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This series is directed to healthcare professionals leading the transformation of
healthcare by using information and knowledge. For over 20 years, Health
Informatics has offered a broad range of titles: some address specific professions
such as nursing, medicine, and health administration; others cover special areas of
practice such as trauma and radiology; still other books in the series focus on
interdisciplinary issues, such as the computer based patient record, electronic health
records, and networked healthcare systems. Editors and authors, eminent experts in
their fields, offer their accounts of innovations in health informatics. Increasingly,
these accounts go beyond hardware and software to address the role of information
in influencing the transformation of healthcare delivery systems around the world.
The series also increasingly focuses on the users of the information and systems: the
organizational, behavioral, and societal changes that accompany the diffusion of
information technology in health services environments.

Developments in healthcare delivery are constant; in recent years, bioinformatics
has emerged as a new field in health informatics to support emerging and ongoing
developments in molecular biology. At the same time, further evolution of the field
of health informatics is reflected in the introduction of concepts at the macro or
health systems delivery level with major national initiatives related to electronic
health records (EHR), data standards, and public health informatics.

These changes will continue to shape health services in the twenty-first century.
By making full and creative use of the technology to tame data and to transform
information, Health Informatics will foster the development and use of new
knowledge in healthcare.



Gyorgy J. Simon - Constantin Aliferis
Editors

Artificial Intelligence
and Machine Learning
in Health Care and
Medical Sciences

Best Practices and Pitfalls

@ Springer



Editors

Gyorgy J. Simon Constantin Aliferis

Institute for Health Informatics Institute for Health Informatics
University of Minnesota University of Minnesota
Minneapolis, MN, USA Minneapolis, MN, USA

ISSN 1431-1917 ISSN 2197-3741 (electronic)
Institute for Health Informatics
ISBN 978-3-031-39354-9 ISBN 978-3-031-39355-6  (eBook)

https://doi.org/10.1007/978-3-031-39355-6

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this book are included in the book's Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book's
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.


https://doi.org/10.1007/978-3-031-39355-6
http://creativecommons.org/licenses/by/4.0/

I am dedicating this book to my wife,
Mayuko, and our children, George and
Klara, for their love and for their patience
with my long hours writing this book. I could
not have succeeded either in my career or
with this book without Mayuko’s dedication
and support.

Gyorgy J. Simon
I most affectionately dedicate this work to my

wife Alla, for the inspiration she gives me
daily and for her love.

Constantin Aliferis



Foreword 1

Imagine a world where you receive treatment that is precisely targeted to give you
the best outcome possible, where care is efficient and safe, and where you have
guidance in managing your health at home and are a partner in your healthcare. We
dream of a world like this, and you as a reader of this book probably see a role for
Al in making that dream come true.

Rear Admiral Grace Hopper, developer of the first compiler for a computer lan-
guage, repeated a motto coined by John Augustus Shedd: “A ship in port is safe; but
that is not what ships are built for. Sail out to sea and do new things.”! As a reader
of this book, you are leaving a safe harbor to do something hard and something risky.

I left that safe harbor in 1994 when I pivoted from my humanities university
degree in linguistics and Chinese to enroll in a graduate program in medical infor-
matics at the University of Utah. My husband introduced me to the field, and my
love of language steered me to the new world of natural language processing. In
classrooms, I raised my hand to ask about the meaning of basic words like “algo-
rithm,” “heuristic,” and “ML,” and as the only female in the campus computer lab at
2 am, I sat with my 2-year-old son asleep at my feet trying to get my linked list to
compile. I was an outsider in the world of computers and Al, and I was an outsider
in the world of healthcare. But like each of you, I brought unique experience, and
embracing that, I have been able to both develop methodological innovations and
apply those to problems like disease surveillance and creation of research cohorts
from electronic health record data.

The department where I studied was chaired by Homer R. Warner,? who founded
the department in 1964.

Homer Warner ... developed in 1961 the first computerized program for diagnosing dis-
ease. Basing it on 1,000 children with various congenital heart diseases, Warner showed
that Bayes’ [theorem] could identify their underlying problems quite accurately. “Old
cardiologists just couldn’t believe that a computer could do something better than a human,”
Warner recalled.’

'“Grace Hopper: The Youthful Teacher of Us All” by Henry S. Tropp in Abacus Vol. 2, Issue 1
(Fall 1984) ISSN 0724-6722.

2https://en.wikipedia.org/wiki/Homer_R._Warner.
3https://yalebooks.yale.edu/book/9780300188226/the-theory-that-would-not-die/.
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Homer sailed from a safe harbor, and, in doing so, he developed one of the first
electronic medical records to collect data not only to improve access to information
but ultimately to transform the diagnostic and patient care process through building
intelligence into the system.*

And now you are here, in this open sea. It has been over half a century since
Homer Warner and other pioneers developed and implemented Al systems in health-
care. The age of Al seems to be upon us. The big tech industry sees the opportunity
and is making unprecedented investments in healthcare.

So, what is the risk?

When creating innovative healthcare solutions using Al, challenges will arise in
at least three steps: development, application, and implementation. In developing
ML and Al models, you will not be able to fully trust the output of the tools, because
the learnings and predictions only represent a potentially deceptive proxy of the real
situation,’ and the algorithms are most likely learning from biased data and biased
healthcare delivery practices. In applying ML and Al models to healthcare prob-
lems, you will encounter unintended consequences—your predictive model may
lead to a rapid upsurge in overdiagnoses, for example. In implementing your tools,
you may discover that the reality does not match the hype: most never even make it
to the real world, and when they do, the results are often disappointing.® When you
put a new technology into the complex system of healthcare, everything around it
changes. You will shift relationships, you will shift workflows, and you will shift
power differentials. And those changes can cause harm.

Given the risks and the difficulty you will face, should you even launch your boat
into the sea of healthcare AI? Yes! We need you. We need the smartest brains tack-
ling problems more consequential than how to get people to click on ads.” And that
is where this book comes in. Artificial Intelligence and Machine Learning in Health
Care and the Health Sciences: Pitfalls and Best Practices will be your compass to
help you chart a more successful path.

The lead authors of this book have decades of experience teaching and doing
research on this topic. Dr. Aliferis has dedicated his career to the responsible use of
Al to improve human lives and support scientific discovery. He is an innovator of
high-performing and reliable methods with a goal of improving safety and effec-
tiveness. Dr. Simon has extensive experience in data mining, machine learning, sta-
tistical analysis, and biostatistics. He has a solid background in hands-on software
development in academic and commercial settings. The editors have pulled together
a star-studded cast of content contributors with both knowledge and experience.

“Paul D. Clayton, PhD, Presentation of the Morris F. Collen Award to Homer R. Warner, MD, PhD:
“Why Not? Let’s Do It!”, Journal of the American Medical Informatics Association, Volume 2,
Issue 2, March 1995, Pages 137-142, https://doi.org/10.1136/jamia.1995.95261907.

Shttps://www.youtube.com/watch?v=cDAXig-at5M.
Shttps://khn.org/news/a-reality-check-on-artificial-intelligence-are-health-care-claims-overblown/.

"https://web.archive.org/web/20150202014230/http://www.bloomberg.com/bw/magazine/con-
tent/11_17/b4225060960537 .htm.


https://doi.org/10.1136/jamia.1995.95261907
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https://web.archive.org/web/20150202014230/http:/www.bloomberg.com/bw/magazine/content/11_17/b4225060960537.htm
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Never before has so much wisdom about best practices in health and biomedical Al
been compiled into one place.

This book is comprehensive but also extremely practical. It provides diverse and
reliable best practices through a wide range of illustrative applications of machine
learning and Al. The book will detail specific requirements and adaptations that are
necessary to successfully tailor general algorithms and techniques to healthcare and
health sciences discovery. Authors describe common pitfalls that plague research
and commercial attempts at applying Al to healthcare and will give advice on how
to avoid repeating the mistakes of the past. Through this book, you will learn how
to develop Al applications that can be trusted and therefore have a higher likelihood
of success to achieve the goal of high performance, safety, and cost-effectiveness in
healthcare.

Pedro Domingos said, “People worry that computers will get too smart and take
over the world, but the real problem is that they're too stupid and they've already
taken over the world.”® If you come from outside of healthcare, you may be sur-
prised at how “stupid” their computers are and how long the path may be to apply
your cutting-edge innovation. If you come from within healthcare, you understand
why it has taken so long to bring the innovations you see around you to healthcare,
but you may not understand the technical aspects well enough to bridge the gap.
Studying this book will make us all more informed partners and will accelerate our
journey to improved health and discovery through Al.

Digital Health and Informatics Wendy Chapman
Centre for Digital Transformation of Health

University of Melbourne

Parkville, VIC, Australia

$Domingos, P. 2015, The master algorithm: How the quest for the ultimate learning machine will
remake our world, Basic Books, New York, NY, USA.
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The emergence of advanced technologies impacts healthcare. For several years now,
anticipation has been building that artificial intelligence (AI) and machine learning
(ML) will lead to a paradigm shift in healthcare, promoting seamless, safe, and
convenient access to healthcare services including disease management and preven-
tion. AI/ML technologies can support the diagnosis of complex medical conditions,
help clinicians make more informed decisions, and ultimately improve patient out-
comes through timely diagnosis and tailored treatment. These technologies can
facilitate the collection and analysis of diverse data including clinical data and
behavioral, genomic, and environmental datasets that all can provide unique insights
into individual healthcare needs in the context of precision health.

In my own work, I have focused on the use of technology to support aging and
studied the use of Al and ML in the space of gerontology and geriatrics. I lead the
Penn Artificial Intelligence and Technology (PennAlTech) Collaboratory for
Healthy Aging, which has the goal to identify, develop, evaluate, commercialize,
and disseminate innovative technology and artificial intelligence (AI) methods and
software to support older adults and those with Alzheimer’s disease (AD) and
Alzheimer’s disease and related dementias (ADRD) in their home environment.
These technologies cover a broad spectrum ranging from home-based monitoring
technologies and smart home sensors to robotic applications, conversational agents,
wearables, and other digital phenotyping tools. The Collaboratory is motivated by
the need for a comprehensive pipeline across technology-based monitoring of older
adults in the home, collection and processing of monitoring data, integration of
those data with clinical data from electronic health records, analysis with cutting-
edge Al methods and software, and deployment of validated AI models at point of
care for decision support.

In this work, it becomes clear that AT and ML technologies can create new oppor-
tunities for monitoring and supporting older adults and their families in a variety of
settings. However, for these technologies to be widely adopted and trusted by
healthcare providers, patients, and families, it is essential to not only generate solid
evidence of their effectiveness but also establish best practices in their development
and use.

Such best practices are important to ensure the safety and efficacy of Al and ML
technologies in patient care. As has been argued numerous times, Al and ML algo-
rithms are only as good as the data they are trained on, and if the data are biased or
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Xii Foreword 2

inaccurate, the algorithms will produce biased or inaccurate results. The conse-
quences can be significant; incorrect diagnoses can lead to harm or even death, and
bias in treatment selection may affect outcomes and exacerbate existing inequities.
Informed efforts such as using large, diverse, and representative datasets can in
many cases help to mitigate these risks and eliminate algorithmic bias. We have to
ensure the transparency and accountability of such technologies. Healthcare provid-
ers and patients need to understand how Al and ML technologies “make decisions”
and what factors influence these decisions.

Establishing best practices in the development and use of Al and ML technolo-
gies in patient care and more broadly in biomedicine is crucial for ensuring the
safety, efficacy, transparency, accountability, and ethical use of these technologies.
However, to date, data scientists in health sciences, clinicians, and administrators do
not have concrete frameworks to help them navigate this landscape. As computa-
tional advances accelerate the growth of Al and ML, the healthcare industry appears
to try to catch up with methodological, policy, and clinical guidelines. The book by
Drs. Simon and Aliferis, “Pitfalls and Best Practices in AI/ML for Healthcare and
Health Science,” addresses this gap as it provides an interdisciplinary perspective
and an in-depth insight into reliable AI/ML methods and their properties, approaches
for benchmarking, best practices for transparency and dissemination, and broad
range of tools allowing data scientists, informaticians, and clinicians to develop or
utilize AI/ML while maximizing effectiveness and safety and avoiding well-
documented pitfalls. This timely book delves into the application of Al and ML in
healthcare, exploring benefits and limitations and providing insights into the future
of Al the book features interdisciplinary and evidence-based perspectives that will
lead to more accurate, efficient, and personalized patient care.

Department of Biostatistics, Epidemiology George Demiris
and Informatics, Perelman School of Medicine

and School of Nursing

University of Pennsylvania

Philadelphia, PA, USA
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We are living in an interesting time. Broad adoption of Al is underway with very
significant achievements, including chatbots with humanlike language skills and
autonomous taxi services operating in many parts of the country, and we are at the
cusp of broad adoption of Al in clinical care and health sciences.

Al is not without its risks. We have seen Al dish out bad advice, be racist, and be
sometimes utterly incompetent. In the summer of 2019, Constantin and I sat down
to write a paper about the “Knowledge Cliff” problem in AI/ML in biomedicine.
While researching this paper, we realized that merely pointing out problems with
Al, while it is useful, is not particularly constructive or actionable. Drawing on our
decades of teaching and research, we refocused the paper into explaining the pitfalls
of certain approaches and providing actionable best practice recommendations in
six (or so) different areas. As such, one paper had to grow into six. It did not take
long to recognize that our goal requires an entire book. We also recognized the
dearth of AI/ML textbooks that focus on healthcare, its special characteristics, and
requirements, with sufficient technical depth to enable a meaningful discussion
about pitfalls and best practices of building AI/ML systems for biomedicine.

This book is meant for a broad audience; virtually anyone can benefit from read-
ing it. Although this book can be read cover to cover in sequential order of the
chapters, we aimed to make chapters self-contained (sometimes at the cost of minor
repetitions), because certain audiences benefit from some chapters more than oth-
ers. My recommendations on how to use this book for certain audiences follow.

First, AI/ML professionals with extensive training in computer science and
general-purpose AI/ML, who consider getting into healthcare or health sciences. I
am a computer scientist who made this transition into biomedicine; thus, the book
reflects on my personal experience. For this audience, the book offers overviews of
aspects of method and model development that are often neglected in general-
purpose AI/ML (Chapters “Principles of Rigorous Development and of Appraisal of
ML and AI Methods and Systems” and “The Development Process and Lifecycle of
Clinical Grade and Other Safety and Performance-Sensitive AI/ML Models” ), an
introduction to data design (Chapter “Data Design”), detailed (more detailed than
others) description of modeling methods for time-to-event and longitudinal data
(Chapter “An Appraisal and Operating Characteristics of Major ML Methods
Applicable in Healthcare and Health Science”), introduction to model evaluation
from the perspective of health benefits and health economics (Chapter “Evaluation”),
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description of healthcare standards, terminologies, and ontologies (Chapter “Data
Preparation, Transforms, Quality, and Management”), etc. The goal of our book for
this audience is to help them transition into healthcare seamlessly.

Second, analysts without a rigorous computer science training who are already
building health AI/ML models. To this audience, we cover the foundational con-
cepts in computer science, Al and ML (Chapter “Foundations and Properties of Al/
ML Systems”), a 10,000-foot view of a broad range of modeling methods (Chapters
“An Appraisal and Operating Characteristics of Major ML Methods Applicable in
Healthcare and Health Science” and “Foundations of Causal ML”), and other
important aspects of health modeling (Chapters “Principles of Rigorous Development
and of Appraisal of ML and AI Methods and Systems,” “The Development Process
and Lifecycle of Clinical Grade and Other Safety and Performance-Sensitive Al/
ML Models”, “Regulatory Aspects and Ethical Legal Societal Implications (ELSI)”,
and “Reporting Standards, Certification/Accreditation, and Reproducibility”). The
goal of our book for this audience is to entice and enable them to be more rigorous
with their work.

Third, decision makers, who wish to gain a better understanding of the capabili-
ties and limitations of Al in healthcare and health sciences. To this audience, I rec-
ommend Chapters “Lessons Learned from Historical Failures, Limitations and
Successes of AI/ML in Healthcare and the Health Sciences. Enduring Problems,
and the Role of BPs” (historic case studies and lessons learnt), “Characterizing,
Diagnosing and Managing the Risk of Error of ML & AI Models in Clinical and
Organizational Application”, “Regulatory Aspects and Ethical Legal Societal
Implications (ELSI)”, and “Principles of Rigorous Development and of Appraisal of
ML and AI Methods and Systems” for appraising existing methods, and any other
chapter that discusses topics that they wish to deepen their knowledge of.

It is my opinion that everybody will find something new. Even readers with mini-
mal technical background will find Chapters “Lessons Learned from Historical
Failures, Limitations and Successes of AI/ML in Healthcare and the Health Sciences.
Enduring Problems, and the Role of BPs” fascinating, and on the other end, experts
in AI/ML may find new nuggets of knowledge in Chapter “Overfitting, Underfitting
and General Model Overconfidence and under-Performance Pitfalls and Best
Practices in Machine Learning and AI” or about human cognitive biases (Chapter
“From ‘Human versus Machine’ to ‘Human with Machine’”) or design biases
(Chapter “Data Design”). Chapters are self-contained; please feel free to read any
chapter you find interesting.

Inspired by my co-author’s, mentors’, and collaborators’ passion for patient care
and safety, my ultimate goal with this book, and more broadly with my career, is to
promote better patient care, safety, and ethics. This book aims to lay the foundations
and instill the scientific rigor necessary for the successful implementation of helpful
and safe Al in clinical care and for making fruitful discoveries in health sciences. I
wish the reader great success in the exciting and growing field of biomedical Al

Minneapolis, MN, USA Gyorgy J. Simon



Preface 2

The promise and challenges of health artificial intelligence (AI) and machine
learning (ML). After a long history of exploration and experimentation, brilliant
successes interleaved with some striking failures, springs of optimism, and winters
of disappointment, Al has arrived and is here to stay. This realization is engraved in
the minds of the scientific community and lay public alike.

It is not hyperbolic to recognize that the Al and ML methods and technologies at
the service of health sciences and healthcare of our times are nothing short of amaz-
ing. As remarkable as the problem-solving tools we have are, in order to be deployed
for clinical and other mission-critical tasks, they have to overcome significant gaps
in performance and safety, however.

The comparison with other areas of applied technology is both striking and wor-
risome. Consider a humble and low-tech device such as an oven toaster (or any
other electric appliance operating with high voltage): in order to be approved for the
consumer market, rigorous testing must be done to ensure that it is not a fire hazard
or that it will not electrocute its operator. Bridges are not opened to public use
unless the civil engineers that built them provide plans that undergo tremendous
scrutiny and establish, for example, how much load they can withstand, what wind
forces or earthquakes they can tolerate without collapsing, and what maintenance
they need and how often. Similarly, cars, mechanical tools, children’s toys, drugs,
and so on across the whole gamut of human activity are closely scrutinized and
become available for consumer use only when sufficient measures have been estab-
lished to ensure safe application. Public and individual safety is of paramount con-
sideration and enforced everywhere.

Everywhere, except in health Al and ML, it seems. Poorly constructed, evalu-
ated, deployed, or monitored Al and ML models, apps, and systems have the poten-
tial to cause great benefit or grave harm at a massive scale. This is true for healthcare
medical applications, healthcare business decisions, and health sciences. Regulation
is only now emerging, and AI/ML products have been offered for years (often at
huge financial costs) to the trusting healthcare providers and find their ways to pro-
foundly affect human lives, without providing guarantees of effectiveness and safety.

Another related deficiency of the present state of the health AI/ML market is that
of efficiency. It would be unthinkable for a car manufacturer to market, for example,
a four-passenger automobile for everyday commuting purposes with fuel
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XVi Preface 2

consumption of 1 mile per gallon. Yet, we routinely see commercial and noncom-
mercial AI/ML offerings that are worse offenders than this example in terms of the
computing costs per unit of output when perfectly capable (or better) alternatives
exist with orders of magnitude lower costs of use.

From another viewpoint, and to use an electrical engineering analogy, the ML
models of today function as components of a larger system that presently lacks
protection against overloading the system. Well-designed consumer electrical
devices are routinely engineered in such a way that their input and output obey
specifications ensuring that a system of interconnected such units will function
properly. Nothing like this exists in health AI/ML at present.

But even if a very high standard of accountability was put in place (and steps are
being taken recently in this direction by the FDA, NIST, EU, etc. as described in the
present volume), it would be of little value, unless we could equip the data scientists
and the organizations adopting AI/ML solutions with the technical means by which
to achieve (and verify) the standard’s expectation.

Pitfalls and Best Practices: A Personal Perspective. This book aims precisely
to contributing to solving these problems by providing comprehensive information
in the form of identifiable pitfalls and practical best practices supporting the effec-
tive, safe, efficient, cost-effective, science-driven, rigorous, informed, rational, de-
risked, trust-inspiring, and accountable health Al and ML.

Some of the book’s concepts started forming in my mind many years ago when
I was a beginning graduate student in AL I have written elsewhere! how my personal
journey started and why I believed early on that Al could make medicine more sci-
entific and ultimately more effective. A formative experience of particular relevance
to this book has been the NSF-funded ML Pneumonia Prediction project led by my
graduate advisor Greg Cooper (connected with the broader Pneumonia Patient
Outcomes Research Team (PORT) cohort study). The ML project aimed at explor-
ing many cutting-edge methods of the era to create the most accurate and practical
models possible for predicting community-acquired pneumonia mortality. Several
word-class labs and Al and machine learning luminaries from the University of
Pittsburgh and CMU participated in the effort (i.e., the Bruce Buchanan lab, Greg
Cooper lab, Tom Mitchel lab, Peter Spirtes lab, Clark Glymour lab), along with Dr.
Michael Fine, the leader of the PORT study, which ended having very significant
impact nationally. Everyone strived to produce the best models working off a single
discovery dataset. In these circumstances, it would have been very easy to totally
overfit the models, but thanks to Greg’s scientific foresight and rigor, a nested cross-
validation design and other safeguards were put in place to eliminate the risk of
overfitting and taught me a career-defining lesson about the value of pursuing high-
stakes modeling with utmost rigor.

As I started my career as a faculty, 24 years ago, I placed significant emphasis on
the modeling challenges of the very novel at the time gene expression microarray,
mass spectrometry, and other high-dimensional data. I was surprised and occasion-
ally dismayed at what appeared to be technical abuse and overinterpretation of

https://imia-medinfo.org/wp/history-book/
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methods with widespread lack of rigor in the bioinformatics field fueled by exuber-
ant expectations. In one of many memorable incidents during my early faculty
career, a cancer biology professor, whom I respected very much for his scientific
accomplishments, reached out to me one day and asked me if I could “cluster his
gene expression data to predict cancer.” I asked how many patients he had assayed,
and to my astonishment, he said “three.” I asked him what made him believe that
clustering three patients in two groups would have any statistical validity and pre-
dictive modeling usefulness, and to my continuing amazement, he showed me a
recent copy of one of the two most respected biology journals. “Can’t you just do it
like they did it in this article?”” he asked, pointing to the cover article. This incident
was representative of the whole field of genomics of the time at the infancy of high-
throughput technology and showed me that applying complex AI/ML to genomic
datasets had a long way to go in terms of educating many of the key practitioners.

Over the years, [ watched many scientific accomplishments and breakthroughs in
pure Al and machine learning and followed the numerous applied biomedical
advances that they enabled. I also built new methods and put those and every other
major technique invented by others to practice, in many NIH-funded projects. I
taught students and early-career faculty Al and ML and watched how this knowl-
edge helped them in their careers. I also organized and oversaw at NYU and my
current institution, the UMN, institutional-level research support teams and cores
that deployed Al and ML via consulting, and team science for hundreds of projects
and thousands of consults between 2008 and today. I also gave invited lectures in
both academic and industry settings about the dangers inherent in Al and ML when
not used with enough rigor and discipline. I followed closely the literature and
developments in regulatory frameworks, best practices, and major failures and case
studies in AI/ML. Finally, my group conducted some of the largest (and in some
cases, I dare say, authoritative) benchmarks of ML in several fields of biomedical
research.

Embarking on a long-overdue project. It was thus about time in 2021 to finally
put together a book distilling the above information in a format that would be acces-
sible, backed up by all relevant scientific evidence, and practically useful for work-
ing scientists, students, administrators, practitioners, and other stakeholders of
health AI. With regard to style, a great influence has always been the late Richard
Feynman and his monumental Lectures on Physics, in which he managed to con-
dense the full range of physics, sparing no difficult subject, in a way that was acces-
sible to first-year college students, without getting vague or sacrificing accuracy.
Tom Mitchell, Sholom Weiss, and one of my most respected role models, Casimir
Kulikowski, achieved in their corresponding books on ML similar levels of clarity,
accuracy, and accessibility. Gyorgy and I used the above three works as inspiration
and our “Northern Star” in terms of clarity and accessibility for the present volume.

Best practices imply necessary conditions for success, or necessary and suffi-
cient conditions in some cases. But it also, unavoidably, involves describing suffi-
cient conditions for failure that need to be prevented. Not uncommonly, when the
knowledge in some topic is not enough to delineate with absolute certainty what
needs to be done, a best practice is no more than the best possible recommendation
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for how to apply AI/ML given the limited knowledge of the time. In Chapter
“Artificial Intelligence (AI) and Machine Learning (ML) for Healthcare and Health
Sciences: The Need for Best Practices Enabling Trust in Al and ML”, we explain in
detail the sources for best practices and pitfalls presented in this work. We decided
early on that we should not expunge from this work our personal experiences or
hands-on expertise in specific methods and applications. We resolutely decided,
however, that this book should not be a summary of our preferred way of developing
and applying AI/ML, and our own personal practices would have a place here if and
only if they are solidly backed by the scientific evidence in the literature and if they
are paradigmatic of the various messages we wish to convey. In many chapters, this
decision has worked particularly well, in my view, because we were able to dive
deeply into topics that would be hard to present in a clear manner if we did not
describe details stemming from in-depth and first-hand experience (Chapter
“Principles of Rigorous Development and of Appraisal of ML and Al Methods and
Systems” on method development and appraisal is an example whereby we try to
“lift the curtain” and show, from the inside, an example of how rigorously-designed
and -executed new methods can come to existence).

Regarding helpfulness and defensibility, we realized that such a book should be
constructive but not sugarcoat the facts. This is not a volume about presenting on
even ground all methods, systems, or efforts, without taking a position on strengths,
weaknesses, and relative performance. The result may not be viewed favorably
within circles where dogged devotion to this or the other method supersedes objec-
tive performance considerations. This is however a book about pitfalls and best
practices. The notion of pitfalls entails dangers, failures, and risk that we should
avoid or minimize. It is imperative that all students, teachers, and practitioners of
AI/ML embrace its collective history, learn from it, own any mistakes made, and not
repeat them again. Showcasing failures in the field is not intended to diminish the
people or organizations behind them, but to learn from these case studies how to do
AI/ML in a safe and effective manner. Conversely, it is essential to show what can
(and does) happen when AI/ML is not done systematically with sufficient scientific
and technical rigor. Naturally, it is entirely possible to disappoint people whose
methods or practices are criticized. Gyorgy and I took this seriously into account,
but we balanced it with the need to present scientific truth (the best way we can
grasp it anyway) and above all to protect patients. AI/ML can critically affect the
well-being of patients and of society and will increasingly do so in the future,
after all.

In terms of scope, we cast a very wide net, first taking a broad look at all types of
health science and healthcare applications of AI/ML. We generally refrain in the
book from engaging in analysis of methods with only historical significance, except
in cases where historical case studies or other works are highly informative for
modern-day AI/ML. We retrieved all health AI/ML best practice and guideline
papers as well as meta-analyses and systematic reviews of AI/ML methods and
model comparisons across all biomedical fields, in PubMed. Chapter “Artificial
Intelligence (AI) and Machine Learning (ML) for Healthcare and Health Sciences:
The Need for Best Practices Enabling Trust in Al and ML” gives a glimpse of that
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space. This material was supplemented with our personal collection of AI/ML
books and papers, which comprises thousands of entries plus many more that were
identified in PubMed and Google Scholar to help with topics outside our usual
scope of work. We synthesized and integrated prior best practices, in many cases
invisibly to the reader, and in some cases bringing certain preexisting best practices
to the forefront of the book because we saw them as very important, or in need of
discussion, extensions, etc. Most importantly, we placed a huge emphasis on prin-
ciples of operation and properties of AI/ML methods for two reasons: on the one
hand, these provide the necessary justification for recommended use (or avoidance).
On the other hand, method properties can be applied to infinite situations and the
readers can tailor them to their own specific projects, which we could not possibly
anticipate in full, whereas guidelines and best practices are by necessity more con-
text and problem sensitive. We also worked to modularize the recommended prac-
tices to mirror the stages that AI/ML methods are being created, validated, and
deployed. This should make reading the material easier. In the end of the book, we
provide a collection of all best practices and annotate them as being high or medium
impact and as being highly mature or evolving. High-impact recommendations are
ones that following or discarding them will have the gravest consequences across
most contexts of use. Lower impact ones may have lesser consequences or signifi-
cant consequences but in a small portion of application areas. Evolving best prac-
tices are ones that will likely improve over time as the field’s understanding
advances, whereas highly mature ones are so foundational that they will almost
certainly continue to be applicable far into the future.

