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ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérome Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wasowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also
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organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wasowski (Copenhagen), Thomas Noll (Aachen), Jan Kofron (Prague),
Barbara Konig (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Kietinsky (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luis Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hdhnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovacs (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President



Preface

This three-volume proceedings contains the papers presented at the 30th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2024). TACAS 2024 was part of the 27th European Joint Conferences on
Theory and Practice of Software (ETAPS 2024), which was held between April 6-11,
2024, in Luxembourg City, Luxembourg.

TACAS is a forum for researchers, developers and users interested in rigorous tools
and algorithms for the construction and analysis of systems. The conference aims to
bridge the gaps between different communities with this common interest and to
support them in their quest to improve the utility, reliability, flexibility, and efficiency
of tools and algorithms for building systems. TACAS 2024 interleaves and integrates
various disciplines, including formal verification of software and hardware systems,
static analysis, probabilistic programming, program synthesis, concurrency, testing,
simulations, verification of machine learning/autonomous systems, Cyber-Physical
Systems, SAT/SMT solving, automated and interactive theorem proving, and proof
checking.

There were four submission categories for TACAS 2024

1. Regular research papers identifying and justifying a principled advance to the
theoretical foundations for the construction and analysis of systems.

2. Case study papers describing the application of techniques developed by the
community to a single problem or a set of problems of practical importance,
preferably in a real-world setting.

3. Regular tool papers presenting a novel tool or a new version of an existing tool
built using novel algorithmic and engineering techniques.

4. Tool demonstration papers demonstrating a new tool or application of an existing
tool on a significant case-study.

Regular research, case study, and regular tool paper submissions were restricted to
16 pages, whereas tool demonstration papers to 6 pages, excluding the bibliography
and appendices.

TACAS 2024 received 159 submissions, consisting of 114 regular research papers,
10 case study papers, 28 regular tool papers, and 7 tool demonstration papers. Each
submission was assigned for review to at least three Program Committee (PC) mem-
bers, who made use of subreviewers. Regular research papers were reviewed in double-
blind mode, whereas case study, regular tool, and tool-demonstration papers were
reviewed using a single-blind reviewing process.

Similarly to previous years, it was possible to submit an artifact alongside a paper.
Artifact submission was mandatory for regular tool and tool demo papers, and vol-
untary for regular research and case study papers at TACAS 2024. An artifact might
consist of a tool, models, proofs, or other data required for validation of the results
of the paper. The Artifact Evaluation Committee (AEC) was tasked with reviewing the
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artifacts, based on their documentation, ease of use, and, most importantly, whether the
results presented in the corresponding paper could be accurately reproduced. Most
of the evaluation was carried out using a standardized virtual machine to ensure
consistency of the results, except for those artifacts that had special hardware or
software requirements. Artifact evaluation at TACAS 2024 consisted of two rounds.
The first round implemented the mandatory artifact evaluation of regular tool and tool
demonstration papers; this round was carried out in parallel with the work of the PC.
The judgment of the AEC was communicated to the PC and weighed in their dis-
cussion. The second round of artifact evaluation carried out the voluntary artifact
evaluation of regular research and case study papers, and took place after paper
acceptance notifications were sent out; authors of accepted regular research and case
study papers were able to update and revise their respective artifacts before artifact
evaluation started. In both rounds, the AEC provided 3 reviews per artifact and
anonymously communicated with the authors to resolve apparent technical issues. In
total, 104 artifacts were submitted and the AEC evaluated a total of 62 artifacts
regarding their availability, functionality, and/or reusability. Papers with an artifact that
were successfully evaluated include one or more badges on the first page, certifying the
respective properties.

Selected papers were requested to provide a rebuttal in case a PC review gave rise to
questions. Using the review reports and rebuttals, the PC had a thorough discussion on
each paper. For regular tool and tool demonstration papers, the PC also discussed the
corresponding artifact, using the AEC recommendations. As a result, the PC decided to
accept 53 papers, out of which there were 35 regular research papers, 11 regular tool
papers, 3 case study papers, and 4 tool demonstration papers. This corresponds to an
overall acceptance rate of 33%. Each accepted paper at TACAS 2024 had either all
positive reviews and/or a “championing” PC member who argued in favor of accepting
the paper. All accepted papers at TACAS 2024 had a positive average review score.

TACAS 2024 also hosted SV-COMP 2024, the 13th International Competition on
Software Verification. This event to compare tools evaluated 59 software systems for
automatic verification of C and Java programs and 17 software systems for witness
validation. The TACAS 2024 proceedings contains a competition report by the SV-
Comp chair and organizer. From the 46 actively participating teams, the SV-Comp jury
selected 16 short papers that describe the participating verification and validation
systems. These 16 short papers are also published in the proceedings and were
reviewed by a separate program committee (jury); each of these short papers was
assessed by at least four jury members. Two sessions in the TACAS 2024 program
were reserved for the presentation of the results: (1) a presentation session with a report
by the competition chair and summaries by the developer teams of participating tools,
and (2) an open community meeting in the second session.

We would like to thank everyone who helped to make TACAS 2024 successful. We
thank the authors for submitting their papers to TACAS 2024. The PC members and
additional reviewers did an excellent job in reviewing papers: they provided detailed
reports and engaged in the PC discussions. We thank the TACAS steering committee,
and especially its chair, Joost-Pieter Katoen, for his valuable advice. We are grateful to
the ETAPS steering committee, and in particular its chair, Marieke Huisman, for
supporting our changes and suggestions on the TACAS 2024 review process and final
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program. We also acknowledge the invaluable support provided by the EasyChair
developers. Lastly, we would like to thank the overall organization team of ETAPS
2024.

April 2024 Bernd Finkbeiner
Laura Kovacs
PC Chairs

Hadar Frenkel
Michael Rawson
AEC Chairs

Dirk Beyer
SV-Comp Chair
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Abstract. Generating proofs of unsatisfiability is a valuable capability
of most SAT solvers, and is an active area of research for SMT solvers.
This paper introduces the first method to efficiently generate proofs of
unsatisfiability specifically for an important subset of SMT: SAT Mod-
ulo Monotonic Theories (SMMT), which includes many useful finite-
domain theories (e.g., bit vectors and many graph-theoretic properties)
and is used in production at Amazon Web Services. Our method uses
propositional definitions of the theory predicates, from which it generates
compact Horn approximations of the definitions, which lead to efficient
DRAT proofs, leveraging the large investment the SAT community has
made in DRAT. In experiments on practical SMMT problems, our proof
generation overhead is minimal (7.41% geometric mean slowdown, 28.8%
worst-case), and we can generate and check proofs for many problems
that were previously intractable.

An extended version of this paper, which includes appendices with proofs and
additional results, is available at https: //doi. org/ 10. 48550/ arXiv. 2401.
10703

1 Introduction

This paper introduces the first method to efficiently generate and check proofs
of unsatisfiability for SAT Modulo Monotonic Theories (SMMT), an important
fragment of general SMT. The motivation for this work rests on these premises:

— Proofs of UNSAT are valuable, for propositional SAT as well as SMT. Ob-
viously, an independently checkable proof increases trust, which is impor-
tant because an incorrect UNSAT result can result in certifying correctness
of an incorrect system. Additionally, proofs are useful for computing ab-
stractions [30,17,25] via interpolation in many application domains including
model checking [30] and software analysis [29,23].

© The Author(s) 2024
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— SMMT is a worthy fragment of SMT as a research target. SMMT [9] is a

technique for efficiently supporting finite, monotonic theories in SMT solvers.
E.g., reachability in a graph is monotonic in the sense that adding edges to
the graph only increases reachability, and an example SMMT query would
be whether there exists a configuration of edges such that node a can reach
node b, but node ¢ can’t reach node d. (More formal background on SMMT is
in Sec. 2.2.) The most used SMMT theories are graph reachability and max-
flow, along with bit-vector addition and comparison. Applications include
circuit escape routing [11], CTL synthesis [28], virtual data center alloca-
tion [12], and cloud network security and debugging [2,8], with the last two
applications being deployed in production by Amazon Web Services (AWS).
Indeed, our research was specifically driven by industrial demand.

DRAT is a desirable proof format. (Here, we include related formats like
DRUP [27], GRIT [19], and LRAT [18]. DRAT is explained in Sec. 2.1.)
For an independent assurance of correctness, the proof checker is the criti-
cal, trusted component, and hence must be as trustworthy as possible. For
(propositional) SAT, the community has coalesced around the DRAT proof
format [37], for which there exist independent, efficient proof checkers [37],
mechanically verified proof checkers [38], and even combinations that are
fast as well as mechanically proven [18]. The ability to emit DRAT proof
certificates has been required for solvers in the annual SAT Competition
since 2014.

Unfortunately, DRAT is propositional, so general SMT solvers need addi-
tional mechanisms to handle theory reasoning [6]. For example, Z3 [32] out-
puts natural-deduction-style proofs [31], which can be reconstructed inside
the interactive theorem prover Isabelle/HOL [14,15]. Similarly, veriT [16]
produces resolution proof traces with theory lemmas, and supports proof
reconstruction in both Coq [1] and Isabelle [21,5,4]. As a more general ap-
proach, CVC4 [7] produces proofs in the LESC format [36], which is a meta-
logic that allows describing theory-specific proof rules for different SMT the-
ories. Nevertheless, given the virtues of DRAT, SMT solvers have started
to harness it for the propositional reasoning, e.g., CVC4 supports DRAT
proofs for bit-blasting of the bit-vector theory, which are then translated
into LFSC [34], and Otoni et al. [33] propose a DRAT-based proof certifi-
cate format for propositional reasoning that they extend with theory-specific
certificates. However, in both cases, the final proof certificate is not purely
DRAT, and any theory lemmas must be checked by theory-specific certificate
checkers.

For typical finite-domain theories, defining theory predicates propositionally
is relatively straightforward. The skills to design and implement theory-
specific proof systems are specialized and not widely taught. In contrast, if we
treat a theory predicate as simply a Boolean function, then anyone with ba-
sic digital design skills can build a circuit to compute the predicate (possibly
using readily available commercial tools) and then apply the Tseitin trans-
form to convert the circuit to CNF. (This is known as “bit-blasting”, but we
will see later that conventional bit-blasting is too inefficient for SMMT.)
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From a practical, user-level perspective, the contribution of this paper is
the first efficient proof-generating method for SMMT. Our method scales to
industrial-size instances and generates pure DRAT proofs.

From a theoretical perspective, the following contributions underlie our
method:

— We introduce the notion of one-sided propositional definitions for refutation
proof. Having different definitions for a predicate vs. its complement allows
for more compact and efficient constructions.

— We show that SMMT theories expressed in Horn theory enable linear-time
(in the size of the Horn definition) theory lemma checking via reverse unit
propagation (RUP), and hence DRAT.

— We propose an on-the-fly transformation that uses hints from the SMMT
solver to over-approximate any CNF encoding of a monotonic theory pred-
icate into a linear-size Horn upper-bound, and prove that the Horn upper-
bound is sufficient for checking theory lemmas in any given proof via RUP.

— We present efficient, practical propositional definitions for the main mono-
tonic theories used in practice: bit-vector summation and comparison, and
reachability and max-flow on symbolic graphs.

(As an additional minor contribution, we adapt the BackwardCheck procedure
from DRAT-Trim [27] for use with SMT, and evaluate its effectiveness in our
proof checker.)

We implemented our method in the MonoSAT SMMT solver [10]. For evalua-
tion, we use two sets of benchmarks derived from practical, industrial problems:
multilayer escape routing [11], and cloud network reachability [2].# Our results
show minimal runtime overhead on the solver (geometric mean slowdown 7.4%,
worst-case 28.8% in our experiments), and we generate and check proofs for
many problem instances that are otherwise intractable.

2 Background

2.1 Propositional SAT and DRAT

We assume the reader is familiar with standard propositional satisfiability on
CNF. Some notational conventions in our paper are: we use lowercase letters
for literals and uppercase letters for clauses (or other sets of literals); for a
literal x, we denote the variable of x by var(z); we will interchangeably treat an
assignment either as a mapping of variables to truth values T (true) or L (false),
or as a set of non-conflicting (i.e., does not contain both x and its complement )
literals, with positive (negative) literals for variables assigned T (L); assignments
can be total (assigns truth values to every variable) or partial (some variables
unassigned); and given a formula F' and assignment M, we use the vertical bar
F|ar to denote reducing the formula by the assignment, i.e., discarding falsified

4 Available at https://github.com/NickF0211/MonoProof.
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literals from clauses and satisfied clauses from the formula. (An empty clause
denotes L; an empty formula, T.)

This paper focuses on proofs of unsatisfiability. In proving a formula F' UN-
SAT, a clause C is redundant if F and F A C are equisatisfiable [26]. A proof of
unsatisfiability is simply a sequence of redundant clauses culminating in L, but
where the redundancy of each clause can be easily checked. However, checking
redundancy is coNP-hard. A clause that is implied by F', which we denote by
F |= C, is guaranteed redundant, and we can check implication by checking the
unsatisfiability of FF A C, but this is still coNP-complete. Hence, proofs use re-
stricted proof rules that guarantee redundancy. For example, the first automated
proofs of UNSAT used resolution to generate implied clauses, until implying 1
by resolving a literal [ with its complement I [20,39]. In practice, however, reso-
lution proofs grow too large on industrial-scale problems.

DRAT [37] is a much more compact and efficient system for proving unsatis-
fiability. It is based on reverse unit propagation (RUP), which we explain here.?
A unit clause is a clause containing one literal. If L is the set of literals appearing
in the unit clauses of a formula F, the unit clause rule computes F|r, and the
repeated application of the unit clause rule until a fixpoint is called unit prop-
agation (aka Boolean constraint propagation). Given a clause C, its negation C'
is a set of unit clauses, and we denote by F -, C if F A C derives a conflict
through unit propagation. Notice that 'ty C implies F' = C, but is computa-
tionally easy to check. The key insight [24] behind RUP is that modern CDCL
SAT solvers make progress by deriving learned clauses, whose redundancy is,
by construction, checkable via unit propagation. Proof generation, therefore, is
essentially just logging the sequence of learned clauses leading to 1, and proof
checking is efficiently checking 1 of the relevant learned clauses.

2.2 SAT Modular Monotonic Theories (SMMT)
We define a Boolean positive monotonic predicate as follows:

Definition 1 (Positive Monotonic Predicate). A predicate p : {0,1}" —
{0, 1} is positively monotonic with respect to the input a; iff

p(al,...,ai_l,O,ai+1,...) — p(al,...,ai_l,l,ai+1,...)

The predicate p is a positive monotonic predicate iff p is positively monotonic
with respect to every input.

Negative monotonic predicates are defined analogously. If a predicate p is pos-
itively monotonic w.r.t. some inputs AT and negatively monotonic w.r.t. the
rest of inputs A~, it is always possible to rewrite the predicate as a positive
monotonic predicate p’ over input AT and {@ | a € A~ }. For ease of exposition,

5 RUP is all we use in this paper. RAT is a superset of RUP, by essentially doing
one step of resolution as a “lookahead” before checking RUP of the resolvents. The
“D” in DRAT stands for “deletion”, meaning the proof format also records clause
deletions.
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and without loss of generality, we will describe our theoretical results assuming
positive monotonic predicates only (except where noted otherwise).

Given a monotonic predicate p over input A, we will use boldface p as the
predicate atom for p, i.e., the predicate atom is a Boolean variable in the CNF
encoding of the theory, indicating whether p(A) is true or not. The theory of p
is the set of valid implications in the form of M 4 = p where M4 is a partial
assignment over A.

The following are the most used monotonic theories:

Graph Reachability: Given a graph G = (V, E), where V and E are sets of
vertices and edges, the graph reachability theory contains the reachability
predicates reach?, on the input variables ej,es...e, € E, where u,v € V.
The predicate holds iff node v can reach v in the graph G by using only
the subset of edges whose corresponding variable e; is true. The predicate
is positively monotonic because enabling more edges will not make reach-
able nodes unreachable, and disabling edge will not make unreachable nodes
reachable.

Bit-Vector Summation and Comparison: Given two bit-vectors (BV) a
and l_;, the theory of BV comparison contains the predicate @ > g, whose
inputs are the bits of @ and b. The predicate holds iff the value (interpreted
as an integer) of d@ is greater or equal to the value of b. The predicate is
positively monotonic for the variables of @ and negatively monotonic for
the variables of l_;, because changing any 0 to a 1 in @ makes it bigger, and
changing any 1 to 0 in b makes it smaller. Similarly, given two sets of BVs
A and é, the theory of comparison between sums contains the predicate
Z A > B whose inputs are the boolean variables from all BVs in A and
B. The predicate holds 1ff the sum of the BVs in A is greater or equal to
the sum of the BVs in B and is positively monotonic in A and negatively
monotonic in B.

S-T Max Flow Given a graph G = (V, E), for every edge ¢ € E, let its capacity
be represented by the BV cap,. For two vertices s,t € V, and a BV Z, the
max-flow theory contains the predicates M F! > Z over the input variables
e1,ez...e, € E and cdp, ,cap,, ... cdp,, . The predicate holds iff the max-
imum flow from the source s to the target t is greater or equal to Z, using
only the enabled edges (as in the reachability theory) with their specified
capacities.

The SMMT Framework [10] describes how to extend a SAT or SMT solver
with Boolean monotonic theories. The framework has been implemented in the
SMT solver MonoSAT, which has been deployed in production by Amazon Web
Services to reason about a wide range of network properties [2,8]. The framework
performs theory propagation and clause learning for SMMT theories as follows:
(In this description, we use P for the set of positive monotonic predicates, and
S for the set of Boolean variables that are arguments to the predicates.)

Theory Propagation: Given a partial assignment M, let M, be the partial
assignment over S. The SMMT framework forms two complete assignments
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of Mj: one with all unassigned s atoms assigned to false (M), one with
all unassigned s atoms assigned to true (M;"). Since M, and M are each
complete assignments of S, they can be used to determine the value of P
atoms. Since every p € P is positively monotonic, (1) if M; = p, then
M = p, and (2) if M} = —p, then My = —p. The framework uses M
and M as the under- and over-approximation for theory propagation over
P atoms. Moreover, the framework attaches My = p or My, = —p as the
reason clause for the theory propagation.

