the two par-
ticles sit in the same state?’ Clearly for the marbles the
answer is p = 1/3 , for the bosons p = 1/2 while for the
fermions we have p = 0 .

For the case at hand we can define the two-particle state
 ij(1, 2) =  i(1) j(2) as a product of the states of the
individual particles where i and j could be A,B or C . We
can thus think of  ij as a 3 ⇥ 3 matrix , for the classi-
cal states there indeed are 3 ⇥ 3 = 9 entries, for the
bosons we have to require that the state would be sym-
metric  (1, 2) =  (2, 1) corresponding to a symmetric
matrix which indeed has 6 independent entries, while for
fermions we have to require the state to be antisymmet-
ric  (1, 2) = - (2, 1) corresponding to an antisymmet-
ric matrix having only 3 independent entries because the
diagonal ones have to be zero. Indeed, the state vector
 where the fermions would be in the same state would
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Figure II.5.28: Bosons and fermions at T = 0 . The distribu-
tions for the two particle types at T = 0 . The energy levels are
along the vertical axis, and the occupation number is indicated
by the number of balls.

mean  ii = - ii implying that it has to vanish, saying
nothing less than that that there is no such state.

These basic statistical properties of particles have pro-
found physical consequences if we study many particle
systems and their collective behavior. For a system in ther-
mal equilibrium with its environment, there will be a cer-
tain probability of a certain energy level to be occupied or
not, which means that in a large system of many particles
you get a distribution which tells you how many particles
there will be on average at a certain energy level. Now
dependent on the type of particle, these distributions are
different, especially if one goes to low temperatures and
low energies where the quantum behavior becomes mani-
fest.

What do we roughly expect to happen? Let us start with
taking the zero temperature case, this is shown in Figure
II.5.28. Indeed for the bosons we expect that they all con-
gregate or better condensate in the ground state. This is

Figure II.5.29: Bosons and fermions at T � 0 . Axes are the
same as in previous figure.

in contrast with the fermions where we expect that for N
fermions, the lowest N states would be filled, while the
higher states would be empty. The highest filled level is
called the Fermi level, corresponding to the Fermi energy.
Now if we heat the system up, particles may get excited
to higher levels, and fall back again until a certain temper-
ature dependent distribution over states is reached. So,
in Figure II.5.29 we have indicated what that looks like.
Clearly for the fermions where all lower levels are filled
already the thermal excitations can only take place near
the Fermi level. Fermionic excitations create in fact also a
hole, near the Fermi level one necessarily creates particle-
hole pairs.

The functional form of the three distributions can be deter-
mined exactly, and are are depicted in Figure II.5.30 for two
different temperatures. They have the following functional
form:

nT (E) ⇠
1

e(E-µ)/kT +m
,

where for m=0 we have the classical Maxwell–Boltzmann
distribution corresponding to the blue curves, while for m =
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+1 we have the Bose–Einstein distribution corresponding
to the red curves, and finally for m = -1 the Fermi–Dirac
distribution corresponding to the dark red curves. You may
think of these distributions as function of particle state en-
ergy, parametrized by the temperature and the chemical
potential (Fermi energy) denoted by µ . Let us make some
observations concerning these distributions.
i. Note that the axes in Figure II.5.30 are labeled orthogo-
nally to those in Figures II.5.28 and II.5.29.
ii. Observe that for high enough energy all the distributions
look the same for all temperatures, which is the statement
that all particles approximately show the classical behav-
ior. The quantum distinctions get washed away by the vio-
lent thermal fluctuations.
iii. Drastic differences however show up for low values of
relevant energy scale E-µ . Whereas the fermion occupa-
tion number necessarily is smaller than or equal one, the
boson occupation number increases rapidly if the energy
goes to zero. In fact, if we lower the temperature to abso-
lute zero the fermion distribution function becomes a step
function indicating that up to the Fermi-level, all states are
occupied (here µ is the fermi-level, or the surface of the
Dirac sea). For bosons we see that all particles will pile up
in the same lowest energy state.
iv. There is actually a real phase transition where a so-
called Bose-condensation takes place where all particles
sit in the quantum same state. This is in fact an exam-
ple of a special macroscopic quantum state that stands
out because of its so-called quantum coherence. Such
states exhibit truly spectacular properties, such as super-
fluidity, meaning that the system forms a quantum fluid
with zero viscosity. In certain metals this can lead to the
phenomenon of superconductivity, where the electric re-
sistance vanishes at very low temperatures. We will return
to these subjects in later chapters.

You may wonder how such peculiar rules like exclusions
and indistinguishability can be implemented in a mathe-
matically consistent way. It turns out that to do multi-particle
(often called many body) quantum physics, you basically

Figure II.5.30: Particle distributions. The distributions for three
particle types, giving the occupation number n(E) of a state
at energy E - µ for two temperatures. The red curves are for
bosons, the blue ones for ‘marbles’ and the dark red ones for
fermions. This figure is rotated 900 clockwise with respect two
the previous figures.

have to use the formalism of quantum fields. In this for-
malism we have operators that can create or annihilate
(anti)particles in any admissible energy-momentum state.
And one finds that the different types of statistics are direct
consequence of the basic relations between these particle
creation and annihilation operators. For bosons we that
the creation and annihilation operators satisfy commuta-
tion relations meaning that

[a†
k, a

†
k 0 ] = 0 ; [ak, ak 0 ] = 0 and [ak, a

†
k 0 ] = �k k 0 ,

where the commutator of two operators A and B is defined
as [A,B] = AB-BA . For fermions these are replaced by
anticommutators where the anti-commutator is defined as
{A,B} = AB+BA . If two creation operators anti-commute
one has in particular that

{c†k, c
†
k} = 0 ,

meaning that putting two particles in the same state gives
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zero, it just can’t be done. This necessary choice of com-
mutation or anti-commutation relations for the basic oper-
ators is forced upon you by the requirement of a physi-
cally consistent interpretation of the theory. That choice
accounts for all characteristic differences between bosons
and fermions in particular the appearance of completely
symmetric or antisymmetric wavefunctions.

More for less: two-dimensional exotics

It is like the telephone game in kindergarten. The
children are sitting in a circle and you whisper the
first kid a sentence in her ear, then she has to pass
it on till it went all the way around. The last per-
son speaks out loud what the sentence was he
received. Then they compare the sentences, and
share their unbelief that such distortions are pos-
sible. That is presumably how lies emerge. This
metamorphosis, amounts to a non contractable loop
in language space, a nontrivial linguistic holonomy.

The Aharonov–Bohm phase. We recall the discussion
we had in Chapter II.3 on the Ahoronov–Bohm phase shift.
If you carry a charge q along a loop � , around localized
flux then the loop integral of A along � yields the magnetic
flux through (any) two-dimensional surface hat is bounded
by the loop. This implies that the loop operator W� basi-
cally measures the magnetic flux:

We considered a well-defined narrow magnetic flux tube
piercing through the surface as in Figure II.5.31. If we adi-
abatically move a charge around the flux � , the state will
change according to,

|q,�i ! W�(q,�)|q,�i ,

where the phase factor W equals

W�(q,�) = eiq� .

Figure II.5.31: The Aharonov–Bohm phase factor. If we carry
a charge q along a loop � around a localized magnetic flux � ,
then the state will acquire a phase factor W� = exp iq� .

An important property of this phase is that it is not only
gauge invariant but also topologically invariant, meaning
that you can deform the loop any way you want as long as
you don’t cross the flux.

Anyons as flux-charge composites. Let us return to our
discussion about two-dimensional particles and their spin
and statistics properties. Let us look once more at Fig-
ure II.3.33 but in a different way. I now think of the charge
and flux as one composite object. The situation is like
in Figure II.5.32, where we look from far away and do not
worry about the (internal) structure of the pair. The inter-
pretation of the figure is then that we rotate the compos-
ite over an angle of 2⇡ , and we see that the state of this
funny particle has changed by W(q,�) . This means that
our conclusion has to be that the composite must carry
some spin s , which causes the non-trivial phase factor of
the state under rotation by 2⇡ . By definition for a particle
carrying spin s , the corresponding factor is given by,

e2i⇡s = eiq� ) s = q� .
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Figure II.5.32: Flux-charge composite. We think of the charge
flux pair as a composite particle. Then the electromagnetic
phase factor can be interpreted as due to a ‘(fractional) spin’
s of the composite.

For example, if in the superconducting layer, a single elec-
tron would bind with a minimal flux (�0 = ⇡/e) we would
have s = e�0/2⇡ = 1/2 , this would be a spin-half com-
posite particle!

The spin-statistics connection for composites. We ar-
gued that the composites can have fractional spins de-
pending on which fluxes and charges are allowed. But is
it also true that they would exhibit the corresponding ex-
change properties? Can we establish a spin-statistics con-
nection using the ribbon diagrams of Figure II.5.27 ? Let us
start with the phase factor of two composites as in Figure
II.5.33. The combined state after a full rotation would ob-
tain a phase factor of twice W(q,�) , because the charge
q1 would encircle the flux �2 and at the same time q2

the flux �1 , giving us 2q� as the fluxes and charges are
equal. So we have to take the square root, as we only
want to do the interchange, so we do get indeed the same
result as the spin factor.14 This way we have established

14The possible extra minus sign from taking the square root cannot

Figure II.5.33: Interchange statistics of composites. For the
composite particle it follows that the spin- statistics connection
holds.

the exotic spin and statistics properties that are possible in
two dimensions.

A historical aside. These particles are called anyons,
a name coined by Frank Wilczek, because they can ac-
quire any phase upon rotation or interchange. These so-
called quantum-Hall systems were discovered by the Ger-
man physicist von Klaus von Klitzing, and the fractional
version of it by Störmer and Tsui. The theory of this phe-
nomenon involving the fractionally charged anyons with
fractional spin along the lines we just pointed out was de-
veloped by the Americans Robert Laughlin who shared
the Nobel prize with Störmer and Tsui in 1988, and Frank
Wilczek who already had received a Nobel prize for the
theory of the strong interactions.

There are now many proposals for phases of condensed
matter that feature these local anyonic excitations. Such
phases share a property called topological order. It was

be resolved at this level of the analysis. Note however that it allows for
implementing that the constituents would be a fermion to start with.
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the Russian theoretical physicist Alexei Kitaev who poin-
ted out that such anyons would be ideally suited to build
quantum information devices with, because anyonic qubits
are intrinsically fault tolerant. This highly desirable prop-
erty derives from the topological nature of the quantum
phases, which makes that these cannot be destroyed by
local interactions and such error generating effects would
be exponentially suppressed. One may manipulate the
phases on multi-anyonic, multi-qubit states by just mov-
ing them around each other, or as it is called by ‘braiding’
them. Because of their topological nature computations
with anyons would correspond to particular braids or knots
of their world lines. And computation would boil down to
some kind of quantum knitting! ⌅
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Chapter II.6

Symmetries and their breaking

Symmetry, as wide or as narrow as you may define
it, is one idea by which man through the ages has
tried to comprehend and create order, beauty and
perfection.

Hermann Weyl

Symmetries play and have played a crucial role in the de-
velopment of the modern physical sciences. It is a rich
subject and its manifestations are quite diverse and dis-
play remarkable analytical and aesthetic aspects. Central
to this topic are the mathematical notions of a Lie group
and a Lie algebra. In the quantum context these symme-
tries are implemented by certain sets of operators (observ-
ables) that act on the Hilbert space of the system. We have
encountered them already as they arise naturally at many
levels in the framework of quantum theory. The connec-
tions between formal mathematical and physical concepts
are summarized in the table on page 447, and I recom-
mend that you regularly consult the table while reading this
chapter.

In this chapter we have split the applications between the
well-known ‘ordinary’, rigid, or global symmetries and the
so-called gauge or hidden or local symmetries. The for-
mer are like the familiar translations or rotations, or isospin
transformations, while the latter refer to the internal sym-
metries that are tied in with the fundamental interactions.
Electrodynamics is a simple example of a gauge theory,

and we have already discussed itsgauge symmetry already
in Chapter I.1. Gauge symmetries are especially powerful
because they are restrictive in the sense that they impose
the way particles can interact in a consistent way. The
dynamical equations underlying the Standard model are
pretty much an expression of this principle of local gauge
invariance. The mathematical concepts are those of dif-
ferential geometry and the theory of fiber bundles, as we
pointed out in the section on the ‘Physics of geometry’ of
Chapter I.2

After the discussion of symmetries themselves, we move
on to talk about breaking the symmetries. Symmetry break-
ing is another powerful concept that has found a rich va-
riety of applications in fundamental physics on all scales,
from say the cosmos all the way down to the phenomena of
ferromagnetism in condensed matter or the Higgs mecha-
nism in particle physics.
Symmetry breaking encompasses a hierarchical perspec-
tive on the increasing diversity and complexity we observe
in nature as a hierarchical pattern resulting from a se-
quence of symmetry breaking transitions. We will discuss
examples of the breaking of global as well as local sym-
metries.
Symmetry and its breaking are deep and delightful sub-
jects that teach us about the mathematical intricacies of
fundamental interactions and their structural beauty.
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Let me start this chapter by stepping back and revisiting
some statements I have made along the winding road we
have taken so far, and looking at them again from the point
of view of symmetry. Symmetry pops up everywhere and
that indicates that there are many entries into this quantes-
sential subject. Whereas symmetry leads to unity, similar-
ity, and degeneracy, breaking symmetries does the oppo-
site, it is a mechanism explaining how symmetry can get
lost. The mechanism is quite generic and it is therefore
important to understand its systemic signatures.

Nature started from a highly degenerate situation at a very
high temperature (energy) and then created (evolved) di-
versity by going through a series of symmetry breaking
transitions that took place when the ambient energy or
temperature lowered. In an expanding universe like ours
the loss of symmetry is as natural as it is inescapable.

By changing a circle into an ellipse and then to an arbitrary
closed curve, one goes from a symmetry of continuous ro-
tations in the plane, to two mirror symmetries, to no sym-
metry at all. It is a sequence of ever more symmetries be-
ing broken. Note however that from an information point of
view, the information content increases with decreasing (or
the breaking of) symmetry. Indeed you move from a curva-
ture along the closed curve that is constant, to a curvature
that is a periodic to a random function, and the amount of
data you need to describe them increases.

Too much symmetry is boring because it is extremely re-
dundant and predictable, but the same holds for too much
randomness because of an extreme lack of structure. Ex-
citement and beauty apparently reside halfway in between,
and that is maybe why nature has chosen a path of break-
ing more and more symmetries. At present we encounter
remnants of lost symmetries like subtle and hidden mem-
ories. But that is what makes nature so interesting. Life
as an ‘avenue of broken symmetries’ so to speak. It allows
science to gain a deeper and more unified understanding
of the hidden patterns underlying reality.

Symmetries of what?

The symmetries that are important in physics, are
not the symmetries of things but the symmetries of
equations.

Steven Weinberg

We think of a group of symmetries as a set of operations
or transformations that leave something invariant. This can
be an object like a triangle or a sphere, and we speak of
the ‘symmetries of objects’, and this is certainly its most
familiar manifestation. We may also think of the symme-
tries of spaces, these are transformations on the space,
meaning transformations of the coordinates in such a way
that the properties of that space do not change. For ex-
ample flat space R3 has a huge group of symmetries: we
can translate it over an arbitrary distance in any direction,
we can rotate it around any axis through any point over
any angle, and we can scale it by any amount around any
point. With an infinite flat space you wouldn’t see the dif-
ference, it is invariant under all those transformations and
combinations of them. And besides that it has also dis-
crete mirror symmetries, a transformation called parity. It
makes you wonder whether it is this incredible overkill of
symmetry that makes flat space so boring.

Yet another, and in physics crucial, application is to study
not so much the symmetries of things, but rather the sym-
metries of equations, which means again that we make a
transformation on the dynamical variables that leave the
(system of) equations invariant.

Realizations of symmetry in nature. People I trust have
told me that the Inuits have 32 words for snow, and that
presumably is because they know a lot more about it than I
do. By living in the snow for centuries they have learned to
differentiate and appreciate an immense diversity in some-
thing that I just call ‘snow.’ Something similar has hap-
pened with the notion of symmetry in physics and its mirror
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images in mathematics.

With all these different approaches comes a correspond-
ingly rich terminology referring to what we are precisely
talking about. One speaks of discrete versus continuous,
finite versus infinite, space-time versus internal, local ver-
sus global, broken versus unbroken, approximate versus
exact, normal versus super, classical versus quantum sym-
metries. This summary suffices to justify a chapter on this
topic, a chapter in which I will guide you through some of
this extensive jargon in a way that emphasizes the basic
concepts.

Groups, algebras and their representations. The frame-
work for the following discussions on symmetry is summa-
rized in the table on page 447, and it shows that in the
class of continuous symmetries the mathematics is mostly
that of Lie groups and algebras. These are quite abstract,
mathematically precisely defined objects themselves, but
the beauty is that it comes with an important part denoted
as representation theory. Physicists perceive the notion
of symmetry mostly through the particular representations
that are manifest in nature. Let me recall the observables
{X, Y, Z} , the Pauli matrices, and the fact that their com-
mutation relations form the non-commutative Lie algebra
denoted as su(2).1 It is called the ‘defining’ representation
of this algebra because it is in the form of 2 ⇥ 2 hermi-
tian matrices, working on a two-dimensional complex vec-
tor space – the state space of a single qubit. But exactly
the same algebra, meaning an identical set of commuta-
tion relations, is obeyed by the angular momentum oper-
ators {Lx, Ly, Lz} . That is a different representation of the
same algebra in terms of differential operators working on
a space of functions – the Hilbert space, quite different
from 2 ⇥ 2 matrices but satisfying the same algebra. If
we furthermore restrict to states of a given angular mo-
mentum l , (think of the hydrogen atom) then these form

1To be precise, it is one-half times the Pauli matrices that satisfy
the su(2) algebra. Commutation relations are nonlinear so the scale is
exactly fixed. This factor one-half turns out to be important.

a (2l + 1)-dimensional vector space and the rotations are
then generated by a specific set of three (2l+1)⇥ (2l+1)
hermitian matrices. And all these sets form inequivalent
representations of the same algebra, labeled by the quan-
tum number l . We will be somewhat cavalier about mak-
ing distinctions between the abstract notions of an algebra
or group and their representations. In physics we mostly
work within the context of particular, often unitary, repre-
sentations. You may think of representation theory as the
physical contextualization of abstract group theory.

Symmetries and conserved quantities

Heisenberg equations. I choose a route that starts with
symmetries of a Hamiltonian (operator), leading from there
to the notion of conserved quantities, and from there to
frameworks for labeling the energy eigenstates of that Ha-
miltonian. Let me start from the basic Heisenberg equa-
tions which apply to quantum systems on all levels:

ih̄
dA

dt
= [A,H] . (II.6.1)

Remember that in this formulation the dynamical variables
or observables are time dependent, and in that sense the
Heisenberg approach is closer to the classical one, be-
cause it is formulated in terms of the observable quantities
only.2 This in contrast with the Schrödinger equation which
describes the time evolution of quantum states, and those
are not directly observable.

Symmetries and conservation laws. The equation says
that the time evolution of the system is generated by the
Hamiltonian H . In particular, an infinitesimal change in
time, corresponding to acting with ih̄d/dt on the variable,
is equal to taking the commutator of that variable with the

2Note the similarity between the Heisenberg equations and the Pois-
son equations discussed in the section on classical mechanics of Chap-
ter I.1.
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Figure II.6.1: The quantessence of symmetry. If an observable
Q commutes with the Hamiltonian, then it is conserved in time,
and generates a symmetry of the system.

Hamiltonian. Consider now an observable Qi which com-
mutes with the Hamiltonian or energy operator, so:

[Qi,H] = 0 ) dQi

dt
= 0 .

The equation teaches us that observables that have a van-
ishing commutator with the Hamiltonian do not change in
time. They are constants of the motion and are conserved
in time. It means that if the dynamics of the system fol-
lows the Heisenberg evolution equations, and we start with
a state corresponding to a certain (eigen)value qi for the
observable Qi , that the evolution will take place in a sub-
space of the Hilbert space labeled by that eigenvalue, and
by some eigenvalue E of the Hamiltonian as well, because
the energy operator H is (by definition) a conserved quan-
tity. Everybody commutes with themselves after all.

This reasoning leads to an interesting picture: we have a
system characterized by a set of basic variables (think of
position and momentum) and a huge set of derived ob-
servables (like energy or angular momentum), and these

observables form a closed operator algebra under com-
mutation. In the Math Excursion on vectors and matrices
on page 632 of Volume III we explain that these algebras
of observables that close under commutation are in mathe-
matics referred to as Lie algebras. We present an overview
of the relation between mathematical and physical aspects
of symmetry in the table on page 447.

Lie algebra of observables. What we say is that such
a Lie algebra is a rather abstract thing, but it has repre-
sentations in the form of matrices or differential operators.
This we saw for example with the algebra of the canonical
variables X and P, which reads:

[X, P] = ih̄ ) X ! x and P ! -ih̄
d

dx
,

and therefore has a representation where X is represented
by the ordinary number variable x (like it appears as argu-
ment of the wave function). Acting with X on a wavefunc-
tion  (x) means multiplying that wavefunction with x . P is
represented by the differential operator as indicated in the
equation above. It is the infinitesimal displacement oper-
ator. This was worked out in the section on position and
momentum operators on page 387.

Translation invariance and momentum conservation.
Let us explore this a little further along the lines of en-
ergy conservation for the simple mechanical system that
we discussed in the section on Newtonian mechanics in
Chapter I.1. If we consider the energy of a particle then
that usually consists of a kinetic part P2/2m and a poten-
tial part U(X) . Suppose that we make the additional as-
sumption that the potential energy is constant and does
not depend on X , then the canonical commutation rela-
tions above imply that [P,H] = 0 and hence the momen-
tum is conserved. In the classical argument one would
normally say that the force F(x) = -dU/dx = 0 and New-
ton’s second law then tells us that dp/dt = F = 0 , leading
to the same conclusion.

We encountered this situation for example in the section
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about the ‘free particle on a circle’ of Chapter II.5 where
we found that states were labeled by the quantized mo-
mentum p = h̄k (k-integer), being a conserved quantum
number. So we chose a framework consisting of the en-
ergy and the momentum operator, with as sampling space
just the momentum eigenvalues -1  p  +1 . Here we
see that if an underlying space-time symmetry, like trans-
lation invariance, is also present in the Hamiltonian, then
indeed, the spectrum reflects that. But there is always a
dual aspect. On the one hand the momentum P which is
the conserved quantity, but on the other that very same P

is the generator of the symmetry transformations being the
translations. We have illustrated this general relationship
in Figure II.6.1.

Rotations and angular momentum conservation. Let
us now consider a more complicated example where sym-
metry tells us a lot about the spectrum, the case of the
Hydrogen atom. The spectrum exhibited a large degener-
acy which explained and depicted already in Chapter I.4 in
Figure I.4.9. The states are labeled by three integer-valued
quantum numbers: the energy related quantum number
n = 1, 2, . . . , the angular momentum quantum number
l = 0, 1, . . . , n - 1 and the magnetic quantum number
-l  m  l . In this problem we have a spherically sym-
metric electric force field centered at the nucleus in the ori-
gin. The energy consists of two parts, a kinetic part p2/2m

and a potential part -k/|x| and each part depends only on
the length of the vectors and therefore is invariant under
rotations. So we expect that the generators of rotations
commute with the Hamiltonian and that they are there-
fore conserved, and somehow their sample spaces should
be reflected in the labeling of the degenerate states with
equal energy. Indeed, the generators of those rotations
around the x , y , and z axes are the corresponding angu-
lar momentum observables/operators defined as a vector
L:

L = X ⇥ P .

Furthermore, the three components are conserved, as one

can indeed show:

[H, Li] = 0 i = 1, 2, 3 .

But now a further complication pops up: the conserved
components of L do not commute among each other. We
have:

[L1, L2] = ih̄L3 , and cyclic permutations. (II.6.2)

This algebra of real three-dimensional rotations, denoted
as so(3) happens to be identical to the by now familiar
su(2) Lie algebra. To describe the system we need to
choose a framework F , which means that we have to
choose a subset of mutually commuting operators. Con-
ventionally one chooses the following set: H, L2 = L21 +
l22 + L23 and L3 with the eigenvalues:

H | nlmi =
E0

n2
| nlmi ;

L2 | nlmi = h̄2l(l+ 1) | nlmi ;
L3 | nlmi = h̄m | nlmi . (II.6.3)

And as we mentioned before, for a fixed value of the prin-
cipal quantum number n , there are in fact 2n2 degener-
ate states as a consequence of the symmetries that are
present in the problem. The set of those states form a ba-
sis for all allowed states with an energy corresponding to
that value of n . If we take n = 3 , we should have l = 0,
l = 1 and l = 2 , but the symmetry algebra so(3) given in
(II.6.2) does not change the value of l , only the values of
m from -l to +l , which means that the rotational symme-
try only accounts for the (2l+ 1)-fold degeneracy for each
value of l . The conclusion therefore is that for n = 3 ,

the spectrum consists of the three distinct irreducible rep-
resentations of the rotation group (labeled by l = 0, 1, 2),
see also Figure II.6.2. That suggests that there is may be
more symmetry present in this problem, a topic we will re-
turn to shortly.

Let us make another observation here. In the choice of the
framework we at once introduced the operator L2 , which is
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Figure II.6.2: The representations of su(2) ' so(3). The group
SU(2) has three generators that form the algebra su(2). The
root diagram has the diagonal L3 which forms the Cartan sub-
algebra H , while the arrows represent the raising and lowering
operators E± ' L± . The weights of all (unitary) representations
are on the weight lattice. We furthermore depicted the weight
diagrams of various irreducible representations labeled by suc-
cessively l = 0, 1/2, 1, 3/2, . . . .

strictly speaking not part of the Lie algebra. It is a quadratic
combination of generators that has the nice property that
it commutes with all of the su(2) ' so(3) generators:
[L2 ,A] = 0 . Such invariant polynomials (also called Casi-
mir operators or Racah invariants) play an important role
in Lie algebra theory because you can use them to label or
identify the inequivalent representations. And indeed, the
eigenvalue l(l + 1) (or for that matter l) labels and distin-
guishes the infinitely many different (irreducible) represen-
tations of the algebra by (2l+ l)⇥ (2l+1) matrices.

Vectors and spinors. Let us return to the abstract alge-
bra (II.6.2) of so(3) . We have mentioned that this alge-
bra is identical to the algebra su(2) generated by (a half
times) the Pauli matrices X, Y, and Z . And this implies that
the algebra not only has integer l representations, but also

half-integral, so-called spinor, representations. And as you
see these do not show up in the orbital angular momentum
part, but in the part associated with the spin of a particle,
which is a degree of freedom that is not present at the clas-
sical level. Actually saying that there is no classical equiv-
alent is of course not correct. We have shown that the
classical system underlying the spin-half, quantum degree
of freedom, is just the classical two-state system of a bit or
Ising spin. Not much ‘rotational’ about it and that is what
is implied by saying that it has no classical analogue. But
if you ‘believe’ the mathematics, the half-integral represen-
tations had to be there somewhere, and yes they showed
up in the anomalous Zeeman-effect that brought Uhlen-
beck and Goudsmit in 1925 to their bold conjecture of the
‘intrinsic spin’ of the electron, and 5 years later became
a compulsory ingredient of any particle obeying the Dirac
equation. This we discussed already in Chapter II.1.

So what we learned from these examples is that the Lie
algebra so(3) which happens to be the same as su(2)
has an infinity of inequivalent (unitary) representations la-
beled by an integer or half-integer quantum number j =
0, 12 , 1, . . . and that that representation can be realized by
(2j + 1) ⇥ (2j + 1) hermitian matrices. There is a ba-
sic distinction between the integer and half-integer eigen-
value representations: physicists refer to the integer ones
as vector representations and to the half-integer ones as
spinor representations. In the hydrogen atom we saw all
the representations showing up, in the discussions we had
on the qubit we start off with a single spin one-half (dou-
blet) representation, but as we mentioned before in the n-
qubit space we have a much bigger symmetry group act-
ing corresponding to SU(2n) , which contains the product
group of n individual SU(2) as a subgroup.

An additional dynamical symmetry. Let us return to the
spectrum of hydrogen and note that there is still something
we haven’t explained. The degeneracy observed at energy
level n equals 2n2 . It involves a degeneracy of different
l representations, which cannot be accounted for by the
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Figure II.6.3: The Runge–Lenz vector, A = P ⇥ L - mkr̂ is
an additional conserved quantity in the problem with a central
-k/r potential, where the origin of the coordinate r is in one of
the focal points. A points always parallel to the long axis of the
ellipse in the direction of the ‘perihelion.’

rotational symmetry. It could be ‘accidental,’ but that would
be hard to believe if you have stayed with me so far. You
would probably bet that it must be the consequence of yet
another symmetry that we still have to disclose and that
would make the whole picture even more striking.

Indeed, that symmetry is there, as there are in fact three
more (independent) observables that commute with the
Hamiltonian if it has a central 1/r potential. The presence
of this symmetry is directly linked to the particular form of
the interaction potential and is therefore called a dynami-
cal symmetry. The generators form a vector just like the
angular momentum and that vector is called the Runge–
Lenz vector after its (re)discoverers.3 This vector usually
denoted by A is defined as:

A = P ⇥ L -mkx̂ . (II.6.4)
3It has an interesting history with many rediscoveries going back to

the early 18th century. Pauli was the first to use it to solve the hydrogen
atom in an article from 1926.

We have constructed A at various points of a classical
Newtonian elliptic orbit in Figure II.6.3, and we see that
it is indeed a constant of the motion. Note that it takes
some use of the ‘like-rule’ to get the orientation right and
then you see that the vector is parallel to the long axis of
the ellipse and points in the direction of the ‘perihelion.’
It is surprising that such a conserved vector-like quantity
exists, but you expect on the quantum level to be respon-
sible for the extra degeneracy with respect to the quantum
number l = 0, 1, . . . , n- 1 .

That explains by the way that in the Newtonian theory the
elliptic orbit is completely fixed in space, and moreover it
also explains that this feature disappears if we add a cor-
rection term coming from Einstein’s general theory of rel-
ativity. That term concerns a small 1/r3 contribution, that
breaks the symmetry and therefore the ellipse is no longer
fixed in space and starts rotating in the plane of the orbit.
This is the well-known ‘perihelion precession’ that was ob-
served for the planet nearest to the sun Mercury already
in the nineteenth century, and could indeed be accounted
for by Einstein’s theory. It illustrates the notion of an ap-
proximate symmetry it is not an exact symmetry but nev-
ertheless teaches us about essential features of the sys-
tem.

The full symmetry of the hydrogen atom

After all this struggling with vector products you may like
to know what the total symmetry algebra of the hydrogen
atom really is. This algebra is six-dimensional, and is in-
deed generated by the three L and the three A compo-
nents. They form a closed algebra and it is in fact the
algebra so(4) of the rotations in four dimensions. So here
we are, we set up a problem in three dimensions and now
we get a spectrum exhibiting a manifest so(4) symme-
try. It underscores that the algebra has many represen-
tations and these may show up in all kinds of contexts
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which have nothing whatsoever to do with a physical four-
dimensional space. Here it surfaced because besides the
rather evident spatial rotational symmetry of the problem,
there turned out to be the additional, somewhat hidden
dynamical symmetry (dynamical because it depends on
the particular 1/r behavior of the potential and not on the
underlying space). Including that symmetry allowed us
to fully resolve the degeneracies in the hydrogen spec-
trum.

Raising and lowering operators. We see that we have
chosen a consistent framework F = {H, L2, Lz} to label the
states. They are mutually commuting, but now you may
ask what happened to the other symmetry operators – Lx
and Ly for example – that commute with the Hamiltonian
but not with Lz . We basically know what their meaning
is as we showed before that they can be regrouped into
raising and lowering operators that step up and down the
different m values (within a single l representation). And
similarly the components of the Runge–Lenz vector can
be used to step up or down the value l of the total orbital
angular momentum. So in this case these are operators
that make steps not in energy but rather in other quantum
numbers that label the degenerate states.

So if we go to the table on page 447, we see that a frame-
work F typically involves a set of rank A operators form-
ing a so-called Cartan subalgebra H of A . A Cartan sub-
algebra consists by definition of a maximal set of mutually
commuting generators of A . And indeed, the other gen-
erators in A - H can be regrouped in a complete set of
raising and lowering operators.

A full set of step and symmetry operators satisfying equa-
tion (II.5.21) is called the spectrum generating algebra for
the obvious reason that they allow you to walk through
the sample space, in principle finding all the energy eigen-
states and their quantum numbers referring to a framework
compatible with the energy operator.

Generating the spectrum (sample space). Let us as-
sume that by some means we succeeded in construct-
ing a complete set of step operators which bring you from
one energy level to another, one could in principle imagine
looking for the ground state(s) (the state(s) that are ‘anni-
hilated’ by all the lowering operators) and then, using the
spectrum generating algebra of all step and symmetry op-
erators, to generate the whole spectrum of eigenstates of
the Hamiltonian.

We have seen that symmetries, and in particular the max-
imal set of mutually commuting symmetry operators, yield
the set of quantum numbers that allows us to label and
distinguish a relevant basis for all states. And as the labels
of such base states corresponds to eigenvalues of sym-
metry operators they are conserved in time. Therefore, in
a general sense, such a maximal set allows us to ‘name’
the properties of the system, since ‘names’ are useful pre-
cisely because they do not change all the time. On the
other hand if the system undergoes interactions, the prop-
erties may change and also then it is important to have a
proper identification of property names or quantum num-
bers. For example, the interaction may excite the system
and therefore basically act like a raising operator.

Symmetry algebra and symmetry group

So far we have talked about the observables Qi that com-
mute with the Hamiltonian. They are conserved and we
have seen that they generate a symmetry. That means that
acting with them gives an infinitesimal displacement corre-
sponding to a tiny symmetry transformation. This applies
of course only to the case of continuous symmetries. You
might wonder what a finite transformation then would look
like and how they are described. It is here that we have
to move from the mathematical concept of a (Lie)-algebra
to that of a Lie group. This question is briefly addressed
in the Math Excursion on Vectors and Matrices on page
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Figure II.6.4: The group manifold of SU(2). SU(2) can be
represented as a solid three-dimensional ball with radius 2⇡ . A
point in that space corresponds with a rotation around the vec-
tor by an amount that corresponds to its length. All points on the
surface are identified and represent minus the identity element:
a rotation of about any axis by 2⇡ yields an overall phase minus
one.

635, and we have used in Chapter II.3 in the section on
the Berry phase on page 347.

Exponentiation of the algebra. Let us return to the ques-
tion of frame rotations for a qubit corresponding to a two-
dimensional (complex) vector .

We considered the Z-frame and the X-frame and these
frames are clearly related to each other by a finite rotation
over an angle of 45o around the y-axis (perpendicular to
the z- and x-axes). Let us make an angle rotation over
an angle ✓ around the Y axis4 and use the matrix version

4Here the factor a half comes back and becomes relevant. The pa-
rameter is ✓ , but the generator satisfying the su(2) commutation rela-
tions is Y/2, and therefore it looks like a rotation by ✓/2 , but it is not.

of the Euler identity:

ei✓Y/2 = 1 cos✓/2+ iY sin ✓/2 ;

, Ry(✓) =

✓
cos ✓/2 sin ✓/2
- sin ✓/2 cos ✓/2

◆
. (II.6.5)

Let us apply this to see what it does with the basis vec-
tors:

✓
cos ✓/2 sin ✓/2
- sin ✓/2 cos ✓/2

◆✓
1

0

◆
=

✓
cos ✓/2
- sin ✓/2

◆
.

If we put ✓ = 90o , we get exactly the finite rotation of state
| + 1i to |-i as indicated in Figure II.2.1 where the frame
choices are discussed and how these choices are related
to the unitary group transformations we denoted as U in
our discussion in Chapter II.1. We also know how to apply
this transformation to the operators, We have to act from
both sides for example:

Z ! Ry(✓) Z Ry(-✓) = -X ,

where we have used the fact that Ry(✓/2)† = Ry(-✓/2) .
This explicitly resolves a puzzle that you may have felt un-
easy about. The algebra is three-dimensional with X/2, Y/2

and Z/2 as basis vectors, and indeed by rotating Z around
the Y axis with ✓ = 90o yields -X , exactly as you would
expect, but applying the same transformation to the qubit
rotates the two-dimensional ‘vector’ only over 45 degrees.
How is that possible? Well to be precise the qubit is not a
vector in the usual sense it is therefore that we introduced
the term spinor exactly to make this distinction.

From the above considerations one may show that any fi-
nite SU(2) group transformation can be parametrized as

g
�
{�a}

�
= e

i
X

a

�aTa
with {Ta} = {X/2, Y/2, Z/2} .

Finite translations. For the translations one can do a sim-
ilar exponentiation,

T(a) = eiaP . (II.6.6)
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which gives that on an operator which depends on X , and
P we obtain after a finite translation by any amount a:

f(X, P) ! T(a)f(X, P)T(-a)

= eiaPf(X, P)e-iaP = f(X+ a, P) . (II.6.7)

In particular one has the property that T(a)XT(-a) =
X + a ., showing that the X operator has been shifted by
a .

In the same vein you can show that if [H, P] = 0 and P is
conserved. That also means that

T(a)HT(-a) = H ,

which literally says that it leaves the Hamiltonian invari-
ant, i.e. the translations are a symmetry of the Hamilton-
ian.

What I am trying to make plausible is that by ‘exponen-
tiating the algebra’ we do get the corresponding group.
Whereas the algebra describes infinitesimal transforma-
tions you need the group to do finite transformations. And
whereas the algebra is a linear vector space, the group is
some smooth curved manifold.

The group space or manifold of SU(2) . You can think
of a group as a smooth manifold or space. For example,
the group U(1) is just a circle as we mentioned before.
For the real space translations it is R3 because a finite
translation in space is fixed by the three components of
the displacement vector.

The group SU(2) is isomorphic to the three-sphere S3 as
we discussed in Chapter II.1 on page 254. So exponenti-
ating the su(2) algebra (note the use of lowercase) we get
the SU(2) group (in capitals). The su(2) algebra has gen-
erators X, Y ,and Z , and is therefore three-dimensional.
The dimensionality of the algebra is the same as that of
the group (manifold). The group SU(2) has therefore three
independent parameters, or coordinates. You can think

Figure II.6.5: The group SU(2) and its algebra su(2) . SU(2)
can also be represented as a unit three-sphere S3 embedded in
R4. The su(2) algebra can then be thought of as the R3 tangent
space to the group manifold in the origin (the point correspond-
ing to the trivial or unit element e).

of the algebra as the tangent (hyper) plane to the group
manifold in the unit element e (corresponding to the trivial
transformation). That plane has of course the same di-
mension but is a linear, flat space like Rn . In Figure II.6.5
we give illustrated this relation between the SU(2) group
and the su(2) algebra. If you stay near the unit element, a
change in the tangent plane is almost as good as moving
on the group manifold. It’s like assuming that the Earth is
flat, which is not such a bad approximation if you look on
the scale of kilometers, but causes serious trouble if you
start thinking in terms of thousands of kilometers! Think-
ing locally amounts to making a linear approximation, as
for small a ' " we may write

T(") ' 1 + i"P .

This terminology is that the algebra generates infinitesimal
transformations. In short: thinking local acting global is
bad, while thinking global and acting local is fine.
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Gauge symmetries

We have argued that the equations that form the starting
point for quantum fields are basically the same equations
that one can write down for classical fields. Those classical
fields change from being just functions on the configuration
space to operator valued fields. And these then have to
be quantized typically using canonical methods where the
fields become like ‘field coordinates’ and their derivatives
like ‘field momenta’.

Electrodynamics revisited. Let us go back to the Schrö-
dinger or better the Dirac equation in three plus one dimen-
sions and ask how we could implement the interactions
with the electromagnetic field. Somewhere in the equa-
tions there ought to appear terms that describe this inter-
action. Now we go through a beautiful argument where
you will see how a number of rather peripheral remarks
we have been making before all fall into place and yield a
profound insight. That insight amounts to the fact that na-
ture has a hidden symmetry and that imposing that sym-
metry completely fixes the precise form of the interactions
(fundamental forces) between the elementary constituent
particles.

I give the argument in relativistic notation, because that
keeps things simple and elegant. The argument also holds
true in non-relativistic situations. We want to use space-
time vectors that have four components: for example in-
stead of using the usual momentum vector p we switch
to the four-momentum written pµ where µ = 0, . . . , 3 and
the time component of the four momentum is defined as
p0 ⌘ E/c . Now if you look at the equations describing the
interaction of charged particles with the electromagnetic
field, then it turns out that you can get those interaction ex-
actly right if you use a simple trick that goes by the name
of ‘minimal substitution’. It is a recipe that says: for a parti-
cle with a charge e replace everywhere the momentum pµ

by pµ + eAµ . The four vector Aµ = (V,A) are the electro-

magnetic potentials where V is the electrostatic or scalar
potential and A as the vector potential.

These were introduced in the section on electrodynam-
ics in Chapter I.1, together with the electromagnetic field
strength Fµ⌫:

Fµ⌫ = @µA⌫ - @⌫Aµ . (II.6.8)

The three spatial components Fij correspond with the com-
ponents of B , and the space-time components F0i corre-
spond with the components of E .

Gauge invariance. In Chapter I.1 we argued that there
is some redundancy in keeping all the six components of
the fields E and B and one could do with only the four
components of the gauge potential Aµ . That is indeed the
case but as a matter of fact even that doesn’t eliminate all
redundancy. In the formulation with the gauge potentials
there is still some redundancy left, because we can make a
transformation on the gauge potentials that leave the field
strength F and thus the physical E and B fields invariant.
This transformation is called a gauge transformation and
involves a space-time dependent function ⇤(x, t):

Aµ(x, t) ! A0
µ(x, t) ⌘ Aµ + @µ⇤(x, t) . (II.6.9)

If you substitute the transformed field into (II.6.8), you im-
mediately see that the extra terms cancel each other out,
and that proves the invariance (and the efficiency of the
relativistic notation).

This invariance is of another type than we have been dis-
cussing before, because the transformation depends on
space-time. It is called a local transformation because by
choosing the transformation you fix the amount by which
you transform in every point independently, as long as it
changes smoothly from one space-time point to the next.
This means that we are effectively dealing with only three
components for the gauge potential, because one may
choose the gauge function in such a way as to ‘gauge
away’ one of the components of the gauge potential. So,
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why don’t we get rid of it you may say, and strip the descrip-
tion of the electromagnetic field to the bare minimum. This
is not so easy and you could say that keeping the redun-
dancy is the price we pay for the transparency and com-
pactness of the theory, and most importantly its linearity.
This theory is beautiful like a peacock, with the exceptional
property that it can fly as well! We are a bit like dealers in
options when we talk about the field strengths which cor-
respond to the invariant physical degrees of freedom, but
these are in fact derivatives of the underlying potentials to
which the particles couple.

Covariant derivative. The minimal substitution means
that for charged particles we change the momentum op-
erator to

Pu = -ih̄@µ ! -ih̄Dµ ⌘ -ih̄(@µ + i
e

h̄
Aµ) ; (II.6.10)

where e is of course the charge of the particle. In other
words, the recipe is to replace the ordinary derivative @µ
by the covariant derivative Dµ .

We also remarked before that the Schrödinger or Dirac
field is complex and therefore has a real and an imagi-
nary part. And we furthermore made the point that there is
always one overall phase that is unobservable and has no
physical meaning therefore. Transforming that phase into
another phase would not matter; it reshuffles the real and
the imaginary parts of the wave function but the combina-
tion of the two has exactly the same content. Neverthe-
less, there is a phase symmetry because there is a phase
transformation that leaves the physics invariant

 (x⌫) !  0(x⌫) = ei↵ (x⌫) . (II.6.11)

Furthermore, the equations with the interaction term also
are invariant under this phase transformation. This trans-
formation is often called a global, meaning space-time in-
dependent gauge transformation.

Now we pose the interesting question whether these equa-
tions are also invariant under local, which means space-

time dependent phase transformations:

 (x⌫) !  0(x⌫) = ei↵(x⌫) (x⌫) .

On first inspection the answer is no, because the equa-
tions have derivatives that ‘see’ that space-time dependent
phase factor and are going to make trouble about it be-
cause:

@µ ! @µ 
0 = ei↵(x⌫)(@µ + i@µ↵(x⌫)) ;

and the transformed equation would be different because
of this extra term involving the derivative of the space-time
dependent phase. But wait a minute, what if we include
the gauge potentials as we are supposed to do if we adopt
the minimal substitution doctrine. Then we get:

Dµ ! (Dµ )
0 = ei↵(x⌫)(@µ + i@µ↵(x⌫)- i

e

h̄
A0

µ) .

Now please observe a tiny miracle, if we just substitute
the expression (II.6.9) for gauge transformed A0

µ and make
the judicious choice ⇤ = (h̄/e)↵ then net the effect of
the two transformations is zero and we get that the gauge
covariant derivative transforms exactly as we want,

Dµ ! (Dµ )
0 = ei↵(x⌫)Dµ .

It transforms ‘covariantly’ just like the field  itself and
therefore the complete theory involving also matter fields
becomes gauge invariant. This result implies that the equa-
tions transform now simply by an overall local phase, which
we can divide out and we have not changed anything.

We conclude that the complete system of Maxwell equa-
tions coupled to the Schrödinger or Dirac equations ex-
hibits this local gauge invariance.

Gauge connection and parallel transport. The gauge
invariant part of the electromagnetic field are the E and B
fields, or the components of Fµ⌫ . But as we have been dis-
cussing already in the previous section on particle statis-
tics and anyons there is a more subtle non-local quantity
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that is gauge invariant, namely the Aharonov–Bohm phase
factor or Wilson loop defined in equation (II.3.3).

If there is curvature (field strength) then the transport be-
tween point x0 and x1 becomes path dependent. The lin-
ear covariant equation:

Dµ (x) = 0 ;

has a general path dependent solution:

 (x1) = e
-i

e

h̄

Zx1

x0

Aµdx
µ

 (x0) .

It looks quite daunting but think of it as just a phase fac-
tor, where the phase equals this integral of Aµ along the
path, which is after all just a real number. This expression
tells you precisely what parallel transport means: it tells
you how the electromagnetic phase changes if you move
in position space. And the covariant derivative in (II.6.10),
is the infinitesimal version of that. The first term with the
derivative generates a translation, while the second gener-
ates the phase transformation. This also connects with the
entries in the table on page 447, the exponent is a phase
factor corresponding to a group element of the group U(1)
which is just a circle. And Aµ is the connection one-form
which takes a value in the Lie algebra which is just the
phase itself. U(1) is one-dimensional group, and it is gen-
erated by a ‘one by one hermitian matrix’: in other words a
real number.

The other point is that this ties in perfectly with our ear-
lier observations in the previous section concerning the
Aharonov–Bohm phase factor, as a means of measuring
the magnetic flux up to multiples of the basic flux quantum
2⇡h̄/q . The remarkable aspect is that the path may en-
tirely lie in a region where the electric and magnetic fields
themselves are zero, yet the closed loop measures a non-
trivial and gauge invariant quantity. It measures a topolog-
ical aspect of the theory.

We finally recall the other application of the parallel trans-
port notion as a way to measure some Hamiltonian land-
scape by means of the so-called Berry phase, as we dis-
cussed in Chapter II.3. There, the notion of parallel trans-
port was used to detect ‘curvature’ or ‘field strength’ differ-
ences between a flat and curved surface.

Charge conservation. We have emphasized over and
again that one of the reasons why symmetry is important
is that it corresponds to conservation laws. In fact there is
a basic theorem by the German 19th century mathemati-
cian Emmy Noether that to any one parameter continuous
symmetry there is an associated conserved ‘charge.’ Lo-
cal symmetries include the corresponding global symme-
try and one therefore expects that the gauge symmetries
will also correspond to conserved quantities. For the elec-
tromagnetic gauge symmetry that is – not surprisingly –
the local conservation of electric charge.

A rather direct proof of this was already presented in the
subsection on gauge invariance on page 33 of Chapter
I.1. Recall that the interaction of the field with an exter-
nal current gives a contribution to the Lagrangian density
of Aµjµ . So if we make the gauge transformation we get
only one extra term which equals +ie(@u⇤/h̄)jµ in the La-
grangian density, because the current itself is assumed to
be gauge invariant. Invariance of the theory requires this
extra term after integration over space-time to vanish. This
in turn requires that the current has to satisfy @µjµ = 0

which amounts to the local conservation of charge. This
equation tells you that the change of the charge in that vol-
ume exactly equals the current going through the surface
bounding that volume. This is the relativistic form of what
we in general call a continuity equation which is a local
conservation law indeed.

Turning arguments around. A question that you might
have raised is whether we could have turned the argu-
ments around and have said: let us impose this invariance
under local transformations on the Dirac or Schrödinger
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equations, what do we have to do? The answer would
have been: you have to introduce a gauge potential Aµ

that transforms in such a way that it absorbs the trouble-
some extra term coming from the derivative. So introduc-
ing gauge fields is a necessary consequence of imposing
local gauge invariance.

It was through arguments along these lines that in 1954 the
physicists Chen Ning Yang and Robert L. Mills discovered
the structure of non-abelian gauge theories that form the
backbone of the acclaimed Standard Model.

Non-abelian gauge theories

In this section we go through the steps that brought Yang
and Mills to what must have been an incredible eureka mo-
ment: the discovery of non-abelian gauge theories.

Think of our familiar qubit as a column vector with two
complex entries, but now we make it into a complex two-
component spinor or doublet field, which we denote it by
 (x⌫) and we have the derivative @µ which can act on it.
Next we want to make a field theory for  that is locally
gauge invariant. The first thing is to ask what invariance
there is under constant or global transformations. Well, it
is not just a single phase but it can be any unitary frame
rotation U as we discussed for example in the Math Excur-
sion on page 635 of Part III. Such rotations correspond to
elements of the group SU(2) , and we learned that any el-
ement of the can be written as the exponent of an element
of the su(2) algebra which is a linear combination of the
Pauli matrices:

U(�) = eiC with C = �1X+ �2Y + �3Z ⌘ � · T .

By construction C is hermitian (C† = C) and U therefore
unitary (U† = U-1) . Now we want to repeat the exer-
cise we did for the phase factor with this matrix valued
‘phase’.

Gauge covariant derivative. First we observe that the
derivative has still no problem with the constant complex
rotation by which we mean that the three components of �
are constant. But what if the parameters become space-
time dependent, if we write � = �(x⌫) , and look what hap-
pens with at the two-component derivative if we transform
 (x⌫) ! U(x⌫) (x⌫)

(Dµ ) = (1@µ + iqAµ) !
(Dµ )

0 = (1@µ + iqA0
µ)U 

= U(1@µ +U-1@µU+ iqU-1A0
µU) 

= U (Dµ ) . (II.6.12)

In the first line we should now think of the covariant deriva-
tive as a matrix where the derivative is multiplied with the
unit matrix and A is some matrix with a structure we are
about to determine. The strength of the coupling between
the A and  fields is given by the charge q . In the inter-
mediate line we have inserted the trivial factor UU-1 = 1
in front, in order to obtain the expression in the desired
form, which appears in the bottom line. But that expression
only holds if the gauge field A has the interesting structure
which is more or less dictated by the derivative term:

U-1@µ U = U-1(@µ�) · T U .

Because the factors U, U-1 and T are matrices they do not
commute and one cannot just change the order in which
they appear in an expression.

Lie algebra valued gauge fields. Apparently this deriva-
tive brings down the Lie algebra element and takes the
derivative of that, and the result of this gets rotated by the
U factors around it. The upshot is that this non-abelian
gauge field has to be an element of that same Lie algebra
so:

Aµ = Aµ · T

and it has to transforms like:

Aµ ! A0
µ = UAµU

-1 +
i

q
(@µ U)U-1 .
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For the case at hand the conclusion is now clear, the gauge
field itself has to be an element of the Lie algebra in this
case su(2) , and has to transform like a connection. The
is algebra is three-dimensional as it has three indepen-
dent generators, and consequently there are three inde-
pendent gauge fields needed, which represent three dif-
ferent gauge particles.

Principle fiber bundles. The appropriate mathematical
setting of gauge theories is that of fiber bundles, as we
discussed already in the section on the ‘Physics of geom-
etry’ on page 78 of Chapter I.2. These bundles are defined
as a triple {E,M,⇡} corresponding to a bundle space E , a
base manifold M (which would be our space-time mani-
fold) and a gauge (or structure) group G . The dimension
of E equals the sum of the dimensions of M and G . And
the space E looks locally like a tensor product M⌦G , but
can be different globally, in which case we speak of a non-
trivial bundle. Given is a projection ⇡ from E onto M, and
the inverse of that projection at a point xµ 2 M gives you
the fiber above that point which is a copy of (isomorphic to)
G . Choosing a smooth section, meaning that you choose
a particular group element out of each fiber, produces an
explicit form of a gauge covariant derivative on M. Gauge
transformations are related to the changing of sections of
the bundle.

This setting allows you to naturally define topologically non-
trivial gauge field configurations that can be characterized
by topological invariants like the Chern classes. Deep re-
sults relevant for physics were obtained. For example, a
variety of the so-called index theorems, like the Atiyah–
Singer index theorem, that links the topological invariant of
the gauge field configuration to the net number of left- ver-
sus right-handed solutions of the zero-mass Dirac equa-
tion coupled to that (background) field. Interestingly the
Yang–Mills equations were not considered before they ap-
peared in the physics literature, and only afterwards be-
came a major mathematical topic in the 1970s.

Once more the Standard Model. We mentioned that the
number of gauge particles is equal to the dimension of the
Lie algebra, which is just the number of independent pa-
rameters or generators. But the argument does not de-
pend on the particulars and basically holds for any gauge
group, including the groups U(1), SU(2), and SU(3) that
appear in the Standard Model. The weak and electromag-
netic interactions have the gauge group SU(2) ⇥ U(1) ,
where the charged W± bosons correspond to the raising
and lowering operators T±, while the photon and the neu-
tral Z boson are linear combinations of the neutral W0 bo-
son and the Y boson associated with the U(1) factor of
the gauge group. The three W bosons correspond thus
with the three-dimensional (iso) spin 1 representation in
Figure II.6.2, while the fermionic quarks and lepton fields
form doublets corresponding to the (iso) spin-1/2 repre-
sentation.

Colors and Flavors. Quantum Chromodynamics (QCD),
the theory for the strong interactions, has gauge group
SU(3) , which has dimension eight. The eight gluons cor-
respond with the weights of the root diagram (including
two zero weights in the center) as shown in Figure II.6.6.
In this figure we have also marked the color (anti-)triplet
representations corresponding to the weights of the (anti-)
quark fields.5

At this point you may experience a deja vu moment, be-
cause Figure I.4.33 in Chapter I.4 flashed back in your
mind which indeed looks very similar to Figure II.6.6. Yes,
true, but it actually refers to a very different context. There
we were talking about the flavor symmetry, the classifica-
tion scheme discovered by Gell-man and Zweig. It is in-
deed also an SU(3) symmetry, and it also applies to the
quarks but on the other hand it is a very different type

5The gluon circles carry a quark and anti-quark color, and we have
given the anti-quarks the anti- or better complementary color in the
figure. In Figure I.4.36 the gluons are also bicolored but there both
the quark and antiquark have the same color but have arrows in the
opposite direction.
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of SU(3) symmetry. Firstly, it is not a gauged symmetry,
but instead an approximate global or rigid symmetry, so
there are no gauge particles associated with it. And as
the quarks of different flavors have different masses it is
indeed only an approximate symmetry, because the parti-
cle states are not really degenerate. Our knowledge at this
point suggests that this symmetry is accidental, and once
you accept that it is only approximate you may as well de-
clare that there is a SU(4) or even SU(6) flavor symmetry.
This would be the case if you in addition take the charm,
top and bottom quark flavors along. Anyway, the physics
related to these two SU(3) groups is entirely different: the
flavor symmetry is manifest in the spectrum of observed
particles, as the figure in Chapter 4 shows. The mesons
for example belong to an octet and these are free particles.
The color property of particles is hidden because of the
confinement phenomenon which only allows color neutral
or singlet states to be free particles. This made it so hard
to uncover the color symmetry in the first place.

Color singlets. The singlet property has to do with con-
structing colorless combinations of quarks (and gluons).
This requires that we look in the possible multi-quark spec-
trum for those combinations which have that property. Here
I recall the fact that multi-particle states are described by
so-called tensor products of single particle Hilbert spaces.
The single (anti-)quark color states form a color (anti-)triplet
representation denoted as 3 and 3̄ respectively. The tensor
products can be split up again in irreducible components
or representations. Like for example:

3⇥ 3̄ = 1+ 8

3⇥ 3 = 3̄+ 6

3⇥ 3⇥ 3 = 1+ 8+ 8+ 10 . (II.6.13)

The dimension of the tensor product space is the product
of the dimensions of the two factors. The weights of the
tensor product states are obtained by adding the weights
of the individual representations. This you may verify in

the SU(3) weight space of Figure II.6.6. What is clear from
equation (II.6.13) is that the simplest ways to make a color
singlet ‘1’ representation is by combining a quark and an
anti-quark, making a meson, or making a particular com-
bination of three quarks making a baryon.

Is Einstein gravity a gauge theory? So we have found
that the gauge symmetry principle underlies the particular
way the force carrying particles appear in nature. Does this
trick then also work for the gravitational force you may won-
der. Yes indeed, it does! One interesting way to interpret
the Einstein theory is actually to look at it as a gauged ver-
sion of the combined local Lorentz and translation groups,
usually referred to as the Poincaré group. So in this per-
spective the Einstein equations are an expression of a lo-
cal Poincaré symmetry.

Kaluza–Klein theory. You could also argue the opposite
way and say that the E and B fields, the field strengths
of electromagnetism, correspond to electromagnetic ‘cur-
vatures’ of some internal space that is defined in every
point in space-time. Yet another way to understand it is to
say that space-time has in fact extra spatial dimensions,
which have particular geometries corresponding to circles,
spheres or group manifolds for that matter. These compact
extra spaces are then squeezed to zero size, by a proce-
dure called ‘dimensional reduction’ or ’dimensional com-
pactification.’ This remarkable idea in fact goes back to
the early days of general relativity where Theodor Kaluza
and Oskar Klein proposed to unify electromagnetism and
gravity in a five-dimensional theory using this symmetry
principle.

The proper mathematical setting for the classical versions
of gauge theories is that of fiber bundles with some Lie
group G or representation thereof as fibers, as we intro-
duced them in the section on ’The physics of geometry’
on page 78 of Chapter I.2. These geometric structures at-
tracted the attention of the physicists only long after the not
so geometric Maxwell, Einstein and Yang–Mills equations
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were written down. In fact the formalisms were developed
to a large extent independently in physics and mathemat-
ics.

Non-abelian field strengths. You might complain that I
am choking my highly esteemed readers with math, but to
my defence I would argue that we have exposed some of
the core ideas of modern physics, in only a few pages , and
even without too much cheating! In fact the 1954 paper of
Yang and Mills is just a short article that appeared in the
Physical Review Letters (PRL) journal, and its influence is
inversely proportional to the length of the paper. There is
an ironic aspect to that paper, since the authors in fact pro-
posed that this non-abelian gauge theory should describe
the ‘pions’ as these particles were at that time believed to
mediate the strong nuclear interactions. This idea didn’t
work out at all, and so these beautiful equations went into
the ‘fridge,’ and it took about 15 years before they were
taken out again and found their true vocation in the Stan-
dard Model as we have described it.6 It is one of those rare
occasions where the elegance and beauty of an idea make
it irresistible and fortunately also inescapable, so one just
had to wait for it to find its proper place.

You might object by noting that the Kaluza–Klein idea of
dimensional compactification apparently has not properly
landed, in spite of being attractive and elegant as it ‘pro-
duces’ gauge fields with the correct interactions. The K–
K approach returned as a necessary ingredient of string
theory, but nevertheless has not yet found its true voca-
tion, and I am afraid it has to spend some more time in
the ‘fridge.’ Science is patient and even if an idea clearly
‘does not work,’ it is extremely hard to put stickers stating
’Consume before date indicated on the bottom’ on ideas.

6A hallmark of great institutions is not only that they attract extremely
gifted people, but also that they are the guardians of research fields,
keeping alive a collective memory of failed attempts and almost forgot-
ten, unsolved problems; of all that ended up in the ‘fridge of ideas’ so
to speak.

Figure II.6.6: SU(3) roots and weights. In this figure we rep-
resented the root diagram of SU(3). with the 6 non-zero roots
given by the green arrows. The gluons form the 8 representation
corresponding to the six non-zero roots and the two in the cen-
ter, marked by the bi-colored circles. Then there are the triplet
(3) and the anti-triplet (3̄) representations corresponding to the
three colored (anti-)quarks.

.

The Yang-Mills equations

So are we done? No, not quite, we have to check one other
thing: what will happen to the analogue of the Maxwell
equations for the gauge fields? And what happens to the
electric and magnetic fields, so nicely encoded in the field
strength Fµ⌫ , if we go non-abelian? Two remarks are to
be made, (i) as F is linear in the gauge field it also will live
in the Lie algebra and should therefore simply transform
as F ! F0 = UFU-1 and (ii) this is only achieved if the
definition of F for the non-abelian theories is generalized in
a logical and elegant way to:

Fµ⌫ = @µA⌫ - @⌫Aµ + iq[Aµ,A⌫] ; (II.6.14)

logical and elegant because the commutator is antisym-
metric in the indices and also keeps you in the Lie alge-
bra. An equivalent, more covariantly looking definition is to
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say that Fµ⌫ = - i
q [Dµ,D⌫] . The extra commutator term in

the field strength has huge physical consequences it turns
out.

Clearly the definition of the non-abelian electric and mag-
netic fields are nonlinear in the potentials, and this means
that the Yang–Mills equations, which are the generaliza-
tions of the Maxwell equations to the non-abelian case,
are nonlinear as well. The Yang–Mills equations really are
the dynamical expression of non-abelian gauge symmetry.
These equations take the following form:

DµFµ⌫ = @
µFµ⌫ + ig[Aµ, Fµ⌫] = 0 .

They are strongly nonlinear indeed, in the first place be-
cause the definition of the field strength is non-linear in A ,

and secondly because of the presence of the commutator
term of A with F in the equation itself.

Symmetry dictates the structure of interactions. The
non-linearities mean that the theory is self-interacting right
from the start. Whereas photons don’t see each other,
gluons do, as we already showed in Figures I.4.36 and
I.4.37. We have reproduced the latter here to take a closer
look at how it connects to the more detailed description of
non-abelian gauge theories we have given.

The local Lagrangian density is a Lorentz invariant expres-
sion for non-abelian gauge fields (gluons) coupled to Dirac
fermions (quarks) and looks deceivingly simple:

L(xµ) = -
1

4
Fµ⌫F

µ⌫ + i ̄D/ , (II.6.15)

with D/ = �µDµ the Lorentz invariant Dirac operator as it
works on a four-component Dirac field  (xµ). In Figure
II.6.7 we see two interaction vertices: on the left we see a
self-interaction of the gauge field corresponding to the third
order term in A from the F2 term in the Lagrangian and
on the right we see the gauge field interact with the Dirac
field corresponding to the cubic interaction term from the
covariant Dirac operator in the Lagrangian. There is a lot

Figure II.6.7: Color-flow diagram in QCD. A nice way to visu-
alize the interactions in QCD. Quarks carry a single color line,
while gluons carry two (different) lines. In the vertices the color
charge is conserved, so, the colors and arrows have to match.
The upper index goes into the vertex, the lower index goes out.

of index gymnastics hidden in the notation however. This
becomes evident if we for example write out the latter term
in glorious detail. It looks quite horrendous:

i
q

h̄c
 ̄(x⌫)

i
a�

µ
i jA(x⌫)

�
µT

a b
�  (x⌫)

j
b . (II.6.16)

There are a few remarks to make with respect to this intri-
cate expression:

(i) the interaction is local as all fields depend on the same
space-time point x⌫ ;

(ii) all fields carry a space-time index that tells you how they
transform under Lorentz transformations, and a gauge in-
dex that tells you how it transforms under gauge transfor-
mations;

(iii) the Dirac fields carry two indices, a space-time spinor
index i with i, j = 1, . . . , 4 , and a ‘color’ index a with
a, b = 1, . . . , n with n the dimension of the color repre-
sentation (n=3 for QCD);
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(iv) the four gamma matrices carry a space-time (vector)
index µ and each of them is a matrix in spinor space and
has therefore two spinor indices i, j ;

(v) the gauge field has a space-time index µ and a gauge
group index �with � = 1, . . . , dimA (dim A = 8 for QCD);

(vi) the representation matrices or generators T carry a
gauge group label � and each of them is a matrix in the
representation space, thus with two indices a, b ;

(vii) all indices are pairwise contracted, and thus have to
be summed over. This amounts to making invariant in-
ner products in the spaces the indices refer to. In a sense
the expression is therefore extremely simple because once
you know what the symbols stand for, there is a strict logic
which tells you where to put the various indices. It is dic-
tated by the requirement of invariance of the interaction
under independent changes of basis in either space-time,
or spinor space, or in the Lie algebra or group representa-
tion spaces;

(viii) It is these delicate balancing act of indices that is for
example reflected in the way the ‘color ’lines in the dia-
gram of Figure II.6.7 are strictly continuous through the
vertices.

