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Preface 

Volunteered geographic information (VGI) has emerged as a novel form of user-
generated content in recent years. VGI involves the active generation of geodata, 
for example, in citizen science projects, and the passive data collection via location-
enabled mobile devices. In addition, an increasing number of sensors perceive our 
environment with ever-greater detail and dynamics. The resulting VGI data can sup-
port various applications addressing critical societal challenges, e.g., environment 
and disaster management, health, transport, and citizen participation. 

The interpretation and visualization of VGI are challenging due to the consid-
erable heterogeneity of the underlying multi-source data and the social context. 
In particular, the utilization of VGI is influenced by the specific characteristics 
of the underlying data, such as real-time availability, event-driven generation, and 
subjectivity, all with an implicit or explicit spatial reference. The DFG-funded 
priority program “VGI: Interpretation, Visualization, and Social Computing”1 

(2016–2022) aims to address these challenges. The results of the research work 
in this program form the basis for this book publication. 

The book includes three parts, “Representation and Analysis of VGI,” “Geovi-
sualization and User Interactions Related to VGI,” and “Active Participation, Social 
Context, and Privacy Awareness,” representing the principal research pillars within 
the priority program. The intersection of these three domains offers new research 
potential. Of particular interest is the link between social behavior and technology 
during the collective collection, processing, and usage of VGI. This includes, e.g., 
the consideration of different acquisition and usage contexts, evaluating subjective 
information, and ensuring privacy-aware data processing. 

A total of 30 projects were financed as part of the twice 3-year funding period. 
Research groups from the fields of geoinformation science, computer science, 
psychology, and mechanical and safety engineering were involved in the interdis-
ciplinary collaboration. Results of the collaborative research within the priority 
program have been made available through the VGI repository, the sustainable

1 https://www.vgiscience.org/. 
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vi Preface

public platform with access to benchmark data, and VGI-related software tools, 
documentation, and publications. A focus was placed on cross-project collaboration. 
The flagship was the Young Research Groups, who used their complementary 
methodological knowledge to identify and answer cross-project research questions 
in self-organized projects. The results were published in 25 dissertations and are 
also included in the publications within this book. 

Dresden, Germany Dirk Burghardt 
Bonn, Germany Elena Demidova 
Konstanz, Germany Daniel A. Keim
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Part I 
Representation and Analysis of VGI 

VGI is a critical data source for various real-world applications, including mobility 
services in smart cities, remote sensing, tracing animal behavior, environmental 
protection, and disaster management. Popular examples of VGI data sources include 
crowdsourced maps such as OpenStreetMap (OSM) and GPS trajectory data. 
However, VGI is highly challenging to represent, access, and analyze. 

The challenges associated with VGI representation, access, and analysis can be 
attributed to the 4 Vs of big data, such as volume, velocity, variety, and veracity. The 
volume and velocity of community-created geographic data are rapidly expanding 
due to the growth of volunteer communities, increased availability of open, editable 
community-created data sources, and easy access to real-time tracking devices. 
For example, the number of OSM contributors has grown from approximately 5.6 
million in August 2019 to 9.6 million in December 2022.1 Increased heterogeneity 
of data representations and a range of quality issues accompany this growth. 

Community-created geographic data comes in various formats with heteroge-
neous annotations, often lacking clear semantics. Whereas standardized formats 
and representations for geographic information and semantic annotation exist, 
the openness of VGI sources leads to increased heterogeneity. Furthermore, the 
representation and access requirements of different downstream applications vary. 
In particular, data-driven machine learning applications, such as traffic inference and 
accident prediction, depend on the availability of large-scale, high-quality data, and 
machine-readable annotations to build predictive models effectively and efficiently. 

In this part, we discuss recent approaches to enhance the representation and 
analysis of VGI. In particular, this includes semantic representation of VGI data in 
knowledge graphs, machine-learning approaches to VGI mining, completion, and 
enrichment, as well as to the improvement of data quality and fitness for purpose. 
Furthermore, we discuss new approaches for more efficient analytics of VGI images.

1 https://planet.openstreetmap.org/statistics/data_stats.html. 
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Chapter 1 
WorldKG: World-Scale Completion 
of Geographic Information 

Alishiba Dsouza, Nicolas Tempelmeier, Simon Gottschalk, Ran Yu, 
and Elena Demidova 

Abstract Knowledge graphs provide standardized machine-readable representa-
tions of real-world entities and their relations. However, the coverage of geographic 
entities in popular general-purpose knowledge graphs, such as Wikidata and DBpe-
dia, is limited. An essential source of the openly available information regarding 
geographic entities is OpenStreetMap (OSM). In contrast to knowledge graphs, 
OSM lacks a clear semantic representation of the rich geographic information it 
contains. The generation of semantic representations of OSM entities and their 
interlinking with knowledge graphs are inherently challenging due to OSM’s 
large, heterogeneous, ambiguous, and flat schema and annotation sparsity. This 
chapter discusses recent knowledge graph completion methods for geographic data, 
comprising entity linking and schema inference for geographic entities, to provide 
semantic geographic information in knowledge graphs. Furthermore, we present the 
WorldKG knowledge graph, lifting OSM entities into a semantic representation. 

Keywords Geographic knowledge graphs · WorldKG 

A. Dsouza (O) · R. Yu  
Data Science & Intelligent Systems Group (DSIS), University of Bonn, Bonn, Germany 
e-mail: dsouza@cs.uni-bonn.de; ran.yu@uni-bonn.de 

N. Tempelmeier · S. Gottschalk 
L3S Research Center, University of Hannover, Hannover, Germany 
e-mail: tempelmeier@L3S.de; gottschalk@L3S.de 

E. Demidova 
Data Science & Intelligent Systems Group (DSIS), University of Bonn, Bonn, Germany 

Lamarr Institute for Machine Learning and Artificial Intelligence, Bonn, Germany 
e-mail: elena.demidova@cs.uni-bonn.de www.lamarr-institute.org 

© The Author(s) 2024 
D. Burghardt et al. (eds.), Volunteered Geographic Information, 
https://doi.org/10.1007/978-3-031-35374-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35374-1protect T1	extunderscore 1&domain=pdf

 885 47436 a 885 47436 a
 
mailto:dsouza@cs.uni-bonn.de
mailto:dsouza@cs.uni-bonn.de
mailto:dsouza@cs.uni-bonn.de
mailto:dsouza@cs.uni-bonn.de

 10457 47436 a 10457 47436 a
 
mailto:ran.yu@uni-bonn.de
mailto:ran.yu@uni-bonn.de
mailto:ran.yu@uni-bonn.de
mailto:ran.yu@uni-bonn.de

 885 51310 a 885 51310 a
 
mailto:tempelmeier@L3S.de
mailto:tempelmeier@L3S.de

 9644
51310 a 9644 51310 a
 
mailto:gottschalk@L3S.de
mailto:gottschalk@L3S.de

 885 56845 a 885 56845 a
 
mailto:elena.demidova@cs.uni-bonn.de
mailto:elena.demidova@cs.uni-bonn.de
mailto:elena.demidova@cs.uni-bonn.de
mailto:elena.demidova@cs.uni-bonn.de
mailto:elena.demidova@cs.uni-bonn.de
www.lamarr-institute.org
www.lamarr-institute.org
www.lamarr-institute.org
www.lamarr-institute.org
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1
https://doi.org/10.1007/978-3-031-35374-1_1


4 A. Dsouza et al.

1.1 Introduction 

Geographic information is of crucial importance for a variety of real-world appli-
cations, including accident prediction (Dadwal et al. 2021), detection of topological 
dependencies in road networks (Tempelmeier et al. 2021a), and positioning charging 
stations (von Wahl et al. 2022). Such applications can substantially profit from 
standardized machine-readable representations of geographic entities, including 
monuments, roads, and charging stations. Particularly, such semantic representa-
tions should comprise detailed descriptions of geographic entities, including their 
types, properties, context, relations, and interlinking across sources. 

OpenStreetMap (OSM)1 is a critical source of volunteered and openly available 
geographic information. OSM provides rich but highly heterogeneous data regard-
ing geographic entities, including fine-grained coordinates of real-world locations 
and user-defined tags comprising entity types, properties, and relations. At the time 
of writing, OSM contains over 6.8 billion entities from 188 countries.2 However, 
the adoption of OSM data in real-world applications is limited, mainly due to the 
large, heterogeneous, ambiguous, and flat schema adopted for the OSM tags. 

Knowledge graphs (Hogan et al. 2021)—graph-based representations of real-
world entities and their relations—provide detailed machine-readable descriptions 
of real-world entities through ontologies and facilitate interlinking across sources. 
Information representation in knowledge graphs is based on W3C standards such as 
the Resource Description Framework (RDF)3 and established ontologies. This rep-
resentation facilitates structured semantic access via standardized query languages, 
such as SPARQL.4 Although popular general-purpose knowledge graphs such as 
Wikidata and DBpedia (Auer et al. 2007) contain a number of geographic entities, 
only a tiny fraction of them include precise location information. Furthermore, 
whereas some community-defined links between OSM entities and knowledge 
graphs exist at the instance level, these links are sparse and cover only selected entity 
types. For example, as of September 2022, only .0.52% of OSM nodes provided links 
to the Wikidata knowledge graph. In this setting, knowledge graph completion, such 
as interlinking knowledge graphs and geographic information sources at the entity 
and schema levels, is inherently challenging due to the representation heterogeneity 
in OSM and the sparsity of geographic information in popular knowledge graphs. 

Table 1.1 illustrates a geographic entity, Cairo, the capital of Egypt, and 
its representations in OSM and the Wikidata knowledge graph,5 OSM provides

1 OpenStreetMap, OSM, and the OpenStreetMap magnifying glass logo are trademarks of the 
OpenStreetMap Foundation and are used with their permission. We are not endorsed by or affiliated 
with the OpenStreetMap Foundation. 
2 OSMstats: https://osmstats.neis-one.org. 
3 Resource Description Framework: https://www.w3.org/RDF/. 
4 SPARQL 1.1 Query Language: https://www.w3.org/TR/sparql11-query/. 
5 wd and wtd are the prefixes of http://www.wikidata.org/entity/ and http://www.wikidata.org/ 
prop/direct/, respectively. 

https://osmstats.neis-one.org
https://osmstats.neis-one.org
https://osmstats.neis-one.org
https://osmstats.neis-one.org
https://osmstats.neis-one.org
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://www.wikidata.org/entity/
http://www.wikidata.org/entity/
http://www.wikidata.org/entity/
http://www.wikidata.org/entity/
http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/
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1 WorldKG: World-Scale Completion of Geographic Information 5

Table 1.1 Representation of Cairo in OpenStreetMap and Wikidata 

Key Value 

name Cairo 

place city 

population 9120350 

capital yes 

(a) OpenStreetMap tags. 

Subject Predicate Object 

wd:Q85 rdfs:label (label) Cairo 

wd:Q85 wdt:P31 (instance of ) wd:Q515 (city) 

wd:Q85 wdt:P1082 (population) 9513330 

wd:Q85 wdt:P1376 (capital of ) wd:Q79 (Egypt) 

(b) Wikidata triples. wd:Q85 identifies Cairo. 

information as heterogeneous key-value pairs called “tags.” In this example, OSM 
encodes the entity type information as .<place, city>, whereas the precise semantics 
of the tags often remain unclear. In contrast, entities in Wikidata are represented via 
well-defined statements, also known as RDF triples. A triple has the form . <Subject, 
Predicate, Object. > and enables the representation of entity types, properties, and 
relations. In Wikidata, an entity type is expressed using the instance of 
property, denoted as wdt:P31.6 In this example, this property connects a unique 
entity identifier wd:Q85, representing Cairo, to the entity type city, denoted as wd: 
Q515.7 

In this chapter, we discuss recent methods aiming to bridge the gap between 
OSM and knowledge graphs through semantically enriching geospatial information 
in OSM and making this information available in WORLDKG—a novel geographic 
knowledge graph. In particular, we develop methods for knowledge graph comple-
tion, to establish links between OSM and knowledge graphs at the entity and schema 
levels. Geographic entity linking discussed in this chapter aims at interlinking 
the representations of entities in OSM and Wikidata (Cairo in this example). 
Geographic class alignment aims to link the OSM tags that provide entity type 
information to the corresponding knowledge graph classes. In this example, the 
OSM tag .<place, city> should be aligned to the Wikidata class wd:Q515 (city). 

Existing schema alignment and entity linking methods are not directly applicable 
to geographic data sources such as OSM due to structural differences between 
OSM and knowledge graphs (Otero-Cerdeira et al. 2015). Generic schema matching 
methods typically rely on name and schema structure similarities (Madhavan 
et al. 2001). Other approaches, such as LIMES (Ngomo and Auer 2011), have 
strict heuristics and consider fixed schemas. Geographic entity linking approaches 
such as LinkedGeoData (Auer et al. 2009) rely on manually aligned schemas 
and create links using type information, spatial distance, and name similarity. 
These approaches often fail due to representation differences, toponym ambiguities, 
OSM schema flatness, and geographic coordinate variations across sources. Thus, 
new approaches are required to lift OSM’s flat and heterogeneous geographic 
information into a precise, machine-readable semantic representation. 

6 Definition of the instance of Wikidata property: https://www.wikidata.org/wiki/Property: 
P31. 
7 Definition of the city (Q515) in Wikidata: https://www.wikidata.org/wiki/Q515. 

https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P31
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https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Q515
https://www.wikidata.org/wiki/Q515
https://www.wikidata.org/wiki/Q515
https://www.wikidata.org/wiki/Q515
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Fig. 1.1 Overview of the pipeline for creating WORLDKG from OSM, consisting of three main 
steps: (i) geographic entity linking with OSM2KG, (ii) geographic class alignment with NCA, and 
(iii) WORLDKG geographic knowledge graph creation 

In the remainder of this chapter, we first formally define the problem of 
geographic entity linking and class alignment in Sect. 1.2. Then, we discuss 
approaches we recently proposed to interlink OSM and knowledge graphs at the 
entity and schema levels. These approaches are illustrated in Fig. 1.1. In Sect. 1.3, 
we present OSM2KG—a geographic entity linking approach (Tempelmeier and 
Demidova 2021) depicted in the upper part of Fig. 1.1. Following that, in Sect. 1.4, 
we discuss NCA—a neural approach for geographic class alignment between OSM 
and knowledge graphs that utilizes entity links (Dsouza et al. 2021a). NCA is 
illustrated in the lower part of Fig. 1.1. Then, in Sect. 1.5, we describe WORLDKG— 
a novel geographic knowledge graph (Dsouza et al. 2021b) that adopts OSM2KG 
and NCA to provide semantic representations of OSM entities. Finally, in Sect. 1.6, 
we discuss open research directions and provide a conclusion. 

1.2 Problem Definition 

Linking geographic data sources and knowledge graphs at the entity and the 
schema level can help create a comprehensive source of geographic information, 
i.e., a geographic knowledge graph. First, we define geographic data sources and 
knowledge graphs based on the definitions by Tempelmeier and Demidova (2021). 
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A geographic data source represents geographic entities. Each geographic entity 
is annotated with an identifier, a location, and a set of key-value pairs called tags. 
More formally: 

Definition 1.1 A geographic data source .G = (N, T ) consists of a set of 
geographic entities N and a set of tags T . Each tag .t ∈ T is represented as a key-
value pair .t = <k, v>. Each node .n ∈ N represents a real-world geographic entity 
with a geolocation and a set of tags .Tn ⊂ T . 

A typical example of a geographic data source is OpenStreetMap. Examples 
of the tags assigned to the node representing Cairo are illustrated in Table 1.1. A  
geolocation can be represented as a coordinate pair (i.e., latitude and longitude) or 
a sequence of coordinate pairs (e.g., forming a polygon). 

A knowledge graph is a semantic information source containing data regarding 
real-world entities, their classes, and their properties. Typical examples of pop-
ular general-purpose knowledge graphs are Wikidata and DBpedia, which cover 
an extensive set of real-world entities and their relations in various application 
domains. Table 1.1 illustrates selected properties of the Wikidata entity representing 
Cairo. 

Definition 1.2 A knowledge graph .KG = (E,C, P,L,Lgeo, F )  consists of a set 
of entities E, a set of classes .C ⊂ E, a set of properties P , a set of literals L, a set  
of geolocations .Lgeo, and a set of relations .F ⊆ E × P × (E ∪ L ∪ Lgeo). 

An entity in a knowledge graph can represent a real-world entity or a class 
of entities. Literals represent values including strings, numbers, and dates. An 
entity .e ∈ E can be related to one or multiple geolocations representing different 
geometries, such as a point or a polygon. 

Geographic entity linking aims to align entities from a geographic data source 
and a knowledge graph representing the same real-world entity. 

Definition 1.3 Given a geographic data source .G = (N, T ) and a knowledge graph 
.KG = (E,C, P,L,Lgeo, F ), the problem of geographic entity linking is to identify 
a node .n ∈ N and an entity .e ∈ E representing the same real-world object. 

In the example illustrated in Table 1.1, Cairo from OSM and Cairo from Wikidata 
represent the same real-world entity. In RDF, this link is typically denoted using the 
owl:sameAs property. 

Schema alignment refers to the interlinking of equivalent schema elements across 
sources. In the context of this work, we focus on geographic class alignment, which 
refers to the interlinking of tags of a geographic data source and classes of a 
knowledge graph representing the same semantic concept. The key or the value of 
the tag alone is not sufficient to describe the class. For example, tag . <natural, peak>
describes the concept Mountain. Considering only the key or the value here may not 
align to the correct class Mountain of the knowledge graphs. Hence, we align the 
tag, i.e., key=value, to the knowledge graph classes. 
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Definition 1.4 Given a geographic data source .G = (N, T ) and a knowledge graph 
.KG = (E,C, P,L,Lgeo, F ), the problem of geographic class alignment is to 
identify a tag .t ∈ T and a class .c ∈ C representing the same semantic concept. 

For example, the OSM tag .<place, city> and the Wikidata class wd:Q515 
illustrated in Table 1.1 represent the same semantic concept. 

In the context of this work, a geographic knowledge graph refers to a knowledge 
graph that provides geolocation information for a substantial fraction of the entities 
it contains. This work aims to create a geographic knowledge graph through 
geographic entity linking and class alignment. 

1.3 Geographic Entity Linking with OSM2KG 

Geographic entity linking refers to the task of interlinking geographic entities rep-
resenting the same real-world entity across data sources (Definition 1.3). Typically, 
entity linking approaches utilize semantic and syntactic similarity of the different 
entity representations. In OSM, geographic entity linking is particularly challenging 
due to the large scale and the ambiguities of location names. For example, “Berlin” 
can denote the name of the capital of Germany and a restaurant name. Also, the 
names of geographic entities, such as “Church Road,” are often non-distinctive. 

1.3.1 Related Work 

State-of-the-art entity linking approaches such as LIMES (Ngomo and Auer 2011) 
and WOMBAT (Sherif et al. 2017) assume that entities are represented through the 
same number of properties with a 1:1 property mapping. In the case of linking OSM 
nodes with the knowledge graph entities, these assumptions do not hold. Entity 
linking methods such as DBpedia Spotlight (Daiber et al. 2013) detect links between 
textual data and knowledge graphs. LinkedGeoData (Stadler et al. 2012) performs 
geographic entity linking by creating links between OSM and knowledge graphs 
such as DBpedia and GeoNames. However, the linking with LinkedGeoData relies 
on manually aligned schema, syntactic similarity, and spatial distance. To overcome 
the shortcomings of current approaches, we proposed OSM2KG (Tempelmeier and 
Demidova 2021), a machine learning algorithm for geographic entity linking based 
on representation learning of OSM tags. 
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1.3.2 The OSM2KG Approach 

The overall geographic entity linking process of OSM2KG is illustrated in the upper 
part of Fig. 1.1. First, OSM2KG adopts geographic blocking to reduce the number 
of potential candidate entities given an OSM node (candidate set generation). Then, 
OSM2KG creates latent representations of OSM tags (tag embeddings) and extracts 
features of the candidate entities (feature extraction). Finally, OSM2KG predicts if 
a node-entity pair represents the same real-world entity (link classification). In the 
following, we present these steps in more detail. 

Candidate Set Generation Given a node .n ∈ N of the geographic data source 
.G = (N, T ), the goal of the candidate set generation step is to identify potentially 
matching entities in the knowledge graph .KG. The geographic coordinates in OSM 
and knowledge graphs represent the points of community consensus, rather than an 
objective metric (Auer et al. 2009). Consequently, the coordinates of geographic 
entities represented in these sources can deviate. The candidate generation step 
is based on the intuition that entities and nodes representing the same real-world 
entities should be located in geographic proximity. Thus, for a given input node n, 
OSM2KG creates the candidate set by considering all entities within an experimen-
tally determined distance threshold. A spatial index such as R-Tree (Guttman 1984) 
can be utilized to enable efficient geographic blocking. 

Tag Embeddings The set of tags .Tn assigned to an OSM node n plays an 
essential role in detecting the correct matching candidate. As OSM tags are highly 
heterogeneous, OSM2KG aims at learning their unsupervised latent representations. 
OSM2KG utilizes a skip-gram-based neural network model (Mikolov et al. 2013). 
This representation learns the co-occurrences of OSM tags to capture the semantic 
similarity between OSM nodes. The embedding model is trained in an unsupervised 
manner based on the tag similarity of geographic entities, meaning geographic 
entities with similar tags are represented in a closer space. The resulting embeddings 
can be used to estimate the semantic similarity of the OSM nodes. Geographic 
coordinates are not considered in this step, such that the embedding reflects semantic 
similarity independent of the geolocation. 

Feature Extraction For each candidate entity from .KG in the candidate set, we 
extract additional features, namely, the entity type and its popularity, as reflected by 
the number of incoming edges in the knowledge graph. 

In addition to the tag embeddings and the entity features, the Jaro-Winkler 
distance (Winkler 1999) is calculated between the names of the OSM node and 
the candidate to measure their name similarity. Furthermore, the logistic distance 
proposed by Stadler et al. (2012) is used to compute the geographic distance 
between the OSM node and the candidate entity. 

Link Classification Finally, a random forest classification model is utilized to 
classify whether the input node in . G represents the same real-world entity as the 
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candidate entity in .KG. To train the model, as positive examples, OSM2KG takes 
node-entity pairs from the existing links between . G and . KG. 

1.3.3 Evaluation Results of the OSM2KG Approach 

We evaluated OSM2KG (Tempelmeier and Demidova 2021) regarding its inter-
linking performance. In particular, we considered the interlinking of OSM entities 
with Wikidata and DBpedia knowledge graphs in Germany, France, and Italy. This 
evaluation demonstrated a substantial F1-score improvement achieved by OSM2KG 
compared to eight different baseline approaches. OSM2KG performed best on all 
Wikidata datasets, achieving an F1-score of .92.05% on average and outperforming 
the best-performing baseline by .21.82 percentage points. OSM2KG also achieved 
the best recall performance and high precision on all datasets. 

As a result of OSM2KG, we can infer new links between the OSM nodes and 
geographic entities in knowledge graphs. Such links can be beneficial for creating 
and enriching semantic sources, as they can provide complementary information 
regarding the linked geographic entities. These linked entities can also serve as 
additional training data to develop supervised methods for geographic schema 
alignment. 

1.4 Geographic Class Alignment with NCA 

Geographic class alignment between a geographic data source .G = (N,T) and a 
knowledge graph .KG = (E,C, P,L,Lgeo, F )  aims to align the tags and the classes 
representing the same real-world concepts (Definition 1.4). 

The heterogeneous tag-based OSM structure created by volunteers makes it 
challenging to identify the tags that can be linked to knowledge graph ontologies. 
For example, the OSM tag .<natural, peak> corresponds to the “mountain” class 
in the Wikidata knowledge graph. This match cannot be easily identified using the 
existing approaches based on syntactic and structural similarity. 

1.4.1 Related Work 

Ontology alignment methods typically rely on structural and element-level simi-
larity to align schema elements (Otero-Cerdeira et al. 2015). As the OSM schema 
is flat, approaches that depend on the structural hierarchy (Melnik et al. 2002) do  
not perform well. Schema alignment methods that depend on the element-level 
syntactic similarity (Madhavan et al. 2001) do not work well either, due to the 
essential differences in the syntactic representation of OSM tags and knowledge 
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graph classes. Instance-based alignment approaches (Ngo et al. 2013) rely on the 
structural similarity of neighboring instances to align schema elements. Machine 
learning (Doan et al. 2004) and deep learning-based approaches (Bento et al. 2020; 
Xiang et al. 2015) also rely on the structure. Furthermore, tabular data alignment 
methods (Cappuzzo et al. 2020) cannot appropriately handle sparse OSM tag 
annotations. Overall, the lack of a well-defined OSM ontology and the essential 
differences in the structural as well as syntactic representation of OSM tags and 
knowledge graph ontologies, along with the sparsity of OSM annotations, hinder 
the application of state-of-the-art ontology and schema alignment approaches. To 
overcome these limitations, we proposed NCA, a neural class alignment approach 
that utilizes existing entity links between geographic data sources and knowledge 
graphs in a novel shared latent space. 

1.4.2 The NCA Approach 

At the bottom of Fig. 1.1, we briefly illustrate the building blocks of the class 
alignment NCA approach. In the first step, NCA aims to create a shared latent space 
that aligns the feature spaces of . G and .KG. To this extent, NCA creates an auxiliary 
neural classification model. This model captures the semantic relations between the 
OSM tags and the semantic classes in the shared latent space. In the second step, 
NCA probes the auxiliary model to obtain the tag-to-class alignments between the 
OSM tags and the knowledge graph classes. 

Auxiliary Classification The goal of the first NCA step is to create a shared latent 
space containing similar latent representations of geographic entities in . G and .KG. 
To achieve this aim, NCA creates an auxiliary classification model. This model is 
trained to classify linked entities from . G and .KG into the corresponding semantic 
classes .c ∈ C of .KG. During supervised training, the auxiliary classification model 
adopts known pairs of linked geographic entities from . G and .KG as a training set. 
For . G, tags and keys having more than 50 occurrences8 in OSM are selected as 
features. For .KG, top-25 properties of each class are used as features. These features 
are passed through the fully connected layers to form the shared latent space of the 
model that aligns the representations of OSM and .KG entities. The intuition behind 
the shared latent space is that linked entities from OSM and .KG that belong to 
the same semantic class will be represented similarly. To create the shared latent 
space, NCA adopts an adversarial classifier that exploits linked entities of . G and 
.KG. This classifier aims to distinguish between . G and .KG entities in the latent 
space. NCA aims to make their representations similar by inverting the gradient of 
the adversarial loss. In this way, as a result of the training, the feature spaces of . G 
and .KG are aligned. 

8 https://taginfo.openstreetmap.org/tags. 

https://taginfo.openstreetmap.org/tags
https://taginfo.openstreetmap.org/tags
https://taginfo.openstreetmap.org/tags
https://taginfo.openstreetmap.org/tags
https://taginfo.openstreetmap.org/tags
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Tag-to-Class Alignment The training of the auxiliary classification model results 
in a shared latent space. NCA then probes the model with one OSM tag at a time and 
computes the complete forward pass. NCA selects the results of the classification 
layer to obtain the tag-to-class alignment. As one OSM tag can be matched to 
multiple classes in the knowledge graph, NCA selects all classes whose confidences 
exceed an experimentally determined threshold value. 

1.4.3 Evaluation Results of the NCA Approach 

We evaluated the NCA approach on OSM as the geographic data source and 
Wikidata and DBpedia as knowledge graphs (Dsouza et al. 2021a). The NCA per-
formance was compared to six state-of-the-art ontology and tabular data alignment 
methods. The evaluation was conducted on a dataset with seven countries having 
the most data available in OSM, namely, Germany, France, Great Britain, Spain, 
Russia, the USA, and Australia. In terms of tag-to-class alignment, NCA obtained 
up to 13 and up to 37 percentage point improvement of the F1-score on Wikidata and 
DBpedia, respectively. On average, we observed 10 (21) percentage point F1-score 
improvement on Wikidata (DBpedia). As a result, the NCA approach increased 
the number of OSM entities with semantic class annotations from Wikidata and 
DBpedia knowledge graphs by over .400%. The resulting tag-to-class annotations 
are available as part of the WORLDKG knowledge graph presented in the next 
section. 

1.5 The WORLDKG Knowledge Graph 

WORLDKG is a geographic knowledge graph that provides semantic information on 
geographic entities extracted from OSM. While OSM contains rich data regarding 
such geographic entities, this data is not directly accessible to semantic applications. 
With WORLDKG, we tackle this problem and provide a geographic knowledge 
graph. WORLDKG follows the ontology illustrated in Fig. 1.2 and is available 
online.9 

1.5.1 Related Work 

Geographic knowledge graphs such as LinkedGeoData (Auer et al. 2009) and 
YAGO2geo (Karalis et al. 2019) either contain only a few geographic classes 

9 WORLDKG: https://www.worldkg.org/. 

https://www.worldkg.org/
https://www.worldkg.org/
https://www.worldkg.org/
https://www.worldkg.org/


1 WorldKG: World-Scale Completion of Geographic Information 13 

wkgs:WKGObject 

rdfs:Class 
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sf:Point 

rdf:type 
dcterms: 
source 
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rdfs:domain 

Fig. 1.2 The WORLDKG ontology 

or represent data of a restricted geographic area. Specialized geographic knowl-
edge graphs such as the KnowWhereGraph (Janowicz et al. 2022) and EventKG 
(Gottschalk and Demidova 2019) concentrate on past events and have a limited 
location coverage. In contrast, WORLDKG is based on OSM and contains over 100 
million geographic entities on a world scale typed with over 1,000 semantic classes. 

1.5.2 WORLDKG Creation Approach 

WORLDKG captures geographic entities in OSM and contains links to Wikidata 
and DBpedia at the entity and class levels. The creation procedure of WORLDKG 
includes two main tasks depicted in Fig. 1.1, namely, ontology creation and triple 
creation. 

Ontology Creation To infer a class hierarchy from OSM tags, we utilize OSM 
map features10 —a list of established key-value pairs. We extract classes (keys) and 
their subclasses (values) from the map features. For example, from the map feature 
.<place, city>, we infer the class “Place” and its subclass “City.” All remaining keys 
not covered by the map features are considered properties. 

We convert the names of the extracted properties and classes according to the 
OWL naming conventions.11 We also incorporate the tag-to-class alignment inferred 
using the NCA approach (Sect. 1.4) into the WORLDKG ontology. 

10 https://wiki.openstreetmap.org/wiki/Map_features. 
11 https://www.w3.org/TR/owl-ref/. 

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
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owl:equivalent 
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Fig. 1.3 An example of a city and its classes in WORLDKG 

The WORLDKG ontology is depicted in Fig. 1.2. Any object in WORLDKG can 
be connected to a geolocation (geo:SpatialObject—either a point, a line 
string, or a polygon) via wkgs:spatialObject. Other relations are represented 
using properties typed as wkgs:WKGProperty. Information regarding the origi-
nal OSM tags is provided by dcterms:source. 

An example of a WORLDKG entity of the class “City” is illustrated in Fig. 1.3. 
Via the property wkgs:spatialObject, the entity is connected to its geolo-
cation, which provides a coordinate pair. The “City” class is connected to its 
equivalents in DBpedia and Wikidata. 

Triple Creation We add all OSM nodes that have at least one tag and belong to at 
least one class of the WorldKG ontology to the WORLDKG knowledge graph. To 
this extent, we create triples that represent the nodes and their properties and adhere 
to the WorldKG ontology. 

1.5.3 WORLDKG Access, Statistics, Evaluation, and Examples 

Access WORLDKG offers a GeoSPARQL endpoint.12 This endpoint supports 
queries in GeoSPARQL13 —a geographic query language for RDF data—and 
visualizes geolocations of the query results on a map. 

12 WORLDKG GeoSPARQL endpoint: https://www.worldkg.org/sparql. 
13 GeoSPARQL: https://www.ogc.org/standards/geosparql. 

https://www.worldkg.org/sparql
https://www.worldkg.org/sparql
https://www.worldkg.org/sparql
https://www.worldkg.org/sparql
https://www.worldkg.org/sparql
https://www.ogc.org/standards/geosparql
https://www.ogc.org/standards/geosparql
https://www.ogc.org/standards/geosparql
https://www.ogc.org/standards/geosparql
https://www.ogc.org/standards/geosparql
https://www.ogc.org/standards/geosparql
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Statistics As of September 2022, WORLDKG contains over 800 million triples 
describing approximately a 100 million entities that belong to over 1, 000 distinct 
classes. The number of unique properties (wgks:WKGProperty) in WORLDKG 
is over 1, 800. As a result of the NCA approach presented in Sect. 1.4, WORLDKG 
provides links to 40 Wikidata and 21 DBpedia classes. 

Evaluation We evaluated the quality of WORLDKG by assessing the type asser-
tions of the geographic entities (Dsouza et al. 2021b). From Wikidata and DBpedia, 
we randomly selected five classes each, aligned with the WORLDKG ontology. Per 
each of these classes, we randomly selected 100 example geographic entities in 
WORLDKG and manually checked if they belong to the assigned knowledge graph 
class. We observed that WORLDKG achieved over 97% accuracy on average. 

Examples Listing 1.1 illustrates the representation of a WORLDKG entity of type 
wkgs:Restaurant in the Turtle format. Listing 1.2 is an example query that 
makes use of the GeoSPARQL function bif:st_distance to extract three 
restaurants closest to the Dresden Central Station.14 The query results are shown 
in Table 1.2 and Fig. 1.4. This example illustrates the potential of using WORLDKG 
in downstream applications such as POI recommendation. 

wkg:4182951095 a wkgs:Restaurant ; 
rdfs:label "Restaurant Quarre" ; 
wkgs:addrHousenumber "77" ; 
wkgs:addrPostcode "10117" ; 
wkgs:capacity "200" ; 
wkgs:cuisine "regional" ; 
wkgs:delivery "no" ; 
wkgs:openingHours "12:00-15:00,18:00-22:30" ; 
wkgs:osmLink osmn:4182951095 ; 
wkgs:phone "+493022611959" ; 
wkgs:takeaway "no" ; 
wkgs:website "http://restaurant-quarre.de" ; 
wkgs:spatialObject wkg:geo4182951095 . 

wkg:geo4182951095 a sf:Point; 
geo:asWKT "POINT(13.3798808 52.5160887)"^^geo:wktLiteral . 

Listing 1.1 RDF triples in the Turtle format for an example geographic entity of type wkgs: 
Restaurant in WORLDKG 

14 The geographic location of the Dresden Central Station is taken from OSM. 
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SELECT ?restaurant 
(bif:st_distance(?cWKT, ?fWKT) AS ?Distance) 

WHERE { 
?poi rdfs:label "Dresden Hbf". 
?poi rdf:type wkgs:RailwayStation . 
?poi wkgs:spatialObject [ 

geo:asWKT ?cWKT 
] .  
?closeObject rdf:type wkgs:Restaurant . 
?closeObject rdfs:label ?restaurant . 
?closeObject wkgs:spatialObject ?fGeom . 
?fGeom geo:asWKT ?fWKT . 

} 
ORDER BY ASC(bif:st_distance(?cWKT, ?fWKT)) 
LIMIT 3 

Listing 1.2 Example GeoSPARQL query to retrieve three restaurants closest to the Dresden 
Central Station (Dresden Hbf) 

Table 1.2 Result of the 
example GeoSPARQL query 
in Listing 1.2 

Restaurant Distance (in kilometers) 

Marché 0.02 

dean&david 0.08 

Dschingis Khan 0.13 

Fig. 1.4 Visualization of three restaurants closest to the Dresden Central Station returned for the 
query in Listing 1.2 

1.6 Discussion and Open Research Directions 

In this chapter, we presented WORLDKG—a geographic knowledge graph that we 
developed to provide a semantic representation of geographic entities in OSM. 
Furthermore, we described OSM2KG and NCA, novel methods for geographic 
entity linking and class alignment. These methods enable interlinking geographic 
entities in OpenStreetMap with other semantic sources of geographic information 
at the entity and schema levels. Our proposed approaches outperformed state-of-the-
art methods when applied to OSM and popular general-purpose knowledge graphs, 
Wikidata and DBpedia. We made WORLDKG publicly available. 
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WORLDKG is a comprehensive source of semantic geographic information in its 
current form; it also opens many directions for future research. 

A critical aspect of the knowledge graph creation from volunteered geographic 
information is data quality. As OSM data builds a basis for the knowledge graph 
creation, data quality issues of OSM can be propagated into WORLDKG. In 
WORLDKG, we rely on the existing links between OSM nodes and knowledge 
graphs as a quality signal. Moreover, to enhance the quality of OSM data, we 
developed OVID (Tempelmeier and Demidova 2022)—a novel method to detect 
vandalism in OpenStreetMap automatically. Quality aspects of OSM are also 
considered in Chap. 2. In future work, we would like to investigate further methods 
to enhance data quality in OSM and WORLDKG. WORLDKG can also potentially 
be used for visual reporting solutions discussed in Chap. 7. 

To make OSM data more easily accessible to machine learning algorithms, 
we developed GeoVectors—a reusable openly available dataset of OSM embed-
dings (Tempelmeier et al. 2021b). GeoVectors approach extends the OSM node 
embedding algorithms presented in Sect. 1.3 and encodes semantic and geographic 
similarity of OSM nodes. In future work, we would like to leverage WORLDKG 
and GeoVectors to provide semantic geographic information for machine learning 
applications. 
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Chapter 2 
Analyzing and Improving the Quality and 
Fitness for Purpose of OpenStreetMap as 
Labels in Remote Sensing Applications 

Moritz Schott, Adina Zell, Sven Lautenbach, Gencer Sumbul, 
Michael Schultz, Alexander Zipf, and Begüm Demir 

Abstract OpenStreetMap (OSM) is a well-known example of volunteered geo-
graphic information. It has evolved to one of the most used geographic databases. 
As data quality of OSM is heterogeneous both in space and across different thematic 
domains, data quality assessment is of high importance for potential users of OSM 
data. As use cases differ with respect to their requirements, it is not data quality 
per se that is of interest for the user but fitness for purpose. We investigate the 
fitness for purpose of OSM to derive land-use and land-cover labels for remote 
sensing-based classification models. Therefore, we evaluated OSM land-use and 
land-cover information by two approaches: (1) assessment of OSM fitness for 
purpose for samples in relation to intrinsic data quality indicators at the scale of 
individual OSM objects and (2) assessment of OSM-derived multi-labels at the 
scale of remote sensing patches (.1.22×1.22 km) in combination with deep learning 
approaches. The first approach was applied to 1000 randomly selected relevant OSM 
objects. The quality score for each OSM object in the samples was combined with 
a large set of intrinsic quality indicators (such as the experience of the mapper, the 
number of mappers in a region, and the number of edits made to the object) and 
auxiliary information about the location of the OSM object (such as the continent 
or the ecozone). Intrinsic indicators were derived by a newly developed tool 
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based on the OSHDB (OpenStreetMap History DataBase). Afterward, supervised 
and unsupervised shallow learning approaches were used to identify relationships 
between the indicators and the quality score. Overall, investigated OSM land-use 
objects were of high quality: both geometry and attribute information were mostly 
accurate. However, areas without any land-use information in OSM existed even 
in well-mapped areas such as Germany. The regression analysis at the level of 
the individual OSM objects revealed associations between intrinsic indicators, but 
also a strong variability. Even if more experienced mappers tend to produce higher 
quality and objects which underwent multiple edits tend to be of higher quality, an 
inexperienced mapper might map a perfect land-use polygon. This result indicates 
that it is hard to predict data quality of individual land-use objects purely on intrinsic 
data quality indicators. The second approach employed a label-noise robust deep 
learning method on remote sensing data with OSM labels. As the quality of the OSM 
labels was manually assessed beforehand, it was possible to control the amount of 
noise in the dataset during the experiment. The addition of artificial noise allowed 
for an even more fine-grained analysis on the effect of noise on prediction quality. 
The noise-tolerant deep learning method was capable to identify correct multi-labels 
even for situations with significant levels of noise added. The method was also used 
to identify areas where input labels were likely wrong. Thereby, it is possible to 
provide feedback to the OSM community as areas of concern can be flagged. 

Keywords Volunteered geographic information · Data quality · Data analysis · 
Remote sensing · OpenStreetMap · Machine learning 

2.1 Introduction 

OpenStreetMap (OSM) has evolved to one of the most used geographic databases 
and is a prototype for volunteered geographic information (VGI). It is a major 
knowledge source for researchers, professionals, and the general public to answer 
geographically related questions. As a free and open community project, the OSM 
database can not only be edited but also used by any person with very limited 
restrictions such as internet access or usage citation. This open nature of the project 
enabled the establishment of a vibrant community that curates and maintains the 
projects’ data and infrastructure, but also a growing ecosystem of tools that use or 
analyze the data (OpenStreetMap Contributors 2022a,b). 

Recently, OSM has become a popular source of labeled data for the remote sens-
ing community. However, spatial heterogeneous data quality provides challenges 
for the training of machine learning models. Frequently, OSM land-use and land-
cover (LULC) data has thereby been taken at face value without critical reflection. 
And, while the quality and fitness for purpose of OSM data have been proven in 
many cases (e.g., Jokar Arsanjani et al. 2015; Fonte et al. 2015), these analyses 
have also unveiled quality variations, e.g., between rural and urban regions. The 
quality of OSM can thus be assumed to be generally high, but remains unknown
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for a specific use case. It is therefore of importance to develop both tools that are 
capable of quantifying data quality of LULC information in OSM and approaches 
that are capable of dealing with the noise potentially present in OSM. 

The IDEAL-VGI project investigated the fitness for purpose of OSM to derive 
LULC labels for remote sensing-based classification models by two approaches: 
(1) assessment of OSM fitness for purpose for samples in relation to intrinsic data 
quality indicators at the scale of individual OSM objects and (2) assessment of 
OSM-derived multi-labels at the scale of remote sensing patches (.1.22 × 1.22 km) 
in combination with deep learning methods. 

2.2 Intrinsic Data Quality Analysis for OSM LULC Objects 

One of the most prominent analysis topics in OSM-related research is data quality 
that has been covered in theory (see, e.g., Barron et al. 2014; Senaratne et al. 
2017) as well as in many practical studies (e.g., Jokar Arsanjani et al. 2015; 
Brückner et al. 2021). The topic of data quality is of concern for many studies 
working with volunteered geographic information—Chap. 1, for example, deals 
with data quality in OSM andWikidata. Senaratne et al. (2017) characterize analyses 
into extrinsic metrics, where OSM is compared to another dataset, and intrinsic 
indicators, where metrics are calculated from the data itself. Semi-intrinsic (or 
semi-extrinsic) metrics use auxiliary information to assess the quality of OSM— 
population density can, for example, be used to assess the completeness of buildings 
in OSM, as population density and number of buildings are related. The quality 
gold standard has frequently been defined for extrinsic metrics through an external 
dataset of higher or known quality and standards. However, external datasets of high 
quality—including high up-to-dateness—are frequently not available. Therefore, 
intrinsic data quality indicators have frequently been used (Barron et al. 2014). 
These try to capture data quality aspects based on the history of OSM data 
itself, such as the number of edits to an object. Although OSM objects can be 
viewed individually, they are always embedded in a larger context of surrounding 
OSM objects, communities of contributors, and other classification systems, such 
as biomes or socioeconomic factors. Comparing contributions and communities 
for selected cities, (Neis et al. 2013), e.g., found a positive correlation between 
contributor density and gross national product per capita and showed that commu-
nity sizes vary between Europe and other regions. In 2021, Schott et al. (2021) 
described “digital” and “physical locations” in which an OSM object is located. 
These “locations” consist of, intrinsic, OSM-specific measures such as density 
and diversity of elements, but also include—semi-intrinsic—aspects of economic 
status, culture, and population density to describe the surrounding of an object. 
Such information provides potentially relevant information to help characterize and 
predict data quality of OSM objects. 

LULC information in OSM is a challenging topic. On the one hand, this 
information provides the background for all other data rendered on the central map.
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It can highly benefit from local input, survey mapping, and (live) updates. On the 
other hand, this information has a difficult position within the OSM ecosystem. 
While the routing and the building of communities are prominent, LULC is not 
so frequently mentioned in the ecosystems’ communication platforms. LULC 
information can also be quite cumbersome or even difficult to map, e.g., due to 
natural ambiguity. The growing tagging scheme provides a collection of sometimes 
ambiguous or overlapping tag definitions that are not fully compatible with any 
official LULC legend definition (Fonte et al. 2016). Furthermore, the data is highly 
shaped by national preferences and imports. 

2.2.1 OSM Element Vectorization: Intrinsic and Semi-intrinsic 
Data Quality Indicators 

The OSM element vectorization tool (OEV, Schott et al. 2022) has been developed 
to ease access to intrinsic and semi-intrinsic indicators, with a specific focus on 
LULC feature classes. The tool1 provides access to currently 31 indicators at the 
level of single OSM objects (c.f. Table 2.1), which cover aspects concerning the 
element itself, surrounding objects, and the editors of the object. 

The usability of the tool was proven on the use case of LULC polygons. One 
thousand out of the globally existing 62.9 million LULC elements were randomly 
sampled on 2022-01-01. Only polygonal objects with at least one of the LULC 
defining tags were considered. These elements’ IDs were then fed to the tool to 
extract the data and calculate the described metrics from Table 2.1. These metrics 
were used in a cluster analysis to identify structures in the OSM LULC objects. 
Furthermore, we tested three hypotheses on the triangular relation between the 
size of OSM objects, their age, and their location in terms of population density. 
We hypothesized that a general mapping order exists where the OSM community 
first concentrates on or arises from urban areas before moving to rural areas. 
This was tested by the hypotheses 1 (H. 1): There is a positive correlation between 
the object age and the population density. Second, we tested the hypotheses that 
areas with higher population density are more fragmented and therefore exhibit 
smaller elements, while areas with low population density, such as forest, are often 
larger objects: (H. 2) there is a negative correlation between the object size and the 
population density. Third, we tested the effect between the OSM LULC objects’ 
age and population density, assuming a non-significant correlation. This was based 
on two opposing assumptions: Large geographical entities may be mapped first, 
and regions may be first coarsely drafted before adding details. This would lead to 
old objects being of larger size. Yet, hypotheses 1 and 2 contradict this tendency: 
according to H. 1 and H. 2, younger objects would be in areas with less population 
density and therefore tend to be larger. All three hypotheses were tested separately

1 https://oev.geog.uni-heidelberg.de/. 

https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
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using Kendall’s . τ (Hollander and Wolfe 1973), with the p-values adjusted for 
multiple testing (Benjamini and Hochberg 1995). 

Results of this first exploratory analysis provided interesting insights into the 
complex and multifaceted structure of OSM land-use objects and its relation to 
OSM mapping communities. The main hypotheses regarding the mapping order 
(H. 1) could not be confirmed. In fact, the estimated correlation was slightly negative, 
meaning that for the used sample, objects in urban areas were younger than in rural 
areas. Yet, this does not imply that this mapping order does not exist in certain sub-
regions. In addition, the age of an object is a fragile metric that highly depends 
on the mapping style of local mappers. Mappers frequently decide to delete and 
redraw elements instead of changing the original object, especially if the object was 
only a coarse approximation. This “resets” the object age, meaning that urban areas 
may have a high share of young objects because they are still actively mapped and 
maintained, even though they started their map appearance relatively early. H. 3 was 
equally confirmed, but only after p-value correction (p-value . = 0.14). Regional 
specialities may exist in this aspect and need further investigation. 

The negative correlation between the object size and the population density (H. 2) 
was confirmed with a p-value. <0.01 though the . τ was only .−0.096 implying a small 
effect. At the global scale, many influencing factors may overlap or intervene with 
each other, hindering the extraction of single detailed effects. For the example at 
hand, we can assume that there are multiple regional communities or active mappers 
with individual mapping styles. The mapping detail in urban or rural regions will 
therefore be linked to these and other factors as well, not only the population density. 
Population density itself may not be generalizable on a global scale. The same 
level of fragmentation, meaning object size distribution, may be reached at different 
population density values, depending, e.g., on the continent. 

The cluster analysis revealed interesting aspects, as some clusters could be 
associated with imports. Especially, a large import of North American lakes could 
be separated. This element group made up a considerable share of the global data 
and must therefore be taken into account when analyzing or describing the global 
dataset. 

One thousand LULC objects were manually checked against high-resolution 
imagery. A combined quality score was assigned based on the thematic and the 
geometric correctness of the object. A quantile random forest was used to identify 
relationships between the data quality score and the 31 indicators calculated by the 
OEV tool. 

While the overall quality of the model was intermediate, we were able to identify 
a series of interesting relationships between the indicators and the quality of the 
land-use objects based on the visual inspection of partial dependency plots. The 
most important features in the model (c.f. Fig. 2.1) were the size of the OSM object, 
contributor characteristics (such as experience and remoteness), rare OSM tags, and 
regional OSM mapping aspects (e.g., number of OSM objects in the surrounding of 
the object). 

Element size had by far the highest feature importance. However, the effect 
on data quality of the OSM object had no clear direction. The indicator had to
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Fig. 2.1 Feature importance in relation to data quality. The importance was derived based on a 
quantile random forest for 1000 randomly selected OSM objects. The features are sorted by the 
percentage increase in squared mean error if the feature would be dropped. In addition, node purity 
is provided as a second feature importance indicator. To ease interpretation, the second indicator 
is displayed together with its position relative to the median node purity value across all selected 
features 

be interpreted in combination with other indicators such as the primary tag (e.g., 
landuse or natural) as some land-use tags were characterized by big objects (e.g., 
forest) and others by small objects (e.g., urban grass). Objects with rare primary 
tags indicated, in general, a lower object quality—presumably as these tags are less 
well established and possibly poorly defined and thereby harder to map consistently. 
The effect of contributor experience showed a multimodal distribution: contributors 
with very little experience (newcomers) were associated with objects of medium 
quality and contributors with medium experience (stable mappers) with high quality 
of the land-use objects. Interestingly, highly experienced mappers were associated 
with poor quality of the land-use object. One possible explanation is that these
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extraordinary active users might represent bots or importers. One has, however, to 
keep in mind that only a few contributors fell into this category, which led to a low 
statistical power. 

With respect to the number of elements surrounding an OSM LULC object, 
areas with more elements were—expectedly—better mapped. The larger the share 
of the surrounding of an OSM object mapped by LULC, the higher the quality of 
the OSM object. However, shares above 100% expectedly were associated with a 
lower quality of the OSM object. These regions are characterized by areas mapped 
using highly overlapping polygons, which typically indicate mapping errors. OSM 
edits are contributed as changesets. Larger changesets (more elements, often from 
different regions) were associated with lower quality of the OSM land-use objects. 
This is in line with the expectation that local, concise, and coherent edits are better. 
With respect to the primary tag (the LULC class), the model indicated differences 
in the quality of some classes: while forest objects were of higher quality, grass-
dominated LULC classes were of lower quality. This could be explained by the 
clear distinction of forest from other LULC classes and the diversity of tags used 
to characterize different grass-dominated LULC classes. LULC objects in North 
America had a tendency for lower quality, presumably due to the large imports 
in this region. Besides that, LULC objects mapped in regions with higher Human 
Development Index or higher population density were associated with better data 
quality. This presumably reflects the larger OSM community in the Global North, 
especially in countries such as Austria, Germany, or France, as well as the higher 
number of potential mappers available in urban areas compared to the countryside. 
With respect to out-of-dateness, complex interactions were identified; however, 
generally recently changed objects were associated with higher quality. Except for 
newcomers, lower user diversity—i.e., users focusing on one aspect of OSM—was 
associated with higher data quality. 

2.3 Label Noise Robust Deep Learning for Remote Sensing 
Data with OSM Tags 

2.3.1 OSM as the Source of Training RS Image Labels in ML 

Supervised ML methods have attracted great attention for Earth observation appli-
cations on ever-growing RS image archives. Due to their capability to automatically 
model higher-level RS image semantics in large scale, they are applied to many 
problems in RS such as multi-label image classification and land-cover map 
generation. These methods generally require the availability of a high quantity 
of annotated training RS images. However, the manual collection of RS image 
annotations by domain experts for a large amount of data can be time-consuming, 
complex, and costly. Accordingly, the use of volunteered geographic information as 
crowdsourced data such as OSM to automatically derive annotated training data
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has been drawing significant attention in RS. As an example, in (Kaiser et al. 
2017; Wan et al. 2017; Comandur and Kak 2021), it is shown that the direct use 
of OSM tags as pixel-level land-use class labels is useful for the automatic map 
generation of RS images through support vector machines and convolutional neural 
networks (CNNs). In (Li et al. 2020), OSM tags are utilized as scene-level class 
labels of training RS images to automatically predict land-use/land-cover classes 
of RS image scenes through CNNs. In (Audebert et al. 2017), OSM data is also 
utilized as an auxiliary information source by fusing it with optical data from 
very-high-resolution satellite imagery through dual-stream CNNs. In (Lin et al. 
2022), an active learning strategy is introduced to partially annotate RS images 
with salient multi-labels based on OSM tags. In this study, an adaptive temperature-
associated model is also proposed to apply multi-label RS image classification by 
utilizing partially annotated training data and automatically assigning missing labels 
to training images during training. 

Thanks to the publicly available OSM database, collection of RS image anno-
tations for a high quantity of training data to be utilized for ML methods can 
be achieved at lower costs. However, OSM tags can be outdated regarding RS 
images due to possible changes on the ground; or there can be annotation errors. 
Accordingly, using OSM tags as the source of training image annotations may 
increase the chance of including noisy labels in training data of ML methods. As 
an example, for multi-label image annotations of RS images, two types of noise 
can exist. Noise can be associated with missing labels or wrong labels. A missing 
label means that although a land-use/land-cover class exists in an RS image, the 
corresponding class label is not assigned. A wrong label means that although a class 
label is assigned to RS image, the corresponding class is not present in the image. 

2.3.2 Label Noise Robust ML Methods 

When a ML model is trained on noisy training data, there is a risk of overfitting of 
the model parameters to noisy labels and thus suboptimal inference performance. 
To this end, a few methods are presented in RS to improve the robustness of ML 
models toward noisy labels in training data. As an example, in (Zhang et al. 2020a), 
a noisy label knowledge distillation method is introduced for single-label RS image 
classification problems to leverage the knowledge learned through a teacher model 
on images with noisy labels for a student model. In this method, two CNNs are 
employed as a teacher-student framework, while a clean and trustworthy subset of a 
training set is assumed to be available for the student CNN. In (Aksoy et al. 2022), 
a collaborative learning framework is proposed to identify and exclude images with 
noisy multi-labels during training. To this end, it employs two CNNs operating 
collaboratively, while they are forced to characterize distinct image representations 
and to produce similar predictions. In (Burgert et al. 2022), the effects of the 
abovementioned label noise types in multi-label RS image classification problems 
are investigated, while different single-label noise robust methods are integrated to
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multi-label classification problems in RS. In (Dong et al. 2022), for land-cover map 
generation through semantic segmentation, an online noise correction approach is 
introduced to detect and correct pixel-level noisy labels via information entropy 
at the early stage of model training and thus to continue training with corrected 
labels. Although all these methods are potentially effective, the development of label 
noise robust ML methods when the OSM tags are utilized as the source of image 
annotations has not yet been investigated in RS literature. 

It is worth mentioning that learning the parameters of ML models under noisy 
labels in training data has been studied more extensively in computer vision (CV) 
literature than RS. Recent research directions in CV can be grouped into the devel-
opment of (1) deep neural network (DNN) architectures, (2) ML loss functions, (3) 
regularization strategies for training ML models, and (4) training sample selection 
and label adjustment techniques for single-label image classification problems. The 
first set of methods are concentrated on the development of DNN architectures 
designed for training data with noisy labels. For example, a contrastive-additive 
noise network is introduced in (Yao et al. 2019) to model trustworthiness of noisy 
training labels. This network consists of a probabilistic latent variable model as a 
contrastive layer in order to measure the quality of annotations and an additive layer 
to aggregate the class predictions and noisy labels. The second set of methods is 
mostly focused on the development of ML loss functions, which embody robust 
characteristics toward noisy labels. As an example, in (Ridnik et al. 2021), an 
asymmetric loss function is proposed to dynamically decrease the weights of 
negative classes in multi-labels. This allows to decrease the effect of images with 
missing labels on ML model parameter updates during training. The third set of 
methods are concentrated on regularizing the whole ML model training to prevent 
overfitting of model parameters to noisy labels. For instance, a regularization term is 
integrated into the cross-entropy loss function in (Liu et al. 2020) to utilize the class 
predictions from an early stage of ML model training to prevent the memorization of 
noisy labels. The fourth set of methods aim to first select images with correct labels 
or adjust noisy labels and then to learn through samples with correct labels. As an 
example, a joint training with co-regularization approach is introduced in (Wei et al. 
2020) to employ collaborative learning of two CNNs for the selection of correct 
labels by an agreement strategy. 

2.3.3 Proposed Methods 

Due to the public availability of OSM, RS images can be automatically associated 
with multiple land-use/land-cover classes (i.e., multi-labels) by using OSM tags. 
This allows to create large training sets for deep learning (DL)-based multi-label 
RS image classification methods at lower costs. Let .X={x1, . . . , xM} be an RS 
image archive that includes M images, where . xk is the kth image in the archive. 
We assume that a training set .T = {(xi , yi )}Di=1 is available. Each training image



2 Fitness for Purpose of OSM for Remote Sensing 33

. xi is associated with a set of class labels .yi ∈ {0, 1}S based on the corresponding 
OSM tags, where S is the total number of classes. Let .φ : θ,X �→ Ŷ be any 
type of convolutional neural network (CNN) that generates the multi-label . ̂yk of an 
image .xk ∈ X. Training . φ on . T, which may include noisy labels due to noisy OSM 
tags, can lead to learning suboptimal model parameters . θ and inaccurate inference 
performance, as discussed in the previous sections. 

To address this issue, we aim to first automatically detect noisy OSM tags based 
on the CNN . φ trained on . T and then adjust training labels associated with noisy 
OSM tags for label noise robust learning of the CNN model parameters . θ . 

2.3.3.1 Noisy OSM Tag Detection 

Region-based RS image representations combining both local information and the 
related spatial organization of land-use/land-cover classes are important for the 
accurate detection of noisy OSM tags. However, multi-label RS image predictions 
. Ŷ of the considered CNN . φ do not provide spatial information regarding the class 
location. 

Accordingly, we employed class activation maps (CAM) introduced in (Zhou 
et al. 2016) since they are capable of deriving the regions most relevant for a 
given class with respect to the DL model trained for image classification. Let 
.Fi ∈ R

CxWxH be a set of feature maps for an image . xi obtained from the last 
convolutional layer of the CNN backbone where C, H, and W represent the number 
of channels, height, and width of the feature maps, respectively. CAMs associated 
with . xi can be obtained by applying a 1x1 convolutional layer, which takes the 
feature maps . Fi of . xi as input and produces a set of feature maps .Ai ∈ R

SxWxH . 
The sth feature map .As

i ∈ R
WxH is the localization map associated with a class s, 

which can be obtained as follows: 

.As
i =

C∑

c=1

wc
sFc

i (2.1) 

where . wc
s is the weight of importance for the cth feature map . Fc

i regarding the sth 
class. The obtained CAMs are forwarded through a global average pooling (GAP) 
layer to obtain multi-label class predictions. However, multi-label classification 
models from which CAMs can be derived are trained only to identify the presence 
of a given class within the image. Thus, CAMs tend to focus only on the most 
discriminative features within the image, leading to the incomplete coverage of the 
target class within the image (Zhang et al. 2020b). 

Self-enhancement maps (SEMs) introduced in (Zhang et al. 2020b) address this 
issue and improve the localization maps derived from CAMs by including the 
similarity of feature maps in the localization map calculation. This is achieved 
by first defining seed coordinates, which are the image regions with the largest 
activation values on CAMs for a given class. Then, a similarity map is created for
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each seed point based on the cosine similarity between the seed point feature vector 
and all other feature vectors. For a given class s of an image . xi , the final class 
activation map . Es

i is obtained by taking the maximum value at each pixel across the 
similarity maps. After obtaining all the class activation maps, we generate a class 
prototype . P s for the class s by following (Lee et al. 2018). This is achieved by 
averaging all the feature maps, which are extracted from . T and associated with the 
class s. Class prototypes allow us to obtain more accurate class predictions based on 
spatial information regarding the location of image classes and the corresponding 
region-based image representations. Accordingly, to define whether the class s is 
present in the image . xi , the extracted features of the image for the class . Fs

i are 
compared with the corresponding class prototype based on their cosine similarity as 
follows: 

.ŷ
s
i =

{
1, cos(P s,Fs

i ) > 0.5
0, otherwise

(2.2) 

To detect if . xi is associated with noisy labels, we compare the class predictions . ̂yi

with the associated OSM tags. If the CNN model predicts a class which is not in the 
list of class labels derived from OSM tags, it is assumed to be a missing class. This 
missing class can be localized through SEMs. If the CNN model does not predict 
a class, but it is in the list of class labels derived from OSM tags, it is assumed 
to be a wrong class label. It is noted that automatically defining noisy OSM tags 
and the localization of missing classes via SEMs allow providing feedback to the 
OSM community. Such feedback together with further investigations in the OSM 
community can lead to correcting noisy OSM tags by human mappers. 

2.3.3.2 Label Noise Robust Multi-label RS Image Classification 

It is worth noting that the abovementioned method for the detection of noisy OSM 
tags relies on the model parameters . θ of the considered CNN, which is obtained 
through training on . T. If a small trustworthy subset .C ∈ T of the training set 
is available, this method can also be used to automatically find training images 
associated with noisy labels. 

To this end, we divide the whole learning procedure into two stages. In the first 
stage, . θ is learned by training . φ only on . C. After this stage is finalized, we first 
automatically divide the rest of the training set .T\C into training images with noisy 
labels . N and training images with correct labels . L (i.e., .N∪L = T\C). Then, class 
labels associated with each image in . N are automatically corrected based on (2.2) 
leading to training images with corrected labels . N∗. This leads to automatically 
correcting noisy labels in .T\C derived from OSM tags. Then, the training set of the 
second stage . T∗ is formed by combining . L, . C, and . N∗. 

In the second stage, all the model parameters of . φ are fine-tuned on . T∗. Thanks to 
the first stage, noisy labels included in the training set of this stage are significantly 
reduced. This allows to overcome overfitting on noisy labels of the whole training
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set in the second stage. Due to this two-stage learning of the model parameters, 
abundant training RS images annotated with OSM tags can be facilitated for label 
noise robust learning of multi-label RS image classification through CNNs. 

2.3.4 Results and Discussion 

In this subsection, we first describe the considered dataset and the experimental 
setup and then provide our analysis of the experimental results. 

2.3.4.1 Dataset Description and Experimental Setup 

To conduct experiments, we selected a Sentinel-2 tile acquired over South-West 
Germany including parts of France on 2021-06-13. This region spans from the 
Palatinate Forest in the west to the Odenwald in the east and includes large forested 
areas as well as areas dominated by agriculture or by built-up areas. This tile 
was divided into .81001.22 × 1.22-km-sized image patches. Each image patch is 
annotated with multi-labels based on the presence or absence of four major land-use 
classes that are defined with OSM tags (c.f. Table 2.2). While assigning the labels, 
small OSM objects were filtered (see Table 2.2 for thresholds used). The resulting 
labels of 910 image patches were manually validated against Sentinel-2 imagery. 

Table 2.2 OSM land-use classes used for the multi-label image classification 

Class Description and filter OSM tags 

Water bodies Continuous 0.2 ha of 
non-intermittent surface water; 
smaller ponds and all pools were not 
considered 

landuse=reservoir, natural=water, 
waterway=dock, 
waterway=riverbank 

Forests Continuous 0.5 ha closed tree cover; 
smaller tree groups were not 
considered 

landuse=forest, natural=wood 

Agricultural 
areas 

Continuous 0.5 ha meadow; arable 
land or vineyards, non-agricultural 
areas (parks, etc.), and smaller 
isolated elements were not 
considered assuming they are 
non-agricultural gardens or similar 

landuse=farmland, 
landuse=meadow, landuse=vineyard 

Built-up areas Continuous 0.5 ha containing 
mostly impermeable features 
(buildings, roads, etc.); single 
isolated buildings are not 
considered, and large permeable 
objects like parks or sports grounds 
are not part of the built-up area 

landuse=civic_admin, 
landuse=commercial, 
landuse=depot, landuse=education, 
landuse=farmyard, 
landuse=garages, 
landuse=industrial, 
landuse=residential, landuse=retail
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Table 2.3 Multi-label image 
classification results in terms 
of mean average precision 
(mAP) obtained by the direct 
use of OSM tags (OSM) with 
different values of synthetic 
label noise rate (SLNR) of 
test set and DeepLabV3. +
with different values of 
SLNR of training set 

Method SLNR mAP (%) 

OSM 

0% 94.2 

10% 89.4 

20% 83.1 

30% 77.3 

40% 72.9 

DeepLabV3. +

0% 99.2 

20% 96.8 

40% 70.9 

60% 66.6 

80% 60.4 

The OSM quality and completeness in the region were high (c.f. Table 2.3). OSM-
based multi-label assignments had a mean average precision of 94.2%. The patches 
were clustered with respect to the correct assignment of the multi-labels: Clusters 
of correct OSM data were often due to monotonous landscapes, e.g., the Palatinate 
Forest. Clusters of flawed data were often due to missing data, e.g., in the region 
around Kaiserslautern. To perform experiments, 200 manually labeled patches were 
used as the test set, while the rest of the image patches were utilized as the training 
set. 

In the experiments, we utilized the DeepLabv3. + (Chen et al. 2018) CNN archi-
tecture as the DL model. It is worth noting that DeepLabv3. + is originally designed 
for semantic segmentation problems. We replaced its semantic segmentation head 
with a fully connected layer followed by a GAP layer that forms the multi-label 
classification head with four output classes. We trained DeepLabv3. + for 20 epochs 
with Adam optimizer and the initial learning rate of 0.001. For the proposed label 
noise robust learning method, the same number of training epochs is used for each 
of the first and second stages. Experimental results are provided in terms of micro 
mean average precision (mAP) scores and noise detection accuracies. 

We conducted experiments to (i) compare the considered DL model with the 
direct use of OSM tags for multi-label RS image classification, (ii) analyze the 
effectiveness of the proposed label noise detection method, and (iii) assess the 
effectiveness of the proposed label noise robust learning method. For the proposed 
label noise robust learning method, which requires the availability of a small 
trustworthy subset of the training set, we included the manually labeled image 
patches to the training set. However, for the comparison between the DL model and 
the OSM tags, only non-verified training data was utilized. To assess the robustness 
of the CNN model toward label noise and to detect noisy samples, we injected 
synthetic label noise to the training and test sets at different percentages (which 
were 20%, 40%, 60%, and 80% for the training set and 10%, 20%, 30%, and 40% 
for the test set) by following (Burgert et al. 2022).
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2.3.4.2 Comparison Between Direct Use of OSM Tags and DL-Based 
Multi-label Image Classification 

In this subsection, we assess the effectiveness of the considered DL model 
(DeepLabV3. +) compared to the direct use of OSM tags for multi-label RS image 
classification. To this end, the model parameters of the DL model were learned on 
abundant non-verified training data without considering label noise robust learning. 
Table 2.3 shows the corresponding results in terms of mAP values, when the 
different values of synthetic label noise rate (SLNR) were applied to the training 
set of DeepLabV3. + and the OSM tags. One can observe from the table that when 
SLNR equals to 0% for training and test sets, DeepLabV3. + achieves 5% higher 
mAP values compared to directly using OSM tags. Even when 20% label noise 
is synthetically added to the training set of the CNN model, it is still capable of 
achieving higher results compared to OSM when SLNR value equals to 0%. It is 
worth mentioning that directly using OSM of such low quality leads to missing or 
wrong classes. It can be seen from the table that when synthetic noise is added to 
OSM tags, its multi-label image classification performance is significantly reduced. 
As an example, when SLNR value is increased to 20% from 0%, multi-label image 
classification performance of OSM is reduced by more than 10%. These results 
show the effectiveness of using OSM as a training source of CNN models compared 
to directly using OSM tags for multi-label image classification. This is relevant 
because preliminary OSM data analyses may not be able to confidently identify 
such malicious areas of bad quality. 

It is worth noting that further increasing the SLNR value of the training set of 
DeepLabV3. + significantly reduces multi-label image classification performance. 
This is due to the fact that when a training set of a DL model includes a higher 
rate of noisy labels, the model parameters are overfitted on noisy labels that lead to 
suboptimal learning of multi-label image classification. Figure 2.2 shows the self-
enhancement maps (SEMs) of an RS image obtained on DeepLabV3. + trained under 
different values of SLNR. One can see from the figure that as the SLNR value of 
the training set increases, the capability of CNN model to characterize the semantic 
content of the image reduces due to noisy labels. 

