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Preface

The aim of the book— according to its title— is to formalise the tableaumethods
for the propositional logic and term logic. By tableau methods we mean both
ways of defining tableau systems and concepts which enable us to determine the
occurrence of logical relationships within these systems.

In the book, we look into the problem of formal definition of concepts that
are typical for such logical systems in which the occurrence of the logical rela-
tionships is examined by means of constructing the so-called tableau or proof
tree.

Our considerations only apply to those systems that:

• firstly, are built for logics defined by bivalent semantics— the interpretation of
formulas assigns to each formula either the value of truth or the value of false

• secondly, are systems of propositional logic or term logic.

Both conditions, as we will see later, have an important influence on the na-
ture of the defined general concepts for the tableau methods. We write about
establishing the overlapping relations of logical consequences in the tableau sys-
tem because, in the presented approach, the starting point of the tableau system
structure is the semantically defined logic for which the tableau system is con-
structed. We want to construct the tableau system in such a way that the relation
of derivability determined by this system coincideswith the relation of the seman-
tic consequence for which the system was determined. In other words, we want
the defined tableau system to be sound and complete to the initial semantics.

In many cases, it is of course possible to take the opposite approach — we can
first define a tableau system and then determine the appropriate semantics for it.
The methods presented in the book also make it possible to achieve this goal.

The formalisation of tableaumethods described in this paper is based on the set
theory — all concepts important for the theory of tableau methods are therefore
defined as sets. The book analyses, among other things, the concepts of tableau
rule, branch and tableau, offering their general and purely formal view. For ex-
ample, the concept of a tableau rule is reduced to an ordered n-tuple of sets of
expressions where the first element is a set of premises, and the following ele-
ments are the supersets of the set of premises — ways of drawing conclusions
from it. At the same time, however, branches are defined as sequences of sets in
which subsequent elements form the result of the application of the tableau rule.
Finally, tableaux are sets of branches that meet certain additional conditions.
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Still, the presented general and formal concepts do not interfere with the
tableau concepts which are intuitive, standard and used in didactics. As we will
show at the end of the book, the latter can be regarded as the application of formal
concepts. The advantage of the formal approach is the possible generalization of
conditionswhose fulfilment by the tableau system is sufficient for its completeness
and adequacy to the adopted semantics.

In Chapter One, the Reader will have the opportunity to get acquainted
with the adopted strategy of formalisation of tableau concepts and an intuitive
approach which is developed in the book.

In the following three chapters, three different cases are discussed in detail
— different in terms of both syntax of the language in which we carry out the
tableau proof and semantics. Contained in these chapters, structure of formal
tableau systems for Classical Propositional Logic, Term Logic and modal logic
S is the starting point for the generalization of tableau methods which is done
in the next chapter.

In Chapter Five, we describe the general theory of the structure of tableau
systems and tableau concepts. The result of that chapter considerations is a theo-
rem formulating sufficient conditions for the tableau system constructed with the
given method to be adequate in relation to the initial semantics.

The final chapter describes the applications of the theory presented in Chapter
Five.There, we will find the theory application to the construction ofModal Term
Logic in the interpretation de re and the application to the theory of tableau sys-
tems for modal logics determined by the semantics of possible worlds. Another
issue that we discuss in that chapter is the concept of the tableau system itself and
the concepts that should be defined during its construction, as well as the result-
ing possibilities of examining the relations between the tableau systems. In the
chapter, we also present a description of the transition from the abstractly un-
derstood concepts of tableau and branches to the standard, informal concepts of
branches and tableau.This transition can also be considered as the application of
general tableau concepts.

The author of the bookwould like to send greatest appreciation for the editorial
reviewers of this book: prof. Andrzej Pietruszczak (Nicolaus Copernicus Univer-
sity in Toruń) and prof. Marcin Tkaczyk (The John Paul II Catholic University of
Lublin). Moreover, the author would also like to express his gratitude to dr. Ma-
teusz Klonowski (Nicolaus Copernicus University in Toruń), for the discussions
and valuable remarks.



 Introduction

. Tableau methods
In the book, we look into the tableau methods. These methods are used to define
logical systems inwhich through proofs— called tableau proofs— it is possible to
show the occurrence of logical relations between sets of premises and conclusions.

Tableau methods in many ways constitute an interesting alternative to other
methods of constructing logical systems. They are also interesting because the
tableau systems havemany advantages over other types of systems. Unfortunately,
they also have their drawbacks. The aim of the book is to define tableau meth-
ods in such a way that for a certain class of tableau systems these drawbacks are
minimized or, where possible, completely eliminated.

Let us briefly expose some features of tableau systems, comparing them with
axiomatic systems.

One of the advantages of tableau systems is a fairly intuitive and simple mech-
anism of theorem proving. In most cases, knowing the tableau rules and the way
they work, we can mechanically search for answers to the question whether a
given formula is a logical consequence of a given set of premises. Such action
does not require any particular ingenuity. Another advantage is the fact that if
the answer is negative, most often — also intuitively — on the basis of an unsuc-
cessful tableau proof we can build so-called countermodel, i.e. a model in which
the premises are true, but the conclusion is false.

Unfortunately, the disadvantages of tableau systems are the complications that
arise when trying to construct them precisely— there are many complex theoret-
ical concepts. Obviously, we can use intuitive concepts of branch/track of proof,
tableau/tree, open or closed tableau, complete tableau, etc. However, firstly, we
are not dealing with a formal system, but with a preformal one, and thus poten-
tially more or less burdened with serious logical errors. Secondly, it is difficult,
if at all possible, to generalize our results by looking for metalogical dependen-
cies between different tableau systems, as well as dependencies between classes of
systems as for such actions we need general concepts whose specific cases occur
within the construction of specific tableau systems.

In turn, axiomatic systems feature precisely defined basic concepts and these
concepts can be generalized. For example, it can be assumed that each axiomatic
system consists of a decidable set of formulas of a certain language For and a set
of rules of proving R. Since the system axioms can be described as zero-premiss
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rules, the general concept of rule of proving in the axiomatic system can be, for a
given set of formulas For, defined as follows:

R = {⟨X,A⟩ ∶X is a subset of For, A is a formula}.

An axiomatic system is most often a ordered pair ⟨For, R⟩, where For is a
decidable set of formulas, whereas R is non-empty set of rules of argumentation.
When a rule is an axiomatic rule, it contains pairs ⟨X,A⟩, where X is an empty
set, whereas A is a formula being introduced to the proof without premises.

With an axiomatic system ⟨For,R⟩ we can now define the general concept of
proof of formula A on the basis of set of premises X. We shall state that A is prov-
able on the basis of premises X iff there exists finite sequence of formulas B, . . . ,
Bn such that:

. Bn =A
. for any  ≤ i ≤ n at least one of two cases occurs:

• Bi ∈X
• there exist: rule R ∈R and such pair ⟨Y ,C⟩ ∈ R that

– C = Bi
– Y is an empty set or for certain m >  and certain  < k, . . . , km < i, Y =

{Bk , . . . ,Bkm}.

With a defined axiomatic system and the concept of provability, we can pro-
ceed to the argumentation.However, unlike the tableau systems, inmost cases it is
not easy as it requires intuition, ingenuity and other skills. Moreover, it is usually
difficult to move from an unsuccessful proof to a countermodel construction.

The above comparison could be summarised by saying that:

• axiomatic systems are simpler to define (which does not imply that a system
with the required properties is easy to define, but the general definition of
system and proof is simple) and can be defined precisely, however producing
proofs on their ground and finding a countermodel is usually difficult

• tableau systems are more complicated to define and are usually not defined
with sufficient precision (which makes it impossible to generalize tableau
concepts and create metatheories of whole classes of tableau systems), but
producing proofs in tableau systems is most often simple and in many cases
enables finding a countermodel.

One of the primary goals of this study is to define the tableau concepts — con-
cepts that seem necessary — that occur when defining various tableau systems
precisely, and then try to generalize themwithin the scope determined by the use
of tableau methods to construct propositional logic and term logic specified by
bivalent semantics.
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Therefore, we would like the tableau methods — similarly to axiomatic meth-
ods — to be based on certain constants and general concepts, and the construc-
tion of a given tableau system boiled down only to specifying those components
that distinguish this tableau system from other tableau systems.

Such an approach will result not only in general and precise tableau concepts
that can be used in the construction of different systems but also in proving
metatheorems not of individual systems, but of entire classes of tableau systems.
These metatheorems will apply to those properties of tableau systems that are
independent of their specific features and concern all systems in a given class,
constructed on the basis of general, developed tableau concepts.

By a tableau system — by analogy to the axiomatic system — we can under-
stand a certain ordered triple of sets ⟨For, Te, Rt⟩ where:

• For is a set of formulas of a given language
• Te is a set of tableau expressions— proof expressions of a tableau system being

defined
• Rt is a set of tableau rules designed to produce tableau proofs.

As distinct from the axiomatic system, the tableau system therefore features
an additional element — a set of tableau expressions Te. In the specific case —
such a case will be described in the next chapter — it may be so that Te = For.
Most often, however, these sets are different because althoughwe look for a logical
relationship between a set of formulas and a given formula, we carry out a tableau
proof based on tableau expressions Te for which a set of formulas alone is often
insufficient.

Every axiomatic system ⟨For,R⟩ unambiguously determines a relation of
derivability ⊢R which occurs between such sets of premises and such formulas
that on the grounds of this system the latter are derivable from the former. The
axiomatic system can therefore be understood as pair ⟨For,⊢R⟩.

It should be similar for any tableau system ⟨For,Te,Rt⟩, and thus it should un-
ambiguously determine the tableau derivability relationship▷Rt which contains
such pairs of premises and conclusions ⟨X,A⟩ that in the system on grounds X
we can tableau prove A. We call relationship▷ a tableau consequence, and more

 It is an initial comprehension of a tableau system. We will not refer to it in further
considerations. The proposed definition of a tableau rule will show that set Te is un-
necessary for the characteristics of a tableau system since argumentation in that system
does not go beyond the application of the tableau rules defined on the set of tableau
expressions. In the last chapter, using the previously developed concepts, we will enun-
ciate the concept of a tableau system, which will be more appropriate to the theory
described in the book.
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often branch consequence, showing that its occurrence can be identified with the
existence of a tableau with specific properties.

We should therefore aim at such definitions of tableau concepts so that we can
understand a tableau system as pair ⟨For,▷Rt⟩. We have deliberately left aside
the set of tableau expressions here Te as it will only serve as a domain for defin-
ing tableau rules, and as a consequence of creating proofs — since the tableau
expressions are included in tableau rules.

Therefore, the problemof defining a tableau system should be reduced to defin-
ing a set of formulas, defining a set of tableau rules and the relationship between
formulas and rules. The remaining tableau concepts — as in the case of the con-
cept of provability in the axiomatic system — should be special cases of more
general tableau concepts. All the more so as the concept of tableau proof is not a
simple one, but — as we will show — dependent on many simpler concepts.

Hence, we want to define tableau concepts in such a way that tableau systems
are simpler to define and at the same timemore precise (whichwill enable the gen-
eralization of tableau concepts and the work on metatheories of entire classes of
tableau systems), while maintaining the intuitiveness and automaticity present in
producing proofs in tableau systems and, where possible, retaining the property
of finding a countermodel.

The logic can also be perceived from the semantic side, related to the interpre-
tation of expressions. Axiomatic systems are customarily treated as an expression
of a syntactic approach to logic. Without referring to the meaning of the inscrip-
tions used, axiomatic systems specify how to decide the occurrence of relation ⊢
by transforming expressions solely in terms of their structure and shape.

In the book, we approach the problem of tableau systems in an analogous
manner, but the starting point is usually (although not necessarily so) a logic de-
fined in a purely semantic way. It can be understood as pair ⟨For,⊧⟩ where For is
a set of formulas of given language, and ⊧ is the relation between sets of formulas
and individual formulas, defined in a standard way based on the interpretation
of set For.

Thus, having such a semantically understood logic ⟨For,⊧⟩, we want to define
an tableau system (often for the same purpose we define an axiomatic system)
⟨For,▷⟩ which, by transforming the tableau rules themselves, would allow us
—where possible— to determine the occurrence for a given pair of relationships
⊧. To demonstrate that relations ⊧ and▷ coincide (i.e.▷ = ⊧) would thus be not

 In the designation, we skip set of rules Rt since definition ▷ will depend on a set of
tableau rules.
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only a correctness measure for the constructed tableau system, but it also is the
purpose of defining the tableau system.

Our approach to tableau systems is therefore syntactic. We treat them as sys-
tems defining the code of transforming expressions without direct reference to
the semantic concepts.This may seem controversial, especially in those cases (i.e.
in the vast majority) where For≠Te; hence, when we use expressions that are dif-
ferent from the formulas in the proofs, by conjecture they encode some semantic
data/privileges.This controversy can be dismissed by referring to two arguments.

The first one is hinges upon the following fact.When defining, in some tableau
system, the relation of branch consequence▷, with semantically determined logic
⟨For,⊧⟩, it is not at all self-evident that these approaches coincide. This requires
additional proofs for two theorems:

• completeness theorem ⊧⊆▷

• soundness theorem▷⊆⊧.

So despite different definitions of logic and the tableau system andmutually inde-
pendent definitions of both relations, we are seeking a proof that these relations
are extensionally equal.

Finally, it is also possible to define a tableau system in which relation ▷ does
not coincide with the output semantic relation ⊧. Relation▷ and, consequently,
the tableau system that determines it, are therefore something different than the
logic and relations of semantically defined consequences. We can then try to im-
prove the defined tableau system, or look for a different semantics — both cases
show that we are dealing with something different than the initial, semantically
defined system.

Let us put forward the second argument proving that the fact that tableau ex-
pressions Te encode certain semantic properties does not necessarily lead to the
conclusion that the tableau systems are not syntactic ones. After all, in the case of
axiomatic systems, the axioms and rules also encode various semantic properties
of functors in a sense, even though it is not directly visible. Of course, we can say
that in many cases there exist various axiomatic systems (defined by disjoint sets
of rules) corresponding to the same semantic relation ⊧, which means that the
semantic intuitions present in the rules and axioms do not have to be identical.
But it is also the case — as we will show — in many cases of the tableau systems.
There may be more than one tableau systems that are equivalent to the same se-
mantically determined logic, which would have to imply that also in this case the
semantic intuitions present in their construction are not identical.

Regardless of how we evaluate tableau systems, we define here the rela-
tions of tableau provability in a different way than is the case in the semantic
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determination of consequence relations. For we do it in an autonomous way,
although we undoubtedly transfer some semantic intuitions from semantically
defined logic.

In this study, we will proof the theorems of completeness and soudness, lean-
ing towards the view that we are dealing with a syntactic approach. However, a
different orientation in thismatter will not change the fact that we are considering
something different than a purely semantically defined logic, nor will it invalidate
the formal concepts presented in the paper.

. Terminology and problems in the book
In each chapter of the study, we consider a case of a tableau system ormake gener-
alisations. The selected systems have different properties in some aspects which
allows us to seek sufficiently general definitions of the tableau concepts so that
all the systems described and all tableau systems similar to them — the systems
described represent, due to their unique features, the classes of similar systems—
are special cases of these definitions.

.. Study schedule and goals

In this study, we deal with the formalization of tableau methods. The result is a
certain method of tableau systems construction, which corresponds to an intu-
itive approach, but apart from the precision we have already mentioned, it gives
us additional benefits.

In Chapter Two, we will define the tableau system for Classical Propositional
Logic as the basic case. As in work we focus on the economy principle when ap-
plying technical measures, we shall define this system based on set of tableau
expressions Te equal to set of Classical Propositional Logic formulas For, al-
though the tableau system for the Classical Propositional Logic could be defined
based on set Te ≠ For. Formally, this would be of course a different tableau
system.

Hence, the case of a tableau system for the Classical Propositional Logic de-
scribed in that chapter seems to be a borderline case. The system also features
the property that any branch that begins with a finite set of tableau expressions
can be extended to a branch that can no longer be governed by tableau rules and
which is a branch of a finite length. We will call this feature a finite branch prop-
erty. However, it is not a feature specific to all the tableau systems described in
the book.

At the end of the chapter, we show that we actually have defined a tableau sys-
tem for the Classical Propositional Logic because the tableau provability, which it
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determines, coincides with the consequence relation determined by the valuation
of formulas.

In Chapter Three, we consider the tableau system for the simplest term logic
(which we call Term Logic), i.e. the logic of classical and non-modal categori-
cal propositions, allowing empty names. In the case of this tableau system for
Term Logic, the set of formulas is actually contained in the set of tableau ex-
pressions.The proof language is therefore more complicated than in the previous
case.

The issue of tableau concepts looks analogous, especially the key for proofs —
as we will see — concept of the maximal branch. Also in this case, a maximal
branch is always obtainable from a finite set of tableau expressions.

At the end of ChapterThree, we show the completeness and consistency of the
tableau systemwith the normally and semantically defined consequence relations
in Term Logic.

Chapter Four deals with another borderline case — but this time it is a bor-
derline case on the opposite side to the case of Classical Propositional Logic.This
is because we consider modal logic S, by defining a set of tableau expressions in
such a way that it neither coincides with the set of formulas of logic S nor is it its
proper superset — both sets are therefore disjoint. Also for this reason, the case is
the most general one as the previously considered sets of expressions could also
be defined, somewhat artificially, in such a way that the set of formulas would
be disjoint from the set of tableau expressions. In the tableau system for logic S
those two sets are naturally disjoint.

We put also because in Chapter Four there emerges a problem with infi-
nite branches. The systems described previously featured the property of a finite
branch, which is not the case for the presented tableau system for S . There-
fore, it may happen that when constructing a branch and consequently a tableau
which start with a finite set of expressions, it is not possible to finish them as some
sequences of application of the rules become cyclical.

The lack of a finite branch property forces changes in some tableau concepts.
This applies in particular to the concept of maximal branch and derived con-
cepts. So, the tableau concepts defined in previous chapters become special cases
of tableau concepts for systems that do not feature the property of a finite branch.
The leading change is the generalisation of the concept of maximal branch. In-
tuitively, the maximal branch is the one to which we can no longer apply any
rules. In previous cases, however, this meant that the maximal branch was of a
finite length. It does not have to be the case this time. A maximal branch can be
infinite, although not every infinite branch is a maximal one.
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Despite the fact that, in our study, we do not focus on the issue of decidability in
the tableau system, it is worth noting that the systems that feature the property of
a finite branch, are decidible. For theoretically, always in a finite number of steps
it is possible to construct a complete tableau for them— closed or open one, thus
answering the question whether a given formula is or is not tableau provable on
the grounds of given premises.

In the case of tableau systems that do not feature a finite branch property, these
systems may not be decidable. So, although we prove that they are complete and
sound in relation to the initial, semantically defined consequence relation, there
does not have to exist a way of constructing an infinite tableau. Hence, starting
from branches and tableaux as finite and potentially always constructible ob-
jects, and generalizing the tableau concepts, we come to theoretical branches or
tableaux that are likely to exist, despite the fact that as setwise infinite objects,
they cannot be defined by calculating their elements. However, as we said, in our
study we do not deal directly with the problem of decidability in tableau systems,
although examination of this problem is partly conditioned by the precision of
the tableau concepts that we are working on.

In Chapter Five, we summarize the considerations of the previous chapters,
defining general tableau concepts for propositional logic and term logic which
cover all previous cases.We also show certain properties which, by virtue of these
concepts, occur for the tableau systems defined by the presented method.

Finally, in Chapter Six, we apply general tableau concepts to a new case, show-
ing howmuch their use simplifies the construction of a tableau system compared
to previous cases where the tableau systems were defined from the simplest con-
cepts. In this chapter we consider some modal term logic with the interpretation
of modality de re. Since we already have tableau concepts for this type of sys-
tems, the construction of the tableau system and demonstrating that it is complete
and consistent in relation to the semantics presented boils down to the statement
of a few basic facts. We also present the application of general concepts to the
case of modal logics determined by the semantics of possible worlds, showing
how tableau concepts allow us to express conditions sufficient for a given tableau
system for somemodal logic to be sound and complete in relation to its semantics.

The formalisation of tableau concepts, which we propose, and its effects on the
construction of tableau systems produce the main result of our study.

.. Terminology and issues in the book

Every time, before we move on to the construction of a tableau system, we start
from a semantically defined logic, i.e. from ordered pair ⟨For,⊧⟩, where For is a
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set of formulas, and⊧ is a relation of semantic consequence, defined in a standard
way on the basis of set of all interpretations of set For.

For such understood logic, we construct a tableau system which — as men-
tioned before — by analogy to the axiomatic system — can be understood as a
ordered triple of sets ⟨For,Te,Rt⟩.

Such a triple, through the application of the definitions proposed by us further,
unambiguously determines ordered pair ⟨For,⊳⟩, where ⊳ is a tableau provabil-
ity/branch consequence relation, defined by a general definition, but in any case
based on a predefined set of tableau rules Rt.

Now, let us notice that having initial pair ⟨For,⊧⟩ and observing the rules of
defining a tableau system, which we will present below, we can usually define at
least several different tableau systems which differ in terms of set of expressions
Te or set of rules Rt, or both sets at the same time. Despite the fact that these
are formally different systems, they can define the relations of tableau provability
identical in scope to relation ⊧.

The above remark explains why we will be writing e.g. a tableau system for
Classical Propositional Logic rather than a tableau system of Classical Proposi-
tional Logic. Potentially, there are many tableau systems for Classical Proposi-
tional Logic, whose relations ⊳ coincide with consequence relation ⊧ of Classical
Propositional Logic.

So, in each case, we write about a tableau system for given logic rather than
a tableau system of given logic, taking account of the multitude of possible but
equivalent tableau systems.

Although in the following chapters the starting point will always be some
semantically defined logic ⟨For,⊧⟩, the construction principles for the tableau
system presented by us can be used for the construction of a tableau system re-
gardless of any pair ⟨For,⊧⟩. For a tableau system defined in this way, it is only
then possible to search for the appropriate semantics.

Within the said method, a set of formulas For is an essential initial ingredient
for the construction of a tableau system.

With a fixed set For, we define a set of tableau expressions Te, that is a set
of expressions on the basis of which we carry out the tableau proofs. Of course,
to each formula corresponds at least one tableau expression that represents it in
the tableau proof. In the chapters where we present a full description of tableau
systems for selected logics, we define set Te based on the previously mentioned
principle of economy—we choose the option that seems to be the simplest.Then
we define the concept of a tableau inconsistent set of expressions, i.e. a set which
should be searched for in each track of proof/branch of the tableau proof.
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Next, on at least two-element Cartesian products of set of all subsets of the set
of expressions, we define the tableau rules. The tableau rules of a given system
are therefore sets of two or more element, ordered n-tuples which comprise the
subsets of set Te.

In this approach, we apply tableau rules to sets, and consequently we get one or
possiblymore sets, if the application of rule to a given set is possible at all. Already
in Chapter Twowe present themechanisms that we generally impose on the rules
to avoid redundant— for several reasons— and unproductive applications of the
tableau rules. We consider these mechanisms to be an important feature of the
formalisation adopted.

The effect of defining tableau rules is always set of tableau rules Rt. By anal-
ogy to axiomatic systems, we treat determination of set Rt as an axiomatization
of some logic by means of tableau rules. On given set Te it is often possible — as
we mentioned before — to define different sets of rules that produce the same ef-
fects in terms of consequences of the tableau system. In this study we will provide
examples of different axiomatizations by means of tableau rules of the same se-
mantically determined logic. However, since the proof that two axiomatizations
are equivalent without reference to themetatheory of tableau systems seems com-
plicated, we examine only one axiomatization— the one that we consider natural
and the simplest.

Although the tableau rules are intended to determine the tableau system un-
ambiguously, without further tableau concepts it is either not clear how the rules
determine further concepts or it is only intuitive. Therefore, in three subsequent
chapters we define all tableau concepts, and in the next one we define general
tableau concepts, which in combination with specific tableau rules sets automati-
cally determine the tableau system. If the tableau rules have certain properties, the
tableau system they determine is complete and sound with respect to the initial
and semantically defined relationship of consequence ⊧.

In the presented approach, a set of tableau rules is a starting point in the process
of defining more complex concepts of the tableau system. From a heuristic point
of view, a set of rules is the most important component of the tableau system, but
in order to precisely describe the concept of the tableau proof, we need further
concepts that are to be general and, in individual cases, to define the initial set of
tableau rules.

By applying the rules, we create proof tracks/branches. In the book, we use
the term of branch. A branch is such a sequence of sets that each set is basically
contained in its successor (except the last one— if it exists). Branches are created
by using tableau rules that allow the last set belonging to a branch to be expanded



Terminology and problems in the book 

in at least one way, so each branch element contains all the expressions present in
the earlier elements of the branch.

Branches the last element ofwhich contains a tableau inconsistent set are called
closed branches. Such branches can no longer be extended because in our con-
struction there are no rules whose premises would contain tableau inconsistent
sets. Normally, branches that are not closed are called open branches.

There is one more, important from the viewpoint of the theory being devel-
oped, type of branches — maximal branches. Intuitively, the maximal branch is
the one to which no more tableau rule can be adapted. Closed branches form a
special type of maximal branches. However, maximal branches can also be open,
even infinitely long, although, as we will see, the infinity of branches is neither a
necessary nor a sufficient condition for its maximality.

A tableau proof is made up of branches that begin with the same set of ex-
pressions. We want to check whether formula A in a given tableau system is a
consequence of set of formulas X. To this end, we construct branches which be-
gin with expressions that are tableau equivalents of the formulas from set X and
with the tableau equivalent of a formula contrary to formula A.

Hence, when constructing branches, we start from an assumption which is an
indirect assumption. We develop branches in any way we want since the rules do
not allow us to expand the initial sets in a way that would make the sequence of
expressions cease to be a branch. Each non-maximal branch, which begins with
a finite set of tableau expressions, can be extended — at least theoretically in the
case of infinite branches — to a maximal branch, and each maximal branch is
closed or open. In systems that do not have the property of a finite branch, we
show that each branch beginning with a finite set of expressions can be extended
to a maximal branch. In general, we also indicate conditions which, when met by
set of tableau rules Rt, are sufficient to always obtain a maximal branch from a
finite set of expressions. If now each maximal branch is closed, we conclude that
formula A is a branch consequence (or a tableau consequence) of set of formulas
X — for short X ⊳A.

Sometimes we may be interested in the occurrence of branch consequence
relation between infinite set of formulasY and formulaA.Then, an intuitive com-
ponent appears in the proof — we have to show that there is such finite subset X
of set Y that X ⊳A. Although choosing the right set X is a non-formalised activ-
ity, we want the demonstration that X ⊳A, where the property of a finite branch
occurs, to be mechanical.This also distinguishes our approach to the tableau sys-
tems from other approaches. We do not restrict the branch consequences only to
the finite sets.
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It may even be practically impossible to check if there is a branch consequence
relation in a given tableau system and in a given case, due to the number and
complexity of branches. In order to reduce this complexity and make checking
more practical, we introduce the concept of tableau/tree proof. In the study, we
will use term tableau, although our concept of a tableau is far from the original
one, i.e. a tableau with rows and columns. However, as it is customary to use this
term, we will call the tableau proof a tableau.

As we have stated, the concept of tableau is intended to simplify checking
whether there is a branch consequence in a given case. Tableau is always such
a set of branches beginning with the same set of expressions that the existence of
several different branches in a tableau implies the existence of tableau rules that
led to the creation of these different branches.

Among tableaux we can distinguish complete tableau that, to put it intuitively,
contain everythingwe need. Each branch belonging to such a tableau is amaximal
one, and what is more, adding another branch to the complete tableau causes the
obtained object not to be a tableau. We are also considering the issue of so-called
redundant branch variants, i.e. branches thatmay ormay not belong to a complete
tableau.

A tableau that demonstrates the occurrence of branch consequence is a closed
tableau, i.e. a complete tableau in which each branch is closed. It is the construc-
tion of a closed tableau that we consider to be a tableau proof, while the equiva-
lence of a closed tableau existence with the occurrence of a branch consequence
can be considered as a test of a good definition of a tableau system.

The concept of branch consequence is based on the inclusion of set of maxi-
mal branches in the set of closed branches.Most often the construction of a single
closed tableau means the selection of a sufficient and appropriate subset of max-
imal branches that are closed. Theoretically, therefore, it is possible to construct
many closed tableaux, but when constructing a tableau system,we should strive to
show that one such tableau will suffice to recognise the occurrence of the tableau
consequence.This postulate is our guiding principle in further studies on tableau
systems.

On the other hand, it may happen that we will construct a complete tableau,
which at the same time will be open, i.e. contain at least one maximal and open
branch. The existence of such a tableau is a proof that the tableau consequence
does not occur.The description of a complete and open tableau forms the basis for
the construction of a counter-model, i.e. it allows to proceed to purely semantic
concepts.

In the description of the method of construction of tableau systems we do not
take account of the issue of effectiveness or length of proof. We do not aspire to
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create systems inwhich the proofswill be as short as possible andwhose computer
implementations will be as effective as possible. Our main goal is to formalise
the tableau methods, and consequently to precisely define the tableau concepts.
Despite this, both in the way we formulate tableau rules, consider the redundant
branch variants or treat the existence of an appropriate tableau as ameasure of the
branch consequence occurrence, we are guided by a certain need for economy and
efficiency. However, its implementation is contained in the very tableau concepts,
rather that in the strategy of applying tableau rules or the strategy of carrying out
a proof — in these aspects we leave room for discretion.

Our construction of the tableau systems is fully related to the set theory:

• the tableau rules are sets of ordered n-tuples, which comprise the sets of tableau
expressions

• the branches are sequences of sets that are monotonic due to the inclusion
• tableaux are sets of branches.

When in the subsequent chapters considering three different cases of logic,
for which we define tableau systems with this method, we aim to determine gen-
eral tableau concepts which would reduce the construction of a tableau system
to define a set of tableau rules according to a given scheme and to specify several
concepts in more detail.The other concepts we have described would be constant
and general.

We also want to simplify the construction of the tableau system, which would
be complete and sound in relation to the semantically established logic, to check
if there occur several system-specific facts.

Thus, in the book we present the formalisation of tableau methods, which not
only brings a certain level of precision, but also leads to generalizations which
allow to simplify the construction of the tableau system for activities that require
intuition. On the other hand, in the case of determining the completeness and
soundness with respect to semantics, they require only those facts that are specific
to the system under examination.

Due to the fact that we usually deal with tableau methods which are applied
more intuitively, further considerations contained in the bookmay raise the ques-
tion whether the formalism presented in the book fits into the tableau methods,
or whether it is something different, but similar.

Since the transition from intuitively understood tableaux to formalism pro-
posed in the book and, in some cases, the transition from the concept of tableau
in the proposed approach to the standard tableau is quite straightforward, the
approach described in the book seems to be no less general than the standard
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approach. Apart from its already mentioned advantages, it contains all these in-
tuitive ways of constructing tableau systems for propositional logic and term logic
based on bivalent semantics.

. Notations and concepts of the set theory
In this book we define all tableau concepts using the concepts of the set theory.
We use standard denotations on the relations between sets or their elements: ∈, ⊆,
⊇, ⊂, ⊃, =, ≠, etc. Also in a standard way we denote operations on sets ∩, ⋂, ∪, ⋃,
∖, and P(X), where X is a set, while P(X) is a set of all subsets contained in set
X. An empty set is denoted as ∅.

Sometimes, in metalanguage, we also use quantifiers ∃, ∀ and classical con-
stants:⇒,⇔, &, etc.

With established set X, we shall state that its subset Y ⊆X, which meets certain
established condition (a), is amaximal set among subsetsXwhichmeet condition
(a) iff there is no subset Z ⊆X such that Z meets condition (a) and Y ⊂ Z. On the
other hand, with established setX, we shall state that its subsetY ⊆X, whichmeets
certain established condition (a), is a minimal set among subsets X which meet
condition (a) iff there is no subsetZ ⊆X such thatZmeets condition (a) andZ ⊂Y .

In the study we will very often use numbers from the set of natural numbers as
well as the set of natural numbers itselfN (without zero). Sometimes we will refer
to the concept of set cardinality, i.e. its cardinal number, defining it with the use
of notation ∣X∣, where X is set. However, the cardinalities of the sets under con-
sideration will never be greater than ∣N∣ cardinality of the set of natural numbers.
When saying that given set X is finite, we will mean that ∣X∣ < ∣N∣.

We also often define multifold Cartesian products X × ⋅ ⋅ ⋅ ×Xn, where n ∈ N,
n≥  andX, . . . ,Xn are sets. Elements of productX×⋅ ⋅ ⋅×Xn are ordered n-tuples
⟨a, . . . ,an⟩, where a ∈X, . . . , an ∈Xn.

We also use the concept of function, using different letters or symbols, depend-
ing on the needs, to denote a function, e.g. f ∶X�→Y .

We shall state that function f is injective or it is injection iff for any x,y ∈X it is
the case that if x ≠ y, then f (x) ≠ f (y). In turn, f is function onto iff for each y ∈Y
there exists such x ∈X that f (x) = y. A function which is injective and onto, shall
be called bijection.

We know that when f is a bijection, then there exists precisely one inverse func-
tion g ∶Y�→X, i.e. such that for any x ∈X, g(f (x))= x. Function g will be denoted
f −.

One of the fundamental concepts defined and used in the study is the concept
of branch.With an established set of tableau expressions Te, a branchwill take the
form of function ϕ ∶K�→ P(Te), where K = {,,, . . . ,n} or K =N, and ϕmeets
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certain additional conditions that are specified in the tableau theory, discussed
further. Assuming that the cardinality of set K equals n, for certain n ∈N, we shall
state that branch ϕ has length of n or is n long. In turn, if ∣K∣ = ∣N∣, we shall state
that branch ϕ is infinite or is infinitely long.

Hence, branches are special types of sequences that to each natural number
belonging to its domain assign a certain set of tableau expressions. Branches can
be denoted in all possible ways in which we denote sequences, so we can list all
the elements of branches with indices, describe a branch as a ordered set or an
ordered n-tuple, if ∣K∣ = n, where n ∈N.

Branches are also sets and therefore we can define different relations on them,
similarly as on sets. Assume we have two branches ϕ ∶K�→P(Te) and ψ ∶M�→
P(Te). Thus ϕ ⊆ψ iff K ⊆M and for any number i ∈K, ϕ(i) =ψ(i). In turn, ϕ =ψ
iff ϕ ⊆ψ and ψ ⊆ ϕ. And finally, ϕ ⊂ψ iff ϕ ⊆ψ and ϕ ≠ψ.





 Tableau system for Classical Propositional
Logic

. Introductory remarks
In this chapter, we will define the tableau system for Classical Propositional Logic
(for short CPL), treating this case as a basic one.

This system can be considered basic because in the definition of tableau sys-
tem for CPL we will use the propositional logic formulas themselves as tableau
expressions. In the case ofCPL it is possible, in other cases it may not be possible.

The defined system also features the property that any branch that begins with
a finite set of tableau expressions can be extended to a branch of finite length to
which the tableau rule can no longer be applied. We will call this feature a finite
branch property. However, it is not a feature specific to all the tableau systems
described in the book. This feature also makes the presented system for CPL a
basic case, although formany logics the tableau systems feature the sameproperty.

At the end of the chapter, we show that we actually have defined a tableau
system for the CPL, because the relation of tableau derivability it determines
coincides with the consequence relation determined by the valuation of formulas.

Throughout this chapter, we establish certain conventions of notation and or-
der of defining tableau concepts and proving facts, which conventions and order
will guide us within the book.

. Language and semantics
The construction of a tableau system for the classical logic will start with the basic
definitions. First, we will take up the language of CPL.

Definition . (Alphabet of CPL). Alphabet of the Classical Propositional Logic is
the union of the following sets:

• set of logical constants: Lc = {¬,∧,∨,→,↔}
• set of propositional letters: Var = {p,q,r,p,q,r, . . .}
• set of brackets: {),(}.

 In the chapter we develop the approach that appeared for the first time in an English-
language article []. In that study, both the concepts of tableau rules and the branches
arising from the application of the rules were defined in a rather complicated way.
In the meantime, these concepts have been simplified, so we present them here in an
improved version.Of course, these changes affect the construction of the entire system.
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Although the set of propositional letters is infinite and includes indexed propo-
sitional letters, in practice we will use a finite number of the following letters: p,
q, r, s.

Definition . (FormulaCPL). Set of formulas ofCPL is the smallest setX which
meets conditions:

. Var ⊆X
. if A, B ∈ X, then

a. ¬A ∈X
b. (A∧B) ∈X
c. (A∨B) ∈X
d. (A→ B) ∈X
e. (A↔ B) ∈X.

We specify this set as ForCPL, and its elements will be called formulas.

Remark .. When considering different languages, we will use separate deno-
tations for the sets of their formulas — though in a given context, we will use
formulas of only one logic — so there will be no risk of mistake. However, in the
chapter devoted to the generalisation of our considerations, we will use a deno-
tation with no index. Additionally, sometimes, if possible, we will omit external
brackets.

Let us proceed now to the semantics of classical logic. Valuation of proposi-
tional letters Var is any function v ∶ Var �→ {,}, that to each propositional
letter assigns a value of truth or false. With function v, we can define valuation of
formulas of CPL.

Definition . (Valuation of formulas ofCPL). Valuation of formulas is function
V ∶ForCPL�→{,}, which for anyA,B ∈ForCPL meets the following conditions:

. V(¬A) =  iff V(A) = 
. V(A∧B) =  iff V(A) =  and V(B) = 
. V(A∨B) =  iff V(A) =  or V(B) = 
. V(A→ B) =  iff V(A) =  or V(B) = 
. V(A↔ B) =  iff V(A) =V(B).

We also call function V a valuation of formulas of CPL or shortly valuation.

Each function v, through conditions of definition ., is unambiguously ex-
tendible to the valuation of formulas, i.e. function V ∶ ForCPL �→ {,} that to
each formula assigns a value of truth or false.
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Denotation .. Let us adopt some abbreviations. Let ‘V(X)= ’ meanV(X)⊆{}
(i.e. if X ≠∅, then V(X) = {}), while ‘V(X) ≠ ’ means V(X) /⊆ {}, (i.e. if X ≠∅,
then V(X) ≠ {}) for any set of formulas X and for any valuation V .

Using the concept of valuation of formulas, we can now define the semantic
consequence of CPL.

Definition . (Semantic consequence of CPL). Let set X ⊆ ForCPL and A ∈
ForCPL. Formula A follows from set X (for short: X ⊧ A) iff for any valuation V ,
if V(X) = , then V(A) = . Relation ⊧ will be called relation of classical semantic
consequence or shortly relation of semantic consequence.

Thus, classical semantic consequence ⊧ is such a relation that ⊧⊆P(ForCPL)×
ForCPL.

Remark .. When considering different relations of consequences in the follow-
ing chapters, we will not use separate denotations for them. In a given context, we
will only examine one relation, so there will be no risk of mistake.

Denotation .. For any set of formulas X and any formula A notation X /⊧A will
mean that it is not the case that X ⊧A.

The last concept related to CPL, we will apply when constructing the tableau
system is the concept of contradictory set of formulas.

Definition . (Contradictory set of formulas). Let X ⊆ ForCPL. Set X will be
called contradictory iff there is no valuation V such that V(X) = . Set X will be
called non-contradictory iff it is not contradictory.

. Basic concepts of the tableau system for CPL
One of the basic concepts used to describe a tableau system, due to the nature of
tableau proofs, is the concept of a tableau inconsistent set of proof expressions.
In the case of a defined system for CPL, the proof expressions are the formulas
themselves, so a set of tableau inconsistent expressions boils down to a certain set
of formulas.

Definition . (Tableau inconsistent set of formulas). Set X ⊆ ForCPL will be
called tableau inconsistent (for short: t-inconsistent) iff there exists such formula
A ∈ ForCPL that A,¬A ∈ X. Set X will be called tableau consistent (for short: t-
consistent) iff it is not t-inconsistent.

Corollary .. For any X ⊆ ForCPL, if X is t-inconsistent, then X is contradictory.

Proof. By definition ., ., ..
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.. Tableau rules for CPL

We will now proceed to defining the proof tools. The central concept is tableau
rules. Usually, in an intuitive approach, tableau rules are presented as graphs il-
lustrating the way in which proof expressions are distributed. Rules for CPL are
most often presented in the following way.

First, we present positive rules — for formulas that do not begin with the
negation functor.

A∧B

�
A

�

B

A∨B
��� ���

A B

A→ B
��� ���

¬A B

A↔ B
��� ���

A ¬A

�

B
�

¬B

The negative rules, on the other hand, for formulas preceded by negation, are
presented in the following drawings.

¬¬A

�
A

¬(A∧B)
��� ���

¬A ¬B

¬(A∨B)

�
¬A

�

¬B

¬(A→ B)

�
A

�

¬B

¬(A↔ B)
��� ���

¬A A

�

B
�

¬B

In all of these rules, the arrows show the formulas we obtain by applying given
rule, while some rules provide alternative formulas. Such a concept of rule is fig-
urative and very intuitive, but at the same time not very formal. As a result, it
is difficult to base on it to define the concept of tableau or tableau proof more
formally than the concept of rule itself.

The starting point for the construction of a tableau system can therefore be
a precise definition of the concept of tableau rule. Let us start with the general
concept of rule.

 See e.g. Priest G., [], p. -.
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Definition . (Rule). Let P(ForCPL) be the set of all subsets of set of formu-
las. Let P(ForCPL)n be n-ry Cartesian product P(ForCPL)× . . .×P(ForCPL)

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$&
n

, for

some n ∈N.

• By a ruleweunderstand any such subsetR⊆P(ForCPL)n that if ⟨X, . . . ,Xn⟩ ∈R,
then X ⊂Xi, for each  < i ≤ n.

• If n ≥ , each element R will be called ordered n-tuple (pair, triple, etc.,
respectively).

• The first element of each n-tuple will be called an input set (set of premises)
while the other elements output sets (sets of conclusions).

Thus, according to the above definition, each rule is for some n ∈ N a set of
n-tuples in the form of ⟨X, . . . ,Xn⟩, where X, . . . , Xn ⊆ ForCPL. Not every rule is
of course a tableau rule for CPL. A set of tableau rules for our tableau system for
CPL shall be introduced by means of the following definition.

Definition . (Tableau rules for CPL). Tableau rules for CPL are the following
rules:

R∧={⟨X ∪ {(A∧B)},X ∪ {(A∧B),A, B}⟩ ∶X ⊆ForCPL,A,B ∈ForCPL,X ∪ {(A∧
B)} is t-consistent}

R∨ = {⟨X ∪ {(A∨B)},X ∪ {(A∨B),A}, X ∪ {(A∨B), B}⟩ ∶ X ⊆ ForCPL, A,B ∈
ForCPL, X ∪ {(A∨B)} is t-consistent}

R→ = {⟨X ∪ {(A → B)},X ∪ {(A → B), ¬A}, X ∪ {(A → B), B}⟩ ∶ X ⊆ ForCPL,
A,B ∈ ForCPL, X ∪ {(A→ B)} is t-consistent}

R↔ = {⟨X ∪ {(A↔ B)},X ∪ {(A↔ B),A, B}, X ∪ {(A↔ B), ¬A, ¬B}⟩ ∶ X ⊆

ForCPL, A,B ∈ ForCPL,X ∪ {(A↔ B)} is t-consistent}

R¬¬ = {⟨X ∪ {¬¬A},X ∪ {¬¬A,A}⟩ ∶ X ⊆ ForCPL, A ∈ ForCPL, X ∪ {¬¬A} is
t-consistent}

R¬∧= {⟨X ∪ {¬(A∧B)},X ∪ {¬(A∧B),¬A}, X ∪ {¬(A∧B),¬B}⟩ ∶ X ⊆ForCPL,
A,B ∈ ForCPL, X ∪ {¬(A∧B)} is t-consistent}

 The property of rule that the first set is contained properly in every subsequent set
seems to correspond well to the name proposed in the literature expansion rule (p. ,
[]).
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R¬∨ = {⟨X ∪ {¬(A∨B)},X ∪ {¬(A∨B),¬A,¬B}⟩ ∶ X ⊆ ForCPL, A,B ∈ ForCPL,
X ∪ {¬(A∨B)} is t-consistent}

R¬→= {⟨X ∪ {¬(A→ B)},X ∪ {¬(A→ B),A, ¬B}⟩ ∶ X ⊆ ForCPL, A,B ∈ ForCPL,
X ∪ {¬(A→ B)} is t-consistent}

R¬↔ = {⟨X ∪ {¬(A↔ B)},X ∪ {¬(A↔ B), ¬A, B}, X ∪ {¬(A↔ B),A, ¬B}⟩ ∶
X ⊆ ForCPL, A,B ∈ ForCPL, X ∪ {¬(A↔ B)} is t-consistent}.

Set of tableau rules for CPL will be denoted as RCPL.

By definition . it follows that we have nine tableau rules for the tableau sys-
tem being defined for CPL. Let us consider one of them, e.g. R¬∧. Take any x and
assume that x ∈R¬∧. By definitions . and ., we get ∃X⊆ForCPL , ∃A,B ∈ForCPL
that:

. x = ⟨X ∪ {¬(A∧B)},X ∪ {¬(A∧B),¬A}, X ∪ {¬(A∧B),¬B}⟩
. X ∪ {¬(A∧B)} ⊂X ∪ {¬(A∧B),¬A}
. X ∪ {¬(A∧B)} ⊂X ∪ {¬(A∧B),¬B}
. X ∪ {¬(A∧B)} is t-consistent.

Therefore, there is such a set and such formulas that the rule contains the
ordered triple of sets which was constructed on them and has the following
properties:

(a) the first element — the input set — is a proper subset of both the second and
third element — the output sets
(b) the first element is a t-consistent set.

Both these properties are important for the method of constructing tableau
systems presented in the book. They also form an element which distinguishes
this method from other ones. But before we proceed to a more detailed discus-
sion of the properties, we will look at the notation of the rules itself.The provided
method of notation is quite precise, but at the same time complicated. Thus, de-
spite the fact that the case of CPL is the simplest of those considered in the book,
the description of sets — rules is somewhat complicated.

In order to simplify the notation, we will propose a fractional one. With rule
R = {⟨X, . . . ,Xn⟩ ∶X is t-consistent}, where n ≥ , we will write:

X
X∣...∣Xn
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Heuristically speaking, the fraction bar in the above notation will tell us that
from the input set X we can proceed to one of the output sets X, . . . , Xn, de-
scribed under the bar. In the fractional notation, the individual sets will also
be described structurally, i.e. the fraction will be a scheme of infinitely many
n-tuples, which are elements of rule R.

Remark .. Further in the book, we will capture specific tableau rules with frac-
tional notation only, but we will have introduced a general definition of the rule
for a given type of tableau systems beforehand.

Now, using the above method of notation, we will once again present set of
rulesRCPL. Set of rulesRCPL contains only rules defined by the following schemes
in which the input sets are t-consistent:

R∧ ∶
X∪{(A∧B)}

X∪{(A∧B),A,B} R∨ ∶
X∪{(A∨B)}

X∪{(A∨B),A}∣X∪{(A∨B),B}

R→ ∶
X∪{(A→B)}

X∪{(A→B),¬A}∣X∪{(A→B),B}

R↔ ∶
X∪{(A↔B)}

X∪{(A↔B),A,B}∣X∪{(A↔B),¬A,¬B}

R¬¬ ∶
X∪{¬¬A}
X∪{¬¬A,A}

R¬∧ ∶
X∪{¬(A∧B)}

X∪{¬(A∧B),¬A}∣X∪{¬(A∧B),¬B}

R¬∨ ∶
X∪{¬(A∨B)}

X∪{¬(A∨B),¬A,¬B} R¬→ ∶
X∪{¬(A→B)}

X∪{¬(A→B),A,¬B}

R¬↔ ∶
X∪{¬(A↔B)}

X∪{¬(A↔B),¬A,B}∣X∪{¬(A↔B),A,¬B}

Remark .. The method of tableau rules defining we have presented — no
matter what notation method is adopted — carries some benefits. The first is
elimination of redundant applications of rule that may occur in the case of in-
tuitive formulation of a tableau system. An redundant application of rule takes
place when application of rule does not cause a new expression to appear on
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every branch it generates. In extreme cases, theoretically even intuitive rules can
be applied without limitations, never receiving anything new. This is illustrated
by the following example ..

The rules defined according to our recipe exclude this type of situation, and
the responsible factor is the condition that requires the input set to be a proper
subset of each of the output sets. As per definition ., for each rule R and n ∈N,
if ⟨X, . . . ,Xn⟩ ∈R, then X ⊂Xi, for each  < i ≤ n. Therefore, no rule R ∈RCPL can
be applied idly.
Example .. Take formulas (p∧q),¬¬r, p, q. Using the intuitive rules described
at the beginning of this subchapter .., we can apply to these formulas many
times the rule for conjunction to formula (p∧q), although it does not bring any-
thing new — in the meantime we have applied the rule for double negation to
formula ¬¬r.

(p q), p, q, ¬¬ r

p

q

r

p

q

It is difficult to formally limit such redundant use, since the rule is illustrated in
the formula scheme, whereas the proof consists of many elements.Therefore, it is
necessary to refer to all previous elements in a limitation. However, some of these
elements may have appeared after the earlier application of other rules. Hence, it
is unclear at which level in this approach to formally exclude such application of
the tableau rules.
Remark .. Another benefit of the way the rules are defined is the exclusion of
their applicability to the sets that are t-inconsistent.Within the classic approach to
rules, there is nothing to prevent us fromcontinuing to apply the rule, even if there
is an explicit tableau inconsistency in the proof tree. Of course, one way to avoid
this problem is to add a blocking rule to the set of tableau rules, which introduces a
new element which closes the branch. Again, however, nothing formally excludes
the application of further rules, even if there is a blocking element in the proof.

We illustrate this problem with example .. In our approach, the informal
“no use” directive makes technical sense: it is simply not possible — in the case of
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a t-inconsistent set, there are no rules that can be applied. Again, this is because of
the rule definition. By definition . for each rule R and n ∈N, if ⟨X, . . . ,Xn⟩ ∈R,
then X is t-consistent, thus X contains no pair of formulas A, ¬A, by definition
.. Consequently, no rule R ∈RCPL can be applied to a tableau inconsistent set.
Example .. Take formulas (p ∧ q), ¬¬¬r, p, r. Using the intuitive rules de-
scribed at the beginning of this subchapter .., we can apply the rule for
conjunction to formula (p∧ q), even though previously we applied the rule for
double negation to formula ¬¬¬r, which eventually produced a t-inconsistent set
as we already had formula r.

(p q), ¬¬¬ r, p, r

¬r

p

q

Again, it is difficult to limit such application of rules if we do not have a precise
concept of proof and rule.
Remark .. Instead of setRCPL, we could use a different axiomatization to con-
struct a tableau system. For instance, instead of rule R¬∧, we could consider the
following tableau rule:

R′¬∧ ∶
X∪{¬(A∧B)}

X∪{¬(A∧B),(¬A∨¬B)}

Similar proposals could be made for some other rules from set RCPL. Among
many ideas, one of the simpler ones seems to be the replacement of rule R∨ e.g.,
the following one:

R′∨ ∶
X∪{(A∨B)}

X∪{(A∨B),(A∧B)}∣X∪{(A∨B),A}∣X∪{(A∨B),B}

Of course, the new rules—according to definition of tableau rule .—would
also have t-consistent input sets, plus the input set would be contained properly
in the output sets. Various axiomatizations can be examined for dependencies
between sets of tableau rules, lengths of proofs and intuitiveness of rules.

For three reasons, however, we will not be researching such alternative tableau
axiomatizations.
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First of all, we want to describe the method of constructing tableau systems
on the example of selected cases and then try to generalize this method on dif-
ferent cases. So in each case of the tableau systems considered in the book, it is
sufficient to describe a single case, e.g. the most typical one. If we were to inves-
tigate an alternative axiomatization for a tableau system for CPL, e.g. using set
(RCPL ∖{R¬∧})∪ {R′¬∧}, then in order to formally demonstrate that both sys-
tems yield the same logical consequences, it would require defining both systems
and demonstrating that the sets of their consequences are identical. Meanwhile,
we want to define a sample system for set of rules RCPL and sample systems for
logics specified in other languages, and then look for a general pattern for the
construction of a tableau system that would simplify the construction of tableau
systems and also help to study the equivalence of different sets of rules that ax-
iomatize the same logic. So instead of describing consecutive tableau systems for
the same semantically determined logic, we will try to seek common attributes of
tableau systems for various semantically determined logic.

Secondly, the specified set of tableau rules RCPL corresponds to the intuitive
and normally adopted tableau rules forCPL.Thus, they are typical, because in the
simplest way they correspond to the semantic content related to the interpretation
of the classical connectives.

Thirdly, rules such as R′¬∧ do not seem good candidates for axiomatization.
For example, the adoption of set (RCPL ∖ {R¬∧}) ∪ {R′¬∧}, which is to replace
rule R¬∧ with rule R′¬∧ would extend some of proofs. Because rule R¬∧ allows
to proceed from formula ¬(A∧B) to formulas ¬A or ¬B. Meanwhile, in the case
of rule R′¬∧ we proceed from formula ¬(A ∧ B) to formula (¬A ∨¬B). Transi-
tion to formulas ¬A or ¬B still requires the use of rule R∨. Thus, introduction of
rule R′¬∧ in lieu of R¬∧ seems unnatural. It is not certain, however, that for the
cases considered in the book there are no alternative rules that are not unnatu-
ral, or maybe even in some way they are better than the ones considered. In the
next chapter, when describing the tableau system for term logic, we will show an
example of alternative rules that seem at least equally good as the ones we will
finally investigate there (see note .).

However, among the reasons mentioned, the first one is conclusive.Therefore,
although we will not examine alternative axiomatizations of tableau systems, it is
worth stressing that the introduction of the general concept of rule . for a given
set of tableau expressions Te is meaningful in overall. Most often it is possible to
define different sets of tableau rules that define tableau systems corresponding to
the same semantically determined logic.
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.. Branches for CPL

Another thing in our theory that needs discussion is the concept of branch. It
is a concept that depends on the tableau rule because branches are created by
applying rules. Although we are not currently introducing any formal concept of
rule application, intuitively the point is that a given rule R is applied to a given
set Y when among the elements contained in R there is such n-tuple ⟨X, . . . ,Xn⟩
that X = Y . The result of application of R is some set Xi, where  < i ≤ n, and
consequently also sequence ⟨X, Xi⟩, which forms precisely a branch. Branches
are therefore setwise objects consisting of sets. Let us now proceed to the formal
definition of branch in the tableau system for CPL.

Definition . (Branch). Let K = N or K = {,, . . . ,n}, where n ∈ N. Let X be
any set of formulas. A branch (or a branch beginning with X) will be called any
sequence ϕ ∶K�→ P(ForCPL) that meets the following conditions:

. ϕ() =X
. for any i ∈K: if i+  ∈K, then there exists such rule R ∈RCPL and such n-tuple
⟨Y, . . . ,Yn⟩ ∈ R that ϕ(i) =Y and ϕ(i+ ) =Yk, for some  < k ≤ n.

Having two branches ϕ, ψ such that ϕ ⊂ψ we shall state that:

• ϕ is a sub-branch of ψ
• ψ is a super-branch of ϕ.

Denotation .. From now on—when speaking of branches— for convenience,
we will use the following notations or designations:

. X, . . . ,Xn, where n ≥ 
. ⟨X, . . . ,Xn⟩, where n ≥ 
. abbreviations: ϕM (whereM is a domain ϕ, i.e. ϕ ∶M�→ P(ForCPL))
. or — to denote branches — small Greek letters: ϕ, ψ, etc.

The sets of branches, in turn, we shall denote with capital Greek letters: Φ, Ψ, etc.
Furthermore, the domain cardinality of a given branch K we shall sometimes call
a length of that branch.

Remark .. As we can see, the concept of branch depends on some set of rules.
In the case under consideration, the branch structure is based on the rules from
set RCPL. Further described complex tableau concepts will also depend on some
sets of rules. Because in this chapterwe are studying tableau system forCPL, based
on rules from set RCPL, so we are not going to make it any more complicated. In
practice, however, the tableau concepts of systems constructed according to the
presented idea always hinge upon some set of rules. In one of the further chapters,
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in the general description of the constructionmethod itself, the set of rules will be
a certain variable. In this chapter, it is specified as:RCPL, and the complex tableau
concepts defined here depend on it.

By definition of rules ., through the fact that the rules are defined by proper
containing of the output set in each of the output sets, in any n-tuple, there is a
conclusion.

Corollary .. Each branch is an injective sequence.

We will now look at the issue of branch length. To investigate this problem,
we need a function to measure the formula complexity. But, this is not about a
syntactic complexity, but branch complexity. In practice, the branch complexity of
the formula boils down to themaximal length of the branch, which is obtained by
applying the tableau rules to a single formula only. First, wewill give a definition of
the function thatmeasures this property and show that the function has been well
defined, and then we will present an example. Assume that for any two natural
numbers n,m,max{n,m} = n iff n ≥m.

Definition . (Measure of the branch complexity of formula ofCPL). Themea-
sure of the branch complexity is function ∗ ∶ForCPL�→N, defined for each x ∈Var
and A, B ∈ ForCPL with the below conditions:

. ∗(x) = 
. ∗(¬x) = 
. ∗((A∧B)) = ∗(A)+∗(B)
. ∗((A∨B)) =max{∗(A),∗(B)}+ 
. ∗((A→ B)) =max{∗(¬A),∗(B)}+ 
. ∗((A↔ B)) =max{∗(A)+∗(B),∗(¬(A))+∗(¬(B))}
. ∗(¬¬A) = ∗(A)+ 
. ∗(¬(A∧B)) =max{∗(¬A),∗(¬B)}+ 
. ∗(¬(A∨B)) = ∗(¬A)+∗(¬B)
. ∗(¬(A→ B)) = ∗(A)+∗(¬B)
. ∗(¬(A↔ B)) =max{∗(¬A)+∗(B),∗(A)+∗(¬B)}.

Function ∗, tells us how at most long a branch can be obtained by applying the
rules from RCPL to a given formula and its components. The following few facts
clarify the problem. From the above definition and the definition of formula .,
it follows that:

Corollary .. For any A ∈ ForCPL: ∗(A) ∈N.

We will now formulate a fact that describes the relationship between the
branches and the measure of the branch complexity of formula.
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Proposition .. Let A ∈ ForCPL. Let X = X ∪{A},X, . . . ,Xn be such a branch
that Y, . . . ,Yn, where:

• Y = {A}
• Y =X ∖X
• . . .
• Yn =Xn ∖X

is a branch. Then n ≤ ∗(A).