Minneapolis, MN, USA Constantin Aliferis
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Abstract

In the opening chapter we first introduce essential concepts about Artificial
Intelligence and Machine Learning (AI/ML) in Health Care and the Health
Sciences (aka Biomedical AI/ML). We then provide a brief historical perspective
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What Is Machine Learning? Algorithms, Programs, and Models

A myth that was pervasive in earlier stages of the history of computing was that
computers can only solve problems (or perform actions) that a human programmer
had specifically instructed them how to tackle. As even the broad lay audience can
appreciate circa 2023, computers equipped with Machine Learning (ML) capabili-
ties can learn from data how to perform intelligent tasks and perform complicated
problem solving on their own [1-3]. Whereas the ML algorithms are typically pro-
grammed by humans, once implemented, these types of software can interpret data
in ways that far exceed the capabilities of their human creators, not just in terms of
speed but also by making inferences that are qualitatively superior to humans, for
example by avoiding human cognitive biases and blind spots and performing infer-
ences that humans do not do at all or are not good at performing (e.g., pattern rec-
ognition in very high dimensional spaces sometimes in the 10 variables scale or
more) [4]. In addition, whereas ML programs are currently typically presented with
data prepared by human operators/analysts, it is entirely possible (and in some cases
routine) to collect data on their own, or instruct human operators to collect data
needed for problem solving [5-7].

Definition
Machine Learning (ML) is the science and technology of computing sys-
tems that learn how to solve problems by analyzing data related to the
problems.

To go into slightly more detail, ML algorithms implemented in ML programs
and systems, use so-called training data from which they build problem-solving
models. It is useful to understand these important concepts further since there is
confusion among the non-technical audience (including biomedical scientists and
healthcare providers and administrators).

A computer program is a set of instructions that a computer can understand and
execute toward performing a task intended by the program [8]. For example, a pro-
gram written in the language Python that instructs a personal computer with the
ability to execute Python commands, how to sort a set of numbers into descend-
ing order.

A software computer system is a complex set of interconnected programs that
perform a number of interrelated functions. For example, an Electronic Health
Record (EHR) system comprises a set of programs and databases that manage
patient data to support patient care, record actions for compliance, perform billing
and reimbursement, etc.

A computer algorithm is a generalized (programming language-agnostic) set of
computer instructions designed to solve a class of problems. Computer algorithms
are presented in a form (so called pseudo-code [9]) that is geared towards being
interpretable by humans. In contrast, computer programs are written in a computer
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language that is interpretable by computers. For example, the “quicksort” number
sorting algorithm is a set of instructions, written in a format meant for human inter-
pretation, that can be translated to any general-purpose computer programming lan-
guage. Furthermore, the quicksort algorithm needs to be translated by a programmer
into a programming language, a process known as implementing the algorithm,
before it can be executed by a computer. In another ML example, the ID3 algorithm
creates, from previously-diagnosed patient data, decision tree models that can be
used for diagnosing new patients.

An AI/ML model is therefore a computable representation of some problem-
solving domain so that when informed with a set of inputs describing specific
instances of the problem space, outputs solutions to those. These models are created
by hand by using Al knowledge and other knowledge engineering methods and
tools, and in the case of ML fully automatically from training data [10].

Computer algorithms [9, 11] have a number of distinguishing characteristics
Jfrom computer programs:

(a) They (typically, and formally) not need be described in a specific program-
ming language, but in pseudo-code, as previously explained.

(b) They represent a potentially infinite set of programs that can be imple-
mented in every applicable programming language and computing
environment.

(c)  When properly constructed, they have well-defined properties that guaran-
tee performance, error free (or error-acceptable) operation, generalizabil-
ity etc. (more on this later in the book).

(d) When properly implemented (i.e., translated to a specific programming
language) they guarantee that the algorithm properties are imparted in the
particular program that implements the algorithm.

The field of Design and Analysis of Algorithms studies the properties of algo-
rithms (and associated data structures [9, 11] (i.e., ways to represent and organize
data for storage, retrieval and other operations)) and methods to design algorithms
for specific problems so that desired operating characteristics (e.g., speed, memory
usage, accuracy etc.) are achieved.

Pitfall 1.1

Very commonly in the commercial healthcare space a computer program or
system implements unspecified, undisclosed or insufficiently-analyzed
algorithms, hence no-one knows what the properties of the program are.

In chapter “Foundations and Properties of AI/ML Systems” but also in several
other places of the present volume, we will address the fundamental issue of guar-
anteed properties of AI/ML systems and best practices enforcing those.
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Pitfall 1.2

In healthcare and the health sciences, clinical algorithms are often confused
with computer algorithms (including ML algorithms). A clinical algorithm
[12, 13] describes diagnostic, risk assessment, preventative, treatment or other
actions needed to care for patients with specific diseases, usually in the con-
text of evidence-based guideline-driven medicine. It can be written in human
language or specialized computable languages. A clinical algorithm is a
human-assistive decision model and is not an algorithm that can learn how to
solve the problem from data. Finally, a model produced by a ML algorithm
can serve as a clinical algorithm in a health care setting.

ML algorithms are therefore implemented in ML computer programs that when
presented with training data, learn and output decision models. In chapters “An
Appraisal of Operating Characteristics of Major Machine Learning Methods
Applicable to Healthcare and Health Sciences”, and “Foundations of Causal
Machine Learning” we will review major ML families of algorithms and describe
the types of models they output. In several other chapters of the present volume
we will discuss specific algorithms and models and their characteristics and
optimal use.

Well-constructed ML models do have general applicability beyond the training
data, otherwise they would be just a catalogue of past problem instances and their
solutions, without the ability to be used for new problem instances. Machine
Learning theory [14, 15] provides results and techniques that enable and ideally
guarantee the generalization properties of ML models beyond the training data.

Artificial Intelligence (Al); Types of Al and ML Tasks;
on the Pervasive Applicability of ML and Al

The language we adopted on ML algorithms as a means of solving problems, has a
deeper significance as it relates to the definition of Artificial Intelligence. AI depend-
ing on the context, the era and the author, has been viewed as (a) the field of science
and technology that investigates the creation of fully autonomous computer systems
(i.e., “Intelligent Systems”); (b) exhibiting intelligence capabilities indistinguish-
able to those of humans (i.e., so-called “hard AI”); (c) providing the empirical
means for putting forth and testing under controlled (computer lab) conditions theo-
ries of cognition; or (d) creating programs capable of solving hard (computational,
mathematical, cognitive, decision, optimization and other inferential) problems [2].
Operationally we will adopt the following view on Al:

Definition
Artificial Intelligence (AI) is the science and technology of computing sys-
tems that can autonomously solve hard inferential problems.
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Such problems historically have been associated with the prerequisite of
“intelligence”.

From a perspective of organization of scientific fields and their relationships, ML
is one of the fields of Al which, in turn, is a field of Computer Science (CS). At the
same time, ML is a core part and arguably the most important component (along
with statistics) of the nascent field of Data Science.

Definition

Data Science is the field of science and technology that studies the: (a) design
and execution of data measurements, sampling/collection; (b) data represen-
tation and management, harmonization, secure storage and transmission; (c)
analysis, interpretation, and (d) deployment of results in applied problem-
solving settings.

Data Science spans and connects several fields including ML and statistics,
as well as parts relevant to data sampling and modeling from applied mathe-
matics, operations research, econometrics, psychometrics, decision sciences,
information science, scientometrics and bibliometrics, statistical genetics and
genomics, etc. [16, 17].

Figure 1 shows the relationship among Computer Science, Al and ML. As can be
seen in the figure, both AI and ML are very diverse and developed, comprising
many types of research, systems, algorithms, and applications.

An important pitfall (the importance of which will become abundantly obvious
in this volume) is to consider one very narrow subfield, for example Deep Learning,
as the totality or the main focus/armamentarium of all of ML and Al, or as another
example, considering ML as the totality of Al. This has serious consequences as we
will see in this book because it prevents users of Al and ML to have the right per-
spective in which a plurality of methods can be brought to bear on solving problems
by matching the right method to the problems at hand.

Pitfall 1.3

Very commonly novice advocates of ML and Al, or vendors promoting cer-
tain products will present the whole field as being about one narrow technol-
ogy or a small set of tools, ignoring the broader spectrum of available options
that can solve the problem at hand. The many options available however, have
hugely varying performance characteristics that need careful consideration as
no single class of methods is suitable for all biomedical problems.

In the present book we place a heavy emphasis on data-driven forms versus expert-
knowledge-driven Al, for the following reasons: first, modern health Al is predomi-
nantly data driven and will continue to be so in the foreseeable future. Second, ML
is vastly more scalable than expert knowledge-driven construction of Al systems.
Third, ML has many pitfalls and intricacies that require addressing. Fourth, ML is
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also an important component of other forms of Al (e.g., NLP, computer vision,
robotics). Finally, the highlighted pitfalls and best practices are often useful for both
ML and other forms of Al

Readers not already deeply familiar with AI/M applications in the health sciences
and care delivery are likely to be surprised by the extraordinarily wide range of
applications of these fields. This pervasive applicability of ML and Al is not acciden-
tal, however. It can be immediately grasped once one considers that both health sci-
ences and care are fundamentally designed to pursue discovery and application of
predictive and causal knowledge. Predictive modeling encompasses diagnosis,
prognosis, forecasting and general pattern recognition [1-4]. Causal modeling [ 18-
20] seeks to discover cause-effect relationships, to quantify their effects, and to
choose among various interventions those that will maximize some desired outcome.
It encompasses discovery of laws of biology, therapeutics, understanding the factors
that drive system and patient-level outcomes such as development, treatment and
prevention of disease at the individual level. At the level of the system of care, they
encompass intervention on factors that affect quality of care, costs, reimbursements,
patient experience and all other desiderata of health systems [21].

Neither General Al/ML, Nor Biomedical Al/ML Are New.
Highlights of Achievements of Biomedical Al/ML

The general public became aware of Al and ML as a viable technology in very
recent years as a result of the emergence of commercial offerings backed by estab-
lished corporations as well as numerous startups catering to healthcare systems and
health research organizations. The scope of adoption and widespread use of Al and
ML, is currently breathtaking and includes: autonomous vehicle navigation (cars,
airplanes, industrial robots), cybersecurity, fraud and spam detection, financial
applications, internet and e-commerce applications, manufacturing, games, educa-
tion, legal, and numerous other applications [22].

In healthcare and the health sciences, examples of successful applications include
automated diagnosis, prognosis, treatment selection (using as inputs: coded clinical
data, text reports, images, omics data, etc.) [23]; discovery of gene mutations causing
specific forms of cancer or other disease [24]; precision medicine tests (e.g., genes’
expression level patterns determining response to a treatment used for treatment selec-
tion) [25]; automated evaluation of scientific papers to determine whether the research
design was good [26]; annotating genomes and other genetics applications [27]; pre-
dicting tertiary & quaternary protein structure from amino acid sequence [28]; pre-
dicting drug-drug and drug-food interactions [29]; medical imaging [30] and numerous
other applications which we will cover in depth in the present volume.

The advent of big data in particular, in healthcare and population health (e.g.,
EHR, sensor, environmental, social networks) and the health sciences (e.g., genom-
ics, proteomics, metabolomics, microbiomics, copy number variation, and other
“bulk” and single cell “omics” data, deep sequencing databases, research consortia
data, etc.) has simultaneously demanded the development of high-quality scalable
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analysis methods and strongly incentivized their deployment at scale [31]. In the
last 20 years there is a synergistic co-evolution of big data generation/capture and
ML-driven analysis and discovery with key themes of modern health science and
health care such as: rational drug development [32], modern post-sequencing era
genomics precision and personalized medicine [25], learning health systems and
care cost/quality/experience improvements [33], to mention just some of the key
developments that depend on ML and Al and that are foci of the present work.

To give a sense of the immense scope and rapid maturity with respect to health
outcomes the following searches! return:

((“outcomes” or “health services”) and “machine — 6255 results (most since 2015)
learning”)
((“outcomes” or “health services”) and “machine — 240 results

learning”) and “‘systematic review*

These systematic reviews (not cited explicitly here for space, but readily retriev-
able from PubMed with the stated queries) represent broad application areas with
significant and diverse bodies of work. They include predictive, prognostic, diag-
nostic and etiologic outcomes modeling in:

Neurosurgical outcomes, depression, obesity, surgical outcomes, EEG classifi-
cation, dermatology, urology outcomes, suicide prevention, Covid mortality,
autoimmune disease outcomes, stroke, various cancers, dementias, orthopedic
surgery, heart failure outcomes, pregnancy outcomes, imaging and radiomics
analysis, sepsis in the ICU, managing covid-19, assessing physician compe-
tence, hematopoietic stem cell transplantation (HSCT), various infectious dis-
eases, cardiac surgery, management and treatment of burns, infant pain
evaluation, management of heart failure patients, bipolar disorder, degenera-
tive cervical and lumbar spine disease, cardiovascular outcomes from wear-
abledata, psychosocial outcomes in acquired brain injury, acute gastrointestinal
bleeding, personalized dosing of heparin, Parkinson’s disease, genetic predic-
tion of psychiatric disorders, diabetes, clinical deterioration in hospitalized
patients, community-based primary health care, palliative and end-of-life
care, hypertension, graft failure following kidney transplantation, outcomes in
neonatal intensive care units, degenerative spine surgery, predicting fatal and
serious injury crashes from driver crash and offense history data, health care
spending, extraction of data from randomized trials, improving medication
adherence in hypertensive patients, neighborhood-level risk factors, gait anal-
ysis, wearable inertial sensors to quantify everyday life motor activity in peo-
ple with mobility impairments, outcome prediction of medical litigation,
rheumatic and musculoskeletal diseases, analysis of patient online reviews,
chronic low back pain, risk of readmission and several other topics.

'Conducted on June 2, 2022
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Fig. 2 Number of PubMed publications with MeSH term “Artificial Intelligence” (left) and key-
word “Machine learning” (right) in the years between 1990 and 2022. To facilitate the comparison
of growth between AI/ML and publications in general, the black dotted line represents (a down-
ward scaled version) of the total number of publications in PubMed

PubMed is also informative on relative literature volumes pertaining to AI/ML
methods and applications, and their trends?:

Figure 2 illustrates the explosive growth of ML and Al through the number of
Pubmed publications over the years between 1990 and 2022. The blue line repre-
sents the number of publications for Al [MeSH] (left) and Machine Learning
[Keyword] (right); the black dotted line represents the scaled number of total cita-
tions (from any field). The rate of growth in Al and ML far outpaces the overall
growth rate of publications since 2015.

In Fig. 3, we show how the growth in health Al is distributed over some of its sub-
fields. Machine Learning enjoys most of the growth, with Natural Language Processing
(NLP) and Image Analysis following closely. Modern advances in Machine Learning,
Deep Learning in particular, serve as an enabling technology for both of these subfields.

Other subfields, such as Knowledge Representation exhibited a more modest growth,
while Expert Systems appears to have experienced negative growth since they are being
replaced by ML. We need to remember that PubMed focuses on biomedicine.
In terms of absolute volume of publications, the following tables provide rele-
vant data (Table 1):
These results are to some degree an artifact of the indexing of articles employed
by Pubmed. For example:
— 489,442 results

“clustering” (which is a form of ML)
— 23,746 results

“Artificial neural network’ (Mesh term)

But:
“Deep learning” (Mesh term) — 40,377 results

2conducted on June 2, 2022, and using Mesh index terms when available
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Fig. 3 Trends of publications in various subfields of AI between 1990 and 2022

Table 1 Health AI/ML

“machine learning” (Mesh term)  — 89,260 entries
publication volumes

artificial intelligence (Mesh term)  — 165,990 results

(“artificial intelligence” or — 113,531 results
“machine learning”) (keywords)

Caveat: Deep Learning is a special type of artificial neural network, which entails
that if indexed properly the entries indexed by “artificial neural network™ should be
a strict superset of the entries indexed by “Deep Learning”.

As to articles with key types of ML, in addition to the ones above we see:

“Decision tree”” (Mesh) — 23,206 results
“Support vector machine” (Mesh) — 22,675

“Genetic algorithm” (Mesh) — 90,728 results
“Random forest” (Mesh) — 23,357 results
“Bayesian network” (Mesh) — 10,076 results
“Bayesian classifier” (Mesh) — 12,503 results

“Granger causality” (Mesh) — 3810 results
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With regards to major types of Al in addition to the ML ones mentioned we see:

“Autonomous robot” — 2743 results (most since 2005)
“Expert systems” — 20,627 results (most since 1990)
“Knowledge representation” — 12,526 results (most since 1990)
“Semantic network” — 6482 results (most since 2005)
“Natural language processing’ — 9659 results (most since 2005)

The exponential-rate growth of most of these methods in the biomedical literature
started and took place for the most part in the last 15-to 30 years. It is worth noting that
in the field of Biomedical Informatics (aka Health Informatics) seminal publications
in ML and Al appeared as early as in 1959, however. The 1959 article by Ledley and
Lusted [34] is particularly important since it anticipated many of the key themes and
methods that were rediscovered (and in some cases ignored) by modern commercial
vendors and academic or industry adopters of biomedical AI/ML 63 years later.

Similarly, the 1961 article by Warner et al. is [35] is a seminal paper for the field
of Medical Informatics and describes a ML-based approach to improving diagnosis
in a significant disease, later expanded to many other diseases in the 60s all the way
to the 80s by these and other pioneering investigators.

Another important seminal early work, this time in human expert knowledge-
driven Al was the work by Miller et al. [36]. This notable Al system employed
heuristic knowledge representation and reasoning that managed to perform at a hard
reasoning task (challenging diagnostic cases across all of internal medicine) at a
level that matched or in some cases exceeded expert physicians. This system was
emblematic of the efforts in the 70 s and the 80 s to create Al that was driven by
extracting and representing in computable form human expert problem solving.
These efforts were followed by newer ML-based systems with the advent of more
capable ML algorithms and representations taking advantage of increasing amounts
of training data, such as Bayesian Networks and other sophisticated Bayesian clas-
sifiers [37, 38], early multi-layered artificial neural networks [39, 40], decision tree
learners and other ML algorithms [1-4] that vastly outperformed in ease of use,
cost-effectiveness and accuracy early ML algorithms and human expert knowledge.

The “Perfect Storm” for Biomedical AI/ML

The ability to capture massive Big Data (as indicated above) in the 2000s and
onward, fueled the explosive application and refinements in kernel-based
nonlinear classifiers (e.g., SVMs) [1-4], boosting algorithms, causal discov-
ery and inference algorithms [18-20], deep artificial neural networks [39, 40,
41], significant extensions to decision trees (Random Forests [42]), regular-
ized versions of statistical regression algorithms [43], and other methods that
could now manage tens, hundreds and in some cases millions of variables
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with modest compute requirements and most importantly with extreme toler-
ance to low sample sizes without overfitting [44]. These methods exhibited
properties that classical statistical science and practice previously considered
impossible [4, 14]. Some types of newer algorithms also had the ability to
discover causality without experiments which have also been considered pre-
viously impossible [18-20] and newer scalable causal algorithms that made
application to high dimensional data as well as scalable hybrid predictive and
causal modeling feasible [45—48]. This “perfect storm” for biomedical AI/ML
led to its current cycle of explosive growth. It is not surprising that the above
developments in general Al and ML are closely associated with the work of
9 Turing award recipients (Marvin Minsky, John McCarthy, Herbert
A. Simon, Edward Feigenbaum, Raj Reddy, Judea Pearl, Yoshua Bengio,
Geoffrey Hinton, Yan Le Cun), and 7 Nobel Prize recipients in economics:
(Herbert A. Simon, Daniel Kahneman, Clive Granger, Thomas A. Sargent,
Christopher A. Sims, Joshua Angirst, Guido Imbens) solidifying thus the sci-
entific credibility and immense importance of these methods.

Yet, despite all of this scientific activity and accomplishments (>three million
entries in Google Scholar mentioning ML and > three million mentioning Al as of
2023), these fields have been presented to the general public and the non-experts, as
either entirely new, or they have been presented as invented recently in the labora-
tories of a handful of commercial companies. This brings us to another important
pitfall:

Pitfall 1.4

The field of general and biomedical AT and ML is not a new one. Ignoring the
vast literature and re-inventing the wheel in some cases, fails to take advan-
tage of a wealth of very substantial prior work that can inform effective, safe
and cost-effective use. Methods that have undergone rigorous development,
analysis and validation over many years have in general better-understood
properties, better performance robustness, and better operating safety charac-
teristics than newer less well-developed methods.

Best Practice 1.1

When considering development or application of AI/ML, ensure that it is
informed by the well-developed and evaluated pre-existing science and
technology.
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Differentiation of Biomedical Al and ML
from General-Purpose AI/ML

Another important pitfall we will address in this volume is the distinction between
general purpose Al & ML versus biomedically-tailored Al & ML.

Pitfall 1.5

Biomedical AT and ML have specific requirements and adaptations tailored to
the goals of healthcare and of health sciences discovery. Al and ML devised
and tested in unrelated fields have very different properties and do not ensure
the goals of healthcare and health science applications.

A summary of the adaptations and differentiation, to be elaborated further in this
volume, is as follows:

Biomedical AI/ML:

(a) Is driven by, and has strong interactions with clinical objectives, health
economics, and healthcare delivery within specific health systems.

(b) Requires the ability to handle very large dimensionalities (i.e., number of
variables).

(c) Requires the ability to handle very small sample sizes without overfitting.

(d) Must be equipped with the ability to discover and model causality, since
it is often necessary to estimate effects of interventions.

(e) Requires specialized data operations and the ability to handle diverse data
types including clinical coded data, text, imaging, biomolecular data, and
combinations.

(f) Places great emphasis on accuracy, cost-effectiveness, quality control and
de-risking.

All of these requirements will be addressed in detail in the present volume.

Future Potential of Biomedical Al/ML

As widespread and rapidly growing biomedical AI/ML is, it has potential for orders
of magnitude more growth. For example, compared to classical biostatistics, AI/ML
has a smaller data science footprint in biomedical literature as revealed by the fol-
lowing PubMed searches:

“Cox regression” (Mesh) — 105,385 results
“Chi square test” (Mesh) — 116,546 results
“ANOVA” (Mesh) — 522,350 results

“Regression” (Mesh) — 1,011,918 results
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AI/ML methods are rapidly substituting complex inferential statistics and/or

are extending them in substantial ways, however. There are many signals for
the forthcoming growth of biomedical AI/ML. We mention a few strong
indicators:

(a)

(b)

(c)

(d)

(e)

()

In the domain of molecular profiling for precision medicine [25], only just a
handful of such profiles have been brought to market so far, although, >170,000
molecular signature papers have been published (many of them showing feasi-
bility of clinical signatures). The number of patient-touching precision tests
expected to be in use at any given time in the future, if estimated as the combi-
nation of (diseases * drugs), exceeds 100,000.

Other areas where massive biomedical AI/ML growth is expected include
health systems outcomes improvement [21] with hundreds of thousands of Al/
ML models conceivable to be developed and deployed in the future, assuming
that at least one model will be deployed for every major decision/disease/out-
come combination that is affecting patients, units and systems.

Similarly in the space of precision clinical trials [25] currently much less than
1% of all trials are precision trials and migrating to this model of clinical thera-
peutics validation will necessitate application of AI/ML at scale across the
research domain (>20,000 new large new trials annually).

In radiology, we can safely expect a massive transition to computer-assisted
(and in some cases fully automated) interpretation of clinical or research imag-
ing, across many health science and care domains.

In single-cell transcriptomics and other omics (including “multiplexed” combi-
nations) and their spatiotemporal extensions, the use of AI/ML is absolutely
necessitated by the immense dimensionalities (> 5000 cells * 10,000 molecular
probes with current technology yields dimensionalities of > 50 million vari-
ables per patient/research subject). Single-cell omics technologies are the suc-
cessor of bulk deep sequencing technologies (themselves the successor of
microarray technologies) and according to all indications, will be driving bio-
logical discovery for decades to come. If these precursors are an indication,
then 100,000 s of applications of AI/ML single-cell omics are to be expected
[49, 50].

The vast majority of models referenced in the hundreds of systematic reviews
(covering thousands of modeling studies) mentioned in section “Neither
General AI/ML, nor Biomedical AI/ML are New. Highlights of Achievements
of Biomedical AI/ML”, are pre-clinical or otherwise feasibility efforts as stated
in the corresponding systematic reviews. These reviews found very promising
results but identified that the models have not yet reached the clinically mature
stages needed for broad deployment. Closing this gap will undoubtedly be a
large part of the future of health AI/ML.
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Pitfalls and Related Lack of Best Practices Undermine
Biomedical Al/ML. AI/ML Trust and Acceptance

The strong and sustained trends outlined above in the literature and commercial Al/
ML, suggest that AI/ML will grow to be a science and technology that permanently
and irrevocably enables progress across all aspects of health science research and
health care delivery. There is an ethical and utilitarian necessity therefore for this
science and technology to be executed with an emphasis on meeting performance,
safety, and cost-effectiveness requirements.

Performance requirements entail that AI/ML has to be accurate and minimize
false positive and false negative results. For example, the massive application of Al/
ML if allowed to generate false positives will drown the research system in noise,
rendering the space of scientific investigation a destructively low signal-to-noise
environment. Avoidable false negatives due to poorly thought AI/ML represents the
space of corresponding opportunity cost.

Safety requirements entail that AI/ML systems applied in clinical care settings
as well as preventative policy and other public health settings should not allow for
any avoidable errors of either wrong treatment/intervention decisions that incur risk
to patients, populations, or systems of care. They should also not allow errors of
failing to identify opportunities to improve patient/human subject health (for exam-
ple, diagnosis of treatable diseases, opportunities to improve cost and quality of the
system of care) as such failures translate to decreased life expectancy/quality of life
of individuals, populations and negatively affect the health systems that care
for them.

Cost-effectiveness requirements entail that AI/ML systems applied in care set-
tings as well as health science discovery should not be wasteful in either time-to-
results, or compute requirements, or sample size requirements, or cost of decisions.
The costs of such inefficiencies can quickly become unmanageable.

Perspectives on building trust, adoption, and acceptance of technology by
humans (as individuals or at the society level) are diverse and encompass perfor-
mance, economic, legal, accountability, ethical, psychological, social and other fac-
tors [51-59]. Operationally we frame the above requirements from the perspective
of stakeholders using a Biomedical AI/ML trust and acceptance framework, com-
prising the following 7 dimensions:

1. Scientific and Technical Trust and Acceptance. AI/MLmodels must be
accurate at deployment (e.g., low error rate, not falling outside their bound-
aries of strong performance (known as their “knowledge cliff”)).

2. Health System Trust and Acceptance AI/ML models must be safe, cost-
effective and well-embedded in systems of health with clear benefits and
without unexpected/unacceptable risks, disruptions or other negative
consequences.
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3. System-of-science Trust and Acceptance. AI/ML models must be safe
and cost-effective to operate in the system of science without unexpected/
unacceptable risks and consequences.

4. Beneficiary Trust and Acceptance. AI/ML models must be accepted by
patients and human subjects individually and at the community level.

5. Delivery and Operator Trust and Acceptance. AI/ML models must be
accepted by clinicians and scientists.

6. Regulatory Trust and Acceptance. AI/ML models must be compliant to
applicable laws and approved by regulatory bodies.

7. Ethical Trust and A cceptance. AI/ML models must be non-discriminatory
and must promote health equity and social justice related to health science
and care (e.g., by being non-discriminatory on the basis of race, socioeco-
nomic factors, gender, etc.).

In their 2022 program solicitation (NSF 22-502), entitled “National Al Research
Institutes Accelerating Research, Transforming Society, and Growing the American
Workforce”, the National Science Foundation (NSF) acknowledged that identifying,
prioritizing, and satisfying the fundamental attributes that render an Al trustworthy are
open research challenges. Notably the program described trustworthiness through
examples from other areas of mature technology such as automobiles or electric light-
ing. These systems are trustworthy, “because they are reliable, predictable, governed
by rigorous and measurable standards, and provide the expected benefits. Facilitated
by basic knowledge of their operation, we are familiar with common faults and how to
address them, and there is infrastructure to deal with problems we cannot handle our-
selves.” It’s a compelling proposition that health-related Al should have similar
characteristics.

The whole purpose of the present volume therefore is to outline a set of pre-
ferred practical requirements and methods (“Best Practices’) that will move
us forward to biomedical AI/ML that avoids pitfalls and achieves the 7 dimen-
sions of trust, acceptance and eventual adoption. In order to justify the require-
ments and assemble/build the proposed best practices we will also need to introduce
a body of necessary technical background knowledge.

Intended Purpose and Audience of the Book

Al & ML are extremely popular topics and numerous books are available, generally
falling into four categories:

1. Hands-on instructional texts on how to build a general-purpose Al system, e.g.,
using a particular Python software package. Such books are not specific to health
care or health sciences and their specific problems; nor do they provide a strong
conceptual understanding of how different models work and how this relates to
their applicability to different health problems.
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2. General purpose data mining, Al, and ML textbooks. Such books do not relate to
health care or health science and do not give advice on how to develop models
specifically for health care or any other area: they focus on a very narrow aspect
of model development. Moreover they do not differentiate between feasibility
and exploratory analysis from the much more mission-critical clinical and other
high-stakes modelling settings that are so prominent in healthcare and the health
sciences.