2.3.4.3 Label Noise Detection 

In this subsection, we assess the effectiveness of the proposed label noise detection 
method when different rates of synthetic label noise are applied to the test set. We 
also analyze the effect of the level of label noise (which is present in the training 
data) on our method. Table 2.4 shows the corresponding label noise detection 
accuracies obtained on DeepLabV3. + trained with abundant non-verified training 
data at different SLNR values and a small data, which is verified in terms of label 
noise. One can observe from the table that when SLNR equals to 0%, our label noise 
detection method, which is applied to DeepLabV3. + and trained on abundant data, 
achieves the highest label noise detection accuracies. For example, when synthetic
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Fig. 2.2 (a) An example of RS image and its self-enhancement maps obtained on DeepLabV3. +
trained under synthetic label noise rates (b) 0%,  (c) 10%, (d) 20%, (e) 30%, and (f) 40% 

Table 2.4 Label noise detection results in terms of accuracy (%) obtained by the proposed label 
noise detection method applied to the DeepLabV3. + trained with abundant non-verified data at 
different values of synthetic label noise rate (SLNR) and small verified data 

Training Set 
SLNR (Test Set) 

0% 10% 20% 30% 40% 

Abundant non-verified data (SLNR . = 0%) 80.0 88.5 87.0 89.0 94.0 

Abundant non-verified data (SLNR . = 20%) 63.0 72.5 79.0 82.5 86.5 

Abundant non-verified data (SLNR . = 40%) 0.5 30.0 50.5 64.5 71.5 

Abundant non-verified data (SLNR . = 60%) 0.0 31.0 55.5 65.5 74.0 

Abundant non-verified data (SLNR . = 80%) 0.0 31.5 55.5 65.0 74.0 

Small verified data 45.0 58.5 67.0 78.5 84.0
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label noise is applied to the test set with 40%, our label noise detection method 
is capable of achieving 94% accuracy. As the SLNR value increases on abundant 
training data, label noise detection accuracy of our method decreases. This is in line 
with our conclusion from the previous subsection about the effect of label noise level 
in training data. In greater details, when SLNR value reaches to 40% for abundant 
training data, noise detection accuracy of our method decreases by more than 50% 
compared to SLNR . = 0%. When a small verified training data with the size of 
10% of the whole training set is used for DeepLabV3. +, our noise detection method 
achieves higher accuracies compared to abundant training data with SLNR . ≥ 40%. 
These results show that our label noise detection method is capable of effectively 
detecting noisy labels without requiring a small verified data when the amount of 
label noise in the training data is small. However, if the level of label noise in training 
data is greater than a certain extent, our method requires the availability of a small 
trustworthy subset of the training set for accurate label noise detection. 

2.3.4.4 Label Noise Robust Multi-label Image Classification 

In this subsection, we compare the proposed label noise robust learning method 
with the standard learning procedure, in which label noise of a training set is not 
considered during training. Table 2.5 shows the corresponding multi-label RS image 
classification scores when synthetic label noise is injected to the training set at 
different values of SLNR. It can be seen from the table that when the label noise 
level in the training set is small (SLNR . ≤ 20%), standard learning of CNN model 
parameters achieves higher mAP values compared to label noise robust learning. 
As an example, when there is no synthetic label noise added to the training set, 
standard learning leads to more than 3% higher mAP score compared to label 
noise robust learning. However, as the SLNR value of the training set is higher 
than a particular value (20%), the considered CNN model with label noise robust 
learning provides higher multi-label RS image classification accuracies compared 
to standard learning. For example, when SLNR equals to 80% for the training 
set, label noise robust learning leads to almost 27% higher mAP value compared 
to standard learning. These results show that our learning method provides more 
robust learning of the model parameters for the considered CNN model toward label 
noise in the training set. Due to the two-stage learning procedure in our method, a 

Table 2.5 Multi-label image 
classification results in terms 
of mean average precision 
(mAP (%)) obtained by 
standard learning and our 
label noise robust learning for 
different values of SLNR 

SLNR Standard Label Noise 
(Training Set) Learning Robust Learning 

0% 99.2 95.6 

20% 96.8 89.9 

40% 70.9 91.0 

60% 66.6 88.3 

80% 60.4 87.0
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small trustworthy subset of the training set is effectively utilized in its first stage 
to automatically define noisy labels in the whole training set, which are accurately 
corrected. Then, employing corrected labels for fine-tuning CNN model parameters 
on the whole training set leads to leveraging abundant training data without being 
significantly affected by the label noise. 

2.4 Conclusion and Outlook 

While OSM provides ample opportunities for use as labels in machine learning-
based remote sensing applications, it is necessary to be aware of the challenges the 
dataset provides. Intrinsic and semi-intrinsic data quality indicators provide insights 
into the complexity of the OSM mapping process. Meaningful relationships between 
the indicators and data quality for a test set were derived. The complexity of the 
interactions did, however, not allow for a reliable prediction of data quality at the 
level of individual OSM objects. This might change if bigger sample sizes are used. 
And, while object-level quality prediction requires further research, the developed 
quality indicators referencing the data region can already support regional quality 
predictions which are successfully in use in production today. 

The proposed deep learning method showed its potential to perform label noise 
robust multi-label image classification if at least a small set of high-quality labels 
is available. This shows the potential of the method (i) to overcome the challenges 
of OSM land-use labels in remote sensing applications and (ii) to provide quality-
related feedback for the OSM community. As the OSM community is skeptical 
toward imports, especially based on automatic labeling, areas flagged as poten-
tially problematic will when presumable be investigated by human mappers and 
potentially corrected in OSM. Furthermore, these areas can further be analyzed in 
combination with the intrinsic data quality indicators developed during the project. 
Approaches described in Chap. 7 might become helpful for this communication. The 
remote sensing community, on the other hand, can profit from this work through the 
automated creation of regionalized high-quality image classification models. 
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Chapter 3 
Efficient Mining of Volunteered 
Trajectory Datasets 

Axel Forsch, Stefan Funke, Jan-Henrik Haunert, and Sabine Storandt 

Abstract With the ubiquity of mobile devices that are capable of tracking positions 
(be it via GPS or Wi-Fi/mobile network localization), there is a continuous stream 
of location data being generated every second. These location measurements are 
typically not considered individually but rather as sequences, each of which reflects 
the movement of one person or vehicle, which we call trajectory. This chapter 
presents new algorithmic approaches to process and visualize trajectories both in 
the network-constrained and the unconstrained case. 

Keywords Trajectories · Data mining · Indexing · Driving preferences · Map 
matching · Anonymization · Isochrones · Processing pipeline 

3.1 Introduction 

An abundance of volunteered trajectory data was made openly available in the last 
decades, fueled by the development of cheap sensor technology and widespread 
access to tracking devices. The OpenStreetMap project alone collected and pub-
lished some 2.43 million GPS trajectories from around the world in the past 17 
years. Such datasets enable a wealth of applications, as, e.g., movement pattern 
extraction, map generation, social routing, or traffic flow analysis and prediction. 

Dealing with huge trajectory datasets poses many challenges, though. This is 
especially true for volunteered trajectory datasets which are often heterogeneous in 
terms of geolocation accuracy, duration of movement, or underlying transportation 
mode. A raw trajectory is typically represented as a sequence of time-stamped 
geolocations, potentially enriched with semantic information. To enable trajectory-
based applications, the raw trajectories need to be processed appropriately. In the 
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following, we describe the core steps of a general processing pipeline. Of course, 
this pipeline may be refined or adapted depending on the target application. 

1. Anonymization Trajectories are personal data and can reveal sensitive informa-
tion about the recording user. As such, the user’s privacy needs to be protected. 

2. Preprocessing Given the raw data, trajectories are usually first filtered and 
cleaned. For trajectories that stem from movement in an underlying network 
(e.g., car trajectories), the preprocessing typically includes map matching, which 
aims at identifying the path in the network that most likely led to the given 
movement sequence. Map matching helps to reduce noise that stems, e.g., from 
sensor inaccuracies and enables more efficient storage. 

3. Storing and Indexing For huge trajectory sets, scalable storage systems and 
indexing methods are crucial. Storing often involves (lossy or lossless) compres-
sion of the trajectories. Furthermore, several query types, such as spatiotemporal 
range queries or nearest neighbor queries, should be supported by such a system 
to allow for effective mining later on. Therefore, indexing structures that allow 
for efficient retrieval of such query result sets need to be built. 

4. Mining Trajectory mining tasks include, among others, clustering, classification, 
mode detection, and pattern extraction. Mining tasks often benefit from the 
availability of a diverse set of trajectory data, covering, for example, large spatial 
regions or time intervals. Most applications depend on successfully performing 
one or more mining tasks. 

5. Visualization The results of the processing steps are often hard to interpret 
for non-expert users. To improve the accessibility of the results, appropriate 
visualizations are needed. 

This chapter is a review of the achievements made inside the projects “Dynamic 
and Customizable Exploitation of Trajectory Data” and “Inferring personalized 
multi-criteria routing models from sparse sets of voluntarily contributed trajec-
tories” inside the DFG priority program “Volunteered Geographic Information: 
Interpretation, Visualization, and Social Computing” (SPP 1894). We will discuss 
achievements for each step of the pipeline. 

First, we describe a method to protect the privacy of the user who provided 
their trajectories. In specific, an algorithm is presented that anonymizes sensitive 
locations, such as the user’s home location, by truncating the trajectory. For this, a 
formal attack model is introduced. To maximize the utility of the anonymized data, 
the algorithm truncates as little information as possible while still guaranteeing that 
the user’s privacy cannot be breached by the defined attacks. This section is based 
on Brauer et al. (2022). 

Then, we present a new map-matching method that is able to deal with so-
called semi-restricted trajectories. Those are trajectories in which the movement 
is only partially bound to an underlying network, for example, stemming from a 
pedestrian who walked along some hiking path but crossed a meadow in between. 
The challenge is to identify the parts of the trajectory that happened within the 
network and to find a concise representation of the unrestricted parts. A method
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based on the careful tessellation of open spaces and multi-criteria path selection that 
copes with this challenge is presented. This section is based on Behr et al. (2021). 

Afterward, we present the PATHFINDER storage and indexing system. It allows 
dealing with huge quantities of map-matched trajectories with the help of a novel 
data structure that augments the underlying network with so-called shortcut edges. 
Trajectories are then represented as sequences of such shortcut edges, which 
automatically compresses and indexes them. Integrating spatial and temporal search 
structures allows for answering space-time range queries within a few microseconds 
per trajectory in the result set. This section is based on Funke et al. (2019). 

Then, we review new algorithms for driving preference mining from trajectory 
sets. Based on a linear preference model, these algorithms identify the driving 
preferences from the trajectories and use this information to compress and cluster 
the trajectories. This section is based on Forsch et al. (2022) and Barth et al. (2021). 

Finally, we present a method to visualize the results of preference mining to 
improve their interpretability. For this, an isochrone visualization is used. The 
isochrones show which areas are easy to access for a user with a specific routing 
profile and which areas are more difficult to access. This information is especially 
useful for infrastructure planning. This section is based on Forsch et al. (2021). 

The overarching vision is to build an integrated system that enables uploading, 
preprocessing, indexing, and mining of trajectory sets in a flexible fashion and 
which scales to the steadily growing OpenStreetMap trajectory dataset. We conclude 
the chapter by discussing some open problems on the way to achieving this goal. 

3.2 Protection of Sensitive Locations 

Trajectories are personal data, and, as such, they come within the ambit of the 
General Data Protection Regulation (GDPR). Therefore, the user’s privacy must 
always be considered when collecting or analyzing users’ trajectories. For this, 
location privacy-preserving mechanisms (LPPMs) are developed. In this section, 
we review the LPPM presented in Brauer et al. (2022), which focuses on protecting 
sensitive locations along the trajectory. 

Publishing trajectories anonymously, i.e., without giving the name of the user 
recording the trajectory, is not sufficient to protect the user’s privacy. An adversary 
can still extract personal information from this data, such as the user’s home and 
workplace. This extracted information can link the published trajectories back to 
the user’s identity by using so-called re-identification attacks. 

A widely used concept to prevent re-identification attacks is k-anonymity 
(Sweeney 2002). A k-anonymized trajectory cannot be distinguished from at least 
.k − 1 other trajectories in the same dataset. LPPMs that k-anonymize trajectory 
datasets (e.g., Abul et al. 2008; Yarovoy et al. 2009; Monreale et al. 2010; Dong 
and Pi 2018) make use of generalization, suppression, and distortion. While k-
anonymized trajectory datasets still retain the characteristics of the trajectories 
when analyzing the dataset as a whole, the utility of single trajectories in the
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dataset is greatly diminished. To counteract this, anonymization can be restricted 
to protecting sensitive locations along the trajectories. Sensitive locations are either 
user-specific, e.g., the user’s home or workplace, or they are universally sensitive, 
such as hospitals, banks, or casinos. LPPMs that focus on the protection of sensitive 
locations (e.g., Huo et al. 2012; Dai et al. 2018; Wang and Kankanhalli 2020) are  
more utility preserving and thus allow for better analysis in cases where no strict 
k-anonymity is needed. In this section, a truncation-based algorithm for protecting 
sensitive locations is reviewed that transfers the concept of k-anonymity to sensitive 
locations. 

3.2.1 Privacy Concept 

In this section, the problem of protecting the users’ privacy is formalized. At first, 
a formal attacker model is introduced that defines the kind of adversary considered. 
Then, the privacy model to prevent the attacks defined in the attacker model is 
presented. 

Attacker Model The attacker has access to a set of trajectories . O = {T1, . . . , Tl}
that have a common destination . ̃s. Furthermore, the attacker knows a set of sites 
S that is guaranteed to contain . ̃s. In this context, sites can be any collection of 
points of interest, such as addresses or buildings, and S could contain all buildings 
for a given region. The attacker’s objective is to identify . ̃s based on . O and S. For  
this, the attacker utilizes several attack functions .f1, . . . , fa . For each trajectory T , 
an attack function f yields a set of candidate sites: .f (S, T ) ⊆ S. By applying all 
attack functions to all trajectories in . O, the attacker collects a joint set of candidates, 
which enables him to infer . ̃s. For example, the attacker could assume that . ̃s is the 
site that occurs most often in the joint set. 

Privacy Model Brauer et al. (2022) introduced a privacy concept called k-site-
unidentifiability which transfers the concept of k-anonymity to sites. Given a set 
S of sites and a destination site .s̃ ∈ S, k-site-unidentifiability requires that . ̃s is 
indistinguishable from at least .k − 1 other sites in S. Put differently, if k-site-
unidentifiability is satisfied, . ̃s is hidden in a set .C(s̃) of k sites, which is termed 
protection set. 

Recall that the attacker’s attack functions return sets of candidate sites. The 
sites in the protection set .C(s̃) are indistinguishable with respect to a given attack 
function f if either all sites or none of the sites in .C(s̃) are returned as part of the 
candidate set for f . In order to preserve k-site-unidentifiability, this property must 
be guaranteed for all attack functions. The sites in S are available to the attacker and 
thus cannot be changed. Therefore, this can only be done by altering the trajectories 
in . O. In conclusion, the problem is defined as follows:
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Given a set of sites S, a set of trajectories . O with a common destination .s̃ ∈ S, and  
a set of attack functions F , transform . O into a set of trajectories . O' that fulfills k-site-
unidentifiability for all attack functions in F , i.e., either all or none of the sites in .C(s̃) are 
part of the attack’s result for each trajectory in . O. 

In the following, an algorithm that truncates trajectories such that they fulfill k-
site-unidentifiability is presented. 

3.2.2 The S-TT Algorithm 

In this section, the Site-dependent Trajectory Truncation algorithm (S-TT) is 
explained. This algorithm truncates a trajectory T such that k-site-unidentifiability 
with respect to a set F of given attack functions is guaranteed. The truncated 
trajectory . T ' is obtained by iteratively suppressing the endpoint of T until each 
attack function either contains all sites of .C(s̃) in its candidate set or none of them. 
The S-TT algorithm is simple to implement, yet it guarantees that none of the attack 
functions can be used to single out . ̃s from the other sites in .C(s̃). For using the 
algorithm, two further considerations need to be made. Firstly, the protection set 
.C(s̃) needs to be selected. Secondly, assumptions on the used attack functions in F 
need to be made. In the following, both of these aspects are discussed. 

Obtaining the Protection Sets The choice of the protection set .C(s̃) greatly 
influences the quality of the anonymized data. There are two requirements for the 
protection sets to guarantee good anonymization results. Firstly, the sites in the 
protection set should be spatially close to each other. This maximizes the utility 
of the anonymized data, as the truncated part of the trajectory gets minimized. 
Secondly, the choice of the protection set should not depend on . ̃s. Otherwise, 
an attacker can infer . ̃s by reverse engineering based on its protection set. Both 
requirements can be fulfilled by computing a partition of S into pairwise disjoint 
subsets, where each subset contains at least k sites. Each of these subsets becomes 
the protection set for all sites included in it. The partition of the sites is a clustering 
problem with minimum cluster size k and spatial compactness as the optimization 
criterion. Possible approaches can be purely geometric-based, e.g., by computing 
a minimum-weight spanning forest of the sites such that each of its trees spans at 
least k sites (e.g., Imielińska et al. 1993), or they can take additional information 
into account, such as the road network (e.g., Haunert et al. 2021). A polygonal 
representation of the protection sets, called protection cell, is obtained by unioning 
the Voronoi cells of the sites in the protection set. 

Geometric Attack Functions The S-TT algorithm truncates a trajectory based on 
the attack functions in F . In the following, a geometric-based S-TT algorithm is 
presented by defining attack functions for a geometric inference of the trajectories’ 
destination site . ̃s. Two important characteristics of a trajectory that can be used 
to identify its destination site are the proximity to and the direction toward the
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destination site. In the following, attacks using these characteristics are formalized 
into attack functions. 

A trajectory T most likely ends very close to its destination site. Therefore, it is 
reasonable to assume that the trajectory’s endpoint .end(T ) is closer to . ̃s than to all 
other sites in S. Thus, the proximity-based attack function . fp returns the site closest 
to .end(T ) as the candidate site: 

.fp(S, T ) := argmin
s∈S

d(end(T ), s), (3.1) 

where the function . d is the Euclidean distance. Note that this attack function 
can easily be extended to return the n-nearest sites to .end(T ) to introduce some 
tolerance. 

A second aspect that can be used to infer the destination is the direction in which 
the trajectory is headed. Specifically, the trajectory’s last segment e is of interest. 
However, the segment e, most likely, does not point exactly toward . ̃s. Therefore, a 
V-shaped region .R(t) anchored in .end(T ) that is mirror-symmetric with respect to e 
and has an infinite radius is considered (Fig. 3.1). The opening angle of the V-shape 
is fixed and denoted with . α. 

The direction-based attack function . fd returns the sites that are inside .R(T ) as 
its candidate set: 

.fd(S, T ) := s ∩ R(T ). (3.2) 

The attacks . fp and . fd are simple, yet common sense suggests that they may be 
fairly successful. Figure 3.2 displays the geometric S-TT algorithm on an example 
trajectory. In the starting situation (Fig. 3.2a), the closest site to .end(T ) is . ̃s. Thus, 
the algorithm suppresses the endpoint of T until the site closest to its endpoint is 
not part of the protection set .C(s̃) of . ̃s anymore (Fig. 3.2b). At this point, some, 
but not all, of the sites in .C(s̃) are part of the candidate set for the direction-based 
attack (Fig. 3.2b), violating k-site-unidentifiability for this attack function. Thus, 
truncation continues until either all the sites or none of the sites in .C(s̃) are part of 

Fig. 3.1 Schematic representation of a direction-based attack. The sites (round dots) inside . R(T )

(colored black) are candidate sites this attack function returns. .R(T ) is based on the terminating 
segment e of trajectory T
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Fig. 3.2 Schematic illustration of the geometric S-TT algorithm. (a) The original trajectory T 
leads to a destination site . ̃s. This destination has to be hidden among the sites in the protection set 
.C(s̃), depicted as squares. All other sites are shown as gray points. The S-TT algorithm suppresses 
the trajectory’s endpoint until neither (b) the site closest to the endpoint is part of the protection 
set .C(s̃) nor (c) a V-shaped region that is aligned with the last segment of the truncated trajectory 
. T ' contains some, but not all, of the sites in . C(s̃)

the candidate set of . fd anymore (Fig. 3.2c). Note that at this point, neither . fp nor 
. fd allow for a distinction between the sites in .C(s̃). Thus, k-site-unidentifiability is 
preserved, and the algorithm is done. 

3.2.3 Experimental Results 

In this section, experimental results carried out with an implementation of the 
geometric-based S-TT algorithm are presented. The evaluation focuses on the 
algorithm’s utility and the amount of data lost during anonymization. In this 
experimental study, it is assumed that the origin and destination of the trajectories 
were sensitive by default and should be protected under k-site-unidentifiability. For 
this, the S-TT algorithm is applied to both ends of the trajectories. 

Input Data A dataset consisting of 10,927 synthetically generated trajectories in 
Greater Helsinki, Finland, is used for the evaluation. The trajectories are generated 
in a three-step process. First, the trajectory endpoints are randomly sampled using a 
weighted random selection algorithm with the population density as weight. This 
means that locations in densely populated areas are more likely to be selected 
as endpoints than locations in sparsely populated areas. In the second step, the 
endpoints are connected to the road network using a grid-based version of Dijkstra 
(1959)’s shortest path algorithm. Finally, using generic Dijkstra’s algorithm, the 
shortest path between the two points on the road network is computed and used 
to connect the two endpoints to a full trajectory.
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Selection of the Protection Sets In most scenarios, the sites of origin and 
destination of the trajectories are not explicitly given. For truncation, the S-TT 
algorithm does not require the destination site . ̃s but only its protection set .C(s̃). 
A naive approach to selecting .C(s̃) would be to select the site cluster belonging 
to the site closest to the trajectory’s endpoint. However, trajectory data is prone 
to positioning uncertainties. Using the naive approach, these uncertainties could 
lead to selecting a protection set that does not contain . ̃s, severely diminishing the 
anonymization quality. A circular buffer of radius b around the endpoint is used to 
account for these uncertainties. The protection sets of all protection cells intersecting 
this buffer are unioned into one large protection set. This unioned protection set is 
then used as the protection set for the trajectory. 

Evaluation The geometric S-TT algorithm, as outlined in Sect. 3.2.2, has three 
major configuration parameters: the minimum size of the protection sets k, the buffer 
radius b, and the opening angle . α for the direction-based attack function. In the 
following, the effect of these three parameters is analyzed. 

Figure 3.3 displays the mean length .δsupp of the truncated trajectory parts 
for different parameterizations. The parameters k and b influence the size of the 
protection cell. Raising these parameters has a significant impact on the results, 
with the suppressed length of the trajectories increasing almost at a linear rate 
(Fig. 3.3a and c). While these results show that small values for k and b preserve 
more of the data, the choice of these parameters mainly depends on the application 
and the needed level of anonymity. For example, to eliminate the effect of GNSS 
accuracies, values for b of approximately 50 meters should be sufficient, while 
trajectory datasets with a higher inaccuracy need a larger buffer radius. 

Regarding the parameterization of the V-shaped region for the direction-based 
attack, the results indicate that the highest data loss lies around .α = 40◦ to . 60◦
(Fig. 3.3b). The reason for this non-monotone behavior is that the direction-based 
attack function . fd can be satisfied by two conditions: either all or none of the sites 
in the protection set must be covered by the V-shaped region. In the case that . α is 

Fig. 3.3 Mean length of suppressed trajectory parts over different parametrization (a) of  k, . α =
60◦, .b = 50m; (b) of . α, .k = 4, .b = 50m; and (c) of  b, .k = 4, .α = 60◦
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very small, and therefore the V-shaped region is very narrow, it is very likely that the 
V-shape covers none of the sites in the protection set. Analogously, if . α is very large, 
the V-shape is very broad, and all the sites are likely to be covered. Comparing the 
influence of . α to the protection set parameters k and b, . α has a significantly smaller 
impact on .δsupp. 

For each suppressed trajectory point, the attack function that triggered the 
suppression is stored to evaluate the importance of the two attack functions against 
each other. Given the parameters .k = 4, .α = 60◦, and .b = 0 m, the direction-
based attack function did not trigger the suppression of any trajectory points in . 24%
of the cases. In other words, the algorithm stopped truncating the trajectories at 
the first trajectory point located outside their protection cell. Likewise, the share 
of trajectory points suppressed due to the direction-based criterion was .38%. This  
means that .62% of the suppressed trajectory points were located in the protection 
cells. 

3.3 Map Matching for Semi-restricted Trajectories 

Map matching is the process of pinpointing a trajectory to the path in an underlying 
network that explains the observed measurements best. Map matching is often the 
first step of trajectory data processing, as there are several benefits when dealing 
with paths in a known network instead of raw location measurement data: 

• Location measurements are usually imprecise. Thus, constraining the trajectory 
to a path in a network is useful to get a more faithful movement representation. 

• Storing raw data is memory-intensive (especially with high sampling densities). 
On the other hand, paths in a given network can be stored very compactly; see 
also Sect. 3.4. 

• Matching a trajectory to the road network enables data mining techniques that 
link attributes of the road network to attributes of the trajectories. This is used to, 
e.g., deduce routing preferences from given trajectories; see also Sect. 3.5. 

However, suppose the assumption that a given trajectory was derived from restricted 
movement in a certain network is incorrect. In that case, map matching might 
heavily distort the trajectory and erase important semantic characteristics. For 
example, there could be two trajectories of pedestrians who met in the middle of a 
market square, arriving from different directions. After map matching, not only the 
aspect that the two trajectories got very close at one point would be lost, but the visit 
to the market square would be removed completely (if there are no paths across it in 
the given network). Not applying map matching might result in misleading results 
as well, as the parts of the movement that actually happened in a restricted fashion 
might not be discovered and—as outlined above—having to store and query huge 
sets of raw trajectories is undesirable. 

Hence, the goal is to design an approach that allows for sensible map matching 
of trajectories that possibly contain on- and off-road sections, also referred to as
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semi-restricted trajectories. In the following, an algorithm introduced by Behr et al. 
(2021) is reviewed that deals with this problem. 

3.3.1 Methodology 

The algorithm is based on a state transition model where each point of a given 
trajectory is represented by a set of matching candidates—the possible system 
states, i.e., possible positions of a moving subject. This is similar to hidden 
Markov model (HMM)-based map-matching algorithms (Haunert and Budig 2012; 
Koller et al. 2015; Newson and Krumm 2009), which aim to find a sequence of 
positions maximizing a product of probabilities. In contrast, the presented algorithm 
minimizes the sum of energy terms of a carefully crafted model. 

Input The algorithm works on the spatial components of a given trajectory . T =
<p1, . . . , pk> of k points in . R2, referred to as GPS points in the following. 

As base input, we are given a directed, edge-weighted graph .G(V,E) that models 
the underlying transport network. Every directed edge .uv ∈ E corresponds to a 
directed straight-line segment representing a road segment with an allowed direction 
of travel. For an edge e, let .w(e) be its weight. 

Additionally, we assume to be given a set of open spaces such as public squares, 
parks, or parking lots represented as polygonal areas. The given transport network 
is extended by triangulating all open spaces and adding tessellation edges as arcs 
into the graph (Fig. 3.4). 

Fig. 3.4 Left: Movement data (blue crosses) on the open space (green) cannot be matched 
appropriately (dashed orange). An unmatched segment (dashed red) remains. Right: Extended 
network where open spaces are tessellated to add appropriate off-road candidates. Note that the 
green polygon has a hole, which remains untessellated since it is not open space
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To accurately represent polygons of varying degrees of detail and to provide an 
appropriate number of off-road candidates, CGAL’s meshing algorithm (Boissonnat 
et al. 2000) is used with an upper bound on the length of the resulting edges and a 
lower bound on the angles inside triangles. 

System States For every . pi , a set of matching candidates in the given network is 
computed by considering a disk . Di of prescribed radius r around . pi and extracting 
the set of nodes .Vi ⊆ V within the disk. Furthermore, tessellation nodes (i.e., 
triangle corners) inside the disk are considered possible matches and included in 
. Vi . Finally, the GPS point itself is added as a candidate to have a fallback. The 
optimization model ensures that input points are only chosen as output points if all 
network and tessellation candidates are too far away to be a sensible explanation for 
this measurement. 

Energy Model To ensure that the output path P matches well to the trajectory, an 
energy function is set up that aggregates a state-based and transition-based energy: 

• The state-based energy is .
Ek

i=1 ||pi − vi||2, meaning that the energy increases 
quadratically with the Euclidean distance between a GPS point . pi and the 
matching candidate . vi selected for it. 

• The transition-based energy is .
Ek−1

i=1 w(Pi,i+1), where .Pa,b is a minimum-
weight .va-.vb-path in G and .w(P ) is the total weight of a path P (i.e., the sum of 
the weights of the edges of P ). 

Note that we have three different sets of edges in the graph: the original edges of the 
road network . Er, the edges incident to unmatched candidate nodes . Eu, and the off-
road edges on open spaces . Et. On-road matches are preferred over off-road matches, 
while unmatched candidates are used as a fallback solution and thus should only be 
selected if no suitable path over on- and off-road edges can be found. To model this, 
the energy function is adapted by changing the edge weighting w of the graph. Two 
weighting terms . αt and . αu are introduced that scale the weight .w(e) of each edge e 
in . Et or . Eu, respectively. 

The state-based and transition-based energies are subsequently aggregated using 
a weighted sum, parametrized with a parameter . αc. This yields the overall objective 
function quantifying the fit between a trajectory .<p1, . . . , pk> and an output path 
defined with the selected sequence .<v1, . . . , vk> of nodes: 

. Minimize E(<p1, . . . , pk>, <v1, . . . , vk>) = αc ·
kE`

i=1

||pi − vi||2 +
k−1E`

i=1

w(Pi,i+1)

(3.3) 

To favor matches in the original road network and keep unmatched candidates as 
a fallback solution, .1 < αt < αu should hold. Together with the weighting factor . αc
for the state-based energy, the final energy function thus comprises three different 
weighting factors.
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Matching Algorithm An optimal path, minimizing the introduced energy term, 
is computed using k runs of Dijkstra’s algorithm on a graph that results from 
augmenting G with a few auxiliary nodes and arcs. More precisely, an incremental 
algorithm that proceeds in k iterations is used. In the ith iteration, it computes for the 
subtrajectory .<p1, . . . , pi> of T and each matching candidate .v ∈ Vi the objective 
value . Ev

i of a solution .<v1, . . . , vi> that minimizes . E(<p1, . . . , pi>, <v1, . . . , vi>)
under the restriction that .vi = v. This computation is done as follows. For .i = 1 and 
any node .v ∈ V1, . Ev

1 is simply the state-based energy for v, i.e., .Ev
1 = αc ·||p1 − v||2. 

For .i > 1, a dummy node . si and a directed edge . siu for each .u ∈ Vi−1 whose weight 
we set as .Eu

i−1 are introduced. With this, for any node .v ∈ Vi , . Ev
i corresponds to the 

weight of a minimum-weight .si-v-path in the augmented graph, plus the state-based 
energy for v. Thus, for . si and every node in . Vi , a minimum-weight path needs to be 
found. All these paths can be found with one single-source shortest path query with 
source . si and, thus, with a single execution of Dijkstra’s algorithm. 

3.3.2 Experimental Results 

The experimental region is the area around Lake Constance, Germany. For this 
region, data is extracted from OSM to build a transport network feasible for cyclists 
and pedestrians. In total, a graph with 931,698 nodes and 2,013,590 directed edges 
is extracted. The open spaces used for tessellation are identified by extracting 
polygons with special tags. Spaces with unrestricted movement (e.g., parks) and 
obstacles (e.g., buildings) are identified by lists of tags representing these categories, 
respectively. Following these tags, 6827 polygons representing open spaces are 
extracted. Including tessellation edges, the final graph for matching consists of 
1,148,213 nodes and 3,345,426 directed edges. 

The quality of the approach is analyzed using 58 cycling or walking trajectories. 
Off-road sections were annotated manually to get a ground truth. The length of the 
trajectories varies from 300 meters to 41.3 kilometers, and overall, they contain 66 
annotated off-road segments. 

The energy model parameters were set to .au = 10, at = 1.1, and .ac = 0.07. 
Using these values, the precision and recall for off-road section identification were 
both close to 1.0. A sensitivity study revealed that similar results are achieved 
for quite large parameter ranges. Furthermore, movement shapes are far better 
preserved with the presented approach compared to using map matching only 
on the transport network. This leads to the conclusion that the combined graph 
consisting of the transport network plus tessellation nodes and edges is only about 
50% larger than the road network, but enables a faithful representation of restricted 
and unrestricted movement at the same time. This then allows applying storage and 
indexing methods that demand the movement to happen in an underlying network 
to be also applicable to semi-restricted trajectories.
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3.4 Indexing and Querying of Massive Trajectory Sets 

Storing and indexing huge trajectory sets in an efficient manner is the very basis 
for large-scale analysis and mining tasks. An important goal is to compress the 
input to deal with millions or even billions of trajectories (which individually might 
consist of hundreds or even thousands of time-stamped positions). But at the same 
time, we want to be able to retrieve specific subsets of the data (e.g., all trajectories 
intersecting a given spatiotemporal range) without the necessity to decompress huge 
parts of the data. 

In this section, we present a novel index structure called PATHFINDER that 
allows to answer range queries on map-matched trajectory sets on an unprecedented 
scale. Current approaches for the efficient retrieval of trajectory data make use of 
different dedicated data structures for the twomain tasks, compression and indexing. 
In contrast, our approach elegantly uses an augmented version of the so-called 
contraction hierarchy (CH) data structure (Geisberger et al. 2012) for both of these 
tasks. CH is typically used to accelerate route planning queries, but has also proved 
successful in other settings like continuous map simplification (Funke et al. 2017). 
This saves space and makes our algorithms relatively simple without the need of 
too many auxiliary data structures. Only this slenderness allows for scalability to 
continent-sized road networks and huge trajectory sets. Other existing indexing 
schemes only work on small network sizes (e.g., PRESS (Song et al. 2014), network 
of Singapore; PARINET (Sandu Popa et al. 2011), cities of Stockton and Oldenburg; 
TED (Yang et al. 2018), cities of Singapore and Beijing) or moderate sizes (e.g., 
SPNET (Krogh et al. 2016): network of Denmark with 800k vertices). Our approach 
efficiently deals with networks containing millions of nodes and edges. 

3.4.1 Methodology 

Throughout this section, we assume to be given a trajectory collection . T that already 
was map matched to an underlying directed graph .G(V,E)with V embedded in . R2. 
We also assume the edges in the graphs to have non-negative costs .c : E → R+. 
Accordingly, each element in .t ∈ T is a path .π = v0v1 . . . vk in G annotated with 
timestamps .τ0, τ1, . . . , τk . 

The goal is to construct an index for . T which allows to efficiently answer queries 
of the form .[xl, xu] × [yl, yu] × [τl, τu] that aim to identify all trajectories which 
in the time interval .[τl, τu] traverse the rectangular region .[xl, xu] × [yl, yu]. In the  
literature, this kind of query is often named window query (Yang et al. 2018) or  
range query (Krogh et al. 2016), where the formal definitions may differ in detail; 
also see Zheng (2015). 

Contraction Hierarchies Our algorithms heavily rely on the contraction hierarchy 
(CH) (Geisberger et al. 2012) data structure, which was originally developed to



56 A. Forsch et al.

speed up shortest path queries. A nice property of CH is that, as a by-product, it also 
constructs compressed representations of shortest paths. 

The CH augments a given weighted graph .G(V,E, c) with shortcuts and 
node levels. The elementary operation to construct shortcuts is the so-called node 
contraction, which removes a node v and all of its adjacent edges from the graph. 
To maintain the shortest path distances in the graph, a shortcut .s = (u,w) is created 
between two adjacent nodes .u,w of v if the only shortest path from u to w is the 
path uvw. We define the cost of the shortcut to simply be the sum of the costs of 
the replaced edges, i.e., .c(s) = c(uv) + c(vw). The construction of the CH is the 
successive contraction of all .v ∈ V in some order; this order defines the level .l(v) of 
a node v. The order in which nodes are contracted strongly influences the resulting 
speed-up for shortest path queries, and hence, many ordering heuristics exist. In 
our work, we choose the probably most popular heuristic: nodes with low edge 
difference, which is the difference between the number of added shortcut edges and 
the number of removed edges when contracting a node, are contracted first. We also 
allow the simultaneous contraction of non-adjacent nodes. As a result, the maximum 
level of even a continent-sized road network like the one of Europe never exceeds 
a few hundred in practice. The final CH data structure is defined as . G(V,E+, c, l)

where . E+ is the union of E and all shortcuts created. 
We also define the nesting depth .nd(e) of an edge .e = (v,w). If  e is an original 

edge, then .nd(e) = 0. Otherwise, e is a shortcut replacing edges .e1, e2, and we 
define its nesting depth .nd(e) := max{nd(e1), nd(e2)} + 1. Clearly, the nesting 
depth is upper bounded by the maximum level of a node in the network. 

Compression Given a pre-computed CH graph, we construct a CH representation 
for each trajectory .t ∈ T, that is, we transform the path .π = e0e1 . . . ek−1 with 
.ei ∈ E in the original graph into a path .π ' = e'

0e
'
1e

'
2 . . . e'

k'−1 with .e
'
i ∈ E+ in the 

CH graph. 
Our algorithm to compute a CH representation is quite simple: We repeatedly 

check if there is a shortcut bridging two neighboring edges . ei and .ei+1. If so,  we  
substitute them with the shortcut. We do this until there are no more such shortcuts. 
See Fig. 3.5 for an example. 

Note that uniqueness of the CH representation can be proven, and therefore, 
it does not matter in which order neighboring edges are replaced by shortcuts. 
The running time of that algorithm is linear in the number of edges. Note that by 
switching to the CH representation, we can achieve a considerable compression rate 
in case the trajectory is composed of few shortest paths. 

Spatial Indexing and Retrieval The general idea is to associate a trajectory with 
all edges of its compressed representation in . E+. Only due to that compression, it 
becomes feasible to store a huge number of trajectories within the index. Answering 
a spatial query then boils down to finding all edges of the CH for which a 
corresponding path in the original graph intersects the query rectangle. Typically, 
an additional query data structure would be used for that purpose. Yet, we show 
how to utilize the CH itself as a geometric query data structure. This requires two 
central definitions:
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Fig. 3.5 Original path (black, 13 edges) and derivation of its CH representation (bold blue, 
3 edges) via repeated shortcut substitution (in order according to the numbers). y-coordinate 
corresponds to CH level 

• With .PB(e), we denote the path box of an edge e. It is defined as the bounding 
box for the path that e represents in the original graph G in case .e ∈ E+ is a 
shortcut or simply the bounding box for the edge e if .e ∈ E. 

• We define the downgraph box .DB(v) of a node v as the bounding box of all nodes 
that are reachable from v on a down-path (only visiting nodes of decreasing CH 
level), ignoring the orientation of the edges. 

Both .PB(e) and .DB(v) can be computed for all nodes and edges in linear time 
via a bottom-up traversal of the CH in a preprocessing step and independent of the 
trajectory set to be indexed. 

For a spatial-only window query with query rectangle Q, we start traversing the 
CH level by level in a top-down fashion, first inspecting all nodes which do not have 
a higher-level neighbor (note that there can be several of them in case the graph is not 
a single connected component). We can check in constant time for the intersection of 
the query rectangle and the downgraph box of a node, only continuing with children 
of nodes with non-empty intersection. We call the set of nodes with non-empty 
intersection . VI . The set of candidate edges . EO are then all edges adjacent to a node 
in . VI . 

Having retrieved the candidate edges, we have to filter out edges e for which 
only the path box .PB(e) intersects but not the path represented by e. For this case, 
we recursively unpack e to decide whether e (and the trajectories associated with e) 
has to be reported. As soon as one child edge reports a non-empty intersection in 
the recursion, the search can stop, and e must be reported. We call the set of edges 
that results from this step . Er . Our final query result is all the trajectories which are 
referenced at least once by the retrieved edges, i.e., those .t ∈ U

e∈Er
Te.
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Temporal Indexing Timestamps of a trajectory t are annotations to its nodes. 
In the CH representation of t , we omit nodes via shortcuts, hence losing some 
temporal information. Yet, PATHFINDER will always answer queries conservatively, 
i.e., returning a superset of the exact result set. 

Like the spatial bounding boxes .PB(e), we store time intervals to keep track 
of the earliest and latest trajectory passing over an edge. Similar to .DB(v), we  
compute minimal time intervals containing all time intervals associated with edges 
on a down-path from v. This allows us to efficiently answer queries which specify 
a time interval .[τl, τu]. Like the spatial bounding boxes, we use these time intervals 
to prune tree branches when they do not intersect the time interval of the query. 

An edge is associated with a set of trajectories, each of which we could check for 
the time when the respective trajectory traverses the edge. A more efficient approach 
is to store for all trajectories traversing an edge their time intervals in a so-called 
interval tree (Berg et al. 2008). This allows us to efficiently retrieve the associated 
trajectories matching the time interval constraint of the query for a given edge. An 
interval tree storing . l intervals has space complexity .O(l), can be constructed in 
.O(l log l), and can retrieve all intervals intersecting a given query interval in time 
.O(log l + o) where o is the output size. 

3.4.2 Experimental Results 

As input graph data, we extracted the road and path network of Germany from 
OpenStreetMap. The network has about 57.4 million nodes and 121.7 million edges. 
CH preprocessing took only a few minutes and roughly doubled the number of 
edges. 

For evaluation, we considered all trajectories within Germany from the Open-
StreetMap collection, only dropping low-quality ones (e.g., due to extreme outliers, 
non-monotonous timestamps, etc.). As a result, we obtained 350 million GPS 
measurements which were matched to the Germany network with the map matcher 
from Seybold (2017) to get a dataset with 372,534 trajectories which we call 
.Tger,real. 

Our experiments reveal that on average, a trajectory from our dataset can 
be represented by 11 shortest paths in the CH graph. While the original edge 
representation of .Tger,real consists of 121.8 million edges (992 MB on disk), the 
CH representation only requires 13.8 million edges (112 MB on disk). The actual 
compression for the 372k trajectories took 42 seconds, that is, around 0.1ms per 
trajectory. 

To test window query efficiency, we used rectangles of different sizes and 
different scales of time intervals. Across all specified queries, PATHFINDER was 
orders of magnitude faster than its competitors, including the naive linear scan 
baseline but also an inverted index that also benefits from the computed CH graph. 
Indeed, queries only take a few microseconds per trajectory in the output set.
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Fig. 3.6 Visualization of trajectory data as developed in Rupp et al. (2022) 

Furthermore, the CH-based representation also allows reporting aggregated results 
easily, which is especially useful for the efficient visualization of large result sets; 
see, for example, Fig. 3.6, which is a screenshot of our visualization tool presented 
in Rupp et al. (2022). 

3.5 Preference-Based Trajectory Clustering 

It is well observable in practice that drivers’ preferences are not homogeneous. If we 
have two alternative paths .π1, π2 between a given source-target pair, characterized 
by 3 costs/metrics (travel time, distance, and ascent along the route) each, e.g., 
.c(π1) = (27min, 12 km, 150m) and .c(π2) = (19min, 18 km, 50m), there are most 
likely people who prefer . π1 over . π2 and vice versa. The most common model to 
formalize these preferences assumes a linear dependency on the metrics. This allows 
for personalized route planning, where a routing query consists of not only source 
and destination but also a weighting of the metrics in the network. 

The larger a set of paths is, though, the less likely it is that a single pref-
erence/weighting exists which explains all paths, i.e., for which all paths are 
optimal. One might, for example, think of different driving styles/preferences when 
commuting versus leisure trips through the countryside. So, a natural question to 
ask is as follows: what is the minimum number of preferences necessary to explain 
a set of given paths in a road network with multiple metrics on the edges? This can 
also be interpreted as a trajectory clustering task, where routes are to be classified 
according to their purpose. In our example, one might be able to differentiate 
between commute and leisure. Or in another setting, where routes of different
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drivers are analyzed, one might be able to cluster them into speeders and cruisers 
depending on the routes they prefer. 

A use case from recent research of our methods is presented in Chap. 11. In a field 
study, cyclists were equipped with sensors tracking their exposure to environmental 
stressors. The study’s aim is to evaluate to what degree cyclists are willing to change 
their routing behavior to decrease their exposure to these stressors. The algorithms 
presented in the following section can be used to aid this evaluation. 

3.5.1 A Linear Preference Model 

The following section is based on a linear preference model, i.e., for a given directed 
graph .G(V,E), for every edge .e ∈ E, a  d-dimensional cost vector . c(e) ∈ R

d

is given, where .c1(e), c2(e), . . . , cd(e) ≥ 0 correspond to non-negative quantities 
like travel time, distance, non-negative ascent, etc., which are to be minimized. A 
path .π = e1e2 . . . ek in the network then has an associated cost vector . c(π) :=Ek

i=1 c(ei). 
A preference to distinguish between different alternative paths is specified by a 

vector .α ∈ [0, 1]d , .Eαi = 1. For example, .αT = (0.4, 0.5, 0.1) might express 
that the respective driver does not care much about ascents along the route, but 
considers travel time and distance similarly important. Alternative paths . π1 and . π2
are compared by evaluating the respective scalar products of the cost vectors of the 
path and the preference, i.e., .c(π1)

T · α and .c(π2)
T · α. Smaller scalar values in the 

linear model correspond to a preferred alternative. An st-path . π (which is a path 
with source s and target t) is optimal for a fixed preference . α if no other st-path . π '
exists with .c(π ')T · α < c(π)T · α. Such a path is referred to as .α-optimal. 

From a practical point of view, it is very unintuitive (or rather almost impossible) 
for a user to actually express their driving preferences as such a vector . α, even if  
they are aware of the units of the cost vectors on the edges. Hence, it would be very 
desirable to be able to infer their preferences from paths they like or which they 
have traveled before. In Funke et al. (2016), a technique for preference inference is 
proposed, which essentially instruments linear programming to determine an . α for 
which a given path . π is .α-optimal or certify that none exists. Given an st-path . π in a 
road network, in principle, their proposed LP has non-negative variables . α1, . . . , αd

and one constraint for each st-path . π ' which states that for the . α we are after, . π '
should not be preferred over . π”. So the LP looks as follows: 

.max α1

∀st-paths π ' : αT (c(π) − c(π ')) ≤ 0 optimality constraints

αi ≥ 0 non-negativity constraints
E

αi = 1 scaling constraint
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As such, this linear program is of little use, since typically, there is an exponential 
number of st-paths, so just writing down the complete LP seems infeasible. 
Fortunately, due to the equivalence of optimization and separation, it suffices to have 
an algorithm at hand which—for a given . α—decides in polynomial time whether all 
constraints are fulfilled or, if not, provides a violated constraint (such an algorithm 
is called a separation oracle). In our case, this is very straightforward: we simply 
compute (using, e.g., Dijkstra’s algorithm) the optimum st-path for a given . α. If the  
respective path has better cost (w.r.t. . α) than . π , we add the respective constraint and 
resolve the augmented LP for a new . α; otherwise, we have found the desired . α. Via  
the ellipsoid method, this approach has polynomial running time; in practice, the 
dual simplex algorithm has proven to be very efficient. 

3.5.2 Driving Preferences and Route Compression 

The method to infer the preference vector . α from a trajectory presented in Sect. 3.5.1 
requires that the given trajectory is optimal for at least one preference value . α. 
In practice, for many trajectories, this is not the case. One prominent example is 
round trips, which are often recorded by recreational cyclists to share with their 
community. The corresponding trajectories end at the same location as they started. 
As such, the optimal route for any preference value with respect to the linear model 
is to not leave the starting point at all, thus having a cost of zero. Note, however, that 
this problem of not being optimal for any preference value also occurs for many one-
way trips. In this section, we review a method by Forsch et al. (2022) that allows 
us to infer the routing preferences from these trajectories as well. The approach 
is loosely based on the minimum description length principle (Rissanen 1978), 
which states that the less information is needed to describe a dataset, the better 
it is represented. Applied to trajectories, the input trajectory, represented as a path 
in the road network, is segmented into as few as possible subpaths, such that each of 
these subpaths is .α-optimal. In the following, a compression-based algorithm for the 
bicriteria case, i.e., when considering two cost functions, is presented. The algorithm 
is evaluated on cycling trajectories by inferring the importance of signposted cycling 
routes. Additionally, the trajectories are clustered using the algorithm’s results. 

3.5.2.1 Problem Formulation 

In the bicriterial case, the trade-off between two cost functions . c0 and . c1 for routing 
is considered. The linear preference model as described in Sect. 3.5.1 simplifies to 
.cα = α0 · c0 + α1 · c1, which can be rewritten to: 

.cα = (1 − α1) · c0 + α1 · c1.
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Thus, only a single preference value . α1 is present, which is simply denoted with 
. α in the remainder of this section. For each path, the . α interval for which the path 
is .α-optimal is of interest. This interval is called the optimality range of the given 
path. The search for the optimality range is formalized in the following problem: 

Given a graph G with two edge cost functions . c0 and . c1, and  a path  . π , find  . Iopt = {α ∈
[0, 1] | π is α-optimal}. 
Many paths are not optimal for any . α, and as such, their optimality range will 

be empty. For these paths, a minimal milestone segmentation and the corresponding 
preference value are searched. A milestone segmentation is a decomposition of a 
path . π into the minimum number of subpaths .{π1, . . . , πh}, such that every subpath 
. πi with .i ∈ {1, . . . , h} is .α-optimal for the given . α. Thus, the following optimization 
problem is solved: 

Given a graph G with two edge cost functions . c0 and . c1 and a path . π , find .α ∈ [0, 1] and a 
milestone segmentation of . π with respect to . α that is as small as possible. That is, there is 
no . ̃α that yields a milestone segmentation of . π with a smaller number of subpaths. 

The splitting points between the subpaths are called milestones. A path . π
in G can be fully reconstructed given its starting point and endpoint, . α, and the 
corresponding milestones. By minimizing the number of milestones, we achieve 
the largest compression of the input data over all . α values and thus, according to the 
minimum description length principle, found the preference value that best describes 
the input path. 

3.5.2.2 Solving Milestone Segmentation 

Using a separation oracle as described in Sect. 3.5.1, the optimality range of every 
(sub)path of . π is computed in .O(SPQ · log(Mn) time, where .SPQ is the running 
time of a shortest path query in G, n is the number of vertices in G, and M is 
the maximum edge cost among all edges regarding . c0 and . c1. For a more detailed 
description of the algorithm, we refer to Forsch et al. (2022). 

Retrieving the milestone segmentation with the smallest number of subpaths is 
done by first computing a set that contains a milestone segmentation of . π for every 
. α and then selecting the optimal milestone segmentation. Existing works in the field 
of trajectory segmentation use start-stop matrices (Alewijnse et al. 2014; Aronov 
et al. 2016) to evaluate the segmentation criterion. In our case, .α-optimality is the 
segmentation criterion, and the segmentation is not solved for a single . α, but  the  . α
value minimizing the number of subpaths over all .α ∈ [0, 1] is searched. Therefore, 
the whole optimality interval for the corresponding subpath is stored in the start-stop 
matrix . M. This allows us to use the same matrix for all . α values. Figure 3.7 shows 
the (Boolean) start-stop matrix for a single . α, retrieved by applying the expression 
.α ∈ M[i, j ] to all elements of the matrix. For a path . π consisting of k vertices, a 
(.k × k)-matrix . M of subintervals of .[0, 1] is considered. The entry .M[i, j ] in row i 
and column j corresponds to the optimality range of the subpath of . π starting at its
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Fig. 3.7 Depiction of a start-stop matrix of a path consisting of .h = 7 vertices for a fixed . α ∈
[0, 1]. The black line represents a minimum segmentation of the path into two subpaths . (v1, v5, v7)

ith vertex and ending at its j th vertex. Since we are only interested in subpaths with 
the same direction as . π , we focus on the upper triangle matrix with .i ≤ j . 

Due to the optimal substructure of shortest paths (Cormen et al. 2009), for . i <

k < j , both .M[i, j ] ⊆ M[i, k] and .M[i, j ] ⊆ M[k, j ] hold. This results in the 
structure visible in Fig. 3.7, where no red cell is below or left of a green cell. The 
start-stop matrix is therefore computed starting in the lower-left corner, and each 
row is filled starting from its main diagonal. That way, the search space for . M[i, j ]
is limited to the intersection of the already computed values of .M[i + 1, j ] and 
.M[i, j − 1]. This is especially useful if one of these intervals is empty, meaning the 
current interval is empty as well and computation in this row can be stopped. 

As a consequence of the substructure optimality explained above, once the start-
stop matrix is set up, it is easy to find a solution to the segmentation problem for 
a fixed  . α. According to Buchin et al. (2011), for example, an exact solution to this 
problem can be found with a greedy approach in .O(h) time; see Fig. 3.7. 

Since only a finite set of intervals is considered, we know that if a minimal 
solution exists for an .α ∈ [0, 1], it also exists for one of the values bounding the 
intervals in . M. Consequently, we can discretize our search space without loss of 
exactness, and each of the .O(h2) optimality ranges yields at most two candidates 
for the solution. For each of these candidates, a minimum segmentation is computed 
in .O(h) time. Thus, we end up with a total running time of . O(h2 ·(h+SPQ log(Mn))

where n denotes the number of vertices in the graph and h denotes the number of 
vertices in the considered path. Thus, the algorithm is efficient and yields an exact 
solution. The solution consists of the intervals of the balance factor producing the 
best personalized costs with respect to the input criteria.
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3.5.2.3 Experimental Results 

The experiments are set up for an examination of the extent to which cyclists stick 
to official bicycle routes. For this, the following edge costs are defined: 

. 

c0(e) =
{
0, if e is part of an official bicycle route

d(e), else.

c1(e) =
{

d(e), if e is part of an official bicycle route

0, else.

Hence, in the cost function, edge costs . c0 and . c1 are used that, apart from an edge’s 
geodesic length d, depend only on whether the edge in question is part of an official 
bicycle route. Using this definition, a minimal milestone segmentation for . α = 0.5
suggests that minimizing geodesic length outweighs the interest in official cycle 
paths. A value of .α < 0.5 indicates avoidance of official cycle paths, whereas . α >

0.5 indicates the opposite, i.e., preference. 
For the analysis, a total of 1016 cycling trajectories from the user-driven platform 

GPSies1 are used. The map-matching algorithm described in Sect. 3.3 (without the 
extended road network) is used to generate paths in the road network, resulting in 
2750 paths.2 

First, the results of the approach on a single trajectory are presented. Figure 3.8 
shows the path resulting from map matching the trajectory, as well as a minimal 
milestone decomposition for .α = 0.55. In this example, a minimal milestone 
segmentation is found for .α ∈ [0.510, 0.645], resulting in the milestones a, b, and 
c. For  .α = 0.5, i.e., the geometric shortest path, a milestone segmentation takes 
an additional milestone between a and b. For this specific trajectory, the minimal 
milestone segmentation is found for . α values greater than . 0.5. This relates to a 
preference toward officially signposted cycle routes. The increase in milestones for 
.α > 0.645 indicates the upper boundary on the detour the cyclist is willing to take 
to stick to cycle ways. 

Based on the compression algorithm, the set of trajectories is divided into three 
groups PRO, CON, and INDIF. The group PRO comprises trajectories for which 
a milestone segmentation of minimal size is only found for .α > 0.5. Such a 
result is interpreted that way that the trajectory was planned in favor of official 
cycle routes. Conversely, it is considered as avoidance of official cycle routes if 
milestone segmentations of minimal size exist only for .α < 0.5. The group CON 
represents these trajectories. Considering trajectories lacking this clarity, no strict 
categorization into one of the two groups is done. Instead, these trajectories form a 
third group, INDIF. The results of this classification are displayed in Fig. 3.9. The

1 www.gpsies.com, [no longer available], downloaded May 2018. 
2 Trajectories are split by the algorithm at unmatched segments. 

www.gpsies.com
www.gpsies.com
www.gpsies.com
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Fig. 3.8 The user’s path has an optimal milestone segmentation into four optimal subpaths 
.(s, a, b, c, t) presented by white nodes. Officially signposted paths are highlighted in green. 
Disregarding minor shiftings of a and/or b, this is a valid optimal segmentation for each . α ∈
[0.510, 0.645]. For  .α = 0.5, i.e., the geometric shortest path, a milestone segmentation takes an 
additional milestone between a and b 

Fig. 3.9 Size of the categories PRO (green, 998 paths), CON (red, 230 paths), and INDIF (gray, 
1522 paths) 

group PRO being over four times larger than the group CON is a first indicator that 
cyclists prefer official cycle routes over other roads and paths. The group CON is 
the smallest group with a share of . 8% of all paths. One assumption for this result 
is that this group mainly consists of road cyclists who prefer using roads over cycle 
ways. In future research, this could be verified by analyzing a dataset of annotated 
trajectories. 

Overall, more than .50% of the paths are segmented into five .α-optimal subpaths 
or less, resulting in significant compression of the data.
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3.5.3 Minimum Geometric Hitting Set 

The approach described in Sect. 3.5.1 can easily be extended to decide for a set of 
paths (with different source-target pairs) whether there exists a single preference . α
for which they are optimal (i.e., which explains this route choice). It does not work, 
though, if different routes for the same source-target pair are part of the input or 
simply no single preference can explain all chosen routes. The latter seems quite 
plausible when considering that one would probably prefer other road types on a 
leisure trip on the weekend versus the regular commute trip during the week. So, 
the following optimization problem is quite natural to consider: 

Given a set of trajectories T in a multiweighted graph, determine a set A of preferences of 
minimal cardinality, such that each .π ∈ T is optimal with respect to at least one .α ∈ A. 

We call this problem preference-based trajectory clustering (PTC). 
For a concrete problem instance from the real world, one might hope that each 

preference in the set A then corresponds to a driving style, like speeder or cruiser. 
Note that while a real-world trajectory often is not optimal for a single . α, studies 
like in Barth et al. (2020) show that it can typically be decomposed into very few 
optimal subtrajectories if multiple metrics are available. 

In Funke et al. (2016), a sweep algorithm is introduced that computes an 
approximate solution of PTC. It is, however, relatively easy to come up with 
examples where the result of this sweep algorithm is by a factor of .o(|T |) worse 
than the optimal solution. In Barth et al. (2021), we aim at improving this result by 
finding practical ways to solve PTC optimally. Our (surprisingly efficient) strategy 
is to explicitly compute for each trajectory . π in T the polyhedron of preferences for 
which . π is optimal and to translate PTC into a geometric hitting set problem. 

Fortunately, the formulation as a linear program as described in 3.5.1 already 
provides a way to compute these polyhedra. The constraints in the above LP exactly 
characterize the possible values of . α for which one path . π is optimal. These values 
are the intersection of half-spaces described by the optimality constraints and the 
non-negativity constraints of the LP. We call this (convex) intersection preference 
polyhedron. 

Using the preference polyhedra, we are armed to rephrase our original problem 
as a geometric hitting set (GHS) problem. In an instance of GHS, we typically 
have geometric objects (possibly overlapping) in space, and the goal is to find a 
set of points (a hitting set) of minimal cardinality, such that each of the objects 
contains at least one point of the hitting set. Figure 3.10 shows an example of how 
preference polyhedra of different optimal paths could look like in the case of three 
metrics. In terms of GHS, our PTC problem is equivalent to finding a hitting set 
for the preference polyhedra of minimum cardinality, and the “hitters” correspond 
to respective preferences. In Fig. 3.10, we have depicted two feasible hitting sets 
(white squares and black circles) for this instance. Both solutions are minimal in that 
no hitter can be removed without breaking feasibility. However, the white squares
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Fig. 3.10 Example of a 
geometric hitting set problem 
as it may occur in the context 
of PTC. Two feasible hitting 
sets are shown (white squares 
and black circles) 

(in contrast to the black circles) do not describe a minimum solution, as one can hit 
all polyhedra with fewer points. 

While the GHS problem allows picking arbitrary points as hitters, it is not hard 
to see that it suffices to restrict to vertices of the polyhedra and intersection points 
between the polyhedra boundaries or more precisely vertices in the arrangement of 
feasibility polyhedra. 

The GHS instance is then formed in a straightforward manner by having all 
the hitting set candidates as ground set and subsets according to containment 
in respective preference polyhedra. For an exact solution, we can formulate the 
problem as an integer linear program (ILP). Let .α(1), α(2), . . . , α(l) be the hitting 
set candidates and .U := {P1, P2, . . . , Pk} be the set of preference polyhedra. We 
create a variable .Xi ∈ 0, 1 indicating whether .α(i) is picked as a hitter and use the 
following ILP formulation: 

. min
E`

i

Xi

∀ P ∈ U :
E`

α(i)∈P

Xi ≥ 1

∀ i : Xi ∈ {0, 1}

While solving ILPs is known to be NP-hard, it is often feasible to solve ILPs 
derived from real-world problem instances, even of non-homeopathic size. 

3.5.3.1 Theoretical and Practical Challenges 

In theory, the complexity of a single preference polyhedron could be almost 
arbitrarily high. In this case, computing hitting sets of such complex polyhedra is 
extremely expensive. To guarantee bounded complexity, we propose to “sandwich” 
the preference polyhedron between approximating inner and outer polyhedra of 
bounded complexity.



68 A. Forsch et al.

Fig. 3.11 Inner (yellow) and 
outer approximation (gray) of 
the preference polyhedron 
(black) 

For d metrics, our preference polyhedron lives in .d − 1 dimensions, so we 
uniformly .e-sample the unit .(d − 2)-sphere using .O((1/e)d−2) samples. Each of 
the samples gives rise to an objective function vector for our linear program; we 
solve each such LP instance to optimality. This determines .O((1/e)d−2) extreme 
points of the polyhedron in equally distributed directions. Obviously, the convex 
hull of these extreme points is contained within and with decreasing . e converges 
toward the preference polyhedron. Guarantees for the convergence in terms of . e
have been proven before, but are not necessary for our (practical) purposes. We call 
the convex hull of these extreme points the inner approximation of the preference 
polyhedron. 

What is interesting in our context is the fact that each extreme point is defined 
by .d − 1 half-spaces. So we can also consider the set of half-spaces that define 
the computed extreme points and compute their intersection. Clearly, this half-
space intersection contains the preference polyhedron. We call this the outer 
approximation of the preference polyhedron. 

Let us illustrate our approach for a graph with .d = 3 metrics, so the preference 
polyhedron lives in the two-dimensional plane; see the black polygon/polyhedron in 
Fig. 3.11. Note that we do not have an explicit representation of this polyhedron, but 
can only probe it via LP optimization calls. To obtain inner and outer approximation, 
we determine the extreme points of this implicitly (via the LP) given polyhedron, 
by using objective functions .maxα1,maxα2,minα1,minα2. We obtain the four 
solid red extreme points. Their convex hull (in yellow) constitutes the inner 
approximation of the preference polyhedron. Each of the extreme points is defined 
by two  constraints (half-planes supporting the two adjacent edges of the extreme 
points of the preference polyhedron). In Fig. 3.11, these are the light green, blue, 
dark green, and cyan pairs of constraints. The half-space intersection of these 
constraints form the outer approximation in gray. 

3.5.3.2 Experimental Results 

For our experiments, we extracted a weighted graph from OpenStreetMap of the 
German state of Baden-Württemberg with the cost types distance, travel time for 
cars, and travel time for trucks containing about 4M nodes and 9M edges. A set of 
50 preferences were chosen u.a.r. per instance and created a random source target



3 Efficient Mining of Volunteered Trajectory Datasets 69

Table 3.1 Instance 
generation and solving for 
various polyhedra 
approximations. Car graph 
with 1000 paths. Time in 
seconds 

Algo. Polyh. Arr. ILP ILP 

Time Time Sol. Time 

Inner-16 11.3 4.8 45 15.5 

Inner-64 26.9 4.9 39 1.8 

Exact 6.5 5.2 36 0.7 

Outer-64 26.9 5.1 36 0.8 

Outer-16 11.3 5.2 36 1.8 

optimal for those preferences. Our implementation was evaluated on 24-core Xeon 
E5-2630 running Ubuntu Linux 20.04. 

In Table 3.1, we see the results for a set of 1000 paths. Constructing all the 
preference polyhedra exactly costs 6.5 seconds and setting up the hitting set instance 
5.2 seconds. Solving the hitting set ILP took 0.7 seconds and resulted in a hitting set 
of size 36.While in theory, the complexity of the preference polyhedra can be almost 
arbitrarily high, this is not the case in practice. Hence, exact preference polyhedra 
construction is also more efficient than our proposed approximation approaches (in 
the table the rows denoted by Inner-XX and Outer-XX), which also only can provide 
an approximation to the actual hitting set size. 

3.6 Visualizing Routing Profiles 

In the previous sections, we reviewed algorithms to infer the routing preferences 
of a user or a group of users from user-generated trajectories. When applying 
these methods to large trajectory datasets, the trajectories, and thus the users, can 
be clustered according to their routing behavior. Each cluster has a characteristic 
routing behavior, expressed as a vector .α ∈ [0, 1]d of weighting factors of 
the d different influence factors. On the one hand, these weighting factors are 
very important for improving route recommendation because they can directly be 
used to compute optimized future routes. On the other hand, the information on 
the weighting can be used for planning purposes, e.g., for planning new cycling 
infrastructure. For this use case, the mathematical representation of the routing 
preference is not useful, as it is hard to interpret. In this section, we review an 
alternative representation of routing preferences based on isochrone visualizations 
geared specifically at a fast and comprehensive understanding of the cyclist’s needs. 
Isochrones are polygons that display the area that is reachable from a given starting 
point in a specific amount of time and are often used for network analysis, e.g., 
for public transportation (O’Sullivan et al. 2000) or the movement of electric cars 
(Baum et al. 2016). For most routing profiles, time is not the only influencing factor. 
Therefore, the definition of isochrones is slightly altered, and polygons that display 
areas reachable within a certain amount of effort a user is willing to spend instead 
of a fixed time are used. This effort is dependent on the specific routing preferences.
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Even though these polygons do not display times anymore, they will be called 
isochrones in the following. The visual complexity of the isochrones is reduced 
by using schematized polygons where the polygon’s outline is limited to horizontal, 
vertical, and diagonal segments. This property is called octilinearity. The isochrones 
created with the presented approach guarantee a formally correct classification of 
reachable and unreachable parts of the network. 

3.6.1 Methodology 

The methodology for computing schematic isochrones for specific routing profiles 
can be split up into two major components: the computation of reachability and the 
generation of the isochrones. 

Computing Reachable Parts of the Road Network The first step for displaying 
the routing profiles is computing the reachability in the road network, modeled as 
a directed graph . R, for the given profile. Recall the routing model from Sect. 3.5.1, 
where the personalized cost is the linear combination of the inherent costs in the 
road network and the user’s preference, expressed as . α. Thus, given a specific 
preference, e.g., computed by the methods presented in Sect. 3.5.2 or Sect. 3.5.3, 
we can compute the personalized costs in our graph. The sum of the personalized 
costs of the edges along an optimal route from s to t is called the effort needed 
to get from s to t . Shortest path algorithms such as Dijkstra’s algorithm (Dijkstra 
1959) can be used to compute optimal routes from a given starting location to all 
other locations in the road network. Such an algorithm is used to compute all nodes 
in . R that are reachable within a given maximum effort. This information is stored 
by coloring the reachable nodes blue and the unreachable nodes red. Further, the 
road network graph . R is planarized to obtain a graph . R whose embedding is planar, 
that is, there are no crossings between two edges. This is done by replacing each 
edge crossing with an additional node and splitting the corresponding edges at these 
crossings. 

Generating the Isochrones Given the node-colored road network, we proceed by 
generating the polygon that encloses all reachable nodes, the isochrones. For this, 
we first extend the node coloring of the graph to an edge coloring by performing 
the following steps. For each edge e that is incident to both a blue and a red node, 
we determine the location on e that is still reachable from s; see Fig. 3.12a. At this 
location, we subdivide e by a blue dummy node. A special case occurs when the 
sum of the remaining distances at two adjacent, reachable nodes u and v is smaller 
than the length of the edge .e = {u, v}; see Fig. 3.12b. In this case, e is subdivided 
by two additional dummy nodes, with the middle part being colored red. Further, 
the coloring and the newly inserted nodes are transferred into the planarized graph 
. R, additionally coloring the nodes that have been introduced to planarize . R; see  
Fig. 3.12c. Each such node becomes blue if it subdivides an edge e in . R that is only 
incident to blue nodes; otherwise, it becomes red. Altogether, we obtain a coloring
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Fig. 3.12 The reachability is modeled by subdividing edges. (a) The node x (resp. y) subdivides 
the edge .(u, v) (resp. .(u,w)) at the last reachable position. (b) Special case: The nodes u and v are 
reachable from different directions. (c) The coloring of . R is transferred to . R, and the nodes that are 
introduced for the planarization (squares) are colored 

Fig. 3.13 Creating an octilinear polygon enclosing the component . C1 of all reachable nodes and 
edges. (a) The faces .f1, . . . , f5 surround the component . C1. (b) Each face is subdivided by an 
octilinear grid (Step 1). Furthermore, these grids are connected to one large grid G that is split 
by the port between . f1 and . f5 (Step 2). (c) An octilinear polygon is constructed by computing a 
bend-minimal path through G (Step 3) 

of . R, defining all nodes either blue or red. Due to the insertion of the dummy nodes, 
this node coloring induces an edge coloring: edges that are incident to two reachable 
nodes are also reachable, and all other edges are unreachable. 

Given the colored planar graph . R, we first observe that . R has faces that have 
both red and blue edges. An edge that is incident to both a blue and a red node is 
called a gate. Further, the reachable node of a gate is denoted its port. Removing  
the gates from . R decomposes the graph into a set of components .C1, . . . , Cl such 
that component . C1 is blue and all other components are red. These components are 
called the colored components of . R. Figure 3.13a shows the gates and the colored 
components for an example graph. 