Before we proceed to the proof of fact, let us try to explain its assumption. For
each X ⊆ ForCPL and A ∈ ForCPL branch X = X ∪{A},X, . . . ,Xn is constructed
so that for each  < i ≤ n, Xi =X ∪Yi. This means that X was created by applying
a certain rule to formula A, X was created by applying a certain rule to formula
from X∖X, whereas Xi+ was created by applying a certain rule to formula from
Xi ∖X. So, to put it figuratively, the branch under consideration was created by
applying the rules to formula A and the consequences of applying the rules to
what was created previously. It is of course possible that at some point in time a
certain rule may have been applied to a element of set X, but the effect must have
been the same as applying the rule to A or its consequences.

Therefore, fact . tells us that a branch constructed through the applica-
tion of rules to a single formula A and further effects of application of rules is
not longer than ∗(A), thus the measure of the branch complexity is properly
defined.

Let us nowmove on to the proof of fact. It has an inductive nature and is based
on the branch complexity of the formulas found in branches. For the proof, wewill
use the definition of branch . the definition of measure of branch complexity
..

Proof. Take any branch X =X∪{A},X, . . . ,Xn that meets the theorem assump-
tions.

Initial step. Let A = x, for some x ∈Var. There is then no rule to apply to X, thus
n = . Since ∗(x) = , so n ≤∗(x). If A =¬(x), for some x ∈Var, then there is either
no rule to apply to X, so n = . Since ∗(¬x) = , thus n ≤ ∗(¬x).

Induction step. Assume that a fact thesis holds for each formula B such that
∗(A) > ∗(B). So, for each branch beginning with {B}, m long, it is the case that
m ≤∗(B). The branches will be called B-branches, C-branches, etc., depending on
the formula they start with.
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Cases:

i) Let A ∶= ¬¬B. Then, by definition of function ∗, ∗(A) > ∗(B). Under the
induction hypothesis ∗(B) ≥ m, where m is the length of any B–branch. Since
n =m + , for somem ≤ ∗(B), by definition of branch ., so ∗(A) = ∗(B)+  ≥
m +  = n, by definition ..

ii) Let A ∶= (B ∧ C). Then, by definition of function ∗, ∗(A) > ∗(B),∗(C).
Under the induction hypothesis, ∗(B) ≥ m, where m is the length of any B-
branch, and ∗(C) ≥ k, where k is the length of any C-branch. Consequently,
since n ≤ m + k, for some m ≤ ∗(B), k ≤ ∗(C), by definition of branch .,
so ∗(A) = ∗((B∧C)) = ∗(B)+∗(C) ≥m +k ≥ n, by definition ..

iii) Let A ∶= (B ∨C). Then, by definition of function ∗, ∗(A) > ∗(B), ∗(C).
Under the induction hypothesis,∗(B)≥m, wherem is the length of anyB-branch,
and∗(C)≥k, where k is the length of anyC-branch. Consequently, since n=m+
or n = k + , for somem ≤ ∗(B), k ≤ ∗(C), by definition of branch ., so:

. if max{∗(B),∗(C)} = ∗(B), then ∗(A) = ∗((B∨C)) = ∗(B)+  ≥m +  = n,
by definition .

. if max{∗(B),∗(C)} = ∗(C), then ∗(A) = ∗((B∨C)) = ∗(C) +  ≥ k +  = n,
by definition ..

iv) Let A ∶= (B→ C). Then, by definition of function ∗, ∗(A) > ∗(¬B),∗(C).
Under the induction hypothesis, ∗(¬B) ≥ m, where m is the length of any ¬B-
branch, and ∗(C) ≥ k, where k is the length of any C-branch. Consequently, since
n =m +  or n = k + , for somem ≤ ∗(¬(B)), k ≤ ∗(C), by definition of branch
., so:

. ifmax{∗(¬B),∗(C)} =∗(¬B), then ∗(A) = ∗((B→C)) = ∗(¬(B))+ ≥m+

 = n, by definition .
. ifmax{∗(¬B), ∗(C)} = ∗(C), then ∗(A) = ∗((B→C)) = ∗(C)+  ≥ k+  = n,

by definition ..

v) Let A ∶= (B↔ C). Then, by definition of function ∗, ∗(A) > ∗(B), ∗(C),
∗(¬B),∗(¬C). Under the induction hypothesis, ∗(B) ≥m, ∗(C) ≥ k, ∗(¬B) ≥ l,
∗(¬C)≥ o, wherem, k, l, o are respectively lengths of anyB,C,¬B and¬C-branch.
Consequently, since n ≤ m + k or n ≤ l + o, for some m ≤ ∗(B), k ≤ ∗(C),
l ≤ ∗(¬B), o ≤ ∗(¬C), by definition of branch ., so:

. if max{∗(B) + ∗(C),∗(¬B) + ∗(¬C)} = ∗(B) + ∗(C), then ∗(A) = ∗((B↔
C)) = ∗(B)+∗(C) ≥m +k ≥ n, by definition .
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. ifmax{∗(B)+∗(C),∗(¬B)+∗(¬C)} = ∗(¬B)+∗(¬C), then ∗(A) = ∗(B↔
C) = ∗(¬B)+∗(¬C) ≥ l +o ≥ n, by definition ..

vi) LetA ∶= ¬(B∧C).Then, by definition of function ∗, ∗(A) >∗(¬B), ∗(¬C).
Under the induction hypothesis, ∗(¬B) ≥ m, where m is the length of any ¬B-
branch, and ∗(¬C) ≥ k, where k is the length of any ¬C-branch. Consequently,
since n =m +  or n = k + , for some m ≤ ∗(¬B), k ≤ ∗(¬C), by definition of
branch ., so:

. ifmax{∗(¬B),∗(¬C)} =∗(¬B), then ∗(A) = ∗(¬(B∧C)) = ∗(¬B)+ ≥m+

 = n, by definition .
. if max{∗(¬B), ∗(¬C)} = ∗(¬C), then ∗(A) = ∗(¬(B ∧ C)) = ∗(¬C) +  ≥

k +  = n, by definition ..

vii) LetA ∶=¬(B∨C).Then, by definition of function ∗, ∗(A)>∗(¬B), ∗(¬C).
Under the induction hypothesis, ∗(¬B) ≥ m, where m is the length of any ¬B-
branch, and ∗(¬C) ≥ k, where k is the length of any ¬C-branch. Consequently,
since n ≤m +k, for somem ≤ ∗(¬B), k ≤ ∗(¬C), by definition of branch .,
so ∗(A) = ∗(¬(B∨C)) = ∗(¬B)+∗(¬C) ≥m +k ≥ n, by definition ..

viii) LetA ∶=¬(B→C).Then, by definition of function ∗, ∗(A)>∗(B), ∗(¬C).
Under the induction hypothesis,∗(B)≥m, wherem is the length of anyB-branch,
and ∗(¬C) ≥ k, where k is the length of any ¬C-branch. Consequently, since n ≤
m + k, for somem ≤ ∗(B), k ≤ ∗(¬C), by definition of branch ., so ∗(A) =
∗(¬(B→C)) = ∗(B)+∗(¬C) ≥m +k ≥ n, by definition ..

ix) Let A ∶= ¬(B↔ C). Then, by definition of function ∗, ∗(A) > ∗(B),∗(C),
∗(¬B),∗(¬C). Under the induction hypothesis, ∗(B) ≥m, ∗(C) ≥ k, ∗(¬B) ≥ l,
∗(¬C)≥ o, wherem, k, l, o are respectively lengths of anyB,C,¬B and¬C-branch.
Consequently, since n ≤m + o or n ≤ l + k, for some m ≤ ∗(B), k ≤ ∗(C), l ≤
∗(¬B), o ≤ ∗(¬C), by definition of branch ., so:

. ifmax{∗(¬B)+∗(C),∗(B)+∗(¬C)} =∗(¬B)+∗(C), then ∗(A) =∗(¬(B↔
C)) = ∗(¬B)+∗(C) ≥ l +k ≥ n, by definition .

. ifmax{∗(¬B)+∗(C),∗(B)+∗(¬C)} =∗(B)+∗(¬C), then ∗(A) =∗(¬(B↔
C)) = ∗(B)+∗(¬C) ≥m +o ≥ n, by definition ..

So the fact . tells us that if we create a branch based on a single A and make
use of tableau rules in any order, then each produced branch will at most have a
length of ∗(A). See the example below.
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Example .. Let us consider set of formulas Y ∪{¬(p↔¬q)}. We decompose
the highlighted formula using rule R¬↔ to this set. Due to two initial sets in the
rule, we get two branches:

. X′ =Y ∪{¬(p↔¬q)},X′ =Y ∪{¬(p↔¬q),¬p,¬q}
. X′′ =Y ∪{¬(p↔¬q)},X′′ =Y ∪{¬(p↔¬q),p,¬¬q)}.

In the first case, we can no longer decompose the components of the initial
formula, but in the case of X′′ we can still apply rule R¬¬, which produces: X′′ =
Y ∪{¬(p↔¬q),p,¬¬q,q}. (Of course, we assume that X′′ , X

′′
 , are t-consistent.

Otherwise, we could not use the tableau rules.)The last sequence—X′′ ,X
′′
 ,X

′′
 —

is the longest among the sequences based on the decomposition of formula¬(p↔
¬q). At most, is has length of ∗(¬(p↔ ¬q)). Let us calculate: ∗(p) = ∗(¬q) =
∗(¬p) = , ∗(¬¬q) = + ∗(q) = . Thus max{∗(¬p) + ∗(¬q),∗(p) + ∗(¬¬q)} =
max{,}. Hence ∗(¬(p↔¬q)) = .

Another fact generalizes our observations on the relationship between the
length of the branch and the branch complexity of the formula on the finite sets
of formulas.

Proposition .. If X is a finite set of formulas, then each such branch ϕ ∶K�→
P(ForCPL) that ϕ() =X is finite.

We will carry out an inductive proof with respect to the number of elements
X by applying the previous fact ..

Proof. Let X be a finite set of formulas, and ϕ ∶K�→P(ForCPL) any such branch
that ϕ() =X.

Initial step. Assume that ∣X∣ = , so some formula A ∈ X. From the previous
fact ., we know that each branch based on decomposition of A has at most the
length of ∗(A). Hence, ∣K∣ ≤ ∗(A), so branch ϕ is finite, under ..

Induction step.Assume that the fact thesis is true for each such set of formulas
Y that ∣Y ∣ = n. Let us consider a situation where ∣X∣ = n+ . So X = Y′ ∪ {A} for
certain set of formulas Y′ such that ∣Y′∣ = n, and some new formula A.

From fact ., we know that each branch based on the decomposition ofA has
at most the length of ∗(A), which means it is finite. From the inductive assump-
tion, we also know that each branch beginning with set of formulas Y′ is finite.

Consequently, each branch ϕ beginning withX =Y′∪{A} is finite as it is com-
posed of elements of some branch which begins with A and elements of some
branch which begins with Y′, by definition of branch ., hence ∣K∣ ≤ n+∗(A).
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By virtue of the last fact, we know that there are no infinite branches beginning
with finite sets of formulas, which is expressed by the following conclusion.

Corollary .. Let X be a finite set of formulas. Then there is no such branch
ϕ ∶K�→ P(ForCPL) that:

• K =N
• ϕ() =X.

Proof. From the previous fact . and by definition of branch ..

.. Maximal branches

Another important concept in the construction of a tableau system is the concept
of a maximal branch. Intuitively, themaximal branch is a branch to which no rule
can be applied anymore, extending it to some super-branch.The definition of the
maximal branch for the currently defined system is as follows.

Definition . (Maximal branch). Let ϕ ∶ K �→ P(ForCPL) be a branch. We
shall state that ϕ ismaximal iff

. K = {,,, . . . ,n}, for some n ∈N
. there is no branch ψ such that ϕ ⊂ψ.

Before we discuss this definition, let us consider an example.

Example .. Consider a branch beginning with set X = {¬ . . .¬
*

n

r ∶ n = m ⋅ ,

where m ∈ N}. Set X contains an infinite number of formulas in the form of
¬ . . .¬
*
n=m⋅

r, i.e. an infinite number of instances of propositional letter r, preceded in

each instance by such number of instances of negation functor that is a multiple
of .

We now define a branch based on set X and rule R¬¬, according to the
following algorithm: for anym ∈N,

Xm+ =Xm ∪{¬ . . .¬
*
m⋅−

r}.

So, transition from set Xi to its superset Xi+ is an effect of addition through
rule R¬¬ to set Xi of formula ¬ . . .¬

*
i ⋅−

r.

The branch can be illustrated as follows:
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R ¬ ¬X 1

R ¬ ¬ X 2 = X 1 {¬ r }

R ¬ ¬ X 3 = X 2 {¬¬¬¬ r }

R ¬ ¬ X 4 = X 3 {¬¬¬¬¬¬¬ r }

R ¬ ¬ ...

Thedefined branch is infinite.There is no super-branch to contain it. However,
there is still an infinite number of formulas to which we might apply rule R¬¬.
As a matter of fact, already in the area of set X we could obtain t-contradictory
set, thereby closing the door on further extension of branches, defining X =X∪
{¬¬r} , with respect to R¬¬, since ¬r ∈X ⊆X.
Seemingly, we could limit the definition of maximal branch . to the second
condition, i.e. to the non-existence of super-branch. However, we would then
allow branches that contain non-decomposed expressions to which the tableau
rules can still be applied.

Leaving out the first condition of the definition ofmaximal branch ., would
not change anythingwith respect to the cases of finite sets, but example . proves
that we would allow cases of infinite branch that:

• begin with an infinite set
• meet the second condition of definition because they are infinite branches
• but not all expressions contained were decomposed, in particular those re-

sponsible for the emergence of t-inconistent subset.

Remark .. The definition of maximal branch . is suitable for those tableau
systems where only finite branches are obtained from finite sets of expressions.
So it is i.a. good for the tableau system we construct for CPL.

For other systems, includingmodal logics, the definition is too narrow, because
it does not include cases of branches that are not finite even though they start with
a finite set of expressions.

We have now deliberately adopted definition ., as sufficient forCPL. When
we move on to defining the system for modal logic, we will generalize this defi-
nition. So it is going to describe special cases of infinite maximal branches which
appear in the construction of tableau systems using the described method.

Extending the concept of branch onto infinite sets is problematic for many
reasons, and what is more, it is unnecessary in practice, because important and
sufficient concepts for our metatheory — the concept of branch consequences
and tableau — we apply in practice to cases of finite sets.
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Besides, we showed that a finite sets of expressions, using the rules from set of
rules RCPL we get branches of finite length (conclusion .), so for the case of
CPL the definition of maximal branch . is good enough.

The definition of maximal branch . in practice says that branch X, . . . , Xn,
for some n ≥ , we shall callmaximal iff there is no branch X, . . . , Xn, Xn+.

In the subsequent fact, we state that each finite set of formulas is the first
element of some maximal branch.

Proposition .. Let X be a finite set of formulas.Then, there exists suchmaximal
branch X, . . . ,Xn that X =X and n ≥ .

Proof. Take any finite set of formulas X, and then indirectly assume that there is
no maximal branch X, . . . ,Xn, where X =X and n ≥ .

However, by definition of branch . we know that there exists at least one
branch that starts with setX, i.e. ⟨X⟩, whereX =X. From the indirect assumption
and from the definition of maximal branch . it follows, however, that ⟨X⟩ is
not a maximal branch and it has some super-branch, so by definition of branch
. there is some branch: X,X.

Let us now consider branch X, . . . , Xm m long, for some m ∈ N. From the
indirect assumption and from the definition of maximal branch . it follows,
however, that X, . . . , Xm is not a maximal branch and it has some super-branch,
so by definition of branch . there is some branch: X, . . . , Xm, Xm+.

So, from the indirect assumption and from the definition of maximal branch
. results in a conclusion that (†) for any n ∈N there exists branch X, . . . , Xn,
Xn+ such that X =X and n ≥ .

Let Φ be such a minimal set of branches that:

. ⟨X⟩ ∈Φ
. if ⟨X, . . . ,Xn⟩ ∈Φ, then ⟨X, . . . ,Xn,Xn+⟩ ∈Φ, for any n ∈N.

Since Φ is a minimal set that meets conditions  and , then from (†) it follows
that for any n ∈N, there exists precisely one branch ⟨X, . . . ,Xn⟩ ∈Φ, whereX =X.

Ki will now denote a domain of such branch ϕK contained in Φ that ∣K∣ = i ∈N.
From the above considerations it follows that for each i ∈N there exists precisely
one set Ki that constitutes a domain of some branch which belongs to Φ.Then let
K =⋃{Ki ∶ ϕK ∈Φ}. Since  ∈K and n+  ∈K, if n ∈K, so K =N.

Let us now define sequence ψ ∶K�→P(ForCPL) such that for any i ∈K: ψ(i) =
ϕKi(i). From the definition of branch ., that sequence is an infinite branch
beginning with a finite set of formulas X =X, which contradicts conclusion ..

Using the above fact, we can prove another fact important for our theory.
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Proposition .. If X is a finite set of formulas, then for each branch Y, . . . , Yn
such that Y =X and n≥ , there exists maximal branch Z, . . . , Zn, . . . , Zn+m, where
for any i ≤ n Yi = Zi and m ≥ .

Proof. LetX be a finite set of formulas. Now, take any branch Y, . . . .,Yn such that
Y =X and n≥ . From the definition of branch . and definition of tableau rules
for CPL ., we know that Yn is a finite set. So, due to the last fact ., for some
m≥ there exists suchmaximal branchZ

n, . . . ,Z+m
n+m thatZ

n =Yn, hence by virtue
of definition of branch . there also exists maximal branchZ, . . . ,Zn, . . . ,Zn+m,
where for any i ≤ n Yi = Zi andm ≥ .

This fact tells us that any branch beginning with a finite set of formulas can be
extended to the maximal branch in which it is included as a sequence.

For further consideration, the concept of branch which is maximal in a given
set of branches, will be useful.

Definition . (Maximal branch in the set of branches). Let Φ be a set of
branches and let branch ψ ∈ Φ. Branch ψ will be called maximal in Φ (or Φ–
maximal) iff there is no such branch ϕ ∈Φ thatψ ⊂ϕ. Having some set of formulas
X, B(X) will denote the set of all branches X, . . . ,Xn such that X = X and n ≥ ,
whileMB(X) will denote the set of all maximal branches in B(X).

Remark .. The above concept of a maximal branch in a certain set of branches
could be a starting point instead of the concept described in the definition of
maximal branch .. The latter is its special case in a situation when set Φ is
identical to set B(X), for some finite set of formulas X, considering fact ..

However, we deliberately separated these concepts, because in one of the sub-
sequent chapters we will change the definition of maximal branch in such a way
that its scope will not be identical to the scope of definition . in relation to
finite sets. This new concept of a maximal branch will also include cases where
branches can be infinitely long, even though they start with a finite set of expres-
sions. So, consequently, it can be the case that for a given branch ϕ there is no
such branch ψ that ϕ ⊂ ψ, and yet ϕ it will not be considered maximal for other
reasons. Although we will continue to use the concept of a maximal branch in a
given set, we will eventually extend the concept of a maximal branch.

Corollary .. Let X be a finite set of formulas.Then B(X) contains a non-empty
subset MB(X).

Proof. Take any finite set of formulas X. Due to fact ., there exists maximal
branchψ beginningwithX. Of course, branchψ belongs toMB(X), so setMB(X)
is non-empty. Since each branch contained in MB(X) belongs to B(X), so non-
empty setMB(X) is contained in B(X).
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.. Closed and open branches

Another concept important for the tableau theory is the concept of a closed
branch and an open branch. Intuitively, a branch is closed when we have reached
a t-inconsistency set by decomposing formulas.

Definition . (Closed/open branch).Branch ϕ ∶K�→P(ForCPL)will be called
closed iff ϕ(i) is a t-inconsistent set, for some i ∈ K. A branch will be called open
iff it is not closed.

From the above definition, the definition of tableau rules for CPL . and the
definition of branch ., the following conclusion follows.

Corollary .. If branch ϕ ∶K�→ P(ForCPL) is closed, then ∣K∣ ∈N.

Proof. Let branch ϕ ∶ K �→ P(ForCPL) be closed. From the definition of closed
branch . we know that there exists such i ∈ K that ϕ(i) is a t-inconsistent set.
From the definition of tableau rules for CPL it follows that there is no branch
element ϕ(i+ ), since the rules do not contain n-tuples with t-inconsistent input
sets, hence none of the rules can be applied to set ϕ(i). So, from the definition of
branch . we get: K = {,,, . . . i}, which means that ∣K∣ ∈N.

In the case of a closed branch, the t-inconsistent element of sequence is therefore
the last element. It is so because no more rule can be applied for branch exten-
sions, because the tableau rules are defined in such a way that they cannot be
applied to t-inconsistent sets. Therefore, from the definition of maximal branch
. another conclusion follows.

Corollary .. If branch ϕ ∶K�→ P(ForCPL) is closed, then it is maximal.

.. Branch consequence relation

We will now proceed to the metalogical concept which occurs in each of the sys-
tems defined in the book.This concept seems to be a novelty, seemingly so far not
defined in the studies on tableau systems.

As we wrote, the tableau method is treated and defined in the book in a
purely syntactic manner, i.e. as a method of transforming the notations of a given
language in order to answer the question whether the considered inference is
correct.

A concept that corresponds to this question is the concept of branch conse-
quence relation, specified with another definition.

Definition . (Branch consequence relation of CPL). Let X ⊆ ForCPL and A ∈
ForCPL.We shall state thatA is a branch consequence ofX (or short:X ⊳A) iff there
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exists such finite set Y ⊆ X that each maximal branch beginning with Y ∪ {¬A}
is closed. Relation ⊳ will be called branch consequence relation of CPL.

Remark .. When considering different branch consequence relations in the
following chapters, we will not use separate denotations for them. In a given
context, we will only examine one relation, so there will be no risk of mistake.

Denotation .. For any set of formulas X and any formula A, notation X /⊳ A
shall mean that it is not the case that X ⊳A.

In order to explainwhat ismeant by definition ., wewill refer to an example.

Example .. Let us consider the following example of occurrence of the relation
of branch consequence. Take set {p} and formula (p∨q). Relation {p} ⊳ (p∨q)
occurs since eachmaximal branch in the formX ={p,¬(p∨q)}, . . . ,Xn is closed.
In fact, there is only one maximal branch in this form. It is branch: X = {p,¬(p∨
q)}, X = {p,¬(p ∨ q),¬p,¬q}, which originates through rule R¬∨. It is closed
because p ∈X and ¬p ∈X.

The above example shows the mechanism of the relation of branch conse-
quence. It is based on the impossibility of finding a branch that would be both
maximal and open. However, this example is somewhat misleading. We deliber-
ately chose a set of formulas and a formula so that the branches beginning with
this set and negation of the formula are neither too long nor toomany. In practice,
none of these features may actualize and most often they do not.

. Relations of semantic consequence and branch
consequence

Before we proceed to the issue of how to reduce as much as possible the num-
ber of branches, which suffice to consider to show the occurrence of the relation
of branch consequence, we will first show that the concept of the branch conse-
quence relation defines the same set of objects as the concept of the semantic con-
sequence relation — it is thus the branch, syntactic counterpart of the semantic
consequence relation.

.. Soundness theorem

In this subchapter, we will show that the relation of branch consequence is con-
tained in the relation of semantic consequence, hence for any set of formulas X
and any formula A it is the case that if X ⊳A, then X ⊧A.

We will use abbreviations concerning the valuations of the formulas adopted
in denotation ..
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We will start with a lemma that tells us about the relationship between
valuations of formulas and tableau rules.

Lemma.. Let X be a set of formulas andV be any valuation such that V(X)= .
For any rule R ∈RCPL:

• if ⟨X,Y⟩ ∈ R, then V(Y) = 
• if ⟨X,Y ,Z⟩ ∈ R, then V(Y) =  or V(Z) = .

Proof. We carry out the proof by checking the rules one by one. We will use the
definition of valuation of CPL formulas, ..

Take any set of formulas X and any valuation V such that V(X) = . Take any
ruleR from setRCPL. If setX is an input set of some n−tuple contained inR, there
must exist: certain set of formulas X′ and formulas A, B such that there occurs at
least on of the below cases.

• X = X′ ∪{(A∧B)}, V(X′ ∪{(A∧B)}) = , R = R∧ and ⟨X′ ∪{(A∧B)},X′ ∪
{(A∧B),A,B}⟩ ∈ R∧. Since V((A∧B)) = , so V(A) =V(B) = . Thus V(X′ ∪
{(A∧B),A,B}) = .

• X = X′ ∪{(A∨B)}, V(X′ ∪{(A∨B)}) = , R = R∨ and ⟨X′ ∪{(A∨B)},X′ ∪
{(A ∨ B),A},X′ ∪ {(A ∨ B),B}⟩ ∈ R∨. Since V((A ∨ B)) = , so V(A) =  or
V(B) = . Thus V(X′ ∪{(A∨B),A}) =  or V(X′ ∪{(A∨B),A}) = .

• X =X′∪{(A→B)}, V(X′∪{(A→B)}) = , R =R→ and ⟨X′∪{(A→B)},X′∪
{(A→ B),¬A},X′ ∪{(A→ B),B}⟩ ∈ R→. Since V((A→ B)) = , so V(A) = 
or V(B) = . Hence V(¬A) =  or V(B) = . Thus V(X′∪{(A→B),¬A}) =  or
V(X′ ∪{(A→ B),B}) = .

• X =X′∪{(A↔B)},V(X′∪{(A↔B)})= , R=R↔ and ⟨X′∪{(A↔B)},X′∪
{(A ↔ B),A,B},X′ ∪ {(A ↔ B),¬A,¬B}⟩ ∈ R↔. Since V((A ↔ B)) = , so
V(A) = V(B). Hence V(A) = V(B) =  or V(A) = V(B) = . Thus V(A) =
V(B) =  or V(¬A) =V(¬B) = . Consequently V(X′∪{(A↔B),A,B}) =  or
V(X′ ∪{(A↔ B),¬A,¬B}) = .

• X = X′ ∪ {¬¬A}, V(X′ ∪ {¬¬A}) = , R = R¬¬ and ⟨X′ ∪ {¬¬A},X′ ∪
{¬¬A,A}⟩ ∈ R¬¬. Since V(¬¬A) = , so V(¬A) = , and V(A) = . Thus
V(X′ ∪{¬¬A,A}) = .

• X = X′ ∪ {¬(A ∧ B)}, V(X′ ∪ {¬(A ∧ B)}) = , R = R¬∧ and ⟨X′ ∪ {¬(A ∧
B)},X′ ∪{¬(A∧B),¬A},X′ ∪{¬(A∧B),¬B}⟩ ∈ R¬∧. Since V(¬(A∧B)) = ,
so V((A∧B)) = . Hence V(A) =  or V(B) = , and consequently V(¬A) = 
or V(¬B) = . Thus V(X′ ∪{(A∧B),¬A}) =  or V(X′ ∪{(A∧B),¬B}) = .

• X = X′ ∪ {¬(A ∨ B)}, V(X′ ∪ {¬(A ∨ B)}) = , R = R¬∨ and ⟨X′ ∪ {¬(A ∨
B)},X′∪{¬(A∨B),¬A,¬B}⟩ ∈R¬∨. SinceV(¬(A∨B)) = , soV((A∨B)) = ,
thus V(A) = V(B) = , and consequently V(¬A) = V(¬B) = . Thus V(X′ ∪
{¬(A∨B),¬A,¬B}) = .
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• X = X′ ∪ {¬(A→ B)}, V(X′ ∪ {¬(A→ B)}) = , R = R¬→ and ⟨X′ ∪ {¬(A→

B)},X′∪{¬(A→B),A,¬B}⟩ ∈R¬→. SinceV(¬(A→B)) = , so V((A→B)) =
, so V(A) =  and V(B) = . Thus V(A) =  and V(¬B) = . Consequently
V(X′ ∪{¬(A→ B),A,¬B}) = .

• X = X′ ∪{¬(A↔ B)}, V(X′ ∪{¬(A↔ B)}) = , R = R¬↔ and ⟨X′ ∪{¬(A↔
B)},X′∪{¬(A↔B),¬A,B},X′∪{¬(A↔B),A,¬B}⟩ ∈R¬↔. SinceV(¬(A↔
B))= , soV(A) /=V(B). HenceV(A)= andV(B)=  orV(A)=  andV(B)=
.ThusV(¬A) =V(B) =  orV(A) =V(¬B) = . Consequently,V(X′∪{(A↔
B),¬A,B}) =  or V(X′ ∪{(A↔ B),A,¬B}) = .

Another lemma describes the relationship between finite, non-contradictory
sets of formulas and the branches that originate from them. In this lemma we
state that for a finite and non-contradictory set of formulas there is always at least
one branch, beginning with this set, which is open and maximal.

Lemma . (On the existence of maximal and open branch). Let X be a finite
set of formulas, and V be a valuation. If V(X) = , then there exists at least one
maximal and open branch X, . . . ,Xn such that X =X and n ≥ .

Proof. Take any finite set of formulasX and valuationV such thatV(X)= . Based
on conclusion ., we know that set of all maximal branches MB(X) is non-
empty. Indirectly assume that none of the branches contained inMB(X) is open.

Now, consider the branches beginning with set X, taking accounts of their
lengths. Through inductive proof, we will show that for any n ∈ N there exists
such open branch X, . . . , Xn that X = X and there exists such set of formulas Y
that sequence X, . . . , Xn, Xn+, where Xn+ =Y , is also an open branch.

Initial step. There exists an open branch with the length of  beginning with
set X. It is branch X = X. Since V(X) = , by definition ., set X is not con-
tradictory, while by virtue of conclusion ., set X is not t-inconsistent. So, by
definition of open branch . branch X is open. Hence, by virtue of the indirect
assumption, X is not a maximal branch. Thus, by definition of maximal branch
. and lemma ., there exists branch X,X such that V(X) = . By defini-
tion ., set X is not contradictory, while by virtue of conclusion ., set X is
not t-inconsistent. So, by definition of open branch ., branch X,X is open.

Induction step.Assume that for some n ∈N, there exists such open branch X,
. . . , Xn that X = X, V(Xn) =  and n ≥ . Hence, by the indirect assumption, X,
. . . , Xn is not a maximal branch.

SinceV(Xn)= , by definition ., setXn is not contradictory, while by virtue of
conclusion ., setXn is not t-inconsistent.Thus, by definition ofmaximal branch
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. and lemma ., there exists branch X, . . . , Xn, Xn+ such that V(Xn+) = .
By definition ., set Xn+ is not contradictory, while by virtue of conclusion .,
set Xn+ is not t-inconsistent. So, by definition of open branch ., branch X,
. . . , Xn, Xn+ is open.

Consequently, for any n ∈ N, there exists such open branch X, . . . , Xn that
X = X and there exists such set of formulas Y that sequence X, . . . , Xn, Xn+,
where Xn+ =Y , is also an open branch and is not a maximal branch.

From this it follows that there exists an infinite branch Y, Y, . . . such that

. Y =X
. Yn+ =Xn+, where Xn+ is such set that sequence X, . . . , Xn, Xn+, is also an

open branch.

But, since X is a finite set of formulas, so the fact of existence of infinite branch
Y, Y, . . . contradicts fact .. So, the indirect assumption that each branch con-
tained in MB(X) is closed, is false. So there exists a branch beginning with X,
which is maximal and open.

With a lemma on the existence ofmaximal and open branch, we can nowprove
the soundness theorem.

Theorem . (Soundness).ForanyX⊆ForCPL,A∈ForCPL, if X ⊳A, then X ⊧A.

Proof. Take any X ⊆ ForCPL, A ∈ ForCPL and assume that X /⊧A. So by definition
. there exists such valuation V that V(X ∪{¬A}) = . Hence for any finite set
Y ⊆ X, V(Y ∪ {¬A}) = . From the previous lemma . it follows that for any
finite Y ∪{¬A} there exists at least one maximal and open branch X, . . . ,Xn such
that X = Y ∪{¬A} i n ≥ . So there is no such finite set Z ⊆ X that each maximal
branch beginning with Z∪{¬A} is closed. Hence by definition . X /⊳A.

.. Completeness theorem

In this section, we will show that the relation of semantic consequence is con-
tained in the relation of branch consequence, hence for any set of formulasX and
any formula A it is the case that if X ⊧A, then X ⊳A.

Also here, we will use abbreviations concerning the valuations of the formulas
adopted in denotation ..

In our proofs, we will use the fact that the classical consequence relation ⊧ is
compact. However, let us first recall the general definition of compactness of a
binary relation, because the concept of a compact relation will be useful in the
next chapter.
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Definition . (Compact relation). Take any set of objectsX and binary relation
R, specified as follows R ⊆ P(X) ×X. We shall state that relation R is compact iff
for any Y ⊆X and for any x ∈X: YRx⇔ there exists a finite set Y′ such that Y′ ⊆Y
and Y′Rx.

The well-known fact of the compactness of semantic consequence relation of
CPL is expressed in the next fact.

Proposition . (Compactness). For any X ⊆ForCPL, A ∈ForCPL, X ⊧A iff there
exists such finite set Y ⊆X that Y ⊧A.

We will start with a lemma which says about the relationship between the
valuation of propositional letters and the negation of propositional letters in a
maximal branch and the valuation of formulas from some initial set.

Lemma .. Let X, . . . , Xn, for some n ≥ , be a maximal and open branch. Let
L(Xn) = {x ∈ Xn ∶ x = y or x = ¬y, for some y ∈ Var}. Then for any valuation V, if
V(L(Xn)) = , then V(Xn) = .

Proof. We will carry out an inductive proof, taking account of the complexity of
formulas in a branch.

Take anymaximal and open branchX, . . . ,Xn, for some n≥ , and valuationV
such thatV(L(Xn)) = , where L(Xn) = {x ∈Xn ∶ x = y or x =¬y, for some y ∈Var}.
Let A ∈Xn.

Initial step. IfA= y orA=¬y, for some y ∈Var, thenV(A) = , sinceA ∈L(Xn).
Induction step. Assume that for all formulas B, C ∈ Xn that have the lesser

complexity thanA,V(B) =V(C) = . Our proof will be based on possible cases of
constructing formulaA and on the initial assumption thatX, . . . ,Xn is amaximal
branch. Since the branch is maximal, so ifA could be decomposed by some of the
tableau rules, then its component (components) are already in Xn (as for all i ≤ n,
Xi ⊆Xn).

Now, for some formulas B, C occurs one of the cases:

• A ∶= (B∧C), and so B,C ∈ Xn, on the inductive assumption and by definition
of valuation of formulas . we then get that V(B) =V(C) =  =V((B∧C))

• A ∶= (B∨C), and so B orC ∈Xn, on the inductive assumption and by definition
of valuation of formulas . we then get that V(B) =  or V(C) = , therefore
V((B∨C)) = 

• A ∶= (B→ C), and so ¬B or C ∈ Xn, on the inductive assumption and by def-
inition of valuation of formulas . we then get that V(¬B) =  or V(C) = ,
therefore V((B→C)) = 
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• A ∶= (B↔ C), and so B, C or ¬B, ¬C ∈ Xn, on the inductive assumption and
by definition of valuation of formulas . we then get that V(B) =  =V(C) or
V(¬B) =  =V(¬C), therefore V((B↔C)) = 

• A ∶= ¬¬B, and so B ∈ Xn, on the inductive assumption and by definition of
valuation of formulas . we then get that V(B) =  =V(¬¬B)

• A ∶= ¬(B ∧ C), and so ¬B or ¬C ∈ Xn, on the inductive assumption and by
definition of valuation of formulas . we then get thatV(¬B)=  orV(¬C)= ,
therefore V(¬(B∧C)) = 

• A ∶= ¬(B∨C), and so ¬B,¬C ∈ Xn, on the inductive assumption and by def-
inition of valuation of formulas . we then get that V(¬B) = V(¬C) =  =
V(¬(B∨C))

• A ∶= ¬(B→C), and so B,¬C ∈Xn, on the inductive assumption and by defini-
tion of valuation of formulas . we then get thatV(B)=V(¬C)= =V(¬(B→
C))

• A ∶= ¬(B↔ C), and so ¬B, C or B, ¬C ∈ Xn, on the inductive assumption and
by definition of valuation of formulas . we then get that V(¬B) =  = V(C)
or V(B) =  =V(¬C), therefore V(¬(B↔C)) = .

Consequently, V(Xn) = , since V(A) = , for all A ∈Xn.

The next lemma will show that a maximal and open branch allows to define
a valuation that assigns the value of truth to each formula contained in the first
element of branch.

Lemma. (Lemma on the existence of valuation). Let X, . . . , Xn, for some n≥ ,
be a maximal and open branch.Then, there exists valuation V such that V(X) = .

Proof. Take any maximal and open branch X, . . . , Xn, for some n ≥ . Now, we
define L(Xn) = {x ∈ Xn ∶ x = y or x = ¬y, for some y ∈ Var}. Since L(Xn) is t-
consistent, we define valuation v ∶Var�→{,} such that for any x ∈Var:

• v(x) = , if x ∈ L(Xn)

• v(x) = , if x /∈ L(Xn).

We see that both v(L(Xn)) =  and V(L(Xn)) = , where V is an extension of
function v to the set of all formulas.

Now, using lemma ., we get thesis V(X) = , since X ⊆Xn.

The lemma on the existence of valuation allows us to prove the completeness
theorem.
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Theorem . (Completeness). For any X ⊆ ForCPL, A ∈ ForCPL, if X ⊧ A, then
X ⊳A.

Proof. Take any X ⊆ ForCPL, A ∈ ForCPL and assume that X /⊳A. Thus, by defini-
tion of branch consequence relation . for each finite subset Y ⊆X there exists a
maximal branch beginning with Y ∪{¬A}which is open. By virtue of the lemma
on the existence of valuation . for each finite set Y ⊆X there exists valuationV
such that V(Y ∪{¬A}) = . Thus, by definition of valuation of formulas . and
consequence classical relation ., for each finite set Y ⊆X, Y /⊧A. Hence and by
virtue of the compactness property of relation of consequence ⊧, fact ., we get
thesis X /⊧A.

. Tableaux for CPL vs. semantic consequence relation
So we can see that the concepts of relation of semantic consequence and relation
of branch consequence denote exactly the same set of pairs ⟨X,A⟩, whereX is a set
of formulas, while A is a formula. In practice, however, it is not easy to determine
whether a pair belongs to relation ⊳. According to definition ., in order to
achieve this, we need to select from X its finite subset Y such that each maximal
branch beginning with set Y ∪{¬A} is closed. The first stage of this activity, i.e.
the selection of an appropriate set, is difficult to study in general, since further
we will deal with various different logics, and the relation of branch consequence
has been defined for any sets, particularly infinite ones. However, if the set of
premises is a finite set, we can proceed straight to the second stage, i.e. reviewing
all maximal branches and checking if they are closed branches.

Unfortunately, although their number in the case of a finite set of premises will
also be finite, it may be so large that their construction and examination are only
theoretically possible.Therefore, we need amethod that allows to select and study
a sufficiently small number of maximal branches, the closure of which guarantees
the occurrence of branch consequence relation.

In our theory, this method is based on the concept of a tableau. By tableau
we mean a finite and minimal set of branches beginning with the same set. Of
course, such a concept of tableau is far from its graphic presentation or one based
on graphs. Due to its formal nature, it specifies the standard concept of tableau,
plus its scope at least includes a set of those objects which are traditionally called
semantic or analytical trees or tableaux.The problem of this relation will be dealt
with in the last chapter of the book.

Let us now proceed to the definition of tableau.
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Definition . (Tableau). Let X ⊆ ForCPL, A ∈ ForCPL, while Φ will be a set of
branches. Ordered triple ⟨X,A,Φ⟩ will be called a tableau for ⟨X,A⟩ (or shortly
tableau) iff the below conditions are met:

. Φ is a non-empty subset of set of branches beginning with X ∪ {¬A} (i.e. if
ψ ∈Φ, then ψ() =X∪{¬A})

. each branch contained in Φ is Φ-maximal
. for any n, i ∈N and any branches ψ, . . . , ψn ∈Φ, if:

• i and i+  belong to the domains of functions ψ, . . . , ψn
• for any  < k ≤ n and any o ≤ i, ψ(o) =ψk(o)
then there exists such rule R ∈RCPL and such orderedm-tuple ⟨Y, . . . ,Ym⟩ ∈

R, where  <m ≤ , that for any  ≤ k ≤ n:
• ψk(i) =Y
• and there exists such  < l ≤m that ψk(i+ ) =Yl.

Remark .. Thefirst two conditions in the tableau definition are standard ones.
Each branch in the tableau beginswith a set which is the sumof the set of premises
and the negation of the presumed conclusion. In addition, the tableau contains
only Φ-maximal branches, so it does not include sub-branches of the branches
belonging to Φ.

However, the third condition is particularly worth discussing. This condition
says that branching can occur in a tableau only if there is a suitable rule and its
ordered triple which contains two output sets corresponding to the branching.

We have deliberately reduced number m to range {,}, since the rules in
set RCPL have at least two elements each, but not more than three. In the case
of tableau systems for other logics, however, it may happen that m will be any
number greater than  which will allow for several branchings at a given stage
of the tableau construction. In general, the upper range of number m minus 
means the number of branchings that can appear in the tableau at a given stage
of construction.

Therefore, definition of tableau . excludes such sets of branches from being
considered tableaux as in example ..

Example .. We consider set {¬p,(p∨q),(q∨ r)} and create three branches.

R X1 = {¬ p, (p q), (q r )}

X 2.1 = X 1 p} X 2.2 = X 1 {q} X 2.3 = X 1 r }{ {

∧∧∧
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Although there exists a rule — it is rule R∨ — which contains ordered
triples ⟨X,X.,X.⟩ and ⟨X,X.,X.⟩, set RCPL includes no rule to com-
prise a ordered quadruple ⟨X,X.,X.,X.⟩, therefore the presented set of
branches {⟨X,X.⟩,⟨X,X.⟩,⟨X,X.⟩} does not meet the third condition of
the definition of tableau ..

As we can see, the concept of tableaux has been defined in such a way that
tableaux can also begin with infinite sets.

In practice, the construction of tableau is to show that a given formula is a
branch consequence of a given finite set of premises. To this end, we must con-
struct tableaux that have all the elements necessary to solve the problem. Tableaux
with these properties are called complete tableaux. But, before we proceed to the
definition of complete tableau, we will consider one more issue.

When constructing a tableau, it may happen that branchings and branches
are formed which are redundant variants of the already existing branches. Let
us consider the following two examples.

Example .. Consider set {p∨q, ¬¬p} and create a branch using a rule R¬¬ to
this set. We get the following branch.

R ¬ ¬ X 1 =

{

{ p q,¬¬ p}

X 2 = X 1 p}

∧

Branches X, X cannot be any more extended since ordered triple ⟨X ∪
{p},X∪{p},X∪{p,q}⟩ does not belong to ruleR∨ due to the fact thatX∪{p} /⊂
X ∪{p}, whereas the input set should be contained in each output set.

We can, however, starting from set {p∨ q, ¬¬p}, through the use of rule R∨,
produce two branches, and than apply rule R¬¬ to set X.. Then we get the
following branches.

R X 1 = { (p q), ¬¬ p}

X 2.1 = X 1 p} R ¬ ¬ X 2.2 = X 1 q}

X 3 = X 2.2 p}

∧∧

{ {

{

In the light of definition of tableau ., the set of these two branches is,
obviously, a tableau. However, from the viewpoint of a tableau complexity and
information it provides, the branch on the right seems unnecessary. This is be-
cause if we fail to get t-inconsistent set in the right-hand branch, we will also fail
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to get t-inconsistent set in the left-hand branch.On each set of formulasY we gen-
erally know from the definition of tableau inconsistent set of formulas . that
Y is not t-inconsistent iff each of its subsets is not t-inconsistent, and the point of
constructing a tableau is precisely finding a t-inconsistency.Therefore, the branch
on the right seems superfluous, and since it brings nothing important, it can be
called redundant.

Such branchings are not a formal obstacle, hence they can be accepted. How-
ever, due to the economy of a tableau construction, they can be disregarded.
Further concepts will be defined so that the tableau with or without redundant
branches can be considered a complete tableau. Practically, we know that when
we try to write or draw out a tableau proof, we endeavour to take account of all
possibilities. So there is no reason to further restrict this process — and we allow
both options. Let us now proceed to the formal concept of a redundant variant
of branch.

Definition . (Redundant variant of branch). Let ϕ and ψ be such branches
that if there exists number i that i and i+  belong to their domains, then for any
j≤ i, ϕ(j) =ψ(j), but ϕ(i+ ) /=ψ(i+ ). We shall state that branch ψ is a redundant
variant of branch ϕ iff:

. there exist such rule R ∈ RCPL and such pair ⟨X,Y⟩ ∈ R that X = ϕ(i) and
Y = ϕ(i+ )

. there exist such rule R ∈RCPL and such triple ⟨X,W,Z⟩ ∈R that X = ϕ(i) and:
a. W = ϕ(i+ ) and Z =ψ(i+ )

or
b. Z = ϕ(i+ ) andW =ψ(i+ ).

Let Φ, Ψ be sets of branches and Φ ⊂ Ψ. We shall state that Ψ is an redundant
superset of Φ iff for any branch ψ ∈Ψ∖Φ there exists such branch ϕ ∈Φ that ψ is
a redundant variant of ϕ.

Let us consider another example of tableau with redundant branches.

Example .. Take set {¬¬p, ¬¬q, p ∨ q}. By applying rules R∨ and R¬¬
successively, we will get an interesting case of tableau.

R X 1 = { p q,¬¬ p, ¬¬ q}

R ¬ ¬ X 2.1 = X 1 p}

X 3.1 = X 2.1 q}

R ¬ ¬ X 2.2 = X 1 q}

X 3.2 = X 2.2 p}

∧ ∧

{{

{ {
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Sets X. and X. are identical. So, we face an interesting situation where both
branches “diverged” (sets X. and X. are different), and then “converged”
(sets X. and X. are identical). Due to the definition of redundant vari-
ant of branch ., each of those two branches is a redundant variant of the
other.
Remark .. The concept of a redundant variant of branch can be extended onto
other cases of branchings where one of branches brings no expressions into the
tableau that are necessary to obtain the answer to the question whether given
inference is correct. Nevertheless, we will not expand this concept. After all, we
are not interested in the economy of tableau proof. We introduced this concept
in order to show that the adopted concepts of tableau and branch allows us to
distinguish certain types of branches, and consequently, to distinguish certain
sets of tableaux that are less complex.

Now, we will move on to the definition of complete tableau.

Definition . (Complete tableau). Let ⟨X,A,Φ⟩ be a tableau. We shall state
that ⟨X,A,Φ⟩ is complete iff:

. each branch contained in Φ is maximal
. any set of branches Ψ such that:

a. Φ ⊂Ψ
b. ⟨X,A,Ψ⟩ is a tableau
is a redundant superset of Φ.

A tableau is incomplete iff it is not complete.

In a complete tableau, all branches are maximal, not only the maximal ones in
a given set. In addition, a complete tableau is such set of branches that adding a
new branch to it at most gives us a redundant superset or the set ceases to be a
tableau. In other words, a complete tableau is such set of maximal branches that
any of its supersets ceases to be a tableau or is a redundant superset.

When constructing a complete tableau, we can come across a situation in
which all the branches are closed,meaning each branch ends with a t-inconsistent
set. Such a tableau is called closed tableau. Let us first define a closed/open tableau,
and then discuss the definition.

Definition . (Closed/open tableau). Let ⟨X,A,Φ⟩ be a tableau. We shall state
that ⟨X,A,Φ⟩ is closed iff the below conditions are met:

. each branch contained in Φ is closed
. any set of branches Ψ such that:

a. Φ ⊂Ψ
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b. ⟨X,A,Ψ⟩ is a tableau
is a redundant superset of Φ.

A branch is open iff it is not closed.

As we have said, by the above definitions — the definition of complete tableau
. and the definition of closed tableau . — and the conclusion ., we have
another conclusion.

Corollary .. Each closed tableau is a complete tableau.

Moreover, among complete tableaux, those tableaux that only contain sets of
closed branches are closed tableaux. So we have another conclusion.

Corollary .. Each complete tableau in which the set of branches only contains
closed branches is a closed tableau.

Making use of conclusions . and ., we can, therefore, simplify the
definition of closed/open tableau by formulating another conclusion.

Corollary . (Closed/open tableau). Let ⟨X,A,Φ⟩ be a tableau. Tableau
⟨X,A,Φ⟩ is closed iff the below conditions are met:

. ⟨X,A,Φ⟩ is a complete tableau
. each branch contained in Φ is closed.

A branch is open iff it is not closed.

Conclusion . can be adopted as an equivalent version of the definition of
closed/open tableau.

Further, we will show that the concept of tableau is significantly helpful in
determining the occurrence of relation ⊳.

Now, we will focus on the fact that the initial, finite set of formulas allows to
construct a complete tableau.

Proposition .. Let X be a finite subset of set ForCPL and let A ∈For.Then, there
exists at least one complete tableau ⟨X,A,Φ⟩.

Proof. Consider a set of all branches B(X∪{¬A}). We know that the set of max-
imal branches MB(X ∪ {¬A}) is non-empty (fact .). In addition, for each
branch ϕ ∈ B(X ∪{¬A}) there exists branch ψ ∈MB(X ∪{¬A}) such that ϕ ⊆ ψ,
by ..

Let us now define such set Φ ⊆MB(X∪{¬A}) that Φ is a maximal set among
the sets that meet the following condition:
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• for any n, i ∈N and any branches ϕ, . . . , ϕn ∈Φ, if:
– i and i+  belong to domains of functions ϕ, . . . , ϕn
– for any  < k ≤ n and any o ≤ i, ϕ(o) = ϕk(o),
then there exists such rule R ∈RCPL and such orderedm-tuple ⟨Y, . . . ,Ym⟩ ∈R,
where  <m ≤ , that for any  ≤ k ≤ n:
– ϕk(i) =Y
– and there exists such  < l ≤m that ϕk(i+ ) =Yl.

By definition of tableau ., ⟨X,A,Φ⟩ is a tableau. What is more, since Φ is a
maximal set among those meeting the given condition, then by the definition of
complete tableau ., ⟨X,A,Φ⟩ is a complete tableau. Since MB(X ∪ {¬A}) is
non-empty, there exists at least one Φ that meets the given condition.

We will now move on to a lemma that defines the relationship between the
existence of a closed tableau and complete tableaux.

Lemma .. Let X be a finite subset of set ForCPL and A ∈ ForCPL. Then, the
following two statements are equivalent:

. there exists closed tableau ⟨X,A,Φ′⟩
. each complete tableau ⟨X,A,Φ′′⟩ is closed.

Proof. Take any finite subset X of set ForCPL and any formula A ∈ ForCPL.
First, we will take up the proof of implication ()⇒(). Indirectly assume that

there exists closed tableau ⟨X,A,Φ′⟩ and not every complete tableau ⟨X,A,Φ′′⟩
is closed. Hence, there exists complete tableau ⟨X,A,Φ′′⟩ which is not closed. By
definition of open tableau ., ⟨X,A,Φ′′⟩ is an open tableau.And since ⟨X,A,Φ′′⟩
is a complete tableau, then each branch contained in Φ′′ is maximal. Hence, there
exists branch ψ ∈Φ′′ such that:

. ψ begins with X∪{¬A}
. ψ is a maximal branch
. ψ is an open branch.

Since ψ is an open branch, then by definition of open branch ., there is no
such formula A that A and ¬A belong to the union of all the elements of branch
⋃ψ.

Note that since branch ψ is maximal and open, then it is also closed under
tableau rules in this regard that for any R ∈RCPL and any n-tuple ⟨X, . . . ,Xn⟩ ∈R,
where n > , if X ⊆ ⋃ψ, then for some  < j ≤ n, Xj ⊆ ⋃ψ. For if that was not the
case, therewould exist ruleR ∈RCPL and such n-tuple ⟨X, . . . ,Xn⟩ ∈R, where n> ,
that X ⊆ ⋃ψ, but for none  < j ≤ n, Xj /⊆ ⋃ψ. And it would mean that branch ψ
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is not maximal, because⋃ψ is identical to the last element of open and maximal
branch ψ, by definition of branch ..

We assumed that there existed closed tableau ⟨X,A,Φ′⟩. By virtue of con-
clusion ., ⟨X,A,Φ′⟩ is a complete tableau. Hence, each branch contained
in Φ′ is maximal and Φ′ contains all such branches without which ordered
triple ⟨X,A,Φ′⟩ would not be a complete tableau. Let us adopt designation
X∪{¬A} =Y.

We will carry out an inductive proof with respect to n-th elements of branches
contained in Φ′, showing that they enable construction of an infinite branch
beginning with set Y.

Initial step.Consider the first element of each branch contained in Φ′. It is set
Y. Since Y ⊆⋃ψ, and ψ is an open branch, then there must exist a rule R ∈RCPL
such that ⟨Y,Z, . . . ,Zn⟩ ∈ R, where n ≥ , and — since ⟨X,A,Φ′⟩ is a complete
tableau — for each  ≤ j ≤ n there exists a branch in Φ′ such that it contains Zj.
Since branch ψ is also closed under tableau rules, then certain Zj ⊆ ⋃ψ. So, Φ′

includes such branch that its first element is Y, and second Y =Zj, and Y ⊆⋃ψ
Induction step. Assume that set Φ′ includes such branch that its first n el-

ements Y, . . . , Yn are contained in set ⋃ψ. Since Yn ⊆ ⋃ψ, and ψ is an open
branch, then there must exist a rule R ∈RCPL such that ⟨Yn,Z, . . . ,Zk⟩ ∈R, where
k ≥ , and — since ⟨X,A,Φ′⟩ is a complete tableau — for each  ≤ j ≤ k there
exists a branch in Φ′ such that it contains Zj. Since branch ψ is also closed under
tableau rules, then certain Zj ⊆⋃ψ. So, Φ′ includes such branch that its first n+ 
elements Y, . . . , Yn,Yn+ are contained in set⋃ψ.

So, for each branch in Φ′, the first element equals Y and Y ⊆ ⋃ψ and for
each n ∈ N if there exists in Φ′ such branch that its first n elements Y, . . . , Yn
are contained in set ⋃ψ, then also in Φ′ there exists such branch that its first n
elements equal Y, . . . , Yn, and its n+ -element Yn+ is contained in set ⋃ψ.

Now, we take all elements Yi, where i ∈ N and we put them in increasing se-
quence Y, Y, Y, . . . . This sequence is a branch, because for any Yj there exists
a rule R ∈RCPL such that ⟨Yj,Z, . . . ,Zk⟩ ∈ R, where k ≥ , and Yj+ = Zl, for some
 ≤ l ≤ k.

There exists therefore an infinitely long branch Y, . . . , Yn, . . . such that
Y =X∪{¬A}. But, since setX∪{¬A}, by assumption, is finite, then it contradicts
fact ..

Let us now move on to the proof of implication ()⇒ (). Assume that each
complete tableau ⟨X,A,Φ′′⟩ is closed. From fact ., we know that for finite set
of formulasX there exists at least one complete tableau ⟨X,A,Φ⟩.Therefore, there
exists closed tableau ⟨X,A,Φ′⟩.
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We will now consider the relationship between complete and closed tableaux
and the occurrence of branch consequence relation.

Lemma . (On relation between complete tableaux and branch consequence).
Let X ⊆ ForCPL and A ∈ ForCPL. Then, the two below statements are equivalent:

. there exists such finite set Y ⊆X that each complete tableau ⟨Y ,A,Φ⟩ is closed
. X ⊳A.

Proof. Theproof of the above equivalence is based on the definition of the notion
tableau ., notion of a closed tableau . and notion of a relation of branch
consequence ⊳.

Take X ⊆ForCPL and A ∈ForCPL, and assume there exists such finite set Y ⊆X
that each complete tableau ⟨Y ,A,Φ⟩ is closed. Therefore, each maximal branch
that begins with set Y ∪{¬A} is closed. So, there exists such finite set Y ⊆X that
each maximal branch that begins with set Y ∪{¬A} is closed. Hence, X ⊳A.

On the other hand, if X ⊳ A, then there exists such finite set Y ⊆ X that each
maximal branch that begins with set Y ∪{¬A} is closed. Hence, there exists such
finite set Y ⊆X that each complete tableau ⟨Y ,A,Φ⟩ is closed.

We now proceed to themost important theorem of this subchapter.The occur-
rence of this theorem, or at least of its part “from the left to the right,” may be a
criterion for the correctness of tableau system construction.When constructing a
tableau emerging from a given set of formulas, we can usually do it in many ways.
In practice, however, we construct one tableau, checking whether each branch
ends with a contradictory set. Usually we also assume that it is sufficient to state
that given formula belongs to the set of correct conclusions from the initial set of
formulas.

Intuitively, however, it seems doubtful. Why should one closed tableau be a
proof if it is potentially possible to construct more tableaux? After all, usually,
we have to rule out all cases in indirect proofs, and this is what the construction
of a tableau is. Another theorem removes this doubt by saying that in order to
determine the occurrence of relation of branch consequence, it is sufficient to
construct one closed tableaux.

Theorem . (Theorem on the tableau arbitrariness). Let X ⊆ ForCPL and A ∈

ForCPL. Then, the two below statements are equivalent:

. there exists finite set Y ⊆X and closed tableau ⟨Y ,A,Φ⟩
. X ⊳A.
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Proof. Take any X ⊆ ForCPL and A ∈ ForCPL and assume there exists such finite
set Y ⊆ X and closed tableau ⟨Y ,A,Φ⟩. By virtue of lemma ., we get the con-
clusion that there exists such finite set Y ⊆X that each complete tableau ⟨Y ,A,Φ′⟩
is closed. And from the above, and from lemma ., it follows that X ⊳A.

Now, assume that X ⊳ A. By virtue of lemma ., there exists such finite set
Y ⊆ X that each complete tableau ⟨Y ,A,Φ′⟩ is closed. So, from lemma ., it
follows that there exists finite set Y ⊆X and closed tableau ⟨Y ,A,Φ⟩.

The construction of one closed tableau which begins with a finite subset of set
of premises X and negation of formula A is, therefore, equivalent to the fact that
X ⊳A. Because previously, through the theorems on soudness and completeness,
we proved that relations ⊧ and ⊳ are identical, i.e. they define the same set of
pairs, now we can put in words the semantic form of the theorem on the tableau
arbitrariness.

Theorem . (Theorem on the tableau arbitrariness — semantic form). Let X ⊆
ForCPL and A ∈ ForCPL. Then, the two below statements are equivalent:

. there exists finite set Y ⊆X and closed tableau ⟨Y ,A,Φ⟩
. X ⊧A.

This theorem says that the logical relation occurs between the premises and
conclusion if and only if it is possible to select a finite set of premises, and then
by attaching to it the negation of conclusion, construct a closed tableau emerging
from that set.