3. Health care analytics and the promise of Al in health care. Most works in this
category focus on conventional (reporting and compliance) analytics. A few
address the new capabilities brought by AI/ML. They are not designed to provide
the reader with a deep understanding of what the (primarily) technical challenges
are in health care Al, or what the pitfalls are and how specifically and systemati-
cally to avoid them.

4. Bioinformatics and genomics discussing AI/ML approaches in that context.
These are technical books that typically do not focus on systematic methodolo-
gies for ensuring appropriateness of various AI/ML methods, or their method-
ological underpinnings.

From our review of the literature there are more than 100 textbooks in 2023 in
press in the above categories. We view them as very useful background for broad
fundamentals and/or context of use: from such books readers can learn basic
concepts of general machine learning, and can also learn how to build certain
types of models; our present effort however focuses on knowledge and practices
specific to how health science, clinical, translational, and healthcare AI/ML sys-
tems differ from the general-purpose AI/ML. The book aspires to impart compre-
hensive and in-depth knowledge on how to build robust and safe models for the
high-stakes settings in health science and care, and to evaluate the strengths and
weaknesses of such models produced by others. We will cover both general
(mostly immutable) scientific principles as well as specific technical guidance
that may evolve over time.

More precisely, we envisioned the present volume to be the first book in the field
to provide guidance for the following concepts/topics:

1. The critical differences between general-purpose Al & ML and medically-
applicable Al & ML.

2. Building models that can be applied with minimal risk in high-stakes settings

including clinical applications, healthcare system optimization, and discovery of

clinical modalities.

Models that integrate multi-level, multi-modal clinical and molecular data.

4. The importance of data design and post-modelling safeguards for high-stakes
applications.

5. Common limitations and remedies of efforts (commercial and academic) in
the field.

(O8]
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6. In-depth presentation of not just predictive but also causal and hybrid causal-
predictive methods.

7. A comprehensive summary and critique of operating characteristics of all major
Al & ML methods.

This volume emphasizes the need and methods for biomedical AI/ML to:

1. Be intentional, with well-defined and meaningful goals and metrics of
success.

2. Effectively manage risk for errors that may affect adversely the health of
patients, the effectiveness of health systems, and the effectiveness of the sys-
tem of science.

3. Operate in real-life (as opposed to idealized and simplified theoretical) health
care as well as in health science discovery ecosystems.

4. Develop within a lifecycle that starts from problem statements and needs all the
way to successful deployment and continuous iterative improvement.

5. Prevent and overcome the fundamental dangers of over fitting and under fitting
as well over confidence in models and under performance of models.

6. Have known properties that guarantee performance and safety.

7. Be based on sophisticated and appropriate data designs.

8. Bedifferentiated along the levels of systems/stacks, protocols, algorithms, models.

We adopt an interdisciplinary perspective, using and integrating methods from Data
Science, Computer science (Machine Learning, Al, predictive analytics), Statistics,
Epidemiology (study design), Clinical Decision Support, Bioinformatics, Clinical
and Health Informatics, Genomics, Learning Health Systems, and Precision and
Personalized Medicine.

Our intended audience comprises all stakeholders to the healthcare and health
science ecosystems: (a) Applied and research Health Data Scientists working in
industry, academia, and healthcare. (b) Clinicians/Professionals/Practitioners
who are called on to evaluate, select, and use AI&ML based decision support. (c)
Healthcare and translational (e.g. pharmaceutics and biotechnology) industry
leaders/ administrators including but not limited to IT leaders who wish to eval-
uate and deploy competing technologies in medical AI&ML. (d) Educators and
Students in informatics, ML & Al health economics, health business administra-
tion, and data science. (e) Funding agency officers. (f) Journals and their editors.
(g) Regulatory agency officers. And (h) Community members, representatives
and advocates.

We elected to make this book an open access one, ensuring that all members of
our intended audience can access this volume without financial restrictions.
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Outline of the Book: Style, Format, and How to Read

The book is organized in three parts (with a total of 18 chapters): Foundations,
Modelling, and Implementation. Each chapter typically covers several of the fol-
lowing: technical didactic exposition, case studies (of success and failure varieties),
related pitfalls discussion, best practices addressing the pitfalls and serving the trust
principles, along with literature references and occasional discussion thereof. We
also provide brief chapter abstracts (at the start of each chapter), assignments for
classroom use, and recapitulation of concepts, definitions, pitfalls and Best Practices
(at the end of each chapter).

Educators may wish to use the book in whole or in part as classroom textbook.
Features supporting classroom use include:

1. Consistent structure and tone to the chapters. The two main authors have written
the majority of the material and have co-authored or edited the contributing
chapters to harmonize the content and style across the volume.

2. Practice questions, discussion topics and assignments. Some of those are more
conceptual and open-ended (e.g. appropriate for less technical learners) and
some are more technology-oriented (e.g. targeting learners who need to develop
technical knowledge and skills).

3. Comprehensive coverage of the topic, not just the methods that the authors have
invented, have used, or prefer.

4. In the future we intend to provide an “official” answer key to the assignments
and discussion topics of this volume.

Because our intended audience is very diverse, we make every effort to use plain lan-
guage with minimal jargon and to keep mathematical, statistical and computer science
technical details at a minimum. This does not mean that we shy away from presenting
formulas, algorithms, and theorems. However, when we do so, we present them only
when they are necessary for making sense of the Pitfalls/Best Practices in discussion.
We also sought to use the simplest language possible that does not sacrifice validity.
We also introduce background we think is required to understand these technical ele-
ments and emphasize the intuition and their practical consequences behind them.

The style and level of detail has been ground-tested on our teaching these con-
cepts (for a combined 30+ years) in a variety of settings and audiences (e.g., from
undergrad college interns to professional programmers, to graduate students in data
science fields, to medical residents, to health sciences faculty, and to national tutori-
als with mixed health care and health science audiences). As is expected, our writ-
ing reflects our own formal training in these fields (spanning 27 years combined).
More importantly, both main authors of the present volume are working scientists
who have led and are active in many R&D method/technology and applications
projects. These have occurred in the health sciences domain (mostly funded by the
NIH and the NSF) but also in industry and in health care contexts. These experi-
ences have provided us with a wealth of knowledge about the roadblocks that our
intended audience routinely faces, and the ways to overcome them.
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At the end, of course, the reader will decide if the approach taken here is as
effective as we hope it will be. We caution that audiences with strong technical
backgrounds may find the text “hiding” some technical details. We advise these
readers to explore the ample references for more technical depth, and to focus their
reading of the book on applied aspects that are not covered at all or are not synthe-
sized sufficiently in the primary technical literature.

Audiences without or with incomplete technical backgrounds may find some
concepts challenging at first read. Unless otherwise noted, we advise this type of
reader to not skip the scientific and technological principles underlying ML/AI,
since these are critical for successful use in high stakes tasks and environments.

With regards to the book assignments, we revisit and incrementally enrich and
deepen many of them as new knowledge is provided by the various chapters. Readers
should address them with the knowledge gained up until the chapter they are encountered.

Finally we recommend the independent reader to read the chapters in sequence
(possibly only skimming material that the reader has already mastered elsewhere).
We made every effort to cross-reference in each chapter concepts with all other parts
of the book where they are discussed so even an out-of-sequence reading should be
free of confusion.

For in-classroom use, the class instructor is trusted to determine the right compo-
nents to emphasize or omit, and in the right sequence for her class objectives and
learners’ background and needs. The incremental structure of assignments and dis-
cussion topics is valuable for developing gradually an increasingly sophisticated
understanding of recurring themes and topics. It can also serve as a record of the
students’ progress in mastering the related body of knowledge and their ability to
integrate and evaluate the material. This will be disrupted unavoidably in any out-
of-sequence reading, however, and the instructor has to make adjustments to the
assignments in such cases.

We also note that all assignments are motivated by real-life examples of methods
development and application challenges. They can be traced to literature and case
studies in the public domain as well as to our personal experience as working scien-
tists, teachers, advisors, consultants and administrators. Whenever we felt there was
possibility to breach upon privacy or reputation of third parties, we omitted specific
references to technology and persons, in all other cases we name methods, products,
and scientists, especially when credit was due for important discoveries or other
scientific and technological contribution acknowledgment.

Caveats and Disclosures: Sourcing Best Practices
Where Do Best Practices Come from?

The realistic answer is that, circa 2023, biomedical AI/ML Best Practices are not to
be found in one place, stated as such, and having fully complete and immutable
status. This volume, to the best of our knowledge, is the first book to strive for that
goal. Our recommendations originate from a variety of sources and are character-
ized by different levels of (a) maturity/validation, (b) breadth of applicability, and
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(c) technical clarity and depth. We have thus considered and included in the present
volume the following sources for the presented Best Practices:

1. Published guidelines stated as such, for example the PubMed search
(“artificial intelligence” or “machine learning”) and “best practices““(e.g.,
[60]) yields 217 results, several of which contain proposed best practices
(of various degrees of validation and usefulness as we will see in subse-
quent chapters). In some cases important Best Practices and guidelines are
contained in articles with a broader scope, for example, guidance issued by
the biometrics division of the NCI [61].

2. Implicit but clear findings and recommendations published by quality
control consortia (e.g., [62]).

3. Broad and well-designed benchmark studies that demonstrate the
appropriateness and effectiveness of various algorithms in specific settings
(e.g., [62, 63]).

4. AI/ML competitions (properly designed to prevent biases) e.g., [64].

5. Criteria used in meta-analytic and systematic review studies to assess
quality, risk of bias etc. (see for example chapter “Reporting standards,
Certification/Accreditation & Reproducibility”).

6. Published reporting, regulatory, and certification standards and
requirements (e.g., [65]).

7. Theoretical properties of AI/ML algorithms, protocols and related
methods that directly suggest proper and improper usage (see for example
chapters “Foundations and Properties of AI/ML Systems”, “An Appraisal
of Operating Characteristics of Major Machine Learning Methods
Applicable to Healthcare and Health Sciences”, and “Introduction to
Causal Inference and Causal Structure Discovery”).

8. Case studies that inform generalizable types of errors and suggest strate-
gies to avoid them (see for example chapter “Lessons Learnt from
Historical Failures, Limitations and Success of Health AI/ML. Enduring
Problems and the Role of Best Practices™).

9. Literature reports that have focused on identifying specific types of
errors or modeling/analysis problems and have provided reusable
approaches for avoiding or minimizing them (e.g., [66]).

In general this volume avoids offering guidance based on the authors’ preferred
workflows or methods unless these are falling in one of the above categories.

A key value proposition of the present work therefore is that we have assembled,
reviewed, critically analyzed, and synthesized a plurality of sources to inform pit-
falls and related best ways currently known for improving AI/ML quality, perfor-
mance, effectiveness and safety.

We caution the reader that like every other cutting-edge field of scientific
endeavor, this is work in progress and some of the currently known Best Practices
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in ML/AI will undoubtedly improve and be revised as new methods come into play
and the field deepens and widens its knowledge. We welcome reader feedback and
criticism and we will make every effort to appraise and incorporate all useful sug-
gestions in future editions. See also “Final Synthesis of Recommendations” for dis-
cussion about future evolution of Best Practices.

Outline of the Book: Contents Summary by Part and Chapter
Part I: Foundations

This present chapter entitled “Artificial Intelligence (Al) and Machine Learning
(ML) for Healthcare and Health Sciences: the need for Best Practices enabling
Trust in AI and ML”), aims to provide introductory concepts about the field, to moti-
vate the need for best practices in biomedical Al and ML, and to map out the book’s
scope and contents so that readers are well oriented. A small set of high-level pit-
falls and guidelines are also included.

Chapter “Foundations and Properties of AI/ML Systems” provides a broad
introduction to the foundations of health AI and ML systems and includes: (1)
Theoretical properties and formal vs heuristic systems; practical implications of
complexity for system tractability. (2) Foundations of Al including logics and sym-
bolic vs non-symbolic Al, Reasoning with Uncertainty, AI/ML programming lan-
guages. (3) Foundations of Machine Learning Theory.

Chapter “An Appraisal of Operating Characteristics of Major Machine Learning
Methods Applicable to Healthcare and Health Sciences” provides an outline of how
each method works, and in addition we summarize the intended uses, the usual way it
is employed in practice, and its known and unknown properties. Readers who have not
delved into ML before, will find a useful introduction and review of key methods.
Readers who may already know about some or all of these methods will gain addi-
tional insights as we critically revisit the key concepts and add to their prior knowl-
edge summary guidance on whether and when each technique is applicable or
preferred (or not) in healthcare and health science problem solving.

Chapter “Introduction to Causal Machine Learning” covers the important
dimension of causality. The vast majority of texts in biomedical AI/ML focuses on
predictive modeling and does not address causal methods, their requirements and
properties. Yet these are essential for determining and assisting patient-level or
healthcare-level interventions toward improving outcomes of interest.
Causal methods are also indispensable for discovery in the health sciences.

Chapter “Principles of Rigorous Development and of Appraisal of ML and Al
Methods and Systems” outlines a comprehensive process, governing all steps from
analysis and problem domain needs specification, to creation and validation of Al/
ML methods that can address them. The stages are explained and grounded in many
existing methods. The process discussed equates to a generalizable Best Practice
guideline applicable across all of AI/ML. An equally important use of this Best
Practice is as a guide for understanding and evaluating any ML/AI technology under
consideration for adoption for a particular problem domain.
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Part ll: Modelling

Chapter “The Process and Lifecycle of a Clinical-Grade AI/ML Model” introduces
the notion of “clinical-grade” models and contrasts such models with feasibility,
exploratory, or pre-clinical ones. The main tenet of the chapter is that AI/ML systems
and models must be designed and deployed in a manner that is aware of, and seam-
lessly integrated in healthcare systems or discovery processes (for healthcare and
health science discovery, respectively). The steps outlined span from requirements
engineering to deployment, monitoring and iterative development and continuous
improvement. They also emphasize contextual factors that influence success.

Chapter “Data Design for Biomedical AI/ML” addresses the critical aspect of data
(or research) design and related best practices. This endeavor is foundational to the suc-
cess of AI/ML for both clinical care and scientific discovery. Yet to the extent of our
review of the literature, a systematic and in-depth treatment of this most important aspect
receives little attention in the ML literature. In this chapter (a) we present common
designs (e.g., retrospective, cohort, case/control, EHR, time series, RCT, hybrid, etc.) and
implications of design choices for the success of modelling; (b) we discuss common data
biases (e.g., selection bias, assertion bias, confounding bias, Simpson’s paradox, etc.).

Chapter “Data Preparation, Transforms, Quality, and Management” introduces
guidance for performing data preparations so that the goals of modeling are effectively
and efficiently accomplished. It also addresses data quality, mapping, feature engineer-
ing, data transformations, clinical and research data warehousing and management.

Chapter “Model Selection and Evaluation” addresses best practices for finding
models that are accurate, and generalize well. Estimation of the generalization error
is also addressed both in terms of error estimator procedures and their interaction
with model selection as well as in terms of error metrics and their effect on analysis.
In addition to general-purpose performance metrics, this chapter also discusses
aspects of model evaluation that are unique to biomedical applications, such as
evaluating clinical efficacy, the suitability of a model for clinical decision support,
and health economic evaluations.

Chapter “Overfitting, Underfitting and Model Overconfidence and Under-
performance in Machine Learning and AI’ makes a deep dive into overfitting and
under fitting which are arguably two of the most far-reaching and impactful chal-
lenges in AI/ML with high-dimensional data, modest or small sample sizes, and
modern high-capacity learners. Avoiding over and under-fitted analyses and models
is critical for ensuring high generalization performance. In modern ML/AI practice
these factors are typically interacting with error estimator procedures and model
selection, as well as with sampling and reporting biases and thus are considered
together in context. These concepts are also closely related to statistical significance
and scientific reproducibility. We examine several common scenarios where over
confidence in model performance and/or model under performance occur as well as
recommended practices for preventing, testing and correcting them.

Chapter “From ‘Human vs Machine’ to ‘Human with Machine’” addresses: (a)
empirical evaluations of healthcare and health science AI/ML decision-making. (b)
Empirical comparisons of computer vs human decision making in health sciences
and health care. (c) Important human cognitive biases that lead to decision errors.
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(d) Summary comparison of human vs computer strengths and limitations that may
manifest as errors in medical practice or science discovery settings. (e) Practical
considerations in constructing hybrid computer-human problem-solving systems.

Chapter “Lessons Learned from Historical Failures, Limitations and Successes of
Health AI/ML. Enduring Problems, and the Role of Best Practices” covers a variety
of case studies relevant to best practices. Examples include: the infamous “Al win-
ters”; overfitting; using methods not built to purpose; over-estimating the value and
potential of early and heuristic technology; developing Al that is disconnected from
real-life needs and application contexts; over-interpreting or misinterpreting results
from learning theory; failures/shortcomings of literature including the persistence of
incorrect findings; failures/shortcomings of modeling protocols, data and evaluation
designs; high profile science failures; factors that may render guidelines themselves
problematic. These case studies in most cases were followed by improved technology
that overcame the limitations. The case studies reinforce, and demonstrate the value of
rigorous, science-driven practices for addressing enduring and new challenges.

Chapter “Characterizing and Managing the Risk of AI/ML Models in Clinical
and Organizational Application” covers practical methods for reviewing the face
validity of AI/ML models, and characterizing and managing risk of such models
at development and at deployment stages. This chapter also briefly discusses
broader methods and practices for detecting and correcting issues with ML mod-
eling and the emerging concept of debugging ML models and analyses.

Part lll: Implementation

Chapter “Considerations for Specialized Health AI/ML Modelling and Applications:
NLP” looks into the field- and task-specific best practices for the domain of health NLP.

Chapter “Considerations for Specialized Health AI/ML Modelling and Applications:
Imaging — Through the perspective of Dermatology” looks into field and task-specific
best practices in the specialized domain of Imaging (with a dermatology focus).

Chapter “Regulatory Aspects and Ethical, Legal, and Societal Implications
(ELSI)” reviews the regulation of AI/ML models, the risk management princi-
ples underlying international regulations of clinical AI/ML, discusses the con-
ditions under which AI/ML models in the U.S. are regulated by the Food and
Drug Administration (FDA), and reviews FDA’s Good Machine Learning
Practice (GMLP) principles. In its second part, the chapter provides an intro-
duction to the nascent field of biomedical Al ethics, covering general AI ELSI
studies, AI/ML racial bias, and AI/ML health equity principles. The chapter
discusses (and gives illustrative examples) of the importance of causality and
equivalence classes for practical detection of racial bias in models. It concludes
with a series of recommended best practices for promoting health equity and
reducing health disparities via the design and use of health AI/ML.

Chapter “Reporting Standards, Certification/Accreditation & Reproducibility”
covers the interrelated topics enhancing the quality safety and reproducibility of
clinical AI/ML via (a) reporting standards; (b) recent efforts for accrediting health
care provider organizations for Al readiness and maturity; (c) professional
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certification; and (d) education and related accreditation of educational programs in
data science and biomedical informatics, specific to AI/ML.

Chapter “Final Synthesis of Recommendations” presents a consolidated view of
the identified pitfalls and recommended practices across the book. We differentiate
between macro-, meso- and micro-levels of pitfalls and corresponding best practices-
roughly corresponding to high-level principles, concrete differentiations of the above
and granular/detailed tools and techniques for implementation. We discuss the non-
uniqueness of best practice frameworks and several open problems. The continued
development and dissemination of Best Practices for biomedical AI/ML is certain to
become in the years to come a field of inquiry with significant growth and value.

Key Concepts Discussed in Chapter ¢ Artificial Intelligence (AI) and
Machine Learning (ML) for Healthcare and Health Sciences: The Need
for Best Practices Enabling Trust in AI and ML”

Artificial Intelligence (AI) and Machine Learning (ML)
Data Science

Computer program

Computer system

Computer algorithm

AI/ML model

Data Science

Performance requirements
Safety requirements
Cost-effectiveness requirements
Trust, acceptance, and adoption

Key Messages Discussed in Chapter “Artificial Intelligence (AI) and
Machine Learning (ML) for Healthcare and Health Sciences: The Need
for Best Practices Enabling Trust in AI and ML”

1. AI/ML are long standing disciplines with millions of published articles
since the 1960s and with several Turing and Nobel awards linked to them.

2. Biomedical AI/ML has a long history and extensive literature behind them
also starting in the 1960s. They have recently exploded in the literature in
adoption for discovery and care and as their own fields of study.

3. AI/ML are applied broadly in science and health care because they relate
to extremely broad classes of prediction/pattern recognition and causal
modeling and problem solving tasks.

4. Biomedical AI/ML has several distinct requirements than general-
purpose AI/ML.

5. AI/ML Algorithms, programs and systems must inspire and guarantee
trust in their safety, effectiveness and cost effectiveness. Best Practices
must be developed, shared and followed to enable trust and acceptance.
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6. Known properties are essential for AI/ML trust.

7. Currently known Best Practices originate from a variety of sources, have
different levels of maturity or validation and will undoubtedly expand and
improve in the future.

Pitfalls Discussed® in Chapter ““Artificial Intelligence (AI) and Machine
Learning (ML) for Healthcare and Health Sciences: The Need for Best
Practices Enabling Trust in AI and ML”

Pitfall 1.1: Unspecified, undisclosed or insufficiently-analyzed algorithms.

Pitfall 1.2: In healthcare and health sciences, clinical algorithms are often
confused with computer algorithms.

Pitfall 1.3: Viewing the whole field as being about one narrow technology or
a small set of tools, ignoring the broader spectrum of available options.

Pitfall 1.4: Ignoring the vast literature or “re-inventing the wheel”.

Pitfall 1.5: Ignoring the specific requirements and adaptations tailored to the
goals of healthcare and of health sciences discovery.

Best Practices Discussed in Chapter “Artificial Intelligence (AI) and
Machine Learning (ML) for Healthcare and Health Sciences: The Need
for Best Practices Enabling Trust in AI and ML”

Best Practice 1.1 When considering development or application of AI/ML
ensure that it is informed by well-developed and evaluated existing science
and technology.

C. Aliferis and G. Simon

Classroom Assignments and Discussion Topics* chapter “Artificial
Intelligence (AI) and Machine Learning (ML) for Healthcare and Health
Sciences: The Need for Best Practices Enabling Trust in AI and ML”

1. If science is self-correcting via reproducibility studies, what are the dangers/

downsides to producing AI/ML systems/methods and related articles with a
high proportion of false results?

3To be further elaborated later in the book, including related Best Practices.

“Several of these and similar topics will be clarified and elaborated upon in subsequent chapters.
However we recommend to class instructors and self-learners to get a first-pass evaluation of
where the reader/classroom is (attitude, knowledge, experience) with regards to such problems.
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2.

10.

11.

Identify from news sources and business publications articles about past indus-
try failures in health AI/ML. Summarize and draw your conclusions about how
to remedy and avoid such problems.

. What, in your view, is the ideal relationship (i.e., rules of engagement and

assignment of responsibilities/foci) of industry and academia in developing and
delivering health AI/ML?

What are areas where health AI/ML cannot reach human problem solving?
What about the reverse?

. The so-called No Free Lunch Theorem (NFLT) states (in simplified language)

that all ML and more broadly all Al optimization methods are equally accurate
over all problems on average. Discuss the implications for choice of AI/ML
methods in practical use cases.

“It is not the tool but the craftsman”. Does this maxim apply to health AI/ML?

How would you go about identifying and measuring/documenting the impact
that AI/ML has had on specific health science discoveries?

Is Al confined to computer systems? Can other artificial intelligent agents such
as corporations be viewed as AI? Discuss implications of such a broader view.

Construct a “pyramid of evidence” for health AI/ML similar to the one used in
evidence based care practice. Consider two pyramids: one focusing on clinical
healthcare and another on health science discovery.

You are part of a university/hospital evaluation committee for a vendor offering
a patient-clinical trial matching Al product. Your institution strongly needs to
improve the patient-trial matching process to increase trial success and effi-
ciency metrics.

The sales team makes the statement that “this is a completely innovative Al/
ML product; nothing like this exists in the market and there is no similar litera-
ture; we cannot at this time provide theoretical or empirical accuracy analysis,
however you are welcome to try out our product for free for a limited time and
decide if it helpful to you”. The product is fairly expensive (multi $ million license
fees over 5 years covering >1000 trials steady-state).

What would be your concerns based on these statements? Would you be in
position of making an institutional buy/not buy recommendation?

A company has launched a major national marketing campaign across health
provider systems for a new AI/ML healthcare product based on its success on
playing backgammon, reading and analyzing backgammon playing books and
human games, extracting novel winning strategies from matches, answering
questions about backgammon, and teaching backgammon to human players.
How relevant is this impressive Al track record to health care? How would you
go about determining relevance to health care AI/ML? How your reasoning would
change if the product was not based on success in backgammon but success in
identifying oil and gas deposits? How about success in financial investments?
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12. Your university-affiliated hospital wishes to increase early diagnosis of cogni-

13.

tive decline across the population it serves. You are tasked to choose between

the following AI/ML technologies/tools:

(a) AI/ML tool A guarantees optimal predictivity in the sample limit in distri-
butions that are multivariate normal.

(b) AI/ML tool B has no known properties but is has been shown to be very
accurate in several datasets for microarray cancer-vs-normal
classification.

(c) AI/ML tool C is a commercial offshoot of a tool that was fairly accurate in
early (pre-trauma) diagnosis of PTSD.

(d) AI/ML tool D is an application running on a ground-breaking quantum
computing platform (Quantum computing is an exciting and frontier tech-
nology that many believe has potential to make AI/ML with hugely
improved capabilities in the future).

(e) AI/ML tool E runs on a novel massively parallel cloud computing platform
capable of Zettascale performance.

What are your thoughts about these options?

The same question as #12 but with the following additional data:

(a) AI/ML tool A sales reps are very professional, friendly and open to offering
deep discounts.

(b) AI/ML tool B is offered by a company co-founded by a widely-respected
Nobel laureate.

(c) AI/MI tool C is offered by a vendor with which your organization has a
successful and long relationship.

(d) AI/MI tool D is part of a university initiative to develop thought leadership
in quantum computing.

(e) AI/MI tool E will provide patient-specific results in 1 picosecond or less.

How does this additional information influences your assessment?
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Abstract

The chapter provides a broad introduction to the foundations of health AI and
ML systems and is organized as follows: (1) Theoretical properties and formal
vs. heuristic systems: computability, incompleteness theorem, space and time
complexity, exact vs. asymptotic complexity, complexity classes and how to
establish complexity of problems even in the absence of known algorithms that
solve them, problem complexity vs. algorithm and program complexity, and
various other properties. Moreover, we discuss the practical implications of com-
plexity for system tractability, the folly of expecting Moore’s Law and large-
scale computing to solve intractable problems, and common techniques for
creating tractable systems that operate in intractable problem spaces. We also
discuss the distinction between heuristic and formal systems and show that they
exist on a continuum rather than in separate spaces. (2) Foundations of Al includ-
ing logics and logic based systems (rule based systems, semantic networks, plan-
ning systems search, NLP parsers), symbolic vs. non-symbolic Al, Reasoning
with Uncertainty, Decision Making theory, Bayesian Networks, and AI/ML pro-
gramming languages. (3) Foundations of Computational Learning Theory: ML
as search, ML as geometrical construction and function optimization, role of
inductive biases, PAC learning, VC dimension, Theory of Feature Selection,
Theory of Causal Discovery. Optimal Bayes Classifier, No Free Lunch Theorem:s,
Universal Function Approximation, generative vs. discriminative models; Bias-
Variance Decomposition of error and essential concepts of mathematical
statistics.
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Theoretical Al/ML Properties and Formal Vs Heuristic Systems

We will first address a few key concepts regarding studying and understanding, but
also designing, Al systems by way of their formal properties. By formal properties
we mean theoretical properties that are mathematical or computational, and techni-
cal and objective in nature.

Computability/Provability and Turing-Church Thesis

The most foundational property for any computer system (not just AI/ML systems)
is computability, that is the fundamental question of whether there can even exist a
computer program or system that achieves the computation needed for the infer-
ences that we want this system to perform. Goedel [1] proved a theorem that shook
the mathematical and computer science worlds.

Goedel’s celebrated “incompleteness theorem” shows that any non-trivial
mathematical system for making deductive inferences is either complete or
consistent but not both. Or stated differently, statements can be formed in this
system that are true but cannot be proven if we wish to maintain the correct-
ness of deductions.

A complete system is one that can deduce (or prove) from the axioms of the
system all statements that are true.

A consistent system is one that does not produce contradictory conclusions
(which entails false conclusions).

Correspondingly, in the realm of computing there are functions that are not
computable, that is there is no computer program that can compute them.

These two results (provability and computability) are essentially mirroring
each other because there is a close correspondence relationship between a
“proof” in a mathematical system and a “program” in an equivalent comput-
ing system implementing the mathematical system. Non-computable func-
tions are the ones that cannot be proven and vice versa.

Notice that the existence of non-computable functions/non-provable statements
is with reference to a specific computing system. A different system may be able to
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prove certain statements at the expense of not being able to prove others that the
first system can. Also, we note that in systems involving a finite number of
domain elements, we do not face restrictions in computability. However, this is of
small consolation if we realize that even systems as “basic” as common arithmetic,
for example, involve many non computable functions.

What is the relationship of computability/provability in the computational/math-
ematical realm with that in human intelligence and reasoning?