Given the colored components, we are looking for a single octilinear polygon 
such that . C1 lies inside and .C2, . . . , Cl lie outside of the polygon. Our method 
consists of three steps, displayed in Fig. 3.13. In the first step, we create for each 
pair . vi , .vi+1 of consecutive ports an octilinear grid . Gi contained in . fi . In the second 
step, we fuse these grids to one large grid G. In the final step, we use G to determine 
an octilinear polygon by finding an optimal path through G.
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Fig. 3.14 The face . f2 of the example shown in Fig. 3.13 is subdivided by octilinear rays based 
on vertices on the bounding box. (a) Shooting octilinear rays from . vi and .vi+1 does not yield a 
connected line arrangement (see yellow highlight). (b–c) The bounding box of . f1 is successively 
refined by vertices shooting octilinear rays until they connect . vi and . vi+1

Step 1 For each pair . vi , .vi+1 of consecutive ports with .1 ≤ i ≤ k, we first compute 
an octilinear grid . Gi that is contained in . fi and connects . vi and .vi+1; see Fig. 3.14. 
To that end, we shoot from both ports octilinear rays and compute the line segment 
arrangement . L of these rays restricted to the face . fi ; see Fig. 3.14a. If . L forms one 
component, we use it as grid . Gi . Otherwise, we refine . L as follows. We uniformly 
subdivide the bounding box of . fi by further nodes, from which we shoot additional 
octilinear rays; see Fig. 3.14b. We insert them into . L restricting them to . fi . We call 
the number of nodes on the bounding box the degree of refinement d. We double 
the degree of refinement until . L is connected or a threshold .dmax is exceeded; see 
Fig. 3.14c. In the latter case, we also insert the boundary of . fi into . L to guarantee 
that . L is connected. Later on, when creating the octilinear polygon, we only use the 
boundary edges of . fi if necessary. 

Step 2 In the following, each grid . Gi is interpreted as a geometric graph, such that 
the grid points are the nodes of the graph and the segments connecting the grid 
points are the edges of the graph. These graphs are unioned into one large graph 
G. More precisely, G is the graph that contains all nodes and edges of the grids 
.G1, . . . ,Gk . In particular, each port . vi is represented by two nodes . xi and . yi in G 
such that . xi stems from .Gi−1 and . yi stems from . Gi ; for  .i = 1, we define .x1 = vk . 
Two grids .Gi−1 and . Gi in G are connected by introducing the directed edge . (xi, yi)

in G for .2 ≤ i ≤ k. 

Step 3 In the following, let .s := y1 and .t := x1. A path P from s to t in G is 
computed such that P has a minimum number of bends, i.e., there is no other path 
from s to t that has fewer bends. To that end, Dijkstra’s algorithm on the linear dual 
graph of G is used, allowing us to penalize bends in the cost function. In case the 
choice of P is not unique because there are multiple paths with the same number 
of bends, the geometric length of the path is used as a tie-breaker, preferring paths 
that are shorter. As s and t have the same geometric location, the path P forms an 
octilinear polygon.
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In some cases, . C1 contains one or multiple holes, i.e., one or more of the 
components .C2, . . . , Cl are enclosed by . C1. We deal with this in the following 
way. For each enclosed component . C∗, the road network . R is recolored, such that 
. C∗ is blue and all other parts of the network are red. We then proceed by computing 
the enclosing polygon for . C∗ as outlined for . C1 above and subtracting the resulting 
polygon from the isochrone of . C1. After this step, the isochrone is guaranteed to 
contain all parts of the road network that are reachable and none of the parts that are 
unreachable. We call this the separation property. 

3.6.2 Application 

Recall the classification of cyclists in Sect. 3.5.2. The cyclists are clustered accord-
ing to their usage of officially signposted cycle routes. Two different classes are 
introduced, PRO and CON, with preference values of .αPRO > 0.5 and .αCON < 0.5. 
In Fig. 3.15, these two classes are visualized by isochrones with .α = 0.65 for group 
PRO and .α = 0.45 for group CON. In Fig. 3.15a, the isochrones are stretched out 
very far in the east-west direction along the course of an official cycling route, 
reflecting the preference of a cyclist in group PRO for officially signposted cycle 
ways. Moreover, the isochrones are clinched in the north-south direction, revealing 
a deficit in the road network in this direction for this group of cyclists: while it is 
possible to get to these areas, the perceived distance will be much longer than in 
the east-west direction. Figure 3.15b highlights the routing profile for cyclists of the 
group CON. The isochrones for this routing profile are almost circular, stretching 
a similar distance in all directions. This is because in most cases, there is a non-
signposted road very close to a signposted road, such that avoiding these signposted 

Fig. 3.15 Two routing profiles visualized as isochrones. Roads (black) highlighted in blue are part 
of signposted cycling routes. Displayed are the areas that are reachable for a cyclist in group PRO 
(a) and  CON (b) within four distinct values of maximum effort (encoded by different brightness 
values)
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roads does not involve large detours and is often as easy as just switching to the 
road from the existing cycling lane. This routing profile is thus probably much less 
relevant for planning purposes. 

3.7 Conclusion and Future Work 

We have presented efficient algorithmic approaches to process and mine huge 
collections of trajectory datasets and demonstrated their usefulness on volunteered 
data. The next step is integrating our methods as well as other existing ones into 
an openly available trajectory processing pipeline, which will be flexibly adapted 
and augmented to cater for a specific application scenario by the user. This would 
allow others to easily access and benefit from our developed tools. For example, 
our anonymization as well as indexing and storing methods could be very useful 
for the VGI challenges discussed in Part III of this book. In the very next chapter, 
the focus will be on animal trajectories. Here, anonymization is less of an issue, but 
efficient mining and visualization tools are crucial. With the rich set of applications 
for trajectory mining occurring across all VGI domains, we see a clear demand for 
further development and improvements of algorithms to explore and learn from the 
information hidden in volunteered trajectory collections in the best possible way. 
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Chapter 4 
Uncertainty-Aware Enrichment of 
Animal Movement Trajectories by VGI 

Yannick Metz and Daniel A. Keim 

Abstract Combining data from different sources and modalities can unlock novel 
insights that are not available by analyzing single data sources in isolation. We 
investigate how multimodal user-generated data, consisting of images, videos, or 
text descriptions, can be used to enrich trajectories of migratory birds, e.g., for 
research on biodiversity or climate change. Firstly, we present our work on advanced 
visual analysis of GPS trajectory data. We developed an interactive application that 
lets domain experts from ornithology naturally explore spatiotemporal data and 
effectively use their knowledge. Secondly, we discuss work on the integration of 
general-purpose image data into citizen science platforms. As part of inter-project 
cooperation, we contribute to the development of a classifier pipeline to semi-
automatically extract images that can be integrated with different data sources to 
vastly increase the number of available records in citizen science platforms. These 
works are an important foundation for a dynamic matching approach to jointly 
integrate geospatial trajectory data and user-generated geo-referenced content. 
Building on this work, we explore the joint visualization of trajectory data and 
VGI data while considering the uncertainty of observations. BirdTrace, a visual 
analytics approach to enable a multi-scale analysis of trajectory and multimodal 
user-generated data, is highlighted. Finally, we comment on the possibility to 
enhance prediction models for trajectories by integrating additional data and domain 
knowledge. 

Keywords Visualization · Trajectory data · User-generated con tent · Animal 
tracking 
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4.1 Introduction 

Our goal is to integrate and match the two heterogeneous large data sources to 
enrich the spatial databases with contextual information. Furthermore, we want to 
investigate in detail the uncertainty that is found in different VGI data sources. In 
this chapter, we describe our research toward this goal, by focusing on three core 
contributions: 

1. Visual-interactive analysis of GPS trajectory data for domain experts 
2. The usage of additional non-verified data sources for VGI in the context of 

birdwatching 
3. A joint approach to analyze GPS trajectory data and VGI contributions con-

sidering the uncertainty that, e.g., was introduced by the previous extraction of 
non-verified data 

Additionally, we present work on using visual analytics for the training of deep 
learning models for movement prediction, which can support future research in 
domains of geographic information science and forecasting for biologging data. 

In the following, we first present the relevant background that motivates our 
research. Subsequently, we describe pursued research contributing to the aforemen-
tioned points, done in conjunction with domain experts or in close collaboration 
with other partners of the priority program. Finally, we give a brief outlook on 
possible future research directions. 

4.2 Related Work 

VGI contains insight that has the potential to solve fundamental and unsolved 
social and environmental challenges. The big scientific challenge consists of how 
to investigate and extract value from noisy VGI data sources. Coxen et al. (2017) 
stressed that there is a general concern about spatial biases in citizen science 
datasets. Geldmann et al. (2016) also underline that untrained volunteers might 
be introducing biases, leading to spatial biases toward densely populated areas 
and easy-to-watch observations. Integrating and assimilation of VGI into scientific 
models requires a change of paradigm that embraces uncertainty and bias. Some 
popular citizen science initiatives have already tried to assimilate VGI to improve 
the results of biodiversity models. Since 2002, the eBird project has been gathering 
bird observation records from volunteers around the world. The participation of 
volunteers has shown a rapid increase in recent years with millions of observations 
submitted each year. Since then, more than 500,000 users have visited the eBird 
website (Sullivan et al. 2009). Kelling et al. (2012) proposed a Human/Computer 
Learning Network for Biodiversity Conservation incorporating VGI coming from 
eBird using an active learning feedback loop to improve the results of the AI 
algorithms. Fink et al. (2010, 2013) introduced a spatiotemporal exploratory model,
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STEM, and AdaSTEM, to study species distribution models. They used massively 
crowdsourced citizen science data to construct the corresponding models. The 
STEM model was afterward integrated into a visual analytics system, BirdVis 
(Ferreira et al. 2011), that allows the ornithologist to analyze abundance models 
to understand better bird populations. Coxen et al. (2017) compare two species 
distribution models using satellite tracking data vs. citizen science datasets coming 
from eBird datasets. Their results showed the effectiveness of citizen science 
datasets for this particular use. In other disciplines, such as atmospheric sciences, 
the shift to the user-generated information paradigm is even harder. Chapman et al. 
(2017) stated that in atmospheric science, high-quality and precise observation is 
deeply rooted in the essence of the discipline and other data sources with low-
quality, bias, and imprecision are hard to accept. Other antecedents to understanding 
bird migration behavior and patterns are the work of Jain and Dilkina, who 
constructed a migration network using K-means clustering and Markov chain model 
(Jain and Dilkina 2015), and the tool of Wood et al., where they studied the seasonal 
behavior of bird species within a specific location (Wood et al. 2011). There is 
also previous work to understand the quality of the observations and uncertainty 
of the models, by characterizing bird watchers. Cole and Scott in 1999 used Texas 
Conservation Passport holders and members of the American Birding Association 
to categorize differences between two different groups of wildlife watching as 
casual wildlife watchers and serious birders (Cole and Scott 1999). These two 
groups were defined by their skill level at identifying birds, the frequency of 
participation, expenditures, and bird-watching behavior. Afterward, Scott conducted 
another study with Thigpen (Scott and Thigpen 2003) to understand bird watchers’ 
behavior. Data were collected from the bird-watching festival in September 1995 
at the Seventh Annual HummerBird Celebration in Rockport/Fulton, Texas. In 
Scott and Shafer (2001), specialization was measured with regard to birdwatcher 
behavior, level of skill, and commitment. Based on the this, they categorized 
birders into casual, interested, active, and skilled birders. The outcomes of the 
study by Scott and Thigpen have supported McFarlane’s investigation of birders 
in Alberta (McFarlane 1994). She revealed that .80% of the general population in 
her example were casual or novice birders. This information could be very valuable 
to quantify the confidence of VGI observations. Previous work shows a glimpse of 
the unprecedented opportunity to materialize a change in the way scientific models 
treat data, changing the VGI data paradigm to embrace the uncertainty and bias of 
data provided by humans as part of the scientific investigation process. From now 
on, a fascinating endeavor comprises for us the development of new techniques that 
can bridge the gap between social, exact, and natural sciences by using VGI as an 
interlinkage among biodiversity and human behavior to provide effective and timely 
answers to societal calls such as climate change and nature preservation. 

Previous work has shown how geo-tagged social media data reflects the spa-
tiotemporal distribution of social groups (MacEachren et al. 2011). For example, 
scatterplots combine event detection and classification in investigating the geo-
tagged social media, to enable situation awareness (Thom et al. 2012; Cao et al. 
2012) for geospatial information diffusion. Our preliminary work in this area covers
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the dynamics of social groups and their expressions on social media. Our work on 
social media bubbles (Diehl et al. 2018) is the first step toward the structuring of 
complex social relationships on social media. The main connection point between 
the social group structure as the scaffolding of society and VGI is the uncertainty 
that humans introduce into the data and the trustworthiness of systems consumed by 
humans. This work addresses different aspects of uncertainty from a practical point 
of view. Our work on the visual assessment for visual abstractions (Sacha et al. 
2017) addresses the trustworthiness of the users in the systems for the particular 
case of soccer data. The works above addressed the uncertainty from the perspective 
of the producer of VGI and the trustworthiness of the users on the systems. During 
the last few years, the study of uncertainty and its propagation through the visual 
analytics workflow have gained popularity. Early, in 2015, MacEachren proposed 
to consider the propagation of uncertainty through the whole VA workflow rather 
than just the visualization of the uncertainty at the end of the pipeline (MacEachren 
et al. 2011). He illustrated current challenges and possible approaches to tackle 
uncertainty using definitions from decision sciences. Kinkeldey et al. analyzed 
the impact of visually represented geodata uncertainty on decision-making and 
addressed possible approaches for the evaluation of uncertainty in visualizations. 
Previously, we tackled the uncertainty aspects of VGI using a theoretical framework 
(Diehl et al. 2018), which, for the first time, shapes the human factors of uncertainty 
in VGI and defines a new term “user uncertainty” to enclose them. 

4.3 Analysis of GPS Trajectory Data 

We start by looking at an analysis that is possible for stand-alone trajectory data in 
the biologging context. Analysis tools, both visually and algorithmically, build the 
foundation for our goal of enabling a joint approach for trajectory data and voluntary 
geographic information. 

4.3.1 Motivation and Research Gap 

Segmenting biologging time series of animals on multiple temporal scales is an 
essential step that requires complex techniques with careful parameterization and 
possibly cross-domain expertise. Yet, there is a lack of visual-interactive tools 
that strongly support such multi-scale segmentation. To close this gap, we present 
our MultiSegVA platform for interactively defining segmentation techniques and 
parameters on multiple temporal scales in our paper MultiSegVA: Using Visual 
Analytics to Segment Biologging Time Series on Multiple Scales (Meschenmoser 
et al. 2020). MultiSegVA primarily contributes tailored, visual-interactive means 
and visual analytics paradigms for segmenting unlabeled time series on multiple 
scales. Further, to flexibly compose the multi-scale segmentation, the platform
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contributes a new visual query language that links a variety of segmentation tech-
niques. To illustrate our approach, we present a domain-oriented set of segmentation 
techniques derived in collaboration with movement ecologists. In the paper, the 
applicability and usefulness of MultiSegVA are demonstrated in two real-world use 
cases from movement ecology, related to behavior analysis after environment-aware 
segmentation and after progressive clustering. Expert feedback from movement 
ecologists shows the effectiveness of tailored visual-interactive means and visual 
analytics paradigms in segmenting multi-scale data, enabling them to perform 
semantically meaningful analyses. Here, we want to highlight two key aspects of the 
work, the characteristics of biologging time series data and the respective analysis, 
as well as how we can support this process within the visual analytics framework. 
For further details, we refer to the paper of Meschenmoser et al. (2020). For our 
work, we focus on biologging time series of moving animals: these time series have 
prototypical multi-scale characters and include widely unexplored behaviors, which 
are hidden in high resolutions and cardinalities. Additionally, biologging-driven 
movement ecology is an emerging field (Brown et al. 2013; Shepard et al. 2008), 
triggered by technical advances that enable academia to address open questions in 
innovative ways. The biologging time series stems from miniaturized tags and gives 
high-resolution information about, e.g., an animal’s location, tri-axial acceleration, 
and heart rate. Here, semantics are typically distributed on diverse temporal scales, 
including life stages, seasons, days, day times, and (micro)movement frames. These 
temporal scales are complemented by spatial scales concerning, e.g., the overall 
migration range, migration stops, and foraging ranges. There are complex scale-
and context-specific conditions (Benhamou 2014; Levin 1992), implying different 
energy expenditures, driving factors, and decisions for behavior. Hence, segmenting 
such time series on a single scale with global parameters does not sufficiently 
address their multi-scale character. The relevance of multi-scale segmentation can 
be further motivated by three reasons. First, analysts can deepen their understanding 
of how scales relate to each other: e.g., in terms of nesting relations, next to relative 
scale sizes and types. A multi-scale perspective can even enable one “to gain 
an insight on an entire knowledge domain or a relevant sub-part” (Nazemi et al. 
2015). Second, even without labeled data or thoroughly parameterized single-scale 
techniques, it is possible to identify fine-grained patterns that are wrapped by lower-
scale, context-yielding patterns. Such fine-grained and context-aware patterns are 
crucial to enriching existing classification and prediction models. Third, demands 
for more multi-scale analyses originate from domain literature. Such demands can 
be found in movement ecology and analysis (Andrienko and Andrienko 2013; 
Demšar et al. 2015), but also in, e.g., medical sciences (Alber et al. 2019) and 
social sciences (Cash et al. 2006). However, in practice, segmenting time series 
on multiple scales is often impeded by several factors. First, multi-scale techniques 
rely on more in-depth, theoretical foundations and inherent parameters that need to 
be carefully adapted. Therefore, analysts (e.g., movement ecologists) might require 
cross-domain expertise in statistical multi-scale time series analysis. Second, even 
with such expertise, it is difficult to decide on scale properties (e.g., size, dimension, 
number of scales) and further parameters. Third, we observe a lack of suitable
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visual-interactive approaches in related works (Sect. 3.2) that can strongly support 
and promote segmenting time series on multiple scales. 

For MultiSegVa, we defined four requirements in cooperation with domain 
experts: 

1. An application that integrates analysis tools at different time scales without the 
need to manually combine different algorithms or libraries. 

2. Support time series segmentation by revealing the multi-scale structure and 
addressing its specifics. 

3. The analysis should be able to flexibly parameterize segmentation algorithms to 
the specific context. 

4. Visual-interactive features that can help the analysts’ work. 

4.3.2 Approach 

To close the research gap of enabling multi-scale analysis of biologging time 
series, we present our web-based MultiSegVA platform that allows analysts to 
visually explore and refine a multi-scale segmentation, which results from a simple 
way of setting segmentation techniques on multiple scales. In the context of 
multi-scale segmentation, MultiSegVA primarily contributes to the use of tailored 
visual-interactive features and established VA paradigms. To flexibly configure 
segmentation techniques and parameters, MultiSegVA includes a new visual query 
language (VQL, C2) that links a variety of segmentation techniques across multiple 
scales. These techniques stem in the present case from a set that was derived together 
with movement ecologists and covers typical domain use cases. Figure 4.1 shows 
the main window of the MultiSegVA system. Here, the analyst can build visual 
queries and analyze the existing segmentation results in a hierarchy visualization, 

Fig. 4.1 A screenshot from MultiSegVA
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Fig. 4.2 The visual query language interface: In the left column, multiple time series segmentation 
methods can be selected. The hierarchy of applied methods can be changed via an interactive 
interface, shown in the second column. Finally, detailed settings for each method can be changed 
in the third column 

which in turn is closely linked to one- and multidimensional time series plots. 
It is also possible to access additional details of segments via a temporal detail 
window or inspect the underlying trajectories on a map. MultiSegVA implements 
a feedback loop for iterative analysis and refinement of the segmentation. After 
importing a time series, e.g., GPS trajectory data of tracked animals via Movebank 
(Wikelski M 2023), the analyst can start to analyze the time series. After an initial 
visual inspection of the time series dimensions, an analyst can steer hierarchical 
time series segmentation using the visual query language (VQL). The interface 
is shown in Fig. 4.2. The VQL serves three purposes here: (1) Different types of 
segmentation techniques can be easily arranged across different time scales, (2) 
the hierarchical application order can be defined by manipulating with building 
blocks, and (3) the chosen techniques can be interactively parameterized. The query 
interface first provides a list of available techniques organized by category and 
can recommend appropriate techniques. To modify the hierarchical application of 
techniques, selected techniques are arranged as visual building blocks which can be 
modified by drag-and-drop interactions. This can alleviate some issues that arise 
with text-based queries. In particular, it avoids changing the ordering of nested 
queries, which can be tedious and error-prone in text-based queries. The query 
language also provides several selectors and operations to chain and link different 
techniques at the same or different scales. The finalized query is then processed in 
the backend of the application, and the results are visualized via the icicle hierarchy 
view; see the top of Fig. 4.1. The analyst can choose to adapt the query based on the 
achieved results to iteratively improve the segmentation results and get a detailed 
understanding of the time series data.
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4.3.3 Results 

MultiSegVA enables the comprehensive exploration and refining of multi-scale 
segmentation by tailored visual-interactive features and VA paradigms. MultiSegVA 
includes segment tree encoding, subtree highlighting, guidance, density-dependent 
features, adapted navigation, multi-window support, and a feedback-based work-
flow. The VQL facilitates exploring and parameterizing different multi-scale struc-
tures. Still, a few aspects remain for further reflection. The icicle visualization 
meets expert requests and has several benefits. Yet, guiding the user by color 
to interesting parts of the segment tree is a challenging task. We tested global, 
level-based, and sibling-based guidance variants according to color fills. We chose 
sibling-based guidance (i.e., all siblings of one hovered segment are colored) that 
optimally captures local similarities while requiring more navigation effort across 
levels and nodes. Upcoming works will include an even more effective variant, 
i.e., guidance to local similarities with little interaction and one fixed color scale. 
Our VQL makes it trivial to build a multi-scale segmentation. Query building 
is a play with building blocks that benefits from strong abstraction and simple 
interactions. Rather, it is difficult to decide which multi-scale structure and building 
blocks are most appropriate: a decision that depends on data, analysis, and tasks. 
MultiSegVA facilitates this decision through extensive documentation, technique 
categorization, few technique parameters, and short processing times in a compact 
workflow. For further support, we plan predefined queries, and instant responses 
at query building, next to the parameter and technique suggestions. For suggesting 
parameters, we will apply estimators (Catarci et al. 1997; Yao  1988) for the number 
of change points as well as the elbow method for knn-searches. While motif length 
and HDBSCAN’s minPts (Campello et al. 2013) optimally benefit from domain 
expertise, suggesting other parameters will simplify the interaction and can address 
another limitation. Now, a technique processes each segment of one scale with 
the same parameters; thus, slight data-dependent parameter modifications will be 
examined. For technique suggestions, we envision for each technique a scale-wise 
relevance score that reflects data properties and is part of a rule-based prioritization, 
shaped by domain expertise and meaningful hierarchies. It is essential to depict the 
semantics into which MultiSegVA can provide insights. First of all, MultiSegVA 
illuminates diverse multi-scale structures and gives insights into how scales relate 
to each other. Coarse behaviors can be distinguished by relatively simple techniques, 
motifs show repetitive behaviors, and knn-searches allow the matching with already 
explored segments. Segment lengths and similarities can be explored, next to local 
anomalies and spatial contexts. However, with the current techniques, it is difficult 
to broadly capture deeper, behavioral semantics (e.g., chew, scratch). Hereto more 
complex or learning techniques (e.g., HMMs, SVMs) will be needed that neither 
overfill the interface nor delimit generalizability due to the lack of learned patterns. 
The latter point goes hand in hand with our major limitation and the corresponding 
implication for upcoming work: integrating even more intelligent methods and 
automatism. These plans all relate to aspects from above, i.e., better guidance,
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technique, and more parameter suggestions, as well as techniques for deeper 
behavioral semantics. MultiSegVA relies on requirements from movement ecology 
experts and stands for an iterative, extensively collaborative, and interdisciplinary 
process. We can gather domain feedback on several stages, derive a domain-oriented 
set of techniques, and even link MultiSegVA to Movebank with .>2.2 billion animal 
locations. With this application domain-focused, MultiSegVA underpins the value of 
multi-scale analyses and is certainly another step forward “to empower the animal 
tracking community and to foster new insight into the ecology and movement of 
tracked animals” (Spretke et al. 2011). Meanwhile, our third use case shows that 
MultiSegVA variants for other domains are conceivable, especially with tailored 
domain-oriented technique sets. This generalizability is promoted by the platform’s 
I/O features and its ability to handle heterogeneous time series, with .>1.2 million 
records. 

4.4 Analysis of VGI Contributor Data 

In joint collaborative work with partners of the priority program, we investigate the 
utility of using a novel pipeline based on a deep learning-based image classifier 
to integrate images from the social media platform Flickr with data from citizen 
science platforms: A text and image analysis workflow using citizen science data to 
extract relevant social media records: combining red kite observations from Flickr, 
eBird and iNaturalist (Hartmann et al. 2022). In our research agenda, this work 
serves a dual role: (1) We explore the characteristics of VGI image data in our 
chosen domain of migratory birds, as well as automated integration techniques, 
and (2) we integrate contributions from non-verified data sources, which directly 
connects to the research topic of uncertainty in data sources. Specifically, the 
confidence of the developed classification pipeline might be directly used as an 
uncertainty measure for the matching process we introduce in the following chapter. 

4.4.1 Motivation and Research Gap 

There is an urgent need to develop new methods to monitor the state of the envi-
ronment. One potential approach is to use new data sources, such as user-generated 
content, to augment existing approaches. Despite a wide range of works discussing 
and demonstrating the potential of new data forms in the creation of indicators, we 
could not identify previous research which explicitly created a workflow designed 
to integrate data from different sources and of different modalities. Furthermore, 
although the properties of different forms of UGC are relatively well understood, 
they have not been effectively used to develop reproducible workflows. Finally, most 
studies evaluate the quality of extracted information in isolation through metrics 
such as precision and recall, but do not explore the added value of integrating data.
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In the paper, we propose, implement, and evaluate a workflow taking advantage 
of citizen science data documenting and recording sightings of birds and more 
specifically red kites (Milvus milvus). Analyzing social media data until recently 
has often used simple keyword-based methods to perform an initial filtering or 
search step, meaning that content tagged in other ways was not found. However, 
improvements in content-based classification now mean that it is also possible to 
use off-the-shelf, pre-trained algorithms to reliably identify predefined classes such 
as the presence of buildings, people, or birds in image data with reasonable accuracy. 

4.4.2 Approach 

We take a new approach, using citizen science projects recording sightings of red 
kites (Milvus milvus) to train and validate a convolutional neural network (CNN) 
capable of identifying images containing red kites. This CNN is integrated into a 
sequential workflow that also uses an off-the-shelf bird classifier and text metadata 
to retrieve observations of red kites in the Chilterns, England. Our workflow reduces 
an initial set of more than 600,000 images to just 3065 candidate images. Manual 
inspection of these images shows that our approach has a precision of 0.658. A 
workflow using only text identifies .14% fewer images than that including image 
content analysis, and by combining image and text classifiers, we achieve an almost 
perfect precision of 0.992. Images retrieved from social media records complement 
those recorded by citizen scientists spatially and temporally, and our workflow is 
sufficiently generic that it can easily be transferred to other species. 

Flickr is a social media site, where individuals can upload photographs and 
metadata, including tags and locations in the form of coordinates. Flickr’s usage 
has declined in recent years, but it remains very popular in research, mostly because 
of its well-documented and easy-to-use API, which allows querying using search 
terms and bounding boxes. Our citizen scientist data came from two platforms: 
iNaturalist and eBird. iNaturalist allows participants to upload images of organisms 
such as plants and insects to the platform and use its community to crowdsource 
taxonomic identification. Currently, according to their website (https://inaturalist. 
org), iNaturalist hosts nearly 100 million observations of over 375000 species and 
is, therefore, one of the largest and most successful citizen science projects to date 
(Unger et al. 2020). eBird has similar features to iNaturalist but as a platform is 
exclusively specialized in bird observations. Their website states (https://ebird.org) 
that “eBird is among the world’s largest biodiversity-related science projects, with 
more than 100 million bird sightings contributed annually.” It predominantly hosts 
observation location data, but also corresponding bird images, as well as bird sounds 
(Sullivan et al. 2009; Wood et al. 2011). 

Since our workflow is designed to be generic, take advantage of the text and 
image data, and combine records from citizen science reports with social media data, 
it uses a combination of a simple rule-based approach, existing pre-trained models, 
and a model trained specifically for our target species. Our approach is designed

https://inaturalist.org
https://inaturalist.org
https://inaturalist.org
https://ebird.org
https://ebird.org
https://ebird.org
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to take advantage of what we assume to be high-quality data collected by citizen 
scientists with an interest in ornithology, use off-the-shelf models where possible, 
and reduce the initial number of social media posts in a given region to a manageable 
size for manual verification. In the following, we want to give a summary of the 
proposed workflow: 

1. We identify all geo-tagged social media records in a study area (in our case, the 
Chiltern Hills area in the UK). 

2. Out of the identified records, we assign all records that contain the Latin name 
of our target species Milvus milvus to our result set. We assume that users 
familiar with the biological taxonomy are experts and thus treat these records 
as trustworthy. 

3. We use a generic image classification model to identify images that contain birds 
(with a confidence threshold of p. B 0.5). These retained images are then processed 
further. 

4. For these filtered images, we use metadata such as title or description to identify 
records that are highly likely Red Kites, e.g., because the description contains 
the common name in a European language (such as “Red Kite” or “Rotmilan” 
(German)). We include these images in the result set. 

5. We use a secondary image classifier trained on citizen science data to identify 
images that likely are red kites (with a confidence of .pRK > 50%). These are 
also added to the final set of candidate images. 

6. As a final step, we assume that an expert can manually verify the extracted 
images. As the workflow significantly reduces the set of candidate images, this 
task becomes feasible and ensures high data quality. 

The workflow creates a high-confidence dataset of images that can be integrated 
with existing citizen science platform data. As part of the paper, we ran a detailed 
study of the characteristics of the different data sources, namely, Flickr, eBird, and 
iNaturalist. In the chosen target area, we compare (1) spatial coverage, (2) temporal 
distribution, (3) contributor patterns, as well as (4) image data quality. 

4.4.3 Results 

Our workflow aimed to extract relevant images of red kites from Flickr data and to 
use these to complement citizen science records from eBird and iNaturalist. In the 
following, we, therefore, explore the following aspects of the results we obtained: 

• How effective is our workflow at extracting relevant red kite images, and how 
much added value is obtained through the use of both text and image content? 

• What are the properties of the extracted records within our study area, and do the 
social media data complement the citizen science platforms? 

The workflow returned 3065 candidate images, downsampling the original 
dataset by 99.5%. These images were then individually inspected to identify true
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Table 4.1 Precision using different combinations of the components in the workflow 

approach included posts true positives precision 

only visual data 2763 1723 0.624 

only text data 2215 1946 0.878 

initial workflow 3065 2017 0.658 

text . + visual data (final workflow) 3559 2262 0.636 

and false positives and allow us to calculate the precision. Images were marked as 
true positives if a red kite was identifiable in an image. This meant that images had 
to be sufficiently clear, such that distinctive features of red kites (e.g., their forked 
tails or red-brown coloring) were visible. Images where a bird was visible, but not 
unambiguously identifiable, images showing feathers or pellets, and images that 
were obviously irrelevant were all marked as false positives. A total of 2017 records 
were thus identified as true positives, with 1048 false positives and a resulting 
precision for the complete workflow of 0.658. 

To understand the benefits of text and image analysis, we ran the compo-
nents of the workflow individually and annotated any additional images extracted 
(Table 4.1). 

1. In the textual workflow setting, records were returned if either the Latin name 
or a common name for red kite (in six language variations) were detected. This 
approach identified 2215 posts, of which 1946 were true positives and 269 false 
positives, resulting in a precision of 0.879. 

2. In the visual workflow setting, only visual information was considered. A post 
was considered relevant and included if both the bird model and red kite model 
return a probability above 50% for the given image. This approach returned 2763 
included posts, of which 1723 were true positives and 1040 were false positives, 
giving a precision of 0.624. 

We found 1419 Flickr posts that were included by both settings, of which 1407 
were true positives. This means that by only retaining candidate records identified 
by both textual and image-based information, we can achieve an almost perfect 
precision of 0.992. We then checked for records that were exclusively identified by 
either text or image analysis. Five hundred and thirty-nine posts were only detected 
by the textual analysis (point 1 in the list above), and 316 were only detected by 
the visual analysis (point 2 in the list above). Combining these results leads to a 
total of 3559 records, of which 2262 are true positives and 1297 are false positives, 
and a precision of 0.636. Looking back at the performance of our initial integrated 
workflow, we note that 245 (12%) additional true positive red kite posts were 
extracted by merging the results of separately performed textual and visual analysis. 
This increase in recall is at the cost of a very slight reduction in the precision of 
0.02. Summarizing these findings, 62% of true positives were found using either 
text or image analysis. Twenty-four percent are only correctly classified by textual 
data, and 14% are missed if no visual analysis is performed.
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We find that the workflow functions as a data filter, reducing the data volume by 
99.5%. By reducing the data volume, it becomes realistic to analyze the remaining 
data manually to select true positives. The workflow thus addresses the research gap 
identified by Burke et al. (2022), using generalizable methods to extract target data 
from various unverified sources to enrich data. 

We found that while keyword matching delivered high precision with little 
evidence of ambiguity, image analysis returned more potential candidates than 
textual analysis, but with lower precision. By only retaining posts identified by 
both textual and visual analysis, they were able to achieve almost perfect precision 
(0.992), at the cost of a lower recall. By combining the two approaches, they 
increased the extracted data volume by almost 14% while still downsampling the 
original dataset by around 99.5% and with a precision 0.636. 

The visual distribution of points on the map in the article shows how different 
sources can complement one another when trying to determine patterns. The 
locations of Flickr posts tend to cluster around urban areas and points of interest 
along existing road networks, which suggests that the Flickr observations are often 
taken opportunistically. eBird and iNaturalist observations, on the other hand, are 
more heterogeneously allocated and show less obvious relationships to known 
spatial features, suggesting that birdwatchers go out with a clear intent to observe 
birds and seek a variety of locations for that purpose. 

The study found that the temporal coverage of red kite observations in the 
Chilterns was different on a yearly and monthly scale. Aggregating data over years 
showed that the pattern shown by Flickr was different from the ones of eBird 
and iNaturalist. Year-on-year changes appeared to be more driven by underlying 
platform dynamics, such as user base and popularity changes. The study found that 
the rapid drop in Flickr observations from 2012 onward represented a decrease in 
Flickr popularity rather than a decline in red kites in the Chilterns. On the other 
hand, the study found that there was a strong increase for eBird and iNaturalist 
from the year 2016 onward. This could be the result of increased popularity, 
increased interest in red kites, or increased visits to the study region. Looking at 
monthly temporal scales showed a trend toward the warmer spring and summer 
months between March and June. These results may suggest higher visitation 
rates to the Chilterns in warmer periods, but could also be influenced by specific 
red kite behavioral patterns. Investigating the number of unique users per data 
source revealed that representativeness varies between platforms. eBird data was 
contributed by the fewest individuals, whereas Flickr and iNaturalist offered a more 
diverse user base. This observation could be attributed to higher platform popularity 
and an overall larger user base of the latter. Knowing the share of the population 
represented by a UGC-based analysis is crucial for policymakers to make adequate 
decisions that reflect the people’s opinion (Wang et al. 2019b). 

The image quality analysis revealed clear differences between social media 
data on Flickr and citizen science data in eBird and iNaturalist. Flickr’s users 
are interested in capturing scenic and visually pleasing images, while eBird and 
iNaturalist users are more concerned about capturing the target species itself as 
proof of observation and less about the image quality. This discovery may point
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to the potential usefulness of social media data for the identification and tracking of 
individuals. 

4.5 BirdTrace: A Visual Analytics Application to Jointly 
Analyze Trajectory Data and VGI 

4.5.1 Motivation and Research Gap 

BirdTrace makes use of two primary data sources: GPS data from tagged birds and 
user-generated content from birders. GPS data typically is of high quality but is 
only available on a small scale, while user-generated data is more abundant but 
of variable quality. By combining these two data sources, BirdTrace can provide 
a more complete picture of bird populations. The system uses a dynamic matching 
approach to semantically enrich trajectory data with geo-referenced data like images 
or textual descriptions. 

4.5.2 Automated Matching 

A key step was the development of semi-automatic methods to extract, integrate, and 
match data from VGI and tracked spatiotemporal datasets. This has allowed for fur-
ther knowledge to be gained about individuals and populations of animals, including 
information about local animal habitats, animal migrations across continents, land-
use change, biodiversity loss, invasive species, the spread of diseases, and climate 
change. There are yet no existing methods and systems that integrate and fuse mixed 
VGI data from birdwatchers and tracked trajectories of wildlife animals from the 
ICARUS (Movebank), so we developed them as part of the project. 

We have already described the analysis of the trajectories, but now want to 
find relevant VGI contributions (e.g., images, video, audio, or text descriptions) 
for trajectories. Here, relevance refers to “how well a domain expert can use the 
found VGI contributions to answer specific questions.” As this implies, the criteria 
for relevance might therefore depend on the problem. We tackle this problem by 
giving users the possibility to choose between different matching criteria, e.g., based 
on spatial or temporal distance, and potential classified behaviors like breeding. 
By including additional data sources, one might increase the number of possible 
matching criteria in the future. Let’s look at the way we enable automated matching; 
see Fig. 4.3: 

1. We assume the availability of GPS trajectory data for individuals of a species of 
interest. As our data source, we utilize Movebank. 

2. Secondly, collect and locally store multimedia VGI data from citizen science 
platforms and potentially Flickr (as described in the previous chapter).
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Fig. 4.3 The pipeline and workflow of the BirdTrace system. We combine animal movement 
trajectory data with VGI data from different citizen science portals. An automated matching 
approach is used to filter relevant VGI contributions to respective movement trajectories. Both 
trajectories and VGI data points are then jointly visualized in a shared visual interface. The 
interface enables aggregating, filtering, or annotating the given data 

3. Based on a user query and selected matching criteria, we match individual VGI 
contributions with GPS trajectory data. 

4. Trajectories and VGI contributions are jointly visualized in an interactive visual 
analytics application, which facilitates analysis by a domain expert. 

5. The user can use additional interactive tools to search, filter, and highlight the 
matched contributions. 

To facilitate the matching process, we implemented a data processing pipeline, 
which applies appropriate preprocessing to both the GPS trajectory data and the VGI 
contributions. We apply steps like line simplification, motif discovery, and outlier 
detection to the trajectory data to reduce the size of the data and to simplify the 
matching computations. VGI contributions from VGI portals like eBird, iNaturalist, 
and GBIF are collected and processed. To simplify analysis, we use precomputing 
and caching of data. This enables the efficient clustering of VGI contributions and 
fast matching of VGI contributions with trajectory data. 

4.5.3 A Joint Visual Analytics Workspace 

We developed BirdTrace,1 a novel visual analytics method and interfaces to support 
the semantic annotation of the integrated database consisting of the VGI and the 
tracked trajectory data. The goal of the application is to add context information 
semantically from a domain expert (ornithologist) to increase the quality and 
enrich the integrated data sources previously discussed. The primary challenge is 
to reduce the uncertainty of the combined data sources and to raise awareness of 
the remaining uncertainty in our resulting database. Specifically, the tool allows 
annotating spatiotemporal databases and VGI in their semantic context. We will 
further support the annotation process with a semi-automatic process to enable the 
fast and reliable annotation of large datasets. We have to add semi-automatically

1 Available at https://birdtrace.dbvis.de. 

https://birdtrace.dbvis.de
https://birdtrace.dbvis.de
https://birdtrace.dbvis.de
https://birdtrace.dbvis.de
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Fig. 4.4 A screenshot from BirdTrace 

annotation to the dataset, as the domain experts do not have the time to review a 
large number of matchings. 

Using the semantic annotations, we will be able to enrich our joined database 
with more knowledge from domain experts to increase the data quality of our 
integrated database. For instance, an ornithologist can verify or oppose the VGI 
information. The semantic annotation will also assist to clean and prune possibly 
incorrect merged data records and increase the awareness of uncertainty. Figure 4.4 
shows the user interface of BirdTrace, showing a spatial map view on top, and a 
temporal “timeline” view on the bottom. 

4.6 Data-Driven Modeling of Tracked and Observed Animal 
Behavior 

Finally, we explored the challenging tasks of training prediction models, applicable, 
e.g., to animal trajectory forecasting. To improve uncertainty-aware prediction 
models for animal trajectories, we explored techniques from deep imitation and 
reinforcement learning. Specifically, we explored how to use data-driven deep 
learning methods to predict the movement of fish swarms. A complete presentation 
of results on predictive models would be beyond the scope of this chapter. We, 
therefore, want to focus on the workflow and, specifically, how concepts from visual 
analytics can be used here. We leave a discussion on model implementations for 
future work. In general, although deep learning-based approaches for related tasks 
are very promising, we still observe low adoption. Multiple challenges hinder the 
application of reinforcement learning algorithms in experimental and real-world use 
cases. Such challenges occur at different stages of the development and deployment 
of such models. While reinforcement learning workflows share similarities with
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machine learning approaches, we argue that distinct challenges can be tackled 
and overcome using visual analytic concepts. Thus, we propose a comprehensive 
workflow for reinforcement learning and present an implementation of our workflow 
incorporating visual analytic concepts integrating tailored views and visualizations 
for different stages and tasks of the workflow (Metz et al. 2022). In this final section, 
we would like to shine a light on how our workflow supports experimentation 
in this space and encourage future research in the application of novel RL-based 
methods for a wide range of problems in the context of geoinformatics and VGI, 
e.g., trajectory forecasting. 

4.6.1 Motivation and Research Gap 

Recently, there have been notable examples of the capabilities of reinforcement 
learning (RL) in diverse fields like robotics (Nguyen and La 2019), physics 
(Martín-Guerrero and Lamata 2021), or even video compression (Mandhane et al. 
2022). Despite these successes, the application and evaluation of recent deep 
reinforcement and imitation learning techniques in real-world scenarios are still 
limited. Existing research almost exclusively focuses on synthetic benchmarks and 
use cases (Bellemare et al. 2013). We argue that the usage and evaluation in realistic 
scenarios is a mandatory step in assessing the capabilities of current approaches and 
identifying existing weaknesses and possibilities for further development. In this 
chapter, we present a visual analytics workflow and an instantiation of the approach 
that facilitates the application of state-of-the-art algorithms to various scenarios. 
Our presented approach is designed specifically to support domain experts, with 
basic knowledge of core concepts in reinforcement learning, who are interested in 
applying RL algorithms to domain-specific sequential decision-making tasks. The 
goal is to enable the effective application of their knowledge to (1) design agents and 
simulation environments including reward functions and (2) a detailed assessment 
of trained agents’ capabilities in terms of performance, robustness, and traceability. 
A structured and well-defined approach can also help to critically investigate and 
combat some fundamental difficulties of reinforcement learning like brittleness, 
generalization to new tasks and environments, and issues of reproducibility (Dulac-
Arnold et al. 2020; Henderson et al. 2017). 

Outside of reinforcement and imitation learning, there exists a wide range of 
workflows and interactive visual analytics (VA) tools for the training and evaluation 
of ML models (Amershi et al. 2015; Endert et al. 2018; Spinner et al. 2020). 
Compared to other fields of machine learning, there has been less work on applying 
visual analytics in the space of reinforcement and especially imitation learning. A 
large number of necessary decisions and the existence of interconnected tasks make 
the application of interactive machine learning, with a close coupling of model and 
human, especially valuable for reinforcement learning. 
Existing work such as DQNViz by Wang et al. (2019a) enables the analysis of 
spatial behavior patterns of agents in Atari environments like breakout (see arcade 
learning environment (Bellemare et al. 2013)) using visual analytics. He et al.
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present DynamicsExplorer (He et al. 2020) to evaluate and diagnose a trained 
policy in a robotics use case, which incorporates views to track the trajectories 
of a ball in the maze during episodes. The application enables the inspection 
of the effect of real-world conditions for trained agents. Saldanha et al. (2019) 
showcase an application that supports data scientists during experimentation by 
increasing situational awareness. Key elements are thumbnails summarizing agent 
performance during episodes and specialized views to understand the connection 
between particular hyperparameter settings and training performance. 

Compared to the existing approaches, we (1) extend the existing frameworks 
to encompass a holistic view of the relevant stages of the reinforcement learning 
process instead of just sub-tasks; (2) present a generic, easily adaptable application, 
which can be instantiated to specific use cases; (3) explicitly consider imitation 
learning, due to the frequent use in conjunction with reinforcement learning; and (4) 
apply our framework in a novel, custom real-world use case instead of an existing 
benchmark environment. 

4.6.2 Approach 

There has not been a comprehensive workflow for the experimentation and appli-
cation of reinforcement learning tightly incorporating users. This leaves both 
researchers and practitioners to loosely defined best practices. In the following 
chapter, we outline a conceptual workflow for developers and researchers, which 
we base on guides, projects, and popular open-source libraries. We follow the 
terminology used, e.g., in the Gym package (Brockman et al. 2016). As a starting 
point, we consider the fundamental workflow from Sacha et al. (2019) that is aimed 
at generic ML tasks: 

1. Prepare-Data: Data selection, cleaning, and transformations; detection of faulty 
or missing data 

2. Prepare-Learning: Specification of an initial model, preparation of training, 
selection of algorithms, and training parameters 

3. Model-Learning: Training of the actual model, monitoring, and supervision 
4. Evaluate-Model: Apply the model to testing data, selecting and analyzing quality 

metrics, and understanding the model 

We are interested in highlighting steps and tasks that are specific and critical to 
reinforcement and imitation learning and which have not been captured previ-
ously by more generic workflows. Figure 4.5 summarizes our proposed workflow 
described in this chapter. In the paper, we discuss the specific stages for imitation 
and reinforcement learning mirroring the workflow. Specifically, we highlight user 
tasks during (1) setup and design of the environment which corresponds to mapping 
a domain-specific problem to a setup applicable to RL algorithms, (2) model training 
and supervision, and finally (3) evaluation and understanding of trained models. 
For each of these steps, we present further detailed user tasks and highlight how
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Fig. 4.5 Overview of the RIVA (Reinforcement and Imitation Learning with Visual Analytics) 
workflow. RIVA is an integrated experimentation workflow and application that provides a range 
of tools to support all major critical steps: (a) inspecting observations, actions, and rewards 
and ensuring matching values between simulation, expert demonstrations, and architectures, (b) 
provenance tracking of interesting states to enable targeted case-based evaluation, (c) tracking of 
parameters and settings to ensure reproducibility and understand the effect of design decision, (d) 
interactively monitor training and final performance beyond reward, (e) enable effective evaluation 
by integrating multiple evaluation tools, and (f) explain behavior by natively integrating XAI 
methods like input attribution techniques 

visual analytics concepts are applicable. We apply the proposed framework and 
developed an application in the use case of imitation and reinforcement learning for 
collective behavior: data-driven learning of the behavior of fish schools (collective 
movement of fish swarms). We cooperated with a domain expert throughout the 
entire process, from designing custom environments and agents, training, to final 
evaluation. Modeling the behavior of individual actors in swarm systems has been 
a long-standing problem in biology (Reynolds 1987; Sumpter 2006; Calovi et al.  
2013). Learning individual policies that lead to coordinated collective behavior via 
both reinforcement learning and imitation learning from recorded trajectories is 
an exciting application that promises to overcome existing simplifications in hand-
crafted models. 

4.6.3 Results and Discussion 

The use case can be well integrated into our workflow and application with minimal 
modifications. Noticeably, a custom interactive rendering of the environment was 
added. We utilize the modularity of the software to integrate additional components 
like custom visualizations. During the design phase, the inspection views were 
used to ensure consistency between environment, agent, and dataset, e.g., to spot 
premature episode termination. Our workflow was highly effective in maintaining
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a high level of productivity and consistency through an iterative design process, in 
which we experimented with different observation space designs, reward functions, 
network types, and hyperparameter configurations. The set of evaluation tools is 
used both for internal evaluation and external presentation. 

4.7 Discussion and Conclusion 

In this chapter, we have given an overview of research contributing to the overall 
goal of enriching high-quality sparse and curated data with VGI contributions 
to enable different applications like analysis of species distribution or prediction 
modeling of movement. In particular, we highlighted the potential of visual analytics 
solutions for different stages of curation, analysis, and model building using VGI 
data. Visualizations can be especially suited to present data of varying quality and 
express uncertainty. Both our joint collaborative work on integrating Flickr images 
with citizen science data and the BirdTrace platform highlight the potential of 
integrating different data sources, ranking from citizen science platforms, social 
media, to professional data collection efforts. 
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Chapter 5 
Two Worlds in One Network: Fusing 
Deep Learning and Random Forests 
for Classification and Object Detection 

Christoph Reinders, Michael Ying Yang, and Bodo Rosenhahn 

Abstract Neural networks have demonstrated great success; however, large 
amounts of labeled data are usually required for training the networks. In this 
work, a framework for analyzing the road and traffic situations for cyclists and 
pedestrians is presented, which only requires very few labeled examples. We 
address this problem by combining convolutional neural networks and random 
forests, transforming the random forest into a neural network, and generating a 
fully convolutional network for detecting objects. Because existing methods for 
transforming random forests into neural networks propose a direct mapping and 
produce inefficient architectures, we present neural random forest imitation—an 
imitation learning approach by generating training data from a random forest and 
learning a neural network that imitates its behavior. This implicit transformation 
creates very efficient neural networks that learn the decision boundaries of a random 
forest. The generated model is differentiable, can be used as a warm start for 
fine-tuning, and enables end-to-end optimization. Experiments on several real-
world benchmark datasets demonstrate superior performance, especially when 
training with very few training examples. Compared to state-of-the-art methods, we 
significantly reduce the number of network parameters while achieving the same or 
even improved accuracy due to better generalization. 
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Object detection · Localization · Imitation learning 
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5.1 Introduction 

During the last few years, the availability of spatial data has rapidly developed. 
An essential aspect of this development is the involvement of a large number 
of users, who often use smartphones and mobile devices, to generate and make 
freely available volunteered geographic information (VGI). For example, apps like 
Waze combine the local velocities of smartphones (in cars) to predict the flow 
velocities (and time delay) of traffic jams. Users can recommend and comment 
on specific traffic situations. Although GPS and gyroscope data (e.g., in fitness 
straps) are common, images allow a comprehensive scene understanding. The 
collection of large amounts of unlabeled images is easy; however, the development 
of machine learning methods for scene analysis with limited amounts of labeled 
data is challenging. 

Neural networks have become very popular in many areas, such as computer 
vision (Krizhevsky et al. 2012; Reinders et al. 2022; Ren et al. 2015; Simonyan 
and Zisserman 2015; Zhao et al. 2017; Qiao et al. 2021; Rudolph et al. 2022; 
Sun et al. 2021a), speech recognition (Graves et al. 2013; Park et al.  2019; 
Sun et al. 2021a), automated game-playing (Mnih et al. 2015; Dockhorn et al. 
2017), or natural language processing (Collobert et al. 2011; Sutskever et al. 2014; 
Otter et al. 2021). Researchers have published many datasets for training neural 
networks and put enormous effort into providing labels for each data sample. 
For real-world applications, the dependency on large amounts of labeled data 
represents a significant limitation (Breiman et al. 1984; Hekler et al. 2019; Barz  
and Denzler 2020; Qi and Luo 2020; Phoo and Hariharan 2021; Wang et al. 2021). 
Frequently, there is little or even no labeled data for a particular task, and hundreds 
or thousands of examples have to be collected and annotated. This particularly 
affects new applications and rare labels (e.g., detecting rare diseases or defects in 
manufacturing). Transfer learning and regularization methods are usually applied to 
reduce overfitting. However, for training with little data, the networks still have a 
considerable number of parameters that have to be fine-tuned—even if just the last 
layers are trained. 

In contrast to neural networks, random forests are very robust to overfitting 
due to their ensemble of multiple decision trees. Each decision tree is trained 
on randomly selected features and samples. Random forests have demonstrated 
remarkable performance in many domains (Fernández-Delgado et al. 2014). While 
the generated decision rules are simple and interpretable, the orthogonal separation 
of the feature space can also be disadvantageous on other datasets, especially 
with correlated features (Menze et al. 2011). Additionally, random forests are not 
differentiable and cannot be fine-tuned with gradient-based optimization. 

In this research project Comprehensive Conjoint GPS and Video Data Analysis 
for Smart Maps (COVMAP), we are interested in combining GPS, gyroscope, and 
image data to analyze road and traffic situations for cyclists and pedestrians. Our 
standard setting is a smartphone attached to a bicycle, which records the GPS 
coordinates, images, motion information, local weather information, and time. We
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present a framework for detecting traffic signs that are of interest for cyclists and 
pedestrians. Related to this work, Chap. 3 introduces methods for anonymizing and 
map-matching trajectories, and Chap. 1 presents a geographic knowledge graph for 
a semantic representation of geographic entities in OSM. The goal of this work is 
to minimize the costs of annotating a dataset and enable the detection of objects 
with only a handful of examples per class. For that, we combine neural networks 
and random forests and bring both worlds together. After generating a classifier for 
image patches, the random forest is mapped to a neural network to combine all 
modules in a single pipeline, and a fully convolutional network is created for object 
detection. 

Mapping random forests into neural networks is already used in many appli-
cations such as network initialization (Humbird et al. 2019), camera localization 
(Massiceti et al. 2017), object detection (Reinders et al. 2018), or semantic 
segmentation (Richmond et al. 2016). State-of-the-art methods (Massiceti et al. 
2017; Sethi 1990; Welbl 2014) create a two-hidden-layer neural network by adding 
a neuron for each split node and each leaf node of the decision trees. The number 
of parameters of the networks becomes enormous as the number of nodes grows 
exponentially with the increasing depth of the decision trees. Additionally, many 
weights are set to zero so that an inefficient representation is created. Due to both 
reasons, the mappings do not scale and are only applicable to simple random forests. 

In this work, we present an imitation learning approach to generate neural 
networks from random forests, which results in very efficient models. We introduce 
a method for generating training data from a random forest that creates any amount 
of input-target pairs. With this data, a neural network is trained to imitate the random 
forest. Experiments demonstrate that the accuracy of the imitating neural network 
is equal to the original accuracy or even slightly better than the random forest 
due to better generalization while being significantly smaller. To summarize, our 
contributions are: 

• We present a pipeline for detecting and localizing traffic signs for cyclists and 
pedestrians with very few labeled training examples by combining convolutional 
neural networks and random forests. 

• We propose a novel method for implicitly transforming random forests into 
neural networks by generating data from a random forest and training an random 
forest-imitating neural network. Labeled data samples are created by evaluating 
the decision boundaries and guided routing to selected leaf nodes. 

• In contrast to direct mappings, our imitation learning approach is scalable to 
complex classifiers and deep random forests. 

• We enable learning and initialization of neural networks with very little data. 
• Neural networks and random forests can be combined in a fully differentiable, 

end-to-end pipeline for acceleration and further fine-tuning.
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5.2 Related Work 

Many deep learning-based methods have been presented for object detection in 
recent years. Two-stage methods like R-CNN (Girshick et al. 2014), Fast R-CNN 
(Girshick 2015), and Faster R-CNN (Ren et al. 2015) include a region proposal 
mechanism and predict the object scores and boundaries based on the pooled 
features. Cascade R-CNN (Cai and Vasconcelos 2018) consists of multiple R-CNN 
stages that progressively refine the predicted bounding boxes. Sparse R-CNN (Sun 
et al. 2021b) learns a fixed set of bounding box candidates. One-stage methods 
achieve great performance by regressing and classifying candidate bounding boxes 
of a predefined set of anchor boxes. Well-known methods are SSD (Liu et al. 2016), 
YOLO (Redmon and Farhadi 2016), and RetinaNet (Lin et al. 2017). CenterNet 
(Duan et al. 2019) introduces a triplet representation, including one center keypoint 
and two corners. FCOS (Tian et al. 2019) presents a center-ness branch for anchor-
free detection. YOLOF (Chen et al. 2021) uses a single-scale feature map without 
feature pyramid network. DETR (Carion et al. 2020) models object detection as a 
set prediction problem and introduces a vision transformer architecture. R(Det). 2 (Li 
and Wang 2022) presents a combination of soft decision trees and neural networks 
for randomized decision routing. All the presented methods have a huge number of 
trainable parameters and require large amounts of labeled data for training. 

Random forests and neural networks share some similar characteristics, such 
as the ability to learn arbitrary decision boundaries; however, both methods have 
different advantages. Random forests are based on decision trees. Various tree 
models have been presented—the most well known are C4.5 (Quinlan 1993) and 
CART (Breiman et al. 1984). Decision trees learn rules by splitting the data. 
The rules are easy to interpret and additionally provide an importance score of 
the features. Random forests (Breiman 2001) are an ensemble method consisting 
of multiple decision trees, with each decision tree being trained using a random 
subset of samples and features. Fernández-Delgado et al. (2014) conduct extensive 
experiments comparing 179 classifiers on 121 UCI datasets (Dua and Graff 2017). 
The authors show that random forests perform best, followed by support vector 
machines with a radial basis function kernel. Therefore, random forests are often 
considered as a reference for new classifiers. 

Neural networks are universal function approximators. The generalization per-
formance has been widely studied. Zhang et al. (2017) demonstrate that deep neural 
networks are capable of fitting random labels and memorizing the training data. 
Bornschein et al. (2020) analyze the performance across different dataset sizes. 
Olson et al. (2018) evaluate the performance of modern neural networks using the 
same test strategy as Fernández-Delgado et al. (2014) and find that neural networks 
achieve good results but are not as strong as random forests. 

Sethi (1990) presents a mapping of decision trees to two-hidden-layer neural 
networks. In the first hidden layer, the number of neurons equals the number of split 
nodes in the decision tree. Each of these neurons implements the decision function 
of the split nodes and determines the routing to the left or right child node. The
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second hidden layer has a neuron per leaf node in the decision tree. Each of the 
neurons is connected to all split nodes on the path from the root node to the leaf 
node to evaluate if the data is routed to the respective leaf node. Finally, the output 
layer is connected to all leaf neurons and aggregates the results by implementing 
the leaf votes. By using hyperbolic tangent and sigmoid functions, respectively, 
as activation functions between the layers, the generated network is differentiable 
and, thus, trainable with gradient-based optimization algorithms. The method can 
be easily extended to random forests by mapping all trees. 

Welbl (2014) and Biau et al. (2019) follow a similar strategy. The authors 
propose a method that maps random forests into neural networks as a smart 
initialization and then fine-tunes the networks by backpropagation. Two training 
modes are introduced: independent and joint. Independent training fits all networks 
one after the other and creates an ensemble of networks as a final classifier. 
Joint training concatenates all tree networks into one single network so that the 
output layer is connected to all leaf neurons in the second hidden layer from 
all decision trees and all parameters are optimized together. Additionally, the 
authors evaluate sparse and full connectivity. Sparse connectivity maintains the 
tree structures and has fewer weights to train. In practice, sparse weights require a 
special differentiable implementation, which can drastically decrease performance, 
especially when training on a GPU. Full connectivity optimizes all parameters of the 
fully connected network. Massiceti et al. (2017) extend this approach and introduce 
a network splitting strategy by dividing each decision tree into multiple subtrees. 
The subtrees are mapped individually and share common neurons for evaluating the 
split decision. 

These techniques, however, are only applicable to trees of limited depth. As the 
number of nodes grows exponentially with the increasing depth of the trees, ineffi-
cient representations are created, causing extremely high memory consumption. In 
this work, we address this issue by proposing an imitation learning-based method 
that results in much more efficient models. 

5.3 Traffic Sign Recognition 

In the first part of this chapter, we present a framework for object detection and 
localization that is able to recognize traffic signs for cyclists and pedestrians with 
very few labeled examples. While there are a lot of datasets for cars, the amount of 
labeled data for cyclists and pedestrians is very limited. Therefore, the advantages 
of convolutional neural networks and random forests are combined to build a robust 
object detector. After the detection of the objects, the image, GPS, and motion 
data are fused to localize the traffic signs on the map. We introduce an app for 
collecting and synchronizing data with a customary smartphone and present the 
captured dataset. Finally, experiments are performed to analyze the recognition 
performance. All details and further evaluations can be found in Reinders et al. 
(2018) and Reinders et al. (2019).
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5.3.1 Framework 

The framework consists of three modules. First, a system for object detection based 
on convolutional neural networks and random forests is presented. Afterward, the 
detected traffic signs are localized on the map by integrating GPS and motion 
information. Lastly, multiple observations are clustered to improve the precision. 

5.3.1.1 Object Detection 

In the first step, we train a convolutional neural network for representation learning 
on a related task where large amounts of data are available. In this application, 
the GTSRB (Stallkamp et al. 2012) dataset is selected, which consists of images 
of traffic signs for cars. The architecture of the network is a standard backbone 
(Springenberg et al. 2015) with multiple convolutional layers and a global average 
pooling. For generating the feature representations, the output of the last layer before 
the final classification layer is calculated. 

On the downstream task, we start with a classifier for image patches. The 
feature representations of all patches and a fixed number of background patches 
are extracted. Because only a few number of labeled examples are available, we 
train a random forest to classify the image features and predict one of the C classes 
or background. The ensemble of multiple decision trees trained on different subsets 
of features and samples is very robust to overfitting (Breiman 2001). 

Afterward, the convolutional neural network for feature generation and random 
forest for classification are combined in one pipeline. For that, we transform the 
random forest into a neural network using a method presented by Sethi (1990) and 
Welbl (2014). The method creates a two-hidden-layer neural network by mapping 
each decision tree of the random forest. An example of mapping a decision tree 
into a neural network is visualized in Fig. 5.1. For each split node in the decision 
tree, a neuron is created in the first hidden layer. The neurons are connected to the 
respective split features (all other weights are set to zero if no sparse architecture is 
used) and evaluate the split decisions, i.e., the routing to the left or right child node. 
In the second hidden layer, a neuron is created for each leaf node in the decision 
tree. The neurons combine the split decisions from the previous layer and determine 
whether the sample is routed to the respective leaf. In the output layer, the number 
of neurons corresponds to the number of classes. Each neuron stores the class votes 
from the leafs. Mapping a random forest, i.e., multiple decision trees, is done by 
mapping each decision tree and combining the neural networks. Now, we are able 
to create a fully convolutional network (Shelhamer et al. 2017) by replacing the fully 
connected layers with convolutional layers that perform the identical operation. Due 
to the shared features, the processing of the images is significantly accelerated. The 
images are analyzed by the fully convolutional network at multiple scales, and the 
output predicts the probability of each traffic sign class at each spatial position. In a 
post-processing, all detections with a probability larger than a defined threshold are 
extracted, and a non-maximum suppression is performed.
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Fig. 5.1 A decision tree (left) can be mapped to a two-hidden-layer neural network (right). For 
each split node (green circle) in the decision tree, a neuron in the first hidden layer is created which 
evaluates the split rule. For each leaf node (blue rectangle), a neuron in the second hidden layer is 
created which determines the leaf membership. A routing to leaf node 11, for example, involves 
the split nodes 0, 8, and 9. The relevant connections for the corresponding calculation in the neural 
network are highlighted 

5.3.1.2 Localization 

The detected 2D bounding boxes are localized on the map by integrating GPS 
and heading information. Each image is associated with a GPS position and a 
heading. The heading points in the direction in which the device is oriented. For 
each bounding box, the depth is estimated by assuming a simple pinhole camera 
model, and the relative heading is determined based on the horizontal position in 
the image. Afterward, the information can be combined with the GPS position and 
heading of the image to generate the latitude, longitude, and heading of the traffic 
sign. 

5.3.1.3 Clustering 

After localizing the traffic signs, we merge multiple observations of the same 
traffic sign. Clustering algorithms (MacQueen et al. 1967; Fukunaga and Hostetler 
1975; Dockhorn et al. 2015, 2016; Schier et al. 2022) automatically discover 
natural groupings in the data. If multiple detections exist in an image, we can 
generate additional constraints because we know that multiple traffic signs exist 
and the respective traffic signs should not be grouped. The additional information 
is represented as cannot-link constraints. For weakly supervised clustering with an 
unknown number of clusters, constrained mean shift (CMS) (Schier et al. 2022) 
clustering is performed to merge the detections. CMS is a density-based clustering
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algorithm that extends mean shift clustering (Fukunaga and Hostetler 1975) by  
enabling sparse supervision using cannot-link constraints. The clustering of the 
detections improves the localization accuracy and makes the position estimation 
more robust. 

5.3.2 Dataset 

To analyze the road and traffic situations for cyclists and pedestrians, we collected 
a real-world dataset. For that, we developed an app for capturing and synchronizing 
images and data from other sensors, like GPS and motion information. The 
smartphone is attached to the handlebar of the bicycle so that the camera is pointed 
in the direction of travel. Because monotonous routes, e.g., in rural areas, produce 
many similar images, we therefore introduce an adaptive filtering of the images to 
automatically detect points of interest. For that, we integrate motion information and 
apply a twofold filtering strategy based on decreases in speed and acceleration: (i) 
Decreases in speed indicate situations where the cyclist has to slow down because 
of potential traffic obstructions such as traffic jams, construction works, or other 
road users. (ii) Acceleration is used to analyze the road conditions and to detect, for 
example, potholes. 

The collected dataset consists of 500 tours with a total riding time of 6 days in 
different cities. A visualization of the collected tours in Hanover is shown in Fig. 5.2. 
After filtering, the dataset has 56000 images with a size of .1080 × 1920 pixels. For 
the detection of traffic signs, we selected ten traffic signs that are of interest for 

Fig. 5.2 Example tracks collected around Hanover. In total, we collected in Hanover, 450 tours, 
>47K images, 5.4 days of riding; Enschede, 40 tours, >8K images, 18 hours of riding; and 
Heidelberg, 11 tours, 1000 images, several hours of riding
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Fig. 5.3 Precision-recall curve for each class to analyze the recognition performance on the test 
set. (a) Standard traffic signs. (b) Info signs 

cyclists and pedestrians and manually annotated the ground truth for a set of images 
to have data for training and testing. Overall, 524 bounding boxes are annotated in 
the images and split 50/50 in training and testing. The splitting is repeated multiple 
times with different seeds. 

5.3.3 Experiments 

The framework is evaluated on the presented dataset to analyze the recognition 
performance. For that, all bounding boxes are predicted at multiple scales and 
assigned to the ground truth bounding box with the highest overlap if the IoU 
is greater or equal than . 0.5. The resulting precision-recall curve for each class is 
presented in Fig. 5.3. While the performance of the standard traffic signs is good, the 
more inconspicuous traffic signs are detected worse. The recognition performance 
of the latter correlates with the number of examples that are available for training. 
Qualitative examples are shown in Fig. 5.4. For more details and further analyses, 
please see Reinders et al. (2018) and Reinders et al. (2019). 

5.4 Neural Random Forest Imitation 

We propose a novel method, called neural random forest imitation (NRFI), for 
implicitly transforming random forests into neural networks that learns the decision 
boundaries and generates efficient representations. The advantages of our approach 
for mapping random forests into neural networks are threefold: (1) We enable the 
generation of neural networks with very few training examples. (2) The resulting 
network can be used as a warm start, is fully differentiable, and allows further 
end-to-end fine-tuning. (3) The generated network can be easily integrated into
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Fig. 5.4 Qualitative results of randomly selected examples on the test set. True positives, false 
positives, and false negatives are shown for each class. Some classes have less than two false 
positives or false negatives, respectively 

any trainable pipeline (e.g., jointly with feature extraction), and existing high-
performance deep learning frameworks can be used directly. This accelerates the 
process and enables parallelization via GPUs. In the following, we evaluate on 
standard benchmark datasets to present a general approach for various domains. 
While we focus on classification tasks in this work, NRFI can be simply adapted for 
regression tasks. 

5.4.1 Background and Notation 

In this section, we briefly describe decision trees (Breiman et al. 1984), random 
forests (Breiman 2001), and the notation used throughout this work. Decision trees 
consist of split nodes .N split and leaf nodes .N leaf. Each split node .s ∈ N split performs 
a split decision and routes a data sample x to the left or right child node, denoted as 
.cleft(s) and .cright(s), respectively. When using binary, axis-aligned split decisions, 
a single feature .f (s) ∈ {1, . . . , N} and a threshold .θ(s) ∈ R are the basis for the 
split, where N is the number of features. If the value of feature .f (s) is smaller than
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.θ(s), the data sample is routed to the left child node and otherwise to the right child 
node, denoted as 

.x ∈ cleft(s) ⇐⇒ xf(s) < θ(s). (5.1) 

x ∈ cright(s) ⇐⇒ xf(s) ≥ θ(s). (5.2) 

Data samples are routed through a decision tree until a leaf node . l ∈ N leaf

is reached which stores the target value. For the classification task, these are the 
estimated class probabilities .Pleaf(l) = (pl

1, . . . , p
l
C), where C is the number of 

classes. Decision trees are trained by creating a root node and consecutively finding 
the best split of the data based on a criterion. The resulting subsets are assigned to 
the left and right child node, and the subtrees are processed further. Commonly used 
criteria are the Gini impurity or entropy. 

A single decision tree is very fast and operates on high-dimensional data. 
However, it tends to overfit the training data by constructing a deep tree that 
separates perfectly all training examples. While having a very small training error, 
this easily results in a large test error. Random forests address this problem by 
learning an ensemble of . nT decision trees. Each tree is trained with a random 
subset of training examples and features. The prediction .RF(x) of a random forest 
is calculated by averaging the predictions of all decision trees. 