. Summary
In this chapter we presented a theory for the construction of a tableau system for
CPL, using the method of defining tableau rules as rules that extend sets.

For the purposes of presentation, we separately showed the relationships be-
tween the semantic consequence relation, the branch consequence relation and
the existence of a closed tableau, proving the theorems on the equivalence of these
concepts. In practice, however, it is easier to prove a theorem equivalent to the
conjunction of the above theorems, i.e. the following theorem.

Theorem . (Theorem on the completeness of tableau system ofCPL). For any
X ⊆ ForCPL, A ∈ ForCPL, the below statements are equivalent.

• X ⊧A
• X ⊳A
• there exists finite Y ⊆X and closed tableau ⟨Y ,A,Φ⟩.
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Although this theorem is equivalent to the conjunction of earlier theorems —
as we can see — its demonstration requires a proof of three implications. Certain
proof transitions may therefore be omitted.

Theorem ., was named a theorem on the completeness of tableau system of
CPL, referring to the usual name to define the relationship between the semantic
characteristics of given logic and its deductive definition. Often, when speaking
on the completeness of a given deductive system, we mean not only a one-way
relationship, but a relationship occurring two ways, that is, both soundness and
completeness in the strict sense.

In the presentation of other tableau systems constructed using the presented
method, we will always strive to demonstrate that there occurs a relevant theorem
on the completeness of the tableau system, formulated in an analogous way as
theorem .. The proof of such theorem will be a positive criterion for the good
formulation of the tableau system.
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. Introductory remarks
Now, we will describe the tableau system for Term Logic (for short: TL). By
Term Logic we mean a logic in which both premises and conclusions have the
form of classical categorical propositions:

• Each P is Q.
• Some P is Q.
• No P is Q.
• Some P is not Q.

Moreover, we do not assume that in Term Logic the names appearing in categor-
ical propositions are not empty. So we consider the most general approach— the
simplest language and semantics.

The tableau system we will describe can be treated as a stand-alone system.
But, this is not the purpose of its construction. We intend to indicate an example
of the use of analogous tableau concepts, such as those we defined for the tableau
system for CPL. Although the defined system will also feature the property of a
finite branch, there will be new features that will be mentioned soon.

Wewill redefine the concepts of rule, various types of branches and tableaux in
an almost identical way to the tableau concepts defined in the previous chapter.
We mean almost identical because, after all, we will face a different language of
tableau proof and a different set of tableau rules than in the case of the tableau

 Because we are going to name systems of various types of reasoning about the re-
lationships between names, we will use rather term ‘Term Logic’ than ‘Syllogistic
logic’.

 The considerations contained in this chapter are based on the English language study
[]. In that paper, we presented an outline of the tableau system for TL without a
thorough analysis of details. Since the production of this article, we have also gen-
eralized the concept of tableau rules and modified other tableau concepts which has
affected other concepts and the very nature of the tableau system. Some other variants
of tableaux for syllogistic are presented in [], [].

 We write about classic categorical propositions because categorical propositions can
also take non-classical forms. They can be e.g. any numerical propositions: At least
five P are Q, or e.g. modal propositions de re: Each P is by necessity Q. Besides, in
the last chapter we will construct a tableau system for the logic of categorical modal
propositions de re. In addition, there are many other possibilities to enrich classical
categorical propositions.
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system for CPL. However, these differences will not affect the formal nature of
concepts themselves, so although, for example, a branch for TLwill be built from
different sets of expressions than a branch for CPL, the structure of presentation
itself will be identical — because we aim at presenting a general scheme of the
tableau system construction, a synthesis consisting in abstracting from tableau
concepts those properties that are not specific, and therefore do not depend on
the characteristics of exemplary systems which we define in detail in the initial
chapters of the book.

The importance of the presented tableau systemTL for our considerations con-
sists in the fact that the set of formulas for Term Logic is a proper subset of the set
of proof expressions, and moreover, there are no branchings in the tableaux.This
case is located between borderline cases because of the relation of the set of logic
formulas to the set of tableau expressions. However, in some respects it has a bor-
derline character itself, because the tableaux do not host any branchings, so the
tableau proofs boil down to the construction of a single maximal branch. Gen-
eral tableau concepts could be therefore simplified in the tableau system for TL
although they still provide more detail on the general concepts that we describe
in the book.

. Language and semantics
The construction of tableau system for Term Logic requires, as usual, the presen-
tation of basic concepts. Let us start with the alphabet of language of TL.

Definition . (Alphabet of TL). The alphabet of Term Logic is the sum of the
following sets:

• set of logical constants: Lc = {a, i,e,o}
• set of name letters: Ln = {P,Q,R,P,Q,R, . . .}.

Although the set of name letters is infinite and includes indexed letters, in prac-
tice we will use a finite number of the following letters: P, Q, R, S, T, U, treating
them as metavariables ranging over set Ln.

Let us now proceed to the definition of formula of TL.

Definition . (Formula ofTL). Set of formulasTL is the smallest set containing
the following expressions:

• PaQ
• PiQ
• PeQ
• PoQ
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where P,Q ∈ Ln.
We specify this set as ForTL, and its elements will be called formulas.

Another basic concept is the concept of model for TL, and then the concept of
truth in the model.

Definition . (Model for language of TL). Model MTL for language of TL will
be called such ordered pair ⟨D,d⟩ that:

• D is any set
• d is a function from setLn in setP(D)of all subsets of setD, i.e. d ∶Ln�→P(D).

Definition . (Truth inmodel). LetMTL = ⟨D,d⟩ be amodel andA ∈ForTL. We
shall state that formula A is true in model MTL (for shortMTL ⊧A) iff for some
name letters P, Q ∈ Ln, one of the below conditions is met:

. A ∶= PaQ and d(P) ⊆ d(Q)
. A ∶= PiQ and d(P)∩d(Q) ≠ ∅
. A ∶= PeQ and d(P)∩d(Q) = ∅
. A ∶= PoQ and d(P) /⊆ d(Q).

Formula A is false in model MTL (for short MTL /⊧ A) if for any name letters P,
Q ∈ Ln none of the conditions is met.

Let X ⊆ ForTL. Set X is true in model MTL (for short: MTL ⊧ X) iff for any
formula A ∈ X, MTL ⊧ A. Set of formulas X is false in model MTL (for short:
MTL /⊧X) iff it is not the case that for any formula A ∈X,MTL ⊧A.

Making use of the concept of model, we can now define the concept of
entailment or otherwise semantic consequence relation in TL.

Definition . (Semantic consequence of TL). Let X ⊆ ForTL and A ∈ ForTL.
From setX follows formulaA (for short:X⊧A) iff for anymodelMTL, ifMTL ⊧X,
then MTL ⊧ A. Relation ⊧ will be also called semantic consequence relation of
Term Logic, or shortly semantic consequence.

Denotation .. For any set of formulas X and any formula A, X /⊧ A will mean
that it is not the case that X ⊧A.

We will now take up the issue of the compactness of semantic consequence
relation. According to definition . compactness of relation ⊧ is expressed by
the following definition.

Definition . (Compactness of semantic consequence of TL). Relation of se-
mantic consequence ⊧ is compact iff for any set of formulas X and any formula A
it is the case that: X ⊧A⇔ there exists such finite set Y ⊆X that Y ⊧A.
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Compactness of relation⊧ seems pretty obvious, so we are just going to outline
the proof consisting in embedding TL into Monadic Logic of Predicates of which
the relation of consequence is compact.

Before we proceed to the verbalization and proof of the relevant theorem, let
us recall a few concepts concerning the Monadic Logic of Predicates (for short
MLP):

• the alphabet of MLP contains:
– classical, Boolean constants: ¬, ∧, ∨,→,↔, and quantifiers ∃, ∀
– unary predicate letters Lp = {p, q, r, p, q, r, . . .} (in practice, we

will use a finite number of the following letters: p, q, r, s, treating them as
metavariables ranging over set Lp)

– set of individual constantsCi and individual variables Vi as well as auxiliary
symbols: ), (.

• MLP formulas will be constructed in a standard way and these are atomic ex-
pressions of type p(x), where p ∈ Lp, whereas x ∈ Ci∪Vi, and more complex
expressions using quantifiers, Boolean constants and brackets; set of formulas
MLP we shall denote as ForMLP

• models for formulas from setForMLP are ordered triplesMMLP = ⟨D,dLp,dCi⟩,
where:
– D is a non-empty set of any objects which is called a domain
– dLp is a function from the set of predicate letters in the set of all subsets of

D, i.e. in P(D)
– dCi is a function from the set of individual constants in set D

• both truth conditions forMLP formulas and relation of semantic consequence
⊧MLP are defined in a standard way

• relation ⊧MLP is compact.

Since set of name letters Ln set of predicate letters Lp are countable, then there
exists bijection: π ∶ Ln �→ Lp, where π(X) = x, for all letters. Obviously, for π
there exists the inverse function π−.

Next, we define function g from set of formulas ForTL in set of formulas
ForMLP with the following conditions, for any name letters P, Q ∈ Ln:

. g(PaQ) = ∀x(π(P)(x)→ π(Q)(x))
. g(PiQ) = ∃x(π(P)(x)∧π(Q)(x))
. g(PeQ) = ∀x(π(P)(x)→¬π(Q)(x))
. g(PoQ) = ∃x(π(P)(x)∧¬π(Q)(x)),

where x is any, but fixed variable from set Vi.
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In turn, having function g, we define transformation Tr: ForTL�→ g(ForTL)
in such way that Tr(y) = g(y), for any y ∈ ForTL. Note that function Tr is a
bijection because:

(a) for each y ∈ g(ForTL) there exists such z ∈ ForTL that Tr(z) = y

(b) for any y, z ∈ ForTL, if y and z are various formulas, then Tr(y) /= Tr(z), by
definition of function g.

Hence, there exists the inverse function to Tr, function Tr−∶g(ForTL) �→
ForTL, so such function that for any y ∈ ForTL, Tr−(Tr(y)) = y.

Now, we will show that the following fact holds.

Proposition .. For any set of formulas X ⊆ ForTL and any formula A: X ⊧A⇔
Tr(X) ⊧MLP Tr(A).

Proof. Take any set of formulas X ⊆ ForTL and formula A.
First, let us consider implication ‘⇒’, assuming that X ⊧ A. Take any model

MMLP = ⟨D,dLp,dCi⟩ such thatMMLP ⊧MLP Tr(X). Based on modelMMLP we
will define modelMTL = ⟨D′,d⟩ as follows:

• D′ =D
• for any P ∈ Ln, d(P) = dLp(π(P)).

We will show thatMTL ⊧ X. We will now consider cases of formulas that can
belong to setX. Take any name letters P,Q ∈Ln and assume that some of the cases
occurs. We know that for some p,q ∈ Lp, π(P) = p and π(Q) = q.

. PaQ ∈X, then Tr(PaQ) = ∀x(p(x)→ q(x)) and by assumptionMMLP ⊧MLP
∀x(p(x) → q(x)), consequently, for each denotation of variable x, if de-
notation x belongs to set dLp(p), then it belongs to set dLp(q), hence by
definition of model MTL, d(P) ⊆ d(Q), so by definition of truth in model
.,MTL ⊧ PaQ

. PiQ ∈ X, then Tr(PiQ) = ∃x(p(x) ∧ q(x)) and by assumption MMLP ⊧MLP
∃x(p(x) ∧ q(x)), hence there exists such denotation of variable x that this
denotation belongs to set dLp(p) and set dLp(q), thus by definition of model
MTL, d(P)∩d(Q) /= ∅, so by definition of truth in model .,MTL ⊧ PiQ

. PeQ ∈X, then Tr(PeQ)=∀x(p(x)→¬q(x)) and by assumptionMMLP ⊧MLP
∀x(p(x) → ¬q(x)), hence for each denotation of variable x, if denotation x
belongs to set dLp(p), then it does not belong to set dLp(q), thus by definition
ofmodelMTL, d(P)∩d(Q)=∅, so by definition of truth inmodel .,MTL ⊧

PeQ
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. PoQ ∈X, then Tr(PoQ) = ∃x(p(x)∧¬q(x)) and by assumptionMMLP ⊧MLP
∃x(p(x) ∧¬q(x)), hence there exists such denotation of variable x that this
denotation belongs to set dLp(p) and does not belong to set dLp(q), thus by
definition of modelMTL, d(P) /⊆ d(Q), so by definition of truth in model .,
MTL ⊧ PoQ.

Hence,MTL ⊧X. In turn, from definition of relation ⊧ it follows thatMTL ⊧A.
Now,wewill show thatMMLP ⊧MLP Tr(A).Wewill consider cases of formulas

that can be identical to formula A. Take any name letters P, Q ∈ Ln and assume
that some of the cases occurs. We know that for some p,q ∈ Lp, π(P) = p and
π(Q) = q.

. A = PaQ, then MTL ⊧ PaQ, so by definition of truth in model ., d(P) ⊆
d(Q), thus by definition of model MTL, for each denotation of variable x,
if denotation x belongs to set dLp(p), then it belongs to set dLp(q), hence
MMLP ⊧MLP ∀x(p(x)→ q(x)), thusMMLP ⊧MLP Tr(PaQ)

. A=PiQ, thenMTL ⊧PiQ, so by definition of truth inmodel ., d(P)∩d(Q) /=
∅, thus by definition of model MTL, there exists such denotation of vari-
able x that this denotation belongs to set dLp(p) and to set dLp(q), hence
MMLP ⊧MLP ∃x(p(x)∧q(x)), thusMMLP ⊧MLP Tr(PiQ)

. A = PeQ, then MTL ⊧ PeQ, so by definition of truth in model ., d(P) ∩
d(Q) = ∅, thus by definition of model MTL, for each denotation of variable
x, if denotation x belongs to set dLp(p), then it does not belong to set dLp(q),
soMMLP ⊧MLP ∀x(p(x)→¬q(x)), thusMMLP ⊧MLP Tr(PeQ)

. A = PoQ, then MTL ⊧ PoQ, so by definition of truth in model ., d(P) /⊆
d(Q), thus by definition of modelMTL, there exists such denotation of vari-
able x, that this denotation belongs to set dLp(p), but it does not belong to set
dLp(q), soMMLP ⊧MLP ∃x(p(x)∧¬q(x)), thusMMLP ⊧MLP Tr(PoQ).

Hence,MMLP ⊧MLP Tr(A). Whereas from the arbitrariness of modelMMLP we
have Tr(X) ⊧MLP Tr(A).

Next, let us consider implication ‘⇐’, assuming that Tr(X) ⊧MLP Tr(A). Take
anymodelMTL = ⟨D,d⟩ such thatMTL ⊧X. Based onmodelMTL, we will define
modelMMLP = ⟨D′,dLp,dCi⟩ as follows:

• D′ =D, if D /= ∅; otherwise D′ =D′′, for some whichever, fixed D′′ /= ∅
• for any p ∈ Lp, dLp(p) = d(π−(p))
• for any x ∈Ci, dCi(x) ∈D′.

Wewill show thatMMLP ⊧MLP Tr(X).Wewill now consider cases of formulas
that can belong to setX, and consequently, their images under function Tr belong
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to Tr(X). Take any name lettersP,Q ∈Ln and assume that some of the below cases
occurs. We know that for some p,q ∈ Lp, π(P) = p and π(Q) = q.

. PaQ ∈ X, then MTL ⊧ PaQ, so by definition of truth in model ., d(P) ⊆
d(Q), thus by definition of model MMLP, for each denotation of variable x,
if denotation x belongs to set dLp(p), then it belongs to set dLp(q), hence
MMLP ⊧MLP ∀x(p(x)→ q(x)), thusMMLP ⊧MLP Tr(PaQ)

. PiQ ∈X, thenMTL ⊧PiQ, so by definition of truth inmodel ., d(P)∩d(Q) /=
∅, thus by definition of model MMLP, there exists such denotation of vari-
able x, that this denotation belongs to set dLp(p) and to set dLp(q), hence
MMLP ⊧MLP ∃x(p(x)∧q(x)), thusMMLP ⊧MLP Tr(PiQ)

. PeQ ∈ X, then MTL ⊧ PeQ, so by definition of truth in model ., d(P) ∩
d(Q) =∅, thus by definition of modelMMLP, for each denotation of variable
x, if denotation x belongs to set dLp(p), then it does not belong to set dLp(q),
henceMMLP ⊧MLP ∀x(p(x)→¬q(x)), thusMMLP ⊧MLP Tr(PeQ)

. PoQ ∈X, thenMTL ⊧PoQ, so by definition of truth inmodel ., d(P) /⊆d(Q),
thus by definition of modelMMLP, there exists such denotation of variable x
that this denotation belongs to set dLp(p), but it does not belong to set dLp(q),
henceMMLP ⊧MLP ∃x(p(x)∧¬q(x)), thusMMLP ⊧MLP Tr(PoQ).

Hence, MMLP ⊧MLP Tr(X). From definition of relation ⊧MLP it follows that
MMLP ⊧MLP Tr(A).

We will now show thatMTL ⊧A. We will consider cases of formulas that can
be identical to formula A. Take any name letters P, Q ∈ Ln and assume that some
of the below cases occurs.We know that for some p,q ∈Lp, π(P)=p and π(Q)=q.

. A ∶= PaQ, then Tr(PaQ) = ∀x(p(x) → q(x)), and since MMLP ⊧MLP
∀x(p(x) → q(x)), consequently, for each denotation of variable x, if de-
notation x belongs to set dLp(p), then it belongs to set dLp(q), hence by
definition of model MMLP, d(P) ⊆ d(Q), so by definition of truth in model
.,MTL ⊧ PaQ

. A ∶= PiQ, then Tr(PiQ) = ∃x(p(x) ∧ q(x)), and because MMLP ⊧MLP
∃x(p(x) ∧ q(x)), hence there exists such denotation of variable x that this
denotation belongs to set dLp(p) and set dLp(q), thus by definition of model
MMLP, d(P)∩d(Q) /= ∅, so by definition of truth in model .,MTL ⊧ PiQ

. A ∶= PeQ, then Tr(PeQ) = ∀x(p(x) → ¬q(x)), and because MMLP ⊧MLP
∀x(p(x) → ¬q(x)), hence for each denotation of variable x, if denotation x
belongs to set dLp(p), then it does not belong to set dLp(q), thus by defini-
tion of modelMMLP, d(P)∩d(Q) =∅, so by definition of truth in model .,
MTL ⊧ PeQ
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. A ∶= PoQ, then Tr(PoQ) = ∃x(p(x) ∧ ¬q(x), and because MMLP ⊧MLP
∃x(p(x)∧¬q(x)), hence there exists such denotation of variable x, that this
denotation belongs to set dLp(p) and does not belong to set dLp(q), thus by
definition of model MMLP, d(P) /⊆ d(Q), so by definition of truth in model
.,MTL ⊧ PoQ.

Hence, MTL ⊧ A. Whereas from the arbitrariness of model MTL we have
X ⊧A.

Let us now proceed to the very fact concerning the compactness of relation ⊧.

Proposition .. Relation of semantic consequence ⊧ is compact.

Proof. Now, take any set X ⊆ ForTL and any formula A ∈ ForTL and assume that
X ⊧A. By virtue of fact . we know that Tr(X) ⊧MLP Tr(A). And since relation
⊧MLP is compact, then there exists such finite subset Y′ ⊆ Tr(X) that Y′ ⊧MLP
Tr(A).

Due to definition of function Tr and fact ., there exists such finite subset
Y ⊆X that Tr−(Y′) =Y and Y ⊧A.

On the other hand, let us assume there exists such finite subset Y ⊆ X that
Y ⊧ A. Then, however, due to definition of relation of semantic consequence of
TL ., X ⊧A.

Thus, relation of semantic consequence ⊧ of TL is compact.

. Basic concepts of the tableau system for TL
Unlike the tableau system forCPL in the case of tableau system forTL the tableau
proofs will be carried out in a more rich language than the set of formulas. The
elements of expressions of this language will be simply called tableau expressions.

Definition . (Tableau expressions of TL). Set of tableau expressions is the
union of the three following sets:

• {P+i ∶ P ∈ Ln, i ∈N}
• {P−i ∶ P ∈ Ln, i ∈N}
• ForTL.

We specify this set as TeTL, and its elements will be called expressions or tableau
expressions. Numbers that exist in expressions with + or − sign will be called
indices.

Remark .. In case of TL set TeTL, i.e. set of proof expressions of which sub-
sets will be used for construction of tableaux, is composed of formulas of TL and
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additional expressions which play a role worth explaining. We mean expressions
P+i, P−i, where P ∈ Ln and i ∈N. Although our approach to the tableau system is
syntactic — we treat tableau proof as a transformation of sets of symbols with-
out reference to their meaning — we can point to the semantic intuitions behind
such kind of expressions. The natural numbers appearing in the expressions, in
the construction of the model will denote the objects in the universe under con-
sideration, while symbols +/− will mean being or not being the designator of a
given name denoted by letter P. According to known literature, it seems that this
sort of use of an additional language to describe whether or not given objects be-
long to the ranges of names in the context of tableau proofs has not yet been fully
developed.

Wewill now define an auxiliary function that is to attribute formulas to formu-
las that contradict them.This function, among other things, will be used to begin
tableau proofs, so it will play a similar role as negation in the tableau system from
the previous chapter.

Definition .. Function ○ ∶ ForTL�→ ForTL, for any P,Q ∈ Ln, is defined with
the following conditions:

. ○(PaQ) = PoQ
. ○(PiQ) = PeQ
. ○(PeQ) = PiQ
. ○(PoQ) = PaQ.

Notice that by virtue of definition . and definition of truth in model ., the
following fact occurs.

Proposition .. For any formula A and any model MTL: MTL ⊧ A iff MTL /⊧
○(A).

Aswewrote, one of the basic concepts used to describe a tableau system, due to
the nature of tableau proofs, is the concept of a tableau inconsistent set of proof
expressions. Let it be reminded that in case of the defined system for TL, the
proof expressions are the proper superset of the set of formulas, so the concept of
t-incosistent set of formulas will also cover additional expressions.

Definition . (Tableau inconsistent set of expressions). Set X ⊆ TeTL will
be calles tableau inconsistent (for short: t-inconsistent) iff one of the below
conditions is met:

. there exists such formula A ∈ ForTL that A ∈X and ○(A) ∈X
. there exists such name letter P ∈ Ln and such number i ∈N that P+i ∈ X and

P−i ∈X.
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Set X will be called t-consistent iff it is not t-inconsistent.

Remark .. From the definition of tableau inconsistent set of expressions .
we might remove the first condition and require the t-inconsistency to emerge in
the set of “pure” tableau expressions. However, we will leave this condition to find
t-inconsistency faster wherever possible, without the need for further application
of tableau rules.

Let us now introduce the concept of model appropriate for the set of expres-
sions. It is a generalisation of the concept of truth in model in the entire set
TeTL.

Definition . (Model appropriate for the set of expressions). Let X be a set of
tableau expressions, while MTL = ⟨D,d⟩ be a model. Model MTL is appropriate
for set X iff the below conditions are met:

. MTL ⊧X∩ForTL
. there exists function γ ∶ N�→ D such that for each name letter P ∈ Ln and

each i ∈ N:
a. if P+i ∈X, then γ(i) ∈ d(P)
b. if P−i ∈X, then γ(i) /∈ d(P).

From the two above definitions, an important conclusion for metatheory fol-
lows, namely the relationship between the inconsistent sets of expressions and the
appropriateness of models.

Corollary .. For any X ⊆TeTL, if X is t-inconsistent, then there exists no model
MTL appropriate for X.

Proof. Take any tableau inconsistent set of expressions X and any modelMTL =
⟨D,d⟩. From the definition of tableau inconsistent set of expressions . it follows
that:

. there exists such formula A ∈ ForTL that A ∈X and ○(A) ∈X,
or

. there exists such name letter P ∈ Ln and such number i ∈N that P+i ∈ X and
P−i ∈X.

If the first case occurs, then from fact . we know that MTL /⊧ A or MTL /⊧
○(A). If the second case occurs, then from definition of model . we know that
there exists no such function γ ∶N�→D that for each j ∈ N:

. if P+j ∈X, then γ(j) ∈ d(P)
. if P−j ∈X, then γ(j) /∈ d(P).
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Since then γ(i) ∈ d(P) and γ(i) /∈ d(P). Hence, from the definition of model
appropriate for the set of expressions . it follows thatMTL is not a model ap-
propriate for set of expressions X. Whereas from the arbitrariness of modelMTL
it follows that there does not exist modelMTL appropriate for X.

.. Tableau rules for TL

The starting point for the construction of a tableau system for TL should be a
precise definition of the concept of tableau rule. Before we proceed to the general
concept of rule, wewill introduce a certain auxiliary function∗ ∶TeTL∖ForTL�→
N such that for any P ∈ Ln and any i ∈N:

• ∗(P+i) = i
• ∗(P−i) = i.

To each expression not being a formula, meaning a name letter with an index,
function ∗ attributes an index which is found in it.

Similar to the case ofCPL, we will first provide the general concept of rule. Not
only because it allows to provide the general conditions that a tableau rule must
meet. In the case ofTLwewill also provide alternative sets of tableau rules that are
suitable for construction of a tableau system forTL.Thismeans thatwithin the be-
low general concept of a tableau rule, we can define different sets of tableau rules
that define various, however equivalent in terms of scope for correct inferences,
tableau systems for TL (see note .).

Definition . (Rule). Let P(TeTL) be a power set of the set of tableau expres-
sions. Let P(Te)n be n–ry Cartesian product P(TeTL)× ⋅ ⋅ ⋅ ×P(TeTL)

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$&
n

, for some

n ∈N.

• By a rule we understand any subset R ⊆ P(TeTL)n such that if ⟨X, . . . ,Xn⟩ ∈R,
then:
. X is t-consistent
. X ⊂Xi, for each  < i ≤ n.

• If n ≥ , then each element R will be called ordered n-tuple (pair, triple, etc.,
respectively).

• The first element of each n-tuples will be called an input set (set of premises),
while its remaining elements output sets (sets of conclusions).
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Definition of rule forTL differs from the definition of rule forCPL . among
other things in having introduced to the definition of rule for TL a condition
of t-consistency of the input sets. We will no longer put down the rules in the
form of sets, but immediately in the schematic, fractional form. Thus, from the
general definition of rule itself, it follows that the input sets of tableau rules will
be t-consistent.

A set of tableau rules designed for the defined tableau system for TL shall be
introduced by means of the following definition.

Definition . (Tableau rules for TL). Tableau rules for TL are the following
rules:

Ra+ ∶
X∪{PaQ,P+j}

X∪{PaQ,P+j,Q+j}

Re− ∶
X∪{PeQ,P+j}

X∪{PeQ,P+j,Q−j}

Ri ∶
X∪{PiQ}

X∪{PiQ,P+j,Q+j}
, where:

. j /∈ ∗(X∖ForTL)
. for any k ∈ N, {P+k,Q+k} /⊆X.

Ro ∶
X∪{PoQ}

X∪{PoQ,P+j,Q−j}
, where:

. j /∈ ∗(X∖ForTL)
. for any k ∈ N, {P+k,Q−k} /⊆X.

Set of tableau rules for TL will be defined as RTL.

According to the general definition of rule ., the input sets of each rule are
t-consistent. In addition, in each tableau rule, the input set is basically contained
in the output set. The notations provided are schemes of pairs belonging to the
rules, so for each of the rules X is any set of expressions, P,Q are any name letters
and j is any index such that all these elements satisfy the conditions imposed on
the rule. One novelty is that set RTL contains rules that must include at least two
premises, e.g. rule Ra+.

 We write among other things since this definition above all differs in the set on which
we define rules. Nevertheless, all the other conditions are nearly identical to those of
the concept of rule for CPL.
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Another new and important aspect of the tableau rules in this system forTL are
conditions in rules Ri, Ro. In both rules, we basically have the same conditions,
so through one example we will discuss them collectively.

These conditions must be met if a given set is to be an output set with an as-
sumed input set. So, the notation adopted in both rules says, for example, that if
pair ⟨X∪{PiQ},X∪{PiQ,P+j,Q+j}⟩ belongs to rule Ri, then:

. j /∈ ∗(X∖ForTL) and
. for any k ∈ N, {P+k,Q+k} /⊆X.

These conditions are therefore necessary conditions for a given pair to belong to
the rule.

Condition  requires the index which is entered to be new, meaning not ap-
pearing in any expression belonging to the output set. The semantic intuitions
behind this procedure require the object denoted by new index to be new as well
and not to remain in any positive relationship with the other names that appear
in a given proof sequence.

In turn, condition  requires the input of a pair of expressions (in this example
pair P+j, Q+j) to take place only when a similar pair does not already belong to
the output set. In practice, this conditionmakes it impossible to enter unnecessary
expressions in the proof, as is the case in example ..

Analogous conditions will be considered in the next chapter which will be
devoted to modal logic. There, we are going to provide an example which will
illustrate the problem of infinite branches. In that case, even applying conditions
blocking the unnecessary use of rules will not prevent the emergence of infinite
branches. It will, however, prevent the creation of infinite branches in situations
where this is not a consequence of logic itself, but of the wrong definition of the
tableau system.

Remark .. We can consider alternative sets of rules for the construction of a
tableau system for TL. The following rule would help.

Re′− ∶
X∪{PeQ,Q+j}

X∪{PeQ,Q+j,P−j}

Rule Re′− allows to proceed from premises PeQ, Q+j to conclusion P−j. The se-
mantic intuition contained in this rule says that if a name from the predicate in a
general contradicting proposition has a subject j as the designator, then this object
is not the designator of the subject of this proposition.

Making use of rule Re′−, we can define the following sets of tableau rules,
different from set RTL:
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(a) RTL ∪{Re′−}

(b) (RTL ∖{Re−})∪{Re′−}.

Likewise, we could consider another rule that says that if we have a proposition
PaQ and expressionQ−j saying — intuitively — that an object denoted by j is not
a designator of name Q, then this object is not a designator of name P either.

Ra− ∶
X∪{PaQ,Q−j}

X∪{PaQ,Q−j,P−j}
Making use of rule Ra−, we can define the following sets of tableau rules,

different from set RTL:

(a) RTL ∪{Ra−}

(b) (RTL ∖{Ra+})∪{Ra−}.

Furthermore, extending the language of logic of TL to the language which in-
cludes expressions denoting statements that a particular object is or is not the
designator of a given name, we could consider another rule that allows “reversing”
general contradicting propositions:

Re ∶
X∪{PeQ}
X∪{QeP}

It is worth noting that the tableau system for TL we are now describing, there
are no branching rules (all tableau rules are sets of pairs). So there will be no
branchings in the tableaux. However, we might consider such variant of rule Ra+
which would allow branchings:

Ra′+ ∶
X∪{PaQ}

X∪{PaQ,P−i}∣X∪{PaQ,Q+i}
, where i ∈ ∗(X)

However, due to the economy of tableau proof, it is better — as far as possible
— to introduce the fewest possible number of tableau rules that are not sets of
pairs.

Although all these rules and sets of rules seem to be interesting, we will not
consider them all — neither for the language of TL, nor for extended languages
— for the reasons described in the previous chapter (note .). Instead, we will
focus on the tableau system determined by set of rules RTL.

Nonetheless, let us stress once again that the examples provided indicate that
the general definition of rule . makes sense. There may exist many sets of
tableau rules that potentially — we mean (potentially) because to determine this
it always requires a proof — they define the same logic.
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Example .. Starting from set X ∪{PiQ} and using rule Ri without condition
, we could get an infinite sequence in which we enter a new index in each of the
elements:

R i X 1 = X P iQ}

R i X 2 = X 1 P+ i , Q + i }

R i X 3 = X 2 P+ j , Q + j }

R i X 4 = X 3 P+ k , Q + k }

. . .

{

{

{

{

Such a sequence is infinite not because of the properties of the logic itself,
but because of the unnecessary acceptance of continuous application to the same
elements of the rule already applied once.

The adopted set of tableau rules — in our case set RTL — determines the
content of the range of successive concepts of the tableau system. Although the
formal concepts that wewill describe will be analogous to those from the previous
chapter, each of them will depend on set RTL.

.. Branches for TL

With a fixed set of tableau rules, we can proceed to the concept of branch. As we
already know, branches are such sequences of sets that each two adjacent elements
are in turn: an input set and an output set of some n-tuple that belongs to the set
of tableau rules. Branches are therefore setwise objects consisting of sets. Below,
we present the formal definition of branch in the tableau system for TL.

Definition . (Branch). Let K = N or K = {,, . . . ,n}, where n ∈ N. Let X be
any set of expressions. A branch (or a branch beginning with X) will be called any
sequence ϕ ∶K�→ P(TeTL) that meets the following conditions:

. ϕ() =X
. for any i ∈ K: if i +  ∈ K, then there exists such rule R ∈ RTL and such pair
⟨Y,Y⟩ ∈ R that ϕ(Xi) =Y i ϕ(Xi+) =Y.

Having two branches ϕ, ψ such that ϕ ⊂ψ we shall state that:

• ϕ is a sub-branch of ψ
• ψ is a super-branch of ϕ.

Denotation .. From now on — when speaking of branches for TL — for
convenience, we will use the following notations or designations:
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. X, . . . ,Xn, where n ≥ 
. ⟨X, . . . ,Xn⟩, where n ≥ 
. abbreviations: ϕM (whereM is a domain ϕ, i.e. ϕ ∶M�→ P(TeTL))
. or — to denote branches — small Greek letters: ϕ, ψ, etc.

The sets of branches, in turn, we shall denote with capital Greek letters: Φ, Ψ, etc.
Furthermore, the domain cardinality of a given branch K we shall sometimes call
a length of that branch.

Remark .. We will repeat here in part the remark from the previous chapter.
As we can see, the concept of branch depends on some set of tableau rules.
In the case under consideration, the branch structure is based on the rules
from set RTL. Further described complex tableau concepts will also depend on
some sets of rules. Because in this chapter we are studying tableau system for
TL based on rules from set RTL, so we are not going to make it any more
complicated.

In practice, however, the tableau concepts of systems constructed according
to the presented idea always base on some set of rules. In one of the subsequent
chapters, at the general description of the construction way itself, the set of rules
will be a variable. In this chapter it is specified as: RTL and the complex tableau
concepts defined here depend on it. And since set RTL only includes such rules
that constitute sets of ordered pairs, so in the definition of branch for TL we
specified that it is about pairs, contrary to the definition of tableau system in
the previous chapter, where in the definition of branch ., we wrote about the
existence of an appropriate n-tuple.

This remark applies to the rest of the study.

By definition of rule ., through the fact that the rules are defined by proper
containing of the input set in each of the output sets, in any n-tuple, there is a
conclusion.

Corollary .. Each branch is an injective sequence.

.. Maximal branches

Among the branches constructed through applying the rules from setRTL, wewill
distinguish such branches towhich nomore rules from setRTL can be applied, ex-
panding them into some super-branches. As we already know, such branches are
called maximal branches. The definition of maximal branch is the same as in the
previous chapter, except that of course the maximal branches here are branches
for TL.
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Definition . (Maximal branch). Let ϕ ∶K�→ P(TeTL) be a branch. We shall
state that ϕ ismaximal iff

. K = {,,, . . . ,n}, for some n ∈N
. there is no branch ψ such that ϕ ⊂ψ.

As in the case described in the previous chapter, definition . could be short-
ened to the second condition.This would not change anything with regard to the
cases of finite sets, but we would allow cases of infinite branches that:

• begin with an infinite set
• meet the second condition of definition because they are infinite branches
• do not, however, “resolve” all expressions.

The following example . illustrates a situation where without the first con-
dition in the definition of maximal branch ., we would consider a presented
branch to bemaximal.This branch would be infinite and, at the same time, would
still contain expressions that were not used in the proof.

Example .. Let us consider the following branch, beginning from set {PiQ}
∪ {PniQn ∶ n > }.

R i X 1 = {P 1 iQ1 P n iQn : n > 1}}

R i X 2 = X 1 P 2
+1 , Q 2

+1 }

R i X 3 = X 2 P 3
+2 , Q 3

+2 }

R i X 4 = X 3 P 4
+3 , Q 4

+3 }

. . .

{

{

{

{

This branch is infinite, although rule Ri has never been applied to any of the sets
in such a way as to draw conclusions from formula PiQ.

Thus, the definition of maximal branch . says that if sequence X, . . . , Xn,
for some n≥ , is a branch, then we call it amaximal branch iff there does not exist
branch X, . . . , Xn, Xn+.

Extending the concept of branch onto infinite sets is unnecessary in practice,
because important concepts for our metatheory — the concept of branch conse-
quence and tableau — we apply to cases of finite sets. At this stage of the book,
the finite sets of tableau expressions do not begin the branch of infinite length.

However, the definition of maximal branch will change in the study. To the
above concept of branch applicable are all reservations fromnote ., concerning
the maximal branch for the tableau system forCPL. Definition . is suitable for
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those tableau systems where only finite branches are obtained from finite sets of
expressions. For other systems this definition is too narrow. It does not include
cases of branches which, even though they begin with a finite set of expressions,
are not finite.

In the following chapter, wewill proceed to defining the system formodal logic,
and we will generalize this definition. Hence, the above definition ., and espe-
cially definition .will describe special cases ofmaximal brancheswhich appear
in the construction by the described method of such tableau systems as system
for CPL or TL. Besides, also in the case of TL we will show that from finite sets
of expressions we always get branches of finite length (fact .).

.. Closed and open branches

Among the maximal branches, the closed branches deserve special attention. In
addition, set of open branches complements the set of closed branches. As we
remember, intuitively a branch is closed when we get a t-inconsistent set having
decomposed tableau expressions.

Definition . (Closed/open branch). Abranch ϕ ∶K�→P(TeTL)will be called
closed iff ϕ(i) is a t-inconsistent set, for some i ∈ K. A branch will be called open
iff it is not closed.

From the above definition, the definition of tableau rules for TL . and the
definition of branch . the following conclusion follows.

Corollary .. If branch ϕ ∶K�→ P(TeTL) is closed, then ∣K∣ ∈N and ϕ(∣K∣) is
a t-inconsistent set.

In the case of a closed branch, the t-inconsistent sequence element is the last ele-
ment because no rule can be applied to it anymore to extend the branch. For the
rules are defined in such a way that they cannot be applied to t-inconsistent sets.
Therefore, from the definition of maximal . another conclusion follows.

Corollary .. If branch f ∶K�→ P(TeTL) is closed, then it is maximal.

We are now going to show two facts that are needed for further proofs. The
first one says that a branch that begins with a finite set of expressions is also finite
in length, not greater than a certain number.

Proposition .. Let X be a finite set of expressions. Let ϕ ∶K�→P(TeTL) be any
such branch that ϕ() =X. Then, there exists number n ∈N such that ∣K∣ ≤ n.

Proof. Take any finite set of expressions X and such branch ϕ ∶K→P(TeTL) that
ϕ() = X. We will carry out an inductive proof due to the cardinality of the first
element of the branch.
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Initial step.Assume that ∣X∣ = . We have six types of cases that can take place.
There exist name letters P, Q ∈ Ln and index i ∈N such that one of the following
cases occurs:

. P+i ∈ X, then, however, ∣K∣ =  ∈ N, by definition of branch ., since there
does not exist such rule R ∈RTL that would allow to extend branch ⟨X⟩

. P–i ∈ X, then, however, ∣K∣ =  ∈ N, by definition of branch ., since there
does not exist such rule R ∈RTL that would allow to extend branch ⟨X⟩

. PaQ ∈ X, then, however, ∣K∣ =  ∈N, by definition of branch ., since there
does not exist such rule R ∈RTL that would allow to extend branch ⟨X⟩

. PiQ ∈ X, then, however, ∣K∣ ≤  ∈N, by definition of branch ., since there
only exists one rule R ∈ RTL, rule Ri that allows to extend branch ⟨X⟩ with
set Y = {PiQ,P+j,Q+j}, for some j ∈N, whereas there does not exist such rule
R ∈RTL that would allow to extend branch ⟨X, Y⟩

. PeQ ∈ X, then, however, ∣K∣ =  ∈N, by definition of branch ., since there
does not exist such rule R ∈RTL that would allow to extend branch ⟨X⟩

. PoQ ∈ X, then, however, ∣K∣ ≤  ∈N, by definition of branch ., since there
only exists one rule R ∈ RTL, rule Ro that allows to extend branch ⟨X⟩ with
set Y = {PiQ,P+j,Q+j}, for some j ∈N, whereas there does not exist such rule
R ∈RTL that would allow to extend branch ⟨X, Y⟩.

Thus, when ∣X∣ = , then ∣K∣ ≤ . So, if ∣X∣ = , then there exists such number
n ∈N that ∣K∣ ≤ n.

Induction step. Assume that the theorem thesis holds for each such set of
expressions Y that ∣Y ∣ = m. Thus, for any branch ψ ∶M �→ P(TeTL) such that
ψ() =Y , there exists number l such that ∣M∣ ≤ l.

We will show that the theorem thesis also occurs for ∣X∣ =m+ . Take any set of
expressionsY such thatY ⊆X and ∣Y ∣ =m.Thus, for any branch χ ∶N�→P(TeTL)
such that χ() =Y there exists number l such that ∣N∣ ≤ l.

We have six types of cases that can take place. There exist name letters P, Q
∈ Ln and index i ∈N such that one of the following cases occurs:

. X =Y∪{P+i}, then, however, ∣K∣ ≤ l+k ∈N, where k is the number of proposi-
tions in form RaS and TeU that belong to set Y , by definition of branch .,
since set RTL contains rules Ra+ and Re− which allow to extend each branch
containing additional expression P+i at most with k elements

. X = Y ∪{P−i}, then, however, ∣K∣ ≤ l ∈N, by definition of branch ., since
set RTL does not comprise any rule which would allow to extend a branch
containing additional expression P−i

. X =Y∪{PaQ}, then, however, ∣K∣ ≤ l+((k+)⋅o) ∈N, where k is the number of
propositions in form RaS and TeU that belong to set Y , while o is the number
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of particular propositions that belong to set Y and in the subject or predi-
cate have name letter P, and expressions P+j, for some index j, by definition
of branch ., since set RTL contains rules Ra+ and Re− which allow to ex-
tend each branch containing additional expression PaQ at most with (k+)⋅o
elements

. X = Y ∪ {PiQ}, then, however, ∣K∣ ≤ l + k +  ∈ N, where k is the number of
propositions in formRaS andTeU that belong to setY , by definition of branch
., since setRTL contains rulesRi,Ra+ andRe−, which allow to extend each
branch containing additional expression PiQ at most with k+  elements

. X = Y ∪{PeQ}, then, however, ∣K∣ ≤ l+ k ∈N, where k is the number of par-
ticular propositions that belong to set Y and in the subject or predicate have
name letter P, and expressions P+j, for some index j, by definition of branch
., since set RTL contains rule Re−, which allows to extend each branch
containing additional expression PeQ at most with k elements

. X = Y ∪ {PoQ}, then, however, ∣K∣ ≤ l + k+  ∈ N, where k is the number of
propositions in formRaS andTeU that belong to setY , by definition of branch
., since setRTL contains rulesRo,Ra+ andRe−, which allow to extend each
branch containing additional expression PoQ at most with k+  elements.

So, if ∣X∣ = m + , then there exists such number n ∈ N that ∣K∣ ≤ n. Then, there
exists such number n ∈N that ∣K∣ ≤ n.

The second fact says that for each finite set of expressions, there exists a
maximal branch which begins with this set.

Proposition .. Let X ⊆ TeTL be a finite set of expressions. Then, there exists
maximal branch ϕ ∶K�→ P(TeTL) such that ϕ() =X.

Proof. Let X ⊆ TeTL be a finite set of expressions. Then, by fact ., for each
branch ϕ ∶K�→P(TeTL) such that ϕ() =X, there exists such number n ∈N that
∣K∣ ≤ n.

Indirectly assume that no branch ϕ beginning with set X is a maximal branch.
By an inductive proof through the branch length we will show that this assump-
tion leads to a contradiction.

Initial step. We know there exists at least one branch. This is the branch that
begins with set X and that a length of . However, by indirect assumption, it is not
a maximal branch, so by definition of maximal branch ., there exists a branch
that begins with X, with length of .

Induction step. Now, let us take a branch beginning with X, of lengthm, and
assume there exists a branch of lengthm+  beginning with set X. Again, by indi-
rect assumption, it is not a maximal branch, so by definition of maximal branch
., there exists a branch that begins with X of lengthm+.
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Thus for anym ∈N, there exists a super-branch of lengthm+  beginning with
finite set of expressions X. This, however, contradicts the fact that for any branch
beginning with set X there exists such number n ∈ N that bounds the length of
that branch.

.. Relation of branch consequence

We will now define the concept of branch consequence using the concepts of
branch, maximal branch and closed branch.

Definition . (Branch consequence of TL). Let X ⊆ForTL and A ∈ForTL. For-
mula A is a branch consequence of X (for short: X ⊳ A) iff there exists such finite
set Y ⊆X that each maximal branch beginning with set Y ∪ {○(A)} is closed.

Denotation .. For any set of formulas X and any formula A notation X /⊳ A
means that it is not the case that X ⊳A.

In the definition of branch consequence, we refer to the function specified by
definition .. Function ○ to each formula assigns a formula which contradicts it
.. The above concept of branch consequence differs from the analogous con-
cept for CPL in the fact that (apart from defining on a different language — set
of expressions) in the previous case negation was used, and here we use a contra-
dictory formula. In fact, however, it can be assumed that in both cases the point
is to start with a formula contradictory to the formula which could potentially
be a branch consequence of a certain set of premises, but in the case of CPL a
contradictory formula could be obtained directly by preceding the formula with
a negation.

Also in the present case, wewill refer to the example of the branch consequence
occurrence.
Example .. Let us consider an example — Barbara syllogism — premises
{PaQ,QaR}, conclusion PaR. We want to answer the question whether
{PaQ,QaR} ⊳ PaR?

The first set of each branch we need to examine is set {PaQ,QaR,○(PaR)}, by
definition of function ○, equal to set {PaQ, QaR, PoR}. On the left side, we put
the branch elements, on the right side, we put the rules we use to transform the
sets. There exists one type of maximal branches beginning with this last set:

. {PaQ,QaR,PoR} ⊂ Ro, where i ∈N

 Note that we are considering a pattern of inference rather than a specific inference as
we use metavariables and letters instead of indices. It is obvious, however, that further
considerations would be identical if we used name letters and digits.
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. {PaQ,QaR,PoR,P+i,R−i} ⊂ Ra+
. {PaQ,QaR,PoR,P+i,R−i,Q+i} ⊂ Ra+
. {PaQ,QaR,PoR,P+i,R−i,Q+i,R+i} t-inconsistency R−i,R+i

We said one type since i is any natural number. So, actually there exists an infi-
nite number of branches beginning with set {PaQ,QaR,PoR}. The described
branches are maximal ones because their last element is t-inconsistent as it
contains expressions R−i, R+i, always for some i ∈N.

So we showed that all maximal branches beginning with set {PaQ,QaR,
○(PaR)} are closed. Thus {PaQ,QaR} ⊳ PaR.

The tableau concepts we have described forTL are very similar to their equiva-
lents forCPL, despite the fact that we have dealt with a different language of proof
and with indices.

. Tableaux for TL
As in the case of the tableau system forCPL, the practical examining of the branch
consequence occurrence should boil down to building of an appropriate tableau.

Nevertheless, we are going to have a discussion on the definition of the con-
cepts of tableau, complete tableau, closed/open tableau of a tableau system forTL .
We will define all these concepts in two variants.

The first variant will make a direct reference to the fact that among the rules
belonging to set RTL there are no rules that contain an ordered n-tuples longer
than two, and as a consequence there never occur any branchings. The second
variant of the concepts will be based on the relevant definitions already provided
in the tableau system forCPL, however related to the set of branches of the tableau
system for TL.

Although in each case the first definition variant will appear to be a special
and simplified case of the second variant, in fact the two variants will prove to be
equivalent, as we will demonstrate. In this way we will also show that the book
considerations aim to describe certain general concepts for the tableau systems,
independent ofmany specific properties of a given system, and thus to the general
theory of tableau systems.

 Of course, we might define equivalents of rules Ri and Ro in such a way that the in-
troduced expressions as indices only had for instance the least number that does not
appear in the set to which we apply the rule. Then, the number of branches would
amount to one. There are many ways to define these rules similarly, but from the for-
mal point of view each time we would then examine a different axiomatization than
the assumed set of rules RTL .
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Therefore, the first variant of each definition will always be a specific version,
defined according to the needs of the current system, while the second one will
be a definition analogous to the one used in the previous chapter. As usual, we
will start with the definition of tableau.

Definition . (Tableau — variant one). Let X ⊆ ForTL, A ∈ ForTL and Φ be a
set of branches. Ordered triple ⟨X,A,Φ⟩ will be called a tableau for ⟨X,A⟩ (or for
short tableau) iff Φ is an one-element subset of the set of branches beginning with
set X∪{○(A)} (i.e. if ϕ ∈Φ, then ϕ() =X∪{○(A)}).

Remark .. According to the definition of tableau ., a tableau for pair ⟨X,A⟩
is ordered triple ⟨X,A,Φ⟩ in which Φ is such an one-element set of branches
that any branch in this set begins with set X ∪ {○(A)}. This definition could be
technically simplified.

Such simplificationwould consist in the fact that in an ordered triple, instead of
set of branchesΦ,wewould simply place a branch belonging to set Φ.However, as
we strive for a general theory of tableaux, so we use a general notation of a tableau
as a triple in which we distinguish a set of premises, a potential conclusion and
a set of branches that meet the conditions from the definition. The case of the
system described in the present chapter is in terms of the number of branches —
as we wrote at the beginning of the chapter — a borderline case, so we will not
alter the convention for it.

Let us now define the concept of tableau for TL in a similar way the concept
of tableau for CPL. Similar, since this definition is analogous to the correspond-
ing definition for the tableau system for CPL. However, we cannot say that it is
identical, because it pertains to the objects that were constructed from other sets,
in spite of similarity of the same objects, i.e. branches.This definition uses — just
like the definition of tableau . in the tableau system for CPL — the concept
of maximal branch in the set of branches which we will adapt to the current sit-
uation. Here, the analogous remarks apply as in the case of definition . from
Chapter Two — so we will not reiterate those here.

Definition . (Maximal branch in the set of branches). Let Φ be a set of
branches and let branch ψ ∈ Φ. Branch ψ will be called maximal in Φ (or
Φ–maximal) iff there is no such branch ϕ ∈Φ that ψ ⊂ ϕ.

With the concept of maximal branch in the set of branches, we can proceed to
the second variant of the tableau definition.

Definition . (Tableau — variant two). Let X ⊆ ForTL, A ∈ ForTL and Φ be a
set of branches. Ordered triple ⟨X,A,Φ⟩ will be called a tableau for ⟨X,A⟩ (or for
short tableau) iff the below conditions are met:
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. Φ is a non-empty subset of set of branches beginning with X∪{○(A)} (i.e. if
ϕ ∈Φ, then ϕ() =X∪{○(A)})

. each branch contained in Φ is Φ-maximal
. for any n, i ∈N and any branches ψ, . . . , ψn ∈Φ, if:

• i and i+  belong to domains of functions ψ, . . . , ψn
• for any  < k ≤ n and any o ≤ i, ψ(o) =ψk(o)
then there exists such rule R ∈RTL and such orderedm-tuple ⟨Y, . . . ,Ym⟩ ∈R,
where  <m ≤  that for any  ≤ k ≤ n:
• ψk(i) =Y
• and there exists such  < l ≤m that ψk(i+ ) =Yl.

The above tableau definition for TL seems too complex. It is not too broad
because— as we will see— it does not cover setwise constructions that we would
not consider as tableaux for the tableau system for TL. However, condition  of
this definition seems to be overly expanded.Note the conclusion that follows from
the definition of tableau in variant two and the definition of set of tableau rules
RTL.

Corollary .. Let ⟨X,A,Φ⟩ be a tableau in variant two ..Then, setΦ contains
precisely one branch.

Proof. Let ⟨X,A,Φ⟩ be a tableau. In the proof, we will make use of definition of
tableau .. Assume that set Φ contains two branches ϕ and ϕ. Point . of the
tableau definition implies that ϕ() = ϕ() = X ∪ {○(A)}. While point . and
definition of maximal branch in the set of branches . imply that ϕ /⊂ ϕ and
ϕ /⊂ ϕ since each branch in set Φ is Φ-maximal.

Now, take any such number i ∈ N that for any o ≤ i, ϕ(o) = ϕ(o), plus i+ 
belong to domains of functions ϕ and ϕ. Frompoint . it follows that there exists
such rule R ∈RTL and such orderedm-tuple ⟨Y, . . . ,Ym⟩ ∈R, where  <m ≤  that
for any  ≤ k ≤ :

• ϕk(i) =Y
• there exists such  < l ≤m that ϕk(i+ ) =Yl.

And yet, since for each rule R ∈ RTL, for each ordered m-tuple ⟨Y, . . . ,Ym⟩ ∈ R,
where  <m ≤ ,m = , so ϕ(i+ ) =Yl = ϕ(i+ ). Hence ϕ = ϕ.

This conclusion shows that the concept of tableau in the second variant for TL
system could be simpler. Nonetheless, it is not too broad since both definitions
of tableau for the tableau system for TL are equivalent, which gets proven by the
below fact.
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Proposition .. Let X ⊆ ForTL, A ∈ ForTL and Φ be a set of branches. ⟨X,A,Φ⟩
is a tableau in variant one . iff ⟨X,A,Φ⟩ is a tableau in variant two ..

Proof. Let X ⊆ ForTL, A ∈ ForTL and Φ be a set of branches.
Assume that ⟨X,A,Φ⟩ is a tableau in variant one .. In view of this defini-

tion, Φ is a non-empty subset of set of branches beginning with X ∪{○(A)} (i.e.
if ϕ ∈ Φ, then ϕ() = X ∪ {○(A)}), so the first condition from definition . is
satisfied. Definiens of definition . also claims that Φ contains precisely one
branch. So, each branch that belongs to Φ is Φ-maximal by virtue of definition
., which is the second condition of definition .. Finally, also the third condi-
tion of definition . is met as Φ contains precisely one branchψ.Thus, ⟨X,A,Φ⟩
is a tableau in variant two.

Now, assume that ⟨X,A,Φ⟩ is a tableau in variant two .. Due to the first
condition of this definition, Φ is a non-empty subset of set of branches beginning
with X∪{○(A)} (i.e. if ϕ ∈Φ, then ϕ() =X∪{○(A)}). While due to conclusion
., Φ contains precisely one branch. Thus, as per definition . ⟨X,A,Φ⟩ is a
tableau in variant one.

Therefore, any of the definitions of tableau in the tableau system considered
here can be adopted for TL, although due to the economy of phrasing, definition
. seems better. Its scope covers exactly the same objects as in the definition of
tableau that was created by applying analogies to the definition of tableau in the
system for CPL.

Wewill now take up the issue of the complete tableau, also considering simpler
andmore complex variants, modelled on the system forCPL. Here is variant one.

Definition . (Complete tableau — variant one). Let triple ⟨X,A,Φ⟩ be a
tableau. We shall state that ⟨X,A,Φ⟩ is complete iff a branch contained in Φ is
maximal. A tableau is incomplete iff it is not complete.

In a complete tableau, a branch that belongs to it is maximal, so it cannot be
extended. In variant two, which in a moment will be adapted to the context of
TL, in a complete tableau all branches are maximal, not only those maximal ones
in a given set. In addition, a complete tableau contains such set of branches that
it is no longer possible to add any new branches to it, without causing the set to
cease to be a tableau. More specifically, a complete tableau contains such set of
maximal branches that any non-redundant superset of it ceases to co-create the
tableau, similar to definition ..

Consideration of the second variant, based on the tableau definition from the
previous chapter, requires the introduction of an auxiliary definition, including
the definition of a redundant superset.
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Definition . (Redundant variant of branch). Let ϕ and ϕ′ be such branches
that for some numbers i and i+  that belong to their domains, it is the case that
for any j ≤ i, ϕ(j) = ϕ′(j), but ϕ(i+ ) /= ϕ′(i+ ). We shall state that branch ϕ′ is
an redundant variant of branch ϕ iff:

• there exists such rule R ∈ RTL and such pair ⟨X,Y⟩ ∈ R that X = ϕ(i) and Y =
ϕ(i+ )

• there exists such rule R ∈RTL and such triple ⟨X,W,Z⟩ ∈ R that X = ϕ(i) and:
. W = ϕ(i+ ) and Z = ϕ′(i+ )

or
. Z = ϕ(i+ ) andW = ϕ′(i+ ).

Let Φ, Ψ be sets of branches and Φ ⊂ Ψ. We shall state that Ψ is an redundant
superset Φ iff for any branch ψ ∈Ψ∖Φ there exists such branch ϕ ∈Φ that ψ is a
redundant variant of ϕ.

However, in the case of our system, the concept of redundant variant of branch
is empty. It is covered by another conclusion.

Corollary .. For no branch ϕ there exists such branch ψ that ψ is a redundant
variant of branch ϕ.

Proof. Let us consider any branch ϕ and indirectly assume that there exists such
branch ψ that ψ is a redundant variant of branch ϕ. According to definition of
redundant variant of branch ., for some numbers i and i +  that belong to
domains ϕ and ψ, it is the case that ϕ(i) = ψ(i), but ϕ(i+ ) /= ψ(i+ ), and there
exists such rule R ∈RTL and such triple ⟨X,Y ,Z⟩ ∈R thatX = ϕ(i) and Y = ϕ(i+),
Z =ψ(i+ ) or Y =ψ(i+ ), Z = ϕ(i+ ). However, this leads to a contradiction to
the fact that there exists no rule R ∈RTL to comprise any triple ⟨X,Y ,Z⟩.

And since there exist no redundant variants of branches, there are neither re-
dundant nor proper supersets of sets of branches, which is confirmed by another
conclusion.

Corollary .. Let Φ be a set of branches. There exists no set of branches Ψ such
that Φ ⊂Ψ and Ψ is a redundant superset of Φ.

Proof. Take any set of branches Φ and indirectly assume that there exists set of
branches Ψ such thatΦ⊂Ψ andΨ is a redundant superset of Φ.Thus—according
to definition of redundant variant of branch .— for any branchψ ∈Ψ∖Φ, there
exists such branch ϕ ∈Φ that ψ is a redundant variant of ϕ. Since Φ ⊂Ψ, so there
exists some branch ψ ∈ Ψ ∖Φ. Assume that set Φ is non-empty. Consequently,
there exists such branch ϕ ∈ Φ that some ψ is a redundant variant of ϕ, which
contradicts the previous conclusion ..
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We have shown that both concepts — of a redundant variant of branch and
a redundant superset, in the phrasing appropriate for our tableau system for TL,
are empty. After considering the redundant variants of branches and redundant
supersets of branches, we can proceed to the definition of complete tableau in
variant two.