Some people might say that it is ugly to exhibit all these in-
dices, while others say that that is exactly what makes the
very beauty of the construction manifest. The ultra com-
pact notation of equation (II.6.15) demonstrates how effec-
tive the symbolic notation is that the physicists have devel-
oped over the years. The expression (II.6.16) in contrast
shows very explicitly how a particle in fact lives in many
spaces simultaneously, all with their own indices and met-
rics. All of us agree that to do real calculations you have
to go all the way down into this index jungle, it is a must,
a conditio sine qua non! And once you realize in addition
that this is only the lowest order interaction diagram you
can imagine that it takes a fully dedicated PhD researcher
to complete a single higher order calculation of some phys-
ically relevant process that is measured in an accelerator.

Such calculations involve hundreds or even thousands of
diagrams to be added to get the full probability amplitude
for the process. The actual execution of such calculations
involves nowadays high-level AI in large scale computing
efforts and it is thanks to the rigorous underlying symme-
try structures that these calculations can be automated to
such a large extent.

Self-interactions and the confinement problem. Free
fields are sometimes not as free as one would think. And
this in turn makes perturbative approximations dangerous,
which basically means that you start with setting the cou-
pling strength q to zero, and then take only low orders of q
into account. The problem is that if a field is self-interacting
the theory becomes nonlinear and may end up in a phase
which is entirely different from what you naively would ex-
pect. The relevant or observable degrees of freedom can
be very different from the degrees of freedom you started
out with. For example the enigmatic problem of quark con-
finement can be traced back to the self-interacting nature
of the gluons. Free quarks have never been observed, be-
cause they are doomed. They have to spend their whole
life as a pair, or a ménage a trois but always confined within
a hadron.

Understanding and proving these quantum confinement
properties of Yang–Mills theories from first principles is still
an open question and is one of the Millennium problems
in mathematics. It is a problem that attracts the minds of
brilliant mathematicians and theorists because it is a very
well-defined problem. The starting point is a familiar object
called a non-abelian gauge theory, or a principal fiber bun-
dle with a compact structure group. The quantum problem
to be solved is: prove the conjectured confinement prop-
erty of the ‘color-electric’ fields. That this property holds
has been demonstrated by numerous computer simula-
tions of the theory, where the theory is formulated on a
discrete space-time lattice but that amounts basically to a
study of the strong coupling (large q) limit of the theory.
This is basically a perturbative approach in 1/q. And in
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that limit the theory does confine, but to settle the ques-
tion one has to prove that there is not a phase transition
between the strong and weak coupling regime.

From experience – think for example of Fermat’s last con-
jecture – we know that such conjectures can linger around
for centuries before they finally get turned into a theorem.
A humble observation is that making the conjecture al-
ready can make you famous. So the least we can say is
that we are exploring deep waters!

The conclusion is that the principle of local gauge invari-
ance provided a valuable clue to the construction and un-
derstanding of the fundamental equations underlying the
Standard Model. ⌅ ⌅

The symmetry breaking paradigm

Having argued that symmetry principles play an important
role in modern-day physics, the same can be said about
the concept of symmetry breaking which has found many
beautiful and surprising applications in basic high-energy
physics as well as in many branches of condensed mat-
ter and molecular physics. Where symmetry unifies states
and makes them degenerate, it is the breaking of symme-
tries which creates non-uniformity and diversity. We are
going to explore some typical cases which illustrate the
power of this quantessential idea.

Symmetry breaking in objects. It is paradoxical that
I first let you suffer by talking so extensively about how
beautiful symmetries are, and then immediately after con-
front you with how to break them. It is like a small child
building a beautiful tower from woodblocks and then de-
stroying it while screaming and dancing around it. Appar-
ently there is some thrill in the act of destruction! Let us
look for similar thrills, and first go back to the ‘symmetries
of objects’, like an equilateral triangle, a circle or a sphere,

Figure II.6.8: The breaking of symmetries. Breaking symmetry
by deformation of an object. The D3 symmetry of the equilat-
eral triangle (with six elements) gets broken to a Z2 of isosceles
triangle (with two elements), which subsequently gets broken to
the trivial group for an arbitrary triangle.

and then it is not hard to imagine how to break the sym-
metry.

For example you could squeeze the object one way or an-
other as to reduce its symmetry. You could do it step wise
like in Figure II.6.8, where you first go from an equilateral
to an isosceles triangle, and then to a generic one. In that
case you first pass from the discrete group D3 with six ele-
ments (3 rotations and 3 reflections) to the group Z2 of two
elements (the identity element and a reflection), and in the
second step you end up with no symmetry at all: you are
left with only the identity element. Breaking has the prop-
erty that the residual symmetry group after breaking is just
a subgroup of the original symmetry group.

If you squeeze a ball top down, you typically get an ellip-
soid, where the symmetry is reduced to rotations around
the vertical axis only, and a reflection symmetry through
the horizontal plane and vertical planes through the center.
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If you then make it into a standing egg shape, you lose the
reflection property in the horizontal plane but still keep the
vertical symmetry axis, and so on. By the way this makes
you wonder why eggs have the shape they have. Why not
celebrate the perfection of life in perfect spheres? One
reason that has been given is that egg-shaped objects do
not roll away, if you put them on the table and push them
away they tend to ‘boomerang’ in a little circle. ‘They like to
stay near their starting point!’ I hear my mother say. And
maybe the biology of how to lay an egg – to push it out
by contraction – plays a role as well in the optimal egg de-
sign. What came first, the egg or the design? This is not
even a ‘chicken or egg’ question, instead, this is an ‘egg or
egg’ question. Anyway, more a topic in evolutionary biol-
ogy than in quantum physics I fear, so it is better to leave
it to the cloaca experts. The shapes created by symmetry
breaking are more and more diverse and need more and
more parameters to specify. In that sense their information
content and therefore entropy increases. And many will
say that with that their beauty increases as well.

Symmetry breaking by solutions of equations. The
next step up is to talk about the symmetry of equations,
and the first question that comes to mind is what do the
solutions of equations with symmetries look like? Do they
indeed manifestly exhibit the symmetries of the equations?
The answer is clearly: No! Think of our nice Newtonian
example again. The great step forward was exactly to dis-
cover and understand that the planetary orbits are not cir-
cles or even epicycles, but conic sections, ellipses, parabo-
las and hyperbolas. So, where did the spherical sym-
metry of the gravitational field around the sun go, which
is so clearly present in the equations? Why and where
does the immaculate perfection of the heavenly spheres
get lost?

A little thinking yields the answer: the symmetry is still
there. But the symmetry transformations act on the space
of solutions. What they do is that given a particular so-
lution, and acting with a symmetry operator on it, it will in

Figure II.6.9: Action of rotational symmetry on an elliptic orbit
solution. The Newtonian Earth–Sun system has spherical sym-
metry but that symmetry is not manifest in a particular solution,
like for example an elliptic orbit. The symmetry transforms dif-
ferent equal energy solutions into each other.

general generate a different solution. The symmetries map
solutions onto each other, and as they keep the equations
fixed, they transform solutions with equal energy into each
other. With the rotations that is quite obvious, as we have
illustrated with the elliptic orbits of the spherically symmet-
ric Newtonian sun-earth system in Figure II.6.9. It turns
out that the Runge–Lenz symmetry changes the eccen-
tricity of the elliptic orbit and that is not so obvious. It is in
this sense that you may say that most particular solutions
break the symmetry of the equation, and the symmetry
acts in the space of solutions. It creates a subspace of de-
generate solutions in the space of all solutions. That space
gets ‘stratified’ according to its energy values and solution
shapes.

This brings us in fact close to the observations we have
made with respect to the role symmetries play in quan-
tum theory, labeling the degenerate states but also mov-
ing (stepping) between them. They walk you through the
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degenerate subspace of the total sample space of your fa-
vorite framework.

Symmetry breaking in the atom. Symmetry breaking is
an important concept. What does symmetry breaking look
like in a quantum setting? Imagine that we have a symme-
try, then we could make that symmetry visible by ‘breaking
it’. In other words by adding a term to the Hamiltonian
that explicitly breaks the symmetry. For example we put
an atom in a magnetic field say along the z-direction, then
there will be an extra term in the Hamiltonian proportional
to Lz and the magnitude B of the magnetic field. Now the
three-dimensional rotational symmetry is broken to rota-
tions around the z-axis only. The consequence is that the
energy levels which were at first degenerate and there-
fore hard to distinguish will now split up proportional to the
value of their magnetic quantum number m. This is the
famous splitting first observed by Pieter Zeeman we dis-
cussed in Chapter I.4. This is an example of explicit sym-
metry breaking where we change the Hamiltonian. But
also in quantum theory we can have the phenomenon of
spontaneous symmetry breaking which refers to a situa-
tion where we change external parameters of the system
– say the temperature or a coupling – such that the Hamil-
tonian itself does not change and still has all the symme-
tries, but it is the ground state that changes to one in which
the symmetry is broken.

Low energy modes. This brings us to a follow-up ques-
tion: what happens if the ground state is not invariant and
does not respect all the symmetries? In other words, what
if the ground state breaks the symmetry? Well, by what we
argued above, it will then necessarily be the case that that
ground state is not unique and itself degenerate. If that
ground state breaks a continuous symmetry, we will have
a continuous set of equivalent ground states. And what
that means is intuitively quite clear: the system can easily
move from one ground state to one nearby and it would
cost basically no energy.

Figure II.6.10: Long-range orientational order. The collective
of wheat plants is in a state that exhibits a long-range order. By
growing out of spherical seeds, the original rotational symmetry
is broken.

Saying it yet differently, the generators of the symmetries
that are broken create ‘zero (energy) modes’ of the sys-
tem. This is an important physical signature of broken
symmetry: the appearance of low energy modes in the
system that are easy to excite. And if we talk about (rel-
ativistic) field theory where the energy includes also the
mass, our observation asserts that there will be massless
particles around. Such particles are called Goldstone par-
ticles or modes, after the MIT physicist Jeffrey Goldstone
who discovered the mechanism. Ideally these modes are
exactly massless, but there can be additional effects that
give those particles a mass. However, that mass should
be small compared with the scale of the interaction energy
that caused the breaking.

Think of wheat seeds, if we assume them to be spheri-
cal, spreading them on a field gives a ‘ground’ or better
‘down to earth’ state that is rotationally invariant, which
means to say that we can rotate each of the seeds by
the same amount and nothing will change. Now we wait
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Figure II.6.11: Wheat waves as low energy excitations. The
wheat field at rest shows that long-range order typical for a bro-
ken symmetry. It has low energy excitations. These are the
‘wheat waves’ that propagate easily and can already be excited
by a gentle breeze.

a month or more, and the seeds turn into plants nicely
growing up, all beautifully lined up vertically, so the ground
state has changed to a ’field’ in a completely ordered state
that certainly is a state of broken symmetry. There is a
spontaneous, average length which is non-zero, and fur-
thermore a long-range vertical orientational order in the
system which breaks the original spherical symmetry (see
Figure II.6.10).

Now where is the zero mode? Those modes correspond
to what you get if a light breeze goes over the field and
you see gentle plane waves traverse the wheat plants (see
Figure II.6.11). It is a low energy collective mode that orig-
inates in the broken symmetry of the ground state. Amus-
ing and playful for sure, but we better take it seriously be-
cause there are many examples of this so-called Gold-
stone mechanism, from spin waves or magnons in mag-
nets, to the appearance of three nuclear particles known
as pions, ⇡± and ⇡0 we have mentioned in Chapter I.4.

Figure II.6.12: Breaking of global symmetry. The breaking of a
U(1) global symmetry leading to a ‘Mexican hat’ potential. The
minimum is not unique but there is a continuum of ground states
forming a circle. The breaking leads to one massless and one
massive mode as indicated in the figure.

Chiral symmetry breaking. A famous application of the
symmetry breaking concept is provided by the three pion
particles (⇡±and⇡0). The interpretation is that they are the
Goldstone particles associated with what is called chiral
symmetry breaking. It refers to an ingenious scenario pro-
posed by Japanese/American physicist Yoichiro Nambu,
who indeed received the Physics Nobel prize in 2008, for
– I quote – ‘the discovery of the mechanism of sponta-
neous broken symmetry in subatomic physics.’ The sce-
nario starts with massless up (u) and down (d) quarks.
These are described by massless Dirac equations, but the
massless Dirac equation can be split into two non-inter-
acting pieces, the right (R) and left (L) polarized compo-
nents. Said differently, it is precisely the mass term in the
equations that couples the left to the right polarized com-
ponents. If you look at the tables of the standard model in
Figure I.4.35, you see that there is the horizontal so-called
isospin symmetry between u and d quarks. This means
that the massless equations have an SU(2)L symmetry
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transforming uL and dL into each other (so they form an
isospin one-half representation), and an SU(2)R symme-
try transforming the right-handed components uR and dR

into each other. So at this stage the model has a six--
dimensional G = SU(2)L ⌦ SU(2)R symmetry. This is
called the chiral symmetry group, which is a global sym-
metry. Nambu suggested that a quark anti-quark conden-
sate forms spontaneously, so that the particular diagonal
combination of fields u and d becomes the order parame-
ter and acquires a vacuum expectation value:

h�i = h(ūL uR + d̄L dR)i = f⇡ 6= 0

Now this condensate breaks the symmetry G , but not com-
pletely. What is left you can see from the condensate,
namely, if we simultaneously transform left and right then
the condensate is invariant. This in turn tells us that from
the six generators a particular ‘vector like’, ‘left plus right’
SU(2) subgroup survives, while the rest, the three ‘left mi-
nus right’ generators, will be broken. These give rise to
three Goldstone particles with exactly the quantum num-
bers that correspond to the three pion particles. The fact
that these particles in the end do have a relatively small
mass is accounted for by the fact that the masses of the
quarks were not quite zero to start off with.

The breaking systematics. In the chapters on condensed
matter physics we will return to this topic of symmetry break-
ing in the context of many body physics. The general
picture boils down to a situation where the theory has a
continuous symmetry group G of dimension dim G , and
some field gets a non-zero ground state expectation value.
That particular vacuum state is only invariant under a resid-
ual symmetry group K ⇢ G which is a subgroup of G .

Then there will be dim G - dim K broken symmetries
and therefore the same number of Goldstone modes. The
field that acquires the non-zero expectation value in the
ground state and breaks the symmetry is called an order
parameter field. The nomenclature is that the broken state
is the state in which everything is neatly lined up some way
and therefore exhibits ‘order’, where order is defined as the

presence of long-range correlations in the medium.

Ferromagnetism. As an example, think of a metal where
all the nuclear magnetic spins in the absence of an exter-
nal field are pointing in random directions in the medium,
and therefore there is no over-all magnetization, and no
macroscopic direction of the magnetic field is discernible.
If one then lowers the temperature below what is called
the Curie temperature, the thermal energy gets so small
that the weak interaction between the tiny magnets starts
to become dominant and the spins minimize their energy
by lining up and thereby ‘spontaneously’ make a magnet.
So, by cooling down a metal spontaneous magnetization
occurs and conversely, by heating up a magnet to high
temperature it will lose its magnetization and the symme-
try will be restored. Spontaneous magnetization serves
as the prototype of spontaneous symmetry breaking in a
many-body system. And indeed, the low energy modes
are just the spin waves which are easy to excite in a mag-
netized medium.

Topological defects. In Volume III of the book we will ad-
dress another crucial aspect of symmetry breaking, which
is the appearance of what are called topological defects.
Defects are collective excitations which are usually ‘heavy’
and not so simple to excite, but once they exist they are
equally hard to get rid of. A dramatic instance you are all
familiar with from watching the news is the phenomenon
of tornadoes or vortices in liquids. In that case there is
a ground state that is symmetric if there is no wind, but
when a wind starts blowing there is at once everywhere at
any given point in space, we have a local vector pointing
in the direction of the wind. On the surface of the earth,
we can think of the non-zero two-dimensional vector field
representing the wind as an order parameter. As a con-
sequence of some ‘massive’ obstacles it may happen that
somewhere a pair of vortices with opposite vorticities is
created, and once these get well separated, they are highly
stable objects. As a matter of fact, you cannot destroy sin-
gle vortices by locally disturbing them, you have to wait
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till their energy gets dissipated, for example by causing a
lot of damage. There are many examples of remarkably
stable collective excitations in all kinds of fields of science
and technology that can be thought of as topological de-
fects that originate in a state of broken symmetry.

Hidden gauge symmetries: the Higgs particle. So far,
we have only looked at rigid or global symmetries: we con-
sidered transformations that were the same at any point in
space and we found the remarkable directly observable
phenomena of low energy Goldstone modes and high-en-
ergy defects as hallmarks of their breaking. The next ques-
tion that naturally arises in field theory is what happens if
we somehow ‘break’ a local gauge symmetry? You may
think of the U(1) gauge symmetry of electrodynamics, or
the SU(2) gauge symmetry of the weak interactions. Again,
this may happen spontaneously, meaning to say that the
system of equations still has the full symmetry, but that the
solution, in particular the ground state, does not. The first
question to answer is whether this can be done at all. Is
it possible to maintain the local gauge symmetry and yet
have a ground state in which some field acquires a non-
zero expectation value? The answer turns out to be ‘ap-
proximately yes.’ A first example was exhibited by Landau
and Ginsberg in their effective description of superconduc-
tivity. Later it was understood and explained in full detail
in the modern theories of Bardeen, Cooper and Schrieffer,
and later Anderson, about which we have more to say in
Chapter III.3.

The Brout–Englert–Higgs (BEH) mechanism

A beautiful example of the spontaneous breaking of a non-
abelian gauge symmetry is the Brout–Englert–Higgs mech-
anism, accounting for the heavy mass of the weak force
mediating W± and Z0 particles in the weak and electro-
magnetic interactions, and more indirectly for the existence
of the Higgs particle. Let me illustrate how that comes

about in a simpler model due to Sheldon Glashow, without
going into much detail.

Breaking in an SU(2) model. Let us consider an SU(2)
(or SO(3)) gauge theory coupled to a ‘matter’ field that
transforms like a triplet or iso-vector under the gauge group.
This means that we should think of the gauge field as
Aa

µTa , where the Ta are now the three 3 ⇥ 3 matrices
generating the SO(3) symmetry. It has three gauge par-
ticles (like the W-bosons we discussed before) because
the group is three-dimensional. The ‘matter’ field �(x) , is
a triplet of space-time scalar fields, that transform like a
3-dimensional ‘iso-vector’ under the SO(3) gauge group.
In the quantum context the field �(x) would therefore de-
scribe three types of scalar particles. Let us now assume
that this field �(x), or rather its square which is gauge
invariant, develops a constant vacuum expectation value
h|�|2i 6= 0 . So a condensate forms. The situation is simi-
lar to the magnets we just discussed, but now we think of
it happening in some internal space where the force field
is active, and where the � field describes an iso-vector
degree of freedom at every point in space.

As long as the vacuum expectation value vanishes the
symmetry is not broken, but if the iso-vector is non-zero,
and chooses some fixed direction it is like a wheat field
and the non-zero vector field is only invariant under rota-
tions around the axis in the direction in which the nonzero
iso-vector points, corresponding to an SO(2) subgroup of
dimension one. So, we expect there to be two massless
Goldstone particles, like in the case we discussed before.
But now in addition we have the gauge fields that are cou-
pled to this iso-vector through a covariant derivative. The
question is then what the effect of the vacuum expectation
for the scalar field has on the gauge fields. The resulting
mechanism is powerful and quite universal.

To see what happens we write for the iso-vector (and think
of it as a three-component column-vector) in the ‘broken’
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phase:
�(x) = �0 ê3 + ��(x) ,

where �0 is the constant non-zero vacuum expectation
value pointing in the third direction of iso-space and the
delta describes the field fluctuations around that ground
state value. Now the interactions are generated by the co-
variant derivative:

Dµ� = (1@µ + iqAa
µ Ta) � ,

where the Ta are the three generators of rotations in iso-
space. At this point the crucial observation is that there
are two components of the gauge field that ‘see’ or sense
the vacuum value, while the third component does not be-
cause it linked to the generator of the residual symmetry
which leaves the condensate unchanged. The Lagrangian
density L of this theory contains a term proportional to
(Dµ�)2. Of interest here is only what the effect is of the
constant �0 in the Hamiltonian. When you work out the
interaction between the gauge field and the vacuum term
you discover that it leads to a quadratic term proportional
to |�0|

2 of the form:

�L = |�0|
2((A1)2 + (A2)2) ;

and this is exactly what a mass term for the two compo-
nents of the gauge field would look like. Apparently we
have generated a mass for two of the three force carrying
particles, a mass proportional to the non-zero expectation
value �0. So, we end up with one massless force com-
ponent (A3), which is long-range like the photon, and two
massive force particles A1 and A2 . The latter two can be
recombined in the components A± which are charged with
respect to the massless A3 field. Because of their mass
these fields mediate a short-range interaction described
by a Yukawa potential as we explained in Chapter I.4. They
would be the lookalikes of the W± particles. What we just
described amounts to a simplified analogue of the Brout–
Englert–Higgs mechanism in the Standard Model, which
indeed explains the masses of the W and Z bosons me-
diating the weak interactions, and the photon remaining
massless.

Searching for the Higgs. The remaining question is where
does the celebrated Higgs particle reside in this scenario?
I have not yet mentioned it. To understand its origin, we
have to do some counting of the degrees of freedom of the
particles before and after the condensate forms.

Let us start with a massless force mediator like the pho-
ton. In Chapter I.1 we showed that the photon field Aµ has
two transversal polarization states orthogonal to its propa-
gation direction. It is important to know that this transver-
sality has everything to do with the fact that the photon is
massless and, as we have argued before, it is the gauge
invariance that effectively removes one degree of freedom
from the three-component ‘vector’ potential. It is indeed
the gauge invariance that – so to speak – protects the
masslessness of a gauge particle like the photon. To get
massive it would need the extra (longitudinal) component
which is just not there, basta!

To continue our counting exercise, each component of the
iso-vector field �i represents one field degree of freedom.
independent of whether it is massive or massless. Sup-
pose we take it to be a massive field, then after break-
ing, we create two massless Goldstone degrees of free-
dom while the third iso-component remains massive. Now
comes the magic of the Higgs mechanism: the massless
modes of the� field get ‘eaten’ by the corresponding gauge
particles, who become stante-pede massive after this ex-
quisite meal. Because a massive vector field needs three
polarization states, it has two transversal components like
the photon, but also a longitudinal component, which the
massless photon does not have. So, the upshot of the
exercise is crystal clear: if we ‘break’ a gauge symme-
try then the forces in the unbroken group stay unchanged
but the force mediating particles that correspond to the
broken generators, become massive and therefore short-
range. And they become massive by absorbing the would-
be Goldstone modes, which consequently disappear from
the spectrum. There are no massless Goldstone particles
but instead we have two massive vector bosons!
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And now, to finally answer the question that got us into all
this counting in the first place, where is that Higgs particle?
The answer can only be that that particle corresponds ex-
actly to the single leftover massive degree of freedom, the
third component of that iso-vector � we started off with.
So it is not the massless Goldstone degree of freedom
that signals the breaking in this gauge symmetry setting,
but the smoking gun is a neutral (it does not couple to sur-
viving photon-like particle) massive scalar particle. What
we learn is that the Higgs particle is not the condensate
which gives the force carriers mass, but rather the quan-
tized wave that rides on top of that condensate! It is a bit
like having a transition from vapor to liquid water, which
after the transition allows for waves propagate on the wa-
ter surface. The degrees of freedom that acquire mass are
the ones that have to wade through the water which makes
them feel heavy indeed. The Higgs particle is the neces-
sary a witness without alibi of this beautiful but intricate
mechanism. The discovery of this unique feature that vin-
dicates the BEH mechanism, a backbone of the Standard
Model, by the ATLAS and CMS collaborations at CERN in
2012 was therefore a landmark discovery.

The mixing of weak and electromagnetic interactions.
In the example above we have looked at the breaking of an
SO(3) symmetry by a non-zero vacuum expectation value
of an iso-vector or triplet field � , giving rise to masses for
two of the three gauge fields. This is not quite the way
the symmetry breaking works in the Standard Model. In
the sector of the weak and electromagnetic interactions
we have a gauge group SU(2) ⇥ U(1) involving the three
gauge fields W± and W0 for the SU(2) , and a gauge field
Y for the U(1) factor. This group is broken to a residual
U(1)� , corresponding to the massless photon. This can
be achieved by a non-vanishing expectation value for a
scalar field that transforms like a doublet under the SU(2)
and is also charged with respect to the U(1)Y field. The
net effect is that one is left with three massive gauge par-
ticles: the W± and the neutral Z0 boson, which is a linear
combination of the W3 and Y fields. The other, orthogonal

linear combination of those two neutral fields corresponds
to the photon. This intricate mixing of symmetries shows
reminds us of the fact that nature not always celebrates
ultimate simplicity.

A symmetry not broken, but hidden. The above account
of the BEH mechanism can be criticized on valid grounds.
It may even be called misleading. I used this narrative for
pedagogical reasons, because it borrows some of the vo-
cabulary of the global symmetry breaking scenario. But a
deeper fact is that the vacuum expectation value as I dis-
cussed it is gauge dependent. Because of the local gauge
invariance, I can locally transform that vacuum vector in
any direction I want, so the analogy with the phenomena
of magnetization where that direction is directly observable
and fixed is wrong. The good way to talk about the BEH
mechanism is to say the invariant square of the covari-
ant derivative acquires a vacuum expectation value, which
directly translates into the mass terms for the vector par-
ticles. In other words there is a way of talking about this
so-called breaking in a gauge invariant way. But then we
have arrived at a contradictio in terminis, because if the
mechanism can be cast in gauge invariant terms, then the
gauge symmetry cannot be broken! Indeed! This is the
reason that we rather speak of a hidden symmetry, the
gauge invariance is still present, but is no longer manifest
in the physics (the mass degeneracy), it is hidden. It is
better to say that the gauge symmetry is not broken at all
but realized in a different way in this physical model. This
point of view is strongly supported by the technical fact that
there is not necessarily a real phase transition between the
hidden and manifest symmetric (confining) phase of the
system.

Other forms of symmetry. We have in passing already
referred to other symmetry types then the ones we have
been considering here.

An important extension of space-time symmetries to so-
called supersymmetries was a remarkable achievement.
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The related super-algebras are not of the Lie algebra type,
because they also involve fermionic generators that obey
anti-commutators. If these extended symmetries are made
local by gauging them, you need to introduce a spin-3/2
gravitino as the super partner of the graviton. As the names
suggest these symmetries play a vital role in super string
theory and super gravity theories and we commented on
them at the end of Chapter I.4. The experimental program
at the Large Hadron Collider at CERN has been search-
ing for the lightest super particle that should exist in any
supersymmetric theory with broken supersymmetry. And
as we have not run into any superpartner of any particle in
the Standard Model we have to assume that supersymme-
try should be broken already at a high energy well above
1TeV.

Later, a remarkable class of algebra’s were discovered,
these are called infinite dimensional Lie algebras that are
also known as Kac–Moody algebras. They have found in-
teresting applications in two-dimensional physics both in
string and condensed matter theory. It is a very high level
of symmetry. After what we have said before one expects
in this case there to be an infinite number of conserva-
tion laws, which almost tantamount to saying that models
in which they feature, in spite of being very nonlinear are
basically exactly solvable.

Finally, there is a class of symmetries related to what we
called topological phases in matter, which are called Hopf
algebras or quantum groups. The remarkable aspect of
their application in two-dimensional physics is that their
representations describe both the ordinary excitations, and
the topological defects and their dyonic mixtures called
anyons. These correspond to the exotic particles we briefly
described towards the end of the previous chapter.

A detailed discussion of the symmetries we just mentioned
is beyond the scope of this book, but we mention them to
emphasize the richness of the symmetry concept in math-
ematical physics.

Symmetry concepts and terminology

We have explored many aspects of the notion of symme-
try in this chapter. First we searched for the observables
Qi that commute with the Hamiltonian. These correspond
with conserved quantities and form some Lie-algebra in-
cluding the Hamiltonian H , which is then called the sym-
metry algebra Q. The states of the system at some fixed
value of the energy will form a degenerate set that cor-
responds to certain representations of the symmetry alge-
bra. The degenerate states can be labeled by the eigenval-
ues of some mutually commuting subset of the symmetry
generators, forming a so-called Cartan subalgebra H of
the symmetry algebra. The choice of Cartan subalgebra
corresponds to choosing a framework F . The other sym-
metry operators that are not in the Cartan subalgebra can
be combined into raising and lowering operators that walk
you through the sample space of the chosen framework. In
the following table we have summarized the corresponden-
ce between the physical and mathematical concepts un-
derlying the notion of symmetry.
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Math: Group theory � Continuous symmetries ⇢ Physics: Quantum theory
...

... Hilbert space of states
Algebra of observables

Lie algebra A Observables {Ai} = {A,B, . . .} , i = 1 . . . , d

Hermitian A† = A

dim A = d Commutator algebra [A,B] = iC

Infinitesimal transformations �A| i = iA | i
Invariant polynomials (Casimirs) {Ck} (k = 1, . . . , rank A) [Ck,A] = 0

Cartan subalgebra H H ⇢ A , Framework F {Hi} i = 1, . . . , r $ H
Mutually commuting (= Abelian) [Hi,Hj] = 0

dim H = rank A = r Labels basis states of representation N | iN =
P

m cm|{�m}iN
Weight vectors {�m} H |{�m}iN = �m |{�m}iN , m = 1, . . . ,N

Cartan-Weil basis: Raising and lowering operators E±↵k
k = 1, . . . , (d- r)/2

A = {Hi, E±↵k
}

Root system {±↵k} of A in Rd [H, E±↵k
] = ±↵kE±↵k

[E±↵k
, E±↵k

] = ±↵k · H

Symmetry algebra Q Subalgebra Q ⇢ A {Qi}

All Qi commute with Hamiltonian H0 [Qi,H0] = 0

dim H  dim Q  dimA Qi ⇠ conserved quantities
dQi

dt
= 0

Qi ⇠ generate symmetry transformations
Time independent labeling of states if H0 2 H ) H ⇢ Q ) {�i} ⇢ {qi}

Lie group G Unitary reps U† = U-1

Transformation group | i ! | i 0 = U| i
dim G = dim A on Hilbert space H0 A ! A 0 = UAU†

Finite transformations: G ' eiA g = ei
P
�iAi

Group space coordinates {�i}
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Hierarchies: The Emergence of Diversity

In this volume we describe the structural hierarchy underlying the visible world starting from atoms all the way up to
the splendid diversity of condensend matter phases and basic chemistry. The properties of ordinary, liquid, and quasi
crystals are explained as well as the complex behavior of the electron collective as we see it in different media varying
from insulators to superconductors and from semiconductors to quantum Hall systems. To familiarize the reader with the
necessary basic mathematics, a custom-made chapter Mathematical Excursions is included. This final volume closes
with the chapter Chronologies, Ideas and People which provides tables of important quantum discoveries and the Nobel
prizes awarded for them.
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Hierarchies:
the emergence of diversity



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page — #488 i
i

i
i

i
i



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page — #489 i
i

i
i

i
i



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page — #490 i
i

i
i

i
i



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 461 — #491 i
i

i
i

i
i

Contents

Table of Contents v
A preface of prefaces . . . . . . . . . . . . . . . xi

Introduction xvii
Nature is quantized . . . . . . . . . . . . . . . . xix
Physics, mathematics and concepts . . . . . . . xxi

I The journey:
from classical to quantum worlds

I.1 The gems of classical physics 5
Mission almost completed . . . . . . . . . . . . 5
Newtonian mechanics and gravity . . . . . . . . 7

Four laws only . . . . . . . . . . . . . . . . 7
Dynamical systems . . . . . . . . . . . . . 11
Conservation laws . . . . . . . . . . . . . 12
Classical mechanics for aficionados . . . . 16

F The shortest path F . . . 18
Maxwell’s electromagnetism . . . . . . . . . . . 19

The Maxwell equations . . . . . . . . . . . 21
Electromagnetic waves . . . . . . . . . . . 26
Lorentz invariance: the key to relativity . . 29
Gauge invariance: beauty and redundance 33
Monopoles: Nature’s missed opportunity? 37

Statistical Physics: from micro to macro . . . . 42
Thermodynamics: the three laws . . . . . . 42
Understanding entropy. . . . . . . . . . . . 44

F Two cultures F . . . 47
Statistical mechanics . . . . . . . . . . . . 48
Statistical thermodynamics. . . . . . . . . 51

The ideal gas. . . . . . . . . . . . . . . . 53

I.2 The age of geometry, information and quan-
tum 57

Canaries in a coal mine . . . . . . . . . . . 57
The physics of space-time . . . . . . . . . . . . 60

Special relativity . . . . . . . . . . . . . . . 60
General relativity . . . . . . . . . . . . . . 62
Big Bang cosmology . . . . . . . . . . . . 66
Cosmic inflation . . . . . . . . . . . . . . . 72

F Much ado about nothing F . 77
The physics of geometry . . . . . . . . . . . . . 78

Curved spaces (manifolds) and topology . 80
The geometry of gauge invariance . . . . 96

The physics of information . . . . . . . . . . . . 103
Information and entropy . . . . . . . . . . 103
Models of computation . . . . . . . . . . . 106
Going quantum . . . . . . . . . . . . . . . 110

Quantum physics: the laws of matter . . . . . . 115

I.3 Universal constants, scales and units 119
Is man the measure of all things? . . . . . . . . 119

On time . . . . . . . . . . . . . . . . . . . 120
Reinventing the meter . . . . . . . . . . . 121
F When the saints go marching in...F 122

How universal is universal? . . . . . . . . . . . . 125
Theories outside their comfort zone . . . . . . . 128

The virtue of heuristics . . . . . . . . . . . 128
Going quantum . . . . . . . . . . . . . . . 133
Natural units c�1898 Max Planck . . . . . 138

Black holes . . . . . . . . . . . . . . . . . . . . 139
Black hole thermodynamics . . . . . . . . 141
Accelerated observers and the Unruh effect 144
The magic cube . . . . . . . . . . . . . . . 147

I.4 The quest for basic building blocks 149
A splendid race to the bottom . . . . . . . . . . 149
Fatal attraction: forces yield structure . . . . . . 153
Atomic structure . . . . . . . . . . . . . . . . . . 156

The Bohr atom: energy quantization . . . . 156



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 462 — #492 i
i

i
i

i
i

462 CONTENTS

The Schrödinger atom: three numbers . . 157
The discovery of spin . . . . . . . . . . . . 161

F Behind the scenes F . . 162
Fermions and bosons . . . . . . . . . . . . 163
Atoms: the building blocks of chemistry . . 165

Nuclear structure . . . . . . . . . . . . . . . . . 166
Isotopes and nuclear decay modes . . . . 167
Positron-emission tomography (PET) . . . 170
Transmutation: Fission and fusion . . . . . 170

F Chrysopoeia?F . . . 172
ITER: the nuclear fusion reactor . . . . . . 175

Field theory: particle species and forces . . . . . 176
The Dirac equation: matter and anti-matter 177
Quantum Electrodynamics: QED . . . . . . 182

Subnuclear structure . . . . . . . . . . . . . . . 186
The Standard Model . . . . . . . . . . . . 186
Flavors, colors and families . . . . . . . . . 186
The strong interactions . . . . . . . . . . . 190
The electro-weak interactions . . . . . . . 196
A brief history of unification. . . . . . . . . 197
Supersymmetry . . . . . . . . . . . . . . . 200

Superstrings . . . . . . . . . . . . . . . . . . . . 205
Strings: all fields in one? . . . . . . . . . . 207
M-theory, D-branes and dualities . . . . . . 217
Holography and the AdS/CFT program . . 219

At home in the quantum world . . . . . . . . . . 222

Indices 225
Subject index Volume I . . . . . . . . . . . . . . 225
Name index Volume I . . . . . . . . . . . . . . . 230

II Quantessence:
how quantum theory works

Contents 239

II.1 The quantum formalism: states 245
Quantum states: vectors in Hilbert space . . . . 246

F Reader alert F . . . 246
Quantum versus classical . . . . . . . . . . . . 247

The correspondence principle . . . . . . . 248
Classical states: phase space . . . . . . . . . . 249

The mechanics of a bit . . . . . . . . . . . 250
Quantum states: Hilbert space . . . . . . . . . . 253

States of a quantum bit . . . . . . . . . . . 254
The scalar or dot product . . . . . . . . . . 256
A frame or basis . . . . . . . . . . . . . . . 257
The linear superposition principle . . . . . 258

F Ultimate simplicity F . . 258
Ultimate simplicity: a single state system? . 258
Qubit realizations . . . . . . . . . . . . . . 263

Entanglement . . . . . . . . . . . . . . . . . . . 263
Multi-qubit states . . . . . . . . . . . . . . 264
Entangled states . . . . . . . . . . . . . . 265
Schrödinger’s cat . . . . . . . . . . . . . . 266
Entangled vs separable states . . . . . . . 268
From separable to entangled and back . . 270
Mixed versus pure states . . . . . . . . . . 271
The density operator . . . . . . . . . . . . 273
Quantum entropy . . . . . . . . . . . . . . 275
Entanglement entropy . . . . . . . . . . . 275

F Botzilla F . . . . 276
Decoherence . . . . . . . . . . . . . . . . 277

II.2 Observables, measurements and uncertainty
281

Quantum observables are operators . . . . . . . 281
Sample spaces and preferred states . . . . 283

FBarbies on a globe F . . 285
Spin or qubit Hamiltonians . . . . . . . . . 286
Frames and observables . . . . . . . . . . 287



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 463 — #493 i
i

i
i

i
i

CONTENTS 463

Unitary transformations . . . . . . . . . . . 289
Photon gates and wave plates . . . . . . . 289
Incompatible observables . . . . . . . . . . 290
Projection operators . . . . . . . . . . . . 292
Raising and lowering operators . . . . . . 293

Quantum measurement . . . . . . . . . . . . . 295
F Leaving a trace F . . . 297

No cloning! . . . . . . . . . . . . . . . . . 298
The probabilistic outcome of measurements 299
The projection postulate . . . . . . . . . . 300

Quantum grammar: Logic and Syntax . . . . . . 305
F wavefunction collapse F . . 306

The case of a classical particle . . . . . . . 308
The case of a quantum particle . . . . . . 308
The case of a quantum bit . . . . . . . . . 311

Certain uncertainties . . . . . . . . . . . . . . . 312
The Heisenberg uncertainty principle . . . 313
A sound analogy . . . . . . . . . . . . . . 315
Heisenberg’s derivation . . . . . . . . . . . 316
Qubit uncertainties . . . . . . . . . . . . . 317

F Vacuum energy F . . . 318
The breakdown of classical determinism . 318
Why does classical physics exist anyway? . 319

II.3 Interference 323
Classical wave theory and optics . . . . . . . . . 323

Basics of wave theory . . . . . . . . . . . 323
Reflection, transmission, etc. . . . . . . . . 326

Beamsplitters and polarization . . . . . . . . . . 328
Photon polarization: optical beamsplitters . 330
Spin polarization: the Stern-Gerlach device 331

F A Barbie’s choice F . . . 333
Interference: double slit experiments . . . . . . . 333

A basic interference experiment . . . . . . 338
A delayed choice experiment . . . . . . . . 341
The Aharonov-Bohm phase. . . . . . . . . 343

The Berry phase . . . . . . . . . . . . . . . . . 347
Spin coupled to an external magnetic field. 349
Probing the geometry of state space . . . . 350
The Berry connection. . . . . . . . . . . . 353

Quantum tunnelling: magic moves . . . . . . . . 354

II.4 Teleportation and computation 357
Entanglement and teleportation . . . . . . . . . 357

The Einstein–Podolsky–Rosen paradox . . 357
The Bell inequalities . . . . . . . . . . . . 360
Hidden no more . . . . . . . . . . . . . . . 363
A decisive three photon experiment . . . . 364
Quantum teleportation . . . . . . . . . . . 367

F Superposition F . . . 370
Quantum computation . . . . . . . . . . . . . . 371

Quantum gates and circuits . . . . . . . . 372
Shor’s algorithm . . . . . . . . . . . . . . . 373
Applications and perspectives . . . . . . . 376

II.5 Particles, fields and statistics 379
Particle states and wavefunctions . . . . . . . . 379

Particle-wave duality . . . . . . . . . . . . 380
The space of particle states . . . . . . . . 382
A particle on a circle . . . . . . . . . . . . 384

Position and momentum operators . . . . . . . . 386
Energy generates time evolution . . . . . . . . . 388

Wave mechanics: the Schrödinger equation 388
Matrix mechanics: the Heisenberg equation 390
Classical lookalikes . . . . . . . . . . . . . 391
The harmonic oscillator . . . . . . . . . . 395
Coherent states . . . . . . . . . . . . . . . 397

Fields: particle species . . . . . . . . . . . . . . 400
F The other currency F . . 403

Particle spin and statistics . . . . . . . . . . . . 405
Indistinguishability . . . . . . . . . . . . . 405
Exclusion . . . . . . . . . . . . . . . . . . 406
The topology of particle exchange . . . . . 407
The spin-statistics connection . . . . . . . 411
Statistics: state counting . . . . . . . . . . 413
More for less: two-dimensional exotics . . 416

II.6 Symmetries and their breaking 419
Symmetries of what? . . . . . . . . . . . . 420

Symmetries and conserved quantities . . . . . . 421



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 464 — #494 i
i

i
i

i
i

464 CONTENTS

The full symmetry of the hydrogen atom . . 425
Symmetry algebra and symmetry group . . . . . 426
Gauge symmetries . . . . . . . . . . . . . . . . 429
Non-abelian gauge theories . . . . . . . . . . . 432

The Yang-Mills equations . . . . . . . . . . 435
The symmetry breaking paradigm . . . . . . . . 438

The Brout–Englert–Higgs (BEH) mechanism 443
Symmetry concepts and terminology . . . 446

Indices 449
Subject index Volume II . . . . . . . . . . . . . . 449
Name index Volume II . . . . . . . . . . . . . . 454

III Hierarchies:
the emergence of diversity

Contents 461

III.1 The structural hierarchy of matter 467
Collective behavior and

the emergence of complexity . . . . 467
The ascent of matter . . . . . . . . . . . . . . . 469
Molecular binding . . . . . . . . . . . . . . . . . 472

The miraculous manifestations of carbon . 474
Nano physics . . . . . . . . . . . . . . . . . . . 477
The molecules of life . . . . . . . . . . . . . . . 479

III.2 The splendid diversity of condensed matter 487
Condensed states of matter . . . . . . . . . . . 487

Order versus disorder . . . . . . . . . . . . 494
Magnetic order . . . . . . . . . . . . . . . . . . 500

The Ising model . . . . . . . . . . . . . . . 501
F Swing states F . . . 506

Crystal lattices . . . . . . . . . . . . . . . . . . 507
Crystalization and symmetry breaking . . . . . . 511
Liquid crystals . . . . . . . . . . . . . . . . . . . 514
Quasicrystals . . . . . . . . . . . . . . . . . . . 516

III.3 The electron collective 523
Bands and gaps . . . . . . . . . . . . . . . . . . 523

Electron states in periodic potentials . . . . 523
Semiconductors. . . . . . . . . . . . . . . . . . 527
Superconductivity . . . . . . . . . . . . . . . . . 530
The quantum Hall effect . . . . . . . . . . . . . 534
Topological order . . . . . . . . . . . . . . . . . 537

III.4 S C A L E dependence 543
Scaling in geometry . . . . . . . . . . . . . . . . 545

Self similarity and fractals . . . . . . . . . 545
The disc where Escher and Poincaré met . 547

Scaling in dynamical systems . . . . . . . . . . 550
The logistic map . . . . . . . . . . . . . . . 551

Scaling in quantum theory . . . . . . . . . . . . 554



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 465 — #495 i
i

i
i

i
i

CONTENTS 465

Quantum mechanics . . . . . . . . . . . . 554
Quantum field theory . . . . . . . . . . . . 557
The Euclidean path integral . . . . . . . . 560

Scaling and renormalization . . . . . . . . . . . 562
F The quantum bank F . . 565

Running coupling constants . . . . . . . . . . . 566
Mechanical analogues . . . . . . . . . . . 566
Gauge couplings . . . . . . . . . . . . . . 569
Grand unification: where strong joins weak 571
Phase transitions . . . . . . . . . . . . . . 572

On the calculation of quantum corrections . . . . 573
Perturbation theory . . . . . . . . . . . . . 573
Quantum fluctuations in QED . . . . . . . 577
A realistic example: Vacuum polarization . 579
The cut-off and the subtraction point . . . . 581

III.5 Power of the invisible 585
Summary and outlook . . . . . . . . . . . . . . 586
The quantessence in retrospect. . . . . . . . . . 587

Three volumes. . . . . . . . . . . . . . . . 588
Three layers. . . . . . . . . . . . . . . . . 589
Common denominators. . . . . . . . . . . 592

Scenarios for past and future . . . . . . . . . . . 595
The double helix of science and technology. 596
Trees of knowledge . . . . . . . . . . . . . 597

A Math Excursions 607
| On functions, derivatives and integrals . . . . 607
} On algebras . . . . . . . . . . . . . . . . . . 613
~ On vectors and matrices . . . . . . . . . . . . 614
� On vector calculus . . . . . . . . . . . . . . . 621
| On probability and statistics . . . . . . . . . . 626
� On complex numbers . . . . . . . . . . . . . 630
~ On complex vectors and matrices . . . . . . . 632
⌃ On symmetry groups . . . . . . . . . . . . . . 635

B Chronologies, ideas and people 643

Indices 651
Subject index Volume III . . . . . . . . . . . . . 651
Name index Volume III . . . . . . . . . . . . . . 655

List of Figures . . . . . . . . . . . . . . . . . . . 657
List of Tables . . . . . . . . . . . . . . . . . . . 663

Recommendations 664

Acknowledgements 665

About the author 665



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 466 — #496 i
i

i
i

i
i



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 467 — #497 i
i

i
i

i
i

Chapter III.1

The structural hierarchy of matter

Collective behavior and
the emergence of complexity

The behavior of large and complex aggregates
of elementary particles, it turns out, is not to be
understood in terms of simple extrapolation of
the properties of a few particles. Instead, at
each level of complexity entirely new proper-
ties appear and the understanding of the new
behaviors requires research, I think, as funda-
mental in its nature as any other.

P.W. Anderson in More is different (1972)

If we start from a large number of simple constituent par-
ticles which have simple interactions with each other, the
collective of such particles may well exhibit a rich struc-
tural diversity and complexity. If we manage to identify the
relevant collective degrees of freedom in the macroscopic
system, then another simplicity may be regained, however.
And relevance is what counts. This approach may reveal
a hidden order and allow for an effective description of the
apparent chaos and complexity in a limited number of vari-
ables.

Lost individuality. Let us start with a human analogy.
Think of a couple, if they never talk to each other or seem

to communicate, you’ll treat them as separate individuals.
You think of their ‘relation’ as a minor perturbation on their
existence as individuals. However, if they are close and
their relationship is a kind of symbiotic, you will treat the
pair as a single entity: they are nice or crazy, or stupid.
Their individuality is neither visible nor relevant it seems,
what becomes relevant are the properties of the couple
and these may be totally different from those of the individ-
ual.

Constituents and their interactions. The two cases rep-
resent two different regimes, which you might call weakly
or strongly coupled. In the strongly coupled regime the
next question is how the couples interact with each other,
because that will have decisive implications for the col-
lective behavior of a large crowd of people. To under-
stand collective behavior one has to have some insight in
the different aggregation levels below, in what the relevant
agents at various levels are and how they interact. Are
they individuals, couples, families or communities?

The differences in social organization between bees, ants,
dolphins and humans can only be partially traced back to
the difference in their specific species-linked features (for
example the way their genetic information is passed over
to the next generation) but to a large extent the social hi-
erarchies they form depend on the nature of their interac-
tions.
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Figure III.1.2: What’s up in the air? Air is a mixture of chemi-
cals, and note that the nitrogen and oxygen components consist
of the diatomic molecules N2 and O2 . These atoms – like peo-
ple – prefer to pair up somehow.

External parameters. Yet, there are still other important
factors that play a role. Given the properties of the relevant
constituents and their interactions, there may be different
ways society becomes organized. In general it will also
depend on external ‘environmental’ factors and dynamics.
Revolutions may take place where a society reorganizes
itself rather drastically. Depending on the external param-
eters it may go through ‘tipping points.’ A society may
choose to adopt a new constitution, thereby redefining the
basic set of behavioral rules. As external observer you
usually don’t directly observe the constitution, rather what
happens as a consequence of it. What you may see is that
the collective behavior changes drastically. And you may
wonder whether they changed the constitution or whether
the reason was a financial crisis for example.

What ’s (up) in the air? Similar questions arise in phys-
ics if one wants to understand the binding of atoms into
molecules or into macroscopic media like solids, liquids or
gases. An everyday example is ordinary air: it is predom-

inantly made up of the simple elements nitrogen and oxy-
gen, and minor fractions of carbon, hydrogen and argon.
But, in fact air is a mixture of chemical composites, since
the nitrogen and oxygen have paired up (but for example
not tripled up) while the others appear in composites like
water vapor and carbon dioxide. Argon is the only element
in the mixture perfectly happy on its own, an ideal Einzel-
gänger precisely because its electrons fill an entire shell of
orbits, and this makes the atom inert, literally like a closed
quantum shell.

From physics to chemistry to biology to... Here we en-
ter the vast domain of chemistry, and condensed forms of
matter in general, including the modern material sciences,
biochemistry and molecular biology. These fields of sci-
ence concern mesoscopic or macroscopic systems, which
are characterized by a specific hierarchy of aggregation
levels. The actual structural outcome may drastically chan-
ge depending on external factors like density, temperature
and pressure. The system may go through a so-called
phase transition, where it reconstitutes itself in a tumul-
tuous way before ending up in a new stable lowest energy
ground state that may be drastically different from the state
it started out from. We all know that water molecules can
manifest themselves collectively in many radically different
guises such as vapor, liquid and ice, but also in alternative
structures like raindrops, hail and a huge morphological
variety of snowflakes.

Emergent behavior. You can compare the ground state
of a medium with what the constitution is for a human so-
ciety. You do not observe it directly, only through the emer-
gent behavior of the collective excitations it supports. The
constitution is manifest in the way the society functions, or
dysfunctions for that matter. It is the great variety in ways
that matter has organized itself, which made it very hard
to figure out what the constituents were in the first place.
In this quest for ever more fundamental building blocks un-
restrained reductionism reigned as we witnessed in Chap-
ter I.4. To provide a broader context for the main subject of
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this book we will in the remainder of this chapter highlight
some representative examples of structural hierarchies of
ever increasing complexity. And these emergent hierar-
chies are in some way or another the collective expression
of the underlying quantum principles.

The ascent of matter

Cosmic evolution. The hierarchy of structures found in
nature is quite universal. If we think bottom up, we start
with the stable constituent particles of the Standard Model
as depicted in Figure I.4.35, in particular the up and down

quarks, and the electron. From a history of science per-
spective, working bottom up is anti-historical in the sense
that the most basic constituents are the ones that have
been discovered most recently, while many of the chemical
compounds have been known for thousands of years.

The reason to nevertheless work bottom up is because we
know that that is the way matter has systematically built up
in the early stages of our universe. Starting from the basic
constituents that stepwise aggregate into complex struc-
tures on large scales turns out to be the true historical ac-
count after all. The universe cooled down in the course
of its expansion. This means that thermal collisions be-
tween constituents became less and less violent, so that
ever weaker and more subtle binding mechanisms could
become effective in forming increasingly complex stable
structures. These structures emerged as a result of the
the four basic interactions and because the external con-
ditions like temperature and density kept changing. Let us
go through some of the very early stages guided by the
events marked in Figure III.1.3.

The Planck and inflationary era. We discussed the very
early stages of the universe in the section on Big Bang cos-
mology on page 66 of Chapter I.2. The true origin of our
universe is hidden behind the curtain of quantum gravity

Figure III.1.3: Cosmic evolution. The figure shows the subse-
quent phases of the early universe, exhibiting matter organizing
itself in ever more complex structures.

for which we do not have a satisfactory theory. That cur-
tain obstructs our understanding of the universe for times
smaller than the Planck time which is about 10-44 s . So,
what the Big Bang really is we don’t know, but that such
a dramatic event took place some 13.7 ± 0.2 billion years
ago is beyond doubt. This was established unequivocally
from observing the aftermath of it. A first grand event is
the period of cosmic inflation where our universe scaled up
exponentially thereby generating an enormous amount of
vacuum energy and making it homogeneous, isotropic and
flat. The picture is that the latent vacuum energy of the in-
flated universe was converted into all the (dark)matter and
radiation that fill the universe today.

Primordial baryogenesis. Shortly after the Big Bang the
universe was presumably filled with the most basic forms
of energy: a primordial soup! Matter in the form of quarks,
leptons, their antiparticles and many types of radiation.
The strong interactions were operative; however, the quarks
and gluons were not in a confining phase, but in the quark-
gluon plasma phase we mentioned on page 195 in Chap-
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ter I.4. A separate important question is the presence and
role that dark matter may have played in the very early
stages of the universe. This role strongly depends on what
dark matter precisely is. What we know for sure is that it
interacts very weakly with ordinary matter, and therefore it
will not greatly affect the processes we will describe next.
Ordinary matter and radiation are all interacting frequently
enough to stay in equilibrium with each other. There is a
simple rule, following on from special relativity that tells us
that matter and anti-matter will recombine, and effectively
annihilate each other if the temperature drops below twice
the mass the particle type: kT  2mc2 .

This in addition assumes that the density is large enough
so that they will run into each other enough. Not much
matter would be left if a slight asymmetry between matter
over anti-matter did not develop at a very early stage, so
that after the annihilation of all available anti-matter, a tiny
surplus of matter (of 1 part in 109) remained and that is all
the ordinary matter present in our early universe.

Primordial proton and neutron synthesis. When the
universe was roughly 10-6 seconds old, the up and down
quarks started binding into protons and neutrons due to
the color force mediated by the gluon particles. The nu-
cleon synthesis processes are

u+ u+ d ! p

d+ d+ u ! n

e+ p $ n+ ⌫ (III.1.1)

In this phase the universe was basically filled with a plasma
consisting of protons, neutrons and electrons, and radia-
tion consisting of photons and neutrinos.

Primordeal nucleosynthesis. After about 3 minutes the
first nuclear fusion processes started to take place, the so-
called primordial nucleosynthesis in which the lightest sta-
ble nuclei were produced like 4He , 3He and tiny amounts

of lithium (7Li) and beryllium (7Be). The process stopped
there, basically because there were no stable nuclei with
a higher atomic number. The typical sequence of fusion
steps ‘re:

p+ n ! 2D (Deuterium)
2D+ p ! 3He
2D+ n ! 3T (Tritium)

2D+2 D ! 4He (III.1.2)
3T +4 He ! 7Li

4He+3 He ! 7Be

. . .

Note that the process proceeded via unstable intermedi-
ates such as the hydrogen isotopes, deuterium and tritium,
mostly ending up in stable 4He nuclei. After the first fif-
teen minutes the cosmic abundances settled to about 75%
hydrogen (H = p) and 24% helium-4. The prediction of
these primordial cosmic abundances was one of the im-
portant successes of using quantum (nuclear) theory in
the context of the early universe. Many others were to
follow.

Gravities opportunity: the seeds of large-scale struc-
ture. Only after about 300, 000 years the simplest atoms
would form, meaning that the electrons would combine
with the aforementioned nuclei to form electrically neutral
atoms. At that point the universe was filled with a gas
of neutral atoms. The photons decoupled, and the grav-
itational force became dominant. Inhomogeneities corre-
sponding to local maxima in the mass density of particles
attracted other particles more strongly than the low density
regions and therefore high density regions started to build
up mass. From a gravitational point of view all masses
attract each other, and the more mass the stronger the at-
tractive force. This means that pockets where the energy
density is more than average will grow. These early density
inhomogeneities are the seeds of the large-scale structure
in the universe.
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Figure III.1.4: Carbon production. It is shown how carbon nu-
clei were produced in the universe by successive fusion pro-
cesses of 4He inside stars.

From stardust we are made. In the center of these ever-
denser clouds, pressure and temperature started building
up locally reaching again high temperatures of millions of
degrees. This gave rise to a next round of nuclear fusion
processes. That is how slowly the diverse array of chem-
ical elements in nature was created in the core of many
generations of stars, and the stockpile of basic chemical
elements, indispensable for the later chemistry of life, was
built. The truth is that all of us are made of stardust! It
is interesting to be aware of the fact that this process took
billions of years because several generations of stars were
needed to build the heavy nuclei. And the fact that our ex-
panding universe has to be old explains why it is also big
and cold. It has to be, otherwise we could not be there to
observe it. What feels like an utter inhospitable environ-
ment turns out to be necessary for life to be possible in the
first place.

We see from the periodic table that in principle by adding
on 4He nuclei, elements like beryllium and the all-important
carbon and oxygen can be reached, as indicated in Fig-

Chemical Milky Solar Earth Human
element way system crust

H 73.90 70.57 0.14 10
He 24.00 27.52 - -
O 1.04 0. 59 46.00 65
C 0.46 0.30 0.03 18
Ne 0.13 0.15 - -
Fe 0.11 0.12 5.0 6⇥10-4

Table III.1.1: Mass abundances. Abundances (in %) of some
common chemical elements at different extraterrestrial and ter-
restrial levels.

ure III.1.4. For example:

4He+4 He ! 8Be+ �
4He+4 He+4 He ! 12Carbon+ �
12Carbon+4 He ! 16Oxygen+ � (III.1.3)

The way carbon is synthesized is remarkable to say the
least. The effectiveness of the processes above is due to
a subtle resonance which amplifies the second process. It
remains mysterious that on the one hand all of life is car-
bon based, whereas the actual production of the carbon
itself was a process depending on a delicate balance of
values of the constants of nature. From this point of view,
one is tempted to conclude that life is a miraculous coinci-
dence!

In Table III.1.1 you see what happened to the original galac-
tic abundances, like in our Milky Way, on their way to be-
come tiny parts of our physical bodies. The explanation of
how these changes came about goes beyond the scope of
this book.
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Molecular binding

Atoms are electrically neutral because the positive charge
of the nucleus is exactly cancelled by the negative charge
of the electrons. Yet the charges are not exactly on top of
each other so what you find if you go to short distances
is that there are residual electromagnetic interactions (like
dipolar forces) that become dominant. These residual in-
teractions are to a large extent responsible for the fact that
atoms bind in such a rich diversity of structures, be it mol-
ecules of varying complexity, or solids, or other types of
condensed states of matter.

Repulsion versus attraction. Interactions are the mother
of binding and binding is the father of structure. The se-
cret of building spatially extended structures resides in the
fact that the binding between atoms or molecules is the
outcome of a delicate balance between a repulsive force
that dominates at small distances and an attractive force
that dominates at large distances. The typical behavior
for the energy U of a pair of atoms as a function of their
separation r is given in Figure III.1.5. Understanding the
curve is not hard. Imagine releasing a marble on the en-
ergy curve, then starting at a small r it would roll away to
large distances (that is the repulsive part of the interac-
tion), but starting for large r it would role towards the origin
(the attractive part). So, if the particle were to experience
some friction then irrespective of where you start the mar-
ble would always end at a separation r = r0, where the
potential energy is minimal. This picture reminds us of the
atomic binding of Figure I.4.5 at least in a qualitative sense.
We conclude that also in this domain stability is based on
a compromise between attraction and repulsion. This is a
feature underlying the formation of structure on most levels
of complexity.

Van der Waals binding. The basic attractive interatomic
force is the Van der Waals force after the Dutch 1910 Nobel
laureate Johannes Diderik van der Waals. It even works

Figure III.1.5: The interatomic interaction potential. The inter-
action potential of two hydrogen atoms as function of their dis-
tance. For short distances the force is repulsive but for long dis-
tances attractive. This behavior is a consequence of the sharing
of electrons which implies that a negative charge cloud forms
between the two positively charged nuclei. The minimal energy
configuration is achieved for a distance r0 . So free hydrogen
spontaneously forms a gas of diatomic molecules H2 .

between two atoms that are called ‘inert’ like argon or neon.
They have completely filled shells which means the charge
cloud is spherical. However, if they get close these clouds
become deformed and the molecule develops an (induced)
dipole moment which just means that the resulting plus
and minus charges have different spatial distributions. The
induced dipole moments lead to a weak attractive force be-
tween the atoms. It is weak because the interaction poten-
tial drops off as ⇠ 1/r6 that is much faster thus than the
Coulomb potential (⇠ 1/r) between two opposite charges.
On the other hand, if the atoms are attracted they can-
not come too close because then the electron clouds start
overlapping and that causes a strong repulsion and a steep
rise of the potential for short distances (⇠ 1/r12) . That re-
pulsion is due to the Pauli principle which holds for the
electrons: it provides a hard core for the interactions. This
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potential is depicted in Figure III.1.5. At low temperatures
the Van der Waals interactions may lead to the formation
of a solid where all the atoms form a regular array, and the
nuclei occupy the sites of a crystal lattice.

Polar (or ion) binding. Atoms have a certain number
of electrons which form a charge cloud around the nu-
cleus. The electrons subsequently have to occupy differ-
ent states that is why the charge clouds differ from atom to
atom. Now for the chemistry of atoms for example which
molecules they can form, the shape of the clouds is all-
important. The number of valence electrons is the number
of electrons in the highest unfilled shell. The tendency of
atoms is that they like to fill their outer shell. They can
do that basically in two ways: one is that they can pick up
the electrons of another atom in which case the atom that
gives away electrons becomes a positive ion and the one
that takes extra electrons becomes a negative ion. The
ions have the same old nucleus but have a net charge be-
cause of an electron surplus or deficit. Clearly the ions
made through this ‘social’ mechanism of giving and taking
have opposite charges and will be attracted to each other
because of the Coulomb force between them. But again,
at small distances the repulsive interaction of the clouds
takes over, and qualitative features of the picture of Fig-
ure III.1.5 remain valid.

A lot can be said based on the location of the atoms in the
periodic table in particular the column they are in. Take
the elements in the first column like hydrogen for exam-
ple, they have one electron in the outer shell. As it hap-
pens these atoms are actually quite social: they are will-
ing to give away their electron and to turn into a positively
charged ion. Complementary behavior is obserbed in cer-
tain elements in the one but last column, like chloride (Cl),
that like to receive an extra electron to fill their outer shell
and turn into a negative ion. So indeed, we see polar bind-
ing between atoms in the first column and the one-but-last
column. And we see many well-known elementary mole-
cules like HCl (hydrochloric acid) and NaCl (kitchen salt)

that are held together this way.

Covalent binding. Simple atoms like hydrogen, oxygen or
nitrogen, which are the main components of ordinary air,
are bound in pairs. The question is how the pair-binding
in the diatomic gases precisely comes about. How can it
work because there are no ions to be formed? In these
cases a different mechanism is operative that is also quite
‘social’, as it is based on the notion of sharing. Once close
enough, atoms can lower their energy by sharing outer
electrons; they spread as it were their negative charge
clouds over the two nuclei, by sharing electrons. The cloud
is mostly concentrated between the nuclei and that means
that these become attracted to the cloud and therefore to
each other. The binding that results from this mechanism
is called covalent binding.

We have mentioned that what matters are the shapes of
the charge clouds corresponding the outer (or valence)
electron orbitals. They tell us a lot about the geometrical
patterns of molecules and materials. On the other hand,
once we realize that the atoms are composites of nuclei
and electrons and therefore by themselves complex ob-
jects, we should not be surprised to learn that in the behav-
ioral diversity they exhibit, much will depend on the details
of the atoms in question.

Hydrogen bonds. Once you know how atoms form mol-
ecules there is the next step up, which is to understand
how molecules bind with each other or in case they be-
come large, how they interact with themselves to produce
more and more elaborate molecular structures. Here one
exploits more intricate mechanisms that will do the job. A
well-known example of this is the so-called hydrogen bond
that plays a vital role in organic chemistry and therefore
also biochemistry. It is based on the idea that molecules,
or parts of molecules, may also behave like electric dipoles
and therefore lead to an attractive force. The term hydro-
gen here refers to the fact that hydrogen, when it binds
to a strong electronegative atom such as oxygen or nitro-
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Figure III.1.6: Molecular shapes. We have depicted the spa-
tial geometry of the atoms forming a molecule, and the charge
clouds corresponding to the shared and lone electron pairs.

gen, like in water, gives a polar molecule that binds through
these hydrogen bonds. This type of binding is what keeps
the water molecules together in the liquid, and it for ex-
ample explains the relatively high boiling temperature of
water. The hydrogen bond is thus structurally similar to
the Van der Waals force, but it is stronger. These bonds
play a vital role in understanding the spatial geometry of
complex biomolecules.