5.4.2 Methodology 

Our proposed neural random forest imitation approach implicitly transforms random 
forests into neural networks. The main concept includes (1) generating training data 
from decision trees and random forests, (2) adding strategies for reducing conflicts 
and increasing the variety of the generated examples, and (3) training a neural 
network that imitates the random forest by learning the decision boundaries. As 
a result, NRFI enables the transformation of random forests into efficient neural 
networks. An overview of the proposed method is shown in Fig. 5.5. 

5.4.2.1 Data Generation 

First, we propose a method for generating data from a given random forest. A data 
sample .x ∈ RN is an N -dimensional vector, where N is the number of features. We 
select a target class .t ∈ [1, . . . , C] from C classes and generate a data sample for 
the selected class.
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Fig. 5.5 Neural random forest imitation enables an implicit transformation of random forests into 
neural networks. Usually, data samples are propagated through the individual decision trees, and 
the split decisions are evaluated during inference. We propose a method for generating input-target 
pairs by reversing this process and training a neural network that imitates the random forest. The 
resulting network is much smaller compared to current state-of-the-art methods, which directly 
map the random forest 

Data Initialization 

A data sample x is initialized randomly. In the following, the feature-wise minimum 
and maximum of the training samples will be denoted as .fmin, fmax ∈ RN . To  
initialize x, we sample .x ∼ U(fmin, fmax). In the next step, we will present a 
method for adapting the data sample to obtain characteristics of the target class. 

Data Generation from Decision Trees 

A decision tree processes an input vector x by routing the data through the tree until 
a leaf is reached. At each node, a split decision is evaluated, and the input is passed 
to the left child node or the right child node. Finally, a leaf l is reached which stores 
the estimated probabilities .Pleaf(l) = (pl

1, . . . , p
l
C) for each class. 

We reverse this process and present a method for generating training data from 
a decision tree. An overview of the proposed data generation process is shown in 
Fig. 5.6. First, the class distribution information is propagated bottom-up from the 
leaf nodes to the split nodes (see Fig. 5.6a), and we define the class weights . W(n) =
(wn

1 , . . . , w
n
C) for every node n as follows: 

.W(n) =
{

Pleaf(n) if n ∈ N leaf

W(cleft(n)) + W(cright(n)) if n ∈ N split
(5.3) 

For every leaf node, the class weights are equal to the stored probabilities in the leaf. 
For every split node, the class weights in the child nodes are summed up. 

After preparation, data samples for a target class t are generated (see Fig. 5.6b). 
For that, characteristics of the target class are successively added to the data sample. 
Starting at the root node, we modify the input data so that it is routed through



5 Fusing Deep Learning and Random Forests for Classification and Object Detection 115

x5 < 4 

x1 < 5 

x4 < 4 
0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

x5 < 8 

(a) 

x5 < 4 

x1 < 5 

x1 = 7  x1<5−−−→ 3 

x4 < 4 
0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

0 

1 

A B  C  

2 

Generated data sample 

Randomly initialize 
x = (7, 6,−3, 1, 2), t  = B  

x5 < 8 

x5 = 2  x5≥8 −−−→ 10 

x = (3, 6,−3, 1, 10), t  = B  

x4 = 1  x4<4−−−→ 1 

(b) 

Fig. 5.6 Overview of the data generation process from a decision tree. First, the class distribution 
information is propagated from the leaf nodes to the split nodes (a). Afterward, data samples are 
generated by guided routing (Sect. 5.4.2.1) and modifying the data based on the split decisions (b). 
The weights for sampling the left or right child node are highlighted in orange 

selected split nodes until a leaf node is reached. The pseudocode is presented in 
Algorithm 1. 

The routing is guided based on the weights for the target class in the left child 

node .wleft = w
cleft(n)
t and right child node .wright = w

cright(n)

t . The weights are 
normalized by their L2-norm, denoted as .ŵleft and .ŵright. Afterward, the left or 
right child node is randomly selected as next child node .nnext depending on . ŵleft
and .ŵright. 

In the next step, the data sample is updated. We verify that the data sample is 
routed to the selected child node by evaluating the split decision. A split node s 
routes the data to the left or right child node based on a split feature .f(s) and a 
threshold .θ(s). If the value of the split feature .xf(s) is smaller than .θ(s), the data 
sample is routed to the left child node and otherwise to the right child node. The 
data sample is modified if it is not already routed to the selected child node by 
assigning a new value. If the selected child node is the left child node, the value has 
to be smaller than the threshold .θ(s), and a new value within the minimum feature 
value .fmin,f(s) and .θ(s) is randomly sampled: 

.xf(s) ∼ U(fmin,f(s), θ(s)). (5.4) 

If the data sample is supposed to be routed to the right child node, the new value is 
randomly sampled between .θ(s) and the maximum feature value .fmax,f(s): 

.xf(s) ∼ U(θ(s), fmax,f(s)). (5.5)
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Algorithm 1 DATAGENERATIONFROMTREE Generate data samples from a deci-
sion tree 
Input: Decision tree split features f(n) and thresholds θ(n), target class  t , feature minimum fmin 
and maximum fmax, class weights W(n)  = (wn 

1 , . . . , w
n 
C) for all nodes n ∈ N split ∪ N leaf 

Output: Data sample for target class t 
1: Sample x ∼ U(fmin, fmax) ∈ RN 

2: n ← root node 
3: while n /∈ N leaf do 
4: wleft ← wcleft(n) 

t 
5: wright ← w cright(n) 

t 
6: if feature f(n) is already used then 
7: weight current route with wpath 
8: wcurrent ← wcurrent · wpath 
9: end if 
10: ŵleft, ŵright ← normalize wleft and wright 
11: nnext ← randomly select left or right child node with probability of ŵleft and ŵright, 

respectively 
12: if nnext = cleft(n) then 
13: if xf(n) ≥ θ(n)  then 
14: xf(n) ∼ U(fmin,f(n), θ(n)) 
15: end if 
16: else 
17: if xf(n) < θ(n) then 
18: xf(n) ∼ U(θ(n),  fmax,f(n)) 
19: end if 
20: end if 
21: mark feature f(n) as used 
22: n ← nnext 
23: end while 
24: return x 

This process is repeated until a leaf node is reached. In each node, characteristics 
are added that classify the data sample as the target class. 

During this process, modifications can conflict with previous decisions because 
features are used multiple times within a decision tree or across multiple decision 
trees. Therefore, the current routing is weighted with a factor .wpath ≥ 1 to prioritize 
the path and not change the data sample if possible. Overall, the presented method 
enables the generation of data samples and corresponding labels from a decision 
tree without adding any further data. 

Data Generation from Random Forests 

In the next step, we extend the method to generate data from random forests. 
Random forests consist of . nT decision trees .RF = {T1, . . . , TnT

}. For generating a 
data sample x, the presented method for a single decision tree is applied to multiple 
decision trees consecutively. The initialization is performed only once, and the 
visited features are shared. In each decision tree, the data sample is modified and
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routed to selected nodes based on the target class t . When using all decision trees, 
data samples are created where all trees agree with a high probability. For generating 
examples with varying confidence, i.e., the predictions of the individual decision 
trees diverge, we select a subset of .nsub decision trees .RFsub ⊆ RF . 

All decision trees in .RFsub are processed in random order to generate a data 
sample. For each decision tree, the presented method modifies the data sample based 
on the target class. Finally, the output of the random forest .y = RF(x) is predicted. 
In most cases, the prediction matches the target class. Due to factors such as the 
stochastic process, a small subset size, or varying predictions of the decision trees, 
it can be different occasionally. Thus, an input-target pair .(x, y) has been created, 
showing similar characteristics as the target class and any amount of data can be 
generated by repeating this process. 

Automatic Confidence Distribution 

The number of decision trees .nsub can be set to a fixed value or sampled uniformly. 
Alternatively, we will present an automatic process for determining an optimal 
distribution of the confidences for generating a wide variety of different examples. 
The strategy is motivated by importance weighting (Fang et al. 2020). We generate 
n data samples (n is empirically set to 1000) for each number of decision trees 
.j ∈ [1, nT ]. The respective generated datasets will be denoted as . Dj . 

An optimal sampling process generates highly diverse data samples with dif-
ferent confidences. To achieve that, an automated balancing of the distributions is 
determined. A histogram with H bins is calculated for each . Dj , where . h

j
i denotes 

the number of generated examples in the ith interval (equally distributed) from the 
distribution with j decision trees. In the next step, a weight .wD

j is defined for each 

distribution, and we optimize .wD as follows: 

.min
wD

||||||||||||||
⎡
⎣ nTE

j=1

wD
j h

j

1 . . .

nTE
j=1

wD
j h

j
H

⎤
⎦

T

−
⎡
⎢⎣
1
...

1

⎤
⎥⎦

||||||||||||||
2

s.t. ∀j 0 ≤ wD
j , (5.6) 

where .wD ∈ RnT . This optimization finds a weighting of the number of decision 
trees so that the generated confidences cover the full range equally. For that, the 
number of samples per bin . h

j
i is summed up, weighted over all numbers of decision 

trees. After determining . wD , the number of decision trees can be sampled depending 
on . wD

j . An analysis of different sampling methods will be presented in Sect. 5.4.3.4. 
Automatically balancing the number of decision trees generates data samples with 
low and high confidence very equally distributed. The process does not require 
training data and provides a universal solution.
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5.4.2.2 Imitation Learning 

Finally, a neural network that imitates the random forest is trained. The network 
learns the decision boundaries from the generated data and approximates the 
same function as the random forest. The network architecture is based on a fully 
connected network with one or multiple hidden layers. The data dimensions are the 
same as those of the random forest, i.e., an N -dimensional input and C-dimensional 
output. Each hidden layer is followed by a ReLU activation (Nair and Hinton 2010). 
The last fully connected layer is using a softmax activation. 

For training, we generate input-target pairs .(x, y) as described in the last section. 
These training examples are fed into the training process to teach the network 
to predict the same results as the random forest. To avoid overfitting, the data is 
generated on-the-fly so that each training example is unique. In this way, we learn an 
efficient representation of the decision boundaries and are able to transform random 
forests into neural networks implicitly. In addition to that, the training is performed 
end to end on the generated data, and we can easily integrate the original training 
data. 

5.4.3 Experiments 

In this section, we perform several experiments to analyze the performance of neural 
random forest imitation and compare our method to state-of-the-art methods. 

5.4.3.1 Datasets 

The experiments are evaluated on nine classification datasets from the UCI Machine 
Learning Repository (Dua and Graff 2017) (Car, Connect-4, Covertype, German 
Credit, Haberman, Image Segmentation, Iris, Soybean, and Wisconsin Breast 
Cancer (Original)). The datasets cover many real-world problems in different areas, 
such as finance, computer vision, games, or medicine. 

Following Fernández-Delgado et al. (2014), each dataset is split into a training 
and a test set using a 50/50 split while maintaining the label distribution. Afterward, 
the number of training examples is limited to .nlimit examples per class. We evaluate 
the training with 5, 10, 20, and 50 examples per class. In contrast to Fernández-
Delgado et al. (2014), we extract validation sets from the training set (e.g., for 
hyperparameter tuning). This ensures that the training and validation data are not 
mixed with the test data. For some datasets which provide a separate test set, the 
test accuracy is evaluated on the respective set. Missing values are set to the mean 
value of the feature. All experiments are repeated ten times with randomly sampled 
splits. The methods are repeated additionally four times with different seeds on each 
split.
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5.4.3.2 Implementation Details 

In all our experiments, stochastic gradient descent with Nesterov momentum as 
optimizer and cross-entropy loss are used. The initial learning rate is set to . 0.1, 
momentum to . 0.9, and weight decay to .0.0005. The batch size is set to 128 and 
512, respectively, for generated data. The input data is normalized to .[−1, 1]. For  
generating a wide variety of data, the prioritization of the current path . wpath ∼
1 + |N(0, 5)| is sampled for each data sample individually. A new random forest 
is trained every 100 epochs to average the influence of the stochastic process, and 
the generated data samples are mixed. In the following, training on generated data 
will be denoted as NRFI (gen) and training on generated and original data as NRFI 
(gen+ori). The fraction of NRFI data is set to . 0.9. Random forests are trained with 
500 decision trees, which are commonly used in practice (Fernández-Delgado et al. 
2014; Olson et al. 2018). The decision trees are constructed up to a maximum 
depth of 10. For splitting, the Gini impurity is used, and .

√
N features are randomly 

selected, where N is the number of features. 

5.4.3.3 Results 

The proposed method generates data from a random forest and trains a neural 
network that imitates the random forest. The goal is that the neural network 
approximates the same function as the random forest. This also implies that the 
network reaches the same accuracy if successful. 

We analyze the performance by training random forests for each dataset and 
evaluating neural random forest imitation with different network architectures. A 
variety of network architectures with different depths, widths, and additional layers 
such as dropout have been studied. In this work, we focus on two-hidden-layer 
networks with an equal number of neurons in both layers for clarity. The results 
are shown in Fig. 5.7 exemplarily for the Car, Covertype, and Wisconsin Breast 
Cancer (Original) dataset. The other datasets show similar characteristics. The 
overall evaluation on all datasets is presented in the next section. The number of 
training examples per class is shown in parentheses and increases in each row from 
left to right. For each setting, the test accuracy of the random forest is indicated by a 
red dashed line. The average test accuracy and standard deviation depending on the 
network architecture, i.e., the number of neurons in the first and second hidden layer, 
are plotted for different architectures. NRFI (gen), which is trained with generated 
data only, is shown in orange, and NRFI (gen+ori), which is trained with generated 
and original data, is shown in blue. 

The analysis shows that the accuracy of the neural networks trained by NRFI 
reaches the accuracy of the random forest for all datasets. Only very small networks 
do not have the required capacity. The proposed method for generating labeled 
data from random forests by analyzing the decision boundaries enables training 
neural networks that imitate the random forests. For instance, in the case of 5 
training examples per class, a two-hidden-layer network with 16 neurons in both
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Fig. 5.7 Test accuracy depending on the network architecture (i.e., number of neurons in both 
hidden layers). Different datasets are shown per row, with an increasing number of training 
examples per class from left to right (indicated in parentheses). The red dashed line shows the 
accuracy of the random forest. NRFI with generated data is shown in orange and NRFI with 
generated and original data in blue. With increasing network capacity, NRFI is capable of imitating 
and even outperforming the random forest 

layers already achieves the same accuracy as the random forest across all 3 datasets 
in Fig. 5.7. Additionally, the experiment shows that the training is very robust to 
overfitting even when the number of parameters in the network increases. When 
combining the generated data and original data, the accuracy on Car and Covertype 
improves with an increasing number of training examples. 

Overall, the experiment shows that the accuracy increases with an increasing 
number of neurons in both layers and NRFI is robust to different network archi-
tectures. NRFI is capable of generating a large variety of unique examples from 
random forests which have been initially trained on a limited amount of data. 

Comparison to State of the Art 

We now compare the proposed method to state-of-the-art methods for mapping 
random forests into neural networks and classical machine learning classifiers such 
as random forests and support vector machines with a radial basis function kernel 
that have shown to be the best two classifiers across all UCI datasets (Fernández-
Delgado et al. 2014). In detail, we will evaluate the following methods: 

• DT: A decision tree (Breiman et al. 1984) learns simple and interpretable split 
decisions to classify data. The Gini impurity is used for splitting. 

• SVM: Support vector machine (Chang and Lin 2011) is a popular classifier 
that tries to find the best hyperplane that maximizes the margin between the



5 Fusing Deep Learning and Random Forests for Classification and Object Detection 121

classes. As evaluated by Fernández-Delgado et al. (2014), the best performance 
is achieved with a radial basis function kernel. 

• RF: Random forest (Breiman 2001) is an ensemble-based method consisting of 
multiple decision trees. Each decision tree is trained on a different randomly 
selected subset of features and samples. The classifier follows the same overall 
setup, i.e., 500 decision trees and a maximum depth of 10. 

• NN: A neural network (Rumelhart et al. 1988) with two hidden layers 
is trained using ReLU activation and cross-entropy loss. Possible values 
for the initial learning rate are .{0.1, 0.01, 0.001, 0.0001, 0.00001} and 
.{2, 4, 8, 16, 32, 64, 128} for the number of neurons in both hidden layers. The 
best hyperparameters are selected by performing a fourfold cross-validation. 

• Sethi: The method proposed by Sethi (1990) maps a random forest into a two-
hidden-layer neural network by adding a neuron for each split node and each leaf 
node. The weights are set corresponding to the split decisions. 

• Welbl: Welbl (2014) and Biau et al. (2019) present a similar mapping with 
subsequent fine-tuning. The authors introduce two training modes: independent 
and joint. The first optimizes each small network individually, while the latter 
joins all mapped decision trees into one network. Additionally, the authors 
evaluate a network with sparse connections and regular fully connected networks 
(denoted as sparse and full). 

• Massiceti: Massiceti et al. (2017) present a network splitting strategy to reduce 
the number of network parameters. The decision trees are divided into subtrees 
and mapped individually while sharing common split nodes. The optimal depth 
of the subtrees is determined by evaluating all possible values. 

First, we analyze the performance of state-of-the-art methods for mapping 
random forests into neural networks and neural random forest imitation. The results 
are shown in Fig. 5.8 for different numbers of training examples per class. For each 
method, the average number of parameters of the generated networks across all 
datasets is plotted depending on the test error. That means that the methods aim for 
the lower-left corner (smaller number of network parameters and higher accuracy). 
Please note that the y-axis is shown on a logarithmic scale. The average performance 
of the random forests is indicated by a red dashed line. 

The analysis shows that Sethi, Welbl (ind-full), and Welbl (joint-full) generate 
the largest networks. Network splitting (Massiceti et al. 2017) slightly improves the 
number of parameters of the networks. Using a sparse network architecture reduces 
the number of parameters. However, it should be noted that this requires special 
operations. NRFI with and without the original data is shown for different network 
architectures. The smallest architecture has 2 neurons in both hidden layers and the 
largest 128. For NRFI (gen-ori), we can see that a network with 16 neurons in both 
hidden layers (NN-16-16) is already sufficient to learn the decision boundaries of 
the random forest and achieve the same accuracy. When fewer training samples are 
available, NN-8-8 already has the required capacity. In the following, we will further 
analyze the accuracy and number of network parameters.
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Fig. 5.8 Comparison of the state-of-the-art and our proposed method for transforming random 
forests into neural networks. The closer a method is to the lower-left corner, the better it is (fewer 
number of network parameters and lower test error). For neural random forest imitation, different 
network architectures are shown. Note that the number of network parameters is shown on a 
logarithmic scale 

Accuracy 

The average test accuracy and standard deviation for all methods are shown in 
Table 5.1. Here, we additionally include decision trees, support vector machines, 
random forests, and neural networks in the comparison. The evaluation is performed 
on all nine datasets, and results for different numbers of training examples are 
shown (increasing from left to right). The overall performance of each method 
is summarized in the last column. For neural random forest imitation, a network 
architecture with 128 neurons in both hidden layers is used. From the analysis, 
we can make the following observations: (1) When training neural random forest 
imitation with generated data only, the method achieves .99.18% of the random 
forest accuracy (.71.44% compared to .72.03%). This shows that NRFI is capable 
of learning the decision boundaries. (2) Overall, NRFI trained with generated 
and original data reaches state-of-the-art performance (50 samples per class) or 
outperforms the other methods (5, 10, and 20 samples per class).
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Table 5.1 Average test accuracy [%] and standard deviation on all nine datasets for different numbers of 
training examples per class. The overall performance of each method is summarized in the last column. 
The best methods are highlighted in bold 

Samples per class 

Method 5 10 20 50 mean 

DT 62.95 ± 5.41 66.89 ± 4.18 70.82 ± 2.93 73.66 ± 2.20 68.58 ± 3.68 

SVM 65.21 ± 4.81 68.15 ± 4.44 71.91 ± 3.33 75.96 ± 2.22 70.31 ± 3.70 

RF 66.91 ± 4.01 70.31 ± 3.86 73.81 ± 2.46 77.08 ± 1.90 72.03 ± 3.06 

NN 65.50 ± 5.15 69.89 ± 4.13 73.11 ± 3.19 76.50 ± 2.53 71.25 ± 3.75 

Sethi 66.93 ± 4.01 70.06 ± 4.28 74.00 ± 3.00 77.50 ± 2.23 72.12 ± 3.38 

Welbl (ind-full) 66.72 ± 4.04 70.21 ± 3.91 74.19 ± 2.50 77.63 ± 1.81 72.19 ± 3.06 

Welbl (joint-full) 67.01 ± 4.14 70.42 ± 4.07 74.02 ± 2.80 77.31 ± 1.76 72.19 ± 3.19 

Welbl (ind-sparse) 66.81 ± 4.07 70.27 ± 4.15 74.14 ± 2.58 77.60 ± 1.82 72.20 ± 3.15 

Welbl (joint-sparse) 67.02 ± 4.17 70.41 ± 4.11 74.09 ± 2.77 77.36 ± 1.61 72.22 ± 3.17 

Massiceti 66.97 ± 4.05 70.07 ± 4.28 73.98 ± 3.05 77.45 ± 2.26 72.12 ± 3.41 

NRFI (gen) (ours) 66.99 ± 4.09 69.95 ± 4.21 72.90 ± 2.67 75.90 ± 2.22 71.44 ± 3.30 

NRFI (gen+ori) (ours) 67.42 ± 4.15 70.57 ± 4.05 74.36 ± 2.44 77.62 ± 1.90 72.49 ± 3.14 

Table 5.2 Comparison to state-of-the-art methods. For each method, the average number of 
parameters of the generated neural networks is shown. While achieving the same or even slightly 
better accuracy, neural random forest imitation generates much smaller models, enabling the 
mapping of complex random forests 

Samples per class 

Method 5 10 20 50 mean 

Number of network parameters 

Sethi 374299 592384 985294 1973341 981330 

Welbl (ind-full) 374729 592147 984626 1972604 981027 

Welbl (joint-full) 371965 589220 981816 1968118 977780 

Welbl (ind-sparse) 70070 102895 154740 254344 145512 

Welbl (joint-sparse) 67344 100131 151944 251598 142754 

Massiceti 348972 522640 792410 1328731 748188 

NRFI (ours) 2676 2676 2676 2676 2676 

Network Parameters 

Finally, we will analyze the number of parameters of the generated networks in 
detail. The results are shown in Table 5.2. Current state-of-the-art methods directly 
map random forests into neural networks. The number of parameters of the resulting 
network is evaluated on all datasets with different numbers of training examples. 
The overall performance is shown in the last column. Due to the stochastic process 
when training the random forests, the results can vary marginally. 

Sethi, Welbl (ind-full), and Welbl (joint-full) generate networks with around 
980 000 parameters on average. Of the four variants proposed by Welbl, joint 
training has a slightly smaller number of parameters compared to independent
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training because of shared neurons in the output layer. Network splitting proposed 
by Massiceti et al. (2017) maps multiple subtrees while sharing common split nodes 
and reduces the average number of network parameters to 748 000. Using sparse 
network architectures additionally reduces the number of network parameters to 
about 142 000; however, this requires a special implementation for sparse matrix 
multiplication. All of the methods show a drastic increase with the growing 
complexity of the classifiers. Sethi, for example, generates networks with 374 000 
parameters when training with 5 examples per class. The average number of network 
parameters increases to . 1.9 million when training with 50 examples per class. 

NRFI introduces imitation instead of direct mapping. In the following, a network 
architecture with 32 neurons in both hidden layers is selected. The previous analysis 
has shown that this architecture is capable of imitating the random forests (see 
Fig. 5.8 for details) across all datasets and different numbers of training examples. 
Our method significantly reduces the number of parameters of the generated 
networks while reaching the same or even slightly better accuracy. The current 
best-performing methods generate networks with an average number of parameters 
of either 142 000, if sparse processing is available, or 748 000 when using usual 
fully connected neural networks. In comparison, neural random forest imitation 
requires only 2676 parameters. Another advantage is that the proposed method does 
not create a predefined architecture but enables arbitrary network architectures. As 
a result, NRFI enables the transformation of very complex classifiers into neural 
networks. 

5.4.3.4 Analysis of the Generated Data 

To study the sampling process, we analyze the variability of the generated data 
as well as different sampling modes in the next experiment. Subsequently, we 
investigate the impact of combining original and generated data. 

Confidence Distribution 

The data generation process aims to produce a wide variety of data samples. This 
includes data samples that are classified with a high confidence and data samples 
that are classified with a low confidence to cover the full range of prediction 
uncertainties. The following analyses are shown exemplarily on the Soybean dataset. 
This dataset has 35 features and 19 classes. First, we analyze the generated data 
with a fixed number of decision trees, i.e., the number of sampled decision trees 
in .RFsub. The resulting confidence distributions for different numbers of decision 
trees are shown in the first column of Fig. 5.9. When adopting the data sample to 
only a few decision trees, the confidence of the generated samples is lower (around 
. 0.2 for 5 samples per class). Using more decision trees for generating data samples 
increases the confidence on average.
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Fig. 5.9 Probability distribution of the predicted confidences for different data generation settings 
on Soybean with 5 (top) and 50 samples per class (bottom). Generating data with different numbers 
of decision trees is visualized in the left column. Additionally, a comparison between random 
sampling (red), NRFI uniform (orange), and NRFI dynamic (green) is shown in the right column. 
By optimizing the decision tree sampling, NRFI dynamic automatically balances the confidences 
and generates the most diverse and evenly distributed data 

NRFI uniform and NRFI dynamic sample the number of decision trees for each 
data point uniformly, respectively, optimized via automatic confidence distribution 
(see Sect. 5.4.2.1). The confidence distributions for both sampling modes are 
visualized in the second column of Fig. 5.9. Additionally, sampling random data 
points without generating data from the random forest is included as a baseline. 
The analysis shows that random data samples and uniform sampling have a 
bias to generate data samples that are classified with high confidence. NRFI 
dynamic automatically balances the number of decision trees and archives an evenly 
distributed data distribution, i.e., generates the most diverse data samples. 

In the next step, the imitation learning performance of the sampling modes is 
evaluated. The results are shown in Table 5.3. Random data generation reaches a 
mean accuracy of .63.80%, while NRFI uniform and NRFI dynamic achieve . 87.46%
and .88.14%, respectively. This shows that neural random forest imitation is able to 
generate significantly better data samples based on the knowledge in the random



126 C. Reinders et al.

Table 5.3 Imitation learning performance (in accuracy [%]) of different data sampling modes on 
Soybean. NRFI achieves better results than random data generation. When optimizing the selection of 
the decision trees, the performance is improved due to more diverse sampling 

Samples per class 

Method 5 10 20 50 mean 

Random 58.70 . ± 4.15 58.65 . ± 1.34 64.61 . ± 6.91 73.24 . ± 0.79 63.80 . ± 3.30 

NRFI uniform 84.27 . ± 2.57 87.43 . ± 1.76 88.63 . ± 1.35 89.52 . ± 1.03 87.46 . ± 1.67 

NRFI dynamic 84.82 . ± 2.75 88.16 . ± 1.64 89.10 . ± 1.65 90.49 . ± 1.47 88.14 . ± 1.88 

forest. NRFI dynamic improves the performance by automatically optimizing the 
decision tree sampling and generating the largest variation in the data. 

Original and Generated Data 

In the next experiment, we study the effects of training with original data, NRFI 
data, and combinations of both. For that, the fraction of NRFI data .wgen is varied, 
which weights the loss of the generated data. Accordingly, the weight for the original 
data is set to .wori = 1 − wgen. The average accuracy over all datasets for different 
number of samples per class is shown in Fig. 5.10. When the fraction of NRFI data 

Fig. 5.10 Analyzing the influence of training with original data, NRFI data, and combinations of 
both for different number of samples per class. Using only NRFI data (.wgen = 100%) achieves 
better results than using only the original data (.wgen = 0%) for less than 50 samples per class. 
Combining the original data and generated data improves the performance
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is set to 0%, the network is trained with only the original data. When the fraction is 
set to 100%, the network is trained completely with the generated data. The study 
shows that training with NRFI data performs better than training with original data 
except for 50 samples per class where training with original data is slightly better. 
Combining original and NRFI data improves the performance. The best result is 
achieved when using mainly NRFI data with a small fraction of original data. 

5.5 Conclusion 

In this work, we brought two worlds together by combining neural networks and 
random forests. First, we presented an object detection framework for analyzing 
the road and traffic situations for cyclists and pedestrians. The combination of 
convolutional neural networks and random forests enables the training with very 
few labeled examples. Both methods are combined in an end-to-end pipeline 
by transforming the random forest into a neural network and generating a fully 
convolutional network. 

Because existing approaches for mapping random forests into neural networks 
generate inefficient networks, we presented a novel method for transforming random 
forests into neural networks. Instead of a direct mapping, we introduced a process 
for generating data from random forests by analyzing the decision boundaries and 
guided routing of data samples to selected leaf nodes. Based on the generated data 
and corresponding labels, a network is trained that imitates the random forest. 
Experiments on several real-world benchmark datasets demonstrate that NRFI is 
capable of learning the decision boundaries very efficiently. Compared to state-
of-the-art methods, the presented implicit transformation significantly reduces the 
number of parameters of the networks while achieving the same or even slightly 
improved accuracy due to better generalization. Our approach has shown that it 
scales very well and is able to imitate highly complex classifiers. 
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Part II 
Geovisualization and User Interactions 

Related to VGI 

VGI has been employed to support a variety of applications that benefit from the 
georeferencing of data, from navigation to exploratory data analysis. VGI data is 
large in quantity, dynamic, and spread across many different types of modalities, 
such as text, images, or positional information. To make full use of this data 
and to make it understandable for non-experts, the effective use of visualizations 
is a primary tool. For expert users, interactive visualizations enable varied user 
interactions to explore and interpret large, dynamic, and heterogeneous datasets and 
enable extraction of knowledge and patterns. For non-expert users, geovisualizations 
can help to communicate relevant patterns and properties like uncertainty of 
locations. 

Part II of the book explores geovisualizations and user interactions supporting 
the analysis and presentation of VGI data. When designing these visualizations 
and user interactions, we need to consider the specific properties of VGI data, the 
knowledge and abilities of different target users, as well as the technical viability 
of solutions. It is crucial to find the right trade-off between information density and 
complexity, on the one hand, and interpretability or ease of use, on the other hand. 
Algorithmic advances for the optimization of visualizations can support the process 
of revealing relevant information in visualizations; however, we should be aware 
to keep faithful representations of data. User interactions need to be efficient and 
powerful for analysts while not overwhelming possible users. The chapters in this 
part tackle these challenges in the space of VGI. 

We start by discussing strategies for visually analyzing dynamic social messages 
and news articles containing geo-referenced information based on visual analytics. 
We then discuss the use of interactive visual reporting solutions for leveraging 
natural language and visualizations for geo-related data. Following this, we examine 
the effects of landmark position and design in VGI-based maps on visual attention 
and cognitive processing. Related to this, we discuss landmark uncertainty in VGI-
based maps and its effects on orientation and navigation performance. Finally, we 
present a study to analyze the user behavior while solving interpretation tasks with 
VGI data and use the findings to improve task-oriented visual interpretation of VGI 
point data.
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We hope that this research strengthens the extraction of usable knowledge from 
VGI data for both experts and non-experts, integrating different data types such as 
text, and guiding further research into visual saliency for maps and task-specific 
representations of VGI data.



Chapter 6 
Toward Visually Analyzing Dynamic 
Social Messages and News Articles 
Containing Geo-Referenced Information 

Johannes Knittel, Franziska Huth, Steffen Koch, and Thomas Ertl 

Abstract The number of social media posts and news articles that are being 
published every day is high. This makes them an attractive source of human-
generated information for different domain experts such as journalists and business 
analysts but also emergency responders, particularly if posts contain references to 
geolocations. Visual analytics approaches can help to gain insights into such datasets 
and inform decision-makers. However, the high volume and the veracity of the 
data, as well as the velocity in the case of streaming data, pose challenges when 
supporting explorative analysis with interactive visualization. Based on four exem-
plary approaches, we outline recently proposed strategies to tackle these challenges. 
We describe how geo-aware filtering and anomaly detection methods can help to 
inform stakeholders based on geolocated tweets. We show that data-aware tag maps 
can provide analysts with an overview-first, details-on-demand visual summary of 
large amounts of text content over time. With space-filling curves, we can visualize 
the temporal evolution of geolocations in a two-dimensional plot without relying 
on animations that would impede comparative analyses. Additionally, we discuss 
the use of an efficient dynamic clustering algorithm for enabling large-scale visual 
analyses of streaming posts. 

Keywords Social media · Documents · Streaming data · Visualization · Visual 
analytics 

6.1 Introduction 

Unstructured or semi-structured data such as news articles and social media posts 
contain a significant amount of human knowledge. Analyzing such vast amounts 
of data enables several stakeholders from different domains to obtain insights and 
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inform their decision-making, for instance, business traders that need up-to-date 
information about new developments and first responders that benefit from timely 
witness reports on social media. In some cases, we can leverage the structured 
metadata associated with some of these documents such as the geolocation of posts 
or the timestamp of news articles, but it is generally challenging to gain insights into 
the actual content comprising text data. 

The field of visual analytics (Thomas and Cook 2005; Keim et al.  2010) 
particularly aims at solving such complex problems of analyzing and exploring 
large amounts of data with often open and ill-defined goals. It combines the domain 
knowledge and intelligence of human experts with interactive visualizations that 
are sourced from advanced automated data analytics and machine learning models. 
If we want to harvest news reports and social media posts for timely insights using 
visual analytics, we need efficient algorithms to deal with the volume of the data, we 
need to extract information from unstructured data such as text, we need to integrate 
and combine this information with additional metadata such as geolocations into 
interactive visualizations, and we need to develop adaptive visualizations and 
streaming-aware algorithms that can deal with dynamic data sources. This chapter 
outlines recently proposed visual analytics approaches to tackle the said challenges. 

6.2 Analyzing the Temporal Evolution of Text Data with 
PyramidTags 

Making sense of large document corpora is a challenging endeavor, since it is 
inherently difficult for machines to grasp the meaning of natural language. Visual 
analytics approaches that combine methods of automatic information retrieval and 
data analytics with interactive visualizations help to tackle such challenges by 
incorporating human expertise and human interpretability. However, it remains 
challenging to provide a comprehensive overview of large amounts of text data such 
as news articles or social media posts due to the unstructured nature of the data, the 
variety of how people express similar things, and the inherent ambiguity of natural 
languages. 

PyramidTags (Knittel et al. 2021c) proposes a novel tag layout for exploring 
large document collections such as tweets that aims at providing analysts with an 
overview of the content at hand and the temporal evolution of its themes without 
introducing hard clusters or topics. The approach utilizes an optimization process 
to place extracted relevant keywords and keyphrases from articles or posts onto a 
two-dimensional plot such that related tags ideally appear close to each other, while 
it is also possible to infer in which date ranges tags mostly appear in the dataset 
based on their position on the map (Fig. 6.1).
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Fig. 6.1 PyramidTags aims at providing an interactive overview of large document collections. 
This is an example of the main visualization based on 70,000 news articles published in late January 
2020 

6.2.1 Processing and Objectives 

PyramidTags first extracts the top k relevant keywords and keyphrases from the 
document collection using ELSKE (Knittel et al. 2021b), a fast keyphrase extraction 
library specialized in summarizing text collections. These tags serve as a summary 
of the content, and the way how they are placed on the two-dimensional tag map 
should support analysts making sense of the data with a date-aware, context-aware, 
and word-order-aware layout. In a second step, we process the dataset again to infer 
which tags are related based on how often and how close they appear in the same 
paragraph, whether there seems to be a preferred reading order of tag pairs (e.g., 
John | Doe vs. Doe | John), as well as in which date ranges tags and tag pairs mostly 
appear. 

The resulting data structure informs the subsequent layouting process, which 
optimizes an objective function using particle swarm optimization (Kennedy and 
Eberhart 1995). Minimizing this function therefore corresponds to finding a bal-
anced trade-off between different objectives such as that (1) related tags are placed 
nearby, (2) the position of the tag conveys the associated date range, (3) the preferred 
reading order is preserved for important pairs (if applicable), and (4) tags should not 
overlap.
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6.2.2 Triangular Layout 

One of the defining aspects of PyramidTags is its triangular layout, which aims to 
convey the temporal evolution of the extracted tags. Each tag is associated with a 
specific date range in which it mainly appears in the data (we may have several tags 
with the same text in case they appear in distinct clusters of date ranges). The vertical 
position on the map corresponds to the duration of this range, and the horizontal 
position to the mid-point of the said date range. At the bottom of the visualization, 
we place a timeline that depicts the entire date range of the dataset. For instance, 
if a word mainly appears on a specific date in the data, it is placed at the bottom 
of the map, right above the corresponding date in the timeline. On the other hand, 
if words or phrases appear in most of the articles, they are placed at the center-top 
of the visualization. Analysts should be able to infer this date range by spanning a 
right triangle from the tag to the timeline at the bottom. With this layout, we can 
visualize associated time spans of data points without relying on animations, which 
helps analysts to hypothesize about relevant events since tags that are mentioned 
during similar date ranges are also placed in the same neighborhood. 

For instance, in Fig. 6.1, the tags diamond princess and cruise ship appear at the 
top of the map, indicating that the discussion about the Covid-19 cases on the said 
cruise ship was in the news during most of the depicted date range, whereas storm 
dennis and flooding are placed at the bottom-left around the first day of the 2-week 
date range. 

6.2.3 Interactions and Document Retrieval 

If users hover over certain tags, a lightly colored trapezoid visualizes the associated 
date range of the respective tag. While the optimization process tries to place 
related tags nearby, due to the inherent information loss of projecting data to two-
dimensional spaces, not all tags that are close to each other are necessarily related, 
and there might be tags placed further away that are nevertheless related. The system 
therefore shades all other tags on the map depending on how related they are to the 
currently hovered tag (the more opaque, the less related). Users can also select one 
or several keywords by clicking on them. For instance, Fig. 6.2 shows an example 
in which the analyst has selected three tags (A). PyramidTags will then list the most 
related documents that contain the chosen selection of words or phrases, ranking the 
results based on the number of occurrences and the relative position of keywords to 
each other in the document (B). Users may also retrieve individual documents (C).
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Fig. 6.2 Once one or several tags are selected (A), the PyramidTags system shades terms based 
on how related they are to the selected keywords. For each tag, a colored trapezoid visualizes the 
associated date range in which the respective term mostly appears in. The system also provides a 
list of related documents (B) from which individual documents can be retrieved (C) 

6.3 Leveraging Geodata to Scale the Visual Analysis of Posts 

When dealing with large amounts of streaming text data, we can leverage geograph-
ical references to scale the analysis (e.g., the current position of the person that has 
just posted the respective tweet). Such geo-tags not only provide additional context 
to the textual content; we can also use them to cluster items and their content in a 
geospatial way, providing several important benefits. We can visualize content on 
top of a geographical map to help analysts focusing on specific regions of instance, 
drastically reducing the actual amount of data analysts have to cope with. Grouping 
content by geographic region may also help with providing thematic aggregations, 
as people in the same region within a certain time span may also have a higher 
chance of posting content with similar topics (e.g., football match in a city). Another 
advantage is that we can compare metadata and extracted aggregated information of 
documents with a spatial-aware baseline (e.g., typical occurrences of tags within a 
region). This also helps to develop anomaly detection algorithms, for instance, to 
notify first responders in a very timely manner about evolving situations. 

ScatterBlogs (Thom et al. 2012, 2015; Bosch et al. 2013) is a visual analytics 
approach that proposed to leverage the geographical annotations of tweets in these 
ways to scale the visual analysis of streaming posts. Case studies with domain 
experts from crisis management groups and critical infrastructure companies under-
lined the need for such systems so that analysts can obtain important additional 
information in real time regarding critical situations, despite the apparent learning
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curve and the need for specialized human labor to monitor this channel (Thom 
et al. 2015). However, they also showed that the velocity of newly published posts, 
even regarding specific events, and the dynamically evolving nature of the content 
itself (e.g., novel hashtags) still pose significant challenges for analysts and the 
development of such interactive monitoring systems (Fathi et al. 2020). 

6.3.1 Geospatial Clustering of Terms 

One of the core ideas in ScatterBlogs is to continuously extract terms that appear 
unusually frequently in certain geographic regions and visualize them on top of a 
map such that analysts can get an overview of interesting developments that take 
place at specific locations. In the beginning, every term (except for stop words) 
defines a cluster comprising all geo-tagged posts containing the respective term; 
new received posts are added to these clusters based on the terms they contain. Once 
the distortion of any such cluster is too high (i.e., the geographic positions of related 
messages are too widely scattered), we split the cluster using the k-means algorithm 
(with .k = 2). The system visualizes such dynamic term clusters by placing the 
respective tags (or representative dots) on a map based on the average geographic 
position of corresponding posts. The decision which terms to display in which size 
also incorporates how anomalous the usage of this term is. This score depends on the 
number of unique users and the geographic density of the corresponding posts, that 
is, the importance is high if many different users post messages at a specific location. 
Figure 6.3 depicts the main user interface of the system, visualizing anomalous 
terms in green on top of a map. 

6.3.2 Keyword Lens and Topic Modeling 

ScatterBlogs provides additional views to support explorative tasks. Analysts can 
move a lens across the map, which will highlight the most important keywords of 
posts that were sent in the corresponding geographic regions under the lens. When 
selecting specific term clusters, a histogram depicts the number of posts over time. 
Text-based and date/time-based filters can be applied to select a subset of tweets. 
For such a selection of posts, the system can provide a thematic overview of the 
content using LDA topic modeling (Blei et al. 2003). 

6.3.3 Interactive Classifier 

In addition to keyword-based filtering, ScatterBlogs also offers means to train and 
apply SVM-based classifiers interactively, which can be mapped to a color and icon
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Fig. 6.3 Main interface of the ScatterBlogs system (Thom 2015) for visually analyzing geolocated 
tweets in real time or retrospectively. Terms which exhibit anomalous usage in specific geographic 
regions are placed on top of a dynamic map visualization to guide analysts to potentially developing 
situations (B). Analysts can select a subset of tweets (D) based on date ranges (A, C, E), which will 
also trigger the extraction of topics using LDA (G). The right side allows defining and combines 
classifiers interactively for filtering messages (F, H) 

to support the visual indication of classified posts. An initial training set can be 
labeled greedily based on keyword searches and geographic filters. The system then 
provides visual feedback of the classifier in its current state (e.g., visualization of 
affected posts on the map) so that analysts can refine them iteratively. It is also 
possible to combine several such trained classifiers with a visual graph structure 
(right side of Fig. 6.3) that helps to define Boolean chains. 

6.4 Space-Filling Curves for Visualizing the Spatiotemporal 
Evolution of Data 

In addition to the publishing date, a subset of posts and articles also contain a 
geographic reference (e.g., location of the tweeter). As outlined in the previous 
section, such geo-references enable analysts to filter data based on relevant regions, 
but evolving geographic patterns and anomalies can also hint at interesting devel-
opments and inform the decision-making process. The ScatterBlogs system focuses 
on the real-time analysis of streaming posts, and thus, the temporal aspect is mostly 
implicitly encoded by the dynamic nature of the visualizations. However, for certain 
analytical tasks, it might be important to analyze larger time ranges in retrospect.
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The first section introduced PyramidTags, which applies the triangular layout to 
visually encode date ranges without animations for exploring vast amounts of social 
media posts and news articles. However, it is challenging to visualize the temporal 
evolution of geolocated data without animations, since the two main dimensions 
are typically already reserved to visually encode the geographic location on a map. 
Animations, though, need to capture the attention of the analyst over a longer time 
span and impede comparative analyses. Franke et al. (2021) proposed the use of 
space-filling curves for visually encoding spatial data into just one dimension so 
that we can depict the evolution alongside the y-axis. 

6.4.1 Neighborhood-Preserving 1D Projections 

The main idea of the approach is to project geographic positions into one-
dimensional positions using space-filling curves, such as Hilbert and Morton, 
while still preserving local neighborhoods to a certain degree. We can then plot 
a representative scalar value of geo-referenced data points across time in a two-
dimensional plot so that analysts can better assess the temporal evolution of 
geographic neighborhoods, as well as spot spreading patterns, geographic hotspots, 
similar patterns across different regions, and trendsetters. In a preprocessing step, 
the system clusters the data points hierarchically based on their spatial position (if 
the spatial hierarchy is not already given). This clustering allows us to aggregate 
larger datasets at different levels of spatial granularity and enables analysts to focus 
their analysis on specific geographic regions, which also aids in the interpretation of 
the resulting geo-projections. 

6.4.2 Main Interface 

For each aggregation level in the spatial hierarchy, the timeline view (Fig. 6.4 under-
neath the map) visualizes the temporal evolution of each entity (e.g., aggregated 
cluster or single data point) alongside the y-axis. The bars correspond to geographic 
entities in the clustering and are ordered based on their calculated position in the 
respective space-filling curve. Analysts can select a specific entity to focus on 
(highlighted by a red border), which will trigger the system to re-order close entities 
in the detail view at the bottom. The map at the top serves as an aggregated overview 
of the different geospatial entities based on a specific point in time that users can 
specify with the slider at the top-right of the interface. 

The system supports several methods for computing space-filling curves (top-
left panel). Upon hovering over a specific method, the respective curve is plotted on 
top of the map, and the differences in the ordering of the elements to the currently 
selected curve are visualized. Several computed metrics help analysts better assess 
the quality of the projections.
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Fig. 6.4 Space-filling curves help to visualize the temporal evolution of geospatial patterns in local 
neighborhoods (Franke et al. 2021). The map at the top shows an aggregated view at a specific 
time, whereas the timeline view underneath depicts the value of each geographic entity in the 
respective hierarchy layer across time. Analysts can select one of the bars, representing entities in 
the hierarchical clustering, which will highlight close entities in dark orange 

6.5 Clustering Posts Dynamically to Analyze Posts in Real 
Time 

Leveraging geo-annotations helps to scale the visual analysis of streaming data and 
enable geo-specific baselines as well as anomaly detection methods. However, while 
people still post textual geo-references (e.g., names of cities), the percentage of 
geolocated social media posts has steadily decreased in recent years. Thus, we need 
different strategies to enable the real-time analysis of social media posts, and we 
need to facilitate more context-rich analyses of the actual textual content. 

To achieve this, Knittel et al. (2022) have proposed a visual analytics system 
that employs an efficient dynamic clustering algorithm, providing analysts a 
continuous overview of what people talk about on Twitter. A dynamic visualization 
of frequently used phrases and a stream of representative posts help analysts to 
monitor topics they are interested in, and they can also dive deeper into such topics 
while increasing the resolution of the analysis. Figure 6.5 depicts the main interface 
of the approach.
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Fig. 6.5 The approach of Knittel et al. (2022) enables large-scale real-time analyses of streaming 
posts using an efficient dynamic clustering algorithm. The interface provides a thematic overview 
of what people are currently posting on Twitter (left side). Each row corresponds to one such topic, 
conveying its size with the length of the bar and the number of posts over time in a small line chart. 
Once analysts have selected one or several such topics, frequent phrases are continuously extracted 
and visualized on the right side at the top. In addition to a manageable stream of representative posts 
underneath, they help to provide a more context-rich visual summary of the streamed content. It is 
also possible to create filters based on such a topic selection so that the clustering processes and 
visualizations operate on this filtered stream to enable more fine-grained analyses 

6.5.1 Dynamic Clustering 

The system stores each new post in a sliding window of configurable size (e.g., the 
last 20 minutes) and computes corresponding bag-of-words vector representations 
(Salton and Buckley 1988). For the dynamic clustering, the approach adapts the k-
means clustering algorithm (Lloyd 1982) based on a more efficient implementation 
for sparse vectors (Knittel et al. 2021a). The idea is to regularly cluster the 
documents in the sliding window with different cluster sizes while using the 
centroids from the previous clustering run (if available) to obtain more coherent 
clusters between runs. The Davies-Bouldin Index (DBI) (Davies and Bouldin 
1979) determines which of the different clusterings is deemed best. The algorithm
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then tries to map the final cluster centroids to the ones from the previous run 
to determine which clusters are actually new, are deprecated, or have just been 
updated. The system runs two independent clustering processes with different levels 
of granularity. The more coarse-grained clustering provides a topical overview of 
the tweets in the window; the more fine-grained clustering facilitates a stream of 
representative posts. 

6.5.2 Topical Overview 

The left side of the main user interface (Fig. 6.5) visualizes the topics as computed 
by the coarse-grained dynamic clustering process. Each row represents one topic, 
conveying its size with the length of the bar and the number of posts over time in a 
small line chart, as well as providing a short topic summary with the most important 
words that define that cluster. Once the clustering has been updated with new posts, 
the visualization changes dynamically to represent the new state, but in a staggered 
way so that the mental map is preserved. Each row gets updated step by step (e.g., 
the lebron topic in Fig.  6.5), visualizing the number of new posts in dark green, 
the number of removed posts in red, and the number of posts that were moved to 
a different topic in magenta (while also depicting this flow with curves to the left 
of the bars). New terms are highlighted in dark green. The speed of this dynamic 
rollout is adjustable. 

6.5.3 Frequent Phrases and Stream of Representative Posts 

Users can select one or several of the main topics on the left, which will update the 
right side of the interface with more detailed views for summarizing the content of 
these topics. The system continuously extracts unusually frequent words and phrases 
in the selection with ELSKE (Knittel et al. 2021b) and lists them on the right side, 
highlighting new entries in dark green. Below each such phrase, a small barcode-like 
visualization allows analysts to infer which of these text parts co-occur by mentally 
overlapping their respective barcodes. The system can also emphasize this overlap 
in orange if analysts select several such phrases. 

Below this view, a stream of posts appears that resembles a typical feed users 
would also see on Twitter. One of the challenges the case study of Fathi et al. 
(2020) with emergency managers identified is the dynamic nature of quickly 
evolving situations, which can easily lead to situations in which the sheer number of 
published posts related to a specific event or topic can overwhelm analysts. Hence, 
the idea of the feed below the frequent phrases is that the appearing posts should 
cover the thematic variety of the selected topics while keeping the number of new 
posts in a given time span low, ensuring that analysts can focus on a digestible set 
of posts.
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The system selects for each cluster in the fine-grained dynamic clustering process 
one post that should represent this fine-grained theme by calculating distances 
between the vector representations with the respective cluster centroid. Due to their 
similarity with the respective centroids, these representative posts ideally cover a 
large proportion of tweets in the same cluster, but they should also provide a diverse 
summary as they were sourced from different clusters in the fine-grained clustering 
process. If such a representative post has not been added yet, it will be queued up, 
and a small badge in light blue appears that notifies the user about new posts. For 
each such post, a small bar chart depicts the number of similar posts, which can also 
be retrieved if analysts click on the bar. 

6.5.4 Diving into Topics 

While the frequent phrases and representative posts already provide more context-
rich summaries of the selected topics, the general thematic variety on social media 
platforms is typically high, so it is challenging to group all posts into just 10 to 20 
overview clusters. To alleviate this, the proposed system allows users to gradually 
dive into topics. After selecting one or several such coarse topics on the left side, 
analysts can click on the fork button at the top of the interface. This will define a new 
filter layer, in which only posts that fit the selection will be processed and visualized 
(it is also possible to create keyword-based filters). As a result, the topical overview 
on the left and the fine-grained clustering process now only operate on this filtered 
stream of data, increasing the resolution of the topics and aggregations and, thus, 
increasing the resolution and specificity of the analysis. 

6.6 Conclusion 

Geo-referenced social media posts and news articles are a rich source for harvesting 
information and knowledge, but the unstructured nature of the main content and the 
volume, veracity, and velocity of the data pose significant challenges for developing 
such visual analysis systems. This chapter outlined several recent approaches 
for tackling these challenges. The ScatterBlogs system scales the visual analysis 
of streaming geo-referenced posts by continuously extracting terms that exhibit 
spatiotemporal anomalies. Our proposed dynamic clustering algorithm enables the 
continuous monitoring of posts even if they are not geo-tagged. PyramidTags is a 
novel tag map layout for exploring large time-stamped text collections. We further 
outlined how we can utilize one-dimensional projection methods to visualize geo-
referenced time series data such that we can still observe important spatial trends 
and patterns. 

There are several benefits if we can incorporate geographic locations into our 
analysis, since this allows us to better detect interesting events and helps to filter
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the content that has to be processed. However, due to the decrease of geolocated 
documents, we need to develop new strategies and techniques for leveraging 
geographic references in social media posts and news articles. 
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Chapter 7 
Visually Reporting Geographic Data 
Insights as Integrated Visual and Textual 
Representations 

Fabian Beck and Shahid Latif 

Abstract Geographic information volunteered by the public is usually also of 
public interest. However, just publishing the data is not enough to make the data 
accessible and usable for the public. The raw data might need to be abstracted 
and interpreted, as well as visually presented to be understandable to non-experts. 
To address this, we propose interactive visual reporting solutions that leverage 
natural language and visualizations for geo-related data. We present these reports as 
interactive documents, but also in other media such as virtual reality environments. 
First, we have studied the interplay of textual and visual content in such reports. To 
ease the creation of content, we have developed solutions for authoring interactive 
documents with a close linking of textual contents and visually presented data. 
Moreover, we propose automatic report generation approaches that specifically sup-
port the exploration of the geo-related data starting from an explanatory summary. 

Keywords Geographic visualization · Data-driven storytelling · Interactive 
documents · Authoring interfaces · Text generation 

7.1 Introduction 

Data-driven storytelling embeds data into a narration and usually combines a textual 
representation with visualizations (Segel and Heer 2010). While magazine-style 
stories might be most common, there exist other presentation genres like animations 
and slide shows, comics, or annotated charts (Segel and Heer 2010). The power 
of data-driven storytelling lies in making data accessible to a wider audience, 
by guiding through the analysis insights while inviting users to engage through 
simple interactions. Textual and visual data descriptions complement each other 
and, together, form an integrated representation that is both easy to follow and rich 
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V 

Fig. 7.1 Conceptual diagram of the applied analysis cycle; steps I–II in gray mark previous 
research and results; steps III–IV as black arrows represent the focus of our research, which is 
intended to facilitate a joint dialog between stakeholders (V) 

of information. For instance, a story on flight data might link a globe or map that 
shows flight trajectories with explanations on busy routes and airports but also could 
provide insights into specific examples like the longest flights. 

As an expressive and interactive medium, data-driven stories fit volunteered geo-
graphic information. For data that is volunteered by the public, it is a natural choice 
to make that data also available and understandable for a broad audience. Figure 7.1 
illustrates this concept as closing a circle. Public groups or individuals volunteer 
geographic information that is then made available on open data platforms (I). While 
experts have already analyzed such data in various application scenarios (II), we 
contribute methods for bringing the derived insights back to the general public and 
decision-makers. From the open data itself (III.a) and insights of the experts (III.b), 
we support authoring and automatically generating reports that can be understood 
by this broad group of users (IV). Computer support and automation are necessary 
to efficiently create summaries of varying data and to allow personalized reporting. 
With these reporting solutions, we intend to facilitate non-experts users and foster 
a dialog between the public, decision-makers, and experts (V). This cycle aligns 
with endeavors of others to make volunteered geographic data directly usable to the 
public, for instance, within project IDEAL-VGI (Chap. 2). 

The challenges of this research are in the identification and selection of relevant 
insights, as well as in their reporting as integrated visual and textual representations. 
The produced reports should furthermore invite the readers and users to explore 
the data. We have approached these challenges by first studying the interplay 
of text and visualization in existing examples of geographic data-driven stories
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(Sect. 7.2). Then, we investigated solutions that help author reports with close 
linking between the two representations (Sect. 7.3). Finally, designing automatically 
generated reports allowed us to provide, aside to a data-driven story, solutions 
with certain support for exploration (Sect. 7.4). While geodata plays a role in all 
presented research, we also consider the visualization of additional, non-geographic 
data. 

This chapter describes the results of the project vgiReports and summarizes as 
well as connects an excerpt of project-related publications (Latif et al. 2021a,b, 
2022a,b) and a preliminary work (Latif and Beck 2019a). Two of these works (Latif 
et al. 2021a,b) report results from collaborations with other projects of the priority 
program. 

7.2 The Interplay of Text and Visualization 

The way textual and visual descriptions are combined is crucial in data-driven 
stories. If integrated well, it could avoid a split attention effect between the 
two media (Ayres and Sweller 2005) and might even help identify misaligning 
information (Zheng and Ma 2022). Interactive linking of text and visualization can 
increase user engagement (Zhi et al. 2019) and guide user attention while supporting 
specifically less experienced users in correctly mapping the text and data (Barral 
et al. 2021). 

Journalistic outlets provide many high-quality, manually crafted examples of 
data-driven stories. For instance, The New York Times has published in 2021 more 
than a hundred carefully designed visual stories and interactive graphics (The 
New York Times 2021). As some of such stories cover geographic aspects, we 
can leverage them to study how geographic data is successfully reported to a 
wide audience. Previous research has already studied in existing stories structure 
and sequence (Hullman et al. 2013), patterns of visual narrative flow (McKenna 
et al. 2017), and narrative order in time-oriented stories (Lan et al. 2021). Text in 
such stories can have different roles, ranging from introductory texts to detailed 
annotations of the visualization (Segel and Heer 2010). We have focused on a fine-
grained analysis of such categories and the explicit and implicit interplay of text and 
visualization in stories, with a certain focus on geographic aspects. In a first study, 
we analyzed 22 full stories from a variety of news media (Latif et al. 2021b). A 
second study looked at a set of 110 paragraph-chart pairs stemming from 77 articles 
of different news media (Latif et al. 2022b). Using a qualitative methodology in 
both studies, we investigated the text on sentence and word level and classified 
the cases into different categories. Specifically, we have addressed the following 
research questions. 

What Are the Reported Analysis Insights, and How Is the Related Data Visually 
Communicated? (Latif et al. 2021b) We observed two categories of textual 
narrative: data-driven text and contextual embedding text. The former directly
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relates to the data and describes analysis insights. These insights link to the analysis 
tasks, namely, identify, summarize, and compare. In stories with geographic focus, 
location and time are generally key concepts. In particular, locations associated 
with extreme values as well as those depicting very dissimilar behavior (outliers) 
are identified and explained in the narrative. Likewise, clusters of locations are 
discussed together to highlight their similarities. Other reported insights include 
geographic and temporal variations of variable values across a geographic region 
or time span. The narrative either uses measures of central tendency like mean, 
median, or mode to summarize them or describes these variations in plain words. 
Lastly, the narrative compares locations or other data items using part-to-whole 
contrasts, correlation, or statistical ranking. Apart from these insights, as contextual 
embedding, a comparable proportion of the narrative blends in the background of 
the story and data, necessary domain knowledge, and quotes from external sources 
or people to make these stories self-sufficient units of information. Moreover, 
authors of the stories interpret analysis insights, relate to other data and information 
sources, and attach judgment. It is important to note that the data-driven text 
and the contextual embedding text are often intermingled and cannot be always 
unambiguously separated. As the textual narrative explains the analysis insights, 
visualizations act as a complement to show the relevant data. Visualizations can 
serve a specific purpose, for instance, to provide an overview of the data, to support 
comparisons, or to highlight details. The use of simple visualizations like maps, 
visually enriched tables, bar charts, and line plots is more common compared to 
slightly more advanced ones like distribution plots and scatter plots. 

How Do Textual Narration and Visualization Interplay? (Latif et al. 2021b) We 
discovered different kinds of linking strategies to convert visualizations and an 
associated textual narrative into a single engaging story. First, the visualizations are 
almost always placed close to the text that describes them. Likewise, the sequence 
of visualizations in a story is important: The overview visualizations often appear 
first and are followed by detailed visualizations. Second, to strengthen the linking 
further, textual elements like captions, annotations, or tooltips are employed inside 
or next to visualizations. These textual elements often explain the key insight of a 
visual or help users in better interpreting the visualization. We observed that the use 
of descriptive annotations even enabled authors to include comparatively complex 
and non-standard visualizations into their stories. Third, visualizations as a whole or 
parts of them are explicitly referenced from the textual narrative. Authors sometimes 
also use the same colors in text and visualization to show connections between the 
two media. 

What Implicit References Exist Between Text and Visualization, and How Do 
They Relate to the Data? (Latif et al. 2022b) Implicit references can be defined 
as connections between a textual narrative and a visualization if both refer to the 
same data items. For instance, the mentions of countries aside showing a world 
map make country names implicit references. However, such connections are not 
limited to just single entities or values but also include group references (referring to 
many data points, e.g., EU) and interval references (referring to numerical ranges).
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Furthermore, individual references can be grouped together to form higher-order 
references. We found that these implicit references can correspond to analysis tasks 
such as identification, summarization, and comparison. Almost half of the implicit 
references directly matched a chart feature (e.g., axis label, legend, annotation, 
caption). However, the other half contained linguistic variations (e.g., inferences, 
synonyms, abbreviations, stems, or lemmas) or numerical variations (e.g., rounded 
off numbers, approximations, computed measures) and are harder to map to the 
visualized data. 

7.3 Authoring Interactive Reports 

Creating a data-driven story requires effort: Aside from writing the text, data needs 
to be analyzed and visually presented. Web technologies provide a good basis for 
making the content available. However, whereas many content management systems 
allow placing textual and visual content side by side, they do not support integrating 
both representations closer and, through this, creating interactive documents. Filling 
this gap, various authoring tools and supporting approaches have already been 
suggested for data-driven storytelling (Tong et al. 2018, Section 3). For instance, 
Chen et al. (2020) developed a framework to synthesize stories from insights 
identified using a visual analytics systems. It allows an author to arrange insights 
in different simplified visualizations, annotating and connecting them to tell a story. 

Whereas most of these approaches support efficiently generating stories of 
different kinds, they do not directly address creating explicit and interactive links 
between the text and visualization. In contrast, VizFlow (Sultanum et al. 2021) 
focuses on links between text and visualization for authoring; while their links are 
limited to manually created links to image-based features of the visualization, they 
investigate in more detail how to leverage such links for document layout. Ellipsis 
(Satyanarayan and Heer 2014) allows authoring staged slide show stories with 
annotations that can be bound to data values and adapt with it. Elastic Documents 
(Badam et al. 2019) does not allow creating links directly but extracts text and tables 
that relate and connects them using new visualizations. Related are, furthermore, 
general approaches for annotating charts by, among other visual marks, textual 
content (Ren et al. 2017). 

Focusing on an easy and efficient creation of valuable links between the text 
and visualizations, we have developed Kori (Latif et al. 2022b). The system, as 
demonstrated in Fig. 7.2, supports both manual creation of links and automatic 
suggestions for links. The computed links are based on processing the text and 
consider the hierarchical structure of references discussed in Sect. 7.2. While an 
author is composing an interactive story, the system offers unobtrusive suggestions, 
which can then be inspected and accepted or discarded. For the reader, the links 
finally act as interactive references and, when triggered, take the users’ attention to 
the respective portion of the visualization. Not only do they reduce a split attention 
effect but could be starting points from where to explore the data further. For the
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Fig. 7.2 The user interface of Kori. It consists of a chart gallery (1) and an editing interface (2). 
It supports manual creation of links through simple interactions (3). Users can choose highlighting 
options and their properties (4) 

manual creation and adaption of links, the system offers an interface that requires 
only a few interactions to define the references. There are two modes of manual 
construction: First, the authors can directly select visual marks in the chart using a 
direct manipulation mode (e.g., rectangular brush selection). Alternatively, authors 
can apply a series of filters to select visualized data points. Through these means, 
authors can effortlessly create references and focus on composing their story. 

In a study, we asked 11 participants having diverse background and experience 
to create references to link text and visualizations in three examples. In the first and 
second task, they reproduced given links of various kinds with the tool. The third 
task was more open-ended; the participants were only given a set of visualizations 
and had to also textually summarize some findings as a short story while linking 
the text to the visualizations. The results indicated that participants did not have 
difficulties using the interface and were able to construct meaningful references in 
all three tasks. Among 64 automatic suggestions that occurred in the sessions, 48 
were correct and 16 incorrect. Participants also used the manual construction mode 
and rated it comparable to the automatic suggestion feature, both with a median of 4 
on a scale from 1 (worst) to 5 (best). The feedback for the automatic suggestions was 
mostly positive and confirmed that many recommendations were helpful and did not 
disturb the users’ workflow. “Smarter” reference detection methods, however, could 
still improve the experience.
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7.4 Explorative Reporting 

Data-driven stories and visual reports of data might be presented as interactive 
documents but often remain rather static. Users can interactively navigate through 
the story and retrieve some details on demand, but the documents mostly lack 
support for starting an explorative analysis that goes beyond the original story. 
Moreover, stories do not adapt to personal interests or current data. The explanation 
for these restrictions is simple: the stories are manually written as static texts. 
However, if partly automizing the generation of the natural-language content, we 
could provide extended options for explorative data analysis and personalization. 

Various techniques exist for natural-language generation (Gatt and Krahmer 
2018). Whereas the use of advanced generation methods for automatic reporting 
of data is not yet common in journalistic and industrial practices, some research 
prototypes have already investigated its potential for more adaptive reporting. For 
instance, such generation techniques have been used to provide guidance in the data 
exploration process by reporting automatically derived data facts (Srinivasan et al. 
2019). But also whole stories can be generated. Unlike approaches that rather target 
at fully automatic generation (Shi et al. 2021), we are interested in still human-
authored reports, however, which can adapt to different data automatically. Used 
in interactive documents, the generated text blends with visualizations in a data-
driven story. In earlier works, we have explored such representations, for instance, 
to generate profiles of scientific authors (Latif and Beck 2019b) or, in software 
engineering use cases, to summarize program executions (Beck et al. 2017) and code 
quality (Mumtaz et al. 2019). More and more, the generated reports allow greater 
flexibility regarding the interactive exploration of the data, which complements 
explanatory texts and guided data analysis. The general idea can be described as 
exploranation, mixing exploration with explanation (Ynnerman et al. 2018). 

Now, we have investigated such approaches to apply them to geographic data in 
the context of different media and usage modalities. These cover novel aspects such 
as comparative descriptions of selected entities, novel forms of presentation such as 
adaptive audio guides, and novel blends of interaction forms and presentations such 
as chatbots. This set of diverse examples shows early prototypes that demonstrate 
promising directions of visual reporting; we have not evaluated them yet in detail or 
connected them into a more comprehensive framework. 

7.4.1 Maps with Data-Driven Explanations 

Maps that show statistical information are widely used in data-driven storytelling. 
Choropleth maps visualize variation in one variable for a set of regions (e.g., 
countries). However, oftentimes, it is desirable to describe the relationship between 
two variables, which would require simultaneous visualization of two values per 
region. For instance, per capita spending on education could be compared to per
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Fig. 7.3 A report describing casualties due to storms in the US as a bivariate map and textual 
summary (top). Details on a selected region and a comparison of two selected regions are available 
on demand (cutouts at the bottom) 

capita spending on defense to understand different geopolitical roles of countries. 
An established way of visualizing such bivariate data is to employ graduated 
symbols overlaid on a choropleth map (Elmer 2012). However, by construction, 
these bivariate map visualizations are more complex to interpret, and it gets harder 
to spot visual patterns. Additional textual explanations might counterbalance and 
could hint at interaction effects of the variables that would go unnoticed otherwise. 
Encoding more variables per region in a more complex visual glyph is doable but 
would render the communication to a wider audience even more challenging. 

To visually and textually report at least bivariate geographic data in a more 
accessible way, we developed Interactive Map Reports (Latif and Beck 2019a). 
It employs well-established statistical methods to detect notable relationships, 
geographic patterns, and outliers in given bivariate data. These insights are automat-
ically transformed into a natural-language narrative that is, then, presented alongside 
a bivariate map visualization as shown in Fig. 7.3. The given example relates, 
for states of the USA, the number of fatalities caused by storms to the number
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of storms to reflect if the quantity of storms is directly related to the death toll. 
The textual narrative serves as a guide and explains findings. Small graphics in 
the text help establish linking between the two representations. Users can explore 
the map visualization as they read through the narrative by activating interactive 
links (printed in boldface). Likewise, while exploring the map, users can either get 
additional details on a selected geographic region or a comparative text for two 
selected regions. 

The system is capable of generating interactive reports for different bivariate 
geographic datasets. Through a small set of parameters that the user provides about 
variables, geographic region and granularity, and general terminology, it adapts the 
generated narrative and visualization. 

7.4.2 Interactive Audio Guides in Virtual Reality 

Virtual reality is emerging to be an engaging medium for interactive data visu-
alization, and it has just been started to be explored for data-driven storytelling 
(Isenberg et al. 2018). The idea of exploranation is also applicable to virtual reality 
visualizations. However, as used previously in documents, longer textual narrative 
will not be suitable as reading would counteract immersion. As an alternative, 
audio can be used in virtual reality applications such as games, movies, or virtual 
museums. Prerecorded audio narrative might be played at various stages of the 
story (e.g., in a game) or activated by a user interaction (e.g., in a virtual museum). 
The prerecording aspect limits the flexibility, and such approaches cannot adapt to 
changes in the data as a result of interactions. 