Clause Learning: For some predicates, a witness can be efficiently generated
during theory propagation, as a sufficient condition to imply the predicate p.
For example, in graph reachability, suppose M, = reach, g for a given
under-approximation M . Standard reachability algorithms can efficiently
find a set of edges M. C M, that forms a path from u to v. When such
a witness is available, instead of learning M, = p, the framework would
use the path witness to learn the stronger clause M. = p. Witness-based
clause learning is theory specific (and implementation specific); if a witness
is not available or cannot be efficiently generated in practice for a particular
predicate, the framework will learn the weaker clause My = p.

3 Overview of Our Method

Most leading SMT solvers, including MonoSAT, use the DPLL(T) frame-
work [22], in which a CDCL propositional SAT solver coordinates one or more
theory-specific solvers. A DPLL(T) solver behaves similarly to a CDCL proposi-
tional SAT solver — making decisions, performing unit propagation, analyzing
conflicts, learning conflict clauses — except that the theory solvers will also in-
troduce new clauses (i.e., theory lemmas) into the clause database, which were
derived via theory reasoning, and whose correctness relies on the semantics of
the underlying SMT theory. These theory lemmas cannot (in general) be de-
rived from the initial clause database, and so cannot be verified using DRAT.
Therefore, the problem of producing a proof of UNSAT in SMT reduces to the
problem of proving the theory lemmas.

A direct approach would be to have the SMT solver emit a partial DRAT
proof certificate, in which each theory lemma is treated as an axiom. This par-
tial proof is DRAT-checkable, but each theory lemma becomes a new proof
obligation. The theory lemmas could subsequently be verified using external
(non-DRAT), trusted, theory-specific proof-checking procedures. This is the ap-
proach recently proposed by Otoni et al. [33].

We take such an approach as a starting point, but instead of theory-specific
proof procedures, we use propositional definitions of the theory semantics to add
clauses sufficient to prove (by RUP) the theory lemmas. The resulting proof is
purely DRAT, checkable via standard DRAT checkers, with no theory-specific
proof rules. Fig. 1 explains our approach in more detail; Sec. 4 dives into how we
derive the added clauses; and Sec. 5 gives sample propositional theory definitions.
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Fig. 1. Overview of Our Proof Generation and Checking Method. Inputs (the problem
instance file and the propositional definitions of theory predicates) are colored blue;
new and modified components are colored orange. Starting from the top-left is the
SMMT problem instance, which is solved by MonoSAT. We extended MonoSAT to
emit a DRAT-style proof certificate, consisting of learned (via propositional or theory
reasoning) clauses, similar to what is proposed in [33]. The proof certificate is op-
tionally pre-processed by drat-trim-theory, in which we modified the BackwardCheck
procedure [27] to perform a backward traversal from the final |, outputting a subset
of lemmas sufficient (combined with the original clause database) to derive L. This is
extra work (since a full BackwardCheck is later performed by unmodified drat-trim for
the final proof verification at the top-right of the figure), but allows us to avoid verifying
some theory lemmas that are not relevant to the final proof. The resulting core lemmas
are split between the propositional learned clauses, which go straight (right) to drat-
trim, and the theory learned clauses, which are our proof obligations. The heart of our
method is the instantiation-based Horn approximation (bottom-center, described in
Sec. 4). In this step, we use the proof obligations as hints to transform the pre-defined,
propositional theory definitions (bottom-left, examples in Sec. 5) into proof-specific
Horn definitions. The resulting proof-specific definitions together with the CNF from
the input instance can efficiently verify UNSAT using unmodified drat-trim [37].

4 Instantiation-Based Horn Approximation

This section describes how we derive a set of clauses sufficient to make theory
lemmas DRAT-checkable. Section 4.1 introduces one-sided propositional defini-
tions and motivates the goal of a compact, Horn-clause-based definition. Sec-
tion 4.2 gives a translation from an arbitrary propositional definition of a mono-
tonic predicate to a monotonic definition, as an intermediate step toward con-
structing the final proof-specific, Horn definition in Section 4.3.

4.1 One-Sided Propositional Definitions and Horn Clauses

Definition 2 (Propositional Definition). Let p be the positive predicate
atom of predicate p over Boolean arguments A. A propositional definition of
p, denoted as Xy, is a CNF formula over variables V' D (var(p) U A) such that
for every truth assignment M to the variables in A, (1) Xp|am is satisfiable and
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Fig. 2. Directed Graph for Running Example in Sec. 4. In the symbolic graph (left),
the reachability predicate reach! is a function of the edge inputs a, ..., h.

(2) Xp = (M = p) if and only if p(M) is T. The propositional definition of p
1s defined analogously.

For example, the Tseitin-encoding of a logic circuit that computes p(M) satisfies
this definition. However, note that a propositional definition for p can be one-
sided: it is not required that X = (M = p) when p(M) is L. That case
is handled by a separate propositional definition for p. We will see that this
one-sidedness gives some freedom to admit more compact definitions.

Given a propositional definition X5, any theory lemma M4 = p is a logical
consequence of Yy, but this might not be RUP checkable. One could prove
Yp E (M4 = p) by calling a proof-generating SAT solver on X, A M4 = p,
i.e., bit-blasting the specific lemma, but we will see experimentally (in Sec. 6)
that this works poorly. However, if the propositional definition is limited to Horn
theory (i.e., each clause has at most one positive literal), then every SMMT
theory lemma can be proven by unit propagation:

Theorem 1. Let p be a positive monotonic predicate over input A, and let ES

be a propositional definition for the positive atom p. If Zl}; 1s set of Horn clauses,
then for any theory lemma My = p where M 4 is a set of positive atoms from
A, Il = (Ma = p) if and only if 28ty (Ma = p).

Proof. Suppose X! |= (M4 = p), then X A (M4 A D) is unsatisfiable. Since
M AP is equivalent to a set of unit clauses, Z'g A (M4 A D) still contains only
Horn clauses, so satisfiability can be determined by unit propagation. O

Example 1. Let reach! be the reachability predicate for the directed graph
shown in Fig. 2 (left). The definition schema for graph reachability in Sec. 5
yields the following set of Horn clauses: X" (1)svavvl, (2) viveVvvs,

reacht =
(3) v8VvhVt, (4)svbVvv2 (5) v3VveVvv2, (6) v2vdVvv4, (7) vaV Vv v3,
(8) vaVEVt, (9) t Vreacht, (10) s, where vl,...,v5, s, and t are auxiliary
variables. Any theory lemma of the form M4 = p, e.g., aVeVhVreach?, can be
proven from Er}'leach" via unit propagation. Also, note that one-sidedness allows
a simpler deﬁnitions, despite the cycle in the graph, e.g., consider assignment
M ={a,b,¢,d,e,f,g h}. Then, reachl = L, but Zr}}eachg = (M = reach}).

Horn theory has limited expressiveness, but it is always sufficient to encode
a propositional definition for any SMMT theory: Given a monotonic predicate
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atom p, we can always encode a Horn propositional definition E’P} as the con-
junction of all valid theory lemmas from the theory of p. This is because every
theory lemma is restricted to the form (M4 = p), where M4 is a set of positive
atoms (due to monotonicity). Hence, Z‘g is a set of Horn clauses. However, such
a naive encoding blows up exponentially. Instead, we will seek a compact Horn
definition Z{; that approrimates a non-Horn propositional definition X:

Definition 3 (Horn Upper-Bound). Let X}, be a propositional definition of
p. A set of Horn clauses EQT is a Horn upper-bound if Xp |= EST.

For the strongest proving power, we want the tightest Horn upper-bound
possible. Unfortunately, the least Horn upper-bound of a non-Horn theory can
still contain exponentially many Horn clauses [35]. Fortunately, we don’t actually
need a Horn upper-bound on the ezact theory definition, but only of enough of
the definition to prove the fixed set of theory lemmas that constitute the proof
obligations. This motivates the next definition.

Definition 4 (Proof-Specific Horn Definition). Given an exact definition
Xy and a set of theory lemmas O := {C1,...Cy} from the theory of p, a proof-
specific Horn definition of p is a Horn upper-bound EST of Xy such that Z'QT 1
C for every C € Q.

Our goal in the next two subsections is how to derive such compact, proof-specific
Horn definitions.

Example 2. Continuing Ex. 1, given a proof obligation @ with two theory
lemmas: {aVveVhVreacht, bvdVgVreacht}, the subset of Horn clauses with
IDs (1), (2), (3), (4), (6), (8), (9) and (10) is a proof-specific Horn definition for
reach!, which can be visualized in Fig. 2 (middle).

Given a proof obligation O, we can make all theory lemmas in @ DRAT
checkable if we have exact propositional definitions for the theories and if we
can dynamically transform them into compact, proof-specific Horn definitions
at the time of proof checking. We simply add these additional clauses to the
input of the DRAT-proof-checker.

4.2 Monotonic Definitions

The derivation of compact, proof-specific Horn definitions from arbitrary propo-
sitional definitions is a two-step process: we first show that every propositional
definition for a monotonic predicate atom can be converted into a monotonic
definition of linear size (this section), and then use theory lemmas in the proof
obligations to create the Horn approximation of the definition (Sec. 4.3).

Definition 5 (Monotonic Definition). Let a monotonic predicate p over in-
put A be given. A CNF formula E; is a monotonic definition of the positive
predicate atom p if Er‘f is a propositional definition of p, and it satisfies the fol-
lowing syntax restrictions: (1) Eg‘ does not contain positive atoms from A, (2)
Y& does not contain p, and (3) p appears only in Horn clauses. The monotonic

p
definition for p is defined analogously.
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We now define the procedure, MONOT, for transforming a propositional def-
inition into a linear-size monotonic definition:

Definition 6 (Monotonic Transformation). Let a monotonic predicate p
over input A and a propositional definition Xy for the positive predicate atom p
be given. MONOT(p, Xp) is the result of the following transformations on Xy :
(1) replace every occurrence of an input atom (a for a € A) in X, with a new
atom a’ (@ is replaced with a’), (2) replace every occurrence of p and p with p’
and p’ respectively, and (3) add the following Horn clauses: a = a’ for every
a€ A, and p' = p.

Theorem 2 (Correctness of Monotonic Transformation). Given a mono-
tonic predicate p over input A and the monotonic predicate atom p, if we have
any propositional definition Xy with n clauses, then MONOT (p, Xy) results in
a monotonic definition X with at most n + |A| + 1 clauses.

The proof of Theorem 2 is in the extended version of this paper. The cor-
rectness relies on the fact that the predicate p is indeed monotonic, and that our
propositional definitions need only be one-sided. If the monotonic definition is
already in Horn theory, it can be used directly verify theory lemmas via RUP;
otherwise, we proceed to Horn approximation, described next.

4.3 Instantiation-Based, Proof-Specific Horn Definition

We present the transformation from monotonic definitions into proof-specific
Horn definitions. The transformation exploits the duality between predicates’
positive and negative definitions.

Lemma 1 (Duality). Let p be a monotonic predicate over Boolean arguments
A. Suppose Xy and Xg are positive and negative propositional definitions, re-
spectively. For every assignment M to the variables in A:

1. X5 = (M =p) if and only if X5 AN M A p is satisfiable.
2. Y5 = (M = D) if and only if X, A M A D is satisfiable.

The proof of Lemma 1 is in the extended version of this paper. The duality
of the positive (Xp) and negative (Xp) definitions allows us to over-approximate
positive (negative) definitions by instantiating the negative (positive) definitions.

Example 3. Returning to Ex. 1 and Fig. 2, consider the assignment M =
{a,b,¢,d, e, f,g, h}. Since s cannot reach ¢ under this assignment, any proposi-
tional definition X——— must imply M = reacht. Dually, X" AM Areacht

reacht reacht

is satisfiable, e.g., {s,v1l,v2,v3,v4,t}.

Lemma 2 (Instantiation-Based Upper-Bound). Let a predicate p over in-
put A and o positive definition Xy, be given. For any partial assignment M’ over
var(Xp) \ (var(p) U A), Xplmrup = P is an over-approzimation of Xy. ©

5 Note that Xp|p is encoded in CNF, so to compactly (i.e., linear-size) encode
Yolymr = P in CNF, we introduce a new literal I; for eachjlauje C} GEP‘MH
create clauses ¢;; V [; for each literal ¢;; € C, and add clause I; VIa V... VI, VPp.
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The proof of Lemma 2 (in the extended paper) relies on the duality in
Lemma 1. Lemma 2 enables upper-bound construction and paves the way for
constructing an instantiation-based Horn upper-bound of a monotonic definition.

Lemma 3 (Instantiation-Based Horn Upper-Bound). Given a monotonic
predicate p over input A and a positive monotonic definition Z‘;, let X repre-
sent the set of auziliary variables: var(XF) \ (A Uwvar(p)). For any complete
satisfying assignment Mxya to X7 |p, the formula (Z‘;‘|I—,UMX) = P serves as a
Horn upper-bound for any propositional definition of p, where Mx is a partial
assignment derived from Mxya for the auxiliary variables X .

(Proof in the extended paper.) Note that the instantiation-based Horn upper-
bound of a negative predicate atom p is constructed from a monotonic definition
of the positive predicate atom E;‘ , and vice-versa.

For a given theory lemma, the instantiation-based Horn upper-bound con-
struction (Lemma 3) enables the verification of the theory lemma if we can find
a sufficient “witness” M x for the instantiation. We now prove that a witness
always exists for every valid theory lemma and does not exist otherwise.

Theorem 3 (Lemma-Specific Horn Upper-Bound). Let a monotonic pred-
icate p over input A, a monotonic definition E;r and a lemma in the form
My = P be given. We denote X as the set of auziliary variables: var(Eg) \
(A Uwar(p)). The lemma M4 = P is in the theory of P if and only if there
exists an assignment Mx on X such that: (1) 2¥|sumxusm, is satisfiable and
(2) (X5 lpumx = P) F1 (Ma = D).

(Proof in the extended paper.) Theorem 3 states that a lemma-specific Horn
upper-bound for a theory lemma M4 = P can be constructed by instantiat-
ing the monotonic definition using a “witness” assignment Mx. ” The witness
could be obtained by performing SAT solving on the formula Zg | MEUp? (where

M7 is the extension of M4 by assigning unassigned input variables in A to T
(Sec. 2.2)). However, in practice, a better approach is to modify the SMMT solver
to produce the witness during the derivation of theory lemmas. In Section 5, we
provide examples of witnesses for commonly used monotonic predicates.

Note that the witness is not part of the trusted foundation for the proof.
An incorrect witness might not support verification of a theory lemma, but if
a theory lemma is verified using a specific witness M x, Theorem 3 guarantees
that the lemma is valid.

Example 4. Continuing the example, let a theory lemma L := ¢V d V reacht

be given. To derive a lemma-specific Horn upper-bound for X ——-, we first ob-

tain a witness M x by finding a satisfying assignment to the formula Zﬁeacht A
M A reacht, where M := {a,b,¢,d,e,f,g h} (by assigning the unassigned
7 Instead of instantiating a complete assignment on every auxiliary variable in X, a

partial instantiation is sufficient so long as it determines the assignments on the
other variables.
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input variables in L to T). Since M is a complete assignment to the edge vari-
ables, the graph is fully specified, and a suitable witness M x can be efficiently
computed using a standard graph-reachability algorithm, to compute the reach-
ability status of each vertex. The witness Mx is {s,v1,v2,v3,v4,t}. Following

the construction in Theorem 3, the formula Ereachg‘ireachgu Mo simplifies to

two (unit) clauses: € and d (from clauses (2) and (6) in Ex. 1), which can be
visualized as the cut in Fig. 2 (right). The lemma-specific Horn upper bound
Zfeachgmu M, = reachf is, therefore, € A d = reach{, which in this ex-
ample is already CNF, but more generally, we would introduce two literals to
encode the implication: {cV1;, dVls, 13 VIaVreacht}. The lemma-specific Horn

upper-bound is dual-Horn and implies the theory lemma L by unit propagation.

From the lemma-specific Horn upper-bounds, we construct the proof-specific
Horn definition by combining the lemma-specific Horn upper-bounds for all lem-
mas in the proof obligations.

In summary, to efficiently verify SMMT theory lemmas, we propose the fol-
lowing approach: (1) define the propositional definitions (in CNF) for the atoms
of theory predicates; (2) transform the definitions into monotonic definitions of-
fline; (3) during proof checking, approximate a proof-specific Horn definition (if
not already Horn) from the constructed monotonic definition using theory lem-
mas in the proof; (4) combine the proof-specific definition together and verify
the proof via RUP. The only theory-specific, trusted foundation for the proof is
the definition for the theory atoms. (The extended version of this paper contains
a figure to help visualize this workflow.)

Example 5. Summarizing, the positive propositional definition Xyeachg in Ex. 1
is already Horn, so is sufficient for verifying via DRAT any SMMT lemmas that
imply reacht. To verify lemmas that imply reachf, we can compute a proof-
specific definition of reachf from Xy eqacnt using Theorem 3.

Remark 1. The only trusted basis of our approach are the propositional defini-
tions of theory atoms. For the monotonic theories in the section 5, we considered
the definitions intuitively understandable, and therefore sufficiently trustworthy.
But to further increase confidence, propositional definitions can be validated us-
ing techniques from hardware validation/verification, e.g., simulation to sanity-
check general behavior, equivalence checking against known-good circuits, etc.

5 Example Propositional Definitions

In this section, we illustrate the monotonic definitions for the most commonly
used monotonic predicates. Due to space constraints, we present only graph
reachability here in detail, and only sketch bit-vector comparison and summa-
tion, and max-flow. Full definitions for those theories are in the extended version
of this paper.