The Turing-Church thesis posits that everything that the human mind can
infer can also be inferred by a computer/mathematical system [1]. According
to the thesis, there are no special functions of human intelligence that a com-
puter or mathematical system cannot emulate. This thesis is axiomatic, mean-
ing not proven. From what we know so far from neuroscience, cognitive
science etc., there is nothing in the human brain that a computer system can-
not model in principle, and the vast majority of Al scientists accept the Turing-
Church thesis.

Computational Complexity of a Problem, Algorithm of Program

Computational complexity of a program refers to the efficiency of running a
computer program that solves a particular problem according to a specific algorithm
(that the program implements). In other words, it describes (for problems that can
be solved by computer), how expensive is to solve the problem. Computational
complexity is in the form of a function that typically takes the size of the problem
instance as inputs.

Computational complexity of an algorithm applies the same rationale to algo-
rithms instead of programs. Typically we analyze computational complexity at the
level of algorithms assuming that programs will be the most efficient implementa-
tion of the algorithm (when exceptions happen in practice, we state upfront that a
particular implementation of an algorithm is not as efficient as it can be).

Computational complexity of a problem is then analyzed at the level of the
most efficient algorithm known (or that could be devised but not yet known—we will
see later how this is accomplished) for solving this problem.

Space complexity refers to how much space the computer program/algorithm/
problem class requires to reach a solution. Time complexity refers to how much
time the computer program/algorithm/problem class requires to reach a solution.
Because different computers differ greatly in the time needed to execute the same
basic operation (e.g., one addition or one access of a random access memory loca-
tion, etc.) we often measure time complexity not in units of time but in numbers of
some essential operation (and then we can translate these units to time units for
available computer systems). Because the differences between computers are within
constant factors, this does not make a difference in an asymptotic sense.

Worst, average, and best-case complexity. Often, not all problem instances
require the same amount of resources (space or time) to be solved by the same
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program/algorithm. Worst case complexity refers to the cost of the worst (most
expensive) instance of the problem when solved by the best possible algorithm (or,
alternative for a specific algorithm of interest). Best case complexity refers to the
cost of the best (least expensive) instance of the problem. Average case complexity
refers to the cost averaged over all instances of the problem.

Exact complexity refers to a precise complexity for example:

Cost(x):x2 (1

where x is the size of the i™ problem instance. In this example, the cost of solving
the problem is exactly the square of the size of the problem instance.

Asymptotic complexity refers to complexity as an asymptotic growth function,
i.e., that is how fast the complexity grows as input size grows. For example,

Cost(x) = O(f(x)) 2)

The “Big O” notation O(f{(.)) denotes that there is a problem instance size k, above
which the complexity (cost) of all problem instances of size at least as large as k, is
bounded from above within a positive constant from the value of function f(.), or
more compactly stated:

Fks.t.,Vx2>k: Cost(x) < cf(x)

e Where 3 is the existential operator (denoting that the quantity in the scope of the
operator exists)

e Vis the universal operator denoting that for all entities in the scope of the opera-
tor a statement that follows is true

 xis the size of the i problem instance

* Cost (x) is the computational cost of running the algorithm for input size x

e kis a input size threshold above which the complexity statement holds

e ¢ 1is a positive constant

e “S.t” is the common abbreviation “such that”.

We often use asymptotic cost complexity for two reasons: (a) It eliminates confu-
sion created by differences in the speeds of various computer systems since in prac-
tice these are all within a small constant factor of each other. (b) It shifts the attention
to the broad classes of rates of cost growth (e.g. linear, quadratic, exponential, etc.)
and not the precise cost formulas that can be convoluted. Mathematical analysis can
accordingly be greatly simplified.

To understand the implications of asymptotic growth contrast the polynomial
asymptotic complexity of formula (1) with the one below:

Cost(x)zO(Z") (3)

The following Table 1 shows how quickly these cost functions grow (assuming, for
illustration purposes, ¢ = 1). For input sizes above 100, the cost in terms of space
and time complexity grows to sizes comparable to the size of the universe
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Table 1 Demonstration of the practical significance of asymptotic computational complexity
Quadratic Exponential
Cost Cost Related to complexity O (2%)
Size of If cost of Cost of Moore’s Law  Parallelize Other
problem  computation  computation (here: If speed  (linearly by comments
instance  grows as O grows as O (2¥) doubled every using m CPUs)
(x?) 4 years) How many
How many CPUs needed?
years needed  (within a
until CPUs constant factor)
catch up
starting at size
100 and
cost = 21907
1 1 2 T 2 T
2 4 4 R 4 R
3 9 8 é 8 /é
4 16 16 T 16 T
5 25 32 A 32 A
6 36 64 B 64 B
7 49 128 L 128 L
8 64 256 E 256 E
9 81 512 512
10 100 1024 1024
20 400 1,048,576 1,048,576 > 10°
30 900 1,073,741,824 1,073,741,824 > 10°
100 10* 2 Wait for 219 CPUs Comparable
280 years to number of
atoms in the
universe
1000 10° P Wait for 21 CIOUS > > than size
3680 years needed of known
10° 102 PLICC Wait for ~40 2100000 CPUs  universe
million years ~ Needed

(measured in atoms) and quickly becomes much larger than the size of the universe.
This means that there is not enough physical space or time to solve these problems!

The fallacy/pitfall that we will “use a big enough cluster” (or other high-
performance computing environment) to solve a high-complexity problem is
addressed in the parallel column where it is shown that the number of CPUs needed
would quickly exceed the size of the universe. The fallacy/pitfall that Moore’s law
(e.g., computing power doubles every few years) will provide enough power is
addressed in the Moore’s law column where is shown that millions of years would
be needed to address problems of any significant size, and after some point the
space and time requirements exceed the size of the known universe.

We will refer to problems, algorithms, programs and systems exhibiting such
exorbitant complexities, as intractable. The following pitfalls and corresponding
best practices need be taken into consideration:
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Pitfall 2.1

From a rigorous science point of view, an AI/ML algorithm, program or
system with intractable complexity does not constitute a viable solution
to the corresponding problem.

Pitfall 2.2
Parallelization cannot make an intractable problem, algorithm or pro-
gram practical.

Pitfall 2.3
Moore’s law improvements to computing power cannot make an intrac-
table problem algorithm or program practical.

Best Practice 2.1
Pursue development of AI/ML algorithm, program or systems that have
tractable complexity.

Best Practice 2.2

Do not rely on parallelization to make intractable problems tractable.
Pursue tractable algorithms and factor in the tractability analysis any
parallelization.

Best Practice 2.3

Do not rely on Moore’s law improvements to make an intractable prob-
lem algorithm or hard program practical. Pursue tractable algorithms
and factor in the tractability analysis any gains from Moore’s law.
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It is very common in modern AI/ML to be able to address problems that have
worst case exponential (or other intractable) complexity and routinely tackle, for
example, analyses of datasets with >10° variables for problems with worst-case
exponential cost by using a number of strategies that we will summarize below.
First we round up the introduction to complexity properties with an overview of
complexity classes.

Reduction of Problems to Established Complexity Class

Earlier we mentioned that computational complexity of a problem can be analyzed
at the level of the most efficient algorithm known, or that could be devised but not
yet known. How is this possible? One ingenious way to achieve this was discovered
by Cook who proved a remarkable theorem (and received a Turing award for the
work) [2]. Karp, based on Cook’s result, showed how to prove that several other
problems were in the same complexity class (and also won a Turing award for this

work) [3].

The above constitute a generalizable methodology, very widely used in computer
science and AI/ML, comprising two steps:

1. First establish via mathematical proof that a problem class P1 has an intrinsic
minimum complexity regardless of the algorithm or program that has been
devised or could be devised to solve it (i.e., intrinsic to the problem and indepen-
dent of algorithm, in the sense that no Turing machine can exist that could do
better). This part does not require the knowledge of a conventional algorithm
that solves P1.

2. Second, in order to prove that problem Pi at hand belongs to the same or harder
complexity class as P1, it suffices to establish that a fast reduction (e.g., with
polynomial-time complexity) exists that maps problems and their solutions in P1
to problems and solutions in Pi, such that when a problem solution to a Pi prob-
lem instance is found then it can be converted fast to a problem solution for P1.

“Fast” in this context means that: cost of the reduction + cost of solving the P1 ver-

sion of the Pi problem, will be no costlier (asymptotically) than solving Pi. For

example, if Pi has cost O (2%), a reduction with cost O (x?) satisfies the requirement
since O (2* + x2) = O (2¥).

Step 1 has to be accomplished only once for a prototypical problem class and is
of the greatest mathematical difficulty. Step 2, which is typically considerably eas-
ier, is done each time a new method is introduced and is conducted once for the new
method, with reference the prototypical problem class.

Cook’s discovery provided exactly step 1 and opened the flood gates via the
reduction methods of Karp (step 2) for assigning whole problem classes to com-
plexity cost classes regardless of the algorithm or problem used to solve it and
regardless of whether even a single algorithm is currently known for solving the
problem.
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AI/ML and computer scientists often use prototypical complexity classes to
study and categorize problems and the algorithms solving them, the most common
ones being:

The P complexity class: contains problems that can be solved in polynomial
time. These are considered as tractable (assuming, as is typically the case, that
the polynomial degree is small).

The NP complexity class: contains problems that have the property that a
solution can be verified as correct in polynomial time.

The NP-Complete complexity class: These are problems that are in NP and
moreover if any of the problems in this class can be solved in polynomial
time, then all other problems in the class can also be solved in polynomial time.

NP Hard problems. Are problems that are as hard as those in NP but it is
unknown whether they are in NP.

Several other classes exist and are subject to study and exploration (as to what
problems belong to them or what relationships exist among them).

The practical significance of the complexity classes is as follows:

* Problems in P are considered as tractable (assuming, as is typically the
case, that the polynomial degree is small).

* Problems in NP-Complete or NP Hard classes are considered very hard
and it is extremely unlikely that algorithms that solve such problems trac-
tably in the worst case, can be created.

A fundamental property of AI/ML problem solving is that it usually operates
in problem spaces belonging to the very high complexity/worst-case intrac-
table classes. Many strategies have been invented to circumvent these theo-
retical difficulties and guide creation of efficient algorithms and systems,
however (discussed later in the present chapter).

A List of Key and Commonly Used Formal Properties of Al/ML
(Table 2)

Many additional special-purpose or ancillary formal properties can also be
studied and established such as: whether performance estimators are biased, statisti-
cal decision false positive and false negative errors when fitting models, whether
scoring rules or distance metrics used are proper or improper, various measures of
statistical certainty, etc. We emphasize that the properties listed in Table 2 have
immediate and obvious relationship with, and consequences for, the common
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Table 2 Commonly-considered important formal (theoretical) properties that characterize all Al/
ML algorithms, programs and systems

1. Representation power: Can the models produced by the method represent all problem
instances of interest and their solutions?

2. Semantic clarity and transparency: Do the programs and the corresponding models
exhibit clarity based on precisely understood semantics (i.e., formally defined meaning)?
Are the models produced by the method easy to understand (i.e., are they “transparent
box”’) and can they be easily understood by human inspection (i.e., are they human
interpretable, aka explainable)?

3. Soundness: When the methods output a solution to a problem instance, is this solution
correct? If there is a degree of error (measured on some scale of loss, risk or other scale)
how large is the error and its uncertainty?

4. Completeness: Does the method produce correct answers to all problem instances? If only
a fraction, how large is the fraction?

5. Computational complexity. What is the exact or asymptotic computational complexity of
running the method to produce solutions as a function of the input size?

For AI/ML methods that produce models as intermediate step in producing solutions, we
differentiate
(a) Computational complexity of producing problem-solving models: What is the exact
or asymptotic computational complexity of running the method to produce models as a
function of the input size (e.g., number of variables, or sample size)? And
(b) Computational complexity of executing problem-solving models: What is the exact
or asymptotic computational complexity of running the models to produce solutions as
a function of the input size (e.g., number of variables, or sample size)?

6. Space complexity. What is the exact or asymptotic space complexity of running the
method to produce solutions as a function of the input size? For AI/ML methods that
produce models as intermediate step in producing solutions we can differentiate:

(a) Space complexity of producing problem-solving models: What is the exact or
asymptotic space complexity of running the method to produce models as a function of
the input size (e.g., number of variables, or sample size)? And

(b) Space complexity of executing problem-solving models: What is the exact or
asymptotic space complexity of running the models to produce solutions as a function
of the input size (e.g., number of variables, or sample size)?

7. Additional cost functions: For example, financial costs to obtain and store input data and
run analyses on a compute environment, either at model discovery or at model deployment
time? Compliance risks. Ethical, litigation or reputational risks, etc.

8. Sample complexity, learning curves, power-sample requirements: How does the error
of the produced models vary as function of sample size of the discovery data? How much
sample size is needed in order to build models with a specific degree of accuracy and
statistical error uncertainty, and (separately) to establish statistically superiority to random
or alternative models and performance levels?

9. Probability and decision theoretic consistency: Is the ML/AI method compatible with
probability and utility theory?

objectives of health AI/ML. In the present volume we will refrain from study of
properties that do not have strong relevance to the success or failure of AI/ML mod-
eling. For example, the accuracy of a predictive model has immediate consequences
for its usefuleness. By contrast, the centrality measures of network science models
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say very little about their predictive (or causal ) value. Similarly, the use of perplex-
ity measure to study the degree by which a Large Language Model has learned
(essentially the grammar underlying) a text corpus, does not indicate the clini-
cal error severity resuting from output errors made by the model, which may of
much higher importance for health applications.

Formal (aka theoretical) properties are “hard” technical properties (i.e., mathe-
matical, immutable). There exist “softer” properties (i.e., less technical, more tran-
sient, or even harder to establish objectively) such as compliance to regulatory or
accreditation guidance, reporting standards, ethical principles, etc.

An additional category with special significance is that of empirical perfor-
mance properties. These are obtained using methods of empirical evaluation (chap-
ters “Principles of Rigorous Development and of Appraisal of ML and AI Methods
and Systems”, “The Development Process and Lifecycle of Clinical Grade and
Other Safety and Performance-Sensitive AI/ML Models”, “Evaluation”, and
“Characterizing, Diagnosing and Managing the Risk of Error of ML & AI Models
in Clinical and Organizational Application”).

Importance of theoretical and empirical properties. Taken together these

characterizations of AI/ML systems provide an invaluable framework for:

(a) Understanding the strengths and limitations of AI/ML methods, models
and systems;

(b) Improving them;

(c) Understanding, anticipating, and effectively managing the risks and ben-
efits of using AI/ML; and

(d) Choosing the right method for the problem at hand, among the myriad of
available methods and systems.

We will see many examples of these formal, empirical and ancillary proper-
ties in the chapters ahead, considered in context. Chapters “Foundations and
Properties of AI/ML Systems”, “An Appraisal and Operating Characteristics
of Major ML Methods Applicable in Healthcare and Health Science”, and
“Foundations of Causal ML describe properties of main AI/ML methods and
chapter “Principles of Rigorous Development and of Appraisal of ML and Al
Methods and Systems” provides a summary table with the main properties of
all main health AI/MI methods.

Principled Strategies to Achieve Practically Efficient Algorithms,
Programs and Systems for Worst-Case Intractable Problems

Since most intractability results pertain to worst-case complete and sound problem
solving, a number of strategies can be used to achieve tractability, by trading off
computational costs with reduction in soundness, completeness or worst-case com-
plexity. Such common example strategies are listed below.
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(a)

(b)

(©)

(d)

(e)
®

(@

Focus on portions of the problem space that admit tractable solutions and
ignore the portions with intractable solutions. In problem domains where the
worst case complexity diverges strongly form the average case complexity,
such an approach is especially appealing. For example, in ML problems, focus
on restricted data distributions or target function sub-classes that lead to trac-
table learning. Or focus on sparse regions of the data-generating processes and
ignore dense (and commonly intractable) regions.

Exploit prior domain knowledge to constrain and thus speed-up problem
solving. For example, in discovery problems, avoid generating and examining
many possible solutions that are incompatible with prior biomedical knowledge
about the credible solution space. This may viewed as a case of “knowledge
transfer” from this or similar problem domains. This is also often called prun-
ing, where large branches, that are guaranteed to not contain the correct solu-
tion, are eliminated from vast solution search trees.

Instead of an intractable complete solution, provide a tractable localized
part of the full solution that is still of significant value. For example, when
pursuing a causal model of some domain, focus on the partial causal model
around some variables of interest (i.e., biological pathway discovery involving
a phenotype instead of full network discovery).

Instead of an intractable complete solution, provide a tractable non-local
portion of the full solution that is still of significant value. For example,
when pursuing a causal model of some domain allow discovery of a portion of
correct relationships of interest (i.e., biological causal relationship discovery
involving factors across the data generating network instead of full network
discovery; or recovering a correct but unoriented causal network instead of the
oriented one).

Instead of producing perfectly accurate but intractable solutions focus on more
tractable but acceptable approximations of the true solutions.

Do not solve harder problems than what is needed by your application. A
classic example demonstrating this principle is to prefer discriminative models
over generative ones in predictive modeling. In plain language, this means that
we can often solve a hard problem (e.g., what treatment to give to a patient with
a kidney stone?) by building simple decision functions describing only relevant
facts and not a full computational theory of the domain (e.g., a full theory of the
function of the kidneys from the nephron up, and the interaction of the kidneys
with the rest of the body are not needed to conclude that removing the stone or
breaking it up with ultrasounds will be sufficient for curing the patient with a
kidney stone).

Perform operations on compact representations. This strategy involves
replacing intractable large data structures with declarative and highly compact
representations. For example, “every person who suffers from a mental health
disorder” encompasses an estimated 10° people globally but does not enumer-
ate or even identify them. This approach also involves operating on classes of
the problem space simultaneously rather than each member in the class. This is
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particularly evident in several forms of ML modeling where astronomical num-
bers of model structures are scored at once and represented compactly.

Best Practice 2.4

When faced with intractable problems, consider using strategies for miti-
gating the computational intractability by trading off with less important
characteristics of the desired solution.

Heuristic and Ad Hoc Approaches and the Prescientific-to Scientif
ic Evolutionary Al/ML Continuum

The term “Heuristic” AI/ML methods or systems refers to several types of
systems or strategies: First, rules of thumb that may give a good solution
sometimes but do not guarantee this. Second, functions used inside Al search
methods to accelerate finding problem solutions. Third, ad hoc systems, i.e.,
that are not designed based on a formal frameworks for AI/ML, and do not
guarantee strong or safe performance in a generalizable sense. Fourth, meth-
ods and systems applied outside their scope of guaranteed safe, effective, or
efficient use (i.e., hoping that an acceptable solution may be produced).

To clarify these concepts consider the following examples (note: all of the men-

tioned methods and systems will be thoroughly discussed in this and subsequent
chapters):

“We need at least 10 samples per variable when fitting an ordinary least squares
regression model” is an example of the first type of heuristic. Another example
of the first heuristic type is “choosing 100 genes at random from a cancer micro-
array dataset will yield predictor models with very high accuracy for diagnosis,
often near the performance of special gene selection algorithms” (for surprised
readers, not familiar with such data, this is because there is large information
overlap and redundancy among genes with respect to clinical cancer
phenotypes).

The “Manhattan distance” as an estimate for the spatial distance between the
current location and the goal location in a robot navigation problem is a heuristic
than when used inside the A* search algorithm (see later in present chapter)
allows the algorithm to find a path with minimum cost to the goal. This is an
example of the second type of heuristic.

The well-known INTERNIST-I system for medical diagnosis in internal medi-
cine was an example of the third type of heuristic AL It lacked a formal Al foun-
dation both in knowledge representation and inference. It was shown to be highly
accurate in certain tests of medical diagnosis problems, however [4].
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e Examples of the fourth type are: (1) using Naive Bayes (a formal ML method that
assumes very special distributions in order to be correct) in distributions where the
assumptions are known to not hold, hoping that the error will be small. (2) Using
Propensity Score (PS) techniques for estimating causal effects, without testing the
distributional assumption that makes PS correct (i.e., “strong ignorability”’, which
is not testable within the PS framework). (3) Using Shapley values, a Nobel-Prize
winning economics tool devised for value distribution in cooperative coalitions to
explain “black box” ML models (a completely different task, for which the method
was not designed or proven to be correct; as we will see later in the present volume,
it can fail in a wide variety of models). (4) Using IBM Watson, a system designed
and tested in an information retrieval task (Jeopardy game) for health discovery
and care (for which it had no known properties of correctness or safety). (5) Using
Large Language Models (LLMs), e.g., ChatGPT and similar systems (designed for
NLP and conversational bot applications) for general-purpose Al tasks (not sup-
ported by the known properties of LLMs).

For the purposes of this book, the third and fourth type are most interesting and we

will focus on them in the remainder of this section.

In earlier times in the history of health AI/ML as well as broad AI/ML, propo-
nents of ad hoc (heuristic type 3) systems argued that as long as heuristic systems
worked well empirically they should be perfectly acceptable especially if more
formally-constructed systems did not match the empirical performance of heuristic
systems or if constructing formal systems or establishing their properties was
exceedingly hard. Proponents of formal systems counter-argued that this ad-hoc
approach to Al was detrimental since one should never feel safe when applying such
systems, especially in high-stakes domains. At the same time many proponents of
the formal approach engaged in practices of the fourth type of heuristic (not testing
assumptions, or using a system designed for task A, in unrelated task B).

From a more modern scientific perspective (with substantial benefit of hindsight)
of performant and safe systems operating in high-risk domains such as health, the
above historical debate is more settled today than in the earlier days of exploring
Al. Heuristic systems and practices represent pre-scientific approaches in the
sense that a true scientific understanding of their behavior does not exist (yet) and
that with sufficient study in the future, a comprehensive understanding of a heuristic
system of today can be obtained. In other words, the heuristic system of today will
be the well-characterized, scientific, non-heuristic system of tomorrow.

In this book we adopt the sharp distinction:

AI/ML systems with well understood theoretical properties and empirical per-
formance vs. systems that lack these properties (aka Heuristic systems).

A further distinction can be made regarding whether a system is based on formal
foundations or being ad hoc. The importance of formal systems is that they make
the transition to well-understood systems faster and easier. In the absence of formal
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foundations, it is hard to derive properties and expected behavior. If formal founda-
tions exist, often many of the properties are immediately inherited from the general
properties of the underlying formal framework. In any case, deriving formal proper-
ties of methods with strong formal foundations is vastly easier than of ad hoc
methods.

In addition, there is a strong practical interplay between theoretical proper-
ties and empirical performance. If theory predicts a certain behavior and empiri-
cal tests do not confirm it, this means that errors likely occurred in how the models/
systems have been implemented and debugging is warranted. Alternatively, it may
suggest that we operate in a domain with characteristics that are different from the
theoretical assumptions of our model (and we need to change modeling tools or
strategy). If model A empirically outperforms model B on a task for which A is not
built but B is theoretically ideal, this suggests that there are implementation errors
or evaluation data/methodology errors in model B, and so on. In other words, a
strong theoretical understanding bolsters, and is enhanced by, the empirical applica-
tion and validation. What is not working well is lacking one or both of these impor-
tant components (theoretical base + empirical base). More on the interplay of
theorical properties and empirical performance can be found in chapter “Principles
of Rigorous Development and Appraisal of ML and AI Methods and Systems”.

It is also significant to realize that there is an evolutionary path from pre-
scientific informally-conceived systems, to partially-understood (theoretically or
empirically) systems, and finally to fully-mature and well-understood AI/ML.

In earlier related work Aliferis and Miller [5] discussed the “grey zone” between
formal systems with known properties but with untestable or unknown precondi-
tions for correctness in some domain, and ad hoc systems with unknown proper-
ties across the board. Their observation was that both classes required a degree of
faith (with no guarantees) for future success. This early work can be elaborated
taking into account the following parameters: formal or ad hoc foundation; known
theoretical properties or not; whether the known properties are testable and have
been tested vs not; known empirical performance or not; and whether empirical
performance is satisfactory and what alternatives may exist.

The following table (Table 3) distills the above multi-dimensional space to its
essential cases and describes this landscape and developmental journey from pre-
scientific systems (lacking properties, rows 1, 3) to intermediate level systems (with
partial properties, rows 2, 4, 5, 6), to mature reliable science-backed systems (with
known properties, rows 7, 8). The table also points to pitfalls and BPs of building
and using systems of the listed characteristics.

It is worth emphasizing that systems with known properties are not automati-
cally optimal or even suitable for solving a problem. Knowledge of properties
of various methods and approaches can be used to find the best solution for a
task, however.
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Table 3 Classification of AI/ML systems based on their formal foundation and properties. The
development spectrum from pre-scientific to mature science-backed systems

Builton Known

formal
theory
1 No

3 Yes

4 Yes

6 Yes

8 Yes

theoretical
properties
No

No

No

No

Yes

Yes

Yes

Yes

Known
empirical

performance Comments and further dimensions/considerations

No

Yes

No

Yes

No

Yes

Yes

* Ad hoc with unknown theoretical properties and
performance.

* Using such systems is a major pitfall and use should
be avoided until they are better understood.

* Ad hoc with unknown properties but known
empirical performance in a number of empirical
evaluations.

* Using such systems is a major risk and needs to take into

account the range of evaluation, how good the

performance is, whether the evaluation matches the
application domain, and whether better alternatives exist.

Systems with formal underpinnings but with unknown

theoretical properties and empirical performance.

Examples of those systems are systems built on

established mathematical frameworks but being poorly

mapped to a biomedical problem of interest.

Using such systems is a major pitfall and should be

avoided until they are better understood.

Systems with some formal underpinnings: built on

formal foundations but with unknown properties

and known empirical performance.

Examples of those systems are systems built on

established mathematical or

computational frameworks but being poorly mapped

to a biomedical problem of interest.

Using such systems entails major risks and should be

avoided until risks are better understood.

Systems initially starting as ad hoc that eventually

evolved to having known properties but yet

unknown empirical performance.

This case is in paractice equivalent to formal

systems of type (6).

Theoretically understood but poorly tested (not yet

mature) formal systems.

Lack of empirical performance data leaves open the

possibility for misalignment of theory with the

application domain. Potentially high risk of
empirical failure indicates the need for empirical
validation before deployment.

Systems initially starting as ad hoc that eventually

evolved to having known properties and known

performance.

* This case is in practice equivalent to formal systems of

type (8).

Fully-realized, fully mature formal systems with

known properties and empirical performance.

They can immediately inform whether they can

solve the problem at hand (in absolute terms and

compared with alternatives).



48 C. Aliferis and G. Simon

Chapters “Foundations of Causal ML and “Principles of Rigorous Development
and of Appraisal of ML and Al Methods and Systems” further elaborate on how
these concepts can be implemented in practice during the practical development of
performant and safe AI/ML.

Pitfall 2.4

Believing that heuristic systems can give ‘“something for nothing” and
that have capabilities that surpass those of well-characterized systems. In
reality heuristic systems are pre-scientific or in early development stages.

Best Practice 2.5

As much as possible use models and systems with established properties
(theoretical + empirical). Work within the maturation process starting
from systems with unknown behaviors and no guarantees, to systems
with guaranteed properties.

Foundations of Al: Logics and Other Symbolic Al and Non
symbolic Extensions

Symbolic vs. Non-Symbolic Al
Logic is a staple of science and the cornerstone of all types of so-called symbolic Al

By symbolic AI we refer to Al formalisms that focus on representing the
world with symbolic objects and logical relations, and making inferences
using logical deductions.

Symbolic systems typically contain deep, structured representation of the
problem solving domain.

Examples include production systems, rule-based systems, semantic net-
works, deductive reasoners, causal modeling with detailed causal relations,
and other types of systems discussed later in this chapter.
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By contrast, non symbolic AI encompasses various formal systems that focus
on uncertain and stochastic relationships using various forms of inference that
either rely on probability theory or can be understood in terms of probability.

Non-symbolic systems are typically shallow representations of input-output
relationships without a detailed model of the structure of the problem solv-
ing domain.

Terminology Caution: Deep Learning neural networks are designated as
such because they have many hidden node layers (as opposed to shallow
ANNSs that have few). However they are both shallow Al systems because
they lack a rich representation of the domain and its entities (i.e., they are
ontologically shallow).

Examples of non-symbolic Al (in the ontological shallowness sense) include
connectionist Al that approaches Al from an artificial neural network point of view,
probabilistic Al that uses a probability theory perspective, shallow causal models,
genetic algorithms that adopt an evolutionary search perspective, reinforcement
learning, predominantly within the data-driven ML which is the currently dominant
paradigm of Al, and most recently Large Language Models (LLMs).

There exist also formalisms that transcend and attempt to unify symbolic
and non-symbolic Al such as causal probabilistic graphs, probabilistic logics or
ANN-implemented rule systems.

See chapter “Lessons Learned from Historical Failures, Limitations and
Successes of AI/ML in Healthcare and the Health Sciences. Enduring problems, and
the role of Best Practices” for discussion of this important class of AI/ML.

Propositional Logic (PL)

Propositional logic [1, 6] is the simplest form of logic allowing the construction of
sentences like:

((Symptom_positive_A = True) A (Test_positive_B = False))
v—(Test_positive_C = True)
— Diagnosis_Diseasel = True

Or in words, if the patient has symptom A and test B is negative, or if she does
not have a positive test C, then she has Diseasel.