To support exploranation, our approach Talking Realities (Latif et al. 2022a) 
combines a data-driven audio narrative with an immersive virtual-reality visualiza-
tion. The audio narrative is based on automatic identification of interesting analysis 
insights. Using speech synthesis services, it is rendered on the fly from generated 
text and, therefore, adapts to data selections and user interactions. To provide a 
smooth exploration experience, the narrative should be synchronized with visual 
animations. To cater to the needs of a larger target user group, Talking Realities 
advocates three modes with varying levels of guidance. On the one hand, fully 
guided tours walk users through a pre-defined sequence of findings with the least 
freedom to explore. Free exploration, on the other hand, lets users investigate the 
data visualization without any intervention. In the middle lies the guided exploration 
that provides hints at potential perspectives that are worthy of exploration. We 
have tested the approach with different immersive visualizations, ranging from 
multivariate statistical data to astronomic data. Figure 7.4 shows an example of 
intercontinental air traffic data projected onto a globe.
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Fig. 7.4 Scenes and audio explanations (here, transcribed) from our prototype implementing the 
Talking Realities approach for air traffic data. (Top) A description of the aggregated intercontinental 
flights for one day. (Bottom) Scenes reporting the longest flight from an airport and most flights to 
any other airport 

7.4.3 A Chatbot Interface Providing Visual and Textual 
Answers 

Using natural language can make interactions with a machine effortless. Chatbots 
that reply to textual messages are an example of that. Instead of going through 
context menus and then choosing the relevant option, chatbots let us verbalize our 
requests as we would to another human being. However, research on supporting 
chatbot interfaces for data analysis and visualization is still in its infancy. Although 
some systems are already powerful, the use of chatbots can still lead to false 
expectations, misunderstood questions, and unexpected replies (Tory and Setlur
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Fig. 7.5 VisKonnect answers user questions with a mix of textual reply (left) and explorable 
visualizations (right). The cutout of the visualization shows a timeline for the two identified 
scientists; annotations are placed manually for highlighting events that the users might further 
explore 

2019). We believe that a chatbot interface could be a good starting point to make the 
first contact with the data. In response to the user query, a resulting exploranative 
representation of data should then enable users to verify and validate presented facts 
and to explore related ones. 

For a specialized use case of exploring relationships among historical public 
figures, we have developed VisKonnect (Latif et al. 2021a) together with project 
WorldKG (Chap. 1). The approach offers a chatbot interface to ask questions about 
said historical figures. Given a question, it uses a rule-based approach to understand 
the intent of the question and extract meaningful entities (e.g., people, places). 
Based on this information, it formulates a SPARQL query to pull the relevant 
data from an event knowledge graph (Gottschalk and Demidova 2019). This data 
is then visualized in multiple linked visualizations, highlighting the timelines of 
individual and shared events, as well as where these events take place. These 
visualizations are augmented with a textual explanation that aims at answering the 
user question (either through simple text templates or the GPT-3 language model). 
Additionally, related events are listed and serve as interactive links to explore them 
in the associated visualization. Figure 7.5 demonstrates a query about two well-
known scientists and the response generated by VisKonnect. 

7.5 Conclusion and Future Work 

Within the presented research, we have empirically investigated in-depth how 
geographic data and related information can be jointly described and linked in 
textual and visual representations. For creating data-driven stories as integrated 
reports, we provide authoring support of such links that better connect the two 
representations. While links can be manually added in a flexible and easy-to-use 
way, our solution also automatically recommends specific linking through analyzing 
the data-driven text. In different reporting solutions, we were able to demonstrate 
the flexibility and broad applicability of our reporting solutions as automatically 
generated descriptions of statistical maps, as audio guides in virtual reality for
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immersive visualizations, and as a natural-language interface to a knowledge graph 
that responds with textual and visual data representations. 

With these solutions, we not only guide users through insights of a data analysis 
but at the same time invite them to explore the data in depth. Following our 
overarching goal to loop back the volunteered data to the public, we are now 
specifically interested in transferring these empirical results, methods-oriented 
general solutions, and early research prototypes to specific application examples 
and inviting a broader audience to use them. Ongoing work targets at this already, 
for instance, investigating a visual reporting solution for personalized, comparative 
summarizations of hotel reviews. 

Our research generally emphasizes that citizen participation in research is not one 
directional. Reflecting back results and providing options to explore the data support 
an even higher level of participation and should be considered in all citizen science 
projects and data volunteering platforms. Our ideas can be brought together with 
analysis solutions for volunteered geographic information, and we invite researchers 
developing such solutions to also investigate this perspective. Still, empirical studies 
are necessary that explore the effect of providing visual reporting solutions on the 
engagement of volunteers and the influence on decision processes. 

Acknowledgments The work is funded by the Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation)—424960846. 

References 

Ayres P, Sweller J (2005) The split-attention principle in multimedia learning. In: Mayer RE (ed) 
The Cambridge handbook of multimedia learning. Cambridge University Press, Cambridge, pp 
135–146 

Badam SK, Liu Z, Elmqvist N (2019) Elastic documents: coupling text and tables through 
contextual visualizations for enhanced document reading. IEEE Trans Vis Comput Graph 
25(1):661–671. https://doi.org/10.1109/tvcg.2018.2865119 

Barral O, Lallé S, Iranpour A, Conati C (2021) Effect of adaptive guidance and visualization 
literacy on gaze attentive behaviors and sequential patterns on magazine-style narrative 
visualizations. ACM Trans Interact Intell Syst 11(3-4):1–46. https://doi.org/10.1145/3447992 

Beck F, Siddiqui HA, Bergel A, Weiskopf D (2017) Method execution reports: generating text 
and visualization to describe program behavior. In: Proceedings of the 2017 IEEE Working 
Conference on Software Visualization. IEEE, pp 1–10. https://doi.org/10.1109/vissoft.2017.11 

Chen S, Li J, Andrienko G, Andrienko N, Wang Y, Nguyen PH, Turkay C (2020) Supporting story 
synthesis: bridging the gap between visual analytics and storytelling. IEEE Trans Vis Comput 
Graph 26(7):2499–2516. https://doi.org/10.1109/tvcg.2018.2889054 

Elmer ME (2012) Symbol considerations for bivariate thematic mapping. PhD thesis, University 
of Wisconsin–Madison 

Gatt A, Krahmer E (2018) Survey of the state of the art in natural language generation: core tasks, 
applications and evaluation. J Artif Intell Res 61:65–170. https://doi.org/10.1613/jair.5477 

Gottschalk S, Demidova E (2019) EventKG—the hub of event knowledge on the web—and 
biographical timeline generation. Semant Web 10(6):1039–1070

https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1109/tvcg.2018.2865119
https://doi.org/10.1145/3447992
https://doi.org/10.1145/3447992
https://doi.org/10.1145/3447992
https://doi.org/10.1145/3447992
https://doi.org/10.1145/3447992
https://doi.org/10.1145/3447992
https://doi.org/10.1109/vissoft.2017.11
https://doi.org/10.1109/vissoft.2017.11
https://doi.org/10.1109/vissoft.2017.11
https://doi.org/10.1109/vissoft.2017.11
https://doi.org/10.1109/vissoft.2017.11
https://doi.org/10.1109/vissoft.2017.11
https://doi.org/10.1109/vissoft.2017.11
https://doi.org/10.1109/vissoft.2017.11
https://doi.org/10.1109/tvcg.2018.2889054
https://doi.org/10.1109/tvcg.2018.2889054
https://doi.org/10.1109/tvcg.2018.2889054
https://doi.org/10.1109/tvcg.2018.2889054
https://doi.org/10.1109/tvcg.2018.2889054
https://doi.org/10.1109/tvcg.2018.2889054
https://doi.org/10.1109/tvcg.2018.2889054
https://doi.org/10.1109/tvcg.2018.2889054
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477


7 Visually Reporting Geographic Data Insights 159

Hullman J, Drucker S, Henry Riche N, Lee B, Fisher D, Adar E (2013) A deeper understanding of 
sequence in narrative visualization. IEEE Trans Vis Comput Graph 19(12):2406–2415. https:// 
doi.org/10.1109/tvcg.2013.119 

Isenberg P, Lee B, Qu H, Cordeil M (2018) Immersive visual data stories. In: Immersive analytics. 
Springer, New York, pp 165–184. https://doi.org/10.1007/978-3-030-01388-2_6 

Lan X, Xu X, Cao N (2021) Understanding narrative linearity for telling expressive time-oriented 
stories. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 
ACM, pp 1–13. https://doi.org/10.1145/3411764.3445344 

Latif S, Beck F (2019a) Interactive map reports summarizing bivariate geographic data. Vis Inf 
3(1):27–37. https://doi.org/10.1016/j.visinf.2019.03.004 

Latif S, Beck F (2019b) VIS author profiles: interactive descriptions of publication records 
combining text and visualization. IEEE Trans Vis Comput Graph 25(1):152–161. https://doi. 
org/10.1109/tvcg.2018.2865022 

Latif S, Agarwal S, Gottschalk S, Chrosch C, Feit F, Jahn J, Braun T, Tchenko YC, Demidova 
E, Beck F (2021a) Visually connecting historical figures through event knowledge graphs. In: 
Proceedings of the 2021 IEEE Visualization Conference. IEEE, pp 156–160. https://doi.org/10. 
1109/vis49827.2021.9623313 

Latif S, Chen S, Beck F (2021b) A deeper understanding of visualization-text interplay in 
geographic data-driven stories. Comput Graph Forum 40(3):311–322. https://doi.org/10.1111/ 
cgf.14309 

Latif S, Tarner H, Beck F (2022a) Talking realities: audio guides in virtual reality visualizations. 
IEEE Comput Graph Appl 42(1):73–83. https://doi.org/10.1109/mcg.2021.3058129 

Latif S, Zhou Z, Kim Y, Beck F, Kim NW (2022b) Kori: interactive synthesis of text and charts in 
data documents. IEEE Trans Vis Comput Graph 28(1):184–194. https://doi.org/10.1109/tvcg. 
2021.3114802 

McKenna S, Henry Riche N, Lee B, Boy J, Meyer M (2017) Visual narrative flow: exploring 
factors shaping data visualization story reading experiences. Comput Graph Forum 36(3):377– 
387. https://doi.org/10.1111/cgf.13195 

Mumtaz H, Latif S, Beck F, Weiskopf D (2019) Exploranative code quality documents. IEEE Trans 
Vis Comput Graph 26(1):1129–1139. https://doi.org/10.1109/tvcg.2019.2934669 

Ren D, Brehmer M, Lee B, Hollerer T, Choe EK (2017) ChartAccent: annotation for data-driven 
storytelling. In: Proceedings of the 2017 IEEE Pacific Visualization Symposium. IEEE, pp 
230–239. https://doi.org/10.1109/pacificvis.2017.8031599 

Satyanarayan A, Heer J (2014) Authoring narrative visualizations with Ellipsis. Comput Graph 
Forum 33(3):361–370. https://doi.org/10.1111/cgf.12392 

Segel E, Heer J (2010) Narrative visualization: telling stories with data. IEEE Trans Vis Comput 
Graph 16(6):1139–1148. https://doi.org/10.1109/tvcg.2010.179 

Shi D, Xu X, Sun F, Shi Y, Cao N (2021) Calliope: automatic visual data story generation from a 
spreadsheet. IEEE Trans Vis Comput Graph 27(2):453–463. https://doi.org/10.1109/tvcg.2020. 
3030403 

Srinivasan A, Drucker SM, Endert A, Stasko J (2019) Augmenting visualizations with interactive 
data facts to facilitate interpretation and communication. IEEE Trans Vis Comput Graph 
25(1):672–681. https://doi.org/10.1109/TVCG.2018.2865145 

SultanumN, Chevalier F, Bylinskii Z, Liu Z (2021) Leveraging text-chart links to support authoring 
of data-driven articles with VizFlow. In: Proceedings of the 2021 CHI Conference on Human 
Factors in Computing Systems. ACM. https://doi.org/10.1145/3411764.3445354 

The New York Times (2021) 2021: The year in visual stories and graphics. https://www.nytimes. 
com/interactive/2021/12/29/us/2021-year-in-graphics.html 

Tong C, Roberts R, Borgo R, Walton S, Laramee R, Wegba K, Lu A, Wang Y, Qu H, Luo Q, Ma X 
(2018) Storytelling and visualization: an extended survey. Information 9(3):65. https://doi.org/ 
10.3390/info9030065 

Tory M, Setlur V (2019) Do what I mean, not what I say! Design considerations for supporting 
intent and context in analytical conversation. In: Proceedings of the 2019 IEEE Conference

https://doi.org/10.1109/tvcg.2013.119
https://doi.org/10.1109/tvcg.2013.119
https://doi.org/10.1109/tvcg.2013.119
https://doi.org/10.1109/tvcg.2013.119
https://doi.org/10.1109/tvcg.2013.119
https://doi.org/10.1109/tvcg.2013.119
https://doi.org/10.1109/tvcg.2013.119
https://doi.org/10.1109/tvcg.2013.119
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1007/978-3-030-01388-2_6
https://doi.org/10.1145/3411764.3445344
https://doi.org/10.1145/3411764.3445344
https://doi.org/10.1145/3411764.3445344
https://doi.org/10.1145/3411764.3445344
https://doi.org/10.1145/3411764.3445344
https://doi.org/10.1145/3411764.3445344
https://doi.org/10.1145/3411764.3445344
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1016/j.visinf.2019.03.004
https://doi.org/10.1109/tvcg.2018.2865022
https://doi.org/10.1109/tvcg.2018.2865022
https://doi.org/10.1109/tvcg.2018.2865022
https://doi.org/10.1109/tvcg.2018.2865022
https://doi.org/10.1109/tvcg.2018.2865022
https://doi.org/10.1109/tvcg.2018.2865022
https://doi.org/10.1109/tvcg.2018.2865022
https://doi.org/10.1109/tvcg.2018.2865022
https://doi.org/10.1109/vis49827.2021.9623313
https://doi.org/10.1109/vis49827.2021.9623313
https://doi.org/10.1109/vis49827.2021.9623313
https://doi.org/10.1109/vis49827.2021.9623313
https://doi.org/10.1109/vis49827.2021.9623313
https://doi.org/10.1109/vis49827.2021.9623313
https://doi.org/10.1109/vis49827.2021.9623313
https://doi.org/10.1109/vis49827.2021.9623313
https://doi.org/10.1111/cgf.14309
https://doi.org/10.1111/cgf.14309
https://doi.org/10.1111/cgf.14309
https://doi.org/10.1111/cgf.14309
https://doi.org/10.1111/cgf.14309
https://doi.org/10.1111/cgf.14309
https://doi.org/10.1111/cgf.14309
https://doi.org/10.1109/mcg.2021.3058129
https://doi.org/10.1109/mcg.2021.3058129
https://doi.org/10.1109/mcg.2021.3058129
https://doi.org/10.1109/mcg.2021.3058129
https://doi.org/10.1109/mcg.2021.3058129
https://doi.org/10.1109/mcg.2021.3058129
https://doi.org/10.1109/mcg.2021.3058129
https://doi.org/10.1109/mcg.2021.3058129
https://doi.org/10.1109/tvcg.2021.3114802
https://doi.org/10.1109/tvcg.2021.3114802
https://doi.org/10.1109/tvcg.2021.3114802
https://doi.org/10.1109/tvcg.2021.3114802
https://doi.org/10.1109/tvcg.2021.3114802
https://doi.org/10.1109/tvcg.2021.3114802
https://doi.org/10.1109/tvcg.2021.3114802
https://doi.org/10.1109/tvcg.2021.3114802
https://doi.org/10.1111/cgf.13195
https://doi.org/10.1111/cgf.13195
https://doi.org/10.1111/cgf.13195
https://doi.org/10.1111/cgf.13195
https://doi.org/10.1111/cgf.13195
https://doi.org/10.1111/cgf.13195
https://doi.org/10.1111/cgf.13195
https://doi.org/10.1109/tvcg.2019.2934669
https://doi.org/10.1109/tvcg.2019.2934669
https://doi.org/10.1109/tvcg.2019.2934669
https://doi.org/10.1109/tvcg.2019.2934669
https://doi.org/10.1109/tvcg.2019.2934669
https://doi.org/10.1109/tvcg.2019.2934669
https://doi.org/10.1109/tvcg.2019.2934669
https://doi.org/10.1109/tvcg.2019.2934669
https://doi.org/10.1109/pacificvis.2017.8031599
https://doi.org/10.1109/pacificvis.2017.8031599
https://doi.org/10.1109/pacificvis.2017.8031599
https://doi.org/10.1109/pacificvis.2017.8031599
https://doi.org/10.1109/pacificvis.2017.8031599
https://doi.org/10.1109/pacificvis.2017.8031599
https://doi.org/10.1109/pacificvis.2017.8031599
https://doi.org/10.1109/pacificvis.2017.8031599
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1111/cgf.12392
https://doi.org/10.1109/tvcg.2010.179
https://doi.org/10.1109/tvcg.2010.179
https://doi.org/10.1109/tvcg.2010.179
https://doi.org/10.1109/tvcg.2010.179
https://doi.org/10.1109/tvcg.2010.179
https://doi.org/10.1109/tvcg.2010.179
https://doi.org/10.1109/tvcg.2010.179
https://doi.org/10.1109/tvcg.2010.179
https://doi.org/10.1109/tvcg.2020.3030403
https://doi.org/10.1109/tvcg.2020.3030403
https://doi.org/10.1109/tvcg.2020.3030403
https://doi.org/10.1109/tvcg.2020.3030403
https://doi.org/10.1109/tvcg.2020.3030403
https://doi.org/10.1109/tvcg.2020.3030403
https://doi.org/10.1109/tvcg.2020.3030403
https://doi.org/10.1109/tvcg.2020.3030403
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1145/3411764.3445354
https://doi.org/10.1145/3411764.3445354
https://doi.org/10.1145/3411764.3445354
https://doi.org/10.1145/3411764.3445354
https://doi.org/10.1145/3411764.3445354
https://doi.org/10.1145/3411764.3445354
https://doi.org/10.1145/3411764.3445354
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://www.nytimes.com/interactive/2021/12/29/us/2021-year-in-graphics.html
https://doi.org/10.3390/info9030065
https://doi.org/10.3390/info9030065
https://doi.org/10.3390/info9030065
https://doi.org/10.3390/info9030065
https://doi.org/10.3390/info9030065
https://doi.org/10.3390/info9030065


160 F. Beck and S. Latif

on Visual Analytics Science and Technology. IEEE, pp 93–103. https://doi.org/10.1109/ 
vast47406.2019.8986918 

Ynnerman A, Löwgren J, Tibell LAE (2018) Exploranation: a new science communica-
tion paradigm. IEEE Comput Graph Appl 38(3):13–20. https://doi.org/10.1109/MCG.2018. 
032421649 

Zheng C, Ma X (2022) Evaluating the effect of enhanced text-visualization integration on 
combating misinformation in data story. In: Proceedings of the 15th IEEE Pacific Visualization 
Symposium. IEEE, pp 141–150. https://doi.org/10.1109/pacificvis53943.2022.00023 

Zhi Q, Ottley A, Metoyer R (2019) Linking and layout: exploring the integration of text and 
visualization in storytelling. Comput Graph Forum 38(3):675–685. https://doi.org/10.1111/cgf. 
13719 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.1109/vast47406.2019.8986918
https://doi.org/10.1109/vast47406.2019.8986918
https://doi.org/10.1109/vast47406.2019.8986918
https://doi.org/10.1109/vast47406.2019.8986918
https://doi.org/10.1109/vast47406.2019.8986918
https://doi.org/10.1109/vast47406.2019.8986918
https://doi.org/10.1109/vast47406.2019.8986918
https://doi.org/10.1109/vast47406.2019.8986918
https://doi.org/10.1109/MCG.2018.032421649
https://doi.org/10.1109/MCG.2018.032421649
https://doi.org/10.1109/MCG.2018.032421649
https://doi.org/10.1109/MCG.2018.032421649
https://doi.org/10.1109/MCG.2018.032421649
https://doi.org/10.1109/MCG.2018.032421649
https://doi.org/10.1109/MCG.2018.032421649
https://doi.org/10.1109/MCG.2018.032421649
https://doi.org/10.1109/pacificvis53943.2022.00023
https://doi.org/10.1109/pacificvis53943.2022.00023
https://doi.org/10.1109/pacificvis53943.2022.00023
https://doi.org/10.1109/pacificvis53943.2022.00023
https://doi.org/10.1109/pacificvis53943.2022.00023
https://doi.org/10.1109/pacificvis53943.2022.00023
https://doi.org/10.1109/pacificvis53943.2022.00023
https://doi.org/10.1109/pacificvis53943.2022.00023
https://doi.org/10.1111/cgf.13719
https://doi.org/10.1111/cgf.13719
https://doi.org/10.1111/cgf.13719
https://doi.org/10.1111/cgf.13719
https://doi.org/10.1111/cgf.13719
https://doi.org/10.1111/cgf.13719
https://doi.org/10.1111/cgf.13719
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 8 
Effects of Landmark Position and Design 
in VGI-Based Maps on Visual Attention 
and Cognitive Processing 

Julian Keil, Frank Dickmann, and Lars Kuchinke 

Abstract Landmarks play a crucial role in map reading and in the formation of 
mental spatial models. Especially when following a route to get to a fixed desti-
nation, landmarks are crucial orientation aids. Which objects from the multitude 
of spatial objects in an environment are suitable as landmarks and, for example, 
can be automatically displayed in navigation systems has hardly been clarified. The 
analysis of Volunteered Geographic Information (VGI) offers the possibility of no 
longer having to separate methodologically between active and passive salience of 
landmarks in order to gain insights into the effect of landmarks on orientation ability 
or memory performance. Since the users (groups) involved are map producers and 
map users at the same time, an analysis of the user behavior of user-generated maps 
provides in-depth insights into cognitive processes and enables the direct derivation 
of basic methodological principles for map design. The landmarks determined on 
the basis of the VGI and entered as signs in maps can provide indications of the 
required choice, number, and position of landmarks that users need in order to 
orientate themselves in space with the help of maps. The results of several empirical 
studies show which landmark pictograms from OpenStreetMap (OSM) maps are 
cognitively processed quickly by users and which spatial position they must have 
in order to be able to increase memory performance, for example, during route 
learning. 
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8.1 Introduction 

The increasing relevance of mobility is linked to an increasing extent of using 
mobile navigation technology. Modern navigation and visualization technology 
depend on the processing of extensive spatial data, which must be provided and 
maintained in real time. A sub-project of the SPP 1894 “Volunteered Geographic 
Information (VGI): Interpretation, Visualization and Social Computing” of the 
Ruhr University Bochum and the International Psychoanalytical University Berlin 
investigates how wayfinding and navigation can be supported by user-generated 
geodata. The project addresses the growing interest in reliable spatial data, which 
extends far beyond the capacities of official geodata sets. The aim is to obtain 
quantitative data on the use of landmarks in maps in the formation of mental 
spatial models by means of empirical studies and to transfer these to cartographic 
applications. The focus of this research is thus on the representation, use, and 
interpretation of landmarks as they appear in map-based Web 2.0 services such 
as OpenStreetMap (OSM). The results are expected to further contribute to the 
development of automatic extraction processes in mobile map design (cf. Klippel 
and Winter 2005; Elias and Paelke 2008). 

8.2 The Role of Landmarks in Self-Localization, Navigation, 
and the Formation of Mental Spatial Models 

Effective navigation in space depends on continuous self-localization (Loomis et al. 
1999). By using topographic objects in the environment as spatial reference points, 
self-localization can be achieved (Meilinger et al. 2006). In this context, landmarks, 
salient spatial objects (Sorrows and Hirtle 1999; Bestgen et al. 2017), play an 
important role in real-world and map-based navigation. From the perspective of 
their perceiver, landmarks pop out of their surrounding objects (Bestgen et al. 
2017; Röser 2017). This increases their likelihood to be perceived and processed. 
Therefore, landmarks are more likely used as the spatial reference points required 
for self-localization (Sorrows and Hirtle 1999; Bestgen et al. 2017; Elias and Paelke 
2008; Millonig and Schechtner 2007). 

Due to their relevance in the context of self-localization, landmarks are also 
known to play an important role for orienting. Turn-off points of a route can be 
identified by recognizing landmarks located close to these turn-off points (Millonig 
and Schechtner 2007). Furthermore, landmarks along the route can help ascertain 
that one is still following a specific route correctly, even if these landmarks are not 
located close to a location where the travel direction needs to be adjusted (Anacta 
et al. 2017). The relevance of landmarks for navigation is also reflected in findings 
demonstrating that the availability of landmarks during navigation increases the 
accuracy of route finding (Ruddle et al. 1997) and user confidence (Ross et al. 2004).
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When people perceive space, either directly in an environment or as a map 
representation, they gradually integrate the perceived spatial information into a 
mental spatial model (Millonig and Schechtner 2007). According to Siegel and 
White (1975), landmark-based spatial knowledge is the first building block for the 
development of a mental spatial model. By focusing on salient landmarks, people 
make sense of otherwise (too) complex environments. Thus, landmarks provide 
an abstraction layer that is easier to memorize than the unfiltered environment 
(Millonig and Schechtner 2007; Presson and Montello 1988). In this abstraction 
layer, spatial elements can be memorized based on their relative location of 
the reference points provided by landmarks (Golledge 1999; Richter and Winter 
2014). In other words, landmarks form a framework with the help of which 
other topographic objects in space are remembered. However, memorizing only 
landmarks as spatial reference points does not result in a usable mental spatial model 
in the context of spatial navigation. People also need to identify and memorize route 
segments connecting the spatial reference points. Werner et al. (2000) describe such 
a network as consisting of “nodes” and “edges” (see Fig. 8.1). 

If acquired within real-world space, spatial knowledge in the form of landmarks 
and routes is incipiently egocentric (Millonig and Schechtner 2007). However, with 
the integration of different viewing perspectives of space, an allocentric survey 
model is likely also being developed (Werner et al. 1997). The map-like structure of 
such an allocentric mental spatial model allows more complex and flexible spatial 
evaluations. Even landmark pairs, for example, that are not directly connected with a 
route segment can be set into spatial relation to each other within such an allocentric 
model. Additionally, each added route segment increases the number of potential 
routes (see Fig. 8.1). This allows, for example, estimating distances or planning 
alternative routes between specific landmark pairs. 

Fig. 8.1 Landmark-based mental spatial model. Memorized landmark locations are represented 
by red dots (nodes). The dotted line connections (edges) between the landmarks each represent 
a memorized route between two nodes of the mental spatial model. The blue and green lines 
demonstrate that different routes between a start and target location can be selected if enough 
edges between node pairs have been memorized. Figure adapted from Keil (2021)



164 J. Keil et al.

8.3 Identifying Landmarks 

As demonstrated above, landmarks play an important role in spatial cognition, 
spatial behavior, and spatial memory. But how can we distinguish landmarks as 
relevant spatial reference points from less relevant topographic objects? So far, 
several attempts have been made to define landmarks from different perspectives. 
(Lynch 1960) focused on the inherent physical characteristics of urban objects 
and their visual contrast to features in the environment. Caduff and Timpf (2008) 
suggested a trilateral approach to identifying landmarks. The trilateral approach 
assumes that landmarks are created through an interaction between the observer, the 
spatial object, and its environment. According to Anacta et al. (2017), landmarks 
are objects with a fixed geographic location that are easy to perceive and recognize. 

All of the aforementioned approaches to defining landmarks, either implicitly or 
explicitly, suggest a common characteristic of landmarks: they need to be salient. 
The salience of a topographic object describes and comprises characteristics that 
increase the likelihood of this object to attract the attention of (potential) observers 
in the environment (Itti 2005, 2007). Conversely, topographic objects that attract 
more attention than surrounding objects can be interpreted as being more salient 
(Caduff and Timpf 2008) and thus more likely to be used as a landmark (Röser 
2017). 

The trilateral approach of Caduff and Timpf (2008) already suggests that salience 
is not based on one single object characteristic that can be easily measured. 
Instead, to identify potential landmarks in the environment based on the salience 
of topographic objects, numerous characteristics need to be considered. To address 
this complexity of landmark salience, Sorrows and Hirtle (1999) take an approach 
that does not only refer to the appearance and position of a spatial element in an 
environment: They propose three categories of landmarks, visual (visual contrast), 
structural (prominent location), and cognitive (use, meaning) landmarks. Thus, it 
is proposed that the identification of landmarks also takes the semantics of the 
spatial object into account. To better distinguish the semantics from cognitive 
effects that could also affect the visual salience, the term semantic salience has also 
been established (Klippel and Winter 2005; Quesnot and Roche 2015). Due to the 
individual experiences and previous knowledge of a viewer, an exact determination 
of the meaning that a landmark (e.g., a building) has for an individual viewer can 
only hardly be defined and measured (Golledge 1991; Nuhn and Timpf 2017). One 
way out is to fall back on generally accepted classifications, e.g., road classifications 
(federal road, rural road, etc.) or monument classifications in the case of historic 
buildings, etc. (e.g. Raubal and Winter 2002). However, a study by Nuhn and Timpf 
(2019) indicates that personal attributions of meaning might be less important for 
the selection of landmarks than previously assumed. A landmark selection model 
containing personal information did not perform better than a model without this 
information. Although these findings do not solve the fundamental problem of the
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individual assignment of meanings to landmarks, they provide a perspective on the 
problem, at least in connection with visual and structural salience characteristics. 

8.4 Landmark Representations in VGI-Based Maps 

The main focus of previous research on landmark salience was directed at landmarks 
within real-world space (e.g., Anacta et al. 2017; Röser 2017; Sorrows and Hirtle 
1999). However, psychological studies demonstrate that salience also affects visual 
attention in the perception of 2D information, e.g., on computer interfaces (Buscher 
et al. 2009) or in maps (Fine and Minnery 2009). This raises the question of how 
salience effects influence the perception and use of landmark representations in 
maps. 

In most maps, real-world landmarks are represented by pictograms. However, 
the selection of landmarks to be represented in the maps occurs a priori. Thus, the 
selection of landmarks to be represented in maps is usually not based on direct 
interaction with the environment and user choices but rather based on established 
cartographic principles. As stated above, user characteristics (semantic salience) 
affect the selection of landmarks in real-world space. Additionally, visual salience 
characteristics (e.g., visibility from a specific viewpoint) can affect the selection 
of landmarks. In this context, an additional categorization of visual, semantic, and 
structural salience characteristics into active and passive salience can be used to 
illustrate the issue of landmark selection in maps. Passive salience depends on 
physical attributes of landmarks, such as size, color, or their function (Bestgen et al. 
2017). It describes the potential of an object to attract attention based on bottom-up 
processes independent of individual characteristics of a potential perceiver (Caduff 
and Timpf 2008). The methods for identifying the passive salience of landmarks 
are explained in detail by Duckham et al. (2010), Klippel and Winter (2005), 
Nothegger et al. (2004), or Elias (2003). These approaches use, among other things, 
the results of statistical and data mining methods (Peters et al. 2010; Sadeghian 
and Kantardzic 2008). The concept of active salience, on the other hand, is based 
on the perceived, cognitive, and contextual appearance of a landmark, i.e., viewed 
from the perspective of the traveler (user), including his or her experiences, age, 
prior (cultural) knowledge, and the way he or she moves (Caduff and Timpf 2008; 
Millonig and Schechtner 2007; Zhu  2012). Taken together, exogenous (passive) 
salience patterns are contrasted with endogenous (active) ones. Both concepts 
influence the processing of map information and need to be taken into account for 
the identification and representation of landmarks. If the active user- and context-
dependent salience characteristics are not considered, the set of landmarks selected 
to be represented in a map will not match the topographic objects selected as 
landmarks by the map users.
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A special case in the context of landmark selection are maps based on Volun-
teered Geographic Information (VGI), such as OpenStreetMap (OSM). Producers of 
VGI map data (influenced by endogenous salience characteristics) simultaneously 
assume the role of the consumer (influenced by exogenous salience characteristics), 
i.e., two perspectives on landmark saliency are merged. There is no external 
decision-making authority, as is usually the case in map production. The resulting 
landmarks come from the actual spatial experiences of the volunteers (producers = 
consumers) themselves. Therefore, the study of map elements that are considered 
landmarks by such volunteers can provide valuable information on how landmarks 
are identified in maps in terms of their density and spatial arrangement and how 
user-generated landmark representations influence the formation and accuracy of 
cognitive representations (mental models) of the mapped space. 

The VGI-based selection of spatial objects represented as landmarks in VGI-
based maps is assumed to reflect the specific distribution of landmarks to each 
other (i.e., patterns) but also the relations to other map elements (non-landmarks) 
in maps that are required to solve spatial tasks. Since the mapping process of 
volunteers is affected by direct interaction with the mapped environments as well as 
their mental spatial representation of these environments, the landmarks represented 
in VGI-based maps are expected to reflect the patterns of landmarks required to 
represent space in a mental spatial model. This raises the question of how landmarks 
distributed in maps on the basis of empirically obtained rules (i.e., on the evaluation 
of landmark patterns created by volunteers) are used to create mental spatial models. 

In real-world space, it is not only a single landmark in the landscape that is 
important for building survey knowledge of an environment. Rather, networks of 
several landmarks and the relations (e.g., distances or routes) between them must 
be considered (Herman et al. 1979; Werner et al. 2000). In a map, an interaction 
or pattern of several landmarks could therefore support the function of structuring 
(map) spaces and thus possesses a function for the construction of more accurate 
mental models in the same way (cf. Golledge 1993). Again, if the active user- and 
context-dependent salience characteristics are not considered, the set of landmarks 
selected to be represented in a map will not match the topographic objects selected 
as landmarks by the map users. In addition, it can be shown that landmarks are used 
in spatial learning to relate spatial objects to them (Ferguson and Hegarty 1994; 
Golledge 1999). Thus, visual attention directed toward specific landmarks due to 
their salience may not only affect spatial memory of the landmarks themselves. 
The availability of salient landmarks may also affect spatial memory of surrounding 
spatial objects or routes. 

However, it needs to be considered that the salience and perception of landmarks 
in real-world space differs from the perception of landmark representations in maps. 
In real-world space, landmarks are only potentially salient if they are within the 
line of sight of the observer. This excludes many proximate landmarks that are not 
visible, for example, because they are hidden behind other spatial objects (cf. Lynch 
1960). In maps on the other hand, each represented landmark is potentially visible. 
In this case, which landmark representations are perceived depends on the salience 
characteristics and/or task requirements. Therefore, how salience or spatial tasks
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affect the use of landmarks in maps (opposed to real-world landmarks) could affect 
performance in spatial tasks such as self-localization, orientation, and navigation, as 
well as the formation of mental spatial models based on map perception. 

Not all graphic elements of a map share the same relevance for the formation 
of cognitive map representations as the selected (higher-level) landmark structures. 
The analysis of task-dependent salience of VGI-based map elements (here OSM 
maps) is therefore expected to support the identification of a working definition 
of the required spatial reference points (specifically landmark representations) that 
need to be visualized to ensure effective spatial information transfer. This might lead 
to new content structures that make it easier for map users to associate objects to be 
learned in a map with a higher-level frame of reference. The results of several studies 
contained in our project on the semantic, visual, and structural salience of VGI-
based landmarks provide insights into the selection of spatial reference points in 
maps during the acquisition of spatial memory. Thus, these findings contribute to the 
development of guidelines for task-oriented map design that support the formation 
of mental spatial models. 

8.4.1 Semantic Salience 

Semantic salience refers to semantic properties that affect the likelihood of an object 
to draw attention. As demonstrated by Pilarczyk and Kuniecki (2014), semantically 
salient stimuli attract visual attention, and the semantic features of a stimulus can 
in some cases even have a stronger effect on the direction of visual attention than 
the visual features. Different characteristics that affect the semantic salience of 
topographic objects have been suggested over the years. Some suggestions focus 
primarily on generalizable characteristics like cultural and historical significance or 
the purpose or function of an object (Claramunt and Winter 2007; Nothegger et al. 
2004; Raubal and Winter 2002; Röser et al. 2011). These characteristics suggest that 
semantic salience is an intrinsic bottom-up property of an object that is not affected 
by the observer. Based on these suggestions, a church or a police station should be 
semantically more salient than a common residential building. Other approaches to 
assess semantic salience argue that top-down processes based on knowledge and 
preferences of an observer affect the semantic salience of topographic objects (e.g. 
Golledge 1991; Nuhn and Timpf 2017; Quesnot and Roche 2015). For example, a 
residential building can—in some cases—even be semantically more salient than a 
church or a police station if the observer lives in it. 

In the context of map elements like landmark representations, assessing semantic 
salience faces issues, which are unique to the medium. First, landmarks are usually 
represented in maps as pictograms. In most cases, these pictograms do not reflect 
the visual characteristics of the represented landmarks but are designed to reflect 
the purpose or function of the landmark. This abstract representation of landmarks 
can override the semantic associations with a landmark. For example, your favorite 
restaurant located in a beautiful old building could be represented by the same



168 J. Keil et al.

pictogram as each other restaurant. On the other hand, a map pictogram can also 
communicate semantic information that is not effectively communicated by the 
visual appearance of the real-world object represented by the pictogram. It is also 
important to consider how the pictogram design affects to what extent map users are 
able to interpret the purpose or function of the represented landmark. For example, 
some pictograms might only be used in specific cultures or might have different 
meanings in different cultures (Spinillo 2012). Thus, pictogram designs need to be 
selected based on the intended user group of a map. 

In a first study of our project, we investigated to what extent people understand 
the meaning of landmark pictograms (meaningfulness) and how the ability of a 
pictogram to communicate its semantics affects the attraction of visual attention 
(semantic salience) and the ability to memorize the pictogram (see Keil et al. 2019). 
We chose to investigate a set of 153 pictograms obtained from OSM. The map 
content and design of OSM are provided and influenced by a large worldwide 
community of volunteers. This is assumed to be reflected in the pictogram design 
and the accessibility of pictogram semantics within different cultural groups. 

In a recognition design, sets of 12 pictograms (see example in Fig. 8.2) were  
shown to the participants. After a distractor task, participants had to identify the 
previously shown pictograms within a set of 24 successively shown pictograms. 
During the encoding phase, fixations on the pictograms were recorded with an eye 
tracker. In the second half of the experiment, participants successively saw the 153 

Fig. 8.2 Fixation heat map. In the study, participants saw and had to memorize sets of 12 landmark 
pictograms. Semantic salience of the pictograms was assessed based on the visual attention directed 
toward each pictogram, as reflected in the measured fixations. In the example above, the helipad 
pictogram (down right) was fixated less often than the postbox pictogram (top left) and was 
therefore scored as less semantically salient. Potential order effects in the stimuli (e.g., based on 
reading direction) were addressed by varying pictogram locations between trials
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pictograms. Each pictogram was shown together with a continuous scale that was 
used to assess to what extent participants were certain to understand the meaning of 
the pictogram (meaningfulness). 

The findings demonstrate that pictograms with a very low meaningfulness rating 
attracted more visual attention and were recognized more often. An explanation of 
this unexpected finding needs to consider the experimental design and the general 
source of salience, which is a contrast with surrounding stimuli (Claramunt and 
Winter 2007; Sorrows and Hirtle 1999). Most of the 153 pictograms were rated as 
having a relatively high meaningfulness. Therefore, the few pictograms with a low 
meaningfulness were the ones with the highest semantic contrast. Consequently, as 
the semantic contrast is assumed to direct visual attention, the few pictograms with 
a low meaningfulness should also be the ones with the highest semantic salience. 
As selective visual attention has been associated with improved object learning 
(Walther et al. 2005), this also explains the better memory performance of landmark 
pictograms with a low meaningfulness. 

However, it is important to also consider that the perception of landmark pic-
tograms in this experiment does not match the perception of landmark pictograms 
in their “natural” environment. In OSM and other maps, semantic pictograms are 
surrounded by unified representations with a low meaningfulness, for example, 
buildings, roads, or green spaces. Thus, pictograms with a high meaningfulness 
should have a higher semantic contrast within a map and therefore a higher 
semantic salience. Furthermore, due to the higher selective attention, landmark 
representations in maps with a higher meaningfulness are assumed to be more likely 
to be stored in a mental spatial model (Walther et al. 2005). Taken together, the study 
provides an approach for assessing the semantic salience of landmark pictograms 
and demonstrates that semantic salience affects the attraction of visual attention and 
the memory of map elements. 

8.4.2 Visual Salience 

Visual salience is probably the most investigated salience characteristic. It describes 
the visual contrast of an object to its surrounding objects and depends on parameters 
as illumination, size, color, texture, or shape (Clarke et al. 2013; Davoudian 2011; 
Duckham et al. 2010; Röser et al. 2011) and has been demonstrated to direct 
visual attention to stimuli (Wenczel et al. 2017). Commonly used examples of 
visually salient landmarks used for orientation and navigation are large or tall 
buildings, unique objects like statues, or buildings with an eccentric architecture or 
uncommon visual features (Klippel and Winter 2005). According to von Stülpnagel 
and Frankenstein (2015), visual salience affects the selection of spatial objects as 
landmarks for orientation. In other words, people look for visually salient objects 
that can be used as the spatial reference points required for making sense out of 
space and building mental spatial models (cf. Clarke et al. 2013).
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Opposed to semantic and structural salience, the allocation of attention based on 
visual salience has been argued to be a stimulus-driven bottom-up process (Itti 2005; 
Ouerhani et al. 2004). This is supported by neurological findings demonstrating 
that the ability to perceive feature contrasts as the foundation for visual salience is 
located in the V1 area of the visual cortex (Li 2002). This means that the visual 
salience of visual stimuli is evaluated in an early and automatic stage likely before 
top-down processes affect the direction of visual attention. Its dependence on feature 
contrast means that visual salience is a context-dependent characteristic. An object 
is visually salient relative to its surrounding objects (Claramunt and Winter 2007; 
Klippel and Winter 2005). Thus, a tall building might not be visually salient if it is 
part of the skyline in a large city. On the contrary, a small building can be visually 
salient because it is surrounded by tall buildings. 

Visual salience has been intensively investigated both for real-world objects like 
buildings or facades (e.g., Davoudian 2011; Franke 2021; Dong et al. 2020; Röser 
2017; von Stülpnagel and Frankenstein 2015; Wenczel et al. 2017), but also for 
the perception of 2D stimuli, for example, computer interfaces or images (e.g., 
Clarke et al. 2013; Ouerhani et al. 2004; Sutherland et al. 2017). However, the 
effects of visual salience on the perception and processing of maps and landmark 
representations have received little attention in the literature so far. 

The design of map elements is often not based on the visual features of the 
represented real-world objects. Streets, buildings, green spaces, and water bodies 
are represented by geometric shapes, and the colors of these shapes are determined 
by the map design guidelines (Dickmann 2018). Landmarks, on the other hand, as 
mentioned earlier, are usually represented as specific semantic pictograms based 
on the semantic categories they are assigned to (e.g., restaurants, shops, statues, 
etc.). In both cases, the individual visual characteristics are lost due to the type 
of representation. Thus, the visual salience of a real-world object does not match 
the visual salience of its map representation. Furthermore, opposed to real-world 
environments, it is easily possible to adjust the visual characteristics of object 
representations in a map and, consequently, the visual salience of specific map 
elements. 

In a second study of our project, we explored how adjustments of map design 
can be used to systematically direct visual attention toward specific map areas. 
Furthermore, we investigated to what extent different map designs and the resulting 
visual salience differences of specific map regions affect spatial memory. The full 
study is described in detail in Keil et al. (2018). As study materials, we obtained 
maps from OSM and added routes to the maps. As a second stimulus condition, 
map areas offside the route (more than 10 pixels from the route) were displayed 
transparently (see Fig. 8.3). This was meant to reduce the visual salience of the areas 
offside the route and expected to direct visual attention toward the map areas close 
to the route. Participants saw the maps for 30 s and were asked to memorize the 
route (encoding phase). During this phase, fixations on the map areas were recorded 
with an eye tracker. Two different map areas of interest (AOIs) were defined. The 
first AOI contained the route and the area 10 pixels around the route, thus the area 
which was not transparent in the second stimulus condition (route AOI). The second
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Fig. 8.3 Stimulus conditions. Maps were obtained from OSM (© OpenStreetMap contributors), 
and a route was added. For the second stimulus condition, areas offside the route (more than 10 
pixels) were displayed transparently. Eye tracking was used to record fixations on the area close to 
the route and the area offside the route 

AOI contained the rest of the map (offside route AOI). Each fixation was recorded 
according to the AOI it targeted at. After the encoding phase, participants were 
shown four versions of the previously presented map, either containing the correct 
route or a slightly manipulated route. For each map, they had to decide whether the 
displayed route matched the previously learned route. 

The results show that significantly fewer fixations were directed at the map areas 
offside the route (offside route AOI) when these areas were transparent. Fixations 
on the area around the route (route AOI) did not differ significantly between the 
standard map and the transparent map. Thus, we were able to demonstrate that 
changing map design, and consequently, the visual salience of specific map elements 
affects the distribution of visual attention across the map. Interestingly, the fact that 
landmark representations offside the route were not displayed transparently did not 
significantly undermine the shift of visual attention toward the route. We argue that 
visual attention was in both conditions distinctively affected by the task requirement 
of memorizing the route. Thus, most fixations in the non-transparent map were 
already relatively close to the route and not on landmark representations far offside 
the route. Applying transparency only narrowed the area of fixations around the 
route. This interpretation is supported by the fact that route memory performance 
did not differ significantly between the original map and the transparent map. 
Participant route memory performance seems to have relied primarily on reference 
points close to the route. Therefore, making reference points offside the route less 
visible and less likely to receive attention did not affect memory performance. 
However, performance differences could potentially occur if the task is carried out 
with more time pressure. If a task requires map readers to make quick decisions 
or to capture map information quickly, directing visual attention toward relevant 
map areas could reduce distraction from less task-relevant map areas. The effects of
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task requirements on the direction of visual attention are further investigated in the 
following chapter. 

Taken together, the study demonstrates that visual salience affects the distribution 
of visual attention in predictable patterns and that these patterns can be manipulated 
by adjusting the map design. This makes it possible to direct visual attention toward 
specific task-relevant map elements. In future studies, it needs to be addressed 
how different ways of guided visual attention based on landmark pictogram and 
map design affect spatial tasks such as orientation and navigation, as well as the 
formation of mental spatial models. 

8.4.3 Structural Salience 

Structural salience is a task- or context-dependent salience (Peebles et al. 2007). 
Previous research on structural salience focused primarily on the relative location 
of landmarks during navigation and the conceptualization of routes (Klippel and 
Winter 2005; Röser et al. 2011). Based on their relative location to the observer or a 
route, structurally salient landmarks can be divided into global and local landmarks 
(Elias and Paelke 2008). 

Global landmarks in real-world settings are located far enough to only marginally 
change their relative location based on movements of the observer (Keil 2021). 
Thereby, they can act as beacons for assessing the general travel direction (Lynch 
1960; Steck and Mallot 2000; Wenig et al. 2017). An important characteristic of 
a global landmark is its size, as it determines its remote visibility (von Stülpnagel 
and Frankenstein 2015). The distance from the observer can range between a few 
hundred meters (e.g., a tall building) and hundreds of kilometers (e.g., a mountain) 
or even light years (e.g., the north star). Global landmarks are not suitable to identify 
or memorize specific routes. Instead, they can be used to choose paths that lead to 
the general direction of the travel destination. This is reflected in a large flexibility 
of selected routes when people navigate based on global landmarks (Hurlebaus et al. 
2008). 

Local landmarks, on the other hand, are located close to the observer and/or to 
a specified route. Compared to local landmarks, global landmarks provide more 
precise information about the observer’s location and support encoding of and 
navigation along a specific route (Hurlebaus et al. 2008; Ruddle et al. 2011; Steck 
and Mallot 2000). Furthermore, they are frequently used for communicating routes 
(Anacta et al. 2017). Local landmarks can be subdivided based on their relative 
location to specific fragments of a route. They can be located close to decision 
points, potential decision points, or along the route (see Fig. 8.4). Decision points 
are intersections where the travel direction needs to be adjusted. Landmarks located 
at decision points can be used as a reference marker for identifying, memorizing, or 
communicating a required turn (Millonig and Schechtner 2007). Potential decision 
points are locations where the travel direction could be adjusted but should not be 
adjusted, for example, an intersection where the route follows a straight direction.
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Fig. 8.4 Navigation-oriented landmark locations. Local landmarks close to a route can be located 
at locations where the travel direction needs to be adjusted (decision point), at locations where the 
travel direction could be adjusted (potential decision point), or where the travel direction cannot 
be adjusted (along the route). Global landmarks act as beacons and are located offside the route 
(figure adapted from Bauer 2018) 

Landmarks along the route are located next to the route where the travel direction 
cannot be adjusted (Anacta et al. 2017; Elias and Paelke 2008). Landmarks 
at potential decision points or along the route are not necessarily required for 
conceptualizing a route. However, they can be used during navigation to ensure that 
the route is still followed correctly (Millonig and Schechtner 2007). At decision 
points, landmarks can further be subdivided based on their location relative to the 
turn direction of a route. Röser et al. (2012) found that landmarks are more likely to 
be perceived and used in way finding and thus are more structurally salient, if they 
are located in the direction of the turn. Furthermore, turning decisions have been 
found to be more likely to be correct if a local landmark is available in the direction 
of the turn (Albrecht and Stuelpnagel 2018). 

Similar to semantic and visual salience, the question of how structural salience 
affects the distribution of visual attention in maps has received little attention yet. 
As it has been argued that structural salience is task-dependent (Peebles et al. 
2007), we carried out three studies on the effects of different map-based spatial 
tasks on the distribution of visual attention across the map. The first two studies 
investigated the structural salience of landmark representations in map-based route 
memory tasks (for the complete study details, see Keil et al. 2020a). In both studies, 
participants had to memorize routes displayed in maps obtained from OSM. Eye 
tracking was used to assess the distribution of visual attention across the maps. 
Landmark pictograms were available in the maps according to the locations of 
landmark representations added by volunteers to these OSM maps. However, to 
control semantic salience of pictograms, the original pictograms were randomly 
replaced by a set of OSM pictograms with similar levels of meaningfulness as 
measured in the first study of our project (see Keil et al. 2019). As other map 
elements than landmark pictograms could also be used as spatial reference points 
for memorizing the route, we also addressed how the visual complexity of a map 
(number of spatial elements) affects the structural salience of landmark pictograms.
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Therefore, the first of the two route memory studies compared rural maps with a 
moderate number of map elements and urban maps with a high number of map 
elements. In the second study, only urban maps were used, but in one condition, 
fractions of the original map were used, and these fractions of the map were 
stretched to the original map size to create a second map condition with less map 
elements per map display. The second study was meant to address the limitation of 
the first study that landmark pictograms and other map elements are usually less 
evenly distributed across rural maps compared to urban maps. This was argued to 
affect the distribution of visual attention across the maps. 

Both studies found distinctive effects of the task on visual attention. Most 
fixations were directed at map areas around the to-be-learned routes and toward 
decision points of the route. Map areas and landmarks offside the route were only 
rarely fixated (see Fig. 8.5). Thus, we found clear evidence for the effects a specific 
task has on the distribution of visual attention (as assessed using an eye tracker) 
across a map. Furthermore, the controlled manipulation of visual map complexity 
in the second experiment provided additional insights in the relevance of spatial 
reference points for the formation of mental spatial models. In the stretched maps 
with reduced spatial reference points, landmarks farther offside the displayed route 
were fixated. This indicates that not enough spatial reference points close to the 
route were available for the map users to memorize the route. Thus, participants 
seem to have expanded their search area for suitable spatial reference points. 

The third study on the structural salience of landmark representations in maps 
addressed location memory tasks (for the complete study details, see Keil et al. 

Fig. 8.5 Fixations during a route-learning task. The fixation heat map demonstrates that visual 
attention was almost exclusively directed at the map areas around the to-be-learned route. 
Especially high fixation counts can be seen around landmark pictograms close to the route. These 
pictograms can be suggested to have a high structural salience. Maps were obtained from OSM (© 
OpenStreetMap contributors)
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2020b). Participants were presented maps taken from the OSM project. The 
maps contained several landmark pictograms and a to-be-learned object location 
highlighted by a red pictogram. After a short distractor task, participants were 
presented the previously shown map again, but this time without the red pictogram. 
They were asked to click on the recalled location of the red pictogram using a 
computer mouse. During the encoding phase, fixations on landmark pictograms 
were recorded with an eye tracker (cf. Kuchinke et al. 2016; Dickmann et al. 2015). 

The results of the third study on structural salience demonstrate how the task 
requirements of an object location memory task affect the structural salience of 
landmark pictograms in a map. According to these results, most visual attention was 
directed toward the landmark pictograms closest to the to-be-learned object location. 
Additionally, landmark pictograms were fixated more often if they were located 
closer to the (imaginary) horizontal and vertical cardinal axes of the to-be-learned 
object location (see Fig. 8.6). In agreement with assumptions of Rock (1997) and 
Tversky (1981), people appear to apply an imaginary coordinate system to perceived 
maps, either based on the viewing angle or the map borders. Landmark pictograms 
seem to receive privileged access to visual attention as spatial reference points if 
they are easy to conceptualize based on such an imaginary coordinate system, e.g., 
being directly above, below, left, or right to a to-be-learned object location. 

Also, object location memory in this task was more accurate if the closest 
landmark pictogram was closer to the to-be-learned object location. Fixation rates 
steeply dropped toward the second- and third-closest landmark pictogram to the 
to-be-learned object location. Of interest is that there was no significant relation 
between the distance of these pictograms to the to-be-learned object location and 
the memory performance found in this study. This seems to indicate that a single 
landmark pictogram already can act as a spatial reference point for object location 
memory and that this task requirement directly affects (or better implies) the 
structural salience of this reference point and the low structural salience of other 
(potential) spatial reference points. 

Taken together, the three studies provide new insights into the structural salience 
of landmark pictograms applying different map-based memory tasks. All three stud-
ies clearly indicate that task requirements affect how visual attention is distributed 
across maps. People appear to search for suitable reference points for memorizing 
locations or route nodes. Whether landmark representations are chosen as reference 
points depends on their distance and orientation relative to memorized locations and 
routes.
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Fig. 8.6 Structural salience in the context of object location memory. Landmark representations 
in maps were fixated more often when they were located close to a to-be-learned object location 
and its (imaginary) horizontal and vertical cardinal axes 

8.5 Conclusion 

The reported studies of the sub-project “The Effects of Landmarks on Navigation 
Performance in VGI-based Maps” of the SPP 1894 provide new insights in how 
landmark representations in maps are perceived and how they affect the formation 
of mental spatial models. Previous research on landmark salience primarily focused 
on the parameters that affect the direction of visual attention toward real-world 
landmarks (e.g., Golledge 1991; Klippel and Winter 2005; Millonig and Schechtner 
2007; Röser et al. 2012). The studies reported in this paper extend these findings by 
investigating the salience of landmark representations in maps and depict similari-
ties and differences between real-world landmarks and landmark representations in 
maps. 

Semantic salience has been argued to affect the likelihood of real-world land-
marks to attract visual attention both based on general attributes, as well as on 
individual characteristics of the observer. General attributes include cultural and 
historical significance, as well as the purpose or function of a landmark (Claramunt 
and Winter 2007; Nothegger et al. 2004; Raubal and Winter 2002; Röser et al. 
2011). Individual characteristics consider emotional or knowledge associations of
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an observer with a perceived landmark (Golledge 1991; Nuhn and Timpf 2017; 
Quesnot and Roche 2015). 

In the context of landmark representations in maps, semantic salience seems 
only partially based on the general attributes and the individual associations with 
the represented landmarks. Rather, the type of representation also needs to be 
considered. As landmarks are often represented in maps as pictograms, specific 
associations with a unique landmark can be overridden. For example, a famous 
church with a unique architecture could be represented by the same pictogram 
as every other church. Thus, the unique associations related to this church could 
not be evoked by only seeing its map representation. Furthermore, intercultural 
and individual differences can affect the ability to understand pictograms used to 
represent landmarks and, consequently, their semantic salience (Spinillo 2012). 

Our first reported study demonstrated that, similar to real-world landmarks, 
visual attention toward landmark representations in the form of pictograms is 
affected by their semantics respectively their meaningfulness. However, opposed 
to approaches of defining semantic salience in advance (based on obtained knowl-
edge), we found that landmark representations can also attract visual attention 
if the conveyed semantic information is more difficult to understand than that 
of surrounding objects. In other words, visual attention is not directed based on 
the intrinsic semantic characteristics of a landmark representation (where more 
meaningfulness equals more semantic salience and visual attention) but is in some 
circumstances also based on the semantic contrast to other objects. 

However, how semantic landmark pictograms in interaction with different map 
designs affect the distribution of visual attention remains unclear and needs to 
be addressed in future studies. Interestingly, although semantic salience has been 
argued to be affected by individual characteristics (Golledge 1991; Nuhn and 
Timpf 2017; Quesnot and Roche 2015), our study found no pronounced individual 
differences in the perceived meaningfulness of landmark pictograms or the direction 
of visual attention toward specific pictograms. This demonstrates that, as mentioned 
above, individual associations with specific landmarks get lost when the landmarks 
are represented as abstract (generalized) pictograms. Still, as the study was carried 
out with a homogeneous cultural group, future research needs to address to what 
extent cultural background affects the semantic associations with specific landmark 
pictograms and, consequently, the direction of visual attention toward these map 
elements. 

The role of visual salience for the selection of spatial objects as landmarks has 
been emphasized repetitively (Klippel and Winter 2005; Röser 2017; von Stülpnagel 
and Frankenstein 2015). A commonly mentioned criterion of visual salience is the 
visual contrast of an object to its surroundings based on its visual characteristics, 
for example, its size, color, or illumination (Clarke et al. 2013; Davoudian 2011; 
Duckham et al. 2010; Röser et al. 2011). We argued that the form of landmark 
representation in maps (usually as pictograms) overwrites the visual characteristics 
of a real-world landmark and thereby also its visual salience. However, due to their 
accentuated design relative to other map elements, landmark pictograms in maps 
are also visually salient and attract visual attention (see example in Fig. 8.5). This is
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reflected in their common use as spatial reference points, despite the availability 
of other potential spatial reference points in the maps (see Keil et al. 2020a,b). 
Furthermore, opposed to real-world landmarks, the visual contrast of landmark 
representations and other reference points in maps to surrounding map elements and, 
consequently, their visual salience can easily be modified. As demonstrated in our 
second study, adding transparency to specific map areas directs visual attention away 
from these areas. Thus, by manipulating map design according to task requirements, 
visual attention can be systematically directed toward relevant map areas and spatial 
reference points as landmark representations (though the effects on memory are in 
need of future research). 

However, it needs to be considered that not only the inherent visual characteris-
tics of landmarks and landmark representations in contrast to their surroundings 
affect their visual salience and, consequently, their likelihood to attract visual 
attention. The general ability to perceive landmarks and their representations in 
maps also needs to be addressed. Concerning the selection of objects as landmarks, 
Röser et al. (2012) and Klippel and Winter (2005) stress the relevance of visibility, 
thus the ability to perceive the object from a specific viewpoint. Spatial objects 
might be hidden behind other spatial objects. If this is the case, they cannot be used 
as landmarks, even if they have a high visual contrast to their surroundings. The 
visibility of landmark representations in maps, on the other hand, depends not on 
viewpoints in real-world space but on the displayed map region and the selection of 
landmarks to be represented in a map. Consequently, during map-based navigation, 
visual attention could be attracted by landmark representations in the map that are 
not visible from the user’s viewpoint. This could impair navigation performance, as 
only visible landmarks can be used for self-localization. Therefore, future studies 
should address how visibility of landmarks can be assessed based on real-time 
tracking of map users and how this visibility information can be used to dynamically 
adjust which landmarks are represented in a map. 

The third type of salience according to the approach of Sorrows and Hirtle 
(1999), structural salience, has been argued to be task- or context-dependent 
(Peebles et al. 2007). Landmarks have previously been argued to be structurally 
salient if they are located along a specific route and at locations that can be used 
to conceptualize a route (Klippel and Winter 2005; Millonig and Schechtner 2007; 
Röser et al. 2011). In three consecutive studies (see Keil et al. 2018, 2020a), we were 
able to demonstrate that, similar to real-world landmarks, landmark representations 
in maps are structurally salient based on their relative location to specific routes. 
The visualization of a task-relevant route directs visual attention to the map elements 
close to the route and its decision points. Furthermore, an additional study (Keil et al. 
2020b) extended previous findings by demonstrating that landmark representations 
are also structurally salient and attract visual attention if they are located close to 
a to-be-learned object location and its (imaginary) cardinal axes. The effects of the 
cardinal axes of the map on the distribution of visual attention demonstrate a unique 
map-related characteristic of structural salience that cannot be applied to real-world 
space. Either based on the head orientation of the observer relative to a map or based
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on the (usually rectangular) shape of a map, up/down and left/right dimensions can 
induce such cardinal axes that are not induced by the perception of real-world space. 

The reported findings emphasize the relevance of landmarks and landmark 
representations for location memory, as theorized by the mental spatial network 
of nodes and edges proposed by Werner et al. (2000). However, in contradiction 
to the allocentric mental spatial representation structure proposed by Werner et al. 
(1997, 2000), we found no evidence for a landmark configuration or framework 
used to conceptualize and memorize map space. In both the route memory and 
location memory tasks, visual attention was directed mainly toward the task-relevant 
landmarks close to the routes and object locations. Landmarks offside the routes 
and object locations received almost no visual attention. In the location memory 
task, already the second- and third-closest landmarks received significantly less 
visual attention, even if they were close to the to-be-learned object location. This 
demonstrates that participants did not explore the general spatial configuration 
of landmark representations. However, the lack of evidence in our experiments 
cannot be used to reject the assumption that landmark representations in maps 
are used to form a mental representation of maps based on nodes, as proposed by 
Werner et al. (2000). According to Millonig and Schechtner (2007), such allocentric 
mental spatial models are formed gradually during repeated interaction with spatial 
information. The short and clearly task-oriented perception of map information 
in our experiments might not have had sufficient power to detect or sufficient 
exploration time for the formation of an allocentric mental spatial model based 
on landmark configurations. In order to further explore the relevance of landmark 
representation configurations (landmark patterns) in maps on the formation of 
mental spatial models, future studies need to provide repeated interaction with 
maps and should be designed to support the formation of less task-specific mental 
spatial models, for example, by asking participants to draw sketch maps of the 
perceived maps. If, as assumed, landmark representation configurations are used 
as the first building block for the formation of mental spatial models (cf. Bestgen 
et al. 2017), identifying the ideal configuration characteristics and highlighting 
landmark representations in maps according to these characteristics could help 
to effectively and efficiently communicate spatial information to map users and 
support the formation of mental spatial models. 

The reported studies provide first insight into salience characteristics of landmark 
representations in maps and their effects on the formation of mental spatial models. 
Based on these findings, better predictions of the distribution of visual attention 
across maps are possible. By systematically manipulating the salience of landmark 
representations, visual attention can be actively directed toward task-relevant map 
elements. The insights into the effects of directed visual attention on spatial tasks 
such as orientation or navigating along a selected route could be used to optimize 
automatic map generalization processes based on task requirements. In order to 
further exploit the potential benefits of the reported outcomes, future research 
needs to investigate how the systematic direction of visual attention toward specific 
map elements can improve performance on spatial tasks such as self-localization, 
orientation, and navigation in real-world environments. As a final step, the insights
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into the effects of directed visual attention on spatial tasks such as orientation 
or navigating along a selected route could be used to optimize automatic map 
generalization processes based on task requirements. 
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Chapter 9 
Addressing Landmark Uncertainty 
in VGI-Based Maps: Approaches 
to Improve Orientation and Navigation 
Performance 

Julian Keil, Frank Dickmann, and Lars Kuchinke 

Abstract Landmarks, salient spatial objects, play an important role in orientation 
and navigation. They provide a spatial reference frame that helps to make sense of 
complex environments. Landmark representations in maps support map matching 
and orientation, because matching landmarks to their map representations provides 
information about spatial directions and distances. However, effective landmark-
based map matching demands sufficiently accurate georeferencing of the landmarks 
represented in a map, because spatial inaccuracies of landmark representations 
cause distortions of the spatial reference frame and derived directions and distances. 
The requirement of accurate landmark georeferencing imposes difficulties on the 
use of maps based on Volunteered Geographic Information (VGI) for map matching. 
Differences of the motivation, competence, and available apparatus of volunteers 
can cause great variations of the data quality in VGI-based maps, including spatial 
accuracy of landmark representations. In a series of experiments, we investigated 
and quantified to what extent spatial inaccuracies of landmark representations in 
VGI-based maps affect map matching. Based on the findings, we were able to iden-
tify critical thresholds for spatial landmark inaccuracies. Furthermore, we explored 
potential ways to sustain successful map matching at higher degrees of spatial 
landmark inaccuracies. Through visual communication of spatial uncertainties, we 
were able to make map users more resilient to potential inaccuracies and sustain 
successful map matching. 

Keywords Landmarks · Spatial inaccuracy · Uncertainty · Visualization · Map 
matching · Orientation 
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9.1 Introduction 

In unfamiliar environments, people tend to use maps for orientation and navigation 
(Roskos-Ewoldsen et al. 1998). By matching spatial representations in maps to real-
world objects, people identify their own location and obtain spatial information 
about orientation and route directions that are necessary for effective navigation 
(Kiefer et al. 2014). In the context of such a map matching process, landmarks, 
salient spatial objects with a fixed geographic location (Anacta et al. 2017; Bestgen 
et al. 2017; Claramunt and Winter 2007), have been discussed to play an important 
role (see Chap. 8). In maps, landmarks are often represented as pictograms that 
communicate semantic information about the nature or purpose of the represented 
landmark (Keil 2021). Furthermore, Peebles et al. (2007) found that people tend to 
use single landmarks and their map representations to match 2D maps to 3D spaces. 

In recent years, due to the widespread use of mobile Internet and smartphones, 
paper maps have been increasingly replaced by online map services. The advantages 
of these online maps are their convenient availability and their ability to record and 
display one’s own position in real time and to calculate and display routes in real 
time. Furthermore, they are—in comparison to printed maps—(often) more up to 
date, since these digital maps do not have to be reprinted after each modification. A 
particular phenomenon that has arisen in connection with online maps are maps 
based on Volunteered Geographic Information (VGI), with maps based on the 
OpenStreetMap (OSM) project as the most prominent representatives of this map 
category. Opposed to “traditional” commercial or official maps, VGI-based maps 
are created in a process that allows and even encourages the participation of map 
users (Goodchild 2007). Volunteers can add or modify map content and thereby 
contribute to the map creation process. 

The use of VGI data can provide substantial benefits, in particular in regard 
to the quality of a map. In areas with numerous volunteers, these volunteers are 
able to make corrections to the map at very short notice if local conditions change, 
for example, when a road is closed or a new building is built (Barrington-Leigh 
and Millard-Ball 2017; Olteanu-Raimond et al. 2017). Thus, the availability of 
VGI data has improved geographic information (Flanagin and Metzger 2008) and 
the way such information is spread and processed. Volunteers also share the role 
of map users of this geographic information. Hence, the data provided clearly 
relies on individual experiences and thus shares a natural, implicit advantage over 
commercial products. As a result, the involvement of volunteers in map creation can 
lead to the mapping of spatial elements that are less relevant from the point of view 
of a public or commercial authority but are very relevant for certain groups of map 
users. For example, OSM contains many hiking trails that are not mapped in official 
maps (See et al. 2017). However, the source of these advantages of VGI-based maps 
is directly linked to disadvantages in terms of data quality (cf. Bégin et al. 2013). 

Overall, there is an ongoing and thorough discussion on quality issues of such 
spatial data, mainly in comparison to commercial products (e.g., Degrossi et al. 
2018; Flanagin and Metzger 2008; Senaratne et al. 2017; Zhang and Malczewski
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2017). In regions with only a few active volunteers who provide VGI data, the 
maps are usually much less detailed (Rousell and Zipf 2017), and map errors tend 
to get fixed late, if at all. It is also known that interindividual differences between 
volunteers affect the quality of VGI-based maps. These differences include personal 
motivations, skills and mapping expertise, as well as the technical equipment used, 
for example, devices to record GPS data (Van Exel et al. 2010). These between-
region and interindividual differences result in a pronounced heterogeneity of 
data quality (c.f. Chap. 3) and completeness available in VGI-based maps (Girres 
and Touya 2010). Thus, data quality and data characteristics are of a strongly 
heterogeneous nature in the case of VGI. Most map readers, however, do not 
question data quality when, for example, using OSM or are even not aware of 
the fact that maps are based on OSM. They are not aware of the very different 
characteristics of VGI as opposed to traditional or commercial datasets (Skopeliti 
et al. 2017). In contrast, Schiewe and Schweer (2013) report “a rather high degree 
of awareness of uncertainty problems” in OSM users. But this awareness circulates 
around completeness and up-to-dateness of the data, while localization errors and 
thematic inaccuracies remain unaware (Schiewe and Schweer 2013). As a result, it 
can be assumed that map readers treat every available landmark in the same way, 
independent of its representational quality. 

In the context of successful map matching, two potential problems arise from the 
described disadvantages of VGI-based maps. First, in some cases, there may not be 
a sufficient number of spatial reference points represented in certain map areas that 
would be necessary for successful map matching. And second, localization errors 
of important spatial reference points to be used as landmarks in navigation and 
orientation (see Fig. 9.1) could potentially lead to unsuccessful map matching, i.e., 
elements in real space not being recognized in the map or landmarks represented in 
the map are not identified in real space. 