Definition . (Complete tableau — variant two). Let ⟨X,A,Φ⟩ be a tableau.
We shall state that ⟨X,A,Φ⟩ is complete iff:

. each branch contained in Φ is maximal
. any set of branches Ψ such that:

a. Φ ⊂Ψ
b. ⟨X,A,Ψ⟩ is a tableau
is a redundant superset of Φ.

A tableau is incomplete iff it is not complete.

Let us note that, once again, the two variants of the concept are equivalent.
This is covered by another fact.

Proposition .. Let X ⊆ForTL, A ∈ForTL andΦ be a set of branches. ⟨X,A,Φ⟩ is
a complete tableau in variant one . iff ⟨X,A,Φ⟩ is a complete tableau in variant
two ..

Proof. Let X ⊆ ForTL, A ∈ ForTL and Φ be a set of branches.
Assume that ⟨X,A,Φ⟩ is a complete tableau in variant one .. Since by virtue

of the definition of tableau ., setΦ contains precisely one branch and according
to definition ., that branch is maximal, so each branch contained in set Φ is
maximal, which constitutes condition  of being a complete tableau in variant two
of the definition of complete tableau .. Let us now check if condition  of the
definition in variant two holds. It claims that for any set of branches Ψ such that:

(a) Φ ⊂Ψ

(b) ⟨X,A,Ψ⟩ is a tableau

Ψ is a redundant superset of Φ.
So, take any such set of branches Ψ that Φ ⊂ Ψ. However, by definition of

tableau ., triple ⟨X,A,Ψ⟩ is not a tableau since Ψ is a set of at least two ele-
ments, whereas in a tableau, a set of branches includes precisely one branch.Thus,
condition  of the definition of complete tableau in variant two . is satisfied in
the empty way.
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Now, assume that ⟨X,A,Φ⟩ is a complete tableau in variant two .. According
to definition ., each branch contained in Φ is maximal, and what is more,
by virtue of definition of tableau ., Φ contains precisely one branch. Thus, a
branch contained inΦ is amaximal branch, and consequently, tableau ⟨X,A,Φ⟩ is
complete according to the definition of complete tableau in variant one ..

Evidently, both concepts of a redundant variant of branch and a redundant su-
perset, and their conclusions for the tableau system forTLplay no rolewhatsoever
in the equivalence proof.

When constructing a complete tableau, wemay face a situationwhere a branch
not only becomes maximal, but also finishes with a t-inconsistent set. Such a
tableau is called a closed tableau. Let us, again, consider two variants. Variant
one to begin with.

Definition . (Closed/open tableau— variant one). Assume that ⟨X,A,Φ⟩ is a
tableau.We shall state that ⟨X,A,Φ⟩ is closed iff a branch contained in Φ is closed.
A tableau is open iff it is not closed.

Variant two, in turn, corresponding to the definition aiming at the general
definition of a closed tableau, has the following form.

Definition . (Closed/open tableau— variant two). Let ⟨X,A,Φ⟩ be a tableau.
We shall state that ⟨X,A,Φ⟩ is closed iff the below conditions are met:

. ⟨X,A,Φ⟩ is a complete tableau
. each branch contained in Φ is closed.

A tableau is open iff it is not closed.

Proposition .. Let X ⊆ ForTL, A ∈ ForTL and Φ be a set of branches. ⟨X,A,Φ⟩
is a closed tableau in variant one . iff ⟨X,A,Φ⟩ is a closed tableau in variant two
..

Proof. Let X ⊆ ForTL, A ∈ ForTL and Φ be a set of branches.
Assume that ⟨X,A,Φ⟩ is a closed tableau in variant one .. Thus, in the light

of the definition of complete tableau ., ⟨X,A,Φ⟩ is a complete tableau— since
branch which is contained in it is, by conclusion ., maximal — which con-
stitutes condition  of being a closed tableau in variant two of the definition of
closed tableau .. Since by virtue of the definition of tableau ., set Φ con-
tains precisely one branch and according to definition ., that branch is closed,
so each branch contained in set Φ is closed, which constitutes condition  of being
a closed tableau in variant two of the definition of closed tableau ..
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Now, assume that ⟨X,A,Φ⟩ is a closed tableau in variant two ..Thus, by con-
dition  of definition ., each branch contained inΦ is closed, and,what ismore,
by virtue of definition of tableau ., Φ contains precisely one branch, which
constitutes a condition of being a closed tableau in variant one of the definition
of closed tableau ..

To sum up, we have shown that specific tableau concepts of the tableau system
for TL are special cases of more general concepts applied earlier (modulo set of
tableau rules RTL and resulting sets of branches), and in the considered cases are
equivalent to them.

By virtue of the definition of closed tableau and the definition of complete
tableau, and conclusion ., we get another conclusion.

Corollary .. Each closed tableau is a complete tableau.

Further, we will show that the concept of tableau is significantly helpful in de-
termining the occurrence of relation ⊳, while this concept, in terms of range, is
equal to the concept of implication ⊧.

. Completeness theorem for the tableau system for TL
Let us begin with the definition of model generated by a branch.

Definition . (Model generated by branch). Let ϕ be any branch. We define
the following function At(ϕ) =⋃ϕ∩(TeTL ∖ForTL).

We shall state that modelMTL = ⟨D,d⟩ is generated by branch ϕ iff:

• D = {x ∈N ∶ x ∈ ∗(At(ϕ))}
• for any name latter P ∈ Ln, x ∈ d(P) iff P+x ∈At(ϕ).

From this definition, we get the following conclusion.

Corollary .. Let ϕ be an open branch. Then, there exists a model generated
by ϕ.

Proof. By definition of open branch ., definition ofmodel generated by branch
. and definition of model ..

Lemma . (On generation of model). Let ϕ be an open and maximal branch.
Then, there exists modelMTL generated by ϕ such thatMTL ⊧⋃ϕ∩ForTL.

Proof. Take any open and maximal branch ϕ. Since branch ϕ is open, so by
previous conclusion ., there exists modelMTL = ⟨D,d⟩ generated by ϕ.
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We will now show that for any formula A contained in ⋃ϕ, it is the case that
MTL ⊧A, i.e.MTL ⊧⋃ϕ∩ForTL.The proofwill be carried outwith consideration
of all the possible cases of construction of formula A. Now, assume that A ∈ ⋃ϕ.
By definition of formula, for some name letters P, Q ∈ Ln, there must occur one
of the following cases.

. A = PaQ. Take any object i ∈D such that i ∈ d(P). By definition of model gen-
erated ., set⋃ϕ contains tableau expression P+i. Since ϕ is a maximal and
open branch, so by virtue of tableau rule Ra+, ⋃ϕ also contains tableau ex-
pression Q+i. By definition of model generated ., i ∈ d(Q). Hence, d(P) ⊆
d(Q), and by definition of truth in model ., we thus get that MTL ⊧ PaQ.
In turn, if there exists no such i ∈D that i ∈ d(P), then ∅= d(P) ⊆ d(Q), so by
definition of truth in model ., we getMTL ⊧ PaQ.

. A=PiQ. Since ϕ is amaximal and open branch, so by virtue of tableau ruleRi,
set⋃ϕ also contains tableau expressionsP+i,Q+i, for some i ∈N. By definition
of model generated ., i ∈ d(P) and i ∈ d(Q). Since d(P)∩d(Q) /= ∅, so by
definition of truth in model ., we get thatMTL ⊧ PiQ.

. A = PeQ. Take any object i ∈ D such that i ∈ d(P). By definition of model
generated ., set ⋃ϕ contains tableau expression P+i. Since ϕ is a maximal
and open branch, so by virtue of tableau rule Re−, ⋃ϕ also contains tableau
expression Q−i. Since branch ϕ is open, so expression Q+i /∈ ⋃ϕ, and conse-
quently, by definition ofmodel generated ., i /∈d(Q).Thus, d(P)∩d(Q)=∅
and by definition of truth in model ., we get MTL ⊧ PeQ. In turn, if there
exists no object i ∈D such that i ∈ d(P), then d(P)∩d(Q) =∅, so by definition
of truth in model ., we get thatMTL ⊧ PeQ.

. A = PoQ. Since ϕ is a maximal and open branch, so by virtue of tableau rule
Ro, set ⋃ϕ also contains tableau expressions P+i, Q−i, for some i ∈ N. By
definition of model generated ., i ∈ d(P) and — since branch ϕ is open
and, consequently, expressionQ+i /∈⋃ϕ— i /∈ d(Q), so d(P) /⊆ d(Q). Thus, by
definition of truth in model ., we getMTL ⊧ PoQ.

We will now move on to a lemma which claims that application of tableau
rules for the extension of branches does not reach beyond the model which is
appropriate. In other words, according to the definition of model appropriate for
the set of expressions ., if we have a set of expressions such that the formulas
contained in this set of expressions are true in givenmodel and expressions stating
inclusion or non-inclusion of a denotation of given index in the scope of name
are interpretable in the model (they do not contradict the state of affairs in the



Completeness theorem for the tableau system for TL 

model), then the extension of that set with the use of rules produces a set that still
has the above properties.

Lemma.. LetMTL be anymodel, X, Y ⊆TeTL, and let R ∈RTL.Then, if ⟨X,Y⟩ ∈
R andMTL is appropriate for set of expressions X, thenMTL is appropriate for Y.

Proof. In the proof, wewillmake use of definition ofmodel appropriate for the set
of expressions .. LetMTL = ⟨D,d⟩ be anymodel andX, Y ⊆TeTL. We will con-
sider all cases of rules R ∈RTL, assuming that ⟨X,Y⟩ ∈ R andMTL is appropriate
for set of expressions X, and showing that thenMTL is appropriate for Y .

. Let R = Ra+, then ⟨X,Y⟩ = ⟨Z ∪ {PaQ,P+i}, Z ∪ {PaQ,P+i, Q+i}⟩, for some
Z ⊆ TeTL, P, Q ∈ Ln and i ∈N; sinceMTL is appropriate for set of expressions
X, so by definition .,MTL ⊧PaQ and there exists function γ ∶N�→D such
that for each name letter S ∈ Ln and each j ∈N: if S+j ∈X, then γ(j) ∈ d(S) and
if S−j ∈X, then γ(j) /∈ d(S); due to the fact that P+i ∈X, also γ(i) ∈ d(P), while
since MTL ⊧ PaQ, hence by definition of truth in model ., γ(i) ∈ d(Q),
since d(P) ⊆ d(Q); consequently, by definition of model appropriate for
the set of expressions ., model MTL is appropriate for set of expressions
Y = Z∪{PaQ,P+i,Q+i}.

. Let R =Ri, then ⟨X,Y⟩ = ⟨Z∪{PiQ},Z∪{PiQ,P+i,Q+i}⟩, for some Z ⊆ TeTL,
P, Q ∈ Ln and i ∈N; since MTL is appropriate for set of expressions X, so by
definition .,MTL ⊧ PiQ and there exists function γ ∶N�→D such that for
each name letter S ∈Ln and each j ∈N: if S+j ∈X, then γ(j) ∈d(S) and if S−j ∈X,
then γ(j) /∈d(S); however, ruleRi enriches setX with expressions P+i,Q+i and
index i is new, it has not occurred in any expression from set X, while since
MTL ⊧ PiQ, so by virtue of definition of truth in model ., in the domain
there exists certain object x such that x ∈ d(P)∩d(Q); so we define function
γ′ ∶N�→D such that for any k ∈N, if k /= i, then γ′(k) = γ(k) and γ′(i) = x,
consequently, by definition of model appropriate for the set of expressions
., modelMTL is appropriate for set of expressions Y =Z∪{PiQ,P+i,Q+i}.

. Let R = Re−, then ⟨X,Y⟩ = ⟨Z ∪ {PeQ,P+i},Z ∪ {PeQ,P+i, Q−i}⟩, for some
Z ⊆ TeTL, P, Q ∈ Ln and i ∈N; sinceMTL is appropriate for set of expressions
X, so by definition ., MTL ⊧ PeQ and there exists function γ ∶ N �→ D
such that for each name letter S ∈Ln and each j ∈N: if S+j ∈X, then γ(j) ∈ d(S)
and if S−j ∈ X, then γ(j) /∈ d(S); due to the fact that P+i ∈ X, also γ(i) ∈ d(P),
while since MTL ⊧ PeQ, hence by virtue of definition of truth in model .
γ(i) /∈ d(Q), since d(P) ∩ d(Q) = ∅; consequently, by definition of model
appropriate for the set of expressions ., model MTL is appropriate for set
of expressions Y = Z∪{PeQ,P+i,Q−i}.
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. LetR=Ro, then ⟨X,Y⟩= ⟨Z∪{PoQ},Z∪{PoQ,P+i,Q−i}⟩, for someZ ⊆TeTL,
P, Q ∈ Ln and i ∈N; since MTL is appropriate for set of expressions X, so by
definition ., MTL ⊧ PoQ and there exists function γ ∶ N�→ D such that
for each name letter S ∈ Ln and each j ∈N: if S+j ∈ X, then γ(j) ∈ d(S) and if
S−j ∈ X, then γ(j) /∈ d(S); however, rule Ro enriches set X with expressions
P+i,Q−i and index i is new, it has not occurred in any expression from set X,
while sinceMTL ⊧PoQ, so by virtue of definition of truth inmodel ., in the
domain there exists certain object x such that x ∈ d(P), but x /∈ d(Q); so we
define function γ′ ∶N�→D such that for any k ∈N, if k /= i, then γ′(k) = γ(k)
and γ′(i) = x, consequently, by definition of model appropriate for the set
of expressions ., model MTL is appropriate for set of expressions Y = Z∪
{PoQ,P+i,Q−i}.

We will now proceed to the main theorem which synthesizes all so far covered
facts and lemmas, stating the dependencies between the semantic consequence
relation, branch consequence relation and the existence of closed tableau.

Theorem . (Theorem on the completeness of tableau system for TL). For any
X ⊆ ForTL, A ∈ ForTL, the below statements are equivalent.

• X ⊧A
• X ⊳A
• there exists finite Y ⊆X and closed tableau ⟨Y ,A,Φ⟩.

Proof. Take any X ⊆ ForTL and A ∈ For. We will prove three implications.
(a) X ⊧A⇒X ⊳A
Assume thatX /⊳A.Wemust show thatX /⊧A. From the assumption and defini-

tion ⊳ ., we know that for each finite set Y ⊆X, there exists a branch beginning
with set Y ∪ {○(A)} which is maximal and open. Take any finite subset Y′ ⊆ X.
Thus, there exists branch ϕ beginning with set Y′∪{○(A)}which is maximal and
open. Since branch ϕ is maximal and open, so by lemma on generation of model
., there exists modelMTL such thatMTL ⊧Y′ ∪{○(A)}.

Due to the fact that set Y′ is arbitrary, so for any Y , finite subset of X, there
exists modelMTL such thatMTL ⊧ Y ∪{○(A)}. Thus, for any Y , finite subset of
X, Y /⊧A, due to the fact .. While by fact ., relation ⊧ is compact, so X /⊧A.

(b) X ⊳A⇒ there exists finite Y ⊆X and closed tableau ⟨Y ,A,Φ⟩
Assume that for any finite subset Y ⊆ X, each tableau ⟨Y ,A,Φ⟩ is open. Take

any finite subset Y ⊆ X. By the assumption, each tableau ⟨Y ,A,Φ⟩ is open. By
definition of tableau ., each set Φ contains one branch beginning with set
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Y ∪ {○(A)}. Consequently, by definition of open tableau ., each branch be-
ginning with set Y ∪○(A) is open. However, from fact ., we know that since
set Y ∪{○(A)} is finite, then there exists branch beginning with Y ∪{○(A)} that
ismaximal. Since that branch is open and setY is a finite subset ofX, by definition
of relation of branch consequence . X /⊳A,

(c) there exists finite Y ⊆X and closed tableau ⟨Y ,A,Φ⟩ ⇒X ⊧A
Assume that there exists finite subset Y ⊆ X and closed tableau ⟨Y ,A,Φ⟩.

Indirectly assume that X /⊧ A, thus, by definition of relation of semantic conse-
quence ., there exists such model MTL that MTL ⊧ X, but MTL /⊧ A. From
fact ., we know thatMTL ⊧ ○(A). Consequently,MTL ⊧X∪{○(A)}, and thus
MTL ⊧ Y ∪{○(A)}. Since tableau ⟨Y ,A,Φ⟩ is closed, then by definition ., Φ
contains branch ψ beginning with set Y ∪{○(A)} which is closed. So, branch ψ
is maximal by conclusion . and has lengths n, for certain n ∈N. What is more,
by conclusion ., set ψ(n) is t-inconsistent.

Since MTL ⊧ Y ∪ {○(A)}, so model MTL is appropriate for set Y ∪ {○(A)}.
Now, applying lemma ., n− -times we get conclusion thatMTL is appropriate
for set ψ(n). However, due to the fact that ψ(n) is t-inconsistent and conclusion
., there exists no model appropriate for ψ(n).

.. Estimation of cardinality of model for TL

When applying tableau methods for TL another issue appears. With the tableau
proof, we can estimate the upper limit of the cardinality of models that we only
need to check in order to establish whether a given inference is correct.While, in
the study we do not take up this issue in general (as it is related to the issue of de-
cidaility), but this outcome for TL we can virtually get directly from the theorem
on completeness of tableau system for TL ..

By existential formula, we mean any formula in form PiQ or PoQ, where P, Q,
∈ Ln.

Now, we shall define function λ ∶ P(ForTL) �→ P(ForTL) with the following
condition: for any set Φ ∈ P(ForTL), λ(Φ) = {x ∈Φ ∶ x is an existential formula}.
So, from each set of formulas, function λ “selects” all existential formulas that
belong to a given set.

 Estimations of cardinality of model for syllogistic, for languages richer than the lan-
guage ofTL, have been examined in the studies by: A. Pietruszczak [], [], P. Kulicki
[], [].

 This outcome was originally described in article []. However, when defining the
tableau system forTL, in that study, we applied another set of rules and non-formalised
tableau concepts.
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Now, in turn, we shall define function σ ∶ {Ψ ∈P(ForTL) ∶ Ψ is a finite set}�→
N with the following condition: for any finite set Ψ ∈ P(ForTL), σ(Ψ) = ∣λ(Ψ)∣.
So, function σ “counts” the number of existential formulas that are found in any
finite set of formulas.

We have the theorem.

Theorem .. Let X be a finite set of formulas and let A ∈ ForTL. Then:
∀MTL=⟨D,d⟩ (∣D∣ = σ(X∪{○(A)})⇒ (MTL ⊧X⇒MTL ⊧A)) iff X ⊧A.

Proof. Take any finite set of formulas X and any formula A.
The implication “from the right to the left” follows from the definition of rela-

tion of semantic consequence .. Because if X ⊧ A, then for any model MTL,
if MTL ⊧ X, then MTL ⊧ A. Particularly, for such models MTL = ⟨D,d⟩ that
∣D∣ = σ(X∪{○(A)}).

Now, assume thatX /⊧A. From the theorem on completeness of tableau system
of TL ., we get that X /⊳ A. By definition of relation of branch consequence
., for any finite Y ⊆ X, there exists maximal and open branch beginning with
set Y ∪{○(A)}. Since X is a finite set, so there exists maximal and open branch
ϕ beginning with set X ∪ {○(A)}. So, by lemma on generation of model .,
there exists such modelMTL = ⟨D,d⟩ thatMTL ⊧X∪{○(A)}, thusMTL ⊧X and
MTL /⊧A, by fact ..

By definition ., domain D = {i ∈ N ∶ i ∈ ∗(At(ϕ))}, and each object i ∈ D
emerged in some expression in ⋃ϕ∩(TeTL ∖For) by the application of rule Ri
or Ro to some existential formula. As for each existential formula, we can only
one time apply rule Ri or Ro, thus ∣D∣ ≤ σ(X∪{○(A)}).

ModelMTL was generated by an open and maximal branch, so rule Ri or Ro
was applied to each existential formula. Thus, for any existential formula, there
exists at least one object i ∈ D, due to the fact that rules Ri and Ro introduce
expressions with new indices. Hence, ∣D∣ ≥ σ(X∪{○(A)}).

So, consequently, there exists such model MTL = ⟨D,d⟩ that ∣D∣ = σ(X ∪
{○(A)}),MTL ⊧X andMTL /⊧A.
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. Introductory remarks
Chapter Four will be devoted to a case extremely different than, presented in
Chapter One, the case of tableau system for CPL. For we consider modal logic
S (for short: S), defining the set of tableau expressions in such a way for it nei-
ther to concur with the set of formulas of logic S, nor to be its proper superset—
both sets are disjoint. The proofs in the tableau system that we are going to con-
struct will therefore be carried out in a language different from the one in which
we want to determine whether or not a given consequence relation holds.

Another important difference between the previous systems and the one cur-
rently being defined is that the systems described previously featured the property
of a finite branch, which is not the case for the presented tableau system for S.

Therefore, it may happen that when constructing a branch and consequently a
tableau which begins with a finite set of expressions, it is not possible to finish it
as some sequences of application of the rules become cyclical. The lack of a finite
branch property forces changes in a concept ofmaximal branch and in dependent
concepts.

So, the tableau concepts defined in previous chapters will become special cases
of tableau concepts for systems that do not feature the property of a finite branch.
The leading change is the generalisation of the concept of maximal branch. Still,
the maximal branch is a branch to which no rule can be applied anymore in order
to extend it as it contains everything tableau rules are capable of introducing to it.
Previously, however, for the cases of finite sets thismeant that themaximal branch
was of a finite length. It does not have to be the case this time. A maximal branch
can be infinite even though the infinity of a branch does not imply its maximal
nature. For there exist cases of infinite-length branches that are not maximal.

It is worth noting that the systems that feature the property of a finite branch
are decidable. For theoretically, always in a finite number of steps it is possible to
construct a complete tableau for them— closed or open one, thus answering the
question whether a given formula is or is not tableau derivable on the grounds of
given premises. In the case of tableau systems that do not feature a finite branch

 Some of the findings we will present here were described in English-language article
[]. In particular, we took up the general definition of concepts formodal logics defined
by the semantics of possible worlds, to which we will return in the final chapter of the
book.
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property, these systemsmay not be decidable. So, although we prove that they are
complete and consistent in relation to the initial, semantically defined relation,
there does not have to exist a general way of constructing a complete tableau even
though such a tableau can exist.

So, we treat the case of a tableau system for S logic as amodel for two reasons:

• the set of tableau expressions is naturally different than the set of formulas
• branches beginning with finite sets of expressions can feature an infinite

lengths.

Both reasons lead to the need of generalization of the so-far applied tableau
concepts, affecting the formalisation of tableau methods offered in the book.

. Language and semantics
As usual, for the start we will define the basic concepts for the logic S. First, we
will take up the language of S.

Definition . (Alphabet of S). Alphabet of the modal logic S is the sum of the
following sets:

• set of logical constants: Lc = {¬,∧,∨,→,↔,◇,◻}
• set of propositional letters: Var = {p,q,r,p,q,r, . . .}
• set of brackets: {),(}.

Although the set of propositional letters is infinite and includes indexed letters,
in practice we will use a finite number of the following letters: p, q, r, s.

Definition . (Formula S). Set of formulas of modal logic S is the smallest set
X which meets conditions:

. Var ⊆X
. if A, B ∈X, then

a. ¬A ∈X
b. ◻A ∈X
c. ◇A ∈X
d. (A∧B) ∈X
e. (A∨B) ∈X
f. (A→ B) ∈X
g. (A↔ B) ∈X.

We specify this set as ForS, and its elements will be called formulas.

We will now proceed to the interpretation of set ForS. To begin with, let us
recall some properties of binary relations.
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Definition .. Let R be a binary relation defined on Cartesian product X ×X,
for some set X. We shall state that:

. R is a universal relation iff ∀x, y∈X xRy
. R is an equivalence relation iff

a. R is a reflexive relation, i.e. ∀x∈X xRx
b. R is a symmetric relation, i.e. ∀x, y∈X (xRy⇒ yRx)
c. R is a transitive relation, i.e. ∀x, y, z∈X (xRy&yRz⇒xRz).

From the above definition ., the following conclusion follows.

Corollary .. Each universal relation is an equivalence relation.

We will now proceed to the concept of model for formulas S.

Definition . (Model for language of S). ModelMS for language of S will be
called such ordered quadruple ⟨W,R,V ,w⟩ that:

• W is a non-empty set
• R is a universal relation defined on Cartesian productW ×W, i.e. R =W ×W
• V is a function valuating propositional letters in the elements of set W, i.e.

V ∶Var×W�→{,}
• w ∈W.

From definition of model . and conclusion . another conclusion results.

Corollary .. Eachmodel with a universal relation is amodel with an equivalence
relation.

Models with equivalence relation will be denoted asM′S.
Now, we shall define truth inmodel.This definition also applies tomodels with

equivalence relationM′S.

Definition . (Truth in model). LetMS = ⟨W,R,V ,w⟩ be a model and let A ∈
ForS. Formula A is true in modelMS (for short:MS ⊧A) iff for any formulas
B,C ∈ ForS the below conditions are met:

. if A ∈Var, then V(A,w) = 
. if A ∶= ¬B, then formula B is not true in modelMS (for short:MS /⊧ B)
. if A ∶= (B∧C), thenMS ⊧ B andMS ⊧C
. if A ∶= (B∨C), thenMS ⊧ B orMS ⊧C
. if A ∶= (B→C), thenMS /⊧ B orMS ⊧C
. if A ∶= (B↔C), thenMS ⊧ B iffMS ⊧C
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. if A ∶= ◻B, then ∀u∈W(wRu⇒⟨W,R,V ,u⟩ ⊧ B)
. if A ∶=◇B, then ∃u∈W(wRu& ⟨W,R,V ,u⟩ ⊧ B).

Formula A is false in modelMS (for short:MS /⊧A) iff it not true.
Let X ⊆ ForS. Set of formulas X is true in model MS (for short: MS ⊧ X)

iff for any formula A ∈ X,MS ⊧ A. Set of formulas X is false in modelMS (for
short:MS /⊧X) iff it is not the case thatMS ⊧X.

Now, we will show a fact that displays an connection between models with
equivalence relation and those with universal relation.

Proposition .. For any model M′S = ⟨W
′,R′,V′,w′⟩, there exists such model

MS = ⟨W,R,V ,w⟩ that for any formula A ∈ ForS,M′S ⊧A iffMS ⊧A.

Proof. Take any model with equivalence relation M′S = ⟨W
′, R′,V′,w′⟩. Next,

define model with universal relationMS = ⟨W, R, V , w⟩ as follows:

• W = {x ∈W′ ∶w′Rx}
• R = {⟨x,y⟩ ∶ x,y ∈W}
• V =V′W , where V′W is a restriction of function V′ to set Var×W
• w =w′.

R′ is an equivalence relation,R⊆R′, R=R′W , where R′W constitutes a restriction of
relation R′ to setW ={x ∈W′ ∶w′Rx}, so R′W is a universal relation. Since relation
R′ is reflexive, so obviously w′ ∈W, thus modelMS is well defined.

Consider any propositional letter q ∈ Var. By definition of model MS, since
V =V′W , so for any u ∈W it is the case that (∗) V′(q,u) =  iff V(q,u) = .

Now, take any formulaA ∈ForS. We will consider various construction possi-
bilities for formulaA, carrying out an inductive proof in respect of the complexity
of formula A and showing that for any u ∈W, the below thesis occurs:
(∗∗) ⟨W′,R′,V′,u⟩ ⊧A iff ⟨W,R,V ,u⟩ ⊧A.
Initial step. Take any u ∈W. Assume that A ∈ Var. By (∗) and definition of

truth in model ., we get ⟨W′,R′,V′,u⟩ ⊧A iff ⟨W,R,V ,u⟩ ⊧A.
Induction step. Take any formulas B, C ∈ForS and assume that (∗∗∗) for B,

C and for any u ∈W, the following occurs:
⟨W′,R′,V′,u⟩ ⊧ B iff ⟨W,R,V ,u⟩ ⊧ B
⟨W′,R′,V′,u⟩ ⊧C iff ⟨W,R,V ,u⟩ ⊧C.

Take any u ∈W and consider the following cases:

. A = ¬B, A = (B ∧ C), A = (B ∨ C), A = (B → C) or A = (B ↔ C); then by
virtue of assumption (∗ ∗ ∗) and definition of truth in model ., we get
⟨W′,R′,V′,u⟩ ⊧A iff ⟨W,R,V ,u⟩ ⊧A
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. A=◻B; then, by virtue of definition of truth inmodel ., ⟨W′,R′,V′,u⟩ ⊧◻B
iff ∀z∈W′(uR′z⇒ ⟨W′,R′,V′,z⟩ ⊧ B), by definition of set W and relation R
and by assumption (∗ ∗ ∗), it is the case iff ∀z∈W(uRz⇒ ⟨W,R,V ,z⟩ ⊧ B),
while by virtue of definition of truth in model ., iff ⟨W,R,V ,u⟩ ⊧ ◻B, thus
⟨W′,R′,V′,u⟩ ⊧A iff ⟨W,R,V ,u⟩ ⊧A

. A = ◇B; then, by virtue of definition of truth in model ., ⟨W′,R′,V′,u⟩ ⊧
◇B iff ∃z∈W′(uR′z&⟨W′,R′,V′,z⟩ ⊧ B), by definition of set W and relation
R and by assumption (∗ ∗ ∗), it is the case iff ∃z∈W(uRz&⟨W,R,V ,z⟩ ⊧ B),
while by virtue of definition of truth in model ., iff ⟨W,R,V ,u⟩ ⊧◇B, thus
⟨W′,R′,V′,u⟩ ⊧A iff ⟨W,R,V ,u⟩ ⊧A.

Consequently, we get thesis:
for any u ∈W, ⟨W′,R′,V′,u⟩ ⊧ A iff ⟨W,R,V ,u⟩ ⊧ A. However, since w = w′

and w ∈W,M′S ⊧A iffMS ⊧A.

Making use of the concept ofmodel, we cannowdefine the concept of semantic
consequence relation in S. For the entire class of models with universal relation,
in a normal way on set P(ForS)×ForS we define the consequence relation.

Definition . (Semantic consequence of S). Let A ∈ ForS and X ⊆ ForS.
We shall state that from set X follows formula A (for short: X ⊧ A) iff for any
model MS, if MS ⊧ X, then MS ⊧ A. Relation ⊧ will also be called semantic
consequence relation of logic S or for short semantic consequence relation.

Denotation .. For any set of formulasX and any formulaA notationX /⊧Awill
mean that it is not the case that X ⊧A.

Let us remind that we defined models for S with the use of universal rela-
tions. It is known, however, we could define models for S using equivalence
relations — since both classes of models determine the same semantic relation
of consequence, which is expressed by another fact.

Proposition .. Let A ∈ForS and X ⊆ForS. Then, X ⊧A iff for any model with
equivalence relationM′, ifM′ ⊧X, thenM′ ⊧A.

Proof. Let A ∈ ForS and X ⊆ ForS.
First, we will prove the implication “from the left to the right”. Assume that

X ⊧A and take any model with equivalence relationM′S = ⟨W,R,V ,w⟩ such that
M′S ⊧ X. From fact . we know that for certain model with universal relation
MS it is the case that for any formula B ∈ ForS, M′S ⊧ B iff MS ⊧ B. Thus
MS ⊧ X, and consequently, by assumption MS ⊧ A. Again, making use of fact
., we getM′S ⊧A.



 Tableau system for modal logic S

We prove implication ‘from the left to the right’ with the use of conclusion ..
Assume that for anymodel with equivalence relationM′, ifM′ ⊧X, thenM′ ⊧A,
and take any modelMS such thatMS ⊧X. But, by conclusion ., modelMS
is a model of equivalence relation, thusMS ⊧A.

The above issue will be discussed in subchapter devoted to the axiomati-
zation with tableau rules as it directly suggests the possibility of two different
axiomatizations.

Let us now go to the concept of contradictory set of formulas.

Definition.. LetX ⊆ForS. Set of formulasX is contradictory iff for anymodel
MS /⊧X. Set X is non-contradictory iff X it is not contradictory.

Another conclusion follows from definition of contradictory set of formulas
. and definition of truth in model ..

Proposition .. Let X ⊆ ForS and A ∈ ForS. If {A,¬A} ⊆ X, then X is
contradictory.

. Basic concepts of the tableau system for S
Unlike the tableau system forCPL, in the case of tableau system forTL the tableau
proofs were carried out in a more rich language than the set of formulas. In the
case of tableau system for S, the language of tableau proof has no common ele-
ments with the language of logic S— thus in this respect, the described system
constitutes a completely new case.

Let us now define the proof language for the tableau system for logic S.

Definition . (Tableau expressions for S). Set of tableau expressions is the
union of two following sets:

• Cartesian product: ForS ×N
• {irj ∶ i, j ∈N}.

We specify this set as TeS, and its elements will be called tableau expressions or
simply expressions. Numbers present in the expressions will be called indices.

In the event of tableau systems for themodal logic, sometimes there is a need of
“selecting” indices from the tableau expressions.Thus, let us define an appropriate
function to enable the above. Before that, however, we will introduce an auxiliary
function h ∶ TeS�→ P(N) defined for any A ∈ ForS and i, j ∈N with conditions:

• h(⟨A, i⟩) = {i}
• h(irj) = {i, j}.
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Definition . (Function selecting indices). Function selecting indices will be
called function ∗ ∶ P(TeS)�→ P(N) defined for any X ⊆ TeS with condition:

• ∗(X) =⋃{h(y) ∶ y ∈X}.

For any subset TeS, function ∗ selects all indices present in the expressions from
that set.

Let us now proceed to the concept of similar sets of expressions. Intuitively,
two sets of expressions are similar iff their expressions contain exactly the same
formulas and all expressions in both sets are structurally similar with respect to
the indices. Formally:

Definition . (Similar set of expressions). Let X, Y ⊆TeS. X is similar to Y iff
there exists such bijection g ∶ ∗(X) �→ ∗(Y) that for any A ∈ ForS and indices
i, j ∈N:

• ⟨A, i⟩ ∈X iff ⟨A,g(i)⟩ ∈Y
• irj ∈X iff g(i)rg(j) ∈Y .

Based on definition ., we can draw the following conclusion.

Corollary .. The relation of similarity is symmetric, i.e. For any sets of expres-
sions X, Y, if set X is similar to Y, then Y is similar to set X.

Proof. By definition of similar sets of expressions ., by the fact that function g
is bijection and by the equivalences present in both conditions.

Next, we introduce a definition of tableau inconsistent set.

Definition . (Tableau inconsistent set of expressions). Set X ⊆ TeS will be
called tableau inconsistent (for short: t-inconsistent) iff for some formula A ∈
ForS and some index i ∈N, ⟨A, i⟩ ∈ X and ⟨¬A, i⟩ ∈ X. Set X is tableau consistent
(for short: t-consistent) iff X is not t-inconsistent.

From this definition, the following conclusion results.

Corollary .. Let X, Y ⊆ TeS. If set X is similar to set Y, then X is t-consistent
iff Y is t-consistent.

Proof. Let X, Y ⊆ TeS, and assume that X is similar to set Y . Also, assume that
set X is t-inconsistent. Then, by definition of t-inconsistent set ., set X con-
tains expressions ⟨A, i⟩, ⟨¬A, i⟩, for some A ∈ ForS and i ∈ N. By definition of
similar set ., there exists bijection g ∶ ∗(X) �→ ∗(Y) and set Y contains ex-
pressions ⟨A,g(i)⟩, ⟨¬A,g(i)⟩, thus by definition of t-inconsistent set ., set Y
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is t-inconsistent. On the other hand, since relation of set similarity is symmet-
ric ., then by assumption, set Y is similar to set X. Also, assume that set Y is
t-inconsistent.Then, by definition of t-inconsistent set ., setY contains expres-
sions ⟨A, i⟩, ⟨¬A, i⟩, for some A ∈ ForS and i ∈N. By definition of similar set .,
there exists bijection g′ ∶ ∗(Y)�→∗(X) and setX contains expressions ⟨A,g′(i)⟩,
⟨¬A,g′(i)⟩, thus by definition of t-inconsistent set ., setX is t-inconsistent.

For further studies, we also need a concept that would combine models with
the set of expressions.

Definition . (Model appropriate for set of expressions). Let MS =
⟨W,R,V ,w⟩ be a model and let X ⊆TeS. We shall state that modelMS is appro-
priate for X iff there exists such function f ∶N�→W, that for any A ∈ ForS and
i, j ∈N:

• if ⟨A, i⟩ ∈X, then ⟨W,R,V , f (i)⟩ ⊧A
• if irj ∈X, then f (i)Rf (j).

Another fact follows from the above definition.

Proposition .. Let X be a t-inconsistent set of expressions. Then, there exists no
modelMS appropriate for X.

Proof. Take any set of expressions X and any model MS = ⟨W,R,V ,w⟩ and as-
sume that X is t-inconsistent. Then, by definition of tableau inconsistent set of
expressions ., for some formula A ∈ ForS and for some index i ∈N, ⟨A, i⟩ ∈ X
and ⟨¬A, i⟩ ∈ X. If modelMS were appropriate for set of expressions X, then by
definition of model appropriate for the set of expressions ., there would exist
such function f ∶N�→W that if ⟨A, i⟩ ∈X, then ⟨W,R,V , f (i)⟩ ⊧A and if ⟨¬A, i⟩ ∈
X, then ⟨W,R,V , f (i)⟩ ⊧ ¬A, and so ⟨W,R,V , f (i)⟩ ⊧A and ⟨W,R,V , f (i)⟩ ⊧ ¬A.
However, from fact . and definition ., it follows that there exists no such a
model. Hence, modelMS is not appropriate for set of expressions X.

.. Tableau rules for S

As in the previous cases of described tableau systems, we first provide the general
concept of rule. Not only because it facilitates provision of the general features
that a tableau rule must meet. In the case of system construction for S we will
provide — as in the case of TL— alternative sets of tableau rules that are suitable
for construction of tableau system for logic S. This means that within the below
general concept of rule, we can define different sets of tableau rules that define
various, however equivalent in terms of scope of branch consequence, tableau
systems for S (see note . and .).
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Definition . (Rule). Let P(TeS) be a power set of the set of tableau expres-
sions. LetP(TeS)n ben-aryCartesian productP(TeS)× ⋅ ⋅ ⋅ ×P(TeS)
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n

, for some

n ∈N.

• By a rule we understand any subset R ⊆ P(TeS)n such that if ⟨X, . . . ,Xn⟩ ∈ R,
then:
a. X is t-inconsistent
b. X ⊂Xi, for each  < i ≤ n.

• If n ≤ , then each element R will be called an ordered n-tuple (pair, triple, etc.,
respectively).

• The first element of each n-tuple will be called an input set (set of premises),
while its remaining elements output sets (sets of conclusions).

In the case of S, the rule definition differs from the rule definition for TL
(definition .) only in that it is specified on a different set of expressions and in a
different nature of t-inconsistency. Beyond that, these definitions are structurally
similar, because we are seeking to formulate general concepts. A set of tableau
rules for the tableau system forCPLwe describe, shall be introduced by means of
another definition.

Definition . (Tableau rules for S). Tableau rules for S are the following
rules:

R∧ ∶
X∪{⟨(A∧B),i⟩}

X∪{⟨(A∧B),i⟩,⟨A,i⟩,⟨B,i⟩}

R∨ ∶
X∪{⟨(A∨B),i⟩}

X∪{⟨(A∨B),i⟩,⟨A,i⟩}∣X∪{⟨(A∨B),i⟩,⟨B,i⟩}

R→ ∶
X∪{⟨(A→B),i⟩}

X∪{⟨(A→B),i⟩,⟨¬A,i⟩}∣X∪{⟨(A→B),i⟩,⟨B,i⟩}

R↔ ∶
X∪{⟨(A↔B),i⟩}

X∪{⟨(A↔B),i⟩,⟨A,i⟩,⟨B,i⟩}∣X∪{⟨(A↔B),i⟩,⟨¬A,i⟩,⟨¬B,i⟩}

R¬¬ ∶
X∪{⟨¬¬A,i⟩}

X∪{⟨¬¬A,i⟩,⟨A,i⟩}

R¬∧ ∶
X∪{⟨¬(A∧B),i⟩}

X∪{⟨¬(A∧B),i⟩,⟨¬A,i⟩}∣X∪{⟨¬(A∧B),i⟩,⟨¬B,i⟩}
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R¬∨ ∶
X∪{⟨¬(A∨B),i⟩}

X∪{⟨¬(A∨B),i⟩,⟨¬A,i⟩,⟨¬B,i⟩}

R¬→ ∶
X∪{⟨¬(A→B),i⟩}

X∪{⟨¬(A→B),i⟩,⟨A,i⟩,⟨¬B,i⟩}

R¬↔ ∶
X∪{⟨¬(A↔B),i⟩}

X∪{⟨¬(A↔B),i⟩,⟨¬A,i⟩,⟨B,i⟩}∣X∪{⟨¬(A↔B),i⟩,⟨A,i⟩,⟨¬B,i⟩}

R¬◻ ∶
X∪{⟨¬◻A,i⟩}

X∪{⟨¬◻A,i⟩,⟨◇¬A,i⟩}

R¬◇ ∶
X∪{⟨¬◇A,i⟩}

X∪{⟨¬◇A,i⟩,⟨◻¬A,i⟩}

R◻ ∶
X∪{⟨◻A,i⟩, irj}

X∪{⟨◻A,i⟩, irj,⟨A,j⟩}

R◇ ∶
X∪{⟨◇A,i⟩}

X∪{⟨◇A,i⟩, irj,⟨A,j⟩} , where:

. j /∈ ∗(X ∪ {⟨◇A, i⟩})
. for any k ∈N, {irk,⟨A,k⟩} /⊆X.

Rr ∶
X

X∪{irj} , where i, j ∈ ∗(X).

Set of tableau rules for S will be defined as RS.

Let us now devote a few words to discussing the described rules. Although in
many ways they resemble the rules from set RTL, there are also some differences.

According to the definition of rule ., the input sets of each rule are t-
consistent. In addition, in each rule, the input set is basically contained in each
output set. Again, there appears the two-premise rule — rule R◻.

On the other hand, similar to the case of rules Ri and Ro forTL, we have a rule
with limitations on introducing new expressions.Wemean ruleR◇.This rule says
that the expressions introduced are to have a new index (condition ), moreover,
the input set must not contain expressions similar to the one entered, beginning
with the index appearing in the expression with◇ (condition ).
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The semantic intuitions onwhich condition  is based are as follows.The object
denoted by a new index is also to be new and its relationship with other objects
that are denoted by the other indices is to remain unresolved.

Condition  prevents unnecessary expressions frombeing entered in the proof.
In practice, it also prevents the proof from being unnecessarily extended in-
definitely — so it prevents the creation of infinite branches when this is not a
consequence of logic itself, but of the wrong definition of tableau system (example
.).

The last rule is a rule that corresponds to universal relation in themodels.With
rule Rr , each two indices that appear in the expressions found in the proof may
cause the addition to the proof of another expression that contains those indices.
These indices do not have to be different, of course.

Example .. Consider the following set of expressions X ∪{⟨◇p, ⟩} and rule
R◇ without condition . The use of rule R◇ without condition  can result in
infinite branches by entering expressions with new indices.

R X 1 = X p, 1

R X 2 = X 1 1r2, p, 2

R X 3 = X 2 1r3, p, 3

R X 4 = X 3 1r4, p, 4

. . .

{

{

{

The example presented above could be part of some kind of proof in which we
could still apply rule R◇ to each new set without condition , utilizing the fact
that it contains expression ⟨◇A, ⟩.

In a standard, informal and intuitive approach to the logic within a tableau
approach, we can find an equivalent of rule R◇ — below, we denote it in a
conventional form:

◇A, i
↓

irj
A, j, where j is new in the branch.

However, this formulation of the rule causes various problems.The basic prob-
lem — a fundamental one, we can say — is that the rule refers to the concept of

 For instance, in the study by G. Priest, Introduction to Non-classical Logic [].
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branch, although the concept of branch is connected with the concept of set of
rules — in our approach a branch is determined by the application of rules from
the output set of rules. So, this way of defining a rule has the features of circular-
ity — we define a rule by reference to a branch, whereas the definition of branch
requires the definition of set of rules.

In addition, this formulation of rule R◇ seems too weak. In literature, it is only
the comments to the rule that prohibit its application to the same expressionmore
than once.

In the view presented in the book, ruleR◇ formally requires a new index when
applied (condition  allows only such pairs of sets), but also blocks the creation of
catch- situation of applications (due to condition ). In the approachwe offer, we
formally subsume the fact that index must be new and the rule can only be applied
to the same formula once. Besides, the latter formulation is not precise either; in
some cases condition  does not allow us to apply rule R◇ to given formula even
once (example .).

Example .. Consider the following set of expressions X ∪ {⟨◇p, ⟩, ⟨◇(p ∧
q), ⟩} and rule R◇ with condition .

R X 1 = X p, 1 , (p q), 1

R X 2 = X 1 1r2, (p q), 2

X 3 = X 2 p, 2 , q, 2

{

∧

∧∧

To set X we applied rule R◇, drawing conclusions from expression ⟨◇(p∧q), ⟩.
Next, to set X we applied rule R∧ by decomposing expression ⟨(p ∧ q),⟩.
However, to set X we cannot anymore apply rule R◇ in order to decompose
expression ⟨◇p, ⟩, since X contains expressions r and ⟨p,⟩. So, to expression
⟨◇p, ⟩ we did not apply rule R◇ even once.

However, as noted before, inmodal logic, even application of conditions block-
ing the unnecessary use of rules may not prevent the emergence of infinite
branches, whichwill be proven later, having defined the concept ofmodal branch.

Remark .. We can consider alternative sets of rules for the construction of a
tableau system for S. The following rules would help (on their right side we put
the condition that fulfils the relation in the model).

 This is why G. Priest notes: in the rule for ◇ (. . . ) the number j must be new, not
mentioning that this rule can be applied only once for one formula ([], s. ).
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(Reflexivity)

Rref ∶
X∪{⟨A,i⟩}

X∪{⟨A,i⟩, iri} ∀w ∈WwRw

(Symmetry)

Rsym ∶
X∪{irj}

X∪{irj,jri} ∀w ,w ∈W (wRw ⇒wRw)

(Transitivity)

Rtrans ∶
X∪{irj,jrk}

X∪{irj,jrk,irk} ∀w ,w ,w ∈W (wRw &wRw ⇒wRw)

The above rules correspond to the properties of equivalence relations: reflexiv-
ity, transitivity and symmetry. Fact . states that a class of models with universal
relation and a class of models with equivalence relation define exactly the same
logic. Therefore, an alternative set of tableau rules could be defined through the
above three rules: (RS ∖Rr)∪{Rref ,Rsym,Rtrans}.

Although both sets of rules seem to be interesting, for the reasons we have
already described, we will not investigate the second one— for we intend to pro-
vide a generalisation further in the book which will also include this approach.
So, now we will focus on the tableau system determined by set of rules RS. The
example provided indicates that the general definition of rule . makes sense.
There may exist many sets of tableau rules that potentially — to determine this
always requires a proof — define the same logic.

The adopted set of tableau rules — in our case set RS — specifies the content
of the range of successive concepts of the tableau system. Formally, the concepts
we will describe will be analogous to those from the previous chapter. However,
each of them will depend on set of tableau rules RS.

.. Branches for S

With a fixed set of tableau rules, we can proceed to the concept of branch.
Branches are such sequences of sets that each two adjacent elements constitute
an input set and an output set of some n-tuple that belongs to the set of tableau
rules. Branches are therefore setwise objects consisting of sets. Let us nowproceed
to the formal definition of branch in the tableau system for S and derived con-
cepts.The individual concepts will be similar to those from the previous chapters,
and all of them will be defined on the currently adopted set TeS.

Definition . (Branch). Let K = N or K = {,, . . . ,n}, where n ∈ N. Let X be
any set of expressions. A branch (or a branch beginning with X) will be called any
sequence ϕ ∶K�→ P(TeS) that meets the following conditions:
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. ϕ() =X
. for any i ∈ K, if i+  ∈ K, then there exists such rule R ∈ RS and such n-tuple
⟨Y, . . . ,Yn⟩ ∈ R, that ϕ(i) =Y and ϕ(i+ ) =Yk, for certain  < k ≤ n.

Having two branches ϕ, ψ such that ϕ ⊂ψ we shall state that:

• ϕ is a sub-branch of ψ
• ψ is a super-branch of ϕ.

Denotation .. Fromnow on—when speaking of branches— for convenience,
we will use the following notations or designations:

. X, . . . ,Xn, where n ≥ 
. ⟨X, . . . ,Xn⟩, where n ≥ 
. abbreviations: ϕK , where K is a domain ϕ, i.e. ϕ ∶K�→ P(TeS)
. or — to denote branches — small Greek letters: ϕ, ψ, etc.

The sets of branches, in turn, we shall denote with capital Greek letters: Φ, Ψ,
etc. Furthermore, the domain cardinality of a given branch K we shall sometimes
call a length of that branch.

The concept of branch depends on the initial set of tableau rules. In the case un-
der consideration, the branch structure is based on the rules from setRS. Further
described tableau concepts also depend on that set of rules. In harmony with the
adopted convention, we will not entangle the notations since alls the subsequent
concepts depend on set RS.

By definition of rules ., through the fact that they are defined by proper
inclusion of the input set in each of the output sets in any n-tuple, we get a
conclusion.

Corollary .. Each branch is an injective sequence.

.. Closed and open branches

Unlike usual, we will first take up a certain type of maximal branches, and only
then we will introduce the concept of maximal branch.The reason for this is that
because of the emergence of infinite branches beginning with finite sets of ex-
pressions, we will have to extend the concept of maximal branch. The concept of
a closed branch will be useful for the extension, so we start with it. In addition,
the set of closed branches is completed by the set of open branches, so we will also
introduce the concept of open branch.

As we remember, intuitively a branch is closed when we get a t-inconsistent set
having decomposed expressions by rules.
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Definition . (Closed/open branch). Branch ϕ ∶K�→ P(TeS) will be called
closed iff ϕ(i) is a t-inconsistent set for some i ∈ K. Branch ϕ will be called open
iff it is not closed.

From the above definition, the definition of tableau rules for S . and the
definition of branch ., we get the fact.

Proposition .. If branch ϕ ∶ K �→ P(TeS) is closed, then ∣K∣ ∈N and ϕ(∣K∣)
is a t-inconsistent set.

In the case of a closed branch, the t-inconsistent sequence element is the last
element because no rule can be applied to it anymore to extend the branch. For
the rules are defined in such a way that they cannot be applied to t-inconsistent
sets.

.. Maximal branches

We will commence the issue of maximal branches for the tableau system for S
with an initial and non-proper concept of maximal branch. By analogy to the
definitions of maximal branch in tableau systems for CPL and TL (definitions
. and .), we could adopt the following definition.

Definition . (Maximal branch — variant one). Let ϕ ∶ K �→ P(TeS) be a
branch. We shall state that ϕ ismaximal iff

. K = {,,, . . . ,n}, for some n ∈N
. there is no branch ψ such that ϕ ⊂ψ.

Unfortunately, there are cases where the first set is finite, but this does not guar-
antee the finiteness of branch. So, regardless of either we used all the rules from set
RS which could have been applied to some expressions appearing in the branch,
or we still have expressions to which no rules were applied, the branch can be
infinite.

Example .. Consider an example of set {⟨¬(◇p→◇◻p), ⟩}. It is a finite set.
Below, we describe an infinite branch beginning with set X and constructed by
applying the rules from set of tableau rules RS.
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R ¬ X 1 = ( p p), 1

R X 2 = X 1 p, 1 , p, 1

R ¬ X 3 = X 2 { 1r2, p, 2

R X 4 = X 3 ¬ p, 1

R ¬ X 5 = X 4 p, 2

R X 6 = X 5 ¬p, 2

R r X 7 = X 6 {2r3, p, 3

R X 8 = X 7 {1r3}

R ¬ X 9 = X 8 p, 3

R X 10 = X 9 ¬p, 3

. . .

→

The branch of infinite length is obtained by applying by turns the following rules
R◇, Rr , R◻, R¬◻ to set X and to each subsequent set that is created following
the application of the given sequence of rules.

The definition of maximal branch in the given version specifies that the maxi-
mal branch is finite and there exists no super-branch for it.This definition is good
for those systems where applying tableau rules to finite sets of expressions always
produces finitely long branches. In these cases, using the tableau rules for a given
system, we can decompose all the initial expressions from a finite set of tableau
expressions in a finite number of steps. It is therefore not a good definition for
modal logic because of the following fact.

Proposition .. There exists such finite set of expressions X that a branch
beginning with X is infinite.

Proof. Example ..

It would appear that removal of the first condition from definition . will
improve the situation. Removal of the first condition wouldmean that the branch
does not have to be of finite length. Its maximality would be based on the fact that
there exists no super-branch of it. However, the lack of a super-branch for the
branch beginning with a finite set does not mean that all the tableau rules that
could be used to construct the branch were actually used. Even in example .,
in individual sequences, we did not make use of all the possibilities of using rule
Rr .
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Note that by adding to setX ={⟨¬(◇p→◇◻p), ⟩} any new expression— e.g.
⟨(q∧¬q), ⟩, we get a finite set again. For this set, there exists a branch of infinite
length in which the rule for this new expression has not been applied in any of
the subsets (example .).

Therefore, even though the branchmay satisfy the second condition from defi-
nition .— there is no branch to be contained in it— it does not, however, draw
all the possible conclusions from the expressions that belong to the elements of
this branch, including the initial set.

Example .. Consider an example of set of expressions X = {⟨¬(◇p → ◇◻

p), ⟩,⟨(q ∧ ¬q), ⟩}. It is a finite set. Below, we describe an infinite branch be-
ginning with set X and constructed by applying the rules from set of tableau
rules RS. This branch is similar to the one in example ., except that each of
its elements contains expression ⟨(q∧¬q), ⟩ from which in none of the branch
elements conclusions have been drawn applying rule R∧.

R ¬ X 1 = ( p p), 1 , (q ¬q), 1

R X 2 = X 1 p, 1 , p, 1

R ¬ X 3 = X 2 {1r2, p, 2

R X 4 = X 3 ¬ p, 1

R ¬ X 5 = X 4 p, 2

R X 6 = X 5 ¬p, 2

R r X 7 = X 6 {2r3, p, 3

R X 8 = X 7 {1r3}

R ¬ X 9 = X 8 p, 3

R X 10 = X 9 ¬p, 3

. . .

→ ∧

A branch of infinite length is obtained by applying by turns the following rules
R◇, Rr , R◻, R¬◻ to set X and to each subsequent set that is created following
the application of the given sequence of rules. Whereas, in no step we apply rule
R∧.

Before we can introduce a somewhat more general and ultimate definition of
maximal branch, we still need a few auxiliary concepts.
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Definition . (Core of rule). Let rule R ∈ RS and n ∈ N. Let ⟨X, . . . ,Xn⟩ ∈ R
and ⟨Y, . . . ,Yn⟩ ∈R. We shall state that set ⟨Y, . . . ,Yn⟩ ∈R is a core of rule R in set
⟨X. . . . ,Xn⟩ iff

. Y ⊆X
. there exists no such proper subsetU ⊂Y that for some n-tuple ⟨U, . . . ,Un⟩ ∈

R
. for any  < i ≤ n, Yi =Y ∪(Xi ∖X).

Remark .. Note that in the case of tableau rules from set R ∈RS:

• the cores of rule for given n-tuple are expressions that play important roles at
given stage of the tableau proof—most often, the core input set is one-element
set

• in a special case, the core input set for the rule for given n-tuple is two-element
set of expressions — it is the case, for instance, in the event of rule R◻.

Even though the rules have been defined on sets, the concept of core of rule in
set indicates an essential element or elements which enable drawing conclusions
through the use of rule.

The above concepts result in the following conclusion.

Corollary .. Let rule R ∈RS, n ∈N, and let ⟨X, . . . , Xn⟩ ∈R.Then, there exists
such n-tuple ⟨Y, . . . ,Yn⟩ ∈R that ⟨Y, . . . , Yn⟩ is the core of rule R in set ⟨X, . . . ,Xn⟩.

Proof. By definition of tableau rules . and by definition of core of rule ..

Now, we can proceed to the concept of strong similarity between the sets of
expressions. It is a speciality of the concept of similarity (definition .). We will
need the concept of strong similarity for the definition of maximal branch.

Definition . (Strong similarity). Let rule R ∈RS and let ⟨X, . . . ,Xn⟩ ∈ R, for
some n ∈ N. On any set of expressions W ⊆ TeS, we will state that it is strongly
similar to set Xi, where  < i ≤ n, iff

. W is similar to Xi
. for certain n-tuple ⟨Y, . . . ,Yn⟩, which is the core of rule R in set ⟨X, . . . ,Xn⟩,

and for certainW′ ⊆W, the following conditions are met:
a. Y ⊆W′

b. W′ is similar to Y ∪(Xi ∖X).
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Having adopted the concept of strong similarity, we can proceed to the concept
of maximal branch in the final version.

Definition . (Maximal branch). Let ϕ ∶K�→ P(TeS) be a branch. We shall
state that ϕ ismaximal iff it meets one of the below conditions:

. ϕ is closed
. for any ruleR ∈RS, any n ∈N and any n-tuple ⟨X, . . . ,Xn⟩ ∈R, if ϕ(k)=X, for

certain k ∈K, then for some j ∈K, there exist ϕ(j) and such set of expressions
W ⊆ TeS that for some  < i ≤ n,W is strongly similar to Xi andW ⊆ ϕ(j).

Remark .. According to the above definition, a maximal branch is closed or,
in a sense, closed under application of rules (both conditions do not necessarily
have to be mutually exclusive). Closure under rules means that if a branch is not
closed and it was possible to apply some rule to one of its elements, then some
of the branch elements includes a set strongly similar to the one that could have
been a result of application of that rule. There are two things worth clarifying.

In the definition, we mention a strongly similar setW because the application
of rule R◇, in subsequent stages, can result in different sets than the ones we
would have gotten by applying this rule earlier.

SetW is to be contained in one of the elements of branch ϕ(j), and not neces-
sarily be identical to it, since the rule could have been applied to set ϕ(j−)which
can be a proper superset of set X.

Therefore, maximal branches can be either finite or infinite. Of course, if a
branch is maximal in terms of the first definition ., that means it is maximal
in terms of the definition we have adopted — ..

Corollary .. Each branch which is maximal in terms of definition . is
maximal in terms of definition ..

Proof. Take any branch ϕ maximal in terms of definition . and assume that
ϕ is not closed. If it does not meet the second condition of definition ., then
since ϕ is finite — the first condition of definition ., so there exists branch ψ
such that ϕ ⊂ ψ which obviously contradicts the second condition of definition
..