As can be seen, PL uses propositions (statements) that can take values in { True,
False}, and logical connectives (and, or, implication, negation, equivalence, paren-
theses). By combining the above based on the straightforward synfax of PL, we
create complex sentences that may be valid or not. Other than the (tautological)
meaning of the truth values {True, False}, the precise meaning (semantics) of the
propositions is embedded in them (i.e., it is not explicit in the PL language).
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A PL Knowledge Base (KB) contains a set of sentences that are stated as axioms
(true propositions or valid complex sentences) by the user and then other sentences
can be constructed and proven to be valid or not using the truth table of a PL sen-
tence. The correspondence between the validity of propositions and sentences in the
KB and the real world is provided by the notion of a model for that KB which is
some part of the world (e.g., a biomedical problem domain) where the KB truth
assignments hold. Syntactic operations (e.g., by a computer) on the KB prove the
validity of sentences in all models of that KB. Inferring that some manipulation of
computer symbols has automatically a valid interpretation in the real world (origi-
nating from the validity of axioms) is commonly referred by the expression “the
computer will take care of the syntax and the semantics will take care of themselves”.

Truth tables can be used to show that a sentence is valid or not by examining if
the sentence is true for all truth assignments of the propositions involved (hence
valid), otherwise it is not valid. Sentences are decomposed to smaller parts in a truth
table so that truth values for the sentence can be determined. Commonly-used infer-
ence steps are encapsulated in inference rules such as Modus Ponens, And-
elimination, And-introduction, Resolution, etc. These are used to avoid constructing
very large/complex truth tables. The computational complexity of proving that a
sentence in PL is valid is worst-case intractable but quite manageable in small
domains [1].

First Order Logic (FOL)

FOL is a vastly more powerful form of logic than PL and can represent:

* Objects (e.g., patients, genes, proteins, hospital units)

» Properties of objects (e.g., alive, up-regulated, secondary structure, full)

¢ Relations among objects and terms(e.g., patient 1 has a more severe disease than
patient 2, gene 1 determines phenotype 1, protein 1 catalyzes chemical reaction
2, hospital unit 1 is less utilized than unit 2)

e Functions (e.g., BMI of a patient P, length of a gene G, molecular weight of a
protein P, bed capacity of a hospital unit U)

The syntax of FOL uses:

* Objects,

¢ Constants,

e Variables,

e Predicates used to describe relations among constants or variables,
¢ Functions over constants, variables or other functions

e Connectives: equivalent, implies, and, or

e Parentheses

e Negation
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e Quantifiers: there exists, for all (defined over objects)

¢ Terms formed from constants, variables and functions over those

e Atomic sentences defined over predicates applied on terms

e Complex sentences defined using atomic sentences, connectives, quantifiers,
negation and parentheses.

For a technical syntax specification see [1].

Higher order logics allow expression of quantifiers applied over functions and
relations (not just objects). These logics are more powerful, but inference is
much harder, thus logic-based Al typically deals with FOL or simpler
derivative formalisms.

The application of FOL (or derivatives) to build a Knowledge Base (KB) use-
ful for problem solving in some domain is an instance of Knowledge engi-
neering. It involves: (a) ontology engineering, that is identifying and
describing in FOL (or other appropriate language chosen during ontology
engineering) the ontology (objects, types of relationships) in that problem
domain; and (b) knowledge acquisition that is identifying and describing in
FOL the relevant axioms (facts) describing key aspects of the domain, and
from which inferences can be drawn to solve problems.

In the health sciences and healthcare a number of ontologies have been created
and are widely used. A most significant component of those are the common data
models used to describe entities and variables. These are of essential value for both
symbolic and data driven ML methods and for harmonizing data and knowledge
across health care providers, studies, and scientific projects. See chapter “Data
Preparation, Transforms, Quality, and Management” for a discussion of the most
commonly used common data models and standards.

Knowledge engineering could be substituted for ordinary programming however
the fundamental advantage of Knowledge engineering is that it is a declarative
approach to programming with significant advantages (whenever applicable)
such as: ability to represent compactly facts and complex inferences that may be
very cumbersome to conventional procedural or functional programming methods.
Moreover, once the Al knowledge engineer has constructed the knowledge base,
then a myriad of inferences can be made using the pre-existing inferential mecha-
nisms of FOL. In other words, no new problem solving apparatus is needed, because
it is provided by FOL. Declarative programming needs only a precise statement of
the problem.
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Logical Inference

FOL has a number of sound inference procedures that differ in their completeness.
Such procedures are Generalized Modus Ponens (that can be used in Forward-
Chaining, Backward-Chaining directions), and Resolution Refutation.

Forward chaining is an algorithm that starts from the facts and generates conse-
quences, whereas Backward chaining starts from what we wish to prove and works
backward to establish the necessary precedents. The “chaining” refers to the fact
that as new sentences are proven correct, they can be used to activate new rules until
no more inferences can be made.

As a very simple example consider a KB with:

Axioms: A, B
Rules of the type x — y: A—-C,andCAB—D

From this KB,
The Forward Chaining algorithm will perform the following sequence of
operations:
1. From A and A — C it will infer C and add it to the KB
2. From B, C and C A B — it will infer D and add to the KB
3. Will terminate because no new inferences can be made

The Backward Chaining algorithm from the same original KB, and user
request to prove D, will:
1. First see that D is not an axiom
Identify that C A B — D can be used to try and prove D
Will seek to prove C and B separately
B is an axiom so it is true
C is not an axiom but rule A — C can be used to prove it
Will seek to prove A
A is an axiom thus true
Thus (by backtracking to (5) C is true
Thus (by backtracking to (2) D is true
Terminate reporting success in proving D

S PR

—_

Forward and backward chaining strategies are widely used in biomedical sym-
bolic Al expert systems. They are not FOL-complete however! Recall that Goedel
proved that in sufficiently complex reasoning systems (such as FOL) there are true
statements that cannot be proven from the axioms of the system. He also proved that
if there are provable sentences, then there exists an algorithm to generate the proof.
Robinson [7] discovered such an algorithm (Resolution Refutation) which operates
by introducing the negation of a sentence we wish to prove in the knowledge base
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and deriving a contradiction. Resolution Refutation is complete with respect to what
can be proven in FOL. For technical details of the algorithm refer to [1, 7].

The Resolution Refutation algorithm in the KB of the previous example, will:

Add — D to the KB

From A and A — C it will infer C and add it to the KB

From C and C A B — D it will infer D and add to the KB

From D and = D it will derive a contradiction and will terminate declar-
ing success in proving D

=B =

The above examples are hugely simplified by not addressing predicates, vari-
ables, functions, quantification, conversion to different canonical forms and
their matching, which are all needed for the general case algorithms opera-
tion. For technical details see [1, 6, 7]. Nilsson [7] in particular gives a defini-
tive technical treatment of rule-base systems and their properties.

Logic-Derivative Formalisms and Extensions of FOL

FOL is almost never used in its pure form in biomedical Al applications. Instead, it
serves as a foundation for other more specialized and invariably simplified formal-
isms. Occasionally researchers have extended ordinary FOL to accommodate rea-
soning with probabilities, or time. The following Table 4 lists important FOL
derivatives and extensions.

Table 4 Types of logic-based systems (FOL derivatives)

* Decision Trees which are very widely used both in the construction of clinical guidelines and
as a language for ML (chapter “An Appraisal and Operating Characteristics of Major ML
Methods Applicable in Healthcare & Health Science”).

* Rule based systems for discovery or clinical care based on forward or backward chaining
algorithms and extensions for reasoning under uncertainty e.g., the highly influential systems
DENDRAL, META-DENDRAL and MYCIN [8, 9]

* Logic-based programming e.g., the widely-used PROLOG language [10]

* Non chaining rule based decision support e.g., the widely-used ARDEN SYNTAX for
clinical decision support [11]

* Semantic networks/*‘slot-and-filler”’ representations, semantic WWW, and taxonomies,
e.g., [12, 13]

* Boolean networks e.g., widely used for biological pathway discovery and modeling [14]

* Symbolic NLP systems (see chapter “Considerations for Specialized Health Al and ML
Modelling and Applications: NLP” for details and references)

* Ontologies and declarative representations e.g., BIOPORTAL [15]

* Fuzzy logic e.g., [16]

* Non monotonic logic e.g., [17]

 Probabilistic, and temporal logics e.g., [18]

* Planning systems e.g., used for therapy planning or for industrial and operations planning
purposes [7, 19]
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Although FOL is not used without major modifications and simplifications in the
above, it remains the most important theoretical framework for understanding the struc-
ture, capabilities and limitations of such methods and systems. Chapter “Lessons
Learned from Historical Failures, Limitations and Successes of AI/ML In Healthcare
and the Health Sciences. Enduring problems, and the role of Best Practicess™ discuss
present-day concerns in the AI/ML science and technology community that a drastic
departure from symbolic Al (e.g., in favor of purely statistical and ontologically shallow
input-output representations), does not bode well for the ability of the field to success-
fully address the full range and complexity of health science and health care problems.

Non-Symbolic Al for Reasoning with Uncertainty

Numerous non-symbolic methods exist and the most important ones in current prac-
tice are covered in detail in chapters “An Appraisal and Operating Characteristics of
Major ML Methods Applicable in Healthcare and Health Science” and “Foundations
of Causal ML”. Here we will address two methods of great importance in the mod-
ern practice of healthcare and health science research: Decision Analysis and
Bayesian networks.

Methods that have predominantly historical significance will not be addressed, in
order to preserve reader and book bandwidth and focus more on techniques that are
part of modern practices.

Decision Analysis (DA) and Maximum Expected Utility
(MEU)-Based Reasoning

Decision Analysis using Maximum Expected Utility stems for the fundamental
work of Von Neumann and Morgenstern dating back to 1947. This theory provides
a model of prescriptive decision making designed to limit the risk of a decision
agent facing uncertainty. Whereas the theory may not be universally applicable in
all situations involving biomedical decisions with uncertainty, they still describe a
powerful model with wide applicability.

The principles of MEU and DA can be readily grasped with a simple example.
Consider the hypothetical case of a patient facing the dilemma of whether to undergo
a surgery for a condition she has, or to opt for the conservative treatment. Assume
that either decision cannot be followed by the other (e.g., a failed surgery precludes
improvement by the conservative treatment, whereas the conservative treatment
exceeds the time window when the surgery is beneficial).

Furthermore let the probability of success of surgery in such patients be p(surgical
success) = 0.9 and probability of success of non-surgical treatment in such patients be
p(nonsurgical success) = 0.6. Finally let the quality of life (measured in a utility scale
ranging in [0,1]) after successful surgery be 0.8, after failed surgery be 0.2, after suc-
cessful conservative treatment be 1, and under failed conservative treatment be 0.5.

Utility assessment protocols designed to identify a patient’s preferences and map
them to a utility scale exist. Expected utility defines four axioms describing a
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rational decision maker: completeness; transitivity; independence of irrelevant
alternatives; and continuity [57]. The principle of MEU decision making based on
these axioms, designates the optimal decision as the one that maximizes the expected
utility over all possible decisions:

Optimal decision = argmax, E(U (decisionl. ))

where

E(U(dectszoni )) = Zj:E(U(outcomeij ))
and:
o U (decision,) is the expectation of the utility of the i decision,
* U (outcome;;) is the patient-specified utility of the j" outcome based on deci-
sion i and
* E (U(outcome;;) is the expected patient-specified utility of the j™ outcome based
on decision i

In our hypothetical example, we can easily see that

E(U(decision )) =0.9%0.8+0.1¥0.2 =0.74

surgery

whereas

E(U (decision, .. )) = 0.6%1+0.4%0.5=0.80
The decision that maximizes expected utility is thus the non-surgical treatment.
In graphical form the above scenario is captured by the following Decision

Analysis Fig. 1.

Fig.1 A decision analysis Probability = 0.9
tree augmented with
probabilities and utilities

corresponding to the ’ O
hypothetical example in

Surgery -
the text | | Outcomes=- Utility = 0.2

- Outcome=+ Utility = 0.8

Optimal Probability = 0.1
Decision [——
i Probability = 0.6
» Outcome=+ ility = 1
Conservative Utility

fa )
|

" Outcomes=- Utility = 0.5

Probability = 0.4
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We note that MEU DA, whenever applicable, is a powerful and principled way
to make decisions that maximize benefit. Pitfalls in MEU-DA based reasoning are:

Pitfalls 2.5

Decision Analysis (DA) and Maximum Expected Utility (MEU)-based

reasoning

1. Errors in the estimation of probabilities for various events.

2. Errors in eliciting utility estimates in a way that captures patients’ true
preferences (including using the care providers’ utilities rather than the
patients’).

3. The structure or complexity of the problem setting defies analyst’s ability
to completely/accurately describe it.

4. Developing a DA for one population and applying in another with different
structure of the problem, different probabilities for action-dependent and
action-independent events, or with different preferences.

The corresponding best practices are addressing these sources of errors that can
lead a decision analysis astray.

Best Practice 2.6

Decision Analysis (DA) and Maximum Expected Utility (MEU)-based

reasoning

1. Ensure that the structure of the problem setting is sufficiently/accurately
described by the DA tree. Omit known or obvious irrelevant factors.

2. Elicit utility estimates in a way that captures patients’ true preferences
using established utility-elicitation methods.

3. Accurately estimate probabilities of action-dependent events and action-
independent events.

4. In most conditions, and whenever applicable, data-driven approaches

should be preferred to subjective probability estimates. Use probability-

consistent statistical or ML algorithms to estimate the probabilities.

Ensure that the decision analysis is applied to the correct population.

6. Conduct sensitivity analyses that reveal how much the estimated optimal
decision is influenced by uncertainty in the specification of the model.

7. Whenever possible, produce credible intervals/posterior probability distri-
butions for the utility expectations of decisions.

2

These cover only the most salient aspects of the art and science of MEU driven
decision analysis. A more detailed introduction is given in [20] and a
comprehensive applied treatment in [21].
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Reasoning with Uncertainty: Probabilistic Reasoning
with Bayesian Networks

Bayesian Networks (BNs) are an AI/ML family of models that can describe the

probabilistic (or deterministic, or hybrid) relationships among variables. They have

extensive usability, range of application, attractive properties and thus high practical
value. They can support several use cases and types of problem solving (which can
be combined):

e Use 1: Overcome the limitations of intractable (brute force Bayes), or unduly
restrictive (Naive Bayes), classifiers.

e Use 2: They are very economical to describe (i.e., they have space complexity
that closely mirrors the distribution complexity).

e Use 3: They can be created both from expert knowledge and from data (or with
hybrid sources).

e Use 4: They can be used for MEU DA (providing probability estimates for DAs
or in their “influence diagram” form).

e Use 5: They can perform flexible classification and other sophisticated probabi-
listic inferences.

e Use 6: They can be thought of as probability-enhanced logical rules and combine
forward and backward, as well as forward-backward inferences in a way that is
probabilistically accurate.

e Use 7: They can be used (with very mild additional restrictions) to reason caus-
ally including: (1) Distinguishing between observing passively a variable’s value
vs. applying interventions that cause the variable to take that value, and reason
accordingly. (2) Reasoning from causes to outcomes, from outcomes to causes,
and simultaneously in both directions over multiple and overlapping causal
pathways.

e Use 8: Their causal variants can be used to discover causality, not just perform
inferences with existing causal models.

e Use 9: They have close relationship to the Markov Boundary theory of optimal
feature selection.

Because of these properties we touch upon various forms and derivatives of BNs in
several chapters and contexts in this volume: Al reasoning under uncertainty (chap-
ter “Foundations and Properties of AI/ML Systems”), Bayesian classifiers (chapter
“An Appraisal and Operating Characteristics of Major ML Methods Applicable in
Healthcare and Health Science”), Markov Boundary based feature selection (chap-
ter “An Appraisal and Operating Characteristics of Major ML Methods Applicable
in Healthcare and Health Science”) and causal discovery and modeling (chapter
“Foundations of Causal ML").

We caution that not every graph or every probabilistic graph is a BN and the BN
properties derive from very specific requirements. Because there is confusion in
parts of the literature (where some authors derive models that are not BNs but pres-
ent them as such), we will provide here, for clarity, an unambiguous technical
description of this family of AI/ML models.
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BN Definitions

Definition. Bayesian Network. A BN comprises (1) a directed acyclic graph
(DAG); (2) a joint probability distribution (JPD) over variable set V such that
each variable corresponds to a node in the DAG; and (3) a restriction of how
the JPD relates to the DAG, known as the Markov Condition (MC).

Definition. Directed Graph. directed graph is a tuple <V,E>, where V is a set
of nodes representing variables 1-to-1, and E is a set of directed edges, or
arrows, each one of which connects an ordered pair of members of V.

Definition: Two nodes are adjacent if they are connected by an edge. Two
edges are adjacent if they share a node.

Definition: A path is any set of adjacent edges.

Definition: A directed path is a path where all edges are pointing in the same
direction.

Definition: A directed acyclic graph (DAG) is a directed graph that has no
cycles in it, that is, there is no directed path that contains the same node more
than once.

Definition: The joint probability distribution (JPD) over V is any proper
probability distribution (i.e., every possible joint instantiation of variables has
a probability associated with it and the sum of those is 1).

Definition: Parents, children, ancestors, and descendants: In a directed
graph, if variables X,Y share an edge X— Y then X is called the parent of Y,
and Y is called the child of X. If there is a directed path from X toY then X is
an ancestor of Y and Y is a descendant of X.

Definition: Spouses: In a directed graph, the spouses of a variable Vj is the set
comprising all variables that are parents to at least one of the children of Vj.

Definition: The Markov Condition (MC) states that every variable V is inde-
pendent of all variables that are non-descendants of V given its direct causes.

Definition: If all dependencies and independencies in the data are the ones
following from the MC, then the encoded JPD is a Faithful Distribution to
the BN and its graph.

Definition: Degree of a node is the number of edges connected to it. In a
directed graph, this can be further divided into in-degree and out-degree,
corresponding to the number of parents (edges oriented towards the node) and
children (edges oriented away from the node) that the node has.

Definition: A collider is a variable receiving incoming edges from two vari-
ables. For example in: X — Y « Z, Y is the collider. A collider is either
“shielded” or ‘“unshielded” iff the corresponding parents of the collider are
connected by an edge or not, respectively. Unshielded colliders give form to
the so-called “v-structures”.
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Definition: A trek is a path that contains no colliders.

Definition: The graphical Markov Boundary of a variable Vj is the union of

its parents Pa(Vj), its children Ch(Vj) and the parents of its children Sp(Vj).

Definition: The probabilistic Markov Boundary of a variable Vj is the set
of variable S that renders Vj conditionally independent of all other vari-
ables, when we condition on S, and is minimal.

Key Properties of Bayesian Networks
Unique and Full Joint Distribution Specification. If the Markov Condition (MC)
holds, then the conditional probabilities of every variable given its parents specifies
a well-defined and unique joint distribution over variables set V.
Any Joint Probability Distribution Can be Represented by a BN. If we wish to
model JPD J1 by a BN, we can order the variables arbitrarily, connect with
edges every variable Vj with all variables preceding it in the ordering, and define the
conditional probability of Vj given the parents in the graph equal to the one calcu-
lated from J1. Then the implied JPD J2 of the BN will be J2 = J1. Note: the outline
constructive proof presented here is a large sample result. Much more sample-effi-
cient procedures exist for small sample situations.

The Joint Distribution of a BN Can Be Factorized Based on Parents. The
joint distribution is factorized as a product of the conditional probability distribution
of every variable given is direct causes set

probability(V,,V,.....V, ) = I probability(V, Pa(V, )) )
J

Where j indexes the variables in V, and Pa (V)) is the set of parents of variable V.

Because of this factorization, we only need to specify up to [VI conditional probabilities
in order to fully specific the BN (where VI is the number of variables. When all variables
have a small number of parents, the total number of probabilities is linear to IVI. By com-
parison in a Brute Force Bayes classifier we always need specify 2'V' probabilities.

Similarly whenever we need to compute the joint probability of Eq. 4, for a par-
ticular instantiation of the variables involved, this is a linear time operation in the
number of variables.

Definition: D-separation

1. Two variables X, Y connected by a path are d-separated (aka the path is
“blocked”) given a set of variables S, if and only if on this path, there is
(a) A non-collider variable contained in S, or
(b) A collider such that neither it nor any of its descendants are contained in S.

2. Two variables, X and Y, connected by several paths are d-separated given a
set of variables S, if and only if in all paths connecting X to Y, they are
d-separated by S.

3. Two disjoint variable sets X and Y are d-separated by variable set S iff
every pair <Xi,Yj > is d-separated by S, where Xi and Yj are members of
X, Y respectively.
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Inspection of the Graph of a BN Informs us About all Conditional
Independencies in the Data. By inspection (by eye or algorithmically) of the
causal graph (and application of d-separation) we can infer all valid conditional
independencies in the data, without analyzing the data as follows:

e If variable sets X and Y are d-separated by variable set S then they will be condi-
tionally independent given S in the JPD encoded by the BN.

Inspection of the Graph of a BN Encoding a Faithful Distribution, Informs us

about all Conditional Independencies and Dependencies in the Data. A BN

encoding a faithful distribution entails that all dependencies and independencies in
the JPD can be inferred by the DAG by application of the d-separation criterion as
follows:

e If variable sets X and Y are d-separated by variable set S in the BN graph, then
they will be conditionally independent given S in the JPD encoded by the
BN. Otherwise they will be dependent.

e Equivalently:

e Variable sets X and Y are conditionally independent given S in the JPD encoded
by the BN, iff they are d-separated by variable set S in the BN graph.

Therefore in faithful distributions, the BN graph becomes a map (so-called i-map)

of dependencies and independencies in the data JPD encoded by the BN. Conversely,

by inferring dependencies and indecencies in the data we can construct the BN’s

DAG and parameterize the conditional probabilities of every variable given its par-

ents, effectively recovering the unoriented causal process that generates the data.

This is a fundamental principle of operation of causal ML methods (discussed

in more detail in chapter “Foundations of Causal ML”).

A Variable in a BN is Independent of all Other Variables Given its Graphical
Markov Boundary and Equivalently a variable in a JPD is independent of all
other variables given its Probabilistic Markov Boundary in Faithful Distributions.

Relationship of Markov Boundary and Causality. This can be used to obtain
optimal feature sets for predictive modeling when the BN is known or is inferred
from data. Because the graphical and probabilistic Markov Boundary are identical
in faithful distributions, in causal BNs, there is a close connection of the local causal
network around a variable and its probabilistic Markov Boundary (see chapter
“Foundations of Causal ML”).

BNs Allow Flexible Inference
We will illustrate flexible inference with an example depicted in Fig. 2.

In Fig. 2 part (1) we see a BN model for some problem solving domain. In part
(2) we query the BN with the question: what is the probability of F (grey node)
given that we have observed the values of variables {C, B, H} (green nodes)? The
inference algorithms propagate and synthesize information upward (e.g., from C
and B to A) and downward from A and B to F. Notice that given B, H is irrele-
vant to F.
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Fig.2 Flexible predictive modeling and forward/backward reasoning in BNs

If we wish to set up a conventional classifier (of any type, Logistic Regression,
Boosting, Deep Learning, SVM, Random Forest etc., it has to obey a fixed input-
response structure depicted in (4)); in other words in order to answer this question
we need to approximate a function of the probability (F | C, B, H) and train it from
scratch for that query. The BN (3) requires no modification however.
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If we wish to answer next what is the joint probability of {F, B, H} given that we
observe {G, A, K, M}, again the same BN (5) can give us the answer. Other predic-
tive modeling methods however (6) will need to be trained from scratch to estimate:
probability (F, B, HI G, A, K, M).

Because the number of such queries grows exponentially to the number of vari-
ables, it is essentially impossible to answer all the answerable queries by a BN by
training specialized classifiers. Moreover any subdivision of the variables sets as
observed, unknown, or query variables is allowed and needs not be known a priori.

We now examine (Fig. 3) how a causal BN (see chapter “Foundations of Causal
ML for formal definitions) can answer causal questions. Consider the query: what
is the probability of F (grey node) given that we have observed the values of vari-
ables {B, H} (green nodes) and we have manipulated C to take a specific value (via
intervention denoted by do(C))? The causal BN (left) knows that when we manipu-
late a variable, nothing else can affect it. Thus the Arc: A—C is effectively elimi-
nated by the manipulation in the context of the query. Consequently, information
does not travel from C to F via A as in the case of observing C. The predictive
modeling models lacking causal semantics (e.g., Logistic Regression, Boosting,
Deep Learning, SVM, Random Forest etc.) will propagate information from C to F
thus arriving at a wrong conclusion. Incidentally this problem cannot be fixed in the
conventional predictive modelers by eliminating C from the model, since valid
causal/information paths may exist from C to F than need be considered even if we
manipulate C (and indeed the causal BN will do so).

Computational complexity for both learning BNs and for conducting inference
with them is intractable in the wort case. However highly successful mitigation
strategies have led to super-efficient average case or restricted-purpose algorithms
(see chapters “An Appraisal and Operating Characteristics of Major ML Methods
Applicable in Healthcare and Health Science”, and “Lessons Learned from
Historical Failures, Limitations and Successes of ML in Healthcare and the Health
Sciences. Enduring Problems and the Role of Best Practices” for details). Key refer-
ences for properties of BNs discussed here are [22-25].

Fig. 3 Causally Consistent Inference with BNs AND Forward/Backward reasoning
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Al Search

Search as a General Problem Solving Strategy. Conventional
Search Versus Al Search

Search is a general problem solving methodology in which many (if not most) prob-
lems can be reduced to. Somewhat similar to physical search of an object or a loca-
tion inside a physical space, Al search constructs a state space with each state
representing a possible solution or partial solution to a problem. The search algo-
rithms then traverse this state space trying to discover or construct a solution. For
example, in a ML context, the state space could comprise models fit from data, such
that each model has a different structure and corresponding estimated generaliza-
tion predictivity. Al search in the ML context seeks then to find ML models that
achieve the highest or sufficient high predictivity. In an autonomous navigation con-
text, Al search would seek to find a navigation path that achieves smallest traversed
distance, smallest cost of trip, or other objectives. In a scheduling context Al search
may seek to schedule patients and operating room personnel to operating rooms so
that cancelations are minimized. The diversity of problems that can be solved with
search is infinite and covers the full space of computable functions.

General Al Search Framework: “Best” First Search (BeFS) Family
and Variants

Whereas search is also accomplished outside A, most notably with linear and non

linear optimization methods, ad hoc search algorithms, and Operations Research

algorithms, Al search has distinctive qualities:

e Al search can use state spaces that are infinite in size.

e Al search can attempt to solve problems in the hardest of complexity classes.

e Al search admits any computable goal, not just a small space of computable
functions.

e Al search can operate with symbolic and non-symbolic representations.

Table 5 outlines a very general framework for Al search.

Table 5 High-level operation of general Al search:

* The general Al search algorithm maintains a priority list of states that will be explored.
« This list is initialized with a starting search state, and an iterative loop begins:
o If the first state in the priority list it is not the goal state then the algorithm
Creates all successor states from it and updates the list contents and then prioritizes those
according to a prioritizing function. Else the algorithms returns the goal state and terminates
 The process will stop iterating when
— A goal state has been found or
— No more states can be reached or
— Another termination criterion is met.
Each state also stores the path to reach that state and the cost of that solution path. Thus
when a goal state is returned, the solution path can be extracted
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This prima facie very simple procedure has immense power and flexibility and
can be instantiated in a variety of ways leading to different behaviors and properties.
For example, the following variants can be had as follows (Table 6):

Table 6 Notable instantiations of general BeFS Al search:

Instantiation of prioritizing Resulting type of
function search Properties
Ranks states in priority list in Depth first search ~ Will terminate and find a solution if
ascending order according to search space is finite and enough
order that states were generated computation time and space are
(i.e. first in first out, or FIFO) allowed
Worst case complexity = O (state
space size).
May not find optimal solution
For finite state spaces organized as
trees of depth d and breadth b:
Worst case time complexity = O (b%).
Space complexity is O (m * b) where
m is the maximum depth of a path.
Preferable if many optimal solutions
are arranged in same search tree
depth level
Rank states in priority list in Breadth first search  Will find a solution and terminate if
descending order according to search space is finite and enough
order that states were generated computation time and space are
(i.e. last in first out, or LIFO) allowed. May not find optimal
solution
Worst case complexity = O (state
space size).
For finite state spaces organized as
trees of depth d and breadth b:
Worst case space and time Complexity
=0 (b
Preferable if many solutions are
arranged in same search path
Rank states in priority list in Uniform cost search Will find a solution if search space is
ascending order according to (aka branch and finite and enough computation time
cost of path to each state bound) and space are allowed.
Will find optimal solution if path cost
is non decreasing
Worst case complexity = O (state
space size).
For finite state spaces organized as
trees of depth d and breadth b:
Worst case complexity = O (b%)
Rank states in priority list in Greedy Search (ie., Will find a solution if search space is
ascending order according to most locally finite and enough computation time
estimated cost of state to goal promising next step and space are allowed.
state with backtracking)  May not find optimal solution
For finite state spaces with max depth
path m:
Worst case time complexity = O (b™)
If estimates of cost to goal are good
then it may reach a solution very fast
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Table 6 (continued)

Instantiation of prioritizing Resulting type of
function search

Rank states in ascending order ~ Hill climbing
according to: Search (most
Estimated cost of state to goal locally promising
state. Also eliminate from next step without
priority list all but the backtracking)
most locally promising next

state.