As part of the SPP 1894 (Volunteered Geographic Information (VGI): Inter-
pretation, Visualization and Social Computing) of the DFG, the sub-project on 
“The Effects of Landmark Uncertainty in VGI-based Maps: Approaches to Improve 
Wayfinding and Navigation Performance” carried out by the Ruhr-Universität 
Bochum (RUB) and the International Psychoanalytical University Berlin (IPU) 
addresses these presumed effects of spatial landmark inaccuracies on map matching, 
orientation, and navigation performance. The first aim was to assess and quantify to 
what extent spatial inaccuracies of landmark representations affect map matching 
and, consequentially, orientation and navigation (see Sect. 9.2). In a second step, 
approaches for reducing the assumed negative effects of landmark inaccuracies in 
maps on map matching are being developed and evaluated (see Sect. 9.3).
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Fig. 9.1 Inaccuracies of landmark representations in maps. Due to data quality issues intrinsic to 
VGI data, individual landmark representations in VGI-based maps can be spatially more or less 
inaccurate. For example, the gas station represented in the map above may also be located on the 
other side of the road or on a different location along the road. If spatial inaccuracies are too high, 
map users may experience difficulties when trying to match map representations to the represented 
real-world environment (© OpenStreetMap contributors) 

9.2 Effects of Landmark Inaccuracies on Map Matching 

In a first experiment of the SPP 1894 sub-project, we aimed to investigate and 
quantify how spatial inaccuracies of landmark representations in maps affect the 
ability of map users to match the map to the represented 3D environment. For this 
purpose, we created a virtual 3D environment and a digital map that allowed us to 
fully control the locations of a landmark building and its pictogram representation 
in the map (see Fig. 9.2). 

The locations of both the 3D landmark and the landmark representation were 
fully randomized, independent of each other along the road. Consequentially, the 
spatial inaccuracy of the landmark representations was different in each trial. After 
each trial, participants used a continuous scale to respond to what extent they 
perceived (as pedestrians) the map as matching the 3D environment. For full details 
on the study design, see Keil et al. (2022a). 

The results demonstrated a pronounced and significant nonlinear relation 
between the spatial inaccuracy of the landmark representation in the 2D map 
and the perceived match between the 3D environment and the map (see Fig. 9.3). 
A tipping point was observed at approximately 10 meters of spatial inaccuracy, 
i.e., 10-meter walking distance in a virtual 3D environment. Maps with less spatial
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Fig. 9.2 Stimulus design. Participants saw a 3D environment containing a landmark building and 
a corresponding map representation. Random spatial inaccuracies were applied to the landmark 
representation in the map (here, landmark building matching the map representation) 

Fig. 9.3 Relation between inaccuracies of the landmark representation in the map and the 
perceived match between the 3D environment and the map. Values of one represent a certain 
match, values of zero represent a certain mismatch, and values between zero and one represent 
uncertainty concerning a match or mismatch. If spatial inaccuracies of the landmark representation 
were too high, maps were perceived as not matching the represented 3D environment
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inaccuracy were mainly rated as matching the 3D environment. Maps with more 
than 10 meters of spatial inaccuracy were mainly rated as not matching the 3D 
environment. 

These findings suggest that inaccuracies of a landmark’s map representation of 
more than 10 meters for a pedestrian observer and map user are recognized. Map 
users then seem to start to mismatch map and 3D space representations, meaning 
that they are getting unable to match a corresponding map to the represented 3D 
space, although in the present experiment, only one map element (the landmark 
pictogram) is spatially inaccurate. However, some issues concerning the generaliz-
ability of these findings still need to be considered. First, in this experiment, only one 
fixed map scale was applied. However, most modern digital maps support dynamic 
adjustments of the visualized map scale. Selecting smaller map scales results in 
smaller misplacements of spatially inaccurate landmark representations in terms 
of pixels or millimeters. Consequentially, spatial landmark inaccuracies could be 
more difficult to recognize if a smaller map scale is used. Hence, how specific 
spatial inaccuracies of landmark representations affect map matching also needs to 
be quantified with different map scales in future experiments (see Keil et al. 2022a). 

A second limitation concerning the generalizability of the findings is that the 
experiment was carried out with controlled virtual 3D environments. Although full 
experimental control is important to isolate the effect of the spatial inaccuracy of 
the landmark pictogram on map matching, it needs to be considered that people 
who carry out a map matching task are usually confronted with complex real-
world environments containing numerous spatial elements that can act as helpful 
spatial reference points or as distractors. For example, an unusual route shape could 
support the map matching process or visually highly salient spatial objects that 
attract visual attention but are not represented in the map could disturb the map 
matching process. How the perception of complex real-world environments affects 
the map matching process still needs to be investigated. Still, one could assume 
that the effects observed in this experiment could be less pronounced in real-world 
environments because the salience of a single landmark and its map representation 
is less pronounced. 

Finally, maps often represent more than one landmark in a map section. Due 
to the heterogeneity of VGI-based maps (Girres and Touya 2010), only some of 
these landmark representations may be significantly spatially inaccurate. If this is 
the case, other landmark representations could still be used to maintain successful 
map matching. Thus, how exactly one or some spatially inaccurate landmark 
representations affect map matching if other spatially more accurate landmark 
representations are available needs to be addressed in future studies. 

Despite these mentioned limitations, the findings demonstrate that spatial inaccu-
racy of landmark representations in maps can jeopardize successful map matching 
and most likely also orientation and navigation performance. Therefore, finding 
ways for reducing the impact of spatial landmark pictogram inaccuracies on the 
map matching process seems to be a relevant topic for further research (cf. next 
paragraph).
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9.3 Visualizing Spatial Uncertainty 

In a second experiment, we aimed to assess ways to reduce the negative effect of 
spatial inaccuracies of landmark representations on map matching. According to 
Padilla et al. (2021), uncertainty concerning data quality is an issue of most data 
and can affect all kinds of decision-making. However, people may not be aware 
of these data quality issues. Thus, if map users do not consider during navigation 
that some landmark representations may be more or less spatially accurate, they 
could interpret a map as representing another spatial environment and not the 
currently perceived one. Pang et al. (1997) argue that by visualizing data uncertainty, 
people are provided with important information of data quality and can therefore 
make more informed decisions. However, according to Mason et al. (2016), there 
is a “lack of comprehensive and generalizable empirical studies across the entire 
domain of uncertainty visualization.” Therefore, we investigated the effects of 
visualizing uncertainty concerning the correct location of map-based landmark 
representations on map matching. For this purpose, the uncertainty visualization 
variables transparency and size were selected and manipulated based on suggestions 
of MacEachren (1992) and MacEachren et al. (2005). Furthermore, an uncertainty 
area visualization already used by the commercial map provider Google Maps to 
visualize uncertainty of GPS locations was investigated and compared to the other 
visualizations as well (see Fig. 9.4). 

The stimulus design was the same as in the first experiment, with one exception. 
In addition to the control condition with the unmodified landmark pictogram, three 
different visualizations for spatial landmark uncertainty were compared in a within-
subject design. In four sets of twelve trials, participants either saw a map with 
an unmodified landmark pictogram (control condition), a transparent pictogram, a 
pictogram with modified size, or a pictogram with a circular transparent uncertainty 
area (see Fig. 9.4). The level of transparency, the size of the landmark pictogram, or 
the uncertainty area was linked to the spatial inaccuracy of the landmark pictogram 
in the map. Again, participants used a continuous scale ranging from 0 to 1 after 

Fig. 9.4 Visualizations for spatial uncertainty. Pictogram transparency (left), size (middle), and 
circular (transparent) uncertainty areas (right) were used to visualize uncertainty concerning the 
correctness of the landmark pictogram location
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Fig. 9.5 Perceived match per landmark pictogram condition. Participants significantly less often 
perceived a mismatch between the 3D environment and the map representation (mismatches 
represented by low perceived match scores) when potential spatial inaccuracies of landmark 
representations were visualized by increasing the landmark pictogram size or by adding a circular 
uncertainty area 

each trial to indicate to what extent they perceived the map as matching the 3D 
environment. For more study details, see Keil et al. (2022b). 

The results demonstrate that participants are less likely to perceive a mismatch 
between the 3D environment and the map (mismatches represented by low perceived 
match scores), if the size of the landmark pictogram was modified or if an 
uncertainty area was added around the landmark pictogram to illustrate uncertainty 
(see Fig. 9.5). However, adding transparency to the landmark pictogram did not 
lead to fewer perceived mismatches between the 3D environments and the maps 
compared to the control condition. Figure 9.6 shows that if pictogram size or 
uncertainty areas are used to communicate uncertainty concerning the correct 
location of the landmark representation, a larger landmark inaccuracy was accepted 
by the participants to still be perceived as a match between the 3D environment and 
the map. Based on this result, it seems that in map matching (i.e., comparison of map 
and 3D space), the size of the pictogram or the size of the uncertainty area placed 
around the pictogram are particularly suitable for depicting spatial uncertainty. 
These two pictogram variants seem to support the processing of uncertainty by
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Fig. 9.6 Relation between inaccuracies of the landmark representation in the map and the 
perceived match between the 3D environment and the map per landmark pictogram condition. 
When uncertainty concerning the correct location of the landmark representation in the map was 
visualized by increasing the pictogram size or adding a circular uncertainty area, higher values 
of spatial landmark pictogram inaccuracy were required for participants to perceive a certain 
mismatch between the map representation and the represented 3D environment 

map users significantly better than, for example, the also tested transparency 
representations of pictograms. 

Based on these initial findings, we conclude that uncertainty visualization 
can be used to reduce the negative effects of spatial inaccuracies of landmark 
representations in maps on map matching. Especially, modifying the size of 
pictograms as suggested by MacEachren et al. (2005) and adding transparent 
uncertainty areas around the landmark pictogram proved to communicate spatial 
uncertainty effectively and to improve successful map matching. It seems likely that 
an explanation for the fact that adding transparency to landmark pictograms did 
not prove to be effective in communicating spatial uncertainty needs to consider 
the difficulties to registering different transparency levels of our map users in the 
experiment, as only one landmark pictogram was visible simultaneously. 

Concerning the generalizability of these findings, two issues need to be 
addressed. First, Fig. 9.6 reveals a data artifact for extremely high landmark 
inaccuracy values in the size condition (green line). Opposed to the other 
visualizations, uncertainty increased when spatial inaccuracy values were extremely
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high. This particular artifact might be explained by the fact that pictogram size 
in this condition was directly linked to the spatial inaccuracy of the landmark 
pictogram. Thus, if the spatial inaccuracy was extremely high, the pictogram was 
extremely large and covered large areas of the map. However, if the pictogram 
gets too large, it will make the map unreadable, and map matching will become 
impossible. This artifact demonstrates that, as also stressed by Kinkeldey et al. 
(2014), new ways to visualize uncertainty call for studies to investigate their 
usability. Potential usability issues of the addressed uncertainty visualizations need 
to be identified in further extensive series of usability tests to ensure that the general 
map reading ability is not impaired. For example, as a consequence of the identified 
data artifact, maximum values for the pictogram size could be defined. 

The second issue is related to the values used to control the intensity of the 
uncertainty visualization. In this experiment, the spatial inaccuracy of the landmark 
representations was used to control the transparency or size of landmark pictograms 
or the uncertainty area around the pictogram. In a real application scenario, however, 
these values would not be available. If precise information concerning the correct 
landmark location would be available, then in most cases, the errors could easily be 
corrected, and an uncertainty visualization would not be required. Instead, measures 
for uncertainty based on the available metadata related to VGI contributions need 
to be developed, or average inaccuracy values need to be estimated and applied to 
the uncertainty visualization. For example, an uncertainty score could be calculated 
based on the number and spread of VGI contributions linked to a specific landmark 
pictogram, the number of contributions of a contributor, or the number of corrections 
linked to the contributions of a contributor. The development of such uncertainty 
value calculations and their evaluation in applied user studies are subject to future 
research. 

9.4 Conclusion and Outlook 

The studies reported above provide first insights into how spatial inaccuracies of 
landmark representations in maps affect map matching. Our first study demon-
strates that spatially inaccurate landmark representations reduce the likelihood of 
successful map matching. This could create problems for real-world orientation 
and navigation, especially in VGI-based maps, due to their great heterogeneity in 
terms of data quality (Girres and Touya 2010; Rousell and Zipf 2017). In a second 
study, we were able to show that by visualizing uncertainty concerning the spatial 
accuracy of landmark representations, the negative effects on map matching can 
be reduced. Especially modifying the size of landmark pictograms as suggested 
by MacEachren et al. (2005) or adding uncertainty areas as used in Google Maps 
proved to maintain successful map matching at higher levels of spatial landmark 
inaccuracies. We argue that it is this visualization of spatial uncertainty that provides 
the information required for more informed decision-making (Padilla et al. 2021; 
Pang et al. 1997).
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Fig. 9.7 Map matching with 360-degree photos. Due to the higher number of real-world distrac-
tors and spatial reference points in the maps obtained from OSM (© OpenStreetMap contributors), 
effects of spatial landmark inaccuracies in the maps are assumed to be less pronounced compared 
to experimentally fully controlled virtual environments 

In future studies, the generalizability of the identified relation between spatial 
inaccuracies of landmark representations and map matching to real-world envi-
ronments needs to be investigated. As previously argued, it is assumed that the 
negative effect on map matching will be less pronounced in real-world environments 
compared to the virtual 3D environment used in the first experiment of our SPP 1894 
sub-project. The higher complexity of real-world environments should provide both 
more spatial reference points that are represented in maps and further distractors 
(like persons, building facades, cars, etc.) that are not represented in maps. Both the 
additional spatial reference points and the distractors are expected to compete with 
the landmark representations for visual attention. In consequence, this distribution 
of attention across more objects is assumed to reduce the relevance of the landmark 
representations for map matching. To test this assumption, it is necessary to 
conceptually extend the experiment design of the two studies reported above (see 
Keil et al. 2022a,b). Instead of using virtual 3D scenes in the map matching task, 
360-degree images of real-world scenes with landmarks that are also included in the 
corresponding OSM map section may be tested (see Fig. 9.7). 

In addition, to investigate the effect of map scale on the relationship between 
spatial inaccuracy of landmark representations and map matching, in future studies, 
different map scales should be used. It is expected that the results of such studies 
will not only provide a deeper understanding of the role of individual landmark 
representations for map matching in the context of spatial inaccuracies in real-
world environments. They will also provide new findings on the effects of different
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map scales and potential usability issues of the used uncertainty visualizations in 
widespread maps as OSM. 

Furthermore, potential ways to quantify spatial uncertainty based on available 
OSM metadata need to be explored, developed, and tested. This will allow 
visualizing different levels of uncertainty based on the suggested data quality levels 
of different OSM map regions. Finally, the effects of the uncertainty visualizations 
on orientation ability and navigation performance (i.e., real-world map matching) 
also need to be investigated with regard to different target groups. The results 
can not only provide detailed information on how spatial inaccuracies of landmark 
representations in maps affect map matching. They will also show how successful 
map matching can be maintained by providing map users with information about 
the uncertainty of map content to support more informed decision-making. 

Acknowledgments This research was supported by the German Research Foundation DFG 
within Priority Research Program 1894 Volunteered Geographic Information: Interpretation, 
Visualization and Social Computing (VGIscience, Landmark Uncertainty, DI 771/11-2, KU 
2872/6-2). 

References 

Anacta VJA, Schwering A, Li R, Muenzer S (2017) Orientation information in wayfinding 
instructions: evidences from human verbal and visual instructions. GeoJournal 82(3):567–583 

Barrington-Leigh C, Millard-Ball A (2017) The world’s user-generated road map is more than 80% 
complete. PloS One 12(8):e0180698 

Bégin D, Devillers R, Roche S (2013) Assessing volunteered geographic information (vgi) quality 
based on contributors’ mapping behaviours. Int Arch Photogramm Remote Sens Spat Inf Sci 
2013:149–154 

Bestgen AK, Edler D, Kuchinke L, Dickmann F (2017) Analyzing the effects of vgi-based land-
marks on spatial memory and navigation performance. KI-Künstliche Intelligenz 31(2):179– 
183 

Claramunt C, Winter S (2007) Structural salience of elements of the city. Environ Plann B Plann 
Des 34(6):1030–1050 

Degrossi LC, Porto de Albuquerque J, Santos Rocha Rd, Zipf A (2018) A taxonomy of quality 
assessment methods for volunteered and crowdsourced geographic information. Trans GIS 
22(2):542–560 

Flanagin AJ, Metzger MJ (2008) The credibility of volunteered geographic information. GeoJour-
nal 72(3):137–148 

Girres JF, Touya G (2010) Quality assessment of the french openstreetmap dataset. Trans GIS 
14(4):435–459 

Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 
69(4):211–221 

Keil J (2021) The salience of landmark representations in maps and its effects on spatial 
memory. doctoralthesis, Ruhr-Universität Bochum, Universitätsbibliothek. https://doi.org/10. 
13154/294-8216 

Keil J, Edler D, Dickmann F, Kuchinke L (2022a) Uncertainties in spatial orientation: Critical 
limits for landmark inaccuracies in maps in the context of map matching. KN J Cartogr Geogr 
Inf, 1–12. https://doi.org/10.1007/s42489-022-00105-7

https://doi.org/10.13154/294-8216
https://doi.org/10.13154/294-8216
https://doi.org/10.13154/294-8216
https://doi.org/10.13154/294-8216
https://doi.org/10.13154/294-8216
https://doi.org/10.13154/294-8216
https://doi.org/10.13154/294-8216
https://doi.org/10.1007/s42489-022-00105-7
https://doi.org/10.1007/s42489-022-00105-7
https://doi.org/10.1007/s42489-022-00105-7
https://doi.org/10.1007/s42489-022-00105-7
https://doi.org/10.1007/s42489-022-00105-7
https://doi.org/10.1007/s42489-022-00105-7
https://doi.org/10.1007/s42489-022-00105-7
https://doi.org/10.1007/s42489-022-00105-7
https://doi.org/10.1007/s42489-022-00105-7


9 Landmark Uncertainty in VGI-Based Maps 197

Keil J, Edler D, Kuchinke L, Dickmann F (2022b) Visualization of spatial uncertainty improves 
map matching. Abstr ICA 5:55. https://doi.org/10.5194/ica-abs-5-55-2022. https://www.abstr-
int-cartogr-assoc.net/5/55/2022/ 

Kiefer P, Giannopoulos I, Raubal M (2014) Where am i? Investigating map matching during self-
localization with mobile eye tracking in an urban environment. Trans GIS 18(5):660–686 

Kinkeldey C, MacEachren AM, Schiewe J (2014) How to assess visual communication of 
uncertainty? A systematic review of geospatial uncertainty visualisation user studies. Cartogr J 
51(4):372–386 

MacEachren AM (1992) Visualizing uncertain information. Cartogr Perspect (13):10–19 
MacEachren AM, Robinson A, Hopper S, Gardner S, Murray R, Gahegan M, Hetzler E (2005) 

Visualizing geospatial information uncertainty: what we know and what we need to know. 
Cartogr Geogr Inf Sci 32(3):139–160 

Mason JS, Klippel A, Bleisch S, Slingsby A, Deitrick S (2016) Special issue introduction: 
approaching spatial uncertainty visualization to support reasoning and decision making. Spat 
Cogn Comput 16(2):97–105 

Olteanu-Raimond AM, Hart G, Foody GM, Touya G, Kellenberger T, Demetriou D (2017) The 
scale of vgi in map production: a perspective on european national mapping agencies. Trans 
GIS 21(1):74–90 

Padilla L, Kay M, Hullman J (2021) Uncertainty visualization. Wiley, New York, pp 1–18. 
https://doi.org/10.1002/9781118445112.stat08296. https://onlinelibrary.wiley.com/doi/abs/10. 
1002/9781118445112.stat08296 

Pang AT, Wittenbrink CM, Lodha SK, et al (1997) Approaches to uncertainty visualization. Vis 
Comput 13(8):370–390 

Peebles D, Davies C, Mora R (2007) Effects of geometry, landmarks and orientation strategies 
in the ‘drop-off’orientation task. In: International Conference on Spatial Information Theory. 
Springer, pp 390–405 

Roskos-Ewoldsen B, McNamara TP, Shelton AL, Carr W (1998) Mental representations of large 
and small spatial layouts are orientation dependent. J Exp Psychol Learn Mem Cogn 24(1):215 

Rousell A, Zipf A (2017) Towards a landmark-based pedestrian navigation service using osm data. 
ISPRS Int J Geo-Inf 6(3):64 

Schiewe J, Schweer MK (2013) Vertrauen im rahmen der nutzung von karten. KN J Cartogr Geogr 
Inf 63(2):59–66 
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Chapter 10 
Improvement of Task-Oriented Visual 
Interpretation of VGI Point Data 

Martin Knura and Jochen Schiewe 

Abstract VGI is often generated as point data representing points of interest (POIs) 
and semantic qualities (such as accident locations) or quantities (such as noise 
levels), which can lead to geometric and thematic clutter in visual presentations 
of regions with numerous VGI contributions. As a solution, cartography provides 
several point generalization operations that reduce the total number of points 
and therefore increase the readability of a map. However, these operations are 
applied rather general and could remove specific spatial pattern, possibly leading 
to false interpretations in tasks where these spatial patterns are of interest. In this 
chapter, we want to tackle this problem by defining task-oriented sets of map 
generalization constraints that help to maintain spatial pattern characteristics during 
the generalization process. Therefore, we conduct a study to analyze the user 
behavior while solving interpretation tasks and use the findings as constraints in the 
following point generalization process, which is implemented through agent-based 
modeling. 

Keywords Point generalization · Constraints · Agent-based modeling 

10.1 Introduction 

As shown by the variety of different aspects and applications which are observed in 
this book, the volume and relevance of Volunteered Geographic Information (VGI) 
have immensely increased in recent years. In many cases, this VGI data is generated 
and visualized as point data, e.g., representing the location of a point of interest 
(POI), an event, or a data source. However, utilizing VGI data needs to take some 
specific characteristics into account in comparison to geospatial data acquired and 
processed in the “traditional” way. In particular, VGI “is produced by heteroge-
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Fig. 10.1 Examples for VGI point data with point clutter. (a) Parked bikes in the city of Dresden, 
detected on Flickr images between 2004 and 2014 according to Knura et al. (2021). (b) Sightings 
of selected antelope species in Kruger National Park uploaded on the platform iNaturalist 

neous contributors, using various technologies and tools, having different levels of 
details and precision, serving heterogeneous purposes, and a lack of gatekeepers” 
(Senaratne et al. 2017), leading to an enormous volume and heterogeneity within 
the data. All of these characteristics could harm the usability of the data, especially 
when it comes to the visual presentation and exploration of very dense and even 
overlapping point markers or symbols (see Fig. 10.1a and b), commonly known as 
geometric point clutter (Moacdieh and Sarter 2015). 

As a solution to this clutter problem, cartography provides several point general-
ization operations such as selection, aggregation, or displacement, which rearrange 
or reduce the total number of points and therefore increase the readability of a map. 
However, these operations are applied rather general and could remove a specific 
spatial pattern, possibly leading to false interpretations in tasks where these spatial 
patterns are of interest.
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The aim of the TOVIP project is to tackle this problem by defining a set of 
cartographic constraints—i.e., conditions a generalized map should satisfy—that 
preserve these spatial patterns throughout the whole generalization process. The 
first research question we want to answer in this chapter is therefore: 

• What is the minimum set of constraints and constraint measures that should be 
used to evaluate interpretation tasks based on VGI point visualizations, such as 
pattern identification, pattern comparison, or relation seeking? 

Different cartographic constraints often describe contradicting aspects with no 
optimal solution, as it is not possible during map generalization to maintain all 
information—i.e., fulfill all information preservation constraints—while keeping 
the map readable, i.e., fulfill all legibility constraints. Constraint-based generaliza-
tion is therefore an optimization task, which tries to find a solution that satisfies as 
many constraints as good as possible, and has been implemented in recent years 
through multi-agent systems (Duchêne et al. 2018). We want to contribute to this 
research and define our second research question as: 

• Is it possible to optimize the task-oriented generalization using an agent-based 
modeling approach? 

The following chapter describes the workflow to answer the research questions 
as follows: in Sect. 10.2, we introduce the cartographic concept of constraint-
based generalization, on which the TOVIP project is based upon. Section 10.3 
summarizes the results of a user study, which analyzed the user behavior while 
working with spatial patterns in point data sets. In Sect. 10.4, we translate the 
findings of the previous section into measurable constraints that could be utilized 
in map generalization practice. In Sect. 10.5, we apply these constraints in an agent-
based generalization model. That followed, we discuss our findings in Sect. 10.6 
before concluding in Sect. 10.7. 

10.2 Constraint-Based Map Generalization 

Cartography provides a variety of different point generalization operations—and 
various combinations between them—to solve the aforementioned clutter problem. 
As an example, a simplification describes a straight reduction of source points based 
on geometric criteria (e.g., only points which have a minimum distance to their 
neighbors are preserved; (Slocum et al. 2009)). When semantic criteria are used, 
a selection operation could take place. For example, points can be selected based 
on respective information filtering methods (Huang and Gartner 2012) or scale-
dependent (Gröbe and Burghardt 2021). Aggregation takes place when multiple 
points are replaced by a single aggregator marker. Most frequently, points are 
grouped through clustering with a respective initialization method (e.g., random, k-
means, Voronoi-based; (Yan and Weibel 2008)), while alternatives, for example, use 
heat maps (Meier 2016), or geometry objects (Zahtila and Knura 2022) to aggregate
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point data. A different solution to overcome clutter, but with the possibility to 
preserve the cardinality (i.e., the overall number of points) of the dataset, is to 
displace the points. During the displacement operation, an iterative workflow of 
overlap detection, relocation, and re-evaluation is executed (Mackaness and Purves 
2001). Furthermore, if the preservation of cardinality and the original topology is of 
interest, a spatial distortion based on pixels (Keim et al. 2004) or point density (Bak 
et al. 2009) could help. 

An operational system for point generalization must implement a workflow 
to trigger and orchestrate the individual point generalization operations described 
above. First implementations used a rule-based approach where a predefined set 
of well-defined and unambiguous rules guided the generalization process (Beard 
1991). Each rule thereby states what has to be done in a process at a certain 
condition, so each condition was connected to a specific action (Harrie and Weibel 
2007). The problem that occurred with this approach was that the enormous variety 
of spatial and non-spatial characteristics that exist in the world and therefore in maps 
led to a number of rules which were not possible to handle anymore. This leads to 
the constraint-based approach, which focused on the requirements that the final map 
should fulfil instead of providing a set of isolated generalization operations, leaving 
more flexibility within the generalization process on how to reach these results. 
According to Beard (1991), these constraints can be classified into aspects related 
to position, topology, shape, structural, functional, and legibility. Furthermore, it is 
necessary to introduce respective measures for these constraints, which are grouped 
by Mackaness and Ruas (2007) into either internal or external and either micro, 
meso, or macro. 

If the constraints are defined in a complete and measurable way, there are 
different techniques available for implementation. Looking at optimizing single 
generalization methods, there is considerable work done, for example, regarding 
the displacement operation by applying least squares adjustment (Sester 2000), 
simulated annealing (Ware and Jones 1998), or snakes (Burghardt 2005). For more 
complex processes, agent-based modeling has shown great success in terms of 
applicability (Duchêne et al. 2018). In this approach, agents represent autonomous 
map objects trying to minimize a given cost function, which is based on the 
fulfillment of the constraint measures. As a result, the whole complexity of the 
generalization workflow is distributed to a set of relatively simple interacting agents. 

The agent-based modeling approach is also used in the TOVIP project. Regarding 
the aim of TOVIP—defining a set of constraints that optimizes the generalization 
workflow designed for visual interpretation tasks where specific spatial patterns 
are of interest—it is necessary to consider two potentially contradictory aspects: 
On the final map, the aforementioned spatial patterns have to be visible (preser-
vation constraints), while the map must still be readable by the users (legibility 
constraints). Describing constraints that preserve the relevant information during the 
generalization process is often done with object-specific measures, e.g., preserving 
the area of a polygon before and after generalization (Harrie and Weibel 2007). On 
the other hand, legibility constraints ensure the readability of the map, for example, 
by avoiding any spatial conflict—i.e., display clutter—and showing objects in
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a suitable degree of detail according to the scale of the map. A respective list 
of analytical legibility measures, such as the number of vertices or the object 
line length, was developed by Stigmar and Harrie (2011). For the aim of the 
TOVIP project, it is now of interest to find the minimum set of preservation and 
legibility constraints that allow the interpretation of specific spatial pattern even 
after generalization. 

10.3 User Behavior When Interpreting VGI Point Data 

Developing constraints that support users while interpreting specific tasks implies 
profound knowledge of their behavior while doing so. Before defining constraints 
that support interpretation tasks, it is therefore necessary to analyze the behavior of 
users working with VGI point data sets. We conduct a user study where participants 
have to perform different interpretation tasks—like finding clusters within a dataset, 
comparing point densities, or finding areas with a specific point distribution—using 
a novel method that combines postal questionnaires, think-aloud interviews, and 
techniques from visual analytics. A more detailed overview on the technical aspects 
and the execution of the user study, including a detailed description of the analysis 
of the think-aloud interviews, is given by Knura and Schiewe (2021). In this chapter, 
we want to summarize the results of the study (see also Knura and Schiewe 2022), 
focusing on the impact of the user behavior on the definition of a minimum set of 
constraints as described above. 

10.3.1 Task-Solving Strategies 

We analyzed the strategies of the participants by dividing the overall task-solving 
process into three sequential actions: (1) finding a start position, (2) obtaining 
information, and (3) decision-making. Apart from a task where the participants 
have to find a similar pattern compared to a given reference, the point density 
of a cluster—as a combination of proximity and cardinality of points—was the 
most important factor when selecting a starting position on the map, followed by 
the point color. For the process of obtaining information, point density was again 
the most important factor, as more dense clusters were described and analyzed 
earlier and more often. Moreover, density was the main evaluation measure in 
comparison tasks and during decision-making. Although we had different categories 
of synoptic interpretation tasks, which—in contrast to elementary tasks—include 
pattern identification, pattern comparison, and relation seeking (see Andrienko and 
Andrienko 2006), the task-solving strategies did not differ significantly between 
different kinds of tasks. As a first result of the study, we state that point density has 
the biggest impact on the task-solving behavior of the participants and has to be 
addressed in the first place when defining constraints.
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10.3.2 Influence of Point Data Cardinality and Background 
Map 

A key factor that could have an impact on the user behavior during visual 
interpretation is the map complexity. There are numerous definitions and concepts 
of map complexity in cartography (see Touya et al. 2016). As most of them distinct 
between the intellectual complexity, which relates to the cognitive process of map 
reading, and the graphical complexity, which relates to the visual perception of 
individual map objects, we vary the maps for some of the tasks with respect to these 
two categories. To learn more about the influence of the intellectual complexity 
on user behavior, we varied the data cardinality—i.e., the number of points—for 
two of the tasks. Although we recognized some minor differences in the behavior 
between the user groups, the overall task execution strategy remains unchanged with 
a higher data cardinality. For analyzing the impact of the graphical complexity, 
we varied the background map source between Google Maps, Bing Maps, and 
Stamen Terrain. This time, we identified both an implicit and explicit influence from 
the background map. Implicitly, because participants frequently identified clusters 
which were visually supported by the background map and explicitly because they 
refer to the characteristics of the background map when explaining their strategies. 
But again, and despite the influence of the background map on the reasoning, the 
overall task-solving strategies described in the section above remain unchanged 
between different levels of graphical complexity. 

10.3.3 Implications for Constraints Supporting Interpretation 
Tasks 

Following the results of our study, there are two main aspects that have to be 
considered while defining constraints for map generalization. First, it is of major 
importance to preserve the original pattern proportions during the generalization 
process. Our study revealed that the point density had the biggest impact on the 
task-solving process, and participants discussed both interrelations between clusters 
with different density, as well as between different classes of points within the same 
cluster. Information preservation constraints regarding the point density should 
therefore: 

• Retain the proportion of points between areas with different densities 
• Preserve the ranking of densities between different areas 
• Preserve proportions between classes while maintaining at least one point per 

class 
• Preserve Gestalt law rules regarding similarity and proximity of clusters 

The second aspect to consider is the use of cartographic techniques to guide the 
interpretation of points. The use of specific colors to draw attention is common in
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cartography, and this can be applied to other map objects with the aim of lowering 
the graphical complexity. Respective constraints could ensure to: 

• Use cartographic style elements where pattern preservation is difficult to manage 
• Optimize the guiding effect of the background map (e.g., preservation of other 

map objects in close proximity to point clusters) 

These constraints could be categorized as both preserving information and 
legibility, and they address not only the location and visibility of the point symbols 
but also their style and the surrounding map areas. 

10.4 Defining Constraints and Measures for Spatial Pattern 
Interpretation 

The previous section revealed the importance of preserving point densities during 
generalization. In this section, we collect a list of different approaches—both 
from the literature and own experiments—to define constraints and respective 
measures, which can help to preserve point densities and spatial pattern and test 
them on exemplary point distributions. The aim is thereby to find a minimum set 
of constraints that fit best to the list of requirements described above. We thereby 
focus on information preservation constraints regarding the point distributions. 
Constraints related to cartographic techniques are a key aspect of our future work. 

10.4.1 Measures Describing Spatial Pattern and Densities 

When defining measures for spatial pattern and densities, we follow the catego-
rization of Mackaness and Ruas (2007), who distinguish between macro-measures 
that deal with all point objects of interest, micro-measures that deal with individual 
characteristics of objects (i.e., points), and meso-measures that deal with the specific 
properties of different groups of objects (i.e., point clusters). The authors also 
distinguish between internal and external measures, which states if a measure can be 
calculated based on a single dataset (internal) or is a relation between two datasets 
(e.g., before and after a generalization operation; external). 

10.4.1.1 Macro-Measures 

Macro-measures are able to describe the entirety of information and respective 
characteristics in a single value. One of the most basic macro-measures is the radical 
law (Töpfer and Pillewizer 1966), which estimates how many features should be
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maintained at a smaller scale in the generalization process. It is defined as: 

.nD = nS

/
mS

mD

, (10.1) 

where . n is the number of objects of the derived (. D) resp. source (. S) map, and . m
is the scale denominator. In the context of this project, it is worth noting that the 
calculation should be based on a readable map, i.e. without any point clutter. If this 
measure is calculated from a map with point clutters, the calculated value should 
be interpreted as the maximum number of objects on the derived map. Even more 
basic is the measure that describes the amount of information . Ni as the number of 
all map objects (Harrie and Stigmar 2010), calculated as: 

.Ni =
nE

i=1

miE
j=1

Oij . (10.2) 

For objects other than points, this measure can be expanded with the number of 
object points, calculating the overall measure as the sum of all object points of all 
map objects. 

Beside measures that deal with the amount of information in general, global 
measures can also describe a specific characteristic of the dataset or the map. In the 
same work, Harrie and Stigmar (2010) defined an index to characterize the spatial 
distribution of points .ISDP based on Voronoi regions. The index is calculated as: 

.ISDP =
ENP

i=1 PSDP,i logPSDP,i

log 1
NP

, (10.3) 

where .PSDP,i is the relative size of the Voronoi region for a point i and NP  is 
the number of points. .ISDP converges to 1 the more even the sizes of the Voronoi 
regions are. Zhang et al. (2009) use  the  Voronoi region size as the variable of 
interest in Moran’s I to discern if point distributions are clustered, dispersed, or 
random: 

.I = N

W

EN
i=1

EN
j=1 wij (xi − x̄)(xj − x̄)EN

i=1(xi − x̄)2
, (10.4) 

where N is the number of spatial units indexed by i and j , x is the size of the Voronoi 
region . AV , . x̄ is the mean of x, . wij is a matrix of spatial weights with zeroes on the 
diagonal (i.e., .wii = 0), and W is the sum of all . wij .
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10.4.1.2 Micro-Measures 

Micro-measures describe characteristics of individual objects and therefore can 
take the local neighborhood into account. Analog to the macro-measures before, 
calculating the size of the Voronoi region of a point .AV is used as a fundamental 
metric to describe local density. Based on this, Zhang et al. (2008) calculate the 
object-oriented density OD as: 

.OD = 1

AV

. (10.5) 

A higher object-oriented density implies a smaller Voronoi region and therefore a 
higher point density in the local neighborhood. Vice versa, a small object-oriented 
density indicates a bigger Voronoi area and a more dispersed distribution around 
that point. 

Besides density measures, qualitative and quantitative information about the 
points in close proximity are also of interest when point generalization operations 
like selection are used. Therefore, Delauney triangulations are often used to 
identify “natural” neighbors in point distributions (Sadahiro 1997). Applying this 
tessellation to a point data set provides a list of neighbors for each point, and micro-
measures like the number of natural neighbors, the  mean neighbor distance, and 
the existence of local extreme values can be calculated (see Fig. 10.2). Delauney 
triangulation also helps to define clusters, so the cluster affiliation can also be 
defined in this way. 

All the measures introduced in this section are internal because they can 
be calculated solely based on one dataset. However, it is possible to compare 
the measures of an individual point to measures of the same point during the 

Fig. 10.2 Example of micro-measures for point P. Natural neighbors N1 to N5 in red, other points 
in gray. Voronoi region . AV for point P in light blue
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generalization process, and note the amount of change as an additional external 
measure. In the same way, the distance to the origin location of a point is of interest 
when displacement operations take place during the generalization. 

10.4.1.3 Meso-Measures 

Compared to macro- and micro-measures, meso-measures are not bound to a 
predefined number or list of points they describe. The first step to calculating 
meso-measures is therefore to define which points are members of the group of 
interest. In the TOVIP project, we focus on spatial pattern, and so the definition of 
clusters is relevant for further processing. Clustering can be made—among many 
other techniques—by cluster algorithms such as k-means and HDBscan, based 
on Delauney triangulation (Sadahiro 1997), or by using grids (Yan et al. 2021). 
These clusters can then be described by meso-measures such as the number of 
group members, the  existence of different point categories, and the mean distance 
between members or between members and the group centroid. Comparing the 
measures of the respective clusters, it is also possible to define cluster rankings. 
Furthermore, according to the findings of the user study presented in Sect. 10.3, 
measures regarding the shape and the orientation of the clusters can be of interest. 
Common methods to represent the shapes of point clusters are convex hulls or alpha 
shapes (Edelsbrunner et al. 1983). The orientation of a cluster can be described 
by the minimum rotated rectangle, a technique which is usually used for building 
orientation (Duchêne et al. 2003). Furthermore, all macro-measures defined in 
Sect. 10.4.1.1 can also be applied on clusters with a defined border. 

10.4.2 Deriving a Minimum Set of Constraints 

Based on the list of different measures, we test the suitability of the measures 
to control the different aspects which help to fulfil the information preservation 
constraints we developed in Sect. 10.3. We thereby subdivide the constraints and 
respective measures into three groups: 

1. Measures describing the overall distribution of points and the density ranking 
between different areas of the map 

2. Measures preserving pattern-specific characteristics like hot spots, extreme 
values, cluster density, etc. 

3. Measures describing Gestalt law rules 

Furthermore, we compare the measures and their performance on different point 
distributions to identify redundancies, and we examine the robustness on point 
cardinality, which is essential when applied in map generalization operations. We 
create a series of experimental point distributions with 100, 200, 500, and 1000 
points and different characteristics: a regular and a random distribution, distributions
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Fig. 10.3 Point distributions with different characteristics, using the example of 200 points. Gray 
borders in the background of the gridded and pattern distributions indicate the areas in which the 
same number of points were randomly distributed 

where we predefined regular (gridded distribution) and irregular areas (pattern 
distribution) to control the density, and distributions with loose and clear clusters 
(see Fig. 10.3). Furthermore, we tested the behavior of micro-measures on points in 
different VGI datasets to evaluate their utility. 

10.4.2.1 Preserve the Overall Distribution of Points and the Density 
Ranking Between Areas 

The first subgroup of measures combines the first two constraints on information 
preservation in Sect. 10.3.3 and can be controlled through a combination of macro-
and meso-measures. We tested both the Voronoi-based Moran’s I and the spatial 
distribution of points with our series of different artificial point distributions. 
Table 10.1 shows the calculated measures and the standard deviation over the 
different point cardinalities. We can see that the spatial point distribution measure is 
to a certain degree stable toward the point cardinality and is smaller when the points 

Table 10.1 Results for point distribution measures. Values with (*) signs indicate that there was 
a small deviation to the given number of points because of distribution characteristics (e.g., 196 
instead of 200 points for the regular distributions) 

Point distribution measure 
Number of points regular random gridded pattern l. cluster t. cluster 
100 1.0000 0.9673 0.9924 0.9493* 0.8624 0.7623* 

200 0.9994* 0.9718 0.9904 0.9405* 0.8603 0.7481* 

500 0.9987* 0.9789 0.9847 0.9394* 0.8664 0.7079* 

1000 0.9991* 0.9805 0.9832 0.9391* 0.8704 0.6658* 

std 0.0005 0.0061 0.0044 0.0048 0.0044 0.0434 

Voronoi-based Moran’s I 
Number of points regular random gridded pattern l. cluster t. cluster 
100 0.4683 0.1707 0.0032 0.1819* 0.5665 0.2733* 

200 0.4372* 0.1919 . −0.0196 0.2126* 0.623 0.4653* 

500 0.4690* 0.1575 0.1995 0.2988* 0.6378 0.4990* 

1000 0.4817* 0.2907 0.1809 0.3841* 0.2891 0.5187* 

std 0.0189 0.0603 0.1151 0.0911 0.1629 0.1126
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are more clustered. Moran’s I on Voronoi regions is more sensitive to variations of 
point cardinality, as it uses the area size as the variable of interest—whose value 
decreases with more points. As a result, we decided to use the point distribution 
measure to control the overall distribution and the distribution within clusters. That 
also includes the fact that the measures for amount of information and cluster size 
are variables within the calculation of the spatial point distribution on the macro-
and meso-level. In contrast, the cluster ranking measure has no overlap with other 
measures and is therefore inevitable. 

10.4.2.2 Preserve Pattern-Specific Characteristics 

Pattern-specific measures are a crucial part of the goals of the TOVIP project. If 
local extreme values and the existence of different point categories are of interest in 
an interpretation task, it is mandatory to preserve these points and therefore control 
them with related measures. As this measure requires a Delauney triangulation to 
define the neighborship, respective measures that are based on this can be performed 
with low additional effort, even if not compulsory. As an example, the mean distance 
to neighbors can be calculated this way. As an alternative, the distance to all points 
within the predefined cluster can be used to decide which points are overlapping and 
thus should be a controlling measure. If a displacement operation is implemented, 
the distance to the origin location of a point can be of interest. For the other pattern-
specific measures, we did not find a unique behavior in which we see an additional 
utility for our model. 

10.4.2.3 Preserve Gestalt Law Rules 

The maximum number of points can be utilized as a target value for the generaliza-
tion process, although it is not mandatory if all legibility measures are satisfied. 
Measures related to the shape and orientation of clusters are utilizing common 
techniques from the field of geospatial analysis, such as calculating the minimum 
bounding rectangle, the convex hull, or the alpha shape of a point set. We compared 
the different approaches on different data sets and decided to use the convex hull 
to describe the shape, as it needs no additional parameter compared to the alpha 
shape and is more detailed than the rectangular bounding box. If the orientation is 
of interest, the longer side of the minimum bounding rectangle can be utilized. 

Table 10.2 shows the selected measures which we initially implemented in the 
agent-based model, together with additional measures that could be relevant for 
certain tasks and were also recognized. Nevertheless, because most of the measures 
are defined in code blocks outside the actual agent-based model, it is possible to 
adopt measures from other scale levels during model optimization.
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Table 10.2 Subgroups of measures and selected measures in column “Set”. (X) indicates the 
measure is not mandatory in certain applications 

Macro Meso Micro Set 

Overall distribution of points/cluster rankings 
amount of information X 

spatial distribution of points X X X 

Moran’s I on Voronoi regions X X 

cluster density ranking X X 

cluster size X 

Pattern-specific characteristics 
local extreme values X X 

point category preservation X X 

number of natural neighbors X X 

mean distance to cluster members X X X 

mean neighbor distance X 

object-oriented density X 

distance to the origin location X (X) 

Gestalt Law 
maximum number of points X (X) 

shape of a cluster X X 

orientation of a cluster X (X) 

10.5 Application Using Agent-Based Modeling 

The set of constraints and respective measures developed in the previous section is a 
key component for the implementation of a map generalization process, which pre-
serves spatial patterns. We apply the constraint-based approach using agent-based 
modeling, which is a powerful method for controlling complex processes (Harrie 
and Weibel 2007). As the model is currently in the final phase of development, this 
section will focus on the architecture and parametrization we implemented: First, 
we introduce the software framework we use and explain the different components 
within the model. In the second part, we describe the integration of global map 
specifications and the translation of measures to a satisfaction scale, which helps 
the agents to better evaluate their fulfillment of constraints. Evaluation of the model 
results will be part of our future work.
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10.5.1 Software and Components 

We implement our agent-based model1 using the Mesa framework (Kazil et al. 
2020). Mesa is an open-source framework for creating agent-based models written 
in Python. It includes four core components (Model, Agent, Schedule and Space), 
along with additional components for analysis and visualization. Thereby, the 
Model class is the core class for creating the environment of the model using 
the Space class, initializing the agents which are objects of the Agent class, 
and orchestrating the running model through the Scheduler class. Applied to the 
process of map generalization, our model has a map area which is implemented 
through a continuous space—providing a high flexibility for different map scales— 
and contains map agents which represent objects that generalize themselves by 
performing generalization operations, according to the perception of their current 
state and their fulfillment of given constraint measures. Besides micro-agents, which 
represent the individual points, our model also contains meso-agents, which are 
generated within the model initialization and control the pattern preservation. 

(Map) agents and the implementation of their decision-making process are the 
most complex part of an agent-based model. Duchêne et al. (2018) decomposed 
the “brain” of map agent into three main components: capacities, mental repre-
sentation, and procedural knowledge. We followed this approach and used these 
components in our model (see Fig. 10.4). The capacities of our agents include the 
ability to perceive their surrounding space, to evaluate themselves, and to perform 
generalization operations. The updating process of the first two capacities is thereby 
provided by the Model class, which performs several spatial analysis operations on 
the totality of map objects after each simulation step and transmits the calculated 
measures back to the individual micro- and meso-agents. The mental representation 
of the agents compares their current state with the goals they are aiming at—i.e., the 
fulfillment of map constraints—and calculates their satisfaction. It also memorizes 
all previous actions the agents took and the respective outcome of it. Finally, the 
procedural knowledge component is the decision-making unit of the agents. Based 
on the agent’s constraint satisfaction and the knowledge of the past steps, it decides 
which operation the agent should execute in the next step. 

Besides the core functions for agent-based modeling, Mesa offers functionalities 
for data analysis and model visualization. The DataCollector class of Mesa is able 
to record, store, and export all relevant data of the agents for further analysis. It 
allows us to control the mechanisms of the model, as well as tuning the decision-
making process of the agents. Via the visualization components, Mesa also provides 
a browser-based visualization of the running model, but until now, we haven’t 
implemented a respective function in our model yet. Instead, we set up and run 
the model via Jupyter Notebook and present the generalized map in an interactive 
browser map.

1 Our source code is online: https://gitlab.com/g2lab/tovip. 

https://gitlab.com/g2lab/tovip
https://gitlab.com/g2lab/tovip
https://gitlab.com/g2lab/tovip
https://gitlab.com/g2lab/tovip
https://gitlab.com/g2lab/tovip
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Fig. 10.4 Components of our model for agent-based map generalization 

10.5.2 Global Map Specifications and Measure Satisfaction 

Besides the specific constraints we defined in order to support interpretation tasks, 
there are also global map specifications and characteristics which are important for 
the process of generalization in general and for the point generalization in particular 
and which have to be defined in advance. For example, it is necessary to know the 
scale of the source map and if this map satisfies all legibility constraints regarding 
the point symbols (i.e., the source map has no point clutter and is readable). It 
is also required to define the target scale of the map and the (pixel) size of the 
point symbols. Moreover, it is of interest if the point data set contains different 
classes and, if it does, the respective scale of measurement. While these global map 
specifications are determined in most of the use cases for point generalization (e.g., 
the target map scale via predefined zoom levels), they can also be changed in the 
model setup. 

Furthermore, the “brain” of the map agent requires determining a predefined 
behavior regarding the task of translating a list of measures into a value representing 
the satisfaction of an agent at its current status. The common workflow for this task 
consists of two steps (Touya 2012): First, the measures get translated into a Likert-
like satisfaction scale, which ranges from 1 (“unacceptable”) to 8 (“perfect”). Each 
measure thereby has its own method for translation, which has to be defined in
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advance. In the second step, a global satisfaction value is derived from the individual 
values, utilizing principles from Social Welfare Orderings (SWO). Again, the 
specific SWO method has to be chosen in advance and triggers different strategies 
the agents will follow. For example, using a SWO that emphasizes low values with 
a higher weight, the agents will try to minimize the number of low values and focus 
less on maximizing other values, while a utilitarian SWO fosters strategies where 
agents maximize the sum of all values. 

Taillandier and Gaffuri (2012) proposed an approach to help the user with 
parameterization using a human-machine dialogue. We utilize this approach for our 
model and offer a guided user interface where parameter adjustments get visualized 
via samples on a map. It allows the user to adjust the satisfaction scales by modifying 
the class dividers, which are predefined as a function of respective global map 
attributes such as scale and point cardinality. 

10.6 Discussion 

The previous sections described the workflow of defining a set of constraints and 
respective measures based on the findings from a user study and the implementation 
in an agent-based model. This already answers our research questions to a certain 
degree. In this section, we want to further discuss implications that occur with the 
results of the previous sections. 

In Sect. 10.4.2, we define a set of constraints containing measures that control the 
spatial distribution of points, the ranking between clusters, the shapes of clusters, 
and the distances between the points of a cluster. Furthermore, the preservation of 
local extreme values and all point categories should be added if their existence is 
of interest in the interpretation task. Taking the different measure scales of two of 
the constraints into account, there are only six to eight measures, which can be 
used to control the generalization process. Still, this requires at least six different 
predefined parameter adjustments to translate measures into satisfaction values. The 
complexity of the parametrization process has been identified as one of the main 
drawbacks of the agent-based approach (Duchêne et al. 2018), and this is also the 
case in our model. As an example, defining a function to evaluate the macro-measure 
of point distribution is little intuitive, as it needs to define class dividers for narrow-
value ranges, which differences are hard to visualize. However, six parameters and 
a user-friendly way to adjust them are still feasible in our opinion. 

Manual parameter adjustment is one reason which makes it difficult to transfer 
our approach of point generalization to other applications. The second reason is 
the time-consuming calculation of measures that rely on rather complex geospatial 
operations. On-the-fly point generalization (Jabeur et al. 2006) is therefore not 
possible with our approach, and the computing time depends heavily on the number 
of points to generalize. A solution to this problem could be the integration of novel 
learning techniques (Touya et al. 2019). If a model can learn how to generalize



10 Improvement of Task-Oriented Visual Interpretation of VGI Point Data 215

points while preserving the right information, it could predict a generalized point 
set on-the-fly. 

10.7 Summary and Outlook 

The generation of VGI data in general, and of points in particular, has shown 
an immense increase in recent years. As one of the main properties of VGI is 
its enormous volume and heterogeneity within the data, it leads to dense clutters 
when it is presented on maps. The cartographic solution to this problem is point 
generalization: rearranging or reducing the number of points. If this is applied rather 
general, specific spatial pattern could be eliminated—which is a major problem 
when these patterns were of high importance and subject of interest to the user. This 
chapter presents a workflow to resolve this problem by defining a set of constraint 
that can be used to control the generalization workflow. We developed the list of 
constraints based on a user study and applied them by implementing an agent-based 
model for point generalization. 

VGI point data is often produced in multiple scale levels and over longer periods 
of time. In our future work, we want to factor this and develop our model further 
by adding functionalities for multi-scale views, which requires consideration of 
scale transitions, and multi-temporal representations, where the cognitive workload 
related to animations must also be considered. Furthermore, we plan to improve the 
usability of our agent-based model by developing a more intuitive user interface, 
which would allow more users to apply the findings of our model to their objectives. 
A third task we plan to work on in the near future is the integration of other 
cartographic techniques such as point color, point symbolization, and others in our 
generalization model. The overall plan is thereby to stepwise add functionalities for 
broader applications of map generalization into our system. 
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Part III 
Active Participation, Social Context, 

and Privacy Awareness 

Part III of the book addresses the human impact associated with VGI. The influence 
of humans is manifold during acquisition, processing, and interpretation of VGI. 
People can take both active and passive roles in the generation of VGI, for example, 
simple unintentional actions such as georeferencing pictures or messages in social 
media or intentional involvement of volunteers in citizen science and crowdsourced 
projects. Potentials for active participation can be released event-driven in the 
short term, e.g., in the case of catastrophic events, but also result in continuous 
participation over a long period of time, e.g., while monitoring animals, plants, 
or recording weather and climate phenomena. Specialist and local knowledge is 
thereby used to build up free knowledge archives and geodata collections. 

Humans not only play a central role in the generation of VGI but can also become 
the subject of research themselves when human behavior is studied based on the 
published content. This includes studies of who is involved in the creation of VGI, 
e.g., differentiated by age, gender, or previous education. Furthermore, a distinction 
has been made between the large majority, which makes contributions available 
independently often at short notice and a rather small user group, which contributes 
content very persistently and thus also determines future directions of VGI projects. 
Motives of all groups are the subject of research and are just as interesting as 
approaches on how participation can be promoted. 

The first chapter in this section describes the use of wearable sensors worn 
by volunteers to record their exposure to environmental stressors on their daily 
journeys. With that the behavior of individuals and the effect of customized 
recommendations are examined. The following chapter investigates the collective 
behavior of people using location-based social media and movement data from 
football matches. In addition to a conceptual behavioral model, various generic 
methods and application-related workflows for visual analysis are presented. The 
third chapter in this section deals with the motivation of volunteers who provide 
important support in information gathering, filtering, and analysis of social media 
in disaster situations. Since humans play a central role in the generation of VGI, 
special precautions are also required with regard to the protection of privacy. In 
the case of active participation, the consent of the user can be obtained. This is
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not possible in the case of passive, unintentional participation. The last chapter in 
this section describes a set of concepts that take privacy by design into account to 
process social media and make it impossible to identify individual persons. 

Risks and negative side effects must be examined more closely in future research. 
This includes the invasion of masses when promoting sensitive places via social 
media, the emergence of filter bubbles when information is sorted based on user 
preferences, or the manipulative use of information about users who contribute 
content on social media. Selected, simple approaches for considering bias and for 
normalizing the social media data are already taken into account in the various 
chapters.



Chapter 11 
Environmental Tracking for Healthy 
Mobility 

Anna Maria Becker, Carolin Helbig, Abdelrhman Mohamdeen, 
Torsten Masson, and Uwe Schlink 

Abstract Environmental stressors in city traffic are a relevant health threat to 
urban cyclists and pedestrians. These stressors are multifaceted and include noise 
pollution, heat, and air pollution such as particulate matter. In the present chapter, we 
describe the use of wearable sensors carried by volunteers to capture their exposure 
to environmental stressors on their everyday routes. These wearable sensors are 
becoming increasingly important to capture the spatial and temporal distribution of 
environmental factors in the city. They also offer the unique opportunity to provide 
individualized feedback to the person wearing the sensor as well as possibilities to 
visualize different stressors in their temporal and spatial distribution in a virtual 
reality environment. We used the option of providing individualized feedback 
on personal exposure levels in two randomized controlled field studies. In these 
experiments, we studied the psychological health-related outcomes of carrying a 
wearable sensor and receiving feedback on one’s individual exposure levels. 

Keywords Wearable sensors · Air pollution · Noise · Heat · Mobility · Health 

11.1 Introduction 

Volunteered geographic information (VGI) that is collected by laypeople can be 
utilized by other citizens and enables scientific investigations that can be seen 
as a special form of citizen science (Connors et al. 2012; Goodchild 2007). 
User-generated content such as VGI has proliferated in recent years and is a 
form of crowdsourcing, where information is drawn together from several non-
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expert individuals (Elwood et al. 2012). Besides many other applications, VGI 
has been used in environmental monitoring (Connors et al. 2012) and public 
transport planning (Giuffrida et al. 2019). Multi-level data mashups—the integration 
of different forms of information—are becoming increasingly important to layer 
information in respect to specific locations (Elwood et al. 2012). While some VGI 
is socially embedded and subjective (Elwood et al. 2012), sensor data can be 
objectively geotagged. 

The aim of this chapter is to demonstrate how VGI can take advantage of 
smart sensors for the assessment of environmental data that is relevant for human 
health. In the approach described here, we develop a specific design of VGI 
techniques that can support city planners and urban authorities as well as individuals 
who are vulnerable to elevated levels of environmental pollutants and heat. We 
hypothesize that VGI can improve health protection, which is particularly important 
for susceptible and vulnerable individuals. The following sections outline the 
methods and the design of our studies and summarize the results. 

11.2 Measuring Environmental Stressors 

Epidemiological studies have consistently demonstrated links between exposure 
to particulate matter and adverse health effects (World Health Organization 2016; 
Stafoggia et al. 2022). To protect human health, air quality monitoring is regulated 
by European Directives (European Parliament 2008). Personal exposure to envi-
ronmental stressors is multifactorial and includes exogenous factors contributing 
to human health risks (Schlink and Ueberham 2020), such as air temperature, air 
humidity, air pollutants (gasses, particulate matter), and noise. In Leipzig, traffic 
is a major source of intra-city PM10 and NOx emissions, while small combustion 
plants are a source of other emissions (Stadt Leipzig 2018). 

Due to the individual differences in daily activities, each person has very 
individual exposure patterns, which obviously cannot be adequately captured 
by measurements at a few monitoring stations in the city (improved approach; 
see Steininger et al. 2020) but require person-specific measurements (Dias and 
Tchepel 2018; Hinwood et al. 2007). However, air pollution data from a terrestrial 
monitoring station can only be considered representative of the surrounding district. 
Such measurements are strongly influenced by the location of the stations, and the 
dispersion and dilution of air pollutants are affected by meteorological and local 
conditions (e.g., urban structure; built-up areas, street canyons, traffic networks, 
and green areas). Therefore, it does not adequately capture the spatial variability 
of locally sourced pollutants and cannot be an indicator of human exposure (Adams 
and Kanaroglou 2016; Dionisio et al. 2013). The activities of individuals and air 
pollution levels exhibit a large degree of spatiotemporal dynamics. This emphasizes 
the necessity to investigate near-real-time measurements and to develop methods for 
data assessment (Yang et al. 2022).
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With advances in technology in the fields of electrical engineering and wireless 
networks, “low-cost” air quality sensors have been developed to make air quality 
monitoring more accessible and portable (Castell et al. 2017; Snyder et al. 2013). 
In the past several years, evidence has begun to emerge about the usefulness 
of low-cost sensors. Studies have shown various applications, for example, the 
classification of emissions sources. Low-cost sensors have a limited ability to 
detect nanoparticle real-time emissions from residential sources (Wang et al. 2020). 
However, low-cost sensors were found to perform well in both ambient (field) and 
controlled (laboratory) conditions (Connolly et al. 2022). 

11.3 Citizen Science and VGI in the Context of 
Environmental Tracking 

Including the general public in the production of scientific knowledge is becoming 
increasingly important (Eitzel et al. 2017). From collecting data (e.g., about local 
wildlife sightings), processing large amounts of data on private computers, or 
contributing tedious work by cataloging pictures of animal colonies or galaxies to a 
deeper involvement in identifying research questions and procedures, laypeople can 
contribute to scientific progress (Strasser et al. 2019). While citizen science can arise 
from grassroots movements with an activist agenda (Ottinger 2010), it is most often 
initiated by scientific and educational institutions (Eitzel et al. 2017). Citizen science 
can not only shift workload to interested citizens and create unique monitoring 
opportunities (Aceves-Bueno et al. 2015; Verplanke et al. 2016). It can also serve 
in educating laypeople about the scientific process and increase public interest and 
trust in science (Strasser et al. 2019). The use of wearable sensors to collect data 
on environmental stressors around the city can be understood in the framework of 
citizen science, as laypersons collect data and investigate their own exposure to 
pollution as they explore their surroundings. This immersion in the scientific process 
can not only aid in data collection but also help citizens to identify the least polluted 
areas in their city. Platforms that integrate data from citizen scientists have been 
developed to share and visualize environmental information from different sources 
(Lautenschlager et al. 2018). A plethora of studies indicates that volunteers have a 
high interest in their personal exposure to environmental stressors, though behavior 
change to avoid these stressors is often hard to implement (see Becker et al. 2021 
for a review). 

11.4 A Health-Psychological Perspective 

Tracking environmental stressors with a wearable sensor makes it possible to 
give individualized feedback to the users. Thereby, they receive information on
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potentially harmful exposure levels to air pollution, heat, and noise pollution. As 
these stressors (e.g., particulate matter) cannot be perceived directly, this is new 
information that may elicit fear in the user. Fear appeals have been studied by 
psychologists in the past, showing that effects of fear appeals on behavior change 
(e.g., smoking cessation) are strongest when the negative consequences of a harmful 
behavior are seen as personally relevant and likely to occur (Rosenstock 1974; 
Rogers 1975). Choosing highly polluted routes in the city can be framed as a 
harmful behavior to one’s health, and messaging should motivate people to choose 
less polluted routes, e.g., smaller streets with less traffic. Two influential theories in 
health psychology, namely, the health belief model (Rosenstock 1974) and protec-
tion motivation theory (Rogers 1975, 1983; Maddux and Rogers 1983), have studied 
health-related behavior change such as smoking cessation or physical exercise. 
Both theories have in common that they predict a healthy behavior change when 
negative health outcomes of a current behavior are seen as severe and a person feels 
susceptible to these negative outcomes. In our case, this may be that people perceive 
the health effects of particulate matter to be serious and that it is likely that they 
will be affected by these, if they do not lower their exposure. Additionally, persons 
must see a behavior change as useful to mitigate the risk of illness and feasible 
to implement (Rogers 1983; Maddux and Rogers 1983). Perceived psychological 
costs or barriers will reduce the likelihood of behavior change (Rogers 1983). For 
example, if a person is not willing to take a longer route to work or to use a side 
street with a less comfortable surface to cycle on, this will reduce the likelihood 
of them changing their route. In more technical terms, protection motivation theory 
posits that both threat appraisal (harmful outcomes of the current situation are severe 
and likely to occur) and coping appraisal (alternative behaviors will be effective 
in mitigating the threat and are feasible to implement) contribute to health-related 
behavior change (Rogers 1983; Maddux and Rogers 1983). Research on protection 
motivation theory has found that both threat appraisal and coping appraisal must 
interact to elicit a problem-focused coping response (Babcicky and Seebauer 2019; 
Rippetoe and Rogers 1987). If a person only perceives high threat but has a low 
coping appraisal, they might choose emotion-focused coping strategies rather than 
problem-focused coping. These emotion-focused strategies, such as denial, fatalism, 
or wishful thinking, will reduce the emotional burden of the threat but not result in 
healthy behavior change (Babcicky and Seebauer 2019; Rippetoe and Rogers 1987). 
Protection motivation is most commonly applied to health behaviors (Plotnikoff and 
Trinh 2010; Prentice-Dunn et al. 2009). However, it can also be applicable to other 
behavioral safety measures, for example, in relation to flood events (Babcicky and 
Seebauer 2019), climate change (Bagagnan et al. 2019), the adoption of electric 
vehicles (Bockarjova and Steg 2014), household water management (Bryan et al. 
2019), earthquake preparedness (Mulilis and Lippa 1990), and wildfire protection 
(Dupéy and Smith 2019).



11 Environmental Tracking for Healthy Mobility 225

11.5 Visualizing Environmental Stressors 

The amount and variety of data are increasing in all research fields, which means that 
analyzing these large, complex datasets has become a challenging task (Avazpour 
et al. 2019). That includes integrating data from multiple heterogeneous sources, 
normalizing these data, and providing a unified view of these data sets to users 
(Tian and Li 2019). Collecting, integrating, aligning, and efficiently extracting infor-
mation from heterogeneous and autonomous data sources are considered a major 
challenge (Fusco and Aversano 2020). In this context, visualization is an important 
tool that makes it possible to analyze complex data. Scientific visualization assists 
scientists in analyzing data by transforming data into geometric representations, 
thus supporting the analysis of complex data (Gershon and Eick 1995; Defanti 
and Brown 1991). In addition, virtual reality (VR) is recognized as a powerful 
human-computer interface (Burdea and Coiffet Philippe 2003). Users can immerse 
themselves in a virtual world and manipulate it by changing their viewpoint and 
interacting (Brooks 1999). VR environments are a promising tool for scientists to 
visualize their large and complex data sets and to control the behavior of virtual 
objects using interaction functions (Simpson et al. 2000). The combination of the 
power of a VR system and the human ability to detect interesting patterns and 
inconsistencies in the data makes VR a suitable tool to solve future scientific 
visualization tasks (van Dam et al. 2002). VR is also used in the context of urban 
planning in some prototypical projects, for example, in knowledge transfer on the 
value of urban greenery (Mokas et al. 2021), the investigation of the perceived safety 
level of cyclists (Nazemi et al. 2021), different planning phases of high-rise building 
construction (Lu et al. 2021), green landscape planning and design (Pei 2021), 
and the evaluation of urban spaces (Luigi et al. 2015; Zhang and Zhang 2021). 
One way to combine methods of visualization and VR, as well as to implement 
analysis methods and make them available via a graphical user interface (GUI), is 
to use the Unity Game Engine (Helbig et al. 2015). Its use in scientific projects 
has increased in recent years, e.g., for integration of 3D building model data (Keil 
et al. 2021), visualizing 3D point clouds captured by drones (Weißmann et al. 2022), 
implementing a walkable virtual city model (Schmohl et al. 2020), and simulating 
secure hazardous transportation (Yang et al. 2020). Another argument for the use 
of game engines is the possibility to integrate audio data in a straightforward way, 
which increases the degree of immersion considerably (Hruby 2019; Berger and 
Bill 2019; Rafiee et al. 2017) and is not available in conventional visualization tools 
for geodata. In the presented project, we implemented a visualization and analysis 
application for mobile sensing data and questionnaire data in combination with 
other urban data such as 3D city model, traffic data and noise maps from the city 
of Leipzig, and weather station data to explore the data with scientists as well as 
decision makers and citizens.
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11.6 Implementation: Two Field Experiments Using 
Wearable Sensors 

We conducted two field experiments with wearable sensors in order to explore 
the spatiotemporal distribution of environmental stressors in the city of Leipzig. 
Another aim of these studies was to test the psychological effects of carrying 
wearable sensors and receiving feedback about one’s personal exposure levels. 
Lastly, one of our aims was to implement innovative ways to integrate and visualize 
sensor data and subjective experiences of participants with the sensors. 

11.6.1 Field Study 1 

11.6.1.1 Design and Procedure of Study 1 

To test the psychological effects of carrying the sensors, we conducted experiments 
as randomized controlled trials, including a measurement group that carried the 
wearable sensors and a control group that did not receive the sensor kit. The first 
field experiment was run from July to September 2020. After registering on our 
website, participants were allocated to a week of participation. Within each study 
week, participants were randomly allocated to either the measurement group or 
the control group. Persons in the measurement group carried the measurement kit 
for three days and received individualized feedback about their exposure to heat, 
particulate matter, and noise after the measurement phase. Participants in the control 
group did not carry the measurement kits but received questionnaires including 
the same questions as in the measurement group. This allowed us to compare the 
answers of those in the control group to those in the measurement group and identify 
the effects of the intervention. On Fridays before their allocated study week, all 
participants received a first questionnaire. Persons in the measurement group then 
picked up the measurement device on Monday and used it for three consecutive 
days to measure their exposure on everyday routes by bike or as pedestrians. They 
returned the measurement kit on Thursdays. The next day, all participants received 
a link to the second questionnaire (both those who carried the measurement kit and 
those in the control group). We then retrieved the data from the measurement kits 
and compiled individual feedback reports for those who wore the sensors. One week 
after the measurement ended, each person from the measurement group received 
their feedback report and a third questionnaire. The feedback report included general 
information about particulate matter, heat, and noise as environmental stressors. The 
report also showed graphs indicating the accumulated stressor levels throughout the 
measurement phase. A color-coded legend indicated the magnitude of exposure with 
reference to noise levels (silent room–pain threshold) or temperature ranges (no 
temperature stress–extreme temperature stress). Approximately 2 to 4 months after 
their participation, both the measurement and the control group were sent the link
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Fig. 11.1 Experimental procedure for the measurement group in study 1 

to a follow-up questionnaire (with some outliers submitting after 1.6 to 4.7 months) 
(Fig. 11.1). 

11.6.1.2 Sensors Used for Measuring Environmental Stressors in Study 1 

The measurement system consisted of three different devices: (1) smartphone 
Motorola, Moto G3, launched in July 2015 and operated with android system; (2) 
Little Environmental Observatories (LEO) Electrochemical sensors widely used for 
the detection of toxic gasses at the parts per million (ppm) level and for oxygen 
in levels of percent of volume (% vol)—toxic gas sensors are available for a wide 
range of gasses, including NO2, NO, and O3 (Robinson et al. 2018), providing 
the current temperature and relative humidity (Ateknea Solutions Catalonia S.A.; 
https://ateknea.com); and (3) Dylos-DC1100, an air quality monitor that measures 
particulate matter (PM) number concentration to provide a continuous assessment of 
ambient suspended particles. The unit counts particles in two size ranges: large and 
small. According to the manufacturer, large particles have diameters between 2.5 
and 10 micrometers, .μm (i.e., PM10); small particles have diameters from . 0.5 μm
up to .2.5 μm (i.e., PM1 and PM2.5). 