Graph Reachability: Given a graph G = (V, E) where V and E are sets
of vertices and edges, respectively, as discussed in Sect. 2, the graph reacha-
bility theory contains the reachability predicate reach, for u,v € V over input
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e1, ez ...en, € E. For convenience, we refer to the positive edge atom for the edge
from vertex ¢ to vertex j as e;_,;. The predicate is positively monotonic for £,
and the monotonic definition for the positive predicate atom reachy, contains
the clauses:

1. reach? Ve, 5; V reach’ for every edge eg € E and the unit clause reach®
2. reach? V reachy,

The monotonic definition introduces a reachability atom reach’ for every
i € V and asserts the fact that u is reachable from itself. For every edge (i, j), if
the edge (i, j) is enabled (e;_;) and 7 is reachable (reach’), then j must also be
reachable (reach?). The predicate atom reachy, is implied by the reachability
of v (reach?). The definition is monotonic since it only contains negative edge
atoms. Moreover, the definition is already a Horn definition and can be used
directly for proving theory lemmas in the theory of reachy, without the need for
transformation into a proof-specific Horn definition. The size of the definition is
O(|E]).

Instead of defining the monotonic definition for the negative predicate atom
reachy,, we construct its proof-specific definition from the monotonic definition
of the positive predicate atom reachy,. For each theory lemma in the proof, the
witness for constructing the lemma-specific Horn upper-bound is the reachability
status (reach?) of every vertex i € V, which is efficiently computed in the SMMT
solver using standard graph-reachability algorithms.

Bit-Vector Comparison (sketch): The positive definition is just the Tseitin
encoding of a typical bit-vector comparison circuit, with some simplification due
to being one-sided: For each bit position ¢, we introduce auxiliary variables ge;
and gt;, which indicate that the more-significant bits from this position have
already determined vector @ to be > or > l_;, respectively. Simple clauses compute
ge;—1 and gt;_1 from ge; and gt; and the bits at position 7 — 1 of @ and b. The
negative definition is similar. These are both Horn, so can be used without
further transformation into proof-specific Horn definitions.

Bit-Vector Summation and Comparison (sketch): These are basically
Tseitin encodings of ripple-carry adders, combined with the comparison theory
above — using Def. 6 to handle the fact that the the Tseitin encodings of the
XOR gates in the adders are non-monotonic with respect to the input bit-vectors.
The resulting propositional definitions are not Horn, so we use witnesses to
construct lemma-specific Horn definitions. The witnesses come from the SMMT
solver maintaining lower and upper bounds on the possible values of the bit-
vectors, e.g., a witness for ZAT >N B are lower bounds for the vectors in A
and upper bounds for the vectors in B such that their sums make the inequality
true. (Mutadis mutandis for the negative witness.)

Max-Flow (sketch): For the positive definition (that the max-flow exceeds
some value), we introduce auxiliary bit-vectors to capture the flow asisgned to
each edge. We use the bit-vector theories to ensure that the flows do not exceed
the edge capacities, that each node’s (except the source) outgoing flows do not
exceed the incoming flows (equality is unnecessary due to the one-sidedness), and
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that the flow to the sink exceeds the target value. For the negative definition, we
exploit the famous max-flow/min-cut duality. We introduce an auxiliary variable
incut, for each edge. We use the graph reachability theory to ensure that the
edges in the cut separate the source from the sink, and the bit-vector summation
theory to ensure that the capacity of the cut does not exceed the target max-
flow value. Both the positive and negative definitions are not Horn, so require
instantiation-based upper-bounds. The witnesses are the flow values or the cuts,
and are easily computed by the SMMT solver.

6 Experimental Evaluation

To evaluate our proposed method, we implemented it as shown earlier in Fig. 1
(Sec. 3). We call our implementation MonoProof (available at https://github.
com/NickF0211/MonoProof).

The two basic questions of any proof-generating SAT/SMT solver are: (1)
how much overhead does the support for proofs add to the solving time, and
(2) how efficiently can a proof be prepared from the proof log, and verified?
For the first question, we compare the runtime of unmodified MonoSAT ver-
sus the MonoSAT that we have extended to produce proof certificates. For the
second question, we need a baseline of comparison. MonoProof is the first proof-
generating SMMT solver, so there is no obvious comparison. However, since
SMMT theories are finite-domain, and bit-blasting (i.e., adding clauses that
encode the theory predicates to the problem instance and solving via a proposi-
tional SAT solver) is a standard technique for finite-domain theories, we compare
against bit-blasting. Arguably, this comparison is unfair, since MonoSAT out-
performs bit-blasting when solving SMMT theories [9]. Thus, as an additional
baseline, we propose an obvious hybrid of SMMT and bit-blasting, which we dub
Lemma-Specific Bit-Blasting (LSBB): we run MonoProof until the core theory
lemmas have been extracted, benefitting from MonoSAT’s fast solving time, but
then instead of using our techniques from Sec. 4, we bit-blast only the core theory
lemmas.®

We ran experiments on 3GHZ AMD Epyc 7302 CPUs with 512GB of DDR4
RAM, with a timeout of 1 hour and memory limit of 64GB. For the bit-blasting
SAT solver, we use the state-of-the-art SAT solver Kissat [13]. In all cases, the
proof is verified with standard DRAT-trim [37].

6.1 Benchmarks

We wish to evaluate scalability on real, industrial problems arising in practice.
MonoProof has successfully generated and verified industrial UNSAT proofs for

8 We implemented this both via separate SAT calls per lemma; and also by providing
all lemmas in a single SAT call (with auxiliary variables to encode the resulting
DNF), to allow the solver to re-use learned clauses on different lemmas. The latter
approach generally worked better, so we report those results, but (spoiler) neither
worked well.


https://github.com/NickF0211/MonoProof
https://github.com/NickF0211/MonoProof

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 17

a set of hard, unsatisfiable Tiros [2,8] queries collected in production use at AWS
over a multi-week period. However, these instances are proprietary and cannot
be published, making them irreproducible by others. Instead, we evaluate on two
sets of benchmarks that we can publicly release (also at https://github.com/
NickF0211/MonoProof):

Network Reachability Benchmarks. These are synthetic benchmarks that
mimic the real-world problems solved by Tiros, without disclosing any propri-
etary information. Network reachability is the problem of determining whether a
given pair of network resources (source and destination) can communicate. The
problem is challenging because network components can intercept, transform,
and optionally re-transmit packets traveling through the network (e.g., a fire-
wall or a NAT gateway). Network components come in various types, each with
their own complex behaviors and user-configurable network controls. In these
benchmarks, we abstract to two types of intermediate components: simple and
transforming. Simple components relay an incoming packet as long as its des-
tination address belongs to a certain domain, expressed in terms of a network
CIDR (Classless Interdomain Routing), e.g., 10.0.0.0/24. Transforming network
components intercept an incoming packet and rewrite the source address and
ports to match their own before re-transmitting it. The simple network compo-
nents are akin to subnets, VPCs, and peering connections; transforming network
components are a highly abstracted version of load balancers, NAT gateways,
firewalls, etc. The SMT encoding uses the theories of bit vectors and of graph
reachability. The network packets are symbolically represented using bit vectors,
and the network is modeled as a symbolic graph. Network behavior is modeled
as logical relations between packets and elements in the network graph. Unsatis-
fiability of a query corresponds to unreachability in the network: for all possible
packet headers that the source could generate, and for all possible paths connect-
ing the source to the destination, the combined effect of packet transformations
and network controls placed along the path cause the packet to be dropped from
the network before it reaches its destination.

We generated 24 instances in total, varying the size and structure of the
randomly generated network. Graph sizes ranged from 1513 to 15524 (average
5485) symbolic edges.

Escape Routing Benchmarks. Escape routing is the problem of routing all
the signals from a component with extremely densely packed I/O connections
(e.g., the solder bumps on a Ball-Grid Array (BGA)) to the periphery of the com-
ponent, where other routing techniques can be used. For a single-layer printed
circuit board (PCB), escape routing is optimally solvable via max-flow, but real
chips typically require multiple layers. The multi-layer problem is difficult be-
cause the vias (connections between layers) are wider than the wires on a layer,
disrupting what routes are possible on that layer. Bayless et al. [11] proposed a
state-of-the-art solution using SMMT: max-flow predicates determine routability
for each layer on symbolic graphs, whose edges are enabled/disabled by logical
constraints capturing the design rules for vias.
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Fig. 3. Cactus Plots for Solving (left) and Proof Preparation&Checking (right). Each
point is the runtime for one instance, so the plot shows the number of instances (z-
axis) that ran in less than any time bound (y-axis). BB denotes standard bit-blasting;
LSBB, lemma-specific bit-blasting; and MonoProof is our new method. The left graph
shows that MonoProof (and LSBB, which uses MonoProof’s solver) is vastly faster
than bit-blasting for solving the instances. The right graph shows that MonoProof is
also vastly faster than bit-blasting for proving the result; LSBB timed-out on all proofs.

In [11], 24 commercial BGAs were analyzed under two different via technolo-
gies and different numbers of layers. For our benchmark set, we select all con-
figurations where the provable minimum number of layers were reported. This
results in 24 unsatisfiable SMMT problems instances (routing with one fewer
layer than the minimum), which exercise the bit-vector and max-flow theories.
Graph sizes ranged from 193994 to 3084986 (average 717705) symbolic edges.

6.2 Results

Returning to the two questions for our evaluation:

1. The solver overhead of our proof certificate generation is minimal. On the
network reachability benchmarks, the geometric mean (GM) runtime overhead
was 14.10% (worst case 28.8%). On the escape routing benchmarks, the GM
runtime overhead was only 1.11% (the worst case 5.71%). (The lower overhead
is because MonoSAT spent more time learning theory lemmas vs. recording
them in the proof.) The overall GM runtime overhead across all benchmarks
was 7.41%. These overhead figures are comparable to state-of-the-art, proof-
generating SAT solvers, which is not surprising, since our proof certificates are
essentially the same as a DRAT proof certificate in SAT. This compares favorably
with the solver overhead of heavier-weight, richer, and more expressive SMT
proof certificates like LFSC [34].

2. MonoProof’s time to prepare and check a proof of unsatisfiability is markedly
faster than standard bit-blasting or lemma-specific bit-blasting. Fig. 3 summa-
rizes our results. (A full table is in the extended version of this paper.) The left
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graph shows solving times (with proof logging). Since the proof-logging over-
head is so low for both bit-blasting (Kissat generating DRAT) and MonoProof,
these results are consistent with prior work showing the superiority of the SMMT
approach for solving [9]. Note that bit-blasting (BB) solved all 24 network reach-
ability instances, but failed to solve any of the 24 escape routing instances in the
1hr timeout. Lemma-specific bit-blasting (LSBB) and MonoProof share the same
solving and proof-logging steps. The right graph shows proof-checking times (in-
cluding BackwardCheck and proof-specific Horn upper-bound construction for
MonoProof). Here, BB could proof-check only 11/24 reachability instances that
it had solved. Restricting to only the 11 instances that BB proof-checked, Mono-
Proof was at least 3.7x and geometric mean (GM) 10.2x faster. LSBB timed out
on all 48 instances. Summarizing, MonoProof solved and proved all 48 instances,
whereas BB managed only 11 instances, and LSBB failed to prove any.

The above results were with our modified BackwardCheck enabled (drat-
trim-theory in Fig. 1). Interestingly, with BackwardCheck disabled, MonoProof
ran even faster on 37/48 benchmarks (min speedup 1.03x, max 6.6x, GM 1.7x).
However, enabling BackwardCheck ran faster in 10/48 cases (min speedup 1.02x,
max 7.9x, GM 1.6x), and proof-checked one additional instance (69 sec. vs. lhr
timeout). The modified BackwardCheck is a useful option to have available.

7 Conclusion

We have introduced the first efficient proof-generating method for SMMT. Our
approach uses propositional definitions of the theory semantics and derives com-
pact, proof-specific Horn-approximations sufficient to verify the theory lemmas
via RUP. The resulting pure DRAT proofs are checkable via well-established (and
even machine verified) tools. We give definitions for the most common SMMT
theories, and experimental results on industrial-scale problems demonstrate that
the solving overhead is minimal, and the proof preparation and checking times
are vastly faster than the alternative of bit-blasting.

The immediate line of future work is to support additional finite domain
monotonic theories, such as richer properties on pseudo-boolean reasoning. We
also aim to apply our approach to support monotonic theories beyond finite
domains. In addition, we plan to extend our proof support to emerging proof
format such as LRAT [18] and FRAT [3] that enable faster proof checking.
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Abstract. Z3-NoobLERr is a fork of Z3 that replaces its string theory solver
with a custom solver implementing the recently introduced stabilization-based
algorithm for solving word equations with regular constraints. An extensive ex-
perimental evaluation shows that Z3-NoobLER is a fully-fledged solver that can
compete with state-of-the-art solvers, surpassing them by far on many bench-
marks. Moreover, it is often complementary to other solvers, making it a suitable
choice as a candidate to a solver portfolio.

1 Introduction

Recently, many tools for solving string constraints have been developed, motivated
mainly by techniques for finding security vulnerabilities such as SQL injection or cross-
site scripting (XSS) in web applications [34,35,36]. String solving has also found its
applications in, e.g., analysis of access user policies in Amazon Web Services [26,8,39]
or smart contracts [7]. Solvers for string constraints are usually implemented as string
theory solvers inside SMT solvers, such as cvc5 [9] or Z3 [31], allowing combination
with other theories, most commonly the theory of integers for string lengths. Other
well known string solvers include Z3sTtrR3RE [13,12], Z3-Trau [1], Z3strR4 [30], OS-
TRICH [19], and others.

In this paper, we present Z3-NoopLer 1.0.0 [47], a fork of Z3 4.12.2 where the
string theory solver is replaced with the stabilization-based procedure for solving string
(dis)equations with regular and length constraints [14,20]. The procedure makes heavy
use of nondeterministic finite automata (NFAs) and operations over them, for which we
use the efficient MAta library for NFAs [23,29].

The presented version implements multiple improvements over a previous Z3-
NoobLER prototype from [20]. Firstly, it extends the support for string predicates from
the SMT-LIB string theory standard [11] by (1) applying smarter and more specific
axiom saturation and (2) adding support for their solving inside the decision procedure
(e.g., for the ~contains predicate). It also implements various optimizations (e.g., for
regular constraints handling) and other decision procedures, e.g., the Nielsen transfor-
mation [32] for quadratic equations and a procedure for regular language (dis)equations;
moreover, we added heuristics for choosing the best decision procedure to use.

We compared Z3-NoobLER with other string solvers on standard SMT-LIB bench-
marks [10,42,43]. The results indicate that Z3-NooDLER is competitive, superior espe-
cially on benchmarks containing mostly regular constraints and word (dis)equations, and
that the improvements since [20] had a large impact on the number of solved instances
as well as its overall performance.
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2 Architecture

Z3-NoobLER replaces the string theory solver in the DPLL(T)-based SMT solver Z3 [31]
(version 4.12.2) with our string solver NooDpLER [ 14], which is based on the stabilization
algorithm (cf. Section 3). DPLL(T)-based solvers in general combine a SAT solver
providing satisfying assignments to the Boolean skeleton of a formula with multiple
theory solvers for checking conjunctions of theory literals.

Z3-NoobLER still uses the infrastructure of Z3, most importantly the parser, string
theory rewriter and the linear integer arithmetic (LIA) solver. The Z3 parser takes
formulae in the SMT-LIB format [10], where Z3-NoobpLEr can handle nearly all pred-
icates/functions (such as substr, len, at, replace, regular membership, word equa-
tions, etc.) in the string theory as defined by SMT-LIB [11].

Even though we do use the string theory rewriter of Z3, we disabled those rewritings
that do not benefit our core string solver. For instance, we removed rules that rewrite
regular membership constraints to other types of constraints since solving regular con-
straints and word equations using our stabilization-based approach is efficient.

The interaction of the NoopLER solver with SMT string formula
73 is shown in Fig. 1 and works as follows. Upon Z3 |
receiving a satisfying Boolean assignment from ’ oting
the SAT solver (@), we first remove irrelevant rewriter 1!
assignments (using Z3’s relevancy propagation), . L creeooool
which allows us to work with smaller instances
and return more general theory lemmas. A the-
ory assignment obtained from the Boolean as-
signment consists of string (dis)equations, regu-
lar constraints, and, possibly, predicates that were
not axiom-saturated before (cf. Section 3).

The core NoobpLER string decision procedure then reduces the conjunction of string
literals to a LIA constraint over string lengths, and returns it to Z3 as a theory lemma (@),
to be solved together with the rest of the input arithmetic constraints by Z3’s internal
LIA solver. NoopLER implements a couple of decision procedures (discussed in Sec-
tion 3), heavily employing the MATA automata library (version 0.109.0) [29] (@). As
an optimization of the theory lemma generation, when the string constraint reduces into
a disjunction of LIA length constraints, we check the satisfiability of individual dis-
juncts (generated lazily on demand) separately in order to get a positive answer as soon
as possible. For testing the disjuncts, the current solver context is cloned and queried
about satisfiability of the LIA constraint conjoined with the disjunct (@).

Mata

NoODLER o
string theory

LIA solver
instance

Fig. 1: Architecture of Z3-NooDLER

3 String Theory Core

In this section, we provide details about Z3-NooDLER’S string theory implementation,
including initial axiom saturation, proprocessing, the core procedure, and limitations.

Axiom Saturation. Inorder to best utilize the power of Z3’s internal LIA solver during the
generation of a satisfiable assignment, we saturate the input formula with length-aware
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theory axioms and axioms for string predicates (this happens during Z3’s processing
of the input formula, before the main SAT solver starts generating assignments). We
can then avoid checking SAT assignments that trivially violate length conditions. Most
importantly, we add length axioms len(#;) > 0, len(t;.t5) = len(#1) + len(zo) where
11, t2 are arbitrary string terms, and len(#;) = len(¢s) for the word equation 71 = 5.
Moreover, for string functions/predicates, NooDLER saturates the original formula
with an equivalent formula composed of word (dis)equations and length/regular con-
straints, which are more suitable for our core procedure (e.g., for ~contains(s, "abc")
in the input formula, we add the regular constraint s ¢ X*abcX*). We use differ-
ent saturation rules for instances of predicates with concrete values. For instance, for
substr(s, 4, 1), we add just the term at(s, 4). On the other hand, for substr(s, ;,1;),
where s is a string term and #;,¢; are general integer terms (possibly containing vari-
ables), we need to add a more general formula talking about the prefix and suffix of s
of given lengths. The original predicate occurrence is then removed from received
assignments by NoobpLER (Z3 does not allow to remove parts of the original formula).