We know, therefore, that the concept of maximal branch as used so far, ex-
pressed in definition . is a special case of the concept defined by the definition
of maximal branch .. The latter definition is therefore taken as a model
definition for the theory of tableau systems.

Important cases for the theory of tableaux that meet the definition of maximal
branch used in the chapters on the tableau system forCPL andTL, also meet def-
inition .. Important cases, both for the branch consequence relation and the
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tableau, are those where the initial set — a set of tableau expressions or formulas
— is finite. Therefore, since we know that from finite sets in the tableau system
for CPL and in the tableau system for TL only emerge finite branches (see fact
. and fact .), so we can state that definitions like . by virtue of conclu-
sion . — we mean like since even though obviously, constructively the same
idea stands behind them, in both cases we face different rules and different sets of
expressions— are appropriate for the system with the property of a finite branch.

From definitions . and ., we get a self-evident conclusion.

Corollary .. Each closed branch is maximal.

Therefore, sometimes when constructing a tableau proof using tableau tools
for logic S, when we seek maximal branches, we can deal with infinite branches.
It is understandable that those branches cannot be described with anything dif-
ferent than a scheme. In general, branches, as part of a tableau proof, are not
sequences put on paper, but sequences of abstract objects that we can or cannot
say are or are not maximal.

.. Relation of branch consequence

As in the case of previous tableau systems, we will also define the concept of
branch consequence for the presently described systemusing the following terms:
branch, maximal branch and closed branch.

Definition . (Branch consequence S). LetX ⊆ForS andA ∈ForS. Formula
A is a branch consequence of X (for short: X ⊳ A) iff there exists such finite set
Y ⊆ X and index i ∈ N that each maximal branch beginning with set {⟨B, i⟩ ∶ B ∈
Y ∪{¬A}} is closed.

Denotation .. For any set of formulasX and any formulaA notationX /⊳Awill
mean that it is not the case that X ⊳A.

The above concept of branch consequence relation differs from the analogous
concept for tableau system for CPL and TL in the fact that (obviously, apart from
defining on a different language — different set of expressions) when determin-
ing whether given pair belongs to the relation of branch consequence we can
encounter a problem of branches that are maximal and infinite alike.

. Tableaux for S
It is usually inconvenient, or even infeasible, to investigate whether a pair be-
longs to the relation of branch consequence. As we remember, in the approach
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presented in the book, it is the construction of tableau that is supposed to solve
this problem.

When defining a tableau for logic S, we will readdress the auxiliary concept of
maximality in a set of branches. It is necessary because, unlike the case of tableau
system for TL, and like the case of CPL, a tableau can contain many branches. So
for the sake of order, we must avoid a situation in which sub-branches belong to
the same tableau as their super-branches.

Definition . (Maximal branch in the set of branches). Let Φ be a set of
branches and let branch ψ ∈ Φ. We shall state that ψ is maximal in set Φ (for
short: Φ–maximal) iff there is no such branch ϕ ∈Φ that ψ ⊂ ϕ.

We can now move on to the concept of tableau. Tableau is a special and non-
empty set of branches that i) begin with the same set of expressions and ii) each
branching requires a tableau rule that allows for such branching, andwhat ismore
iii) each branch that belongs to the tableau must be maximal in this set.

Definition . (Tableau). Let X ⊆ ForS, A ∈ ForS and Φ be a set of branches.
Ordered triple ⟨X,A,Φ⟩ will be called a tableau for ⟨X,A⟩ (or for short: tableau)
iff the below conditions are met:

. Φ is a non-empty subset of set of branches beginning with {⟨B, i⟩ ∶ B ∈ X ∪
{¬A}}, for some index i ∈N (i.e. if ψ ∈Φ, then ψ() = {⟨B, i⟩ ∶ B ∈X∪{¬A}})

. each branch contained in Φ is Φ-maximal
. for any n, i ∈N and any branches ψ, . . . , ψn ∈Φ, if:

• i and i+  belong to domains of functions ψ, . . . , ψn
• for any  < k ≤ n and any o ≤ i, ψ(o) =ψk(o)
then there exists such rule R ∈ RS and such ordered m-tuple ⟨Y, . . . , Ym ⟩ ∈

R, where  <m ≤  that for any  ≤ k ≤ n:
• ψk(i) =Y
• and there exists such  < l ≤m that ψk(i+ ) =Yl.

Again, the concept of tableaux has been defined in such away that tableaux can
also begin with infinite sets. Practicably, however, the construction of tableau is to
show that a given formula is a branch consequence of given finite set of premises
— according to the definition of branch consequence .. To this end, we must
construct tableaux containing all elements that are sufficient to solve the prob-
lem. Such tableaux are called complete tableaux. Before that, we will consisder
the problem of redundant branches.

The definition of redundant branches resembles a similar definition, worded
for CPL, while the difference, as usual, boils down to the fact that its subject are
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branches composed of other objects. Let us consider an example analogous to the
one we discussed in the chapter devoted to the classical logic (example .).

Example .. Consider set of expressions {⟨p∨q, ⟩,⟨¬¬p, ⟩}. Through the use
of rule R∨, we get two branches, and then to set X. we apply rule R¬¬. Then we
get the following branches.

X 1 = (p q), 1 , p, 1

X 2.1 = X 1 p, 1 X 2.2 = X 1 q, 1

X 2.3 = X 2.2 p, 1

∧

In the light of definition of tableau ., the set of these two branches is a
tableau for pair ⟨{p∨q},¬p⟩.

However, from the viewpoint of a tableau complexity, the branch on the right
seems unnecessary. This is because if we fail to get t-inconsistent set in the right-
hand branch, we will also fail to get t-inconsistent set in the left-hand branch.
Therefore, the branch on the right seems superfluous, and since it brings nothing
important, it can be conventionally called redundant.

Let us also repeat that such branchings do not form a formal obstacle. We
suggest their bypassing merely for the sake of the economy of a construction.
Therefore, further concepts will be defined in a similar way as in Chapter Two,
i.e. so that the tableau with or without redundant branches can be considered a
complete tableau. Practically, we know that when we try to write or draw out a
tableau proof, we endeavour to take account of all possibilities. If required, how-
ever, the redundant branches can be bypassed. Let us now update the concept of
redundant variant of branch for the current context.

Definition . (Redundant variant of branch). Let ϕ and ψ be such branches
that for some numbers i and i+  that belong to their domains, it is the case that
for any j ≤ i, ϕ(j) = ψ(j), but ϕ(i+ ) /= ψ(i+ ). We shall state that branch ψ is a
redundant variant of branch ϕ iff:

• there exists such rule R ∈ RS and such pair ⟨X,Y⟩ ∈ R that X = ϕ(i) and Y =

ϕ(i+ )
• there exists such rule R ∈RS and such triple ⟨X,W,Z⟩ ∈ R that X = ϕ(i) and:
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. W = ϕ(i+ ) and Z =ψ(i+ )
or

. Z = ϕ(i+ ) andW =ψ(i+ ).

Let Φ, Ψ be sets of branches and Φ ⊂ Ψ. We shall state that Ψ is a redundant
superset Φ iff for any branch ψ ∈Ψ∖Φ there exists such branch ϕ ∈Φ that ψ is a
redundant variant of ϕ.

Having adopted the concept of redundant superset of branches, we can pro-
ceed to the definition of complete tableau.

Definition . (Complete tableau). Let ⟨X,A,Φ⟩ be a tableau.We shall state that
⟨X,A,Φ⟩ is complete iff:

. each branch contained in Φ is maximal
. any set of branches Ψ such that:

a. Φ ⊂Ψ
b. ⟨X,A,Ψ⟩ is a tableau
is a redundant superset of Φ.

We shall state that a tableau is incomplete iff it is not complete.

A complete tableau contains such set of branches that it is no longer possible
to add any new branches to it, without causing the ordered triple to cease to be a
tableau, or there appears a redundant variant of some branch. Aswe already know,
in a complete tableau, all branches are maximal, not only the maximal ones in a
given set. Thus, a complete tableau contains such set of maximal branches that
any of its supersets does not anymore produce a tableau, or it features at least one
redundant variant of some branch that already earlier belonged to the tableau.

When constructing a complete tableau, we can face a situation in which all the
branches are closed, meaning each branch ends with a set that is t-inconsistent.
Such a tableau will be called a closed tableau.

Definition . (Closed/open tableau). Let ⟨X,A,Φ⟩ be a tableau. We shall state
that ⟨X,A,Φ⟩ is closed iff the below conditions are met:

. ⟨X,A,Φ⟩ is a complete tableau
. each branch contained in Φ is closed.

We shall state that a tableau is open iff it is not closed.

By the above definition of closed tableau, we get another conclusion on the
relation of closed tableaux with complete ones.

Corollary .. Each closed tableau is a complete tableau.
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. Theorem on the completeness of the tableau system for S
Further, we will show that the concept of tableau is significantly helpful in deter-
mining the occurrence of relation ⊳, and that the existence of a closed tableau is
equivalent to the occurrence of semantic consequence ⊧. But before we move on
to these problems, wemust introduce a few definitions and determine a few facts.

First, we will show that for any X ⊆ ForS, A ∈ ForS, if X ⊧A, then X ⊳A. Let
us begin with the definition of closure under tableau rules.

Definition . (Closure under tableau rules). Let X ⊆ TeS. We shall state that
set Y ⊆ TeS is a closure of set X under tableau rules iff Y is a set that meets the
following conditions:

• X ⊆Y
• for any rule R ∈RS and any n-tuple ⟨Z,Z, . . . ,Zn⟩ ∈R, where n ∈N, ifX ⊆Z ⊆

Y , then Zj ⊆Y , for some  ≤ j ≤ n.

If set Y is a closure of set X under tableau rules, then it will be denoted as XY .
Sometimes, on set Y we will simply state that it is a closure.

Obviously, each set of expressions X has its closure Y such that X ⊆ Y ⊆ TeS.
Some sets can have more that one closure. Note that by definition of branch .,
the following fact occurs.

Proposition .. Each closure under tableau rules is a branch of length one.

Making use of the concept of closure, we will now show a relationship between
the existence of maximal and open branches originating from finite subsets of
some set of expressions and the existence of closure of that set which is an open
and maximal branch.

Lemma . (On the existence of maximal and open branch). Let X ⊆ ForS
and i ∈ N. If for any finite subset Y ⊆ X there exists an open and maximal branch
beginning with set of expressions Yi = {⟨A, i⟩ ∶A ∈Y}, then there exists such closure
Z of set of expressions Xi ={⟨A, i⟩ ∶A ∈X} under tableau rules that Z is an open and
maximal branch.

Proof. Take any X ⊆ ForS and i ∈N. Next, assume that (∗) for any finite subset
Y ⊆ X there exists open and maximal branch beginning with set of expressions
Yi = {⟨A, i⟩ ∶A ∈Y}.

Now, we take the set of all maximal and open branches beginning with set
Yi = {⟨A, i⟩ ∶A ∈Y}, for any finite subset Y ⊆X. The set will be denoted as X.

Next, we will define set X with the following conditions:
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. X ⊆X
. for any two branches ϕ and ψ contained inX, if there exist such two numbers

i,k ∈N that ϕ(i)∪ψ(k) is a t-inconsistent set, then ϕ /∈X or ψ /∈X
. X is a maximal set among subsets X that meet conditions  and .

There exists at least one such set X that X ⊆X. Take one such set X and denote
it as X.

Consider set⋃{ϕ() ∶ ϕ ∈X}. Note that (∗∗) Xi ⊆⋃{ϕ() ∶ ϕ ∈X}. If that was
not the case, there would exist such x ∈ Xi that x /∈ ⋃{ϕ() ∶ ϕ ∈ X} and for each
such branch ψ ∈X that x ∈ψ(), ψ() ⊆Xi and ψ() is a finite set, it would be the
case thatψ /∈X. And then, for some finite subsetYi ⊆Xi there would exist nomax-
imal and open branch beginning with set Yi ∪{x}which contradicts assumption
(∗).

Now, using condition:

U ∈X iff there exists such branch ϕ that ϕ ∈X and U =⋃ϕ

we define set X. Further, we define set Z =⋃X.
We claim that set Z is a closure of set of expressions Xi = {⟨A, i⟩ ∶A ∈X} under

tableau rules, according to definition ., and that Z is an open and maximal
branch.

First, we will show that Z is a closure of set of expressions Xi = {⟨A, i⟩ ∶A ∈X}.
Thus, we will show that Z meets conditions of closure, according to definition
..

Note that Xi ⊆ Z, since by (∗∗) Xi ⊆ ⋃{ϕ() ∶ ϕ ∈ X}, and by construction of
set Z, ⋃{ϕ() ∶ ϕ ∈X} ⊆ Z.

Now, take any rule R ∈ RS and any n-tuple ⟨U, . . . , Un⟩ ∈ R, for some n ∈N,
and assume that Xi ⊆U ⊆ Z. From the definition of tableau rules for S ., it
follows that there exists such n-tuple ⟨U′ , . . . , U

′
n⟩ ∈ R that:

• for any  ≤ j ≤ n, U′j is a minimal finite set such that if Uj is not such a minimal
finite set that ⟨U, . . . , Un⟩ ∈ R, then U′j ⊂Uj

• for any  < j ≤ n, Uj ∖U =U′j ∖U
′
 .

Therefore, assuming that U′ ⊆ Z, we must show that for some  < l ≤ n, U′l ⊆ Z,
since U′l ∪U =Ul. Since for finite set of expressions U′ , it is the case that U

′
 ⊆ Z,

there exists such finite number of branches ϕ,ϕ, . . . ,ϕo in set X that for some
k ∈ N, U′ ⊆ ϕ(k) ∪ ϕ(k) ∪ ⋅ ⋅ ⋅ ∪ ϕo(k). So, set X contains branch ψ such that
ψ() = ϕ() ∪ ϕ() ∪ ⋅ ⋅ ⋅ ∪ ϕo() and U′ ⊆ ψ(m), for certain m ∈N, since ψ is a
maximal branch and ϕ(k)∪ϕ(k)∪⋅ ⋅ ⋅∪ϕo(k) is a t-consistent set. But, from the
fact that ψ is a maximal branch and from definition of maximal branch ., it
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follows that for certain  < l ≤ n, U′l ⊆⋃ψ, and thus U′l ⊆ Z, since by construction
Z, ⋃ψ ⊆ Z.

We will now show that Z is an open and maximal branch.
By conclusion ., set Z is a branch. By construction of set Z, Z is an open

branch, that is none of the subsets of Z is t-inconsistent, by virtue of definition of
set X.

Let us now check if Z is a maximal branch. Making use of the definition of
maximal branch ., assume that there exists a tableau rule R ∈RS and n-tuple
⟨X, . . . ,Xn⟩ ∈ R, for some n ∈ N, such that X = Z. By definition of tableau rules
., there exists n-tuple ⟨X′ . . . ,X

′
n⟩ ∈R such that for any < j≤n,Xj∖X =X′j ∖X

′


and Xi ⊆ X′ ⊆ Z. Since Z is a closure under tableau rules of set Xi, so X′j ⊆ Z, for
certain  < j ≤ n, by definition .. Therefore, also Xj ⊆ Z, since Xj = X ∪ X′j .
But then X /⊂Xj, which by definition of tableau rules . is out of the question.
Consequently, there exists no tableau rule and n-tuple ⟨X,. . . ,Xn⟩ ∈ R such that
X =Z, for some n ∈N.Therefore, Z is amaximal branch, by definition ofmaximal
branch .

Let us define the concept of model generated by branch.

Definition . (Model generated by branch). Let ϕ be a branch. Let X be a
non-empty subset of set of formulas ForS and {⟨A,k⟩ ∶ A ∈ X} ⊆ ⋃ϕ, for some
k ∈N. We define function AT(ϕ) ⊆TeS as follows, x ∈AT(ϕ) iff one of the below
conditions is met:

• x ∈ ⋃ϕ∩{irj ∶ i, j ∈N}
• x ∈ ⋃ϕ∩(Var×N).

We shall state that modelMS = ⟨W,R,V ,w⟩ is generated by branch ϕ iff:

• W = {i ∶ i ∈ ∗(AT(ϕ))}∪{k}
• for any i, j ∈N, ⟨i, j⟩ ∈ R iff irj ∈AT(ϕ)
• V(x, i) =  iff ⟨x, i⟩ ∈AT(ϕ)
• w = k.

Let modelMS be generated by ϕ. Then, we shall state that ϕ generates the model.

From the definition of generated model, another conclusion results.

Corollary .. Let ϕ be such an open branch that for certain non-empty set of
formulas X and some index i ∈N, {⟨A, i⟩ ∶ A ∈ X} ⊆ ⋃ϕ. Then, ϕ generates model
MS = ⟨W,R,V , i⟩.

Proof. By definition of open branch ., definition of model . and definition
of model generated by branch ..



Theorem on the completeness of the tableau system for S 

Lemma . (On generation of model). Let ϕ be an open and maximal branch.
Then, for any non-empty X ⊆ForS and any index i such that {⟨A, i⟩ ∶A ∈X} ⊆⋃ϕ
there exists modelMS such that for any formula A, if A ∈X, thenMS ⊧A.

Proof. Take any maximal and open branch ϕ such that for certain set X ⊆ ForS
and certain index i, {⟨A, i⟩ ∶A ∈X} ⊆⋃ϕ. Since ϕ is open, then according to con-
clusion ., there exists, generated by ϕ, modelMS = ⟨W,R,V ,w⟩, specified in
accordance with definition ., where w = i.

Wewill carry out an inductive proof due to the construction of formulas, show-
ing that for any formulaE and any k ∈N, if ⟨E,k⟩ ∈⋃ϕ, thenMS =⟨W,R,V ,k⟩⊧E.

Initial step. Take any x ∈Var and some index j ∈N.
If ⟨x, j⟩ ∈ ⋃ϕ, then — according to the definition of generated model MS —

V(x, j) = , thus by definition of truth in model ., ⟨W,R,V , j⟩ ⊧ x.
If ⟨¬x, j⟩ ∈ ⋃ϕ, then since branch ϕ is open, ⟨x, j⟩ /∈ ⋃ϕ, and — according to

the definition of generated modelMS — V(x, j) = , thus by definition of truth
in model ., ⟨W,R,V , j⟩ ⊧ ¬x.

Induction step. (†)Take any formula E ∈ForS and indices j,k ∈N and assume
that for each tableau expression ⟨D,n⟩, whereD ∈ForS and n ∈N that belongs to
set ⋃ϕ as a result of application of some tableau rule to set {⟨E, j⟩} ⊆ ⋃ϕ or set
{⟨E, j⟩, jrk} ⊆⋃ϕ, it is the case that ⟨W,R,V ,n⟩ ⊧D.

Making use of the inductive assumption, let us consider all cases of
construction of formula E. Take some index j ∈N.

. Let E = (B ∧ C) and ⟨(B ∧ C), j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch,
due to rule R∧, both ⟨B, j⟩ and ⟨C, j⟩ belong to⋃ϕ. From assumption (†) and
definition of truth in model ., we get that ⟨W,R,V , j⟩ ⊧ (B∧C).

. Let E = (B∨C) and ⟨(B∨C), j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch, due
to rule R∨, ⟨B, j⟩ or ⟨C, j⟩ belongs to⋃ϕ. From assumption (†) and definition
of truth in model ., we get that ⟨W,R,V , j⟩ ⊧ (B∨C).

. Let E = (B→ C) and ⟨(B→ C), j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch,
due to rule R→, ⟨¬B, j⟩ or ⟨C, j⟩ belongs to ⋃ϕ. From assumption (†) and
definition of truth in model ., we get that ⟨W,R,V , j⟩ ⊧ (B→C).

. Let E = (B↔ C) and ⟨(B↔ C), j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch,
due to rule R↔, ⟨B, j⟩, ⟨C, j⟩ belong to ⋃ϕ or ⟨¬B, j⟩, ⟨¬C, j⟩ belong to ⋃ϕ.
From assumption (†) and definition of truth in model ., we get that
⟨W,R,V , j⟩ ⊧ (B↔C).

. Let E = ¬¬B and ⟨¬¬B, j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch, due to
rule R¬¬, ⟨B, j⟩ belongs to ⋃ϕ. From assumption (†) and definition of truth
in model ., we get that ⟨W,R,V , j⟩ ⊧ ¬¬B.
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. Let E = ¬(B∧C) and ⟨¬(B∧C), j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch,
due to rule R¬∧, ⟨¬B, j⟩ or ⟨¬C, j⟩ belongs to ⋃ϕ. From assumption (†) and
definition of truth in model ., we get that ⟨W,R,V , j⟩ ⊧ ¬(B∧C).

. Let E = ¬(B∨C) and ⟨¬(B∨C), j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch,
due to rule R¬∨, ⟨¬B, j⟩ and ⟨¬C, j⟩ belong to ⋃ϕ. From assumption (†) and
definition of truth in model ., we get that ⟨W,R,V , j⟩ ⊧ ¬(B∨C).

. Let E =¬(B→C) and ⟨¬(B→C), j⟩ ∈⋃ϕ. Then, since ϕ is a maximal branch,
due to rule R¬→, ⟨B, j⟩ and ⟨¬C, j⟩ belong to ⋃ϕ. From assumption (†) and
definition of truth in model ., we get that ⟨W,R,V , j⟩ ⊧ ¬(B→C).

. Let E = ¬(B↔C) and ⟨(B↔C), j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch,
due to rule R¬↔, ⟨¬B, j⟩, ⟨C, j⟩ belong to ⋃ϕ or ⟨B, j⟩, ⟨¬C, j⟩ belong to
⋃ϕ. From assumption (†) and definition of truth in model ., we get that
⟨W,R,V , j⟩ ⊧ (B↔C).

. Let E = ¬◻B and ⟨¬◻B, j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch, due to
rule R¬◻, ⟨◇¬B, j⟩ belongs to ⋃ϕ. From assumption (†) and definition of
truth in model ., we get that ⟨W,R,V , j⟩ ⊧ ¬◻B.

. Let E = ¬◇ B and ⟨¬◇ B, j⟩ ∈ ⋃ϕ. Then, since ϕ is a maximal branch, due
to rule R¬◻, ⟨◻¬B, j⟩ belongs to ⋃ϕ. From assumption (†) and definition of
truth in model ., we get that ⟨W,R,V , j⟩ ⊧ ¬◇B.

. Let E = ◻B and ⟨◻B, j⟩ ∈ ⋃ϕ. We have theoretically two cases: either (i) for
none l ∈ N expression jrl belongs to ⋃ϕ, or (ii) there exists such l ∈ N that
expression jrl belongs to⋃ϕ. However, case (i) does not hold, because by rule
Rr , expression jrj belongs to⋃ϕ at least. In case (ii) we take set {l ∶ jrl ∈⋃ϕ}—
by assumption, this set is non-empty. Since branch ϕ is maximal, by virtue of
rule R◻ for anym ∈ {l ∶ jrl ∈⋃ϕ} set⋃ϕ contains expression ⟨B,m⟩. Whereas
due to construction of model MS and (†), we know that ⟨W,R,V ,m⟩ ⊧ B.
Therefore, by definition of truth in model ., we get that ⟨W,R,V , j⟩ ⊧ ◻B.

. Let E = ◇B and ⟨◇B, j⟩ ∈ ⋃ϕ. Since branch ϕ is maximal, due to rule R◇,
there exists index l ∈ N such that expressions ⟨B, l⟩ and jrl belong to ⋃ϕ.
From the construction of model MS and (†), we know that l ∈W, ⟨j, l⟩ ∈ R
and ⟨W,R,V , l⟩ ⊧ B. Therefore, by definition of truth in model ., we get
⟨W,R,V , j⟩ ⊧◇B.

Thus, we have proven that for any formula E and any index j, if ⟨E, j⟩ ∈ ⋃ϕ,
then ⟨W,R,V , j⟩ ⊧E.Therefore, there exists suchmodelMS that for any formula
A, if A ∈X, thenMS ⊧A sinceMS = ⟨W,R,V , i⟩.

The above concepts and facts allow us to demonstrate a partial relation-
ship between the relation of semantic consequence and the relation of branch
consequence in the tableau system for S.
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Lemma .. For any X ⊆ ForS, A ∈ ForS, if X ⊧A, then X ⊳A.

Proof. Take any X ⊆ ForS and A ∈ ForS. Assume that X /⊳ A. We must show
that X /⊧ A. From the assumption and definition of ⊳, ., we know that there
exists no such index i ∈ N and such finite set Y ⊆ X that each maximal branch
beginning with set {⟨B, i⟩ ∶ B ∈ Y ∪ {¬A}} is closed. Therefore, for each index
i ∈ N and each finite set Y ⊆ X, there exists a maximal branch beginning with
set {⟨B, i⟩ ∶ B ∈ Y ∪ {¬A}} which is open. By lemma ., for some index i ∈ N,
there exists such closure Z of set of expressions Xi = {⟨B, i⟩ ∶B ∈X∪{¬A}} under
tableau rules that Z is an open and maximal branch. Since Z = ⋃Z and {⟨B, i⟩ ∶
B ∈X∪{¬A}} ⊆ Z, from lemma ., we know that there exists modelMS such
thatMS ⊧X∪{¬A}. Hence, by definition of ⊧, ., X /⊧A.

We will now proceed to the determination of relationship between the branch
consequence relation and the existence of a closed tableau. However, this will
require some introduction of another concepts.

Let us now define the concept of R-branch, that is such branch that originated
by the application of rules exclusively from set R ⊆RS, for some R.

Definition . (R-branch). Let R ⊆ RS, let K = N or K = {,, . . . ,n}, where
n ∈ N. Moreover, let X be a set of expressions. R-branch (or R-branch beginning
with X) will be called any sequence ϕ ∶ K �→ P(TeS) that meets the following
conditions:

. ϕ() =X
. for any i ∈ K, if i+  ∈ K, then there exists such rule R ∈ R and such n-tuple
⟨Y, . . . ,Yn⟩ ∈ R that ϕ(i) =Y and ϕ(i+ ) =Yk, for certain  < k ≤ n.

Having established set R, the resultant branch will be then called R-branch.

Definition of R-branch differs from definition of branch . in the fact that
the applied rules come from a subset of set of tableau rules RS. In a special case
when R =RS, both definitions would be identical. But, since set R does not have
to be identical with set RS, so we have a conclusion.

Corollary .. For any R ⊆RS, each R-branch is a branch.

In a similar manner, we will define another auxiliary concept, namely the
concept of quasi-maximal branch.

Definition . (Quasi-maximal branch). Let R ⊆RS and let ϕ ∶K�→P(TeS)
be a branch. We shall state that ϕ is a quasi-maximal branch iff it meets one of the
below conditions:
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. ϕ is closed
. for any rule R ∈R, any n ∈N and any n-tuple ⟨X, . . . ,Xn⟩ ∈R, if ϕ(k) =X, for

certain k ∈K, then for some j ∈K, there exist ϕ(j) and such set of expressions
W ⊆ TeS that for some  < i ≤ n,W is strongly similar to Xi (according to R)
andW ⊆ ϕ(j).

Having established set R, the resultant quasi-maximal branch will be called R-
quasi-maximal branch.

The provided definition of quasi-maximal branch also resembles the definition
of maximal branch ., while in a special case, when R = RS, both definitions
would be identical. Again, the difference pertains to the reference to the set of
rules which is some subset R ⊆ RS, so possibly proper subset of tableau rules.
Since amaximal branchmust be a sequence closed under all rules, so the relation-
ship that occurs between the quasi-maximal branches and maximal branches is
one-directional. That relationship is expressed by another conclusion which fol-
lows from the definition ofmaximal branch . and definition of quasi-maximal
branch ..

Corollary .. Each maximal branch is R-quasi-maximal branch, for any R ⊆
RS.

The next conclusion is consequential for further considerations. It follows di-
rectly from the definition of quasi-maximal branch .. In the proofs of further
facts, the content of that conclusion shall be deemed self-evident.

Corollary .. For any R ⊆RS, each R-quasi-maximal branch is a branch.

Let us now introduce the definition of addition of branches.

Definition . (Addition of branches). Let ϕ ∶ {, . . . ,n} �→ P(TeS) and ψ ∶
M�→ P(TeS) be branches, for some n ∈N andM ⊆N, and let ϕ(n) =ψ(). The
results of the operation ϕ⊕ψ is function φ ∶K�→ P(TeS) defined as follows:

. ifM =N, then K =N
. if ∣M∣ ∈N, then K = {, . . . ,n,n+ ,n+, . . . ,n+ ∣M∣ − }
. for each i ∈K

a. if  ≤ i ≤ n, φ(i) = ϕ(i)
b. if i > n, then φ(i) =ψ((i−n)+ ).

From definition of addition of branches ., definition of tableau rules .
and definition of branches ., another conclusion follows.

Corollary .. Let ϕ ∶ {, . . . ,n}�→P(TeS) andψ ∶M�→P(TeS) be branches,
for some n ∈N and M ⊆N, and let ϕ(n) =ψ(). Then ϕ⊕ψ is also a branch.
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Now, we have several facts concerning the relationship between the quasi-
maximal branches and the finite sets of expressions.

Proposition .. Let RCPL = {R∧, R∨, R→, R↔, R¬¬, R¬∧, R¬∨, R¬→, R¬↔}.
Let X ⊆ TeS be a finite set of tableau expressions. Then, there exists a RCPL-quasi-
maximal branch beginning with set X.

Proof. Take set of rules RCPL = {R∧, R∨, R→, R↔, R¬¬, R¬∧, R¬∨, R¬→, R¬↔}
and set of tableau expressions X ⊆ TeS.

If set X is t-inconsistent, then — by definition . — one-element sequence
⟨X⟩ is a RCPL-quasi-maximal branch beginning with set X. Then, assume that X
is not t-inconsistent.

Since X is a finite set, then ∗(X), that is a set of indices that appear in the
expressions in set X (definition of function selecting indices .), is also finite.

If ∗(X) is an empty set, because X = ∅, then — by definition . — one-
element sequence ⟨X⟩ is a RCPL-quasi-maximal branch beginning with set X.

Assume that ∗(X) is a non-empty set. By quasi-modal formula we will mean
each such formula A of logic S that A is different from each following formula
◇B, ◻B, ¬◇ B, ¬ ◻ B, where B is a formula of S. The set of all quasi-modal
formulas will be denoted with symbol ForQS. We will divide set of propositional
letters Var into two disjoint subsets Var and Var so that propositional letter
x ∈ Var iff x = pi, for some i ∈N. From definitions of set Var it follows that both
set Var and Var are infinite sets, plus their union equals to set Var.

Since set ForS ∖ ForQS and set of propositional letters Var are infinite and
countable sets, we can determine bijection ● ∶ForS∖ForQS�→Var that assigns
exactly one propositional letter to each formula which is not quasi-modal.

Now, for each index i ∈ ∗(X), we define set Xi = {⟨A, i⟩ ∶ ⟨A, i⟩ ∈ X and A is
a quasi-modal formula}. Set Xi contains all and only those expressions that be-
long to set of expressions X which constitute an ordered pair: some quasi-modal
formula A, i.e., in terms of structure, formula corresponding to some formula of
CPL, and index i. Since set X is finite, so for any i, set Xi is also finite.

If for any i ∈ ∗(X), set Xi is an empty set, then initial set X does not comprise
any subset to which we could apply one of rules RCPL. Therefore — by definition
. — one-element sequence ⟨X⟩ is a RCPL-quasi-maximal branch beginning
with set X.

Assume that it is not the case that for any i ∈ ∗(X), set Xi is an empty set.
Now, note that set of rules RCPL includes analogons of tableau rules from the set
of tableau rules for CPL — from set RCPL. In other words, rules for CPL“split”
formulas into subformulas, and at the same time rules RCPL for the expressions
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constructed from quasi-modal formulas and index identically “split” formulas
preserving the initial index in the new expression.

For rules RCPL, we have fact . stating that each finite set of formulas of
the classical logic, that is non-modal formulas, is the first element of some such
branch of a finite length ϕ that there does not exist super-branch ϕ ⊂ψ.

Now, for any formulas A, B and C, we will define substitution e ∶ ForS �→
ForS using the following conditions:

. if A ∈Var, then for any i ∈N:
a. if A = pi and i = , then e(A) = q
b. if A = pi and i ≠ , then e(A) = qj, where j is the smallest odd number

greater that index in e(pi−)
c. if A = qi, then e(A) = qj, where j = i ⋅
d. if A = ri, then e(A) = ri

. if A = ¬B, A is a quasi-modal formula and there is no such formula D that
B = ¬D, then e(A) = ¬e(B)

. in the other cases:
a. if A = ¬¬B, then e(A) = ¬¬e(B)
b. if A = (B∧C), then e(A) = (e(B)∧ e(C))
c. if A = (B∨C), then e(A) = (e(B)∨ e(C))
d. if A = (B→C), then e(A) = (e(B)→ e(C))
e. if A = (B↔C), then e(A) = (e(B)↔ e(C))
f. if A =◇B, then e(A) = ●(◇B)
g. if A = ◻B, then e(A) = ●(◻B)
h. if A = ¬◇B, then e(A) = ●(¬◇B)
i. if A = ¬◻B, then e(A) = ●(¬◻B).

Note that for any formula A, its images under function e, i.e. e(A) is a formula
of CPL, that is e(A) ∈ ForCPL. Let us define function e′ ∶ ForS �→ ForCPL with
condition: for any formula A ∈ ForS, e′(A) = e(A).

Due to the fact that function ● is a bijection and that function e is injective,
function e′ is also a bijection. Hence, there exists inverse function e′− such that
for any formula A ∈ ForS, e′−(e′(A)) =A.

For any i ∈ ∗(X), we now define set Xi = {e′(A) ∶ ⟨A, i⟩ ∈Xi}.
Obviously, Xi is, by virtue of the construction of set Xi, a finite subset of for-

mulas CPL. So, from the mentioned fact ., it follows that there exists such a
finite branch of length n beginningwith setXi that it cannot be anymore extended
using the tableau rules for tableau system for CPL:

() Xi
, X

i
, . . . , X

i
n.
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Hence, there exists such finite RCPL-branch of length n, beginning with set Xi:
() Xi

, X
i
, . . . , X

i
n

where for any  ≤ j ≤ n, Xi
j = {⟨A, i⟩ ∶ A ∈ e′−(Xi

j)}, that it cannot be anymore
extended using the tableau rules from set RCPL. If branch () was extendible by
some of rules from setRCPL, also branch () would be extendible by an equivalent
of that rule from set RCPL. But this would contradict fact ..

Note that branch:

Xi
, X

i
, . . . , X

i
n

is . quasi-maximal as it was created using rules that belonged to set of rules
RCPL and no rule from set of rules RCPL can be applied to set Xi

n.
Now, take initial set of expressions X and branch Xi

, X
i
, . . . , X

i
n, and for any

index i ∈ ∗(X) define branch:

(†) Yi
 =X

i
 ∪X, Y

i
 =X

i
 ∪X, . . . , Y

i
n =Yi

n ∪X.

Set Yi
 = X

i
 ∪X, by definition of set Xi

, is equal to set X. So, the defined branch
begins with set X.

If for some index i ∈ ∗(X), a branch defined with scheme (†) ends with a
t-inconsistent set, then according to definition of quasi-maximality ., that
branch is quasi-maximal, while since Yi

 is equal to set X, so there exists a
RCPL-quasi-maximal branch beginning with set X.

Let us assume, however, that for no index i ∈ ∗(X), a branch defined with
scheme (†) ends with a t-inconsistent set.

As we know, set of indices i ∈ ∗(X) is finite — assume it containsm indices.
If set i ∈ ∗(X) only includes one index, say index j ∈ ∗(X), then according to

definition of quasi-maximality . there exists a RCPL-quasi-maximal branch
beginning with set X, defined with scheme (†):

Yj
 =X

j
 ∪X, Y

j
 =X

j
 ∪X, . . . , Y

j
n =Y

j
n ∪X.

Let us assume, however, that number of indices m that belong to set ∗(X), is
greater than one. Let us arrange the indices that belong to set i ∈ ∗(X) in sequence
i, i, . . . , im. For indices i, i, we take two branches, as per scheme (†):

(a) Yi
 , Y

i
 , . . . , Y

i
n

(b) Yi
 , Y

i
 , . . . , Y

i
l
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and define the third branch, summing up each of sets of branches (b) and last
element of branch (a), Yi

n :

(c) Yi
n ∪Y

i
 , Y

i
n ∪Y

i
 , . . . , Y

i
n ∪Y

i
l .

Since Yi
 = X, by definition of branch (†), Yi

n ∪Y
i
 = Yi

n , because X ⊆ Yi
n by

definition of branch (†). Now, we will make use of fact on addition of branches
. and define a branch by adding together branches (a) and (c):

(a)⊕(c) Z =Yi
 , Z =Yi

 , . . . , Zn =Yi
n , Zn+ =Yi

n ∪Y
i
 , . . . , Zn+l− =Y

i
n ∪Y

i
l .

Branch (a)⊕(c) will be called i-branch. Now, assume we have defined ik-
branch for k <m, of length o ∈N:

(d) Yik
 , Y

ik
 , . . . , Y

ik
o ,

Next, we take a branch for index ik+, as per scheme (†):

(e) Yik+
 , Yik+

 , . . . , Yik+
n

and define the third branch, summing up each of sets of branches (e) and last
element of branch (d), Yik

o :

(f) Yik
o ∪Y

ik+
 , Yik

o ∪Y
ik+
 , . . . , Yik

o ∪Y
ik+
n .

Since Yik+
 =X, by definition of branch (†), Yik

o ∪Y
ik+
 =Yik

o , because X ⊆Y
ik
o

by definition of branch (†) and construction of ik-branch. Again, we make use of
fact on addition of branches . and define a branch by adding branches (d) and
(f):

(d)⊕(f) Z = Y
ik
 , Z = Y

ik
 , . . . , Zo = Y

ik
o , Zo+ = Y

ik
o ∪Yik+

 , . . . , Zo+n− = Y
ik
o ∪

Yik+
n .

Branch (d)⊕(f) will be called ik+-branch. Carrying out the above actionsm−
times, we get im-branch, of length n, for some n ∈N:

(g) Yim
 , Yim

 , . . . , Yim
n .

We claim that branch (g) is — according to definition of quasi-maximality
. — quasi-maximal, and since Yim

 is equal to set X, there exists a RCPL-quasi-
maximal branch beginning with set X.
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Assume that branch (g) is not closed. Take any rule R ∈ RCPL and any such
ordered l-tuple ⟨X, . . . ,Xl⟩ ∈ R that for some  ≤ j ≤ n, Yim

j = X. Therefore, ac-
cording to definition of tableau rules . and set of rules RCPL, in set of tableau
expressions TeS, there exist such expressions A, . . . , Al that X ∖X = {A}, . . . ,
Xl ∖X = {Al} and ⟨{A}, . . . ,{Al}⟩ ∈ R. Since R ∈RCPL, so expression A is com-
posed of some formula B ∈ ForS and some index k ∈N, thus it has a structure of
⟨B,k⟩.

We know that there exists RCPL-quasi-maximal branch:

(h) Z = {⟨A,k⟩ ∶ ⟨A,k⟩ ∈X}, . . . , Zn′

for certain n′ ∈N. Since set Z contains all expressions like ⟨A,k⟩ present in set X,
so ⟨B,k⟩, due to definition of rules RCPL, belongs to some set Zo, where  ≤ o ≤ n′

such that Zo is the first set in branch (h) comprising expression ⟨B,k⟩.
From the construction of branch (g), it follows thatZo ⊆Yim

j . And since branch
(h) is quasi-maximal, so some of expressionsA, . . . ,Al belongs to some setZo+o ′ ,
where o+o′ ≤n′. From the construction of branch (g), it follows thatZo+o ′ ⊆Y

im
j+o ′ .

Due to the fact that Yim
j ⊆ Yim

j+o ′ , set Y
im
j ∪ {Al ′} ⊆ Yim

j+o ′ , where  ≤ l′ ≤ l. And

since by definition of strong similarity of sets of expressions ., set Yim
j ∪{Al ′}

is strongly similar to set Xl′ , so from definition of quasi-maximal branch ., it
follows that (g) is RCPL-quasi-maximal.

Now, we expand the above fact into richer set of rules R ⊆RS.

Proposition .. Let RCPL¬◇¬◻ = RCPL ∪ {R¬◇, R¬◻}. Let X ⊆ TeS be any
finite set of tableau expressions. Then, there exists a RCPL¬◇¬◻-quasi-maximal
branch beginning with set X.

Proof. Let RCPL¬◇¬◻ = RCPL ∪{R¬◇, R¬◻}. Take any and finite set of expres-
sions X ⊆ TeS.

From fact ., we know that there exists a RCPL-quasi-maximal branch
beginning with set X:

(a) Y, . . . , Yn

where:

. RCPL = {R∧, R∨, R→, R↔, R¬¬, R¬∧, R¬∨, R¬→, R¬↔}
. n ∈N
. Y =X.
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If branch (a) is closed, then by definition ., there exists RCPL¬◇¬◻-quasi-
maximal branch that begins with set X. Assume, however, that (a) is not a closed
branch.

The last element of branch (a), set Yn, contains a finite number of elements,
due to the fact that branch (a) is finite and that for each  ≤ i < n, set Yi+ is also
finite, by definition of rules RCPL.

Since set Yn is finite, then for somem ∈N, it contains at mostm of expressions
like ⟨¬◇A, i⟩, where A ∈ ForS and i ∈N.

Therefore, making use of rule R¬◇, we can define a branch beginning with set
Yn of length at mostm+ . Take any such branch of a maximal length:

(b) Y 
n, . . .Yo

n

where o ∈N and o ≤m+ . Branch (b) is R¬◇-quasi-maximal, by definition ..
In view of the fact that the last element of branch (a) is the first element of

branch (b), we can add both branches, by virtue of fact ., to get branch (a)⊕(b):

(c) Y, . . . , Yn+o−

of length n+o− .
If branch (b) is closed, then also branch (c) is closed, and— by definition .

— it is RCPL¬◇¬◻-quasi-maximal, and moreover it begins with set X. Assume,
however, that (c) is not a closed branch.

The last element of branch (c), setYn+o−, features a finite number of elements,
due to the fact that branch (c) is finite and that for each  ≤ i < n+o− , set Yi+ is
also finite, by definition of rules RCPL¬◇.

Since set Yn+o− is finite, then for some k ∈ N, it contains at most k of
expressions like ⟨¬◻A, i⟩, where A ∈ ForS and i ∈N.

Therefore, making use of rule R¬◻, we can define a branch beginning with set
Yn+o− of length at most k+ . Take any such branch of a maximal length:

(d) Y 
n+o−, . . .Y

j
n+o−

where j ∈N and j ≤ k+ . Branch (d) is R¬◻-quasi-maximal, by definition ..
In view of the fact that the last element of branch (c) is the first element of

branch (d), we can add both branches, by virtue of fact ., to get branch (c)⊕(d):

(e) Y, . . . , Yn+o+j−

of length n+o+ j−.
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If branch (d) is closed, then also branch (e) is closed, and— by definition .
— it is RCPL¬◇¬◻-quasi-maximal, and moreover it begins with set X. Assume,
however, that (e) is not a closed branch.

Now, take any rule R ∈ RCPL¬◇¬◻ and any ordered m-tuple ⟨Z, . . . ,Zm⟩ ∈ R,
for somem ∈N. Assume that setZ is an element of branch (e). By the construction
of branch (e), the sequence also includes such setU that for some < i≤m, Zi ⊆U
and U is an element of branch (a), (b) or (d), thus by the construction of branch
(e), it is also an element of branch (e). And since set Zi by virtue of definition of
strong similarity of sets of expressions . is strongly similar to Zi, due to def-
inition of quasi-maximal branch ., branch (e) is RCPL¬◇¬◻-quasi-maximal
branch.

Since branch (e) begins with set of expressionsX, so there exists aRCPL¬◇¬◻-
quasi-maximal branch beginning with set X.

Again, we expand the above fact into richer set of rules R ⊆RS.

Proposition .. Let Rr = RCPL¬◇¬◻ ∪{Rr}. Let X ⊆ TeS be any finite set of
tableau expressions. Then, there exists a Rr-quasi-maximal branch beginning with
set X.

Proof. LetRr =RCPL¬◇¬◻∪{Rr}. Take any andfinite set of expressionsX ⊆TeS.
From fact . we know that there exists a RCPL¬◇¬◻-quasi-maximal branch

beginning with set X:

(a) Y, . . . , Yn

where:

. RCPL¬◇¬◻ = {R∧, R∨, R→, R↔, R¬¬, R¬∧, R¬∨, R¬→, R¬↔R¬◇,R¬◻,
R◇,R◻}

. n ∈N
. Y =X.

If branch (a) is closed, then by definition ., there exists Rr-quasi-maximal
branch that begins with set X. Assume, however, that (a) is not a closed branch.

The last element of branch (a), set Yn, contains a finite number of elements,
due to the fact that branch (a) is finite and that for each  ≤ i < n, set Yi+ is also
finite, by definition of rules RCPL¬◇¬◻.

Since setYn is finite, then for somem ∈N, set∗(Yn) contains atmostm indices.
Therefore, making use of rule Rr , we can define a branch beginning with set

Yn of length at most of (m ⋅m)+ , because by definition of rule Rr , if indices i, j
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belong to given set ∗(Z), then that rule makes it possible to add set Z ∪{irj} in
the branch, as long as irj /∈ Z.

Take any branch maximal in length.

(b) Y 
n, . . .Yo

n

where o ∈ N and o ≤ (m ⋅m) + . Branch (b) is Rr-quasi-maximal, by definition
..

In view of the fact that the last element of branch (a) is the first element of
branch (b), we can add both branches, by virtue of fact ., to get branch (a)⊕(b):

(c) Y, . . . , Yn+o−

of length n+o− .
If branch (b) is closed, then also branch (c) is closed, and— by definition .

— it is Rr-quasi-maximal, and moreover it begins with set X. Assume, however,
that (b) is not a closed branch.

Now, take any rule R ∈ Rr and any ordered m-tuple ⟨Z, . . . ,Zm⟩ ∈ R, for some
m ∈ N. Assume that set Z is an element of branch (c). By the construction of
branch (c), that sequence also includes such set U that for some  < i ≤m, Zi ⊆U
and U is an element of branch (a) or (b), thus by the construction of branch (c),
it is also an element of branch (c). And since set Zi by virtue of by definition
of strong similarity of sets of expressions . is strongly similar to Zi, due to
definition of quasi-maximal branch ., branch (c) isRr-quasi-maximal branch.

Since branch (c) begins with set of expressions X, so there exists a Rr-quasi-
maximal branch beginning with set X.

In order to extend the latter fact onto further rules from set RS, we need ad-
ditional definitions. Prior to expressing the definition of cycle of rules R◻, we will
first explain the idea of cyclical application of that rule.

Let X ⊆TeS be a finite set of tableau expressions. Let the following branch (a)
X, . . . , Xn, where n ∈N and X =X, be Rr-quasi-maximal. We specify two sets of
expressions:

X′ = {irj ∶ i, j ∈N, irj ∈X}

X′′ = {⟨◻A, i⟩ ∶ ◻A ∈ ForS, i ∈N, and ⟨◻A, i⟩ ∈X}.

Union X′ ∪X′′ is a finite set because set X is finite by assumption. Moreover,
union X′ ∪X′′ ⊆Xn because X ⊆Xn.
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Set X′∪X′′ contains a finite number of such two-element subsets {⟨◻A, i⟩, irj}
that if expression ⟨A, j⟩ does not belong to t-consistent set of tableau expres-
sions Y , but set Y contains set {⟨◻A, i⟩, irj}, then pair ⟨Y ,Y ∪ {⟨A, j⟩}⟩ ∈ R◻.
Thus, in particular, if expression ⟨A, j⟩ does not belong to set Xn and set Xn is t-
consistent, then pair ⟨Xn,Xn ∪{⟨A, j⟩}⟩ ∈R◻. Assume that the number of subsets
{⟨◻A, i⟩, irj} ⊆X′ ∪X′′ is l, for some l ≥ .

Now, we extend branch (a) by rule R◻, taking account of all l sets {⟨◻A, i⟩, irj}
⊆ X′ ∪X′′, in an arbitrary order. Thereby, we get a branch of length at most m ≤
n+ l:

(b) X, . . . , Xn, Xn+ =Xn ∪{⟨An+, in+⟩}, . . . , Xm =Xm− ∪ {⟨Am, im⟩}

where for any n< j≤m, if setXj belongs to branch (b), then setXj− is t-consistent
and expression ⟨Aj, ij⟩ does not belong to set Xj−.

If set {⟨◻A,k⟩,kro}⊆X′∪X′′ does not exist, for some indices k, o, such that pair
⟨Xm,Xm+∪{A,o}⟩ ∈R◻, then branch (b) cannot be anymore extended using rule
R◻ by applying it to some pair from set {{x,y} ∶ x ∈X′,y ∈X′′} ⊆X. This does not
mean, of course, that there no newpairs appeared in the branch, in the subsequent
elements of the branch to which we could apply rule R◻. Nevertheless, we have
exhausted all the initial possibilities, closing a certain stage the result of which
will be called the cycle of rule R◻. Let us now proceed to a formal definition.

Definition . (Cycle of ruleR◻). LetX be a finite set of expressions. Let branch
ϕ: X, . . . , Xn be such branch that X =X and n ∈N. Branch ϕ will be called a cycle
of rule R◻ iff the below conditions are met:

. for certainm ≤ n, branch X, . . . , Xm is Rr-quasi-maximal
. for each m < l ≤ n there exist such indices o,k ∈ N and formula A that Xl =

Xl− ∪{⟨A,o⟩} and {⟨◻A,k⟩,kro} ⊆X
. there is no set {⟨◻A,k⟩,kro} ⊆ X, for some indices k, o and formula A, such

that pair ⟨Xn ∪{⟨◻A,k⟩,kro},Xn ∪{⟨A,o⟩}⟩ ∈ R◻.

Another fact follows from fact . and definition ..

Proposition .. Let X ⊆ TeS be a finite set of tableau expressions. Then, there
exists cycle of rule R◻.

Now, we expand the concept of cycle onto rule R◇, which will make our con-
siderations to cover all the rules from set of tableau rules RS. Prior to that,
however, let us look into the issue in a similar way as the expansion onto rule R◻.

Let X ⊆ TeS be a finite set of tableau expressions. Let branch (a) X, . . . , Xn,
where n ∈N and X =X, be a cycle of rule R◻.
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We specify set X′ = {⟨◇A, i⟩ ∶A ∈ ForS, i ∈N and ⟨◇A, i⟩ ∈X}.
Set X′ is a finite set because set X is finite by assumption. Moreover, X′ ⊆ Xn

because X ⊆Xn.
Set X′ contains a finite number of such expressions ⟨◇A,k⟩ that if subset

{⟨A, j⟩,krj} is not contained in t-consistent set of tableau expressions Y and
j /∈ ∗(Y), but ⟨◇A,k⟩ ∈Y , then pair ⟨Y , Y ∪{⟨A, j⟩, krj}⟩ ∈R◇. Thus, in particular,
if for any index j subset {⟨A, j⟩,krj} is not contained in set Xn, Xn is t-consistent
and j /∈ ∗(Xn), then pair ⟨Xn,Xn ∪{⟨A, j⟩, krj}⟩ ∈R◇. Assume that the number of
such expressions in set X′ is l ≥ .

Now, we extend branch (a) by rule R◇, taking account of all l expressions
⟨◇A,k⟩ ∈ X′, in an arbitrary order. Thereby, we get a branch of length at most
m ≤ n+ l:

(b) X, . . . , Xn, Xn+ = Xn ∪ {⟨An+, in+⟩,knrin+}, . . . , Xm = Xm− ∪
{⟨Am, im⟩,km−rim}

where for any n < j ≤m, if set Xj belongs to branch (b), then Xj− is t-consistent,
{⟨◇Aj,kj−⟩} ∈Xj−, set {⟨Aj,o⟩, kj−ro} is not contained in setXj− for any o ∈N,
and o /∈ ∗(Xj−).

If there is no tableau expression ⟨◇A,k⟩ ∈ X′, for some index k, such that
pair ⟨Xm,Xm+ ∪ {⟨A,o⟩,kro}⟩ ∈ R◇, for some index o, then branch (b) cannot
be anymore extended using rule R◇ by applying it to the expressions from set
X. Again, this does not mean, of course, that there no new pairs appeared in
the branch, in the subsequent elements of the branch to which we could apply
rule R◇. However, we have exhausted all the initial possibilities, closing a certain
stage the result of which will be called the cycle, precisely. Let us now proceed to
a formal definition of cycle.

Definition . (Cycle). Let X be a finite set of expressions. Let branch ϕ: X, . . . ,
Xn be such branch that X = X and n ∈ N. Branch ϕ will be called a cycle iff the
below conditions are met:

. for certainm ≤ n, branch X, . . . , Xm is a cycle of rule R◻
. for each m < l ≤ n there exist such indices o,k ∈ N and formula A that Xl =

Xl− ∪{⟨A,o⟩,kro} and {⟨◇A,k⟩} ⊆X
. there is no set {⟨◇A,k⟩} ⊆X, for some index k and formula A, such that for

some index o pair ⟨Xn ∪{⟨◇A,k⟩},Xn ∪{⟨◇A,k⟩,kro,⟨A,o⟩}⟩ ∈ R◇.

Another fact follows from fact . and definition ..

Proposition .. Let X ⊆ TeS be a finite set of tableau expressions. Then, there
exists a cycle.
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Now,wewill proceed to the principal fact from among those concerning quasi-
maximal branches. We will show that for a finite set of expressions, there exists
R-quasi-maximal branch that begins with that set, for R =RS, thus by definition
of maximal branch . and definition of quasi-maximal branch ., a maximal
branch.

Proposition .. Let X ⊆ TeS be a finite set of tableau expressions. Then, there
exists a maximal branch beginning with set X.

Proof. Take any finite set of expressions X ⊆ TeS. From fact ., it follows that
there exists cycle:
() X

 , . . . , X

o

where:

. o ∈N
. X

 =X
. all elements of the sequence have originated by the rules applicable for set X


from set of tableau rules RS.

(†) For any n > , we now define the following cycle:

(n) Xn
 , . . . , X

n
m

where:

. m ∈N
. Xn

 = Xn−
k and Xn−

k is the last element of cycle (n − ) which is k long, for
certain k ∈N

. all elements of the sequence have originated through the rules applicable for
set Xn

 from set of tableau rules RS.

There may exist an infinite number of cycles such that the last element of cycle
(n) is the first element of cycle (n+ ), and there exists at least one cycle like (),
that is such that the first element of that cycle is set of tableau expressionsX. From
the set of all cycles, we select the minimal set of cycles C such that:

. precisely one cycle like () belongs to C
. if cycle (n) belongs to C and set Z is the last element of cycle (n), then set C

contains cycle (n+ ) with set Z as the first element.

So, in set C for each (n) there exists precisely one cycle.
Now, assume that in set C there exists one-element cycle. Let it be cycle (k).

Therefore by definition of cycle . and definition (†), for each i ∈N, each cycle
(k+ i) has one element, what is more, cycle (k) is identical to cycle (k+ i).
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In such case, on cycles from () to (k), making use k−  times of conclusion
concerning addition of branches ., we define branch:

(‡) (. . .(X
 , . . . ,X


n

#$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$&
()

⊕ X
 , . . . ,X


m

#$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$&
()

)⊕ . . . )⊕Xk


3
(k)

where n,m, . . . ,o are the lengths of individual cycles.
Assume that branch (‡) is not closed. We claim that branch (‡) is maximal.

Because, take any rule R ∈RS and any j-tuple ⟨Z, . . . ,Zj⟩ ∈R such that set Z is an
element of branch (‡). If there is no such elementW of branch (‡) that some set
U ⊆W is strongly similar, within the meaning of definition of strong similarity
., to set of expressions Zi, for some  < i ≤ j, then from definition of tableau
rules ., it follows that rule R contains j-tuple ⟨Z ∪Xk

 , . . . ,Z
′
j ∪X

k
 ⟩, where for

any  < i ≤ j, Z′i ∪Xk
 is a set of expressions similar to set Zi ∪Xk

 . What follows
further, either (k) is not a one-element cycle or it is not a cycle. This, however,
contradicts the construction of set of cycles C.

Now, assume that in set C there does not exist one-element cycle. Then, each
cycle contained in C has at least two elements. By definition of set C — as it is
the minimal set of cycles — for each cycle (k), cycle (k+ ) differs from it since
at least its second element is a superset of the last element of cycle (k).

Now, wewill arrange all cycles from setC as per their numbers in the following
sequence of sequences:

(‡‡) X
 , . . . ,X


n

#$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$&
()

, X
 , . . . ,X


m

#$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$&
()

, . . . , Xk
 , . . . ,X

k
o

#$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$&
(k)

, . . .

where n,m, . . . ,o, . . . are the lengths of individual cycles.
Next, for any cycle (i), where < i, we remove setXi

 — this element is identical
to the last element of cycle (i− )— to get sequence:

(‡‡‡) X
 , . . . ,X


n

#$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$&
()

, X
 , . . . ,X


m

#$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$&
()

, . . . , Xk
 , . . . ,X

k
o

#$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$&
(k)

, . . .

where n,m, . . . ,o, . . . are the lengths of individual cycles.
That sequence is an infinite branch. It can also be defined as follows. Take

function ϕ ∶N�→ P(TeS) specified by the below conditions:

. ϕ() =X


. for any i, j,o ∈N, if ϕ(i) =Xo
j , then:
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a. ϕ(i+ ) =Xo
j+, if element Xo

j+ belongs to (‡‡‡)
b. ϕ(i+ ) =Xo+

 , otherwise.

By definition of sequence (‡‡‡) and definition of branch ., sequence ϕ is
a branch since for any i ∈ N, there exists such rule R ∈ RS and there exists such
l-tuple ⟨Y, . . . ,Yl⟩ that ϕ(i) =X i ϕ(i+ ) =Yl , where  < l ≤ l.

As branch ϕ is infinite, so it is not closed, by fact ..
We claim that branch ϕ is maximal. Because, take any rule R ∈RS and any n-

tuple ⟨Z, . . . ,Zn⟩ ∈ R such that set Z is an element of branch ϕ. So, by definition
of branch ϕ, set Z is an element of some cycle (k).

If there is no such element W of cycle (k) that for some set U ⊆W, set U is
strongly similar, within the meaning of definition of strong similarity ., to set
of expressions Zi, for some  < i ≤ n, then from definition of cycles (†) and defini-
tion of tableau rules . it follows that ruleR contains n-tuple ⟨Z∪Xk+

 , . . . ,Z′n∪
Xk+
 ⟩, where for any  < i ≤ n, Z′i ∪ Xk+

 is a set of expressions similar to set
Zi∪Xk+

 .Thus, by definition of cycle ., it follows that cycle (k+) contains set
of expressionsW such that for some set U ⊆W, set U is strongly similar, within
the meaning of definition of strong similarity ., to set of expressions Zi, for
some  < i ≤ n.