It’s all quantum plus electrodynamics. All this being
said, I like to stress that all chemical binding mechanisms
are a product of two fundamental ingredients. One is the
set of underlying quantum principles as expressed by the
Schrödinger equation, and the other set is formed by the
laws of electromagnetism governing the forces between
charges. It means that if – as is often done in practice
– we were to put the constituents and their basic elec-
tromagnetic interactions in the Schrödinger equation and
let a powerful computer turn the crank we would generate
the structures we observe. Such calculations show that
the theory is correct and have great value for applications.

They do however not replace or satisfy our need to under-
stand the basic physical and chemical mechanisms. Sci-
entists have introduced many so-called forces and effec-
tive interactions and bonds, exactly because they provide
a kind of elementary toolkit to effectively explain and pre-
dict chemical behavior. But we should remember that all
of those new forces are nothing but residual electromag-
netic interactions between objects like atoms or molecules
or chemical ‘groups’ that have intricate charge distributions
determined by the laws of quantum theory. It’s all a matter
of shapes and these shapes can be described as ‘multi-
polar fields’ of which the dipole is the simplest example.
The quantum laws are strong, accurate and universal, and
even though they don’t allow us to understand all of chem-
istry directly from first principles, they do allow us to com-
prehend in detail the basic mechanisms that in a subtle
balance give rise to the elaborate chemical structures we
observe in nature.

The miraculous manifestations of carbon

The plug and play of organic chemistry. In this subsec-
tion we take a closer look at the element carbon and the
remarkable structures it can form all by itself, as displayed
in Figures III.1.7 and III.1.8. We start simple and add more
complexity along the way.

The spatial geometry of simple molecules. Because
the carbon atom sits in the fourth column of the periodic
table, it has four valence electrons to share. Hydrogen has
one to share so carbon can bind to four hydrogen atoms
to form a methane CH4 molecule, which as you probably
know is a strong greenhouse gas molecule. Both atoms
are happy because they made a perfect match in the one
to four ratio. What about the other bad guy, carbon diox-
ide CO2? Well, now the carbon shares two electron pairs
with each of the oxygens to optimize its sharing strategy.
And what about H2O , just innocent water? Well, the oxy-
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gen clearly shares one pair with each of the hydrogens
and there are four non-paired electrons left on the oxy-
gen.

The next question that naturally arises is what do these
molecules look like? Can we from the binding mecha-
nism decide what the spatial configuration will be? For
simple molecules this is indeed the case as is shown in
Figure III.1.6. The resulting shape follows from the mutual
repulsion of the negatively charged electron clouds, which
try to avoid each other as much as possible.

Shapes of simple molecules. So, for the methane or
CH4 it should not come as a surprise that it forms a per-
fect tetrahedron with the carbon nucleus at the center and
the hydrogen nuclei at the four corners. The clouds on the
bonds indeed maximally avoid each other meaning that the
bonds will make angles of 120 degrees. For CO2 there are
two double bonds and we expect a linear structure with
the carbon nucleus in the middle right in between the two
oxygens. A detail is that indeed a double bond defines a
plane, The two double bonds mutually repel and therefore
the plane connecting to the first oxygen will be perpendic-
ular to that connecting to the second. And what about the
water molecule H2O , is it also linear? Here there is an-
other ingredient: the four leftover electrons of the oxygen
form a cloud also attached to the oxygen. So, in fact there
are three clouds that will lie in a plane, and as the clouds
are not identical the H2O molecule has a bent structure.
The lone pairs tend to be bulkier and therefore push the
peripheral atoms down so that the angle between them
will to be smaller than in the symmetric case. That ex-
plains why the two bonds to hydrogen make an angle, not
of 120, but of about 104 degrees.

Greenhouse gases. Carbon dioxide is made by burning
carbon containing materials. It is an enormously useful
chemical compound but the problem is that we have pro-
duced and still produce far too much of it. It plays a haz-
ardous role in our atmosphere as it is a greenhouse gas.

This is the case, because molecules which have a cer-
tain structural complexity (like carbon dioxide, methane,
but also water vapor) have many low energy, oscillatory
quantum mechanical modes in which they can absorb and
(re)emit radiation. In particular, modes corresponding to
heat radiation. So, the heat that is coming from the Earth’s
surface after being absorbed from the sun, or heat pro-
duced by human activities, gets absorbed by the CO2 blan-
ket in the atmosphere, and then reemitted. But the reemis-
sion is isotropic, meaning the same in all directions, and
therefore half of the reemitted heat goes back to the earth
and that is why the earth heats up.

Photosynthesis. One way to get rid of CO2 is through
vegetation; plants absorb carbon dioxide from the air, and
in a process called photosynthesis combine it with water
and light (photons) from the sun to produce carbohydrates
and the oxygen we need in a process which can be sum-
marized as CO2 + H2O ! [CH2O] + O2 . Water vapor
in the air certainly does affect the greenhouse effect in
that it increases the warming up caused by carbon diox-
ide considerable. However, water is engaged in all kinds
of other climatological cycles like cloud formation and rain
that make its role essentially different, the vapor concen-
tration in the atmosphere changes by large amounts on a
short scale of days or weeks.

Carbohydrates. Once you realize that carbon has four
binding sites available you realize that there are extremely
diverse ways to combine these molecules Carbon is an
ideal example of a basic building block. And nature learned
to play with it. Imagine you start with a tetrahedral methane
CH4 molecule, and you replace one hydrogen by another
carbon then that is also a compatible configuration. Con-
tinuing this process two more steps you get the butane
molecule of Figure III.1.7(a). It is evident that carbohy-
drates like CkHk+2 actually can in principle form for any
value of k . These molecules correspond to long linear
chains.
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(a) Carbon has the powerful property that it can form long linear chains
with hydrogen atoms on the side. This is the highly flammable gas butane
for example.

(b) A polymer is a linear chain made up of identical units.

(c) The common sugars or carbohydrates glucose (l) and fructose (r).
These have a chirality or handedness; there are two forms. The case
where the bottom group is on the left or the right, is like a left or right
shoe. They form mirror images that cannot be rotated into each other.

(d) If you can make chains you also can make cycles without extra ingre-
dients. This is the benzene molecule C6H6 featuring the famous hexag-
onal ring structure with three double and three single bonds.

Figure III.1.7: Miraculous carbon. Carbon plays a central role throughout organic chemistry. With its four bonds it is remarkably
versatile and can make linear, planar or 3-dimensional structures.
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Polymers. One can go one step further and build long
linear molecules that are repetitive. Such long chains of
identical or similar units are called polymers as shown in
Figure III.1.7(b), and it is a world on its own, to design
polymers in such a way that they exhibit dedicated chem-
ical properties, with particular applications in mind. This
is what a substantial part of the bulk chemical industry is
about.

Ring structures. There is not only the possibility of open
carbon chains, but you can also imagine the formation of
cycles or closed chains like the so-called benzene ring C6

which nature discovered and used over and over again.
Ring structures like cyclopentane, cyclohexane and their
polygon shaped relatives play an important role in the bio-
chemistry of the base pairs in DNA and also in the amino
acids from which the proteins are built. Furthermore, they
are ‘bread and butter’ for the chemical and food indus-
tries.

Nano physics

Nano science. Carbon composites don’t stop in the one-
dimensional world of chains and cycles. Nothing keeps it
from engaging in three valent bindings, meaning that a C

atom has not just two C neighbors, but three that form an
equilateral triangle. Such a connection opens the possibil-
ity of making two-dimensional structures with the topology
of planes, tubes and balls, and two-dimensional surfaces
that have holes in them, the simplest one being the torus
or donut.

Mesoscopics. With the carbon structures we just men-
tioned we enter the unfolding world of nano-science and
technology, where one is dealing with molecular structures
on a nano scale, so typically involving up to a few hundred
atoms. This domain is also called mesoscopic, just in be-
tween the macroscopic and microcosmic worlds.

Nature’s LEGO. Every parent remembers the thrill of what
happens after you hand a group of playful children a big
box of the most basic LEGO pieces. It is amazing what
kind of stable and metastable structures they come up
with. In this sense evolution is like a room full of chil-
dren with an overdose of LEGO pieces, and once you re-
alize that, those elaborate carbon structures become little
more than the inevitable outcome of a childlike but power-
ful methodology called trial and error.

Buckyballs. A most remarkable discovery was the buck-
yball or C60 gigantic molecule that is spherical rather than
linear and made up of alternating pentagons and hexagons
(see Figure III.1.8(a)). It was predicted by theoretical cal-
culations to be extremely stable. Such large carbon mole-
cules (not only C60 but actually a whole range going from
C40 to maybe C240) are now called fullerenes. This name
refers to Buckminster Fuller, the American architect who
pioneered the design and constructions of geodesic domes.

Nano tubes. Closely related are the nano-tubes depicted
in Figure III.1.8(b) which have attracted a massive amount
of attention because of their many potential applications.
These tubes are thin: the smallest have a diameter of only
a few nanometers. This makes them extremely strong in
proportion to their weight. Large nano-tubes are hard to
make and this has so far hampered their large-scale appli-
cation in technology. Let us finally mention the materials
that are only made from carbon atoms.

Diamond and graphite. As each C atom has four C neigh-
bors, naturally located at the corners of a tetrahedron, it
allows for the formation of wonderful three-dimensional lat-
tices. One of those is quite exquisite indeed, because
it is the diamond lattice. Diamond is pure carbon in a
splendid guise, as it is extremely hard, highly transparent
and very expensive. Diamond has relatively high density
(3.5 g/cm3), does not conduct heat or electricity and is
insoluble in any solvent.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 478 — #508 i
i

i
i

i
i

478 CHAPTER III.1. THE STRUCTURAL HIERARCHY OF MATTER

(a) The football shaped C60 molecule is an example of a fullerene after
Richard Buckminster Fuller, the architect and pioneer in designing and
building of geodesic domes.

(b) A carbon nanotube.

(c) The structure of the covalent diamond lattice made with carbon atoms
on all sites.

(d) Amazing graphene: only one molecule thick, and yet the strongest
planar material. It is also transparent and an excellent conductor.

Figure III.1.8: Carbon structures. Some of the miraculous manifestations of carbon that all manifestly exploit the hexagon as basic
building block.
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Are there other three-dimensional carbon structures pos-
sible? Yes, there is one, much more common than dia-
mond, and that is graphite, the stuff that sits in your pencil
and makes drawing so easy because it is totally opaque
(black), soft and cheap as well. These properties follow
from the fact that graphite forms easily, it corresponds to a
stack of two-dimensional honeycomb planes that are rela-
tively weakly bound. Graphite is soft and greasy, it is rel-
atively light (2.5 g/cm3), a good conductor of heat end
electricity and is soluble in most solvents. How different
can members of one family be!

Graphene. Let us finally mention the recently discovered
miraculous material called graphene; this is a perfect two-
dimensional hexagonal honeycomb sheet which turns out
to be extremely strong in spite of being only a single atomic
layer (see Figure III.1.8(d)). It is furthermore transparent
and has high thermal and electric conductivity. This highly
unusual combination of qualities singles this material out
for many exceptional applications in the future, varying from
wearable electronics and displays to fancy wrapping mate-
rials. It may strike you that the structure is just like a single
layer of graphite. The story goes that the Russian physicist
Andre Geim and his student Konstantin Novoselov who re-
ceived the Nobel prize for their groundbreaking work on
graphene in 2010 made the first specimen just drawing
with a pencil on the sticky side of sellotape.

The molecules of life

The pinnacles of molecular structure are the molecules of
life such as nucleic acids and proteins. It seems some-
what far-fetched to present these in an elementary book
on quantum theory. The reason I do is that the structural
hierarchy, as far as single molecules are concerned, really
ends right there. And these structures are basically dic-
tated by quantum theory. Therefore, including them gives
our review of the molecular hierarchy a sense of complete-

Figure III.1.9: The chemical composition of DNA. A fragment of
the double-stranded DNA molecule. The picture also gives the
molecular structure of the base molecules with the four-letter
code assigned to them. The four letters A, T,G,C are strictly
paired as A - T and G - C . The pairs are relatively weakly
bound by hydrogen bonds indicated by the dotted lines. The
DNA of the human genome contains about 3 billion base pairs,
which contain among other things the genes that encode about
20,000 proteins. (Source: Wikipedia)

ness. Let us therefore briefly summarize some structural
aspects and not talk about the functional part. As a mat-
ter of fact the real tasks in the living cell are mostly per-
formed by complex networks of proteins, and that is a level
of emergence that transcends the one fully fixed by the
basic laws of physics.

The complexity of biomolecules is relative in the sense that
again it is a structural level in which a limited number of
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particular building blocks are used over and over again.
Nature is brilliant in figuring out ingenious ways to apply a
given structural element in many different ways. The struc-
ture of biomolecules is modular and the huge diversity is
not as much in the variety of constituents, as it is in the
way they are put together on a modular level.

The DNA molecule. A well-known example is the DNA
molecule which is made of tens of billions of atoms. But its
structure is highly repetitive so that one only has to show
a little piece to see and understand what the building prin-
ciples are. And once the architecture of the molecule is
understood it is not so hard to explain the way it functions
either. The structure of the molecule was discovered in
1953 by Francis Crick, James D. Watson at Cambridge
University and Rosalind Franklin at King’s College London.
The Nobel prize for Physiology or Medicine was in 1962
awarded to the first two and Maurice Wilkins, a collabora-
tor of Rosalind Franklin in London.

We have illustrated a small segment of the molecule in
Figure III.1.9, and it is clear that the molecule features two
long strands that are kept together with hydrogen bonds to
make a sort of ladder. The stiles of the ladder are just a
backbone of some sugar that repeats itself some three bil-
lion times. The rungs of the ladder are made of pairs of nu-
cleobases, of which there are only four, called adenine (A),
thymine (T), guanine (G) and cytosine (C). It is the order in
which these four types of rungs appear in the ladder which
encodes the heritable traits of living organisms. There is
a strict pairing namely A always comes with T and G al-
ways with C, so if you know the left half of DNA it is easy
to construct the complementary right half of the molecule.
And it is this deterministic feature that allows us to under-
stand how the heritable information can be reproduced af-
ter the cell division where the DNA molecule splits and the
left and right half move to the two different daughter cells,
which then are completed by synthesizing the complemen-
tary half within the daughter cell. The chemistry is in fact
rather simple but extremely effective. If you think of the ge-

Figure III.1.10: Amino acids. The generic structure of an amino
acid, with its amino and carboxyl groups. In the center is a spe-
cific group that characterizes the particular amino acid. Proteins
are basically linear chains of amino acids.

netic information stored in DNA as a piece of text written
in a four-letter alphabet of some 3 billion letters long, then
that would maximally amount to N = 43 000 000 000 possi-
bilities, which corresponds to six billion (= 2log N) bits
of information. That amount of data would easily fit on a
DVD or USB stick, in fact a good deal less because most of
the information is highly repetitive and not conserved at all
and therefore believed not to be that important. Yet as we
are talking about important hereditary data, we should re-
alize that the same DVD is sitting in every nucleus of every
cell of our body – you should imagine that you are carrying
around trillions of backups of your genome. I must admit
that it makes me feel some kind of important, The DVD of
my personal ‘feel good’ movie is not for sale but neverthe-
less made in huge quantities. This is how the discovery of
a deep secret of life ended up being a little more than a
paean to painstaking reductionism.

Translation of DNA information to protein structure.
DNA is crucial for the organism but it doesn’t do very much,
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from a chemical point of view, it is not very active. It func-
tions as a template from which the data corresponding to
a gene are transcribed by RNA molecules that also carry
it outside the nucleus of the cell where the instructions are
then performed by ribosomes (some enzyme) to translate
the four-letter code sequence of the genes as a sequence
of three-letter codons. A codon encodes for a specific
amino acid and the codons therefore form the genetic code
The ribosomes produce from that sequence of codons a
linear chain of amino acids corresponding to a specific
protein. This process is schematically represented in Fig-
ure III.1.11. The number of different amino acids that can
be encoded by a three-letter codon (word) with the four-
letter alphabet, can never be larger than 43 = 64 . In fact,
there are only twenty-one of them but most of them are
represented by several different codons. This redundancy
makes protein synthesis more fault tolerant against copy-
ing errors.

To make the structural hierarchy explicit and complete, I
have displayed the generic structure of the amino acids in
Figure III.1.10. Because of their modular structure they are
in fact quite similar, consisting of an amino and carboxyl
group and a specific variable group in the center. This
group may contain five and six cycles and combinations
thereof, somewhat similar to what we saw in the DNA seg-
ment of Figure III.1.9. A protein is just a linear sequence
of amino acids that may run from ten to hundreds for small
genes to hundreds of thousands for the big ones. And
because of their characteristic charge distributions these
proteins start to fold up in all kinds of interesting ways, as
schematically indicated in Figure III.1.12. This is called the
secondary structure, where one distinguishes so-called ↵
helices and � sheets and simpler strings in between such
as turns or coils. The helices are curled up and the sheets
are more planar again with two strands bound by hydro-
gen bonds. The helices and sheets making up the protein
are then again folded in characteristic ways into compli-
cated and beautiful three-dimensional geometrical struc-
tures (see the rather random selection in Figure III.1.13).

And again it turns out that their shapes determine to a
large extent what biological functions the protein can per-
form.

Curling up. We should be aware of the fact that the gar-
gantuan DNA molecule, which has a typical length say of
3 billion times a few nanometers (= 10-9 m) equals some
meters, apparently fits in a cell nucleus with a typical size
of 10 micrometers ( = 10-5 m). This fact implies that na-
ture must have developed some very clever folding tricks
to make this possible. This is a generic feature of the big
molecules of life, they are folded up in smart and elegant
ways, and the way they are, usually tells us a lot about
the biological function they may perform. DNA for exam-
ple is curled up in different levels, first in small curls, then
the curled up molecule curls up once more and then again
etc... Like what certain phone cords do when you don’t
want them to. But to read the code corresponding to a
gene, the corresponding part of the DNA molecule must
be made accessible, i.e. certain genes have to be ‘turned
on’, depending on what is needed in that particular cell at
that time and place.

Epigenetics. At this point we enter the domain of epi-
genetics where one tries to understand how the gene ex-
pression in the organism is exactly regulated by means of
other chemical mechanisms using histones and methyla-
tion. There are indications that also the methylation of the
DNA is conserved, which means that it is somehow en-
coded in the DNA. It has been suggested to add a fifth
letter to mark its positions along the molecule. Unsurpris-
ingly, several meta-levels of regulation are operative to get
from the genotype of the organism to the phenotype, to
get from our DNA to who we are as an integrated being.
Whether the development of an organism is primarily na-
ture or nurture, chemistry is the language in which the ex-
planation will ultimately be cast.

Conclusion. In this chapter we have shown how the com-
plex hierarchy of matter came into being during the early
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Figure III.1.11: From DNA to proteins. A schematic of how the linear four-letter code of DNA strand gets translated into a linear
sequence of amino acids that form a protein. The four-letter code is copied on a single strand RNA. After splicing, which means cutting
and copying the various pieces of the gene to a single sequence on a messenger RNA molecule, the messenger goes outside the
nucleus of the cell. There the letter sequence is translated by Ribosome enzymes and the protein is synthesized. Each subsequent
three letter sequence (called a codon) from the RNA gets translated into one of twenty-one amino acids, see Figure III.1.10.
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(a) Primary structure as a linear chain of amino acids (b) Secondary structure with alpha helices and beta sheets.

(c) Tertiary structure. The spatial structure consisting of folded helices
and planes.

(d) Quaternary structure, representing a protein complex such as in this
case haemoglobin.

Figure III.1.12: Protein structure. The four levels of protein structure.
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Figure III.1.13: Proteins: the work horses of life. Their tertiary three-dimensional structural complexity, diversity and beauty is where
the quantum ladder reaches into the heart of life. One could easily imagine trendy fashion designers and hair stylists getting inspiration
from these magnificent – all natural – dreadlock designs. For others it is just a splendid paean to reductionism.
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stages of cosmic evolution. We have described the won-
derful diversity that the flexibility of the carbon atom allows
for and that is not only evident in the field of nano-science,
but also in biochemistry and molecular biology. We have
given examples of how nature has exploited the almost un-
limited possibilities to create tremendous diversity from a
very limited set of fundamental building blocks.

Further reading.
On molecular physics:

- Molecular Quantum Mechanics
Peter W. Atkins and Ronald S. Friedman
Oxford University Press (2010)

- Molecular Physics: Theoretical Principles and Ex-
perimental Methods
Wolfgang Demtröder
Wiley (2005)

- The Molecules of Life
John Kuriyan
Garland Publishers (2012)

Complementary reading:

- The First Three Minutes: A Modern View of the
Origin of the Universe
Steven Weinberg
Basic Books (1977)

- What is Life?
Erwin Schrödinger
Cambridge University Press (1992)

- The Double Helix
James D. Watson
Signet Books (1969)
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Chapter III.2

The splendid diversity of condensed matter

Water waves are called an emergent phenomenon,
because they are a property of the medium water
but not of the individual water molecules. Emer-
gent properties, which are ubiquitous in any form
of collective, result from the combination of con-
stituent properties and the nature of their interac-
tions.

Condensed states of matter

Condensed matter physics is a research field with a wide
scope, because there is a rich diversity of condensed states
of matter that we have learned to distinguish and under-
stand. Condensed matter systems are composed of large
numbers of constituent particles or agents of various types,
each with its own characteristics. When these particles are
interacting all kind of unexpected things may happen, and
their collective will exhibit a variety of emergent properties.
This raises a question that can be posed in two directions.
On the one hand we may start from the observed macro-
scopic behavior and ask what the microscopic ingredients
and mechanisms are that give rise to that collective behav-
ior. On the other hand the microscopic constituents may
be given and we are asked to ‘design’ a ‘medium’ that ex-
hibits certain macroscopic properties. Condensed matter
physics is the systematic study of widely different manifes-

Figure III.2.1: A science of complexity. Condensed states of
matter are studied in the three basic disciplines, and in the inter-
and transdisciplinary fields that emerged in between those dis-
ciplines.

tations of order and disorder. It wants to understand what
characterizes the different phases and what the underly-
ing mechanisms are. We start this chapter with an intro-
ductory overview of some general concepts and will then
focus on specific systems in the following sections. The
next chapter is devoted to the properties of the electrons
in solids.
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A multidisciplinary field. The study of condensed states
of matter is by no means an activity only physicists are
concerned with. Quite the contrary, it is an inter- or better
transdisciplinary field, where the basic disciplines of biol-
ogy, chemistry and physics, as well as other, interpolating
fields, meet and inspire each other in many ways. This
research environment is sketched in Figure III.2.1. Gener-
ally speaking the understanding of collective – often emer-
gent – behavior, of large numbers of similar constituents or
agents, is a principal objective of what is called complexity
science. But the interactions typically go both ways; from
individual to collective and back, from local to global and
back. Characteristic for such systems is that they feature
a variety of feedback mechanisms whose effects are noto-
riously hard to understand and model. The models and
methodologies developed in statistical physics and con-
densed matter theory, offer possibilities for adaptation in a
much broader context of complexity science – where they
have demonstrated to be applicable in disciplines like eco-
nomics, and other social sciences. Especially with the ad-
vent of large-scale computation, which allows large-scale
data processing and model simulation (including the non-
linearities representing feedback mechanisms), these par-
allels can be explored quantitatively.

Just H2O. Let me start with the familiar example of water.
In Figure III.2.2 I have schematically displayed the different
phases that can occur as a function of the temperature T .

If we start in the middle, say at room temperature, and a
normal pressure of one atmosphere, then it will be a liquid.
If we heat it, it starts boiling at 100o C , and will make a
transition to the vapor or gas state. And if we cool it, it will
freeze and become ice. These phases differ by the way
the molecules are aggregated.

Collective behavior. In discussing collective behavior we
distinguish a number of conceptual ingredients which we
will briefly highlight in this section. On the one hand we
have to know what the basic ingredients, often called con-
stituents or agents, of which the system is composed, are.

Figure III.2.2: Collective behavior becomes less predictable
and harder to understand if we keep lowering the temperature.
(Source: Nobel.org)

It is important to know what their individual properties or
internal degrees of freedom are, but also what their inter-
actions look like. On the other hand we have to determine
what the possible external control parameters are, in the
context of physics these are typically things like tempera-
ture, pressure and external fields.
The system may have different ways to aggregate, de-
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pending on the ‘environment’ and consequently enter dif-
ferent phases. We fix the environmental constraints by
choosing the values of the external parameters in certain
ranges. These external parameters already refer to macro-
scopic, that is, collective state variables. The temperature
of a gas or liquid for example is linked to the average ki-
netic energy of the molecules and can be regulated by
putting the system in contact with a heat bath.

We are led to the notion of a phase diagram, where we
draw the space of external parameters (or lower dimensio-
nal cross-sections thereof) and divide it into the domains
corresponding to the different allowed phases.

Moving through parameter space one encounters bound-
aries that separate different phases, meaning that the sys-
tem will go through a phase transition. The phases will
exhibit different degrees of order and disorder on different
levels. The question how to distinguish the various phases
leads us to the notions of order parameters and correlation
functions.

Finally, once a phase has been recognized, we have to
identify the most relevant effective degrees of freedom of
the system in that phase, these are generally emergent
degrees of freedom which do not exist on the constituent
level. On the one hand these are the low energy modes
corresponding to so-called quasi-particles. You may for
example think of density waves in a solid which are also
called phonons or ‘particles of sound’. On the other hand
in macroscopic media, one often encounters so-called de-
fects, these are literally structural defects or imperfections
in the medium. Defects can be localized (point like) or ex-
tended (like a line or a wall). Defects are robust for topolog-
ical reasons, and they play a crucial role for understanding
the properties of such materials. For example, in a crystal
one may have lattice defects, called dislocations or discli-
nations, as we will show later on.

Let us now zoom in on the concepts we just introduced.

Constituents and their degrees of freedom. When talk-
ing about condensed states of matter, we assume such
states to be composed of many constituents. The con-
stituents can themselves be composite as well, like ions,
atoms or molecules. The constituents have certain prop-
erties like mass, charge, magnetic moments (spins), in fact
any of the attributes we have been discussing in previous
chapters. The constituents will – depending on their prop-
erties – have interactions, and these interactions may be
strong or weak, and may be long, short or intermediate
ranged. For example, if particles have spin one-half they
are fermions and cannot occupy the same state, which
has a huge impact on their collective behavior. Relevant
is also to what extent the intrinsic degrees of freedom can
be manipulated by external controls, like an applied mag-
netic field for example, which couples to all individual spins
in the system. Needless to say that it is precisely the
rich variety of constituents and their interactions (including
feedbacks) that allow for the splendid diversity of possible
states and phases of condensed matter.

In Figure III.2.3 I have indicated the substructures of the
most common systems and their typical degrees of free-
dom which may or may not play a decisive role, depend-
ing on the question one is addressing. If we go down
in scale the substance may consist of one type or var-
ious types of molecules, and much will depend on the
shapes of the molecules, referring to the charge distri-
butions (the molecular wave functions). These determine
the electric and magnetic dipole and higher moments, and
as the molecules are overall charge neutral, these mo-
ments are crucial and determine the rigidity of the individ-
ual shapes. And clearly these shapes are all-important for
understanding how the molecules can fit together in a sta-
ble way, which in turn determines the allowed symmetries
of a crystal to be formed. If the molecules become large,
like polymers for example, one can imagine complex ma-
terials being assembled, like biological tissues made from
large biomolecules.
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Figure III.2.3: A hierarchy of degrees of freedom. Building
blocks of a condensed matter system (in white) and their ‘de-
grees of freedom’ (in blue).

The relevant constituents may also just be atoms, and they
may form crystals, where they optimally balance their ki-
netic and potential energy, or alternatively their attraction
and repulsion. The picture is that the nuclei sit on the sites
of a lattice and the electron states may either be localized
on the nuclei or be spread out and extended. The elec-
trons in the outer shell – so-called valence electrons – are
relatively weakly bound and can hop to neighboring sites
and in the case we are dealing with a conductor, they even
have non-localized states that spread out over the whole
lattice. So, the material is a highly ordered solid, but hid-
den in there are the electrons which form a freely stream-
ing (not-ordered) fluid supported by the solid substrate of
highly localized ions. Similarly, we may have a solid where,
say, the atomic spins are ordered, in which case we have
a ferro or anti-ferromagnet, or the spins may be disordered
– pointing in random directions – and there would be no
overall magnetization. And indeed, these charge and spin
degrees of freedom can be manipulated by imposing ex-
ternal electric or magnetic fields.

Control parameters and phase diagrams.

An important remark is that the ‘relevant degrees of free-
dom’ of the system as a whole are not known a priori, ex-
actly because they will mostly be emergent such as sound,
spin waves, currents, defects etc. These emergent de-
grees of freedom will strongly depend on the choices we
make for the external parameters. These are for exam-
ple the thermodynamic parameters such as temperature,
pressure or chemical potential. Other parameters corre-
spond to external electric and magnetic fields, or the chem-
ical composition (or doping) of the material. Moreover,
there is a dependence on the dynamic of preparation. If
we cool a liquid rapidly (called quenching), then it may
not have had enough time to achieve the optimal type of
long-range order. It would stay somewhat amorphous, in
contrast with the perfect crystal which forms if we cool the
liquid down slowly (called annealing).

There are still other options for manipulating the system.
You may change the relative concentrations of components.
You may replace certain components by similar, or not so
similar ones. You can add components (like solvents or
interstitials), or ‘dope’ the system by adding or removing
charge carriers. These tools have been used in the most
inventive ways to engineer materials with specific, some-
times most unusual, but highly desirable properties. This
advanced form of ‘legoism’ makes certain corners of ma-
terial science look like a kind of black magic: a form of
witchcraft with the distinctive feature that it works!

The phase diagram. The parameter space may be di-
vided into domains corresponding to the different phases,
and this information is usually represented in a phase dia-
gram. Often we are interested only in particular phenom-
ena and we can restrict ourselves to smaller- and lower-
dimensional cross sections of the parameter space. One
axis that is usually present is the temperature (or energy)
axis, and another is for example the pressure (or density)
axis. If we add the pressure P , we can extend the Fig-
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Figure III.2.4: Phase diagram. The standard phase diagram of
ice/water/vapor with the triple point, and the standard definition
of boiling and freezing point. Above the critical point there is a
smooth crossover from the liquid to the vapor state.

ure III.2.2 to the two-dimensional P - T phase diagram of
Figure III.2.4. This adds novel features: the normal boiling
and freezing points become lines, and as we see, these
lines may join (or split) at a so-called triple point. Fur-
thermore a line may terminate at a so-called critical point,
where a clear distinction between the phases ceases to
exist.

Equation of state. The state variables are usually not in-
dependent, since they have to satisfy a constraint, which
is called the equation of state. For a fixed amount of stuff,
say one mol, which means a total number of NA mole-
cules, one finds that in the diluted gas phase for example
the ‘ideal gas law’ holds. This law states that PV = RT ,

which is a functional constraint on the macroscopic state
variables P, V and T involving the universal or molar gas
constant R = NAk which is just a fixed number (the prod-
uct of Avogadro’s and Boltzmann’s constants). If we for
example consider a fixed amount of gas in a container of
fixed volume V , the equation tells us that lowering the tem-

perature would lower the pressure proportionally (at least
in a lower right-hand side of the diagram where the ‘law’
holds).

Phase transitions. Crossing a phase boundary in a phase
diagram means that the system goes through a phase tran-
sition. Let us for a moment look at the dark blue line sep-
arating the liquid and gas or vapor phases. Crossing that
line from blue to light brown means boiling the liquid. What
you immediately see is that this may happen on any point
on that line segment. If we boil an egg on a Sunday morn-
ing, what we do is that we have a fixed normal pressure
of 1 atmosphere, and by heating the water we move to
the right on the dashed red line until we hit the transition
point at 100 degrees Celsius. But a less practical way to
boil an egg would be start at high pressure with water at
100o C, the water is not boiling then but when we lower the
pressure, sure enough when it hits 1 atmosphere the water
would start boiling. This boiling process would correspond
to crossing the phase boundary top down along the verti-
cal dashed red line starting at the high red point moving
to the pink straight below. High in the mountains the pres-
sure of the atmosphere is lower and thus water boils at a
lower temperature (about 4 degrees per kilometer eleva-
tion), which can make preparing your soft-boiled Sunday
morning egg quite a hassle. Often phase transitions sig-
nal the occurrence of a tipping point in some (free) energy
landscape of the system due to changes in the control pa-
rameters. And in that sense the phase diagram is a nat-
ural characterization for any multi-particle or multi-agent
system.

Critical points. In a critical point, a phase separation line
terminates. This means that the clear distinction between
the two phases, and the marked transition between them,
somehow disappears. We enter a critical region in which
there is a smooth crossover between – in this case – the
liquid and the vapor. In fact, the usual clear surface sepa-
rating them disappears and becomes a foggy layer.
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Figure III.2.5: A tabular iceberg. In October 2018 a NASA in-
spection team discovered this huge, perfectly rectangular, so-
called tabular iceberg in the arctic. Such bergs are formed
naturally and have a strikingly rectangular geometry, reflect-
ing the underlying crystal structure. They are not single giant
monocrystals, though they look like it. (Source: NASA ICE)

Ice? What ice? In Figure III.2.6 we show a tiny corner
of the phase diagram of water at very high pressures, and
therefore not present in Figure III.2.4. It would have ap-
peared high up on the left, in the direction where the ar-
row is pointing. The diagram shows that if you make the
pressure large enough, the water will become solid even
at higher temperatures. You furthermore see that there
are actually many distinct solid phases up there. They
are forms of ice that differ by their crystal symmetries.
Some are hexagonal (I) others tetragonal (III, VI), mon-
oclinic (V), rhombohedral (II) or cubic (not in the graph).
A true Baskin & Robbins of structures, but – I am sure –
all equally tasteless. Furthermore, many of these fancy
phases are metastable, so they tend to decay in more sta-
ble versions. Note also the impressive number of triple
points in the phase diagram. Such is the hidden diversity
of something as common as water. It shows its complex
behavior only under extreme conditions.

Figure III.2.6: Ice varieties. In the high-pressure regime, high
up along the vertical axis of the previous diagram, there are
many distinct solid phases of water, where the water molecules
happen to organize according to different symmetries.

Water versus Argon. It is interesting to compare the fea-
tures of the phase diagram of water, with for example that
of the noble element argon. The element 36Ar has 18 pro-
tons, and its 18 electrons completely fill all energy levels
up to the n = 3, l = 1 shell of atomic states. These
completely filled shells make the element stable and re-
sistant to bonding to any companion. The noble elements
are ‘Einzelgängers’, or ‘lonely cowboys’ so to say, they ap-
parently have everything they need, and are like extreme
individualists who love to ignore their neighbors. Under
normal conditions it is an inert gas, and it has a phase di-
agram similar to that of water as depicted in Figure III.2.4,
though the corresponding points are positioned at different
locations. As is clear from Table III.2.1, for argon things
happen at much lower temperatures, which indeed is a
consequence of their ‘nobility.’

If you would continue the phase diagram for argon to high
pressures, one would surely see the melting line bend over
to higher temperatures, meaning that liquid argon would
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Table III.2.1: Comparison of water and argon.

Phase diagram Water Argon

T [K] P[atm] T [K] P[atm]

Melting point 273.15 1 83.81 1

Boiling point 373.15 1 87.30 1

Triple point 273.16 0.006 83.81 0.68

Critical point 647.10 217.7 150.69 48.0

just like water solidify at very high pressures. This, how-
ever, only happens at pressures of tens of thousands of
atmospheres! Furthermore, because this simple atom has
so few degrees of freedom, it exhibits only one solid phase.
This means that the phase diagram III.2.6 for argon would
be rather boring, because it would just show one melting
line going across from left to right.

At this point two observations can be made. On the one
hand there are universals in phase diagrams, like that con-
densed matter will become solid under high pressure or at
low temperatures (including the familiar triple and critical
points). On the other hand, phase diagrams may exhibit a
huge structural diversity that depends on the specifics of
the constituents, whether they are simple spherical atoms,
or composites with many internal degrees of freedom like
water molecules.

Crystals. The reason that solids – usually crystals – form
is that by bringing many atoms close together the orbits
of the electrons start overlapping and the electrons start
moving around changing nuclear partner so to say, which
leads to an effective attraction. However, if they get too
close the effect of the repulsion of positively charged nu-
clei starts to dominate. Balancing attraction and repulsion
the atoms tend to organize themselves into an optimal pat-
tern that minimizes their overall interaction energy. This is
basically how crystals form. In a crystal the positioning of
the atoms is strictly periodic which implies strong spatial
correlations over large distances, corresponding to some

discrete translational (and rotational) symmetries. Com-
plexity and beauty apparently arise where attraction and
repulsion strike a subtle balance.

Hard versus soft condensed matter. The field of con-
densed matter physics is divided up into two parts: soft
and hard condensed matter physics comprising the topics
we have indicated in Figure III.2.7.

Soft matter. With soft matter we think of liquids, coloids,
gels, molecular materials like polymers and biomaterials.
It is a diverse field that often involves physics at an inter-
mediate – so-called mesoscopic – scale, like nano struc-
tures for example. This field mostly employs methods from
classical physics, such as statistical mechanics and clas-
sical field theory, but also lots of chemistry. It is the branch
of condensed matter physics most remote from hard core
quantum theory, but it has become an innovative field with
a wide range of applications. One of its most influen-
tial protagonists was Pierre-Gilles de Gennes of the École
Normale Supérieure at Paris, who received the 1991 No-
bel prize for his extensive oeuvre. This field has led to
beautiful insights into the role of symmetry and its break-
ing. We will therefore in the following not just discuss crys-
tals, but also liquid crystals and quasicrystals.

Hard matter. Hard matter is the present incarnation of what
used to be called solid state physics. It studies proper-
ties of materials where quantum theory is absolutely in-
dispensable. Quantum properties are vital for understand-
ing the role electrons and lattice vibrations play. In the
quantum realm these can rearrange themselves in col-
lective quasi-particle degrees of freedom, with totally un-
expected emergent properties, like superfluidity, low and
high temperature superconductivity, and topological order.
These latter phases, for example fractional quantum Hall
systems, include new degrees of freedom called anyons
with exotic spin and statistics properties. Towards the end
of Chapter III.3 we will take a closer look at them.
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Figure III.2.7: Hard versus soft. Condensed matter can be
roughly divided up into ‘soft’ and ‘hard’ matter. Both are of great
technological importance.

Plasma. We have seen that for large pressures most sys-
tems become solid. There is of course also the other ex-
treme regime, corresponding to high temperatures, which
is of interest as was already indicated in Figure III.2.2. For
very high temperatures, there is yet another phase tran-
sition: the water molecules will ionize, which means that
they will break up in two oppositely charged components,
the OH- and H+ ions:

H2O ! OH- +H+

This is again a quite different state of water. It is still overall
electrically neutral, but it will couple strongly to electric and
magnetic fields, because the individual components (and
constituents) do. If you apply a voltage over the plasma,
currents will flow, and clearly, the positive and negatively
charged components will run in opposite directions.

In Chapter I.3 where we talked about fusion, we mentioned
the crucial role played by the tritium plasma as a ‘fuel’. And
in the previous chapter we alluded to the state of the very
early universe as a primordial soup, this refers to a uni-

versal plasma made up of bare ‘charges’ for all interaction
types. Of special interest is the colored component of the
soup called the quark-gluon plasma, which is nowadays
studied experimentally by smashing lead ions into each
other in the Large Hadron Collider at CERN, by the so-ca-
lled ALICE collaboration. In that experiment one tries to
recreate for a tiny period of time, a tiny bit of early uni-
verse. It is fascinating to realize that not only with space
observatories but also with big accelerators one is trying
to get ever closer to the Big Bang and thus contributing to
cosmology.

Order versus disorder

We have indicated the importance of identifying different
phases. These are roughly characterized as ordered and
disordered phases, but also phases that sit in between.
Solids are highly ordered, gases are disordered, and sim-
ple liquids tend to be more like dense gases, but if the con-
stituents are more complicated, they can be both. Both or-
dered and disordered! How can that be? Well, it depends
on which degrees of freedom you are talking about. In a
liquid crystal for example, the positions of the molecules
are not frozen into a crystal (disorder), but the orientations
of the molecules are all aligned (order). Glass appears to
be solid but is in fact an extremely viscous liquid. And what
about gels, polymers, and biomaterials, are they ordered
and in what ways? In a conductor the nuclei have fixed
positions in the crystal lattice, yet at the same time the
conducting electrons form a liquid that flows freely through
the material. The diverse topics we have mentioned so far
used to belong to different fields of study but are more and
more integrated because similar techniques are used to
study them.

One of the fascinating results from classical physics, in
particular statistical thermodynamics, is that certain dis-
ordered equilibrium states like a gas of atoms or a liquid
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can still be rather easily described if one applies statisti-
cal methods to them. After all, the behavior of a mol of
a dilute gas consisting of some 1023 atoms in equilibrium,
can to a first approximation be described in terms of only a
few macroscopic variables like pressure P , temperature T

and a volume V and an entropy S, that have to satisfy the
ideal gas law, PV = RT . Such a drastic reduction of vari-
ables can be performed if one is only interested in the most
relevant degrees of freedom that effectively describe the
equilibrium states of the collective in a given phase.

The gas molecules bounce around randomly, yet though
the individual behavior of the atoms is highly erratic, the
collective is surprisingly well behaved and predictable. As
every insurance company can tell you, if the number of
clients is sufficiently large, statistics becomes an extremely
reliable tool for predicting the probability of certain events.
In the classical theory of somewhat less diluted gasses,
where one takes the size of the atoms and the presence of
walls of the container into account, one arrives at the Van
der Waals equation of state. This equation is an important
generalization of the ideal gas law from a conceptual point
of view, because it predicts a phase transition to a liquid
state. We will return to this equation shortly.

It turns out that the most complicated behavior is observed
near a phase transition. There the distribution of ther-
mal fluctuations broadens; fluctuations apparently occur
on all scales which means that they are not distributed
like a Gaussian distribution with a well-defined mean and
variance around the mean. No, the distributions behave
like power laws, where compared with the Gaussian, the
venom is in the tail of the distribution. Whereas the ex-
ponential distribution tends rapidly to zero, the power laws
have so-called fat tails. These tails describe so-called ‘high
impact, low probability’ events, but the point is rather that
although that these events are far away from the aver-
age, their probability is actually not so small after all, in
fact gigantic compared to an exponential distribution With
power laws extreme events in the tail of the distribution

cannot be discarded at all. Indeed, under such circum-
stances, insurance brokers are not that eager anymore to
sell you an insurance policy, and if they do, they will cer-
tainly make you pay a good deal more to cover their sub-
stantial risks.

Phases, order parameters and correlations. So what
then determines in what sense a system is ordered or dis-
ordered?

Order parameters. There is a special set of observables
important for the identification of different phases: these
are denoted as local order parameters, which are called
local because they depend on the position x . To probe the
difference between a vapor and its liquid state, the order
parameter would be the local density ⇢(x) . In the transition
it would make a sudden jump from a tiny to a large constant
value ⇢(x) = ⇢0. For magnetic systems the order parame-
ter is the magnetization M, which is the spatial average of
the local magnetization M(x) , which in turn corresponds
to a local average of a sizeable number of spins centered
around the point x. In metals spontaneous magnetization
occurs at the so-called Curie temperature, which means
that the magnetization M acquires a non-zero value be-
low this temperature. So, to conclude, order parameters
are specific observables that probe for a structural change
in the state of the system when it goes through a phase
transition.

First- and second-order phase transitions. We distinguish
two types of phase transitions called first- and second-
order transitions. For the second order transition the order
parameter changes continuously (but not smoothly) from
zero to a non-zero value. A typical example is sponta-
neous magnetization which we just mentioned and will dis-
cuss in more detail shortly.

Correlations. The order parameters correspond to the av-
erage property of a local quantity. But a measure of order
can also be more subtle and correspond to probing multi-
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local correlations in space or time in the system. For ex-
ample, if you have a crystal, then many of its properties are
periodic, and strongly correlated spatially. Measuring such
correlations can then help you identify the spatial structure
and symmetries of the crystal. A famous technique, X-ray
diffraction, does exactly that: it yields a diffraction pattern
in which such spatial correlations are encoded, and from
which the three-dimensional crystal structure can be re-
constructed.

First-order transitions. In a first-order transition the order
parameter jumps discontinuously. A nice example is the
liquid-vapor transition (evaporation or boiling), where there
is a region in parameter space where both phases can co-
exist, but where one of them becomes unstable. The tran-
sition then often takes place through bubble nucleation, as
we know too well from the ordinary boiling phenomenon.
Inside the bubbles we have the new phase and outside
the bubble is still the old liquid phase. Because of thermal
fluctuations, bubbles spontaneously form in the liquid, and
if they have a sufficient size they will start growing. The
threshold occurs when the energy it costs to make the wall
(proportional to the surface area of the bubble) becomes
equal to the energy gain which is given by the energy dif-
ference between the two phases, and this gain is propor-
tional to the volume of the bubble. Clearly, if the bubble
is large enough the volume term wins, and the bubble will
start expanding. If you transfer more heat to the liquid,
more and larger bubbles will form, and those may further-
more coalesce. This process continues until the transition
is completed and there is no fluid left.

In the Figures III.2.8 and III.2.9 we have depicted the liquid-
vapor transition from two complementary points of view.
The first figure shows the transition in a pressure-volume
(P, V) diagram. The colored curves are different isotherms
(curves of constant temperature). The yellow one corre-
sponds to a high temperature and reproduces the ideal
gas law, P = RT/V . The orange isotherm where T = Tc
is special because all lower isotherms have a minimum

Figure III.2.8: Van der Waals equation of state. We have
sketched three isotherms meaning P as function of V with T
fixed. The yellow one for T > Tc , where we recover the ideal
gas law. The orange one is for T = Tc, and the purple one
corresponds to the boiling process as described in the text.

and a maximum. The purple curve is the 100o Celsius
isotherm and describes the process corresponding to the
vertical transition marked in Figure III.2.4. The points on an
isotherm supposedly correspond to equilibrium states, but
that cannot always be the case. The segment highlighted
with the dashed red line cannot represent physically ac-
ceptable states because increasing the volume would also
increase the pressure, but for physical states it is the other
way around, the ‘compressibility’ in those points has the
wrong sign. So only the descending parts of the isotherm
represent allowed equilibrium states. What makes these
curves interesting is precisely that for T < Tc, we see that
for a certain pressure range there are two possible states:
the left one corresponding to the liquid and the one on the
right to the vapor. The picture does immediately suggest
the explanation. We can slowly descend the 100o isotherm
by increasing the volume and thereby lowering the pres-
sure, keeping the system in equilibrium until we hit the dot-
ted line at the pink point (where P = 1 atm). This is where
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Figure III.2.9: Free energy landscapes for different tempera-
tures. The minima correspond to the equilibrium liquid and/or
vapor states. The yellow trajectory corresponds to horizontal
‘boiling’ trajectory in the phase diagram of Figure III.2.4. The liq-
uid state is stable, until we hit the red curve where the vapor
minimum has lower energy and the system makes the boiling
transition to that stable vapor state.

the boiling transition starts, and as we all know this is a
pretty violent non-equilibrium type of process that works
through bubble nucleation and continues until all the liq-
uid has vaporized and the system can restore equilibrium
in the vapor state on the isotherm (corresponding to the
pink point on the right). From there the system may move
down again if the volume is further enlarged. In the inter-
mediate region during the crossing we have two coexisting
phases in the system, part is liquid and part is vapor. The
whole transition trajectory marked by the dashed black ar-
row between the two pink dots, thus corresponds to the
single pink dot in the phase diagram III.2.4. This teaches
us that the phase diagram certainly tells us that there is a
transition but does not inform us in any way about how that
transition actually takes place, and whether it is a first- or
second-order transition.

Minimizing the free energy. Now in the second figure,
Figure III.2.9, we look at the first-order transition from the
point of view of the free energy F = F(V, T) of the sys-
tem, and this time it is convenient to take the horizontal
trajectory in the phase diagram, corresponding to the fa-
miliar boiling process we witness in the kitchen.1 In the
figure we plotted the free energy as a function of volume
for increasing temperatures. The equilibrium states corre-
spond to minima of the free energy and we see that there
is a range of temperatures where we have two minima.
We have a fixed amount of matter, so the left minimum
is the small volume or liquid state, and the right minimum
is the vapor state. We start at a low temperature equilib-
rium state corresponding to the unique minimum. If we
start raising the temperature, we see that the energy land-
scape is changing. Once we arrive at the light blue isobar
it develops a second (local) minimum, but it has higher en-
ergy and is therefore unstable. If an outlandish fluctuation
somewhere in the liquid happens to create a tiny vapor
bubble, this bubble would instantly collapse because there
is nothing to gain (energy-wise) by being a bubble. How-
ever by going to higher temperatures the values of F for
the two minima become equal, and on the red curve the
vapor minimum has become clearly lower than the liquid
one. Then indeed, the liquid state becomes metastable.
Even moderate fluctuations will create bubbles that are big
enough to start growing, thereby executing the actual va-
porization process. You also see that even if we are careful
and succeed in overheating the liquid, then you hit the dark
blue point where the minimum corresponding to the liquid
disappears. At that point the liquid state becomes unstable
and the transition necessarily takes place.

Tipping points. It is worth pointing out that the free en-
ergy diagram is quite universal for understanding the ori-
gin of tipping points in all kinds of multi-agent systems.
The free energy would correspond to some relevant ‘util-

1This is a process at fixed pressure, and is naturally presented by
equal pressure lines or so-called isobars in a (T, V) diagram.
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ity function’ the system wants to minimize (environmental
constraints, costs, etc). The ‘fitness’ landscape will in gen-
eral depend on other (control) variables. For example, we
have a society burning fossil fuels which provides us en-
ergy for $X per kWh. Around 1970 the landscape started
to change in that another possibility appeared, namely so-
lar power. It is still expensive, and without some local sub-
sidies a local effort easily collapses. However the price
comes down rapidly, and the second minimum of the utility
function starts competing. Ambitious countries, states and
cities may create successful local bubbles that are eco-
nomically feasible and start to grow. And that is how the
energy transition will presumably take place in the present
age. The energy transition is typically a first-order transi-
tion, and as a matter of fact we see it happening all around
us! This shows you the metaphorical power of the boiling
process as a model for certain types of transitions and the
visualization with the two competing minima as a powerful
analogy.

Collective degrees of freedom: quasi particles. Once
the system has chosen a different ground state correspond-
ing to a new phase and another minimum of the free en-
ergy, we should ask what other aspects of the physics of
the system have changed. Most importantly, we should
find out what the low energy excitations of the system in
the new state are. The low energy excitations are of in-
terest because they are the first that will get excited if we
perturb the system, and as such they determine more then
anything else the emergent properties of the system in the
new phase. These modes help also to identify and label
the collective states. Whether it is a conductor to heat
or electricity, or whether it is a magnetically ordered fer-
romagnet, for example.

What happens to a crystal if I hit it? This is like probing
the system by locally deforming it and observing the re-
sponse of the system to that deformation. We study how
the deformation propagates through the system. How the
deformation energy starts spreading. The resulting propa-

gating modes are the low energy excitations, in this case
they are longitudinal density waves, which correspond to
sound. Sound is an emergent phenomenon because an
individual atom does not know what sound is, it cannot
make sound by itself. It needs the ordered collective to
propagate, and in that sense it is just like the ‘wave’ that
can be excited in a football stadium: to let it propagate
through the crowd requires a collective effort. And if a large
fraction of the audience are fans of the opposing team, it
will definitely not propagate. The point I am making is that
by studying the response of the system to perturbations we
get to know a lot about its ground state or phase.

In reality the molecular systems we consider are more om-
plicated and we do not only have to worry about the po-
sitions of the nuclei in the crystal lattice. For example,
the nuclei may have a tiny magnetic moment, called spin,
which means that they are like tiny bar magnets. If the sys-
tem is at a relatively high temperature these little magnets
will point in arbitrary directions. They are highly indepen-
dent, and thus their orientations are uncorrelated even on
short distances. So, in this case we have that the nuclei
are strictly ordered because they form a crystal, while their
spins are not ordered at all. Apparently, we have to be
specific if we say that a system is ordered.

The behavior of electrons. Another crucial ingredient of
most condensed matter systems that we have not men-
tioned so far are the electrons. Given the underlying lat-
tice structure of the nuclei, what is the quantum behavior
of the electrons in that given background? Do they stay
localized, close to ‘their’ nucleus, or do they start hopping
around freely, or do they form a conducting fluid of some
sort? It turns out that the behavior of the collective of elec-
trons in condensed states of matter is highly diverse and
keeps surprising us up to today. Understanding this be-
havioral variety is one of the main drivers of condensed
matter physics. These problems have been studied for
decades and time and again new fundamental properties
are discovered often leading to important technological in-
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Figure III.2.10: Phase diagram of 4He . Comparing this phase
diagram with the conventional one of Figure III.2.4, a new super-
fluid phase has opened up at low temperature, splitting the triple
point into two triple points. The critical point is marked in green.

novations. We focus on some of these types of behavior in
the remainder of this section. A more thorough analysis is
given in the next chapter.

The quantum regime. In Chapter I.3 we discussed scales
and units, and pointed out that at low energies quantum
theory necessarily comes into play, which leads to another
plethora of conceivable physical states that can have high-
ly unusual properties like superfluidity and superconduc-
tivity.

In the quantum regime we should expect that the quant-
essential spin and statistics properties of particles come
into play but also that the Heisenberg uncertainty relations
will manifest themselves in the collective behavior. Of spe-
cial interest is the possibility that bosons can occupy the
same state. What typically happens is that once you lower
the temperature far enough, a macroscopic number of the
bosonic particles will occupy the same lowest energy state.
The system forms a so-called Bose condensate, a special

Figure III.2.11: Superfluidity. The vessel filled with liquid 4He
that will turn into a frictionless superfluid. When cooled below
the �-point, it will spontaneously creep over the wall of the ves-
sel until it is empty.

quantum coherent state, which means that the system will
go through a phase transition. Systems where this hap-
pens will exhibit ‘macroscopic quantum’ behavior. Quan-
tum matter phases have been in the centre of attention for
quite a long time, and still many novel phases are discov-
ered, which pose formidable puzzles for the theorists to
understand, like for example high temperature supercon-
ductivity. There are still many open questions with regard
to understanding collective quantum phenomena from a
microscopic, first principles point of view.

Superfluidity. Let us consider the famous example of
Helium-4, a boson, where you can see how the quan-
tum behavior, the formation of a Bose condensate, adds
a new phase to the phase diagram. The phase diagram
of Figure III.2.10 shows the actually not so recent discov-
ery of superfluidity by the Russian physicist Pjotr Kapitza
in 1937 (and independently by J.F. Allen and D. Misener).2

2The discovery was made at a time of international tensions, and
therefore credentials have been somewhat controversial. An interest-
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He received the 1978 Physics Nobel prize for his landmark
contributions to low temperature physics, of which this dis-
covery clearly was an outstanding one. We see that com-
pared to the standard phase diagram of Figure III.2.4, in
the low temperature region the superfluid phase has been
added. Kapitza discovered that phase by just lowering the
temperature of some 4He vapor under the standard pres-
sure of one atmosphere, so he came from the right at the
height of the horizontal red dotted line in the diagram. He
first crossed the ‘standard’ transition from vapor to fluid,
but then at a temperature of 2.17 K at the so-called � point
he witnessed the transition to the superfluid phase. The
ordinary triple point had ‘opened up’ and with the appear-
ance of the new phase it split up into two triple points. A
superfluid displays the curious property of frictionless flow,
and therefore behaves rather ‘creepy’ in the literal sense.
If you watch an open container filled with superfluid, you
will see the fluid all by itself creep over the rim and run
down the outside of the vessel. In Figure III.2.11 we have
sketched an experiment along these lines: the self emp-
tying mug! Thank heaven there is friction! Thank heaven
that our superdrinks are not superfluids!

Magnetic order

Magnetization. Magnetic properties of atoms are the com-
bined result of three components: (i) the electrons have
spin with an associated magnetic moment of one Bohr
magneton µb; (ii) the atomic orbits of electrons correspond
to states with a magnetic quantum number m, which means
that the magnetic moment of the orbit equals mµb; and (iii)
finally there is the nuclear magnetic moment which turns
out to be a factor thousand smaller. We will not enter
in any detailed discussion of how these interact but will
just assume atoms, ions, or electrons to have some over-

ing historical account can be found in S. Balibar, The discovery of su-
perfluidity, Journal of Low Temperature Physics, Vol. 146, Nos. 5/6,
2007.

all spin or magnetic moment. For the spins we can now
also introduce an order parameter, it is called the magne-
tization M(x) , the average magnetic orientation of certain
number of spins around the point x . If the temperature is
high we know that because of the random orientation of
the spins, the average magnetization hM(x)i in the ground
state will be zero. But if we cool the medium down, then the
disturbances in the lattice become smaller and the mag-
nets will feel each other and can lower the energy of the
state by aligning, in which case a phase transition will take
place.

Phase transition at the Curie point. At a certain temper-
ature called the Curie point there will be a phase transition
to a state where all spins will spontaneously align. Order
is spontaneously created and the order parameter will ac-
quire a non-vanishing constant, that is to say a position
independent value: hM(x)i = m0 6= 0 . This emergent
form of order is called spontaneous magnetization, and
the system is in a ferromagnetic phase and as a whole
behaves like a single big magnet. So, we may conclude
that ordinary permanent magnets are made of materials of
which the Curie temperature lies far above room temper-
ature. And as expected the order parameter thus signals
whether the system is ordered or disordered.

Low energy modes: spinwaves. The low energy modes
associated with the magnetic spins in a ferromagnet are
the so-called spin waves. You may compare them to the
waves that a light breeze can excite in a field of grain as we
described in the section on symmetry breaking in Chapter
II.6. These are again collective excitations of the ordered
spin system with a wavelength that is long compared to
the distances between the spins and because they have a
long-wavelength they are low energy excitations indeed. If
we quantize these waves, we get particle like excitations
or quasi-particles called magnons.
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The Ising model

Let us take some time to discuss an truly iconic model
that instantly comes to the mind of any physicist when you
mention the word phase transition. It is called the Ising
model, cherished for its simplicity and its depth, which was
introduced by Wilhelm Lenz in 1920. He suggested it as a
problem to his student Enst Ising, who then solved the one-
dimensional version of it and found that it had no phase
transition. Moreover, he erroneously concluded that there
would be no phase transition in any dimension. How ironic
that Ising’s ‘fame’ in physics is based on drawing a wrong
conclusion from an elementary calculation. It is precisely
that two-dimensional version we are going to discuss, which
has for a long time been the canonical model for a (second-
order) phase transition. It was solved exactly by Lars On-
sager in 1944, who reportedly at a conference just wrote
down the exact answers on a black board without further
explanation, leaving the learned audience flabbergasted,
and with a nice problem to work on! The problem of figur-
ing out how he did it. It is one of those models to which
a tremendous amount of work has been devoted. It has
popped up in all subfields of physics and beyond.

As mentioned before, we distinguish the ordered ferromag-
netic phase where all spins are aligned, and the non-mag-
netic phase, where the spins point in random directions.
Here the order does not concern the spatial positioning but
the orientation of the spins. As we pointed out, in the or-
dered phase the magnetization is some non-zero constant
while in the disordered phase it is equal to zero. To be
precise there is a different ordered phase which is called
anti-ferromagnetic, where the spins at neighboring sites
are anti-aligned.

The Ising Hamiltomian. The classical Ising model has
an infinite array of spins that can only point up or down.
A two-dimensional Ising model configuration is depicted in
Figure III.2.12. The spins �i = ±1 only interact with their

Figure III.2.12: Ising model. A two-dimensional Ising system
of spins that can only point up or down. Here the system is in
a disordered state, where the spins are randomly pointing up
or down. If you think of these as nuclear spins, you see that
the spins are neatly ordered spatially on a cubic crystal, but that
the spin orientations are disordered. So, order and disorder can
peacefully coexist if they refer to different degrees of freedom.

nearest neighbors, and the contribution to the energy of
any pair of neighbors is,

H(�) = -
X

ij

Jij �i�j,

where Jij is the interaction parameter. If Jij = 0 there
is no interaction, whereas if the coupling is constant and
positive, Jij = J > 0 , then we have a ferromagnetic sys-
tem, and if the constant J is negative we have the anti-
ferromagnetic case. If the couplings Jij are chosen ran-
domly, then we speak of a spin glass. For simplicity we
have left out a term for the coupling of the spins to an ex-
ternal magnetic field. Let us consider the ferromagnetic
case, If a pair of neighbors has the same spin, the con-
tribution to the energy is minimal, whereas if the spins
are opposite the contribution is maximal. The total energy
equals the sum of all pair contributions. For the ferromag-
netic case, the minimal energy configuration is therefore
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the one where all spins are the same, either all up or all
down.

The Ising partition sum. The probability for a configu-
ration to occur is given by the Boltzmann factor we intro-
duced in the section on Statistical Physics in Chapter I.1:

P(�) =
e-�H(�)

Z�
,

where the normalization factor Z� is the partition sum:

Z(�) =
X

�

e-�H(�) .

Having the probability distribution of configurations, we can
define averages, or expectation values. The free energy is
defined as F = -�-1 logZ , and the thermal equilibrium
states correspond to the minima of the free energy.

Ising magnetization. To obtain the magnetization we first
average the spin over all sites in a given configuration:
M� =

P
i �i/N , the thermal average is then given by

M = hM�i� =
X

�

M� P� .

In Figure III.2.13 we have depicted three configurations,
representing the ordered and disordered phases, wich a
critical configuration in between.
Order. In the ordered, low temperature phase the domains
are macroscopic (the lowest energy configuration is just a
single domain with all spins up or all spins down). In the
ordered phases the magnetization would be M 6= 0 .

Disorder. On the right we see a configuration correspond-
ing to the high temperature disordered phase, where there
are basically no domains. The individual spins are just
randomly pointing up or down, and consequently the mag-
netization would equal zero.
Critical. In between is the critical case where the temper-
ature equals the critical temperature Tc , where there are
domains of all possible sizes. In fact this critical case is
special in the sense that it is scale invariant, meaning that

Figure III.2.13: Magnetic order and disorder. We see the states
of an Ising model without external magnetic field. At low temper-
atures the state is ordered, and spins are aligned over macro-
scopic distances, while at high temperatures the state is disor-
dered and there are no domains, just individual spins randomly
pointing up or down. In between there is a critical point, where
there are domains of all sizes. The critical Ising model is scale
invariant.

if you enlarge the picture and cut out a piece of the original
size, it would not be possible to distinguish it in a statistical
sense from the original one. It is self-similar in a statistical
sense.

Mean field theory. One can make an illuminating ap-
proximation of the model as a mean field theory. One
approximates the spins by the local magnetization field
M(x). Clearly this approximation will break down for small
distances. It is possible to write an effective free energy
F(M,T) in terms of this field M(x) this is known as the
Landau theory. Because of the symmetries in the model it
will only have even powers of the field and in low order it
will look like:

F(M,T) = µM(x)2 + �M(x)4 , (III.2.1)

where the parameter � > 0 (the free energy is bounded)
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Figure III.2.14: Second-order transition. We have plotted the
free energy F as a function of the order parameter M (mag-
netization) for three values of the temperature. At T > Tc the
symmetric minimum is at M = 0 (no magnetization). At T < Tc
the minimum is at M 6= 0 (spontaneous magnetization), and the
system will ‘choose’ the red or the blue minimum. This is an
example of spontaneous symmetry breaking.

and the other parameter µ has a temperature dependence
which near the critical point is given by µ = µ0(T - Tc).
In Figure III.2.14 we have plotted the free energy F(M,T)
of the system as a function of the average magnetization
and the temperature. We see from the figure that the mini-
mum of the free energy for T > Tc yields the value M = 0 ,

and for T < Tc we see that the minimum of the free energy
corresponds to a non-zero value for M. The latter is the
situation where the symmetry of F is spontaneously bro-
ken in the sense that the system must choose one of the
two degenerate groundstates, with all spins up or all spins
down. For T = Tc the system is in the critical state, where
the free energy curve flattens out (µ = 0). The vanishing of
the quadratic curvature term means that the spin wave ex-
citations have effectively a zero mass (they are ‘gapless’).
And this is what gives rise to the power law behavior of the
correlation functions as we will discuss next.

Figure III.2.15: Ising model phase diagram. The vertical axis
is in fact the phase diagram of the Ising model (without external
field). It has only one control parameter which is the tempera-
ture. We have plotted the average spontaneous magnetization
as a function of temperature. If we lower the temperature the
minima of the free energy in the previous figure trace out the
blue and red curves giving M for T < TC.

In Figure III.2.15 we have summarized the results. Along
the vertical axis we have a one-dimensional phase dia-
gram with temperature as the only control parameter. For
low temperature the phase is ordered, and above the crit-
ical temperature it is disordered. In the same graph we
have plotted the order parameter, which is the magnetiza-
tion M along the horizontal axis. The magnetization tends
to M = ±1 as temperature goes to absolute zero. We
see that the order parameter as a function of temperature
changes continuously in this case, which means that we
are dealing with a second-order phase transition.