Decision Procedures. Z3-NOODLER's string theory core contains several complementary
decision procedures. The main one is the stabilization-based algorithm for solving word
equations with regular constraints introduced in [14] and later extended with efficient
handling of length constraints and disequations [20]. The stabilization-based algorithm
starts, for every string variable, with an NFA encoding regular constraints on the variable
and iteratively refines the NFA according to the word equations until the stability
condition is achieved. The stability condition holds when, for every word equation,
the language of the left-hand side (obtained as the language of the concatenation of
NFAs for variables and string literals) equals the language of the right-hand side. When
stability is achieved, length constraints of the solutions are generated and passed to the
LIA solver. The algorithm is complete for the chain-free [5] combinations of equations,
regular and length constraints, together with unrestricted disequations, making it the
largest known decidable fragment of these types of constraints.

The stabilization-based decision procedure starts by inductively converting the initial
regular constraints into NFAs. During the construction, we utilize eager simulation-based
reduction [16,17] with on-demand determinization and minimization.

For an efficient handling of quadratic equations (systems of equations with at most
two occurrences of each variable) with lengths, NoopLER implements a decision pro-
cedure based on the Nielsen transformation [32]. The algorithm constructs a graph
corresponding to the system and reasons about it to determine if the input formula is
satisfiable or not [38,22]. If the system contains length variables, we also create a counter
automaton corresponding to the Nielsen graph (in a similar way as in [28]). In the subse-
quent step, we contract edges, saturating the set of self-loops and, finally, we iteratively
generate flat counter sub-automata (a flat counter automaton only allows cycles that
are self-loops), which are later transformed into LIA formulae describing lengths of all
possible solutions.

In order to solve (dis)equations of regular expressions, we reduce the problem to
reasoning about the corresponding NFAs (similarly as for regular constraints handling).
In particular, we use efficient NFA equivalence and universality checking from MATa,
which implements advanced antichain-based algorithms [46,6].
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Preprocessing. Each decision procedure employs a sequence of preprocessing rules
transforming the string constraint to a more suitable form. Our portfolio of rules includes
transformations reducing the number of equations by a conversion to regular constraints,
propagating epsilons and variables over equations, underapproximation rules, and rules
reducing the number of disequations (cf. [20]). On top of that, Z3-NooDpLER employs
information about length-equivalent variables allowing to infer simpler constraints (e.g.,
for xy = zw with len(x) = len(z), we can infer y = w). Z3-NoobDLER also checks for
simple unsatisfiable patterns for early termination. A sequence of preprocessing rules is
composed for each of the decision procedures differently, maximizing their strengths.

Supported String Predicates and Limitations. Z3-NooDLER currently supports handling
of basic string predicates replace, substr, at, indexof, prefix, suffix, contains,
and a limited support for mcontains. From the set of extended constraints, the core
solver currently does not support the replace_all function (and variants of replacement
based on regular expressions) and to/from_int conversions. The decision procedures
used in Z3-NoobLErR make it complete for the chain-free fragment with unbounded
disequations and regular constraints [20], and quadratic equations. Outside this fragment,
our theory core is sound but incomplete.

4 Experiments

Tools and environment. We compared Z3-NoobLER with the following state-of-the-art
tools: cve5 [9] (version 1.0.8), 23 [31] (version 4.12.2), Z3stR3RE [13,12], Z3sTrR4 [30],
OSTRICH [19]3, and Z3-NoopLer?” (version 0.1.0 used in [20]). We did not compare
with Z3-Trau [2] as it is no longer under active development and gives incorrect results
on newer benchmarks. The experiments were executed on a workstation with an Intel
Xeon Silver 4314 CPU @ 2.4 GHz with 128 GiB of RAM running Debian GNU/Linux.
The timeout was set to 120 s, memory limit was set to 8 GiB.

Benchmarks. The benchmarks come from the SMT-LIB [10] repository, specifically
categories QF_S [42] and QF_SLIA [43]. These benchmarks were also used in SMT-
COMP’23 [41], in which Z3-NoobLER participated (version 0.2.0). As Z3-NOODLER
does not support to/from_int conversions and replace_all-like predicates, we ex-
cluded formulae whose satisfiability checking needs their support. Based on the occur-
rences of different kinds of constraints, we divide the benchmarks into three groups:

Regex This category contains formulae with dominating regular membership and
length constraints. It consists of AutomatArk [13], Denghang, StringFuzz [15],
and Sygus-qgen benchmark sets. We excluded 1,568 formulae from StringFuzz
that require support of the to_int predicate.

Equations The formulae in this category consist mostly of word equations with length
constraints and a small amount of other predicates. It contains Kaluza [40,27], Ke-
pler [25], Norn [3.,4], Slent [44], Slog [45], Webapp, and Woorpje [24] benchmark
sets. We excluded 414 formulae from Webapp that require support of replace_all,
replace_re, and replace_re_all predicates.

3 Latest commit 70d®1e2d2, run with -portfolio=strings option.
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Table 1: Results of experiments on all benchmark sets. For each tool and benchmark set (as well
as whole groups under X), we give the number of unsolved instances. Results for tools with the
highest number of solved instances are in bold. Numbers with * contain also incorrect results.

Regex Equations Predicates-small

Aut Den StrFuzz Syg X Kal Kep Norn Slent Slog Web Woo X  Strint Leet StrSm X PyEx
Included 15,995 999 10,050 343 27,387 19,432 587 1,027 1,128 1,976 267 809 25,226 11,669 2,652 1,670 15,991 23,845
Unsupported 0 0 1568 0 1,568 0 0 0 0 0 414 0 414 5299 0 210 5,509 0
Z3-NOODLER 62 0 0 0 62 259 4 0 5 0 0 243 511 4 4 55 63 4,424
cves 94 18 1037 0 1149 0240 85 22 0 40 54 441 0 0 4 4 34
z3 113 118 340 0 571 164313 124 74 71 61 25 832 4 0 32 36 1,071
Z3str4 60 4 27 0 91 174254 73 73 16 62 78 730 5 4 37 46 570
OSTRICH 55 15 229 0 299 288 387 1 130 7 65 53 931 37 26 *106 *169 12,290
Z3sTR3RE 66 27 143 1 *237 *144 311 133 87 55%104 *118 *952 64 192 *179 *435 17,764

Z3-NoobLERP" 8 1 *1,014 0 *1,101 508 575 0 6 0 *3 256 1,348 40 29 *493 *562 *13,362

Predicates-small AlthoughZ3-NoobpLEr focuses mainly on word equations with length
and regular constraints, the evaluation includes also a group consisting of smaller
formulae that use string predicates such as substr, at, contains, etc. It is formed
from FullStrint, LeetCode, and StrSmallRw [33] benchmark sets. We removed 5,509
formulae containing the to/from_int predicates from FullStrint and StrSmallRw.

We also consider the PyEx [37] benchmark, which we do not put into any of these
groups, as it contains large formulae with complex predicates (substr, contains,
etc.). We note that we omit the small Transducer+ [18] benchmark because it contains
exclusively formulae with replace_all.

Results. We show the number of unsolved instances  Table 2: Average run times (in sec-
for each benchmark and tool (as well as whole onds) of solved instances and their
groups) in Table 1. Some tools gave incorrect re- standard deviations.

sults (determined by comparing to the output of cve5 Rez  Eq  Pred
and Z3) for some benchmarks. Usually, this was less avg std avg sd avg  std
than 10 instances, except for Z3sTrR3RE on String- ~ %3-Noooter = 0.11 1.350.112.13 0.1 2.16
. cves 1.17 8.51 0.11 2.15 0.03 0.15
Fuzz and StrSmallRw (50 and 12 incorrectresultsre-  z3 1929.710.18 2.83 0.04 0.42

: _ pr Z3sTrR4 0.352.000.253.40 0.02 031
spectively) and Z3-NoopLEr?" on StrSmallRw (218 S0 o 28 098 1271 1508

incorrect results). Table 2 then shows the average  Z3sm3RE 031328013272 0.01 008
run times and their standard deviations for solved ~Z2Noovtex” 027286012293 009 169
instances for each category and tool.

The results show that Z3-NoobLER outperforms other tools on the Regex group (in
particular on Denghang, StringFuzz, and Sygus-qgen) both in the number of solved
instances and the average run time. Only on AutomatArk it cannot solve the most
formulae (but it solves only 7 less than the winner OSTRICH, while being much faster).

On the Equations group, Z3-NoobLER also outperforms other tools on most of the
benchmarks. In particular on Kepler, Norn, Slent, Slog, and Webapp. On Kaluza, it is
outperformed by other tools, but it still solves the vast majority of formulae. Z3-NoobLER
has worse performance on Woorpje, which seems to be a synthetic benchmark generated
to showcase the strength of a specialized algorithm [24] (this benchmark is the reason
for Z3-NoobLER taking the second place in the whole group). With 0.11 s, Z3-NoobLER
and cvc5 have the lowest average run time.
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Fig. 2: Comparison of Z3-NoobLEr with cvc5, Z3, and the virtual best solver (VBS).
Times are in seconds, axes are logarithmic. Dashed lines represent timeouts (120s).
Colours distinguish groups: e Regex, e Equations, and ¢ Predicates-small.

The winner of Predicates-small is cvcS. In particular, on FullStrint and LeetCode
the difference with Z3-NoobLER is equally 4 instances and on StrSmallRw the difference
is 51 cases. The average time of Z3-NooDLER is also a bit higher, with 0.11 s for Z3-
NoobpLEr compared to the 0.03 s for cvc5. Similarly, Z3-NoobLEr is outperformed by
cvcS,Z3,and Z3str4 on PyEX. Indeed, we have not optimized Z3-NoobLEr for formulae
with large numbers of predicates yet. The results of Z3-NoobLEr could, however, be
further improved by proper axiom saturation for predicates or lazy predicate evaluation.

In Fig. 2 we show scatter plots compar- Table 3: Evaluating solver contribution to
ing running time of Z3-NoobLER with cvc5, a portfolio. Times are in seconds.
Z3, and virtual best solver (VBS; a solver Regex Equations
that takes the best result from all tools other Unsolvedlime) Unsolved Time

VBS* 1 427 19 1,304

than Z3-NoobLERr) on all three benchmark | 5e+ 73 Noooier | 2914 131 6830
groups. The plots show that Z3-NooDLER  VBS'-cvcs 1549 145 1401
. VBS*-Z3 1 430 29 1,579

outperforms the competitors on a vast nUmM-  ygs+ z3se4 1 473 19 1416
1 1 1 _ VBS*- OSTRICH 1 427 21 1,270

ber of instances, in many cases bglng cgmple VBt paeant T 0 1307
mentary to them. To validate this claim, we  cvcs +Z3 + Z3-NoobLer 1 608 2 1471
cveS + 73 278 27,916 303 2,805

also checked how different solvers contribute
to a portfolio. That is, we took the VBS in-
cluding Z3-NooprLer (VBS*) and then checked how well the portfolio works without
each of the solvers. Table 3 shows the results on the Regex and Equations groups (we
omit Predicates-small, where Z3-NoobpLER does not help the portfolio). The results
show that on the two groups, Z3-NoobDLER is the most valuable solver in the portfolio.
We also include results on the small portfolio of Z3 and cvc5 (with and without Z3-
NoobLER) showing that, on the two groups, using just these three solvers is almost as
good as using the whole portfolio of all solvers.

Comparing with the older version Z3-NoopLer?” from [20], we can see that there
is a significant improvement in most benchmarks, most significantly in AutomatArk,
StringFuzz, Kepler, StrSmallRw, and Kaluza. We note that adding more complicated
algorithm selection strategies significantly improved the overall performance of Z3-
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NoOODLER, but, on the other hand, decreased the performance on Kaluza (cf. [20]). Better
results in AutomatArk and StringFuzz stem from the improvements in MATA and from
heuristics tailored for regular expressions handling. Including Nielsen’s algorithm [32]
has the largest impact on the Kepler benchmark. The improvement on predicate-intensive
benchmarks is caused by optimizations in axiom saturation for predicates. The older
version also had multiple bugs that have been fixed in the current version.
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Abstract. We present TaSSAT, a powerful local search SAT solver that
effectively solves hard combinatorial problems. Its unique approach of
transferring clause weights in local minima enhances its efficiency in
solving problem instances. Since it is implemented on top of YalSAT,
TaSSAT benefits from practical techniques such as restart strategies and
thread parallelization. Our implementation includes a parallel version
that shares data structures across threads, leading to a significant re-
duction in memory usage. Our experiments demonstrate that TaSSAT
outperforms similar solvers on a vast set of SAT competition bench-
marks. Notably, with the parallel configuration of TaSSAT, we improve
lower bounds for several van der Waerden numbers.

Keywords: Local Search for SAT - Weight Transfer - Memory Efficiency

1 Introduction

The SAT problem asks if there exists a satisfying truth assignment for a given
formula in propositional logic. SAT is known to be intractable [11], but modern
SAT solvers, particularly conflict-driven clause learning (CDCL) solvers, have
made significant progress in solving large formulas from various application do-
mains. When it comes to combinatorial problems, stochastic local search (SLS)
solvers are often more effective than CDCL. Because SLS and CDCL solvers
have complementary strengths, some SAT solvers like Kissat [7] and CryptoMin-
iSAT [17] combine SLS and CDCL techniques, and SLS methods play a key role
in shaping the capabilities of modern SAT solvers.

SLS solvers explore truth assignments by flipping the truth value of individual
variables until a solution is found or until timeout. The solver generally tries to
flip variables that will minimize the number of falsified clauses. When a solver
determines that no variable flip will lead to an improvement according to some
heuristic or metric, it has reached a local minimum.

To escape local minima, the solver can either make random flips or adjust its
internal state until improvement is possible. Despite being an effective family of
algorithms for escaping local minima, Dynamic Local Search (DLS) has attracted
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limited attention in the recent years. DLS algorithms assign weights to clauses,
search to find a solution by minimizing the total amount of weight held by
falsified clauses, and adjust these weights in local minima as a means of escaping
them.

The tool we present in this paper is ultimately based on DDFW [16] (di-
vide and distribute fixed weights), a DLS algorithm that dynamically transfers
weight from satisfied to falsified clauses along neighborhood relationships in local
minima. DDFW is remarkably effective at solving hard combinatorial problems,
such as matrix multiplication [14], graph coloring [13], edge matching [12], the
coloring of the Pythagorean triples [15], and finding bounds for van der Waer-
den numbers [3]. Notably, DDFW solves satisfiable instances of the Pythagorean
triples problem in under a minute, whereas CDCL solvers take CPU years.

In this paper, we introduce Transfer and Share SAT (TaSSAT), a novel par-
allel SLS solver. TaSSAT implements LiWeT, a simplification of the algorithm
from our recent work [10] modifying DDFW. Our implementation of TaSSAT is
built on top of a leading SLS solver YalSAT [5], and it adds two new features.
First, it incorporates the weight-transfer methods from LiWeT, leading to more
efficient solving. Specifically, a new weight-transfer parameter allows TaSSAT to
shift more clause weight in local minima, enhancing its adaptability during the
search. Second, TaSSAT’s parallel mode shares data structures among threads
to reduce its memory footprint by up to 80%.

Our results show that TaSSAT substantially outperforms YalSAT on an ex-
tensive benchmark set of 5355 anniversary instances from the 2022 SAT Compe-
tition. Further, TaSSAT’s parallel version improves the lower bounds for nine van
der Waerden numbers, surpassing prior work by Ahmed et al. [3] that used 29
algorithms (including DDFW) and extensive parallelization. Our results demon-
strate the clear algorithmic and practical improvements of TaSSAT.

2 Preliminaries

A SAT formula in conjunctive normal form (CNF) is a conjunction of clauses,
each of which is a disjunction of literals (Boolean variables or their negations).
A clause C is satisfied by a truth assignment « if « satisfies at least one of its
literals, and is otherwise falsified. A formula F is satisfied by « when all of its
clauses are. Clauses C' and D are neighbors if they share a common literal.

In DLS, clauses are assigned weights, denoted as W : C — Rx, representing
the cost of leaving a clause falsified. The total weight of the falsified clauses
is the falsified weight. Variables that reduce the falsified weight when flipped
are called weight-reducing variables, while those that do not impact the falsified
weight when flipped are called sideways variables.

DDFW starts with a random initial truth assignment and sets all clause
weights to parameter wy (wo = 8 in the original paper [16]). It then flips weight-
reducing variables until none remain. Upon reaching a local minimum, DDFW
randomly chooses between making a sideways flip (if possible, and with a 15%
chance) or entering the weight transfer phase. During weight transfer, each falsi-
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Fig. 1: PAR-2 scores for parameter searches on initpct, basepct, and currpct.
The plots are oriented to best show the performance trends, so the axes vary.

fied clause receives a fixed weight from a maximum-weight satisfied neighbor Cg
(except for 1% of the time, when a random satisfied clause is chosen instead). The
amount of weight transferred from Cs depends on its weight: if W (Cg) > wo,
then a weight of 2 is taken; otherwise, a weight of 1 is taken.

3 LiWeT: The Linear Weight Transfer Algorithm

TaSSAT takes ideas from DDFW and distills them into an algorithm called
LiWeT (Linear Weight Transfer), which is a simplification of our prior work [10].
LiWeT uses a novel linear weight transfer rule to determine how much weight
to move in local minima. The rule takes three parameters: currpct, a multiplier
on the current clause’s weight; basepct, a multiplier on the initial weight wp;
and initpct, a multiplier for clauses with exactly wy weight. For most clauses
C, the amount of weight that is transferred is currpct - W(Cg) + basepct - wy.
For clauses with W(Cgs) = wp, the amount taken is initpct - wo. As a result,
initpct controls how much weight is initially taken from a clause.