Rank states in priority list in A*

ascending order according to:
(cost of path to that state +
estimated cost of state to goal
state) with the constraint that
estimated cost to goal cannot
exceed true cost.

Properties

May not find a solution or if it finds
one it may not be optimal. It may not
terminate if search space is infinite
For finite state spaces with max depth
path m: Worst case time complexity =
O (m * b) and space complexity is = 1
Has tendency to be trapped in locally
optima that are not globally optimal
solutions

If, however, search space is convex or
concave then it finds the optimal
solution with time complexity = depth
of solution and space complexity = 1.
This fact is exploited by many
mathematical convex optimization
algorithms [26]

Will find a solution if search has finite
branching factor, and enough
computation time and space are
allowed

Will find optimal solution

No other search algorithm using the
same estimated cost to goal state
function can outperform A*

For max depth path m: Worst case
space complexity = O (b™)

Worst case time complexity is
polynomial if the error of the heuristic
cost estimate to goal state will not
grow faster than the logarithm of the
“perfect heuristic” h* that returns the
true distance to the goal

The fundamental general search algorithm and its instantiations can be readily
extended to cope with infinite size search spaces and computing environments with
limited space using depth-limited, iterative deepening and simplified memory-

bounded A* versions. For details see [1].

Other Notable Al Search Methods

In addition to the above “classical” Al search algorithms notable search methods
include Simulated Annealing, Genetic Algorithms, Ant Colony Optimization
and search procedures applicable to rule based systems and resolution

refutation.

Simulated annealing [27] is inspired by metallurgy and the annealing process.
It comprises a classic hill climbing method modified to incorporate a randomized
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jump to one of nearby states so that local optima have a larger chance (but no guar-
antee) of not trapping the algorithm in suboptimal solutions.

Genetic algorithms [28, 29] are inspired by biological evolution which they
mimic. Genetic algorithms represent solutions in digital chromosome representa-
tion on which they perform, just like evolution does on actual organisms, random
mutations and crossover operations. This is their way to generate successor solution
states. Multiple states are maintained at each stage of the algorithms with the best-fit
ones having a smaller chance to be discarded. The algorithm has the attractive prop-
erty that an exponentially increasing portion of better performing states are consid-
ered in each step. It can be applied in domains where the data scientists now nothing
about the domain (i.e., they are “black box optimizers”). On the other hand, they
have important limitations: they are not guaranteed to reach an optimal solution
(i.e., can be trapped in local optima), it has been proven that they cannot learn cer-
tain classes of functions (e.g. epistatic functions); and they are not efficient when
compared to non-randomized algorithms solving the same problems.

Ant Colony Optimization (ACO) and “‘Swarm intelligence” is inspired by the
foraging behavior of some ant species. These ants deposit pheromone on the ground
in order to mark some favorable path that should be followed by other members of
the colony. ACO can be used for graph searching, scheduling problems, classifica-
tion, image recognition and other problems. For several ACOs, convergence has
been proven (albeit at an unknown number of iterations). Finally empirical results
in >100 NP-hard problems has shown competitive and ocasionaly excellent perfor-
mance compared to best known algorithms [30].

Specialized search procedures include AO* (suitable for searching AND/OR
graphs used in decomposable rule based systems), MINIMAX and ALPHA-BETA
search (suitable for game tree search), and Resolution Refutation search strategies
(e.g., unit preference, set of support identification, input resolution, linear resolu-
tion, subsumption etc.) designed to make the resolution refutation algorithm reach
a proof faster [1, 6, 7].

Al/ML Languages

Whereas statement of algorithms and theoretical analysis is typically conducted
using pseudocode, practical development depends on choice of programming lan-
guages. A few languages are particularly suitable for AI/ML and their properties are
summarized in the next Table 7:
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Table 7 Notable A/ML Languages

Language

Pseudocode

LISP

Prolog

Properties and suggested use

» Comprises generally-stated data structures, code
modularization (e.g., functions, procedures), and control
structures that are programming language independent.

* May also contain declarative and logical statements that can be
implemented in any applicable programming language. For
example, a universally quantified statement can be converted to
a conventional loop.

* It is widely understood by all computer scientists.

* Especially appropriate for stating algorithms and conducting
theoretical analysis.

* They can be passed to programmers that will implement them
in a programming language of choice.

* The most powerful and flexible language for Al and possibly
the most powerful programming language ever created.

* Systems of immense complexity and capabilities can be
implemented very compactly and easily.

* Particularly suitable to symbolic Al

* Incorporates procedural, functional, and object oriented
paradigms.

* Uses lists (with dynamic memory management) as primary data
structures. More efficient or special purpose data structures can
readily be implemented.

» Compiled and interpreted.

e LISP programs and data are interchangeable. Programs are
themselves data that can be generated or modified by programs.
Programs can modify themselves or other programs at runtime
or off line.

* The language symbols can be assigned to different functions.
Thus the language itself can be modified by programs.

* These immense powers may create interpretability problems
since programmers do not immediately know what a program
will do, e.g., they have to understand how the usual language
features are modified at runtime.

* Designed for symbolic Al

* Uses backward chaining rule-based programming paradigm.
* Declarative programming.

* (Surprisingly) is resolution-refutation complete.

* Not as widely used anymore.

(continued)
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Table 7 (continued)

Language Properties and suggested use

Matlab * Extremely powerful language and development environment
especially suitable for ML.

* Uses matrices and matrix operations as fundamental building
blocks.

* Extremely optimized operations can produce immensely
efficient programs.

* Very rapid development.

* Interpreted and compiled.

* Can be interfaced with all major languages.

* Numerous toolboxes (libraries) cover all major mathematics,
machine learning, engineering, imaging, bioinformatics, etc.
types of development project needs.

* On the downside it is a commercial product that requires
paid educational or commercial licenses.

R * Flexible and powerful language well suited for statistical and
ML development.
* Numerous open source libraries.
* No license costs.
* Many libraries and codes are unoptimized and may also have
implementation errors.
* Does not scale as well as other languages.

Python * Flexible language especially well-suited to text processing and
ML.
e Interpreted and compiled.
* Numerous open source, no-cost libraries.
* Varying degrees of quality of available free codes.

A sample of other * C, C++ and Objective C.
languages commonly * Pascal and variants (e.g. Delphi).
encountered in the AI/ML ¢ Pearl.

space * Ruby.

* Basic and variants (e.g., Visual Basic).

e Older languages (FORTRAN, MODULA, COBOL) are
seldomly used for new development.

» Assembly language: for specialized applications where speed
optimization is of paramount importance.

* MUMPS for EHR-focused programming.

* SQL: very useful for relational database querying.

Foundations of Machine Learning Theory
Al and ML as Applied Epistemology

Epistemology is the branch of philosophy concerned with knowledge: its generation
and sources, nature, its achievable scope, its justification, the concept of belief as it
relates to knowledge, and related issues [31]. From the perspective of this volume it
is worthwhile to notice first that Al formalizes knowledge so that it can be used in
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applied settings. Al can also inform what types of knowledge are computable and
what inferential procedures can be applied and with what characteristics. ML in
particular, by virtue of being able to generate knowledge from data, on one hand
obtains its justification not just by empirical success but by epistemological princi-
ples of science. On the other hand, ML puts to test epistemological hypotheses and
theories about how knowledge is, can, or should be generated. The following sec-
tions provide a concise outline of the key theories that provide the firm scientific
ground on which ML is built and in particular for fortifying its performance and
generalization properties. They also summarize a few related pitfalls and high level
best practices that will be developed further in other chapters.

ML Framed as Al search and the Role of Inductive Bias

We showed earlier in this chapter how Al search can be used to solve hard problems.
ML itself can be cast as a search endeavor [29, 32, 33]. In this framework, ML
search comprises:

(a) A model language L in which a family of ML models can be represented. For
example, decision trees, logic rules, artificial neural networks, linear discrimi-
nant equations, causal graphs etc. Typically the model language will come with
associated procedures that enable models to be built when data D are provided
(i.e., model fitting procedure MF).

(b) A data-generating or design procedure DD that creates data (typically by sam-
pling from a population or other data-generating process) from which models
are fit.

(c) A hypothesis space S. The language L implicitly defines a space S comprising
all models expressible in the language and that can be fit with MF applied on
D, with each model M; representing a location or state in S. For example, the
space of all decision trees, neural networks, linear discriminant functions,
boosted trees, etc. that can be built over variable set V using MF on D.

(d) A search procedure MLS that navigates the space in order to find a model rep-
resenting an acceptable solution to the ML problem as defined by a goal crite-
rion. For example, a steepest ascend hill climbing search procedure over the
space of decision trees over V fit by MF given data D.

(e) A goal (or merit) function GM that examines a search state (i.e., a model Mi)
and decides whether it is a solution, or how close to a solution it is (its merit
function value). For example, whether M; has acceptable predictivity, uncer-
tainty, generalizability etc. or what is the merit value (e.g., difference of its
properties to the goal ones).
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The tuple: < L, MF, DD, S, MLS, GM > defines the architecture of a
ML method.

Every ML method can be described and understood in these terms (although
additional perspectives and analytical frameworks are also valuable, and in
some cases necessary).

The tuple: < L, MF, S, GM > describes what is commonly referred to as a ML
“algorithm”, whereas MLS describes the model selection procedure that
ideally will incorporate an error estimator procedure for the final (best)
model(s) found. GM and its estimators from data may or may not be identical
to the error function and its estimators (see chapter “The Development Process
and Lifecycle of Clinical Grade and Other Safety and Performance-Sensitive
AI/ML Models”).

The tuple: < L, MF, S, MLS, GM > describes the Inductive Bias of that
ML method.

The inductive bias of a ML method is the preference (‘bias”) of that method
for a class of models over other models that are not considered at all or are
not prioritized by the method.

Notice that in practice there are two search procedures in operation:

MF is a search procedure in the space of model parameter values once a
model family and its model family parameter values (aka “hyperparameters”)
have been visited by the second (top-level, or over-arching) search procedure
MLS which searches over possible model families and their hyper parameters.

For example, the search procedure in decision tree induction algorithm is a
greedy steepest ascent while a hyper parameter may be the minimum number of
samples allowed for accepting a new node or leaf. In an SVM model the search
procedure is quadratic programming and hyper parameters may be the cost C and
the kernel functions and their parameters. The model selection procedure that
decides over these two model families and the right hyperparameter values for them
may be grid search using a cross validation error estimator, or other appropriate
model selection process (see chapter “Principles of Rigorous Development and of
Appraisal of ML and AI Methods and Systems” for details).

The ML search framework above readily entails important properties of ML:

1. The choice of model language affects most major model properties like error,
tractability, transparency/explainability, sample efficiency, causal compatibility,
generalizability etc.

2. The data generating procedure implements the principles and practices of data
design which is a whole topic by itself (see chapter “Data Design for Biomedical
AI/ML”). Because the whole operation of ML as search is so dependent on the
data D, the data design/data generating procedure strongly interacts with the
other components and determines the success of the ML model search.

3. The search space typically has infinite size, or finite but astronomically large size.
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4.

The ML search procedures MF typically have to find sparse solutions in the
infinite/practically infinite search space. Therefore they are often custom-tailored
or optimized for the specific ML algorithm.

. The MLS search procedures are designed to operate over several ML algorithm

families and their hyper-parameters. They are typically much less intensive and
typically informed by prior analyses in the problem domain of similar data, giv-
ing guidance about which hype-parameter ranges will likely contain the opti-
mal values.

Worth noting in particular with respect to the inductive bias:

The match of the inductive bias of a ML method to the problem one wishes to
solve (hence the data generating function to be modeled and the data design
procedure that samples from the data generating function) determines the degree
of success of this ML method.

. It also follows, that if a ML method does not have restrictions on inductive bias,

it cannot learn anything useful at all, in the sense that it would accept any model
equally as well as any other (i.e., accept good and bad models alike) and in the
extreme it would amount to random guess among all conceivable models).

. At the same time, a successful ML method must not have a too restrictive induc-

tive bias because this may cause lack the ability to represent or find good models
for the task at hand.

Taken together (6), (7), and (8) show that a successful ML method must find the
right level of restriction or “openness” of the inductive bias.

We note that the inductive bias of ML is a useful bias and should not be used as a
negative term (as for example, ethical, social, or statistical estimator biases which
are invariably negative).

Pitfall 2.6
Using the wrong inductive bias for the ML solution to the problem
at hand.

Pitfall 2.7
Ignoring the fit of the data generating procedure with the ML solution to
the problem at hand.

Best Practice 2.7
Pursue ML solutions with the right inductive bias for the problem
at hand.
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Best Practice 2.8

Create a data generating or design procedure that matches well the
requirements of the problem at hand and works with the inductive bias
to achieve strong results.

ML as Geometrical Construction and Function Optimization

As will be elaborated in chapter “An Appraisal and Operating Characteristics of
Major ML Methods Applicable in Healthcare and Health Science” ML methods are
in some important cases cast as geometrical constructive solutions to discriminating
between objects. Figure 4 below shows a highly simplified example of diagnosing
cancer patients from healthy subjects on the basis of 2 gene expression values. The
ML method used (SVMs in the example) casts this diagnostic problem as geometric
construction of a line (in 2D space, and hyperplane in higher dimensions) so that the
cancer patients are cleanly separated from health subjects (and subject to a maxi-
mum gap achieved between the two classes).

Such geometrical formulations of ML can be analytically and algebraically
described and then operationalized using linear algebra and optimization mathemat-
ical tools and codes. See chapter “An Appraisal and Operating Characteristics of
Major ML Methods Applicable in Healthcare and Health Science” for several
examples and details on the mathematical formulations and the ensuing properties.

Gene Y

Normal patients Cancer patients

> Gene X

Fig. 4 Geometrical constructive formulation of ML. See chapter “An Appraisal and Operating
Characteristics of Major ML Methods Applicable in Healthcare and Health Science” for mathe-
matical formulation
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Computational Learning Theory (COLT): PAC Learning, VC
Dimension, Error Bounds

Computational Learning Theory (COLT) , formally studies under which conditions
learning is feasible and provides several bounds for the generalization error depend-
ing on the classifier used, the definition of error to be minimized (e.g., number of
misclassifications), and other assumptions. While theoretical results in classical sta-
tistics typically make distributional assumptions about the data (i.e., the probability
distribution of the data belongs to a certain class of distributions), COLT results
typically make assumptions only about the class of discriminative model consid-
ered. Notice though, that it may be the case that an optimal discriminative model
never converges to the data generating function of the data.

COLT research has defined several mathematical models of learning. These are
formalisms for studying the convergence of the errors of a learning method. The
most widely-used formalisms are the VC (Vapnik-Chervonenkis) and the PAC
(Probabilistically Approximately Correct) analyses. A VC or PAC analysis pro-
vides bounds on the error given a specific classifier, the size of the training set, the
error on the training set, and a set of assumptions, e.g., in the case of PAC, that an
optimal model is learnable by that classifier. Typical PAC bounds, for example,
dictate that for a specific context (classifier, training error, etc.) the error will be
larger than epsilon with probability less than delta, for some given epsilon or delta.
Unlike bias variance decomposition, COLT bounds are independent of the learning
task. From the large field of COLT we suggest [34—36] as accessible introductions.

The VC (Vapnik-Chervonenkis) dimension (not to be confused with the VC
model of learning above) is (informally) defined as the maximum number of training
examples that can be correctly classified by a learner for any possible assignment of
class labels. The VC dimension of the classifier is a quantity that frequently appears
in estimation bounds in a way that all else being constant, higher VC dimension
leads to increased generalization error. Intuitively, a low complexity classifier has
low VC dimension and vice-versa. An example of VC bound follows: if VC dimen-
sion / is smaller than /, then with probability of at least 1-n, the generalization error
of a learner will be bounded by the sum of its empirical error (i.e., in the training
data) and a confidence term defined as:

h(log2hl+1j—log(n/4)
[

Where 0 < n < 1. Notice how this error bound is independent of dimensionality of
the problem [37]. The number of parameters of a classifier does not necessarily cor-
respond to its VC dimension. In [38] (examples are given of a classifier with a sin-
gle parameter that has infinite VC dimension and classifiers with an unbounded
number of parameters but with VC dimension of 1.

Thus, a classifier with a large number of parameters (but a low VC dimension)
can still have low error estimates and provide guarantees of non-over-fitting. In
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addition, some of these bounds are non-trivial (i.e., less than 1) even when the num-
ber of dimensions is much higher than the number of training cases.

Such results prove unequivocally that learning is possible (when using the right
learning algortihms) in the situation common in modern health science and health-
care data where the number of observed variables is much higher than the number
of available training sample. Many popular classical statistical predictive modeling
methods in contrast break down in such situations.

The mentioned COLT results also justify the assertion that over-fitting is not
equivalent to a high number of parameters. Unfortunately, many of the estimation
bounds provided by COLT are not tight for the number of samples available in com-
mon practical data analysis. In addition, COLT results often drive the design of
classifiers with interesting theoretical properties, robust to the curse of dimensional-
ity, and empirically proven successful, such as Support Vector Machines (discussed
in detail chapter “An Appraisal and Operating Characteristics of Major ML Methods
Applicable in Healthcare and Health Science”).

ML Theory of Feature Selection (FS)

Traditional ML theoretical frameworks (e.g., PAC and VC frameworks of COLT)
focus on generalization error as a function of the model family used for learning,
sample size and complexity of models. The theory of feature selection is a newer
branch of ML that addresses the aspect of selecting the right features for modeling.
It aims to guide the design and proper application of principled feature selection (as
opposed to heuristic FS with unknown and suboptimal properties).

Table 8 summarizes key areas and example of results in the theory of feature
selection. In the remainder we will discuss two formal feature selection frameworks
(i.e., Kohavi-John and Markov Boundary) and will describe certain classes of fea-
ture selection problems that are commonly addressed.

The standard feature selection problem. Consider variable set V and a data
distribution J over V, from which we sample data D. Let T be a variable which we
wish to predict as accurately as possible by fitting models from D. The standard
Seature selection problem is typically defined as [40]:

e Find the smallest set of variables S in V s.t. the predictive accuracy of the best
classifier than can be fit for T from D, is maximized.

Kohavi-John framework for Standard predictive feature selection problem.
Kohavi and John [39] decompose the standard feature selection problem as follows:
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Table 8 Summary of major topics and examples in the theory of feature selection

Topic
Filter-wrapper and
embedded-explicit
feature selection
taxonomy

Ugly duckling and
no free lunch
theorems

Bespoke
characterization of
individual FS or
classifier models

Kohavi-John
framework of
relevancy

Markov Boundary
framework of
relevancy (and
intersection with
other forms of ML)

Notes

Wrapper algorithms conduct a heuristic search in the space of feature
subsets and evaluate them using a classifier and loss function of choice.
Filters examine the data distribution and infer desirable and
undesirable features independent of classifier. Embedded feature
selection removes undesired features as part of fitting a model. The
removal may be implicit (.e.g. regularization where features with small
coefficients may stay in the model but do not influence it much) or
explicit (i.e., features are dropped out of the model). See [39—41] and
chapter “An Appraisal and Operating Characteristics of Major ML
Methods Applicable in Healthcare and Health Science” for details.

Proofs that the choice of feature selection must be tied to a specific
class of target functions, learners and loss functions. See [32, 42] and
NFLT section below.

This body of work examines theoretically (and tests empirically)
whether specific ML algorithms and feature selectors are capable of
solving specific feature selection problems (e.g., [43—45])

Defines what are necessary/indispensable, or useful but redundant, or
useless features in a general sense (without reference to algorithms) [39].

Defines what are necessary/indispensable, useful but redundant, and
useless features in a general sense and leads to construction of specific
algorithms. Also allows extensions for causality, equivalence classes,
and guided experimentation [24, 41, 46, 47].

A feature X is strongly relevant if removal of X alone will result in perfor-
mance deterioration of the Optimal Bayes Classifier using the feature.

Formally:

X is strongly relevant iff: X « T | {V - X,T}

A feature X is weakly relevant if it is not strongly relevant and there exists a
subset of features, S, such that the performance of the Optimal Bayes Classifier
fit with S is worse than the performance using S U {X}. Formally:

X is weakly relevant iff: X is not strongly relevant and 3 S C {V-S,T} s.t. X

£TIS.

A feature is irrelevant if it is not strongly or weakly relevant.

The strongly relevant feature set solves the standard feature selection problem.
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Intuitively, choosing the strongly relevant features provides the minimal set of
features with maximum information content and thus solves the standard feature
selection problem since a powerful classifier in the small sample or the Optimal
Bayes Classifier in the large sample will achieve maximum predictivity. The
Kohavi-John framework does not provide efficient algorihms for discovery of the
strongly relevant feature set, however.

Markov Boundary framework for Standard predictive feature selection
problem. Recall from the section of Bayes Networks (BNs) that a set S is the
Markov Boundary of variable T (denoted as S = MB(T)), if S renders T independent
on every other subset of the remaining variables, given S, and S is minimal (cannot
be reduced without losing its conditional independence property). This is the MB(T)
in the probabilistic sense. Tsamardinos and Aliferis [24] connected the Kohavi-John
relevancy concepts with BNs and Markov Boundaries as follows:

In faithful distributions there is a BN representing the distribution and map-
ping the dependencies and independencies so that:

1. The strongly relevant features to T are the members of the MB(T).

2. Weakly relevant features are variables, not in MB(T), that have a path to T.
3. Irrelevant features are not in MB(T) and do not have a path to T.

Thus in faithful distributions, the Markov boundary MB(T) is the solution to
the standard feature selection problem and algorithms that discover the
Markov boundary implement the Kohavi-John definition of strong relevancy.

Local causally augmented feature selection problem and Causal Markov
Boundary. In faithful distributions with causal sufficiency (see chapter “Foundations
of Causal ML) there is a causal BN that is consistent with the data generating pro-
cess and can be inferred from data in which: strongly relevant features = members
of MB(T), and also comprise the solution to the local causally augmented feature
selection problem of finding:

1. The direct causes of T.
2. The direct effects of T.
3. The direct causes of direct effects of T.

Thus in faithful distributions with causal sufficiency, the causal graphical
MB(T) set is connected with the probabilistic MB(T). Inducing the probabi-
listic MB(T) then: 1. Solves the standard predictive feature selection problem,
and 2. Solves the local causally augmented feature selection problem [24, 41].
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Equivalency-augmented feature selection problem and Markov Boundary
Equivalence Class. In faithful distributions the MB(T) exists and is unique [22].
However, in non-faithful distributions where variables or variable sets exist that
have the same information for the target variable (i.e., target information equiva-
lences exist in (“TIE distributions”) and we may have more than one MB(T) [46]).
The number of Markov Boundaries can be exponential to the number of variables
[46] and in empirical tests with real life genomic data Statnikov and Aliferis
extracted tens of thousands of Markov boundaries before terminating the experi-
ments [48].

In TIE distributions:

1. The Kohavi John definitions of relevancy break down since there are no
Kohavi-John strongly relevant features any more, only weakly relevant and
irrelevant ones. This is because if S1, S2 are both in the MB equivalence
class {MBi(T)} then: S1 L T|1S2 and S2 L T | S1.

2. The I-to-1 causal and probabilistic relationship of the probabilistic and
graphical MB(T) breaks down. A variable can be a member in some
MBI(T) without having a direct causal or causal spouse relationship with T.

3. The standard predictive feature selection problem is solved by the smallest
member in the equivalence class of MBi(T).

4. The Equivalency-augmented feature selection problem is to find the equiv-
alence class of all probabilistic MBi(T).

Chapter “An Appraisal and Operating Characteristics of Major ML Methods
Applicable in Healthcare and Health Science” provides further details of the
above 3 fundamental feature selection problem classes, organizes them into a
hierarchy of increasing difficulty, shows examples, and presents and contrasts
practical algorithms based on their ability to solve these problems.

Theory of Algorithmic Causal Discovery and of Computational
Properties of Experimental Science

The theory of causal discovery extends traditional ML theoretical frameworks that
focus on generalization error, by investigating the feasibility, complexity, and other
properties of causal discovery algorithms from passive observational data, of exper-
imental interventional approaches (e.g., RCTs, biological experiments, etc.) and
hybrid experimental-observational algorithmic approaches. Pearl provides a com-
prehensive modern theory of causality [49] and Spirtes et al., a historically influen-
tial algorithmic framework for its discovery [50]. Chapter “Foundations of Causal
ML” presents an extensive introduction to the function of causal discovery algo-
rithms from non-experimental data, and their properties under specific assumptions.
Chapter “Foundations of Causal ML” also lists several algorithms used for causal
discovery, including more modern and scalable ones. Chapter “An Appraisal and
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Operating Characteristics of Major ML Methods Applicable in Healthcare and
Health Science” as well as section of “ML Framed as Al search and the Role of
Inductive Bias” of the present chapter reference theory and algorithms at the inter-
section of feature selection and causality. Moreover we mention here selected addi-
tional fundamental results that will round the readers’ understanding of causal
discovery from a theory perspective:

Eberhardt et al. showed that under assumptions: if any number of variables are
allowed to be simultaneously and independently randomized in any one experi-
ment, then log2 (N) + 1 experiments are sufficient and in the worst case necessary
to determine the causal relations among N = 2 variables when no latent variables,
no sample selection bias and no feedback cycles are present [51]. Bounds are pro-
vided when experimenters can’t intervene on more than K variables simultaneously.
These results point to fundamental limitations of RCTs and biological experiments
conducted with small number of variables manipulated at a time, and is further dis-
cussed in chapter “Lessons Learned from Historical Failures, Limitations and
Successes of AI/ML In Healthcare and the Health Sciences. Enduring problems,
and the role of Best Practices”.

The same researchers showed that: by combining experimental interventions
with causal algorithms for graphical causal models under familiar assumptions of
causal induction, with perfect data, N - 1 experiments suffice to determine the causal
relations among N > 2 variables when each experiment randomizes at most one
variable [52]. These results require that all variables are simultaneously measured,
however.

Statnikov et al. [47] showed that in TIE distributions (i.e., with multiple equiva-
lent Markov Boundary sets with respect to the response variable T), an algorithm
exists that guides experimentation combined with causal discovery from observa-
tions, so that at most k single-variable experiments are needed to learn the local
causal neighborhood around T where k is the size of the union of all Markov
Boundaries of T.

Mayo-Wislon showed [53] that for any collection of variables V, there exist fun-
damentally different causal theories over V that cannot be distinguished unless all
variables are simultaneously measured. Underdetermination can result from piece-
meal measurement, regardless of the quantity and quality of the data.

The same investigator in [54] found that when the underlying causal truth is suf-
ficiently complex, there is a significant possibility that a number of relevant causal
facts are lost by trying to integrate the results of many observational studies in a
piecemeal manner. Specifically, he shows that as the graph gets large, if the fraction
of variables that can be simultaneously measured stays the same, then the propor-
tion of causal facts (including e.g., who mediates what relationships) that can be
learned even with experiments, approaches 0.
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Optimal Bayes Classifier

The optimal Bayes Classifier (or OBC for short) is defined by the following formula:
argmax;;, Y P(T =ilMj)* P(Mjl D)
j

Where i indexes the values of the response variable T and j indexes models in the
hypothesis space where the classifier operates. In plain language, the OBC calcu-
lates the posterior probability that a model has generated the data (i.e., it is the data
generating function) given the data, for every model in the hypothesis space. It also
calculates for each of the response variable’s values, the probability for that value’s
probability given each model. The predictions are summed over all models, weighted
by the probabilities of the models given the data, and the value with the higher value
is the one that the classifier outputs.

Because the hypothesis space can be infinite or intractably large, the calculations
involved are also intractable. Also, if we calculate the conditional probabilities using
Bayes’ rule we also have to deal with the problem of prior probability assignment over
the model space members; in case of very biased priors, the calculated posteriors will
converge slowly to the large sample correct ones. These issues place the application of
the OBC outside the realm of the practical. However, it turns out that the error of the
OBC is optimal in the large sample. Hence the OBC is a valuable analysis tool when
we consider the errors of various learning algorithms by comparing them to the OBC
error (as we will see in chapter “An Appraisal and Operating Characteristics of Major
ML Methods Applicable in Healthcare and Health Science”) [29, 32].

No Free Lunch Theorems (NFLTs)

NFLTs is a general class of theorems each one applying to optimization, search,
machine learning and clustering (in the last case referred to as Ugly Duckling
Theorem or UDT for short) [32, 42].

The crux of these theorems is that under a set of conditions intended to describe
all possible application distributions, there is no preferred algorithm, and that by
implication the right algorithm should be chosen for the right task, since there is no
dominant algorithm irrespective of task. This particular interpretation is common-
sensical and useful. It is also stating in different terms essentially the notion that a
well-matched inductive bias to the problem at hand will led to better solutions.

This is especially important for clustering algorithms and the UDT. The UDT
entails that in the absence of external information, there is no reason to consider two
patterns P1 and P2 more or less similar to each other than P3. Over all possible func-
tions associated with such patterns (and the features that define them) any grouping is
as good as any other. This implies that similarity/distance functions that define the
behavior of clustering algorithms must be tailored to specific use contexts of the result-
ing clusters (which in turn entails a restriction on the class of functions modeled).