Correlation functions. A meaningful probe of order and
in particular of critical behavior are the spatial correlation
functions for large distances. For the Ising model, one cal-
culates the thermal average of the product of two spins �i
and �j but now as a function of their separation |i- j| . The
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Figure III.2.16: Correlation functions. The typical behavior of
the spin-spin correlation function h�i�ji� in the three regimes
of the Ising model.

expression is as follows:

f(i- j) = h�i �ji� . (III.2.2)

It is simplest to first consider the case at low temperature
where there is long range order. This would be reflected
in the correlation function to be a non-zero constant. On
the other hand, if the system is disordered one expects
the correlations to be short range, and indeed the the cor-
relation function can be calculated to decay exponentially
over a characteristic length called the correlation length
⇠ . We have summarized the distinct functional behavior
of the correlation functions in the three regimes in Fig-
ure III.2.16.

Critical behavior. The behavior at the critical point, the
phase transition itself, is of great interest. It turns out
that the transitions show a high degree of universality The
correlation functions for example, behave as power laws,
which means that for large x they behave like f(x) ' x↵ .

Such functions are characterized by a power ↵ which is

called a critical exponent. These exponents express the
characteristic quantitative behavior of correlation functions
in the critical state, between the ordered and disordered
phase. In fact as we approach the critical point from the
disordered side on finds that the correlation length ⇠(T) di-
verges, so, limT!Tc ⇠(T) ! 1 . This is precisely why the
exponential decay law in the disordered phase changes to
a power law at the critical point.

Universality. It turns out that different types of systems
have identical critical behavior meaning that they have the
same set of critical exponents at the critical point. These
exponents do not depend on the microscopic details of
the model but rather on the number of dimensions and
the symmetries of the system. The fundamental symme-
try underlying second-order phase transitions is scale and
conformal invariance, which can then be extended in var-
ious ways to obtain the different universal behaviours. So
the critical behaviour of the 2 dimensional Ising model can
for example be described on a free massless (Majorana)
fermion field. Which means that the spin and energy corre-
lation functions of the two models show exactly the same
critical exponents. So, it is also in this field of research
that symmetry arguments can greatly advance your un-
derstanding observed phenomena. The critical exponents
label the representations of the group of certain conformal
symmetries in two-dimensions.

Anti-ferromagnetism. Now in magnetism there could be
another type of order referred to as anti-ferromagnetism,
where the neighboring spins tend to point in opposite di-
rections. This corresponds to choosing the coupling pa-
rameter J in the energy expression to equal J = -1 . The
ordered, low temperature, lowest energy configuration now
corresponds to a red/blue checkerboard configuration. And
the magnetization as defined above would also give zero
for this ordered phase. This just illustrates the fact that one
has to have some clue or make an educated guess, about
what the state looks like before one can come up with a
sensible type of order parameter. Here we can the repair
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Figure III.2.17: The loop representation of the Ising model. We
illustrate an equivalent or ‘dual’ representation of the Ising model
where the states are represented as connected oriented paths
along the links of the lattice. For any possible pair of neighbors
there is a unique prescription. If the paths cross at some vertex
there are always two arrows pointing towards and two arrows
pointing away from the vertex.

the definition of the magnetization quite simply by adding
an extra minus sign on all odd sites, for example. And –
as we will see – there are ordered phases in the quan-
tum regime where there no local order parameter can be
defined.

Domain walls and defects. If we think again of the en-
ergy associated with a neighboring pair, we have " = 0

if the spins point in the same direction and " = 1 if they
are different. Now with this we can construct a dual repre-
sentation of the Ising model, in terms of oriented contours
along the edges of the (dual) lattice. We have depicted this
correspondence in Figure III.2.17, For any pair of neigh-
bors we draw an arrow along the edge they have in com-
mon if the spins are opposite, or no arrow if the spins are
the same. If you now look at a large configuration, then the
spin configuration uniquely corresponds to a configuration

of oriented lines. There is one subtlety that is clear from
the last picture in the figure, if two lines cross, then you
always have two arrows pointing in and two out, and this in
turn means that there are two options for how to connect
the lines at the crossing. If we have a blue domain inside
a red domain, that would yield a closed boundary oriented
anti-clockwise, and if we exchange the colors, the orienta-
tion would flip to clockwise. This representation in terms
of these boundary contours or domain walls immediately
makes manifest where the energy is located. The walls
cost energy (because they coincide with a pair of differing
neighbors), and the total energy equals the total length of
the domain walls. In the ferromagnetic ground state there
are no walls, and therefore a domain wall is called a de-
fect. It is a topological defect, away from the boundaries
of the sample the walls form closed loops which cannot
break. The loops can grow or shrink, they can join or break
up, they can disappear or being created, but a wall cannot
have an endpoint in the sample. So, you can also think
of the Ising model as a ‘gas of loops’, with the additional
property that the loops don’t intersect. You may check this
by looking at any would-be intersection of the walls and
note that the two ingoing arrows can be connected to the
two outgoing arrows only in two ways. Drawing these one
finds that they do not cross, indeed. the loops avoid them-
selves and others.

A dual representation. The two dual representations,
one by spin and the other by loop configurations, provide
two complementary perspectives on order versus disor-
der. Starting in the ferromagnetic phase from zero tem-
perature, there are no defects, and it is by raising the tem-
perature that the loops are created, and by the time we
are in the disordered state, the loops have ‘condensed,’
there are defects everywhere. A maximal energy state is
one where there is a defect on every link which happens to
correspond to a perfectly anti-ferromagnetic state. And in-
deed changing the sign of the neighbor-coupling J exactly
exchanges the highest and lowest energy states of which
there are two each.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 506 — #536 i
i

i
i

i
i

506 CHAPTER III.2. THE SPLENDID DIVERSITY OF CONDENSED MATTER

Figure III.2.18: US voting patterns. An Ising model represen-
tation of voting patters of the 2012 and 2016 elections. In the
bottom figure you see the shift. Indeed, the swing states are
on the boundary, the shift involves moving the 2012 boundary. If
you create a new island, you are considered a defect and it costs
a lot of energy, there is a high threshold. Building domain walls
is also costly but not as expensive as creating a new domain.

These considerations illustrate a quite general principle,
that defining a certain type of order in a system usually
also implies the existence of certain types of defects, both
topological and non-topological. This is not only true for
spin systems but for most forms of order. As will be dis-
cussed in the next section, crystals for example have all
kinds of defects, of which the dislocations and disclinations
are the most well-known. These defects have their own dy-
namics, for example if we prepare the spin system starting
from high temperatures by quenching it, meaning cooling it
fast, then the loops will not have time enough to annihilate
and the defects get frozen in. If, on the contrary, we cool
it slowly, then we may end up with a perfect ground state
as the defects had enough time to pair up and annihilate
each other.

Swing states

G: Hey Orange! I really like that stuff you are talking
about.
O: Thank you Green. It took me quite some effort
to master this subject, so I am glad to hear you like
it.
G: You know, Orange. I think this stuff may have
great applications.
O: But Green, this is pure science just for the sake
of ....
G: All that blue and red, that order and disorder,
those arrows up and down. It really did make me
think of the elections!
O: But Green, ...
G: Those walls, you know. And how hard it is to cre-
ate blue bubbles in the red domains.
O: But Green, ...
G: You see, if you take the voting patterns of 2012
and you take those of 2016, and you look at what
happened.
O: But Green, ...
G: Yes, Orange, yes! Look at that, the swing states
are right there bordering on the walls. That’s exactly
where all their campaign money and energy went,
and yes, that’s where they got the walls moving. Chr
chr.
O: Green! Stop it.
G: And no red bubbles in the blue, and no blue bub-
bles in the red. Just like you said.
O: That’s no science, Green!
G: Hey those swing states are just defects, and
nothing happens elsewhere.
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O: Stop it!
G: I wouldn’t call that a landslide! It’s all in the mar-
gins, Orange. In spite of all excitement and heated
discussions, we are dealing with Ising system at
low temperature, with some domain walls frozen in.
Don’t you think that is a comforting thought.
O: Oh, Green, I wished I never told you.
G: The Ising model of voting! Chr chr. Maybe we
should start working on that phase transition, Or-
ange! I mean, what would it be like to live in an
anti-ferromagnetic country? They call it disorder,
but didn’t you just say that it just a different type
of order? You know, the colors mix well, and I didn’t
see a glass ceiling either. There are so many walls,
that it is just like having none!
O: Oh no....
G: Oh Yes. I think we should start working on 2020
and 2024 elections including terms for fraud and
outcome denial! Chr chr. ⇤

It directly follows from simple energy considerations that it
costs more to create a red site in the middle of a blue do-
main (four units of energy), while moving a red boundary,
which means changing a blue to red site at a boundary
always costs less. From this local energy perspective it
is also clear that domain walls will have the tendency to
straighten out.

Defect condensation and dual order. The state we have
described as disordered, where the spins are randomly
distributed, can be considered from the dual point of view
as a state where there are defects all over the place. If
we were to define a dual order parameter measuring the
average number density of wall segments or links on the
dual lattice, it would be non-zero. In other words, it is a
kind of dually ordered phase where the defects have con-
densed.

Crystal lattices

Symmetry reigns. At low temperatures or high pressure,
atoms (or ions) tend to settle down in periodic arrays which
correspond to a crystal lattice. A characteristic of such a
lattice is that it is periodic, and there is a certain basic ge-
ometric pattern – called a unit cell – that repeats itself over
and over again. So if you move the (infinite) lattice over
a certain distance in certain directions it looks exactly the
same, and the same is true if one rotates around certain
axes by particular angles or reflects the lattice about in cer-
tain planes. The lattice can be characterized by the set of
symmetry operations that leave the lattice invariant. These
operations form intricate infinite discrete groups, consist-
ing of discrete translations and rotations.

Wallpaper groups. The five basic space filling lattices in
two dimensions and their corresponding space groups have
been constructed, they form the so-called wallpaper groups
and there is a total of seventeen of them.

The Bravais lattices. The space-filling crystal lattices have
been classified by the nineteenth century French mathe-
matician Auguste Bravais. In two dimensions there are
five different lattices. In three dimensions there are seven
basic lattices to which special points may be added, mak-
ing a total of 14 Bravais lattices. Not surprisingly there
is an awesome jargon that comes with them in order to
distinguish them, involving terms like cubic-face-centered,
orthorhombic, triclinic, rhombohedral and so on. In par-
ticular cubic-face-centered sounds to me like a fancy AI
surveillance algorithm!

For the 14 space-filling, three-dimensional lattices, the space
groups have been fully classified and everything is known
about all 230 of them. This means that also the point
groups preserving the unit cell in three dimensions are
known and there are 32 of them.
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Figure III.2.19: Symmetries of octahedron. The embedded
octahedron has the same symmetry group as the cube.

X-ray diffraction and more. Crystal lattices can be stud-
ied experimentally by short wavelength photons (X-rays).
The X-rays scatter from the nuclei on the lattice sites and
the scattered waves will interfere with one another. So,
whether we get reflection of diffraction depends on whether
the interference of the many scattered waves is construc-
tive or destructive. The crystal has planes of atoms in
various directions and the photons may be diffracted or
reflected depending on whether their momentum satisfies
certain conditions which are determined by the specific ge-
ometrical properties of the lattice. From the reflection and
diffraction patterns one can then reconstruct the geometry
of the lattice.

This widely applied technique of studying molecular order
whether it is lattices or complicated molecular structures
like DNA3 was invented by the British physicists William

3There is the (in)famous story that Francis Crick and James D. Wat-
son discovered the structure of DNA in 1953 after Maurice Wilkins
had shown them a diffraction pattern measured by Rosalind Franklin
at King’s College London. It held the clue to the spatial structure of the
double helix.

Henry Bragg and his son William Lawrence who shared
the Nobel prize for Physics in 1915. The application of
the technique to the complicated molecules of life was pi-
oneered by Max Perutz, an Austrian refugee, who got a
position at the Cavendish laboratory in Cambridge with
the Braggs. Nowadays we can probe the surface of solids
on atomic scales by advanced microscopes, the scanning
tunneling microscope (STM) or the atomic field microscope
(AFM). But the 3-D imaging is still of the diffractive type.
These probing techniques are – not surprisingly – based
on quantum principles themselves.

There is the remarkable fact that if you want to probe na-
ture at some scale then nature often also provides you with
the tools which are operative at the same scale, that allow
you to build suitable probing devices. It is a matter of giving
and taking. This is true for atoms with visible light, for nu-
clear structure using nuclei (alpha particles), and is true for
genetic manipulation using all sorts of enzymes etc.

Kitchen salt or the cube. Let us now look in more de-
tail at some three-dimensional lattices. A well-known ex-
ample in three dimensions is the kitchen salt or sodium
chloride (NaCl) crystal, which is a simple cubic lattice
with the sodium and chloride atoms occupying alternat-
ing sites (see Figure III.2.20(c)). The point group of the
cubic lattice, which is the symmetry group of the cube,
is surprisingly rich and consists of 24 elements. As indi-
cated in Figure III.2.20(d), it has four threefold axes (rota-
tions around main diagonals), three fourfold axes (around
lines through centers of opposite faces), and six twofold
axis (through centers of opposite edges). This group is
denoted by O and called the octahedral group, because it
is also the symmetry group of the octahedron obtained by
drawing the planes through the face centers of the cube,
as one may see from Figure III.2.19. Indeed, correcting for
the identity element we verify that the group has indeed
1 + 3 ⇥ 3 + 4 ⇥ 2 + 6 ⇥ 1 = 24 elements. The trans-
formations we discussed so far are all rotations, but there
is one more transformation that leaves the cube invariant,
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(a) The Cubic Space Division by M. Escher. It is invari-
ant under translations by the lattice constant a along
the x, y and z axes. ( c� 2023 The M.C. Escher Com-
pany.)

(b) Kitchen salt crystals of about 10 micrometers. Image taken with
environmental scanning electron microscope (ESEM) at 950o C .

(c) The crystal of kitchen salt or sodium chloride (NaCL). It is a simple
cubic lattice with alternating sodium (purple) and chloride (green) ions.
(Source: MIF Univ. of Calgary.)

(d) The symmetries of a cube. It has three fourfold axes (blue), four
threefold axes (red) and six twofold axes (green). The set of all transfor-
mations that leave the cube invariant is the orthohedral group O ; it has
24 elements.

Figure III.2.20: The symmetries of the cube.
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(a) The facets of a diamond are designed to
maximize its reflections.

(b) A cubic face-centered (fcc) lattice cell. (c) A second fcc lattice superimposed at the
point ( 1

4
, 1

4
, 1

4
) in blue.

(d) The resulting diamond lattice as a stacking
of tetrahedra.

(e) The lattice as a stacking of planes with tetra-
hedra (with center).

(f) The lattice stacking of planar triangular lat-
tices.

Figure III.2.21: The diamond lattice. The intricate diamond lattice and some ways to look at it which display different aspects of its
symmetry.
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namely inverting all coordinates, which amounts to mirror-
ing every point of the cube in the origin. This is called the
inversion or parity operation P . If we add this transforma-
tion, we get a group denoted by Oh with 48 elements. This
group is non-abelian (not all elements commute with each
other) as one can easily check.

Diamond. Crystal lattices clearly exhibit intricate and aes-
thetically pleasing features and coincidences. A nice ex-
ample is the diamond lattice which is more involved, and
we explore different perspectives on it in Figure III.2.21.
The structure is built-up of two cubic face-centered (fcc)
lattices shifted with respect to one another (III.2.21(b) and
III.2.21(c)). The result is a perfect three-dimensional stack-
ing of tetrahedra (III.2.21(d) and III.2.21(e)): the corners
are all on the first fcc lattice while the centers are on the
second fcc lattice. The lattice can therefore also be viewed
as a stacking of planes with tetrahedra. One can go one
step further and think of the whole lattice as a stacking
of pairs of strictly identical triangular lattices, one of each
fcc lattice. In Figure III.2.21(f) we show the three top lay-
ers of subsequent pairs, which all belong to the first fcc
lattice. Projecting all the points down along the body di-
agonal, which is perpendicular to the layers one finds that
there are three inequivalent triangular lattices in the figure
corresponding to the blue, red and green layers.

The uses of symmetry. It turns out that the symmetry
group tells us a lot about the physics of the system; it not
only characterizes the stable equilibrium or ground state
but also yields a natural labelling of the low energy modes
that can propagate through the system. The symmetry
teaches us also about properties of the spectrum of elec-
trons. And finally, the symmetry group of the lattice de-
termines the possible lattice imperfections or defects that
may occur.

As we live in three-dimensional space most of us will agree
that our analysis should stop there. The classification of
space groups and lattices in higher dimensions is to be

considered a mathematical pastime at best. But nature
had a surprise in store. Who would have expected that
higher-dimensional regular lattices would rear their heads
also in our three-dimensional world in the guise of so-ca-
lled quasicrystals.

This provides another striking example of the ‘unreason-
able effectiveness of mathematics in the natural sciences,’
which refers to the title of a famous lecture by Eugene
Wigner who got the Physics Nobel prize exactly for his
work on group theory and its many applications in quan-
tum theory. We will return to quasicrystals towards the end
of this section.

Crystalization and symmetry breaking

We introduced and expanded on the concept of symmetry
breaking in Chapter II.6. It has many beautiful applications
in condensed matter, and in particular also in the theory of
crystallography. In this section we explore two representa-
tive examples.

The concept. Suppose one of the atoms in a simple cubic
lattice is of a different type, say it is has a different color,
then we may ask for the transformations that leave not
only the cube invariant but also keep the colored atom in
place. For this case the answer is quite obvious from Fig-
ure III.2.20(d). If we ask which transformations leave not
only the center but also one of the red dots in place, then
we are only left with a single threefold axis. This means
that the rotation group G = O is reduced to, or as is often
said, broken to, H = C3 . This reduction of the symmetry
from a group G to the so-called residual symmetry group
H, which is a subgroup G, means that certain degenera-
cies in the spectrum that occurred in the unbroken situa-
tion will now be lifted. So one could say that breaking the
symmetry allows for less uniformity and more differentia-
tion.
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Symmetry breaking is therefore an invaluable tool to anal-
yse and interpret experimental data. In particular if we
have certain external parameters we can change, like tem-
perature or electric or magnetic fields, it may be that what
appeared as one state breaks up in a set of different states.
Then different states with the same energy may split up
in states with different energies, much in the way we dis-
cussed in Chapter I.4 in relation to the Zeeman effect.
There the spherical symmetry of the atom was broken by
the direction of the external magnetic field, and the spec-
tral line was split because the degeneracy of the states
was lifted. Symmetry breaking may also happen sponta-
neously if one lowers the temperature, as is the case with
‘spontaneous magnetization’ in a magnet as described by
the Ising model. Even without an external magnetic field
the spins may line up because of their local ferrromagnetic
interactions.

You now may also understand that the formation of a lattice
itself, the process of crystallization, is an example of spon-
taneous symmetry breaking. You should think of starting
with a liquid which we envisage as a continuum. If you are
at some point in the liquid it looks the same, independently
of what point you chose, and it looks also the same in all
directions. A simple fluid is therefore said to be homoge-
neous and isotropic. This translates in the statement that
the symmetry of a simple liquid consist of all rotations by
any amount about any axis, and also of translations in any
direction by any amount. Clearly this group is continuous
and is called the Euclidean group E3 of three-dimensio-
nal rotations and translations we mentioned before. It is
the symmetry group of empty three-dimensional Euclidean
space. So crystallization is a process where the symme-
try gets broken from the Euclidean group to the symme-
try group of the lattice, which is a discrete subgroup of
E3.

Goldstone modes. We have in the section on symmetry
breaking of Chapter II.6 mentioned how breaking of a con-
tinuous (global) symmetry leads to the existence of mass-

less modes. This is precisely what happens upon crystal-
lization, where the Euclidean group gets broken to the dis-
crete lattice group. The low energy modes correspond to
the sound modes that can propagate through the crystal.
They are the Goldstone modes which are associated with
the breaking of the continuous translational symmetries of
the perfect fluid. In Figure III.2.22 we give the pictorial ac-
count. From (a) to (b) the crystallization takes place. In
Figure (c) we have sketched a sound mode corresponding
to a longitudinal pressure or density wave that propagates
through the crystal.

Topological defects. There is an additional observable
consequence of broken symmetry in the situation we are
discussing. Broken symmetries manifest themselves not
only in lifting degeneracies and the presence of particu-
lar low energy modes, but also in the presence of defects,
called lattice defects in the case at hand. The theory pre-
dicts that if we break the continuous group E3 to the dis-
crete group of the cubic lattice, we have line defects that
we in principle can label by the elements of the symme-
try group of the lattice. In a crystal we typically distinguish
two kinds: translational defects called dislocations and ro-
tational defects called disclinations. We have illustrated
them for a two-dimensional lattice in the pictures (d) and
(e) of Figure III.2.22.

Dislocation. In the bottom left Figure III.2.22(d) the dark
atom is special, since it marks the endpoint of an extra
vertical layer that does not go all the way up. Note that far
away from the marked atom the lattice has restored itself
to its normal unperturbed form. The marked atom is an
irregularity, a defect. How do you quantify the defect? In
this case you should compare the near environment of a
normally positioned atom with that of a defect. If you walk
around a normal atom like the one marked in the upper
right corner, following the blue arrows you see that it takes
8 steps to get back. If you take 8 steps around the defect
site, you go one step too far, and you have to move back
by one lattice vector (marked in yellow). This translational
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(a) A gas or liquid made of simple atoms. It
has no long range order and therefore effec-
tively a continuous translational and rotational
symmetry.

(b) Upon cooling the atoms may ‘freeze’ and
form a regular lattice. The symmetry corre-
sponds to a space group consisting of discrete
translations and rotations.

(c) A sound wave propagating horizontally.
Sound is a periodic density fluctuation in the
direction of the motion (longitudinal). The
atoms are coherently moved out of their equi-
librium position.

(d) The empty site is a translational defect,
also called a dislocation, because when going
around it in 8 steps one’s position is shifted by
one lattice distance. As indicated, away from
the defect the lattice is restored.

(e) A rotational defect (disclination) related to
a rotation over an angle of 90o . One sees the
defect angle if one carries a little vector tied
to the local lattice frame around the defect.
Starting on the left we obtain a defect angle
of 90o .

Figure III.2.22: Defects and broken symmetry. We show two types of lattice defects in a simple two-dimensional crystal.
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defect is thus labeled by a translation vector (also called
a Burger’s vector), and that elementary translation corre-
sponds to a basic element of the discrete translation part
of the lattice group. One encounters this one step disloca-
tion on any loop around the defect location. Therefore, the
defect is uniquely labeled by this group element.

It is easy to imagine that in the process of crystallization
such dislocations may form spontaneously. The number
of dislocations one finds will depend on how fast we cool
the system down. It is clear from the picture that the de-
fect locally deforms the lattice and therefore will carry a
certain amount of extra energy. The dislocation in two di-
mensions is a point defect, and it is stable for a topological
reason. You may be able to move it around, but you can-
not smoothen it out locally. You can think of the dislocation
to be connected (via the extra layer) to either the bound-
ary of the sample or to an ‘anti-defect’, which means that
these defects are locally stable but can annihilate with an
anti-defect.

Disclination. In the bottom right picture, we show a discli-
nation or rotational defect. This defect is labeled by the
‘defect angle’ you encounter as you parallel transport a lo-
cal lattice vector (or frame) around the defect. If in the fig-
ure we take the local blue vector smoothly along the green
path around the defect and return to the starting position,
the vector has rotated over an angle of 90o, and again
this is an element of the symmetry group of the lattice.
This analysis reminds us of our considerations in the sec-
tion on curved spaces in Chapter I.2, where we discussed
this characteristic and called it a non-trivial holonomy. It
requires a lot of energy to make a disinclination. They
may spontaneously form in small samples, and alterna-
tively you can also imagine ‘growing’ the crystal starting
from the impurity outward. That way the fivefold symmetry
would be introduced ‘by hand.’ It is not a lattice in the nor-
mal sense because the translational symmetry is broken
right from the start of the growing process, that is the price
for having a fivefold rotation symmetry in the plane.

Liquid crystals

We have alluded to the importance of the shapes of con-
stituent particles for understanding their collective behav-
ior. This hidden underlying geometry is one of the keys
to the diversity that is displayed in properties of materials.
In the previous section we showed that these shapes can
often be translated into symmetries or their breaking. A
splendid example of this are the types of order/disorder
that arise in soft condensed matter physics, in particular
the subject of liquid crystals and nematics. With the lan-
guage of symmetry at hand we can give some qualitative
characteristics of the materials straightforwardly. The ex-
amples are quite easy to visualize and are used to further
illuminate the rather abstract notion of symmetry breaking.

Partial order. As mentioned, an ordinary lattice is an ex-
ample where we break the continuous Euclidean group E3

down to an infinite discrete group of translations and ro-
tations. It is not so hard to imagine that media can have
strange mixtures of order and disorder which are in be-
tween a liquid and a crystal. In such cases the transla-
tional symmetry is not broken but the rotational symmetry
is: the system is partially ordered. These types of sys-
tems can easily be visualized by assuming that the build-
ing blocks have simple geometric properties, for example
they are like tiny rods or pancakes or tetrahedra.

Nematics and smectics. In Figure III.2.23 we illustrate var-
ious possibilities if the constituents are rod-shaped. They
can form an ordinary liquid or a fully ordered crystal, with
both translational and rotational order. In Figure III.2.23(c),
however, they form a two- or three-dimensional structure
which preserves orientational order with translational sym-
metry, which is a liquid crystal called a nematic. The next
picture shows another realization: the rods are oriented
along the z direction. Furthermore, the rods form strict
horizontal layers, but within the layers there is free motion.
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(a) A nematic liquid made of simple rod-shaped
atoms. It has no long range order and therefore
effectively a continuous translational and rota-
tional symmetry.

(b) Upon cooling the atoms may ‘freeze’ and
form a regular lattice. Translational and ro-
tational symmetries are broken to a discrete
space group consisting of discrete translations
and 180o rotations only.

(c) A liquid crystal in which there is still com-
plete translational symmetry, but the rotational
symmetry is broken. Such a phase is called ne-
matic. There is no positional order but there is
orientational order.

(d) This system is called a smectic. It is
anisotropic, as it is made up of independent lay-
ers in which the horizontal translational symme-
try is still manifest, but in the vertical direction it
is ordered. There is complete orientational or-
der.

(e) A rotational defect (a vortex) as it exists in
an ordered spin system (represented by ordi-
nary arrows), related to a rotation over an angle
of 360o . This is observed if one follows the di-
rection of the spin vector if one moves around
the defect.

(f) This is a rotational defect in a nematic of
rods. It is called a half-vortex as it corresponds
to a defect angle of 180o . This defect is not pos-
sible in a spin system like in (e), going around
the direction of the spin arrow would point in the
opposite direction.

Figure III.2.23: Nematics. Various types of two-dimensional order in a nematic system made up of rod-shaped molecules.
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This structure is called a smectic. A third possibility (not
depicted) is called a uniaxial nematic, where the rods are
vertically stacked in thin filaments. In the direction of the
filaments there is the translational order of stacking, but
there is no horizontal order across the filaments.

Defects. In Figures III.2.23(e) and III.2.23(f) we have de-
picted two rotational defects, the first one is an ordinary
point defect one may encounter in a two-dimensional spin
system or vector field, but of course it can also exist in a
nematic. The signature of the defect is that parallel trans-
porting a vector along a closed loop around the defect the
spin rotates over 360o as indicated in the figure. The last
picture shows a ‘half-vortex’, and we see that the configu-
ration is smooth although the rod rotates only over 180o

when taken around. So, it is a point-like defect. This
configuration will not form in a spin system because there
would necessarily be a discontinuity along a line starting
from the defect and ending at the boundary. Such a line
would cost much energy and that suppresses the forma-
tion. One way to look at this is to say that the half- vortices
are ‘confined’ in the ordered two-dimensional spin system.
Indeed, if one cools a spin or nematic liquid rapidly through
the transition one usually finds many of the allowed point
defects in the (partially) ordered system.

We have illustrated the idea of liquid crystals with a very
simple example, but it should be clear that there is an un-
limited arsenal of variations and alternatives that has very
actively been pursued for example under the name poly-
mer physics. As we mentioned Pierre-Gilles de Gennes
of the College de France made many invaluable contribu-
tions to the early exploration and further development of
this field of research.

Quasicrystals

Tilings of the plane. In Figure III.2.24 we have depicted
some tilings of the plane by simple regular polygons.4 It
works perfectly for triangles, squares and hexagons, but
with pentagons (Figure III.2.24(c)) it doesn’t quite fit and
one cannot tile the plane. A consequence of this is that
in the diffraction patterns there can be no signature of a
fivefold symmetry. In three dimensions something simi-
lar happens, since it is not possible to fill space by stack-
ing dodecahedra which do have fivefold symmetries. The
Bravais lattices we discussed before do not admit? five-
fold axes and therefore the diffraction patterns of periodic
crystals can only have two-, three-, four-, and sixfold sym-
metries and not have a fivefold symmetry.

It was a big surprise therefore, when in 1982 the Israeli
physicist Daniel Shechtman actually observed a clear dif-
fraction pattern that appeared to come from a perfect crys-
tal but nevertheless showed a manifest fivefold symme-
try, like the pattern displayed in Figure III.2.26(c). How
could that be? Could there be a nice Bragg diffraction
pattern coming from some non-periodic structure? Yes
indeed, it turned out that a nice but not perfect diffrac-
tion pattern could be generated not only by a perfectly
periodic, but also by a non-periodic structure. The sys-
tem of Shechtman was clearly perfectly ordered, other-
wise there would not be such a clear diffraction pattern,
but could not be periodic, because that is incompatible with
the fivefold symmetry. With his observations the new field
of quasi(periodic)-crystals was born. Shechtman received
the Nobel prize in Chemistry in 2011 for his remarkable
discovery which caused a paradigm shift in the well-esta-
blished field of crystallography.

Non-periodic tilings. An instance of a quasi-periodic struc-
ture is a tiling of the plane by two types of rombhi, de-

4A regular polygon has equal angles and is equilateral.
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(a) A triangular tiling of the plane. (b) A square tiling of the plane.

(c) The plane cannot be filled with pentagons. (d) A hexagonal tiling of the plane. Adding the centers would make it a
triangular lattice like (a) again.

Figure III.2.24: Polygon tilings. Possible and impossible polygon tilings of the plane. The regular tilings have discrete translational
and rotational symmetries plus reflection symmetries in certain planes.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 518 — #548 i
i

i
i

i
i

518 CHAPTER III.2. THE SPLENDID DIVERSITY OF CONDENSED MATTER

(a) The projection method to obtain a non-periodic tilings. A strip is con-
structed shifting the basic cell along the subspace T on which one wants
to project, and the white segment (subspace) is the intersection of the
strip with T? .

(b) All lattice points in the strip are projected on T producing a non-
periodic ‘tiling’ of the red line (space).

(c) A pentagon filled with six smaller pentagons. Embedding six pen-
tagons into a larger one can be repeated indefinitely, to generate the
Penrose tiling P1.

(d) The Penrose tiling P1 . The tiling is self-similar and basically a fractal.
Translational invariance has been given up in favor of scale invariance.

Figure III.2.25: Non-periodic tilings. Non-periodic but scale invariant tilings of the line and of the plane.
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picted in Figure III.2.26(a). This tiling has an approximate
fivefold local symmetry. The mathematics of these non-
periodic tilings has been developed by the British mathe-
matical physicist Roger Penrose in the early 1970’s.5 They
are remarkable in that there is no translation which leaves
the tiling invariant. They can have reflection symmetry and
for example a fivefold rotation symmetry. But the Penrose
tilings have another more subtle so-called scaling symme-
try, which means that from any point in the tiling you can
blow up or shrink the tiling by a certain amount and it will
fit again. This means that such patterns are self-similar:
they repeat themselves on larger and larger scales and
are therefore a special kind of so-called fractals.

A one-dimensional Fibonacci tiling. One way to obtain
quasicrystals or quasi-periodic tilings is by projecting reg-
ular periodic lattices from higher dimensions. We have il-
lustrated this in Figure III.2.25. The top two pictures illus-
trate the method of going from a simple two-dimensional
square lattice to a non-periodic one-dimensional ‘lattice’.
One first defines the ‘physical’ one-dimensional space T

like the red line in the figures. In this example the line has
a slope 2/(1 +

p
5) , which is equal to the inverse of the

Golden Mean. This slope is an irrational number which
ensures that it will never go through a point of the lattice
and that guarantees that the sequence is not periodic. The
following step is to shift the two-dimensional unit cell along
T , and this defines the light shaded strip along T . Next
one projects all lattice points in the strip parallel to the or-
thogonal subspace T? on T and one gets a non-periodic
covering of the line by line segments of only two distinct
lengths, being the two different one-dimensional tile types.
The sequence of short (s) and long (l) segments forms a
so-called Fibonacci chain: sl, sll, slsll, sllslsll, . . . .

Each next entry of the sequence is obtained by joining
the previous two, which makes the sequence as a whole
‘self similar’. Every finite sequence is repeated an infinite

5Penrose received the Nobel prize for Physics in 2020, not for his
‘tilings’ but for ‘his discovery that black hole formation is a robust pre-
diction of the general theory of relativity.’

number of times, but that does not imply that the chain
is periodic. There is also an alternative way to construct
the sequence through some ‘growing’ algorithm. This is
a general method that can be used to generate any Pen-
rose tiling and is referred to as the substitution or inflation
method. This is beyond the scope of this book, and we will
not discuss it in any more detail.

The two-dimensional Penrose tiling P1. Let me now give
you an idea how one can obtain a non-periodic tiling in
two dimensions with a fivefold symmetry by the projection
method. We start with a five-dimensional simple cubic lat-
tice. This lattice evidently has a fivefold symmetry rotating
about the diagonal of the hypercube, where the corners
on the five coordinate axes are rotated into each other.
This is just like the threefold axes of the three-dimensional
cube depicted in Figure III.2.20(d). We choose the physical
space as a plane that is orthogonal to the fivefold axis. We
then move the hypercube over the plane to obtain a five-
dimensional layer. All lattice points and edges in that layer
can now be projected orthogonally on the two-dimensio-
nal physical space, and then a tiling like the Penrose tiling
P1 of Figure III.2.25(d) results. The figure shows that P1
needs four types of tiles to fill the plane: the ‘pentagon’, the
‘star’, the ‘boat’ (half star) and the ‘lozenge’. The tiling has
an approximate ‘local’ fivefold rotational symmetry.

The projection method allows us to generate all the two-
and three-dimensional Penrose tilings. From the figure
one may correctly guess that also the P1 tiling also can
be constructed from a concentric ‘growing’ algorithm. Not
surprisingly the topic of quasicrystals has given rise to a
prolific mathematical literature.

The projection method is due to Paul Steinhardt of the
University of Pennsylvania, while the growing algorithmic
approach was worked out in detail by the British mathe-
matician John Horton Conway and Roger Penrose him-
self.
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(a) A quasi-periodic tiling of the plane with fivefold symmetry with two
types of rhombi. The sharp angles of the rhombi are 72 and 36 degrees.

(b) The (Penrose) quasi-periodic tiling (P3) of the plane with a ‘local’
fivefold symmetry. It is possible to completely cover the plane by this
arrangement with only two different types of tiles.

(c) The diffraction pattern of a quasicrystal (the Al16Mn alloy) having a
fivefold symmetry.

(d) The calculated diffraction pattern from a projected higher-dimensio-
nal lattice, in a direction orthogonal to a fivefold axis (as in Figure (b)).

Figure III.2.26: A quasicrystal with fivefold symmetry.
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Chapter III.3

The electron collective

Bands and gaps

Electron states in periodic potentials

Two limits. If the nuclei are positioned on the sites of
some regular cubic or hexagonal crystal lattice, the elec-
trons no longer move in a spherical electric field of a single
nucleus which would give rise to the atomic bound state
orbits, rather the electrons experience a periodic electric
potential due to the nuclei on the lattice. You may imagine
some set of energy wells with a characteristic depth -V0

separated by a distance a . To get an idea of what may
happen in this situation we can approach it from two sides
as I indicated in Figure III.3.1.

The first approach starts on the left-hand side where we
assume that the separation a of the nuclei on the lattice
would be large compared to the sizes of the electron clouds
of the individual atoms. Then the electron states stay lo-
calized around each atom and would maintain the typical
atomic spectrum as given on the left. For a solid of N
atoms each level would be N-fold degenerate. Now if we
start making the separation a smaller, then at a certain
point the clouds of ing atoms would start overlapping, and
the electrons would start feeling each other’s presence due
to both their charge and the exclusion principle. This re-
pulsion would deform the clouds and therefore the energy

Figure III.3.1: Energy levels, bands and gaps. For individual
atoms (l), free electrons (r), and for a periodic lattice of ions (m).

levels would start to split. As a consequence energy bands
of narrowly split levels start showing up in the spectrum as
indicated on the diagram in the middle.

We could also approach the problem from the right-hand
side where we start with V0 small. Then we would just
have the spectrum of free electrons moving through space,
and these can have any energy. In other words, the spec-
trum is continuous as indicated in the diagram on the right.
If we let the potential barrier grow, energy gaps would open
up and we would again end up with the spectrum in the
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Figure III.3.2: Position-momentum duality. In this figure we ex-
plain the real space- momentum space duality in the case of a
periodicity with period a in the potential for example. We know
position space we have R = -1  x  1 while the free parti-
cle momenta are also unbounded R = -1  k  1. Working
top down: (i) divide x-space up in identical pieces of size a which
are periodic so we can think of them as little circles (ii) relabel
the coordinates a map x = ja + 'a/2⇡ . on a pair (', j) where
S1 = 0  ' < 2⇡ is the angular coordinate of a circle with ra-
dius a/2⇡, and j 2 Z an integer with -1  j  1.

middle. So coming from the left it is bands that form and
coming from the right it is gaps that open up.

Periodicity and the reciprocal lattice. Let us consider
the one-dimensional case where the electrons will move in
the periodic potential of the ions on a lattice. The periodic-
ity implies an invariance of the potential under translations
over the lattice distance a. And the electron wavefunctions
will then carry certain representations of that symmetry.
The fact that the potential is periodic does not mean that
the wavefunctions themselves have to be periodic. The
situation is similar to the case of the single atom where
the potential is spherically symmetric around the nucleus,
but the quantum states are generally not spherically sym-

metric. They form representations of the rotation group
labeled by the quantum numbers l and m.

The situation we have depicted of the right hand-side of
Figure III.3.1 is illuminating. Let us consider the free par-
ticle limit of the spectrum and think of them as states in a
periodic (though vanishing) potential. This perspective is
visualized in Figure III.3.2 where the top and bottom half
are dual to each other. We start in ordinary position x-
space which in one dimension is just the real line R . We
think of it as a periodic sequence of intervals of size a, the
lattice distance. This means that we interpret periodic x-
space as a product of a circle with circumference a and
a infinite lattice ⇤ = Z with points xj labeled by an inte-
ger j and where xj = ja . So we may now quantize the
free particle on this product space, and try to recover the
free particle spectrum on the real line, being a continuous
spectrum -1  k  1, as indicated by the real line
at the bottom of the figure. The free particle quantization
on the circle of radius a yields states that correspond to
the discrete ‘reciprocal’ lattice ⇤⇤ = Z, labeled by set of
integers {-1  n  1} and corresponding k-values
kn = 2⇡n/a . It is strictly analogous to the simple Bohr
atom. The quantization of a discrete position lattice pro-
duces states labeled by a continuous set of values q that
form a circle, a periodic interval -⇡/2  q < ⇡/a. This
fundamental domain of q-values is called the first Brillouin
zone. Combining these plane wave quantum numbers we
indeed recover the overall k spectrum by simply multiply-
ing the individual exponential (wave functions) which leads
to the identification: k = kn + q , corresponding to adding
the exponents.

The Brillouin zone. The procedure just outlined is actu-
ally quite general, and works in any dimension. You start
with an d-dimensional periodic lattice ⇤ in Rd where we
basically identify the points of the x-lattice. This means
that the space R can be thought of as a ‘product’ of a d-
dimensional torus R/⇤ times the lattice ⇤. Free particle
quantization gives then a part from the torus which yields
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(a) The lattice ⇤ in x-space. (b) The dual (reciprocal) latice ⇤⇤ in k-space.

(c) The Wigner-Seitz cell. (d) The (first) Brillouin zone.

Figure III.3.3: The real space lattice and the reciprocal wave vector lattice.
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Figure III.3.4: The Brillouin zone. We have plotted the energy
as function for momentum for free electrons (in one dimension)
but have shifted the momentum by an integer times the smallest
reciprocal lattice vector k1 = 2⇡/a as to bring it in the Brillouin
zone -⇡/a < k < ⇡/a , the white colored region. The horizontal
axis is the momentum axis, along the vertical axis we have put
the electron energy E = En(q) .

the dual or reciprocal lattice ⇤⇤ and a part from the lattice
which produces a particular dual torus.

We have illustrated this explicitly for the two-dimensional
case in Figure III.3.3. In the Figure (a) we highlighted the
so-called periodic unit cell, where the symmetry group of
⇤ is generated by the two basic orange translation vec-
tors. In fact there is an even smaller so-called fundamen-
tal domain with which the whole plane can be tiled through
periodic copying. This domain is highlighted in Figure (c)
and obtained as follows. First we start at the origin, and
connect it with all ing sites (orange lines), then we draw
the perpendicular bisectors (green lines) of the connecting
lines. These bisectors then enclose a fundamental peri-
odic (closed) domain called a Wigner-Seitz cell. One eas-
ily verifies that this cell allows for a space-filling tiling. In
figures (a) and (b) we show the construction of the dual

Figure III.3.5: Gaps open up. Gaps open up where dispersion
curves cross the boundary of the Brillouin zone, or where they
intersect. Even though the states will be deformed, the label n of
the previous figure remains the label for two successive bands.

lattice, the vectors in the lattices have to satisfy the duality
condition:

eikn·xi = 1 , kn 2 ⇤⇤ , xj 2 ⇤ . (III.3.1)

The basic translation vectors defining the reciprocal lattice
T1 and T2 are obtained from the basic translation vectors
t1 and t2 by the conditions ti · Tj = 2⇡�ij. The fundamen-
tal domain of the dual lattice constructed in Figure (d) is by
condensed matter physicists referred to as the (first) Bril-
louin zone. The ‘Brillouin zone’ is the ‘Wigner-Seitz cell’ in
wave-vector space.

Electron wavefunctions: bands and gaps. Let us return
to the one-dimensional case, and look at the states in the
free particle limit as we have depicted in Figure III.3.4. We
have plotted the energy as function of the momentum, or
the dispersion E = E(k) , but we reduced the k-value by
some dual lattice vector 2⇡n/a , as to bring it in the Bril-
louin zone. In other words we plot E(k) = En(q), and that
is in fact what is shown on the right-hand side of Figure
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III.3.1, and in the parametrization given in the lower half of
Figure III.3.2. So indeed, the free electrons can have any
energy En(q)  0 . Note that in the resulting spectrum the
levels fold over at the boundaries (q = ±⇡/a) and cross
in the middle where q = 0 . If we return to Figure III.3.1 we
have argued why by increasing the nuclear potential the
continuous spectum will break up, and gaps will open up
as depicted in Figure III.3.5, exactly for the special values
of q as indicated. Let us now after this introduction move
on to the generic spectrum of the quantum electron fluid in
an ordinary solid.

Valence and conduction bands. In Figure III.3.6 we give
the band structure in the periodic potential landscape of
the lattice in which the electrons live. The landscape is
characterized by the interatomic distance and the height
V0 of the potential barrier. The electrons fill the bands to
a certain maximum level which is called the Fermi level,
marked by the white dashed line. The two bands clos-
est to the Fermi level are called the valence band and the
conduction band and as we will see the properties of the
material will depend strongly on where these bands are
located with respect to the Fermi level. The inner electron
bands below the valence band consist of pretty much local-
ized states. The allowed states in the ‘conduction’ bands
are not localized but extended, which means that electrons
move anywhere in the sample.

Conductors and insulators. How the electrons in the
solid collectively behave strongly depends on the position
of the Fermi surface, which Figure III.3.7 demonstrates.
If the Fermi level is in the middle of the valence band,
the electrons can move easily because there will be many
states available with some more energy, and the material
is therefore a conductor for electric currents. If the valence
band is completely filled and there is not energy enough to
enter the conduction band, the electrons cannot move, and
we are dealing with an insulator. We say that the medium
has an energy gap – is gapped. The intermediate case of
a semiconductor deserves a section of its own.

Figure III.3.6: Electron bands in a crystal. In a crystal the en-
ergy levels are all filled up to the Fermi level (dashed line). The
two bands closest to the Fermi level are called the valence and
conduction band. The periodic potential is characterized by the
interatomic distance and the height of the potential barrier V0 .

Semiconductors.

Finally we can imagine that the energy gap between va-
lence and conduction band is narrow, so that not much en-
ergy is needed to excite electrons into the next band. This
is typically the situation in a semiconductor. The image
on the right in Figure III.3.7 shows a narrow band gap of
a semiconductor at room temperature. The coloring indi-
cates that because of the thermal energy some electronic
states at the bottom of the conduction band will be occu-
pied leaving some holes in the valence band. In the next
figure we show again the typical energy landscape of what
is called an intrinsic semiconductor, with the two bands
and the Fermi level right in between. The electron/hole
density in equilibrium is determined by the energy differ-
ence between the (conduction/valence) band edge and the
Fermi level, which means that as E- = E+ = EG/2 the
number of charge carriers n± is exponentially suppressed
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Figure III.3.7: Energy bands. The admissible energy levels for
the electrons form the valence and conduction band, where the
Fermi level is marked by the dashed white lines. We distinguish
a conductor (l) where there is basically no gap, an insulator (m)
where the valence band is filled and there is a big gap, and
a semiconductor (r) with a narrow gap. The filled states are
colored orange and empty states blue.

by a Boltzmann factor exp(-EG/2kT) . But this also im-
plies that its dependence on the energy gap is exponential
and that fact is exploited in the idea of doped semicon-
ductors on which all basic semiconductor devices such as
transistors are based.

Semiconductors like silicon are at the heart of all modern
information storing and processing devices. It is not by ac-
cident that the Californian cradle of the information revolu-
tion we have witnessed is called ‘Silicon Valley’. And it was
because of the ever smaller scales at which the semicon-
ductor switches (transistors) could be implemented and
exploited that the spectacular large-scale integration of pro-
cessor and memory chips became possible.

A doped semiconductor. The possibility of doping, al-
lows you to somewhat customize the energy landscape

Figure III.3.8: The intrinsic semiconductor. The intrinsic semi-
conductor is characterized by a narrow gap between valence
and conduction band, with the Fermi level exactly in between.
The horizontal axis is the space axis, along the vertical axis we
have put the electron energy.

in semiconductors. What one does is to replace a cer-
tain percentage of the silicon atoms in the lattice by either
phosphorus (P) or boron (B) as indicated in Figure III.3.9.
In the periodic table phosphorus is the right-hand neighbor
of silicon and therefore provides an extra electron, which
makes the material somewhat more negatively charged.
The effect is to basically lower the band energies with re-
spect to the Fermi level. Substituting with boron has the
opposite effect, as boron sits in the column to the left of
silicon, and therefore has one valence electron less; the
semiconductor will have an excess of positive charges or
holes. One may also dope the opposite sides of a semi-
conductor differently, in which case one gets a pn-diode
or pn-junction, as we have depicted in Figure III.3.10. In
addition to the band gap EG , a new energy scale ED is
introduced by the doping: on the left side we have many
electrons and on the right side only a few, because there is
a relative suppression factor exp (-ED/kT) . For the holes
the story is just the opposite, many holes on the right and
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Figure III.3.9: Doped semiconductor. We can replace a certain
fraction of the silicon atoms in the lattice by either phosphorus
(P) or boron (B). The former yields an excess of negative charge
carriers (electrons), called n-doping, whereas the latter leads to
an excess of positive charge carriers (holes), called p-doping.

few on the left. In the middle in the so-called depletion
layer there are neither free charges nor free holes, it acts
as an insulating layer. The Fermi level is the same on both
sides, as you can always briefly shortcut the external wires
till this equilibrium is established.

Two semiconductor devices. This pn-diode is a simple
and useful semiconductor device. Let us briefly indicate
two applications without going into much detail.

The photo-voltaic cell. The first possible application is to
make a photo-voltaic cell which basically turns solar radia-
tion in the form of photons into electron hole pairs by just
exciting electrons from the valence band to the conduction
band. This is illustrated in Figure III.3.11, and amounts to
creating an opposite charge excess on both sides of the
device. In other words creating a voltage difference be-
tween the two external plates. Clearly if we couple enough
of them in a big array, we can generate high voltages and

Figure III.3.10: pn-junction. By doping a semiconductor we
can shift the band structure. With an excess of negative charge
carriers (n-doping) we lower the bands, whereas with an excess
of positive charge carriers (p-doping) the the bands move up in
energy. In the figure you see the band profile of a np-doped
semiconductor or a pn-junction.

big currents. And this is a common way to convert solar
radiation into electric power. The challenge is to make the
efficiency large enough, so light has to be able to enter
the semiconductor sufficiently as to maximize the absorp-
tion.

The Light Emitting Diode (LED). In Figure III.3.12 we show
what happens if we connect the leads to a battery where
we introduce a third independent energy scale EB = eVB .

The battery induces an energy (voltage) difference corre-
sponding to EB between the left and right Fermi levels.
These levels split near the depletion layer. One can imag-
ine what happens, the negative lead pushes the electrons
from the left towards the junction, and similarly the positive
lead will push more holes in the system from the right. The
effect is that the depletion layer becomes narrower and in
fact if the voltage is high enough you will get a current of
electrons and holes through the junction. However, as in
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Figure III.3.11: Photo-voltaic (Solar) cell. If we have a transpar-
ent np-doped semiconductor, light (photons) can be absorbed
by the electrons in the valence band and be excited to the con-
duction band leaving a hole behind. So a voltage will build up
over the cell and a current can flow.

a stationary state, the relative charge densities between
the right and left have to remain exponentially different.
What happens is that in the middle region the electrons
and holes will recombine and that produces radiation that
may be absorbed in the material, but of course it is also
possible to implement this in a way that the radiation in the
form of photons escapes, and we have a LED. It is a clear
advantage that the energy is directly converted into elec-
tromagnetic energy, not by heating a wire which in turn
starts radiating. Voltages and currents can therefore re-
main quite low as long as a sufficient percentage of re-
combined pairs results in visible photons. At present the
differences are quite stunning: the LED has a lifespan that
is about a factor 50 higher than that of an incandescent
bulb, while it costs about a factor 30 more. It is the energy
consumption that makes the big difference, because that
provides an additional factor of 60. This means that over
the lifetime of an LED your yearly electricity bill would be
reduced by a few hundred euros/dollars! These numbers

Figure III.3.12: Light emitting diode (LED). The LED is more
or less the converse of the photo-voltaic cell, in that we now ap-
ply a voltage over the semiconductor, which changes the Fermi
level on the negative/positive sides. This leads to a recombina-
tion of electrons and holes in the center region of the junction
producing light.

also underscore the relative waste in the form of heat that
is produced by the old-fashioned light bulb.

Superconductivity

Phonons. It is exciting to go one step deeper into possi-
ble scenarios for the collective behavior of the electrons.
Looking more closely at the lattice, we know that the nu-
clei cannot be completely fixed at their positions on the
lattice. They are subject to quantum and thermal fluctu-
ations and these lattice fluctuations lead to waves propa-
gating through the lattice, which are just the familiar sound
waves as a matter of fact. In the quantum perspective
these waves are considered to be quasi-particles which
are called phonons. So where photons are complemen-
tary to light waves, so are these phonons complemen-
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Figure III.3.13: Superconductivity. The discovery of supercon-
ductivity, as the measurement of a sudden dramatic drop in re-
sistivity of solid mercury, was made in 1911 in Leiden by Heike
Kamerlingh Onnes. It took more then fifty years before a funda-
mental understanding of this phenomenon was achieved.

tary to sound waves, and because sound only propagates
through a material medium these quasi-particles are not
really fundamental, they are quantized collective excita-
tions of the underlying medium.

Cooper pairs. Now the oscillating nuclei are charged and
we should expect that these waves interact again with the
electrons. In particle language the phonons will couple
to the electrons. And the interesting feature of these in-
teractions is that they lead to an effective attractive force
between the electrons. In other words, the ‘phonons’ be-
come the carriers of an attractive force between the elec-
trons. What happens is interesting, close by the elec-
trons are repelled because of their charge, but that re-
pulsion is screened on larger distances and there the at-
tractive force due to the phonons becomes dominant and
creates bound states of electrons, the electrons pair up
and form so-called Cooper pairs. At low temperatures you
may think of the Fermi surface as a sphere in momentum

Figure III.3.14: High temperature superconductivity. The max-
imum temperature at which superconductivity takes place has
increased dramatically during the last quarter of the 20th cen-
tury, but appears to have stabilized again. A fundamental under-
standing of the underlying mechanism, however, is still lacking.

or k-space with well defined radius kF. A Cooper pair is
formed by two electrons at opposite points of the sphere,
where furthermore the electrons have spins pointing in op-
posite directions. In Figure III.3.15 we have indicated the
Fermi sphere with two Cooper pairs at the surface, each
pair bound through the exchange of a virtual phonon. So
we should think of the electron collective no longer as a
community of singles but of couples and once more that
strongly affects the states that are allowed just as in our
earlier societal analogue.

The superconducting ground state. I have already re-
ferred to the spin of particles and the Pauli exclusion prin-
ciple, which decrees that two half-integral spin particles
cannot occupy the same state whereas integral spin parti-
cles can. But after the electrons pair up, we are no longer
dealing with a collective of spin 1/2 electrons, but with
pairs of electrons with opposite spins, which means that
the pairs have spin zero. And that has dramatic conse-
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Figure III.3.15: Cooper pairs. Cooper pairs are bound states of
two widely separated electrons caused by the exchange of vir-
tual phonons. This turns the electron collective effectively into a
gas of charged bosons which then condense into the supercon-
ducting BCS state.

quences: whereas the electrons cannot sit in the same
state and push each other to ever higher and higher en-
ergy states, the charged bosonic pairs all can sit in the
same lowest energy state. You can imagine that there is an
enormous energetic advantage for the system of electrons
to pair up and all ‘condense’ in the ground state. Well, it
does happen, and we see that for certain conductors, if we
cool them down sufficiently, the pairs can form and con-
dense into a surprising new state of matter: the material
becomes superconducting. A superconductor is a conduc-
tor with the miraculous property that it conducts electricity
with absolutely zero resistance! The most dramatic fact is
maybe that this phenomenon is a macroscopic manifes-
tation of quantum theory, the superconducting state is a
macroscopic quantum state. This is possible because all
the Cooper pairs have condensed into a single quantum
state.

Bose-Einstein condensates. These kind of condensa-

tion effects are a manifestation of Bose-Einstein conden-
sation an effect predicted as early as 1924 by the Indian
physicist Satyendra Nath Bose and Albert Einstein. And
indeed, many other examples have since been found: for
example He4 is a boson and therefore can condense at
very low temperature in a state that exhibits the amazing
property of superfluidity. As we discussed in the previous
chapter, there is no viscosity in a superfluid: another one
of these quantum miracles which would be inconceivable
from a classical point of view. The Bose-Einstein conden-
sates which have been observed in diluted atomic gases,
and for which the Americans Eric Cornell, Carl Wieman
and Wolfgang Ketterle received the Physics Nobel prize in
2001, are another recent discovery. These condensates
are close to the theoretical setting described in the original
papers of Bose and Einstein.

Some history. We have made a small tour d’horizon to
give you a sense of how rich and surprising the macro-
scopic behavior of a collective of atoms may be, and how
intricate the balances of forces are, and to what kind of
exotic properties of materials this may lead. It also shows
how creative one has to be to get to a detailed physical un-
derstanding such exotic properties. It is worth pointing out
that superconductivity was discovered by Heike Kamer-
lingh Onnes in Leiden as early as 1911. He found that
the resistance of solid mercury immersed in liquid helium
suddenly dropped to zero at a temperature of 4.2 K, as
shown in Figure III.3.13. The story goes that he gener-
ated a persistent circular current and managed to take it
along to Amsterdam to show it to his colleagues over there!
Kamerlingh Onnes received the Nobel prize in Physics in
1913 for ‘his investigations on the properties of matter at
low temperatures which led, inter alia, to the production of
liquid helium.’

The microscopic mechanism underlying superconductivity
remained a complete mystery for a long time. The Rus-
sian physicists Lev Landau and Vitaly Ginzburg proposed
an effective field theory explaining quite a lot of the phe-
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Figure III.3.16: Magnetic levitation. A little magnet will be lifted
above a superconductor, because of the Meissner effect, which
means that magnetic field lines are expelled from a supercon-
ducting region. The aura of magic is caused by the boiling liquid
nitrogen needed to cool the high-temperature superconductor.
(Source: Michigan State University.)

nomenology of the superconductors, but it was not until
1957 that the fundamental quantum mechanism including
the pair formation and the precise structure of the super-
conducting ground state was put forward by the American
physicists John Bardeen, Leon Cooper and Robert Schri-
effer, who received the Nobel prize for their groundbreak-
ing work in 1972. This splendid theory is known as the
BCS theory of superconductivity.

Ever since the ‘BCS’ breakthrough in the understanding of
superconductivity there has been a host of detailed quan-
tum mechanical explanations for the highly surprising ways
collectives of atoms may behave and turn into molecu-
lar gases, liquids, glasses, liquid crystals, magnets, su-
perconductors or Bose-Einstein condensates, or even as-
semble into large molecules, all depending on the param-
eters of the theory. Again, this is the branch of physics
which Philip W. Anderson, the celebrated American con-

densed matter theorist who died in 2020, characterized
by the credo ‘more is different’, referring to the splendid
diversity of collective quantum behavior that emerges in
macroscopic systems consisting of many interacting con-
stituents. We have emphasized that the differences cannot
always be traced back to the differences in the constitu-
ent particle types. Though the type of interactions these
have is absolutely crucial, the macroscopic phase that is
realized may also depend on external parameters, like the
temperature, the density, the presence of a magnetic field
and so on. To conclude we may say that in trying to under-
stand and predict the splendid diversity of emerging prop-
erties, quantum reasoning has become absolutely indis-
pensable.

The Meissner effect. You might wonder what happens if
we apply a magnetic field to a superconductor. This is an
interesting question to ask because we know that a con-
ductor tends to counteract a change in the magnetic field,
which means that currents are generated which are such
that they generate a field in the opposite direction. Now
you can imagine that because there is no resistance in the
superconductor these currents will keep running thereby
permanently counteracting the change in magnetic field.
The net result is remarkable: magnetic fields cannot pen-
etrate a superconductor! This expulsion of magnetic fields
from superconducting regions is called the Meissner effect,
after the German physicist Walther Meissner who discov-
ered it in 1933.

Here some qualifications must made though. The first is
that if we keep increasing the magnetic field we end up
breaking the pairs and the superconducting phase is de-
stroyed. The second is more interesting and follows be-
cause the electrons (and pairs) have a funny property. It
turns out that they cannot detect a specific amount of mag-
netic flux. What happens in the so-called Type II supercon-
ductors is that the magnetic flux can enter the supercon-
ductor if it is in quantized portions the electron pairs can’t
see. In other words, there is a minimal unit of magnetic
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flux �0 that is compatible with a condensed charge q and
it is given by the simple relation �0 = 2⇡h̄/q .

In a three-dimensional superconductor these magnetic flux
lines that enter the superconductor line up parallel to the
direction of the external magnetic field. However, the flux
lines repel each other and therefore if you increase the
strength of the field and look in a plane perpendicular to
the field you see that they tend to form a nice triangular
lattice. I should point out an additional or better comple-
mentary view on this situation. The fact is that in the core
of these magnetic filaments the medium becomes a nor-
mal conductor again. So, in a sense you can say that the
magnetic field did not enter the superconductor after all
but corresponds to filaments of a normal conductor in the
superconductor.

I have all along been emphasizing the use of symmetry
arguments. What about the superconducting phase, are
they of any use there? The answer is affirmative. Though
the argument is somewhat more complex. We all know
that electric charge is conserved: you cannot lose an elec-
tric charge; it may be transferred from one fundamental
particle to another, for example in reactions like proton +
electron goes to neutron etc. We have mentioned in previ-
ous chapters that this conservation law is a consequence
of the internal symmetry called gauge invariance.

But if, like in the superconductor, the groundstate is filled
with electrically charged particles, then the electric charge
is no longer conserved, you can change it by arbitrary mul-
tiples of 2e without changing the physical situation. The
point is that the superconducting state is unusual in that
there is no definite number of electrons or pairs in that
state. So, the story here is that in the superconducting
phase charge is no longer conserved because the gauge
symmetry is broken. But if a symmetry is broken then we
must ask whether there are not defects that we have to
take into account. Yes indeed, the defects are precisely
the magnetic vortex lines we have been discussing. The

symmetry breaking story once more fits exactly the phe-
nomena observed.

The quantum Hall effect

In the phenomenon of superconductivity we have seen one
of the more subtle ways the system of a rigid lattice can in-
teract with the gas of electrons and give rise to a rather
surprising form of collective behavior. Are there other ex-
amples of interactions electrons may engage in that dras-
tically change their collective behavior? I wouldn’t ask you
if the answer wasn’t yes. A stunning example is the so-
called quantum Hall effect: it occurs just like supercon-
ductivity and superfluidity only at temperatures of a few
Kelvins so that its applications have been limited so far.
The setting for the quantum Hall effect is a two-dimensio-
nal conductor (imagine for example a conducting bound-
ary layer between two insulators) where we apply a strong
magnetic field perpendicular to the surface. This situation
is depicted in Figure III.3.17(a) .

The physics in this setting is rather counterintuitive. Imag-
ine a little slab of quantum Hall medium and applying a
voltage difference V in the x direction. In a normal con-
ductor a current I would start flowing in the x-direction
according to Ohm’s law decreeing that I = V/R so, in-
versely proportional to the resistance R . In the quantum
Hall medium however, the current starts flowing in the y

direction, perpendicular to the applied field! This is even
the case in classical physics as Edwin Hall already discov-
ered in 1879. The transversal Hall resistance as a function
of the applied magnetic field (with fixed current) is plotted
in Figure III.3.17(b). We talk about a transversal or Hall-
resistance (⇢), and a Hall-conductivity � = 1/⇢ .

The integer quantum Hall effect. To consider this system
quantum mechanically, there are two things that we ought
to understand. The first question is the behavior of a single
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(a) The quantum Hall setup. Driving a current through a planar con-
ductor with a strong magnetic field B orthogonal to the plane yields a
transversal potential VH .

(b) The classical Hall effect shows a linearly rising VH (blue line) as a
function of the applied magnetic field, while keeping the current constant
(green line).

(c) The integer quantum Hall effect showing the plateaus with integer ⌫
values.

(d) The fractional quantum Hall effect with from right to left the plateau
values for ⌫ = 1

3
, 2

5
, 3

7
, 4

9
....

Figure III.3.17: From the classical to the quantum Hall effect.
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electron in a magnetic field, and the second is the collec-
tive behavior of electrons in this setting. It is beyond the
scope of this book to drag you through the beautiful rea-
soning, but even if we had done so, the phenomenon re-
mains quite puzzling and counterintuitive. Where accord-
ing to classical physics the transverse conductivity must
grow linear with the applied field, in reality it does not! If
you increase the magnetic field the conductivity remains
constant over certain intervals and the value of that con-
ductivity is strictly quantized according to the surprisingly
simple relation � = ⌫ne2/2⇡h̄ , where ⌫ is the filling frac-
tion which is defined as the electron density ne divided
by the magnetic flux density nB in fundamental flux units
(�02⇡h̄/e): in other words nB = eB/2⇡h̄ . We have plot-
ted plateaux in the Hall resistance for the integer effect in
Figure III.3.17(c). What you see is that as a function of the
applied magnetic field it has plateaus where it stays con-
stant until it jumps to the next plateau (with lower n).

The fractional quantum Hall effect, When you turn up
the magnetic field to large values like 30 Tesla, plateaus
also show up for fractional values of ⌫ like 1

3 ,
2
5 ,

3
7 ,

4
9 , . . ., in

which case we speak of the fractional quantum Hall effect
as depicted in Figure III.3.17(d). In the fractional quantum
Hall effect we have the unusual situation that the charge
carriers in the medium are no longer electrons. Rather
they correspond to localized collective excitations of the
system which carry fractional electric charges, such as
e/3 or e/5 depending on which plateau you are.