The weight transfer rule offers two key advantages. First, the use of floating-
point parameters rapidly establishes distinct weights for clauses, eliminating the
need for tie-breaking near local minima and, consequently, explicit sideways flips.
Second, the initpct parameter enables LiWeT to release a larger proportion of
the total clause weight, enhancing its adaptability to challenging formulas. In
DDFW and LiWeT, maximum-weight neighbors are selected for each falsified
clause within local minima. Clauses with weights less than wg are unlikely to
contribute more weight, artificially reducing the total amount of weight LiWeT
can move around. The initpct parameter prevents this from happening.

LiWeT differs from DDFW in one other respect: in local minima, it increases
the probability of choosing a randomly satisfied clause, rather than a maximum-
weight neighbor, to 10%. We found that this improves overall performance.

Algorithm 1 shows LiWeT’s pseudocode.
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Algorithm 1: The LiWeT algorithm
Input: CNF formula F, wo, initpct, basepct, currpct
Output: Satisfiability of F'

1 W(C) <« wo forallC € F

2 « <+ random truth assignment on the variables in F

3 for 1 to MAXFLIPS do

4 if « satisfies F' then return “SAT”

5 else
6 if a weight reducing variable is available then
7 flip the variable that reduces the falsified weight the most
8 else
9 foreach clause C' € F falsified under o do
10 Cs + select a satisfied clause
11 if W(Cs) =wo then  w « initpct - wo
12 else w < currpct - W(Cs) + basepct - wo
13 transfer w from Cs to C

14 return “No SAT”

To determine the effect of the three parameters, we conducted parameter
searches across them. We ranged basepct € [0,0.3], currpct € [0,0.2], and
initpct € [0, 1.0] with increments of 0.1, 0.05 and 0.2, respectively. Our searches
were done on a combined 168 instances from the 2019 SAT Race and the 2021
and 2022 SAT competitions, each with a 900-second timeout. We picked these
instances because they were solved by previous versions of LiWeT and DDFW,
and thus were less likely to result in timeout.

Figure 1 shows the PAR-2 scores for two parameter searches, where a lower
score indicates better performance.! The left plot shows that TaSSAT performs
better with higher values of both basepct and currpct when initpct = 1.
The optimal configuration is (basepct, currpct) = (0.175,0.075). The right
plot shows that LiWeT performs best when initpct = 1 for any basepct value
when currpct = 0. This suggests that taking all weight from satisfied clauses
early in the search is crucial for better performance. We ran all subsequent
TaSSAT experiments with (initpct,basepct, currpct) = (1,0.175,0.075).

We conclude this section by outlining the distinctions between the algorithm
presented in [10] and LiWeT, underscoring the simplifications introduced in the
latter compared to the former. Compared to the algorithm from our previous
work [10], LiWeT has two fewer parameters. Previously, the algorithm used two
pairs of (a, c) parameters to transfer a * W (C's) 4 ¢ weight from satisfied clauses
Cs in local minima. One pair of (a,¢) values was used when W(Cgs) > wy, and
the other for when W (Cgs) = wp. In LiWeT, we replaced the second pair with
initpct. Then based on the observation in the right plot of Figure 1, we set

! The PAR-2 score is defined as the average solving time, with twice the timeout as
the time for unsolved instances.
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initpct to 1 for performance reasons. This adjustment eliminates initpct from
line 11 of Algorithm 1, transforming it into a two-parameter algorithm.

Another simplification was the the removal of sideways variable flips from
LiWeT. DDFW and previous versions of our algorithm would flip sideways vari-
ables, but we found that they rarely occured with floating-point weights, and
refusing to flip them didn’t affect performance. Notably, these simplifications
enhance the algorithmic power of LiWeT over the previous algorithm, which we
demonstrate in section 5.

4 Implementation of TaSSAT and PaSSAT

We implemented TaSSAT on top of YalSAT [6], a state-of-the-art SLS solver that
implements the ProbSAT algorithm [4]. As a result, our implementation benefits
from the practical techniques present in YalSAT, including restart techniques.
Our TaSSAT implementation? includes a parallel version, called PaSSAT, that
improves the memory management of the parallel version of YalSAT.

Because LiWeT is computationally expensive when there are a higher number
of falsified clauses, TaSSAT has an optional mode to run ProbSAT until the
number of falsified clauses drops beneath a dynamically computed threshold
based on the formula’s size, at which point it resumes LiWeT. By default, we
ran TaSSAT with this option disabled in our experiments, but we enabled it for
the van der Waerden experiments.

We also improve on the parallel features in YalSAT. The main issue in the
parallel version of YalSAT was that the formula data structures were not shared.
As aresult, each thread had to independently parse, store, and simplify the input
formula, resulting in redundant computation and a bloated memory footprint.
We solved this problem in PaSSAT by nominating a primary thread to parse and
simplify the formula and to allocate the core data structures. Once the primary
thread finishes, it hands solving off to the secondary threads, which can then
jointly refer to the shared data structures.

5 Evaluation

We now present our experimental results® of TaSSAT against similar algorithms.
Our baseline solvers are the original YalSAT (YalSAT-Prob); our DDFW-inspired,
YalSAT-based solver from previous work [10] (YalSAT-Lin); a YalSAT-based im-
plementation of DDFW (YalSAT-DDFW); and the UBCSAT implementation of
DDFW (UBCSAT-DDFW). We include two DDFW implementations to check
that the YalSAT version performs similarly to the UBCSAT one, despite being
implemented with a different base solver.

We ran these four solvers on two benchmark sets: a set of 5355 instances
from the 2022 SAT Competition’s anniversary track (the anni set) [1] cover-
ing instances from the previous 20 years of competition, and a set of nine van

2 TaSSAT source code is available at https://github.com/solimul/tassat.
3 Details are available at https://github.com/solimul/TACAS-24-solve_details.
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Fig. 2: Performance profiles for solver modifications on the anni benchmark set
show that TaSSAT significantly outperforms the others. Since all solvers can
quickly solve 600 instances, we start the y-axis at 600 to improve readability.

der Waerden number instances.? For reproducibility, we set all randomization
seeds to 0. For the anni instances, we ran TaSSAT and our baseline solvers in
the StarExec Cluster [2] with a 5000-second timeout. For the van der Waeren
instances, we ran the parallel version of TaSSAT with and without the ProbSAT-
LiWeT option with a 48-hour timeout on the Bridges-2 cluster [8] with AMD
EPYC 7742 CPUs (128 cores, 512GB RAM).

Figure 2 illustrates our results for the anni dataset. TaSSAT performed the
best by solving 1040 problem instances, surpassing YalSAT-Lin, UBCSAT-DDFW,
YalSAT-DDFW, and YalSAT-Prob with 969, 874, 859, and 857 solved instances,
respectively. In particular, TaSSAT solved 71 more instances than YalSAT-Lin,
the solver from our previous work, showing that our algorithmic changes are,
in fact, improvements. The slight difference in solve counts between UBCSAT-
DDFW and YalSAT-DDFW (874 vs. 859) can be attributed to random noise.

Notably, TaSSAT exclusively solved 12 instances that no 2022 SAT Compe-
tition solver could. However, YalSAT-Prob, YalSAT-Lin, UBCSAT-DDFW, and
YalSAT-DDFW solved 73, 42, 40, and 38 anni instances, respectively, that TaS-
SAT could not.

We also present new lower bounds for van der Waerden numbers by running
PaSSAT. The van der Waerden number w(2; 3, t) is the smallest natural number n

4 Available at https://github.com/solimul/vdw9.
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Table 1: Lower bounds for van der Waerden numbers w(2; 3, t).

t 31 32 33 34 35 36 37 38 39

Ahmed et al. [3] 930 1006 1063 1143 1204 1257 1338 1378 1418
Our work 953 1011 1071 1145 1208 1260 1341 1380 1419

where for any partition of {1,...,n} into Py and P, either P, contains a 3-
term arithmetic progression or P; contains a t-term arithmetic progression. In
Table 1, we present in the top row previously-known lower bounds for w(2; 3, t)
for 31 <t < 39.

The best lower bounds are obtained when PaSSAT leverages TaSSAT with the
activation of the ProbSAT-LiWeT toggle and integrates YalSAT-style restarts.
This configuration solves all 9 vdw benchmarks, pushing the lower bounds of
these 9 numbers to values that are highlighted in the bottom row of Table 1. In
contrast, using the default TaSSAT configuration, PaSSAT solves 7 vdw bench-
marks, establishing same lower bounds for all the numbers shown in the bottom
row of Table 1, except for w(2; 3, 32) and w(2; 3, 37). Hence, this version enhances
the lower bounds for w(2;3,32) and w(2;3,37) to 1010 and 1340, respectively,
just 1 short of their best-evaluated lower bounds. The performance of TaSSAT-
Prob-LiWeT compared to TaSSAT-LiWeT is evident in their respective average
PAR-2 scores, with values of 31,943 and 91,744.

Putting these results into perspective, Ahmed et al. [3] were unable to solve
any of these vdw instances, despite employing 29 algorithms and extensive par-
allelization. Notably, the best result attained by Ahmed et al. using only SLS
methods for w(2;3,31) was 919. We improved this bound to 953 These results
emphasize the unique algorithmic strengths of our solver.

In addition to improved solving, PaSSAT achieves significant memory re-
duction compared to our previous parallel solver [10]. Across the seven vdw
benchmarks solved by both PaSSAT and the parallel solver, the average memory
reduction is substantial, decreasing from 3.2 GB to 686.17 MB, a nearly 80%
reduction. The reduction held even for the largest problem instance (¢t = 39),
where the memory footprint decreased by nearly 80%, from 4.42 GB to 966 MB.

Code and Data Availability Statement

The code and data that support the contributions of this work are openly avail-
able in the “Artifact for TaSSAT: A Stochastic Local Search Solver for SAT”
at https://zenodo.org/records/10042124 [9]. The authors confirm that the
data supporting the findings of this study are available within the article and
the artifact.
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Abstract. State-of-the-art model-checking algorithms like IC3/PDR are
based on uni-directional modular SAT solving for finding and/or blocking
counterexamples. Modular SAT-solvers divide a SAT-query into multiple
sub-queries, each solved by a separate SAT-solver (called a module), and
propagate information (lemmas, proof obligations, blocked clauses, etc.)
between modules. While modular solving is key to IC3/PDR, it is obvi-
ously not as effective as monolithic solving, especially when individual
sub-queries are harder to solve than the combined query. This is par-
tially addressed in SAT modulo SAT (SMS) by propagating unit literals
back and forth between the modules and using information from one
module to simplify the sub-query in another module as soon as possible
(i.e., before the satisfiability of any sub-query is established). However,
bi-directionality of SMS is limited because of the strict order between de-
cisions and propagation — only one module is allowed to make decisions,
until its sub-query is SAT. In this paper, we propose a generalization
of SMS, called SPECSMS, that speculates decisions between modules.
This makes it bi-directional — decisions are made in multiple modules,
and learned clauses are exchanged in both directions. We further extend
DRUP proofs and interpolation, these are useful in model checking, to
SPECSMS. We have implemented SPECSMS in Z3 and empirically vali-
date it on a series of benchmarks that are provably hard for SMS.

1 Introduction

IC3/PDR [3] is an efficient SAT-based Model Checking algorithm. Among many
other innovations in IC3/PDR is the concept of a modular SAT-solver that di-
vides a formula into multiple frames and each frame is solved by an individual
SAT solver. The solvers communicate by exchanging proof obligations (i.e., sat-
isfying assignments) and lemmas (i.e., learned clauses).

While modular reasoning in IC3/PDR is very efficient for a Model Checker,
it is not as efficient as a classical monolithic SAT-solver. This is not surprising
since modularity restricts the solver to colorable refutations [11], which are, in the
worst case, exponentially bigger than unrestricted refutations. On the positive
side, IC3/PDR’s modular SAT-solving makes interpolation trivial, and enables
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generalizations of proof obligations and inductive generalization of lemmas —
both are key to the success of IC3/PDR.

This motivates the study of modular SAT-solving, initiated by SMS [1]. Our
strategic vision is that our study will contribute to improvements in IC3/PDR.
However, in this paper, we focus on modular SAT-solving in isolation.

In modular SAT-solving, multiple solvers interact to check satisfiability of a
partitioned CNF formula, where each part of the formula is solved by one of the
solvers. In this paper, for simplicity, we consider the case of two solvers (Ss, Sm)
checking satisfiability of a formula pair (@, Pp,). S is a main solver and S is
a secondary solver. In the notation, the solvers are written right-to-left to align
with IC3/PDR, where the main solver is used for frame 1 and the secondary
solver is used for frame 0.

When viewed as a modular SAT-solver, IC3/PDR is uni-directional. First,
Sm finds a satisfying assignment ¢ to @, and only then, S5 extends o to an
assignment for @s. Learned clauses, called lemmas in IC3/PDR, are only shared
(or copied) from the secondary solver Ss to the main solver Sp,.

SAT Modulo SAT (SMS) [1] is a modular SAT-solver that extends IC3/PDR
by allowing inter-modular unit propagation and conflict analysis: whenever an
interface literal is placed on a trail of any solver, it is shared with the other solver
and both solvers run unit propagation, exchanging unit literals. This makes mod-
ular SAT-solving in SMS bi-directional as information flows in both directions
between the solvers. Bi-directional reasoning can simplify proofs, but it signifi-
cantly complicates conflict analysis. To manage conflict analysis, SMS does not
allow the secondary solver Ss to make any decisions before the main solver S, is
able to find a complete assignment to its clauses. As a result, learned clauses are
either local to each solver, or flow only from Sg to Sp,, restricting the structure
of refutations similarly to IC3/PDR.

Both IC3/PDR and SMS require Sy, to find a complete satisfying assignment
to @y, before the solving is continued in Ss. This is problematic since @, might
be hard to satisfy, causing them to get stuck in @,,, even if considering both
formulas together quickly reveals the (un)satisfiability of (®s, p,).

In this paper, we introduce SPECSMS — a modular SAT-solver that em-
ploys a truly bi-directional reasoning. SPECSMS builds on SMS, while facilitat-
ing deeper communication between the modules by (1) allowing learnt clauses to
flow in both directions, and (2) letting the two solvers interleave their decisions.
The key challenge is in the adaptation of conflict analysis to properly handle the
case of a conflict that depends on decisions over local variables of both solvers.
Such a conflict cannot be explained to either one of the solvers using only in-
terface clauses (i.e., clauses over interface variables). It may, therefore, require
backtracking the search without learning any conflict clauses. To address this
challenge, SPECSMS uses speculation, which tames decisions of the secondary
solver that are interleaved with decisions of the main solver. If the secondary
solver satisfies all of its clauses during speculation, a wvalidation phase is em-
ployed, where the main solver attempts to extend the assignment to satisfy its
unassigned clauses. If speculation leads to a conflict which depends on local deci-
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sions of both solvers, refinement is employed to resolve the conflict. Refinement
ensures progress even if no conflict clause can be learnt. With these ingredients,
we show that SPECSMS is sound and complete (i.e., always terminates).

To certify SPECSMS’s result when it determines that a formula is unsatisfi-
able, we extract a modular clausal proof from its execution. To this end, we ex-
tend DRUP proofs [12] to account for modular reasoning, and devise a procedure
for trimming modular proofs. Such proofs are applicable both to SPECSMS and
to SMS. Finally, we propose an interpolation algorithm that extracts an inter-
polant [4] from a modular proof. Since clauses are propagated between the solvers
in both directions, the extracted interpolants have the shape A,(C; = cls;),
where C; are conjunctions of clauses and each cls; is a clause.

Original SMS is implemented on top of MiniSAT. For this paper, we im-
plemented both SMS and SPECSMS in Z3 [5], using the extendable SAT-solver
interface of Z3. Thanks to its bi-directional reasoning, SPECSMS is able to ef-
ficiently solve both sat and unsat formulas that are provably hard for existing
modular SAT-solvers, provided that speculation is performed at the right time.
We describe a simple heuristic to decide when to speculate.

In summary, we make the following contributions: (i) the SPECSMS algo-
rithm that leverages bi-directional modular reasoning (Sec. 3); (ii) modular
DRUP proofs for SPECSMS (Sec. 4.1); (iii) proof-based interpolation algorithm;
(iv) heuristics to guide speculation (Sec. 5); and (v) implementation and valida-
tion (Sec. 6).

2 DMotivating examples

In this section, we discuss two examples in which both IC3/PDR-style uni-
directional reasoning and SMS-style shallow bi-directional reasoning are ineffec-
tive. The examples illustrate why existing modular reasoning gets stuck. To bet-
ter convey our intuition, we present our problems at word level using bit-vector
variables directly, without explicitly converting them to propositional variables.
Ezample 1. Consider the following modular sat query: (¢, psua-1), where @, £
(in = inq) V (in = ing), in is a 512-bit vector, iny, ing are 512-bit values,
wsHA-1 = (SHA-1 40 (in) = SHA-1,,,), SHA-1,;,.(in) is a circuit that computes
SHA-1 of in, and SHA-1,,, is the 20 byte SHA-1 message digest of in;.

Checking the satisfiability of ¢;, A @sua.1 is easy because it contains both
the output and the input of the SHA-1 circuit. However, existing modular SAT-
solvers attempt to solve the problem starting by finding a complete satisfying
assignment to @spga.1. This is essentially the problem of inverting the SHA-1
function, which is known to be very hard for a SAT-solver. The improvements in
SMS allow unit propagation between the two modules. However, this does not
help since there are no unit clauses in @;,.

On the other hand, SPECSMS proceeds as follows: (1) when checking satisfia-
bility of psna-1, it decides to speculate, (2) it starts checking satisfiability of ¢y,
branches on variables in, finds an assignment ¢ to in and unit propagates o to
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wsua-1, (3) if there is a conflict in pgpa_1, it learns the conflict clause in # ing,
and (4) it terminates with a satisfying assignment in = in;. Speculation in step
(1) is what differentiates SPECSMS from IC3/PDR and SMS. The specifics of
when exactly SPECSMS speculates is guided by a heuristic that is explained in
Sec. 5.