The problems with common use of clustering are three-fold: (a) Per the UDT,
clustering by algorithm X is as good as random clustering over all possible uses of
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the clusters. Unless we select or construct a distance/similarity function designed to
solve the specific problem at hand, clustering will not provide any useful informa-
tion. (b) There is no useful unbiased clustering. Researchers who present clustering
results as “unbiased” (meaning “hypothesis free” - a practice very common in mod-
ern biology research and literature) fail to realize that any practical clustering algo-
rithm has an inductive bias implemented as a distance function and as a grouping/
search strategy. And as we saw, in the absence of (a well-chosen) inductive bias little
can be accomplished. (c) Finally clustering should not be used, for predictive mod-
eling [55]. Clustering algorithms can only know something about a classification
problem, e.g. of response T as T+ or T-, if and only if we design a similarity function
that distinguishes between T+ and T- and embed it in the clustering algorithm. But
this function is precisely a predictive modeling classifier, rendering the whole clus-
tering-for-prediction endeavor, redundant.

In chapter “An Appraisal and Operating Characteristics of Major ML Methods
Applicable in Healthcare and Health Science” we give examples of the above as
well as recommendations for goal-specific clustering.

Pitfall 2.8
Probably more than other theoretical results, the NFLT for ML has the largest
risk to be misunderstood and misapplied.

In summary form the NFLT for ML states that all learning methods have on
average the same performance over all possible applications, as a mathematical
consequence of 3 conditions:

(a) The algorithm performance will be judged over all theoretically possible target
functions that can conceivably generate data.

(b) The prior over these target functions is uniform.

(c) Off Training Set Error (OTSE) will be used to judge performance [32, 42].

This result has been misinterpreted to suggest that we could use models that have

low instead of high accuracy according to unbiased error estimators and do as well

as when choosing the high accuracy models. In this (mis)interpretation random

classification is as good overall as classification using sophisticated analytics and

modeling. The mathematics of the NFLT derivation are impeccable but the results

are problematic because of the flaws of the 3 underlying assumptions:

(a) In real life a tiny set of data generating functions among infinite ones are the
ones that generate the data. Nature is highly selective to its distributions.

(b) The prior distribution over these data generating functions is highly skewed.

Taken together assumptions (a) and (b) of the NFLT, are mathematically

equivalent with a label random reshuffle procedure (see chapter “The
Development Process and Lifecycle of Clinical Grade and Other Safety and
Performance-Sensitive AI/ML Models”). This procedure distorts the relation-
ship between inputs and response variable and creates a distribution of target
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(©)

functions that on average have zero signal. Because on average there is no sig-
nal, this target function space is on average random and thus unpredictable.
Therefore no learning algorithm exists that can do better than random and
NFLT, naturally, finds and states as much. If such an algorithm existed then the
distribution would be predictable and thus non-random. The NFLT for ML then
just says that when there is no signal (on average), every algorithm will fail
(i.e., will be as good as the random decision rule on average) and thus all algo-
rithms will be equally useless (on average).

In addition, by OTSE excluding the input patters that have been seen by the
algorithm during training, an artificially low biased performance estimate is
obtained for future applications. By contrast statistical theory and all branches
of statistical ML and of science adopt for purposes of validation OSE (Off
Sample Error) which is just a random sample from the data generating function.

In the present volume we specifically discussed at some length the dangers in over-
interpreting the NFLT for ML because of published claims that the theorem some-
how entails that choosing the models with best cross validation error (or best
independent validation error, or best reproducibility of error) are just as good as
choosing the model with worst reproducibility or independent validation error [42].

Best Practice 2.9

Cross validation and independent data validation, as well as their cousin
reproducibility, are robust pillars of good science and good ML practice and
are not, in reality, challenged by the NFLT.

Best Practice 2.10
Clustering should not be used for predictive modeling.

Best Practice 2.11
A very useful form of clustering is post-hoc extraction of subtypes from accu-
rate predictor models.

Universal Function Approximators (UFAs) and Analysis

of

Expressive Power

UFAs are ML algorithms that can represent any function that may have generated
the data. UAF theorems establish that certain ML algorithms have UAF capabil-

ity

[29].
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Pitfall 2.9

If a ML algorithm cannot represent a function class, this outright shows the
inability or sub- optimality of this algorithm to solve problems that depend on
modeling a data generating function that is not expressible in that algorithm’s
modeling language.

For example, clustering (i.e., grouping objects or variables into groups according
to similarity or distance criteria) does not have the expressive power to represent the
causal relationships among a set of variables or entities. Thus the whole family of
clustering algorithms is immediately unsuitable for learning causal relationships.
Similarly, simple perceptron ANNs cannot represent non-linear decision functions
and that places numerous practical modeling goals and applications outside
their reach.

By contrast, Decision Trees can represent any function over discrete variables.
Similarly, ANNs can represent any function (discrete or continuous) to arbitrary accu-
racy by a network with at least three layers [29]. BNs can represent any joint probabil-
ity distribution as we show in the present chapter. Al search can be set up to operate
on model languages that are sufficiently expressive to represent any function as well.
Genetic Algorithms, being essentially search procedures share this property.

Pitfall 2.10

UAF theorems should not be over-interpreted. While it is comforting thate.g.,
algorithm A can represent any function in the function family F (i.e., the model
space and corresponding inductive bias are expressive enough), learning also
requires effective (space and time-tractable, sample efficient, non-overfitting
etc.) model search and evaluation in that space.

For example, Decision Trees (DTs) do not have practical procedures to search
and learn every function in the model space expressible as a DT, since practical
(tractable) DT induction involves highly incomplete search of the hypothesis space.
Similarly, ANNs can represent any function however, the number of units needed
and the time needed for training are intractable and the procedures used to search in
the space of ANN parameters are not guaranteed to find the right parameter values.

Generative vs. Discriminative Models

Generative models are typically considered the ones that can model the full joint
distribution of the variables in an application domain. Discriminative models, by
contrast, are ones that only model a decision function that is sufficient to problem of
interest in that domain. Consider as example the SVM hyperplane model in Fig. 4.
This model solves the diagnostic problem stated perfectly without modeling the
probability distribution of the variables involved.
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The optimal choice of generative vs. discriminative model entirely depends on the
application domain. For example, for general predictive modeling as well as other
pattern recognition such as text categorization, the use of discriminative models con-
fers practical advantages and better performing models than generative models, in
many datasets. For causal modeling, simulation, natural language understanding,
density estimation, or language generation, generative models are necessary or
advantageous. We also wish to clarify a terminology confusion (especially in non-
technical literature) between generative modeling at large vs “Generative AI”. The
latter refers to a small number of specific classes of algorithms that generate data
(e.g., Generative Adversarial Networks, Large Language Models) with established or
unknown properties. Generative modeling on the other hand includes all methods
that model the data generating distribution and in typical usage the term refers to
algorithms that have guarantees for correct modeling of the data generating distribu-
tion (e.g., BNs, Logistic Regression, Density estimator algorithms).

Best Practice 2.12

The choice of generative vs. discriminative modeling affects quality of mod-
eling results and has to be carefully tied to the problem domain characteris-
tics. All else being equal discriminative models confer efficiency
(computational and sample) advantages.

Bias-Variance Decomposition of Model Error (BVDE)

The concept of BVDE is one that originates from statistical machine learning but
has broad applicability across ML and all of data science. It is pervasively useful,
yet not as widely known as it deserves among non-technical audiences, so we will
present it here in some detail. A detailed treatment can be found in [56]. While the
whole idea of BVDE is that other than noise in measurements (which is intrinsic in
the data and independent of modeling decisions) or inherent stochasticity of the data
generating function (which is intrinsic in the data generating process and indepen-
dent of modeling decisions), the remaining modeling error of any ML (or for that
matter any statistical or quantitative data science) model has two components: a
component due to the inductive bias mismatch with the problem vs. the data at
hand; and another component due to sample variation in small sample settings.

In the terminology of BVDE, the error due to inductive bias mismatch is referred
to as “bias” with “high bias” indicating a severe mismatch, toward simplicity (aka
small complexity, or small capacity) of the model language (and related search and
fitting procedures) with respect to the data generating function. The error due to
sampling variation is referred to as “variance” with variance increasing as sample
size decreases. More precisely, the bias is the error (in the sample limit, relative to
the data generating function) of the best possible model that can be fitted within the
class of models considered. The variance is the error of the best model (in the small
sample, within the class of models considered) relative to the error of the best model
that can be fitted in the large sample within the class of models considered. The bias
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then is a function of the learner used and the data generating function; the variance,
for a fixed data generating function, is a function of the learner and the sample size.
Implications for modeling: When the modeling bias is fixed one can reduce total
model error by increasing the sample size (reduce variance), and when the sample is
fixed one can reduce total error by optimizing the bias. More importantly, when both
sources of error are under analyst control, BVDE explains that there is an ideal point of
balance of error due to bias and error due to variance. The optimal error will be found
when these two sources of error are balanced for a particular modeling setting. Moreover
high bias models have smaller variance (i.e., are more stable in low samples) but on
average over many samples will approximate the target function worse. Low bias mod-
els have higher variance, hence are unstable in small samples but on average(!) approxi-
mate the target function better. We now delve into BVDE with a concrete example.
Figure 5 depicts a two-dimensional data set, based on one input variable x, plot-
ted along the horizontal axis and response y along the vertical. The black points

100
75
> 50
25
0
-5 0 5
X

Fig. 5 Illustration of the bias-variance tradeoff. The x-axis shows models’ input values and the
y-axis is the response. The training data observations are the black points, and the true data gener-
ating function is depicted in blue. The two black curves represent two models
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represent the observed data points and the blue line f depicts the true generating
function, which in this example is:

x> whenx<-3
f(x): 81-x> when-3<x<3
x> whenx>3
The black lines represent quadratic models fit to random samples from this data.
Consider the expected generalization error from this procedure when predicting
the point at (say) x = 0. The error has three components. First, the observed depen-
dent variable can differ from the true value of the generating function, that is mea-
surement noise. Visually, noise is the difference between the black points and the
blue line. The second component, variance, is the variability of the model due to the
specific sample, which is visually represented by the spread of the predictions from
the different models (black lines) at x = 0. In this example, with only two models,
this ranges from 35 to 45. Finally, the third component is bias, which is the differ-
ence between the expectation of the prediction (expectation is taken over the differ-
ent models built on the different samples) and the true value of the dependent
variable (the blue line at x = 0). In this example, the expectation of the prediction
from different models appears to be approximately 40, while the true value is 81.
The generalization error expressed as MSE at any x can be written as:

E[(y_;(x))z} —E[(y- /@) |+ E[(f—Ef‘(x))z}+E[(f(x)—E]?(x))2}

The three terms correspond to noise, bias and variance of f‘ .

Figure 6 shows the bias (orange), variance (blue) and mean squared error (MSE)
(gray) of models of increasing complexity on a test set. Model complexity is con-
trolled by the degree of x the model is allowed to use and how far the optimizer can
optimize the training MSE. Complexity increases from left to right. As the model
complexity increases, variance increases while bias decreases. For improved readabil-
ity, bias, variance and MSE are scaled to the same range in the figure. MSE is thus a
weighted sum of bias (squared) and variance. The optimal fit is achieved where MSE
is minimal (in the middle of the complexity range). Lower complexity leads to under-
fitting, which is characterized by lower variance and higher bias, while increased
complexity leads to overfitting, which is characterized by higher variance and lower
bias (compared to the bias and variance at the optimal complexity).

These concepts are critical in helping analysts create models with maximum pre-
dictivity (see chapter “Overfitting, Underfitting and General Model Overconfidence
and Under-Performance Pitfalls and Best Practices in Machine Learning and AI”).

Essential Concepts of Mathematical Statistics Applicable to ML

Mathematical Statistics is the subfield of Statistics that studies the theoretical foun-
dations of statistics. At the same time, many of the concepts and tools of
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Fig. 6 The relationship between the bias-variance components and complexity in the example
(fixed noise is considered). The horizontal axis is complexity (of quadratic models) and the vertical
axis is the various bias/variance components scaled to the same range. Orange corresponds to bias,
blue to variance and gray is total MSE

mathematical statistics are useful across data science broadly and for ML more
specifically. Table 9 provides examples of important areas and analytical tools
developed within this field that have value for understanding, advancing, and prac-
ticing ML [58].

Techniques and results from mathematical statistics (and its applications) are
present throughput the chapters of the present volume.
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Table 9 Key concepts and areas of mathematical statistics useful for ML

Area Subject matter and importance for ML
Special E.g., Uniform, Bernoulli, Binomial, Hypergeometric, Poisson,
probability Multinomial, etc. distributions; Uniform, Normal, Exponential, Chi-

distributions and ~ Square, Beta, etc. density functions
density functions  Uses:
 Design and analysis of modeling methods by tailoring them to data
characteristics
* Instrumental in inference by describing sampling distributions
¢ Also valuable in understanding model errors and other aspects of

modeling
Sampling E.g., Distribution of the mean, Chi-square, t distribution, F distribution
distributions Uses:

* Measuring the uncertainty of parameters of models, model predictions

* Hypothesis testing of whether a sample or model statistic value comes
by sampling from a null hypothesis distribution

 Estimating the uncertainty of model parameters, structure, and

predictions
Estimation and E.g., Properties of estimators such as unbiasedness, efficiency,
estimators consistency, robustness
Uses:

* Estimators for model construction
* Estimators for model error and other properties
* Embedding estimators in model selection and construction

Hypothesis E.g., Losses and risk for testing statistical hypotheses. Neyman-Pearson
testing Lemma. Power functions of tests. Control of false positives and false
negatives in statistical hypothesis testing decisions
Uses:

» Deciding whether model properties and function are due to random
sampling variation or reliable and generalizable

* Deciding on minimum data sample size needed for analysis

* Reducing errors when large number of hypotheses are tested when
data mining and conducting hypothesis-free discovery

Conclusions

The successful design of problem-solving AI/ML models and systems can be guided
by and evaluated according to well specified technical properties. Systems that lack
properties are pre-scientific and used heuristically, whereas systems with well-
established properties and guarantees provide more solid ground for reliably solv-
ing health science and healthcare problems. The nature of the properties listed
matches well the practical applications of AI/ML. Properties disconnected from
practical implications are not subject of study in the present volume.

Al has both symbolic and non-symbolic methods as well as hybrid variants.
Foundational methods in the symbolic category are logics and logic-based systems
such as rule based systems, semantic networks, planning systems, NLP parsers and
certain Al programming languages. In the non-symbolic category, ML, probabilis-
tic, connectionist, decision-theoretic formalisms, systems and languages dominate.
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Among health AI methods capable of reasoning with uncertainty, Bayes Nets
and Decision Analysis stand out for their ability to address a variety of uses cases
and problem classes.

A major distinction is between shallow systems that essentially are equivalent to
function relating outputs to inputs (e.g., most of ML predictive modeling), and sys-
tems with rich ontologies and elaborate models of the physical world in the applica-
tion domain. Non-symbolic Al systems tend to fall in the former category, whereas
symbolic ones, in the latter.

The framework of Al search is especially powerful both as a problem-solving
technology but also as an analytical tool that helps us understand and architect suc-
cessful methods and systems. Al search cuts across the symbolic vs. non-symbolic,
shallow vs. rich, and the data-driven (Ml) vs. knowledge driven distinctions.

ML has solid and extensive theoretical foundations that include: Computational
Learning Theory, ML as Al search, ML as geometrical construction and function
optimization, COLT (PAC learning, VC dimension), Theory of feature selection,
Theory of causal discovery, Optimal Bayes Classifier, No Free Lunch Theorems,
Universal Function Approximation, Generative vs. Discriminative models; Bias-
Variance Decomposition of error, and an extensive set of tools borrowed from the
field of mathematical statistics.

Key Concepts and Messages Chapter “Foundations and Properties of

AI/ML Systems”

* The critical importance of knowing or deriving the properties of AI/ML
models and systems.

* The main technical properties of AI/ML systems.

e Tractable vs. intractable problems and computer solutions to them.

e The various forms of Logic-based (symbolic) Al

e Non-symbolic Al, reasoning under uncertainty and its primary formalisms.

* Al search.

» Foundations of Machine Learning Theory
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Pitfalls and Best Practices Chapter “Foundations and Properties of Al/
ML Systems”

Pitfall 2.1. From a rigorous science point of view an AI/ML algorithm, pro-
gram or system with intractable complexity does not constitute a viable solu-
tion to the corresponding problem.

Pitfall 2.2. Parallelization cannot make an intractable problem, algorithm or
program practical.

Pitfall 2.3. Moore’s law improvements to computing power cannot make an
intractable problem algorithm or hard program practical.

Pitfall 2.4. Believing that heuristic systems can give “something for nothing”
and that have capabilities that surpass those of formal systems. In reality heu-
ristic systems are pre-scientific or in early development stages.

Pitfall 2.5 in Decision Analysis (DA) and Maximum Expected Utility (MEU)-
based reasoning

1. Errors in the estimation of probabilities for various events.

2. Errors in eliciting utility estimates in a way that captures patients’ true
preferences (including using the care providers’ utilities rather than the
patients’).

3. The structure or complexity of the problem setting defies analyst’s ability
to completely/accurately describe it.

4. Developing a DA for one population and applying in another with different
structure of the problem, different probabilities for action-dependent and
action-independent events, or with different preferences.

Pitfall 2.6. Using the wrong inductive bias for the ML solution to the problem
at hand.

Pitfall 2.7. Ignoring the fit of the data generating procedure with the ML solu-
tion to the problem at hand.

Pitfall 2.8. Probably more than other theoretical results, the NFLT for ML has
the largest risk to be misunderstood and misapplied.

Pitfall 2.9. If a ML algorithm cannot represent a function class, this outright
shows the inability or sub- optimality of this algorithm to solve problems that
depend on modeling a data generating function that is not expressible in that
algorithm’s modeling language.

Pitfall 2.10. UAF theorems should not be over-interpreted. While it is com-
forting that e.g., algorithm A can represent any function in the function family
F (i.e., the model space and corresponding inductive bias are expressive
enough), learning also requires effective (space and time-tractable, sample
efficient, non-overfitting etc.) model search and evaluation in that space.
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Best Practices Discussed in Chapter ‘“Foundations and Properties of AI/
ML Systems”

Best Practice 2.1. Pursue development of AI/ML algorithm, program or sys-
tems that have tractable complexity.

Best Practice 2.2. Do not rely on parallelization to make intractable problems
tractable. Pursue tractable algorithms and factor in the tractability analysis
any parallelization.

Best Practice 2.3. Do not rely on Moore’s law improvements to make an
intractable problem algorithm or hard program practical. Pursue tractable
algorithms and factor in the tractability analysis any gains from Moore’s law.

Best Practice 2.4. When faced with intractable problems, consider using
strategies for mitigating the computational intractability by trading off with
less important characteristics of the desired solution.

Best Practice 2.5. As much as possible, use models and systems with formal
and established properties (theoretical + empirical). Work within the matura-
tion process starting from systems with unknown behaviors and no guaran-
tees, to systems with guaranteed properties.

Best Practice 2.6. Decision Analysis (DA) and Maximum Expected Utility
(MEU)-based reasoning

1. Ensure that the structure of the problem setting is sufficiently/accurately
described by the DA tree. Omit known or obvious irrelevant factors.

2. Elicit utility estimates in a way that captures patients’ true preferences
using established utility-elicitation methods.

3. Accurately estimate probabilities of action-dependent events and action-
independent events.

4. In most conditions, and whenever applicable, data-driven approaches

should be preferred to subjective probability estimates. Use probability-

consistent statistical or ML algorithms to estimate the probabilities.

Ensure that the decision analysis is applied to the correct population.

6. Conduct sensitivity analyses that reveal how much the estimated optimal
decision is influenced by uncertainty in the specification of the model.

7. Whenever possible, produce credible intervals/posterior probability distri-
butions for the utility expectations of decisions.

@

Best Practice 2.7. Pursue ML solutions with the right inductive bias for the
problem at hand.
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Best Practice 2.8. Create a data generating or design procedure that matches
well the requirements of the problem at hand and works with the inductive
bias to achieve strong results.

Best Practice 2.9. Cross validation and independent data validation, as well
as their cousin reproducibility, are robust pillars of good science and good ML
practice and are not in reality challenged by the NFLT.

Best Practice 2.10. Clustering should not be used for predictive modeling.

Best Practice 2.11. A very useful form of clustering is post-hoc extraction of
subtypes from accurate predictor models.

Best Practice 2.12. The choice of generative vs. discriminative modeling
affects quality of modeling results and has to be carefully tied to the problem
domain characteristics. All else being equal discriminative models confer effi-
ciency (computational and sample) advantages.

Discussion Topics and Assignments, Chapter “Foundations and Properties of
AI/ML Systems”

1.

Revisit questions (10-13) of chapter “Artificial Intelligence (AI) and Machine
Learning (ML) for Healthcare and Health Sciences: the Need for Best Practices
Enabling Trust in Al and ML” from the perspective of which properties of the
proposed systems are known.

. Use Table 3 to classify the proposed systems in questions (10-13) of chapter

“Artificial Intelligence (AI) and Machine Learning (ML) for Healthcare and
Health Sciences: the Need for Best Practices Enabling Trust in Al and ML”

. Which of the following are heuristic systems (and in what category of the clas-

sification of Table 3 in this chapter:

(a) INTERNIST-I

(b) MYCIN

(c) QMR-BN

(d) A classical regression model for which we do not know if data is normally
distributed. Compare to a classical regression model for which we know that
data is not normally distributed.

(e) A Large Language Model implementing an EHR “ChatBot” tool answering
queries about the patients’ medical history.

(f) IBM Watson Health
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4.

5.
6.

Based on your findings in question 3, how would you go about next steps toward
putting these systems into practice from a perspective of accuracy and safety?
Discuss: are BNs deep or shallow representations?

Consider a population with age distribution as in the table below:

Age—» 0-10 11-20 21-30 3140 41-50 51-60 61-70 >70
% — 20 20 10 10 10 15 10 5

(a) What would be a good 2-way clustering (grouping) of individuals in this
population?

(b) For a pediatrician: what would be a good 2-way clustering (grouping) of
individuals in this population?

(c) For a gerontologist: what would be a good 2-way clustering (grouping) of
individuals in this population?

(d) For an obstetrician: what would be a good 2-way clustering (grouping) of
individuals in this population?

(e) What can you conclude about the value of a priori clustering without any
reference to use of the produced groups?

. Occam’s Razor is the epistemological principle that says that given two explana-

tions that fit the data equally well, we should choose the simplest one. Analyze
this proposition from a BVDE viewpoint.
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Abstract

This chapter provides an outline of most major biomedical ML methods in a
manner suitable for both readers who have not delved into ML before, and read-
ers who may already know about some or all of these methods. The former will
find here a useful introduction and review. The latter will find additional insights
as we critically revisit the key concepts and add summary guidance on whether
and when each technique is applicable (or not) in healthcare and health science
problem solving. Toward that end, for each technique, we introduce a “Method
Label”, akin to a drug label, which provides distilled information about the tech-
niques at a glance. The method labels present the primary and secondary uses of
each technique, provide context of use, describe the principles of operation, and
summarize important theoretical and empirical properties.
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Fig. 1 Lay of the land of biomedical ML. Tabular categorization of major machine learning meth-
ods based on modeling task (columns) and predictor type (rows). See the text for abbreviations
and details

Introduction

A vast number of machine learning techniques has been proposed for solving a rich
set of problems. As we discussed in the Introduction, many of the clinical problems
fall into a few categories, some of which are more heavily researched than others.
We call these categories analytic tasks and, in this chapter, we consider six tasks,
which fall into two broader categories: predictive modeling and exploratory analysis.

Figure 1 depicts the lay of the land for predictive and exploratory analysis tabu-
lating the most common techniques. We will address causal modeling separately
in chapter “Foundations of Causal ML”.

In predictive modeling, the goal is to assign values to one or more variables,
called outcomes (aka response, or dependent variables), using the known values of
other variables (aka predictor variables, independent variables, or features).
Somewhat abusing ordinary language, “predictive” in the context of “ML predictive
modeling”, does not necessarily imply forecasting future events. Any pattern recog-
nition falls under the category including future forecasting, prognosis, diagnosis
and recognizing past events (e.g., retroactive diagnosis). Also, “predictor” and “pre-
dictor variable” are often used interchangeably although from context it may be
clear whether a predictor refers to a variable (feature) or a full model.

In contrast, exploratory analysis aims to model the relationships among many
variables, none of which is designated as an outcome or predictor variable. For
example, predicting patients’ risk of mortality (outcome) based on current diagno-
ses and laboratory results (predictor variables) is a predictive modeling task because
variables corresponding to mortality are designated as outcome, variables corre-
sponding to diagnoses and laboratory results are designated as predictors, and we
predict the future unknown value of an outcome using known values of the predictor
variables. Conversely, understanding a patient population in terms of common
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comorbidities that co-occur with diabetes is an exploratory analysis task, because
there is no particular outcome to predict.

Predictive Modeling Tasks

Within predictive modeling, we distinguish between several tasks based on the out-
come type. In the rest of this chapter, we focus on three of them: classification,
regression and time-to-event modeling. These are the outcome types and corre-
sponding tasks most frequently encountered in biomedical ML.

Continuous outcomes. Continuous outcomes are measured on a continuous
scale. Continuous variables can be ratios (variables that do not have a well-defined
0 point) or intervals (which have a well-defined O point). For example, lengths are
intervals and a length of zero indicates that the object does not have length. Whether
we measure length in inches, centimeters, or miles, 0 length is the same. Conversely,
temperature is a ratio, because 0 °F or 0 °C does not mean that the object has no
temperature. Furthermore, 0 temperature depends on the scale we use: 0°F and 0°C
do not designate the same temperature.

Another relevant distinction from a modeling perspective is the distribution of
the continuous variable. Commonly used distributions include Gaussian, Poisson,
exponential, negative binomial, etc. Prediction problems with a continuous outcome
are referred to as regression problems.

Categorical variables take a value from a set of finite distinct values. For exam-
ple, color (red, amber, green), grade (A, B, C, F), or risk category (low, medium,
high) are categorical variables. Binary (also known as binomial) variables are cat-
egorical variables that have exactly two levels (they can take one of two values);
while multinomial variables have more than two levels.

Categorical variables with multiple levels can be further classified as nominal or
ordinal variables. In case of ordinal variables, the levels are ordered (e.g. good, bet-
ter, best), while for nominal variables, the levels are not ordered (e.g. colors).
Prediction problems with categorical outcomes are referred to as classification
problems. If the outcome is binary, we have binary classification; if the outcome is
multinomial, we have multi-class classification (aka n-ary or polychotomous
classification).

Time-to-event outcomes. The measurement of interest is the time between a
particular time point (known as index date or index time) and an event of interest.
The quintessential example is survival, where the measure of interest is the time
between the start of the study (index date) and death (the event of interest). The
predictive modeling task that predicts time-to-event outcomes is referred to as time-
to-event modeling or survival analysis (when the outcome is survival).

Sequence outcomes. Sequences are ordered sets of observations and when the
outcome of interest is a sequence, we have a sequence prediction problem.
Examples include genomic sequence (ordered set of nucleotides) prediction, text
synthesis or translation (predicting an ordered set of words), or trajectory mining
(predicting future sequences of e.g., disease states).
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Structured outcomes. The outcome of the predictive model can also be a com-
plex structure such as a graph or the actual structure of an entity (e.g. protein struc-
ture prediction). For techniques to discover causal structure, see the chapter
“Foundations of Causal ML”.

Exploratory Analysis Tasks

Density estimation. The goal of density estimation (also encompassing discrete
probability functions) is to infer the (often multi-dimensional) probability distribu-
tion underlying observed data. The simplest form of density estimation is unidimen-
sional scaled histograms. For example, one might be interested in describing the
probability distribution of blood glucose in a population. Density estimation can
also be performed on multi-dimensional data and techniques exist for both low and
high-dimensional data. Density estimation has several natural uses, including dis-
covery of multiple modes of data, clustering and outlier detection.

Clustering. Clustering creates a grouping of the observations in a data set such
that observations that belong to the same group (cluster) are more similar to each
other than to observations that belong to a different group. Clustering can be used,
for example, for subpopulation discovery, where well-separated groups of observa-
tions can represent subpopulations at different states of health or groups of patients
with different disease etiology.

Clustering can be achieved based on many principles, one of which is based on
data density. In that case, clusters are high-density regions in the data, separated
from each other by low-density regions.

Outlier detection. Outliers are observations that are dissimilar to most other
observations. Outliers may either fall into low-density regions, or they may behave
very differently from model-based expectations (model-based outlier). For exam-
ple, in a hospitalized population, outliers can be patients who have an unusually
long hospital length of stay (LoS), say, above 9 days; or alternatively, they may have
a LoS of less than 9 days, but unusually long for the disease that they got admitted
for. The first example is clearly patients who fall into a low-density region (very few
patients in a patient population stay hospitalized for more than 9 days), while the
latter patients are in a low-density region among patients who got admitted with the
same disease.