So, to put it in more pictorial terms: if I would add an elec-
tron to a quantum Hall system it would ‘fall apart’ in a set of
fractional charges as displayed in Figure III.3.18. However,
you should not think of these charge carriers as some kind
of special ‘quark-like’ particles that make up an electron.
No, these fractional charges are carried by well-localized
collective excitations, special modes of the electron field
in the presence of the magnetic flux. So, these collective
excitations are not only charged but they also carry a mag-
netic flux quantum along with them. The flux quanta are in

Figure III.3.18: The quantum Hall fluid. Putting a 2-dimensio-
nal free electron gas near absolute zero in a strong magnetic
field one obtains a quantum Hall fluid. Adding a single elec-
tron charge to the quantum Hall fluid, the charge will fractional-
ize into three anyons each with charge e/3 . These anyons are
quasiparticles, and are in fact flux-charge composites carrying
a exotic spin value s = q�0/2⇡ = e/3 · h̄/e = h̄/3 .

that sense the magnetic defects we saw in the type II su-
perconductors and which become particle like in a plane
orthogonal to the magnetic flux, but now these flux parti-
cles are dressed with a fractional electric charge. Such du-
ally charged excitations that basically can only occur in two
dimensions are called anyons. We have discussed such
flux-charge composites in the section on spin and statistics
on page 405 of Chapter II.5, and more specifically the sub-
section on two-dimensional exotics on page 416. There
we showed that such composites may indeed exhibit not
just fractional charge, but also fractional spin and statistics
properties. For the case where the basic anyonic charge
corresponds to q = e/3, we demonstrated that the spin of
the anyon corresponds to s = q�0/2⇡ = h̄/3 .

Quantum Hall systems are of fundamental interest because
they represent truly novel states of matter, the existence of
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which nobody had anticipated. The integer quantum Hall
effect was discovered by the German physicist Klaus von
Klitzing in 1980, for which he received the Nobel prize in
1985, The more complicated fractional quantum Hall ef-
fect, featuring the fractional charge and exotic statistics
properties was discovered in the early 1980s and a No-
bel prize for theory and experiment was awarded in 1998
to Robert Laughlin, Horst Störmer and Daniel Tsui.

Topological order

Quantum Hall conductors constitute entirely novel states of
matter, fundamentally different from the more familiar con-
ducting phases, like ordinary conductors, semi- or super-
conductors, which are usually referred to as Fermi liquids.
From 1980 onwards many phases which exhibit similar un-
usual behavior have been discovered; these phases which
are characterized by certain non-trivial topological interac-
tions are now considered manifestations of a generic prop-
erty called topological order. It concerns phases which are
gapped, which means that there are no massless degrees
of freedom in the system, the relevant degrees of freedom
are massive like the anyons, and these have topological
long range interactions leading to their non-trivial spin and
statistics properties.

Quantum statistics. The term anyon was coined by the
American physicist Frank Wilczek because these fraction-
ally charged particle also have an exotic type of quantum
statistics properties. We have emphasized the essential
difference between bosons and fermions, where the lat-
ter obey the Pauli exclusion principle saying that no two
fermions can sit in exactly the same state whereas bosons
can. Another way of saying this is that if we consider a
multi-particle state and we interchange two identical type
particles then the phase of the state may change. In three
or more dimensions, if we repeat the interchange opera-
tion, denoted by ⌧ , we are back to the original state, so that

implies that ⌧2 = 1 , which means that the phase change
has to equal ⌧ ' ±1 . If we interchange two bosons the
state remains unchanged ⌧ = 1 and if we interchange two
fermions the state changes sign so ⌧ = -1 . We have al-
ready pointed out that this difference in statistics (we call
it statistics because the rule affects the way the particles
can be distributed over the available states) accounts for
the crucial differences in properties in many body systems.
We recall the essential role of the Pauli exclusion principle
in understanding the spectrum of atoms with more than
one or two electrons.

Braid statistics. The anyons that occur in two-dimensio-
nal topologically ordered media satisfy a type of statistics
referred to as braid statistics, where there is an essential
phase difference between interchanging particles clock-
wise or counterclockwise. So to calculate the state after
some time you have to keep track of how often and in what
direction the particles have moved around each other. One
has to deal with the braid of particle world lines in space-
time. And to know the state exactly you have to know the
braid. A braid is much like a knot, and the theory of knots is
a well-studied subject in the topology of three-dimensional
manifolds. If we have a particular braid of five differently
colored strands, we could connect the corresponding in-
coming and outgoing strands to obtain a closed knot made
of five strands. It is topological because it doesn’t matter
at what distance the world lines wind around each other
and moreover we may move the strands around and de-
form the knot; but as long as we don’t cut the strands the
knot remains topologically the same. The knot will be char-
acterized by a number of topological invariants. In terms
of the quantum Hall effect this means the way the quan-
tum state changes only depends on who danced around
who and in what order. Another way to say this is that the
multi-anyon states exhibit long range entanglement.

All possible braids can be composed of elementary moves
of moving neighboring pairs around each other. The set
of all such intertwining operations forms again a group,
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and the mathematics of such groups is well understood. In
higher dimensions one only can have bosons or fermions,
exactly because winding the paths clockwise or anti clock-
wise is topologically equivalent, while in two dimensions
there is in principle an unlimited number of topologically
inequivalent windings possible and therefore also for the
quantum statistics of states. It is even possible that differ-
ent particle types exhibit non-trivial mutual statistics prop-
erties. This means that the phase of the states may change
after moving a particle around another type of particle: in
other words applying ⌧2 to a pair of particles belonging to
different species. In general, the multi-anyon states are
formally classified as unitary representations of the braid
group.

Topological field theory. You may wonder what the theo-
retical models look like that effectively describe these topo-
logically ordered phases like the quantum Hall fluid. A
large and important class of models, but not the only type,
are so-called topological field theories. In particular, the
(2+1)-dimensional Chern-Simons theories. It is an effec-
tive theory, which describes the phenomenology of the topo-
logically ordered phases to a certain extent. And one must
realize that a derivation of this theory from first principles is
hard. To give you a flavour of what such theories look like,
I show a basic example that is provided by just a (charge
q) current jµ = coupled to a gauge field Aµ that is de-
scribed by a U(1) Chern-Simons theory. The equations
in relativistic notation are actually quite simple and given
by:

�

2
Fµ⌫ = "µ⌫�j

� )
�
�
2F12 = j0 ! B = 2⇢

�
�
2E = j?

, (III.3.2)

where the parameter � is the coefficient of the Chern Si-
mons term, which dependent on the setting will be quan-
tized as well. In the quantum Hall effect it is directly linked
to the quantized plateaux conductivity. What these equa-
tions imply becomes clear if we look at simple situations:

(i) If there is no charge or current, the equations say that

there is no field: this is an expression of the fact that there
is a gap, and there are no gauge field quanta maybe be-
cause they are too heavy to be excited. In other words,
the pure Chern Simons theory has a ‘gauge field’ but that
field does not describe local field degrees of freedom like
photons. It is a purely topological theory, meaning that the
only physical observables are the path dependent phase
factors corresponding to closed loop integrals of the gauge
field Aµ .

(ii) If there is a single charge at rest (j0 6= 0), we see from
top equation on the right that the charge gets ‘dressed’
with a magnetic flux (F12 6= 0), or the other way around
a given flux quantum may attract charge and thereby cre-
ating a dually charged anyon. Integrating the charge dis-
tribution one obtains the relation between the flux � and
charge q of the anyon, � = 2q/� . This in turn means that
if two of those anyons encircle each other one obtains a
phase factor exp(-iq2/�) , which can take all kinds of val-
ues.
(iii) the second equation describes the effect of applying a
voltage across the sample; the resulting (Hall) current is
perpendicular to the electric field. We see that this Chern-
Simons term induces exactly the properties we have de-
scribed before.

Chern-Simons theory. The Chern-Simons theories are
playing a fundamental role in modern physics and math-
ematics. The American mathematical physicist (and out-
standing string theorist) Edward Witten from the Institute
for Advanced Study in Princeton, recognized its relevance
for three-dimensional topology and the associated physi-
cal phenomena. In 1983 he noted that the Chern Simons
action provides an intrinsically three-dimensional definition
of knot invariants, and as one is free to choose the gauge
group, it defines an infinity of them. For this work he was
awarded the Fields medal, the mathematical equivalent
of a Nobel prize, in 1990. Secondly, Witten showed that
if we look at the theory on spaces with a boundary, the
theory can be entirely described by an equivalent (1+1)-
dimensional conformal invariant field theory on the bound-
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ary which is a striking example of the holographic princi-
ple we discussed at the end of Chapter I.4 in the context
of black holes. Finally, Witten also showed that Einstein’s
theory of gravity in three space-time dimensions is actu-
ally a Chern-Simons theory where the gauge group is the
group of local translations and Lorentz transformations.
This provides an exciting laboratory to explore the ideas
of the holographic principle etc. And as we emphasized in
this chapter, topological field theory has become an indis-
pensable tool for the description and understanding of a
wide variety of topologically ordered phases in condensed
matter.

Topological quantum computation. These topological
systems can be characterized by certain symmetries which
are quite hidden, and an example of what are nowadays
called quantum groups or Hopf algebras. There is a rapidly
growing interest in this field of topologically ordered me-
dia and more recently also materials called topological in-
sulators, which exhibit topological order in three dimen-
sions. These media appear to be quite ideal candidates
for quantum information storage and processing, exactly
because one can change the state by moving particles
around each other. Loosely speaking a computation is
nothing but a particular complicated braid or knot of a ‘reg-
ister’ of anyons in space-time. It is an intrinsically fault tol-
erant way of doing quantum computations because topo-
logical moves are insensitive to local perturbations, that is
perturbations caused by local interactions and that is all we
have been talking about. No surprise therefore that many
think of this as a development of great significance. And by
many I not only mean scientists, but also security bosses
of public organizations and others who have to hide big
$ecret$ behind huge numerical keys which were once be-
lieved to be unbreakable, but not in the future. Just wait for
quantum technologies to come and get them.

Quantum critical points. Figure III.3.19 shows the phase
diagram of what is called a strange metal, which is charac-
terized by an anomalous quantum critical phase in which
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Figure III.3.19: The quantum critical point. A quantum critical
point separates at zero temperature an ordered (antiferromag-
netic) and a disordered phase (a heavy fermion metal). For fi-
nite temperature it opens up a region of quantum critical phases,
such as what are called ‘strange metals.’

the electrical resistivity varies linearly with temperature.
This behavior shows up not only at a singular quantum
critical point (QCP) at zero temperature, but over an ex-
tended range of a relevant tuning parameter in the phase
diagram. This highly unconventional behavior has defied
description within the standard model for metals.

This provides for a new topic that is vigorously pursued at
present, and there appear to be a variety of systems that
exhibit such a quantum critical point. The general picture
that emerges is now that at the quantum critical point, the
system can be modelled by an interacting (2+1)-dimensio-
nal conformal field theory. This effective theory may, de-
pending on the case, describe emergent Dirac fermions,
scalar (Higgs-like) fields and even emergent U(1) gauge
fields. So, in a sense many of the previously known models
based on principles of gauge invariance, symmetry break-
ing and so on make a surprising comeback on a totally
different stage. But what is most striking is that the original
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Figure III.3.20: High TC superconductivity. The proposed more
complicated phase diagram for the cuprates exhibiting a high TC
superconducting phase near a quantum critical point (QCP).

electron degrees of freedom are strongly entangled over
large distances, and manifest themselves in vastly differ-
ent guises. One says that these conformal phases are no
longer ‘adiabatically’ connected to the original Fermi liq-
uid phases. There is no smooth way to connect the two
regimes.

What makes the quantum critical point relevant is that the
behavior persists away from the critical point. So for exam-
ple there is a well-accepted view that high TC supercon-
ductivity, which is effectively realized in the two-dimensio-
nal layers of certain materials denoted as cuprates, is gov-
erned by such a QCP as we have indicated in the phase
diagram of Figure III.3.20. So the high temperature su-
perconducting phase would be described by a finite tem-
perature version of the (2+1)-dimensional conformal field
theory in question. New insights in these theories, which
have been inspired by theories of quantum gravity, like
string theory and the AdS-CFT correspondence that we
discussed before, definitely look promising in a bid to un-
ravel the mysteries of these strange metals. String theory

and hard-core condensed matter theory seem strange bed
fellows at first sight, but apparently science doesn’t know
of any taboos in that respect.
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Chapter III.4

S C A L E dependence

In this chapter we explore the notion of scaling. How does
the behavior of physics change if one changes the length
or momentum scales?
We start with some simple geometrical examples of scal-
ing, leading to the notions of scale invariance, self-similarity.
and fractals. We move on to discrete maps like conformal
mappings used by Escher and dynamical systems like the
logistic map.
The next step is to study scaling in physical models, both
classical and quantum. This culminates in the notion of
renormalization in quantum field theory and the wonderful
idea of running coupling constants. We discuss what scal-
ing tells us about the asymptotic behavior of physical the-
ories like the standard model and the possibility of (grand)
unification in theories of the fundamental interactions. Fi-
nally we point out the profound link between scale (and
conformal) invariance and critical behavior

What sets the scale?

When children start building bridges with LEGO they learn
what construction engineers know too well: if one simply
keeps scaling up the size of a construction it will at a cer-
tain point collapse. By simply scaling we mean that we
multiply all linear sizes by some given factor. One cannot
simply multiply all beam sizes by a factor two to construct
a bridge that will span a river twice as wide. The basic

reason for this breakdown of scaling was given by Galilei
in his discourse on the two world systems, and boils down
to the basic observation that the mass of a beam scales as
a volume, that is a length cube, while the strength of the
beam would only grow with the transverse area meaning a
length square. And because the cubic power grows faster
than the square, at a certain scale the beam has to break
under its own weight.

The question ‘what sets the scale’ is a vital one, which one
had better address before embarking on detailed calcu-
lations. In physics the answer is determined by, and ex-
pressed in the available dimensionful parameters of the
model one employs. Educated guesses are then based
on what is called dimensional analysis of the parameters
that are present in the problem. A given particle mass for
example sets a relevant energy scale in a theory in the
sense that it separates two regimes defined by energies
much smaller and much larger than that mass. One ex-
pects that at low energies that mass is so big that the par-
ticle will not be excited and therefore will play a negligible
role, whereas at high energies the field will effectively be-
have like a massless field mediating long range interac-
tions, and you expect it to be relevant.

A mass is a dimensionful parameter, and it raises the ques-
tion what it means to have dimensionless parameters. We
have already extensively exploited this principle of dimen-



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 544 — #574 i
i

i
i

i
i

544 CHAPTER III.4. S C A L E DEPENDENCE

Figure III.4.1: The spiralling tail. This is the spiralling tail of the
panther chameleon living in Madagascar.

sional analysis in Chapter I.3, devoted to universal con-
stants, scales and units.1 At this point one is tempted to
claim that a theory with only dimensionless parameters is
necessarily invariant under rescaling. In that perspective
it furthermore appears that the behavior of a theory at en-
ergies much larger than the masses present in the theory
will approximate that of some scale invariant model. Inter-
estingly it turns out that this rule of thumb fails in a funda-
mental way in the quantum domain. This puzzle demands
a careful analysis of scale invariance in the quantum do-
main, a topic that we explore towards the end of this chap-
ter.

We start by showing some relatively easy to envisage ge-
ometrical examples of scaling linked to fractals and self-
similarity. Next we consider simple dynamical systems

1In this chapter we will adopt the natural units h̄ = c = 1, (except
where explicitly indicated otherwise) which means that we can express
all dimensional quantities in units of length, denoted as [x] ⇠ `, or in
units of mass (or energy) denoted by [mass] ⇠ kg , which scales as
inverse length: [mass] = [length]-1 ⇠ `-1. I will from here on express
all quantities in units of length.

Figure III.4.2: The spiralling snail house. This is a beautiful cut
of a multi-chamber spiralling house of a snail. The superposed
red spiral is a so-called Fibonaci spiral that gives a reasonable
approximation.

where scaling occurs as a function of the parameter in the
model. This situation represents a more abstract setting
for the property of scaling and (broken) scale invariance.
The first is just the logistic map an iconic model which ex-
hibits the interesting property of deterministic chaos as the
limit of an infinite sequence of period doubling transitions in
the space of solutions. Finally, we turn to particle dynam-
ics and field theory both from the classical and quantum
point of view. The most surprising and also most difficult
to understand results concerning scaling are to be found
in quantum field theory and generally in many-particle sys-
tems. The crucial observation to be made is that scaling
can be interpreted as the model following a calculable tra-
jectory in the parameter space of a class of models. And
these trajectories may end on certain fixed points where
the theory becomes scale invariant. However, depending
on the initial conditions the trajectory may also run off to
infinity in which case the theory loses its validity and pre-
dictive power. This is usually a call for other may be new
physics to be taken into account.
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Figure III.4.3: The logarithmic spiral. The spiral is given by the
equation (III.4.1) corresponding to the red curve. Under a scale
transformation r ! �r the spiral is rotated over an angle ln �
corresponding to the blue dashed curve. The curve is therefore
strictly invariant only under the discrete set of transformations
where �n = exp 2⇡n .

Scaling in geometry

Self similarity and fractals

Scaling. If we scale an object, we mean to say that under
a rescaling of the coordinates it transforms into a larger or
smaller conformal object, an object with the same shape
but of a different size. If we say that something scales, we
mean that it has a specific behavior under scale transfor-
mations. For example we may have a geometric object like
a triangle and ask how it scales when we divide all coordi-
nates by a factor two, evidently it transforms to a triangle
‘half the size’. This means that the lengths of the sides be-
come half as long, and therefore that the area becomes
one-fourth the original area. If we say that a property
scales, we mean that it scales like a length to some power
d, and d is then called its scaling dimension. So a ‘volume’

has a scaling dimension three and a ‘point’ has scaling di-
mension zero. This definition basically coincides with what
is called the topological dimension n of the (vector) space
Rn, in which the object is naturally embedded.

So, in this section we address the interesting scaling prop-
erties are of certain geometric structures and construc-
tions.

Scale invariance. If the object were to be the real line R,
then the scale transformation x ! x/2 would map the
line on itself, and we therefore say that the line as a whole
is scale invariant. Similarly the spaces Rn are scale invari-
ant. So in that sense scale transformations are part of the
space-time symmetry like translations, rotations or Lorentz
transformations. However the latter do not change the
sizes of things, and therefore leave the space-time metric
(which defines the notion of distance and therefore size) in-
variant. As scale transformations affect the size we expect
the metric to change by some overall scale or conformal
factor.

The logarithmic spiral. A spiral is a wonderful geometric
object that has found many stunning applications in nature
as an efficient format for growth. We show two examples
in Figures III.4.1 and III.4.2. We recommend reading the
beautiful chapter on ‘The equiangular spiral’ in the famous
book On growth and form of D’arcy Wentworth Thomson,
first published in 1942. The ‘equiangular spiral’ is just
the logarithmic spiral depicted in Figure III.4.3, and it is
specified by giving the polar angle as a function of the ra-
dius:

✓(r) = ln r . (III.4.1)

Under a scale transformation r ! �r we find that ✓ !
✓0 = ln �r = ln r + ln � , : in other words we get the same
curve back but rotated over an angle ln � . So we could
say that it is invariant under a combined scale transforma-
tion and rotation over an angle of ln � , or we could say
that it is strictly invariant under the discrete subset of scale
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transformations, where �n = exp 2⇡n .

The Cantor set. The Cantor set can be constructed by
iterating a map starting by removing the middle third of
the closed unit interval [01] : in other words C1 : [0, 1] !
[0, 1/3] [ [2/3, 1] and the unit interval is mapped to the
disjoint union of two smaller copies of itself. The first few
iterations of this map are illustrated in Figure III.4.4. If one
keeps iterating indefinitely one obtains a tree that is self
similar, in the sense that every subtree is identical to a
scaled version of the original tree, and one says that this
set is self-similar. It is the prototype of a fractal, which is a
term that refers to its dimensionality.

The Hausdorff dimension. A fundamental property char-
acteristic of the scaling property of a fractal is its non-
integer Hausdorff dimension, which follows from the map
that defines the set. At each step we generate a num-
ber of copies which we call m, and a factor s by which it
is scaled down. For the Cantor set in the figure we have
m = 2 and s = 3. The Hausdorff dimension is defined
as d = lnm/ ln s , and for the Cantor set we get the non-
integer value d = ln 2/ ln 3 = 0.631 . It is a fractal indeed.
The definition recovers the integer topological dimensions
for a line, an area or a volume, as that would amount for
example to filling a square with four squares of half the
size, indeed yielding d = ln 4/ ln 2 = 2 .

Measure zero. The Cantor set itself is a curious mathemat-
ical object: it is an infinite set of boundary points of (length)
measure zero. If we start with the unit interval of length 1,
then at each step we take out 1/3 of each subset. So the
length that is left over after n iterations is Ln = (2/3)n

which tells us that L1 = 0 , showing that it is indeed a set
of measure zero.

The Devil’s Staircase, Related to this set is Cantor’s func-
tion depicted in Figure III.4.5. It is a function that maps
the unit interval onto itself, but it is not one-to-one. The
function is constant on all regions of the interval that are

Figure III.4.4: The Cantor set. The Cantor set as the result of
the infinite iteration of a map where the middle third of the inter-
val is removed starting with the closed unit interval [0, 1]. The
resulting set is the prototype of a fractal (string), clearly display-
ing the property of self-similarity. (Source: Sam Derbyshire)

taken out by the infinite iterative process. This function is
also called ‘The Devil’s Staircase’ and satisfies an intrigu-
ing functional equation:

f(x) = 2f(
x

3
) x 2 [0, 1] , (III.4.2)

that fully captures its scaling behavior. The equation says
that if we first cut off the curve at x=1/3 and scale it up hor-
izontally by a factor three, and after that vertically scale it
up by a factor two, we get the original function back. This
formula encapsulates its scale invariance property. An in-
structive way to think about this function is to look at it as
the n ! 1 limit of an iterative approximation scheme de-
fined by:

fn(x) = 2fn+1(
x

3
) ,

with initial condition f0(x) = x . So indeed, this staircase
is develish in that it has an infinite number of steps that in
some regions become extremely narrow.
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Figure III.4.5: The Devil’s staircase. An alternative way to rep-
resent the Cantor set is as a function from the unit interval [0, 1]
onto itself, by Cantor’s function, also known as the Devil’s Stair-
case. It is constant on the sub-intervals taken out, and has a
constant slope in between. One can guess the scaling prop-
erty of this function from looking at it: it satisfies the functional
equation f(x) = 2f(x/3), which captures the self similarity of
the function.

The Sierpinski gasket. A slightly a more complicated ex-
ample is the Sierpinski triangle or gasket of Figure III.4.6,
which is obtained by iterating a discrete map of a shape in
to a scaled version of itself. It generates an object which
is self-similar by construction. And if we iterate the map-
ping indefinitely we would end up with a fractal space that
would be invariant under a specific set of discrete scale
transformations.

The Hausdorff dimension involves again a length down-
scaling factor s , which for the Sierpinski triangle equals
s = 2, and a multiplication factor m = 3 as is clear from
the figure. Therefore the gasket has the fractal dimension:
d = ln 3/ ln 2 = 1.58 .

In the figure we have also drawn a yellow fractal curve and
we may apply the same argument, and because for a line

Figure III.4.6: Sierpinski gasket. This geometrical structure
has fractal properties. It is a self-similar structure. If we take
the number of scaling steps to infinity it becomes fractal. If we
scale the dimensions by a factor 2, then the length of the yellow
curve does not increase by a factor 2 but by a factor 3. This
means that the scaling dimension of the gasket would be d =
ln3/ln2 = 1.58

segment we have again s = 2 and m = 3 we find the
same value for the fractal dimension, d = 1.58 , validating
our intuition that the dimension of the gasket is more than
one and less then two. We may also look at the measure of
the objects, the area covered by the purple triangles after
k iterations equals An = (34)

nA0 , which means that the
limiting area would be A1 = 0 , so we find again a set of
measure zero. The length of the fractal curve would tend
to infinity and its measure is unbounded.

The disc where Escher and Poincaré met

In Figure III.4.7 we depicted a sequence of images that
interpolate smoothly between the original Escher art work
Circle Limit II and its underlying hyperbolic geometry of the
disc. This hyperbolic tessellation (or tiling) is composed of
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Figure III.4.7: The hidden geometry of Escher.
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Figure III.4.8: Poincaré disc. In the figure we show how to get
from the hyperbolic plane in orange with geodesics that are hy-
perbola like the yellow one. These are obtained by intersecting
with a plane through the origin like the green one. The disk ob-
tains by stereo-graphically projecting the hyperbolic plane down
to the unit disc in the z = 0 plane to the point P = (0, 0, 1) .

circular segments that intersect the unit circle orthogonally.
Starting with the hyperbolic square at the center one ob-
tains the subsequent segments or vertices by mirroring (in-
verting) the points in the various circular segments as we
indicated in Figure III.4.9. The radial tree connecting the
nodes is very much like the binary tree used to construct
the Cantor set as displayed in Figure III.4.4.

The hyperbolic plane. For the hyperbolic plane we may
choose the positive z > 0 sheet satisfying the equation
x2 + y2 - z2 = 1. It is the yellow surface in Figure III.4.8.
This hyperbolic plane is not so unfamiliar as you might
have thought; it is identical to the plane defined by the rela-
tivistic energy-momentum vectors pµ for a particle with unit
rest-mass living in a flat two-plus-one–dimensional Minkow-
ski space-time which we discussed in Chapter I.1. You
can also view it as the Minkowskian analogue of the unit
sphere in three Euclidean dimensions (or rather the North-

ern hemisphere thereof), which obtains if one switches the
sign in front of the z2 term. The geodesics on the hyper-
bolic plane correspond to any intersection of the surface
with a plane through the origin like the green plane in the
figure yielding the yellow hyperbola. These hyperbolas are
geodesics to be compared with straight lines on the plane
or the great circles on an ordinary spherical surface.

The Poincaré disc. The disc geometry that Escher ex-
ploited corresponds to the so-called Poincaré disc, which
is the stereographic projection of the hyperbolic plane on
the unit disc in the flat z=0 plane (light grey in the fig-
ure) from the point P = (0, 0,-1) . For a given hyperbola
one gets a line bundle like the purple surface in the fig-
ure, yielding a circular segment that approaches the cir-
cle bounding the disc orthogonally as indicated in Figure
III.4.7. This bounding circle represents the circle at infinity
on the hyperbolic plane. These segments accumulate to-
wards the boundary circle which represents a critical point,
or a limit like we described in the previous examples. A
wonderful non-Euclidean construction indeed.

The Escher tilings. That fractal geometry of hyperbolic
tessellation of the disc clearly exhibits how the basic ‘am-
phibian’ gets rescaled and rotated if one approaches the
boundary, and indeed the number of them tends to infin-
ity near the boundary. The different hyperbolic tilings can
be denoted by a pair of integers {n, k} , called a Schäfli
pair, where n is the number of edges of the basic poly-
gon (n = 4 in this case), and k is the number of edges
that meet at a vertex (k = 6) under equal angles, equaling
360/k degrees. Clearly the n angles of the polygon add
up to 360n/k degrees, and if this sum is less than 360o,
then we are dealing with a regular tiling of the hyperbolic
plane. Note that in Chapter III.2 in the section on crystal
structures we discussed the tilings by regular polygons of
the plane, where indeed the condition k = n could only be
satisfied for k = 3, 4, and 6.

Maurits Escher himself was not a mathematician, but his
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Figure III.4.9: Inversion map. This map defines for any point
(r, ✓) outside the unit circle bounding the disc a mirror point
(1/r,✓) .. If a circle crosses the disc, points on the inner and
outer segments connected by a radial line through the center
are mapped onto each other. The Escher disk combines this
mirroring in ever smaller circles with mirroring in a symmetry
axis through the center of the disc, as is indicated in the last
picture of the previous figure.

work - not surprisingly - attracted much attention from math-
ematicians. This started at the International Congress of
Mathematicians in Amsterdam in 1954, where one of the
organisers, N.G. de Bruijn, had arranged for an exhibition
of Escher’s work in the Stedelijk Museum.2 In particular
the British mathematician H.S.M. Coxeter had many ex-
changes with Escher on the mathematical meaning and
interpretations of his work. It is clear that the interactions
fascinated and inspired Escher, but it is also clear that he
kept doing the mathematics in ‘his own way:’

My great enthusiasm for this sort of picture and my
tenacity in pursuing the study will perhaps lead to

2For the mathematics of Escher’s work I refer to the book edited by
H. F. M. Coxeter, M. Emmer, R. Penrose and M. L. Teuber (M.C. Escher:
Art and Science) and an article by Doris Schattschneider (Notices of
the AMS, Volume 57, Number 6, 2010).

Figure III.4.10: Logistic map. This iterative map defines a dis-
crete dynamical system on the unit interval (0 6 x 6 1) and is
given by xn+1 = f(xn) = r xn(xn - 1) .

a satisfactory solution in the end. ... it seems to
be very difficult for Coxeter to write intelligibly to a
layman. Finally, no matter how difficult it is, I feel
all the more satisfaction from solving a problem like
this in my own bumbling fashion.

Escher in a letter to his son George

Escher used the term coxeteering for his incredibly imagi-
native and creative explorations of the hyperbolic disc and
its tessalations in a series of prints he called Circle Lim-
its.

Scaling in dynamical systems

The systems we have been looking at so far have been
completely geometric where the scaling patterns were quite
obvious from the start, but now we want to explore the do-
main of dynamical systems where scaling behavior can be
more hidden but highly non-trivial. We start with the lo-
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k cycle(2k) rk

1 2 3
2 4 3.449490
3 8 3.544090
4 16 3.564407
5 32 3.568750
6 64 3.56969
7 128 3.56989
8 256 3.569934
9 512 3.569943
10 1024 3.5699451
11 2048 3.569945557
1 accumulation point 3.569945672

Table III.4.1: The bifurcation sequence.

gistic map which is a (discrete) dynamical system which
exhibits scaling behavior in its parameter space {r} .

The logistic map

The logistic map is a canonical example of a system which
displays what is called deterministic chaos. It is an iterative
map of the unit interval (0  x  1) onto itself, where each
iteration corresponds to a time step. The map is quadratic
and given by

xn+1 = f(xn) = r xn(xn - 1) (n = 1, 2, 3, . . .) . (III.4.3)

It is plotted in Figure III.4.10 for three different values of the
parameter r . This is one of the most well-studied equa-
tions in mathematical physics with a vast literature dedi-
cated to its remarkable properties.

In Figure III.4.11 we have in the left column depicted the
orbits corresponding to the first fifty iterations of the map
with initial value x0 = 0.2 , for three values of r . What we

see is that with increasing values of r the behavior of the
orbit for n � 1 changes drastically.

For small r it starts with a fixed point, then we get into a
region where the orbit becomes a 2-cycle, after which one
obtains ever smaller regions where the period doubles to
some 2k-cycle. In the second column the same orbits
are represented as a cobweb diagram where the succes-
sive steps are obtained by mirroring the outcome of the
n-th iteration in the line y = x to obtain the input for the
(n + 1)-th iteration. In these diagrams the limit cycle be-
havior is very clear. In the right column we have depicted
the so-called bifurcation diagram, which shows what the
cycles are as a function of r and at what values the period
doubling occurs. For increasing r the points rk , where the
period doubles occurs and the 2k-cycle starts, accumulate
at some critical point r1 = 3.56995 . . . , where a transition
to chaotic behavior occurs.

The bifurcation diagram of Figure III.4.12 suggest that there
is some form of self-similarity present in this system and
it was Mitchell J. Feigenbaum who in 1978 extracted two
fundamental constants from the system that characterize
the scale invariance of the system near the critical point
r1 .

The first Feigenbaum constant is given by the limiting be-
havior of the following sequence (see figure):

lim
k!1

rk - rk-1

rk+1 - rk
= lim

k!1

dk

dk+1
= � = 4.6692 . . . . (III.4.4)

This number � is universal in that it does not depend on
the details of the map as long as it has quadratic behav-
ior near the maximum and vanishes at the endpoints of
the interval, and it turns out that this constant governs the
asymptotic behavior of all period doubling sequences. One
might rephrase the above equation by saying that for large
k � 1 the interval d⇤

k = r1-rk converges like a geometric
series d⇤

k ' C�-k .
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Figure III.4.11: Logistic map orbits. We show orbits starting at x = 0.2 for different three different r values (r = 2.8, 3.2 and 3.8) in
the first column. In the second column the same orbits are given as ‘cobwebs.’ In the final column we marked the corresponding r
values in the bifurcation diagram.
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Figure III.4.12: Bifurcation diagram. This diagram gives the x
values in the subsequent 2k limit cycles as a function of the r
parameter of the logistic map. The limiting behavior does not
depend on the initial value x0, and forms therefore a global at-
tractor. Starting at small r the sequence of points rk where
the doubling to a 2k-cycle starts accumulates at some point
r1 = 3.56995... , after which a highly unpredictable limiting be-
havior sets in, which is called deterministic chaos.

There is a second universal constant that can be extracted
from the diagram. It is determined by the limiting behav-
ior of the sequence of separations sk , where sk is the
separation in x between the two adjacent central values
of the 2k-cycle at r = rk+1 , as we have indicated in the
figure. For large k one finds that sk+1 = sk/↵ where
↵ = 2.5029 . . . .

The essential scaling property of the limiting behavior of
the period doubling sequence is expressed by a scaling
function g(x) , which would be the solution of a functional3

equation analogous to equation (III.4.2) for the devil’s stair-

3A function f(x) is a mapping from a space X of the variable to some
space of function values, like the real line R or the complex plane C .

Formally a functional is a ‘function of a function’ and corresponds to a
map from a space or a certain class of functions F to a space of values
like R or C .

Figure III.4.13: Feigenbaum-Cvitanovic function. The F-C
function can be compared with Cantor’s staircase function. It
captures the strange attractor of the logistic map. The function
satisfies the F-C functional equation g(x) = ↵g

�
g(x/↵)

�
.

case. The equation for the period doubling sequence is
called the Feigenbaum-Cvitanovic equation:

g(x) = ↵g
�
g(x/↵)

�
, (III.4.5)

with boundary condition g(0) = 1 . There is a unique solu-
tion to this equation that fixes both the value of ↵ and the
function g(x) which you should think of as specifying the
attractor at the accumulation point (the set of 2k points in
the limit k ! 1). The F-C function is plotted in Figure
III.4.13 and could have been called the ‘devil’s castle’ be-
cause the embattlements contain ever smaller self-similar
versions of the castle. A stunning architectural master-
piece obviously. A remarkable property of this equation
and thus its solution is that it is independent of the precise
form of the logistic map f , and it is in that sense that the
parameter alpha is universal over the class of functions
denoted by {f} .
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Scaling in quantum theory

Quantum mechanics

In earlier chapters we have argued that (continuous) space-
time symmetries lead to conserved quantities, and that
in quantum theory these conserved quantities are repre-
sented by certain operator expressions that act on the Hil-
bert space. These operators are expressed as functions
of the basic degrees of freedom. So, in the quantum me-
chanics of a particle the basic operators are X and P, cor-
responding to the classical phase space coordinates x and
p. And from these one can construct the operators for
other dynamical variables like the energy or angular mo-
mentum. The operators work on the Hilbert space of wave
functions. In quantum field theory the basic operators are
the fields themselves and their conjugate momentum fields
and these work on the multi-particle Hilbert space.

Operators that represent space-time symmetries. In
a quantum system symmetry operators commute with the
Hamiltonian, and therefore transform states that have the
same energy among each other: in other words, states
that are degenerate. We recall that for the case of the hy-
drogen atom, the energy levels are labeled by the principal
quantum number n, and for any n we have an n2 degen-
erate set of states. This set consists of representations of
the rotation group SO(3) labeled by the angular momen-
tum eigenvalues l, with l = 0, . . . , n - 1 . At a given en-
ergy level n the total degeneracy can be understood if one
adds the Runge-Lenz vector, to be thought of as a vector
of symmetry operators to the symmetry algebra. This is a
dynamical symmetry which follows from the particular form
of the Coulomb (or Newton) potential and is not related to
an underlying space-time symmetry. Inclusion of this vec-
tor extends the symmetry algebra from so(3) to so(4) , as
we discussed in connection with Figure II.6.3 in Chapter
II.6.

Let us now turn to the expression for the operator ⇤ that
generates scale transformations on a one-particle Hilbert
space. We do so after we have recalled how it worked for
the case of translations.

The case of translations generated by momentum. In
previous chapters we discussed how in quantum theory
the momentum operator P acting on a wave function is
represented as the Hermitean differential operator P =
-id/dx (h̄ = 1). This operator generates ‘translations’
meaning to say that if we act with a finite transformation
on any function

T(a)f(x) ⌘ eiaPf(x) = f(x+ a) ,

then the argument of the function is shifted by an amount
a. The momentum operator has a continuous set of eigen-
functions fk(x) ' eikx because:

P fk(x) = kfk(x) .

These functions are periodic and the expansion of an ar-
bitrary function in this basis of eigenfunctions amounts to
a Fourier decomposition of that function. Needless to say
that the only translation invariant function is the constant
function, corresponding to k = 0 . Finally, we recall that
translational invariance of a system implied that the mo-
mentum operator would commute with the Hamiltonian,
and henceforth momentum would be conserved.

The scaling operator⇤ and its eigenfunctions. Now we
ask the same questions about scale invariance: what is the
operator representing scale transformations on functions,
and what are its eigenfunctions, and finally, what does it
mean to say that a system is scale invariant? The scale

operator is ⇤(x) ⌘ x
d

dx
and its eigenfunctions are quite

simple to derive:

x
d

dx
gd(x) = dgd(x)

) dgd
gd

=
d

x
) lngd = d ln x = ln xd .

(III.4.6)
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So again there is a continuum of eigenfunctions which are
just powers of x : gd(x) ⇠ xd for any d . The eigenvalue
d is called the scaling dimension. Under a finite scaling
transformation S(↵) we would get:

S(↵)gd(x) ⌘ e↵x(d/dx)gd(x) = e↵dgd(x) .

This expression gains transparency and elegance if we
take the parameter logarithmic:

S(ln �)gd(x) = ed ln �gd(x) = �
dgd(x) = gd(�x) .

Power laws. This gives an alternative way to define a scal-
ing function in general; it is any function h(x) that satisfies
the scaling law:

h(�x) = �dh(x) , (III.4.7)

for any �, where the power d is defined as the scaling di-
mension of the function. Indeed, the scaling functions are
the eigenfunctions of the scaling operator and are just sin-
gle powers of their argument. A scale invariant function is
the eigenfunction with d = 0, again meaning any constant
function.

We just saw that making the scale transformation S(ln �)
on an eigenfunction effectively multiplies the argument of
that function with �. This is a special property in the sense
that it multiplies the argument and not the function. Thus,
if I apply the operator to an arbitrary linear combination of
eigenfunctions, I get exactly the same combination back
with scaled argument. In other words, if we think of an ar-
bitrary function that can formally be expanded in a power
series, then what the scale transformation S does is just
to scale the argument of that arbitrary function. This is to
be expected because it is the defining property of a scal-
ing transformation on any function, but it does not imply
that any arbitrary function is a scaling function, as it will in
general not satisfy the scaling property (III.4.7).

The symmetry algebra including scaling. To further dis-
cuss scaling properties it is useful to study its commutation

relations with other elementary operators forming the dy-
namical Lie algebra. For example from

[⇤, X] =
i

h̄
[XP,X] =

i

h̄
(XPX- XXP) =

i

h̄
X[P, X] = X

[⇤, P] =
i

h̄
[XP, P] =

i

h̄
(XPP - PXP) =

i

h̄
[X, P]P = -P

(III.4.8)

It gives the operator back multiplied by its naive scaling
dimension, which is the dimension of the operator in units
of length. Note that the angular momentum operator has
scaling dimension zero as it involves products of X and P

components; this is also consistent with its quantization in
integer multiples of h̄ which at this point is dimensionless
as it has units Js ⇠ `0 .

The calculation we just did shows that we can extend the
combined Lorentz and translation symmetry, denoted as
the Poincaré group, with the scale transformations. Includ-
ing the scale transformations we also need to include the
so-called inversion operator I with I : x ! x/x2. Adding
these two operators to the dynamical operator algebra,
one ends up with a closed Lie algebra with fifteen genera-
tors, which is referred to as the conformal algebra which for
four-dimensional Minkowski space is the algebra so(4, 2) .
This algebra corresponds (is isomorphic) to the ‘rotations’
in a six-dimensional ‘space’ with four space and two time
dimensions.

So far we have mainly discussed mathematical features of
scaling functions and operators. Let us now return to the
physics of scale invariance. We do this at various levels
of increasing complexity starting with simple classical sys-
tems and moving up to applications of scaling in quantum
(field) theory.

Scaling properties of some Hamiltonians. Having the
scale operator it is interesting to see what one can learn
about the scaling properties of some Hamiltonians and
other operators.
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To keep it simple we look at a particle with Hamiltonian
H = U + V or Lagrangian L = U - V , where kinetic
term U = P2/2M and for the potential we choose a sim-
ple power, V = akx

k. Now for consistency we must have
that [H] = [U] = [V] = `-1 . This implies that indeed
[U] = [M]-1 · 2[P] = `-1 , as expected. For the poten-
tial term we find that [V] = [ak] · `k = `-1 , from which we
conclude that [ak] = `-1-k , so this simple power count-
ing yields the dimensionality of the parameters or coupling
constants.

We see that the kinetic and potential terms will in general
scale differently under scale transformations of the coor-
dinates. Just transforming coordinates and keeping the
parameters fixed we get that:

x ! x0 = �x ) H ! H0 =
1

�
H(�) =

p2

�2M
+ ak�

kxk .

This expression leads us to conclude that under a rescal-
ing of the coordinates the Hamiltonian is mapped into a
similar Hamiltonian H(�), with different, scale dependent,
parameters: M 0 = M(�) = �M and a 0

k = ak(�) =
�k+1 ak .

Let us look at some simple cases:

1. The harmonic oscillator.
The potential is given by V(x) = 1

2K x2 , and corresponds
to the case k = 2 . The spectrum is depicted in Figure
II.5.14 on page 396 of Part II. It is equally spaced, with en-
ergy levels En = !(n+ 1

2) where the frequency! is given
by ! =

p
K/M . The frequency is the only physically rel-

evant parameter and we see that its scale dependence is
: !(�) =

p
K(�)/M(�) = �! . The spectrum apparently

scales linearly with �.

The concept that we want to emphasize is the fact that un-
der scaling the theory changes. If we define the theory as
a point in the space of parameters, then under rescaling
the theory will trace out a trajectory in that space. In the

Figure III.4.14: Scaling trajectory of harmonic oscillator. Scal-
ing the coordinate by a factor � in the harmonic oscillator Hamil-
tonian is equivalent to a trajectory of the parameters M(�) and
K(�) through parameter space.

example at hand, the parameter space is a plane with co-
ordinates M and K . With M(�) = �M and K(�) = �3K,
we see that we can eliminate the � , to obtain a function
K(�) = (K/M3)M(�)3. We have depicted one such trajec-
tory for a particular initial condition K(1) = K and M(1) =
M in Figure III.4.14.

What we learn from this graph is not earth-shattering, just
that for large values of �, the potential term starts to dom-
inate so that the system will get locked into the ground
state. On the other hand, if � ! 0 the kinetic term dom-
inates and the hamiltonian approaches that of a free par-
ticle, where the energy gap tends to zero. So, at short
distances the theory has a fixed point where the theory is
free, a primitive precursor of the notion of what is called
‘asymptotic freedom’. This is not so surprising, because
it is what we could have concluded directly from the linear
� dependence of !(�) , which implies that the energy gap
tends to zero.
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2. The hydrogen atom.

The part of the Hamiltonian that is of interest here is the
radial part because when we scale the coordinates we
rescale the r variable and not the angular variables ✓ and
' . This reflects the fact that the angular derivatives of the
Hamiltonian are all contained in the the term L2/2Mr2,
where the angular momentum operator L = X ⇥ P . In
view of the relations (III.4.8) the scaling dimension of L is
dL = 0, and thus, as stated before, the angular momentum
is scale invariant. So, we are left with the ‘radial’ Hamilton-
ian, which is very similar to the one given in equation (I.4.1)
we discussed in Chapter I.4, it takes the form:

H =
p2
r

2M
+

l(l+ 1)

2Mr2
-

e2

4⇡r
,

where l is the angular momentum label, and l(l + 1) is
the eigenvalue of the operator L2 . Doing the scaling ex-
ercise as before we find that M(�) = �M and, interest-
ingly, that the charge does not rescale e(�) = e . Let us
look what that implies for the spectrum in this case, the
discrete bound state energy levels are labeled by the prin-
cipal quantum number n , and are given by:

En =
E1

n2
with E1 = M

� e2

4⇡

�2
.

We conclude that the levels simply scale like En(�) = �En ,

confirming our naive expectations.

On the one-particle level the quantum analysis of scal-
ing properties does not lead to surprising new insights. It
merely confirms the behavior you would expect based on
naive dimensional analysis. As we will see in the remain-
ing sections of this chapter it is in quantum field theory that
interesting complications arise.

Quantum field theory

In this subsection we turn to the question what scaling
means in quantum field theory. We will look at this problem

from a rather general and abstract point of view, avoid-
ing as many technicalities as possible. In later sections
we give more details about how these results can be ob-
tained.

The fundamental question is again to understand how pa-
rameters of the model change depending on the scale at
which one looks at the system. And as the quantum uncer-
tainty relations imply an inverse relation between spatial
scale (wavelength) and momentum or energy, we expect
to learn something about the energy dependence of the
phenomena the theory describes. By exploiting arguments
like the ones we used in the previous subsection we may
even probe the domain of validity of certain theories.

Actions and Lagrangians. In general a theory can be de-
fined by its energy function or Hamiltonian H, or its action
S. As mentioned before, in relativistic systems and field
theories, one prefers the action because it is a manifestly
Lorentz invariant quantity, while the energy is not as it is a
component of the energy-momentum four vector.

The action can be written as a functional of the field, a
space-time integral over a Lagrange density L, which is an
expression in the fields and their derivatives. We write:

S =

Z
Ld4x , (III.4.9)

and in units where h̄ = c = 1 the action is a dimensionless
quantity. At this point the difference between the quan-
tum and classical expression resides completely in the in-
terpretation of the fields. Classical fields are just scalar,
or vector, or spinor valued functions on coordinate space.
Quantum fields are very different types of objects: they
are operator valued and work on some multi-particle Hil-
bert space as we discussed in Chapters I.4 and II.5.

Three examples. In the remaining sections of this chapter
we will refer to the three different examples of Lagrangian
densities we introduce next.
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- The �4 model. The first action is about the simplest non-
trivial field theory one can think of and it owes its popular-
ity exactly to the fact that it is often used to demonstrate
the intricacies of quantum field theory. It is a theory of a
real scalar field �(xµ) with a quartic self-interaction. The
action of this so-called ’�-fourth theory’ is defined by the
relativistic Lagrangian density L:

L(�,@µ�) =
1

2
(@µ�)

2 +
1

2
m2�2 +

�4
4!
�4 . (III.4.10)

The classical field � is just an arbitrary function which may
be expanded in an orthonormal set of basis functions, for
example energy momentum eigenstates or planes waves
{�(k)}:

�(x) ⇠

Z
�(k) e-ik·x d4k .

In Chapter II.5 we pointed out that in quantum field theory
the fields are operators acting on a multi-particle Hilbert
space and can create or annihilate particles in any given
energy momentum state labeled by kµ . with k2 = m2 (m
= rest mass). The first two terms of the Lagrangian are of-
ten denoted as L0 , and being quadratic in the fields, they
make up the free field theory. The last term denoted by
Lint describes the self-interactions of the field with cou-
pling strengh �4.

- The toy model. Of course a field theory can be defined in
any number of space-time dimensions, and formally noth-
ing forbids us, for pedagogical reasons, to restrict our-
selves to a theory with only a time dimension. Then the
field becomes just like a time-dependent position coordi-
nate �(t) ⇠ x(t). We may even go one step further, as we
will do here, and consider a zero-dimensional field theory.
‘That is not much of a theory’, you might complain, and
your point is well taken. Zero-dimensional means there
is no space and no time, so the ‘field’ has just a single
constant mode (like the zero-energy mode of the theory
above), so the ‘field’ is just a real or complex variable. It is
very much a toy model that we only introduce to illustrate
at a very basic level what the effect of quantum corrections
in a field theory looks like.

Our toy model only has two real modes: a light mode with
‘mass’ m denoted by ', and a heavy mode with ‘mass’
M >> m denoted by � and is defined by a simple polyno-
mial action:

S(',�) =
m2

2
'2 +

M2

2
�2 +

�

4
'2�2 . (III.4.11)

This action has no derivatives; the terms quadratic in the
fields represent the free modes and the quartic term de-
scribes the interaction between the two modes. This very
rudimentary theory will in the next section be used to illus-
trate certain structural (diagrammatic) aspects of perturba-
tion theory and Feynman rules.

- Quantum Electrodynamics The third example is the La-
grangian for QED, the theory we discussed already in Chap-
ter I.4 and in the section on gauge invariance in Chapter
II.6 ,

L = -
1

4
Fµ⌫F

µ⌫ +  ̄(i@/+m1 + eA/) . (III.4.12)

Let us make some observations about this Lagrangian:
(i) It is a compact expression of which each part is mani-
festly Lorentz and gauge invariant.
(ii) Besides the Maxwell field describing the photon, and
the Dirac field describing the electrons and positrons, the
action contains two parameters: the electron/positron mass
m and the coupling constant corresponding to the electron
charge e .

(iii) The first three terms are quadratic in the fields and rep-
resent the free part of the action. The first term gives rise
to the free photon propagator, while the second and third
correspond to the free electron/positron propagator. In the
Feynman diagrammatic language these propagators cor-
respond to the wiggly and straight lines that were shown
in Figure I.4.28 in Chapter I.4, while the final interaction
term corresponds to the interaction vertex diagram of Fig-
ure I.4.29. They are also shown in Figure III.4.19.

The naive scaling dimensions of fields. To be able to
discuss the scaling properties we first determine the naive
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Field Dimension Coupling Dimension

�(x) -1 m -1

�n 4- n

Aµ(x) -1 e 0

 (x) - 3
2

Table III.4.2: Scaling dimensions in 4-dimensional space-time.
We have listed the naive ‘power counting’ scaling dimensions
in units of length of some fields and coupling constants. The
self-couplings �n refer to terms in the energy density of the type
�n�

n . Note that the quartic coupling for scalar field is dimen-
sionless: [�4] = `0 .

scaling dimensions of the fields, which are obtained by ap-
plying dimensional analysis. A good starting point is the
action which in the system with h̄ = c = 1 has dimen-
sion zero: [S] ⇠ `0 , and the Lagrangian therefore has units
[L] ⇠ `-4. From the quadratic terms in the Lagrangian of
the scalar field given by equation (III.4.16) we learn that
the dimension of the field has to be [�] ⇠ `-1. Conse-
quently the quartic self-coupling of the ��4 term � has to
be dimensionless. For the Maxwell field the Lagrangian
[L] ⇠ F2 ⇠ (@A)2 and as [L] ⇠ `-4 we conclude that the
gauge potential, like the scalar field, scales like [A] ⇠ `-1 .

From the mass term for the Dirac field ⇠ m  we obtain
that [ ] ⇠ `-3/2 . And from the interaction term eA/  we
subsequently verify that the coupling constant e is dimen-
sionless. We summarize the naive scaling dimensions in
units of length, of the various fields and coupling constants
in the Table III.4.2.

Scaling in classical field theory. Assigning these scal-
ing dimensions to the fields allows us to discuss the scale
invariance of classical field theories. To find out we make

a scale transformation of the coordinates x ! �x. The
fields being space-time dependent will transform accord-
ingly, like'(x) ! '(�x) = �d'(x) . Note that the parame-
ters do not transform under this coordinate transformation.
After the transformation of the coordinates and fields we
see that most terms in the action are invariant, and only the
mass terms change in the sense that m ! m 0 = �m. The
net effect is that after the transformation you get the same
theory back but with a different mass parameter. This ar-
gument shows that already at the classical level rescal-
ing corresponds to the theory moving through parameter
space. A further message is that in classical theories the
mass terms break scale invariance. Massless theories like
the Maxwell theory are therefore scale invariant. In fact
these results also hold for the classical approximation of
the quantum theory, where we think of the field excitations
as particle states but where we ignore the typical quantum
corrections as will become clear shortly. In the quantum
domain we have to take into account the inverse relation
between length scales (wavelength) and momentum or en-
ergy scales. This implies that if we scale the theory by
large � we effectively take the low energy, long wavelength
limit which means that the mass is relatively large and in
the limit would become the dominant term. In that regime
we cannot excite particle modes and there is no dynamics
left. If we take the opposite �! 0 limit, then we study the
theory in the high-energy regime where the mass effec-
tively plays no role! And at this level of the discussion we
would be tempted to conclude that theories become scale
invariant in the high-energy limit. However, this conclu-
sion turns out to be premature because taking the quan-
tum corrections into account we will see that these break
this naively expected scale invariance.

Quantum complications. To make sensible predictions
in quantum field theory that can be compared with exper-
iment, the calculations which are perturbative in nature,
require a renormalization program to be executed.4 It is

4I must admit that this sounds like the theory is ‘abnormal’ and has
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exactly this renormalization program, which involves cut-
ting off certain momentum integrals that is responsible for
the scaling violations. These violations lead to anomalous
scaling dimensions for the parameters and fields.

We will try to elucidate some of the outstanding features
of that program. One we have mentioned already is that
rescaling the theory is the same as effectively rescaling
the parameters in the model. What one finds is that po-
tentially at every successive step in the quantum approxi-
mation new interaction terms may appear in what is called
the effective action. In other words, conceivable terms that
had zero coefficient in the classical theory one starts with,
may become non-zero. And the behavior of the theory un-
der rescaling depends on to what extent these extra terms
are relevant at the scale one is interested in. The strong
requirement of renormalizability means that only a finite
number of scale dependent renormalizations of parame-
ters and fields is needed to render the calculations finite to
any order. This implies that systematic quantum calcula-
tions can be made which lead to unambiguous predictions
for physical observables to arbitrary precision.

The Euclidean path integral

As we pointed out in the subsection on statistical mechan-
ics in Chapter I.1, there is a interesting analogy between
the statistical description of multi-particle classical physics
and quantum physics, in spite of all their fundamental dif-
ferences. This is not too surprising because after all, a field
has an infinite number of modes that represents an infinite
number of local degrees of freedom, and we learned that
quantum field theory defines a Hilbert space with states
that can have any number of particles in it.

to go to a camp to be ‘renormalized,’ through a process of ‘ideological
purification,’ to adapt it to the ‘new normal’. This terminology of course
started with normalizing wave functions and distributions, just meaning
imposing a norm, saying nothing about wavefunctions being normal or
not.

In classical statistical physics we can derive the thermo-
dynamic properties from the partition function, Z which is
the sum or integral over the phase space � of the system,
weighted by the Boltzmann factor,

Z =

Z
exp(-H/kT)d� ,

where H = H(�) is the Hamiltonian of the system, the in-
tegral of the energy density over all of space. An important
quantity is then the (Helmholtz) free energy F defined as
F = -kT lnZ . What we showed in Chapter I.1 was that
the free energy was equal F = U - TS . And we worked
through the example of the ideal gas in the section on page
53. One thing is obvious, the (classical) statistical physics
underlying thermodynamics becomes racing a dead horse
if the temperature is zero, because there is no thermody-
namics as everything is stuck in its lowest state. But that
is different in the quantum domain.

The analogy. Quantum field theory is basically a theory at
zero temperature, though of course a temperature can be
introduced in addition. But what makes quantum field the-
ory at zero temperature already interesting is that there are
always quantum fluctuations present in the system. This is
an unavoidable consequence of the uncertainty principle.
Indeed, the role of thermal fluctuations is taken up by the
quantum fluctuations, and instead of the temperature the
external parameters are typically Planck’s constant and
possibly some coupling constants. In some sense you
could argue that Planck’s constant takes the place of Boltz-
mann’s constant and the external parameter that plays the
role of temperature is a fundamental coupling strength ap-
pearing in the theory. And indeed, whereas the free en-
ergy governs the classical phase diagram depending on
the thermodynamic variables like P, V, T and S, that role is
now played by the masses and coupling constants. There-
fore one may expect different quantum phases and phase
transitions to occur in different regions of parameter space
even at zero temperature.
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Statistical Physics Quantum Field Theory

Phase space � Field �

Energy function H(�) Euclidean Action S[�]

Partition function Z =
R
e-H(�)/kT d� Path integral Z =

R
e-S[�]/h̄[d�]

Free energy F = -kT lnZ Effective action Seff = -h̄ lnZ

Table III.4.3: Correspondence between the fundamental concepts of (classical) statistical physics and quantum field theory.

The path integral. This fascinating analogy between clas-
sical statistical physics and quantum field theory becomes
much more tangible once we introduce the Euclidean path
integral as a tool to do calculations in quantum field theory.
In quantum theory we define the (Euclidean) path integral
or quantum partition function, as a weighted sum over the
classical configuration space, where each configuration is
weighted by the exponential of its classical action:

Z ⌘
Z
e-S[�]/h̄[d�] . (III.4.13)

So indeed, the path integral approach to quantum theory
does away with wave functions and in fact with Hilbert
space, but shows that the same information on quantum
amplitudes can be extracted from the corresponding clas-
sical expressions, and averaged over all paths or classical
field configurations that match the required boundary con-
ditions. Of course, this integration over infinite-dimensional
spaces is not simple and to properly define it one encoun-
ters a lot of mathematical pittfalls. It requires defining a
proper integration measure [d�] for the ‘space of field con-
figurations.’ But even having a suitable measure, calculat-

ing the integral exactly, is too much to hope for, and the
best one has been able to do in general is to develop a sys-
tematic approximation scheme by expanding the expres-
sions in a power series in h̄ and the coupling constants,
using Feynman diagrams and rules. These calculations
are notoriously subtle and require a rather unusual arse-
nal of skills. I will avoid all these highly relevant technical-
ities here, but nevertheless continue the overall narrative,
plainly quoting the results along the way if we need them.
And this way I hope to be able to convey the central ideas
and discuss what they mean. I refer interested readers to
the final section of this chapter where we go a step further
in explaining the perturbative approach and consider some
specific quantum processes in more detail.

In the comparison with statistical physics the temperature
parameter is replaced by some coupling constant times h̄,
and S is now the classical(!) (Euclidean) action which is
equal to the Lagrangian density integrated over all of Eu-
clidean space-time. The integral involves ‘imaginary time’,
which means that we set t ! i⌧ , so that the flat Minkowski
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space-time just becomes 4-dimensional Euclidean space
with x4 = ⌧ . The idea is that in Euclidean space the math-
ematical manipulations are much simpler and in particular
more convergent than in Minkowski space. But the price
one has to pay is that after the calculation is finished one
has to ‘rotate’ back to Minkowski space-time in order to
interpret the results.

The effective action. The analogue of a free energy is
then the so-called effective action Seff . :

Seff ⌘ h̄ lnZ (III.4.14)

And as in the definition of Z we have summed or inte-
grated over all field variables, the effective action only de-
pends on the parameters of the theory. This function or
its derivatives could become discontinuous, signaling what
we have earlier called quantum phase transitions. A strong
way to express this analogy is to say that quantum the-
ory in d spatial dimensions is just statistical mechanics in
(d + 1) dimensions, where the Euclidean action of the d-
dimensional space becomes a ‘would be’ (d + 1)-dimen-
sional Hamiltonian. An example of this was provided by the
d = 2 Ising model (discussed in the section on magnetic
order in Chapter III.2), where one encounters a quantum
phase transition at zero temperature at some critical value
of the external magnetic field. It has been shown that the
characteristics of that transition indeed correspond to the
d = 3 classical Ising model.

In Table III.4.3 we have summarized the correspondences
between statistical physics and quantum field theory. And
it should be said that this Feynman path integral approach
to quantum theory is in many ways complementary to the
operator, Hilbert space approach, and has led to many
new and valuable insights into the quantum world. It has
become an indispensible tool in our modeling and under-
standing of physical reality.

Scaling and renormalization

In this section we discuss scaling properties in a generic
way, following the renormalization group approach of Ken-
neth Wilson using the language of the Euclidean path inte-
gral and the effective action as introduced in the previous
section. We apply the formalism to the �-fourth model.
Wilson received the Physics Nobel prize for his work in
1982.

The Wilson approach to renormalization.
The starting point is to define the theory with momentum
cut-off ⇤:

Z =

Z
[D�]⇤ exp

�
-

Z
L0 d

4x
�
, (III.4.15)

with the �-fourth bare Lagrangian density:

L(�,@µ�) =
1

2
(@µ�)

2 +
1

2
m2�2 +

�4
4!
�4 . (III.4.16)

The integration is over all space-time field configurations
and has a measure with some momentum cut-off:

[D�]⇤ =
Y

|k|<⇤

d�(k) . (III.4.17)

You can think of it in the following way. Any field con-
figuration can be expended in a complete set of energy-
momentum eigenfunctions,

�(x) =
X

k

ak�k(x).

Integrating over the field configurations basically means
that you integrate over the space of expansion coefficients,
so the measure is then simply:

[D�]⇤ =
Y

|k|<⇤

dak ,

where the integral is only performed over the ak with k <

⇤. The importance of the cut-off is that all integrals are
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calculable in principle but the results may depend on the
cut-off.

Integrating out high momentum modes. We continue by
splitting the field modes depending on their momentum by
defining:

� = �< + �> with �> =

�
�(k) for b⇤ < k < ⇤

0 otherwise.
(III.4.18)

Now we have to expand out the Lagrangian and split it
in the part that depends only on �< that has the same
form as L and the part that depends on both �< and �>

and their derivatives. The path integral then becomes a
product of two factors. The idea is to perform the integral
over the �>(k) components in the second factor.

The effective Lagrangian. The theory obtained after inte-
gration over these high momentum modes is an effective
theory for the field � but now with a cut-off b⇤:

Z =

Z
[D�]b⇤ exp

�
-

Z
Leff d

4x
�
,

where the effective Lagrangian Leff will be equal to L plus
an infinite number of correction terms in increasing powers
of the coupling constant �4 and the field � and its deriva-
tives. The calculation of this expansion is a complicated
matter and will not concern us here because the qualita-
tive features we want to address can be discussed without.
The philosophy is like a calculation we will do in the toy
model in the final section, in that by integrating out a high-
mass variable � we obtain an effective Lagrangian which
can be thought of as an infinite power series in the remain-
ing low-mass variable �. In the toy model this can be done
explicitly, and therefore gives you a good idea. In the sit-
uation here we deal with fields and their derivatives, that
all depend on space-time coordinates. The expansion be-
comes similar to the toy model diagrammatically, but the
loop diagrams now involve integrations over the loop mo-
menta in the high momentum range.

Why am I telling you all this, where are we? So far we
have mapped a rather simple field theory with a cut-off ⇤
on a much more complicated theory with cut-off b⇤ . What
is that good for? To see that we return to the scaling prop-
erties of the terms in the effective Lagrangian, and apply
dimensional analysis to the new interaction parameters in-
troduced by integrating out the high momentum modes.
Let us write,

Leff = L0 + correction terms ,

where L0 only contains the quadratic terms describing the
original free field theory. The correction terms in principle
contain all powers of the field � and their derivatives. This
is somewhat disturbing as we now have to deal with an
extremely complicated effective description, but we are not
done yet.

The effective theory has a momentum cut-off b⇤ , and it is
this theory we want to rescale. We do so by rescaling the
momentum by k ! k/b and the coordinates by x ! bx.
This rescaling of the coordinates brings out certain powers
of b in front of the terms in the effective Lagrangian. And
because b < 1 we are going to smaller spatial and larger
momentum scales. As the Lagrangian has dimension `-4

and [�] ⇠ `-1, one finds that the coupling constants gm,n

for a term with a power of the field m and the number of
derivatives equal n has to scale with a power of the scaling
factor b given by:

gn,m ! bn(d/2-1)+m-dgm,n .

This expression is consistent with the values we assigned
before, for example the �4 coupling �4 = g4,0 in a space-
time dimension d = 4 yields indeed a power equal zero,
confirming that �4 is dimensionless. Now we want to dis-
tinguish three possible cases for the scale dependence of
the couplings in the effective Lagrangian:

– power > 0: the term is irrelevant
– power = 0: the term is marginal
– power < 0: the term is relevant.
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At this point we should mention that also extra terms of the
type that were already present in L0 will be generated and
these terms are absorbed into the new renormalized fields
and parameters. In the case at hand � ! � 0, m ! m 0

and �4 ! � 04 , so that indeed L0 in the next iteration looks
the same but with renormalized fields and parameters. If
we imagine iterating this procedure, repeating the rescal-
ing after integrating out the highest momentum modes, we
get a sequence of maps of the coupling constants, and
it is this sequence of maps that we refer to as the renor-
malization group trajectory. What we arrive at is a flow
of the model in the space coupling constants. The impor-
tant point of distinguishing the various terms is that the
irrelevant ones get suppressed by powers of b, while the
relevant ones have inverse powers and will grow. For the
marginal operators one has to make higher order calcula-
tions to determine which way they will go. The upshot is
that the renormalization group action maps out a trajectory
of the given theory in the space of coupling constants, in
other words, in the space of theories. In the next section
we will discuss the renormalization group equations that
determine the trajectories and go through some relevant
examples.

Note that the question whether interaction terms are rele-
vant, irrelevant or marginal depends strongly on the space-
time dimension d. One can easily check that the �4 term
is marginal for d = 4 but it becomes relevant if d < 4 . For
d = 2 one finds that all powers of the field become rele-
vant, because the exponent becomes -2 for all of them.
A mass term scales as expected like b2-d and is therefore
relevant for all d > 2.