Ezxample 2. Speculation is desirable for unsatisfiable formulas as well. Consider
the modular sat query (@i, ), where o, =2 (a < 0= z)A(a >0= z)A
PHP}, and o~ 2 (b < 0 = —2)A (b > 0 = —2) A PHP%. Here, a and
b are 32-wide bitvectors and local to the respective modules. PH P35 encodes
the problem of fitting 32 pigeons into 31 holes and PH P4, and PH PZ, denote
a partitioning of PH P35 into 2 problems such that both formulas contain all
variables. The modular problem (., ¢_) is unsatisfiable, z and PH P, being
two possible interpolants. IC3/PDR, and SMS only find the second interpolant.
This is because, all satisfying assignments to ¢_ immediately produce a conflict
in PH P34, part of ¢, without having to make any decisions. However, learning
an interpolant containing x requires searching (i.e., deciding) in both ¢ and
@_. SPECSMS solves this problem by speculating right after deciding on all b
variables. During speculation, the secondary solver hits a conflict on = once it
tries to find an assignment to a variables. Note here that speculating after finding
assignments to b variables and before finding an assignment to PH P2, is crucial
for SPECSMS to find the small interpolant.

These examples highlight the need to speculate while doing modular rea-
soning. Even though speculation by itself is quite powerful, to make SPECSMS
effective in practice, we need good heuristics to decide when to enter speculation.
We discuss some simple heuristics in Sec. 5.

3 Speculative SAT Modulo SAT

This section presents SPECSMS — a modular bi-directional SAT algorithm. For
simplicity, we restrict our attention to the case of two modules. However, the
algorithm easily generalizes to any sequence of modules.

3.1 Sat Modulo Sat

We assume that the reader has some familiarity with internals of a MiniSAT-
like SAT solver [6] and with SMS [1]. We give a brief background on SMS,
highlighting some of the key aspects. SMS decides satisfiability of a partitioned
CNF formula (P, Pn,) with a set of shared interface variables I. It uses two
modules (Ss, Sy), where Sy, is a main module used to solve @, and Ss is a
secondary module to solve ®5. Each module is a SAT solver (with a slightly
extended interface, as described in this section). We refer to them as modules
or solvers, interchangeably. Each solver has its own clause database (initialized
with @; for i € {m,s}), and a trail of literals, just as a regular SAT solver. The
solvers keep their decision levels in sync. Whenever a decision is made in one
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solver, the decision level of the other solver is incremented as well (adding a null
literal to its trail if necessary). Whenever one solver back-jumps to level i, the
other solver back-jumps to level i as well. Assignments to interface variables are
shared between the solvers: whenever such a literal is added to the trail of one
solver (either as a decision or due to propagation), it is also added to the trail
of the other solver. SMS requires that Sg does not make any decisions, until Sy,
finds a satisfying assignment to its clauses.

Inter-modular propagation and conflict analysis The two key features of SMS
are inter-modular unit propagation (called PROPAGATEALL in [1]) and the cor-
responding inter-modular conflict analysis. In PROPAGATEALL, whenever an in-
terface literal is added to the trail of one solver, it is added to the trail of the
other, and both solvers run unit propagation. Whenever a unit literal £ is copied
from the trail of one solver to the other, the reason for £ in the destination solver
is marked using a marker ext. This indicates that the justification for the unit is
external to the destination solver®. Propagation continues until either there are
no more units to propagate or one of the solvers hits a conflict.

Conflict analysis in SMS is extended to account for units with no reason
clauses. If such a literal ¢ is used in conflict analysis, its reason is obtained by
using AnalyzeFinal(¢) on the other solver to compute a clause (s = £) over the
interface literals. This clause is copied to the requesting solver and is used as the
missing reason. Multiple such clauses can be copied (or learned) during analysis
of a single conflict clause — one clause for each literal in the conflict that is
assigned by the other solver.

In SMS, it is crucial that AnalyzeFinal(¢) always succeeds to generate a reason
clause over the interface variables. This is ensured by only calling AnalyzeFinal(?)
in the Ss solver on literals that were added to the trail when S5 was not yet
making decisions. This can happen in one of two scenarios: either Sy, hits a
conflict due to literals propagated from Ss, in which case AnalyzeFinal is invoked
in Ss on each literal marked ext in S, that is involved in the conflict resolution
to obtain its reason; or S hits a conflict during unit propagation, in which case
it invokes AnalyzeFinal to obtain a conflict clause over the interface variables
that blocks the partial assignment of S;,. In both cases, new reason clauses are
always copied from S; to Sm. We refer the reader to [1] for the pseudo-code of
the above inter-modular procedures for details.

3.2 Speculative Sat Modulo Sat

SPECSMS extends SMS [1] by a combination of speculation, refinement, and vali-
dation. During the search in the main solver Sy,, SPECSMS non-deterministically
speculates by allowing the secondary solver Ss to extend the current partial as-
signment of @, to a satisfying assignment of &s. If Ss is unsuccessful (i.e., hits
a conflict), and the conflict depends on a combination of a local decision of Sy,

3 This is similar to theory propagation in SMT solvers.
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SMS and SPECSMS only SPECSMS

Fig. 1: State transitions of SPECSMS. A state (P, D°) means that the secondary
solver Ss is in propagate mode and the main solver Sy, is in decide mode. Each
edge is guarded with a condition. The condition Sy, : SAT means that S, found
a full satisfying assignment to @,,. The condition Sy, : ¢ Q <j means that Sy, hit
a conflict at a decision level below j. The four states in yellow corresponds to
SMS; two states in green are unique to SPECSMS.

with some decision of Ss, then the search reverts to S, and its partial assign-
ment is refined by forcing Sy, to decide on an interface literal from the conflict.
On the other hand, if Ss is successful, solving switches to the main solver Sy,
that validates the current partial assignment by extending it to all of its clauses.
This either succeeds (meaning, (®s, @) is sat), or fails and another refinement
is initiated. Note that the two sub-cases where S is unsuccessful but the reason
for the conflict is either local to S5 or local to Sy, are handled as in SMS.

Search modes SPECSMS controls the behavior of the solvers and their interaction
through search modes. Each solver can be in one of the following search modes:
Decide, Propagate, and Finished. In Decide, written D?, the solver treats all
decisions below level i as assumptions and is allowed to both make decisions and
do unit propagation. In Propagate, written P, the solver makes no decisions, but
does unit propagation whenever new literals are added to its trail. In Finished,
written F, the clause database of the solver is satisfied; the solver neither makes
decisions nor propagates unit literals.

The pair of search modes of both modules is called the state of SPECSMS,
where we add a unique state called unsat for the case when the combination
of the modules is known to be unsatisfiable. The possible states and transitions
of SPECSMS are shown in Fig. 1. States unsat and (F, F') are two final states,
corresponding to unsat and sat, respectively. In all other states, exactly one of
the solvers is in a state D?. We refer to this solver as active. The part of the
transition system highlighted in yellow correspond to SMS, and the green part
includes the states and transitions that are unique to SPECSMS.
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Normal ezecution with bi-directional propagation SPECSMS starts in the state
(P, D°), with the main solver being active. In this state, it can proceed like SMS
by staying in the yellow region of Fig. 1. We call this normal execution with
bi-directional propagation, since (only) unit propagation goes between solvers.

Speculation What sets SPECSMS apart is speculation: at any non-deterministically
chosen decision level i, SPECSMS can pause deciding on the main solver and ac-
tivate the secondary solver (i.e., transition to state (D, P)). During speculation,
only the secondary solver makes decisions. Since the main solver does not have
a full satisfying assignment to its clauses, the secondary solver propagates as-
signments to the main solver and vice-versa.

Speculation terminates when the secondary solver Ss either: (1) hits a conflict
that cannot be resolved by inter-modular conflict analysis; (2) hits a conflict
below decision level i; or (3) finds a satisfying assignment to &s.

Case (1) is most interesting, and is what makes SPECSMS differ from SMS.
Note that a conflict clause is not resolved by inter-modular conflict analysis only
if it depends on an external literal on the trail of Sg that cannot be explained
by an interface clause from Sy,. This is possible when both S,, and Ss have
partial assignments during speculation. So the conflict might depend on the
local decisions of Sp,. This cannot be communicated to Ss using only interface
variables.

Refinement In SPECSMS, this is handled by modifying the REASON method in
the solvers to fail (i.e., return ext) whenever AnalyzeFinal returns a non-interface
clause. Additionally, the literal on which AnalyzeFinal failed is recorded in a
global variable refineLit. This is shown in Alg. 1. The inter-modular conflict
analysis is modified to exit early whenever REASON fails to produce a justifi-
cation. At this point, SPECSMS exits speculation, returns to the initial state
(P, D"), both solvers back-jump to decision level i at which speculation was
initiated, and Sy, is forced to decide on refineLsit.

We call this transition a refinement because the partial assignment of the
main solver Sy, (which we view as an abstraction) is updated (a.k.a., refined)
based on the information that was not available to it (namely, a conflict with a
set of decisions in the secondary solver Ss). Since refineLit was not decided on
in S, prior to speculation, deciding on it is a new decision that ensures progress
in Sy,. The next speculation is possible only under strictly more decisions in Sy,
than before, or when Sy, back-jumps and flips an earlier decision.

We illustrate the refinement process on a simple example:

Ezample 3. Consider the query (®s, P,) with:

¢5(7’7]5k7z) Qm(a7z)j7k).
zZVi (3) avivy (1)
iViVk (4) jVEk (2)

First, Sy, decides a (at level 1), which causes no propagations. Then, SPECSMS
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enters speculative mode, transitions to (D', P) and starts making decisions in
Ss. Ss decides z and calls PROPAGATEALL. Afterwards, the trails for S,, and Ss
are as follows:

|Sm|a @1 [null @2[i (ext)|j (1) [k (2) |
[Ss[null @ 1z @2 [i (3) [j (ext)[k (ext)]

where 2 @ i denotes that literal = is decided at level i, and z (r) denotes that
literal z is propagated using a reason clause r, or due to the other solver (if
r = ext). A conflict is hit in S in clause (4). Inter-modular conflict analysis
begins. Ss first asks for the reason for k, which is clause (2) in Sg,. This clause is
copied to Ss. Note that unlike SMS, clauses can move from Sy, to Ss. The new
conflict to be analyzed is (i V j V j). Now the reason for j is asked of Sy,. In this
case, Sy, cannot produce a clause over shared variables to justify j, so conflict
analysis fails with refineLit = j. This causes SPECSMS to exit speculation mode
and move to state (P, D°) and S, must decide variable j before speculating
again. In this case either decision on j results in (@, @) being sat. a

In addition to refining when conflict analysis fails, SPECSMS also has the
ability to refine non-deterministically. That is, at any point during speculation,
Ss can decide to stop speculation, back-jump to the decision level from which it
started speculation, and choose any interface literal as refineLit.

Case (2) is similar to what happens in SMS when a conflict is detected in S.
The reason for the conflict is below level ¢ which is below the level of any decision
of Ss. Since decision levels below i are treated as assumptions in Ss, calling
AnalyzeFinal in Ss returns an interface clause ¢ that blocks the current assignment
in Sy,. The clause ¢ is added to Sp,. The solvers back-jump to the smallest
decision level j that makes ¢ an asserting clause in Sy,. Finally, SPECSMS moves
to (P, DY).

Validation Case (3), like Case (1), is unique to SPECSMS. While all clauses of
Ss are satisfied, the current assignment might not satisfy all clauses of S;,. Thus,
SPECSMS enters validation by switching to the configuration (F, DM), where M
is the current decision level. Thus, S, becomes active and starts deciding and
propagating. This continues, until one of two things happen: (3a) Sy, extends
the assignment to satisfy all of its clauses, or (3b) a conflict that cannot be re-
solved with inter-modular conflict analysis is found. In the case (3a), SPECSMS
transitions to (F, F) and declares that (P, Ps) is sat. The case (3b) is han-
dled exactly the same as Case (1) — the literal on the trail without a reason is
stored in refineLit, SPECSMS moves to (P, D°), backjumps to the level in which
speculation was started, and Sy, is forced to decide on refineLit.

Theorem 1. SPECSMS terminates. If it reaches the state (F, F'), then ®s A Py,
is satisfiable and the join of the trails of (Ss,Sm) is a satisfying assignment. If
it reaches the state unsat, @s A P, is unsatisfiable.
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Algorithm 1 The REASON method in modular SAT solvers inside SPECSMS

1: function REASON(lit)
if reason|lit] = ext then
¢ < other.AnalyzeFinal(lit)
if vec:v gl then
refineLit < lit
return ext
ADDCLAUSE(c)
reason(lit] < ¢

© ® NP g wN

return reason|lit]

4 Validation and interpolation

In this section, we augment SPECSMS with an interpolation procedure. To this
end, we first introduce modular DRUP proofs, which are generated from SPEC-
SMS in a natural way. We then present an algorithm for extracting an inter-
polant from a modular trimmed DRUP proof in the spirit of [11].

4.1 DRUP proofs for modular SAT

Modular DRUP proofs — a form of clausal proofs [9] — extend (monolithic) DRUP
proofs [12]. A DRUP proof [12] is a sequences of steps, where each step either
asserts a clause, deletes a clause, or adds a new Reverse Unit Propagation (RUP)
clause. Given a set of clauses I', a clause cls is an RUP for I', written I" Fyp cls, if
cls follows from I' by unit propagation [8]. For a DRUP proof 7, let ASSERTED()
denote all clauses of the asserted commands in 7, then 7 shows that all RUP
clauses of 7 follow from ASSERTED(w). If 7 contains a L clause, then 7 certifies
ASSERTED(7) is unsat.

A Modular DRUP proof is a sequence of clause addition and deletion steps,
annotated with indices idz (m or s). Intuitively, steps with the same index must
be validated together (within the same module idz), and steps with different
indices may be checked independently. The steps are:

1. (asserted, idzx, cls) denotes that cls is asserted in idz,

2. (rup, idz, cls) denotes adding RUP clause cls to idz,

3. (cp(sre), dst, cls) denotes copying a clause cls from src to dst, and
4. (del, idz, cls) denotes removing clause cls from idx.

We denote the prefix of length k of a sequence of steps m by 7*. Given
a sequence of steps 7 and a formula index idz, we use act_clauses(mw,idz) to
denote the set of active clauses with index idz. Formally,

{cls | 3¢; € 7
(¢j = (t,4dz, cls) A (t = asserted Vt =rup Vt = cp(-)))
A e €k > jAc, = (del, idz, cls)}
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seq step to clause

1 asserted m —-s1 = lby
2 asserted m —81 = —lby
3 asserted s (s1Alar) = s2
4 asserted s (s1 A —lar) = s2
5 asserted m (s2 A lb2) = s3
6 asserted m (s2 A —lb2) = s3
7 asserted s (s3 Alaz) = sa
8 asserted s (s3 A -laz) = s4
9 asserted m s4 = lbs

10 asserted m s4 = —lbs

11 rup m S1

12 rup m -84

13 rup m So = 83

14 cp(m) s S2 = 83

15 rup S S3 = S4

16 rup S S1 = S4
17cp(s) m S1= 84

18 rup m 1

Fig.2: An example of a modular DRUP proof. Clauses are written in human-
readable form as implications, instead of in the DIMACS format.

A sequence of steps ™ = c1, ..., ¢, is a valid modular DRUP proof iff for each
c; €

L. if ¢; = (rup, idz, cls) then act_clauses(n’, idx) Fyp cls,
2. if ¢; = (ep(idz), -, cls) then act_clauses(r*, idz) Fyp cls, and
3. C|x is either (rup,m, L) or (cp(s), m, L).

Let ASSERTED(, idx) be the set of all asserted clauses in 7w with index idz.

Theorem 2. If w is a valid modular DRUP proof, then ASSERTED(m,s) A
ASSERTED(7, m) is unsatisfiable.

Modular DRUP proofs may be validated with either one or two solvers. To
validate with one solver we convert the modular proof into a monolithic one
(i-e., where the steps are asserted, rup, and del). Let MODDRUP2DRUP be a
procedure that given a modular DRUP proof =, returns a DRUP proof 7’ that
is obtained from 7 by (a) removing idz from all the steps; (b) removing all cp
steps; (c¢) removing all del steps. Note that del steps are removed for simplicity,
otherwise it is necessary to account for deletion of copied and non-copied clauses
separately.

Lemma 1. If 7 is a valid modular DRUP proof then 7’ = MODDRUP2DRUP ()
is a valid DRUP proof.

Modular validation is done with two monolithic solvers working in lock step:
(asserted, cls, idz) steps are added to the idz solver; (rup, idz, cls) steps are val-
idated locally in solver idx using all active clauses (asserted, copied, and rup);
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and for (cp(src), dst, cls) steps, cls is added to dst but not validated in it, and
cls is checked to exist in the src solver.

From now on, we consider only valid proofs. We say that a (valid) modular
DRUP proof 7 is a proof of unsatisfiability of &5 A @, if ASSERTED(7,s) C P
and ASSERTED(w, m) C @, (inclusion here refers to the sets of clauses).

SPECSMS produces modular DRUP proofs by logging the clauses that are
learnt, deleted, and copied between solvers. Note that in SMS clauses may only be
copied from Sg to S, but in SPECSMS they might be copied in both directions.

Theorem 3. Let &5 and P, be two Boolean formulas s.t. s A P, = L. SPEC-
SMS produces a valid modular DRUP proof for unsatisfiability of @5 A Pp,.

Algorithm 2 Trimming a modular DRUP
proof

Input: Solver instances Ss, Sm with the empty
clause on the trail, and a modular clausal proof

Algorithm 3 Interpolating a mod-
ular DRUP proof.