From the arbitrariness of ruleR and setZ, it follows that branch ϕ is amaximal
branch.

The above concepts and facts let us show a partial relationship between the
branch consequence relation and the existence of a closed tableau in the tableau
system for S.

Lemma .. For any X ⊆ForS, A ∈ForS, if X ⊳A, then there exists finite subset
Y ⊆X and closed tableau ⟨Y ,A,Φ⟩.

Proof. Take anyX ⊆ForS andA ∈ForS. Assume thatX ⊳A.Therefore, by defini-
tion of ⊳, there exists such finite set Y ⊆X and such index i ∈N that each maximal
branch beginning with set {⟨B, i⟩ ∶ B ∈Y ∪{¬A}} is closed. Thus, by fact . and
by definition of complete tableau ., there exists such non-empty subset Φ of
set of branches beginning with set {⟨B, i⟩ ∶B ∈Y ∪{¬A}} that ⟨Y ,A,Φ⟩ is a closed
tableau.

Wewill now proceed to the description of dependencies between the existence
of a closed tableau and the semantic consequence in the S. However, this will
require a determination of several more fundamental facts.
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Lemma .. Let X ⊆ForS be a finite set of formulas, A ∈ForS and i ∈N. If there
exists a maximal and open branch beginning with set {⟨B, i⟩ ∶ B ∈X ∪{¬A}}, then
each complete tableau ⟨X,A,Φ⟩ is open.

Proof. Take finite set X ⊆ ForS, any formula ¬A ∈ ForS and index i ∈ N such
that there exists a maximal and open branch beginning with set Xi = {⟨B, i⟩ ∶ B ∈
X∪{¬A}}. We will denote that branch with letter ϕ.
(∗) Since branch ϕ is open, so no element ϕ is a t-inconsistent set, by definition

..
(∗∗) Since branch ϕ is maximal and open, so for any rule R ∈ RS, any n ∈N

and any element Y ∈ ϕ, if ⟨Y ,Y, . . . ,Yn⟩ ∈R, then there exists some element Z ∈ ϕ
such that some subsistW ⊆Z is a set strongly similar to set Yi, for certain ≤ i≤n,
by definition of maximal branch ..

Now, we indirectly assume that there exists complete and closed tableau
⟨X,A,Ψ⟩.

Since tableau ⟨X,A,Ψ⟩ is complete, so Ψ is such a minimal subset of set of all
maximal branches that ⟨X,A,Ψ⟩ is a complete tableau, by definition of complete
tableau ..

Since tableau ⟨X,A,Ψ⟩ is closed, so each branch that belongs to Ψ, is closed,
by definition of closed tableau .. For certain k ∈N, each of these branches:

• begins with set Xk = {⟨B,k⟩ ∶ B ∈X∪{¬A}}, by definition of tableau .,
• and its last element is a t-inconsistent set of expressions, by definition of closed

tableau ..

We intend to show that there exists some branch χ such that χ /∈ Ψ and
⟨X,A,Ψ ∪ {χ}⟩ is a tableau, which contradicts the assumption that ⟨X,A,Ψ⟩ is
a complete tableau if χ is not a redundant variant of any branch which belongs to
Φ.

To this end, we will apply the induction through the branch length in order to
construct infinite branches beginning with set Xk. The construction method for
such branches will be denoted as (†).

Consider the first element of each branch contained in set of branches Ψ. It is
set X = Xk = {⟨B,k⟩ ∶ B ∈ X ∪{¬A}}. X is a similar set of expressions — within
the meaning of definition of similarity . — to set Xi = {⟨B, i⟩ ∶ B ∈ X ∪{¬A}}.
Since Xi ∈ ϕ and branch ϕ is open, so Xi and X are t-consistent, by conclusion
..

Nevertheless, due to the fact that Ψ is a set of closed branches and the con-
sidered tableau ⟨X,A,Ψ⟩ is complete, there must exist a tableau rule R ∈RS such
that ⟨X,Z, . . . ,Zl⟩ ∈ R, where  < l, and for each  < j ≤ l there exists such branch
in set Ψ that Zj belongs to that branch, by definition of complete tableau ..



Theorem on the completeness of the tableau system for S 

Nonetheless, certain set Zm — for  <m ≤ l—must be t-consistent. As due to
definition of tableau rules ., there exists such l-tuple that ⟨Y, . . . ,Yl⟩ ∈R, where
Zm is a similar set — in the sense of definition of similarity . — to some set
Wm ⊆Ym and it is t-consistent since Ym ⊆U ∈ ϕ, for certain U ⊆ TeS, by the fact
that ϕ is an (∗) open and (∗∗) maximal branch. Set Zm will be denoted as X,
while elementWm as X∗ .

Therefore, for number  there exist such branches ψ, ψ ∈Ψ that:

• X ∈ψ
• set X originated by the application of certain rule R ∈RS to set X, ultimately

producing a second element of branch ψ ∈Ψ
• X ∈ψ
• X is a t-consistent set
• X ⊂X
• for some j ∈N, set X∗ ⊆Xj ∈ ϕ, moreover set X∗ is similar, within the meaning

of definition of similarity . — to set X.

Now, assume that for certain n ∈ N there exist such branches ψ, . . . , ψn ∈ Ψ
that:

• for any < j≤n, setXj originated through the application of certain ruleR ∈RS
to set Xj−, ultimately producing j-th element of branch ψj ∈Ψ

• Xn ∈ψn
• Xn is a t-consistent set
• X ⊂X ⊂ . . .⊂Xn
• for some i ∈N, set X∗n ⊆ Xi ∈ ϕ, moreover X∗n is similar, within the meaning of

definition of similarity . — to set Xn.

Nevertheless, due to the fact that Ψ is a set of closed branches, the considered
tableau ⟨X,A,Ψ⟩ is complete and set Xn is a t-consistent set, there must exist a
tableau rule R ∈RS such that ⟨Xn,Z, . . . ,Zl⟩ ∈R, where  < l, and for each  < j ≤ l
there exists such branch in set Ψ that Zj belongs to that branch, by definition of
complete tableau ..

Nonetheless, certain set Zm — for  < m ≤ l — must be t-consistent. As due
to definition of tableau rules ., there exists such l-tuple that ⟨Y, . . . ,Yl⟩ ∈ R,
where Zm is a similar set — within the meaning of definition of similarity . —
to some setWm ⊆Ym and it is t-consistent since Ym ⊆U ∈ ϕ, for certainU ⊆TeS,
by virtue of the fact that ϕ is an (∗) open and (∗∗)maximal branch. Set Zm will
be denoted as Xn+, while elementWm as X∗n+.
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Thus, fo any n ∈N, there exist such branches ψ, . . . , ψn,ψn+ ∈Ψ that:

• for any  < j ≤ n + , set Xj originated through the application of certain rule
R ∈RS to set Xj−, ultimately producing j-th element of branch ψj ∈Ψ

• Xn+ ∈ψn+
• Xn+ is a t-consistent set
• X ⊂X ⊂ . . .⊂Xn ⊂Xn+
• for some i ∈N, set X∗n+ ⊆Xi ∈ ϕ, moreover X∗n+ is similar, within the meaning

of definition of similarity . — to set Xn+.

Set of all sets that originate this way X ⊂ X ⊂ . . .⊂ Xn ⊂ Xn+ ⊂ . . .will be de-
noted as X. Set X contains at least one branch ψ such that for any i ∈N, if Xi ∈ ψ,
then there exists set Xi ∈X.

Branch ψ can be defined through the specification of such minimal subset of
X, set X′ that:

. X ∈X′

. for any i ∈N, if Xi ∈X′, then exactly one Xi+ ∈X′.

Branch ψ is infinite, and as a consequence of conclusion . it is an open
branch.

Since set X, the first element of branch ψ, is equal to set Xk, and moreover for
any element Xi ∈ ψ, where i > , there exists such rule R ∈ RS and such n-tuple
⟨Y, . . .Yn⟩ ∈ R that:

• Y =Xi−
• Xi =Yk, for certain  < k ≤ n
• for each  < j ≤ n, if j /= k, then there exists branch ψ′ ∈Ψ such that for some Zl,

where  ≤ l, Zl ∈ψ′, Zl =Y and Zl+ =Yj,

so ⟨X,A,Ψ∪{ψ}⟩ by virtue of definition of tableau . is a tableau for pair ⟨X,A⟩.
However, branchψ does not belong to set Ψ because tableau ⟨X,A,Ψ⟩, contrary

to the assumption, would not be a closed tableau.
Let us now consider the question whether or not set Ψ ∪ {ψ} is a redundant

superset of set Ψ, in the light of definition of redundant variant of branch ..
Let us now carry out the following argument.
(††)Assume that branchψ is a redundant variant of some branchψ′ ∈Ψ.Thus,

for certain minimal  ≤ i ∈N there exist two such rules R,R′ ∈RS, ordered couple
⟨U,U⟩ ∈ R and ordered triple ⟨W,W,W⟩ ∈ R′, such that:

• U =W
• U =Xi ∈ψ and U =Yi ∈ψ′

• U =W or U =W
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• (a) if U =W, then U =Yi+ and Xi+ =W
• (b) if U =W, then U =Yi+ and Xi+ =W.

No matter which case occurs, (a) or (b), since branch ϕ is open and maximal
(assumptions (∗) and (∗∗)), so also elementYi+ that belongs toψ′ is t-consistent
because it is similar to certain set of expressions W included in certain element
of branch ϕ.

Therefore, we can construct another infinite and open branch Z, . . . , Zi+,
. . . , making use of construction (†) for which, by virtue of reasoning analogous
to (††), there exists such subsequent element Ui+ that Z, . . .Zi+, Ui+ is a t-
consistent branch and is not a redundant variant of any sub-branch of any branch
from set Ψ.

So, by application of inductive reasoning and steps (†) and (††) we get an
infinite branch — call it χ — and, consequently, open which is not a redundant
variant of any branch that belongs to set of branches Ψ and begins with set X.

Since Ψ, by assumption, contains closed branches, χ /∈Ψ. Since set X, the first
element of branch χ, is equal to set Xk, and moreover for any element Xi ∈ χ,
where i > , there exists such rule R ∈RS and such n-tuple ⟨Y, . . .Yn⟩ ∈ R that:

• Y =Xi−
• Xi =Yk, for certain  < k ≤ n
• for each  < j ≤ n, if j /= k, then there exists branch ψ′ ∈Ψ such that for some Zl,

where  ≤ l, Zl ∈ψ, Zl =Y and Zl+ =Yj,

so ⟨X,A,Ψ∪{χ}⟩ by virtue of definition of tableau . is a tableau for pair ⟨X,A⟩.
Thus, ⟨X,A,Ψ⟩ is not a complete tableau which contradicts the initial assump-

tion.

In the next fact, we will take up the relationship between the rules from setRS
andmodels.That fact states that rules have the following property: for anymodel,
if the model is appropriate for the input set of the rule, then it is also appropriate
for at least one output set of that rule.

Proposition .. Let X ⊆ TeS, MS be a model and rule R ∈ RS. If
⟨X,X, . . . ,Xn⟩ ∈ R, where  ≤ n ≤ , and model MS is appropriate for set X, then
MS is appropriate for some set Xi, where  ≤ i ≤ n.

Proof. Take any:X ⊆TeS, modelMS =⟨W,Q,V ,w⟩, ruleR ∈RS, and n+-tuple
⟨X,X, . . . ,Xn⟩ ∈ R, for some  ≤ n ≤ .

From definition of model appropriate for the set of expressions ., we know
that modelMS is appropriate forX iff there exists such function f ∶N�→W that
for any A ∈ ForS and i, j ∈N:
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• if ⟨A, i⟩ ∈X, then ⟨W,Q,V , f (i)⟩ ⊧A
• if irj ∈X, then f (i)Qf (j).

Let us consider all possible cases of rule R, and n+ -tuples ⟨X, X, . . . , Xn⟩ ∈R,
where  < n ≤ . Take any two formulas A, B ∈ ForS, any indices i, j ∈N and any
set of expressions Y ⊂X.

. Assume that R = R∧ and X = Y ∪ {⟨(A ∧ B), i⟩}, X = X ∪ {⟨A, i⟩,⟨B, i⟩}.
Assume that model MS is appropriate for set X. Since model MS =

⟨W,Q,V ,w⟩ is appropriate for set X, there exists such function f ∶ N�→W
that ⟨W,Q,V , f (i)⟩ ⊧ (A∧B). Therefore, by definition of truth in model .,
⟨W,Q,V , f (i)⟩ ⊧ A and ⟨W,Q,V , f (i)⟩ ⊧ B. Since model MS is appropriate
for X, it is appropriate for some set Xi, where  ≤ i ≤ n.

. Assume that R = R∨ and X = Y ∪ {⟨(A ∨ B), i⟩}, X = X ∪ {⟨A, i⟩} and X =

X ∪ {⟨B, i⟩}. Assume that model MS is appropriate for set X. Since model
MS =⟨W,Q,V ,w⟩ is appropriate for setX, there exists such function f ∶N�→
W that ⟨W,Q,V , f (i)⟩ ⊧ (A∨B). Therefore, by definition of truth in model
., ⟨W,Q,V , f (i)⟩⊧A or ⟨W,Q,V , f (i)⟩⊧B. SincemodelMS is appropriate
for X or X, it is appropriate for some set Xi, where  ≤ i ≤ n.

. Assume thatR=R→ andX =Y∪{⟨(A→B), i⟩},X =X∪{⟨¬A, i⟩} andX =X∪
{⟨B, i⟩}. Assume that modelMS is appropriate for set X. Since modelMS =

⟨W,Q,V ,w⟩ is appropriate for set X, there exists such function f ∶ N�→W
that ⟨W,Q,V , f (i)⟩ ⊧ (A→B). Therefore, by definition of truth in model .,
⟨W,Q,V , f (i)⟩ ⊧ ¬A or ⟨W,Q,V , f (i)⟩ ⊧ B. Since model MS is appropriate
for X or X, it is appropriate for some set Xi, where  ≤ i ≤ n.

. Assume that R = R↔ and X = Y ∪ {⟨(A ↔ B), i⟩}, X = X ∪ {⟨A, i⟩,⟨B, i⟩}
and X = X ∪ {⟨¬A, i⟩,⟨¬B, i⟩}. Assume that model MS is appropriate for
set X. Since model MS = ⟨W,Q,V ,w⟩ is appropriate for set X, there ex-
ists such function f ∶ N �→ W that ⟨W,Q,V , f (i)⟩ ⊧ (A ↔ B). Therefore,
by definition of truth in model ., ⟨W,Q,V , f (i)⟩ ⊧ A and ⟨W,Q,V , f (i)⟩ ⊧
B or ⟨W,Q,V , f (i)⟩ ⊧ ¬A and ⟨W,Q,V , f (i)⟩ ⊧ ¬B. Since model MS is
appropriate for X or X, it is appropriate for some set Xi, where  ≤ i ≤ n.

. Assume that R = R¬¬ and X = Y ∪{⟨¬¬A, i⟩}, X = X ∪{⟨A, i⟩}. Assume that
modelMS is appropriate for setX. SincemodelMS = ⟨W,Q,V ,w⟩ is appro-
priate for set X, there exists such function f ∶N�→W that ⟨W,Q,V , f (i)⟩ ⊧
¬¬A .Therefore, by definition of truth inmodel ., ⟨W,Q,V , f (i)⟩ /⊧¬A, and
consequently ⟨W,Q,V , f (i)⟩ ⊧ A . Since model MS is appropriate for X, it
is appropriate for some set Xi, where  ≤ i ≤ n.

. Assume that R = R¬∧ and X = Y ∪ {⟨¬(A ∧ B), i⟩}, X = X ∪ {⟨¬A, i⟩} and
X = X ∪ {⟨¬B, i⟩}. Assume that model MS is appropriate for set X. Since
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modelMS = ⟨W,Q,V ,w⟩ is appropriate for set X, there exists such function
f ∶N�→W that ⟨W,Q,V , f (i)⟩⊧¬(A∧B).Therefore, by definition of truth in
model ., ⟨W,Q,V , f (i)⟩ /⊧A or ⟨W,Q,V , f (i)⟩ /⊧ B, so ⟨W,Q,V , f (i)⟩ ⊧ ¬A
or ⟨W,Q,V , f (i)⟩ ⊧ ¬B. Since model MS is appropriate for X or X, it is
appropriate for some set Xi, where  ≤ i ≤ n.

. Assume that R = R¬∨ and X = Y ∪ {⟨¬(A ∨ B), i⟩}, X = X ∪ {⟨¬A, i⟩,
⟨¬B, i⟩}. Assume that model MS is appropriate for set X. Since model
MS = ⟨W,Q,V ,w⟩ is appropriate for set X, there exists such function f ∶
N �→W that ⟨W,Q,V , f (i)⟩ ⊧ ¬(A ∨ B). Therefore, by definition of truth
in model ., ⟨W,Q,V , f (i)⟩ /⊧ A and ⟨W,Q,V , f (i)⟩ /⊧ B, and consequently
⟨W,Q,V , f (i)⟩ ⊧ ¬A and ⟨W,Q,V , f (i)⟩ ⊧ ¬B. Since modelMS is appropri-
ate for X, it is appropriate for some set Xi, where  ≤ i ≤ n.

. Assume that R = R¬→ and X = Y ∪{⟨¬(A→ B), i⟩}, X = X ∪{⟨A, i⟩,⟨¬B, i⟩}.
Assume that model MS is appropriate for set X. Since model MS =

⟨W,Q,V ,w⟩ is appropriate for set X, there exists such function f ∶ N �→

W that ⟨W,Q,V , f (i)⟩ ⊧ ¬(A → B). Therefore, by definition of truth in
model ., we get: ⟨W,Q,V , f (i)⟩ /⊧ (A → B), and thus ⟨W,Q,V , f (i)⟩ ⊧ A
and ⟨W,Q,V , f (i)⟩ /⊧ B, hence ⟨W,Q, V , f (i)⟩ ⊧ ¬B. Since model MS is
appropriate for X, it is appropriate for some set Xi, where  ≤ i ≤ n.

. Assume that R = R¬↔ and X = Y ∪{⟨¬(A↔ B), i⟩}, X = X ∪{⟨¬A, i⟩,⟨B, i⟩}
and X = X ∪{⟨A, i⟩,⟨¬B, i⟩}. Assume that model MS is appropriate for set
X. Since modelMS = ⟨W,Q,V ,w⟩ is appropriate for set X, there exists such
function f ∶ N�→W that ⟨W,Q,V , f (i)⟩ ⊧ ¬(A↔ B). Therefore, by defini-
tion of truth in model ., either ⟨W,Q,V , f (i)⟩ /⊧A and ⟨W,Q,V , f (i)⟩ ⊧ B,
or ⟨W,Q,V , f (i)⟩ ⊧ A and ⟨W,Q,V , f (i)⟩ /⊧ B, and thus ⟨W,Q,V , f (i)⟩ ⊧ ¬A
and ⟨W,Q,V , f (i)⟩ ⊧ B or ⟨W,Q,V , f (i)⟩ ⊧A and ⟨W,Q,V , f (i)⟩ ⊧ ¬B. Since
modelMS is appropriate forX orX, it is appropriate for some setXi, where
 ≤ i ≤ n.

. Assume that R = R¬◻ and X = Y ∪ {⟨¬ ◻ A, i⟩}, X = X ∪ {⟨◇¬A, i⟩}.
Assume that model MS is appropriate for set X. Since model MS =

⟨W,Q,V ,w⟩ is appropriate for set X, there exists such function f ∶ N�→W
that ⟨W,Q,V , f (i)⟩ ⊧ ¬ ◻A. Therefore, by definition of truth in model .,
⟨W,Q,V , f (i)⟩ /⊧ ◻A, and consequently there exists such u ∈W that f (i)Qu
& ⟨W,Q,V ,u⟩ /⊧ A, so f (i)Qu&⟨W,Q,V ,u⟩ ⊧ ¬A, and thus ⟨W,Q,V , f (i)⟩
⊧◇¬A. Since modelMS is appropriate for X, it is appropriate for some set
Xi, where  ≤ i ≤ n.

. Assume that R = R¬◇ and X = Y ∪ {⟨¬ ◇ A, i⟩}, X = X ∪ {⟨◻¬A, i⟩}.
Assume that model MS is appropriate for set X. Since model MS =

⟨W,Q,V ,w⟩ is appropriate for set X, there exists such function f ∶ N�→W
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that ⟨W,Q,V , f (i)⟩ ⊧ ¬ ◇ A . Therefore, by definition of truth in model
., ⟨W,Q,V , f (i)⟩ /⊧ ◇A, and consequently there is no such u ∈ W that
f (i)Qu&⟨W,Q,V ,u⟩ ⊧ A, so for any u ∈ W, if f (i)Qu, then ⟨W,Q,V ,
u⟩ /⊧ A, that is for any u ∈ W, if f (i)Qu, then ⟨W,Q,V ,u⟩ ⊧ ¬A, and thus
⟨W,Q,V , f (i)⟩ ⊧ ◻¬A. Since model MS is appropriate for X, it is also
appropriate for some set Xi, where  ≤ i ≤ n.

. Assume that R = R◻ and X = Y ∪{⟨◻A, i⟩, irj}, X =X ∪{⟨A, j⟩}. Assume that
modelMS is appropriate for setX. SincemodelMS = ⟨W,Q,V ,w⟩ is appro-
priate for set X, there exists such function f ∶N�→W that ⟨W,Q,V , f (i)⟩ ⊧
◻A and f (i)Qf (j). Therefore, by definition of truth in model ., for any
u ∈W, if f (i)Qu, then ⟨W,Q,V ,u⟩ ⊧ A, so ⟨W,Q,V , f (j)⟩ ⊧ A. Since model
MS is appropriate forX, thus it is appropriate for some setXi, where ≤ i≤n.

. Assume that R =R◇ and X =Y ∪{⟨◇A, i⟩}, X =X∪{irj,⟨A, j⟩}. Assume that
modelMS is appropriate for setX. SincemodelMS = ⟨W,Q,V ,w⟩ is appro-
priate for set X, there exists such function f ∶N�→W that ⟨W,Q,V , f (i)⟩ ⊧
◇A.Therefore, by definition of truth inmodel ., there exists such u ∈W that
f (i)Qu&⟨W,Q,V ,u⟩ ⊧A. By definition of rule R◇, index j /∈ ∗(X). So, we de-
fine new function f ′ ∶ N�→W, so that for any k /= j, f ′(k) = f (k), whereas
f ′(j) = u. Then, for any k ≠ j and l /= j, if ⟨A,k⟩ ∈X, then ⟨W,Q,V , f ′(k)⟩ ⊧A,
and if krl ∈X, then f ′(k)Qf ′(l). Moreover, f ′(i)Qf ′(j)&⟨W,Q,V , f ′(j)⟩ ⊧A,
since f ′(j) =u. Hence, from the above and from definition ofmodel appropri-
ate for the set of expressions ., modelMS is appropriate for set X. While
since modelMS is appropriate for X, it is also appropriate for some set Xi,
where  ≤ i ≤ n.

. Assume that R = Rr and X = X ∪ {irj}, where i, j ∈ ∗(X). Assume that
model MS = ⟨W,Q,V ,w⟩ is appropriate for set X, thus there exists func-
tion f ∶ N �→ W that meets the conditions from definition of appropriate
model . and f (i), f (j) ∈W. Since relation R in modelMS = ⟨W,Q,V ,w⟩
is universal, f (i)Qf (j). Thus model MS is appropriate for X, thus it is also
appropriate for some set Xi, where  ≤ i ≤ n.

The above fact . will be used for the proof of another lemma. This lemma
determines the relationship between the finite sets of formulas and the existence
of maximal and open branches.

Lemma .. Let X ⊆ ForS be a finite set of formulas, i ∈ N and let MS be a
model. IfMS ⊧X, then there exists a maximal and open branch beginning with set
{⟨A, i⟩ ∶A ∈X}.
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Proof. Take any finite set of formulas X ⊆ ForS, any index i ∈N and any model
MS = ⟨W,Q,V ,w⟩, and then assume thatMS ⊧X. Let us define set {⟨A, i⟩ ∶A ∈
X}. Set {⟨A, i⟩ ∶A ∈X} will be denoted as Xi.

Now, we take any function f ∶ N �→W such that f (i) = w. By definition of
model appropriate for the set of expressions ., model MS is appropriate for
set Xi, since for any formula A ∈ForS and any index j ∈N, if ⟨A, j⟩ ∈Xi, then j = i.
While due to the fact that f (i) = w and the assumption that MS ⊧ X, we get a
constitution that if ⟨A, i⟩ ∈ Xi, then ⟨W,Q,V , f (i)⟩ ⊧ A. Moreover no expression
krl, where k, l ∈N, belongs to set Xi, so there also holds the second condition of
definition of model appropriate for the set of expressions ..

Now, indirectly assume that each maximal branch beginning with set Xi =

{⟨A, i⟩ ∶A ∈X} is closed.
As Φ(Xi) we will denote the set of all maximal branches beginning with set

Xi. From fact ., we know that for each finite set of tableau expressions Y there
exists a maximal branch beginning with set Y . Thus, set Φ(Xi) is non-empty.

Since set Φ(Xi) is a set of all maximal branches beginning with set Xi, so it
also has the following property. Assume that it contains branch χ. Let for certain
n ∈ N exist such rule R ∈ RS and such triple ⟨Z,Z,Z⟩ ∈ R that χ(n) = Z and
χ(n + ) = Z or χ(n + ) = Z. Note that then both Z and Z are finite sets of
expressions because each rule extends set to add at most two tableau expressions
(by definition of tableau rules .), branch χ begins with finite set Xi and we
consider its n-th element. Thus, from fact . we know that:

• there exists maximal branch ϕ beginning with set Xi such that ϕ(n+ ) = Z
• there exists maximal branch ψ beginning with set Xi such that ψ(n+ ) = Z.

(∗) Thus, for any n ∈ N, if there exist: such rule R ∈ RS, and such l-tuple
⟨Z, . . . ,Zl⟩ ∈ R, where  < l ≤ , branch χ ∈ Φ(Xi) such that χ(n) = Z and
χ(n+ ) =Z or χ(n+ ) =Z, then there exist branches ψ ∈Φ(Xi) and ϕ ∈Φ(Xi)

such that ψ(n) = Z, ψ(n+ ) = Z and ϕ(n) = Z, ϕ(n+ ) = Z, if l = .
(∗∗) By assumption, each branch that belongs to set Φ(Xi) is closed, thus by

fact ., each branch that belongs to set Φ(Xi) has a finite length ofm, for some
m ∈N.

From the initial assumption, we know that each of branches in set Φ(Xi)

begins with set Xi.
Since model MS is appropriate for set of expressions Xi, by virtue of fact

., which says that for a t-inconsistent set of expressions there is no appropriate
model, set Xi is not t-inconsistent. Hence, we have a conclusion that in set Φ(Xi)

there is no branch of length of one as a one long branch would be open.
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Due to fact .which states that for any ruleR ∈RS any l-tuple—where ≤ l≤
— ⟨Z, . . .Zl⟩ ∈R, if modelMS is appropriate for setZ, then it is appropriate for
some setZi, where ≤ i≤ , and (∗), there exists branch χ ∈Φ(Xi) such thatmodel
MS is appropriate for set χ() and χ() = Xi. The set of those branches that
belong to Φ(Xi), and at the same time model MS is appropriate for their k-th
element, will be denoted as Φ(Xi)k. So, we have Φ(Xi) =Φ(Xi) ⊇Φ(Xi) ≠∅.

Now, assume that for some n ∈ N, where n > , set Φ(Xi)n− ⊇ Φ(Xi)n ≠ ∅.
Since set Φ(Xi)n is non-empty, so take some branch ψ ∈Φ(Xi)n.

By assumption, model MS is appropriate for set of expressions ψ(n). Since
model MS is appropriate for set of expressions ψ(n), so by virtue of fact .,
which says that for a t-inconsistent set of expressions there is no appropriate
model, set of expressions ψ(n) is not t-inconsistent.Thus, branch ψ is longer that
n because otherwise it would be an open branch. Due to fact . which states
that for any rule R ∈RS any l-tuple — where  ≤ l ≤  — ⟨Z, . . .Zl⟩ ∈ R, if model
MS is appropriate for set Z, then it is appropriate for some set Zi, where ≤ i≤ ,
and (∗), there exists branch ϕ ∈Φ(Xi) such that model MS is appropriate for
set ϕ(n+ ) and ϕ ∈Φ(Xi)n. Thus, Φ(Xi)n ⊇Φ(Xi)n+ and Φ(Xi)n+ ≠∅.

Therefore, for each k ∈N, Φ(Xi)k ≠∅ and

Φ(Xi) =Φ(Xi) ⊇Φ(Xi) ⊇ ⋅ ⋅ ⋅ ⊇Φ(Xi)k ⊇ . . .

Next, we take the intersection of all those sets Φ(Xi)k, where k ∈N. Intersection
⋂{Φ(Xi)k ∶ k ∈ N} = Φ is non-empty as for each k, subset Φ(Xi)k is also non-
empty. So, set Φ includes at least one branch χ.That branch ismaximal and begins
with set Xi since Φ ⊆Φ(Xi).

But, branch χ is infinite which contradicts conclusion (∗∗).

We can now move on to the last lemma of this chapter.

Lemma .. For any X ⊆ ForS, A ∈ ForS, if there exists finite set Y ⊆ X and
closed tableau ⟨Y ,A,Φ⟩, then X ⊧A.

Proof. Take any X ⊆ForS and A ∈ForS. Assume that X /⊧A. So, by definition of
relation of semantic consequence ., there exists such modelMS thatMS ⊧X
andMS /⊧A. Therefore, by definition of truth in model ., we haveMS ⊧ ¬A,
and consequently MS ⊧ X ∪ {¬A}. Thus for any finite set Y ⊆ X, also MS ⊧

Y ∪{¬A}.
Take any finite subsetY′ ⊆X. From lemma .we get a conclusion that for any

i ∈ N there exists maximal and open branch beginning with set {⟨B, i⟩ ∶ B ∈ Y′ ∪
{¬A}}. And from the above, and from lemma . we know that each complete
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tableau ⟨Y′,A,Φ⟩ is open. SinceY′ was an arbitrary finite subset of set of formulas
X, so there is no finite set Y ⊆X and closed tableau ⟨Y′,A,Φ⟩.

To sum up the lemmas we have presented so far, we move on to the theorem
on completeness for the tableau system we have discussed.

Theorem . (Theorem on the completeness of tableau system of S). For any
X ⊆ ForS, A ∈ ForS, the below statements are equivalent.

• X ⊧A
• X ⊳A
• there exists finite set Y ⊆X and closed tableau ⟨Y ,A,Φ⟩

Proof. Take any X ⊆ ForS and A ∈ ForS. For the theorem proof, it is sufficient
to show the occurrence of three implications:

(a) X ⊧A⇒X ⊳A
(b) X ⊳A⇒ there exists finite Y ⊆X and closed tableau ⟨Y ,A,Φ⟩
(c) there exists finite set Y ⊆X and closed tableau ⟨Y ,A,Φ⟩ ⇒X ⊧A.

Implication (a) results from lemma .. Implication (b) results from lemma
.. Implication (c) results from lemma ..





 Metatheory of tableau systems
for propositional logic and term logic

. Introductory remarks
In this chapter, we establish general tableau concepts for systems constructed
using the method described in the book. These concepts make it possible to ut-
ter and justify a number of basic facts, the specific cases of which we have been
proving in the previous chapters.

Using the further defined general concepts of the tableau systems, we will be
able to utter and prove a general theorem on the relationship between the tableau
systems and the semantics adopted for them. The construction of the tableau
system, which is adequate in terms of the adopted semantics, will boil down to
defining the basic concepts of this system in such a way that they are special cases
of the general concepts and meet certain general conditions which we will de-
fine further. In this way, we will shorten the definition of the tableau systems to
a minimal — in comparison to the previous chapters — number of procedures
that describe the features of the considered system that distinguish it from other
tableau systems.

. Language and semantics
By set For we mean any set of formulas of some language. We call its elements
formulas.

Remark .. For our considerations, we adopt any but fixed such set of formulas
For that ∣For∣ is an even number or For is an infinite set. Set For will remain
unchanged until the end of this chapter.

We will now look at the issue of interpretation of formulas. In the cases
presented in the previous chapters, the interpretations were the valuations of for-
mulas or models. However, we will deliberately use the concept of interpretation
in order to cover all those cases. We intend to describe in general the concept of
interpretation which will be applicable in the presented metatheory of the con-
struction of tableau systems that will allow us to draw conclusions on the general
relationships between the semantic form of a given logic and its tableau approach.

In our considerations, we will make use of the fact that we only look into such
logics whose interpretations assign exactly one of the two logical values to each
formula. So, a given interpretation divides a set of formulas in an unambiguous,
disjoint and exhaustive way into a subset of true formulas and a subset of false
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formulas under this interpretation.This division coincides with some division of
the set of formulas intomutually contradictory formulas, because for any formula,
a formula is true in a given interpretation if and only if the formula contradicting
it is false in that interpretation.

The interpretation of a set of formulas can therefore be identified with the
segment of the logical division of a set of formulas in terms of the contradiction
of formulas which contains exactly all the formulas that are true in this interpre-
tation.The starting point, however, will be a function that assigns a contradictory
formula to each formula, thus always dividing the set of formulas into two seg-
ments of the logical division. At least one of those segments may correspond to
some interpretation of a set of formulas in which all and only those formulas
that belong to this segment of the division are true. We will illustrate this with an
example.
Example .. Let us consider the case ofTL discussed in ChapterThree. Function
○ (definition .) assigns a contradictory formula to each formula from setForTL
(fact .). Let us now divide set of formulas ForTL into the following pairs of sets:
X′ and complement of X′ to set of formulas ForTL, i.e. X′′ = ForTL ∖X′, as per
the principle of division, for each formula A ∈ ForTL:

(†) A ∈X′ iff ○(A) /∈X′.

The division of set of formulas ForTL into setsX′ andX′′ is a logical division as
X′∩X′′ =∅ andX′∪X′′ =ForTL, andwhat ismore, setsX′ andX′′ are non-empty.

Let us denote the set of all modelsMTL forTL asMTL, while the set of all such
segments of division by function ○ that meet equivalence (†) as X○.

Let MTL be any model. We define subset of formulas M′TL = {A ∈
ForTL∶MTL ⊧A}. A complement of setM′TL to set ForTL is set ForTL∖M′TL, i.e.
setM′′TL = {A ∈ ForTL∶MTL /⊧A}.

Function ○ assigns a contradictory formula to each formula from set ForTL
(fact .), since for any model MTL for TL and for any formula A ∈ ForTL it is
the case that:

(††)MTL ⊧A iffMTL /⊧ ○(A).

Since setsM′TL andM
′′
TL are disjoint, exhaustive and non-empty, so theymake

up one of many logical divisions of set ForTL by function ○ according to principle
(†), for any formula A ∈ ForTL:

(†††) A ∈M′TL iff ○(A) /∈M
′
TL.

and belong to set X○.
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Sowith function ○we can unambiguously identify eachmodelMTL (andmore
precisely the set of all formulas that are true in this model) with some segment
of the logical division of the set of formulas by the contradiction of formulas,
determined by function ○ with equivalence (††).

For eachMTL ∈MTL, there exists precisely one set X ∈X○ such thatM′TL =X.
Therefore, we can identify set of all modelsMTL with some subset of set X○, that
is with some subset of set of all subsets of set of formulas P(ForTL).

However, the opposite dependence does not occur. The segments of logical
division that belong to X○ may correspond to many models that vary in terms of
the domain cardinality, but not formulas which are true in them.

In some cases, a segment of logical division that belongs to X○ may not be
determined by any models. If, for instance, we take such segments of division Y′

and Y′′ that belong to X○ that for certain name letters P, Q ∈ Ln, PeP ∈ Y′ and
PiQ ∈Y′, then there is no such modelMTL ∈MTL thatMTL ⊧Y′, since the truth
of set of formulas Y′ would require the denotation of letter P to be an empty set
and non-empty one at the same time. Further, we will also provide an example
for CPL (example .).

Therefore, models/valuations, that is the set of interpretations should be iden-
tified with a certain subset of the set of logical divisions of the set of formulas
determined by a certain function that assigns a contradictory formula to each
formula. Whether or not it is a proper subset, may vary from one case to another
(see example .).

In the definition of interpretation of formulas, we will employ a reference to
the sets of formulas that are true in a given model or valuation, because in the
general approach to the tableau metatheory we cannot penetrate the structure
of particular types of interpretations for different logics. At the same time, we
must retain the general aspects, in particular those that correspond to the tableau
proof, i.e. adopting in the proof a formula that is contradictory to the formula we
are proving.

Wewill now propose the general definition of set of divisions of set of formulas
For. There is a function in this definition that implicitly assigns a contradictory
formula to each formula. In many cases, however, even if this function is well
established, we will identify a set of initial valuations/models with a proper subset
of some sort of a set of all divisions.

Definition .. Let f ∶For�→For be an injective function and X ⊆For. We shall
state that X is a division of For iff for any formula A ∈For the following condition
is met: A ∈X iff f (A) /∈X.

By set Xf we will mean a set of all divisions of set of formulas For determined
by the established function f .
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Remark .. In some cases, function f may result in the non-existence of any
division X ⊆ For, and then, consequently, set of all divisions Xf is empty. It is
the case for instance when for some formula A ∈ For f (A) = A. Thus, not each
function f is suitable for the definition of set Xf .

In some cases, such function may fail to determine divisions corresponding to
all models/valuations (example .). For these cases, the specifiedmethod cannot
be used to define a tableau system.

Function f is determined by default by the way of adopting an equivalent of
formula contradictory to the formula being proved. So, function f can correspond
to negation— it does in the case ofCPL and S .Moreover, itmay not correspond
to any functor from the language — as it does not in the event of the tableau
system for TL, where it could be identified with function ○ . (example .) that
assigns a contradictory formula to each formula. Generally speaking, function f ,
to each formula, assigns such formula that for any division X it is the case that
exactly one of those formulas belongs to X.
Remark .. For our considerations, we adopt any but fixed and non-empty set
of all divisions Xf , for some function f ∶ For�→For that meets the conditions of
the last definition ..The set will remain unchanged until the end of this chapter.
We will, on the other hand, refer to function f .

As stated in example ., for a given set of all valuations/models and given
function f , it does not have to be the case that each element of setXf corresponds
to some valuation/model. Below, we provide an example for CPL (example .).
Example .. Take set of formulas of CPL ForCPL. We will define function f as
follows f (A) = ¬A, for any formula A ∈ ForCPL. Function f meets the condition
from definition of division of set of formulas ., i.e. it is an injective function.
Now, let Xf be a set of all divisions of set of formulas determined by function f .

The set contains such division X that (p∧q) ∈X, ¬p ∈X and ¬q ∈X. Obviously,
no valuation of formulasV corresponds to setX, since for eachV , ifV((p∧q))= ,
then V(¬p) = . Therefore, there does not exist such valuation V that V′ = {A ∈
For ∶V(A) = } and V′ =X.

Moreover, no valuation corresponds to set ForCPL ∖ X, since for each V , if
V(¬(p ∧ q)) = , then V(¬¬p) =  or V(¬¬q) = , and V(p) =  or V(q) = .
Therefore, there does not exist such valuation V that V′ = {A ∈ For ∶ V(A) = }
and V′ = ForCPL ∖X.

 However, function f does not have to imply the addition of negation to the formula. For
we could, for instance, assign a contradictory formula to each formula of CPL which
would not be a negation of the initial formula. In the same way, we could also define a
complete tableau system.
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On the other hand, however, for each valuationV there exists such setV′ ={A ∈
For ∶ V(A) = } that for some division Y ∈ Xf , V′ = Y , because for each formula
A ∈ ForCPL it is the case that A ∈V′ iff ¬A /∈V′.

By virtue of the above, we can identify the set of all valuations of formulas with
a proper subset of set of all divisions Xf by function f .

In some cases and for some functions f it may be the case that the set of divi-
sions corresponding to all models/valuations is identical to given setXf (example
.).

Example .. Consider two similar cases. In the first one, function f cannot be
established in such a way that each model has a corresponding division that de-
termines f . In the second case, for each division by function f there exists at least
one corresponding model.

Take such subset X of set of all formulas ForTL that X = {PaQ,PeQ}.
Consider set of all models MX for a new, more sparing language. They will be
analogous to the models for TL, but their denotation sets will only be assigned to
two name letters that occur in a new, more sparing language — letters P and Q.

Next, in a usual manner we will define the relation of semantic consequence
determined on set P(X)×X (in a sense truncating the relation of semantic con-
sequence of TL to set X) and denote it as ⊧′. Only four arguments are correct in
such logic:

{PaQ,PeQ} ⊧′ PaQ

{PaQ,PeQ} ⊧′ PeQ

{PaQ} ⊧′ PaQ

{PeQ} ⊧′ PeQ

since:

{PaQ} /⊧
′ PeQ

{PeQ} /⊧
′ PaQ

due to the fact that inMX there exist models in which the denotation of letters P

is a non-empty set. In the event when that set is contained in the set of denota-
tions Q proposition PaQ is true, while proposition PeQ is not true. Instead,
in the event when the set of denotations of name letter P is disjoint with the set
of denotations of letter Q, proposition PeQ is true, while proposition PaQ is
not true.
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In turn, due to the fact that in MX there exist models in which the denota-
tion of letter P is an empty set, set X = {PaQ,PeQ} is not a contradictory set.
Therefore, we are unable to establish function f in such a way that eachmodel has
a division of set X determined by function f . For there exists only one injective
function f ∶X�→X such that for any y ∈X f (y) ≠ y. It is defined as follows:

f (PaQ) = PeQ

f (PeQ) = PaQ.

Now, take any division Y of set X by function f . It meets condition: A ∈ Y
iff f (A) /∈ Y , for any A ∈ X. If PaQ ∈ Y , then f (PaQ) /∈ Y , i.e. PeQ /∈ Y , thus
PeQ ∈X∖Y . If, in turn, PaQ /∈Y , then f (PaQ) ∈Y , i.e. PeQ ∈Y , thus PeQ /∈
X∖Y . An analogous sequence of implications occurs for the other formula.Thus,
for model in which set of formulas X = {PaQ,PeQ} is true, there does not
exist any corresponding division of set X by function f . So, for such relation of
consequence like ⊧′, we will not construct a tableau system using the provided
method.

On the other hand, take such subset Y of set of all formulas ForTL, that Y =
{PaQ,PoQ}, and set of all models MY (which is identical to set MX , as we
still have the same letters in the alphabet), and then define in a usual manner
the relation of semantic consequence on set P(Y)×Y (in a sense truncating the
relation of semantic consequence of TL to set Y) and denote it as ⊧′′. In such
logic, there occur analogous implications like for relation ⊧′. However, in MY
there does not exist model such that set Y = {PaQ,PoQ} is true in it, because
formulas PaQ, PoQ are contradictory. We establish function f ∶ Y �→ Y as
follows: f (PaQ) = PoQ and f (PoQ) = PaQ. We only get two divisions of
set Y by function f , Y′ = {PaQ} and Y′′ = {PoQ} .

Note that for eachmodelMY there exists divisionZ of setY by function f such
thatM′Y = {A ∈ Y ∶MY ⊧

′′ A} = Z. On the other hand, for each division Z of set
Y by function f there exists modelMY such thatM′Y = {A ∈Y ∶MY ⊧

′′ A} = Z.

 Perhaps for relation ⊧′ it is impossible at all to define a tableau system in a standard
way, as it is not the case that for each formula there exists a contradictory formula. We
can, however, expand the provided method, requiring the adoption at the beginning
of proof of suitable auxiliary expressions instead of the contradictory formula, when
it does not exist. In the discussed case, for instance for formula PaQ it would be set
{P+i ,Q


−i}, for some i ∈N.

 The example shown is interesting insomuch that in the tableau system for it, the set of
tableau rules could be empty. For each branch and tableau would be one-step, because
having adopted a set of premises in the very first step, we would receive a t-inconsistent
set, with the natural assumption that {A, f (A)} is a t-inconsistent set.
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For the reasons wementioned, in further semantic considerations we will refer
to some established set I ⊆ Xf . So, let us proceed to the definition.

Definition . (Interpretation of formulas). A set of interpretations determined
by function f (for short: interpretations) is each subset I ⊆ Xf . The elements of
set I will be called interpretations of formulas (or for short: interpretations) and
denoted by letter I, possibly with indices.

Denotation .. Let I⊆Xf . Let I ∈ I be any interpretation of formulas. Let us adopt
the following denotations:

• for any formula A ∈ For, the fact that A ∈ I will be put as I ⊧ A, whereas the
fact that A /∈ I will be put as I /⊧A

• for any subset of formulasX ⊆For, I⊧X iff for any formulaA ∈X, I⊧A; while
I /⊧X iff it is not the case that I⊧X.

We will now proceed to the concept of relation of semantic consequence.

Definition . (Semantic consequence). Let I ⊆ Xf be a set of interpretations.
Let X ⊆ For and A ∈ For.

• Formula A follows from X under I (for short: X ⊧I A) iff for any interpretation
I ∈ I, if I ⊧ X, then I ⊧ A. Whereas formula A does not follow from X under I
(for short: X /⊧I A) iff it is not the case that X ⊧I A.

• When set I is fixed, we apply notation X ⊧A and respectively X /⊧A.
• Relation ⊧ will be called a relation of semantic consequence (defined by set of

interpretations I).

With an established relation ⊧ we can proceed to the concept of semantically
defined logic.

Definition .. Let set I ⊆ Xf be a set of interpretations of formulas For. Pair
⟨For,⊧I⟩ will be called a semantically defined logic.

Another fact says that two relations of consequence defined on set of formulas
For are identical iff they are defined with the same set of interpretations I⊆Xf , so
when speaking of relation⊧, we do not have to refer to set I, as it is unambiguously
determined by relation ⊧.

Proposition .. Let I ⊆ Xf and I ⊆ Xf be sets of interpretations of formulas
For. Let pairs ⟨For,⊧I⟩ and ⟨For,⊧I2⟩ be semantically defined logics. In such case
⊧I=⊧I iff I1 = I2.

Proof. Take any sets of interpretations of formulas I ⊆ Xf , I ⊆ Xf , and logics
⟨For,⊧I⟩ and ⟨For,⊧I2⟩ they semantically defined. Assume that I1 ≠ I2. We have
two cases:
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() there exists such interpretation I ∈ I that I /∈ I
or

() there exists such interpretation I ∈ I that I /∈ I.

Let us only consider case () as case () is analogous.
Now, take any such interpretation I ∈ I that I /∈ I.
Assume that I is an empty set. By definition of relation of semantic conse-

quence ., ⊧I= P(For)×For. On the other hand, since I ∈ I, so by definition
., for certain formula A, I ⊧ A and I /⊧ f (A), so by definition of relation of
semantic consequence ., {A} /⊧I f (A), thus ⊧I≠⊧I .
(∗) Now, assume that I is not an empty set.
Since I /∈ I, then by definition . for each interpretation I′ ∈ I there exists

such formula B ∈ For that:

(a) I′ ⊧ B and I /⊧ B
or

(b) I′ /⊧ B and I⊧ B.

Take any interpretation I′ ∈ I and such formula B ∈For that there occurs case
(a) I′ ⊧B and I /⊧B. It is the case when and only when— by definition . — (a)’
I′ /⊧ f (B) and I ⊧ f (B), thus there exists such formula C ∈ For that f (B) =C and
(a)” I′ /⊧C and I⊧C.

Now, we define set of formulas X ⊆ For as follows: for any formula A, A ∈X iff
there exists such interpretation I′ ∈ I that I′ /⊧A and I⊧A.

From (∗), (a)”, (b) it follows that setX is non-empty and for each interpretation
I′ ∈ I, there exists such formulaD ∈X that I′ /⊧D.What ismore, for each formula
D ∈X, I⊧D, so I⊧X.

Therefore, there does not exist such interpretation I′ ∈ I that I′ ⊧X. From the
above and from definition of relation of semantic consequence ., we get that
X ⊧I2 D, for any formula D ∈ For, since I′ /⊧X, for any interpretation of formulas
I′ ∈ I.

While since I⊧X, so I /⊧ f (E), for each E ∈X, by definition .. From the above
and from definition of semantic consequence ., X /⊧I1 f (E), for certain E ∈ X.
And at the same time X ⊧I2 f (E), since X ⊧I2 D, for any formula D ∈ For, thus
⊧I≠⊧I

Now, assume that I1 = I2. Then obviously ⊧I=⊧I , since ⊧I=⊧I .

Remark .. For our considerations, we adopt any, but fixed set of interpretations
I ⊆ Xf . The set will remain unchanged until the end of this chapter. We will, on
the other hand, refer to function f .
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Remark .. For our considerations, we adopt any, but fixed, semantically de-
fined logic ⟨For,⊧⟩. Due to fact ., since relation of consequence ⊧ determines
exactly one set of interpretations of formulas I ⊆Xf , we do not have to include a
reference to set I in the notation. Logic ⟨For,⊧⟩ will remain unchanged until the
end of this chapter. On the other hand, we will from time to time refer to the set
of interpretations of formulas I determined by ⊧.

. Basic concepts of the tableau system
Now, we will define the set of conditions that should be satisfied by the tableau
expressions.

Definition . (Tableau expressions). The set of tableau expressionswill be called
any set Te that meets the following conditions:

. there exists such injective function g ∶ For �→ P(Te) that for any formula
A ∈ For, g(A) is a countable subset of set Te and for any formula B ∈ For, if
A /= B, then g(A)∩ g(B) = ∅

. there exists at least one distinguished and finite set Te′ ⊆ Te such that for
any subset X ⊆ For, if there exists interpretation of formulas I ∈ I such that
I ⊧ X, then Te′ /⊆ ⋃{g(A) ∶ A ∈ X} (the set of all such distinguished sets will
be specified as Tein).

The elements of set Te will be called tableau expressions or simply expressions.

Making use of condition  of definition of set of tableau expressions ., we
will now introduce the general concept of t-inconsistent set (and concept of t-
consistent set).

Definition .. Let Te be a set of tableau expressions and let Te′′ ⊆Te. Set Te′′

will be called tableau inconsistent (for short: t-inconsistent) iff there exists such
Te′ ∈ Tein that Te′ ⊆ Te′′. Set Te′′ will be called tableau consistent (for short:
t-consistent) iff Te′′ is not t-inconsistent.

Remark .. For any set of expressions Te we assume that the values of func-
tion g ∶ For �→ P(Te) are sets of indexed elements of set Te, i.e. for any
formula A ∈ For, there exists such countable set {x,x,x, . . .} ⊆ Te that g(A) =
{x,x,x, . . .}. At the same time, we do not assume that for any xi, xj ∈ g(A),
if i ≠ j, then xi ≠ xj. The numbers visible in the indices of tableau expressions
x,x,x, . . . will be called indices.

Remark .. As we remember, in the case for CPL considered in the book, the
set of expressions was identical to the set of formulas. In this case, we would adopt
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Te= {Ai ∶A ∈ForCPL, i ∈N}. In a more complex case, i.e. TL, set {Ai ∶A ∈ForTL,
i ∈N} ⊆ Te. In both those cases, we associate a little artificially with each formula
an infinite set of expressions that correspond to it, whereas for each formula A, if
g(A) = {x,x,x, . . .}, then for any indices i, j we would have: xi = xj.

In the case of S such association is more natural, as the elements of set along
with indices {Ai ∶A ∈ForS, i ∈N} ⊆Te would correspond to the ordered couples
⟨A, i⟩ we use in the proofs.

In both latter cases (TL, S), in order to obtain entire set Te we would have
to still define additional auxiliary expressions. Our definition does not specify
what these expressions would be, but in order to get a complete tableau system,
they would have to meet further conditions that we will provide.This reservation
also applies to the concept of an inconsistent set of expressions, which in some
cases could even contain one element.This is the case in those systems where the
branch containing certain expressions (considered to be inconsistent) is closed
with a special sign bymeans of an additional rule or rules, e.g.× (refer for example
[]) and only then the branch is considered closed.

Ultimately, however, the role of these expressions which, through function g
represent formulas in a tableau proof, could be fulfilled by any other symbols, not
structurally (graphically) related to formulas, yet meeting the conditions from
definition of set of tableau expressions ..

New denotations will be useful for further work.

Denotation .. Let us adopt the following denotations:

• for any formula A ∈ For and any i ∈N, Ai = xi iff xi ∈ g(A)
• for any subset X ⊆ For, Xi = {Ai ∶A ∈X}.

Remark .. For our considerations, we adopt any, but fixed set of tableau ex-
pressions Te and included in Te at least one tableau contradictory set Te′. These
arrangements will remain unchanged until the end of this chapter.

Remark .. We also assume the option of inclusion in setTe of auxiliary expres-
sions which correspond to expressions such as irj in case of the described tableau
system for S, or such as expressions P−i and P+i in case of the described tableau
system forTL, for any i, j ∈N and any name letter P ∈Ln.The auxiliary expressions
also feature indices.

Such expressions will be specified by means of set TeA, subset of Cartesian
product {α,α,α, . . .} × {β, β, β, . . .}, where for any i, j ∈N, if ⟨αi,βj,⟩ ∈TeA,

 In Chapter Two, we adopted the simplest variant. We could have, however, adopted
the set of tableau expressions for CPL different from the set of formulas.



Basic concepts of the tableau system 

then βj is an ordered n-tuple ⟨k,k, . . . ,kn⟩ of indices present in that sequence in
expression αi, for some n,k,k, . . . ,kn ∈N.

Set TeA ⊆ Te, moreover TeA may be empty, because the construction of
tableau proof for a given logic may not require at all a richer set than what
is required by definition ., or its definition uses a different set of auxiliary
expressions than TeA.

Definition . (Function selecting indices). Function selecting indices will be
called function ∗ ∶ P(Te)�→ P(N) defined for any i, j ∈N with conditions:

• for any formula A ∈ For, ∗({Ai}) = {i}
• for any ⟨αi,βj⟩ ∈ TeA, ∗({⟨αi,βj⟩}) = {k ∶ k is an element of βj}
• for any X ⊆ Te, if ∣X∣ > , then ∗(X) =⋃{∗({y}) ∶ y ∈X}.

Therefore, for any subset of set {Ai ∶ A ∈ For, i ∈ N} ⊆ Te function ∗ selects all
indices present in the expressions from that set.

We will now proceed to the general conditions that specify the relation of sim-
ilarity between the sets of expressions, regardless of whether or not set TeA is
non-empty and set Te contains any other specific auxiliary expressions. There-
fore, in the definition of similarity we assume the condition of having the same
cardinality.

Definition . (Similar set of expressions). Let X, Y ⊆ Te. We shall state that X
is similar to Y iff:

• X is t-consistent iff Y is t-consistent
• X and Y have the same cardinality
• there exists such bijection h ∶ ∗(X)�→∗(Y) that:

– for any formula A ∈ For and i ∈N, Ai ∈X iff Ah(i) ∈Y .
– for any i,n,k, k, . . . , kn ∈N, there exist such j ∈N, ⟨αi,βj⟩ ∈TeA that ⟨αi,βj⟩
∈ X and βj = ⟨k, k, . . . , kn⟩ iff there exist such l ∈ N, ⟨αi,βl⟩ ∈ TeA that
⟨αi,βl⟩ ∈Y and βl = ⟨h(k), h(k), . . . , h(kn)⟩.

From definition of similarity . the following conclusion results.

Corollary .. Let X,Y ⊆ Te. If X is similar to Y, then Y is similar to X.

For further work, we need a definition of relation that occurs between inter-
pretation of formulas I and subset of tableau expressions {Ai ∶ A ∈ For, i ∈ N} ⊆
Te.

Definition .. Let i ∈N. By⊩i wemean any such relation specified onCartesian
product I×For that for any formula A ∈ For and any interpretation I ∈ I:
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• if I⊧A, then I⊩i A.
• I⊩i A iff it is not the case that I⊩i f (A) (for short: I /⊩i A).
• if for certain j ∈N, I⊩j A, then I⊩i A.

By ⊩ we will mean set {⟨I,A⟩ ∶ I ∈ I,A ∈ For and for some i ∈N I⊩i A}.

Remark .. For our considerations, we adopt any, but fixed relation ⊩. It will
remain unchanged until the end of this chapter.
Remark .. Intuitively, relation⊩ is in a sense expansion of relation⊧ onto set of
tableau expressions {Ai ∶A ∈For, i ∈N} ⊆Te. We used “in a sense”, because in the
cases of CPL and TL we can identify it with relation ⊧, as for each formula A, of
one of these logics, Ai =A, for any i ∈N. On the other hand, in the event of modal
logic (e.g. S), notation I ⊩i A may indicate that if based on model M, that we
identify with interpretation I, we construct model M′, where the distinguished
world will be corresponded by index i, thenM′ ⊧A.

We will now specify the general conditions describing the interpretation
appropriate for set of expressions.

Definition . (Interpretation appropriate for set of expressions). Let I ∈ I be
an interpretation, and letX ⊆Te be a set of tableau expressions.We shall state that
interpretation I is appropriate for set X iff:

. X is t-consistent
. for any i ∈N and any A ∈ For, if Ai ∈X, then I⊩i A.

. Tableau rules
Now, we will proceed to the conditions that should be satisfied by the tableau
rules. So, let us define the general concept of rule.

Definition . (Rule). Assume that P(Te) is a set of all subsets of set Te. Let
P(Te)n be n-element of Cartesian product P(Te)× ⋅ ⋅ ⋅ ×P(Te)

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$&
n

, for some n ∈ N,

whereas⋃n∈NP(Te)n be a union of all n-ary products such that n ≥ .

• Rule will be called any subset R ⊆ ⋃n∈NP(Te)n such that if ⟨X, . . . ,Xn⟩ ∈ R,
then the following conditions are satisfied:
– X ⊂Xi, for any  < i ≤ n
– X is a t-consistent set
– if k ≠ l, then Xk ≠Xl, for any  < k, l ≤ n
– (Closure under similarity) for any set of expressions Y such that Y is simi-

lar to X, there exist such sets of expressions Y, . . . , Yn that ⟨Y, . . . , Yn⟩ ∈R
and for any  < i ≤ n, Yi is similar to Xi
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– (Existence of core of rule) for some finite set Y ⊆ X there exists ordered
n-tuple ⟨Z, . . . , Zn⟩ ∈ R such that:
. Z =Y
. for any  < i ≤ n, Zi = Z ∪(Xi ∖X)

. there does not exist proper subset U ⊂Y and n-tuple ⟨U, . . . , Un⟩ ∈ R
– (Closure under expansion) for any t-consistent set of expressions Z, such

thatX ⊂Z and for each < i≤n,Xi is not similar to any subsetZ containing
X, there exist such set of expressions Z, . . . , Zn that ⟨Z, . . . , Zn⟩ ∈ R and
for any  < i ≤ n, Xi is similar to X ∪(Zi ∖Z)

– (Closure under finite sets) if X is a finite set, then for each  < i ≤ n, Xi is a
finite set

– (Closure under subsets) for any subsetX′ ⊆X, if for certain set Y ⊆X there
exists such n-tuple ⟨W, . . . ,Wn⟩ ∈ R that:
. W =Y
. for any  < i ≤ n,Wi =W ∪(Xi ∖X)

. W ⊆X′

then there exist such sets of expressions Z, . . . , Zn that:
. ⟨Z, . . . , Zn⟩ ∈ R
. Z =X′

. for any  < i ≤ n, Zi = Z ∪(Xi ∖X).
• We shall state that rule R has been applied to set X iff for certain  < i ≤ n,

exactly one set Xi was selected from certain n-tuple ⟨X, . . . ,Xn⟩ ∈ R.