The asymptotic behavior of the theory one considers now
depends on where these trajectories go. They may move
towards a fixed point that could be either zero or nonzero,
or trajectories could run off to infinity, which means that the
theory looses its meaning and becomes inadequate to de-
scribe the physics. The irrelevant terms go to zero as they
are suppressed by the increasing powers of the cutoff. So

most of the scary looking terms that appeared after inte-
grating over high momentum modes disappear again be-
cause of the rescalings, and because of their irrelevance.
This brings us back to the question of scale invariance.
If the couplings in a theory go to a fixed point, then the
theory defined by that fixed point is by definition scale in-
variant!

We note that the �4 theory in four space-time dimensions
has what is called ‘trivial’ fixed point where the parameters
m2 and �4 are both zero, and L(0) = (@µ�)2 . This theory
is in fact invariant under the conformal group as we have
mentioned before. It has been shown that the�4 theory for
d = 3 has a non-trivial fixed point, The so-called Fisher–
Wilson fixed point.

The statement is that theories that have only relevant and
marginal terms are called renormalizable. It is in those
theories that it is possible to take the cut-off ⇤ to infinity
sending the irrelevant terms to zero. The effect of all the
quantum perturbations can then be absorbed in sensible
redefinitions of field and parameters.

The importance of the Wilson’s renormalization group per-
spective is that it a priori assumes that there is a real phys-
ical cut-off and that the physics at lower energy may show
some dependence on it. This typically is the case in ap-
plications in condensed matter and you had better take it
into account. There is no need to send the cut-off to infinity,
because it is really there. On the other hand it used to be
somewhat of a mystery if not a miracle why the fundamen-
tal theories like the Standard Model are all renormalizable
(from the start). And one wondered why Nature was so
judicious in its choice. Just to please physicists so they
could do meaningful perturbative calculations? The Wil-
son approach makes clear that renormalizability is exactly
what survives in a natural way. Those are the terms that
basically survive in the renormalisation group flow. Quite
arbitrary theories may well flow towards a scale invariant
fixed point that lies inside a subspace of relevant renormal-
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izable theories, which do not need to be scale invariant!
The Wilsonian perspective we have outlined leads to the
conclusion that the renormalizable models are universal in
that they describe the asymptotic behavior of large classes
of other models. ⌅ ⌅

The quantum bank. Whether you
study the stars, write poems, or are
world champion armwrestler, in the
end we all have to deal with banks. You

need a loan or a mortgage and you get immersed
in a labyrinth of options: this one looks even more
advantageous then the other. Ultimately it always
boils down to interest rates, and those rates are cal-
culated based on a mysterious mixture of facts and
fictions concerning the certainties of your present
and the uncertainties of your future. But one thing
remains true under all circumstances: borrowing
money costs money! And you are happy because
you are spending money you don’t have!
Now back to quantum, In the realms of quantum
theory the currency is energy rather than dollars.
Yet there is also a bank, which is basically the vac-
uum itself. We know that because of the Heisen-
berg uncertainty relations, a quantum marble can-
not be at rest at the bottom of the bowl, it has to
jiggle around a bit. There is no certainty ever in the
quantum world. This may work to the advantage
of the participants in the sense that there are al-
ways quantum fluctuations even in the ground state
and even at zero temperature. Quantum reality is
such that there is always some energy around. And
the idea of the cooperative quantum bank is that it
provides very cheap energy loans, but they come
with some unusual restrictions. The slogan is, you
can borrow as much as you want but only for a very
short period.
Whereas the money banks usually have very high

interest rates for ultra short-term loans, the quan-
tum bank’s energy loans work exactly the opposite
way. As long as you �Ex�t  h̄

2 you are doing
fine. So if I am a photon and play it big, I can bor-
row energy so that I can produce for example an
electron-positron pair to impress my fellow photons
as long as the loan is very short term. But now the
catch is that because the overall energy has to be
conserved, the quantum bank insists that you re-
turn your energy before the Federal Reserve gets
wind of it. And this is what certain real-life Quants
in real banks don’t seem to understand. There is
a moment of reckoning: you speculate yourself into
heaven, but you have to be back home with two legs
on the ground in time! In other words the quantum
world makes sure that the pair just created annihi-
lates back into the vacuum and the photon contin-
ues its journey, as if nothing ever happened to it.
You would think. But no it isn’t as simple as that.
The photon carries its creative banking experiences
with it and they effectively change its behavior.
It reminds me of my good old student days at Delft
University, when I was cycling home late at night
along the beautiful ‘Oude Delft’ canal from the lab,
or was it a party? Suddenly I got pulled over by the
police. Trouble! Probably a costly ticket because I
had no lights on my bike. And while the officer was
searching for his ticket book in the car, I shoved my
old bike in the canal. Bloop...gone! When the po-
lice officer returned and started to make a solemn
declaration about ‘your bike sir appears to be miss-
ing some appropriate lighting’....I interrupted him
and asked what bike he was talking about. ‘But I
thought that ...’ ‘Yes, may be you thought, but look
...’ This caused some consternation. Indeed, here
were powerful fluctuations at work that the officer
on duty apparently had no working knowledge of!
⇤
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Running coupling constants

As we have seen, quantum theory and in particular quan-
tum field theory has come up with a surprising answer to
questions about the spatial or momentum scale depen-
dence of the coupling parameters in a given theory. Though
the road to the result is highly technical and the arguments
may at first appear to be quite opaque, what results is
clearcut and strikingly simple.

The renormalization program yields equations that govern
the behavior of the parameters of the theory as a function
of scale. These are differential equations that remind you
of an ordinary dynamical system, say a set of interacting
Newtonian particles. Now you have to imagine that these
equations describe the ‘motion’ of a given theory in pa-
rameter space, not as a function of time but as a function
of scale! And that’s where the term ‘running coupling con-
stants’ comes from. It is kind of mind boggling to think of a
given theory ‘running’ in the space of theories. Yet that is
what happens and moreover, it teaches us about the limit-
ing or asymptotic behavior of such theories. This may be
in the high momentum (ultraviolet) or the low momentum
(infrared) limit, depending on the problem one is interested
in.

The first and maybe simplest equation of this type – called
the Gellman-Low equation – was written down for QED.
Later the general renormalization group approach which
we described, culminated in the so-called Callan-Symanzik
equations for the scaling behavior of any composite local
operators of the type we encountered in the expansions.
These renormalization group equations govern the flow of
points in the space of (renormalized) coupling constants
which we will denote by W . Let us consider the simple
case of a single coupling constant g. The theory has a mo-
mentum cut-off ⇤, and the equation involves the renormal-
ized coupling which we denote by ḡ, which depends on the
momentum scale through its logarithm only, ḡ = ḡ(log p̄) ,

where we choose p̄ to be the dimensionless momentum
variable p̄ ⌘ p/⇤ . The renormalization group equation
has the simple form:

dḡ

d log p̄
= �(ḡ) . (III.4.19)

This equation just says that the rate of change of the cou-
pling ḡ equals a function �(ḡ) , not surprisingly called the
beta-function. This function depends on log p̄, but only
through the coupling constant ḡ . In that sense you can
think of it as a functional equation for ḡ as a function log p̄,
in the spirit of equation (III.4.5).

Let us assume that at some large distance (small momen-
tum) this coupling is small, then we may look at � for small
ḡ and develop it there as a power series like:

�(ḡ) = aḡ+ bḡ2 + · · · , (III.4.20)

and for small ḡ the successive terms will become ever
smaller, and we can safely truncate the series. Now given
the quantum field theory the coefficients a, b, · · · can be
calculated using perturbation theory. This approach allows
us to deduce important general features of the theory. It is
important though to note that because the beta function
is mostly calculated perturbatively, it follows that the re-
sults obtained can only be trusted in the domain where the
perturbation theory holds, in other words, where the ex-
pansion parameters are small. Of course, the rare cases
where models can be solved exactly serve as ideal testing
grounds for the tools we are describing here.

Mechanical analogues

Let me point out a mechanical analogy that should be fa-
miliar and thus helpful. It refers to our discussion on dy-
namical systems on page 11 of the section on Newtonian
mechanics in Chapter I.1. If we think of a complicated the-
ory with many parameters, we will have a system of cou-
pled equations but all with the same first derivative with
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respect to log p̄ on the left-hand side. Using log p̄ instead
of p̄ makes the equations particularly simple, the only thing
you have to keep in mind is that log p̄ grows monotonically
with p̄ , so if log p̄ becomes large then p̄ does also, but for
p̄ going to zero log p̄ goes to minus infinity. In this sense
we may think of log p̄ as some kind of ‘time’ variable t .

Then the equation just describes the motion of a point in
the (coupling constant) space W of the system.

Stated differently, as the point represents a particular the-
ory, its motion describes a trajectory in a space of theories!
The left-hand side is the ‘velocity’ or rate of change which
depends – through the expression on the right-hand side –
on where you are in the coupling constant space. So, the
equation defines a vector or flow field over W , in a sim-
ilar way that Newton’s dynamical equations for a particle
define a flow over the phase space, as we discussed in
Chapter I.1. The equation governs the trajectories com-
pletely once the initial conditions for ḡ(t) at some t = t0
are given, just like Newton’s equations do after you give
the initial positions and velocities of a bunch of interact-
ing point particles. These dynamical systems are usually
nonlinear, and also in the case at hand the dynamical sys-
tem is nonlinear as we see from the expansion in equation
(III.4.20). As we remarked in Chapter I.1, it allows us to
search for universal behavior, because the system may for
large values of time, or high momentum (t = ln p̄), end
up in some fixed point or limit cycle and may for long time
scales exhibit universal behavior.

It is amusing to see how we manage to address deep
questions in the realm of Quantum Field Theory because
we have been able to map the problem onto a rather sim-
ple Newtonian dynamical system. Indeed, from equation
(III.4.19) one sees that for the points where the �-function
vanishes the ‘velocity’ is zero, so these points correspond
to stationary points. This translates into the statement that
that theory becomes invariant under further rescaling. It
is a theory which is called ultraviolet (high momentum)
stable, because it has ended up in in some scale invari-

(a) Stable fixed point (b) Landscape near a stable
fixed point

(c) An unstable fixed point (d) Landscape near an unstable
fixed point point

(e) A saddle point. (f) Landscape near a saddle
point

Figure III.4.15: Fixed points. The three types of fixed points
one may encounter in a two-dimensional parameter space. In
(f) we see that lines of steepest descent and steepest ascent
are perpendicular.

ant fixed point. Note that this analysis allows for theories
that are quite different initially to end up in the same ul-
tra violet fixed point. They belong to the same universality
class.

For a single coupling we have only one dimension and it
is straight forward to see what is possible for small cou-
pling, where we only take along a few terms in the expan-
sion (III.4.20). For example, the system may move to a
stable fixed point where it would stay for ever after, or we
may have an unstable fixed point and the system would
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Figure III.4.16: Beta functions of the �4 theory in 3 and 4
dimensions. Depending on the starting value of �i we have
sketched the asymptotic behavior of the coupling constant � =
�(logp). In the infrared region (decreasing logp) there is a non-
trivial IR fixed point for � = �0 for d < 4. In the ultraviolet limit
(increasing logp) we find for �i < �0 a trivial fixed point (� = 0)
where the theory behaves like a free theory with zero coupling.
For �i > �0 the coupling keeps increasing, at least for as long
as the expansion makes sense.

move away from it under any small perturbation.

If we think of a two-dimensional parameter space, such
stationary points can in general only have three generic
types of behavior: either the point is attractive, or repulsive,
or it is a saddle point. This is illustrated in Figure III.4.15. In
two or more dimensions one also could imagine the pos-
sibilities of limit cycles, or more exotic attractors where the
system could display even chaotic behavior. But generic
features of these renormalization group equations appear
to exclude that. Nature saves us the humbling demise that
our theories would get lost in chaotic asymptotics. Cop-
ing with quantum uncertainties is enough of a challenge!

The scalar �4 theory. Let us now turn to an explicit ex-

ample. What do the renormalization group equations look
like for the scalar model we have been discussing? It has
two parameters, m̄2 and �̄4 , and therefore two equations
with two beta functions. To lowest non-trivial order these
read as follows:

d �̄4
d log p̄

= ��(�̄4) = -(4- d)�̄4 +
3�̄24
16⇡2

, (III.4.21)

dm̄2

d log p̄
= �m(�̄4) = [-2+ �m(�̄4)]m̄

2 . (III.4.22)

Let us make some observations with respect to these equa-
tions:
(i) The constant term on the right-hand side of the equa-
tions gives the naive scaling dimensions, namely 0 and -2

respectively.
(ii) The other terms are radiative corrections to the num-
bers, and are supposed to be small. The anomalous term
�m(�̄4) vanishes if �̄4 = 0 .

(iii) As all corrections take the form of a power series in
�̄4 only, it is the �̄4 equation that drives the dynamics. So,
let us then start with the first equation. In four or more di-
mensions the beta function is positive and the coupling will
therefore keep growing until it becomes so large that the
perturbation series breaks down in that successive terms
are no longer decreasing. What happens in the strong
coupling regime in that case cannot be answered through
this analysis, because the series diverges the approxima-
tion scheme becomes invalid. One would have to resort
to strong coupling approximations meaning numerical lat-
tice simulations. The conclusion appears to be that there
is no fixed point at larger values of the coupling, which
means that the theory deteriorates into the quartic term,
not a physically interesting or meaningful result.
(iv) In Figure III.4.16 we depicted the beta function ��(�̄4)
for d = 3 and d = 4 . Where the blue direction is the di-
rection of increasing momentum (ultraviolet), while the red
arrows point in the decreasing momentum (infrared). We
see that for d < 4 the beta function has two zeros, mean-
ing that there are two fixed points: one at zero and one
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larger than zero at some value �⇤ . The new point is an in-
frared stable fixed point.
(v) If we let d approach 4 from below we see that the two
fixed points merge at the trivial fixed point �̄4 = 0 which
corresponds to the free field theory.
(vi) Finally, the renormalization equation for the mass pa-
rameter has on the right-hand side the constant -2 which
just reflects the naive scaling we have discussed already.
If we scale up the theory one expects the mass term to be-
come less and less relevant. while in the trivial fixed point
it is the one and only relevant parameter. The precise form
of the solution is:

m̄2 '
�m
⇤

�2
(
⇤

p2
)2+� . (III.4.23)

If in less than four dimensions the system sits in the non-
trivial Fisher-Wilson infrared fixed point, we get the anoma-
lous correction to the naive scaling law corresponding to
�(�⇤) . This correction plays a role in the d = 3 statisti-
cal physics of magnetic materials. It has no effect on the
ultraviolet behavior of the theory.

Gauge couplings

The following picture emerges: the constant a in the ex-
pansion of the beta function (III.4.20) has a generic struc-
ture:

a = d- n , (III.4.24)

where d is the physical space-time dimension and n is
some critical dimension, critical because the scaling be-
havior of the theory depends critically on whether d is small-
er or larger than n . If d < n then a < 0 and the growth
rate of g is negative and g will decrease with growing mo-
mentum, or what amounts to the same, with decreasing
distances. In this case the coupling constant will go to
zero, its like no interactions are left at small distances. And
as the linear approximation will get better and better with
decreasing g, the prediction that this theory behaves as a

theory of free particles at small distances is reliable and
consistent.

If however d > n, the situation looks pretty bad because
now the coupling grows bigger at smaller distances and
the approximation breaks down and we would need the
complete � function.

Now there is still the ‘in between’ possibility with d = n ,

and it turns out to be of considerable interest in the situ-
ations that nature faces us with. In that case we have to
turn to the next term in the series with coefficient b . If we
only keep the b term the solution becomes:

g(p) =
c

1- bc logp
, (III.4.25)

with c some positive constant. Again, we may look at what
happens for when b is positive, respectively negative. The
different behaviors are plotted in Figure III.4.17 and inter-
estingly we encounter both cases in realistic particle theo-
ries.

Quantum electrodynamics. The case with positive b cor-
responds to pure quantum electrodynamics (QED), the the-
ory of photons, electrons and positrons. From the blue
curve we see that g becomes very small for small values
of logp, that is large distances. We recall that the ex-
pansion parameter in QED is the fine structure constant
↵ = e2/4⇡✏0h̄c ' 1/137. This corresponds to the famil-
iar regime where charges are free and have weak elec-
tric interactions, and perturbation theory can be trusted,
and allows for calculations of exceptional precision. The
decrease of the coupling at larger distances reflects the
situation that the quantum fluctuations tend to screen the
‘bare’ or ‘naked’ charge. This effect is called vacuum po-
larization because due to the quantum uncertainties the
quantum fluctuations in the fields result in the excitation of
virtual electron-positron pairs and these screen the ‘bare’
charge. Vacuum polarization is discussed in more detail in
the following section on page 579.
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Figure III.4.17: Running coupling constants. On the left a plot
of the beta function �(g) of equation (III.4.20) for positive (blue)
and negative (purple) sign of the constant b . On the right we
plotted the solutions for g(lnp) of equation (III.4.25), showing
the dependence of the coupling strength on the logarithm of the
momentum. The blue curve goes to infinity for a finite value
of logp at the so-called Landau singularity. The purple curve
corresponds to negative b , the coupling tends to zero for small
distances which is called asymptotic freedom.

For increasing momenta the coupling becomes infinite for
some finite momentum scale, which taken literally would
suggest that the naked charge would be infinite. This sin-
gular behavior is called a Landau pole, and the presence
of such a pole indicates that the theory becomes untenable
past a certain scale and has to break down somehow. In
general, it is true that a coupling growing large is a strong
signal that the theory is no longer to be trusted past that
point. This is not a disaster but just a whistleblower an-
nouncing that the model is losing its validity and presum-
ably some new physics has to enter the conversation to
allow us to escape the singularity.

This illustrates again a notion that I have mentioned be-
fore, namely that theories are not right or wrong per se,
but rather have a limited domain of validity. In the present
context a large coupling usually means that the physical
system will enter another regime for which the theoretical
picture one started off with becomes inadequate. Renor-
malization in that sense helps theories to predict their own
demise. How nice to have theories which know about their
own limitations. For the case at hand the resolution came

much later when it was discovered that at small scales it
made no sense to look at the electromagnetic interactions
separately. The remedy was to combine the electromag-
netic and the weak nuclear interactions into a single unified
‘electroweak’ theory which turned out to behave extremely
well also for extremely small distances as we have been
able to verify in the Large Hadron Collider (LHC) at the
European accelerator center CERN in Geneva. In fact, the
word ‘large’ here implies precisely ‘large momenta’, and
this collider smashes particles into each other with very
high energies, and that means that they can come very,
very close to each other. The LHC was specially built to
investigate what happens to the interactions at very small
distances.

Quantum chromodynamics. Let us now look at the pur-
ple curve in the figure corresponding to negative values of
b . It shows that the coupling goes to zero with increasing
logp or at smaller distances. Therefore, the theory ends
up describing non-interacting – free – particles for large
momenta. This behavior under scaling is realized in Quan-
tum Chromodynamics (QCQ), the theory for the strong nu-
clear force. We see that the ‘strong’ interactions between
quarks, paradoxically enough becomes extremely weak at
small distances. This remarkable behavior of the strong
interactions is called asymptotic freedom. For a long time
it was thought that the problem of the strong nuclear forces
could never be solved along the lines of quantum field
theory, but this picture changed drastically after ‘asymp-
totic freedom’ was discovered and the strong interactions
were tamed because they turned out to be the manifes-
tation of a well-behaved weakly coupled theory at small
distance scales. This totally different asymptotic behavior
of QED and QCD, is of course due to the self-interacting
nature of the gluons. Those self-interactions distinguish
the non-abelian from the abelian theories. For the discov-
ery of asymptotic freedom the physics Nobel prize 2004
was awarded to David Gross, David Politzer and Frank
Wilczek.
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From the purple curve we also see that going towards
small momenta the coupling grows ‘without limit’ at some
finite value of logp . This behavior is sometimes called in-
frared slavery because the particle would become extreme-
ly strongly coupled. The physical interpretation of an in-
creasing coupling constant is that at a scale where the
coupling becomes of order unity, the perturbative predic-
tions lose their reliability, and one expects other physics
and non-perturbative effects to come into play. For QCD
there are two fundamental phenomena that are linked to
this. The first is the formation of the quark-antiquark con-
densate that causes chiral symmetry breaking as we dis-
cussed in Chapter II.6 on symmetry breaking on page 441.
This symmetry breaking lead to the interpretation of the
three pion particles (⇡± and ⇡0) as the ’massless’ Gold-
stone degrees of freedom associated with the breaking.
The second non-perturbative phenomenon manifest at that
scale is the confinement of quarks. As mentioned before
the collective of quarks reorganizes itself into tightly bound
composites called hadrons made up of either three quarks
(called baryons) or form a quark an anti-quark pair (called
mesons). The protons and neutrons are the nuclear parti-
cles from which all familiar forms of matter are build, and
these are baryons. The pions however belong to the group
of the mesons. What this means is that at scales where
the becomes large the perturbative approach breaks down
and the behavior of the theory is no longer what one would
expect from the its weak coupling behavior. At that point it
is important to switch to a different effective theory that is
formulated directly in terms of the hadrons. In the case of
QCD this turns out to be a nonlinear sigma model that we
will not further dwell on.

Grand unification: where strong joins weak

The idea of renormalization and running coupling constants
led to a powerful insight into the possibility of unifying the
different types of interactions into a single framework often

Figure III.4.18: Unifications. The subsequent unifications of
fundamental interactions suggested by the running coupling
strength of the various forces meeting at ever higher energy
scales. Experiments at the Large Hadron Collider at CERN in
Geneva go up to about 103 GeV.

referred to as a Grand Unified Theory or GUT. We have al-
ready alluded to the fact that the problem of the ill-defined
electromagnetic coupling at small distances was resolved
by the unification of the electromagnetic and the weak in-
teractions. On the other hand we mentioned the strong
nuclear force which turned to become weak at short dis-
tances. As we explained in Chapter I.4, these three in-
teractions are now described in a single combined theory
called the Standard Model. This theory has so far suc-
cessfully survived extensive testing through many different
types of experiments and appears to be able to predict and
explain all the data that are available at present.

To give you an impression of what could be a successful
next step up the quantum ladder of unification you should
look at Figure III.4.18. The picture gives the expectation of
how the grand unification could be achieved. Experiments
go up to a level 500 GeV so we have witnessed the elec-
troweak unification and we see the strong coupling com-
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ing down. Applying the renormalization techniques and
scaling arguments we discussed before to the Standard
Model, one may calculate the trajectories of the various
coupling constants (assuming that no new physics shows
up at other intermediate scales) to substantially higher en-
ergy scales and indeed it is suggestive to anticipate a fur-
ther unification at the GUT scale of around 1015 GeV . In
fact if we extend the Standard Model to its minimal su-
persymmetric extension, the resulting trajectories for the
three couplings of the model really intersect at a single
point near 1015 Gev as is shown on the right-hand side of
Figure III.4.18. Then the extra (susy) scale of the break-
ing of supersymmetry has to be introduced because we
haven’t observed any superpartners of the ordinary parti-
cles at low energies. Even more speculative would be the
unification with gravity at the Planck scale 1019 GeV . Such
are the grand vistas and holy grails of modern high-energy
physics.

Phase transitions

In the previous sections we have seen that in many body
systems described by statistical mechanics or quantum
field theory, we may by changing the external parameters
being the temperature or some coupling constants have
the theory end up in a fixed point of the renormalization
group equations. In points where the beta-function van-
ishes the theory is scale invariant. We have seen an ultra-
violet fixed point in QCD and an infrared fixed point in the
�-fourth theory in three dimensions.

In most of physics this remarkable property of scale in-
variance is the hallmark of a so-called critical point where
the system exhibits critical behavior. The behavior around
such fixed points, may exhibit fluctuations on all scales,
but these can be understood because of the self-similar
nature of their spectrum. The correlations display a power
law behavior.

The power laws that characterize the critical behavior have
universal properties which only depend on the dimensions
and nature of the critical point. Many models which may
be much more complicated for example having quite a few
parameters at the start may move into a universal fixed
points where their behavior is described by a much simpler
model with fewer parameters. In many lower-dimensional
cases the critical models can be solved exactly, which pro-
vides important insights about the phase structure of large
classes of models, think for example of the Ising model.
These ideas where initially developed in statistical physics
by Michael Fisher and Leo Kadanoff, and as mentioned in
the context of quantum field theory carried further by Ken-
neth Wilson who received the Nobel prize for his work in
1982.

And it is indeed by the renormalization group approach
that theorists have on the one hand been able to come
up with many interesting and successful explanations, and
on the other have been able to construct representative
models for a myriad of physical phenomena. They could
solve these simplified models exactly and therefore could
provide calculable models for a vast range of critical phe-
nomena.

So to conclude, we have shown that one may think of a
space of coupling constants where a given theory is char-
acterized by some point in that space where the couplings
take particular values. Now there is a set of coupled renor-
malization group equations for this set which determines a
flow of the point through this space that may or or may not
end up in some fixed point. In a fixed point the system’s
behavior becomes scale invariant, and as such it exhibits
some characteristic universal behavior of the theory. The
renormalization group equations define flow lines in the
space of parameters and starting at a given point in the
space the theory follows the flow line to some fixed point.
Clearly many different theories can end up in the same
type of fixed point and that is what we mean by universal
critical behavior see Figure III.4.15(a).
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On the calculation of quantum corrections

Renormalization is a scheme that guarantees a peaceful
coexistence with infinities.

Perturbation theory

What do we mean if we say we have a quantum field the-
ory like QED or the standard model, or a theory of pions,
or of superconductivity? The casual term ‘The theory’ usu-
ally refers to a number of inclusions or formal steps starting
from three ingredients:
(i) an action (or Hamiltonian), which allows us to derive a
set of
(ii) Feynman rules describing the propagators (two-point
(correlation) functions) for the particles in the theory, and
also the interaction vertices;
(iii) If we are interested in a particular physical quantum

process, we can usually not calculate the probability am-
plitude for that process exactly. It is however possible to
make a systematic perturbative approximation, by making
a diagrammatic expansion for the quantum amplitude of
any process in increasing powers of the relevant coupling
constant(s) and in powers of h̄ .

Such an approximation scheme is only reliable if the ex-
pansion parameter is sufficiently small. This procedure,
called perturbation theory, is schematically depicted in Fig-
ure III.4.19.

The toy model as tutorial in the language of diagrams.
Let us take a very simple toy model to illustrate the quant-
essential difference between classical and quantum rea-
soning.5 The model concerns a drastic simplification and
only serves to illustrate certain generic properties of quan-
tum corrections. We are not about to really calculate any-
thing realistic because it turns out that those calculations

5I encountered this model in a set of lecture notes on ‘Applications
of QFT to Geometry’ by Dr Andy Neitze of Princeton University.

Figure III.4.19: The perturbative approach. A theory (like QED)
is defined by its classical action, giving the functional form of the
theory in terms of the particles (fields) and their interactions.
From the action one derives the set of Feynman rules that al-
low for a systematic diagrammatic expansion of any physical
process, This is a series expansion in increasing powers of the
coupling(s) and the Planck constant h̄ .

are quite complicated, and it is where a lot of bright stu-
dents spend a considerable amount of time on. But luckily
we are not the part of the workforce we are just curious
tourists! We just want to stare in awe at the statue and
need not make one ourselves; we love to eat a sausage
but rather not go through how they are made! We are here
to see how others did the work!

The toy model is a field theory in zero-dimensional space-
time, where we consider two real valued fields ' and �.
You could say we are studying a system with two modes.
The action function has only mass terms and an interaction
term (there are no space or time derivatives) and looks
therefore almost trivial:

S(',�) =
m2

2
'2 +

M2

2
�2 +

�

4
'2�2 , (III.4.26)

and let us assume that M � m. You might wonder, what if
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Figure III.4.20: Action of toy model. The surface corresponds
to the classical action S(',�) as a function of the variables '
and � .

anything we can learn from a model in which such a drastic
amputation of reality has taken place. In a sense you are
correct: the fields are just real variables, and the quantum
aspect as we will see is kind of restricted to the h̄ which
we stick in. So, in the end we integrate a function, and
expand the result, and yes the structure one obtains looks
very much like the things we encounter in field theory. This
is a pedagogical workout, illuminating and even fun. Let us
therefore respectfully execute some ‘standard calculations’
imagining that we are dealing with a real field theory and
see what it delivers and also what not.

The three terms in the action correspond to the three Feyn-
man rules (the elementary diagrams) that we give in Fig-
ure III.4.21. The free part yields the two ‘propagators,’ and
the quartic term yields the interaction term with coupling
strength equal � .

Effective actions. Let us consider the most trivial pro-
cess imaginable namely where the in and out state are
both empty. Classically if nothing goes in and nothing goes

Figure III.4.21: Feynman rules for toy model. The Feynman
rules are derived from the action and give the functional for the
various terms in the action.

out then there is a unit probability that nothing happens in
between.

What we have is a very heavy mode and a very light mode
that interact with each other. What you have classically is
that it costs a lot of energy to excite the heavy � mode and
that it is easy to excite the light ' mode. So, for energies
well below M only the light mode will be present and we
can forget about the heavy �mode altogether. But if we do
a quantum calculation, we should allow for virtual manifes-
tations of the heavy mode, and we have to integrate over
all possible values that field may take. We say that we ‘in-
tegrate out’ the heavy mode. And this in turn will drastically
change the resulting effective theory for the light mode. It
will change three things: (i) it will change the mass of the
light mode, (ii) it will change the strength of the interac-
tion term and (iii) it will generate an infinite number of new
self-interactions for the light mode. These are quantum ef-
fects that affect the low energy behavior of the theory. And
these are precisely the generic aspects we like to illustrate
with this tiny toy model. We can integrate over the the �
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Figure III.4.22: Effective action for ' field. The graphs corre-
spond to, (i) the classical action S0(') ⌘ (', 0) (blue curve), (ii)
the effective action S

(1)
eff

including the lowest order corrections
in � (dark purple curve), and (iii) the complete effective action
where the � field has been integrated out exactly (light purple
curve).

,

field variable and extract an effective action Seff(') for the
' field through the defining relation:

e-Seff(')/h̄ =

Z
e-S(',�)/h̄ d� . (III.4.27)

Is this very complicated you may ask? The answer is: if
you have real space-time dependent fields it is quite in-
volved, but in our little kindergarten theory, there are no
evil agents that could spoil our curiosity. As you know the
action function is just quadratic in � as well as � which
means that the complicated looking formula involves just
one Gaussian integral over �:

Z+1

-1
e-a�2 d� =

r
⇡

a
= e-

1

2
ln a

⇡ . (III.4.28)

In our integral we have that a = (M2 + �'2/2)h̄ and we

obtain for the integral
� 2⇡h̄

M2 + �'2/2

� 1

2 . So the effective

Figure III.4.23: Effective action expansion. The diagrammatic
expansion of the effective action for the toy model of equation
(III.4.26), and the expression for the terms up to order �2 and
h̄2.

action for the ' field becomes:

Seff(') =
m2

2
'2 +

h̄

2
ln(1+

�'2

2M2
) +

h̄

2
ln

M2

2⇡h̄

This logarithm ln(1 + b) can for small b be expanded in a
power series ln(1+ b) = b- 1

2b
2 + 1

3b
3 + . . ..

Now on a quantum level we are supposed to draw all possi-
ble vacuum to vacuum diagrams: these are diagrams with-
out incoming or outgoing lines. Are such diagrams possi-
ble? Well, yes, of course! We have drawn the first few
diagrams in Figure III.4.23, where we listed them in pow-
ers of the coupling constant � and included all diagrams up
to second order. Applying the Feynman rules given in Fig-
ure III.4.21, we can in principle write down the amplitudes,
but we are in particular interested in the coefficients of the
successive terms and the powers in terms of the fields. Af-
ter some algebra you get a result for the sum that is not too
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Figure III.4.24: Effective Feynman rules for toy model. These
are the effective Feynman rules for the � field if we treat the '
field as an external source corresponding to the green dot.

surprising either:

Seff(') = S(', 0) +
h̄�

4M2
'2 -

h̄�2

16M4
'4 +

h̄�3

48M6
'6 + . . .

(III.4.29)

This is an expression worth contemplating, because it ex-
hibits many structural features of what quantum correc-
tions on classical physics look like. We make the following
observations:
(i) First of all note that the correction have a factor h̄ so
they vanish in the classical limit, in the classical limit the
presence of the � field decouples and it does not affect the
effective ' theory.
(ii) The second remarkable fact is that summing over all �
contributions, which is what integrating the field out means,
generates self-interactions of order n with an effective cou-
pling constant �n ⇠ h̄(�/M2)n . Most important is the low-
est order term quadratic in ': in other words, it will shift

the mass to m2
eff = m +

h̄�

2M2
. The take home message

is, that quantum corrections may introduce novel interac-
tion terms that were not there on a classical level.

Figure III.4.25: Effective action for ' field This is the effec-
tive action for the ' field if we integrate out the high mass �
field. All diagrams have one loop and thus one power of h̄, and
they all contribute to the lowest order quantum corrections. The
power of the coupling parameter �/2M2 is given by the number
of propagators in each diagram.

(iii) One might also derive effective Feynman diagrams for
the ' field where the higher order terms are represented
as new couplings �2n labeling the strength of the vertices
with 2n external lines. This is depicted in Figure III.4.26.
(iv) A fundamental question that remains at this point is
whether the effective quantum theory can produce interac-
tion terms that violate the symmetries (and therefore con-
servation laws) of classical theory. We see an example
in the toy model above. The effective potential for the '
field has positive coefficients for the '2 and '6 terms but
a negative coefficient for the '4 term, which means that
the potential will have local minima at for ' = 0 but also
for' 6= 0. It would correspond to a metastable state where
the mirror symmetry ' ! -' is violated. We briefly re-
turn to this question shortly when we talk about anoma-
lies.⌅ ⌅
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Figure III.4.26: Effective Feynman rules. The Feynman rules
for the effective action for the ' field. The terms are defined as
1

2n!�2n'
2n and yield the diagrams as shown.

Quantum fluctuations in QED

We pointed out before that we may specify a theory by pos-
tulating a set of fields representing the basic constituents
and their interactions by giving the coupled equations they
have to satisfy or equivalently by giving an energy or ac-
tion function(al) in terms of them including the interactions.
Such a model is characterized by its particular functional
form which contains a number of parameters like coupling
strengths and masses. These parameters are just the co-
efficients of the various terms in the action. Of course
there are also the universal parameters such as the ve-
locity of light and Planck’s constant, which are hidden as
we have ‘set’ them equal to one.

Now you would think that the parameters are directly de-
termined by making measurements of them. Here we have
to be careful because the story is not so simple.

In quantum theories even in the most idealized situations

one has to deal with the effect of quantum fluctuations, be-
cause such fluctuations are an inevitable ingredient as a
consequence of the uncertainty relations between position
and momentum and time end energy. The size of the en-
ergy fluctuations grows inversely proportional with the spa-
tial scale one chooses to look at. So, the theory describes
also what the fluctuations are in these quantities and if one
goes to smaller distances or higher momenta the effect of
these fluctuations is that they will lead to significant differ-
ences between the bare values of the parameters that I
wrote down in the equations and those that would effec-
tively be observed. The parameters are indeed external
but they are in fact corrected by the quantum processes
described by the theory.

To make a consistent comparison with experimental re-
sults one should first calculate, then include these ‘quan-
tum’ corrections and then choose the bare parameters in
such a way that the observed data match the calculated
parameters including the corrections. It’s like buying a
box of chocolates, since there may be a significant differ-
ence between the weight of the box as a whole and the
net weight of the chocolates, as the wrapping may be sur-
prisingly elaborate. The lore is that the more exquisite the
chocolates the more elaborate the wrapping. Reality is
similarly hidden from us by an elaborate quantum wrap-
ping.

The calculations of these corrections turn out to be quite
involved. What we like to do here is not so much doing
such calculations as outlining the structure of what they
involve. And what all that has to do with the scale depen-
dence of the theory. Briefly stated: if one naively calcu-
lates these quantum corrections using the diagrammatic
approach of Feynman, one finds that the calculations di-
verge, that they give infinite answers. This is not so much
an indication that things are wrong, but rather that they are
more subtle than you would naively expect. And Nature is
subtle for sure.
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What happens is that if one calculates the effect of certain
quantum degrees of freedom these cause infinite changes
in the effective parameters of the theory and that would
render the theory useless, except when these divergen-
cies can be ‘subtracted’ in a meaningful and consistent
way that allows for a set of uniquely defined finite param-
eters after all. This procedure for dealing in a physically
sensible way with these unwanted infinities is called renor-
malization which in turn can be understood in a more gen-
eral approach called the renomalization group.

What one learns is that the renormalization procedure im-
poses serious constraints on the set of couplings or inter-
action terms one starts off with. Theories satisfying these
constraints are called renormalizable and you will not be
surprised to hear that the Standard Model of elementary
particles and their interactions is a renormalizable gauge
theory. However, Einstein’s theory of general relativity is
not renormalizable in the above sense, and the construc-
tion of a quantum theory of gravity is still best described as
‘work in progress.’

Renormalization. Renormalization amounts to systemat-
ically extracting the finite quantum corrections to the pa-
rameters of the bare (classical) theory. It involves a rather
technical two-step procedure to handle the infinities that
pop up in the calculations of quantum corrections to masses
and other coupling constants. The first part is regulariza-
tion of the divergent expressions. This can be done in
many different ways, but the simplest conceivable is to just
introduce a cut-off in momentum space. This means that
we simply ignore the contributions of very high momentum
fluctuations. The second part is to introduce a subtraction
depending on the cutoff, which renders the calculated am-
plitudes finite. The subtraction involves the introduction of
counter terms in the action, and once these have been in-
troduced one can take the limit of the cut-off to infinity. The
dependence on the cut-off has disappeared and one is left
with a finite physically meaningful result

Figure III.4.27: Virtual electron-positron pairs. Vacuum fluctu-
ations in the electromagnetic field give rise to a cloud of virtual
electron-positron pairs that effectively screen the ‘bare’ charge
and make the effective charge distance or momentum depen-
dent.

In practice the contribution of the quantum fluctuations de-
pends on two things: (i) a momentum cut-off ⇤ which in-
dicates that one only takes into account fluctuations larger
then a certain spatial scale d & 1/⇤ , and (ii) on how ac-
curate one calculates the effect of the fluctuations on the
parameter values of interest. The calculated parameter
change is encoded in what is called the � function, and
this function can be calculated to an increasing degree
of accuracy. We have discussed already examples which
showed that these technical considerations are crucial in
determining in which parameter domains one may expect
results that do or do not make sense. In the following para-
graphs we will give some remarkable results that will show
the analytic power of these methods if it comes to under-
standing the asymptotic (high-energy) behavior of physical
systems and the theories that describe them.
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Figure III.4.28: From classical to quantum process. The Feyn-
man diagram on the left represents two electrons that scatter of
each other by exchanging a single photon. This diagram yields
the classical result. On the right we give the quantum process
where we have ‘dressed’ the photon propagator with a ‘blob’
which means that all quantum corrections have been included.

A realistic example: Vacuum polarization

We think of force laws like the gravitational law of New-
ton or the Coulomb law of electrostatics as specifying the
strength of a force depending on some charge or mass
and depending on some variable like the distance and then
there is also an interaction strength, which is a dimension
full constant (parameter) to be determined through exper-
iment. That means we have to measure it at some char-
acteristic scale and then assume it is constant not only in
time but also in space. Both assumptions may be chal-
lenged. It may well be that by going to smaller or larger
distances the effective coupling constants if one measures
them would change.

Let me indicate why the effective coupling might change by
exploiting some of the intuitive notions we have mentioned
before. It is clear that if we have a charge for example,

Figure III.4.29: Quantum corrections. Corrections due to vir-
tual processes to the photon propagator. The blob has a sys-
tematic expansion in terms of ever more complex diagrams. Two
blue dots lead to a factor ↵ = e2/4⇡h̄c ' 1/137 in the contribu-
tion of the diagram to the quantum mechanical scattering ampli-
tude. So higher order terms (in ↵) become smaller and usually
we include diagrams up to second order.

the field around this charge will become ever stronger at
small distances. The energy density of the field increases
and may at a certain distance become so big that it be-
comes possible by Einstein’s E = mc2 law, that charged
particle antiparticle pairs are created near the charge. The
idea is that the ‘empty’ space is not empty at all but filled
with electron-positron pairs that form a cloud around the
charge. This cloud will in fact screen the ‘bare’ charge of
the electron. This means that at a distance further out we
see an effective charge that will be smaller than the charge
we started off with. Translated in the language of the cou-
pling strength of the charge to the field, we see that it is not
constant but depends on the scale at which it is measured.
The amount of screening depends on at what distance we
look at the charge. We say that the vacuum becomes po-
larized. As we measure at some distance it is interest-
ing to ask whether we can find out what the bare charge
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would be, or what the effective charge at other distances
would be. The coupling constants may be on the run but
where are they going? Is it going to be ever smaller or ever
bigger and maybe become infinite? In theories of various
sorts describing different types of interactions many differ-
ent scenarios present themselves including the possibility
that bare parameters that were chosen to be zero become
non-zero due to these quantum fluctuation effects, which
basically amounts to saying that the theory itself acquires
new extra parameters that you didn’t put in at the start! Un-
der certain circumstances theories are apparently capable
to ‘improve’ upon themselves. One might say that taking
this kind of background into account provides insight in the
range of validity of the theory one started off with and that
is certainly a remarkable conclusion that deserves a closer
look.

A divergent diagram. Let us consider the two-point func-
tion for the photon. In the second line of Figure III.4.29 we
have drawn some Feynman diagrams that describe pro-
cesses that contribute to the propagator or two-point func-
tion for the photon. In the first, the wiggly line is just the
bare propagator which in momentum space is just given
by the expression:

S(k) ' 1

k2

So this describes a mode with momentum of the photon
propagating between two space-time points. The second
diagram with two interactions where an electron-positron
pair is created and subsequently annihilated. It is a so-
called virtual process because there are no external lines
connected to the closed fermionic loop. Now momentum
is conserved in the interaction points so overall that means
that the momentum carried by the ingoing photon must be
the same as that carried by the outgoing photon, and at the
vertex it implies that if the electron created has momentum
p, then the positron has to have momentum k - p. If we
just do the counting of powers of p, the propagator of the
electron yields a factor 1/(p-m), and the positron a factor
1/(k + p - m). The problem arises because we have to

sum or integrate all possible amplitudes, which means all
possible values of the momentum p going around the loop.
so we have to calculate an integral

Z
1

(p-m)(k+ p-m)
p3dp ' ⇤2

For large p the dominant contribution comes from
Z
p3/p2 dp =

Z
pdp = 1 .

In other words, the integral behaves badly and is diver-
gent! This is bad news because we know that physical
amplitudes and probabilities are finite. What we need is a
way to manage the deluge of infinities popping up in our
calculations in such a way that physically meaningful re-
sults are obtained The infinities have to be artefacts of our
calculational methodology otherwise the theory makes no
sense.

This leads to the intricate protocol called renormalization
that we have mentioned before. It refers to the three step
procedure, where we first regulate the divergencies, then
subtract the would be divergencies, which allows to rede-
fine or renormalize the fields and parameters in the theory
in a consistent and unique way.

Regularization and renormalization. The first step we
take is to in some way regulate the divergent integral by in-
troducing a high momentum cut-off, meaning that we limit
the momentum range we integrate such that p 6 ⇤ . Then
the leading term will be quadratic in ⇤ as indicated in the
equation above.

Once you have applied such a regularization to all the di-
vergent expressions, renormalization means that you ap-
ply a well-defined procedure to subtract the divergent ex-
pressions in a consistent way that leaves you with unique
finite results for the quantum corrections to any diagram
with given external lines. However, there are only a finite
number of renomalizations (correction factors) you can im-
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plement in a given field theory; you can basically renormal-
ize the fields, the masses and the coupling constants and
that’s it. So for electrodynamics you could at most accom-
modate two field, one mass, and one coupling constant
renormalization. There are dependencies between them
and one is left with three correction factors, Z1, Z2 and
Z3 associated with the renormalization of the wave func-
tion(s), the charge and the fermion mass respectively. The
fact that QED is renomalizable means that if you calculate
all diagrams for all amplitudes to arbitrary order in the cou-
pling constant, all divergencies that you will ever encounter
can be absorbed in those three constants. This is by no
means obvious; it means that the theory has to meet cer-
tain exquisite requirements We will have more to say about
what that means and which generic properties determine
whether a theory is renormalizable or not.

Let us reflect for a moment on what the above technical
rather magical manipulations have to do with the main sub-
ject of this chapter which is ‘scaling’ and ‘scale invariance.’
It is quite clear that once you introduce a cut-off or any
other way to regularize the theory, then that will break any
form of scale invariance, precisely because we explicitly
introduce a scale in the theory ‘by hand.’ And though the
results claim to be independent of the particular value of
the cut-off, renormalization nevertheless deeply affects the
high-energy asymptotic behavior of quantum field theories
and in particular spoils the scale invariance one might have
expected.

The cut-off and the subtraction point

The role of the cut-off is rather profound. With a bit of
common sense one would say: of course there ought to
be a cutoff because the theory may not be fit to describe
fluctuations in the medium below a certain scale. Think
of a fluid which on a macroscopic level is a continuum,
but if we go down in scale we know that it is ultimately

just a collection of molecules and on that scale the con-
tinuum assumption is certainly a bad one. Evidently in
such a case it is the interatomic separation in the liquid that
sets the scale for the distance cutoff d ⇠ 1/⇤ . Let us now
turn to the all-important question of the accuracy of the �
functions, i.e. the functions that describe the scale depen-
dence of the effective parameters in the model. The argu-
ments became rather subtle to a point where even the sci-
entist themselves became utterly surprised by the success
of their calculations. What happened? In many cases the
difference between the measured quantities and the cal-
culated ones grew ever larger with increasing momentum.
And indeed new parameters had to be introduced in the
bare energy function. What one did was to just introduced
so called counter terms also depending on the cutoff in-
troduced that cancelled the calculated effect and after that
let the cutoff go to infinity (or zero), so that the difference
ended up being finite and independent of the cutoff. The
physicists developed a well-defined procedure, or maybe
we should call it a calculational trick, called renormaliza-
tion that would lead to predictions free of ambiguities, if
and only if after some given order in the approximation
scheme of the beta function no new parameters had to be
introduced. That means that after a certain point the num-
ber of parameters of the theory would stay fixed and finite.
Renormalization would then only change those parame-
ters, and that was considered admissible from a physical
point of view, though mathematically one was kind of jig-
gling infinities to fabricate finite numbers that should fit the
experimental data.

But as usual the proof was in eating the sausage with-
out advertising too much what went in it. And the results
turned out to be splendid and the renormalization meth-
ods allowed us to calculate many new physical effects with
exceptional precision. For example, the pinnacle of such
calculations is the high order calculation of the anomalous
magnetic moment of the electron which matches experi-
ment up to 11 significant digits! Now that is what one calls
hard science!
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Figure III.4.30: g - 2 diagrams. Some of the tenth order di-
agrams contributing to the calculation of the anomalous mag-
netic moment of the electron or muon. (Physical Review Let-
ters109.111807, 2012)

In 1987 the experimental measurements (R. S. Van Dyck,
Jr., P. B. Schwinberg and H. G. Dehmelt) reached the un-
believable precision:

ae = (g- 2)/2 = 1159652188.4(4.3)⇥ 10-12 .

The heroic QED calculation to the tenth-order in pertur-
bation theory involving 12,672 diagrams performed by the
Japanese team of Aoyama, Hayakawa, Kinoshita, and Nio
produced the theoretical value:

ae(theory) = 1159652181.78(77)⇥ 10?12 ,

which was published in 2012. To give you an idea of what
this looks like we present some of the tenth-order diagrams
in Figure III.4.30.

Anomalies. If regularization violates the symmetries of
the classical action, we produce anomalies. The would-be
conserved current is no longer conserved, the divergence
of the current is no longer zero but there will be an anoma-
lous source term in the quantum version of that law. So

the question is how serious that is. What it means that
in the quantum real world we would see processes that
violate some naively expected conservation laws. For ex-
ample, there is a famous decay of a neutral pion ⇡0 into
two photons the would be forbidden but actually has been
observed, so such anomalous processes do occur.

Now there is one important restriction here, as we have
argued, gauge symmetries lead to electric or color charge
conservation and it is known that if we break local gauge
symmetries, that leads to severe inconsistencies and the
theory would become non-renormalizable. So, in the first
place we have to make sure we have a gauge invariant
regulator. However, that may not be enough, and one must
make sure to adjust the particle content of the theory such
that the contributions of the different particle species to the
anomaly cancel. This has indeed led to the constraint of
the family structure of the Standard Model. If the particles
appear in what we called ‘families’ than the cancellation of
all gauge anomalies is guaranteed.

As a matter of fact here again it is the gravitational in-
teraction which is after all a gauge theory which has a
gravitational anomaly, which makes the ‘naive’ perturbative
quantization of Einstein’s general theory of relativity a well-
established night mare! In fact it is exactly why an anomaly
free gravity theory pops up in string theory. It turns out
that the gravitational anomalies cancel in ten-dimensional
space-time, where strings supposedly live.
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Further reading.
On scaling, renormalization and critical phenomena:

- Fractals
John P. Briggs
Touchstone Books (1992)

- Quantum Field Theory
David Skinner
Cambridge University (Lecture notes)

- An Introduction To Quantum Field Theory
Michael E. Peskin and Daniel V. Schroeder
CRC Press (1995)

- The Theory of Critical Phenomena: An Introduc-
tion to the Renormalization Group
J.J. Binney, N.J. Dowrick, A.J. Fisher and M.E.J.
Newman
Clarendon Press (1992)

- Phase Transitions and Renormalization Group
Jean Zinn-Justin
Oxford University Press (2013)

Complementary reading:

- The Fractal Geometry of Nature
Benoit Mandelbrot
W. H. Freeman and Co. (1982)

- Fractals: Endlessly Repeated Geometric Figures
H. Lauwerier
Princeton University Press (1991)

- M.C. Escher: Art and Science
H.S.M. Coxeter, M. Emmer, R. Penrose and M.J.
Teuber Eds
North-Holland (1986)

- The Mathematical Side of M.C. Escher
Doris Schattschneider Article in Notices of the
AMS, Volume 57 nr 6 (2010)

- Scale: The Universal Laws of Growth, Innovation,
Sustainability, and the Pace of Life in Organisms,
Cities, Economies, and Companies
Geoffrey B. West
Penguin Press (2017)
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Nature in search of itself.

Science is a deeply human endeavor, as it re-
quires the unique combination of basic capa-
bilities like curiosity, reason, intuition, creativ-
ity and collaboration. It expresses the collec-
tive curiosity of mankind and has resulted in
the double helix of science and technology that
keeps transforming our world over and again.
It embodies a cumulative, evolutionary process
that continuously creates new options for soci-
ety while at the same time forcing it to face the
severe ethical dilemmas that come along.

All of us have witnessed how science has pro-
foundly affected the human condition and trans-
formed society, and how in many instances it
managed to transcend man’s painful political,
ethnic, and religious differences. As such it is
a true cornerstone of civilization. At least as
long as we can ensure that it does not fall prey
to all kinds of abuse by dark forces bent on
power and financial or political gain only.

If knowledge is our destiny, then that feeds the
hope for carving out a gateway to a common,
global understanding of the world and our op-
tions for governing it. It could lead the way
towards an inhabitable future for all of us.
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Chapter III.5

Power of the invisible

Im ganzen habe ich jedenfalls erreicht, was ich er-
reichen wollte. Man sage nicht, es wäre der Mühe
nicht wert gewesen. Im übrigen will ich keines Men-
schen Urteil, ich will nur Kenntnisse verbreiten, ich
berichte nur, auch Ihnen, hohe Herren von der Aka-
demie, habe ich nur berichtet.

Franz Kafka, in Bericht fur eine Akademie 1

In this concluding chapter we briefly recapitulate our jour-
ney through the quantum wonderland. It is a kind of mir-
ror image of the introduction. The difference is that with
the knowledge we have acquired along the way there is
more room to reflect on the places we visited. This also
means that there is some room for more subjective state-
ments.

A pillar of wisdom? The cartoon on the right by Pete
Ryan appeared in the New York Times. For me it is an
ironic pillar of wisdom depicting not only the wisdom it-
self, but also our winding roads towards it. That process
starts in quite an orderly way at the bottom with a number
of parallel strands going straight up. At some point you
start wondering why the strands go up so perfectly straight
and parallel. And as soon as you start to question the

1On the whole, at any rate, I have achieved what I set out to achieve.
But do not tell me that it was not worth the trouble. In any case I am not
appealing for any man’s verdict, I am only imparting knowledge, I am
only making a report. To you also, honored Members of the Academy,
I have only made a report. (translation: Willa and Edwin Muir)

Figure III.5.1: A modern pillar of wisdom? (Source: Pete Ryan,
NYT, Jan. 7, 2022)

given narrative things start to diverge. The lines start wig-
gling and before you know you are caught up in a huge
entanglement, a huge confusion, a spaghetti like mess of
doubt and contradiction. How to move forward? How to
get out of this mess? And yes, every time, as by some mir-
acle you manage to surmount the problems and look what
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586 CHAPTER III.5. POWER OF THE INVISIBLE

happens: things come together again, and they coalesce
into a new perception of reality symbolized by the beauti-
fully ornamented capital. Like a crown on your labor. You
managed to beat the minotaur hidden in that labyrinth of
strands.

I suppose the artist has forgotten about the many dead-
end streets that are also part of the tangle. Maybe the
artist was inspired by the path integral approach to wis-
dom where only paths from A all the way to B have to be
included. In fact, all of them have to be included, not just
the shortest or the most beautiful, but also the less obvi-
ous, maybe obscure and low probability routes. Anyway,
after working your way through all the possible paths you
are bound to end up at a next level of knowledge and un-
derstanding. Yet another shoulder of a giant to stand on,
yet another step on Cantor’s devil’s staircase to ultimate
knowledge and may be wisdom....

Summary and outlook

To see the power of the invisible in a way that supersedes
blind faith, it must be made discernible first. And that is
what empirical science is about, inventing the observa-
tional tools that allow us to see those things that have al-
ways been there, but were hidden from the naked human
eye. Why worrying about the invisible, you may ask, as
long as the visible suffices to keep us busy and to fully
occupy our fragile minds? Curiosity to know what may or
may not be beyond what we can see is one of the ultimate
drivers of our existence, of discovery, and in the long run
of understanding, reason and survival.

Who am I? If you would ask me who I really am, I may
start by telling a nice story, probably a dressed up CV of
some sort centered about my major accomplishments. In
certain cases I may even disclose some personal details.
And if you keep pushing me, it may turn into a narrative

about my childhood, my family and its traditions. And by
talking about family treats I have, without mentioning, en-
tered the realms of heredity and of genetics. The narra-
tive loses some its ultra personal features and turns into
a more generic, though still fully anthropocentric, perspec-
tive. I will for example not mention that features like my
sense of humor, or need to physically be in touch, or my
habits of impressing others, or getting enraged about futil-
ities, probably go all the way back to my primate or for that
matter rabbit-like ancestors.

You understand what I am driving at: the deeper I search
myself and the world in which I live, the less personal the
story becomes, the more abstract it will be, and the less it
will refer to the plainly visible or the specifically human. If
your interrogation were to go on indefinitely, I might just jot
down some quantessential formulas in the end. And that is
how the science of the invisible enters our conversations
as a relevant resource of reliable knowledge, leaving the
limitations of anthropocentricity behind. Maybe that is the
power of the invisible.

The mission of physics. Physics is an empirical sci-
ence which concerns the art of making discoveries through
making ever more sophisticated observations. It wants to
know what nature looks like and how it works on all scales.
We have to admit that it certainly paid off when Galileo
supposedly threw stones and wooden balls from the Pisa
tower and carefully listened to them hitting the pavement!
We make progress by building models and improving on
them. The models are supposed to not just fit data but
more in particular to explain the different patterns of data
by relating them through causal relationships expressed
through mathematical equations.

On all scales there is the question what the relevant de-
grees of freedom are, and to understand their behavior,
like structure formation through binding or a particular dy-
namics, we need to understand the interactions between
these relevant constituents. Dynamical processes are gen-
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erated by interactions or forces between constituents and
that makes their overall effect often hard to predict, exactly
because coupling systems introduces feedback loops. This
is a general feature that holds both on the classical and
quantum level. It is particularly true for many particle sys-
tems, but as we have seen, it also holds for space-time.
So, let us once more look at the quantessence at large.

This book’s approach. This three-volume book is a some-
what experimental and ambiguous ‘go in between’ in the
sense that it tries to interpolate between a ‘laymen ac-
count’ and a – I hate to say this – ‘textbook’ of a sort. Is it
possible to go in-between without losing two audiences at
once? My publisher will undoubtedly let me know immedi-
ately, I am sure!

Another question that crosses the mind is whether all those
Wikis make books like these not obsolete? I think the an-
swer is a firm ‘no’ and would claim the opposite. These
books attempt to be more than a encyclopedia and give
a coherent account of large range of topics that together
form a huge subject in science. The aim is to provide a
critical guidance for which items out of the small infinity of
Wikipedia entries are relevant if you want to go quantum. I
can only hope that these books did indeed give you an in-
formed steer on when and where to go for additional Wiki-
wisdom, and what the keywords were to look for.

It’s the math, stupid! In confronting quantum realities
this could be the analogue of the political maxim ’It’s the
economy, stupid!’ that was coined by the American po-
litical analyst James Carville in 1992. He wanted to em-
phasize that even the most basic knowledge of economy
would stop people from making absurd claims about ev-
eryday economic realities. We have used a lot of mathe-
matical language mainly to keep the arguments transpar-
ent and unambiguous and to prevent us from committing
crimes against logic. But we softened our approach by
paraphrasing the math with lots of prose as to keep the
story accessible. However, making that choice we sac-

rificed a principal asset of mathematics, namely, that it is
extremely concise and allows you to make precise yet brief
arguments. The true aesthetics of mathematics is deeply
rooted in this idea of eliminating all the unnecessary. In
that respect math is the opposite of show business: no
window-dressing allowed. We exploited the unambiguous
and transparent character of the mathematical formalism,
but at the same time blurred its purity by – in parallel –
talking extensively about what it means and using lots of
illustrations. We immersed our math formulas in the ‘un-
necessary’ to keep them accessible and part of the conver-
sation. You could say that we fell back on show business
after all.

The three track narrative. In an attempt to help overcome
the common fear of formulas and keep the contents man-
ageable I adhered to a storytelling philosophy where the
narrative followed three tracks in parallel. The first was a
pictorial one, as I included over 450 illustrations, the sec-
ond was the rather extensive use of equations, and the
third track consisted of extensive prose. The latter is there
in its own right, but also to bridge the gaps between pic-
tures and formulas. The interplay between these tracks
hopefully allowed you to grasp this wonderful body of fun-
damental knowledge in the heart of science. I am con-
vinced that it made you at least ‘conversant’ about the
quantessence of things.

The quantessence in retrospect.

Let us look back at the three volumes that make up this
quantum trilogy with Figures III.5.2 in mind. The reason
why this trio has such a wide scope is the fact that quantum
theory is a general set of principles that nature appears to
obey on all scales, at least as far as we have been able
to test. It applies to different types of systems, where the
translation of the fundamental quantum principles get a dif-
ferent mathematical implementation and outlook.
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Three volumes.

Volume I. In the first volume we have devoted quite a bit of
time and room to provide a wide background by recalling
the basic concepts of classical physics. This to provide a
setting in which the quantessential parts of the subsequent
volumes stand out more clearly.

In Chapter I.1 we briefly reviewed of the central achieve-
ments of classical physics. And in Chapter I.2 we extended
that with the basics of relativity, geometry, and classical in-
formation theory.

Chapter I.3 looks at the universal constants of nature and
what their meaning is. We showed how through dimen-
sional analysis these constants set natural scales linked to
certain classical and quantum phenomena.

In Chapter I.4 we descended the quantum ladder in a sys-
tematic way from the atomic scale down. This culminated
in a description of the Standard Model for the elemen-
tary particles and the fundamental forces between them.
We then continued with excursions into the speculative
domains of supersymmetry and string theory as possible
approaches to a consistent quantum theory that includes
gravity: a quantum theory that would unify matter, radiation
and space-time.

Volume II. In the second volume we introduced the math-
ematical framework and mostly applied it to basic systems
like qubits, electron spins, particles and simple field theo-
ries.

In the Chapter II.1 we discussed concepts like the Hilbert
space of states, a vector space where the linear super-
position principle holds which quite directly leads to the
possibility of entangled states which are uniquely quan-
tum. These states lead to intriguing paradoxes like ‘Schrö-
dinger’s cat’ and the EPR paradox, but at the same time

opened the possibility of quantum teleportation and quan-
tum key distribution.

In Chapter II.2, we introduced the observables as oper-
ators acting on Hilbert space. This identification led to
quantessential notions like the incompatibility of observ-
ables, which in turn give rise to the fundamental uncertain-
ties as expressed by Heisenberg’s uncertainty relations.
We also went into various aspects of particle-wave duality,
leading to particle interference phenomena as discussed
in Chapter II.3.

We demonstrated that the vastly different quantum setting
allows for a new type of information processing and com-
puting with a far-reaching technological potential. This is a
major challenge and has become a high priority effort for
the worldwide community of quantum condensed matter
physicists. And in parallel to the struggle to produce scal-
able and reliable hardware there is now also a booming
branch of quantum software developments.

In Chapter II.5 we explored a topological argument for the
exclusion principle and the spin/statistics properties of quan-
tum particles.

Symmetry considerations play a central role in all fields of
modern physics and chemistry. We therefore concluded
the second volume with a chapter entirely devoted to the
meaning and quantum implementations of symmetry and
its breaking.

Volume III. In the third volume we showed how the phys-
ics of the early cosmic evolution in an expanding and cool-
ing universe is completely governed by the quantum laws.
The resulting structural hierarchy of matter reflects how the
various fundamental forces played dominant roles in suc-
cessive stages of that evolution.

After discussing the basics of molecular (chemical) phys-
ics, we turned to the many-body physics of condensed
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(a) The book at large. (b) Quantum layers.

Figure III.5.2: Book summary. The quantessence in retrospect.

states of matter. First we described the types of order that
the substrate of atoms or ions may exhibit, like crystal lat-
tices of all sorts and their symmetries. We also consid-
ered the defects or imperfections that may form in such
highly ordered states of matter. These defects often carry
quantum numbers that are conserved for topological rea-
sons.

In Chapter III.3 we turned to the electron collective and
how that gives rise to many surprising quantum phenom-
ena like various types of conductivity and magnetism, from
semi- to superconductors, quantum Hall states etc. It is
amazing to see how many novel states of matter are pos-
sible in the quantum regime.

We closed our quantum excursions with Chapter III.4 on
the properties of scaling, first in the realms of geometry
and then in context of dynamical systems. In the quantum
regime leading the notion of renormalization, which boils
down to a systematic scale dependent redefinition of the
parameters that define the model. In quantum field theory

this stands for sophisticated procedures of juggling with
infinities leading to a state of peaceful coexistence with
them, by producing unambiguous finite answers. In addi-
tion to the understanding of phenomena like the confine-
ment of quarks, the renomalization group approach pro-
vided a powerful approach to critical phenomena in gen-
eral.

Three layers.

Layer A: Down and up the structural hierarchy. There
is a subtle difference between the first column of the Fig-
ure III.5.2(a) referring to the Volumes and Figure III.5.2(b)
referring to the layers. In the first figure the arrows are
pointing downwards from the atomic scale to the scale of
quarks and leptons, while in the second they are all point-
ing upwards. We recall that in Chapter I.4 we followed the
quest for ever more fundamental building blocks of mat-
ter indeed following the arrows down. However, in Chap-
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ter III.1 we did the opposite, and followed the time path,
not of the human quest, but of the true cosmological his-
tory by showing how the hierarchy of matter starting from
the Big Bang all the way up to the molecules of life came
into being. This perspective was of course forced upon us
after understanding the evolution of space-time according
to the Big Bang scenario described by the theory of Gen-
eral Relativity.

Layer B: The hierarchy of mathematical realizations.
The mathematical realizations of the basic quantum prin-
ciples are shown in the second column of the figure. Sim-
ply stated, the system one considers defines what the ba-
sic degrees of freedom or dynamical variables are. Given
the Hamiltonian one may then define the operators for the
‘coordinates’ and conjugate ‘momenta’ and postulate their
canonical commutation relations. The structure of the cor-
responding Hilbert space of quantum states then follows.
If the system cannot be solved exactly which is mostly the
case, one usually starts from the non-interacting system,
and uses that as the starting point for a perturbative ap-
proach of the system with interactions.

What the middle column shows is that at the bottom of the
hierarchy, the most elementary quantum system is in fact
the qubit or the spin-1/2 degree of freedom, with its two-
dimensional Hilbert space. This system was extensively
analysed in Chapters II.1 and II.2.

One step up we have the framework of quantum mechan-
ics for a single particle, typically in an external potential
leading to an infinite-dimensional Hilbert space of normal-
izable wave functions. These notions were introduced in
Chapter I.4 in the section on ‘Atomic structure’ and we re-
peatedly returned to this topic in the second volume, and
in particular in Chapter II.5.