Input: Propositional formulas ($o, P1)
Input: A modular trimmed DRUP

T =2Cly...sCn. proof ™ = c1,...,cn of unsatisfiability
Output: A proof 7’ s.t. all steps are core. of g A P1
=0 Output: An interpolant itp s.t. g =
2: My, Mm <+ {L1},0 > Relevant clauses 4tp and itp A P1 = L
3: for i =n to 0 do 1: Ss, Sm  SAT_SOLVER()
4:  match ¢; with (type, idz, cls) 2 ditp — T
5. if cls € M,4, then continue 3. fori=0 to n do
6: if type = del then 4: match ¢;
7: Sidz-Revive(cls) 5: with (asserted, s, cls):
8  continue 6: sup(cls) + T
9: 7' .append(c;) 7. with (cp(m),s, cls):
10:  if type = rup then 8: sup(cls) « cls
11: Sidz.CHK,RUP(ClS, M“,{L) 9: with (rup, s, cls):

12:  else if type = cp(src) then

10: M<+0
13:  Side.Delete(cls) 11: Ss.CHK_RUP(cls, M)
14: ) Mire.add(cls) 12: sup(cls) < {sup(c) | c € M}
15 .rev(.arse() 13:  with (cp(s), m, cls):
16: function SOLVER::CHK_RUP(cls, M) 14 itp  itp A (sup(cls) = cls)

17:  if IsOnTrail(cls) then

18: UndoTrail(cls) 15: Se;.iaz-add(cls)

19:  Delete(cls)

20:  SaveTrail()

21:  Enqueue(—cls)

22: 7 < Propagate()

23:  ConflictAnalysis(r, M) > Updates M with
conflict clauses

24:  RestoreTrail()

Trimming modular DRUP proofs. A step in a modular DRUP proof 7 is core if
removing it invalidates 7. Under this definition, del steps are never core since
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removing them does not affect validation. Alg. 2 shows an algorithm to trim
modular DRUP proofs based on backward validation. The input are two modular
solvers S, and S in a final conflicting state, and a valid modular DRUP proof
T =c¢ci,...,Ccn. The output is a trimmed proof 7’ s.t. all steps of #’ are core.

We assume that the reader is familiar with MiniSAT [6] and use the following
solver methods: Propagate, exhaustively applies unit propagation (UP) rule by
resolving all unit clauses; ConflictAnalysis analyzes the most recent conflict and
marks which clauses are involved in the conflict; IsOnTrail checks whether a clause
is an antecedent of a literal on the trail; Enqueue enqueues one or more literals
on the trail; IsDeleted, Delete, Revive check whether a clause is deleted, delete a
clause, and add a previously deleted clause, respectively; SaveTrail, RestoreTrail
save and restore the state of the trail.

Alg. 2 processes the steps of the proof backwards, rolling back the states
of the solvers. M;,, marks which clauses were relevant to derive clauses in the
current suffix of the proof. While the proof is constructed through inter-modular
reasoning, the trimming algorithm processes each of the steps in the proof com-
pletely locally. During the backward construction of the trimmed proof, steps
that include unmarked clauses are ignored (and, in particular, not added to the
proof). For each (relevant) rup step, function CHK_RUP, using ConflictAnalysis,
adds clauses to M. del steps are never added to the trimmed proof, but the clause
is revived from the solver. For cp steps, if the clause was marked, it is marked as
used for the solver it was copied from and the step is added to the proof. Finally,
asserted clauses that were marked are added to the trimmed proof. Note that,
as in [11], proofs may be trimmed in different ways, depending on the strategy
for ConflictAnalysis.

The following theorem states that trimming preserves validity of the proof:

Theorem 4. Let &5 and Py, be two formulas such that Ps APy = L. If 7w is a
modular DRUP proof produced by solvers Ss and @, for @s APy, then a trimmed
proof ™ by Alg. 2 is also a valid modular DRUP proof for &s N\ @p,.

Fig. 2 shows a trimmed proof after SPECSMS is executed on (¢, 1) such
that g £ ((81/\l(11) = 32))/\((31/\ﬁla1) = 52)/\((33/\1(12) = 34)/\((53/\ﬁla2) =
84) and ’(/)1 £ (—\81 = lbl) AN (—\51 = _‘lbl) A ((52 A\ lbg) = 53) N ((82 A —\lbg) =
83) A (54 = lbg) A (54 = —|lb3))

4.2 Interpolation

Given a modular DRUP proof 7 of unsatisfiability of @5 A @,,, we give an algo-
rithm to compute an interpolant of @5 A @,,. For simplicity of the presentation,
we assume that 7 has no deletion steps; this is the case in trimmed proofs, but
we can also adapt the interpolation algorithm to handle deletions by keeping
track of active clauses.

Our interpolation algorithm relies only on the clauses copied between the
modules. Notice that whenever a clause is copied from module i to module j, it
is implied by all the clauses in @; together with all the clauses that have been
copied from module j. We refer to clauses copied from S, to Ss as backward
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clauses and clauses copied from S to S, as forward clauses. The conjunction of
forward clauses is unsatisfiable with Sp,,. This is because, in the last step of m, L
is added to Sy, either through rup or by cp L from Ss. Since all the clauses in
module m are implied by @, together with forward clauses, this means that the
conjunction of forward clauses is unsatisfiable with @,,. In addition, all forward
clauses were learned in module s, with support from backward clauses. This
means that every forward clause is implied by & together with the subset of the
backward clauses used to derive it. Intuitively, we should therefore be able to
learn an interpolant with the structure: backward clauses imply forward clauses.

Alg. 3 describes our interpolation algorithm. It traverses a modular DRUP
proof forward. For each clause cls learned in module s, the algorithm collects the
set of backward clauses used to learn cls. This is stored in the sup datastucture
— a mapping from clauses to sets of clauses. Finally, when a forward clause c is
copied, it adds sup(c) = ¢ to the interpolant.

Ezxample 4. We illustrate our algorithm using the modular DRUP proof from
Fig. 2. On the first cp step (cp(m),s,sa = s3), the algorithm assigns the
sup for clause sy = s3 as itself (line 8). The first clause learnt in module s,
(rup, s, s3 = s4), is derived from just the clauses in module s and no backward
clauses. Therefore, after RUP, our algorithm sets sup(sz = s4) to T (line 12).
The second clause learnt in module s, 1 = s4, is derived from module s with the
support of the backward clause so = s3. Therefore, sup(s; = s4) = {s2 = s3}.
When this clause is copied forward to module 1, the algorithm updates the in-
terpolant to be (s2 = s3) = (s1 = $4). O

Next, we formalize the correctness of the algorithm. Let Lp(mw) = {cls |
(cp(m),s, cls) € 7} be the set of clauses copied from module m to s and Lp(7) =
{cls | (cp(s), m, cls) € 7w} be clauses copied from module s to m. From the validity
of modular DRUP proofs, we have that:

Lemma 2. For any step ¢; = (cp(s),m,cls) € m, (Lp(n®) A Ds) = cls and for
any step ¢; = (cp(m),s, cls) € m, (Lp(m9) A Pp) = cls.

For any clause cls copied from one module to the other, we use the shorthand
#(cls) to refer to the position of the copy command in the proof 7. That is, §(cls)
is the smallest & such that ¢ = (cp(4), 4, cls) € 7. The following is an invariant
in a valid modular DRUP proof:

Lemma 3.
Vels € LF(TI') . (gﬁm A (LF(?Tﬂ(ClS))) = LB(ﬂ_ﬂ(cls)))

These properties ensure that adding LB(Wﬁ(Cls)) = cls for every forward
clause cls results in an interpolant. Alg. 3 adds (sup(cls) = cls) as an opti-
mization. Correctness is preserved since sup(cls) is a subset of Lp(w#(¢%)) that
together with @ suffices to derive cls (formally, sup(cls) A Ps Fyp cls).

Theorem 5. Given a modular DRUP proof 7 for &5 A @, itp = {sup(c) = c |
¢ € Lp(m)} is an interpolant for (Ps, Ppm).
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Proof. Since all copy steps are over interface variables, the interpolant is also
over interface variables. By Lemma 2 (and the soundness of sup optimization),
& = itp. Next, we prove that (&, Ailp) = L. From Lemma 3, we have that for
all ¢ € Lp(7), (&m A Lp(7#9))) = sup(c). Therefore, (P A Lp (7)) A (sup(c) =
c)) =c

It is much simpler to extract interpolants from modular DRUP proofs then
from arbitrary DRUP proofs. This is not surprising since the interpolants capture
exactly the information that is exchanged between solvers. The interpolants are
not in CNF, but can be converted to CNF after extraction.

5 Heuristics for guiding specSMS

Theoretically, speculation makes SPECSMS more powerful than SMS and
IC3/PDR. However, in practice, deciding when to enter speculation has a ma-
jor impact on the performance of SPECSMS. If the speculation is too greedy,
SPECSMS performs poorly on examples where the main module is easy to solve.
Similarly, if the speculation is too lazy, SPECSMS performs poorly on problems
in which any solution to the secondary module makes the main module easy to
solve. We illustrate this trade-off using an example.

Ezample 5. Consider a modular query: (v, (¢, x,in), vsua-1(in, z, out)), where
x is an 512-bit vector, ¢ is a 160-bit vector, chks; are 512-bit vector, and the
remaining variables are the same as in v;, and t¥sga-1, and

Yin 2 SHA-1 e (2, £) A
((¢ = chkso N in = msgy) V (€ = chksy A in = msgy) V
(0 = chksy A in = msgy) V (£ = chkss A in = msgs))
YSHA-1 = (x =1V a=4) ASHA-1 . (in, out) A out = shaVal

This is an example where bi-directional search is necessary to efficiently solve the
query. If deciding only on ~ysga.1, we encounter the hard problem of inverting
SHA-1 4., if deciding in +;,, we encounter the same problem, since an assign-
ment for x needs to be found, based on the four values for ¢. Therefore, neither
immediate nor late speculation makes SPECSMS efficient on the problem. The
ideal strategy here is to speculate after an assignment to z, to simplify v;,. O

Ideally, we would like to speculate when the current modular query is too
hard for the solver. As a proxy for hardness, we measure the number of conflicts
the SAT solver hits. We first speculate when the main solver hits a predeter-
mined number of conflicts. We then exponentially widen the number of conflicts
between speculations. Exiting from speculation is just as important as entering
speculation: the secondary solver might also get stuck in solving its module.
Therefore, we use the same heuristic in the secondary solver to exit speculation.

While this is a simple heuristic, we found it to be useful in our benchmarks.
The best strategy for speculation is problem-dependent. We leave development
of a robust heuristic for future work.
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time (s) — sat time (s) — unsat

# rounds SMS SPECSMS # rounds SMS SPECSMS
16 0.86 0.94 16 1.09 0.93

21 - 0.49 21 - 1.17

26 - 2.93 26 - 1.95

31 - 1.33 31 - 2.06

36 - 1.35 36 - 2.13

40 - 1.56 40 - 2.64

Table 1: Solving time with a timeout of 600s.

6 Implementation and Validation

We implemented sSPECSMS (and SMS) inside the extensible SAT-solver of Z3 [5]%.
For SMS, we simply disable speculation(Table 1).

We have validated SPECSMS on a set of handcrafted benchmarks, based
on Ex. 1. Each benchmark is of the form (¢, (¢, in), spa-1(in, out)), where £ is
a 2-bit vector, in is a 512-bit vector (shared), out is 160-bit vector. 1, encodes
that there are four possible messages:

Yin £ (L =0NAin=msgy) V ({ =1Ain=msg;) V
(L =2Nin=msgy)V (£ =3NAin=msgs)

and Yspa_1(in, out) encodes the SHA-1 circuit together with some hash:
Ysua-1 2 (SHA-1gc(in) A out = shaVal)

In the first set of experiments, we check sat queries by generating one msg; in
Vi that produces shaVal. In the second set, we check unsat queries, by ensuring
that no msg, produces shaVal. To evaluate performance, we make 1)gpa-1 harder
to solve by increasing the number of rounds of SHA-1 circuit encoded in the
SHA-1,,. clauses. We used SAT-encoding [13]° to generate the SHA-1,;,.. with
the different number of rounds (SAT-encoding supports 16 to 40 rounds).

We use the heuristic described in Sec. 5 to decide when to enter and exit
speculation. Thus, SPECSMS switches modules when it hits too many conflicts
in the module. In contrast, SMS only switches to the secondary solver after
finding a full satisfying assignment in the main solver.

Results for each set of the queries are shown in Tab. 1. Column “# rounds”
shows the number of SHA-1 rounds encoded in tsga.1. The problems quickly
become too hard for SMS. At the same time, SPECSMS solves all the queries
quickly. Furthermore, the run-time of SPECSMS appears to grow linearly with
the number of rounds.

The experiments validate our claim that switching between modules is quite
effective in solving the problem. As expected, SMS gets stuck in inverting the

4 we will provide the repository url after the double-blind review process
% Available at https://github.com/saeednj/SAT-encoding.
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SHA-1 function. It cannot make progress without using information from the
secondary module. In contrast, SPECSMS switches to the secondary module
once it finds that solving SHA-1.;..(in) is hard. Note that, in this problem, the
ideal strategy is to speculate eagerly and then branch on all the ¢ variables.
However, SPECSMS spend some time solving SHA-1.;,..(in). It only switches to
the secondary module when it hits many conflicts in SHA-1.;.(in).

7 Conclusion and Future Work

Modular SAT-solving is crucial for efficient SAT-based unbounded Model Check-
ing. Existing techniques, embedded in IC3/PDR [3] and extended in SMS [1],
trade the efficiency of the solver for the simplicity of conflict resolution. In this
paper, we propose a new modular SAT-solver, called SPECSMS, that extends
SMS with truly bi-directional reasoning. We show that it is provably better
than SMS (and, therefore, IC3/PDR). We implement SPECSMS in Z3 [5], ex-
tend it with DRUP-style [12] proofs, and proof-based interpolation. This work is
an avenue to future efficient SAT- and SMT-based Model Checking algorithms.

In this paper, we rely on a simple heuristic to guide SPECSMS when to
start speculation and exit speculation. This is sufficient to show the power of
bi-directional reasoning over uni-directional reasoning on our benchmarks. How-
ever, other application domains might need more complicated heuristics to make
this decision. In the future, we plan to explore guiding speculation using similar
strategy used for guiding restarts in a modern CDCL SAT-solver[2].

A much earlier version of speculation, called weak abstraction, is implemented
in the SPACER Constrained Horn Clause (CHC) solver [10]. Since SPACER ex-
tends IC3/PDR to SMT, the choice of speculation is based on theory reasoning.
Speculation starts when the main solver is satisfied modulo some theories (e.g.,
Linear Real Arithmetic or Weak Theory of Arrays). Speculation often prevents
SPACER from being stuck in any one SMT query. However, SPACER has no inter-
modular propagation and no refinement. If validation fails, speculation is simply
disabled and the query is tried again without it. We hope that extending SPEC-
SMS to theories will make SPACER heuristics much more flexible and effective.

DPLL(T)-style [7] SMT-solvers can be seen as modular SAT-solvers where
the main module is a SAT solver and the secondary solver is a theory solver (often
EUF-solver that is connected to other theory solvers such as a LIA solver). This
observation credited as an intuition for SMS [1]. In modern SMT-solvers, all
decisions are made by the SAT-solver. For example, if a LIA solver wants to
split on a bound of a variable z, it first adds a clause (z < (b—1)Vz > b), where
b is the desired bound, to the SAT-solver and then lets the SAT-solver branch on
the clause. SPECSMS extends this interaction by allowing the secondary solver
(i.e., the theory solver) to branch without going back to the main solver. Control
is returned to the main solver only if such decisions tangle local decisions of the
two solvers. We hope that the core ideas of SPECSMS can be lifted to SMT
and allow more flexibility in the interaction between the DPLL-core and theory
solvers.
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Abstract. Satisfiability solving has been used to tackle a range of long-
standing open math problems in recent years. We add another success by
solving a geometry problem that originated a century ago. In the 1930s,
Esther Klein’s exploration of unavoidable shapes in planar point sets in
general position showed that every set of five points includes four points
in convex position. For a long time, it was open if an empty hexagon,
i.e., six points in convex position without a point inside, can be avoided.
In 2006, Gerken and Nicolas independently proved that the answer is no.
‘We establish the exact bound: Every 30-point set in the plane in gen-
eral position contains an empty hexagon. Our key contributions include
an effective, compact encoding and a search-space partitioning strategy
enabling linear-time speedups even when using thousands of cores.

Keywords: Erd&s—Szekeres problem - empty hexagon theorem - planar
point set - cube-and-conquer - proof of unsatisfiability

1 Introduction

In 1932, Esther Klein showed that every set of five points in the plane in general
position (i.e., no three points on a common line) has a subset of four points in
convex position. Shortly after, Erdss and Szekeres [8] generalized this result by
showing that, for every integer k, there exists a smallest integer g(k) such that
every set of g(k) points in the plane in general position contains a k-gon (i.e., a
subset of k points that form the vertices of a convex polygon). As the research
led to the marriage of Szekeres and Klein, Erdés named it the happy ending
problem. Erdés and Szekeres constructed witnesses of g(k) > 2%~2 [9], which
they conjectured to be maximal. The best upper bound is g(k) < 2¥+°(*) [20,30].
Determining the value ¢g(5) = 9 requires a more involved case distinction
compared to g(4) = 5 [23]. It took until 2006 to determine that g(6) = 17
via an exhaustive computer search by Szekeres and Peters [31] using 1500 CPU
hours. Marié¢ [25] and Scheucher [28] independently verified g(6) = 17 using
satisfiability (SAT) solving in a few CPU hours. This was later reduced to 10
CPU minutes [29]. The approach presented in this paper computes it in 8.53 CPU
seconds, showing the effectiveness of SAT compared to the original method.
© The Author(s) 2024
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Fig. 1. An illustration for the proof of h(4) = 5: The three possibilities of how five
points can be placed. Each possibility implies a 4-hole.

Erdés also asked whether every sufficiently large point set contains a k-hole:
a k-gon without a point inside. We denote by h(k) the smallest integer—if it
exists—such that every set of h(k) points in general position in the plane contains
a k-hole. Both h(3) = 3 and h(4) = 5 are easy to compute (see Fig. 1 for an
illustration) and coincide with the original setting. Yet the answer can differ a
lot, as Horton [21] constructed arbitrarily large point sets without 7-holes.