Temporal Characteristics of the Data

A further categorization of methods is based on the temporal characteristics of the
data. It is very common for healthcare data to be temporal, thus several AI/ML as
well as classical statistical techniques have been developed specifically to take
advantage of various temporal characteristics.
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Cross-sectional data. This data captures the state of a sample from a population
at a specific point in time. The state information often contains temporal informa-
tion about the past implicitly in the definitions of variables - but not explicitly mod-
eled. The implicit temporal information is typically abstracted to different time
scales and granularities. The vast majority of the machine learning techniques
expect cross-sectional data.

Cross-sectional data can also be used for predictive modeling in which the out-
come occurs at a future time relative to the the index date of the predictor variables.
For example, when modeling the 7-year risk of diabetes, the outcome, diabetes,
must occur or not within 7 years, but the predictor variables they have been evalu-
ated at a particular point in time (the index date) and changes to them over the
7 years are not of interest.

Longitudinal data. Measurements for a patient population is taken repeatedly
over time. Measurements are not necessarily taken at the same time for everyone
and not all measurements are taken each time. Routinely collected clinical test data,
falls into this category. At most encounters with the health system, some aspect of a
patient’s health is measured and recorded. Most patients have more than one
encounter and at each encounter, different measurements (e.g., lab tests) can
be taken.

Time-series data. Similarly to longitudinal data, in time series data, several
measurements are taken over time, but unlike longitudinal data, time-series data
focuses on a single sampling unit. If we aim to model the glucose trajectory of a
single individual over a long period of time, then we are solving a time-series mod-
eling problem; if we aim to model the glucose control of a population of patients
over time, then we have a longitudinal data modeling problem.

Figure 1 tabulates some of the techniques from this chapter. The columns corre-
spond to the various analytic tasks, while the rows correspond to the temporal char-
acteristics of the methods. Naturally, several methods can be used for multiple tasks
(with appropriate modifications) and with data sets having multiple temporal char-
acteristics. We either put the methods into the categories where they are most promi-
nent (e.g. SVM into classification), or into shared categories (e.g. many techniques
that are used for classification can also be used for regression).

Method Labels

In the following sections, we are going to describe the major machine learning
methods in terms of their primary use, additional secondary uses, key operating
principles, operating characteristics and properties, and provide a context for their
use that helps assess their appropriateness for different modeling tasks. We also
mention when and why the use of a method is not recommended.

For each method (or family of methods), we are going to present highly digested
and operationally-oriented information in what we call a Method Label. A Method
Label is similar to a drug label, presenting the most vital information about a method
at-a-glance.
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Format of method labels

Main Use This entry describes the main purpose of the model.
‘What kind of tasks can it solve?
Within that task, are there specific problems that this method is best
suited for?
For example, linear regression solves predictive analytic problems
with continuous outcomes.
Context of use In practice, when is this method used? This can be a subset of the
intended use or a superset of the intended use.
For example, ordinary least square regression is designed for Gaussian
outcomes, but is often used for a wide range of continuous outcomes.
Secondary use This entry describes potential situations where the method can also be
used.
This may not be the primary intended use of the methods; or this may
not be the model that is most appropriate for the use case.
For example, SVM can be used for regression, although its primary
use is classification.
Pitfalls Pitfall 3.1.4.1. This entry lists negative consequences of using this
method under certain conditions.
For example, SVM when used for causal problems, leads to wrong
causal effect estimates.
Principle of operation A short description of how the method works.
For example, linear regression is approximating a regression using
maximum likelihood estimates of the regression parameters.
Theoretical properties  This entry describes any known theoretical properties the method may

and Empirical have and the assumptions linked to them, as well as empirical

evidence evidence for the method performance.

Best practices Best practice 3.1.4.1.This entry provides prescriptive practice
recommendations about when and how to use or not the method.

References Key literature related to the above.

Readers that cannot delve into technical details can still benefit greatly by the
information provided in the Method Labels.

Chapter Layout

We begin (in section “Foundational Methods”) with describing the foundational
methods for predictive modeling of cross-sectional data. Section “Ensemble Methods”
is devoted to ensemble methods which use foundational techniques from
“Foundational Methods” to addresses issues related to model stability and perfor-
mance; and section “Regularization” is devoted to regularization, which addresses
high dimensionality, or more broadly, constrains the model complexity. The subse-
quent three sections address feature selection and dimensionality reduction, time-to-
event outcomes, and longitudinal data, respectively. We close the chapter with a brief
mention of a few more methods that the reader should be aware of. As the reader will
observe we weave classical and modern statistical methods with mainstream ML
methods since this reflects modern ML practice and there are significant mathemati-
cal, conceptual and computational commonalities between the fields.
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Foundational Methods

Foundational methods in the chapter will refer to first-order methods that:

(a) Are of high theoretical and/or practical value on their own, or

(b)Are of high theoretical and/or practical value in conjunction with other
higher-order methods.

Ordinary Least Square (OLS) Regression

OLS regression was invented by Sir Francis Galton in 1875 as he described the
relationship of the weight of sweet pea seeds and the weight of the seeds from their
mother plants. This experiment also gave rise to the correlation coefficient: Karl
Pearson, Galton’s biographer, developed the mathematical formulation for the
Pearson correlation coefficient in 1896 [1].

Given a matrix X of predictor variables (independent variables) and outcome
(dependent) variable y, the ordinary linear regression model is

Yy~ Normal(Xﬂ,O'Z)

where f is a vector of coefficients. The outcome is assumed to be normally dis-
tributed with mean X/ and variance ¢°. In other words, the outcome has a determin-
istic component X for the i observation, and a random component, which is
Gaussian noise with mean 0 and variance . The objective is to find the coefficient
vector f, which makes the observations y the most likely, that is to maximize the
Gaussian log likelihood

(y —Xp )2
207
where i iterates over the observations. The coefficient vector # that maximizes
the log likelihood is the same vector that minimizes the least square error
Y i(yi — X;#)?, hence the name Ordinary Least Square regression.

As aleast square estimator, OLS is “BLUE” (best linear unbiased estimator) [2].
The coefficient estimates are normally distributed, allowing for a Wald-type test for
their significance. The least square problem is convex, thus when a solution exists,
it is the global solution.

Assumptions. The assumptions follow from the model: (1) for all observations,
the noise component has constant variance (¢%). Having uniform variance across the
observations is referred to as homoscedasticity. (2) The errors of the observations
are independent. (3) Observations are identically distributed. (4) The mean of the
observations is a linear combination of the predictor variables. The effect of the
predictors on the outcome is thus linear and additive.

Expressive capability. OLS, in its native form, is only able to express linear and
additive effects. By explicitly including transformations of the original variables,
the linear effect assumption can be relaxed. Explicitly including interactions terms
of the predictor variables can relax the additivity assumption. OLS has no ability to

¢(B)=const—%,

s
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automatically discover interactions or nonlinearities, so these need be hand-crafted
by the data scientist.

Dependent and outcome variable types. Ordinary linear regression assumes that
the observations (rows of X) are independently sampled and thus it is more appro-
priate for dependent variables that can be represented as regular tabular data and a
continuous outcome variable that follows a Gaussian distribution.

Sample size requirement. Ordinary linear regression is not appropriate for high-
dimensional data, where the number of predictor variables is similar to the number
of observations or exceeds them. As a rule of thumb, 10 observations per predictor
variable is recommended. This is one of the least sample-intensive techniques, thus
when the number of observations is low and the number of predictor variables is
low, ordinary linear regression may be the most appropriate modeling technique.

Main use and its context. OLS is intended to solve regression problems with
Gaussian outcomes. Guarantees about the solution hold true only for this use case.

Intepretability. For a covariate (predictor variables) X; with coefficient f;, every
unit increase in X; is associated with an increase of f; in the outcome, if all other
predictor variables are fixed.

As aresult, OLS is highly interpretable, and also fit for use with causal estima-
tion once the causal structure is known (see chapter “Foundations of Causal ML").

We recommend using OLS as a “default” algorithm in low dimensional data
unless a generalized linear regression model with a different linkage is more appro-
priate (see GLM). Building an OLS model, even if its performance is expected to be
inferior to more advanced regression techniques, is recommended, because the cost
of building an OLS model is minimal, the model is highly interpretable, and it can
reveal data problems, biases, design problems and potentially other issues. As we
will see the potentially higher predictive performance from other methods needs to
be evaluated from the perspective of trading interpretability for performance, and in
some applications, higher interpretability can balance out some performance deficit.

Optimality. The coefficients found by maximizing the likelihood are unbiased.
Also the log likelihood function is convex, thus the global maximum is easy to find.

Method label: ordinary least squares regression

Main Use * Regression problems
* Continuous, preferably Gaussian outcomes
* Cross-sectional data

Context of use * First choice, most common regression method in low
dimensional data
* When highly interpretable model is required

Secondary use » May achieve acceptable performance for some non-Gaussian
continuous outcomes

Pitfalls Pitfall 3.2.1.1. In high-dimensional data, coefficients may be biased
or cannot be estimated

Pitfall 3.2.1.2. OLS is negatively affected by high collinearity

Principle of operation e Least square estimation (or equivalently, maximizing the
Gaussian log likelihood)
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Method label: ordinary least squares regression

Theoretical properties * OLS is a consistent, efficient estimator of the coefficients
and empirical evidence * The coefficients are asymptotically normally distributed
* Minimizing the least squares is a convex optimization problem. If
a solution exists, numerical solvers will find the global solution.
 Highly interpretable and causally consistent models
* Vast literature in health sciences documenting successful
applications
* Because it is a simple model, risk of overfitting in low sample
is lower than complex models
By the same token it can fail to capture highly non-linear data
generating functions

Best practices Best practice 3.2.1.1. Unless a generalized linear model is more
appropriate, OLS is a good default technique.

Best practice 3.2.1.2. Building an OLS, even if it is known not to
produce optimal predictive performance, can reveal data problems,
biases, etc.

References * Numerous good textbooks describe OLS regression. Below is
one example. Tabachnick & Fidell. Using Multivariate
Statistics. Pearson, 2019

Generalized Linear Models (GLM)

Generalized linear models (GLM) were first introduced by Nelder and Wedderburn
in 1972. GLM was born out of the desire to model a broader range of outcome types
than Gaussian outcomes and was enabled by advancements in statistical computing
[3]. The defining characteristic of GLMs is that the data generating functions is not
linear and a link function linearizes the relationship between an outcome and the
predictor variables, where the outcome is distributed by an exponential family dis-
tribution. A fully specified GLM has the following components:

1. The distribution of y

2. A linear predictor 1 = Xf

3. The link function g(u) that links the expectation of E(y) = y to the linear predic-
tor: n = g(u); or equivalently, u = g7'().

As an example, let us consider logistic regression, linear regression for outcomes
with binomial distribution. The distribution of y; is Bernoulli with parameter 7;, and
the link function is

Pr(y.)

() P

i

logit (yl. ) =log

The objective is to find the coefficient vector f that maximizes the likelihood of
observing y, which in case of the logistic regression is the binomial likelihood.
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GLMs are frequently used for modeling outcomes that follow other exponential
family distributions, including multinomial, Poisson, and negative binomial [4].

Expressive capability. The link function does not change the model’s expressive
capability; the relationship between 7 and the predictor variables is linear, the only
difference from OLS is that the linear predictor is transformed through the link
function so that GLM can model specific families of non-linear functions.

Dependent and outcome variable types. GLM are best suited for cross-sectional
data (with independent and identically distributed observations), but the outcome
types have to be distributed in accordance with the link function.

Prediction task. GLM can solve classification problems (logistic and multino-
mial link) and regression problems where the continuous outcome can be distrib-
uted following any of the exponential family distributions.

Theoretical properties. The GLM is a maximum likelihood estimator for the
exponential family distributions. Some instances of GLM, such as an overdispersed
GLM, does not correspond to an actual exponential family distribution. In such
cases, a variance function can be specified and GLM becomes a quasi-likelihood
estimator [5]. Both estimators (maximum likelihood and quasi-likelihood) are con-
sistent and efficient. They yield coefficient estimates that are normally distributed
and thus the Wald test can be used for testing their significance. Both the likelihood
and quasi-likelihood are convex, thus when a solution exists, it is a global solution
and solvers can typically find it efficiently.

Method label: generalized linear models

Main Use ¢ Predictive modeling with outcomes that follow a distribution from the
exponential family (i.e., relationship of outcome and predictor
variables can be non-linear)

* Most common applications are classification (logistic regression),
estimating count outcomes (Poisson regression) and exponential
outcomes

* Cross-sectional data

Context of use * First-pass/comparator classifier in low dimensional problems with
limited need for input interaction modeling
* Highly interpretable model

Secondary use » Applicable also to deviations from the exponential family, most typically
where the sample variance is higher than theoretically expected under the
corresponding exponential family distribution (over-dispersion)

» Logistic regression may offer acceptable performance in classification
problems, where the linear additive assumption is mildly violated

Pitfalls Pitfall 3.2.2.1. In high-dimensional data, coefficients may not be
estimatable
Pitfall 3.2.2.2. Tendency to overfit in the presence of high collinearity
Principle of * When the outcome follows an exponential family distribution, GLM is
operation a maximum likelihood estimator

* When the outcome does not follow an exponential family distribution,
GLM can be a quasi-likelihood estimator
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Method label: generalized linear models

Theoretical * GLM provides consistent, efficient estimates of coefficients

properties and * The coefficients are asymptotically normally distributed

empirical * Minimizing the likelihood or quasi-likelihood is a convex optimization
evidence problem. If a solution exists, numerical solvers will find the global

solution efficiently.
« Highly interpretable models
* GLM can have high performance even when the assumptions are
violated. Chapter “Lessons Learned from Historical Failures, Limitations
and Successes of AI/ML in Healthcare and the Health Sciences.
Enduring Problems, and the Role of BPs” discusses comparisons
between logistic regression and more modern ML techniques
Best practices Best practice 3.2.2.1. Use GLM as first pass, or main comparator classifier
Best practice 3.2.2.2. Building a GLM, even if it is known not to produce
optimal predictive performance, can reveal data problems, biases, etc.

References » Walter Stroup. Generalized Mixed Linear Models, CRC Press, 2003
¢ P. McCullagh, JA Nelder. Generalized Linear Models, CRC Press,
1989

Ordinal Regression Models

There are two main strategies for modeling ordinal outcomes using GLMs. The first
one is cumulative logits and the second one is proportional odds [6].

Consider an ordinal outcome variable with J levels, 1 < 2 < ... < J. Under the
cumulative logits strategy, J-1 logistic regression models are fit. The j™ model is a
classifier distinguishing y < j verus y > j. Under the proportional odds strategy,
again, J-1 models are built, but these models share all coefficients except for the
intercept. The j" model is

logit(yﬁj)zaj—i-Xﬁ,

where ¢; is the level-specific intercept and f are the slopes shared across the
J-1 models.

Notice, that the cumulative logits model can use any binary component classifier;
while the proportional odds GLM is a special case of multi-task learning.

Key reference: Agresti A. Categorical Data Anlaysis, second edition. Chapter 7.2.
Wiley Interscience, 2002.

Artificial Neural Networks (ANNs)

For main milestones in the development of ANNs see chapter “Lessons Learned
from Historical Failures, Limitations and Successes of AI/ML in Healthcare and the
Health Sciences. Enduring Problems, and the Role of BPs”. In this section, we focus
on the general form of ANNs for cross-sectional data. Image and language model
applications are discussed in Chapters “Considerations for Specialized Health Al
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and ML Modelling and Applications: NLP” and “Considerations for Specialized
Health Al and ML Modelling and Applications: Imaging—Through the perspective
of Dermatology”.

Artificial neural networks (or neural networks, NN, for short) can be thought of
as regression models stacked on top of each other, and each regression model is thus
called a layer. Each of these layers are multiple regression models, meaning they
have potentially multivariate inputs as well as multivariate outputs. The outputs
from each layer, are transformed using nonlinear functions, called the activation
functions, and then passed to the subsequent layer as their input. The final layer
(aka the output layer) provides the network’s output(s).

Figure 2 shows an example NN with two hidden (aka encoding) and an output
layer. The output from this network is

y =1 (b3 +W, f, (bz +W, 1, (bl +VV1X))),

where the fi(-) is the activation function, b; are the biases (or bias vectors) and W, are
the weights (weight matrices) of connections coming into layer i. In layer i, the
input is multiplied by W, the biases b; are added and the result is passed through the
activation function f(), producing the output from layer i. The input to the first layer
is X, and the output from the topmost layer, the third layer in this example, is the
outcome y . Common activation functions include the sigmoid function (logit func-
tion), ReLLU (rectified linear unit), and softmax.

Expressive power. NNs are universal function approximators, they can express
any relationship between the predictors and the output without distributional restric-
tions. This includes non-linear relationships as well as interactions.

Predictor and outcome types. The basic form of NNs introduced here is most
appropriate for cross-sectional data without any special structure. However, when the
data has special structure, corresponding network architectures have been proposed
for many of them. For example, Convolutional Neural Networks (CNN) [7] have been
proposed for image data, Recurrent Neural Networks (RNN) [8]and Long Short-Term
Memory (LSTM) [9] for sequence data, Transformers [10] for language models,
Graph Neural Networks [11] for graph data, etc. We discuss some of these architec-
tures in chapters “Considerations for Specialized Health Al and ML Modelling and

Fig.2 An example NN ¥y

with three layers il
T Ws
f W,
fw
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Applications: NLP” and “Considerations for Specialized Health Al and ML Modelling
and Applications: Imaging—Through the perspective of Dermatology”.

Sample size. The sample size required for NNs can be very large. The deeper the
network (the more layers it has), the more parameters it has and the larger the
required sample size. Many practical applications of deep learning use millions of
parameters. Although the traditional statistical rule of the thumb, that the number of
required observations is approximately 10 times the number of parameters, does not
hold for deep learning—they can operate on data with fewer samples—the required
sample size is still very large.

The largest GPT-3 language model, which has 175 billion parameters, was
trained on 45 TB of text data taking 355 GPU-years [12]. Certain structures (most
notably convolution) and regularization can alleviate the sample size requirement to
some degree.

Interpretability. The key to NNs is to automatically transform the original data
space into a new representation that is more amenable to the predictive modeling
task at hand. A side effect of this automatic transformation is that the meaning of the
original space is lost and the meaning of the resulting variables are often unknown.
Thus, NNs are considered black-box (uninterpretable). One way to interpret them is
by “local approximation” of the NN using an interpretable model, such as a multi-
variate regression model, fitted over input-output pairs sampled from the NN model.

NNs in Less Data-Rich Environments
Two significant shortcomings of NN is the sample size requirement and the training
cost. Several strategies exist aiming to alleviate these shortcomings.

Transfer learning. Training neural networks, especially highly performant, large
networks, is very expensive not only in terms of CPU time but also in terms of
required sample. Large pre-trained generic models (so-called foundational models)
are available in many application areas, including language processing and com-
puter vision. These generic models transform the input space (say written English
text) into a representation that is more amenable to carrying out language modeling
tasks than the original representation. To solve a specific language-related task, such
as distinguishing patients with and without dementia, a foundational language
model (with many pre-trained encoding layers) can become extended by a task-
specific layer so that the new model performs the actual classification task. Only the
task-specific layer needs to be trained.

Incorporating domain knowledge. Another avenue to reduce training cost is to
incorporate domain knowledge as follows: when synthetic data for a domain can be
generated, NNs can be pre-trained using synthetic data to learn a representation of
the application. Then this pre-trained model can be further refined using real data to
solve specific problems in that domain. Beside pre-training, several other methods
exist, which include augmenting the input space of a NN with output from physical
models (e.g. climate models) or ascribing meaning to hidden nodes and constrain-
ing the connections among such hidden nodes based on what is possible in the real
world. See [13] for a survey of incorporating domain knowledge into machine
learning models.
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Method label: artificial neural networks (including deep learning)

Main Use

Context of use

Secondary use
Pitfalls

Principle of
operation

Theoretical
properties and
empirical
evidence

Best practices

* Solving predictive modeling problems. Classification, including
classification with very many classes, is most common, but it can also
solve regression and time-to-event problems

* In data-rich environments, ANNs can produce highly performant models

* ANNSs are recommended when sample size is very high and a very
complex function needs be modeled

» Neural networks work best for specific applications, with network
architectures specifically designed for that application. Such applications
include image analysis, text and audio modeling, text synthesis, etc.

* Modeling distributions using GANs and auto-encoder variants

Pitfall 3.2.4.1. ANNs can fail when sample size is not large

Pitfall 3.2.4.2. ANNs are innately black-box models. Their use in
applications where transparency is important may be problematic

Pitfall 3.2.4.3. ANNs do not reduce the number of features needed for prediction
and this may be an important requirement in many biomedical problems.
However, using strong feature selectors before running the ANN modeling may
be a good combination for some problems (but can be detrimental in others)

Pitfall 3.2.4.4. Training cost is high due to (a) large cost of training a single
model, and (b) large number of models that need be trained to explore the
immense hyperparameter space

Pitfall 3.2.4.5. ANNs do not have either formal or empirically competitive
causal structure discovery capabilities

Pitfall 3.2.4.6. Even when a causal structure is known, estimating causal
effects with ANNSs leads to biased results because the ANN is not designed to
condition on known confounders and may introduce other effect estimation
biases (e.g., due to blocking mediator paths and opening M-structure paths)
* Minimizing a penalized loss
e Linear combinations of inputs transformed through a non-linear
activation function layer-by-layer yields a non-linear model
* ANNSs with at least two hidden (encoding) layer and unbounded number
of units, can be universal function approximators
* NNs are most commonly solved using gradient optimizers. Because the
objective function of NNs can be arbitrarily complex with multiple local
optima, the optimizers may fail to reach the globally optimal solution
* In several biomedical problems deep learning and other ANN learners have
exhibited superior accuracy (especially in image recognition). There is also
significant evidence that in several clinical domains not involving images they
do not outperform vanilla logistic regression (see Chapter “Lessons Learned
from Historical Failures, Limitations and Successes of AI/ML in Healthcare
and the Health Sciences. Enduring Problems, and the Role of BPs”)
Best practice 3.2.4.1. Deep learning is most recommended for predictive
modeling in large imaging datasets. Other domains may also be good
candidates. In all cases additional (alternative and comparator) methods
should be explored at this time within the same error estimation protocols
(see chapter “The Development Process and Lifecycle of Clinical Grade and
Other Safety and Performance-Sensitive AI/ML Models”)

Best practice 3.2.4.2. At this time ANNSs are not suitable for causal discovery
and modeling. Formal causal methods should be preferred (chapter
“Foundations of Causal ML")

Best practice 3.2.4.3. ANNs are not suitable for problems where
explainability and transparency are required, or when large reduction of the
feature space is important to model application
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Method label: artificial neural networks (including deep learning)

References * Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press, 2016
* Discussion and references in Chapter “Lessons Learned from Historical
Failures, Limitations and Successes of AI/ML in Healthcare and the
Health Sciences. Enduring Problems, and the Role of BPs”

Support Vector Machines

Support Vector Machines (SVMs) is a family of methods that can be used for clas-
sification, regression, outlier detection, clustering, feature selection and a special
form of learning called transductive learning [14—16]. SVMs use two key principles
(1) regularization and (2) kernel projection.

SVM regularization: SVMs cast the classification or regression problems as a
non-linear quadratic optimization problem where the solution to predictive model-
ing is formed as a “data fit loss + parameter penalty” mathematical objective func-
tion. Intuitively and as depicted in Fig. 3, each object used for training and
subsequent model application is represented as a vector of measurements in a space
of relevant dimensions (variable inputs). We will discuss regularization in the gen-
eral (non-SVM) setting in section “Regularization”.

Binary classification is formulated in SVMs as a geometrical problem of finding
a hyperplane (i.e., the generalization of a straight line from 2 dimensions to n dimen-
sions) such that all the instances above the hyperplane belong to one class and all
subjects below the hyperplane to the other. Translating this geometrical problem into

w-X+b=-1., wX+b=0

Negative instances (y=-1) Positive instances (y=+1)

Fig. 3 SVMs and the classification problem as geometrical separation. In the top panel, a geo-
metrical representation of a 2-class predictive modeling (classification problem) with 2 input
dimensions (X, X,) is depicted. Each subject is represented by a dot (i.e., a 2-dimensional vector).
Blue dots are negative instances and red dots are positive ones. The line that separates negatives
from positives—while maximizing the distance between classes—is the solution to the SVM prob-
lem. The instances at the border of each class are the “support vectors”. In the figure we also see
the mathematical expression of the classifier hyperplane and its instantiation for the three support
vecotrs of the example. Such problems are easily solved by modern software
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linear algebra constraints is a straightforward algebraic exercise. Every variable has
a weight and collectively these weights determine the hyperplane decision function.

To ensure a model with good generalization performance and resistance to over
fitting, the SVM learning procedure requires two elements: (a) That the hyperplane
must be such that the number of misclassified instances is minimized (the “data fit
loss” part of the objective function to be minimized). (b) A generalization-enforcing
constraint, the so-called “regularizer”, that is the total sum of squared weights of
all variables, must also be minimized. Specifically, the regularizer must be mini-
mized subject to the locations and labels of training data fed into the algorithm. This
is an instance of quadratic program non-linear optimization function that can be
solved exactly and very fast.

1 n . _ .
Minimizez i=]wl.2 subject to yi(wxl.+b)—120 fori=1,...,N

A “soft margin” formulation of the learning problem in SVMs allows for handling
noisy data (and to some degree non-linearities). The primary method for modeling
non-linear decision functions is kernel projection which works pictorially as fol-
lows (Fig. 4).

In a non-linearly separable problem, there is no straight line (hyperplane) that
accurately separates the two classes. The SVM (and other kernel techniques) use a
mapping function that transforms the original variables (x;, x, in Fig. 4) into SVM-
constructed features, such that there exists a straight line (hyperplane) that separates
the data in the new space. Once the solution is found in the mapped space, it is
reverse-transformed to the original input variable space. Once projected back to the
original input space the solution is a non-linear decision surface. Because the map-
ping function is very expensive to compute, special kernel functions are used that
allow solving the SVM optimization without incurring the expense of calculating
the full mapping. In mathematical terms the above take the following form:

f(x) = sign(W?c +b)
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Fig.4 Non-linearly separable classification by mapping from an original space (x;, X,) to a differ-
ent space (with commonly higher number of dimensions) by using kernel functions
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When data is mapped into higher-dimensional features space ® (%),
£ (x) =sign(wd(%)+b)
W= aiyiq)(;i)
Combining them into a classifier yields
Fx)= sign(zﬁl o,y,®(x)o cD(;é)+b) = sign(ZY, 3K (x %) +b).

The above computations are extremely quick to execute and are solved effectively
allowing the SVM to explore an astronomical-size space of non-linear interaction
effects in quadratic running time and without over-fitting. Let’s demonstrate the
remarkable computational and sample efficiency that the kernel projection affords
using an example where we will compare the number of parameters that need to be
estimated and the sample size needed for a relatively simple non-linear SVM with
polynomial kernel degrees of 3 or 5 and number of variables to be modeled ranging
from 2 to 100. We will compare with the sample needed and interactions effects that
need be constructed and estimated by the corresponding regression model under a
conservative requirement of 5 sample instances per parameter.

As can be seen from Table 1. (adapted from [15] for a dataset with 100 variables
with up to fifth degree polynomial interaction effects, classical regression would
need >96 million parameters to be explicitly constructed and > 482 million sample
size in order to estimate the model’s parameters. By comparison the SVM algorithm
explores the same space in time quadratic to the number of variables (i.e., in prac-
tice in seconds in a regular personal computer). Moreover, the SVM generalization
error is independent of the number of variables and is bounded by a function of the
number of support vectors which is smaller or equal to the available sample size
(see chapter “Foundations and Properties of AI/ML Systems” for more details).

One way to think of the effects of regularization is that by forcing weights to be as
small as possible, all variables that are not relevant or are superfluous to the predictive
modeling will tend to have zero or near zero weights and are effectively “filtered” out
of the model. Equivalently, the minimization of weights entails that the separation
between classes is geometrically maximized and statistical machine learning theory

Table1 Comparison of non-linear SVM vs classical regression in terms of number of parameters.
N denotes the (often very small) sample size available in practice

Number of
Number of Polynomial =~ Number of parameters parameters in the Required sample
variables degree in the SVM model Regression model by Regression
2 3 <N 10 50
10 3 286 1430
10 5 3003 15,015
100 3 176,851 884,255
100 5 96,560,646 482,803,230
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shows that this often leads to more generalizable models. In yet another view, regular-
ization entails that the target function is smooth, in the sense that small differences in
the input variables result in small changes to the response variable’s values.

Additional aspects of SVMs include: primary and dual formulations of the
learning problem (suitable for low dimensionality/high sample, or high dimension-
ality/small sample situations respectively), using only dot product representa-
tions of the data, Structural Risk Minimization (i.e., the model complexity
classes are neatly organized in embedding classes so that model selection can be
orderly and efficient), and known bounds of error. These bounds are not depen-
dent on the number of input variables but only on the support vectors (which are at
most equal to the sample size N) thus demonstrating the power of SVMs to self-
regulate their complexity and avoid overfitting (see also chapter “Overfitting,
Underfitting and General Model Overconfidence and Under-Performance Pitfalls
and Best Practices in Machine Learning and AI” for comprehensive discussion of
overfitting and underfitting). SVM scores can be converted to probabilities in a
post-hoc manner and can also be used to perform feature selection for other clas-
sifiers. While SVMs output scores and not probabilities, these scores can be con-
verted to calibrated probabili