At the next level of generality, we include special relativ-
ity which forced us to move from quantum mechanics to
the framework of quantum field theory. Here the fields

and their conjugate field-momenta are the basic degrees
of freedom, leading to the multi-particle Hilbert space. This
framework centers around field operators that allow for
the creation and annihilation of particles and therefore al-
lows for the implementation of the famous equivalence re-
lation E = mc2 , for example as we see it in processes
like pair creation and annihilation in QED. Field theory is
the language of the Standard Model, but also for most of
condensed matter physics. Quantum field theory is intro-
duced in Chapter I.4 in the context of the Standard Model.
We returned to some of the formal aspects in Chapter II.5
and apply it to the electron collective in Chapter III.3. Fi-
nally, the scaling and renormalization aspects of field the-
ory were discussed in Chapter III.4.

A yet more general framework would allow for the con-
sistent inclusion of general relativity: in other words the
inclusion of the gravitational force implying the quantiza-
tion of space-time itself. This mission is not completed yet.
The most advanced models of this type are the superstring
theories which we described towards the end of Chap-
ter I.4. In this framework each string mode corresponds
to a different quantum field. The string idea therefore uni-
fies all fields and thus all particle types into a single the-
ory. This theory has certainly deepened our understand-
ing of the quantum properties of gravity, like black holes
and resolved some of the outstanding paradoxes, but the
theory has not yet led to unique explanations of observed
phenomena like dark energy. And the predictions it does
make, like the 10-dimensional structure of space-time, or
the existence of a myriad of super particles, have not (yet)
been confirmed by experiment.

Layer C : Quantum concepts and their meaning. The
third layer shows how the mathematically consistent frame-
work raised a number of conceptual issues physics had to
face. These issues concern the question of how to inter-
pret the core of physical reality. The subtitle of the book is
‘The quantessence of reality’ because that quantessence
has been shaking the foundations of many of our cher-



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 591 — #621 i
i

i
i

i
i

THE QUANTESSENCE IN RETROSPECT. 591

ished beliefs about what seemed to be self-evident fea-
tures of reality, features reflecting our classical intuitions.
These intuitions concern what the properties of physical
systems were supposed to be, and what the role causality
and predictability in their mathematical framing amounted
to. What we have learned in a century of quantum devel-
opments is that these changes are radical and will be long
lasting.

Starting at the bottom of the third column of Figure III.5.2(b),
we see the that the structure of the space of states of
any quantum system is a vector (Hilbert) space, mean-
ing that the superposition principle holds, and that phys-
ical states are represented by normalized vectors. If we
combine subsystems the total Hilbert space becomes to
the (tensor) product space, implying that the dimension of
the total space is the product of the dimensions of the sub-
spaces. This structure implies the existence of entangled
states, which are states that correspond to normed vec-
tors in the total space that are not factorizable, that do not
correspond to a direct product of two vectors in the sub-
systems.

Entanglement allows for the possibility of strong, very quant-
essential, instantaneous correlations between outcomes
of measurements separated by arbitrary large distances.
This led to a profound debate often referred to as the Bohr-
Einstein debate about the locality and causality properties
of physical reality. Experiments like the GHZ experiment
that we discussed in Chapter II.4 convincingly showed the
quantum interpretation to be correct.

Moving one step up in the column we mention that the
mathematical structure of quantum mechanics implies that
observables should be interpreted as (bounded) opera-
tors acting on vectors in Hilbert space. These should be
thought of as (finite or infinite) matrices or differential oper-
ators which by acting will in general change the state. The
fact that observables are no longer real-number-valued vari-
ables like in classical physics immediately leads to the prob-

lem of what a measurement exactly means. In the Copen-
hagen interpretation it means that the measurement out-
come is a probabilistic one and furthermore that the act
of measurement will generically change the state of the
system. There is no longer a strict separation between ob-
ject and subject when observations are made. We can no
longer predict precisely what happens but can only calcu-
late the odds. This in turn means that we leave the notion
of classical determinism behind. Quantum means indeter-
minism.

Another important consequence of the fact that observ-
ables are operators is that they do not necessarily com-
mute. The outcome of their successive action on a given
vector may depend on the order in which you apply them. If
the operators do not commute, the corresponding observ-
ables are called incompatible. This incompatibility lies at
the root of the intrinsic quantum uncertainties in measure-
ment outcomes so beautifully encoded in Heisenberg’s un-
certainty relations.

The structure of quantum reality also implies that we can-
not copy a quantum state while keeping the original, this is
known as the no-cloning theorem. However, what is pos-
sible is to transfer a quantum state from one system to an-
other, and because of the entanglement property this can
in principle be done instantaneously over arbitrary large
distances. This possibility of quantum teleportation turned
the entanglement property into a blessing in disguise. It
enables another level of cyber security in data transfer.

Further consequences of the quantessentials become clear
from the information perspective. The quantum states al-
low for storage of information, and this led to the introduc-
tion of the qubit as the quantum analogue of the digital
bit. Quantum mechanics allows for unheard possibilities to
process this quantum information. We see all around us
that a major quantum information revolution is on its way,
a revolution that both on the hard and software side will
radically transform our computational abilities.
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A final radical ingredient of quantum reality manifests it-
self if one studies the collective behavior of many particle
systems. First of all because particles of a certain type
correspond to basic modes of a single quantum field, they
are indistinguishable, they have a family name but no first
name, so to speak. In addition, there is the possibility of
exclusion, saying that there cannot be more than one par-
ticle in a given quantum state. This verdict is anchored
in the quantum interpretation of the Dirac field. We ad-
dressed these fundamental properties of quantum parti-
cles in Chapter II.5 and linked them to the topological prop-
erties of the two-particle Hilbert space. Indistinguishabil-
ity and exclusion each modify the statistical properties of
many body systems and create entirely novel possibilities
for the physical states of these systems. These possibili-
ties have made quantum condensed matter physics into an
inexhaustible source of technological innovations.

Altogether the beauty of the conceptual notions which sur-
faced in the third layer are a direct and therefore necessary
consequence of the basic logical structure of quantum the-
ory. There appears to be no way around them and more
and more we start to appreciate how they enriched and
broadened our perception of the roots of reality. They em-
body a true revolution in our understanding of the physical
universe that found its translation into powerful new tech-
nologies that radically transformed our daily lives, and will
keep doing so.

The many topics we didn’t talk about. Many of the
quantessential subjects we only touched upon superficially
deserve chapters or books on their own. We spent a sec-
tion on the miraculous properties of Carbon but what about
a chapter on the virtues and technological blessings of sil-
icon? What about the nano-sciences? What about an
extensive review of an ever-growing list of alternative in-
terpretations of quantum theory, like the ‘many-worlds in-
terpretation’ proposed by the American physicist Hugh Ev-
erett in his doctoral thesis at Princeton University in 1957?
Indeed, there are many topics which are relevant that I

chose not to focus on and only mentioned in passing.

The main reason for these shortcomings is that I wanted
to stay faithful to the subtitle of the book and focus on the
Quantessence, the well-established fundamental aspects
of the quantum reality. The perspective that shook the sci-
entific world a century ago and lead to an unlimited exten-
sion of technological opportunities and realities that has by
far not been exhausted or even been fully explored. As I
emphasized all along, the era of quantum information tech-
nologies for example has only just started.

Common denominators.

The power of information as fundamental concept. Fig-
ure III.5.2(a) is just like the figure we presented in the In-
troduction to the book except that on the right we added
a full column referring to the notion of information. It un-
derscores that on all levels we may include an information
science and computational perspective in the framework.
All systems are in a sense information carriers and infor-
mation processing devices, meaning that we set up paths
with preset interactions between these carriers. Execution
of a program or algorithm can be thought of as a partic-
ular class of dynamical processes. In this book we have
repeatedly noted that the information science perspective
involving algorithmic thinking is in an interesting way com-
plementary to the more conventional theoretical physics
approach involving calculus and differential equations, and
it has led to surprising insights.

We encountered the notion of information towards the end
of Chapter I.1 while introducing the notion of entropy as the
logarithm of the number of micro-states corresponding to
a given macro-state. It is a measure of information capac-
ity of the system, or stated differently, for the information
loss in going from the micro- to the macro-description of
that system. It involves the aggregation of micro degrees
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(a) Human evolution as driven by the double helix of science and tech-
nology.

(b) The positive feedback loop of science and technology producing
knowledge, technology and the human expertise.

Figure III.5.3: The double helix of science and technology.

of freedom into far fewer macro degrees of freedom. In
that sense entropy is a measure for hidden information. In
Chapter I.2 we gave a small introduction to the basics of in-
formation theory as initiated by Turing and Shannon, and in
the section on black holes we discussed the Bekenstein-
Hawking entropy and the famous black hole information
paradox.

In the quantum realm, we introduced in Chapter II.1 the
idea of a ‘bit mechanics’ as the most basic of all dynam-
ical systems leading to the notion of a qubit, with its two-
dimensional Hilbert space. In the following chapters we
illustrated many fundamental quantum concepts referring
to this basic quantum system. In Chapter II.4 we talked
about teleportation of quantum information, about quan-
tum gates and circuits, and went into a rather detailed dis-
cussion of Shor’s quantum factorization algorithm.

So indeed, the notion of information popped up everywhere
justifying the blue column on the right-hand side of Fig-

ure III.5.2(a).

The power of symmetry as guiding principle. We saw
that symmetry is a powerful notion with applications on all
levels of the quantum ladder. This is reflected in the rich
nomenclature involving symmetry concepts, like global ver-
sus local (gauged), space-time versus internal, exact ver-
sus approximate, and broken versus unbroken symmetry.
It is not surprising that the notion of symmetry popped up
in many chapters. We decided to devote Chapter II.6 to the
many ways symmetry concepts have entered physics. In
a sense it also deserves just like information a full column
in Figure III.5.2(b).

Symmetries in classical as well as quantum physics are
linked to conserved quantities.Therefore they lead to a trans-
parent labeling of the physical properties of states. It al-
lows us to give names to things like ‘energy,’ ‘angular mo-
mentum,’ ‘charge,’ or ‘isospin.’
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Symmetry considerations play a crucial role in analysing
and understanding the solution spaces of the fundamen-
tal equations of quantum physics, like the spectra of sin-
gle atoms and molecules as well as the states of many-
body condensed matter systems. And symmetry served
as a successful guiding principle in the uncovering of the
underlying structure of subatomic physics encoded in the
Standard Model as an expression of the underlying gauge
symmetry.

Symmetry-breaking turned out to be a key concept to ex-
plain the many different guises in which symmetry mani-
fests itself on all levels in nature. From Zeeman splitting
on the atomic level to spontaneous magnetization or su-
perconductivity on the macroscopic level, to the existence
of the Higgs particle on the subnuclear level. Indeed, the
idea of symmetry-breaking led to a unified understanding
of the phase structure predicted by a wide variety of theo-
retical models.

The power of modelling as a discourse. Most models
are quantitative in nature and by construction logically con-
sistent. An ever-expanding body of symbolic relations that
may be used to represent anything you can imagine. A
human-made symbolic language ideally suited for a truly
scientific discourse. Many of the great scientific turning
points are cast in simple mathematical equations, or math-
ematically defined rules.

State-of-the-art modelling. Modelling is not only a way to
talk about reality; it is also a way to talk with reality. It is a
productive way of framing the scientific discourse. A state-
of-the-art model is rarely completely correct. It has its
strong and illuminating sides but also its weaknesses. So
especially once the systems become complex with many
hidden feedback loops and many coupling parameters one
doesn’t expect perfect predictions, and less so on the long-
term future. What you gain in adaptability you lose in pre-
dictability. Think of modelling the climate or the spreading
of viruses like Covid-19 or Ebola, or the endless efforts to

properly model the good old economy.

The modelling activity furnishes a platform to study the ef-
fect of possible interventions. This is an interactive plat-
form that can bring opposing interest groups together in
a reasonable debate or negotiation, assuming both share
enough purpose. Playing with the parameters of models
gives a clear impression of what might go wrong, what
the vulnerabilities of the system are, and what type of tip-
ping points can occur. Models thereby can forge the highly
needed compromises in order to be able to deal with the
problems one is faced with.

Analytic versus algorithmic thinking. We have stressed
that a crucial aspect of scientific progress is the parallel
development of mathematics as a language for modelling
nature. Nowadays we should also include the crucial im-
portance of computation and algorithmic thinking as pow-
erful means to achieve progress in science. This concerns
a wide range of methodologies, beginning with simple nu-
merical methods to solve systems of mathematical equa-
tions to advanced simulation methods for complex systems
like agent-based modelling. But also methodologies like
machine learning to collect and analyse large data sets, al-
gorithms to detect correlations, that make predictions pos-
sible without an actual understanding of the causal mech-
anisms underlying them.

Rule-based models. In this era of computational empow-
erment, we are increasingly driven away from completely
analytical, closed systems of equations like those of New-
ton or Maxwell, to more evolutionary approaches like sim-
ple rule-based models. Rules that are iterated very, very
many times and may lead to structural entities in which we
recognize fundamental aspects of reality. This approach
involves a shift from analytic to algorithmic thinking.

A key feature is that simple algorithms can generate ex-
tremely complex patterns with all kinds of emergent or-
der. That emergent order is very hard to predict in ad-
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(a) The structural hierarchy mapped onto a circle. (b) Three fundamental frontiers.

Figure III.5.4: The structural hierarchy of the material world and the basic frontiers of science. In (a) we mapped the structural
hierarchy onto a circle. Moving clockwise is moving towards larger scales, starting from 10-20 and extending all the way to 10+25

meters. The human scale is kind of in the middle. In (b) we indicated the three fundamental frontiers. On the left the large-scale
frontier of astronomy pursued through space observatories like the Hubble and the James Webb. On the right the small-scale frontier
of high-energy physics pursued at CERN and Fermilab for example. The arrows pointing towards the bottom symbolize the multiple
frontiers of the life sciences including neuroscience. These naturally expand into the vast domain of information and computer science
that are redefining the range and ambitions of the social sciences including economics.

vance using tools from standard analysis and geometry;
its complexity can only be understood from actually run-
ning the algorithm for a sufficiently long time. We speak
of irreducible complexity inherent to certain simple rule-
based dynamical systems: for example, cellular automata
or evolutionary pattern growth algorithms on networks, like
John Conway’s Game of life. The simplest way to find out
what the structures are that emerge from a certain rule is
to run the corresponding program long enough. We refer
to the extensive literature on this subject by its pioneer and
protagonist Stephen Wolfram who is also the founder and
CEO of the successful software environment called Math-
ematica and Wolfram language. In his latest project aimed
at ‘finding a new fundamental theory of physics’ he argues
that all of quantum may be the product of iterating a simple

rule-based algorithm! Another great mission, but for now
also incomplete.

Scenarios for past and future

Science at large. In this final section I would like to put
the whole quantum story in the wider context of science
in general, a perspective that derives also from my earlier
book titled In Praise of Science: Curiosity, Understanding
and Progress. And in doing so I have adapted some of the
imagery created for that book.

To me one of the most remarkable facts we are aware of is
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that nature evolved from a random and structureless initial
state with a uniformly distributed low information density, to
a state of very high information content, very much local-
ized in the most advanced of biological organisms such as
human beings. It did so by following a set of strict rules we
call ‘laws of nature.’ The most stupefying twist is that these
rules have been hidden until we as human beings became
aware of them after millennia of carefully researching and
modelling what we observed. Indeed, nature seems to be
in search of itself, becoming aware of itself through this
concerted yet indefinite human effort.

The double helix of science and technology.

Let us focus a bit more on the mechanism underlying this
process of progress as depicted in Figure III.5.3, On the
left we see a schematic of what I have called ‘the double
helix of science and technology.’ It is like a mutually inspir-
ing, almost ritual dance, generating knowledge and tech-
nology, but also the expertise of scientists and engineers
who are able to create and apply that knowledge. Para-
phrasing Francis Bacon it visualizes the idea that ‘wonder
is the seed of knowledge’ and ‘knowledge is the seed of
technology,’ which in turn is the seed of new ‘wonder’ and
scientific discovery.

This perpetual machine works because technology also in-
volves the invention of new instruments that shift the bound-
aries of what is observable. It pushes the observable in
an objective sense. The domain of empirical investiga-
tion keeps expanding, generating an ever-growing body of
knowledge! From instruments like microscopes and tele-
scopes, all the way up to MRI machines, accelerators, and
not to forget computers. The power to compute, to sim-
ulate numerically, as well as screening immense quanti-
ties of data for all kinds of correlations and patterns which
are hidden from the human eye, is invaluable for human
progress.

This human-made evolutionary process overtakes biolog-
ical evolution in the sense that it continuously offers new
options to humanity to move forward. I use the term op-
tions on purpose because it implies the notion of choice.
The term progress suggests that society will always ben-
efit, but that is not necessarily the case. What is certain,
however, is that society will keep being bombarded with
ethical and moral dilemmas, because those are inherent
to that double helix of innovation.

History has taught us that technology is a double-sided
sword which may be used in constructive as well as de-
structive ways. And that means that it requires a society
that has the ability to make the right choices and in partic-
ular manages to avoid a proliferation of the evil aspects of
technological achievement. I think there is ample room for
optimism but to close one’s eyes for the risks and the dark
sides that are certainly there, is dangerously naive.

Looking at the double helix of Figure III.5.3(b) one realizes
that it is a magical machine that is not easy to stop. It is
a positive feedback loop. It is hard to forbid curiosity or
creativity by law but there have been regimes that did ex-
actly that, a game only with losers. This machine is much
more autonomous than most people are aware of. It takes
a great deal of expertise and scientific awareness to nav-
igate society in a way that the constructive opportunities
get amplified, and the destructive ones are eliminated as
far as possible. It is quite evident that good science does
not work by popular vote. The scientific method is open
to critique and rigorous analysis, but it is not democratic
in the ‘one man one vote’ sense. That does not preclude
that by the time new technological options present them-
selves to society one may hope that well-informed crowds
will demonstrate their wisdom in governing their implemen-
tation.

This observation once more underscores the importance
of fighting scientific illiteracy through broad educational pro-
grams introducing science and technology and raising the
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(a) Scientific domains at large. (b) Turning points in our understanding.

Figure III.5.5: The structural hierarchy unravelled by the sciences. On the left in the circle it is basically the gravitational force that
causes structure, while on the right it is due to the other forces. Top down we see basically how time evolution both from the left (from
large scales down) and the right (from small scales up) lead to ever more complex structures. The turning points in our understanding
of nature can also be mapped on the circle.

awareness of the social impact they may have. It is our
duty to educate a critical audience, that is conversant about
topics that will shape our common future. In my opinion
those topics include the possible ways in which we may
steer and regulate future applications of science and tech-
nology so that they improve the human condition not for
the few but for the many.

What adds to the complexity of this process is the fact that
the plusses and minuses of novel technologies are in most
cases not evident at the moment of their inception. Un-
fortunately they are often even intertwined. And that is
precisely why the incorporation of up-to-date scientific ex-
pertise in the political arena is necessary in any well-funct-
ioning, future oriented democracy.

Trees of knowledge

What we learned in this process of scientific discovery is
presented schematically in a series of four subsequent im-
ages. You may call it a display of the harvest of the double
helix.

The structural hierarchy. In the first picture III.5.4(a) we
mapped the structural hierarchy of the material world onto
a circle, where moving clockwise we go to ever larger dis-
tances. At the bottom, roughly in the middle, we see our-
selves, and it is from that position that we started to ex-
plore the order of things in- and outside of us, diving ever
deeper in the microcosmos and looking ever further out in
the macrocosmos. So one way to look at this figure is that
it depicts the human effort to understand the world we are
living in, basically following the double helix of science and
technology.
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Three fundamental frontiers. The arrows we superposed
on the circle in the second picture III.5.4(b) indicate how
the basic frontiers of knowledge have moved forward. On
the left from starting with Galileo all the way up to the Hub-
ble or Webb space telescopes, and on the right from An-
tonie van Leeuwenhoek all the way down to the LHC at
CERN. Very large and very small scales meet and merge
in the Big Bang where modern research fields like astro-
particle physics came to flourish. The Big Bang is the
event where today’s largest and smallest scales of the uni-
verse meet and that is why I have put the scales on a circle
and not on a line.

The inside arrows pointing down to us humans clearly rep-
resent the evolutionary perspective on structural complex-
ity like the phenomena of life. The arrow on the left rep-
resents the study of biology from the macroscopic Dar-
winian perspective on the speciation of plants and animals,
and on the story told by the fossils they left behind in the
earth’s crust. The downward arrow on the right represents
the unstoppable advance of molecular thinking in the life
sciences, symbolized by the DNA-molecule. And indeed
the genes on the DNA molecules tell that same Darwinian
story but then on the molecular level. These two comple-
mentary views on evolution therefore meet and merge in
the modern life and the earth sciences. And in a sense
this ‘closes’ the circle at the bottom in us humans.

Three domains: Relativity, Quantum and Evolution. As
indicated in the third picture III.5.5(a), the arrows in the
background represent the large domains of fundamental
scientific inquiry which are anchored in the leading con-
ceptual frameworks like the domain of relativity (concern-
ing space-time and gravity), the domain of quantum (cov-
ering all forms of constituent matter and the forces be-
tween them), and finally the domain of evolution, the con-
certed effort to gain a unified understanding of the tremen-
dous diversity and complexity that evolved in nature over
time.

Quantum versus Relativity. Quantum theory is less ac-
cessible than relativity, because as we saw it is the im-
pressive legacy of a great number of outstanding scien-
tists that filled over a century of successful groundbreaking
research. For that reason quantum has not been person-
alized to the degree that relativity has been identified with
the person of Albert Einstein, and maybe that also explains
why intellectual giants like Bohr, Schrödinger, Heisenberg
and Dirac never reached the status of a public idol like Ein-
stein. The painful paradox is that whereas their profound
work is leaving ever deeper marks in modern life, most
people bitterly complain that they do not understand a sin-
gle word of it. And that was one more reason to write these
books.

It is interesting to note that a Nobel prize for the theory
of relativity as such has never been awarded, while there
have been more than fifty linked to quantum theory as
witnessed by the tables in appendix B on ‘Chronologies,
ideas and people.’ Indeed, the prize awarded to Einstein,
was in recognition of his explanation of the photo-electric
effect, which is a fundamental contribution to quantum the-
ory and has nothing to do with relativity. So the irony is that
he received the Nobel prize for his contribution to a theory
he basically didn’t believe in!

With so many Nobel prizes awarded, it is no surprise that
a book that aims slightly higher than just summing up the
basic results is bound to be voluminous indeed. Be my
guest!

Turning points. In the fourth Figure III.5.5(b) we show
how this endeavor to advance knowledge gave rise to a
rather limited number of truly fundamental turning points
that stand for the great leaps forward in our scientific un-
derstanding of the natural world, the world we ourselves
are part of. It is striking to see that there are only so few.
It is also striking that so much novel science and technol-
ogy derives from such a small number of truly fundamental
insights.
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(a) The Big Bang and the subsequent cosmic evolution. (b) Ultimate questions that concern our deep origins and our long-term
future (if we have one).

Figure III.5.6: Science appears caught between two singularities. The cosmic evolution at large according to the Big Bang scenario
is depicted in Figure (a). The ultimate questions in Figure (b) concern on the one hand the origin somehow hidden in the Big Bang,
and on the other is about where this evolution will bring us and to what extent we can shape that future ourselves. So it concerns
nothing less than the quest for the interpretation or meaning of our universe as a whole, and its present and possible future contents.

Cosmic evolution. Let us continue with the two pictures
of Figure III.5.6. In the first one we depict the actual pro-
cess of cosmic evolution according to the hot Big Bang
scenario. Where the increasing complexity in dead matter
smoothly turns into the Darwinian story of life. This took
altogether almost 14 billion years, where the Darwinian
episode ‘only’ covers the last 4.5 billion years. Clearly the
full story is by no means complete. The figure nicely shows
how material complexity sequentially evolved as a neces-
sary consequence of an expanding universe slowly cooling
down. It is this story of cosmic evolution that brought most
of the empirical natural sciences together so harmoniously,
that makes the narrative or perspective of science on the
whole of nature so clarifying and illuminating. It is in that
story that reductionism meets holism. A beautiful product
of brainpower, enlightenment and perseverance.

Ultimate questions: from origin to fate. Science is a
systematic process of advancing understanding by creat-
ing ever better observational abilities, which in turn allow
for ever better modelling of reality. The circle that appears
in all the figures by no means tries to convey the idea that
science is a closed body of knowledge, a narrative com-
pleted. Science is always ‘work in progress,’ and may on
the one hand be characterized by the questions it did an-
swer, but on the other hand by the questions it raised but
did not answer. This is indicated by the question marks at
the top and bottom of the would-be circle. They represent
ultimate questions that in fact rip open the circle allowing
for additional realities we have not yet any idea about. It
illustrates how the whole of science is basically caught in
between two essential but enigmatic singularities.

On top we have what I called the ‘cosmic short’ between
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the physics of the smallest and largest conceivable scales
which somehow meet in the Big Bang. We like to think
of the Big Bang as an event, but may be it is better to
think of it as a gate to an unknown territory where relativity
and quantum presumably govern in a truly unified fashion.
In that point there is room for fundamentally new insights.
That gate would give access to the physical origins of the
Big Bang itself. Our lack of understanding is probably best
characterized by the term ‘Big Bang singularity,’ which of
course refers to the unphysical extrapolation of the early
universe to the quite unphysical initial state with an infinite
temperature and energy density.

The arrows of time move downward towards the domain
of human evolution, of the human brain, and of human so-
ciety. Clearly also at that point our understanding is very
much incomplete. The present state of science poses hard
questions, like asking how the process of evolution will fur-
ther unfold. It is a fact that the theory of evolution, in spite
of having an incredible explanatory power with respect to
our past, is surprisingly weak as a predictive model. It
predicts a process of the increasing complexity of organ-
isms but is not specific about where the breakthroughs
of – let us call it – biological self-transcendence will take
place. And this question of predictability has not become
easier as we humans have become the dominant species
on Earth. As indicated in the figure we have moved from
an initial state, which is characterized by extremely high
energy, chaos, a uniform distribution of a low information
content or capacity, towards the present state which has
the signature of very low temperature and energy, allow-
ing for highly localized forms of complex order and high
information capacity like the brains of human beings for
example.

Evolution at large. In Figure III.5.7 I have presented an al-
ternative visualization of the cosmic evolution at large and
marked the most consequential branchings of the evolu-
tionary tree. I like to think of these branchings as mo-
ments of radical innovation, as irreversible transitions or

tipping points. Indeed, we went through the evolution of
dead matter all the way up to the production of the chem-
ical elements which were a necessary prerequisite for the
creation of sustainable life on Earth and may be elsewhere
on what are called exoplanets. In a universe with some
1021 stars that probability of extraterrestial life can’t be neg-
ligible I would think.

To cope with the unknowns of the future a solid knowledge
of our past appears to be a crucial prerequisite. So, we
should celebrate collaboration in scientific research efforts
addressing such questions, like the launch and operation
of the James Webb space telescope that allows us to look
deeper in the universe than we ever did before, exactly
to better understand its remote past. It is a splendid in-
ternational collaboration of NASA and the European and
Canadian Space Agencies. Its mission is to collect hard
data concerning the beginning of structure formation and
the births of stars as well as the possibility of extra terres-
trial life (see Figures III.5.8 and III.5.9).

Once life began, we had another 4.5 billion years of biolog-
ical evolution culminating in such attributes as conscious-
ness and intelligence which allowed humanity to basically
take over their planet. Human evolution transformed us
from just inhabitants to the custodians of planet earth. It
appears that we have taken our fate in our own hands. We
have become responsible for our own future. At present
that means that we have to face such inconvenient truths
like the climate crisis, and we need to urgently act in order
to keep the planet inhabitable. Al Gore, the former vice
president of the US and a powerful voice in favor of direct
action to avoid climate catastrophes, once noted that by
broadcasting an inconvenient truth one is bound to wake
up the most powerful enemies, which makes taking proper
action even harder.

We also must seriously analyse the consequences of the
great information revolutions that obey Moore’s law, and
the introduction of internet and its radically novel way of
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Figure III.5.7: Cosmic evolution at large. Does human evolu-
tion, driven by the double helix of science and technology, allow
for a post-biological branch dominated by artificial intelligence,
machine learning and quantum computing?

‘connecting people.’ The introduction of these new tech-
nologies that allow for instantaneous and global human in-
teraction clearly implies a fundamental change in the hu-
man condition which has caused a tipping point in social
awareness and coherence. It started a process of a global
restratification of society, and the unfolding of unheard of
concentrations of power and wealth. This process is full
of social risks and has to be critically monitored and con-
trolled by governments and international institutions that
should be endowed with both sufficient funding and exec-
utive power. This is a far cry from today’s reality.

To cope with the many negative aspects of these develop-
ments requires the development of the notion of global citi-
zenship. People should be educated to be aware of what is
happening, and institutions should insist on openness, ac-
cessibility and transparency. This may necessitate adding
new chapters to the declarations of fundamental human
rights, which extend and define these rights to their exis-
tence on the World Wide Web and other cyberworlds. It

teaches us, as the dominant inhabitants of planet Earth,
that the tremendous amount of freedom we have achieved
implies a huge undeniable responsibility.

A post-biological branch? Information philosophers and
futurists like Max Tegmark, Nick Bostrom and Yuval Harari
warn us that with the rapid advances in artificial intelli-
gence, like machine learning, and quantum computing,
machines may well take over completely as we become
more and more dependent on them. Not just for gathering
relevant information, but also for making rational, optimal
decisions. There are major obstacles to be taken, namely,
to extend the abilities of artificial intelligent algorithms to
have ‘general intelligence.’ This is a much harder problem
than acquiring expertise in a limited context and domain
in which algorithms already outperform humans. General
intelligence is the outcome of our biological evolution and
unsurprisingly, that is what humans excel in.

Anyway, the question posed by the orange branch in the
figure is whether we are on the verge of a transition to-
wards a radically different post-human, post-biological evo-
lutionary phase. This does not mean that we could no
longer exist, bacteria after all managed to survive in many
ways too well for billions of years after more complex or-
ganisms took over. What the post-human branch presum-
ably implies is that we are no longer the glamour boys of
creation, but rather that we may turn into somewhat out-
dated pieces of biological apparatus of reduced relevance,
compared to our super intelligent silicon or quantum broth-
ers and sisters to be. Maybe the optimal way forward is to
engage in further exploring symbiotic options.

The intrinsic value of science. We should be aware that
politicizing science is a threat to its primary objective: the
search for objective truths. The risk of trying to politicize
that aspect is not just that it leads to crimes against logic,
but also to corrupting scientific integrity. It often involves
a form of ‘passive lying,’ which refers not to directly telling
plain lies (active lying) but rather to not telling the truth, that
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is, the whole truth. It is like leaving important terms out of
the equation and thus propagating models that fail reality.
It is like the often-applied strategy of spreading misinfor-
mation to gain political or commercial support and influ-
ence. ‘The goal justifies the means,’ is the slogan that eas-
ily comes along and allows the most well-funded lobbyists
to dominate the political landscape. Indeed, the success
of advertising is justifying the goal of better sales often by
not telling the truth.

But doesn’t science do the same, you might object? Yes
and no! It is certainly true as I have noted repeatedly in
the book that science is ‘work in progress,’ and therefore
also scientific ‘truths’ are relative and should be subject to
refutation if decisive arguments or data are being brought
forward at some point. Indeed, the notion of an absolute
truth is basically incompatible with the notion science as
an incomplete body of knowledge. And it is this aspect
that makes the scientific infrastructure, its institutions and
funding strategies vulnerable to abuse. This is a paradox-
ical aspect of the role that science plays in society: al-
though there is no such thing as an absolute truth, we do
not hesitate to board planes, go to hospitals, and get ad-
dicted to our cell phones. It appears that scientific truths,
if not absolute, are at least extremely robust!

The symbiotic relationship between science and technol-
ogy is harder to disentangle. As stated before they need
each other in essential ways, and yet technology is per
definition a double-sided sword. The best we can do is
to insist that the discourse on science and technology at
all stages be a hundred percent transparent and respects
the principles of a solid democracy. This refers to a higher
vocation, and adds elements of ideology and wishful think-
ing to the notions of science, technology and innovation,
which in turn make them more vulnerable!

In my opinion what we need is quite the opposite of what is
trending: we need to have more science, scientific literacy
and expertise into the political arena to bring the neces-

Figure III.5.8: An artist impression of the James Webb space
telescope (JWST) unfolding in space at 600.000 km from the
Earth. Its mission is to look at the very early stages of the
universe as a whole and the very early stages of structure for-
mation. It is furthermore the first space telescope to study the
possibility of extraterrestrial life by analyzing the chemical com-
position of the atmosphere of exoplanets. The slogan would be:
Are there somewhere in the universe alternative humankinds?
(Source: Adriana Manrique Gutierrez/NASA)

sary amount of integrity into the political discourse. Unfor-
tunately science as the evidence-based cornerstone of hu-
man culture remains a vulnerable institution that should be
protected and defended against the arrogance of power,
media popularity, the spreading of misinformation, and lob-
bying practices that turn into corruption. In the words of the
well-known spy novel author John le Carré:

One day somebody will explain to me why it is that,
at a time when science has never been wiser, or
the truth more stark, or human knowledge more
available, populists and liars are in such pressing
demand.

John le Carré

Indeed, as soon as we allow the politicization of the fund-
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ing structure, and make it a prey to lobbyists and com-
mercial interests, or force it to serve the vested interests
and privileges of some ruling class, irrespective of the po-
litical system we adhere to, we are sure to lose science.
It will decay from a devoted search for truth – also if that
truth turns out to be inconvenient – to some kind of hidden
or even blatant form of lopsided advocacy. Legal experts
or lawyers, in contrast to scientists, are allowed to limit
their sources for research and part of their skill requires
craftily selecting the evidence that supports their client’s
case.

Here is a large-scale perspective offered by the eminent
quantum scientist Charles Bennett:

The Enlightenment inspired Universal Declaration
of Human Rights promulgated in 1948 after a decade
of technical sophistication accompanied by inequity
and cruelty on an unprecedented scale, exempli-
fies the seemingly still attainable goal of an equi-
table, peaceful society that manages its environ-
ment and itself well enough to last millions of years.

Charles H. Bennett

Human history looks like a perpetual battle between power
and knowledge, with power always calling victory in the
short term (under the argument of improving efficiency and
‘the’ economy) and knowledge always being the winner in
the long term, even though the price for society for find-
ing out can be disproportionally high. We created danger-
ously pervasive constructs like the military-industrial com-
plex, or the medical-industrial complex and now also the
information-industrial complex, which have turned into au-
tonomous self-inflating entities thoroughly intertwined with
human society. These thrive on a delicate interplay be-
tween innovation and commercialism using the creation of
fake needs and fake fear. They embody an abuse of power
that is derived from knowledge. The sobering fact is that
lies and misleading accounts spread fast and one can only
hope that truth will ultimately prevail. I myself firmly be-

lieve that to be the case, but overall it remains an open
question. Too much science/technology-based power in
too few hands is a recipe for societal disasters. Let me
close with quoting Bennett once more:

Unfortunately, due largely to the increased range
and speed of communication, misinformation has
emerged as a meta-threat to equity and civilisation.
By luring people into self-isolating bubbles, to be
soothed, entertained and incited by incompatible
versions of reality, it empowers autocrats and dem-
agogues, it hobbles democracies and makes co-
operation on globally urgent problems like climate
change almost impossible.

Charles H. Bennett

Addressing scientific illiteracy.

Heisenberg? Huh, isn’t that the guy from Breaking
Bad?

After the red light started flashing, the radio host nodded
to me and asked: ‘Well, professor, can you tell us in a few
lines what quantum physics is?’ And I said: ‘ Hm, yes of
course, hmm I mean No! Hmmm, I mean yes, but ...’ Talk-
ing quantum to family and friends at a birthday party often
feels like being a tour guide in London for extra-terrestrials
who don’t happen to know what a bridge, a museum or a
traffic light is. As I mentioned before, the fact that quantum
things are largely invisible does not mean that they are not
there. They certainly are. And as we have learned, the
fact that most quantum things are not discernible by the
naked eye doesn’t mean that they are not relevant or im-
portant. In spite of being unknown and widely ignored, the
quantessentials are here to stay. This leaves us with the
sobering fact that they are still surprisingly unfamiliar. This
in my opinion is a strong call for worldwide efforts to edu-
cate, to fully develop the tremendous intellectual potential
that is present everywhere at any instant.
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604 CHAPTER III.5. POWER OF THE INVISIBLE

Figure III.5.9: Starbirths in the Carina Nebula as seen by the James Webb space telescope. This image made in July 2022 is divided
horizontally by an undulating line between a cloudscape forming a nebula along the bottom portion and a comparatively clear upper
portion. Speckled across both portions is a starfield, showing innumerable stars of many sizes. The smallest of these are small,
distant, and faint points of light. The largest of these appear larger, closer, brighter, and more fully resolved. The upper portion of
the image is blueish, and has wispy translucent cloud-like streaks rising from the nebula below. The cloud-like structure of the nebula
contains ridges, peaks, and valleys - an appearance very similar to a mountain range. (Source: NASA, ESA, CSA, and STScI.)

I have spent about half a century in that invisible quan-
tum world, doing a lot of active research, but also get-
ting slightly frustrated not being able to share much of it
at everyday occasions like birthday parties. At times that
made me sad but also aware that I should stop whining
and just sit down and write a book about what I learned
on my journeys through that amazing quantum world. A
modest attempt to help alleviate the burden of scientific il-
literacy. And that is how the three lines allowed to me by
that sympathetic interviewer gave rise to these three vol-

umes about the Power of the Invisible: The Quantessence
of Reality.
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Further reading.
Classics of popular physics:

- Cosmos
Carl Sagan
Random House (1980)

- A Brief History of Time
Stephen Hawking
Bantam Dell Publishing Group (1988)

- Cosmic Code
Heins Pagels
Dover Publications (2012)

On Science and the Future of Human Culture:

- Superintelligence: Paths, Dangers, Strategies
Nick Bostrom
Oxford University Press (2016)

- Sapiens
Yuval Harari
Penguin books (2015)

Complementary reading:

- A Project to Find the Fundamental Theory of
Physics
Stephen Wolfram
Wolfram Media (2020)

- In Praise of Science: Curiosity, Understanding,
and Progress
Sander Bais
MIT Press (2010)

- Mysteries Of The Quantum Universe
Thibault Damour and Mathieu Burniat
Penguin (2020)



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 606 — #636 i
i

i
i

i
i



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 607 — #637 i
i

i
i

i
i

Appendix A

Math Excursions

| On functions, derivatives and integrals

Do not worry about your difficulties in mathematics.
I can assure you that mine are greater still.

Albert Einstein

Functions. Functions are a general class of objects in
mathematics that have endless applications in all fields of
science. A function is an object – let us denote it by the
symbol f – that may depend on a set of variables (argu-
ments) – say {xa} . As such it assigns a value to f for any
allowed point in the space of variables X ⇠ {xa} : in other
words it provides us with a map f : X ! F . The domain F
of the function denotes the space where f itself lives, and
can be many things, we think in particular of the real num-
bers R , the complex numbers C , or some (other) vector
space V .1

Think of the temperature T in the room you are in. It is
a function that depends on where and when, i.e. on the
set of variables X ⇠ {x, t} , you could say T : {x, t} ! R
and we indicate this dependence by writing T = T(x, t) .
The potential energy V(x) of a particle is a real function
defined over the real position space, and like the tempera-

1We mention the words ‘complex numbers’ and ‘vectors’ here just in
passing; these notions are discussed in later Math Excursions.

Figure A.1: Function classes. We have plotted three functions
which belong to different classes. A discontinuous function on
top (the function value jumps at x = x0). In the middle a con-
tinuous function but not-differentiable at x = x1, x2 and x = x3 ,
where the slope is discontinuous when approaching the points
from the left and the right. At the bottom a smooth function
which is per definition infinitely differentiable, meaning that all
higher derivatives exist and are continuous.

ture, V may differ from place to place. If we plot the value
of a real function f as the ‘height’ above the point x then
f(x) defines a kind of landscape over X . Very basic fea-
tures of functions are given in Figure A.1 which refer to
whether they are continuous and or differentiable. We will
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608 Math Excursions

mostly assume that we are dealing with smooth functions:
those are functions for which all derivatives exist and are
continuous.

We have mentioned other quantities which are basically
functions: the position and velocity are functions of the
time variable. In d-dimensions these are vectors ("vec-
tor" functions) with d components. Vectors have not only a
magnitude but also a direction which makes them different
from being just a number. A number can be written down
and be communicated by mail; this is not true for a vector
because the direction can get messed up. The electric and
magnetic fields are both vector-valued functions or vector
fields in short. The same is true for the velocity field of a
river, it encodes the direction in which the fluid flows at any
given point in the fluid. So even if you were not aware of
the notion of (vector) functions, you presumably now re-
alize that you are quite familiar with them. To give you
an impression, we have plotted some typical elementary
(real) functions of a single variable in Figure A.2.

With real functions you can do what you can do with num-
bers if you do it point wise, i.e. in every point of X . For
example, we define the product h of functions f and g by
the function h(x) = f(x)g(x) . The limitations on what
you do with functions is of course determined by which op-
erations are defined in F .

Of interest are two natural operations one may define on
smooth functions that play a fundamental role in many ap-
plications. These operations are basically each other’s ‘in-
verse’; one is called differentiation or taking a derivative,
the other is integration, or taking the integral. We discuss
them for the case of real functions.

Differentiation. Think of a real function f(x) of one real
variable, then we may draw it as a curve on a graph paper,
putting x along the x-axis and f(x) along the y-axis, as
we did in Figure A.3(a). The derivative with respect to the

variable x in a point x0 of the function denoted as
df

dx
, or

simply with a prime, i.e. f0(x0) is just the slope of that curve
above the point x0 .

For example, if the function is linear in x , f(x) = 3x, then
that function has a constant slope equal to 3 and thus is the
derivative a constant, f0(x) = 3 . Having given this heuris-
tic definition of the derivative, I should hasten to say that
this is a phenomenally important concept in science, as it
embodies the mathematical statement that exactly quanti-
fies the otherwise rather vague notion of ‘change’.

Looking at the derivative operator more abstractly it can

be considered as a map
d

dx
: F ! Slope F . Points where

the derivative of a function vanishes correspond to points
where the slope is zero and the function has a maximum
or a minimum, as we have indicated in Figure A.3(a). Note
that if one knows a function in the neighborhood of a point
x0 one may calculate its derivative in that point. This is
clear from the formal definition of the derivative: f0(x) =
(f(x + �x) - f(x))/�x taken in the limit of ever smaller
�x . This definition implies another useful relation (also
in the small �x limit) namely that we may write: f(x +
�x) = f(x) + f0(x)�x . This provides a clear statement
of the use and meaning of a derivative: if we make a tiny
move from x to x + �x in space, then the corresponding
change in any function f(x) , is from f(x) to f(x) + f0(x)�x
to lowest order in �x .

Let us finally mention that calculating the derivatives of
many standard functions and expressions containing them
is not so hard and usually part of a science high school
math curriculum. We have listed a few derivatives of stan-
dard functions in Table A.1 below. Another way to think
about differentiation is therefore to say that it is an operator
d/dx which applied to a function f(x) generates a trans-
lation (or change) in function space F induced by a small
translation in the underlying configuration space X . We
will make use of this interpretation later on.



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 609 — #639 i
i

i
i

i
i

| ON FUNCTIONS, DERIVATIVES AND INTEGRALS 609

(a) The linear function f(x) = x . It has a con-
stant slope. It is the simplest odd function as it
satisfies f(-x) = - f(x)

(b) The quadratic function f(x) = x2 . It has
a constant curvature or second derivative. It is
the simplest even function (except the constant
function) satisfying f(-x) = f(x) .

(c) The inverse function f(x) = 1/x . The func-
tion slowly tends to zero for x ! ±1 , while it
becomes infinite (or singular) for x ! ±0 . It is
only defined for x 6= 0 .

(d) The periodic function f(x) = cos(x) . It sat-
isfies the property f(x) = f(x+2⇡) . Shifting the
cosine by 1/4 period to the right one obtains the
sine function.

(e) The exponential functions f(x) = e±x .

these grow rapidly to 1 for x ! ±1 and de-
cay rapidly to zero for x ! ⌥1 .

(f) The logarithmic function f(x) = ln(x) is a
slowly but ever-growing function. It has a singu-
larity for x ! +0 .

Figure A.2: The graphs for some typical elementary real functions f(x), showing their salient features.

An example: dispersion. We have been discussing the
energy E of a particle as a function of the momentum p for
the non-relativistic and relativistic cases with a paramet-
ric dependence on the mass m0 . There is another quan-
tity of importance and that is the dispersion defined as the
derivative of E with respect to p . The term dispersion orig-
inates in optics where in a given medium one has that the
frequency will depend on the wavelength, which manifests
itself for example in the fact that the angle of refraction
of light will depend on the angle of the incident beam.

For matter waves we have that E = h̄! and p = h̄k ,

so we can express the dispersion also in terms of E and
p . In Figure A.4, I have plotted the relativistic expression

for the particle energy, E =
q

m2
0c

4 + p2c2 , and below

it the dispersion dE/dp = pc/
p
m2

oc
2 + p2 . There are

roughly three regimes: (i) on the left we have the non--
relativistic regime where p ⌧ m0c where the energy ap-
proximates tp E ' m0c

2 + p2/2m0 with linear disper-
sion dE/dp ' p/m0 , and the expression up to the mass-
energy reduces to the familiar Newtonian form, (ii) in the
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(a) The derivative df/dx (purple) of a function f(x) (red). At the extrema
of y(x) the derivative (= slope) is zero.

(b) The integral
R
b

a
f(x)dx of f(x) is the area below y(x) above the x-

axis minus the area belowthe x-axis, between the points x = a and
x = b .

Figure A.3: A function, its derivative, and its integral.

middle we need the fully relativistic expression, and (iii) on
the right we have the ultra-relativistic regime where p �
m0c , and we have the approximation E ' pc with disper-
sion dE/dp ' c = constant , which effectively corre-
sponds to the expression for a massless particle.

Figure A.4: Relativistic energy. The particle energy E as a
function of p in red, and the dispersion defined as the derivative
dE/dp in purple. We have chosen m0 and c equal one.

Integration. Having the red curve in the example of Figure
A.3(b) the (definite) integral Fab of a function f(x) between
two points x = a and x = b is just the area under the curve
between the two points. One may also define an ‘indefinite’
integral F(x) or primitive of f(x) , which is mathematically
represented by the integral symbol:

F(x) =

Z
f(x)dx . (A.1)

F(x) has the property that Fab = F(b) - F(a) . If a func-
tion is constant f(x) = c then the integral is thus simply
Fab = c(b - a) and F(x) would be F(x) = cx + d where
there is an arbitrary constant d that one can add. Now we
are also in a position to appreciate the remark that these
operations are in a sense each other’s inverse: if we differ-
entiate F(x) we get the original function f(x) back.

The definition of the integral involves a limiting procedure
of an approximation that is not so hard to imagine. To cal-
culate the definite integral Fab , we divide up the interval
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Figure A.5: The integral as area. The definition of the definite
integral of F(x) between points x = a and b is the sum of the
positive and negative contributions from the areas of the small
rectangles, in the limit that �x ! 0 .

b - a on the x-axis up in a large number N equal little
segments �x , then we define the centre of each segment
by its coordinate xi : i = 1, . . . ,N . The integral is then
defined by:

Fab =

Zb

a
f(x)dx = lim

N!1

NX

i

f(xi)�x , (A.2)

as is illustrated in Figure A.5.

Calculating the integrals of elementary functions is not too
hard, but often integrating is hard and not possible in ‘clos-
ed form’. Therefore, numerical approximations are of cru-
cial importance in most applications, and those are usually
based on approximations in the spirit of equation A.2. The
problem of integration is at the heart of physics and engi-
neering, exactly because in most cases the laws that gov-
ern nature are formulated as so-called differential equa-
tions, that means that the equations contain derivatives
of quantities one would like to solve for. Many equations
are ‘equations of motion’. The equations of Newton de-

derivative : function : integral :

df(x)

dx
f(x) F(x) =

Z
f(x)dx

a ax 1
2ax

2

nxn-1 xn(n 6= -1)
1

n+ 1
xn+1

-1

x2
1

x
ln|x|

cos(x) sin(x) - cos(x)

- sin(x) cos(x) sin(x)

kekx ekx
1

k
ekx

1

x
ln x x ln x- x

=) =) Integration

differentiation (= (=

Table A.1: A list of some elementary functions (see also Fig-
ure A.2) in the middle column, with their derivatives on the left
and their integrals or primitives on the right. Taking a derivative
moves you to the left, integrating moves you to the right. Inte-
gration means that one always can add an arbitrary constant to
the integral; this constant is not included in the table.

termine the time evolution of a particle’s position end mo-
mentum. Those of Maxwell do that for the electromagnetic
fields, and the Schrödinger equation for the wavefunction
of a quantum system, while Einstein’s equations describe
the time evolution of the universe. Solving those equa-
tions corresponds in some sense to finding ways to ‘inte-
grate’ the equations for specific boundary or initial condi-
tions.

In Table A.1 we have listed some well-known functions,
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their derivatives, and their primitives (i.e. integrals).

Example: the harmonic oscillator. The force on a par-
ticle is defined as minus the derivative of the potential en-
ergy: F = -dV/dx , indeed with V = ax2/2 , this yields the
harmonic force F = -ax . But given the force we can also
calculate the potential energy by integrating it. We have to
move the particle up the hill form x = 0 to, say, x = x0 . To
do so we must do an amount of work on the particle which
equals the (opposite) force times the distance, integrated
from zero to x0:

V = -

Zx0

0
F(x) dx =

Zx0

0
ax dx =

�1
2
ax2

 x0
0

=
1

2
ax20 .

Differential equations. Differential calculus is basically
the calculus of changes, and differential equations are typi-
cally the equations that govern the change in time or space
of any dynamical system one might think of, equally appli-
cable to modelling in classical physics as it is for quantum
theory, but it is equally well employed in modelling eco-
nomics, ecological systems or the climate. As we have
seen, many ‘laws of nature’ take the form of a system of dif-
ferential equations. This means that on the left-hand side
of the equation we have the changes of the system’s vari-
ables in time and space, while on the right-hand side they
are expressed as functions of the variables themselves,
i.e. the point in the space of states the system could be
in. Examples were already provided by Newton’s equa-
tions (I.1.3) and the Maxwell equations (I.1.28). The so-
lutions of these equations describe therefore the dynami-
cal trajectories in the configuration space that the system
traverses in time. The trajectory depends of course on
the starting point or initial condition. Obtaining solutions
to differential equations has to involve some kind of inte-
gration because we want to get rid of the derivatives, and
that is exactly what makes solving differential equations
so hard. If the equations are linear, meaning that the un-
knowns one want to solve for only appear linearly in the
equation, solutions can often be obtained in closed ana-

lytic form, but if the equations are nonlinear that is only
rarely the case.

Let us conclude this excursion by looking at two differential
equations of particular interest, a growth/decay equation
and a wave equation.

Example: the equation for exponential growth or de-
cay. We have a container with N0 radioactive nuclei. Then
the remaining number N(t) at time t will decrease in time
at a rate dN/dt . This rate will be proportional the number
N(t), which is just saying something like, ‘if the population
is twice as big, twice as many people will die.’ So the equa-
tion we like to solve reads:

dN

dt
= -�N . (A.3)

this can be cast in the form:

dN

N
= -�dt . (A.4)

Now the left-hand side and the right-hand side can be ‘inte-
grated’, which by using Table A.1 yields the solution:

ln|N|+ d = -�t ) N(t) = N0e
-�t , (A.5)

where the constant e-d has to equal N0 , the number of
nuclei at time t = 0 . Note that the solution corresponds
to the green curve depicted in Figure A.2(e). The solution
tells us that the decay is exponential, and we will refer to
this result if we talk about radio-active decay in chapter I.4.
And if we change the sign in front of � in the equation, we
of course get the red curve in the figure corresponding to
exponential growth, describing some stages of epidemics
or a post on Facebook ‘going viral.’

Example: the wave equation. This equation is of inter-
est because waves appear all over the place in physics.
Not just water or sound waves, also light is a wave phe-
nomena, and also in quantum theory we encounter wave
equations in many guises. Most prominent is the Schrö-
dinger equation, but also the Maxwell and Dirac equations
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are basically wave equations, which after quantization will
have interpretations in terms particles. And it is here that
the well-known quantessential catch phrase particle-wave
duality originates.

In one space and one time dimension the relativistic wave
equation takes the form of a differential equation with two
derivatives working subsequently on a function f(x, t) of
space and time:2

@2f

@t2
- c2

@2f

@x2
= 0 . (A.6)

The solutions for f are waves that move with a velocity
equal ±c for example:

f(x, t) = a cos(!t- kx) . (A.7)

This solution has besides the amplitude a , two parame-
ters, the angular frequency ! = 2⇡⌫ , and wavenumber
k = 2⇡/� , and looks like the wave pattern of Figure
A.2(d) moving either to the left or the right. Indeed, taking
two derivatives means in Table A.1, that we move from the
column on the right to the column on the left. If you put this
into the equation and take the derivatives, you get an alge-
braic equation!2- c2k2 = 0 for the parameters! and k ,

telling us exactly, that – as advertised – there are propa-
gating waves satisfying the equation with! = ±ck which
amounts exactly to the wave relation ⌫ = c/� . Later on
we will see that quantization of this relation leads to the lin-
ear dispersion relation E(p) = h̄! = c h̄k = cp , which
is characteristic for a massless particle. This reflects the
similarity of the above equation with the electromagnetic
wave equation (I.1.47). |

2As f depends on two variables we have to distinguish the deriva-
tives with respect to space and time, we write the curly derivative sym-
bols called partial derivatives. The squares in the derivatives mean that
you apply the derivative operator twice, so @2f/@t2 = (@/@t)2 f .

} On algebras

In high school we have to learn elementary algebra, where
one represents variables – mostly corresponding to real
numbers – as abstract letter symbols, and one learns how
to manipulate the expressions according to certain rules
or operations that apply to real numbers, such as addi-
tion and multiplication. The principal application is to solve
equations by exploiting these manipulations. For example,
having the quadratic equation ax2+bx+ c = 0 , the ques-
tion is to solve for the variable x in terms of the constants
a ,b and c . One proves that there are two real solutions
given by x± = (-b ±

p
b2 - 4ac)/2a , provided the ex-

pression under the square root is positive. So the advan-
tage of the abstract notation is that the answer applies for
any choice of the constants a, b and c: it gives the general
solution.

Abstract algebra. Generally, the subject of abstract al-
gebra deals with collections of objects such as numbers,
vectors, matrices, polynomials and functions for which bi-
nary operations like addition and multiplication and pos-
sibly more are defined (the inverse operations like sub-
traction and division for example). The binary operations
may or may not be distributive: a ⇥ (b + c) = a ⇥ b +
a ⇥ c , commutative: a + b = b + a and associative:
a + (b + c) = (a + b) + c . You see that for the algebra
of ordinary numbers both the addition and multiplication
operations are distributive, commutative and associative
(subtraction should be thought of as addition of a negative
number a - b = a + (-b) , and division by a number as
multiplying by the inverse of the number). If you read the
next Math Excursion you will find that for the algebra of
(n⇥ n) matrices the sum and product are distributive and
associative, but whereas matrix addition is commutative,
matrix multiplication is not.

A particularly simple algebra we will use in the next chap-
ter is the Boolean algebra of binary numbers {0, 1} . The
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algebra is defined by the operations displayed in the table
below. They are distributive, commutative and associa-
tive.

addition multiplication

0+ 0 = 0 0⇥ 0 = 0

0+ 1 = 1 0⇥ 1 = 0

1+ 0 = 1 1⇥ 0 = 0

1+ 1 = 0 1⇥ 1 = 1

Table A.2: The Boolean algebra.

Algebraic structures that are widely applied in physics
are vector spaces, rings, groups and spaces of functions.
It turns out that often subjects that begin as pastimes for
the mathematically minded end up having great practical
use in the realms of science and engineering. What we will
see in this book over and again is that in the description of
quantum states the notions of vectors, complex numbers,
and matrices arise naturally. All these ingredients have a
specific underlying algebraic structure. We discuss the al-
gebra of complex numbers in the Math Excursion on page
630, while matrix algebras are described in the next Math
Excursion.

Of particular interest in quantum theory is the algebra of
observables consisting of (hermitian) self-adjoint opera-
tors or matrices. These algebras correspond to so-called
Lie algebras, which are directly linked to the theory of Lie
groups, which in turn describe many of the symmetries that
play a central role in (quantum) physics. Lie algebras are
discussed in more detail on page 634 and Lie groups in
the Excursion on page 635.

It is evident that math and physics have co-evolved over
centuries leading to a situation where modern theoreti-
cal physics makes extensive use of modern and abstract
mathematics. It is for that reason that I have decided to
throw in more than average math in this semi-popular ac-
count of a subject like quantum theory. }

~ On vectors and matrices

The reason for exploring vectors and matrices, is that they
play a central role in the mathematical formulation of all
of physics and in particular in quantum physics. In clas-
sical physics we think of positions, momenta, angular mo-
menta and forces as ordinary three-dimensional vectors.
These are real vectors because their entries or compo-
nents are real numbers. In electromagnetism and relativity
we have encountered so-called relativistic four-component
vectors which are also real. Quantum states are repre-
sented by complex vectors and physical observables are
represented by a class of complex matrices. This excur-
sion highlights some of the more important properties of
real vectors and matrices We return to complex vectors
and matrices, which play a central role in part II of the
book, in a separate Math Excursion on page 632.

Real vectors. A vector can be viewed simply as an ar-
row of a certain length in some n-dimensional Euclidean
space Rn . Note that we also have the null-vector corre-
sponding to the origin. We denote column vectors by ket
vectors |wi : they are elements of a vector space V , while
the row vectors are denoted by so-called bra vectors hv| ,
and these are elements of a dual vector space V⇤ . We
can add and subtract vectors by just adding or subtracting
their corresponding components and scale the vectors by
multiplying them by ordinary numbers. These are familiar
properties to most of you.

Vector components and choice of basis. If the dimen-
sion of the vector space is n , we can choose sets of basis
vectors {|ii} and {hi|} and expand vectors as |vi =

P
j v

j|ji
or hv| =

P
i vihi| . You may think of these basis vectors

as unit vectors along the different orthogonal axes of the
vector space. The reason for this subtle distinction be-
tween row and column vectors is that we will encounter
different types of vector spaces in this book. We have al-
ready seen the example of ordinary Euclidean vectors and
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the relativistic Lorentz vectors. The differences between
these spaces becomes clear if we look at the definitions
for the invariant squared ‘length’ or the inner product of
vectors.

The inner, dot, or scalar product. Having a vector space
V and its dual V⇤ we may define an inner, dot or scalar
product between elements v 2 V⇤ and w 2 V as the num-
ber obtained after adding the products of the correspond-
ing entries:

hv|wi ⌘ v ·w ⌘
X

i

viw
i .

As an example we calculate the dot product of two two-di-
mensional Euclidean vectors:

�
2 1

�✓ -1

1

◆
= -2+ 1 = -1 .

Taking the dot product of a Euclidian vector with itself,
hv|vi = |v|2 always yields a sum of squares, correspond-
ing to a real number larger or equal zero, which is defined
as the length of the vector, |v| , squared. We also mention
that for real vectors the dot product is real and symmetric,
v ·w = hv|wi = hw|vi = w · v .

As another relevant example we consider the Lorentzian
four-momentum vector pµ = (E/c,p) . The inner product
should produce the expression pµp

µ = E2/c2 - p2 . This
means that the row vector (with lower indices) should be
pµ = (E/c,-p) . It is extremely useful then to define a
metric, which is just a matrix ⌘ij = diag(1,-1,-1,-1) ,
which maps a column vector to its corresponding row vec-
tor like vi =

P
j ⌘ijv

j . And therefore, the inner product
can be written using this metric as v · w ⌘

P
ij gijv

iwj .

For the Euclidean case this metric is just the unit matrix
gij = �ij = diag(1, 1, . . . , 1) . Observe that the value of
the inner product of a Lorentzian four-vector with itself is
not restricted, it can be either positive, negative or zero.
Furthermore, if this product is zero, this does not imply
that the vector itself has to be zero. It just means that the
corresponding particle has vanishing rest-mass.

We have given a graphical representation of the scalar or
dot product of two vectors in Figure A.8(a), which under-
scores the fact that the dot-product produces a number,
not a vector, and for that reason it is also called the scalar
product.

The exterior or cross product of two vectors. In three
dimensions one may indeed also define a ‘vector’, ‘exte-
rior’ or ‘cross’ product between vectors which produces
a vector w out of two vectors u and v , and one writes
w = v⇥ u . There is no simple extension of such a vector
product to general dimensions.

Matrices. Matrices are there in many kinds, appear all
over the place and have zillions of applications through
the sciences. It refers to a two-dimensional array of el-
ements like for example the apartment building of Figure
A.6. The entries of a matrix are often numbers that refer
to information about the – in the example at hand – apart-
ment: how many bedrooms, or how many people, or their
income, their age etc. In this book we will only employ
square (n⇥n) matrices that will satisfy various additional
properties that derive naturally from certain physical re-
quirements in the specific applications we discuss. There
are many ways to look at a matrix: the most neutral way
is to say that it is a square array of (real or complex) num-
bers (see Figure A.7(a)). For example, a distance table
between n cities would be like a real (n ⇥ n) matrix. An-
other way to look at a matrix would be to distinguish the set
of diagonal elements, the elements in the upper triangle
and the elements of the lower triangle (figure A.7(b)). And
sometimes it is convenient to think of a matrix as a stack
of n n-dimensional row or column vectors as indicated in
Figures A.7(c) and A.7(d).

Matrix algebra. Now the matrices themselves also form
a vector space, because we may add and subtract them,
there is a ‘null-matrix’ (with all entries equal zero), and we
may multiply a matrix by an arbitrary constant (by just mul-
tiplying each entry of the matrix by that constant). There is
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Figure A.6: The Matrix. A matrix is a two-dimensional array of
elements. You may think of this apartment building as a 6 ⇥ 4
matrix, with 6 rows and 4 columns, where the apartments are
labeled like the corresponding matrix entries. The entries may
refer to information about the inhabitants of the apartments, like
the family size, their income, etc. But the analogy is of limited
use as we are not adding or multiplying apartment buildings, or
assign any meaninbg tot theior aigenvectors and such.. (Source:
Alamy.)

more, we may also define a multiplication for matrices as
we will see shortly. And in view of the previous Math Ex-
cursion this means that the set of n ⇥ n matrices form an
algebra. To define division for matrices is a little more intri-
cate: we basically define it by multiplying by the inverse of
the matrix, where the inverse of A-1 of A is defined as the
matrix that satisfies A-1A = AA-1 = 1 , where 1 is the
unit matrix with only ones on the diagonal. This raises the
follow-up question of under which conditions the inverse
is a well-defined matrix itself. And this question may re-
mind you of the serious elementary school dictum: never
divide by the number zero! For matrices the rule is that
the inverse exists, if the determinant of the matrix is non-
zero. This is a number that that can be calculated given
the matrix, but we will not go into detail here. Certain
matrices have inverses and others have not and there is

a relatively simple criterium which tells you if the inverse
of a certain square matrix exists. Including the multipli-
cation, we speak of a matrix algebra, as we can perform
algebraic manipulations with them similar to what we do
with numbers. There is a well-established basic branch
of mathematics called ’linear algebra’, and there are many
textbooks covering the world of matrices in detail.

Matrix as linear transformation of vectors. Now vec-
tors can also be multiplied by matrices to produce another
vector, the way that is done is pictorially indicated for a col-
umn vector in A.8(b). This action of matrices on vectors
is clearly most easily understood if you think of the matrix
as a stack of row vectors. The action can also be consid-
ered as a transformation of a vector into another vector. A
simple example may help:

✓
1 1

1 -1

◆✓
2

1

◆
=

✓
2+ 1

2- 1

◆
=

✓
3

1

◆
.

The matrix acts as a linear operator on the vector space,
as it reshuffles the components into linear combinations of
them. We may say that (n ⇥ n) matrices map the vector
space V onto itself and we write A : V ! V . There is for
example a particular subset of (3⇥ 3) matrices whose ac-
tion on ‘ordinary’ vectors corresponds to rotating of those
vectors in three-dimensional space R3 .

Another example which shows the descriptive power of
matrices as operators on state vectors is in (quantum) com-
putation, where generically we think of computation as a
sequence of gates, interactions/manipulations or measu-
rements that change the states of a set of (qu)bits.

Such processes or computations can be represented by
a product of matrices. Indeed the complete computation
is just a matrix mapping the in-state on the out-state vec-
tor.

Eigenvectors and eigenvalues. Given a matrix A one
defines the eigenvectors of A as a set of special vectors
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(a) A 4⇥4 square matrix can be thought of as a table of 42 = 16 numbers
or symbols representing them.

(b) Square matrix build up of three parts, upper triangular (red), diagonal
(white) and lower triangular (blue).