11.6.2 Field Study 2 

11.6.2.1 Design and Procedure of Study 2 

The second field experiment was conducted from September 2021 to August 2022. 
Similar to study 1, there was a control group and a measurement group. However, 
we extended the design of the field experiment by providing participants with 
daily feedback about their personal exposure as well as suggestions for alternative

https://ateknea.com
https://ateknea.com
https://ateknea.com
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routes as a strategy to strengthen participants’ coping capacity. After signing up 
through our website and being allocated to a study week, participants were randomly 
assigned to their group. Both groups received a first questionnaire, before the 
measurement group was given the wearable sensor and smartphone kit. Participants 
in the measurement group used the sensor and smartphone for 3 days on their 
everyday routes. They received feedback about their exposure in the smartphone 
app every evening. The app allowed them to (a) see the measured levels of heat, 
noise, and particulate matter along the routes they had used during the day and to 
(b) receive an alternative route suggestion for each route they had recorded that 
day. These alternative route suggestions were based on a set of routing preferences 
optimized for low pollution and developed in collaboration with the VGI-Routing 
team (see Chap. 3). Participants in the measurement group were asked to fill in a 
short daily questionnaire after looking at their feedback and the alternative route 
suggestions. After their study week, both the measurement group and the control 
group received the link to another questionnaire. Approximately 3 to 6 months after 
their study week, all participants received a follow-up questionnaire (with some 
outliers submitting after 2 to 8.7 months). 

11.6.2.2 Sensors Used for Measuring Environmental Stressors in Study 2 

The system included a smartphone and the PAM AS520 wearable air quality mon-
itor (www.atmosphericsensors.com), which can assess air quality in the wearer’s 
immediate environment. The PAM uses electrochemical cells (“Alphasense” sensors 
with 2 electrodes), a laser-optical particle monitor, temperature and humidity 
sensors, and a high-sensitivity GPS receiver and 3-axis accelerometer. A built-in 
microphone records ambient noise. At night, the PAM is stored in a docking station 
where the battery is charged. The docking station is equipped with a modem and 
SIM card that transmits the data stored on the device to the project’s central database 
for further processing (Fig. 11.2). 

11.6.3 The Questionnaires 

Multiple questionnaires were used to assess psychological variables in our field 
experiments. Questionnaires of each participant were linked through an identifier 
code that was indicated at each measurement point. This code was also used to 
identify each participant’s sensor measurements and connect this information to 
the questionnaire data. In the first questionnaire, participants were asked for their 
preferred mode of transport (public transport, car, bike, or by foot) and which 
aspects were particularly important to them when choosing a route as a cyclist or 
pedestrian (e.g., speed, green space, etc.) (adapted from Ueberham et al. 2019). 
Participants were also asked about the stage of action they were in regarding healthy 
routing choices with low pollution levels (adapted from Olsson et al. 2018). To

www.atmosphericsensors.com
www.atmosphericsensors.com
www.atmosphericsensors.com
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Fig. 11.2 The sensor and smartphone kit used in Study 2 (Foto by André Künzelmann, UFZ) 

capture the main predictors of protection motivation theory (Rogers 1975, 1983), 
we measured health risk perception for particulate matter, noise, and heat (e.g., 
particulate matter, noise, and heat on my daily routes have very negative effects 
for my health), as well as coping appraisals regarding these three environmental 
stressors (e.g., I can reduce my exposure to environmental stressors in street traffic) 
(partly adapted from Ueberham et al. 2019). As our main dependent variable, we 
measured individual protection intentions to change one’s everyday routes in a way 
that would avoid environmental stressors (e.g., avoiding streets with a lot of car 
traffic). We further measured collective action intentions to fight for lower levels 
of environmental stressors in city traffic (e.g., by signing petitions), as well as 
willingness to pay for a service providing daily information on current low-pollution 
routes. We measured a range of other constructs in the questionnaire, including 
emotion-focused coping strategies that may come into play when facing a threat 
while coping appraisals are low (Rippetoe and Rogers 1987) and routing behavior 
habits when traveling to school/university, when going shopping, and during leisure 
time (Verplanken and Orbell 2003). Further measures included, among others, social 
norms (e.g., whether participants thought that others in their city were avoiding 
environmental stressors on everyday routes); identification with the city of Leipzig, 
cyclists, pedestrians, and car drivers; derogation of car drivers; general health 
concerns (Fahrenberg et al. 2003); and preference for technology use.
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11.7 Results of the Field Experiments 

11.7.1 Results Regarding the Sensor Measurements 

The two field experiments (FE) were designed to monitor individual’s experiences 
on a trajectory based real-time (FE. 1; .At = 5 sec. and FE. 2; .At = 10 sec.) for  
a given population (i.e., volunteer cyclists and pedestrians) during their daily life 
activities. These specific conditions of personal exposure are used to develop a 
new perception of the spatial categories of the road network in Leipzig, where 
our population activities took place. The framework of the developed system 
includes (1) mobile sampling using low-cost air quality sensors along road segments 
of individual’s routes traveled (first field experiment), (2) empirically identified 
classes of microenvironments for road segments in Leipzig, and (3) recognition 
of classes developed by applying supervised machine learning (ML) models (e.g., 
Random Forest, RF; logistic regression, LR; support vector machines, SVM; and K-
nearest neighbors, KNN). The outdoor microenvironment is categorized into three 
categories, each of which is virtually differentiated by buildings, road structure, 
traffic rate, vehicle fleet number, and driving mode with OSM-based field categories 
(such as highway, bicycle, and pedestrian lane), helping to reduce the multiple 
factors affecting personal exposure in urban data areas such as weather conditions, 
land use, and traffic. The three categories are (1) main, characterized by detached 
blocks and broad road structure, e.g., avenues, semi-continuous pollutant line source 
from fleet flow of vehicles with large number and high rate of dissipation, which 
also depends on weather conditions, i.e., wind factors; (2) secondary, spaced by 
linear semi-tall buildings, secondary streets (e.g., residential streets and parking 
areas, i.e., idle driving mode), discrete emissions from vehicle critical dual periods 
(i.e., daily back-and-forth movements of the workforce), and large eddy currents 
which counteract or reduce aerodynamic dispersal for pollutants in street canyons; 
and (3) green, vegetation cover, e.g., forests and parks. Several non-parametric ML 
algorithms were also tested with the same selected urban stressors (10 features, 
PM2.5, PM10, NO, NO2, O3, temperature, specific humidity, light intensity, speed, 
and noise) to determine which ones are suitable for our data set. The results showed 
that the performance difference between the individual models (RF, LG, SVM, 
and KNN) was significant, while RF models performed best over others, achieving 
>90% accuracy. Model confusion from multiple experimental samples is less than 
10%, and this can be explained in terms of the following: (1) the high degree 
of overlap between classes is one of the main challenges affecting the accuracy 
of the classifier (Deberneh and Kim 2021), and (2) the developed categories are 
strongly coherent in a heterogeneous urban environment, so sensor response time 
and recording interval must also be considered when interpreting the results. In 
addition, the time to transfer a cyclist or pedestrian from one category to another 
is always much less than the response time of the sensors (Ueberham and Schlink 
2018). This poses a great challenge in the crossings and adjacent parts between the 
three classes.
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11.7.2 Results Regarding the Questionnaires 

11.7.2.1 Statistical Analysis 

To identify effects of our intervention, we computed linear mixed-effect models with 
random intercepts to estimate within-participant changes from pretest to follow-up 
for our outcome measures while also assessing differences between the intervention 
group and the control group. The mixed models included time (pretest, posttest, test 
after receiving exposure feedback, follow-up) as well as the group (intervention vs. 
control) and their interaction term to predict each outcome variable. When using an 
additional moderator, we entered time, group, the moderator variable, as well as the 
two-way and three-way interaction terms into the mixed model. 

11.7.2.2 Results of Study 1: Descriptive Analysis 

One hundred and eighty-two participants completed the pretest questionnaire, 167 
participants completed the posttest questionnaire, and 121 participants completed 
the follow-up questionnaire. The datasets were merged based on an identifier code, 
generated by each participant at the start of each questionnaire, resulting in a final 
sample of 109 participants (N.intervention = 56, N.control = 53; 59.89% of the pretest 
sample). Sixty-one participants identified as female and 48 identified as male. Ages 
ranged from 19 to 67 years (M = 36.33, SD = 9.68). Most participants (72.5%) 
had a university degree. 6.4% reported having a respiratory health condition such 
as asthma, and 29.4% reported having allergies. Overall, participants rated their 
health as good (Mdn = 6 on a seven-point scale ranging from 1, very bad, to 7, 
very good) and reported medium levels of health concerns (M = 4.04, SD = 1.00). 
All scales were 7-point Likert scales. Participants rated their previous knowledge 
about particulate matter, heat, and noise pollution as medium (for PM, Mdn = 3;  
heat, Mdn = 3; noise, Mdn = 3). Satisfaction with the measurement kit was medium 
(Mdn = 4.5). 57.1% of the participants rated the handling of the measurement kit 
as at least somewhat easy, indicating that the ease of use was only medium (Mdn 
= 3). More than 70% reported a high or very high tracking frequency throughout 
the measurement phase (Mdn = 6). Participants reported that they used the tracker 
on typical everyday routes (Mdn = 7). More than 74% of the respondents at least 
somewhat agreed that wearable sensors can help people reduce their personal 
exposure to environmental health risks (Mdn = 5), and 63% at least somewhat agreed 
that wearable sensors may support behavior change aimed at reducing personal 
exposure (Mdn = 5). Following the individualized feedback report, participants rated 
their exposure to particulate matter (Mdn = 5) and noise (Mdn = 5) as medium 
to high while rating the heat exposure as lower (Mdn = 3.00). The feedback did 
not greatly differ from participants’ expectations, as participants indicated it being 
neither much higher nor lower than expected (PM, Mdn = 4.00; noise, Mdn = 4.00;
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heat, Mdn = 4.00). Participants perceived the feedback to be mostly representative 
for their everyday exposure (PM, Mdn = 6.00; noise, Mdn = 6.00; heat, Mdn = 5.00). 

11.7.2.3 Results of Study 1: Mixed Model Results 

For individual action intentions, results showed no significant main effects of 
time and group and, more importantly, no significant interaction effect of time 
and group. In other words, our results did not indicate that participation in 
the measurement group (vs. control group) would increase respondents’ action 
intentions to protect themselves against environmental health risks. However, results 
of exploratory analysis, including routing behavior habits as an additional moderator 
in the analysis, revealed an interesting pattern of results. First, participation in the 
measurement group (vs. control group) increased action intentions from pretest 
to posttest for respondents with weak (but not strong) routing behavior habits. 
This initial increase, however, was not stable throughout the intervention period. 
At the follow-up measurement point, we found no differences in action intentions 
between respondents with weak and strong routing behavior habits. For perceptions 
of environmental health risks, our findings indicate that participation in the mea-
surement group (vs. control group) led to a significant increase in the perception 
of particulate matter health risks from pretest to posttest. Importantly, increased 
health risk perceptions for particulate matter were retained throughout the follow-
up period, indicating a robust intervention effect. There were no intervention effects 
on health risk perceptions for noise and heat. 

11.7.2.4 Results of Study 2: Descriptive Analysis 

The pretest questionnaire was completed by 267 eligible participants, 225 com-
pleted the posttest questionnaire, and lastly 151 eligible participants completed 
the follow-up questionnaire. After matching participants’ codes, the final sample 
with complete data sets consisted of 136 participants (N.intervention = 67, N. control

= 69; 50.9% of pretest sample). Eighty-eight participants identified as female, 45 
identified as male, and three participants identified as diverse. Ages ranged from 18 
to 70 years (M = 29.76, SD = 10.43). Approximately half of the respondents had 
a university degree. Regarding health condition, 7.4% reported a respiratory health 
condition such as asthma, and 27.9% reported having allergies. Overall, participants 
rated their health as good to very good (Mdn = 6) and reported medium levels of 
health concerns (M = 4.15, SD = 1.08). Satisfaction with the measurement kit was 
high (Mdn = 6). Approximately 85% of the participants rated the handling of the 
measurement kit as somewhat easy, easy, or very easy (Mdn = 2), and more than 
90% reported a high or very high tracking frequency throughout the measurement 
phase (Mdn = 6). More than 77% of the respondents at least somewhat agreed that 
wearable sensors can help people reduce their personal exposure to environmental 
health risks (Mdn = 5), and more than 62% at least somewhat agreed that
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wearable sensors may support behavior change aimed at reducing personal exposure 
(Mdn = 5).  

11.7.2.5 Results of Study 2: Mixed Model Results 

For individual action intentions, results showed no significant interaction effect 
of time and group. While inspection of simple effects showed a trend indicating 
that participation in the measurement group (vs. control group) increased action 
intentions from pretest to posttest, the intervention effect was not significant. In 
contrast to Study 1, we found no effects of routing behavior habits on changes 
in action intentions. Regarding perceptions of environmental health risks, our 
findings indicate a robust intervention effect on perceived particulate matter risk. 
Specifically, results revealed that participation in the measurement group (vs. 
control group) led to a significant increase in perceived PM health risks from pretest 
to posttest. Importantly, increased levels of perceived PM health risk were retained 
throughout the follow-up period. For perceived heat and noise health risks, results 
indicate no significant treatment effects. 

11.7.3 The Visualization and Analysis Application and 
Achieved Results 

As part of the project, a visualization and analysis application was implemented 
that allows the data from the measurement campaign to be evaluated in combination 
with data on building structure, weather, GI, and traffic (Helbig et al. 2022). 
The application was implemented with the Unity Game Engine, which provides 
a development environment for computer games and other interactive 3D graphic 
applications and enables us to meet the following requirements: (1) Provide a user 
interface and interaction functionality, (2) performance (avoid long loading times), 
(3) Integrate various data sources/data types, (4) 3D visualization, (5) integrate 
analysis methods, and (6) presentation on PC and VR environment. By using mobile 
sensors within the measurement campaign of our project, we get data from two 
different perspectives: (1) the individual exposure to environmental stressors for 
a participant and (2) the distribution of environmental stressors within the urban 
area. In the application, methods must be provided that enable the analysis to be 
carried out from both perspectives. This is possible by displaying individual routes 
or the routes of individual participants in the 3D city model, as well as in a 2D 
representation. The distribution of all measurement points over the urban space 
can also be displayed. In addition, a hot and cold spot analysis of the distribution 
of the values can be carried out. The application also offers a range of functions 
that allow a comprehensive analysis, such as different perspectives (perspective 
and orthographic), showing/hiding of data layers, display of individual routes (incl.
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Fig. 11.3 Analysis and visualization of the trajectories of mobile sensor data 

extracting GPS outliers), different coding of values (by color and/or size), chained 
filtering by parameters, and space-time cube visualization (Fig. 11.3). 

The analysis of the data with the help of the application showed that paths, 
especially on which many cyclists move and which also allow faster speeds due 
to their condition, are polluted with high nitrogen oxide levels due to their location 
directly on main roads. The evaluation so far also shows the temperature differences 
that occur between parks and heavily sealed surfaces, especially on hot days. There, 
the surroundings heat up strongly, especially in the second half of the day, and can 
be poorly ventilated with dense development at the same time. 

11.8 Conclusions 

Our study was conducted in the frame of the ExpoAware project1 and supported 
by the German Research Foundation DFG within the Priority Research Program 
1894 Volunteered Geographic Information: Interpretation, Visualization and Social 
Computing. The research developed an integrated design that demonstrated (1) 
the feasibility of individuals applying advanced VGI techniques to explore the 
urban environmental conditions and provide useful information for city planners 
and officials; (2) the potential of VGI for the assessment of personal exposure that 
is highly relevant for adverse health effects, especially in vulnerable persons; and 
(3) the ability to study protective behavior of individuals and to develop actions 
for behavior changes and individual adaptation strategies. From our results of 
the urban measurements, we conclude that the proposed novel microenvironment 
classifications successfully reduced the complexity of urban data, and the results of 
the random forest models emphasized the validity of the hypothesized classification 
method. Nonparametric methods such as random forest are promising approaches

1 https://www.vgiscience.org/projects/expoaware.html. 

https://www.vgiscience.org/projects/expoaware.html
https://www.vgiscience.org/projects/expoaware.html
https://www.vgiscience.org/projects/expoaware.html
https://www.vgiscience.org/projects/expoaware.html
https://www.vgiscience.org/projects/expoaware.html
https://www.vgiscience.org/projects/expoaware.html
https://www.vgiscience.org/projects/expoaware.html
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when the model is complex and can benefit from a large number of training 
examples. The study also highlights the benefits and potential of low-cost sensors 
in categorizing street-level personal exposure in urban areas. The field experiments 
are an important contribution to improving the framework conditions for cycling and 
walking and make it more attractive. For a sustainable and resilient city, the mobility 
transition and thus the reduction of motorized individual transport and at the same 
time the promotion of active mobility are a decisive component. By integrating the 
results of mobile measurements into long-term planning, urban planners can reduce 
the level of environmental stressors in cities and better react to extreme events (e.g., 
heat waves) in the short term. Very short-term reactions to elevated exposure can be 
made by the individuals themselves. In our study, the application of personal sensors 
increased participants’ health risk perceptions (with regard to particulate matter) and 
was also able to temporarily elevate their action intentions to protect themselves 
against environmental health risks, albeit only for participants with weak routing 
habits in the first study. With the help of Unity, we were able to combine methods 
from 2D and 3D visualization, as well as implement analysis methods and make 
them available via GUI. Unity supports various platforms and enables us to use it in 
different contexts, ranging from PC for individual analysis to VR environments for 
collective analysis and presentation. We claim that our approach should be used for 
implementing analysis and visualization tools in future projects because (1) it has 
the potential to become a modular system for applications by reusing and further 
developing methods, (2) it enables the combination of modern 3D visualization with 
various analysis methods, and (3) it supports presentation in VR environments and 
thereby facilitates multidisciplinary, research in collaborative projects, and projects 
with high interdisciplinary (Helbig et al. 2022). 
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Chapter 12 
Extraction and Visually Driven Analysis 
of VGI for Understanding People’s 
Behavior in Relation to Multifaceted 
Context 

Dirk Burghardt, Alexander Dunkel, Eva Hauthal, Gota Shirato, 
Natalia Andrienko, Gennady Andrienko, Maximilian Hartmann, 
and Ross Purves 

Abstract Volunteered Geographic Information in the form of actively and pas-
sively generated spatial content offers great potential to study people’s activities, 
emotional perceptions, and mobility behavior. Realizing this potential requires 
methods which take into account the specific properties of such data, for example, 
its heterogeneity, subjectivity, and spatial resolution but also temporal relevance and 
bias. 

The aim of the chapter is to show how insights into human behavior can be gained 
from location-based social media and movement data using visual analysis methods. 
A conceptual behavioral model is introduced that summarizes people’s reactions 
under the influence of one or more events. In addition, influencing factors are 
described using a context model, which makes it possible to analyze visitation and 
mobility patterns with regard to spatial, temporal, and thematic-attribute changes. 
Selected generic methods are presented, such as extended time curves and the co-
bridge metaphor to perform comparative analysis along time axes. Furthermore, it 
is shown that emojis can be used as contextual indicants to analyze sentiment and 
emotions in relation to events and locations. 
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Application-oriented workflows are presented for activity analysis in the field of 
urban and landscape planning. It is shown how location-based social media can be 
used to obtain information about landscape objects that are collectively perceived 
as valuable and worth preserving. The mobility behavior of people is analyzed 
using the example of multivariate time series from football data. Therefore, topic 
modeling and pattern analyzes were utilized to identify average positions and area 
of movements of the football teams. 

Keywords Location-based social media · Football analytics · Visual analytics · 
Reactions · Behavior · Context · Emoji · Bias 

12.1 Introduction 

The rise of so-called Volunteered Geographic Information (VGI) has brought with 
it fundamental changes not only in the nature of geographic data but also its 
production and accessibility. These changes have implications across the board 
for those carrying out research requiring geographic data and most profoundly for 
research exploring how humans interact with and are affected by changes in their 
environment. The creation of user-generated spatial content is diverse, whether 
through the usage of a wide variety of sensors during activities in the real world 
or the use of social media platforms for information exchange in the digital world. 
Realizing the potential of VGI requires methods which take account of the specific 
properties of such data, for example, its heterogeneity, quality, subjectivity, spatial 
resolution, and temporal relevance. Of particular interest in this research are two 
types of information—first, information about people’s reactions and behavior and, 
second, modeling different types of contexts, both derived from location-based 
social media (LBSM) and football match data. 

Location-based social media respective geosocial media are extensively used 
for expressing and exchanging thoughts, opinions, ideas, and feelings (publicly or 
within a particular group of people)—thus reactions to an event or related to a theme. 
A definition of reactions is given by Dunkel et al. (2019) consisting of an identifier 
to a referent event and four facets (spatial, temporal, thematic, and social) describing 
the reaction. A series of reactions from an actor (where an actor might be an 
individual, a group, or an organization) can be seen as a manifestation of this actor’s 
behavior (Luckmann 2013). Behaviors convey actions and provide information 
about doing and refraining. Activities in geosocial media are intentional, purposive, 
and subjectively meaningful, and they are usually targeted at others, i.e., they are 
social actions. The creation and production of such information is an expression 
of human behavior and as such influenced strongly by events and context. Key to 
any framework seeking to analyze behavior is a definition of dimensions through 
which space, time, thematic attributes, and events can be described. Moreover, 
modelling behavior and context requires methods to aggregate and generalize data 
across spatial and temporal scales.
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The chapter is structured as follows. Section 12.2 describes the state-of-the art 
research related to modeling of reactions and behavior, context modelling, use of 
emojis, and consideration of privacy. Section 12.3 introduces conceptual models for 
describing behavior and context. Section 12.4 presents generic methods for account-
ing for representativeness and bias in LBSM, for comparative visual analysis, and 
using emojis as contextual indicators. Section 12.4 presents application-related 
workflows for activity analyzes in the area of landscape and urban planning, as well 
as the exploration of people’s mobility behavior in football games. 

12.2 Related Work 

Geosocial media is a special case of Volunteered Geographic Information (VGI) 
(Goodchild 2007), which enables users to communicate and connect with each 
other by sharing location-based information. Geovisual analysis of this information 
enables the study of events, geographic phenomena, and related human reactions 
for a variety of application cases, e.g., in the areas of urban and landscape planning, 
tourism, health, transport, or disaster management. Human responses manifest 
themselves within and outside of social network communication in a variety of 
ways as emotional expressions, opinions, and thoughts expressed or actions taken 
(Hauthal et al. 2019). Thus, Volunteered Geographic Information has added a new 
dimension to traditional geospatial data acquisition for human activity research 
(Li et al.  2020). Activities in Geosocial Media are intentional, purposive, and 
subjectively meaningful, and they are usually targeted at others, i.e., they are social 
actions. From a technical point of view, they can be subdivided accordingly Davis 
(2016) into origination (creating own, original content, e.g., tweeting, posting), 
acknowledgment (reactions to content, e.g., liking, favorite), associating (interaction 
with content, e.g., replying, commenting, mentioning, following), amplification 
(spreading content, e.g., retweeting, sharing), and action (moving beyond content, 
e.g., signing up for a newsletter, buying something, or going to a demonstration). 

The research presented within this paper aims at analyzing reactions as a 
component of behavior, incorporating external context to better allow events and 
activities to be related and compared. Key to any framework seeking to analyze 
reactions to events is a definition of dimensions through which both reactions and 
events can be described. As pointed out by Teitler et al. (2008), these dimensions 
form the core of a description of an event and include not only ways of describing 
(what, who, where, when) but also explaining (how and why). Answering these 
questions can be seen as a way of characterizing the context of an event and 
associated behaviors (Dunkel et al. 2019). 

As the project has been focusing on the concept of individual and collective 
behaviors (particularly, behaviors of social media users), it was appropriate to 
review the existing literature on the topic of spatial behavior analysis. The most 
intensive studies have been conducted in the area of sports analytics, where the 
researchers focus on the behaviors of players and teams in sport games. Duarte



244 D. Burghardt et al.

et al. (2012) propose to consider sport teams as superorganisms. “Superorganism” is 
defined in sociobiology as a group of individuals self-organized by division of labor 
and united by a system of communication. The division of labor can be characterized 
by the “areas of responsibility” of the players on the pitch. The communications 
can be represented by graphs of interactions, e.g., passing networks. Fonseca et al. 
(2013) use Voronoi diagrams to study the spatial interaction behavior in terms of 
continuously changing players’ arrangement on the pitch. Gudmundsson and Horton 
(2017) published a survey of approaches that use spatiotemporal data from team 
sports. This includes approaches from social network analysis, which are applied 
to passing networks and transition networks. Specifically for football (soccer), 
Memmert et al. (2017) present approaches to analysis of collective organization 
(distribution on the pitch, maintenance of distances between players); inter-player 
coordination; inter-team and inter-line coordination; correspondences between team 
formations as an aspect of inter-team interaction; formations of tactical groups, 
e.g., offense and defense; etc. Many of the existing approaches are specific for 
sports games and can hardly be applied to other types of data. In our project, 
we strive to develop more general concepts and techniques, and we also strive to 
consider behavior dynamics rather than derive summary characteristics of particular 
individual or group behaviors. 

Emojis play a special role in the analysis of reactions, especially feelings and 
opinions. Their use in geosocial media is just as popular as the use of hashtags (Bai 
et al. 2019; Highfield and Leaver 2016), and as a language-independent characters, 
they have the advantage of avoiding error-prone language processing (Hu et al. 
2013; Kralj Novak et al. 2015). The use of emojis is influenced by regional and 
cultural context (Kejriwal et al. 2021), so emojis have great potential to characterize 
spatial context but also analyze activities related to places and events (Hauthal et al. 
2021). 

Volunteered Geographic Information is based on people’s willingness to collect 
and share content with the public community. It should be noted that this data is 
always related to individuals and could therefore be sensitive in terms of privacy 
and ethical issues. Olteanu et al. (2019) demands that an ethical approach must 
respect individual autonomy. In the case of purposeful active participation in VGI 
projects, this can be ensured by confirming active consent (by a declaration of 
informed consent). This is more critical in terms of analyzing millions of social 
media posts, even when users post the content publicly and agree to the terms of use 
for third parties to use it. Williams et al. (2017) therefore calls for user expectations 
to be taken into account, to perceive changed contexts, for example, in the form of 
“context collapse” (Crawford and Finn 2015), and to be respectful when combining 
potentially sensitive personal data. Through an “aggregation effect” (Solove 2013), 
privacy-relevant insights can be gained from different data sources without the 
contributing user being aware of it. An ethical research approach requires a balance 
between social and individual interests—the boundary of privacy is not rigid but 
depends on the topic, place, time, and user characteristics. Cartographers and 
geoscientists have a responsibility here to develop flexible methods that protect user
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privacy while taking these contextual factors into account (Burghardt and Dunkel 
2022). 

12.3 Theoretical and Conceptual Foundations 

In the first phase of the project, we developed a conceptual model underpinning the 
extraction, analysis, and visualization of events and reactions to events in location-
based social media (Dunkel et al. 2019). For instance, a message or post published 
on a social media platform could be considered as a reaction, related to either simple 
events (e.g., a tweet that is observable or a single rumble of thunder) or preceding 
and ongoing chains of events (e.g., the Brexit). The key feature of our conceptual 
model and its implementation is the integration of spatial, temporal, thematic, and 
social dimensions combined with an explicit link between events and reactions. 

The second phase of the project focused on the concept of individual and 
collective behavior. Among multiple existing definitions of the concept of behavior 
(Henriques and Michalski 2020), a simple definition suitable for our purposes can 
be “an organism’s activities in response to external or internal stimuli” (American 
Psychological Association n.d.). From our perspective, it is important that a 
behavior unfolds over time, i.e., it covers a certain time interval, unlike a singular 
reaction, which can be viewed as an instant event. Like a reaction, a behavior 
belongs to a certain actor, who may be an individual, a group, an organization, 
or even the population of a country. However, a behavior may include multiple 
reactions to the same or different events. A behavior may also include movements 
of the actor in space and changes of various characteristics, which can be expressed 
by thematic attributes. Hence, like the concept of reaction, the concept of behavior 
involves social (who?), temporal (when?), spatial (where?), and thematic (how?) 
facets. However, the temporal facet extends to a time interval, and the spatial and 
thematic aspects can no longer be expressed by a singular location in space and a 
combination of values of thematic attributes but need to be represented by a time-
referenced sequence of locations (i.e., a trajectory in space) and time series of values 
of the thematic attributes. 

Besides, as already mentioned, a behavior may include multiple reactions to one 
or more events, and the reactions themselves are conceptualized as events. Even 
more generally, a behavior may also include not only reactions but also other kinds 
of events in which the actor participates, for example, actions or decisions. 

Hence, we conceptualize a behavior as a tuple . B = (p, T = [t1, t2], S(t), A(t),

ET = {e1, . . . , eN }), where . p is an actor, . T is a time interval, .S(t) is a function 
representing changes of the spatial position of . p over time, .A(t) is a function 
representing changes of the thematic attributes of . p over time, and . E is a set of 
events involving . p, including but not limited to . p’s reactions to other events. In 
.S(t) and .A(t), the variable . t takes values from . T . The times of all events in .ET are 
contained in . T or at least overlap with . T .
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Since a behavior is a complex dynamic (i.e., changing over time) entity, study 
and understanding of behaviors require abstraction by which elementary locations, 
characteristics, and events that took place at different time moments are united and 
treated together as units, which are called patterns. Collins et al. (2018) proposed 
the following definition of a pattern: “a representation of a collection of items 
of any kind as an integrated whole with specific properties that are not mere 
compositions of properties of the constituent items.” A more formal definition of 
a data pattern has been later proposed by Andrienko et al. (2021b). In brief, a 
pattern is a combination of relationships between data items. For time-related data, 
the pattern-forming relationships include temporal ordering, temporal distances, 
and relationships between temporally arranged spatial locations (direction and 
distance), attribute values (equality or difference, sign and amount of difference), 
and sets of events (equality, inclusion, overlap, disjointedness). Such relationships 
can also exist between patterns, which enable joining two or more patterns into more 
complex patterns. For example, a pattern of increase of values of a numeric variable 
followed by a pattern of decrease can be joined in a single pattern of a peak in the 
numeric value variation. 

A behavior can thus be represented as a combination of patterns reflecting 
changes of the spatial location (i.e., movement patterns, such as quick movement 
straight to the north), changes of thematic attributes (e.g., increase in frequency and 
duration of sport activities), and/or changes in the set of relevant events (e.g., end of 
exams and beginning of a holiday). 

A behavior unfolding during a time interval of substantial length may need to be 
described in terms of complex patterns composed of temporally arranged simpler 
patterns, i.e., sequences of simpler patterns. Such complex structures are hard to 
analyze and compare. Therefore, it is practically useful to divide behaviors into 
parts, which may be called episodes. An episode is an excerpt from a behavior B 
having the same structure as . B, i.e., . EP = (p, T ' = [t '1, t '2], S(t), A(t), ET ' =
{e1, . . . , eN }), but .T ' ⊆ T , the variable t in .S(t) and .A(t) takes values from 
. T ', and .ET ' ⊆ ET consists of those events that existed during the interval . T '. 
The idea behind dividing a behavior into episodes or extracting episodes from a 
behavior is that an episode is relatively short and can be described in terms of 
simpler patterns. Then, analysis of a single behavior consists of comparison of the 
constituent episodes, i.e., revealing similarities and differences between the patterns 
in the episodes, which can be followed by detecting re-occurrences of similar 
patterns and investigating temporal relationships between the re-occurrences. Com-
parative analysis of two or more different behaviors involves comparisons of their 
episodes, which may include, in particular, comparison of co-occurring episodes 
from different behaviors as well as detection of similar asynchronous episodes in 
different behaviors. 

Any behavior and, consequently, any episode of a behavior occurs in a certain 
context, i.e., a combination of circumstances that change over time. A context can be 
conceptually modelled as a tuple .C = (T , S,AC(t, s), AC(t), ECT , BCT ), where 
T is a time interval, S is a part of space, .AC(t, s) represents various dynamic 
attributes whose values are associated with different spatial locations (e.g., weather,
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fuel prices), .AC(t) are dynamic attributes considered as global (i.e., their values 
refer to S as a whole), .ECT is a set of events that occurred during the interval 
T (e.g., political events or epidemic outbreaks), and .BCT is a set of behaviors 
of various actors other than the actor(s) whose behaviors are analyzed. Context-
aware analysis of behaviors and their constituent episodes includes determining 
relationships between patterns in the behaviors/episodes in focus and patterns 
occurring in the context attributes, context events, and context behaviors. The 
analysis can be directed from the context to the behaviors (e.g., what behavior 
patterns occurred when the air temperature was high or after pandemic lockdowns) 
or from the behaviors to the context (e.g., what events or attribute development 
patterns preceded the occurrence of a given pattern in one or more behaviors). 

Let us illustrate the concepts using an example of a football game. Each player of 
a team is an actor having his/her behavior happening in the course of the game, i.e., 
T is the time of the game. The player’s behavior includes movements of the player 
.S(t), his/her physical condition .A(t), and game events E involving the player, such 
as passes, attacks, shots on goal, goals, etc. Besides the individual behaviors of the 
players, there is a collective behavior of a whole team, including team movements, 
changes of team width, depth and relative arrangements of the players, and game 
events involving one or more players. The context of the team’s behavior includes 
the behavior of the opponent team, the game events that have already happened, 
the weather and lighting conditions, the team’s ranks, the goals set by the coach, 
etc. The context of the individual players’ behaviors includes, additionally to what 
was listed above, the individual behaviors and skills of their teammates and of the 
opponents. 

Since behaviors and their contexts are inherently complex (dynamic and mul-
tifaceted), analysis of behaviors and their relationships to contexts is a very chal-
lenging problem that cannot be tackled without simplification. Possible operations 
for achieving include decomposition (e.g., behaviors are divided into episodes), 
abstraction (e.g., unification of multiple items into patterns), selection (focusing 
on particular facets and their components, particular combinations of contextual 
circumstances, or particular types of patterns), and aggregation (representation of 
sets of items by summaries). 

The concepts and ideas presented above are illustrated in Figs. 12.1, 12.2, 12.3, 
and 12.4 by example of football data. These data are more suitable for illustration 
purposes than data from location-based social media due to their high quality and 
absence of legal and ethical issues.
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Fig. 12.1 An illustration of behavior simplification by means of abstraction and aggregation. The 
image on the left shows the trajectories of two players during a football game. To increase the 
level of abstraction, the points of the trajectories were grouped and abstracted to areas on the 
pitch. the segments of the trajectories were transformed into transitions between the areas which, 
in turn, were aggregated into flows between the areas. The resulting spatial network is a simplified 
representation of the spatial facet of the behavior 

Fig. 12.2 An illustration of the decomposition of a player’s behavior during a football game into 
several behaviors occurring in different contexts. The behaviors are represented in the form of 
spatial networks resulting from abstraction and aggregation of original data, as shown in Fig. 12.1 

12.4 Generic Methods That Support Studies of Reactions 
and Behaviors 

12.4.1 Representativity and Bias in Location-Based Social 
Media 

In the second part of this chapter, we discuss a range of analyzes based on location-
based social media. Before we describe these analyzes in more detail, it is important 
to consider issues related to representativity and bias with respect to such data 
sources. It is important to firstly remember that all analyzes are subject to these
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Fig. 12.3 Abstracted and aggregated representation of collective behavioral patterns of two teams 
in a selected subset of episodes. The left image corresponds to a team in possession of the ball and 
the right image to a defending team 

Fig. 12.4 Abstracted movement behaviors of players of two teams in two sets of episodes: first 12 
seconds after gaining the ball by the yellow team (left) and after gaining the ball by the red team 
(right). The movements are abstracted by taking the average players’ positions from all episodes 
at the time moments .t + 0, t + 1, . . . , t + 12 seconds, where t is the time moment of the ball 
possession change 

issues—for example, if we generalize patterns found in the football data described 
above, it is important to consider which teams are more likely to be monitored and 
generate such data and to what extent these represent footballers more generally. 

However, in location-based social media, these issues are more obvious and 
immediate. For example, these data are exclusively produced by people with 
location-enabled devices. These are not equally available within and across society, 
with, for example, the very old and very young being less likely to be captured 
by such data, and considerable variations exist in the willingness of individuals to 
share location-based information in different cultures and countries (Li et al. 2013; 
Krasnova and Veltri 2011). The first question we must ask therefore with respect to 
representativeness is who can, and is willing to, contribute data to platforms such 
as Twitter, Flickr, Instagram, and Google’s location-based services. Some uses of 
space—for example, for play by small children—are likely to be underrepresented, 
especially if children are encouraged to spend time outside without their parents.
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The second question that we can ask with respect to representativity relates to the 
ways in which these data are linked to space. Typically, we use other geographic 
datasets, for example, produced by national mapping agencies and/or volunteers 
(e.g., OpenStreetMap and GeoNames), and the content of these datasets will 
profoundly influence any analysis. For example, OpenStreetMap is known to have 
biases related to gender in terms of the categories of objects mapped (Gardner 
et al. 2020), while place-name density in GeoNames reflects geopolitical events 
(Acheson et al. 2017). A third question that we can ask with respect to these issues 
relates to culture and language. The underlying models used to capture, for example, 
emotions are often based on Western (and more specifically Anglo-Saxon) notions 
and assume universal emotions shared across cultures. Furthermore, many methods 
to analyze text focus on English as a starting point, despite clear evidence that this 
has limitations with respect to the ways in which we understand the world (Blasi 
et al. 2022). 

12.4.2 Methods for Comparative Analyses 

As stated earlier (Sect. 12.3), behavior is a complex, dynamic entity that can 
be studied and understood only with the help of simplifying abstractions and 
decomposition. Decomposition includes interchangeable selection of aspects and 
facets to put in focus and division of behaviors into episodes. Depending on the 
analysis goals, there can be two strategies for decomposing behaviors into episodes: 
partitioning of the entire behavior by dividing its time span into intervals, e.g., of a 
chosen fixed length and extraction of episodes with particular properties. The latter 
strategy is achieved by means of temporal queries, which select multiple disjoint 
time intervals such that the query conditions fulfil during these intervals. The pieces 
of behaviors contained within the selected time intervals are extracted as episodes 
for analysis. A set of primitives for making temporal queries has been proposed 
by Andrienko et al. (2021a). The query primitives enable selection of sets of time 
intervals containing situations with specified characteristics and, moreover, further 
selection of sets of intervals having certain temporal relationships to the previously 
selected intervals. This can be used, in particular, for considering selected episodes 
stepwise or for studying what happened before or after them. 

Comparative visual analysis of selected aspects of behaviors can be enabled 
by juxtaposed representation of two or more behaviors along a time axis. This 
approach was taken by Chen et al. (2021) for comparison of streams of text 
messages published on social media by different politicians. The authors created 
an imaginative visual design where the flow of time is represented as a river 
and bridges across the river are built from significant keywords extracted from 
the texts. This technique has been called “co-bridges.” The visualization supports 
both qualitative (common and distinct keywords) and quantitative (stream volume, 
keyword frequencies) comparisons. Moreover, it is possible to compare two or
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Fig. 12.5 Comparison of population mobility behaviors in three countries (Germany in blue, Italy 
in red, and the UK in yellow) using multiple time graphs showing dynamics of different attributes 

more co-bridges by juxtaposing them. These may be, for example, co-bridges 
corresponding to different themes of the politicians’ agendas. 

While alignment along a common time axis is essential for comparing behaviors 
as dynamic entities, the representation of behaviors depends on the type of data 
under analysis. One of our recent work directions was comparative analysis of 
behavior characteristics expressed by multiple time-variant numeric attributes, i.e., 
by multivariate time series. An approach is being developed using, among others, 
the publicly available data of COVID-19 Google Mobility Trends.1 

The company Google summarizes anonymized data provided by apps such as 
Google Maps into statistics showing how collective mobility behaviors of people in 
different countries were changing throughout the COVID-19 pandemic. The data 
consist of daily counts of visitors to specific categories of places (e.g., grocery 
stores, parks, train stations, etc.) relative to baseline days before the pandemic 
outbreak. Hence, the population mobility behaviors in different countries are 
expressed by time series of six attributes. 

In comparing the behaviors in different countries, it is insufficient to compare 
the dynamics of each attribute separately from others, although this can be done 
relatively easily by means of usual time graphs or line charts, as shown in 
Fig. 12.5. This visualization does not support holistic perception of patterns of joint 
development of the attributes. 

Consideration of temporal evolution of complex data, in particular, combinations 
of values of multiple attributes, is supported by the visualization technique called 
time curve (Bach et al. 2016); a similar method was simultaneously proposed 
by van den Elzen et al. (2016). The approach relies on embedding of data 
corresponding to different time units in a low-dimensional (typically 2D) space 
based on similarities between the data in terms of an appropriate similarity metric.

1 https://ourworldindata.org/covid-google-mobility-trends. 

https://ourworldindata.org/covid-google-mobility-trends
https://ourworldindata.org/covid-google-mobility-trends
https://ourworldindata.org/covid-google-mobility-trends
https://ourworldindata.org/covid-google-mobility-trends
https://ourworldindata.org/covid-google-mobility-trends
https://ourworldindata.org/covid-google-mobility-trends
https://ourworldindata.org/covid-google-mobility-trends
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The class of computational methods for data embedding is known as dimensionality 
reduction methods. Well-known examples are multidimensional scaling (MDS), 
Sammon’s mapping, t-SNE, etc. The result of embedding (also called projection) is 
visualized as a scatterplot where time units are represented by points. Consecutive 
time units are represented by lines. Spatial arrangements of the points and lines are 
treated as different development patterns, such as gradual or rapid changes, stable 
states, oscillation, stagnation, etc. (Bach et al. 2016; van den Elzen et al. 2016). 

The time curve technique is by itself poorly suited for the task of comparative 
analysis of two or more behaviors which, as we stated previously, calls for an 
opportunity to see the behaviors aligned along a common time axis. We extend the 
time curve technique in the following way. We paint the background of a projection 
plot (i.e., a plot representing a result of behavior embedding) using a continuous 2D 
color scale. Thereby, each point on the plot receives a specific color. The colors of 
the points can be transmitted to other displays, in particular, to a timeline display 
suitable for aligned representation of several behaviors. This generic approach is 
demonstrated in Fig. 12.6 using the COVID-19 mobility data for Germany, Italy, 
and the UK shown in Fig. 12.5. 

Fig. 12.6 Upper part: the population mobility behaviors in Germany, Italy, and the UK are 
represented by means of data embedding (projection) according to the time curve technique. To 
enable aligned representation of the behaviors along a common time axis, continuous coloring 
is applied to the backgrounds of the projection plots. Lower part: a joint representation of the 
three behaviors in a timeline display, where the horizontal dimension represents the time flow. 
The behaviors are represented by horizontal bars with segments painted in the colors of the 
corresponding points in the projection plots. In this example, the Saturdays and Sundays are 
filtered out (shown in the timeline view as gray segments), which enables disregarding the weekly 
fluctuations and focusing on long-term patterns of change
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The character of the color variation in the timeline view is representative of the 
character of the joint development of the multiple attributes. Abrupt changes of 
the color tone along the timeline signify sudden or rapid changes in a behavior, bar 
pieces painted in very similar color shades correspond to stable states in the behavior 
development, and smooth changes of shades correspond to gradual transitions 
between states. 

12.4.3 Emojis to Study Sentiment, Emotion, and Context of 
Events 

Since geosocial media are used to state opinions, express emotions, or document 
experiences, they contain a lot of subjective information. The recognition of such 
subjective phenomena is usually done via natural language processing, which is by 
now quite sophisticated but can hardly recognize irony or sarcasm, for example, 
and is often applied limited to one or a few languages. Promising solutions have 
been achieved in this context with emojis, which have become extremely popular in 
geosocial media and are available in steadily growing numbers. 

Hauthal et al. (2019) used a Twitter dataset to investigate reactions to the political 
event Brexit in terms of opinions and emotions, using emojis in two different 
approaches. In the first approach, emojis and hashtags were combined. Hashtags, 
established in political campaigns before the referendum, indicate which sub-topic 
of the overall Brexit debate is addressed in a tweet, i.e., leave or remain. A sentiment 
toward these topics in terms of positive or negative was detected by emojis appearing 
in the same tweet. For this, emojis showing a positive or negative facial expression 
were considered, based on the official categorization of emojis by Unicode. The 
combination of a hashtag and an emoji results in the rejection or support of the UK 
leaving the European Union. A spatial comparison of these analysis results with 
the actual referendum results on NUTS1 level (the highest level in the hierarchical 
classification used to clearly identify and classify the spatial reference units of 
official statistics in the Member States of the European Union) showed a higher 
consistency than a pure hashtag-based consideration without including emojis. 

In the second approach, emojis showing faces or persons with a countenance 
or gesture were not only considered on a positive-negative scale but were assigned 
to emotional categories based on a classification according to Shaver et al. (1987), 
which includes love, joy, surprise, fear, sadness, and anger (see Fig. 12.7). Each 
category of this classification is allocated emotional terms that are most likely 
to be mentioned when people are asked to name those emotions. The official 
Unicode names of all previously used emojis were matched with these terms and 
assigned to the corresponding emotional categories. Emotions were then examined 
comparatively before and after the announcement of the Brexit referendum results, 
with only sadness showing a significant increase overall and fear decreasing slightly. 
Spatially, the increase in sadness is evident in two out of three NUTS1 regions,



254 D. Burghardt et al.

Fig. 12.7 Classification of Unicode Emoji (List v11.0) by authors into positive, negative, and 
according to emotional categories based on Shaver et al. (1987) 

where votes did not match the overall referendum result, and an increase in joy in 
five out of nine NUTS1 regions where the hopes were fulfilled. 

Another use of emojis to investigate subjectivity, in this case perception, was 
implemented in a study by Hauthal et al. (2021). In a global Instagram dataset 
about sunrise and sunset, the measure typicality was applied. Typicality is a relative 
measure specifically tailored for geosocial media that determines how typical a 
particular object of interest (e.g., emoji or hashtag) is within a sub-dataset compared 
to the total dataset. Sub-datasets may be formed spatially, temporally, thematically, 
etc. Typicality is calculated by the normalized difference of two relative frequencies 
and returns a positive (. = typical) or negative (. = atypical) value. Typicality was used 
to identify emojis in the previously mentioned global Instagram dataset that provide 
information about the context of the user while observing the event. On the one 
hand, these emojis deliver information about activities performed and, on the other 
hand, also about perceived landscape features in the immediate surroundings. It was 
found that emojis provide more detailed information in this regard than the hashtags 
contained in the same dataset. Moreover, location-specific emojis were identified, 
which are chosen depending on the location, and match the features of the physical 
environment, as shown by matching them with geographic attributes. This proves 
that emojis are not randomly chosen but provide insights not only into the user’s 
situational context but also into their perception and thus appreciation of certain 
aspects of the environment. 

These studies demonstrate the potential of emojis to provide insights into the 
subjectivity of geosocial media users in a relatively straightforward way. A further 
increase in the use of emojis as well as an increasing variety of them can still be 
expected, which will open up further possibilities and applications.
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The conceptual framework presented in Sect. 12.3 strongly influenced both of 
the presented studies. In the study on Brexit, the framework led the way in allowing 
us to look at the reactions contained in the underlying dataset from numerous 
different perspectives and thus obtain in-depth results. Furthermore, the framework 
significantly influenced the development of the typicality measure in the second 
study described, as the sub-datasets required for the calculation can be formed 
following the four facets, which is the particularity and novelty of this measure. 

12.5 Application-Oriented Workflows 

12.5.1 Activity Analysis for Landscape and Urban Planning 

VGI is also increasingly recognized as an important resource in the fields of 
landscape and urban planning, for example, to support the analysis of visitation 
patterns, assessing collective values, or improving human well-being through fair 
and equitable design of public green spaces (Ghermandi and Sinclair 2019). To 
this end, landscape and urban planners must first assess “what” is collectively 
valued, “where,” by “whom,” and “when” to understand the how and why of 
human behavior, as introduced in Sect. 12.3. However, the reproducibility of 
human behavior research is often impaired because samples, populations, and the 
phenomena being observed change between studies (Gruebner et al. 2017). This 
is particularly true for VGI and geosocial media, which are noisy, biased, difficult 
to fully sample, and often shared through incompletely documented and opaque 
application programming interfaces (APIs). In addition to these core challenges, 
protecting user privacy is becoming increasingly important when working with 
user-generated content (danah boyd and Crawford 2012). For this reason, Dunkel 
et al. (2023a) sought to develop a robust and transferable “workflow template,” for 
assessing human activities and subjective landscape values through geosocial media 
worldwide—without compromising user privacy. 

For demonstration purposes, an event type with a strong temporal and spatial 
consistency was chosen that allowed for a significant reduction in the number 
of “incidental variables” in the study while at the same time maintaining sample 
volume. Sunset and sunrise were among the few events that met these criteria. 
In addition, improving results reproducibility ideally requires an experiment with 
two maximally separated datasets and “finding relationships in the same direction 
and of similar strength” (Laraway et al. 2019, p. 38) in both. This was difficult to 
implement with more “newsworthy” topics. The consistent global and long-term 
footprint of the sunset and sunrise offered an opportunity to maximize the sample 
size while also providing a basis for reproducing the results using two datasets, 
albeit not universally representative but independent, collected from Instagram and 
Flickr. Despite the narrow topic of this study, the shared expected frequencies (e.g., 
Flickr 300 million post counts dataset for a .100 × 100 km grid, Dunkel et al. 2023b)
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can also be very useful for calculating chi in studies of other phenomena at global 
scales, for differently sampled data, e.g., based on a different set of search terms. 

Importantly, sunset and sunrise events are entirely ephemeral yet have a pro-
found, measurable impact on human perception and interaction with the environ-
ment. Unlike many other events, the ability to perceive sunset and sunrise is tightly 
bound to time, but almost completely decoupled from space. Photographs of these 
events function as evidence of presence in place and time. While the immediate 
reaction to taking a photograph of a sunset or sunrise is trivial, people will take 
into account all previous experiences, learned behaviors, expectations, etc. when 
reacting. Individual photographs therefore reflect different memorable experiences 
that function as artifacts of different preference contexts. The narrow thematic filter 
of sunset and sunrise allowed for a focused description and evaluation of these 
preference contexts. Based on the four-facet context model (Dunkel et al. 2019), 
reactions to sunset and sunrise were examined in terms of where, who, what, and 
when. 

The study first asked whether it was possible to compare the relative importance 
of sunset and sunrise reactions, independent of overall visitation frequency, for 
different locations worldwide. Visualizing relative user frequency was critical 
because geosocial media tends to be skewed toward highly populated locations 
and cities. The goal was to provide a balanced evaluation assessment of sunset 
and sunrise reactions across different rural and urban regions. Several visualization 
methods were tested, such as based on a relative ranking method for individual 
locations (Fig. 12.8) and different metrics, such as user counts, post counts, or user 
days (Wood et al. 2013). The final workflow uses the signed chi equation, proposed 
by Clarke et al. (2007), to visualize over- and under-frequentation with respect 
to these two events and aggregated using HyperLogLog for a global grid with a 
resolution of .100 × 100 km. 

Globally, sunrise events are often associated with east coasts (e.g., Italy, Sardinia 
in Fig. 12.8) or mountainous regions (e.g., the Alps), while sunset events are 
photographed on west coasts. The study also observed a strong ranking order 
between Flickr and Instagram reactions, despite the fact that both platforms have 
different user groups. In other words, we actually expected a much stronger effect of 
the platform on the results, and our work shows, at least for Instagram and Flickr and 
the selected events, that results can be reliable and reproducible across platforms. 
Still, for some locations, the incentives of the social media platforms themselves 
can have a significant impact on what gets shared and by whom. On Instagram, for 
instance, the Burning Man festival in Nevada ranks second worldwide for sunrise 
reactions. Out of a total of about 70,000 total visitors (Wikipedia, Burning Man,2 

2022), 1295 (. ±30) users shared sunrise images on Instagram during the short period 
of the 2017 Burning Man festival, compared to only 54 (. ±2) Flickr users for 
the same location over a 10-year period—a pattern that can be explained by the 
different user groups of these platforms. Finally, the use of abstracted, estimated,

2 https://en.wikipedia.org/wiki/Burning_Man#2013_to_2019. 
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Fig. 12.8 Relative ranking of places based on reactions to the sunset and sunrise in Central 
Europe. This figure shows a preview visualization of the collected raw data that was later further 
aggregated to a .100 × 100 km grid in Dunkel et al. (2023a). Some repeated patterns are already 
observable here, such as the larger cities (1) commonly featuring a balanced representation of 
sunset and sunrise reactions, whereas sunrise reactions dominate along eastern-facing coasts and 
in mountainous regions (2) and sunset reactions being predominantly shared from along western-
facing coasts (3) 

non-personal data based on HyperLogLog, as suggested by a scoping study (Dunkel 
et al. 2020), was a practically feasible solution that supports a shift toward privacy-
preserving and ethically aware data analysis in human preference research. The 
analysis process and anonymized data are made available in a repository, allowing 
transparent verification, replication, and transfer to other events or datasets (data 
repository; Dunkel et al. 2023b). 

Even though individual people perceive landscapes and their attributed values 
differently, there are landscapes which the majority of people perceive as scenic 
and beautiful (Bell 2012). These prolific landscapes (e.g., Preikestolen in Norway 
or Wildkirchli in Switzerland) are often depicted by characteristic motif images, 
which are clusters of images all taken from a similar viewpoint and angle. Which 
landscapes become popular is driven by propagation of landscape or nature appre-
ciation through travel guides or art from the romantic area, popularizing a selective 
subset of landscapes, thus not a new phenomenon. Today, tourism agencies and 
other influencers (e.g., celebrities, companies, movies, songs) can shape landscapes 
through social media promotion by planting seed images that people will try to 
recreate and, by doing so, form new motifs. By reaching millions of people and 
potentially influencing their future visiting plans, this social media-induced tourism 
can have drastic physical consequences on the local environment, infrastructure, and
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people (Simmonds et al. 2018). Being able to monitor the spatiotemporal emergence 
of motifs as a proxy for induced tourism is crucial to support local decision-makers 
to tackle the potential increase in visitation rates to a respective landscape. In the 
paper by Hartmann et al. (2022), we created an operationalizable conceptual model 
of motifs that is able to identify, extract, and monitor prone landscapes based on 
geotagged social media data. More specifically, the proposed pipeline leverages 
creative-commons Flickr images from the YFCC100M dataset (Thomee et al. 2016) 
within the European Nature 2000-protected areas, which represent a network of 
breeding and resting sites within important landscapes for rare and threatened 
species. The core methodological process to identify motifs within a corpus of 
2.1 million images involved two steps. Firstly, images were downsampled through 
spatial clustering by using Hierarchical Density-Based Clustering (HDBSCAN) 
(McInnes et al. 2017) since images belonging to the same motif were by definition 
in close proximity to one another. Secondly, with the help of the computer vision 
algorithm Scale-Invariant Feature Transform (SIFT) (Lowe 2004), we calculated 
image similarities between each image pair within a spatial HDBSAN cluster and 
clustered them again based on that outcome. The results were our motifs, of which 
we found a total of 119 in our study sites across Europe. Analysis of the motifs 
revealed that 65% depict cultural elements such as castles and bridges, whereas the 
remaining 35% contain natural features that were biased toward coastal elements 
like cliffs. Ultimately, the early detection of emerging motifs and their monitoring 
allows the identification of locations subject to increased pressure, which enables 
managers to explore why sites are being visited and to take timely and appropriate 
actions (e.g., allocation of infrastructure such as toilets and rubbish disposals or 
visitor routing). 

Not only descriptive textual information and emojis can be used for the analysis 
of geosocial media data, but it is also possible to use the image information directly. 
As an application for urban bicycle infrastructure planning, an object recognition 
algorithm based on convolutional neural networks was used to identify bicycles 
and potential parking spaces. The research and development work was carried out 
as a cooperation of a Young Research Group within the framework of the priority 
program VGIscience (Knura et al. 2021; Zahtila and Knura 2022). The research 
on object recognition was carried out in the COVMAP project (see Chap. 5); the 
processing of social media data and the development of methods for visual analysis 
were realized by the projects EVA-VGI (this chapter) and TOVIP (see Chap. 10). 

12.5.2 Exploring People’s Mobility Behavior 

In search for a workable approach to analysis of multiple behavior episodes 
characterized by multivariate time series, Shirato et al. (2021) made an attempt 
to apply topic modelling. For this purpose, the patterns of variation of different 
attributes, or features, are represented by symbolic codes, which can be treated as 
words. The expected role of topic modelling is to reveal co-occurrences of such
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Fig. 12.9 Episodes from a football match are represented by dots in a 2D projection space 
obtained by applying t-SNE to the vectors of the topic weights. The dot colors represent the 
dominant topics 

patterns. To transform a time series of numeric values into a symbolic code, the 
values are compared to the median of the time series and encoded by symbols 
‘. −’, ‘. =’, or ‘. +’ depending on their relative position with respect to the median. 
Hence, each episode can be represented by a combination of the variation codes of 
the multiple variables. A method for probabilistic topic modelling, such as Latent 
Dirichlet Allocation (LDA), is applied to these combinations, which are treated 
as “texts” where the variation codes are “words.” The resulting “topics” show 
which variation patterns of different variables tend to occur together in the same 
episodes (see Fig. 12.9). The topic modelling method also assigns vectors of topic 
probabilities to the episodes. Using these vectors, the episodes can be clustered 
and/or arranged in a projection space according to similarities of the variation 
patterns and further explored by means of various existing methods. 

The approach was tested using football data as an example. The features that 
were involved in the analysis reflected widths of empty spaces between team players 
on different levels of separation from the goal that is under attack. The topics 
corresponded to combinations of dynamic patterns of the changes of the widths 
on the different layers. To support interpretation of the results of topic modelling, 
the representation of the topics in the form of a table was combined with a map 
of the football pitch, where the behavior patterns were summarized as the average 
positions and areas of movement of the team centers (see Fig. 12.10). 

The experiment showed that application of topic modelling to episodes charac-
terized by multivariate (and, possibly, multifaceted) data has potential for behavior 
analysis. The research in this direction is worth being continued.
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Fig. 12.10 Distributions of centroids after transitions for topic 4 and topic 6. Colors represent 
the objects (blue, defense; red, attack; green, ball). The cross (x) means the average position of 
centroids, and the ellipse means the standard deviation of centroids for each topic 

12.6 Conclusion 

The research approaches presented in the chapter were designed for the visual 
analysis of social media posts and trajectories of football players to study people’s 
reactions and behavior. As a starting point, a conceptual behavioral model is 
introduced to describe an actor in a certain period of time with regard to its spatial, 
thematic-attributive changes under the influence of events and external context 
factors. For the analysis, behavior is broken down into episodes, which refer to 
short periods of time and support the description with simple patterns. In order to 
model the external influences on behavior, a context model is also proposed, which, 
in addition to spatial, temporal, and attributive influences, also takes into account 
events that have taken place over a period of time and the behavior of other people. 

Based on the conceptual model, generic methods are presented, which allow 
analyzing the behavior. The temporal query approach enables the investigation 
within in individual episodes. Time curves were used for a holistic analysis of 
several attributes with regard to their development over time. An extension of the 
time curve is proposed by using continuous coloring derived from a dimensional 
reduced attribute space. A method developed in the project for the visual analysis 
of text messages in social media data uses a “co-bridge” metaphor. Significant 
keywords are connected over time to enable both a quantitative comparison with 
regard to common and different keywords and a qualitative analysis with regard 
to stream volume and keyword frequencies. Furthermore, the use of emojis as 
contextual indicators was examined. It has been found that emojis are suitable for 
describing the spatial context of people in terms of perceived objects and activities 
taking place at these locations. Various normalization methods such as Chi-Value, 
“typicality,” and metrics such as “user count per day” were used to account for 
heterogeneity and bias in social media data.
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Two main areas of application were considered, on the one hand, the perception 
of environmental phenomena as input for questions of urban and landscape planning 
and, on the other hand, the analysis of the movement behavior of people on the 
example of football games. The study of a global phenomenon such as sunrise and 
sunset based on Instagram and Flickr allows conclusions to be drawn about con-
sistency and reproducibility, as well as motives why the events were documented. 
Based on the four-facet context model, sunset and sunrise responses are examined 
for the where, who, what, and when. In addition, responses from different groups 
are compared with the aim of quantifying differences in behavior and information 
spread. As a second field of application, the movement behavior of people was ana-
lyzed using visitor statistics for selected locations during the COVID-19 pandemic 
and movement data from football games. Therefore, time-dependent abstracted 
and aggregated representations are created to compare collective behavior patterns 
during the pandemic in different countries in the first case and different football 
teams or teams in different stages of the game in the second case. 
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Chapter 13 
Digital Volunteers in Disaster 
Management 

Ramian Fathi and Frank Fiedrich 

Abstract During disaster situations, social media is used extensively by the 
affected population for communication and collaboration, but there is also increased 
public sharing of important disaster-related information about the current situation. 
With the goal of utilizing this data and Volunteered Geographic Information (VGI) 
for disaster management, digital volunteers organized themselves into so-called 
Volunteer and Technical Communities (V&TC). In addition, professionalized digital 
volunteers have institutionalized Virtual Operations Support Teams (VOST) in 
established Emergency Management Agencies (EMA). While technical issues have 
dominated research in this area in recent years, questions about the motivation, 
organization, and impact of the analytical work of these volunteers have remained 
unanswered. In this chapter, we present five studies that address questions about the 
motivation of digital volunteers, organization, and collaboration requirements, the 
analytical impact of VOST, data biases in Crisis Information Management (CIM), 
and privacy-related topics. Overall, it could be shown that digital volunteers make 
a significant contribution during disaster management, in which they effectively 
process their analytical results and VGI for the management of disaster situations. 
However, human limitations and privacy-related methods need to receive greater 
attention in the future, both in research and in practice. 

Keywords Digital volunteers · Disaster management · Virtual operations support 
teams · Social media · Social media analytics · Emergency operation center · 
Data bias · Information management 
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13.1 Introduction 

The earthquake in Haiti 2010 can be seen as a starting point of digital volunteering 
in the context of disaster management and humanitarian assistance. The first digital 
volunteers were committed to helping affected populations by processing and pro-
viding Volunteered Geographic Information (VGI) for disaster response. Over time, 
they organized themselves and formed virtual groups. These emerging so-called 
Volunteer and Technical Communities (V&TC) opened the view for multiple new 
fields of research. Many research approaches paid attention to technical topics like 
data mining and creating better analytical tools for the volunteers. In contrast, less 
research has been conducted to determine which motivational factors drive people to 
volunteer digitally in disaster management and which organizational requirements 
exist to collaborate with established Emergency Management Agencies (EMA). 
Furthermore, questions about the impact of analytical results in this time-critical 
context arise. The underlying research focused on the volunteers themselves and 
organizational requirements for collaboration, more specifically their motivational, 
participative, and analytical factors. This chapter is based on research carried out 
in the project “Active Participation and Motivation of Professionalized Digital 
Volunteer Communities: Distributed Decision-Making and its Impact on Disaster 
Management Organizations.” 

After this brief introduction, the second section of this chapter presents a 
comprehensive study of the motivational factors of operationally active digital 
volunteers (Fathi and Fiedrich 2020). In a cross-organizational online survey, 
possible motives, individual organizational commitment, and potential incentive 
options were analyzed. In addition, two experienced digital team leaders of V&TC 
were interviewed in guided expert interviews about methods and measures for 
increasing motivational and organizational commitment. Based on the findings 
generated in this way, explanatory patterns for the motivation factors of digital 
volunteers can be derived on the one hand; on the other hand, beneficial and 
identification-generating measures can be identified. 

Contrary to the V&TC, digital volunteers institutionalized Virtual Operations 
Support Teams (VOST), which are closely linked to established EMA. This devel-
opment led to more in-depth research questions concerning the professionalized 
digital volunteers and their integration in decision-making processes using VGI 
in Emergency Operations Centers (EOC), which are discussed in Sects. 13.3 and 
13.4. The organizational structure and technical requirements for succeeding and 
their decision-making processes in a time-critical environment were of interest. A 
research gap between the VGI created by VOST and decision-makers needs in the 
established EMA was acknowledged, as the digital volunteers started to collaborate 
with EMA. Therefore, the topic of voluntary digital participation for collaborative 
emergency management was explored in collaboration with the University of 
Stuttgart, whose research efforts mainly focused on visual analysis of VGI. In 
Sect. 13.2, we present a case study which was conducted with the project “VA4VGI-
2” (Chap. 6), where structural, procedural, and technical requirements of integrating
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VOST in EOC structures were investigated, applying a mixed-method approach 
(Fathi et al. 2020). 

Overall, little attention was paid to VOST, who act as groups of data analysts 
with direct integration to EOC. Specific tasks of VOST include filtering, verifying, 
and analyzing social media data from various platforms and creating information 
products for decision-makers in EOC. These information products can contribute to 
the situational awareness of EOC members and to the decision-making processes 
by integrating actionable information. In a case study following the 2021 flooding 
in Germany, the aspects of analyzing social media by digital volunteers in VOST 
and the impact of the information products on situational awareness and decision-
making were examined and are presented in Section 4 (Fathi and Fiedrich 2022). 

Analytical and decision-making processes in the time-critical environment of 
EOC in disaster management are challenging due to the numerous disaster-related 
conditions like time-pressure and uncertainty. To examine the interplay of the con-
ditions in disaster management, VGI, and biases in Crisis Information Management 
(CIM), a workshop experiment was conducted with digital volunteers and decision-
makers (Paulus et al. 2022). A three-stage experiment on epidemic response was 
developed as the underlying scenario to analyze how biases can be mitigated by 
observing digital volunteers and decision-makers in the analytical and decision-
making processes and is presented in Sect. 13.5. The findings of this case study 
suggest that debiasing efforts are strongly undervalued, and external analysts fail to 
debias data successfully in favor of rapid results. The biased data was then passed on 
to decision-makers in the form of information products, who make decisions based 
on biased data. 

Section 13.6 addresses the challenge of privacy-aware data analytics in disaster 
management and discusses a collaborative work between this underlying project and 
“Privacy Aspects” (Chap. 14). 

13.2 Motivational Factors of Digital Volunteers in Disaster 
Management 

With the emergence of social media and VGI, various new research areas and new 
opportunities to use this open-access data increased, also in disaster management. 
Anyhow, limited resources characterize disaster, and EMA do not have enough staff 
to analyze big amounts of data to integrate VGI in their situational awareness and 
decision-making processes. Digital volunteers analyze social media data from, e.g., 
Twitter and proceed disaster-related VGI. The volunteers can work dislocated from 
the actual operational site and thus can be deployed almost instantly. Over time, the 
volunteers organized themselves and formed V&TC. These communities fostered 
research interest, especially in the fields of organization and technology. An existing 
research gap in the context of volunteering on a digital basis in disaster management 
are the motivational factors of V&TC members. Questions regarding the motivation
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of the digital volunteer, the barriers to participation, and the commitment to the 
V&TC have not yet been extensively answered. In the paper “Digital Volunteers in 
Disaster Management—Motivational Factors and Barriers of Participation” (Fathi 
and Fiedrich 2020), we aimed to understand what motivates the digital volunteers 
and which incentive options there are to further motivate them. Additionally, we 
looked into measures and methods that can be implemented by digital team leaders 
to motivate their team members. Lastly, the differences and correlations between 
the needs of the digital volunteers and the motives of the digital team leaders were 
examined. 

Therefore, we used a mixed-methods approach of quantitative and qualitative 
social science methods. It was of special interest to capture and query the digital 
volunteers in their social contexts as well as their individuality. An online survey 
was conducted among different V&TC, to explore motivational factors and incentive 
options. The survey was designed under the use of the Volunteer Functions 
Inventory (VFI) introduced by Clary and Snyder (1999), which is a widely used 
questionnaire on volunteer motivation. In order to understand measures and methods 
to foster motivation of digital volunteers by leaders of V&TC, guideline-based 
expert interviews were carried out. The guidelines were designed based on the 
online survey, but the content was transferred to the perspective of team leaders. 

It was found that digital volunteers are mostly motivated by their values, but 
also by the experience, they are gaining paired with fun-based intrinsic motivation. 
In contrast, having the prospect of a “career” within V&TC was less motivating. 
The participants strongly agreed to statements of organizational commitment and 
identification with their organization. More than 70% stated that they fully agreed 
to be proud to be part of their V&TC. The main barriers of digital volunteering were 
named as time, trust in one’s own abilities, and Internet access. Especially during 
crises, time allocation becomes a challenge. Collaborating with other V&TC or a 
pool of digital volunteers, who can be acquired ad hoc, seems to be an appropriate 
method to allocate work of digital volunteers. The queried digital volunteers see 
potential for motivational enhancement rather in non-crisis times, for example, more 
feedback and additional online and offline community activities without a disaster 
context. Accordingly, the volunteers see incentive options in digital or analog 
exercises or events and appreciative measures. It became clear that feedback is very 
important to the digital volunteers, who, due to their dislocation, can only guess 
what impact and use the resulting information products and VGI have. Negative 
impact on the motivation of digital volunteers were identified as a lack of feedback 
and a lack of identification with the work or the V&TC. Feedback cannot only be 
given by the tasking EMA but also by the public or the digital team leaders (Fathi 
and Fiedrich 2020).
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13.3 Virtual Operations Support Teams in Disaster 
Management 

Virtual Operations Support Teams (VOST) are groups of professionalized digital 
volunteers, who are closely linked to EMA. During a VOST operation, the common 
tasks include monitoring and analyzing social media, verifying and geolocating 
information and developing crisis maps, recognizing and analyzing trends and 
sentiment in social media, and ad hoc tasks as assigned by the EOC. The actionable 
information identified and verified can then be provided to the EOC decision-
maker to expand situational awareness and support decision-making processes. 
Furthermore, VOST integrate a liaison officer in the EOC structures. This enables 
to ensure effective communication and distribution of tasks between VOST and 
EOC. VOST pursue the goal of effectively integrating information products and 
VGI into decision-making processes through close organizational integration in 
the time-critical context of disaster management. This in turn led to multiple 
research questions concerning structural, procedural, and technical requirements 
for an effective collaboration between a virtual team of analysts and decision-
maker in an EOC. These questions were to be explored in collaboration with 
the project “VA4VGI-2” (Chap. 6). As described in the paper “VOST: A case 
study in voluntary digital participation for collaborative emergency management” 
(Fathi and Fiedrich 2020), the main goal was to understand the decision-making 
processes, which emerged by integrating a VOST into the structures of an EOC. 
An exploratory case study was conducted as field research during the start (Grand 
Départ) of the Tour de France in Düsseldorf, Germany in 2017. Especially of interest 
were the requirements of structure and procedure for a successful collaboration, 
technical requirements and the evaluation of existing technical tools for social 
media analytics, the identification of the actual tasks that needed performing during 
the operation, and structural, organizational, and technical implications for future 
decision-making systems in EOC. 