Remark .. Note that the general concept of rule we have introduced with def-
inition ., is in a way less general than the general concepts of rules used in the
previous chapters — since we have added several additional conditions that were
not present before. For we will not use a specific set of rules in further proofs, but
we will define another conditions that should be jointly met by the set of tableau
rules selected for axiomatization of the tableau system.

However, in some respects, definition . is more general than the definitions
of rules in the previous chapters. In those cases, the rule was to be a subset of
Cartesian product R ⊆ P(Te)n, where n ≥ . And here, the rule is defined as a
subset of the union under Cartesian products R ⊆ ⋃n∈NP(Te)n, where n ≥ . Of
course, the rules that meet the first condition also meet the second one.Themore
general condition was provided for a number of reasons.

First of all, even in the case of structural definition of tableau rules—aswehave
done so far— theremay be a situation inwhich ordered pairs of different numbers
of elements belong to a single rule. An example is a logicwith relating connectives,
in which we sometimes have to describe relationships between propositional
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letters when distributing expressions in tableaux. In this case, the number of ele-
ments in a given n-tuple may depend on the number of propositional letters in a
given formula.

Secondly, even if we define the tableau rules structurally, it is also possible to
define them for some system in a more complex way.We could, for example, sum
up some (or even all) of the rules described in the chapter on the tableau system
for CPL, to get for instance rule R′ = R¬¬ ∪ R∨. That rule would consist of two
types of n-tuples: ordered pairs and ordered triples.

Finally, we can build tableau systems for non-classical reasoning (inferences),
in which we draw conclusions in a non-deductive way. In such systems, there
may occur a need for unstructured definition of tableau rules, e.g. in such a way
that from a given structurally described set of premises it is possible to move
in the tableau to one or more branches, depending on which subformulas the
premises are composed of. Excluding certain conditions fromdefinition ., that
definition may be useful in such cases.

We will now frame a general definition of the core of rule in a given set.

Definition . (Core of rule). Let R be a rule and n ∈ N. Let ⟨X, . . . ,Xn⟩ ∈ R
and ⟨Z, . . . ,Zn⟩ ∈ R. We shall state that ⟨Z, . . . , Zn⟩ ∈ R is a core of rule R in set
⟨X, . . . ,Xn⟩ iff

. Z ⊆X
. there do not exist proper subset U ⊂ Z and n-tuple ⟨U, . . . ,Un⟩ such that
⟨U, . . . ,Un⟩ ∈ R and Ui ∖U = Zi ∖Z, for any  < i ≤ n

. for any  < i ≤ n, Zi = Z ∪(Xi ∖X).

By definition of rule . (Existence of core of rule), we get the following
conclusion.

 Although the book does not directly consider logics with relating connectives, the re-
sults of this chapter also apply to the tableau systems for such logics. An introduction
to relating logics was presented inter alia in [], [] and [].The simplest example of a
tableau system of logic with relating connectives is described in paper []. In turn, the
issue of rules containing various n-tuples appears in those logics with relating connec-
tives for which the semantic structure is constrained by various conditions motivated
by philosophically oriented interpretation of connectives. Such an approach to tableau
methods for logics with relating connectives in the context of causality can be found
in [] as well as connexivity in [], []. It is worth noting that in the case of [] in
a sense relating logics were combined with modal ones and two tableau approaches
were joined.
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Corollary .. Let R be a rule and n ∈N. If n-tuple ⟨X, . . . , Xn⟩ ∈ R, then there
exists n-tuple ⟨Y, . . . ,Yn⟩ ∈ R such that ⟨Y, . . . ,Yn⟩ is the core of rule R in set
⟨X, . . . ,Xn⟩.

We will now define two additional technical concepts that will allow us to
frame a general definition of a set of tableau rules.

Let X ⊆ Te be a set of tableau expressions and let R be a set of rules. By RX we
will mean a set of all and only such rules from set R that are applicable to set X.
Formally, R ∈RX iff R ∈R and there exists such n-tuple ⟨Y, . . . ,Yn⟩ ∈R that Y =X.

Let R ∈RX , by RX we will mean a set of all and only such n-tuples from R that
their first element equalsX, and if some of the remaining elements of two n-tuples
that belong to RX differ, then these two n-tuples have different input sets of the
core of rule. Formally, for any n ∈N, ⟨Y, . . . ,Yn⟩ ∈ RX iff:

• ⟨Y, . . . ,Yn⟩ ∈ R and Y =X
• for any set of expressions Z, . . . , Zn, Z′, . . . , Z

′
n, Y′ , . . . , Y

′
 ⊆ Te, if:

– ⟨Z, . . . ,Zn⟩ ∈ RX
– ⟨Y, . . . ,Yn⟩ /= ⟨Z, . . . ,Zn⟩

– ⟨Y′ , . . . ,Y
′
⟩ is the core of rule R in set ⟨Y, . . . ,Yn⟩

– ⟨Z′, . . . ,Z
′
n⟩ is the core of rule R in set ⟨Z, . . . ,Zn⟩

then Y′ /= Z
′
.

The limitations in the definition of set RX are the results of the fact that some
rules, e.g. R◇ in the described tableau system for S, may introduce completely
new expressions that are absent in any form in the previous portions of the proof.

In the case of rule R◇, we can introduce to the branch some set {⟨A, i⟩, irj},
where A ∈ ForS and i, j ∈N, selected from among many such sets. Usually, there
exist multiple such n-tuples that belong to R◇ which are applicable to set X, if
⟨◇A, i⟩ ∈X, after even one application we cannot apply rule R◇ to set X anymore
due to expression ⟨◇A, i⟩ ∈X, because of the limitations in the application of this
rule (see example .). So, we want setRX to include only one such n-tuple, since
we can only use one.

With the above concepts, we can proceed to the definition of set of tableau
rules.

Definition . (Tableau rules). Let R be a set of rules. We shall state that R is a
set of tableau rules iff

. R is a finite set
. for any X ⊆ Te, if X is a finite set, then for any rule R ∈ RX , each set RX is a

finite set.
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So, set of tableau rules R must include a finite number of rules, and what is
more, for any finite set of expressions, each of rules R that belong to R can be ap-
plied a finite number of times — taking account of the set of n-tuples that belong
to RX .

Remark .. We adopt any, but fixed set of tableau rules R. That set will remain
unchanged until the end of this chapter. It is worth noting again that all further
tableau concepts: branches and tableaux of different types will depend on set R.

.. Branches

Conventionally, another concept in our theory that will be discussed is the con-
cept of branch. It is a concept that depends on the notion of the tableau rule
because branches are created by applying rules. Branches — as mentioned be-
fore — are setwise objects consisting of sets. The below definition corresponds to
all the definitions of branch used so far, only that it depends on the general notion
of set of tableau rules R.

Definition . (Branch). Let K = N or K = {,, . . . ,n}, where n ∈ N. Let X be
any set of expressions. A branch (or a branch beginning with X) will be called any
sequence ϕ ∶K�→ P(Te) that meets the following conditions:

. ϕ() =X
. for any i ∈ K: if i+  ∈ K, then there exists such rule R ∈ R and such n-tuple
⟨Y, . . .Yn⟩ ∈ R that ϕ(i) =Y and ϕ(i+ ) =Yk, for some  < k ≤ n.

Having two branches ϕ, ψ such that ϕ ⊂ψ we shall state that:

• ϕ is a sub-branch of ψ
• ψ is a super-branch of ϕ.

Denotation .. From now on—when speaking of the branches constructed by
the application of rules from set R— for the sake of convenience, we will use the
following notations or denotations:

. X, . . . ,Xn, where n ≥ 
. ⟨X, . . . ,Xn⟩, where n ≥ 
. abbreviations: ϕM (whereM is a domain ϕ, i.e. ϕ ∶M�→ P(Te))
. or — to denote branches — small Greek letters: ϕ, ψ, etc.

The sets of branches, in turn, we shall denote with capital Greek letters: Φ, Ψ, etc.
Furthermore, the domain cardinality of a given branch K we shall sometimes call
a length of that branch.
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All the so far considered branches have been specific cases of the above
concept, assuming an appropriate set of rules R.

Let us now introduce the general definition of addition of branches.

Definition. (Addition of branches). Let ϕ ∶ {, . . . ,n}�→P(Te) andψ ∶M�→
P(Te) be branches, for some n ∈N andM ⊆N, and let ϕ(n) =ψ(). The results of
the operation ϕ⊕ψ is function φ ∶K�→ P(Te) defined as follows:

. ifM =N, then K =N
. if ∣M∣ ∈N, then K = {, . . . ,n,n+ ,n+, . . . ,n+ ∣M∣ − }
. for each i ∈K

a. if  ≤ i ≤ n, φ(i) = ϕ(i)
b. if i > n, then φ(i) =ψ((i−n)+ ).

From definition of branch . and definition of addition of branches .,
follows an analogous conclusion as in the case of the tableau system for logic S.

Corollary .. Let ϕ ∶ {, . . . ,n}�→P(Te) and ψ ∶M�→P(Te) be branches, for
some n ∈N and M ⊆N, and let ϕ(n) =ψ(). Then ϕ⊕ψ is also a branch.

.. Closed and open branches

An important classification of branches is the division into closed and open
branches. A branch is closed when, applying the rules in subsequent steps, we
have reached a t-inconsistent set. Below, we present the definition which is
directly based on set of tableau rules R, as it refers to definition of branch ..

Definition . (Closed/open branch). Branch ϕ ∶ K �→ P(Te) will be called
closed iff ϕ(i) is a t-inconsistent set for some i ∈ K. A branch will be called open
iff it is not closed.

From the above definition ., definition of tableau rules . and definition
of branch ., the following conclusion results.

Corollary .. If branch ϕ ∶K�→ P(Te) is closed, then ∣K∣ ∈N.

Again, in the case of a closed branch, the t-inconsistent sequence element is
the last element and no rule can be applied to it anymore to extend the branch.
For the tableau rules have been defined in such a way that they cannot be applied
to t-inconsistent sets.

.. Maximal branches

One more important concept in the construction of a tableau system is the con-
cept of a maximal branch. The definition of maximal branch is based on the
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concept of strong similarity. As we already know from the previous chapter, the
concept of strong similarity of sets of expressions is a special case of the similarity
of sets. Below, we provide its version that is generalized to the context of rules
from set R.

Definition . (Strong similarity). Let rule R ∈ R and let ⟨X, . . . ,Xn⟩ ∈ R, for
some n ∈ N. On any set of expressions W ⊆ Te we will state that it is strongly
similar to set Xi, where  < i ≤ n, iff

. W is similar to Xi
. for certain n-tuple ⟨Y, . . . ,Yn⟩, which is the core of rule R in set ⟨X, . . . ,Xn⟩,

the following conditions are satisfied:
a. for certainW′ ⊆W, Y ⊆W′

b. W′ is similar to Y ∪(Xi ∖X).

Having adopted the concept of strong similarity, we can proceed to the concept
of maximal branch in the general version, also referred to set of tableau rules R.

Definition . (Maximal branch). Let ϕ ∶ K �→ P(Te) be a branch. We shall
state that ϕ ismaximal iff it meets one of the below conditions:

. ϕ is closed
. for any rule R ∈R, any n ∈N and any n-tuple ⟨X, . . . ,Xn⟩ ∈R, if ϕ(k) =X, for

certain k ∈K, then for some j ∈K, there exist ϕ(j) and such set of expressions
W ⊆ Te that for some  < i ≤ n,W is strongly similar to Xi andW ⊆ ϕ(j).

Remark .. We will repeat here the remark from the previous chapter. Accord-
ing to the above definition, amaximal branch is closed or, in a sense, closed under
effect of rules (both conditions do not necessarily have to be mutually exclusive).
Closure under rules means that if a branch is not closed and it was possible to
apply some rule to one of its elements, then some of the branch elements includes
a set strongly similar to the one that could have been a result of application of
that rule. SetW is to be contained in one of the elements of branch ϕ(j), and not
necessarily be identical to it, since we applied the rule to set ϕ(j−), which can be
a proper superset of set X, and consequently we obtained more expressions, and
what is more, those elements could have been obtained as a result of application
of another rule.

Maximal branches as defined by the definition . can be either finite or infi-
nite. There occurs an analogous case here as in the considerations on logic S: if
the branch is finite and there does not exist super-branch, then it is also amaximal
branch.
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Corollary .. If branch ϕ is finite in length, and there does not exist such branch
ψ that ϕ ⊂ψ, then ϕ is a maximal branch.

Proof. Take any branch ϕ which is finite and there does not exist such branch
ψ that ϕ ⊂ ψ. Now, assume that ϕ is not closed. If it does not meet the second
conditions of definition ., then since ϕ is finite, so there exists branch ψ such
that ϕ ⊂ψ, which obviously contradicts the assumption.

So we have a general definition of maximal branch, which includes both finite
cases — especially in systems that feature the finite branch property, and infinite
cases, such as those that occur, for example, in modal logics.

The described concepts, therefore, apply to systems in which, by building a
tableau proof using tableau tools and looking for maximal branches, we may be
dealing with infinite branches.This is the case when a branch cannot be closed or
certain rule application sequences are repeated.

From definitions . and . we get the following conclusion again.

Corollary .. Each closed branch is maximal.

.. Branch consequence relation

We will now move on to the general concept of branch consequence which we
will define using the following concepts: branch, maximal branch, closed branch,
and denotation ..

Definition . (Branch consequence). Let X ⊆ For and A ∈ For. We shall state
that A is branch consequence of X (for short: X ⊳A) iff there exists such finite set
Y ⊆ X and such index i ∈ N that each maximal branch beginning with set Yi ∪

{f (A)i} is closed. By X /⊳A, we mean that A is not branch consequence X.

The general concept of branch consequence relation corresponds to the so
far defined concepts of branch consequence relation, taking account of remark
..This remark is valid for all tableau concepts defined hereafter. So, when con-
structing a branch or tableau for some set of formulas X∪{A}, we begin with set
Xi ∪{f (A)i}, for some index i ∈N.

. Tableaux
In this subchapter, we will move on to the general definition of tableau and
various variants of tableaux. However, we will start with an auxiliary concept
of maximality in set of branches which we already have used in the previous
chapters.
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Definition . (Maximal branch in the set of branches). Let Φ be a set of
branches and let branch ψ ∈ Φ. We shall state that ψ is maximal in set Φ (for
short: Φ–maximal) iff there is no such branch ϕ ∈Φ that ψ ⊂ ϕ.

We can now move on to the general concept of tableau.

Definition . (Tableau). LetX ⊆For,A ∈For a Φ be a set of branches. Ordered
triple ⟨X,A,Φ⟩ will be called a tableau for ⟨X,A⟩ (or for short: tableau) iff the
below conditions are met:

. Φ is a non-empty subset of set of branches beginning with set Xi ∪{f (A)i},
for some index i ∈N (i.e. if ψ ∈Φ, then ψ() =Xi ∪{f (A)i})

. each branch contained in Φ is Φ-maximal
. for any n, i ∈N and any branches ψ, . . . , ψn ∈Φ, if:

• i and i+  belong to domains of functions ψ, . . . , ψn
• for any  < k ≤ n and any o ≤ i, ψ(o) =ψk(o)
then there exists such rule R ∈R and such orderedm-tuple ⟨Y, . . . , Ym ⟩ ∈ R,
where  <m, that for any  ≤ k ≤ n:
• ψk(i) =Y
• and there exists such  < l ≤m that ψk(i+ ) =Yl.

The above concept of tableau covers all notions of tableau considered so far in
a book, with a properly defined set of tableau rules R.

When considering the tableaux in general, we can also generalize the concept
of redundant branch which is useful for the definition of complete tableau.

Definition . (Redundant variant of branch). Let ϕ and ψ be such branches
that for some numbers i and i+  that belong to their domains, it is the case that
for any j ≤ i, ϕ(j) = ψ(j), but ϕ(i+ ) /= ψ(i+ ). We shall state that branch ψ is a
redundant variant of branch ϕ iff:

• there exists such rule R ∈R and such n-tuple ⟨X, . . . ,Xn⟩ ∈R that ϕ(i) =X and
ϕ(i+ ) =Xj, for certain  < j ≤ n

• there exists rule R ∈ R and such m-tuple ⟨Y, . . . ,Ym⟩ ∈ R, where m > n, that
X =ψ(i) =Y and:
. ψ(i+ ) =Yk, for certain  < k ≤m
. for any  < l ≤ n there exists such  < o ≤m that o /= k and Xl =Yo.

Let Φ, Ψ be sets of branches and Φ ⊂ Ψ. We shall state that Ψ is a redundant
superset Φ iff for any branch ψ ∈Ψ∖Φ there exists such branch ϕ ∈Φ that ψ is a
redundant variant of ϕ.

Making use of the general concept of redundant superset of branches we can
define the general concept of complete tableau.
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Definition . (Complete tableau). Let ⟨X,A,Φ⟩ be a tableau.We shall state that
⟨X,A,Φ⟩ is complete iff:

. each branch contained in Φ is maximal
. any set of branches Ψ such that:

a. Φ ⊂Ψ
b. ⟨X,A,Ψ⟩ is a tableau
is a redundant superset of Φ.

A tableau is incomplete iff the tableau is not complete.

Now we can define the general concept of closed and open tableaux.

Definition . (Closed/open tableau). Let ⟨X,A,Φ⟩ be a tableau. We shall state
that ⟨X,A,Φ⟩ is closed iff the below conditions are met:

. ⟨X,A,Φ⟩ is a complete tableau
. each branch contained in Φ is closed.

A tableau is open iff the tableau is not closed.

By virtue of the above definitions of closed tableau and complete tableau, we
get a conclusion which makes up a generalization of the analogous conclusions
from the preceding chapters.

Corollary .. Each closed tableau is a complete tableau.

. Completeness theorem
In this chapter, we will define several general concepts and establish facts that will
allow us to prove a claim fromwhichwe can deduce the theorem on completeness
for the tableau system that meets the conditions given below.

In the first place, we will address the concepts used to demonstrate the rela-
tionship between relation ⊧ and ⊳. We will begin with the definition of branch
generating interpretation.

Definition . (Branch generating interpretation). Let Φ be a set of all open
and maximal branches that contain some tableau equivalents of formulas and let
I be an interpretation of formulas. We shall state that branch ϕ ∈ Φ generates
interpretation I iff there exists such function ≽∶Φ�→ I that ≽ (ϕ) = I.

Remark .. The general definition of generating interpretation of formulas by
branch is purely auxiliary and redundant in nature. For it is difficult to generally
establish a definition of function≽. However, in the case of specific logics orwhole
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classes of logics, this concept takes on a very specific meaning — we can then
describe the transition from the open andmaximal branch to the construction of
interpretation.We will present this issue in the next chapter, describing examples
of application.

Another important concept is the concept of set of interpretations good for
rules.

Definition . (Interpretations good for rules). Let

• R be a set of tableau rules
• ϕ be an open and maximal branch
• Xi ⊆⋃ϕ, for some non-empty X ⊆ For and some i ∈N
• I be a set of interpretations of formulas.

We shall state that set I is good for set of rules R iff branch ϕ generates such
interpretation I that:

• I ∈ I
• I⊧X.

We will now define the general concept of closure under rules.

Definition . (Closure under rules). Let X ⊆ Te. We shall state that Y ⊆ Te is
a closure of set X under rules R iff Y is a set that meets the following conditions:

• X ⊆Y
• for any rule R ∈R and any n-tuple ⟨Z,Z, . . . ,Zn⟩ ∈R, where n ∈N, ifX ⊆Z ⊆Y ,

then Zj ⊆Y , for some  ≤ j ≤ n.

On set Y we will also state that is a closure.

For any set of expressions, there exists at least one closure, at times theremay exist
more closures.

Using the above concept of closure, we can move on to the verbalization and
proof of the following lemma.

Lemma . (On the existence of open and maximal branch). Let X ⊆ For and
i ∈ N. If for each finite Y ⊆ X, there exists a maximal and open branch beginning
with Yi, then there exists a closure of set Xi under rules R which is an open and
maximal branch.

Proof. Take any X ⊆ For, i ∈ N, and assume that (∗) for each finite Y ⊆ X there
exists an open and maximal branch beginning with set Yi.

Next, we specify the set of all maximal and open branches that begin with set
Yi, for some finite Y ⊆X —we will denote that set as X.
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We define set X, through the following conditions:

. X ⊆X
. for any two branches ϕ and ψ contained in X, if there exist such i,k ∈N that

ϕ(i)∪ψ(k) is a t-inconsistent set, then ϕ /∈X or ψ /∈X
. X is a maximal set among those subsets X that meet conditions  and .

There exists at least one set X such that X ⊆X. We take one of such sets X and
denote it as X.

Consider set ⋃{ϕ() ∶ ϕ ∈ X}. Note that (∗∗) Xi ⊆ ⋃{ϕ() ∶ ϕ ∈ X}. For when
Xi /⊆ ⋃{ϕ() ∶ ϕ ∈ X}, there would exist such x ∈ Xi that x /∈ ⋃{ϕ() ∶ ϕ ∈ X} and,
consequently, for any such branch ψ ∈ X that x ∈ ψ(), ψ() ⊆ Xi and ψ() is a
finite set, it would be the case thatψ /∈X.Then, however, for some finite setYi ⊆Xi

there would exist nomaximal and open branch beginningwith setYi∪{x}which
would contradict assumption (∗).

We define the condition that specifies new set X:
U ∈X iff there exists such branch ϕ that ϕ ∈X and U =⋃ϕ
Now, we can define set Z =⋃X.

We claim that Z is a closure of set Xi under tableau rules R (definition .),
and that Z is an open and maximal branch.

First, we will show that Z is a closure of set Xi, thus that it meets conditions of
definition of closure ..

Note that Xi ⊆ Z, since (∗∗) Xi ⊆ ⋃{ϕ() ∶ ϕ ∈ X}, and by definition of set Z,
⋃{ϕ() ∶ ϕ ∈X} ⊆ Z.

Now, take any rule R ∈ R and any n-tuple ⟨U, . . . , Un⟩ ∈ R, for some n ∈ N,
and assume that Xi ⊆U ⊆Z. From definition ., it follows that there exists such
n-tuple ⟨U′ , . . . , U

′
n⟩ ∈ R that:

• for each  ≤ j ≤ n, U′j is such a minimal and finite set that if Uj is not such a
minimal and finite set such that ⟨U, . . . , Un⟩ ∈ R, then U′j ⊂Uj

• for any  < j ≤ n, Uj ∖U =U′j ∖U
′
 .

Consequently, assuming thatU′ ⊆Z, wemust show that for certain < l≤n,U′l ⊆Z,
since U′l ∪U = Ul. Since U′ ⊆ Z and U′ is a finite set, thus there exists a finite
number of such branches ϕ,ϕ, . . . ,ϕo in setX that for certain k ∈N,U′ ⊆ ϕ(k)∪
ϕ(k)∪ ⋅ ⋅ ⋅ ∪ ϕo(k). So, set X contains such branch ψ that ψ() = ϕ()∪ ϕ()∪
⋅ ⋅ ⋅∪ϕo() andU′ ⊆ψ(m), for certainm ∈N, and since ϕ(k)∪ϕ(k)∪⋅ ⋅ ⋅∪ϕo(k) is
a t-consistent set, so set X contains such maximal branch ψ′ that — by definition
. — for certain  < l ≤ n, U′l ⊆ ⋃ψ′. Finally, U′l ⊆ Z, since by construction Z,
⋃ψ ⊆ Z.



 Metatheory of tableau systems for PL and TL

We will now move on to showing that Z is an open and maximal branch.
From the definition of branch — . — it follows that Z is a branch.
Whereas by construction of Z, Z is an open branch, i.e. no subset Z is

t-inconsistent, by definition X.
Let us now check if Z is a maximal branch. According to definition ., we

assume that there exists such rule R ∈ R and such n-tuple ⟨X, . . . ,Xn⟩ ∈ R, for
some n ∈N that X = Z. By definition of tableau rules . (Existence if core) and
(Closure under subsets), there exists such n-tuple ⟨X′ . . . ,X

′
n⟩ ∈ R that for any  <

j≤n,Xj∖X =X′j ∖X
′
 andX

i ⊆X′ ⊆Z. Since Z is a closureXi, soX′j ⊆Z, for certain
 < j ≤ n, by definition .. Therefore, Xj ⊆Z, since Xj =X ∪X′j . But then X /⊂Xj,
which by definition . is out of the question. Consequently, there exists no such
tableau rule R and n-tuple ⟨X,. . . ,Xn⟩ ∈ R that X = Z, for some n ∈N. Therefore,
Z is a maximal branch, by definition ..

Now, we will verbalize and prove a fact that is needed to demonstrate the
relationship between relation ⊳ and the existence of a closed tableau.

Proposition .. Let X ⊆ Te. If X is a finite set, then there exists such maximal
branch ϕ that ϕ() =X.

Proof. Take any subset X ⊆ Te. The set of all branches beginning with set of ex-
pressions X will be denoted as X. Set X is non-empty as by definition of branch
., such mapping ψ ∶ {}�→ P(Te) that ψ() =X, is a branch.

We have two options: () there exists a closed branch in setX, or () there does
not exist any closed branch in set X.

If case () occurs, then by definition of maximal branch ., there exists such
maximal branch ϕ that ϕ() =X.

Assume that case () does not occur.
Let Y ⊆ Te be any finite set of expressions. By definition ., the number of

tableau rules that belong to set RY is finite and different from zero. Now, assume
there is j of them, for some j ∈N. We assign to each number from range  ≤ i ≤ j
exactly one of rules that belong to set RY , to obtain the sequence of all rules from
set RY : R, . . . , Rj.

By definition of tableau rules ., for each rule Ri ∈ RY , there exists a finite
number of n-tuples ⟨Y ,X, . . . ,Xn−⟩ in set Ri

Y . Therefore, each set Ri
Y , where R

i ∈

RY , is finite — contains at most k of ordered n-tuples, for some k ≥ . We take
account of some sets R

Y , . . . , R
j
Y , one for each Ri ∈RY .

We assign to each number from range ≤ i≤ k exactly one n-tuple from set Ri
Y ,

and denote given n-tuple as ri to obtain the sequence of all n-tuples from set Ri
Y :

r, . . . , rk.
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Consequently, in any Ri
Y there exists a finite number of ordered n-tuples

⟨Y ,X, . . . ,Xn−⟩ that we can arrange in sequence: ri, . . . ,r
i
k, for certain k ≥ .

Next, we define a list of all n-tuples ril from each Ri
Y , imposing a kind of

lexicographical order on that list:
r , . . . ,r


m

#$$$$$$$$$$$$$$%$$$$$$$$$$$$$$&
R 

Y

, r , . . . ,r

n

#$$$$$$$$$$$$$%$$$$$$$$$$$$$&
R 

Y

, . . . , rj, . . . ,r
j
o

#$$$$$$$$$$$$%$$$$$$$$$$$&
R j

Y

, where  ≤m,n, . . . ,o.

Such defined list of ordered n-tuples from set of expressions Y will be called
Y-list and denoted as LY . Of course, there may exist multiple Y-lists. Still, there
exists at least one Y-list that can be empty.

Let LY be Y-list and let ri ∈ LY . We know that ri ∈ Rk
Y ⊆ R

k, for some k ≤ j. Let
ri = ⟨X, . . . ,Xn⟩. We shall state that ordered n-tuple ⟨Z, . . . ,Zn⟩ is an expansion
of ri iff:

• ⟨Z, . . . , Zn⟩ ∈ Rk

• for each  ≤ l ≤ n the following conditions are satisfied:
. Xl ⊂ Zl.
. Xl is a set that is similar to X ∪(Zl ∖Z).

If ⟨Z, . . . ,Zn⟩ is the considered expansion ri, instead of ⟨Z, . . . , Zn⟩ we will
write r′i .
(∗)Fromdefinition of rules . (Closure under expansion), (Existence of core

of rule), we know that for any ri = ⟨X, . . . ,Xn⟩ that belongs to rule R and for any
t-consistent set of expressions Z, such that X ⊂ Z and for each  < i ≤ n, Xi is
not similar to any subset Z that contains X, there exists such rj ∈ R that rj is an
expansion of ri, where rj = ⟨Z, . . . ,Zn⟩, for some Z, . . .Zn ⊆ Te.

Let LY be certain Y-list. By induction we define the closure of set Y under LY .
LY(Y) is a maximally long sequence of sets of expressions Z, . . . ,Zo, such that for
some o ∈N and for any  ≤ n ≤ o:

. if n = , then Zn =Y
. if n = , then Zn =Xj, where:

a. r is the first n-tuple in LY
b. r = ⟨Y ,X, . . . ,Xn⟩, for n ≥ 
c. Xj =X

. if n > , then
a. Zn− belongs to sequence LY(Y)
b. Zn− is a consequence of expansion of certain m-tuple rl ∈ LY applied to

Zn−, thus r′l = ⟨Zn−,W, . . . ,Wm⟩, form ≥ , and Zn− =W

and Zn =Xj, where:
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a. there exists rl+m, for some m ≥ , and it is the first element after rl in LY
such that:

b. r′l+m is an expansion of rl+m
c. r′l+m = ⟨Zn−,X, . . . ,Xi⟩, for i ≥ 
d. Xj =X.

By definition of branch ., each closure LY(Y) ∶=Z, . . . ,Zn, for some n ∈N, is a
branch.

Now, let us investigate the initial set of expressions X. By virtue of the previous
findings, we conclude:

• X is a finite set, so we have such branch LX(X) ∶= X, . . . ,Xk, for some X-list
and some k ∈N that:

• Xk is a finite set of expressions as set of tableau rules R is closed under finite
sets . (Closure under finite sets).

Let us investigate a sequence of closures under some number of lists Lj —
where j ∈ N — and assume that the last set from the last closure Xo is a finite
set:

LX (X) =X, . . . ,Xk for some k ≥ , where k ∈N
LXk

(Xk) =Xk, . . . ,Xl for some l ≥ k, where k ∈N
.
.
.
Lj−Xl+m

(Xl+m) =Xl+m, . . . ,Xn for some n andm ∈N, where
n ≥ l+m

LjXn
(Xn) =Xn, . . . ,Xo for some o ≥ n, where o ∈N.

Since set of expressions Xo is finite, so we can define another branch Lj+Xo
(Xo)

∶=Xo, . . . ,Xr , for some Xo-list and certain r ∈N such that:

. by definition of addition of branches . and conclusion on addition
of branches ., (((. . .(LX(X) ⊕ LXk

(Xk)) ⊕ . . .) ⊕ Lj−Xl+m
(Xl+m)) ⊕

LjXn
(Xn))⊕Lj+Xo

(Xo) is a branch.
. Xr is a finite set of expressions as set of tableau rules R is closed under finite

sets by definition of tableau rules . (Closure under finite sets).

Consequently, for any j ∈ N there exists such branch Lj+Xm
(Xm) that L

j
Xl
(Xl) =

Xl, . . . ,Xm, LX(X) =X, . . . ,Xk, and for some k ≤ ⋅ ⋅ ⋅ ≤ l ≤m ∈N, X ⊆Xk ⊆ ⋅ ⋅ ⋅ ⊆Xl ⊆
Xm. We can extract all those branches:
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X =X, . . . ,Xk
#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$&

LX (X)

, Xk, . . . ,Xl
#$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$&
LXk

(Xk )

, Xl, . . . ,Xm
#$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$&
LX l
(Xl)

, . . .

After removal of all duplicates of elements, we get a branch — let us call it χ —
which beginswith initial setX.We claim that branch χ is amaximal branch.There
exist two options:

. branch χ is finite in length
. branch χ is infinite.

If the first option occurs, then from the construction of branch χ we know
that there does not exist super-branch χ. And from conclusion . we deduce
that branch χ is maximal.

Assume that the second case occurs — so branch χ is infinite in length. Let
us investigate if χ is a maximal branch. Taking account of definition of maximal
branch ., assume that there exists such tableau rule R ∈ R and such sets of
expressions Y, . . .Yn ⊆ Te, for some  < n ∈N, that:

• ⟨Y, . . . ,Yn⟩ ∈ R
• for some  ≤ i, Xi =Y and Xi ∈ χ.

We must demonstrate that there exists such index j ∈N that for certain  < k ≤ n,
some subsetW of element of branch Xj ∈ χ is strongly similar to set Yk.

From the construction of branch χ we know that Xi ∈ LkXm
(Xm), for some k≥ 

andm ≤ i.
By definition of tableau rules . and construction of branch χ two cases are

possible:

(a) i =m and R ∈RXm

(b) i >m and there exist:

. some l ∈N, wherem < l
. subsequent sequence Lk+Xl

(Xl) and R ∈RXl .

Assume the first case, meaning i =m and R ∈RXm . By virtue of construction of
branch χ we have three options:

. Xi+ =Yk, for some  < k ≤ n
. there exist: n-tuple ⟨W, . . . ,Wn⟩ ∈ R which is an expansion of the initial n-

tuple ⟨Y, . . . ,Yn⟩, and such element of branch χ Xi+o =W, for some o ≥ 
that Xi+o+ =Wk and additionally certain subsetWk is strongly similar to set
of expressions Yk, for some  < k ≤ n
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. there exist: set of expressions Xi+o ∈ χ, for some o ≥ , and such rule R′ ∈RXm

that certain ordered n-tuple ⟨Xi+o−, Y, . . . , Yn⟩ ∈ R′, for some n ∈N, Xi+o =
Yn , for some  < n ≤ n, and certain subset Xi+o is strongly similar to Yk, for
some  < k ≤ n.

Case (b) consists of similar options, only that we consider such expansion of
n-tuple ⟨Y, . . . ,Yn⟩ ∈ R that the first set of that expansion contains set Xl.

Therefore, χ is a maximal branch.

We still need a few additional concepts for the proof of the theorem on com-
pleteness. We will utilize them for demonstration of relationship between the
existence of closed tableau an relation ⊧.

Now, we will define a successive concept relevant for the general theorem on
completeness.

Definition . (Rules good for interpretations). We shall state that set of rules
R is good for set of interpretations I iff for any sets X, . . . ,Xi ⊆ Te (where  < i),
any interpretation I ∈ I and any rule R ∈R, if:

• ⟨X, . . . ,Xi⟩ ∈ R
• I is appropriate for X,

then I is appropriate for Xj, for some  < j ≤ i.

Wewill use the above definition . for the proof of another lemma, assuming
the property it defines.This lemma determines the relationship between the finite
sets of formulas and the existence of maximal and open branches.

Lemma .. Let X ⊆ For be a finite set of formulas, i ∈ N and let I ∈ I be an
interpretation of formulas. If set of rules R is good for set of interpretations I and
I⊧X, then there exists a maximal and open branch beginning with set {Ai ∶A ∈X}.

Proof. Take any finite set of formulas X ⊆ For, any index i ∈ N and any inter-
pretation of formulas I, and then assume that set of rules R is good for set
of interpretations I and I ⊧ X. We define the following set {Ai ∶ A ∈ X}. Set
{Ai ∶A ∈X} will be denoted as Xi.

Since I ⊧ X, so from definition of relation ⊩i . it follows that I ⊩ X.
Moreover, by definition of tableau expressions ., set X is t-consistent.

Consequently, due to definition ., interpretation I is appropriate for set Xi.
Now, indirectly assume that each maximal branch beginning with set Xi is

closed.
As Φ(Xi) we will denote the set of all maximal branches beginning with set

Xi. From fact ., we know that for each finite set of tableau expressions Y there
exists a maximal branch beginning with set Y . Thus, set Φ(Xi) is non-empty.
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Since set Φ(Xi) is a set of all maximal branches beginning with set Xi, so it
has the following property.

Now, assume that for some branch χ ∈Φ(Xi). Let for certain n ∈N exist such
rule R ∈R and such m-tuple ⟨Z, . . . ,Zm⟩ ∈ R that χ(n) = Z and χ(n+ ) = Zj, for
some  < j ≤m.

Note that each set Zj is a finite set of expressions since each rule expands the
finite input set to the finite output set (by definition of tableau rules . (Closure
under finite sets)), branch χ begins with finite set Xi, and we investigate its n-th
element. Thus, from fact . we know that:

• for each set Zj there exists maximal branch ϕj beginning with set Xi such that
ϕi(n+ ) = Zj.

(∗)Consequently, set Φ(Xi) contains such branches χ, ϕ, . . . , ϕm that χ = ϕj, for
some  < j ≤m.

Thus for any n ∈N, if there exist: such rule R ∈R, suchm-tuple ⟨Z, . . . ,Zm⟩ ∈R,
and branch χ ∈ Φ(Xi) such that χ(n) = Z and χ(n + ) = Zj, then there exists
branch ψ ∈Φ(Xi) such that ψ(n+ ) = Zj and for any k ≤ n+ , χ(k) =ψ(k).
(∗∗) By assumption, each branch that belongs to set Φ(Xi) is closed, thus by

virtue of fact ., each branch that belongs to set Φ(Xi) has a finite length ofm,
for somem ∈N.

From the initial assumption, we know that each of branches in set Φ(Xi)

begins with set Xi.
Since interpretation I is appropriate for set of expressions Xi, so due to the

definition of interpretation appropriate for set of expressions ., set Xi is not
t-inconsistent. Hence, we get a conclusion that there are no branches of length
one in set Φ(Xi).

Due to the assumption that set of rulesR is good for set of interpretations I and
definition ., for any rule R ∈R and any l-tuple ⟨Z, . . .Zl⟩ ∈ R, if interpretation
of formulas I is appropriate for set Z, then it is also appropriate for some set
Zj, where  < j ≤ l, and by virtue of (∗), there exists branch χ ∈ Φ(Xi) such that
interpretation of formulas I is appropriate for set χ() and χ() =Xi.

The set of those branches that belong to Φ(Xi), and simultaneously inter-
pretation of formulas I is appropriate for their k-th element, will be denoted as
Φ(Xi)k.

So, we have Φ(Xi) =Φ(Xi) ⊇Φ(Xi) ≠∅.
Now, assume that for some n ∈ N, where n > , set Φ(Xi)n− ⊇ Φ(Xi)n ≠ ∅.

Since set Φ(Xi)n is non-empty, so take some branch ψ ∈Φ(Xi)n.
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By assumption, interpretation of formulas I is appropriate for set of expres-
sions ψ(n), so due to the definition of interpretation appropriate for set of
expressions ., set ψ(n) is not t-inconsistent.

Due to the assumption that set of rulesR is good for set of interpretations I and
definition . which claims that for any rule R ∈R and any l-tuple ⟨Z, . . .Zl⟩ ∈R,
if interpretation of formulas I is appropriate for set Z, then it is also appropriate
for some set Zj, where < j≤ l, and (∗), there exists branch ϕ ∈Φ(Xi)n+ such that
interpretation I is appropriate for set ϕ(n+ ) and ϕ ∈Φ(Xi)n. Thus, Φ(Xi)n ⊇
Φ(Xi)n+ and Φ(Xi)n+ ≠∅.

Therefore, for each k ∈N:

Φ(Xi) =Φ(Xi) ⊇Φ(Xi) ⊇ ⋅ ⋅ ⋅ ⊇Φ(Xi)k ⊇ . . .

We take the intersection of all those sets Φ(Xi)k, where k ∈ N. Intersection
⋂{Φ(Xi)k ∶ k ∈ N} = Φ is non-empty as for each k, subset Φ(Xi)k is also non-
empty. So, set Φ includes at least one branch χ.That branch ismaximal and begins
with set Xi since Φ ⊆Φ(Xi).

But, branch χ is infinite which contradicts conclusion (∗∗).

We will now move on to the final, auxiliary relationship between the tableau
concepts.

Lemma .. Let X ⊆ For be a finite set of formulas, A ∈ For and i ∈ N. If there
exists a maximal and open branch beginning with set {Bi ∶ B ∈ X ∪{f (A)}}, then
each complete tableau ⟨X,A,Φ⟩ is open.

Proof. Take finite set X ⊆For, any formulaA ∈For and index i ∈N such that there
exists a maximal and open branch beginning with set {Bi ∶ B ∈ X ∪{f (A)}}. We
will denote that branch by letter ϕ, and set {Bi ∶ B ∈ X ∪{f (A)}}, for simplicity,
will be denoted by Xi.
(∗) Since branch ϕ is open, so no element ϕ is a t-inconsistent set, by definition

..
(∗∗) Since branch ϕ is maximal and open, so for any rule R ∈ R, any n ∈N and

any element Y ∈ ϕ, if ⟨Y ,Y, . . . ,Yn⟩ ∈R, then there exists some element Z ∈ ϕ such
that some subset W ⊆ Z is a set strongly similar to set Yi, for certain  ≤ i ≤ n, by
definition of maximal branch ..

Now, we indirectly assume that there exists complete and closed tableau
⟨X,A,Ψ⟩.

Since tableau ⟨X,A,Ψ⟩ is complete, so Ψ is such subset of set of all maximal
branches that ⟨X,A,Ψ⟩ is a complete tableau, by definition of complete tableau
..
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Since tableau ⟨X,A,Ψ⟩ is closed, so each branch that belongs to Ψ, is closed,
by definition of closed tableau .. For certain k ∈N, each of these branches:

• begins with set Xk = {Bk ∶ B ∈X∪{f (A)}}, by definition of tableau .
• and its last element is a t-inconsistent set of expressions, by definition of closed

tableau ..

We intend to show that there exists some open branch ψ in set of branches Ψ,
which contradicts the assumption that ⟨X,A,Ψ⟩ is a closed tableau. To this end,we
will apply the induction through the branch length in order to construct infinite
branches beginning with set Xk. The construction method for such branches will
be denoted as (†).

Consider the first element of each branch contained in set of branches Ψ. It is
set X =Xk = {Bk ∶B ∈X∪{f (A)}}. X is a set of expressions similar — within the
meaning of definition of similarity . — to set Xi = {Bi ∶ B ∈X∪{f (A)}}. Since
Xi ∈ ϕ and branch ϕ is open, so Xi and X are t-consistent, by definition ..

Nevertheless, due to the fact that Ψ is a set of closed branches and the consid-
ered tableau ⟨X,A,Ψ⟩ is complete, there must exist a tableau rule R ∈R such that
⟨X,Z, . . . ,Zl⟩ ∈R, where l < , and for each  < j ≤ l there exists such branch in set
Ψ that Zj belongs to that branch, by definition of complete tableau ..

Nonetheless, certain set Zm — for  <m ≤ l — must be t-consistent. Because
due to definition of tableau rules ., there exists such l-tuple that ⟨Y, . . . ,Yl⟩ ∈R,
where Zm is a similar set — within the meaning of definition of similarity . —
to some setWm ⊆ Ym and it is t-consistent, since Ym ⊆U ∈ ϕ, for certain U ⊆ Te,
by virtue of the fact that ϕ is an open, by (∗), and maximal branch, by (∗∗). Set
Zm will be denoted as X, while elementWm as X∗ .

Therefore, for number  there exist such branches ψ, ψ ∈Ψ that:

• X ∈ψ
• set X originated by the application of certain rule R ∈ R to set X, ultimately

producing a second element of branch ψ ∈Ψ
• X ∈ψ
• X is a t-consistent set
• X ⊂X
• for some j ∈N, setX∗ ⊆Xj ∈ ϕ, where setX∗ is similar, in the sense of definition

of similarity ., to set X.

Now, assume that for certain n ∈ N there exist such branches ψ, . . . , ψn ∈ Ψ
that:

• for any  < j ≤ n, set Xj originated by the application of certain rule R ∈R to set
Xj−, ultimately producing j-th element of branch ψj ∈Ψ



 Metatheory of tableau systems for PL and TL

• Xn ∈ψn
• Xn is a t-consistent set
• X ⊂X ⊂ . . .⊂Xn
• for some i ∈N, set X∗n ⊆Xi ∈ ϕ, where X∗n is similar, in the sense of definition of

similarity ., to set Xn.

Nevertheless, due to the fact that Ψ is a set of closed branches, the considered
tableau ⟨X,A,Ψ⟩ is complete and set Xn is a t-consistent set, there must exist a
tableau rule R ∈ R such that ⟨Xn,Z, . . . ,Zl⟩ ∈ R, where l > , and for each  < j ≤ l
there exists such branch in set Ψ that Zj belongs to that branch, by definition of
complete tableau ..

Nonetheless, certain set Zm — for  <m ≤ l — must be t-consistent. Because
due to definition of tableau rules ., there exists such l-tuple that ⟨Y, . . . ,Yl⟩ ∈R,
where Zm is a similar set — within the meaning of definition of similarity . —
to some setWm ⊆ Ym and it is t-consistent since Ym ⊆U ∈ ϕ, for certain U ⊆ Te,
by virtue of the fact that ϕ is an open (∗) and maximal branch (∗∗). Set Zm will
be denoted as Xn+, while elementWm as X∗n+.

Thus, for any n ∈N, there exist such branches ψ, . . . , ψn,ψn+ ∈Ψ that:

. for any  < j ≤ n+ , set Xj originated by the application of certain rule R ∈R to
set Xj−, ultimately producing j-th element of branch ψj ∈Ψ

. Xn+ ∈ψn+
. Xn+ is a t-consistent set
. X ⊂X ⊂ . . .⊂Xn ⊂Xn+
. for some i ∈N, set X∗n+ ⊆ Xi ∈ ϕ, where X∗n+ is similar, within the meaning of

definition of similarity . — to set Xn+.

Set of all sets that originate this way X ⊂ X ⊂ . . .⊂ Xn ⊂ Xn+ ⊂ . . .will be de-
noted as X. Set X contains at least one branch ψ such that for any i ∈N, if Xi ∈ ψ,
then there exists set Xi ∈X.

Branch ψ can be defined through the specification of such minimal subset of
X, set X′ that:

• X ∈X′

• for any i ∈N, if Xi ∈X′, then exactly one Xi+ ∈X′.

Branch ψ is infinite, and as a consequence of conclusion . it is an open
branch.

Since set X, the first element of branch ψ, is equal to set Xk, and moreover for
any element Xi ∈ψ, where i > , there exist rule R ∈RS and n-tuple ⟨Y, . . .Yn⟩ ∈R
such that:
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• Y =Xi−
• Xi =Yk, for certain  < k ≤ n
• for each  < j ≤ n, if j /= k, then there exists branch ψ′ ∈Ψ such that for some Zl,

where  ≤ l, Zl ∈ψ′, Zl =Y and Zl+ =Yj,

so ⟨X,A,Ψ∪{ψ}⟩ by definition of tableau . is a tableau for pair ⟨X,A⟩.
However, branchψ does not belong to set Ψ because tableau ⟨X,A,Ψ⟩, contrary

to the assumption, would not be a closed tableau.
Let us now consider the question whether or not set Ψ ∪ {ψ} is a redundant

superset of set Ψ, in the light of definition of redundant variant of branch ..
Let us now carry out the following argument.
(††) Assume that branch ψ is a redundant variant of some branch ψ′ ∈ Ψ

different from ψ. For a certain minimal  ≤ i ∈N:

• there exists such rule R ∈ R and such n-tuple ⟨X, . . . ,Xn⟩ ∈ R that ψ′(i) = X
and ψ′(i+ ) =Xj, for certain  < j ≤ n

• there exists rule R ∈ R and such m-tuple ⟨Y, . . . ,Ym⟩ ∈ R′, where n < m, that
X =ψ(i) =Y and:
. ψ(i+ ) =Yk, for certain  < k ≤m
. for any  < l ≤ n there exists such  < o ≤m that o /= k and Xl = Yo and there

exists such branch ψ′′ ∈Ψ that ψ′′(i+ ) =Yo.

But since branch ϕ is open and maximal (assumptions (∗) and (∗∗)), so also
some element Xl = ψ′′(i+ ) for some branch ψ′′ ∈Φ is t-consistent because it is
similar to some set of expressionsW included in some element of branch ϕ.

Therefore, we can construct yet another infinite and open branch X, . . . , Xj+,
making use of construction (†) which again, for at least successive element, i.e.
Xj+ = Xl, by virtue of reasoning analogous to (††) is t-consistent and it is not a
redundant variant of any sub-branch of any branch from set Ψ.

So, by application of induction and steps (†) and (††)we get an infinite branch
— call it χ — and, consequently, open which is not a redundant variant of any
branch that belongs to set of branches Ψ and begins with set X.

Since Ψ, by assumption, contains closed branches, so χ /∈ Ψ. Since set X, the
first element of branch χ, is equal to set Xk, and moreover for any element Xi ∈ χ,
where i > , there exists such rule R ∈R and such n-tuple ⟨Y, . . .Yn⟩ ∈ R that:

• Y =Xi−
• Xi =Yk, for certain  < k ≤ n
• for each  < j ≤ n, if j /= k, then there exists branch ψ ∈Ψ such that for some Zl,

where  ≤ l, Zl ∈ψ, Zl =Y and Zl+ =Yj,

so ⟨X,A,Ψ∪{χ}⟩ by virtue of definition of tableau . is a tableau for pair ⟨X,A⟩.
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Thus, ⟨X,A,Ψ⟩ is not a complete tableau which contradicts the initial assump-
tion.

Summing up the definitions, lemmas and facts that we have presented so far,
we move on to the general theorem on completeness for the tableau systems
constructed using the method presented in the book.

Theorem . (General theorem on completeness). If:

. set of interpretations I is good for set of tableau rules R
. set of tableau rules R is good for set of interpretations I

then for any X ⊆ For, A ∈ For the below statements are equivalent:

• X ⊧A
• X ⊳A
• there exists finite subset Y ⊆X and closed tableau ⟨Y ,A,Φ⟩.

Proof. We assume ., . and take any X ⊆ For, A ∈ For. We must prove three
implications.

(a) X ⊧A6⇒X ⊳A.

Assume that X /⊳A. Hence, for any finite Y ⊆X there exists an open and max-
imal branch beginning with set Yi ∪ f (A)i — for some i ∈ N — by definition of
branch consequence .. By lemma . (On the existence of open andmaximal
branch), there exists a closure of set Xi ∪ f (A)i under rules R which constitutes a
maximal and open branch ψ.

By assumption , we know that there exists interpretation I ∈ I generated by ψ
and I ⊧ X ∪{f (A)}. Therefore I ⊧ X and I /⊧A, by definition .. Consequently
X /⊧A.

(b) X ⊳A6⇒ there exists finite subset Y ⊆X and closed tableau ⟨Y ,A,Φ⟩.

(∗) Assume that for each finite subset Y ⊆X all tableaux ⟨Y ,A,Φ⟩ are open.
Take any finite subset Y ⊆ X. Note that from fact . (∗∗) it follows that for

any finite set of tableau expressions there exists a maximal branch which begins
with that set.Therefore for any index i ∈N there exists maximal branch beginning
with set Yi ∪{f (A)i}.

Take any index i ∈N. So, set of maximal branches Φi beginning with set Yi ∪
{f (A)i} is non-empty. What is more, by (∗∗) set Φi contains at least one such
subset Φ that ordered triple ⟨Y ,A,Φ⟩ is a complete tableau.
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Due to assumption (∗) tableau ⟨Y ,A,Φ⟩ is open.
Since ⟨Y ,A,Φ⟩ is open and complete, so Φ contains maximal and open branch

ϕ which begins with set Yi ∪{f (A)i}.
Since Y is any finite subset X and i is any index, so for any finite subset Y ⊆X

and any index i ∈N, there exists somemaximal and open branchψ beginningwith
set Yi ∪{f (A)i}.

Consequently, there does not exist such finite subsetY ⊆X and such index i ∈N
that each maximal branch beginning with Yi∪{f (A)i} is closed.Therefore — by
definition . — X /⊳A.

(c) there exists finite set Y ⊆X and closed tableau ⟨Y ,A,Φ⟩ 6⇒X ⊧A.

Assume that X /⊧A. So, by definition of relation of semantic consequence .,
there exists such interpretation of formulas I that I⊧X and I /⊧A.Thus I⊧ f (A),
and consequently I⊧X∪{f (A)}.

Hence, for any finite subset Y ⊆X, also I⊧Y ∪{f (A)}.
Take any finite subset Y′ ⊆ X. From lemma . and assumption  (set of

tableau rules R is good for set of interpretations I), we get a conclusion that
for any i ∈ N there exists maximal and open branch beginning with set {Bi ∶ B ∈
Y′ ∪{f (A)}}.

And from lemma . we know that each complete tableau ⟨Y′,A,Φ⟩ is open.
Since Y′ was an arbitrary finite subset of set of formulasX, so there is no finite set
Y ⊆X and closed tableau ⟨Y ,A,Φ⟩.





 Examples of applications

. Introductory remarks
In this chapter, we will show exemplary applications of the general tableau
concepts we defined in Chapter Five. Thanks to the general concepts we have
at our command, and their interrelationships we have demonstrated, we can
significantly shorten the construction of a complete tableau system.

We already have the general concepts:

• set of tableau rules
• branches
• closed/open branch
• relation of branch consequence
• tableau
• open/closed tableau.

We also know that there exists a general connection between a properly defined
set of tableau rules R and properly defined semantics. Further work on the con-
struction of the complete tableau system must therefore focus solely on defining
the detailed concepts of tableau system in such a way that the general conditions
aremet— if that is the case, then we get a tableau system that is complete in terms
of the initial semantics.

In the next four subchapters, we will describe three different applications. The
first one will be of a detailed nature. We will consider an example of the logic of
categorical propositions with modalities de re. We will define the basic concepts
and then show that theymeet the sufficient conditions for the general theorem on
completeness ., which will allow us to reach the conclusion that the defined
tableau system is adequate to the initial semantics.This kind of application of the
general theorem on completeness can be considered paradigmatic, because the
theorem is intended primarily to shorten the construction of complete tableau
systems when we want to construct a tableau system for a logic that is already
semantically defined.

The second application, described in subsequent subchapter, has a general
character. In this subchapter, we describe how to apply the general tableau con-
cepts and general tableau theorem to the entire class of logics defined with the
same type of semantics. Using an example of modal logics specified with the se-
mantics of possible worlds, we will show how to obtain a less general theorem on
completeness, specified for this class of logics. It allows even simpler proof of the
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completeness of specific tableau systems, because some more general properties
are fulfilled by the entire class of modal logics specified with the semantics of pos-
sible worlds. Similar general applications can occur in all cases where we consider
the classes of logic defined with a common type of semantics.

The next subchapter is devoted to the concept of a tableau system. We will try
to define the general concept of tableau system and show what benefits to the
investigation of dependencies between tableau systems brings the way the book
describes tableau systems.

In the last subchapter, we will outline the transition between the formalised
tableaux and standard tableaux/trees. Therefore, we will try to show that the ap-
proach presented in the book corresponds to the standard approach, as to the
practical construction of proof itself, while at the same time emphasizing the
general nature of concepts that the standard approach does not bear.

. Tableau system for Modal Term Logic de re
Wewill now turn to the logic of categorical propositions de re. It is an extension of
logic TL with new categorical propositions with modalities in the interpretation
de re. This logic will be called Modal Term Logic de re, for shortMTL.

When defining set of formulas of MTL on the right hand side we will provide
schemes of propositions in English which correspond to particular formulas and
may occur in the reasonings described byMTL.

.. Language

Let us begin with the alphabet of MTL.

Definition . (Alphabet of MTL). Alphabet of Modal Term Logic is made up
by the sum of the following sets:

• set of logical constants Lc = {a, i,e,o,a◇, i◇, e◇, o◇, a◻, i◻, e◻, o◻}
• set of name letters Ln = {P,Q,R,P,Q,R, . . .}.

Even though the set of name letters is infinite and contains indexed letters,
practicably we will use a finite number of the following letters: P, Q, R, S, T, U,
treating them as metavariables ranging over set Ln.

Let us now proceed to the definition of formula of MTL. Modal Term Logic is
defined on the following set of formulas.

 The idea for the system presented here was offered first in []. A simplified and better
developed in some respects version of this material is presented in []. Also other
variants of syllogistic are studied there.
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Definition . (Formula of MTL). Set of formulas of MTL is the smallest set
containing the following expressions.

• PaQ Each P is Q.
• PiQ Some P is Q.
• PeQ No P is Q.
• PoQ Some P is not Q.
• Pa◻Q Each P must be Q.

Each P is necessarily Q.
• Pi◻Q Some P must be Q.

Some P is necessarily Q.
• Pe◻Q No P may be Q.

No P is possibly Q.
• Po◻Q Some P must not be Q.

Some P is not possibly Q.
• Pa◇Q Each P may be Q.

Each P is possibly Q.
• Pi◇Q Some P may be Q.

Some P is possibly Q.
• Pe◇Q No P must be Q.

No P is necessarily Q.
• Po◇Q Some P may not be Q.

Some P is not necessarily Q.

where P,Q ∈ Ln.
We specify set of formulas as ForMTL, and its elements will be called formulas.

.. Semantics

Let us define the concept ofmodel.Wewill use semanticswithout possibleworlds.

Definition . (Model for language of MTL). Model will be called ordered
quadrupleMMTL = ⟨D,d◻,d,d◇⟩, where:

. D is a set
. d◻, d, d◇ are such functions from set of name letters Ln in set P(D) that for

any name letter P ∈ Ln, d◻(P) ⊆ d(P) ⊆ d◇(P).

Remark .. The proposed concept of model expresses the following intuitions.
Functions d◻,d,d◇ assign to each name letter P those sets of objects that are
— respectively — necessarily P-s, are P-s, and can be P-s. The objects that are
necessarily P-s, are also simply P-s and are contained in the set of those objects
that can be P-s. Hence, we have a chain of inclusions: d◻(P) ⊆ d(P) ⊆ d◇(P).
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Now, we proceed to the concept of truth in model.