(c) A matrix can also be viewed as a stack of row vectors. (d) A matrix can also be viewed as a stack of column vectors.

Figure A.7: Four ways to think about a matrix. Graphical representation of the many guises of a matrix (artist impression).
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(a) The inner, scalar or dot product of a row and a column vec-
tor yields the single number obtained by adding the product of
subsequent row entries with the corresponding column entries:
hg|bi = g⇤ · b = ⌃ig

⇤
ibi .

(b) The product of a matrix G with a column vector b yields again a
column vector c obtained by taking the dot product of subsequent row
vectors of G with the column vector b : |ci = G|bi = G · b meaning
ci = ⌃jGijbj .

(c) The matrix product. Each entry in the product matrix C equals the dot product of the i-th row vector of the first matrix A with the j-th column
vector of the second matrix B , so Cij = ⌃kAikBkj .

Figure A.8: Multiplications. Graphical representation and building up of products of vectors and matrices.
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Figure A.9: Eigenvectors and eigenvalues. Given a matrix one
defines the eigenvectors as a set of special vectors which satisfy
an eigenvalue equation (A.8).

{|aki} that satisfy the following equation:

A |aki = ak |aki , (A.8)

where the numbers ak are the corresponding eigenvalues.
So acting on an eigenvector the matrix A gives that same
vector back up to a constant, which is by definition the
eigenvalue. This is illustrated in Figure A.9. The set of
eigenvalues {ak} is called the spectum of the matrix. In
quantum theory the observables are represented by Her-
mitean matrices and in that case the eigenvalues are real
and the spectrum is called the sample space of the opera-
tor A .

The matrix product. Once we have defined the action of
matrices on vectors the step to the multiplication of matri-
ces is straightforward and we have indicated it in Figure
A.8(c). The (ij)-entry of the product matrix C = AB is ob-
tained by the dot product of the i-th row vectors of A with
the j - th column vector of B . Let us again give a simple
example:

✓
1 2

-2 1

◆✓
1 1

1 -1

◆
=

✓
3 -1

-1 -3

◆
. (A.9)

Types of matrices. A distance table between n different
cities is a square (n ⇥ n) matrix, a rather special one for
sure, because its diagonal elements are all zero and it is

symmetric with respect to that diagonal: the upper diag-
onal and lower diagonal matrices are each other’s mirror
image. Such a matrix is completely determined by speci-
fying its n(n- 1)/2 upper triangular entries.

Depending on the situation we may want to put additional
constraints which define a subset of matrices. If the ad-
ditional properties are preserved under the basic matrix
operations, the subset forms a subalgebra of the original
algebra. The additional properties involve typical matrix
manipulations which we have represented symbolically in
figure A.10. A fundamental notion is the transpose of a ma-
trix denoted by the matrix Atr , which is obtained from A as
indicated in Figures A.10(a) and A.10(b), written in terms
of its entries one has (Atr)ij ⌘ Aji . The transpose can
be obtained by mirroring the matrix in the diagonal but can
also be obtained by interchanging rows and columns. Re-
peating the operation brings you back to the original ma-
trix. What happens if we take the transpose of a product of
matrices? Referring again to Figure A.8(a), one sees that
taking the transpose of matrix C = AB on the right-hand
side we get a matrix which is the product of the transposes,
but in the opposite order: Ctr = BtrAtr .

Now it is also straightforward to define a symmetric or an-
tisymmetric matrix as the ones that satisfies A = ±Atr

(see Figure A.10(c)). Note that a symmetric (n⇥n) matrix
contains n(n+1)/2 real numbers, while the antisymmetric
one has only n(n- 1)/2 , because the diagonal elements
must be zero for the latter.

Invariance of the inner product. We have shown that
the product of a vector with itself defines the length of a
vector, and we all know that the length of a vector does
not change if we rotate the vector around. So we say that
the length of a vector is invariant under rotations. Also the
angle between two vectors is invariant under rotations. In
other words, the inner product of two vectors is invariant
under rotations.
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(a) A square matrix build up of three parts, upper triangular (red), diago-
nal (white) and lower triangular (blue).

(b) Transpose of the matrix depicted in (a), obtained by reflecting in the
diagonal, or by interchanging the rows and columns of the matrix.

(c) A symmetric matrix is equal to its transpose. A distance table be-
tween four cities would be a symmetric matrix with zeros along the diag-
onal.

(d) An antisymmetric matrix is a matrix whose transpose equals minus
that matrix. In other words: Aji = -Aij .

Figure A.10: Matrix properties. Graphical representation of some basic properties of matrices.
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As the rotations involve a transformation of the vector into
another vector, it follows that rotations can be represented
by matrices acting on the vector space V . And for real vec-
tors this matrix has to be a real matrix. Imagine we act with
a rotation matrix R on |vi . We may write |v 0i = R |vi , and
it then follows that hv 0| = hv|Rtr . Invariance of the inner
product of two arbitrary vectors now requires that

hv 0|w 0i = hv|RtrR |wi = hv|wi ) Rtr = R-1 . (A.10)

What this equation is telling us is that the matrices R that
represent rotations must satisfy the property that their trans-
pose equals their inverse. Matrices that have that property
are called orthogonal matrices. There is an additional im-
portant property that these matrices must satisfy. If you
realize that if we do two subsequent rotations on a vec-
tor, then that is the same as doing a single rotation that
brings the vector directly from its original to its final orien-
tation. Translated in the language of rotation matrices this
means that the product of two orthogonal matrices is again
an orthogonal matrix. And one says that the collection of
all such matrices define a group, for the case at hand this
is the so-called rotation group in n-dimensions denoted by
SO(n) . The SO(n) group has n(n - 1)/2 independent
elements.

What about the four-vectors whose inner product involves
not the unit matrix, but rather the diagonal 4 ⇥ 4 matrix
⌘µ⌫ = diag(1,-1,-1,-1) ? Now we must impose a dif-
ferent invariance condition on the transformation matrices
⇤ , it reads ⇤tr ⌘ ⇤ = ⌘ . The Lorentz transforma-
tions are defined by the condition that they leave the inner
product matrix or metric, ⌘ , invariant. The associated, so-
called Lorentz group is then denoted as SO(1, 3) , as the
metric has one plus sign and three minus signs. ~

� On vector calculus

In this excursion we touch on three important theorems
with respect to integrating equations involving the vector
derivative r of fields. These theorems refer respectively
to the line integral, an integral over an area and a volume
integral.

Operators involving the vector derivative r .

We have been talking about fields such as a force field
F(x) , a current density ⇢(x) or the electric and magnetic
fields E(x) and B(x) . Such a vector field defines a vector
at any point in space(time). We have also encountered the
vector of derivatives called nabla:

r = (@x1 ,@x2 ,@x3) ,

which plays a fundamental role in the calculus of (vector)
fields which features as we have seen in the Maxwell equa-
tions of electromagnetism, but as a matter of fact it plays
an equally important role in the subject of fluid dynamics. If
the equations involve the nabla operator, then solving the
equation means that we somehow have to ‘integrate’ the
equation. The mathematics involved is denoted as vector
calculus in contradistinction to vector algebra, which only
involves algebraic manipulations of vectors.

The gradient of a scalar function yields a vector field. In
this chapter we have encountered various definitions where
a vector field was defined as the vector derivative or gra-
dient of a scalar potential function V(x) , like for example
the relations:

F(x) = -rV(x) ,
E(x) = -rV(x) .

When discussing the Maxwell equations we also encoun-
tered vector derivatives of vector functions. Here we dis-
tinguish the following two possibilities:
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Figure A.11: The electrostatic potential for a dipole. This is the
potential V(x, y) , with some equipotential lines, resulting from
two opposite charges placed placed at opposite points on the x
axis.

(i) The divergence of a vector field, which yields a scalar
function, for example:

⇢(x) = r · E(x) .

(ii) The curl of a vector field, which yields another vector
field, for example:

j = r⇥ B ,

B = r⇥ A .

These operations contain first-order derivatives and are
thus linear in nabla. We also need higher-order deriva-
tives, apart from definitions like the ’Laplacian’ � ⌘ (r ·
r) , there exist additional mathematical identities. In Chap-
ter I.2 we used already two of them:

r · (r⇥ A) = 0 , (A.11a)

r⇥ (rV) = 0 . (A.11b)

One more useful identity is basically rewriting the repeated

Figure A.12: The electric dipole field. This is the dipole field
E(x, y) corresponding to minus the gradient of the potential de-
picted in the previous figure. We have drawn the field lines;
these are the stream lines of the field. At any point the field is
directed along the tangent of the line going through that point,
and the magnitude is proportional to the density of lines around
that point. The closed equipotential lines are projected in the
plane, and we see that the field lines are orthogonal to them.
This means that the field lines are the projections of the lines of
steepest descent on the surface of the previous figure.

vector product of the nabla operator:

r⇥ (r⇥ A) = r(r · A)- (r ·r)A , (A.12)

where the Laplacian in the last term is understood as act-
ing on the components of vector A individually.

We emphasize that the above are identities, meaning that
they hold for any vector field A(x, t) and any scalar field
V(x, t) .

To solve systems like the Maxwell equations we are inter-
ested in ‘integrating’ expressions involving the basic vector
derivatives, this is facilitated by some powerful theorems
that we will look at next.
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Figure A.13: A line integral. In the upper picture we give a two-
dimensional potential surface V(x) . The force field is defined as
F(x) = -rV(x) . If we choose a path from point x0 to x1 , we
can integrate F along that path, meaning that we integrate the
component tangential to the path. This line integral yields the
value W = V(x0) - V(x1) which equals the work performed by
the force, which in this is negative. We had to perform a force
to go uphill and therefore, the potential energy was increased.
Note that the outcome is independent of the path chosen.

Integration theorems for vector derivatives.

We have seen that the Maxwell equations are first-order
partial differential equations for the vector fields E and B .

That means that given the sources one could solve these
equations by integrating them. It is here that some pow-
erful integration theorems for vector derivatives can be ex-
ploited. These lead to what is often called the integrated
form of the Maxwell equations, which no longer contain
any spatial derivatives of the fields.

We will consider the following cases:

(i) The line integral of a gradient field along a curve � , for

Figure A.14: A surface integral. The figure is a pictorial rep-
resentation of Stokes’ law, which says that integrating the com-
ponent of the curl of a vector field (r ⇥ B) orthogonal to an
arbitrary surface, over an area A , equals the line integral of that
vector field along the closed boundary contour @A of that area.

example:
Zx1

x0

F(x) · dl = -

Zx1

x0

rV(x)dx = V(x0)- V(x1) ,

where the line element dl is the unit vector tangent to the
curve. We discussed this example already in Chapter I.1.
In ordinary language this refers to the statement that if you
apply a force on an object, then the integral of that force
along a given path corresponds to the work applied to the
object and that equals the increase of the potential energy
of the object, as we have indicated in Figure A.13. This
increase equals the difference of the potential energies at
the endpoints of the path. The fact that the difference only
depends on the endpoints means that the increase of en-
ergy is not dependent on the path chosen. If you want to
climb to the top of a mountain you can choose between a
path that is long and not so steep or a very short very steep
path in either case you must deliver the same amount of
energy.
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Figure A.15: A vortex field. The velocity field v(x) of an ideal
or free vortex around a source where the vorticity ! is non-zero
in a small region around the origin and pointing along the axis
perpendicular into the plane of the figure.

(ii) The surface integral of a curl over a given area A ,

known as Stokes’ theorem:
Z

A
r⇥ B · n̂d2S =

I

@A
B · dx ,

where on the left-hand side n̂ is the unit vector perpendicu-
lar to the surface element d2S , and on the right-hand side
we integrate the vector field B along the boundary @A of
the surface area. This mathematical theorem is illustrated
in Figure A.14.

The most familiar application is in fluid mechanics where
the vector field defining the flow is the velocity field v(x, t) .
The vorticity ! of the fluid is then defined as the curl of the
velocity field:

! = r⇥ v .

The simplest example is a situation where the vorticity to
be non-zero only on the z-axis, as a constant vector in
the positive z-direction. Then the solution for the velocity
field is the familiar cylindrical free vortex flow around the

Figure A.16: A tornado. A tornado is an aerodynamical flow
pattern with vorticity and a non-zero circulation.

z axis, corresponding to an ideal vortex. A related quan-
tity is now the circulation of the flow as a surface integral
of the vorticity, which then equals the line integral of the
velocity around a closed loop bounding surface area. In
the example where ! = kẑ only on the z-axis, one ob-
tains that for a loop winding once around the z-axis, the
circulation � equals � = nk . Taking a horizontal circle
around the z-axis we get a cylindrically symmetric, free
vortex field with an angular velocity that drops off inversely
proportional with the radius: v(r) = k/2⇡r , as depicted in
Figure A.15. A beautiful, not so ideal vortex is the tornado
depicted in Figure A.16.

In electrodynamics one applies Stoke’s theorem to Am-
père’s law yielding

I

@A
B · dx =

Z
j · n̂d2S .

This is basically the ‘integrated form’ of Ampère’s law, the
equation r⇥ B = j, that was already depicted on the left
in Figure I.1.18.
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Figure A.17: A volume integral. The figure illustrates Gauss’
law states that the volume integral of the divergence (r · E) of
a vector field E equals the surface integral of the perpendicu-
lar component of that vector field over the closed surface (@V)
bounding the volume V .

Stoke’s theorem also applies to the magnetic flux through a
bounded surface, which becomes equal to the loop integral
of the vector potential A, which is defined by the equation
B = r⇥ A:

� =

Z
B · n̂d2S =

I

@S
A · dx .

(iii) The volume integral of a divergence over volume V

known as Gauss’ theorem:
Z
r · E(x)d3V =

Z

@V
E · n̂d2S ,

where the integral on the right-hand side is over the closed
surface S bounding the volume V . This theorem is de-
picted in Figure A.17.

We can apply it to the first Maxwell equation I.1.26 as fol-
lows: Z

V
⇢(x)d3V =

Z

@V
E · n̂d2S = Q ,

telling us that integrating the perpendicular component of
the electric field over a closed surface bounding a volume
yields the total electric charge inside that volume. �
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| On probability and statistics

. . . But ignorance of the different causes involved in the

production of events, as well as their complexity, taken

together with the imperfection of analysis, prevent our

reaching the same certainty [as in astronomy] about the

vast majority of phenomena. Thus there are things that

are uncertain for us, things more or less probable, and

we seek to compensate for the impossibility of knowing

them by determining their different degrees of likelihood.

So it is that we owe to the weakness of the human mind

one of the most delicate and ingenious of mathematical

theories, the science of chance or probability.

(Laplace, 1889)

Probabilities. A variable x can take on values, in a dis-
crete or maybe a continuous set, a domain or a sample
space we will denote by X = {xi} . A random or stochas-
tic variable is one where we associate with that variable
a probability distribution over the domain, so we introduce
a probability function pi = p(xi) that gives the chance or
probability that x will have the value xi . As the variable x

always carries some value, we must require that the prob-
abilities add up to one:

⌃i pi = 1 . (A.13)

Given a random variable and its probability distribution, we
can calculate the average outcome of a number of statis-
tically independent measurements of x or for that matter
any function f(x) of x . It is simply given by the expecta-
tion value or average defined as:

< f >= ⌃i pif(xi) . (A.14)

So for a fair dice we have that X = {1, 2, . . . , 6} and pi =
1/6 for all i, and therefore one calculates for example that
< x >= 1

6⌃i i = 7/2 and < x2 >= 1
6⌃i i

2 = 91/6 .

We can ask the same questions for the sum outcomes
if we throw two dice, we have now to first determine the

Figure A.18: The distributions P(x, n, 6), with x = x(1) + . . .+
x(n) for throwing n fair dice. For large n this symmetric distri-
bution approaches the normal or Gaussian distribution.

domain of x = x(1) + x(2) to obtain {2, 3, . . . , 12} . The
probability for each outcome equals the number of dis-
tinct combinations for the two dice to get the given answer.
For example, from the 6 ⇥ 6 = 36 possible combinations,
the outcome x = 7 can be obtained in 6 distinct ways,
namely,

(x(1), x(2)) = (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) .

So, the probability p(x = 7) = 6/36 = 1/6 . One can sim-
ilarly construct distributions P(x, n) for n dice, and these
are depicted in Figure A.18 for an increasing number of
dice.
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Another important quantitative measure of a distribution is
the standard deviation � and its square, called the variance
or mean square deviation, which is defined as:

�2 =< (x- < x >)2 >=< x2 > - < x >2 . (A.15)

The variance is a measure of the width of the distribu-
tion. For the dice examples one finds that for one dice
� =

p
35/12 = 1.71 and for the pair � =

p
35/6 =

2.42 .

Statistics. Having a stochastic variable one can make
measurements at a series of times tm, and one may study
the frequency distribution of outcomes and compare it for
example with a theoretically predicted probability distribu-
tion. Here we enter the field of statistics, of statistical anal-
ysis. The challenge of statistical analysis is to understand
from the measurements, what the set of sample values you
have taken tells you about the true distribution. The cen-
tral and vital question is what conclusions you can draw
from some experiment and with what degree of certainty
or confidence.

Say the length of males in cm for a certain country has a
certain distribution H(h), which may peak around 170 cm .

Now we can take a sample of the population and from the
sample construct the sample distribution, which now is like
an approximation of the real distribution, and it will not sur-
prise you that by making the sample ever larger the ap-
proximation will get better. It may also be that you are prob-
ing a space of choices that people make and try to predict
the probability of the next choices that will be made. The
business of polling is in this category. Politicians and pub-
lic media frequently demonstrate their ignorance where it
comes to understanding statistics, and sometimes proudly
so. In science, however, we must insist on a solid un-
derstanding of statistics to interpret what we see, or think
to see, and in order to draw balanced and reliable con-
clusions, taking the uncertainties which are always there,
properly into account.

Central limit theorem. Often one is interested in a quan-
tity y, which is dependent on many different independent
random variables. The height of people for example may
be written as the sum of other random variables x(m) with
m = 1, . . . ,M , where each may have its own distribu-
tion p(x(m)) . Under general conditions on the distributions
p(x(m)) the distribution P(y) we are interested in will ap-
proach the Gaussian or normal distribution. So, quanti-
ties that equal the sum of many random variables, which
need not be normally distributed themselves, tend to be
normally distributed! This is as true for the velocity distri-
bution of particles in a gas kept at a given temperature, as
it is for the height distributions in a population, or for the fre-
quency of errors, but also for the minimal uncertainty wave
packet describing a quantum particle. The importance of
this normal distribution cannot be overstated as it pops up
in any serious field of study. This is nicely expressed in
the following quote of Sir Francis Galton, the Victorian pro-
gressive, polymath, statistician, sociologist, psychologist,
anthropologist, eugenicist, tropical explorer, geographer,
inventor, meteorologist, proto-geneticist, and psychometri-
cian:

I know of scarcely anything so apt to impress the imagi-

nation as the wonderful form of cosmic order expressed

by the ‘law of frequency of error’ [the normal or Gaus-

sian distribution]. Whenever a large sample of chaotic

elements is taken in hand and marshalled in the order

of their magnitude, this unexpected and most beautiful

form of regularity proves to have been latent all along.

The law . . . reigns with serenity and complete self-

effacement amidst the wildest confusion. The larger the

mob and the greater the apparent anarchy, the more per-

fect is its sway. It is the supreme law of unreason.

(Galton, 1889)

The normal distribution depends on two parameters, its
mean or expectation µ and its variance �2, and it is given
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Figure A.19: The Gaussian or normal distribution, with vari-
ance �2 = 1 and mean µ = 0 .

by the following expression,

f(x) =
1p
2⇡�2

e-(x-µ)2/2�2 . (A.16)

We have depicted the normal distribution in Figure A.19
with its familiar bell shape.

Statistical physics. To describe the macroscopic proper-
ties of systems like gases, fluids, plasmas one does not
need to know the precise properties of all individual par-
ticles making up the system. Fortunately, because that
would amount to solving some 1023 coupled partial differ-
ential equations. If we put the particles say in a container,
then each of the particles has a well-defined phase space
that is the same for all of them, but each particle may sit in
a different corner of the phase space. Boltzmann made the
assumption that such a macro-system may then be char-
acterized by some distribution of the particles over phase
space.

For a simple gas or fluid, he introduced the distribution
function f(x,v, t), giving the probability density for a par-
ticle in the gas to have position x and velocity v at time
t . This function will have some generic features. He in

fact showed that this distribution function had to satisfy
some fundamental equation which now carries his name.
From f one can derive the number density distribution,
n(x, t) =

R
f(x,v, t)d3v .

If the system is in equilibrium, one has that the distribution
f is time independent. In a gas in equilibrium (without ex-
ternal forces) we expect the particles to spread out evenly
over the volume, so f will also be x independent, and be-
cause of the interactions one expects that the energy will
be quite equally distributed over the particles. If we keep
the gas at a fixed temperature, so that the average en-
ergy per particle equals 3kT/2, this leads to the well-known
Maxwell-Boltzmann equilibrium velocity distribution:

f(v; T) =
⇣ m

2⇡kT

⌘3/2
e-m|v|2/2kT , (A.17)

which is a 3-dimensional Gaussian distribution.

Entropy. With a given distribution p, one can always asso-
ciate a certain Gibbs-Shannon or information entropy S(p)
with,

S(p) = -⌃ipi log2 pi . (A.18)

The entropy is thus a number that you can calculate given
a distribution. If the outcome is certain, then one has for
one particular i that pi = 1 while the others are zero,
and one finds that S = 0 . On the other hand if the out-
come is maximally uncertain we will have that N states
pi = 1/N for all i, implying that the entropy will attain
its maximal value S = log2 N . Another interesting prop-
erty is that entropy is an additive quantity, if one combines
two independent distributions. Imagine throwing simulta-
neously a fair coin and a fair dice with distributions p(1)

and p(2) , then there are 2 ⇥ 6 = 12 states with a com-
bined distribution p = p(1) ⇥ p(2) . The entropies then sat-
isfy the additive relation: S = S(1) + S(2) . In other words, if
one finds in an experiment that the additive property does
not hold this indicates some interdependence between the
variables, which in physical terms means that the two com-
ponents of the system interact. It is therefore certainly pos-
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sible to have a closed system consisting of two interacting
subsystems, where the entropy of one subsystem actu-
ally decreases, as long as the entropy of the other subsys-
tem increases by an equal or larger amount, as to make
sure that the whole system satisfies the second law. For
example, if one has a mixture of different particle types,
which at some point will start binding, the bound state rep-
resents a lower energy state, and thus in this transition
heat will be released, which corresponds to pure entropy
production. Here we see that on the one hand the inter-
actions cause more structure, a higher level of order and
thus less entropy in the particle component of the system,
but at the same time the entropy of the system as a whole
will increase because of the amount of heat that is pro-
duced.

Maximal entropy principle. If you have a certain sam-
ple space, you may want to consider different distributions
p(m) over that space and compare their entropies. Then
an interesting fact is that the distribution that maximizes
the entropy over the set of distributions {p(m)} is the best
guess you can make, assuming that you know nothing else
about the process or the distribution you are studying ex-
cept that the probabilities add up to one. But in many
cases you do know more, for example you know the aver-
age outcome of some observable �(x), so < �(x) >= �0 .
Then you want to maximize the entropy under the addi-
tional constraint that < �(x) >=

P
i pi�(xi) = �0, and

that will lead to another maximal entropy distribution. So
the maximal entropy distribution is the least biased proba-
bility distribution under the given set of constraints. Many
of the distributions that play an important role in nature are
maximal entropy distributions. Let us look at some of the
familiar cases:

(i) We define the information entropy H({pi}; {�k}) as the
entropy but with the constraints added with a parameter
�k . The trivial case is where we impose that the sum of

the probabilities equals one:

H(pi; �k) = -
X

i

pi lnpi - �0(
X

i

pi - 1) . (A.19)

We maximize H with respect to the {pi} and {�k} by requir-
ing the partial derivatives to be zero:

✓
@H

@pi

◆
= - lnpi - 11- �0 = 0 , (A.20)

-

✓
@H

@�0

◆
=

X
pi - 1 = 0 . (A.21)

The first equation yields that pi is constant pi = p ; substi-
tution in the second equation yields Np - 1 = 0 , so that
p = 1/N , corresponding to the well-known case of fixed
energy or the micro-canonical ensemble.

(ii) Let us now take a continuous energy type distribution
where we know the average energy to be "⇤ . Then we
must add to the expression (A.19) the constraint term -�1(

R1
0 pi"-

"⇤) , yielding for the first equation:

- lnp- 1- �0 - �" , (A.22)

with solution
p(") = Ce-�" .

From the first constraint we get:
Z
p(")d" = C(-

1

�
) e-�"

i1
0

=
C

�
= 1 , (A.23)

so we learn that C = � . Substitution in the second con-
straint yields another relation that we can solve for both
parameters:

C

Z
" e-�" d" = "⇤ . (A.24)

Let us rewrite

- C
d

d�

Z
e-�" d" = -C

d

d�
(
1

�
) =

C

�2
= "⇤ , (A.25)
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which yields C = � = 1/"⇤ and we obtain the simple ex-
ponential distribution:

p(") =
1

"⇤
e-"/"

⇤
. (A.26)

(iii) A similar calculation can be set up for the case where
we have prior knowledge about the variance of the distri-
bution, in which case one obtains a Gaussian distribution,
like the celebrated Maxwell-Boltzmann distribution.

The maximal entropy principle is a powerful tool for con-
structing the optimal distribution satisfying a certain num-
ber of constraints. And we see that this is completely con-
sistent with our discussion of statistical mechanics in chap-
ter I.1. A virtue of the maximal entropy principle is that it
nicely separates the purely statistical and the more physi-
cal aspects in the approach to macroscopic systems. This
approach to statistical mechanics, inspired by the work of
Gibbs and Shannon, was introduced in 1957 by the Amer-
ican physicist Edwin Thompson Jaynes.

Quantum entropy. In quantum theory, probability plays
an important role even if we consider a system consisting
of a single particle, as its wave function or state vector is
a probability amplitude that encodes the probability for ob-
taining certain outcomes of measurements of an observ-
able. Therefore, probability is built in right from the start for
any quantum system. and you expect that there is some
meaning to the notion of entropy as well. Indeed, there is,
the quantum entropy was defined by Von Neumann much
in parallel with its classical precursor:

S = -Tr ⇢ log ⇢ . (A.27)

In this expression, ⇢ is the so-called density matrix of the
system as discussed in Chapter II.1, which represents the
state of the system. The symbol Tr stands for the trace
of a matrix, which equals the sum of its diagonal compo-
nents. The Von Neumann entropy is a measure for the de-
gree of entanglement of a multicomponent quantum sys-
tem. |

� On complex numbers

Mathematics is one of the few places where com-
plexification often stands for simplification.

Number systems. It is interesting to note how number
systems have been extended through history. A natural
starting point are the natural numbers or positive integers,
and we know how to add and subtract them, where to
stay within the set of natural numbers the subtraction is re-
stricted to numbers smaller (or equal if we include zero in
the set). We can extend the definition of subtraction to all
natural numbers but that forces us to augment the set with
the exquisite number ‘zero’ and the negative integers. One
defines multiplication as an operation on the integers and
then we see that the inverse operation called division is
restricted and forces us to introduce the rational numbers
or fractions. The next step is taking powers, and defining
their inverse as taking the corresponding roots. Applied
to positive numbers this leads to the real numbers, with
the remark that of course all rational numbers are real but
not the other way around, such as for example the real
number

p
2 . If we extend the definition of roots to negative

numbers we are lead to the introduction of the complex
numbers, where indeed the fundamental new element is
the imaginary unit i =

p
-1 .

Definition of a complex number. A complex number ↵
has a real and imaginary part ↵ = a1 + ia2 , where a1

and a2 are both real, and i is the imaginary unit with the
defining property i2 = -1 . Note that a complex number
can therefore also be thought of as a vector in a two-
dimensional real space also called the complex plane, by
taking the real part as the x-component and the imaginary
part as the y-component, and thus writing z = x + iy .

The length of the vector is called the magnitude or abso-
lute value of ↵ and denoted by |↵| , and the angle it makes
with the real (x) axis is called its argument or phase.
The complex conjugate of ↵ is defined as ↵⇤ = a1 - ia2 ,
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(a) Polar representation of a complex number ↵ = ⇢ exp(i') .
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α

α+β

-β
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Im
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(b) Adding and subtracting two complex numbers ↵ and � by the ‘paral-
lelogram’ rule.
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3π/54π/5

Im
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(c) Multiplying two complex numbers ↵ and � amounts to multiplying
their magnitudes (⇢↵� = ⇢↵⇢�) and adding their phase angles ('↵� =
'↵ + '�) .

-2 0 2

-2

2

√α

α
α2

Im

Re

(d) The square and square root of a complex number ↵ . Here the blue
angle is half, and the purple angle is twice the red angle.

Figure A.20: Complex numbers. Graphical representation of some basic operations with complex numbers.
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it is obtained by replacing i by -i . The value of |↵| is de-
fined by the relation |↵|2 = ↵⇤↵ = a2

1 + a2
2. , where one

obtains the result by multiplying out the expressions and
remembering that -i2 = +1 , so, (a1 + ia2)(a1 - ia2) =
a2
1 - i2a2

2 = a2
1 + a2

2 . This indeed equals the length of the
corresponding vector.

Polar decomposition. There is an alternative but equiva-
lent way to think of complex numbers explicitly using their
two-dimensional vector property. If one thinks of a planar
vector in polar coordinates, one may specify it by giving
its magnitude ⇢ and the angle ' it makes with the x-axis.
The complex number is then written as ↵ = ⇢ei' : the
terminology is that ' is called the argument or phase an-
gle, and ei' the phase factor. We see that |↵| = ⇢ and
|ei'| = 1 . The phase factor describes therefore a point on
the unit circle in the complex plane which makes an angle
' with the real axis. This is depicted in Figure A.20(a) from
which one also sees that the real part of the phase fac-
tor equals cos' , while the imaginary component equals
sin' , which leads to a famous mathematical identity orig-
inally due to Euler:

ei' = cos'+ i sin' . (A.28)

This formula is a source of numerous amusing number the-
oretical identities like ei⇡ + 1 = 0 and ei⇡/2 = i. In this
parametrization of complex numbers, it is easy to perform
complex multiplication and division and taking powers or
roots.

Algebraic properties of complex numbers. To add or
subtract two complex numbers, one just adds or subtracts
their real and imaginary parts separately: ↵ ± � = (a1 ±
b1) + i(a2 ± b2) . This corresponds to adding (subtract-
ing) two vectors in the plane by the ‘parallelogram’ rule as
indicated in Figure A.20(b). Multiplying two complex num-
bers ↵1 and ↵2 amounts top multiplying the magnitudes,
i.e. ⇢ = ⇢1⇢2 , while the phase angles add, ' = '1 + '2

as in Figure A.20(c). Similarly when dividing two complex
numbers one divides the magnitudes and takes the differ-

ence of the phase angles. Taking a complex conjugate
amounts to replacing ' by -' , i.e. mirroring the vector in
the x-axis. We see that the polar representation of com-
plex numbers makes it particularly easy to visualize the
multiplication and division operations, but also to take their
powers and roots, as we did in Figure A.20(d).�

~ On complex vectors and matrices

We have discussed real vectors and matrices in the Math
Excursion on page 614. But in quantum theory everything
gets complexified, meaning to say that states are repre-
sented by complex vectors and observables by complex
(hermitian) matrices. Therefore, we will summarize here
some additional material specific to complex vectors and
matrices.

Complex vectors. Think of our vectors as column or ket
vectors |vi which are complex, which means that the en-
tries or components are complex numbers. Then we may
define a space of dual vectors, the dual of a column vec-
tor is a row or bra vector hv| , with complex conjugate en-
tries.

The inner- or dot-product. Having a vector space V and
its dual V⇤ the inner product between elements of v⇤ 2 V⇤

and w 2 V is defined as the number obtained after adding
the products of corresponding entries:

hv|wi = v⇤ ·w = ⌃iv
⇤
i wi .

We calculate for example the dot product of two two-di-
mensional complex vectors as:

�
2i 1

�✓ i

1

◆
= 2i2 + 1 = -1.

The property of the inner product that,

hw|vi = hv|wi⇤ ,
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still implies that hv|vi = hv|vi⇤ = |v|2 is always a positive
real number which is defined to be the length of the vector
|v| squared.

The state space of a qubit. The state of a qubit is by def-
inition the two-dimensional complex vector | i of equation
(II.1.2). The normalization condition applied to the state
can be written as:

h | i = | |2 = |↵|2 + |�|2 = 1 . (A.29)

If we substitute ↵ = a1 + ia2 and � = b1 + ib2 , then we
find

a2
1 + a2

2 + b2
1 + b2

2 = 1 . (A.30)

This equation describes a (real) three-dimensional sphere,
S3 , embedded in the four-dimensional Euclidean space,
R4 , with coordinates (a1, a2, b1, b2).

Complex matrices acting on complex vectors. Now
vectors can also be multiplied by matrices to produce an-
other vector, the way that is done was pictorially indicated
for a column vector in A.8(b). This action of matrices on
vectors is clearly most easily understood if you think of
the matrix as a stack of row vectors. This action can also
be considered as a transformation of a vector into another
vector. A simple example may help:

✓
1 i

-i 1

◆✓
2

i

◆
=

✓
2+ i2

-2i+ i

◆
=

✓
1

-i

◆
.

The matrix acts as a linear operator on the vector space,
as it reshuffles the components into linear combinations of
them. Or one may say that (n⇥n) matrices map the vector
space V onto itself and we write A : V ! V . There is for
example a particular subset of (3⇥ 3) matrices whose ac-
tion on ‘ordinary’ vectors corresponds to rotating of those
vectors in three-dimensional complex space C3 .

Another example which shows the descriptive power of
matrices as operators on state vectors is in (quantum) com-
putation, where generically we think of computation as a

sequence of gates, interactions/manipulations or measure-
ments that change the states of a set of (qu)bits.

Such processes or computations can be represented by a
product of matrices and rescalings. Indeed the complete
computation is just a big operator, mapping the in-state on
the out-state vector.

The matrix product. Once we have defined the action of
matrices on vectors the step to the multiplication of matri-
ces is straightforward and it was visualized in Figure A.8(c).
The (ij)-entry of the product matrix C = AB is obtained
by the dot product of the i - th row vectors of A with the
j - th column vector of B . Let us again give a simple ex-
ample:

✓
1 i

-i 1

◆✓
1 1

1 -1

◆
=

✓
1+ i 1- i

1- i -1- i

◆
. (A.31)

Types of matrices. As mentioned before, depending on
the situation we usually have to put additional constraints
defining subsets of matrices, which may or may not be
preserved under the basic matrix operations. These def-
initions involve certain basic matrix manipulations which
were represented symbolically in Figure A.10. A funda-
mental notion is the transpose of a matrix denoted by the
matrix Atr , which is obtained from A , as we illustrated in
Figures A.10(a) and A.10(b). Written in terms of its entries
one has (Atr)ij ⌘ Aji . Taking the transpose can therefore
also be defined as interchanging rows and columns. Re-
peating the operation brings you back to the original ma-
trix. Taking the transpose of matrix C = AB we get a
matrix which is the product of the transposes, but in the
opposite order: Ctr = BtrAtr . Symmetric or antisymmet-
ric matrices satisfy A = ±Atr respectively. Note that a
symmetric complex matrix contains n(n+1) real numbers,
while the antisymmetric one has only n(n- 1) , it adds up
to 2n2 , the number of real entries of a general complex
(n⇥ n) matrix.
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Hermitean matrices. Of special importance in quantum
theory are the hermitian matrices, because they represent
observable physical quantities. To tell you what they look
like we first define the hermitian adjoint A† as A† = (Atr)⇤

(see Figure A.10(d)). A hermitian (self-adjoint) matrix is
just one that satisfies A = A† . It is not hard to see that a
hermitian matrix can be decomposed in the sum of a sym-
metric real and an antisymmetric purely imaginary matrix,
also implying that the diagonal elements are real. Such a
hermitian matrix contains n2 real numbers. Let us give a
simple example of the above operations for a 2 ⇥ 2 ma-
trix:

C =

✓
1 i

1 -1

◆

) Ctr =

✓
1 1

i -1

◆
; C† =

✓
1 1

-i -1

◆
;

we see that C is not hermitian because C 6= C† . Each of
the Pauli matrices on the left-hand side of equation (A.32)
however is hermitian. Note however that their product is
not.

The Pauli matrices. Most famous are the set of three (2⇥
2) hermitian matrices, which are called the Pauli matrices
X, Y and Z . They are defined as:

X =

✓
0 1

1 0

◆
, Y =

✓
0 -i

i 0

◆
, Z =

✓
1 0

0 -1

◆
, (A.32)

and have a quite unique combination of properties.
(i) They are hermitian: X† = X etc.
(ii) They are unitary: X† X = 1 .
(iii) From (i) and (ii) it follows that they square to the unit
matrix: X2 = 1 etc.
(iv) They form a basis of the su(2) Lie algebra, which
means that they form a closed algebra under commuta-
tion:
[X, Y] = 2iZ etc. (see below).
(v) Their anti-commutator vanishes: {X, Y} = XY+YX = 0

etc.

(vi) The one qubit observables are linear combinations of
the Pauli matrices, the spin-half operators correspond to:
Sx = h̄X/2 etc.
(vii) If we add the unit matrix (which commutes will all three
of the Pauli matrices, and which is also hermitian), we get
the algebra of u(2) ' su(2)� u(1) .
(viii) Every 2 ⇥ 2 unitary matrix can be written as a linear
combination of these four matrices (see below).

Lie algebras.
Hermiticity is not a property that is preserved under matrix
multiplication, if you multiply two hermitian matrices their
product is not in general. However, their antisymmetric
product or commutator is hermitian, so if A and B are her-
mitian, then:

(i[A,B])† = -i(AB-BA)† = -i(B†A†-A†B†) = i[A,B]

In this sense the commutator of observables yields another
observable, or to put it another way: the observables form
a closed commutator algebra, where the ‘product’ oper-
ation of the algebra is then defined as the commutator:
A · B ⌘ i[A,B] . We see a splendid example of this with
the qubit where we had three basic observables {X, Y, Z}

that form a closed algebra under commutation:

[X, Y] = 2iZ [Y, Z] = 2iX [Z,X] = 2iY , (A.33)

this three-dimensional algebra is called su(2) . The beauty
of the subject becomes clear if you think – for example –
of the su(2) algebra not as a set of relations that our spin
matrices satisfy, but as an abstract set of commutators that
define the algebra. In general, one should think of a set
of elements Xi that form the basis of the Lie algebra A ,

satisfying commutation relations:

[Xi, Xj] = i
X

k

fijkXk ;

the specific set of constants {fijk} are the so-called struc-
ture constants which define the Lie algebra.
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Now you can turn the question around, and ask when given
the structure constants, whether there exist any sets of
matrices or other operators that actually do satisfy pre-
cisely the above relations. This is what one calls the rep-
resentation theory of Lie algebras, an important part of
the mathematical theory. In physics we encounter this
all the time, for example the su(2) algebra is basically
the algebra of rotations in three-dimensional space.3 It is
the algebra satisfied by the angular momentum operators
{Lx, Ly, Lz} as differential operators, but the algebra has
also irreducible representation as (n⇥n) matrices for any
n = 1, 2, 3, . . . . If we write n = 2s+1 then s is now defined
as the spin, or the angular momentum, and we see that in-
deed all half-integral and integral values are possible. And
the integer values we see recurring as the quantum num-
ber l in the spectra of atoms. The s = 1/2 case clearly
corresponds to the 2 ⇥ 2 matrices Si . The complex Lie
algebras and their ‘irreducible’ representations have been
classified completely and form an important subject in the
mathematics and physics literature. ~

3This algebra is defined by the commutation relations of equation
(A.33) without the factor 2 on the right. In other words Sx = X/2 etc.

⌃ On symmetry groups

Symmetries are a powerful guiding principle in identifying
and understanding important properties of physical sys-
tems. The notion of symmetry can be applied to objects,
to spaces or lattices, to equations, to the degeneracies
in the spectra of atoms and molecules, but also of the
electron bands of materials where the ions form an un-
derlying lattice structure. Here we limit ourselves to the
basic mathematical background concerning the symme-
try groups, which we will refer to throughout the book. In
Chapter II.6 we have an extensive section devoted to the
physical aspects of symmetries and their breaking.

Groups: the language of symmetry. When we talk about
order, we usually refer to some regularities, some predictab-
le pattern that has some or many symmetries. The word
symmetry in physics has many different meanings and is
like the word ‘snow’ for the Inuits. One speaks of finite or
infinite, discrete or continuous symmetries. Symmetries
of objects, of spaces, and of equations. And on another
level one speaks of global or local, exact or approximate
symmetries. We encountered already the notion of frame
rotations, of space-time rotations, and of gauge transfor-
mations. And the elaborated structure of fiber bundles as
described in chapter I.1, involved the concept of a local or
gauge symmetry.

The notions just mentioned are relevant in different con-
texts but they share the underlying mathematical concept
of a group. Let us introduce this concept in its elementary
easy to grasp form as a group of transformations. One can
indeed think of transforming an object as applying some
operation on it, like rotating it, or moving (translating) it in
some direction, or mirroring it (like transforming your left
shoe in your right shoe) or scaling the object by changing
its size but not its shape. Generally, we think of the group
as acting on some vector space, where the objects, like
fields or states, are defined as vectors.
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Defining properties of a group. Mathematically a group
is just a set of elements and a ‘product rule’ that satisfy
some rather obvious axioms, and interestingly those ax-
ioms are so restrictive that basically everything is known
about the groups that play a role in physics. Group theory
is a rich branch of mathematics, and we will only scratch
the surface here.

We denote the group by G : it is a set of elements (i.e.
transformations or operations) gi and we write G = {gi}

and conversely gi 2 G . There are four defining proper-
ties:

(i) composition rule: if g1 · g2 = g3 with g1, g2 2 G then
g3 2 G , this composition rule is often referred to as the
group multiplication.

(ii) associativity : the group multiplication is associative,
which means that the outcome of a product does not de-
pend on the order we perform the multiplication, so,

(g1 · g2) · g3 = g1 · (g2 · g3) = g1 · g2 · g3 .

(iii) identity : there always is the trivial transformation of do-
ing nothing, it corresponds to the identity element e , which
satisfies

e · g = g · e = g for all g .

(iv) inverse: as you can always transform back, meaning
that each element g has a unique inverse g-1 with

g · g-1 = g-1 · g = e .

Numbers or matrices certainly can form groups but note
that we only refer to a single ‘composition rule’ or ‘prod-
uct’ of elements. They do not form a linear space, or an
algebra. A set of objects that is closed under some kind
of product is maybe the easiest way to think about them.
In that sense a group is an elementary and natural notion,
and you may be more familiar with it than you think.

Some examples. The set of all integers n form a group

Figure A.21: The dihedral group D3 . The symmetry group of
an equilateral triangle is the group D3 consisting of 6 elements.
There is one threefold axis, and three twofold axes.

G = Z where the composition rule is addition, the identity
element is n = 0 and the ‘inverse’ of n is -n . This is
an infinite discrete group. Note that the integers do not
form a group under multiplication, because of the problem
caused by the inverse operation; zero has no inverse while
just dividing two integers brings you outside the integers in
to the set of fractional numbers.

The real numbers which correspond to an infinite line form
a continuous group of translations T = R again under ad-
dition (subtraction). Yet another example is by rotations in
the plane. We may rotate a two-dimensional object by a
certain angle � where 0  � < 360o. Now the group is
not a line but a circle, rotating by 360o is like doing nothing.
This two-dimensional rotation group denoted by SO(2) is
the same as the ‘phase group’, denoted by U(1) .

Let us now discuss the group of transformations that leaves
some object (or space, or equation) invariant, in which
case we speak of the invariance or symmetry group of that
object. Consider an equilateral triangle like in Figure A.21;
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it is easy to list the transformations that leave it invariant:
(i) rotations over 120o about its center {r, r2} , (ii) mirror-
ing it through the bisector of one of the angles {s1, s2, s3} .

This group G = {e, r, r2, s1, s2, s3} has 6 elements and is
denoted as the dihedral group D3 . This group is the same
as the permutation group S3 of three objects. The group
D3 readily generalizes for regular polygons (square, pen-
tagon, hexagon...) to groups Dn .

Another important class of groups are groups that leave
the inner product of some vector space invariant. For or-
dinary three-dimensional vectors, the inner product is a ·
b = |a| |b| cos� and the invariance group is the rotation
group SO(3) . For relativistic four vectors we defined the
inner product as a · b = aµb

µ = ⌘µ⌫a
µ b⌫ , with ⌘µ⌫ =

diag(1,-1,-1,-1) , and it is invariant under the Lorentz
group SO(1, 3) . In the n-dimensional complex Hilbert space
we have state vectors and the hermitian inner product h�| i ,
and as we discussed in this chapter the invariance group
is the unitary group U(n) . We will have more to say about
the unitary groups at the end of this Math Excursion.

Space (time) symmetries. In physics and chemistry one
type of order refers to the situation where the atoms form a
lattice in space and so it is of interest to look at the symme-
tries of a lattice. If we look at a triangular lattice, or triangu-
lar tiling of the plane like in Figure III.2.24(a), we see that
we not just have the rotations by multiples of 60o , but also
translations along the sides of the triangles. Those trans-
lation can be generated4 by the two basic translations t1
and t2 of the discrete translation group G = T2 = T ⇥ T .

Note that each translation group is the same as the group
of the integers: T ' Z .

Abelian versus non-abelian groups. If we now com-
bine the rotations and the translations, we learn some-
thing interesting about the structure of the group, namely

4Generated means that all translations can be obtained by repeated
application of the two basic translations.

Figure A.22: The symmetries of two-dimensional Euclidean
space. Picture showing that translations and rotations (of a tri-
angular object) do not commute. It is a fact we are all familiar
with: if you make first a step sideways and then turn, you end
up in a different place then if you first turn and then make a step
sideways. Formally stated: if we first translate along the bottom
side of the triangle and then rotate over 30o , we act with r · t1 ,
and we end up with the rotated triangle in the lower right-hand
corner; if we first rotate and then translate, we act with t1 · r,
and we end up with the rotated triangle in the upper right-hand
corner. The operations are clearly not the same.

that the group composition rule is not necessarily com-
mutative, which just means that in general we have that
g1 ·g2 6= g2 ·g1 . The group is then called non-commutative
or non-abelian. And this is clearly different from the multi-
plication and addition of ordinary numbers which are com-
mutative. Ordinary division is of course not, as in general
a/b 6= b/a , but if you define division as multiplication by

the inverse it is, as a
1

b
=

1

b
a .

The rotations (in a plane) by themselves do commute, if I
first rotate by an angle �1 and then �2 the net result is a
rotation by �1 + �2 , and that is the same as first rotating
by �2 and then by �1 . The same is true for the translations
by themselves as a+ b = b+ a .
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It is no longer true if we combine rotations and translations
as we did in in Figure A.22. If we choose r with � = 60o

and t1 = na translation over n times side of a triangle,
then both operations leave the lattice of Figure III.2.24(a)
invariant. They belong to the invariance group of the lattice
but correspond to different elements. The terminology is
that we call the total invariance group of a lattice a space
group whereas the rotational part of it forms a point group
as it leaves a point of the space fixed. Note that if we
think of the plane as a continuous space, usually denoted
by R2 , then the space group would be the group made
up by arbitrary rotations and arbitrary translations; this is
a continuous group denoted by E2 , the Euclidean group
in two dimensions. Also this group has of course higher
n-dimensional analogues called En .

Groups of matrices. There are many groups that can be
represented by matrices, because square matrices close
under the matrix product. Generically such groups are
non-abelian. But one can also make restrictions to subsets
of matrices that form closed subsets under matrix multipli-
cation. Of special interest for us are the orthogonal and
unitary matrices O(n) and U(n) . They act as non-abelian
transformation groups of rotations on the real and complex
spaces Rn and Cn . The matrices satisfy O Otr = 1 and
U U† = 1 respectively.

The group SU(2) of 2⇥ 2 unitary matrices.
Let us add an important remark on the relation between
hermitian and unitary matrices. Let me recall the Euler for-
mula for the exponential of imaginary number ‘i'’ (A.28):

ei' = cos'+ i sin' .

The sine and cosine appearing show that it is indeed a pe-
riodic function, and therefore, we choose an angular vari-
able ' . You might wonder whether similar formulas can
be written down for matrices. The answer is a full-fledged
yes, and that brings us to the relation between Lie alge-
bras and Lie groups. Let me give you the extremely useful

generalization of the Euler formula to the Hermitean (2⇥2)
matrices. Consider an su(2) matrix,5

A = (n̂xX/2+ n̂yY/2+ n̂zZ/2) ,

where n̂ is some arbitrary vector of unit length and ✓ some
angular variable, then in general, the following relation holds:

ei✓A = 1 cos ✓/2+ iA sin ✓/2 . (A.34)

This elegant equation has many applications in all venues
of theoretical physics, and we will use it repeatedly later
on. It does for example represent a rotation of a two-
component spinor over an angle ✓ around the n̂ axis, with
the peculiar but characteristic property that a rotation by
✓ = 2⇡ of any spinor maps it to minus itself. As mentioned
before, that is a property that distinguishes spinors from
‘ordinary’ vectors. One thing that is immediately clear from
the above formula, is that the expression corresponds to a
unitary matrix. This holds in general: if we write a matrix
U as an exponential of a hermitian matrix A, then we can
write:

U† = (eiA)† = e(iA)† = e-iA†
= e-iA = U-1 , (A.35)

which shows that U is a unitary matrix. This property that
exponentials of hermitian matrices are unitary operators is
widely used in quantum theory, in particular in the theory
of (unitary) representations of symmetry groups that act on
the Hilbert space of a system.

So to summarize this part we saw a close relationship
between the ‘algebra of observables’ for a quantum sys-
tem, being a Lie algebra, i.e. a closed commutator alge-
bra, which when put in the exponent yields a correspond-
ing Lie group. In that sense we say that the observables
(the Lie algebra) generate small or infinitesimal transfor-
mations, while the exponents (elements of the Lie group)
correspond to finite transformations.

5We have mentioned before that half the Pauli matrices
{X/2, Y/2, Z/2} do form a basis for the angular momentum or spin al-
gebra, as they satisfy [Sx, Sy] = iSz etc.
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Invariants. There are two more properties of matrices we
want to discuss: these are what are called invariants un-
der basis transformations. First observe that we may ro-
tate the basis of a vector space. Then the components
of the vector change and are obtained by acting with the
corresponding matrix U . In the main text we showed that
basis transformations must preserve the scalar product of
two arbitrary vectors, and therefore will satisfy the unitar-
ity condition U†U = 1 , and therefore U† = U-1 . So if
we have a matrix operator A acting on vectors in a given
frame and we ask what the matrix looks like in the rotated
or ‘primed’ frame we can see that from the following alge-
braic manipulations. First we define:

| 0i ⌘ U | i and |�i ⌘ A| i ,

which allows us to write:

|�0i ⌘ U |�i = UA| i
= UAU-1U| i = UAU-1| 0i = A0| 0i

Implying that A0 = UAU-1 . Given these expressions for
how state vectors and observables transform under unitary
basis transformations, you might ask whether there are
any quantities related to these observables that are pre-
served under such transformations. The answer is affirma-
tive: the invariant quantity corresponds to the set of eigen-
values, particularly the sum and the product of all eigen-
values, denoted as the trace and the determinant.

The trace of a matrix A denoted by tr A is defined as
the sum of the diagonal elements, so tr A = ⌃iAii . The
trace is indeed invariant under basis transformations as
one easily sees:

tr A0 = tr (UAU-1) = tr (U-1UA) = tr A .

The trace satisfies the cyclic property meaning that the
trace of a product is invariant under cyclic permutations,
i.e. that is putting the matrices in the trace on a circle hold-

ing hands and moving them around:

tr (ABC) = ⌃ijk(AijBjkCki) =

= ⌃ijk(CkiAijBjk) = tr (CAB) etc.

The point is that all indices are pairwise summed over. We
will see that the trace, because it is frame independent,
plays an important role in certain aspects of quantum the-
ory. ⌃
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Appendix B

Chronologies, ideas and people

In this appendix we list the scientific achievements in the quantum domain over more than a century as well as the names
and the dates of the Nobel prizes that were awarded for these. It demonstrates the fact that quantum is everywhere and
overtook progress in physics to a large extent.

The tables cover the following topics:

B.1 Foundational concepts and their protagonists

B.2 Turning points in quantum condensed matter theory

B.3 Turning points in elementary particle theory

B.4 Nobel prizes awarded for discovery of fundamental particles

B.5 Nobel prizes for astrophysics and cosmology

B.6 Nobel prizes awarded (from 1944 onwards) for the invention and development of new techniques and devices



i
i

“#QuantSquareEXP” — 2024/8/21 — 10:05 — page 644 — #674 i
i

i
i

i
i
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Figure B.1: The early quantum giants at the fifth Solvay conference, held in Brussels in 1927. On that occasion quantum mechanics,
including the ‘Copenhagen interpretation’, was presented as a complete and final theory of atomic phenomena.
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The person Year The concept The mathematical statement

Planck 1897 Planck’s constant h̄ = h/2⇡

1900 Black-body radiation ⇢(⌫, T) =
8⇡V⌫2

c3
h⌫

(eh⌫/kT - 1)
Einstein 1905 Photoelectric effect, the photon E = h⌫

Bohr 1913 Atomic model En ⇠ h̄2e2/2mc2n2

De Broglie 1923 Matter waves � = h̄/mv

Einstein, Podolski, Rosen 1920 EPR paradox, entanglement | (1, 2)i = (| 00i± | 11i)/
p
2

Bose, Einstein 1924 Quantum statistics, Bose condensate ni = gi/(e�(✏i-µ) - 1)

Pauli 1924 Exclusion principle  (x1, x2) = - (x2, x1)

Heisenberg 1925 Matrix mechanics dÂ/dt = i[Ĥ, Â]
1927 Uncertainty relations �x �p � h̄/2

Von Neuman 1925 Density matrix, quantum entropy ⇢ = ⌃pa| aih a|, S = tr (⇢ ln ⇢)

Schrödinger 1926 Wave mechanics ih̄ d /dt = Ĥ  

Born 1926 Probability interpretation  = ⌃ ci �i ) P�i
= |ci|

2

Fermi 1927 Quantum statistics for fermions ni = gi/(e�(✏i-µ) + 1)

Dirac 1927 Dirac equation (ih̄@/+ eA/+m) (x, t) = 0

Bell 1964 Bell inequality |Pc(a, b)- Pc(a, c)|  1+ Pc(b, c)

Bennett, Brassard, key distribution, teleportation,>1980 Quantum information/computationDeutsch, Shor prime factoring algorithm

Table B.1: Foundational quantum concepts and their protagonists.
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Kamerling Onnes Superconductivity (experiment) 1911
Bloch Conduction band 1920
Uhlenbeck, Goudsmit Spin 1925
Van Vleck Theory of magnetism 1935
Kapitza, Allen, Misener Superfluidity 1938
Pauling The nature of chemical binding 1939
Rabi Nuclear magnetic resonance (NMR) 1946
Purcell, Bloch NMR (implementations) 1952
Bardeen, Houser, Brattain, Shockley Semiconductors, Transistor 1950
Gabor Holography 1950
Landau Fermiliquids, quasiparticles, phase transistions 1952
Bardeen, Cooper, Schrieffer BCS theory of superconductivity 1957
Townes, Basov, Prokhorov Laser 1958
Anderson Localization 1958
Ahoronov, Bohm Aharonov-Bohm effect 1959
Haldane, Kosterlitz, Thouless Topological phase transitions 1973
De Gennes Liquid crystals (mostly classical physics) 1974
Laughlin Theory of Fractional Quantum Hall effect 1983
Berry Berry phase 1984
Cornell, Wiegmann Bose Einstein condensation (experiment) 1995
Kitaev, Wen Topological order 1997
Lauterbur, Mansfield Magnetic resonance imaging (MRI) 2003
Geim, Novoselov Graphene 2004
Aspect, Clauser, Zeilinger Entangled photons (experiments) >1980

Table B.2: Turning points in quantum condensed matter (theory) and quantum optics.
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Feynman, Swinger, Dyson, Tomonaga Quantum electrodynamics (QED) 1946
Yang, Mills Non-Abelian gauge theory 1954
Gellmann, Zweig SU(3) Quarks 1963
Nambu, Jona Lasinio Chiral symmetry breaking 1965
Glashow, Weinberg, Salam Weak and electromagnetic theory 1968
Higgs, Brout, Englert Higgs mechanism 1969
’t Hooft, Veltman Renormalization of non-Abelian gauge theories 1970
Wilson Theory of critical phenomena, confinement 1972
Gellmann, Leutwyler, Fritsch Quantum Chromodynamics (QCD) 1971
Gross, Politzer, Wilczek Asymptotic freedom 1973
Witten, Schwarz, Green String theory 1983
Polyakov, Belavin, Zamolodchikov Conformal Field Theory (CFT) 1983
Witten Topological Field Theory 1983
Maldacena Anti de Sitter/CFT correspondence 1995

Table B.3: Turning points in Elementary particle theory.
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Röntgen X-rays 1901
Becquerel, Curie, Curie Radioactive decay (↵ and � radiation) 1903
Thomson Electron 1906
Rutherford Nucleus 1908
Planck Quanta of radiation 1918
Einstein Photon 1921
Compton Compton effect 1927
Chadwick Neutron 1935
Anderson Positron 1936
Powell Pion 1950
Chamberlain, Segre Antiproton 1959
Richter, Ting J/Psi meson 1976
Rubia, Van der Meer W and Z bosons 1984
Lederman, Schwartz, Steinberger Muon neutrino 1988
Friedman, Kendall, Taylor Quarks 1990
Perl Tau-neutrino 1995
Reines Neutrino 1995

Table B.4: Nobel prizes awarded for discovery of elementary particles.
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Bethe Energy production in stars 1967
Ryle, Hewish Pulsars 1974
Penzias, Wilson Microwave background radiation 1965
Chandrasekhar, Fowler Theories of star evolution 1983
Hulse, Taylor Precision tests of gravity 1993
Davis, Koshiba Cosmic neutrino’s 2002
and Giacconi X-ray sources
Mather, Smoot Anisotropy in background radiation 2006
Perlmutter, Schmidt, Riess Accelerated expansion 2011
Thorn, Weiss, Barish Gravitational wave detection 2017

Table B-7: Nobel prizes for astrophysics and cosmology.
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Rabi Nuclear magnetic resonance 1944
Bridgman Apparatus to produce extremely high pressures 1946
Blackett The Wilson cloud chamber method 1948
Powell Photographic method of studying nuclear processes 1950
Bloch and Purcell Nuclear magnetic precision measurements 1952
Zernike Phase contrast microscope 1953
Glaser Bubble chamber 1960
Shockley, Bardeen and Brattain Transistor 1956
Alvarez Hydrogen bubble chamber and data analysis techniques 1968
Gabor Holographic method 1971
Ryle and Hewish Radio astrophysics 1974
Bloembergen and Schawlow Laser spectroscopy 1981
Siegbahn High-resolution electron spectroscopy 1981
Ruska Electron microscope 1986
Binnig and Rohrer Scanning tunneling microscope 1986
Ramsey Separated oscillatory fields method and its use in atomic clocks 1989
Dehmelt and Paul Ion trap technique 1989
Charpak Multiwire proportional chamber 1990
Brockhouse Neutron spectroscopy 1994
Shull Neutron diffraction 1994
Alferov and Kroemer Semiconductor heterostructures, high-speed- and opto-electronics 2000
Kilby his part in the invention of the integrated circuit 2000
Hall and Hänsch Laser-based precision spectroscopy, optical frequency comb technique 2004
Kao Light transmission in fibers for optical communication 2009
Boyle, Smith invention of imaging semiconductor circuit - the CCD sensor 2009
Fert and Grünberg Giant magnetoresistance 2007
Haroche, Wineland Measuring and manipulation of individual quantum systems 2012
Akasaki, Amano, Nakamura Bright blue light-emitting diodes 2014
Weiss, Barish, Thorne Gravitational wave detector LIGO 2017

Table B.6: Nobel prizes awarded (from 1944 onwards) for the invention and development of new techniques and devices.
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absolute value, 630
abstract algebra, 613
action, 557
AdS-CFT, 540
agents, 488
aggregation levels, 467
ALICE, 494
amino acid, 477, 480
annealing, 490
anomalies, 582
anomalous scaling, 560
anti-ferromagnet, 501, 504
anyons, 493, 536
argument, 630
associative, 613
asymptotic freedom, 570
atomic field microscope, 508

bare values, 577
baryons, 571
basis vectors, 614
BCS theory, 533
benzene ring, 477
beta function, 569
bifurcation diagram, 552
Big Bang cosmology, 469

biomaterials, 493
Bose-Einstein condensation,

532
Boolean algebra, 613
Bose condensate, 499
braid statistics, 537
breaking of supersymmetry,

572
Brillouin zone, 524, 526
bubble nucleation, 497
buckyball, 477
Burger’s vector, 514

Callan-Symanzik equations,
566

Cantor set, 546
Cantor’s function, 546
Carbon, 476
Carbon dioxide, 475
CERN, 494
Chern-Simons theory, 538
chiral symmetry breaking,

571
Circle Limit II, 547
cobwebs, 552
coexisting phases, 497

collective behavior, 467, 499
collective of electrons, 498
coloids, 493
commutative, 613
complex conjugate, 630
complex numbers, 630
complex vectors, 632
conduction band, 527
conductor, 527, 528
conformal algebra, 555
conformal invariance, 504
constituents, 488, 489
Cooper pairs, 531
correlation function, 504
correlation functions, 489
correlation length, 504
cosmic abundances, 470
Cosmic evolution, 469
cosmic inflation, 469
counter terms, 578
covalent binding, 473
critical exponent, 504
critical phenomena, 572
critical point, 491, 572
crystal lattice, 507
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crystals, 493
cubic-face-centered, 507
cuprates, 540
Curie point, 500
Curie temperature, 495
curl, 622
cyclopentane, 477

dark matter, 470
defects, 489
depletion layer, 529
derivative, 608
determinant, 616, 639
deterministic chaos, 551
deterministic chaos , 544
diagrammatic expansion,

573
diamond, 477
diamond lattice, 478, 510
differentiable, 607
differential equations, 612
dihedral group, 637
dimensional analysis, 543
dipole field, 622
disclinations, 489, 506, 512
dislocations, 489, 506, 512
dispersion, 609
distributive, 613
divergence, 622
DNA molecule, 479
domain walls, 505
doped semiconductor, 529
doping, 490
dot product, 615, 632
dual representation, 505
dynamical Lie algebra, 555

effective action, 560, 562,
575

effective degrees of freedom,
489

effective Lagrangian, 563
eigenvalues, 619
eigenvectors, 616
electron/positron propagator,

558
emergent behavior, 468
emergent phenomenon, 487
energy bands, 523
energy gaps, 523
epigenetics, 481
equation of state, 491
equiangular spiral, 545
Euclidean group, 512, 638
Euclidean path integral, 561
exclusion, 379
expectation value, 626
exponential growth, 612
exterior or cross product ,

615
external control parameters,

488
external parameters, 468

family structure, 582
fat tails, 495
Feigenbaum-Cvitanovic function,

553
Fermi level, 527
Fermi liquid phase, 540
ferromagnetic phase, 501
Feynman diagrams, 561
Feynman rules, 573
Fibonacci tiling, 519
Fibonaci spiral, 544
finite transformations, 638
first-order transition, 496
Fisher–Wilson fixed point,

564
Fisher-Wilson infrared fixed point,

569

fivefold symmetry, 516
fixed point, 567
fractal, 546
fractals, 519
fractional quantum Hall, 493
fractional spin and statistics,

536
free energy, 497, 562
free field theory, 558
fullerene, 478
function, 607
Function classes, 607
fundamental domain, 526

gapless, 503
gapped, 527
Gaussian distribution, 627
Gellman-Low equation, 566
gels, 493
genetic code, 481
genotype, 481
Golden Mean, 519
Goldstone modes, 512
gradient, 621
graphene, 478, 479
graphite, 479
group of transformations,

635
Group theory, 636

hadrons, 571
half-vortex, 515
Hall-conductivity, 534
Hall-resistance, 534
harmonic oscillator, 612
Hausdorff dimension, 546
hermitian matrix, 634
high TC superconductivity,

540
holonomy, 514
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Hopf algebra, 539
human genome, 479
hyperbolic plane, 549

ideal gas law, 491
imaginary unit, 630
information entropy, 628
infrared slavery, 571
initial conditions, 611
inner product, 632
insulator, 527, 528
integer quantum Hall effect,

535
Integration, 610
integration theorems, 623
interaction potential, 472
interaction vertex, 558
interstitials, 490
intrinsic semiconductor, 527
intrinsically fault tolerant,

539
invariants, 639
irrelevant, 563
Ising model, 501

Landau pole, 570
Landau theory, 502
Laplacian, 622
large-scale structure, 470
lattice defects, 489
lattice vibrations, 493
Lie algebra, 634
Lie groups, 638
Light Emitting Diode (LED),
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