The VOST operation at the Grand Départ in Düsseldorf was in the scope of a 
pilot project with the German Federal Agency for Technical Relief (“Technisches 
Hilfswerk” – THW). The THW VOST consists of 20 digital volunteers which were 
appointed as THW members and thus act as team members in a governmental EMA 
rather than a loosely coupled group of digital volunteers in V&TC. To make use 
of the insights provided by the case study, multiple methods for data collection 
and analysis were conducted. These methods comprised participant observation 
during the two-day operation, focus group discussions and informal interviews 
with decision-makers and VOST members at different stages of the operation, 
analysis of the tasks performed by the VOST during the operation, analysis of 
the organizational setup, and technology use and decision-making processes of the 
VOST. For this particular operation, the following VOST working priorities were 
identified as a result of the focus group discussions: identification of critical crowd 
densities and flows; detection of unusual events; image analysis of social media;
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developing of a crisis map for spatial analysis; identification of false information, 
rumors, and fake news; and scenario-dependent tasks. 

The structural and procedural requirements for a successful collaboration were 
identified as a division in small VOST working groups to simplify the distribution 
of tasks. This allows specialized subgroups to be formed to respond to dynamic 
operational situations, e.g., verification groups, and to ensure information exchange 
on the level of team and group leaders, individual group briefings to implement 
adjustments quicker, and, most importantly, the implementation of a liaison officer. 
The technical requirements are especially a reliable user experience and custom-
tailored tools for the use during an operation to alleviate the high mental workload. 
Putting new tools to the test in real-world operations seems to be a beneficial 
way to ensure advanced algorithmic tools. The most time-consuming and mentally 
challenging work at the same time poses collection, filtering, and documentation 
of user-generated content from social media platforms. Advanced mining tools 
are crucial to verify social media data in a time-critical environment. Situation 
monitoring is a highly repetitive and demanding task, which can only be carried 
out by a digital volunteer for a certain amount of time. Nonetheless, the biggest 
challenge seems to be the velocity and the volume of user-generated social media 
data. Additional disaster-related data becomes available all the time during the 
analysis, which presents a challenge for real-time social media analytics. To address 
the questions of what disaster-related information is processed by a VOST during a 
disaster management and what impact it has on members of an EOC, another case 
study was conducted. 

13.4 Social Media Analytics by Virtual Operations Support 
Teams in Disaster Management 

Climate change poses numerous challenges and risks, including a significant 
increase in extreme weather events such as flooding (IPCC 2021). With this, the 
need for crisis communication and social media analytics in times of disaster rises 
accordingly. VOST address this need, integrated into EOC structures in times of 
crises, and their goals are to increase the situational awareness of decision-makers 
and to provide actionable information to improve decision-making in a time-critical 
environment. To examine these efforts, a case study was carried out, using the data 
collected by 22 VOST analysts during the 2021 flood in Wuppertal, Germany (Fathi 
and Fiedrich 2022). The city was severely flooded in July 2021; parts of the city 
had to be evacuated, and warning sirens were set off (Zander 2021). The EOC 
operated in cooperation with the VOST of the German Federal Agency for Technical 
Relief (THW VOST), which was deployed virtually but was directly connected to 
the EOC through a liaison officer, who was physically present in the EOC. This 
operation thus raised the research question, how VOST can support situational 
awareness and generate actionable information for EOC decision-making processes
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by integrating social media analytics practices. The research question was explored 
by analyzing the data generated during the THW VOST operation and by a survey 
among EOC decision-makers on the impact of the information provided by VOST 
on their decisions and situational awareness. 

Unlike other research, which focuses, e.g., mainly on social media big data 
analysis, decision-making processes, or developing machine learning approaches, 
this study aims for examining closely the real-world VOST integration. Case 
studies, such as the underlying, can provide valuable insights of virtual teams in 
the disaster management context. In order to analyze the data generated by the 
digital volunteers during the operation, the following tasks were performed: data 
cleaning, summarizing categories, visualization of the data, and subsequently a 
comparative quantitative analysis and contextualization of the data. Furthermore, 
three different parameters, the format, the source, and the mean value of the 
prioritization, were used for an in-depth analysis. The survey of decision-makers 
was conducted among the EOC members, which collaborated with the THW VOST 
and used their information products during the flood response in Wuppertal. The 
prerequisite was that the interviewee had worked with VOST information products 
during the operation. Nine decision-makers from the EOC met these criteria, and all 
of them participated in the survey. 

To classify information categories in the VOST dataset, which was identified 
by VOST volunteers during the flood response, 536 social media posts from 
eight different social media platforms were analyzed. Additionally, 42 posts from 
websites (e.g., traditional media) were collected. The dataset was classified in 23 
different categories. The largest category was found to have emerged after the flood, 
namely, spontaneous community engagement (see Fig. 13.1). The earlier phases of 
the flood were dominated by categories like level of the river, warning, or flooded 
roads. 

Posts from categories that could have had a direct impact were forwarded by 
VOST during the operation as actionable information to the EOC decision-maker. 
These social media posts were prioritized as “highly-relevant.” The information in 
the format of videos was found to have a higher priority than information in the 
form of texts or images. In a category analysis over time, it was found that real-
time disaster events, such as the activation of the warning siren, are simultaneously 
apparent in social media data. 

VOST impact on situational awareness was explored by querying EOC directors 
and executives who collaborated with the THW VOST during the flood. All 
statements in the survey were rated with a strong overall agreement. The statement 
with the highest degree of agreement was: “Information from VOST contributes 
to expanded situational awareness.” The necessity of a liaison officer in the 
EOC was also strongly agreed to. The lowest level of agreement was given the 
statement that VOST information can forecast developments of future situations. 
The second category of statements concerned the VOST impact on decision-making, 
e.g., to ensure people-centered risk and crisis communications and contributed to 
confidence in decision-making.
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Fig. 13.1 Percentage distribution of social media information during the flood response 2021. 
(Source: Fathi and Fiedrich 2022) 

The results underline that situational awareness and decision-making is sup-
ported by VOST information and VGI on three different levels: perception, com-
prehension, and projection. Based on this distinction of situational awareness from 
Endsley (1988), it can be concluded that statements that can be assigned to the 
first two levels (perception and comprehension) receive high agreement. However, 
VOST information during the dynamic flood situation supports less to project the 
future flood-situation in a more precise way. Statements in this category received 
less agreement. This condition can be explained by the observation that VOST 
information and VGI provide new and complementary information that must be 
processed, comprehended, and projected by EOC decision-makers onto future 
scenarios in addition to that provided by other sources (feedback from responders, 
emergency calls, etc.). Due to the accompanying conditions in disaster management 
(e.g., time pressure, uncertainty), the cognitive load on decision-makers is very high 
so that the use of VGI can create biases in data analysis and decision-making.
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13.5 Data Bias in Crisis Information Management 

Due to various conditions, humanitarian crises and disaster management especially 
challenge digital volunteers’ data analysis. Crisis Information Management (CIM) 
is characterized, e.g., by time criticality and uncertainty. Additionally, resources are 
limited, and the cognitive load is high. This makes analysts and decision-makers 
prone to inducing biases in the data and cognitive processes. When undetected, 
biases remain untreated and lead to decisions based on biased information, which 
in turn can lead to an inefficient response. To find out more about the interplay 
of data and cognitive biases, an exploratory three-stage experiment on epidemic 
response was conducted (Paulus et al. 2022). A scenario-based workshop was held 
in The Hague in 2020 with experienced crisis decision-makers and digital volunteers 
from various V&TC and VOST, which entailed stage 1 and 2. For stage 3, the 
same participants were additionally addressed in an online survey. The experimental 
scenario was an epidemic outbreak in three countries. The first stage included an 
observation of digital volunteers, who were provided with different datasets with 
biased data, e.g., in the infection spread. The observation was set out to be in a 
fictional but realistic setting to avoid interference in a real epidemic response. In 
stage 2 of the experiment, the decision-makers were provided with the VGI and 
information products (e.g., maps) created in stage 1 and had to make decisions 
on treatment center placements. Stage 3 of the experiment was an online survey 
onsite of the workshop. It aimed to explore whether confirmation bias leads to 
path dependencies of former decisions based on biased information. In the survey, 
they were able to select the information they viewed as most important for future 
decision-making from a list of datasets. 

The results of the experiment show that in the first stage, the participants failed to 
debias data, even though biases were detected. Debiasing efforts were undervalued 
in favor of immediate results. The information products created based on biased data 
in stage 1 were then forwarded to the decision-makers in stage 2, who made their 
decisions based on biased information. Even though the decision-makers in all three 
groups put enormous pressure on the digital volunteers to find out on which datasets 
the information products were generated, they did not succeed in ensuring that the 
decisions were not based on biased information. Confirmation bias was detected in 
stage 3; the reliance on conclusion reached with biased data was reinforced by it. 
Thus, biased assumptions remained undetected. The main causes for biased data 
remaining untreated are the described conditions of data analysis and decision-
making in the context of disaster management. The realistic scenario design made 
it possible to recreate the general conditions, e.g., by simulating time pressure 
and uncertainty. Mindfulness debiasing efforts have been found to be effective to 
counteract these conditions and therefore pose a promising strategy to mitigate data 
and cognitive biases in future disaster management (Paulus et al. 2022).
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13.6 Privacy-Aware Social Media Data Processing in 
Disaster Management 

Social media analytics by Emergency Management Agencies for relief purposes has 
become a common practice in the last few years. In the time-critical environment 
of disaster and life-threatening situations, privacy is often perceived as a secondary 
problem. Nonetheless, avoiding unnecessary data retention is important to protect 
the social media users’ privacy by, e.g., preventing subsequent abuse. In times 
of crisis, social media users are especially vulnerable, e.g., by sharing names, 
addresses, or other personal information, for example, searching for missing 
relatives or friends. 

In a cross-project effort, expertise from the present project and “Privacy Aspects” 
(Chap. 14) were combined for a joint case study (Löchner et al. 2020). The study 
examined the extent to which VOST can integrate privacy-aware methods and 
algorithms, in particular HyperLogLog (HLL), in their operational work in disaster 
management. To investigate the practicality of privacy-aware methods and HLL, a 
case study with digital volunteers from two VOST has been conducted. For this, 
a focus group discussion addressing opportunities, challenges, and implementation 
barriers was held. The focus group discussion with participants from THW VOST 
and VOST Baden-Württemberg aimed to document the expertise of the participants, 
who are experienced in the field of social media analytics. 

The most important finding was that the focus group discussion revealed no 
disadvantage against using privacy-friendly methods and HLL for VOST. The 
algorithm does not distract the data analysis process, since the VOST work starts 
after the data processing via HLL. Overall, HLL was found to be an appropriate 
technology to ensure privacy-aware social media data processing. Opposing to 
the initial assumptions that HLL use might be conflicting with gathering data for 
creating information products, several benefits of the algorithm were come up upon. 
These benefits include improved working with big datasets, which might lead to a 
more widespread use of HLL and thus improved privacy-awareness among digital 
volunteers. 

13.7 Conclusion and Outlook 

In this chapter, various facets of digital volunteering using and processing VGI in the 
disaster management sector were highlighted. In particular, social, organizational 
and analytical factors were examined and discussed in five different papers. It 
was shown that the motivation of V&TC is particularly value-based and that 
the commitment to the virtual team is pronounced. However, measures can be 
derived, especially for future developments, in order to sustainably establish digital 
volunteering. Professionalized teams in the structures of established EMA have 
been institutionalized worldwide, but detailed research on the requirements for
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collaboration between a virtual team and an EOC has been lacking. In Sect. 13.3, 
a joint study with the project VA4VGI-2 (Chap. 6) was presented. From the results, 
it can be concluded that an effective integration of digital volunteers and their 
analytical skills into established disaster management structures is achievable, 
although specific requirements have to be considered. 

The analytical value for situational awareness and decision-making of EOC 
members during a specific disaster management situation could be highlighted 
in Sect. 13.4. In conclusion, the section shows that VOST analysts were able to 
identify, verify, and categorize a large amount of disaster-related information from 
eight different social media platforms in various formats. During the 2021 flood, 
this information contributed to an expanded situational awareness of the decision-
makers in an Emergency Operation Center and made it possible, for example, to 
conduct crisis communication in a more people-centered manner. Thus, it could be 
shown that during dynamic disaster situations, the involvement of digital volunteers 
was of major relevance for the operation management. Furthermore, it could be 
shown that the virtual structures of a VOST are able to effectively support an EOC 
even in an acute disaster situation. Nevertheless, analysts and decision-makers in 
such situations are accompanied by conditions that can bias results and decisions. 
In order to investigate data and cognitive biases in the work of digital volunteers 
and decision-makers with VGI, a paper was presented in Chap. 5 in which this 
aspect was investigated in a three-level experiment. It could be shown that debiasing 
efforts were not pronounced enough, and thus biased information was considered in 
decision-making. It can be deduced that in future exercises and trainings, debiasing 
efforts need to receive more attention in order to ensure the integration of digital 
volunteers and VGI in the future. This is also accompanied by privacy-aware 
analytics of social media in disaster situations, where the affected population is 
particularly vulnerable. To investigate possible methods and an algorithm developed 
in the project “Privacy Aspects” (Chap. 14) in the use of VOST, a case study was 
conducted with two VOST (Sect. 13.6). Thereby, it could be examined that the use of 
privacy-aware methods and algorithms in operational use is reasonable and possible. 

Overall, it could be shown that digital volunteers make a significant contribution 
during disaster management, in which they effectively process their analytical 
results and VGI for the management of disaster situations. However, human 
limitations and privacy-aware methods need to receive greater attention in the future, 
both in research and in practice. In addition, questions remain about how situational 
pictures will need to be designed by digital volunteers in the future. In a project 
funded by the “German Federal Office of Civil Protection and Disaster Assistance” 
called “#sosmap” (Fiedrich 2022), it will be investigated from August 2022 to what 
extent psychosocial situation pictures can be created for EOC by analyzing social 
media. 
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Chapter 14 
Protecting Privacy in Volunteered 
Geographic Information Processing 

Marc Löchner, Alexander Dunkel, and Dirk Burghardt 

Abstract Social media data is used for analytics, e.g., in science, authorities, or the 
industry. Privacy is often considered a secondary problem. However, protecting the 
privacy of social media users is demanded by laws and ethics. In order to prevent 
subsequent abuse, theft, or public exposure of collected datasets, privacy-aware data 
processing is crucial. In this chapter, we show a set of concepts to process social 
media data with social media user’s privacy in mind. We present a data storage 
concept based on the cardinality estimator HyperLogLog to store social media data, 
so that it is not possible to extract individual items from it, but only to estimate the 
cardinality of items within a certain set, plus running set operations over multiple 
sets to extend analytical ranges. Applying this method requires to define the scope of 
the result before even gathering the data. This prevents the data from being misused 
for other purposes at a later point in time and thus follows the privacy by design 
principles. We further show methods to increase privacy through the implementation 
of abstraction layers. As another additional instrument, we introduce a method 
to implement filter lists on the incoming data stream. A conclusive case study 
demonstrates our methods to be protected against adversarial actors. 

Keywords Privacy · Social media · Data retention · HyperLogLog 

14.1 Introduction 

Social media services like Twitter or Instagram are used to communicate and share 
information worldwide, which generates a rich set of data. Since a large part of this 
data is publicly available, it can be used beyond the features of the social media 
services itself, especially by third parties. 
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The main problem with social media data utilization for applications other than 
their dedicated use case is that explicit consent from the social media user is usually 
missing. While most users are aware that their content is publicly available on the 
Internet, they do not assume that data is frequently recycled for other purposes 
such as scientific, commercial, or administrative use (Boyd and Crawford 2012). 
Accordingly, this demands an exceptional strong focus on their privacy. 

In contrast to other environments, the data to be protected is already public 
(Williams et al. 2017). In the view of third parties, that data can be utilized for any 
purpose, including those that oppose the user’s interest (Zhou et al. 2008). But data 
can also be used with good intentions (Daly et al. 2019), whereas “good” could be 
defined by “in the user’s Interest.” For example, social media has shown a valuable 
source of information in crisis mapping, emergency response, or public planning 
(Fiedrich and Fathi 2021; Dunkel 2021). 

In order to support ongoing development of positive use cases, scientists need 
to respect and actively protect social media users’ privacy. Scientists need to take 
explicit control over data that they expose and prevent accidental disclosures. 

An approach to support the adoption of accidental disclosure prevention tech-
niques is to prevent the gathering of privacy-relevant data in the first place. We 
specifically aim at providing methods for the use of social media data following the 
privacy-by-design principles (Cavoukian et al. 2009). 

In this chapter, we show a set of concepts that enable to process social media 
data with social media user’s privacy in mind. We present a data storage concept 
that implements an algorithm called HyperLogLog (HLL) (Flajolet et al. 2007) 
to not store raw social media data but only statistics about their occurrence. 
We further show that while losing precision of the data, privacy can even be 
increased by applying multiple layers of abstraction on the data. For a context-
dependent treatment of privacy and to cover edge cases, we further introduce a 
model to implement filter lists on the incoming data stream. A conclusive case study 
demonstrates our methods to be protected against adversarial actors. 

14.2 Fundamentals 

14.2.1 Related Work 

Issues and challenges related to privacy arise everywhere, where social media data 
is involved. Following up, we link to research projects within this book, which 
are primarily based on processing social media data and therefore our research is 
relevant for. 

The EVA-VGI project (see Chap. 12) studies the heterogeneity, quality, sub-
jectivity, spatial resolution, and temporal relevance of geo-referenced social media 
data. Focusing on the integration of spatial, temporal, topical, and social dimensions 
combined with an explicit link between events and reactions, they present concep-
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tual approaches and methods that enable a privacy-aware visual analysis of VGI in 
general and geo-social media data in particular. The project has taken advantage 
of the results of our research by implementing HLL on datasets related to their 
publications (Dunkel et al. 2020). 

Similarly, the VA4VGI project (see Chap. 6) describes how geo-aware filtering 
and anomaly detection on geo-referenced social media data can be a significant 
information source for stakeholders in journalism, urban planning, or disaster 
management. They present tag maps that provide overview-first, details-on-demand, 
visual summaries of large amounts of social media data over time and thus visualize 
their temporal evolution. 

Closely related to the former is the DVCHA project (see Chap. 13). The overall 
objective of their research is to study the implications of social media data for 
the efficiency of disaster management. Focusing on so-called Virtual Operations 
Support Teams (VOST), their research addresses motivation, success factors, and 
improvement of distributed decision making processes based on disaster-related 
real-time social media data. 

In a collaboration with the DVCHA project, we carried out a case study, in 
which we explored the deployment of HLL into disaster management processes 
(see Sect. 13.6). We developed and conducted a focus group discussion with VOST 
members, where we identified challenges and opportunities of working with HLL 
and compared the process with conventional techniques (Löchner et al. 2020). 
Findings showed that deploying HLL in the data acquisition process of VOST 
operations will not distract their data analysis process. Instead, several benefits, 
such as improved working with huge datasets, may contribute to a more widespread 
use and adoption of the presented technique, which provides a basis for a better 
integration of privacy considerations in disaster management. 

14.2.2 On Privacy Aspects 

From a generic point of view, privacy is the freedom to fully or partially retreat 
oneself in a self-controlled manner. There are always multiple forms of definitions of 
the term privacy, stretching from personal to a cultural point of views (Solove 2008). 
It is important to distinguish between the right to privacy and the concept of privacy 
(Hildebrandt 2006). The right is clearly formed by laws, whereas the concept is 
rather vaguely determined based on subjectively perceived personal values. Privacy 
is often sacrificed voluntarily in exchange for perceived benefits and sometimes 
violated by others, either intentionally or accidentally (Reyman 2013). 

Privacy by design as a set of principles is a relevant objective in the concep-
tion of applications in general. As Cavoukian et al. (2009) state, privacy must 
be approached from a design-thinking perspective. It must be incorporated in 
technologies not as an optional on-top feature but as a fundamental characteristic 
of organizational priorities, project objectives, design processes, and planning
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operations. Concepts built upon these principles are hard to break in terms of privacy 
violations. 

A contemporary method to protect data has been presented as differential privacy 
(DP) (Dwork 2008) and adopted frequently (Desfontaines and Pejó 2020). DP adds 
certain amounts of random data to a set of real data set, in order to make real data 
indistinguishable from the random data and thus protect it from being identified 
as such. However, DP still requires the original data to be available to process. 
Furthermore, DP requires developing new concepts and models for each data set, 
which is very inefficient when dealing with really large sets of data. 

In the geo-community, there is a wide range of concepts known to protect 
privacy in terms of location data. Some techniques are based on anonymity, e.g., 
mix zones (Beresford and Stajano 2003) or k-anonymity (Ciriani et al. 2007). Others 
are based on obfuscation, e.g., imprecision (Duckham and Kulik 2005), or policy 
like restriction (Hauser and Kabatnik 2001). All of these approaches require the 
possession of original raw data. Processed data sets are unable to be updated with 
subsequent data, which requires reprocessing of the entire data set upon updates. 
This is very inefficient when dealing with large amounts of social media data. 

In the context of social media data, the consideration of privacy, ethics, and 
legal issues should play an important role. The statement “Privacy of user data and 
information should be considered in the initial design of VGI systems” (Mooney 
et al. 2017) can be extended to platforms and methods for the analysis and further 
processing of social media data in general. 

Kounadi et al. (2018) discuss privacy threats related to inference attacks on 
geosocial network data. They provide protection recommendations for sharing these 
sorts of data and publishing resulting visualizations. Keßler and McKenzie (2018) 
proposed in a total of 21 theses to reflect on the current state of geoprivacy from 
a technological, ethical, legal, and educational perspective. They provide various 
examples of how common it has become to share location and how it can be used 
and misused. 

14.2.3 Data Retention 

Processing social media data is to a relevant extent based on operating analytics 
software, which provides automatic analysis on gathered social media data stored in 
local databases. Their user interfaces take input to be crawled for in the stored data 
and return, for example, statistics of post occurrences in any context. Depending on 
the situation, only parts of that information may be relevant (see Sect. 14.3.1). Still, 
the entirety of every post has been and remains stored in local databases. 

This means that if a data item is being deleted on the site of the corresponding 
social media service, it still resides at the place where it has been downloaded to. 
Technically, that practice meets the requirements to be termed data retention. We  
define this term as such: preserving data for an indefinite time period with no specific
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purpose for any individual data item but with the assumption to make use of the 
information in entirety at a later point in time. 

The term is being discussed in the public mostly in conjunction with telecom-
munication analysis and surveillance. European Digital Rights public interest group 
states that “data retention practices interfere with the right to privacy at two levels: 
at the level of retention of data, and at the level of subsequent access to that data by 
law enforcement” (Rucz and Kloosterboer 2020). 

We introduce the term in a broader and more technical environment to emphasize 
the explosive nature of recklessly dealing with personal data, which social media 
data is (European Commission 2018). According to the above definition, the term 
is valid for any case of storing and retending personal data in stocks. Wright et al. 
(2020) use it even to describe any storage of data underlying scientific studies. 

Owning a set of data requires great responsibility in terms of data security. It 
opens up risks of possible abuse, theft, or accidental public exposure (Miller 2020). 
Breaking it down to a simple rule, it can be stated that “the more data you have, the 
more data you can lose” (Guillou and Portner 2020). 

Beyond governmental agencies and law enforcement, also commercial players, 
journalists, researchers, or nonprofit organizations face challenges when storing 
individual-related data like those from social media. Stieglitz et al. (2018) discov-
ered that the volume of data was most often cited as a challenge by researchers. 
Wang and Ye (2018) summarize common techniques for social media analytics in 
natural disaster management and coin the term mining for that matter. 

Furthermore, the social impact of misusing large sets of data is well-known. 
The Cambridge Analytica scandal is one of the examples that show how massive 
data sets can be alienated (Berghel 2018). The company used personal information 
from millions of Facebook users without their consent to derive information about 
their political points of view and then microtarget personally tailored political 
advertisements to them. They claimed to have a major impact on the 2016 US 
presidential election, which can be regarded as a threat to democratic legitimacy 
(Dowling 2022). 

Users of social media services start to realize that all of their data is not only pub-
licly available but made use of by third parties. Data retention drives forgetfulness as 
a social concept at risk (Blanchette and Johnson 2002). The chilling effect, people 
slowly increasing self-discipline and restriction of their communication behavior 
due to becoming aware of digital surveillance, and panopticism (Manokha 2018; 
Büchi et al. 2022) are described consequences. 

Nevertheless, the huge amount of data raised by social media services being a 
tremendous privacy thread is only one side of the coin. Large sets of social media 
data can also be beneficial for the public. The work of humanitarian organizations 
depends on publicly available data that is authentic and relevant. Especially, VOSTs 
rely on the availability of public social media data (Kuner and Marelli 2020); 
therefore, its prosperity must be preserved. A gradual retreat of users from social 
media services in favor of closed, “antisocial” messaging groups (Leetaru 2019; 
Wilson 2020) must be prevented.
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14.2.4 HyperLogLog 

One of our contributions to this issue presented in this chapter is based on storing 
data using an algorithm called HyperLogLog (HLL). This algorithm is a cardinality 
estimator first introduced by Flajolet et al. (2007). 

Its fundamental strength is the ability to estimate the distinct count of a multiset 
(cardinality) and store it in a data structure, which does not allow the extraction of 
individual elements. This is done by storing only hashes of data items instead of 
the original raw data and identifying them by counting leading zeros of the binary 
representation of their hashes. The algorithm is able to predict how many distinct 
items have been added to the HLL set, based on the maximum number of leading 
zeros observed. This makes processing data using HLL very efficient in terms of 
processing time and storage space. It is not possible to search for prior unknown 
information in an HLL set, for example, the usernames of all the posts that have been 
gathered. This makes implementing HLL follow the privacy by design principle. 

14.3 Concepts 

14.3.1 Privacy-Aware Storage 

The key aspect for our approach is to make it impossible to relate to the original 
social media data from a given processed data set (privacy by design). Therefore, 
we propose to utilize the cardinality estimation algorithm HyperLogLog (HLL) 
described in Sect. 14.2.4 to gathered store social media data. 

To provide a minimal example of the process, we introduce a scenario, in which 
the difference in spatial occurrences of social media posts including a certain 
hashtag should be visualized. The result should be a choropleth map of areas 
according to the amount of post occurrences within that area (see Fig. 14.1). Areas 
are defined by a GeoHash, a hierarchical grid-like geocode identification concept 
(Niemeyer 2008; Morton 1966). 

To store the occurrence of posts in an area, it is only necessary to count the 
number of distinct occurring posts, their cardinality. Reflecting, this unveils that 
storing the entirety of a social media post is unnecessary. It is sufficient to memorize 
its unique identifier (ID), which has been assigned by the social media service it 
originates from. 

However, storing the ID in clear text in the database will allow identifying the 
post and thus the author of a post later on. The characteristics of HLL in turn enable 
to store data like the ID of a post in a set without the ability to regain it without prior 
knowledge about its existence in the set. Storing post IDs in an HLL set related to 
their geohash will only reveal their cardinality. Posts that occur later in the stream 
and match the same geohash will be added to this HLL set, which increases its 
cardinality by one for each new post. The geohash itself representing the post’s
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Fig. 14.1 Example of a map showing areas with different occurrences of posts containing 
#omicron hashtag on Twitter from January through March 2022. Map data: OpenStreetMap 
contributors Color distribution: Head/Tail Breaks (Jiang 2013) 

Table 14.1 Exemplary database table structure showing four records (each stands for one area 
represented by the geohash) and the corresponding HLL set containing the post IDs 

geohash id 

w41s \x128b7fdf939b45ec2ef0ca 

6yws \x128b7fbfd17eca803517d2 

c29s \x128b7fe00ef312fcf023c9 

75cs \x128b7fcc47a6c00361c5e7 

originating area is stored as the index of the database record (see Table 14.1). The 
resulting HLL data structure represents all posts matching a certain term from a 
certain area, while it is impossible to derive the post IDs back from it. 

Using HLL, we do not store the post IDs itself but calculate hashes from them 
and store them in an array of counters that represent the set of post IDs (see
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Sect. 14.2.4). Table 14.1 shows an example database table structure with geohash 
values representing an area and the corresponding HLL set representing the IDs of 
posts that occurred in that area. 

Having a database with geohashes and their corresponding HLL set as shown 
exemplarily in Table 14.1, it is possible to compute the cardinality of the HLL 
set and thus determine the number of posts in each area. The result of such a 
computation could as well be achieved by just incrementing an integer per seen post 
ID and storing the sum instead of an HLL set. The significance of using the HLL 
algorithm instead is that it provides the opportunity to perform the set operations 
union and intersection on the HLL sets. 

This can be useful for combinations of individual data sets. Different sets of 
gathered posts, each relating to certain terms, can be combined to monitor a more 
specific scenario. 

A social media post as a data item can be broken down into its spatial, temporal, 
topical, and social components, each of which can be stored as separate HLL sets. 
As shown in Fig. 14.2, this can lead to a number of different HLL sets, each 
containing the post IDs of posts matching different criteria: involving a certain topic, 
originating in a certain area or in a certain time period, or authored by a user of a 
certain group. 

Using the topical facet exemplarily in a disaster management scenario, an 
intersection of a set containing posts with the terms fire and one containing 
forest posts could lead more precisely to disaster incidents than both terms on 
their own. It still makes sense to monitor the terms individually in the first place 
because a combination of fire and accident can lead to other and different 
disaster incidents, as well as forest and accident does. 

Furthermore, different terms could have the same meaning, for example, flood, 
high tide, wave, and tsunami could all refer to the same situation. So, a 
union of HLL sets on posts over these terms can provide more comprehensive 
information about disasters. Likewise, terms in different languages could also be 

social media post 

topical HLL sets spatial HLL sets 

social HLL sets temporal HLL sets 

Cycling Sport 

51.028, 

13.723 Dresden 

Politicians Tourists Aged 14-18 2020-2022 Sundays 9am-5pm 

AltmarktAccident 

Fig. 14.2 Examples of HLL sets derived from the four facets of a social media post
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monitored in combination. This, for example, enables VOSTs (see Sect. 14.2.1 and 
Chap. 13) to monitor larger, multiple languages involving areas like border triangles 
or including smaller countries like Benelux or the Baltics. 

This concept provides privacy by design because it does not store the post IDs in 
a readable way. It only stores a statistical derivative resulting from the characteristics 
of the HLL algorithm (see Sect. 14.2.4) and complies to the privacy by design 
principles. The following subsections cover how it can be extended even further 
by applying extended concepts to adjust the level of privacy protection. 

14.3.2 Abstraction Layers 

The concept of abstraction has been widely used in the geo-community to visualize 
spatial information scale dependent on different degrees of detail (Burghardt 
et al. 2016). We re-dedicate these generalization methods from geovisualization to 
privacy protection. 

Herein, we present a model to improve privacy for social media users, in 
particular in the context of data collection. It aims at withdrawing precision from 
the data by deriving multiple abstraction layers of it. Applying these layers, we are 
able to quantitatively describe different levels of privacy. By deploying methods of 
generalization and thus decreasing precision of the data, we can increase privacy, 
and vice versa. 

Figure 14.3 shows a visual representation of this model, following the four-
facet representation to characterize a social media post, introduced by Dunkel et al. 
(2019). The bottom layer in each facet is formed by the original data. Each following 
layer represents an increase in privacy protection for the user. This way, we have the 
ability to adjust the level of detail of the data in a fine-grained and context-dependent 
way. Each of the layers is described in detail in the following subsections. 

14.3.2.1 Spatial Facet 

In the spatial facet, the original data is usually represented by a coordinate in latitude 
and longitude or a tiny area surrounding that coordinate. A first abstraction from it 

Fig. 14.3 Abstraction layers for each facet
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can be an arbitrarily named place that includes the coordinate, e.g., a market square 
or a park. The next abstraction could be an administrative or functional region or 
other territories enclosing the place, e.g., a city or metropolitan area, county, or 
state. Cities can also be regarded as intermediate layers below regions. The next 
abstraction layer could be a country or another even broader defined, e.g., natural, 
political, administrative, or religious region. 

When applying this model to the HLL-based storage concept presented in 
Sect. 14.3.1, it is crucial to note that even the lowest layer needs to be an area to 
be able to count multiple posts within it. If using a point coordinate instead, chances 
tend toward zero for multiple posts hitting that exact coordinate. An alternative 
approach with clustering techniques would be necessary there. 

In an application implementing this model, the database index would be the 
geohash, place, city, or country, depending on the layer of abstraction. The 
corresponding HLL sets include the hashed post IDs of posts that originate in that 
respective area. An appropriate visualization of that data would be a map showing 
visually differentiable areas (see, e.g., Fig. 14.1). 

14.3.2.2 Temporal Facet 

Abstractions in the temporal facet are clearly defined by common time units. The 
basic layer is the timestamp of the publication of a post, abstracted as the day of the 
publication or a month or even a year. 

In analogy to the spatial facet, when implementing this model, the database index 
must be a time range rather than a point in time, to be able to associate multiple 
matching posts with it. To visualize just the temporal facet, a timeline is the preferred 
graphical representation. Usually, this facet requires to also filter for a certain topic 
first, to prevent just visualizing all social media posts occurring within a certain time 
period. 

14.3.2.3 Topical Facet 

The topical facet is characterized by applying topic modeling techniques (Kherwa 
and Bansal 2019) to find abstractions of terms. The basic layer can be defined by 
the terms, the original content in the post, e.g., The River Elbe has burst 
its banks in Dresden today. A more general layer can be rendered in the 
overall subject of the post, e.g., Dresden flood. Another abstraction layer can 
be the domain of the Natural Disaster. 

In an implementation, the database index will represent these terms, subjects, 
or domains, and the corresponding HLL sets hold the associated post IDs. It is 
not trivial to generate more generic terms for specific posts, but topic modeling 
techniques can help with that task. A word cloud can visualize these terms in 
different sizes (Hearst et al. 2019) depending on the cardinality of posts associated 
with them.
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14.3.2.4 Social Facet 

The social facet relates to users of social media. When running analyses on this 
object, it is crucial to note that we are switching the focus. While we are trying to 
avoid storing personal data around an object in the other facets, here we want to 
achieve the opposite: counting appearances of data that relates to a single person or 
a group. An exemplary analysis would be to count the number of posts per user or 
group. In this scenario, it is especially useful to apply abstraction layers in order to 
gain privacy for a single user. In analogy to the temporal facet, it is also useful to 
filter posts for a certain topic in beforehand. 

In the basic layer, the creator of a social media post, the user, is targeted. The 
database index would be the username or id, and the corresponding HLL set consists 
of the post IDs. Combining, e.g., all of the user account’s followers to a group and 
regarding posts of all of them could apply as the first abstracted layer. Through 
network analysis (Maireder et al. 2014), we can define clusters to be objects in a 
second step of abstraction. Another layer of abstraction could be the consideration of 
different social network platforms (Cosenza 2022), which have a distinct user base, 
which might originate from different cultural backgrounds, e.g., Twitter, Instagram, 
WeChat, and VKontakte. 

Implementing groups of users is more challenging than in other layers. The group 
of followers in the second layers consists of a list of user IDs eventually, which could 
again be stored in an HLL set and get an ID assigned to. IDs of multiple groups are 
then stored in HLL sets and can be combined or contrasted with other group IDs, 
defining clusters accordingly. 

All the described layers are only examples and can be replaced by other 
structures. Also, the number of abstraction layers can be chosen arbitrarily, as the 
granularity of the data can change. 

It should be noted that abstraction layers do not only gain privacy for the social 
media users, but they also diminish the precision of the data. This makes applying 
abstraction to social media data be a compromise between privacy and precision. 

14.3.3 Filter Lists 

Storing social media data using HLL to be processed in analytics software forms 
the basement of privacy protection. Applying generalization methods as described 
in Sect. 14.3.2 provides further opportunities to adjust data precision. However, 
there are edge cases that require special handling. For instance, even the existence 
of a single specific term, a specific time, location, etc. may provide hints that can 
be repurposed or combined with other (e.g., external) information to compromise 
user privacy in certain situations. Following the principle that different data must 
be treated differently (Almås et al. 2018), we seek to contribute to a systematic 
approach to fine-tuning privacy preservation and analytical flexibility.
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There are two main approaches to adjusting privacy—utility trade-offs with HLL 
and abstraction layers. First, stop and allow lists can be used during the generation of 
the HLL set to enable context-dependent data protection through filtering. Second, 
threshold values can be defined flexible to influence the granularity of the HLL set 
indexes and, based on that, the degree of anonymity. Table 14.2 lists examples for 
each context in the framework, where accuracy (utility) may be traded in favor of a 
higher degree of privacy, similar to the broader data sensitivity spectrum proposed 
by Rumbold and Pierscionek (2018). 

Whether stop lists or allow lists are preferable depends on the context of 
application. Allow lists are more restrictive and require less effort from the analysts, 
by automatically excluding all terms, times, locations, etc. that are not explicitly 
considered beforehand. For the spatial context, for instance, unless worldwide data 
is required, allow lists are frequently used, to limit data collection to a specific area, 
region, place, etc. Conversely, stop lists can be added selectively on top, to exclude 
places that are known to be related to vulnerable groups or sensitive contexts (e.g., 
hospitals, party locations). Similarly, filter lists for specific terms, hashtags, or emoji 
can be defined for the topical context. 

For topical contexts, the openness of possible references complicates defining 
holistic stop lists ahead of time. As an example, Fig. 14.4 shows a map generated 
from terms, hashtags, and emoji used on the social media services Twitter, Flickr, 
and Instagram at a public vantage point and park. The syringe emoji could indicate 
drug use, which may lead to further onsite investigation by, e.g., authorities, with 
potential unexpected consequences of the user perspective. Obviously, this is an 
edge case for social-individual privacy because both positive (society) and negative 
(user) consequences are imaginable. One solution would be to assign the specific 
emoji to a thematic broader emoji class, e.g., the umbrella group of “medical 
emoji”1 (see Sect. 14.3.2). As another solution, the syringe emoji could be classified 
ahead of time, for increased sensitivity, leading to, e.g., a greater spatial granularity 
reduction on data ingestion, or exclusion, preventing having to deal with this 
ambiguous ethical edge case in advance. 

Lastly, as the second approach to enable systematic user privacy with HLL, 
threshold values may be defined, similar to what is known from other disciplines, 
such as the HIPAA Privacy Rules for health data publications (Malin et al. 2011) 
or census statistics (Szibalski 2007, p.142). Allshouse et al. (2010), for instance, 
use geomasking in combination with k-anonymity, to define a lower threshold 
of .k = 5 (people), which is a rule of thumb size in geoprivacy (Kamp et al. 
2013). Comparable best-practice threshold values could be defined for HLL sets 
of different sizes, e.g., suggestions by Desfontaines et al. (2019), with smaller sets 
indicating lesser privacy protection due to a scarce context collapse. In the spatial 
context, this could be implemented by using quadtrees, for example, to split and 
aggregated social data into sub-sections (quads), based on pre-defined thresholds, 
where the resolution is automatically decreased for areas of lesser data density.

1 Unicode Consortium, unicode.org/emoji/charts-13.0/full-emoji-list.html#medical. 
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Fig. 14.4 A thematically sensitive emoji on drug use at selected locations 

14.4 Case Study 

Even though different implementations of HLL exist, all share a number of basic 
steps. At the core, the binary representation of any given character string is divided 
into buckets, for which the number of leading zeroes is counted (see Sect. 14.2.4). 
Because any given character string is first randomized, it is possible to predict 
how many distinct items must have been added to a given HLL set, based on the 
maximum number of leading zeroes observed. In other words, if multiple items are 
added to an HLL set, only the highest number of leading zeroes per bucket needs to 
be memorized. As a result, the cardinality estimation will only approximate counts. 

As a side effect, there is a limited ability to check whether a specific user or 
ID has been added to a HLL set. In an adversarial situation, Desfontaines et al. 
(2019) refer to such a check as an intersection attack. Intersection attacks first 
require obtaining the hash of a targeted person or ID and then adding this hash 
to an HLL set. If the HLL set changes, an adversarial may be able to increase their 
initial suspicion by a certain degree. To better illustrate intersection attacks and how 
and under which circumstances the privacy of a user could become compromised in 
the presented two-component research setup, we briefly introduce two examples. 

Alex is included in the YFCC100M dataset (Thomee et al. 2016) because he 
published 289 photos under Creative Commons Licenses between 2013 and 2014 
on Flickr; 120 of these photos are geotagged. Given this information, it will be 
relatively easy to re-identify Alex. Sandy is an internal adversary. She could be 
someone working at an analytics service with full access to the database. Robert, 
on the other hand, is someone representing an external adversary, with access only 
to the published dataset. In the first example, the privacy of Alex is compromised if 
Sandy could increase or confirm her suspicion that Alex was not at his workplace in 
Berlin on 9 May 2012. In the second example, the privacy of Alex is compromised 
if Robert could increase or confirm his suspicion that Alex was indeed at least once 
at a specific location, e.g., contrary to what Alex claims. Finally, Alex could be
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someone who voluntarily contributed his pictures to the conceived analytics service 
or altruistically published Creative Commons photos on Flickr. 

Consider that, at the moment of contribution, Alex may not have thought of the 
consequences for his privacy but later realized his mistake. With the use of raw 
data, even removing any compromising data from Flickr, this change would need 
to be reflected in any subsequent data collection, such as in the analytics service or 
the YFCC100M dataset. This is either impractical or impossible. The question is, 
therefore, whether it is possible to replace raw data workflows with a privacy-aware 
visualization pipeline, without significantly reducing utility. 

Several factors must coincide for intersection attacks to be successful. Firstly, an 
adversarial must have access to HLL sets. In our system model, this can either be 
an internal adversary (Sandy), having direct access to the database, or an external 
adversary (Robert), having access only to published data. Furthermore, an adversary 
must be able to either compute hashes for a given target user or somehow gain access 
to a computed HLL set for the given user. The former is only possible if the secret 
key is compromised. The latter appears conceivable, in our example, if the adversary 
has some prior knowledge about other locations visited by a target user, and if the 
HLL sets of these locations ideally contain only the target user or a few other users. 
In the following, we explore this worst-case scenario, where both Sandy and Robert 
somehow got hold of an HLL set that only contains Alex’s computed hashes. 

For Sandy, this means in order to test whether Alex was not in Berlin on 9 May 
2012, she either needs Alex’s original user ID and the secret key to construct the 
hash or find another location that has only been visited by Alex on this date. In this 
unlikely scenario, the result of an intersection attack for all grid cells is shown in 
Fig. 14.5. Visible in the figure is that a large number of other grid cells show false 
positives for the intersection test, that is, these HLL sets did not change, even when 
updated with the particular user day-hash for Alex. 

Fig. 14.5 Evaluation of scenario “Sandy” (Dunkel et al. 2020, CC-BY 4.0)
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Since HLL prevents the occurrence of false negatives, and San Francisco is 
indeed among these locations, the result does include Alex’s actual location on 
9 May 2012. Depending on the size of the targeted HLL set, Sandy may then 
increase her suspicion by some degree. In the case of the grid cell for San Francisco, 
with 209,581 user days, this increase in posterior knowledge may be found to be 
negligibly small. In other words, even if there was no post from Alex on 9 May 
2012, the intersection attack may have produced the same result. In conclusion, 
even in the worst scenario, having direct access to the database and a compromised 
secret key, Sandy could not gain any further affirmation. 

Similarly, and rather incidentally, the positive grid cell for Berlin does indeed 
falsely suggest that Alex was in Berlin. This is not surprising given that larger 
HLL sets have a higher likeliness of showing false positives and Berlin is a highly 
frequented location. In other words, Alex benefits from the privacy-preserving effect 
of HLL. 

In the second scenario, consider a situation in which Robert may have an a 
priori suspicion that Alex went to Cabo Verde. Alex, on the other hand, does not 
want Robert to know that he went surfing without him. Robert knows that Alex 
is participating in the conceived analytics service and, somehow, gains access to 
an HLL set containing only one hashed user ID from Alex. The results of the 
intersection attack for all grid cells are shown in Fig. 14.6. Since only 56 users have 
been to Cabo Verde in the YFCC100M dataset, the particular bin is not included 
in the published benchmark data, which is limited by a minimum threshold of 
100 users. However, with direct access to the database, Robert could observe that 
Cabo Verde is among the locations revealed. In this case, Robert may gain some 
affirmation for his suspicion that Alex was in Cabo Verde. At the same time, a 
definite answer will not be possible, given the irreversible approximation of the 
HLL structure. For example, for the same intersection attack, for set sizes below 56 

Fig. 14.6 Evaluation of scenario “Robert” (Dunkel et al. 2020, CC-BY 4.0)
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users, there are 14 other grid cells that show false positives, down to 8 users. In other 
words, even though these HLL sets do not change when tested, Alex has never been 
to these locations. 

While these two scenarios provide a base to understand how intersection attacks 
may be executed in a spatial setting, a valid question is how likely successful 
intersection attacks are overall. To some degree, this depends on questions of 
security, such as protecting the secret key or managing database access. 

Another part is directly related to the distribution of collected data and the 
number of outliers that are present at each stage of data processing. If data is more 
clustered, users will generally receive more benefits from the privacy-preserving 
effects of HLL. This can be quantitatively substantiated with the given dataset 
(Dunkel et al. 2020). 

14.5 Conclusion 

The research presented in this chapter introduced a number of approaches to deal 
with privacy aspects in the process of social media data processing. Social media 
data is being used as a source of data for wide-ranging projects within and beyond 
the scope of this book (see Sect. 14.2.1). The relevance of privacy aspects in 
processing this kind of data and the range of related work are pointed out in 
Sect. 14.2.2. Furthermore, in Sect. 14.2.3, we discussed our focus on data retention 
as a potential threat for analysts. We defined the term and explained that we make 
use of that specific term to emphasize the explosiveness of dealing with personal 
data. 

We showed that it is possible to preserve the privacy of social media users 
with the major concepts. As a basis for our first concept, we first introduced the 
cardinality estimation algorithm HyperLogLog in Sect. 14.2.4. In Sect. 14.3.1, the  
main part of this chapter, we introduced a concept to store social media data in a 
way that it is not possible to extract individual items from it but only to estimate 
the cardinality of social media data items within a certain set, plus running set 
operations over multiple sets to extend analytical ranges. Applying this method 
requires defining the scope of the result before even gathering the data and thus 
prevents the data from being misused for other purposes at a later point in time. 
This follows the privacy-by-design principle. 

As an extension to the first concept, we proceeded by introducing a concept 
that is well known in the geographic community, generalization, in Sect. 14.3.2. By  
defining a number of abstraction layers, it is possible to even more reduce the data 
to be stored, depending on the required precision. The less precise data is needed, 
the fewer data needs to be stored. Finally, in Sect. 14.3.3, we explain the conceptual 
exclusion of edge cases by applying filter lists to the data set. 

A closing case study in Sect. 14.4 explains the concept of intersection attacks 
and shows that under rare circumstances the HyperLogLog technology is vulnerable 
against them. The case study unveils that the larger the dataset, the less likely are
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intersection attacks. Since social media data is usually very large, implementing the 
HyperLogLog technology is an excellent approach to protect the data from being 
abused, thieving, or publicly exposed and thus preserves the privacy of social media 
users. 
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Matković R, Vejmelka L, Ključević Ž (2021) Impact of covid 19 on the use of social networks 
security settings of elementary and high school students in the split-dalmatia county. In: 2021 
44th International Convention on Information, Communication and Electronic Technology 
(MIPRO). IEEE, pp 1476–1482. https://doi.org/10.23919/mipro52101.2021.9597179 

Miller V (2020) Understanding digital culture. SAGE Publications Limited, London, UK 
Mooney P, Olteanu-Raimond A-M, Touya G, Juul N, Alvanides S, Kerle N (2017) Considerations 

of privacy, ethics and legal issues in volunteered geographic information. Map Citizen Sensor, 
119–135. https://doi.org/10.5334/bbf.f 

Morton GM (1966) A computer oriented geodetic data base and a new technique in file sequencing. 
International Business Machines Company, New York 

Niemeyer G (2008) geohash.org is public! https://blog.labix.org/2008/02/26/geohashorg-is-public. 
Accessed 06-Sep-2022 

Nikas A, Alepis E, Patsakis C (2018) I know what you streamed last night: On the security and 
privacy of streaming. Digit Investig, 78–89. https://doi.org/10.1016/j.diin.2018.03.004 

Reyman J (2013) User data on the social web: Authorship, agency, and appropriation. Coll Engl, 
513–533 

Rucz M, Kloosterboer S (2020) Data retention revisited. 
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/ 

Rumbold JM, Pierscionek BK (2018) What are data? A categorization of the data sensitivity 
spectrum. Big Data Res, 49–59. https://doi.org/10.1016/j.bdr.2017.11.001 

Solove DJ (2008) Understanding privacy. Harvard University Press, Cambridge, MA 
Steinberg SB (2016) Sharenting: Children’s privacy in the age of social media. Emory LJ, 839 
Stieglitz S, Mirbabaie M, Ross B, Neuberger C (2018) Social media analytics–challenges in topic 

discovery, data collection, and data preparation. Int J Inf Manag, 156–168. https://doi.org/10. 
1016/j.ijinfomgt.2017.12.002

https://doi.org/10.3390/ijgi10010025
https://doi.org/10.3390/ijgi10010025
https://doi.org/10.3390/ijgi10010025
https://doi.org/10.3390/ijgi10010025
https://doi.org/10.3390/ijgi10010025
https://doi.org/10.3390/ijgi10010025
https://doi.org/10.1080/15230406.2020.1794976
https://doi.org/10.1080/15230406.2020.1794976
https://doi.org/10.1080/15230406.2020.1794976
https://doi.org/10.1080/15230406.2020.1794976
https://doi.org/10.1080/15230406.2020.1794976
https://doi.org/10.1080/15230406.2020.1794976
https://doi.org/10.1080/15230406.2020.1794976
https://doi.org/10.1080/15230406.2020.1794976
https://doi.org/10.3390/socsci7100191
https://doi.org/10.3390/socsci7100191
https://doi.org/10.3390/socsci7100191
https://doi.org/10.3390/socsci7100191
https://doi.org/10.3390/socsci7100191
https://doi.org/10.3390/socsci7100191
https://doi.org/10.3390/ijgi9120709
https://doi.org/10.3390/ijgi9120709
https://doi.org/10.3390/ijgi9120709
https://doi.org/10.3390/ijgi9120709
https://doi.org/10.3390/ijgi9120709
https://doi.org/10.3390/ijgi9120709
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://www.forbes.com/sites/kalevleetaru/2019/03/06/the-era-of-precision-mapping-of-social-media-is-coming-to-an-end/
https://doi.org/10.1136/jamia.2010.004622
https://doi.org/10.1136/jamia.2010.004622
https://doi.org/10.1136/jamia.2010.004622
https://doi.org/10.1136/jamia.2010.004622
https://doi.org/10.1136/jamia.2010.004622
https://doi.org/10.1136/jamia.2010.004622
https://doi.org/10.1136/jamia.2010.004622
https://doi.org/10.1136/jamia.2010.004622
https://doi.org/10.24908/ss.v16i2.8346
https://doi.org/10.24908/ss.v16i2.8346
https://doi.org/10.24908/ss.v16i2.8346
https://doi.org/10.24908/ss.v16i2.8346
https://doi.org/10.24908/ss.v16i2.8346
https://doi.org/10.24908/ss.v16i2.8346
https://doi.org/10.24908/ss.v16i2.8346
https://doi.org/10.24908/ss.v16i2.8346
https://doi.org/10.1177/1461444814543995
https://doi.org/10.1177/1461444814543995
https://doi.org/10.1177/1461444814543995
https://doi.org/10.1177/1461444814543995
https://doi.org/10.1177/1461444814543995
https://doi.org/10.1177/1461444814543995
https://doi.org/10.1609/icwsm.v15i1.18071
https://doi.org/10.1609/icwsm.v15i1.18071
https://doi.org/10.1609/icwsm.v15i1.18071
https://doi.org/10.1609/icwsm.v15i1.18071
https://doi.org/10.1609/icwsm.v15i1.18071
https://doi.org/10.1609/icwsm.v15i1.18071
https://doi.org/10.1609/icwsm.v15i1.18071
https://doi.org/10.1609/icwsm.v15i1.18071
https://doi.org/10.23919/mipro52101.2021.9597179
https://doi.org/10.23919/mipro52101.2021.9597179
https://doi.org/10.23919/mipro52101.2021.9597179
https://doi.org/10.23919/mipro52101.2021.9597179
https://doi.org/10.23919/mipro52101.2021.9597179
https://doi.org/10.23919/mipro52101.2021.9597179
https://doi.org/10.23919/mipro52101.2021.9597179
https://doi.org/10.23919/mipro52101.2021.9597179
https://doi.org/10.5334/bbf.f
https://doi.org/10.5334/bbf.f
https://doi.org/10.5334/bbf.f
https://doi.org/10.5334/bbf.f
https://doi.org/10.5334/bbf.f
https://doi.org/10.5334/bbf.f
https://doi.org/10.5334/bbf.f
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://blog.labix.org/2008/02/26/geohashorg-is-public
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://doi.org/10.1016/j.diin.2018.03.004
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://edri.org/our-work/launch-of-data-retention-revisited-booklet/
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.bdr.2017.11.001
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
https://doi.org/10.1016/j.ijinfomgt.2017.12.002


14 Protecting Privacy in Volunteered Geographic Information Processing 297

Such JM, Porter J, Preibusch S, Joinson A (2017) Photo privacy conflicts in social media: A 
large-scale empirical study. In: Proceedings of the 2017 CHI Conference on Human Factors 
in Computing Systems, CHI ’17. Association for Computing Machinery, New York, NY, USA, 
pp 3821–3832. ISBN 9781450346559. https://doi.org/10.1145/3025453.3025668 

Szibalski M (2007) Textteil - Kleinräumige Bevölkerungs- und Wirtschaftsdaten in der amtlichen 
Statistik Europas. Wirtschaft und Statistik, 137–143 

Thomee B, Shamma DA, Friedland G, Elizalde B, Ni K, Poland D, Borth D, Li L-J (2016) 
Yfcc100m: The new data in multimedia research. Commun ACM, 64–73. https://doi.org/10. 
1145/2812802 

Uldam J (2018) Social media visibility: challenges to activism. Media Cult Soc, 41–58. https://doi. 
org/10.1177/0163443717704997 

Wang Z, Ye X (2018) Social media analytics for natural disaster management. Int J Geogr Inf Sci, 
49–72. https://doi.org/10.1080/13658816.2017.1367003 

Williams ML, Burnap P, Sloan L (2017) Towards an ethical framework for publishing twitter data 
in social research: Taking into account users’ views, online context and algorithmic estimation. 
Sociology, 1149–1168. https://doi.org/10.1177/0038038517708140 

Wilson S (2020) The era of antisocial social media. https://hbr.org/2020/02/the-era-of-antisocial-
social-media 

Wright, DN, Demetres, MR, Mages, KC, DeRosa, AP, Jedlicka C, Stribling JC, Baltich Nelson B, 
Delgado, D (2020) How long should we keep data? An evidence-based recommendation for 
data retention using institutional meta-analyses. Samuel J. Wood Medical Library: Faculty 
Publications 

Zhou B, Pei J, Luk W (2008) A brief survey on anonymization techniques for privacy preserving 
publishing of social network data. In: ACM Sigkdd Explorations Newsletter, pp 12–22. https:// 
doi.org/10.1145/1540276.1540279 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.1145/3025453.3025668
https://doi.org/10.1145/3025453.3025668
https://doi.org/10.1145/3025453.3025668
https://doi.org/10.1145/3025453.3025668
https://doi.org/10.1145/3025453.3025668
https://doi.org/10.1145/3025453.3025668
https://doi.org/10.1145/3025453.3025668
https://doi.org/10.1145/2812802
https://doi.org/10.1145/2812802
https://doi.org/10.1145/2812802
https://doi.org/10.1145/2812802
https://doi.org/10.1145/2812802
https://doi.org/10.1145/2812802
https://doi.org/10.1177/0163443717704997
https://doi.org/10.1177/0163443717704997
https://doi.org/10.1177/0163443717704997
https://doi.org/10.1177/0163443717704997
https://doi.org/10.1177/0163443717704997
https://doi.org/10.1177/0163443717704997
https://doi.org/10.1080/13658816.2017.1367003
https://doi.org/10.1080/13658816.2017.1367003
https://doi.org/10.1080/13658816.2017.1367003
https://doi.org/10.1080/13658816.2017.1367003
https://doi.org/10.1080/13658816.2017.1367003
https://doi.org/10.1080/13658816.2017.1367003
https://doi.org/10.1080/13658816.2017.1367003
https://doi.org/10.1080/13658816.2017.1367003
https://doi.org/10.1177/0038038517708140
https://doi.org/10.1177/0038038517708140
https://doi.org/10.1177/0038038517708140
https://doi.org/10.1177/0038038517708140
https://doi.org/10.1177/0038038517708140
https://doi.org/10.1177/0038038517708140
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://hbr.org/2020/02/the-era-of-antisocial-social-media
https://doi.org/10.1145/1540276.1540279
https://doi.org/10.1145/1540276.1540279
https://doi.org/10.1145/1540276.1540279
https://doi.org/10.1145/1540276.1540279
https://doi.org/10.1145/1540276.1540279
https://doi.org/10.1145/1540276.1540279
https://doi.org/10.1145/1540276.1540279
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Preface
	Contents
	Part I Representation and Analysis of VGI
	1 WorldKG: World-Scale Completion of Geographic Information
	1.1 Introduction
	1.2 Problem Definition
	1.3 Geographic Entity Linking with OSM2KG
	1.3.1 Related Work
	1.3.2 The OSM2KG Approach
	1.3.3 Evaluation Results of the OSM2KG Approach

	1.4 Geographic Class Alignment with NCA
	1.4.1 Related Work
	1.4.2 The NCA Approach
	1.4.3 Evaluation Results of the NCA Approach

	1.5 The WorldKG Knowledge Graph
	1.5.1 Related Work
	1.5.2 WorldKG Creation Approach
	1.5.3 WorldKG Access, Statistics, Evaluation, and Examples

	1.6 Discussion and Open Research Directions
	References

	2 Analyzing and Improving the Quality and Fitness for Purpose of OpenStreetMap as Labels in Remote Sensing Applications
	2.1 Introduction
	2.2 Intrinsic Data Quality Analysis for OSM LULC Objects
	2.2.1 OSM Element Vectorization: Intrinsic and Semi-intrinsic Data Quality Indicators

	2.3 Label Noise Robust Deep Learning for Remote Sensing Data with OSM Tags
	2.3.1 OSM as the Source of Training RS Image Labels in ML
	2.3.2 Label Noise Robust ML Methods
	2.3.3 Proposed Methods
	2.3.3.1 Noisy OSM Tag Detection
	2.3.3.2 Label Noise Robust Multi-label RS Image Classification

	2.3.4 Results and Discussion
	2.3.4.1 Dataset Description and Experimental Setup
	2.3.4.2 Comparison Between Direct Use of OSM Tags and DL-Based Multi-label Image Classification
	2.3.4.3 Label Noise Detection
	2.3.4.4 Label Noise Robust Multi-label Image Classification


	2.4 Conclusion and Outlook
	References

	3 Efficient Mining of Volunteered Trajectory Datasets
	3.1 Introduction
	3.2 Protection of Sensitive Locations
	3.2.1 Privacy Concept
	3.2.2 The S-TT Algorithm
	3.2.3 Experimental Results

	3.3 Map Matching for Semi-restricted Trajectories
	3.3.1 Methodology
	3.3.2 Experimental Results

	3.4 Indexing and Querying of Massive Trajectory Sets
	3.4.1 Methodology
	3.4.2 Experimental Results

	3.5 Preference-Based Trajectory Clustering
	3.5.1 A Linear Preference Model
	3.5.2 Driving Preferences and Route Compression
	3.5.2.1 Problem Formulation
	3.5.2.2 Solving Milestone Segmentation
	3.5.2.3 Experimental Results

	3.5.3 Minimum Geometric Hitting Set
	3.5.3.1 Theoretical and Practical Challenges
	3.5.3.2 Experimental Results


	3.6 Visualizing Routing Profiles
	3.6.1 Methodology
	3.6.2 Application

	3.7 Conclusion and Future Work
	References

	4 Uncertainty-Aware Enrichment of Animal Movement Trajectories by VGI
	4.1 Introduction
	4.2 Related Work
	4.3 Analysis of GPS Trajectory Data
	4.3.1 Motivation and Research Gap
	4.3.2 Approach
	4.3.3 Results

	4.4 Analysis of VGI Contributor Data
	4.4.1 Motivation and Research Gap
	4.4.2 Approach
	4.4.3 Results

	4.5 BirdTrace: A Visual Analytics Application to Jointly Analyze Trajectory Data and VGI
	4.5.1 Motivation and Research Gap
	4.5.2 Automated Matching
	4.5.3 A Joint Visual Analytics Workspace

	4.6 Data-Driven Modeling of Tracked and Observed Animal Behavior
	4.6.1 Motivation and Research Gap
	4.6.2 Approach
	4.6.3 Results and Discussion

	4.7 Discussion and Conclusion
	References

	5 Two Worlds in One Network: Fusing Deep Learning and Random Forests for Classification and Object Detection
	5.1 Introduction
	5.2 Related Work
	5.3 Traffic Sign Recognition
	5.3.1 Framework
	5.3.1.1 Object Detection
	5.3.1.2 Localization
	5.3.1.3 Clustering

	5.3.2 Dataset
	5.3.3 Experiments

	5.4 Neural Random Forest Imitation
	5.4.1 Background and Notation
	5.4.2 Methodology
	5.4.2.1 Data Generation
	5.4.2.2 Imitation Learning

	5.4.3 Experiments
	5.4.3.1 Datasets
	5.4.3.2 Implementation Details
	5.4.3.3 Results
	5.4.3.4 Analysis of the Generated Data


	5.5 Conclusion
	References


	Part II Geovisualization and User Interactions Related to VGI
	6 Toward Visually Analyzing Dynamic Social Messages and News Articles Containing Geo-Referenced Information
	6.1 Introduction
	6.2 Analyzing the Temporal Evolution of Text Data with PyramidTags
	6.2.1 Processing and Objectives
	6.2.2 Triangular Layout
	6.2.3 Interactions and Document Retrieval

	6.3 Leveraging Geodata to Scale the Visual Analysis of Posts
	6.3.1 Geospatial Clustering of Terms
	6.3.2 Keyword Lens and Topic Modeling
	6.3.3 Interactive Classifier

	6.4 Space-Filling Curves for Visualizing the Spatiotemporal Evolution of Data
	6.4.1 Neighborhood-Preserving 1D Projections
	6.4.2 Main Interface

	6.5 Clustering Posts Dynamically to Analyze Posts in Real Time
	6.5.1 Dynamic Clustering
	6.5.2 Topical Overview
	6.5.3 Frequent Phrases and Stream of Representative Posts
	6.5.4 Diving into Topics

	6.6 Conclusion
	References

	7 Visually Reporting Geographic Data Insights as Integrated Visual and Textual Representations
	7.1 Introduction
	7.2 The Interplay of Text and Visualization
	7.3 Authoring Interactive Reports
	7.4 Explorative Reporting
	7.4.1 Maps with Data-Driven Explanations
	7.4.2 Interactive Audio Guides in Virtual Reality
	7.4.3 A Chatbot Interface Providing Visual and Textual Answers

	7.5 Conclusion and Future Work
	References

	8 Effects of Landmark Position and Design in VGI-Based Maps on Visual Attention and Cognitive Processing
	8.1 Introduction
	8.2 The Role of Landmarks in Self-Localization, Navigation, and the Formation of Mental Spatial Models
	8.3 Identifying Landmarks
	8.4 Landmark Representations in VGI-Based Maps
	8.4.1 Semantic Salience
	8.4.2 Visual Salience
	8.4.3 Structural Salience

	8.5 Conclusion
	References

	9 Addressing Landmark Uncertainty in VGI-Based Maps: Approaches to Improve Orientation and Navigation Performance
	9.1 Introduction
	9.2 Effects of Landmark Inaccuracies on Map Matching
	9.3 Visualizing Spatial Uncertainty
	9.4 Conclusion and Outlook
	References

	10 Improvement of Task-Oriented Visual Interpretation of VGI Point Data
	10.1 Introduction
	10.2 Constraint-Based Map Generalization
	10.3 User Behavior When Interpreting VGI Point Data
	10.3.1 Task-Solving Strategies
	10.3.2 Influence of Point Data Cardinality and Background Map
	10.3.3 Implications for Constraints Supporting Interpretation Tasks

	10.4 Defining Constraints and Measures for Spatial Pattern Interpretation
	10.4.1 Measures Describing Spatial Pattern and Densities
	10.4.1.1 Macro-Measures
	10.4.1.2 Micro-Measures
	10.4.1.3 Meso-Measures

	10.4.2 Deriving a Minimum Set of Constraints
	10.4.2.1 Preserve the Overall Distribution of Points and the Density Ranking Between Areas
	10.4.2.2 Preserve Pattern-Specific Characteristics
	10.4.2.3 Preserve Gestalt Law Rules


	10.5 Application Using Agent-Based Modeling
	10.5.1 Software and Components
	10.5.2 Global Map Specifications and Measure Satisfaction

	10.6 Discussion
	10.7 Summary and Outlook
	References


	Part III Active Participation, Social Context, and Privacy Awareness
	11 Environmental Tracking for Healthy Mobility
	11.1 Introduction
	11.2 Measuring Environmental Stressors
	11.3 Citizen Science and VGI in the Context of Environmental Tracking
	11.4 A Health-Psychological Perspective
	11.5 Visualizing Environmental Stressors
	11.6 Implementation: Two Field Experiments Using Wearable Sensors
	11.6.1 Field Study 1
	11.6.1.1 Design and Procedure of Study 1
	11.6.1.2 Sensors Used for Measuring Environmental Stressors in Study 1

	11.6.2 Field Study 2
	11.6.2.1 Design and Procedure of Study 2
	11.6.2.2 Sensors Used for Measuring Environmental Stressors in Study 2

	11.6.3 The Questionnaires

	11.7 Results of the Field Experiments
	11.7.1 Results Regarding the Sensor Measurements
	11.7.2 Results Regarding the Questionnaires
	11.7.2.1 Statistical Analysis
	11.7.2.2 Results of Study 1: Descriptive Analysis
	11.7.2.3 Results of Study 1: Mixed Model Results
	11.7.2.4 Results of Study 2: Descriptive Analysis
	11.7.2.5 Results of Study 2: Mixed Model Results

	11.7.3 The Visualization and Analysis Application and Achieved Results

	11.8 Conclusions
	References

	12 Extraction and Visually Driven Analysis of VGI for Understanding People's Behavior in Relation to Multifaceted Context
	12.1 Introduction
	12.2 Related Work
	12.3 Theoretical and Conceptual Foundations
	12.4 Generic Methods That Support Studies of Reactions and Behaviors
	12.4.1 Representativity and Bias in Location-Based Social Media
	12.4.2 Methods for Comparative Analyses
	12.4.3 Emojis to Study Sentiment, Emotion, and Context of Events

	12.5 Application-Oriented Workflows
	12.5.1 Activity Analysis for Landscape and Urban Planning
	12.5.2 Exploring People's Mobility Behavior

	12.6 Conclusion
	References

	13 Digital Volunteers in Disaster Management
	13.1 Introduction
	13.2 Motivational Factors of Digital Volunteers in Disaster Management
	13.3 Virtual Operations Support Teams in Disaster Management
	13.4 Social Media Analytics by Virtual Operations Support Teams in Disaster Management
	13.5 Data Bias in Crisis Information Management
	13.6 Privacy-Aware Social Media Data Processing in Disaster Management
	13.7 Conclusion and Outlook
	References

	14 Protecting Privacy in Volunteered Geographic Information Processing
	14.1 Introduction
	14.2 Fundamentals
	14.2.1 Related Work
	14.2.2 On Privacy Aspects
	14.2.3 Data Retention
	14.2.4 HyperLogLog

	14.3 Concepts
	14.3.1 Privacy-Aware Storage
	14.3.2 Abstraction Layers
	14.3.2.1 Spatial Facet
	14.3.2.2 Temporal Facet
	14.3.2.3 Topical Facet
	14.3.2.4 Social Facet

	14.3.3 Filter Lists

	14.4 Case Study
	14.5 Conclusion
	References