Definition . (Truth in model). Let MMTL = ⟨D,d◻,d,d◇⟩ be a model and
let A ∈ ForMTL. We shall state that formula A is true in model MMTL (for short
MMTL ⊧ A) iff for some name letters P, Q ∈ Ln, one of the below conditions is
met:

. A = PaQ and d(P) ⊆ d(Q)
. A = PiQ and d(P)∩d(Q) ≠ ∅
. A = PeQ and d(P)∩d(Q) = ∅
. A = PoQ and d(P) /⊆ d(Q)
. A = Pa◻Q and d(P) ⊆ d◻(Q)
. A = Pi◻Q and d(P)∩d◻(Q) ≠ ∅
. A = Pe◻Q and d(P)∩d◇(Q) = ∅
. A = Po◻Q and d(P) /⊆ d◇(Q)
. A = Pa◇Q and d(P) ⊆ d◇(Q)
. A = Pi◇Q and d(P)∩d◇(Q) ≠ ∅
. A = Pe◇Q and d(P)∩d◻(Q) = ∅
. A = Po◇Q and d(P) /⊆ d◻(Q).

If for any propositional letters P, Q ∈ Ln none of the conditions is met, then we
shall state that formula A is false in modelMMTL (for shortMMTL /⊧A).
Let X ⊆ ForMTL. We shall state that set of formulas X is true in modelMMTL (for
short: MMTL ⊧ X) iff for any formula A ∈ X, MMTL ⊧ A. We shall state that set
of formulas X is false in modelMMTL (for short:MMTL /⊧X) iff it is not the case
thatMMTL ⊧X.

Remark .. The semantics for modal syllogistic we offer in this study refers to
the semantics presented in studies of F. Johnson [] and S. K. Thomason [] i
[].

In [] Johnson introduced model in form ⟨W,Ve,Va,Va
c ,Ve

c ⟩ where Ve, Va,
Va
c , and Ve

c are functions that assign subsets of set W to name letters, where W
is treated as a set of all objects (“world”); Ve(S) is a set of objects that essentially
are S-s; Va(S) is a set of objects that accidentally are S-s; Ve

c (S) is a set of objects
that essentially are non-S-s;Va

c (S) is a set of objects that accidentally are non-S-s.
Furthermore, an auxiliary functionV was adopted asV(S) =Ve(S)∪Va(S), that
is V(S) is a set of all S-s. Therefore, our D, d, and d◻ are Johnson’sW, V , and Ve

 The application of this type of semantics was launched in [].
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respectively. Moreover, our function d◇ can be defined with formula d◇(S) ∶=
W∖Ve

c (S); set of all those objects that are not essentially non-S-s, i.e. can be S-s.

Our interpretation of proposition Sa◻P corresponds to the interpretation of
Johnson:V(S)⊆Ve(P); and for Se◻Pwe have: d(S)∩d◇(P)=∅, i.e.V(S)∩(W∖
Ve
c (P)) = ∅ iff V(S) ⊆ Ve

c (P). For the other propositions [] adopted different
interpretation that ours, in order to reproduce the modal syllogistic of Aristotle.

In [] Thomason used a semantics based on the ordered quadruples in form
⟨W,Ext,Ext+,Ext−⟩, where W is a set of objects and Ext, Ext+, and Ext− are
functions that assign subsets of set W to name letters and meet the following
conditions: ∅ ≠ Ext+(x) ⊆ Ext(x) and Ext−(x) ∩ Ext(x) ≠ ∅, for each letter x.
Thomason’s W, Ext and Ext+ correspond to our D, d and d◻. Furthermore, his
Ext−(S) is a set of objects that cannot be S-s. We can express that set through our
D∖ d◇(S). We have Ext(S) ⊆ (W ∖ Ext−(S)), that is d(S) ⊆ d◇(S). Obviously,
Ext, Ext+ and Ext− correspond to functions V , Ve, and Ve

c from [].
Denotation .. Let ● ∈ {◻,◇}. Let us adopt denotation: if ● =◻, then ●′ =◇, and
if ● =◇, then ●′ = ◻.

Now, we will define a function that assigns a contradictory formula to each
formula.

Definition . (Contradictory formulas). Let ○∶ForMTL �→ ForMTL be a func-
tion specified for any P, Q ∈ Ln and ● ∈ {◻,◇} with the following conditions:

. ○(PaQ) = PoQ
. ○(PiQ) = PeQ
. ○(PeQ) = PiQ
. ○(PoQ) = PaQ
. ○(Pa●Q) = Po●

′

Q
. ○(Pi●Q) = Pe●

′

Q
. ○(Pe●Q) = Pi●

′

Q
. ○(Po●Q) = Pa●

′

Q.

Directly from definition of truth in model . and definition of function ○ . we
get a conclusion.

Corollary .. For any modelMMTL and any formula A,MMTL ⊧A iffMMTL /⊧
○(A)

 Function Va
c is superfluous in this semantics. This is also evident in studies of

Thomason [] and [] who disregards that function.
 For instance, propositions Si◻P and Pi◻S are to be equivalent in this semantics.
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Note that each modelMMTL can be identified with interpretation I— in ac-
cordancewith definition of general interpretation of formulas .. Take anymodel
MMTL and define set of formulasXMMTL ={A ∈ForMTL ∶MMTL ⊧A}. Function ○
is injective and for any formula B, B ∈XMMTL iff ○(B) /∈XMMTL , by conclusion ..

We define conventionally the relation of semantic consequence.

Definition . (Semantic consequence relation). Let set X ⊆ ForMTL and A ∈

ForMTL. We shall state that formula A follows from set of formulas X (for short:
X ⊧ A) iff for any model MMTL, if MMTL ⊧ X, then MMTL ⊧ A. We shall state
that from set of formulas X does not follow formula A (for short: X /⊧ A) iff it is
not the case that X ⊧A.

Pair ⟨ForMTL,⊧⟩ is a semantically defined logic, in accordance with general
definition .. This implies that relation of semantic consequence ⊧ both is un-
ambiguously determined by set of allmodelsMMTL forForMTL of set of formulas
MTL, and unambiguously determines set of all modelsMMTL for ForMTL of set
of formulasMTL, by fact ..

.. Tableau expression

Before we move on to the definition of Te — set of tableau expression for MTL
in accordance with general definition of tableau expression . — let us define
several auxiliary concepts.

Definition . (Expressions). Set of expressions Ex is the union of the following
sets.

• {Ai ∶A ∈ ForMTL, i ∈N}
• {P+i ∶ P ∈ Ln, i ∈N}
• {P−i ∶ P ∈ Ln, i ∈N}
• {P●+i ∶ P ∈ Ln, i ∈N}, where ● ∈ {◻,◇}
• {P●−i ∶ P ∈ Ln, i ∈N}, where ● ∈ {◻,◇}.

By virtue of definition ., the following conclusion occurs

Corollary .. There exists function g ∶ ForMTL �→ P(Ex), defined with con-
dition: for any formula A ∈ ForMTL, g(A) = {A, A, A, . . .}, where {A,A,A,
. . .} ⊆Ex.

Remark .. Practically, in the case of MTL, each Ai ∈ g(A) will be sim-
ply identified with formula A, since in the tableau proof each formula will be
self-represented.
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Next, based on set Ex we define the concept of inconsistent set of expres-
sions that ultimately will correspond to the concept of tableau inconsistent set
of expressions.

Definition . (Inconsistent set of expressions). Let X ⊆ Ex. We shall state
that set X is an inconsistent set of expressions iff X meets one of the following
conditions:

. A ∈X and ○(A) ∈X, for some A ∈ ForMTL
. P+i ∈X and P−i ∈X, for some P ∈ Ln and some i ∈N
. P●+i ∈X and P●−i ∈X, for some P ∈ Ln, some i ∈N and ● ∈ {◇,◻}.

We shall state that set X is a consistent set of expressions iff X is not an
inconsistent set of expressions.

Based on definition of model ., conclusion . and definition ., we get
another conclusion.

Corollary .. Let X ⊆ ForMTL and i ∈N. If there exists modelMMTL such that
MMTL ⊧X, then set {xi ∶ x ∈ g(A),A ∈X} is a consistent set of expressions.

Based on definition of set of expressions ., conclusion ., definition of
inconsistent set of expressions . and conclusion . we get the following fact.

Proposition .. Set of expressions Ex meets the conditions of general definition
of tableau expressions ..

Due to the above fact, set Ex will be denoted as TeMTL, while its elements
will be called expressions or tableau expressions. In turn, the inconsistent sets of
expressionswill be called tableau inconsistent (t-inconsistent), while the consistent
sets of expressions will be called tableau consistent (t-consistent).

Now, we define the function selecting indices.

Definition . (Function selecting indices). Let ∗ ∶ TeMTL�→N be such func-
tion that for any name letter P ∈ Ln, any i ∈ N, any ● ∈ {◻,◇} and any formula
A ∈ ForMTL:

. ∗(Ai) = i
. ∗(P+i) = i
. ∗(P−i) = i
. ∗(P●+i) = i
. ∗(P●−i) = i.

Denotation .. Let x ∈ TeMTL and ∗(x) = i. We adopt denotation xi.
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Now, we will define binary relation ≡ specified on the Cartesian product
P(TeMTL)×P(TeMTL) that will correspond to the general definition of similarity
of sets of expressions (definition .).

Definition .. LetX, Y ⊆TeMTL. We define relation ≡with condition:X ≡Y iff
there exists bijection h ∶ ∗(X)�→∗(Y) such that for any expression xi ∈ TeMTL:
xi ∈X iff xh(i) ∈Y .

From definition . results the following conclusion.

Corollary .. Let X, Y ⊆ TeMTL. If X ≡Y, then:

• X is t-consistent iff Y is t-consistent
• sets X and Y have the same cardinality.

By conclusion . and definition of relation ≡ ., we claim that relation ≡
meets the conditions of general definition of similarity of sets of expressions ..

Proposition .. Relation ≡ is the relation of similarity of sets in accordance with
the general definition of similarity of sets of expressions ..

We will now define the concept that establishes the relation between the
models and sets of expressions.

Definition .. Let X be a set of expressions, whileMMTL = ⟨D,d◻, d, d◇⟩ be a
model. We shall state thatMMTL is appropriate for set X iff the below conditions
are met:

. MMTL ⊧X∩ForMTL
. there exists function γ ∶N�→D such that for each name letter P ∈ Ln, each i
∈ N and for any ● ∈ {◻,◇}:
a. if P+i ∈X, then γ(i) ∈ d(P)
b. if P−i ∈X, then γ(j) /∈ d(P)
c. if P●+i ∈X, then γ(i) ∈ d●(P)
d. if P●−i ∈X, then γ(j) /∈ d●(P).

From definition of inconsistent set of expressions . and definition of model
appropriate for the set of expressions . follows a condition concerning the re-
lationship between the inconsistent sets of expressions and the appropriateness
of models.

Corollary .. For any X ⊆ TeMTL, if X is t-inconsistent, then there exists no
modelMMTL appropriate for X.
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Next, note that relation ⊧ forMTL meets the conditions of relation⊩ (defini-
tion .). Thus, by conclusion . and definition of appropriate model . we
have the fact.

Proposition .. The notion of model appropriate for set of expressions meets the
general conditions of interpretation appropriate for the set of expressions described
in definition ..

Thus, we have demonstrated that the presented concepts for the tableau sys-
tem forMTL are special cases of the general concepts described in the previous
chapter.

.. Rules for the tableau system for logic MTL

We can proceed to the rules. On each rule, we conventionally assume that each
of its input sets is t-consistent and that each input set is basically contained in the
output set.

Definition . (Tableau rules forMTL). Tableau rules for systemMTL are the
following rules:

Classical rules

Ra+ ∶
X∪{PaQ,P+j}

X∪{PaQ,P+j,Q+j}

Re− ∶
X∪{PeQ,P+j}

X∪{PeQ,P+j,Q−j}

Ri ∶
X∪{PiQ}

X∪{PiQ,P+j,Q+j}
, where:

. j /∈ ∗(X∖ForMTL)
. for any k ∈ N, {P+k,Q+k} /⊆X.

Ro ∶
X∪{PoQ}

X∪{PoQ,P+j,Q−j}
, where:

. j /∈ ∗(X∖ForMTL)
. for any k ∈ N, {P+k,Q−k} /⊆X.

Rules for◇

Ra◇+ ∶
X∪{Pa◇Q,P+j}

X∪{Pa◇Q,P+j,Q◇+j}
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Re◇− ∶
X∪{Pe◇Q,P+j}

X∪{Pe◇Q,P+j,Q◻−j}

Ri◇ ∶
X∪{Pi◇Q}

X∪{Pi◇Q,P+j,Q◇+j}
, where:

. j /∈ ∗(X∖ForMTL)

. for any k ∈ N, {P+k,Q
◇
+k} /⊆X.

Ro◇ ∶
X∪{Po◇Q}

X∪{Po◇Q,P+j,Q◻−j}
, where:

. j /∈ ∗(X∖ForMTL)

. for any k ∈ N, {P+k,Q◻−k} /⊆X.

Rules for ◻

Ra◻+ ∶
X∪{Pa◻Q,P+j}

X∪{Pa◻Q,P+j,Q◻+j}

Re◻− ∶
X∪{Pe◻Q,P+j}

X∪{Pe◻Q,P+j,Q◇−j}

Ri◻ ∶
X∪{Pi◻Q}

X∪{Pi◻Q,P+j,Q◻+j}
, where:

. j /∈ ∗(X∖ForMTL)

. for any k ∈ N, {P+k,Q◻+k} /⊆X.

Ro◻ ∶
X∪{Po◻Q}

X∪{Po◻Q,P+j,Q◇−j}
, where:

. j /∈ ∗(X∖ForMTL)

. for any k ∈ N, {P+k,Q
◇
−k} /⊆X.

Bridging rules

R◻+ ∶
X∪{P◻

+j}

X∪{P◻
+j,P+j}

R+ ∶
X∪{P+j}

X∪{P+j,P◇+j}
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R◇− ∶
X∪{P◇

−j}

X∪{P◇
−j,P−j}

R− ∶
X∪{P−j}

X∪{P−j,P◻−j}
Set of rules forMTL will be denoted as RMTL.

Note that setRMTL meets both the general conditions of rule (definition .),
and the general conditions of set of tableau rules . — the cores of each rule
from RMTL (definition .) are any ordered pairs in which set X is empty.

.. Branches and tableaux for MTL

We accept all general definitions from the previous chapter:

• branch .
• closed/open branch .
• maximal branch .
• tableau .
• complete tableau .
• closed/open tableau .
• branch consequence .

assuming that these concepts are dependent on set of tableau rules RMTL.

.. Theorem on the completeness of the tableau system for MTL

In order to demonstrate that for the tableau system for MTL the theorem on
completeness holds, we must show that the assumptions of general theorem .
are met. So, we must demonstrate that:

• set of models for language of MTL is good for set of tableau rules RMTL
(according to general definition .)

• set of tableau rules RMTL is good for model for language of MTL (according
to general definition .).

Let us first define the concept of model defined by a branch.

Definition . (Model generated by branch). Let ϕ be any branch. We define
the following function AT(ϕ) =⋃ϕ∩(TeMTL ∖ForMTL).

We shall state that modelMMTL = ⟨D,d◻,d,d◇⟩ is generated by branch ϕ iff:

. D = {x ∈N ∶ x ∈ ∗(At(ϕ))}
. for any name letter P ∈ Ln:
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a. x ∈ d(P) iff P+x ∈At(ϕ)
b. for any ● ∈ {◻,◇}, x ∈ d●(P) iff P●+x ∈At(ϕ).

From this definition, we get the following conclusion.

Corollary .. Let ϕ be an open and maximal branch.Then, there exists a model
generated by ϕ.

Proof. Take any open and maximal branch ϕ. From definition of open branch
. and definition of model generated by branch . we get ordered quadruple
⟨D,d◻,d,d◇⟩.

Wemust investigate if for any name letterP ∈Ln occurs d◻(P)⊆d(P)⊆d◇(P).
Since branch ϕ ismaximal and open, so by virtue of bridging rules fromdefinition
of tableau rulesRMTL (definition .), for any i ∈N and for any name letterP ∈Ln:

• if i ∈ d◻(P), then i ∈ d(P), due to rule R◻+
• if i ∈ d(P), then i ∈ d◇(P), due to rule R+.

Thus, from definition of model . we get a conclusion that ⟨D, d◻, d, d◇⟩ is a
model.

As we can see, the general definition of branch generating model . gains
content in the context of the tableau system of MTL. We might define a function
assigning models to open and maximal branches, but we will refrain from doing
so and instead directly use conclusion .. While on modelMMTL generated by
branch ϕ we shall state that branch ϕ generatesmodelMMTL.

We will now show that set of models of MTL is good for tableau rules RMTL
(according to general definition .).The following lemmawill be useful for that.

Lemma .. Let ϕ be an open and maximal branch. Let Xi ⊆ ⋃ϕ, for some X ⊆

ForMTL and i ∈N. Then branch ϕ generates such modelMMTL thatMMTL ⊧X.

Proof. Take any open and maximal branch ϕ. Take any set Xi ⊆ ⋃ϕ, for some
X ⊆ ForMTL and i ∈ N. Note that in the case of MTL set Xi is simply a set of
formulas (remark .).

Since branch ϕ is open and maximal, so by virtue of the previous conclusion
. there exists modelMMTL = ⟨d◻, d, d◇⟩ generated by ϕ.

We will now show that for any formula A contained in ⋃ϕ, it is the case that
MMTL ⊧A, i.e.MMTL ⊧⋃ϕ∩ForMTL. This implies thatMMTL ⊧X.

The proof will be carried out by consideration of all the possible cases of con-
struction of formula A. Assume that A ∈ ⋃ϕ. By definition of formula, for some
name letters P, Q ∈ Ln, there must occur one of the following cases.
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. A = PaQ. Take any object i ∈D such that i ∈ d(P). By definition of generated
model ., set ⋃ϕ contains tableau expression P+i. Since ϕ is a maximal
and open branch, so by virtue of tableau rule Ra+, ⋃ϕ also contains tableau
expressionQ+i. By definition ofmodel generated ., i ∈d(Q). Hence, d(P)⊆
d(Q), and by definition of truth in model ., we thus get thatMMTL ⊧ PaQ.
In turn, if there exists no such i ∈D that i ∈ d(P), then ∅= d(P) ⊆ d(Q), so by
definition of truth in model ., we getMMTL ⊧ PaQ.

. A = PiQ. Since ϕ is a maximal and open branch, so by tableau rule Ri, set
⋃ϕ also contains tableau expressions P+i, Q+i, for some i ∈N. By definition
of model generated ., i ∈ d(P) and i ∈ d(Q). Since d(P)∩d(Q) /= ∅, so by
definition of truth in model ., we get thatMMTL ⊧ PiQ.

. A = PeQ. Take any object i ∈ D such that i ∈ d(P). By definition of model
generated ., set⋃ϕ contains tableau expression P+i. Since ϕ is a maximal
and open branch, so by virtue of tableau rule Re−, ⋃ϕ also contains tableau
expression Q−i. Since branch ϕ is open, so expression Q+i /∈ ⋃ϕ, and conse-
quently, by definition ofmodel generated ., i /∈d(Q).Thus, d(P)∩d(Q)=∅
and by definition of truth in model ., we getMMTL ⊧ PeQ. In turn, if there
exists no object i ∈D such that i ∈ d(P), then d(P)∩d(Q) =∅, so by definition
of truth in model ., we get thatMMTL ⊧ PeQ.

. A = PoQ. Since ϕ is a maximal and open branch, so by virtue of tableau rule
Ro, set ⋃ϕ also contains tableau expressions P+i, Q−i, for some i ∈ N. By
definition of model generated ., i ∈ d(P) and — since branch ϕ is open
and, consequently, expressionQ+i /∈⋃ϕ— i /∈ d(Q), so d(P) /⊆ d(Q). Thus, by
definition of truth in model ., we getMMTL ⊧ PoQ.

The remaining eight cases of the possible construction of formula A will be
reduced to four cases as both rules that we apply to them and conditions of truth
that define their truth are analogous. So, take ● ∈ {◻,◇}. We have four cases.

. A = Pa●Q. Take any object i ∈ D such that i ∈ d(P). By definition of model
generated ., set ⋃ϕ contains tableau expression P+i. Since ϕ is a max-
imal and open branch, so by virtue of tableau rule Ra●+, ⋃ϕ also contains
tableau expression Q●+i. By definition of model generated ., i ∈ d●(Q).
Hence, d(P) ⊆ d●(Q), and by definition of truth in model ., we thus get
that MMTL ⊧ Pa●Q. In turn, if there exists no such i ∈ D that i ∈ d(P), then
∅ = d(P) ⊆ d●(Q), so by definition of truth in model ., we get MMTL ⊧

Pa●Q.
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. A = Pi●Q. Since ϕ is a maximal and open branch, so by virtue of tableau rule
Ri●, set⋃ϕ also contains tableau expressions P+i,Q●+i, for some i ∈N. By defi-
nition ofmodel generated ., i ∈d(P) and i ∈d●(Q). Since d(P)∩d●(Q) /=∅,
so by definition of truth in model ., we get thatMMTL ⊧ Pi●Q.

. A = Pe●Q. Take any object i ∈ D such that i ∈ d(P). By definition of model
generated ., set ⋃ϕ contains tableau expression P+i. Since ϕ is a max-
imal and open branch, so by virtue of tableau rule Re●−, ⋃ϕ also contains
tableau expression Q●

′

−i. Since branch ϕ is open, so expression Q●
′

+i /∈ ⋃ϕ, and
consequently, by definition of model generated ., i /∈ d(Q)●

′

. Thus, d(P)∩
d●
′

(Q) = ∅ and by definition of truth in model ., we get MMTL ⊧ PeQ. In
turn, if there exists no object i ∈D such that i ∈ d(P), then d(P)∩d●

′

(Q) =∅,
so by definition of truth in model ., we get thatMMTL ⊧ Pe●Q.

. A = Po●Q. Since ϕ is a maximal and open branch, so by virtue of tableau rule
Ro●, set ⋃ϕ also contains tableau expressions P+i, Q●

′

−i, for some i ∈ N. By
definition of model generated ., i ∈ d(P) and — since branch ϕ is open
and, consequently, expressionQ●

′

+i /∈⋃ϕ— i /∈d●
′

(Q), so d(P) /⊆d●
′

(Q).Thus,
by definition of truth in model ., we getMMTL ⊧ Po●Q.

From lemma . and definition . applied to the set of models for the
language of MTL we get a conclusion.

Corollary .. Set of models for language ofMTL is good for set of tableau rules
RMTL.

Wewill nowproceed to the demonstration of an opposite dependence between
rules and models.

Lemma .. Let MMTL be any model, X, Y ⊆ TeMTL, and let R ∈ RMTL. Then,
if ⟨X,Y⟩ ∈ R and MMTL is appropriate for set of expressions X, then MMTL is
appropriate for Y.

Proof. In the proof, wewillmake use of definition ofmodel appropriate for the set
of expressions .. LetMMTL = ⟨D,d◻,d,d◇⟩ be any model and X, Y ⊆ TeMTL.
Wewill consider all cases of rulesR ∈RMTL, assuming that ⟨X,Y⟩ ∈R andMMTL is
appropriate for set of expressions X, and showing that thenMMTL is appropriate
for Y .

We have four cases of rules for the classical functors.

. Let R=Ra+, then ⟨X,Y⟩ = ⟨Z∪{PaQ,P+i}, Z∪{PaQ,P+i,Q+i}⟩, for some Z ⊆
TeMTL,P,Q ∈Ln and i ∈N; sinceMMTL is appropriate for set of expressionsX,
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so by definition .,MMTL ⊧PaQ and there exists function γ ∶N�→D such
that for each name letter S ∈ Ln and each j ∈N: if S+j ∈X, then γ(j) ∈ d(S) and
if S−j ∈X, then γ(j) /∈ d(S); due to the fact that P+i ∈X, also γ(i) ∈ d(P), while
since MMTL ⊧ PaQ, hence by definition of truth in model ., γ(i) ∈ d(Q),
since d(P) ⊆ d(Q); consequently, by definition of model appropriate for the
set of expressions ., modelMMTL is appropriate for set of expressions Y =
Z∪{PaQ,P+i,Q+i}.

. LetR=Ri, then ⟨X,Y⟩= ⟨Z∪{PiQ},Z∪{PiQ,P+i,Q+i}⟩, for someZ ⊆TeMTL,
P, Q ∈ Ln and i ∈N; sinceMMTL is appropriate for set of expressions X, so by
definition .,MMTL ⊧ PiQ and there exists function γ ∶N�→D such that
for each name letter S ∈Ln and each j ∈N: if S+j ∈X, then γ(j) ∈d(S) and if S−j ∈
X, then γ(j) /∈ d(S); however, rule Ri enriches set X with expressions P+i,Q+i
and index i is new, it has not occurred in any expression from setX, while since
MMTL ⊧PiQ, so by definition of truth inmodel ., in the domain there exists
certain object x such that x ∈d(P)∩d(Q); we define function γ′ ∶N�→D such
that for any k ∈ N, if k /= i, then γ′(k) = γ(k) and γ′(i) = x, consequently, by
definition of model appropriate for the set of expressions ., modelMMTL
is appropriate for set of expressions Y = Z∪{PiQ,P+i,Q+i}.

. Let R=Re−, then ⟨X,Y⟩ = ⟨Z∪{PeQ,P+i},Z∪{PeQ,P+i,Q−i}⟩, for some Z ⊆
TeMTL,P,Q ∈Ln and i ∈N; sinceMMTL is appropriate for set of expressionsX,
so by definition .,MMTL ⊧PeQ and there exists function γ ∶N�→D such
that for each name letter S ∈ Ln and each j ∈N: if S+j ∈X, then γ(j) ∈ d(S) and
if S−j ∈X, then γ(j) /∈ d(S); due to the fact that P+i ∈X, also γ(i) ∈ d(P), while
since MMTL ⊧ PeQ, hence by definition of truth in model . γ(i) /∈ d(Q),
since d(P) ∩ d(Q) = ∅; consequently, by definition of model appropriate for
the set of expressions ., modelMMTL is appropriate for set of expressions
Y = Z∪{PeQ,P+i,Q−i}.

. Let R = Ro, then ⟨X,Y⟩ = ⟨Z ∪ {PoQ},Z ∪ {PoQ,P+i, Q−i}⟩, for some Z ⊆

TeMTL, P, Q ∈ Ln and i ∈N; sinceMMTL is appropriate for set of expressions
X, so by definition ., MMTL ⊧ PoQ and there exists function γ ∶N�→D
such that for each name letter S ∈ Ln and each j ∈ N: if S+j ∈ X, then γ(j) ∈
d(S) and if S−j ∈ X, then γ(j) /∈ d(S); however, rule Ro enriches set X with
expressions P+i,Q−i and index i is new, it has not occurred in any expression
from set X, while sinceMMTL ⊧ PoQ, so by definition of truth in model .,
in the domain there exists certain object x such that x ∈ d(P), but x /∈ d(Q); we
define function γ′ ∶N�→D such that for any k ∈N, if k /= i, then γ′(k) = γ(k)
and γ′(i) = x, consequently, by definition of model appropriate for the set
of expressions ., model MMTL is appropriate for set of expressions Y =

Z∪{PoQ,P+i,Q−i}.
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Wehave eight rules for formulaswithmodal functors.However, wewill restrict
our considerations to four cases as they are analogous in terms of application. So,
take ● ∈ {◻,◇}.

. Let R =Ra●+, then ⟨X,Y⟩ = ⟨Z∪{Pa●Q, P+i}, Z∪{Pa●Q, P+i, Q●+i}⟩, for some
Z ⊆ TeMTL, P, Q ∈ Ln and i ∈ N; since MMTL is appropriate for set of ex-
pressions X, so by definition ., MMTL ⊧ Pa●Q and there exists function
γ ∶N�→D i.a. such that for each name letter S ∈ Ln and each j ∈N: if S+j ∈X,
then γ(j) ∈ d(S) and if S●+j ∈X, then γ(j) ∈ d●(S); due to the fact that P+i ∈X,
also γ(i) ∈ d(P), while since MMTL ⊧ Pa●Q, hence by definition of truth in
model ., γ(i) ∈ d●(Q), since d(P) ⊆ d●(Q); consequently, by definition of
model appropriate for the set of expressions ., modelMMTL is appropriate
for set of expressions Y = Z∪{Pa●Q,P+i,Q●+i}.

. Let R = Ri●, then ⟨X,Y⟩ = ⟨Z ∪ {Pi●Q},Z ∪ {Pi●Q, P+i, Q●+i}⟩, for some
Z ⊆ TeMTL, P, Q ∈ Ln and i ∈ N; since MMTL is appropriate for set of ex-
pressions X, so by definition ., MMTL ⊧ Pi●Q and there exists function
γ ∶N�→D i.a. such that for each name letter S ∈ Ln and each j ∈N: if S+j ∈X,
then γ(j) ∈ d(S) and if S●+j ∈ X, then γ(j) ∈ d●(S); however, rule Ri● enriches
set X with expressions P+i,Q●+i and index i is new, it has not occurred in
any of expressions from set X, while since MMTL ⊧ Pi●Q, so by definition
of truth in model ., in the domain there exists certain object x such that
x ∈ d(P) ∩ d●(Q); we define function γ′ ∶ N�→ D such that for any k ∈N, if
k /= i, then γ′(k) = γ(k) and γ′(i) = x, consequently, by definition of model
appropriate for the set of expressions ., model MMTL is appropriate for
set of expressions Y = Z∪{Pi●Q,P+i,Q●+i}.

. Let R = Re●−, then ⟨X,Y⟩ = ⟨Z∪{Pe●Q,P+i},Z∪{Pe●Q, P+i, Q●
′

−i}⟩, for some
Z ⊆ TeMTL, P, Q ∈ Ln and i ∈ N; since MMTL is appropriate for set of ex-
pressions X, so by definition ., MMTL ⊧ Pe●Q and there exists function
γ ∶N�→D such that i.a. for each name letter S ∈ Ln and each j ∈N: if S+j ∈X,
then γ(j) ∈ d(S) and if S●

′

−j ∈X, then γ(j) /∈ d●
′

(S); due to the fact that P+i ∈X,
also γ(i) ∈ d(P), while since MMTL ⊧ Pe●Q, hence by definition of truth in
model . γ(i) /∈ d●

′

(Q), since d(P) ∩ d●
′

(Q) = ∅; consequently, by defini-
tion of model appropriate for the set of expressions ., model MMTL is
appropriate for set of expressions Y = Z∪{Pe●Q,P+i,Q●

′

−i}.
. Let R = Ro●, then ⟨X,Y⟩ = ⟨Z∪{Po●Q},Z∪{Po●Q,P+i, Q●

′

−i}⟩, for some Z ⊆
TeMTL,P,Q ∈Ln and i ∈N; sinceMMTL is appropriate for set of expressionsX,
so by definition .,MMTL ⊧Po●Q and there exists function γ ∶N�→D such
that for each name letter S ∈Ln and each j ∈N: if S+j ∈X, then γ(j) ∈d(S) and if
S●
′

−j ∈X, then γ(j) /∈ d●
′

(S); however, rule Ro● enriches set X with expressions
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P+i,Q●
′

−i and index i is new, it has not occurred in any expression from set
X, while since MMTL ⊧ Po●Q, so by definition of truth in model ., in the
domain there exists certain object x such that x ∈ d(P), but x /∈ d●

′

(Q); we
define function γ′ ∶N�→D such that for any k ∈N, if k /= i, then γ′(k) = γ(k)
and γ′(i) = x, consequently, by definition of model appropriate for the set
of expressions ., model MMTL is appropriate for set of expressions Y =

Z∪{Po●Q,P+i,Q●
′

−i}.

We have four cases for the bridging rules.

. Let R = R◻+ , then ⟨X,Y⟩ = ⟨Z ∪ {P◻+i}, Z ∪ {P
◻
+i,P+i}⟩, for some Z ⊆ TeMTL,

P ∈ Ln and i ∈N; since model MMTL is appropriate for set of expressions X,
so by definition ., there exists function γ ∶N�→D such that γ(i) ∈ d◻(P);
furthermore d◻(P) ⊆d(P), by definition ofmodel ., so γ(i) ∈d(P); thus, by
definition of model appropriate for the set of expressions ., modelMMTL
is appropriate for set of expressions Y = Z∪{P◻+i,P+i}.

. Let R = R+, then ⟨X,Y⟩ = ⟨Z ∪ {P+i}, Z ∪ {P+i,P◇+i}⟩, for some Z ⊆ TeMTL,
P ∈ Ln and i ∈ N; since model MMTL is appropriate for set of expressions
X, so by definition ., there exists function γ ∶ N �→ D such that γ(i) ∈
d(P); furthermore d(P) ⊆d◇(P), by definition ofmodel ., so γ(i) ∈d◇(P);
thus, by definition of model appropriate for the set of expressions ., model
MMTL is appropriate for set of expressions Y = Z∪{P+i,P◇+i}.

. Let R = R◇− , then ⟨X,Y⟩ = ⟨Z∪{P
◇
−i}, Z∪{P

◇
−i,P−i}⟩, for some Z ⊆ TeMTL, P

∈ Ln and i ∈N; since modelMMTL is appropriate for set of expressions X, so
by definition ., there exists function γ ∶ N�→ D such that γ(i) /∈ d◇(P);
furthermore d(P)⊆d◇(P), by definition ofmodel ., so γ(i) /∈d(P); thus, by
definition of model appropriate for the set of expressions ., modelMMTL
is appropriate for set of expressions Y = Z∪{P◇−i,P−i}.

. Let R = R−, then ⟨X,Y⟩ = ⟨Z ∪ {P−i}, Z ∪ {P−i,P◻−i}⟩, for some Z ⊆ TeMTL,
P ∈ Ln and i ∈ N; since model MMTL is appropriate for set of expressions
X, so by definition ., there exists function γ ∶ N �→ D such that γ(i) /∈
d(P); furthermore d◻(P) ⊆ d(P), by definition of model ., so γ(i) /∈ d◻(P);
thus, by definition of model appropriate for the set of expressions ., model
MMTL is appropriate for set of expressions Y = Z∪{P−i,P◻−i}.

From lemma . and definition . applied to set of tableau rules RMTL we
get a conclusion.
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Corollary .. Set of tableau rules RMTL is good for set of models for the language
ofMTL.

Applying both conclusions: . and ., concepts defined in this chapter and
general tableau theorem ., from the previous chapter, we get the completeness
theorem for system of MTL.

Theorem . (Completeness theorem for MTL). For any set X ⊆ ForMTL and
any formula A ∈ ForMTL the following statements are equivalent:

• X ⊧A
• X ⊳A
• there exists finite set Y ⊆X and closed tableau ⟨Y ,A,Φ⟩

Thus, we have shown how — with application of the general tableau concepts
—we can shorten the proof of completeness theorem to the appropriate definition
of specific concepts and application of the general theorem.

.. Estimation of cardinality of model for MTL

When applying the tableau methods to TL we received a possibility of estima-
tion of the limitation of cardinality of models that can be countermodels for the
considered inference (theorem .).The situation is similar in the case of system
forMTL. We can get an identical outcome nearly directly from the completeness
theorem of the tableau system forMTL, carrying out a proof analogous to the one
for theorem ..

By existential formula, we mean any formula in form PiQ, PoQ, Pi●Q, Po●Q ,
where P, Q, ∈ Ln and ● ∈ {◻,◇}.

Next, we define function λ′∶P(ForTL) �→ P(ForTL) with the following con-
dition: for any set Φ ∈ P(ForTL), λ′(Φ) = {x ∈Φ ∶ x is an existential formula}. So,
from each set of rules, function λ′ “selects” all existential formulas that belong to
a given set.

Now, in turn, we shall specify function σ ∶{Ψ ∈P(ForTL) ∶Ψ is a finite set}�→
N with the following condition: for any finite set Ψ ∈ P(ForTL), σ ′(Ψ) = ∣λ′(Ψ)∣.
So, function σ ′ “counts” the number of existential formulas that are found in any
finite set of formulas.

With the use of the defined functions, we can frame the following theorem.

Theorem.. Let X be a finite set of formulas and let A ∈ForMTL.Then, the below
statements are equivalent:

• for any modelMMTL = ⟨D,d◻,d,d◇⟩, if ∣D∣ = σ ′(X∪{○(A)}) andMMTL ⊧X,
thenMMTL ⊧A

• X ⊧A.
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. Tableau systems for modal logics
In this subchapter, we will investigate the application of the theory of tableau sys-
tems we covered in Chapter Five to the general case. We will show how to apply
the general concepts described previously to construct tableau systems for modal
logics determined by models with possible worlds.

By using general concepts, we will provide the conditions whose occurrence
demonstration is sufficient to get a complete tableau system for a given modal
logic.

.. Language and semantics

We adopt the set of formulas for modal logic defined in one of the previous
chapters with definition . for logic S. We will denote that set as ForML.

Next, we adopt the general concept of model with possible worlds MML, in
accordance with definition of model . for logic S — with any relation of
accessibility. We will denote the set of all such models asM.

We define the concept of truth (and falsehood) of formula in model, analo-
gously to definition ..

According to definition ., eachmodelMML ∈M can be identified with inter-
pretation of formulas as for function f ∶ForML�→ForML defined with condition
f (A) = ¬A, for any A ∈ ForML it is the case that A ∈ {B ∈ ForML ∶MML ⊧ B} iff
f (A) /∈ {B ∈ ForML ∶MML ⊧ B}.

Taking any subset M′ ⊆ M, we conventionally define relation of semantic
consequence ⊧M′ . Based on that relation, we semantically define modal logic
⟨ForML,⊧M′⟩.

.. Tableau expressions

Now, we will proceed to the issue of expressions representing formulas and other
properties in the tableau proof.

First, we define the set of expressions. Next, we will show that it meets the
general conditions imposed on the set of tableau expressions (definition .).

Definition . (Expressions). Set of expressions Ex is a set that is the union of
the below sets:

 The issues described in this subchapter were partially presented in article []. However,
the general tableau theorem . was not used there. In addition, some concepts were
defined differently in that paper.
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• ForML ×N
• {irj ∶ i, j ∈N}
• {∼ irj ∶ i, j ∈N}
• {i = j ∶ i, j ∈N}
• {∼ i = j ∶ i, j ∈N}.

The elements of set N are called indices.

Remark .. New types of expressions appeared in the set of expressions, which
in the proof correspond to the negation of relation occurrence, the identity and
negation of identity. They are not needed in all constructed systems, but in some
systems they will be used by the tableau rules.

We can define the following function g ∶ ForML �→ P(Ex), for any A ∈
ForML, g(A) = {⟨A, i⟩ ∶ i ∈ N}. Function g has important properties, for any two
formulas A, B: A /=B iff g(A)∩g(B) =∅, and g(A) is a countable subset of set Ex.

Note, furthermore, that each expression ⟨A, i⟩ can be identified with expres-
sion Ai, which corresponds to function g from general definition of tableau
expressions ..

Definition .. LetX ⊆Ex.We shall state thatX is tableau inonsistent (for short:
t-inconsistent) iff for some A ∈ ForML, i, j ∈N at least one of the below conditions
is met:

. ⟨A, i⟩, ⟨¬A, i⟩ ∈X
. irj, ∼ irj ∈X
. i = j, ∼ i = j ∈X.

We shall state thatX is tableau consistent (for short: t-consistent) iff it is not tableau
inconsistent.

From definition . results the following conclusion.

Corollary .. Let X ⊆ForML andMML ∈M. IfMML ⊧X, then {xi ∶xi ∈ g(A),A ∈
X} is a t-consistent set.

By virtue of definition of expressions ., definition ., existence of func-
tion g, conclusion . and general definition of tableau expressions ., we can
assume that set of expressions Ex is a set of tableau expressions. The set will be
denoted as TeML.

Now, we will define more auxiliary concepts.

Definition . (Function selecting indices). Function ∗ ∶P(TeML) �→ P(N) is
a function selecting indices iff for any A ∈ ForML, i, j ∈N and X ⊆ TeML the below
conditions are met:
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• ∗({⟨A, i⟩}) = {i}
• ∗({irj}) = {i, j}
• ∗({∼ irj}) = {i, j}
• ∗({i = j}) = {i, j}
• ∗({∼ i = j}) = {i, j}
• if ∣X∣ > , then ∗(X) =⋃{∗({x}) ∶ x ∈X}.

For any subset Y of set of expressions TeML function ∗ selects all indices present
in Y .

Now, we will define binary relation ≡ specified on Cartesian product
P(TeML)×P(TeML), that will correspond to the general definition of similarity
of sets of expressions (.).

Definition .. Let X, Y ⊆ TeML. We define relation ≡ with condition: X ≡ Y
iff there exists bijection h ∶ ∗(X)�→∗(Y) (where ∗(X), ∗(Y) are sets of indices
present in the expressions fromX and fromY) such that for anyA ∈ForML, i, j ∈N:

• ⟨A, i⟩ ∈X iff ⟨A,h(i)⟩ ∈Y
• irj ∈X iff h(i)rh(j) ∈Y
• ∼ irj ∈X iff ∼ h(i)rh(j) ∈Y
• i = j ∈X iff h(i) = h(j) ∈Y
• ∼ i = j ∈X iff ∼ h(i) = h(j) ∈Y .

From definition . results the following conclusion.

Corollary .. Let X, Y ⊆ TeML. If X ≡Y, then:

• X is t-consistent iff Y is t-consistent
• sets X and Y have the same cardinality.

By virtue of conclusion . and definition of relation ≡ .we claim that rela-
tion≡meets the conditions of general definition of similarity of sets of expressions
..

We will now define the concept that describe the relation between the models
and sets of expressions.

Definition.. LetMML =⟨W,Q,V ,w⟩ andX ⊆TeML.We shall state thatmodel
MML is appropriate for set of expressionsX iff there exists such function γ ∶N�→
W, that for any A ∈ ForML, i, j ∈N the following conditions occur:

• if ⟨A, i⟩ ∈X, then ⟨W,Q,V ,γ(i)⟩ ⊧A
• if irj ∈X, then γ(i)Qγ(j)
• if ∼ irj ∈X, then it is not the case that γ(i)Qγ(j)
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• if i = j ∈X, then γ(i) is identical to γ(j)
• if ∼ i = j ∈X, then γ(i) is different from γ(j).

From definition of tableau inconsistent set of expressions . and definition
of model appropriate for set of expressions . the following conclusion results.

Corollary .. For any set of expressions X ⊆ TeML, if X is t-inconsistent, then
there exists no modelMML appropriate for X.

Note that relation ⊧ defined by any subset M′ ⊆ M meets the conditions of
relation⊩ (definition .).Thus, by conclusion . anddefinition of appropriate
model . we get a fact.

Proposition .. The notion of model appropriate for set of expressions meets the
general conditions of interpretation appropriate for set of expressions described in
definition ..

Thus, we have demonstrated that the presented concepts for the modal logics,
determined with the semantics of possible worlds, are special cases of the general
concepts described in the previous chapter.

.. Rules, branches and tableaux for modal logics

First, we will adopt the concept of tableau rule, originating by the application
of concept of tableau expression TeML and other presented concepts for modal
logics to the general concept of rule . and general concept of tableau rule ..
Set of tableau rules for a given modal logic will be denoted as RML.

Furthermore, we adopt all general definitions from the previous chapter:

• branch .
• closed/open branch .
• maximal branch .
• tableau .
• complete tableau .
• closed/open tableau .
• branch consequence .

assuming that these concepts are always dependent on some fixed set of tableau
rules RML for a given modal logic.

.. Generating of model

As wementioned in the previous chapter, in remark ., it is difficult to establish
a general method for transition from the maximal and open branch to the gener-
ated model. For we do not know how the model is constructed and what types of
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expressions are used in the proof which leads to the maximal and open branch.
Nonetheless, for a single logic it is possible — we did so in the case of a tableau
system forMTL.

We can try to do the same in the case discussed, i.e. in relation to certain class
of logics which in many respects are similar. The definition provided below is
quite broad and on its basis we can define many types of models for modal logics
determined by the semantics of possible worlds. For we have the general concept
of model and the concept of set of tableau expressions TeML which determines
the range and elements used to define the model.

Definition . (Branch generatingmodel). LetRML be a set of tableau rules and
ϕ be RML-branch. Let X = {⟨A,k⟩ ∶ A ∈ Y} ⊆ ⋃ϕ, for some k ∈N and non-empty
subset Y ⊆ForML. We define set AT(ϕ) as follows: x ∈AT(ϕ) iff one of the below
conditions occurs

• x ∈ ⋃ϕ∩({irj ∶ i, j ∈N}∪{i = j ∶ i, j ∈N})
• x ∈ ⋃ϕ∩(Var×N).

We shall state that branch ϕ generatesmodelMML = ⟨W,Q,V ,w⟩ iff

• W is a maximal subset of set {i ∶ i ∈ ∗(AT(ϕ))} such that:
a. for any i, j ∈N, if i = j ∈AT(ϕ), then i /∈W or j /∈W
b. k ∈W

• for any i, j ∈N
a. ⟨i, j⟩ ∈Q iff irj ∈AT(ϕ) and i, j ∈W
b. V(x, i) =  iff ⟨x, i⟩ ∈AT(ϕ) and i ∈W

• w = k.

Remark .. In definition of branch generatingmodel ., the domain ofmodel
W was specified i.a. as follows: W is a maximal subset of set {i ∶ i ∈ ∗(AT(ϕ))}
such that for any i, j ∈N, if i= j ∈AT(ϕ), then i /∈W or j /∈W. Model generated by an
open andmaximal branch consists of indices included in the tableau expressions.
In the event when the branch contains expression i = j, for some i, j ∈N, we must
select one of the indices that belong to ∗({i= j}), since expression i= j is expected
to state that it is about the same object in the domain.

Definition . obviously meets the general conditions of the definition of
branch generating interpretation, since by virtue of the next conclusion, each
open and maximal branch can be assigned a model.

Corollary .. Let RML be a set of tableau rules. Let ϕ be an open and maximal
RML-branch and let X ={⟨A,k⟩ ∶A ∈Y}⊆⋃ϕ, for some k ∈N and non-empty subset
Y ⊆ ForML. Then there exists modelMML such that branch ϕ generatesMML.
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Proof. We get that conclusion from definition of open branch . applied to the
modal tableau rules and definition of branch generating model ..

So, checking for a given set of tableau rules RML and given class of models
M′ ⊆M, if setM′ is good for set of rules RML, does not require demonstration of
the existence of model. We only have to — in accordance with definition . —
demonstrate that in the generated model true are those formulas whose equiva-
lents belonged to the branch and were used for the definition of model and that
this model belongs to setM′.

.. Completeness theorem of tableau systems for modal logics

We will now verbalize a general theorem on completeness of tableau systems for
modal logics defined with the semantics of possible worlds.

Applying the general definitions of set of interpretations good for set of rules
. and set of rules good for set of interpretations ., the concepts defined in
this chapter and general tableau theorem . we proved in the previous chapter,
we obtain a general theorem on completeness for modal logics of defined with
the semantics of possible worlds.

In order to frame the theorem, let us assume that for any set of modelsM′ ⊆M
and any set of tableau rules RML notation X ⊧M′ A means relation ⊧ defined by
set of modelsM′, whereas notation X ⊳RML A means relation ⊳ defined by set of
tableau rules RML. Similarly, when writing RML-tableau ⟨Y ,A,Φ⟩, we mean that
tableau ⟨Y ,A,Φ⟩ and branches that belong to set of branches Φ originatedmerely
by the application of rules from set RML to the expressions from set TeML.

Let us proceed to the theorem.

Theorem .. LetM′ ⊆M be a set of models. Let RML be a set of tableau rules. If:

• setM′ is good for set of rules RML
• set RML is good for set of modelsM′,

then for any set X ⊆ ForML and any formula A ∈ ForML the following statements
are equivalent:

• X ⊧M′ A
• X ⊳RML A
• there exists such finite set Y that Y ⊆X and closed RML-tableau ⟨Y ,A,Φ⟩.

Theorem . reduces the constitution of complete tableau system for modal
logic defined by the semantics of possible worlds to the demonstration of two
facts that form the assumptions of this theorem. So, with the established set of
models M′ we must define the set of tableau rules so RML as to these two facts
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occur. Analogously, wemay start from set of tableau rulesRML and specify subset
M′ ⊆M of allmodels with possible worlds so as to the theorem assumptions occur.
In both cases we will get a complete tableau system.

. Tableau system
In this study, we have often used term tableau system, even though the empha-
sis was on the concept of tableau and branch consequence. Ultimately, however,
it is the tableau system that constitutes the tableau recognition of given logic.
Therefore, we will now try to clarify the concept of tableau system.

By a tableau systemwemaymean pair ⟨For,⊳R⟩, where For is a set of formulas
of given logic,R set of tableau rules, whereas⊳ is a relation of branch consequence,
defined based on the set of all maximal R-branches.

Such approach of the tableau system indirectly contains all concepts we have
defined when constructing relation ⊳. To define the relation of branch conse-
quence, it takes i.a. the concept of tableau expressions, t-inconsistent set, concept
of tableau rules, description of relationship between the formulas and tableau
expressions as well as the concepts of open/closed and maximal branches.

The concept of tableau and its various variants (open/closed tableau, com-
plete/incomplete tableau) can be, in turn, regarded as an apprehension of the
method for choosing a relatively small subset of set of branches that allows to
determine the occurrence of relation of branch consequence ⊳.

The concepts presented here enable the investigation of the relationships be-
tween different tableau systems defined by the method described, e.g. related to
the questions about the dependency of sets of tableau rules or to the economics
of sets system construction in general. For example, using the modification of the
proof of the general completeness theorem . (for one set of tableau rules, con-
sidering the implication (a), and for another, considering the implications (b) and
(c)), we can frame a theorem on the relationships between the tableau systems.

Theorem .. Let ⟨For,⊧M⟩ be a logic semantically defined with set of interpre-
tationsM. Let ⟨For,⊳R⟩ and ⟨For,⊳R’⟩ be tableau systems. If:

. setM is good for set of rules R’
. set R is good for set of interpretationsM

then for any set of formulas X ⊆ For and any formula A ∈ For, if X ⊳R A, then
X ⊳R’ A.

Note that sets of tableau rules R and R’ can be defined on completely different
sets of tableau expressions, using different auxiliary concepts, so that the rules
they include can be directly incomparable. But comparing their deductive power
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can be done by checking the dependencies between the sets of tableau rules and
the set of interpretationsM.

. Transition from the formalized tableaux to the standard
tableaux

The last issue we will be dealing with is the problem of the relationship between
the concepts presented in the book — the concept of branch and the concept of
tableau — and the conventionally comprehended tableaux.

We discuss this problem in the part devoted to the application of the theory of
tableaux, guided by the belief that standard tableaux are a practical application of
abstract concepts.

However, since in most cases tableaux and tableau systems are presented pri-
marily in graphic form, our goal was to create a formalization, and thus the theory
of tableaux, independent of the tableaux comprehended in this way. The theory
described here is precisely an abstract approach to the tableaumethods for which
the standard tableaux can be considered as applications.

Take any tableau system ⟨For,⊳R⟩, where For is a set of formulas, whereasR is
a set of tableau rules. From general definition of tableau rules ., it follows that
the set of rules R is associated to a minimal set of tableau expressions Te which
was used for the definition of rules from set R.

Consider any branch created by the application of rules from set R. In accor-
dance with general definition of branch ., that branch is a certain injective
function ϕ ∶K�→P(Te), whereK =N orK = {,,, . . . ,n}, for some n ∈N, while
P(Te) is a set of all subsets of the set of tableau expressions.

We will now define an intuitive branch that will correspond to branch ϕ. Let
M be linearly ordered by relation ≤M set of points such that there exists bijection
α ∶K�→M that meets condition α(i) ≤M α(j), if i ≤ j, for any i, j ∈K.

Now, we define function ϕ′ ∶M�→ P(Te) from the set of points into the set
of all subsets of the set of tableau expressions by the following condition for any
i ∈M:

. ϕ′(i) = ϕ(), if α−(i) = 
. ϕ′(i) = ϕ(n)∖ϕ(n− ), if α−(i) = n and n > , for any n ∈K.

Function ϕ′ specifies a linearly ordered set of points in which each point has a
certain subset Te assigned. Anyway, point α() has assigned entire set ϕ() from

 So we share the remark of Melvin Fitting who wrote in Handbook of Tableau Methods
that the proof trees (graphs), applied as proofs in the tableau systems, make up an
application of a more abstract approach to logics (p. , []).
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branch ϕ — the literature usually refers to that point as root — while the other
points have assigned sets of elements that make up the difference between the
elements of branch ϕ and their immediate predecessors.

In this way, we can assign to each branch ϕ at least one branch ϕ′, with some
established domain — set of pointsM linearly ordered by relation ≤M .
Example .. Take set of tableau expressions {⟨◇p, ⟩, ⟨◇(p∧ q), ⟩, ⟨¬¬q, ⟩}.
Applying rules from RS in the order described on left hand side, we get the
following branch which will be defined as ψ.

R X 1 = p, 1 , (p q), 1 , q, 1

R X 2 = X 1 {1r2, (p q), 2

R ¬ ¬ X 3 = X 2 p, 2 , q, 2

X 4 = X 3 q, 1

∧

∧∧

Transition from branch ϕ to function ϕ′ will be called a branch translation or
simply translation. If function ϕ′ ∶M�→P(Te) is a translation, then notation ϕ′M
indicates domain of ϕ′.

The result of certain translation ϕ′ will be presented in the graphs below. Ex-
ample . described branch ψ. Now, if we carry out the translation of branch ψ,
then we can get the following graph presenting branch ψ′. This time — unlike so
far — we will put the application of the rule on the right hand side and next to
the points of branch that resulted from the application of given rule.

1. p, 1 , (p q), 1 , q, 1

2. { 1r2, (p q), 2 R

3. p, 2 , q, 2 R

4 q, 1 R ¬ ¬

∧

∧

∧

And if we remove the numbering, brackets of sets and brackets from the
tableau expressions, and in lieu of numbers we will insert points ●, then we will
get a graph of branch ψ′ corresponding to the graphs usually used to present
branches.

• p, 1, (p q), 1, ¬¬ q, 1

• 1r2, (p q), 2 R

• p, 2, q, 2 R

• q, 1 R ¬ ¬

∧

∧

∧
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So we can see that we can move from the branch defined in our theory —
the formalized branch — to the standard branch, and the other way round —
from the intuitive branch to the formalized branch. However, moving in the other
direction requires a more precise determination of what a branch is, as well as
determination of what the tableau rules are. Nonetheless, these issues are clarified
by the theory that has just been presented — so it is easier to apply the general
concepts in practice.

Since we already have a certain method of applying the general concept of
branch in practice, we can now describe the transition from formalized tableaux
to standard ones.

We are still considering an arbitrary tableau system ⟨For,⊳R⟩—where For is
a set of formulas, whileR is a set of tableau rules — and set of tableau expressions
Te on which the tableau rules from set R were defined.

Consider tableau ⟨X,A,Φ⟩, where X ⊆ For, A ∈ For, whereas Φ is a set of
branches — in accordance with general definition of tableau ..

Based on set Φ we can define sets that only include translations of branches
from set Φ — one for each branch from Φ. We impose condition: (∗) Ψ is such
set of translations of branches from Φ that for each branch ϕ ∈ Φ, Ψ contains
precisely one translation of ϕ. Since for each branch ϕ ∈Φ, Ψ contains precisely
one translation of ϕ, so the translation of branch ϕ in given set Ψ will be denoted
as ϕ′.

Among the sets that meet condition (∗) there is at least one such set Φ′ that
the distribution of points and assigned in the translations included in set Φ′ sets
of expressions corresponds to the distribution of differences between the conse-
quents and antecedents in the relevant branches contained in Φ as well as the
inclusion of sub-branches of some branches in another ones.

We can carry out the following action on set Φ′. Define set ⟨Φ′′,≤Φ′′⟩:

. Φ′′ =⋃Φ′

. ⟨n,X⟩ ≤Φ′′ ⟨k,Y⟩ iff there exists such translation ϕ′M ∈ Φ′ that n,k ∈ M,
ϕ′M(n) =X, ϕ

′
M(k) =Y and n ≤M k.

In set Φ′′ there exists an element which is the smallest in terms of relation
≤Φ′′ — that element is included in a set that is identical to the first element of
each branch that belongs to set of branches Φ, i.e. the first step in the proof of fact
that X ⊳A.

Set ⟨Φ′′,≤Φ′′⟩ is an application of the definition of abstract concept of tableau
⟨X,A,Φ⟩. In this way, to each tableau ⟨X,A,Φ⟩ we can assign at least one tableau
⟨Φ′′,≤Φ′′⟩.



Transition from the formalized tableaux to the standard tableaux 

The transition from tableau ⟨X,A,Φ⟩ to tableau ⟨Φ′′,≤Φ′′⟩ will be called
tableau translation or simply translation.

Here is an example. Again, consider set of tableau rules RS described in
Chapter Four.

Example .. Consider the following set of expressions {⟨(r ∨ q), ⟩, ⟨¬¬p, ⟩,
⟨(◇p∧q), ⟩}. By the use of rule R∨, and then on left hand side — rules R¬¬ and
R∧, and on the right have side — rules R¬¬, we get the following branches.

X 1 = (r q), 1 , ( p q), 1 , p, 1

X 2 = X 1 r, 1

X 3 = X 2 p, 1

X 4 = X 3 p, 1 , q, 1

X 2 = X 1 q, 1

X 3 = X 2 p, 1

∧∧

In the light of definition of tableau ., the set of these two branches is a
tableau for pair ⟨{(r∨q),(◇p∧q)},¬p⟩, although it is not complete tableau.

And if we remove the brackets of sets and brackets from the tableau expres-
sions, thenwewill get a graph of tableau corresponding to the graphs usually used
to present tableaux.

(r q), 1, ( p q), 1, ¬¬ p, 1

r, 1

p, 1

p, 1, q, 1

q, 1

p, 1

∧ ∧

This will be a result of some translation of set of branches Φ, i.e. some partially
ordered set with the smallest elementwhich is the root of the proof tree.Wedonot
insert the denotations of points ●. Instead of the denotations, there are individual
lines with expressions.





Glossary

CPL Classical Propositional Logic
Lc logical constants
Var propositional letters
ForCPL formulas of CPL
v valuation of propositional letters
V valuation of formulas
t-inconsistent tableau inconsistent set
t-consistent tableau consistent set
RCPL tableau rules for CPL
Ln name letters
ForTL formulas of TL
Ci individual constants
Vi individual variables
Lp predicate letters
Tr transformation
TeTL tableau expressions for TL
RTL tableau rules for TL
ForS formulas S
TeS tableau expressions for S
RS tableau rules for S
For formulas generally
⟨For,⊧I⟩ semantically defined logic
Tein tableau contradictory set
Te tableau expressions
TeA tableau auxiliary expressions
⊳ branch consequence relation
⟨X,A,Φ⟩ tableau
ForMTL formulasMTL
TeMTL tableau expressions forMTL
ForML formulas for modal logic
TeML tableau expressions for modal logic
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