While Harborth [14] showed in 1978 that h(5) = 10, the existence of 6-
holes remained open until the late 2000s, when Gerken [12]* and Nicolés [26]
independently proved that h(6) is finite. Gerken proved that every 9-gon yields
a 6-hole, thereby showing that h(6) < g(9) < 1717 [33]. The best-known lower
bound h(6) > 30 is witnessed by a set of 29 points without 6-holes which was
found by Overmars [27] using a local search approach.

We close the gap between the upper and lower bound and ultimately answer
Erdés’ question by proving that every set of 30 points yields a 6-hole.

Theorem 1. h(6) = 30.

Our result is actually stronger and shows that the bounds for 6-holes in point sets

coincide with the bounds for 6-holes in counterclockwise systems [24]. This rep-

resents another success of solving long-standing open problems in mathematics

using SAT, similar to results on Schur number five [16] and Keller’s conjecture [4].
We also investigate the combination of 6-holes and 7-gons and show

Theorem 2. FEvery set of 24 points in the plane in general position contains a
6-hole or a 7-gon.

We achieve these results through the following contributions:

— We develop a compact and effective SAT encoding for k-gon and k-hole
problems that uses O(n*) clauses, while existing encodings use O(n*) clauses.

— We construct a partitioning of k-gon and k-hole problems that allows us to
solve them with linear-time speedups even when using thousands of cores.

— We present a novel method of validating SAT-solving results that checks the
proof while solving the problem using substantially less overhead.

— We verify most of the presented results using clausal proof checking.

4 Gerken’s groundbreaking work was awarded the Richard-Rado prize by the German
Mathematical Society in 2008.
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2 Preliminaries

The SAT problem. The satisfiability problem (SAT) asks whether a Boolean
formula can be satisfied by some assignment of truth values to its variables.
The Handbook of Satisfiability [2] provides an overview. We consider formulas
in conjunctive normal form (CNF), which is the default input of SAT solvers.
As such, a formula I' is a conjunction (logical “AND”) of clauses. A clause is a
disjunction (logical “OR”) of literals, where a literal is a Boolean variable or its
negation. We sometimes write (sets of) clauses using other logical connectives.

If a formula I' is found to be satisfiable, modern SAT solvers commonly
output a truth assignment of the variables. Additionally, if a formula turns out
to be unsatisfiable, sequential SAT solvers produce an independently-checkable
proof that there exists no assignment that satisfies the formula.

Verification. The most commonly-used proofs for SAT problems are expressed
in the DRAT clausal proof system [15]. A DRAT proof of unsatisfiability is a
list of clause addition and clause deletion steps. Formally, a clausal proof is a
list of pairs (s1,C1), ..., {Sm, Cm), where for each i € {1,...,m}, s; € {a,d} and
C; is a clause. If s; = a, the pair is called an addition, and if s; = d, it is called
a deletion. For a given input formula Ij, a clausal proof gives rise to a set of
accumulated formulas I (i € {1,...,m}) as follows:

r— Fi_1U{Ci} ifs; =a
L Fz_l\{Cz} lfSZ:d

Each clause addition must preserve satisfiability, which is usually guaranteed
by requiring the added clauses to fulfill some efficiently decidable syntactic cri-
terion. Deletions help to speed up proof checking by keeping the accumulated
formula small. A valid proof of unsatisfiability must add the empty clause.

Cube And Conguer. The cube-and-conquer approach [18] aims to split a SAT
instance I" into multiple instances I, ..., I}, in such a way that I" is satisfiable
if and only if at least one of the instances I is satisfiable, thus allowing work
on the different instances I; in parallel. A cube is a conjunction of literals. Let
¥ =(c1 V- Vep) be a disjunction of cubes. When v is a tautology, we have

m m
I e I'Ny <= \[(I'he) <= \/ I,
i=1 i=1
where the different I; := (I" A ¢;) are the instances resulting from the split.
Intuitively, each cube ¢; represents a case, i.e., an assumption about a sat-
isfying assignment to I, and soundness comes from ¢ being a tautology, which
means that the split into cases is exhaustive. If the split is well designed, then
each I is a particular case that is substantially easier to solve than I, and thus
solving them all in parallel can give significant speed-ups, especially considering
the sequential nature of CDCL at the core of most solvers.
However, the quality of the split (¢) has an enormous impact on the effec-
tiveness of the approach. A key challenge is figuring out a high-quality split.
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c a b c a o ; b
a*” j b c’ a® : b c
Fig. 2. The four ways a point p; can be inside triangle {pa,ps,p.} based on whether
1 < b (left two images) and whether p. is above the line paps (first and third image).

3 Trusted Encoding

To obtain an upper-bound result using a SAT-based approach, we need to show
that every set of n points contains a k-hole. We will do this by constructing
a formula based on n points that asks whether a k-hole can be avoided. If this
formula is unsatisfiable, then we obtain the bound h(k) < n. Instead of reasoning
directly whether an empty k-gon can be avoided, we ask whether every k points
contain at least one triangle with a point inside. The latter implies the former.

We only need to know for each triple of points whether it is empty. Through-
out the paper, we assume that points are sorted with strictly increasing z-
coordinates. This gives us only four options for a point p; to be inside the triangle
formed by points pg, ps, Pe, see Fig. 2. For example, the left image shows that
p; is inside if ¢ < i < b, p. and p; are above the line Pgpy, and p; is below
the line pgp.. So we need some machinery to express that points are above or
below certain lines. That is what the encoding will provide. For readability, we
sometimes identify points by their indices, that is, we refer to p, by its index a.

We first present what we call the trusted encoding to determine whether a
6-hole can be avoided. The encoding needs to be trusted in the sense that we
do not provide a mechanically verified proof of its correctness. Building upon
existing work [28], our primary focus is on 6-holes, which constitute our main
result. The encoding of 6-gons and 7-gons is similar and more simple. During an
initial study, the estimated runtime for showing h(6) < 30 using this encoding
and off-the-shelf partitioning was roughly 1000 CPU years. The optimizations
in Sections 4 and 5 reduce the computational costs to about 2 CPU years.

3.1 Orientation Variables

We formulate the problem in such a way that all rea- 4 e
soning is based solely on the relative positions of points. \J
Thus, we do not encode coordinates but only orienta- z\b\
tions of point triples. For a point set S = {p1,...,pn}

with p; = (z,y;), the triple (pa, pp,pe) with a < b < ¢ ’ﬁ‘
is positively oriented (resp. negatively oriented) if p. lies d*®
above (resp. below) the line P;p, through p, and py,. The

notion of positive orientation corresponds to Knuth’s Fig.3. An illustration

counterclockwise relation [24]. Fig. 3 illustrates a posi- of triple orientations.
tively-oriented triple (pqa, pp, pe) and a negatively-oriented triple (pq, Pp, Pa)-
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To search for point sets without k-gons and k-holes, we introduce a Boolean
orientation variable o, . for each triple (pq,pp,pe) With a < b < c. Intuitively,
Oq.b,c 1S supposed to be true if the triple is positively oriented. Since we assume
general position, no three points lie on a common line, so o, . being false means
that the triple is negatively oriented.

3.2 Containment Variables, 3-Hole Variables, and Constraints

Using orientation variables, we can now express what it means for a triangle to
be empty. We define containment variables c;.q .. to encode whether point p;
lies inside the triangle spanned by {pa,ps, pc}. Since the points have increasing
z-coordinates, containment is only possible if a < i < ¢. We use two kinds of
definitions, depending on whether ¢ is smaller or larger than b (see Fig. 2). The
first definition is for the case a < ¢ < b. Note that if 0, 4 . is true, we only need to
know whether 7 is above the line p;pp and below the line P p.. Earlier work [28]
used an extended definition that included the redundant variable o; 4 .. Avoiding
this variable makes the definition more compact (six instead of eight clauses)
and the resulting formula is easier to solve.

Cisa,b,c <~ ((oa,b,c — (Oa,i,b A Oa,i,c)) A (oa,b,c — (oa,i,b A oa,i,c))) (1)

The second definition is for b < i < ¢, which avoids using the variable o, ;:

Cisab,e € ((Oa,b,c = (0a,i,e ABbie)) A (Barpe = (Bayie A Ob,i,c))) (2)

Each definition translates into six clauses (without using Tseitin variables).
Additionally, we introduce definitions hy p . of 3-hole variables that express
whether the triangle spanned by {pa, s, pc} is a 3-hole. The triangle {pa, pp, P}
forms a 3-hole if and only if no point p; lies in its interior. A point p; can only
be an inner point if it lies in the vertical strip between p, and p. and if it is
distinct from p;. Since the points are sorted, the index i of an interior point p;
must therefore fulfill @ < i < ¢ and ¢ # b. Logically, the definition is as follows:

hape ¢\ Crate: (3)
afé?c
Finally, we encode the “forbid k-hole” constraint as follows: For each subset
X C S of size k, at least one of the triangles formed by three points in X must
not be a 3-hole. So for k = 6, each clause consists of (g) = 20 literals.

AV hae) (4)

XCS a,b,ceX
| X|=k a<b<c

In Section 4, we will optimize the encoding. Most optimizations aim to im-
prove the encoding of the constraint (4).
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Fig. 4. All possibilities to place four points, when points are sorted from left to right.

3.3 Forbidding Non-Realizable Patterns

Only a small fraction of all assignments to the (g) orientation variables, 20(710gn)

actually describe point sets [3]. However, we can reduce the search space from
20(n*) 6 29("*) by forbidding non-realizable patterns [24]. Consider four points
Pa, Db, Pe,Pd in a sorted point set with a < b < ¢ < d. The leftmost three
points determine three lines Dapy, PaPe, PoPe, Which partition the open half-
plane {(z,y) € R? : © > x.} into four regions (see Fig. 4). After placing p,,
Db, Pe, Observe that all realizable positions of point pg obey the following im-
plications: 0gp,c A 0g,c,d = Oq,b,d aNd Ogpc A Opcd = Ogcq. Similarly for the
negations, 044.¢ A Og,c.d = Oq,b,d @0d Og pc A Opcd = Oq.cd. LThese implications
are equivalent to the following clauses (grouping positive and negative):

(Oa,b,c V Oa,c,d \ Oa,b,d) A (Oa,b,c \ Oa,c,d \ Oa,b,d) (5>
(Oa7b,c \ Op,c,d \ Oa,c,d) A (oa,b,c \ Op,c,d \ 0a7c,d) (6)

Forbidding these non-realizable assignments was also used for g(6) < 17 [31].
Some call the restriction signotope azxioms [10]. The counterclockwise system
axioms [24] achieve the same effect, but require ©(n®°) clauses instead of ©(n?).

3.4 Initial Symmetry Breaking

To further reduce the search space, we ensure that p; lies on the boundary of the
convex hull (i.e., it is an extremal point) and that ps, ..., p, appear around p; in
counterclockwise order, thus providing us the unit clauses (01 4) for 1 < a < b.
Without loss of generality, we can label points to satisfy the above, because the
labeling doesn’t affect gons and holes. However, we also want points to be sorted
from left to right. One can satisfy both orderings at the same time using the
lemma below. We attach a proof in the extended version [19].

Lemma 1 (|28, Lemma 1]). Let S = {p1,...,pn} be a point set in the plane

in general position such that py is extremal and pa, ..., pn appear (clockwise or
counterclockwise) around py. Then there exists a point set S = {p1,...,pn} with
the same triple orientations (in particular, py is extremal and po, ..., P, appear

around py) such that the points py, ..., D, have increasing x-coordinates.
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4 Optimizing the Encoding

An ideal SAT encoding has the following three properties:

1) it is compact to reduce the cost of unit propagation (and cache misses);
2) it detects conflicts as early as possible (i.e., is domain consistent [11]); and
3) it contains variables that can generalize conflicts effectively.

The trusted encoding lacks these properties because it has O(n®) clauses,
cannot quickly detect holes, and has no variables that can generalize conflicts.
In this section, we show how to modify the trusted encoding to obtain all three
properties. All the modifications are expressible in a proof to ensure correctness.

4.1 Toward Domain Consistency

The effectiveness of an encoding depends on how quickly the solver can determine
a conflict. Given an assignment, we want to derive as much as possible via unit
propagation. This is known as domain consistency [11]. The trusted encoding
does not have this property. We modify the encoding below to boost propagation.

We borrow from the method by Szekeres and Peters that a k-gon can be de-
tected by looking at assignments to k —2 orientation variables [31]. For example,
if 0g.b,c, Ob,c,d» Oc,d,e, and 04 ¢ With a <b<c<d<e< f are assigned to the same
truth value, then this implies that the points form a 6-gon. An illustration of
this assignment is shown in Fig. 5 (left). We combine this with our observation
below that only a specific triangle has to be empty to infer a 6-hole somewhere.

Consider a scenario involving six points, a, b, ¢, d, e, and f, that are arranged
from left to right. In this scenario, the orientation variables 04 p.c, Op,c,d; Oc,d,e;
and og, s are all set to false, while the 3-hole variable hg . is set to true. As
mentioned above, this implies that the points form a 6-gon. Together with 3 -
hole variable h, . . being set to true, we can deduce the existence of a 6-hole: The
6-gon is either a 6-hole or it contains a 6-hole. The reasoning will be explained
in the next paragraph. Note that in the trusted encoding of this scenario, only
one out of the twenty literals in the corresponding ‘forbid 6-hole’ clause is false.
This suggests that the solver is still quite far from detecting a conflict.

A crucial insight underpinning our efficient encoding is the understanding
that the truth of the variable h, .. alone is sufficient to infer the existence of
a 6-hole. Consider the following rationale: If the triangle {a,b,c} contains any
points, then there must be at least one point inside the triangle that is closer to
the line @c¢ than point b is. Let’s denote the nearest point as i. The proximity of
i to the line ¢ guarantees that the triangle {a,i,c} is empty. We can substitute
b with 7 to create a smaller but similarly shaped hexagon. This logic extends to
other triangles as well; specifically, the truth values of h. 4. and h, . ¢ are not
necessary to infer the presence of a 6-hole.

Our insight emerged when we noticed that the SAT solver eliminated 3-hole
literals from previous encodings. This elimination occurred primarily when only
a few points existed between the leftmost and rightmost points of a triangle. On
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~— c

Fig. 5. Three types of 6-gons: left, all points are on one side of line af (2 cases);

middle, three points are on one side and one point is on the other side of line W

(8 cases); and right, two points are on either side of line af (6 cases). If the marked
triangle is empty, we can conclude that there exists a 6-hole.

the other hand, the solver struggles significantly to identify the redundancy of
these 3-hole literals when the leftmost and rightmost points of a triangle were
far apart. Therefore, to enhance the encoding’s effectiveness, we chose to omit
these 3-hole literals (instead of letting the solver figure it out).

Blocking the existence of a 6-hole within the 6-gon described above can be
achieved with the following clause (which simply negates the assignment):

Oa.b,c \ Ob,c,d \ Oc¢,d,e \ Od,e,f \ ha,c,e (7)

For each set of six points, 16 different configurations can result in a 6-hole.
These configurations depend on which points are positioned left or right the line
connecting the leftmost and rightmost points among the six. The three types of
such configurations are illustrated in Fig. 5, while the remaining configurations
are symmetrical to these. It is important to note that this adds 16 x (}) clauses
to the formula, significantly increasing its size.

We can reduce the number of clauses by about a 30% by strategically selecting
which triangle within a 6-gon is checked to be empty (i.e., which 3-hole literal
will be used). The two options are the triangle that includes the leftmost point
(as depicted in Fig. 5) and the triangle with the second-leftmost point. If the
leftmost point is p;, we opt for the second-leftmost point; otherwise, we choose
the leftmost point. After propagating the unit clauses o014, the clauses that
describe configurations with three points below the line af become subsumed

by the clause for the configuration with four points below the line 1.

4.2 An O(n*) Encoding

This section is rather technical. It introduces auxiliary variables to reduce our
encoding to O(n*) clauses. The process is known as structured bounded vari-
able addition (SBVA) [13], which in each step adds a new auxiliary variable to
encode a subset of the formula more compactly. SBVA heuristically selects the
auxiliary variables. Instead, we select them manually because it is more effective,
the new variables have meaning, and SBVA is extremely slow on this problem.
Eliminating the auxiliary variables results in the encoding of Section 4.1.
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The first type of these variables, ua c.d» represents the presence of a 4-gon
{a,b,c,d} such that points a, b, c,d appear in this order from left to right and
b and ¢ are above the line ad. Furthermore, the variables u® a.d,c indicate the
existence of a 5-gon {a,b,c,d, e} with the property that the pomts a,b,c,d, e
appear in this order from left to right, the points b, ¢, and d are above the line
ae, and the triangle {a, ¢, e} is empty. This configuration implies the existence of
a 5-hole within {a,b,c,d, e} using similar reasoning as described in Section 4.1.
The clauses enforcing these properties are outlined below.

ui edV OabeVObed witha<b<ec<d (8)

Uy, d cVut o VoedeVhace witha<c<d<e 9)

a,c,d

In the following we distinguish five types of 6-holes by the number of its
points that lie above/below the line connecting its leftmost and rightmost points.
Fig. 5 shows the three configurations with four, three, and two points above the
line, respectively. The two cases with three and four points below the line are
symmetric but will be handled in a different and more efficient manner below.

To block all 6-holes with configurations having three or four points above the
line connecting the leftmost and rightmost points, we utilize the variables u Uy, d o
Specifically, a configuration with three points above occurs if there is a point b
situated between a and e, lying below the line @e. Also, the configuration with
four points above arises when a point f, located to the right of e, falls below
the line de. The associated clauses for these configurations are detailed below.
The omission of 3-hole literals is justified by our knowledge that a 3-hole exists
among a, ¢, and e for some point ¢ positioned above the line @e.

ug V Oabe witha<d<e,a<b<e (10)
ade\/odpf witha<d<e< f (11)
To block the third type of a 6-hole, we need to introduce variables vi ed

which, similar as u c,d» indicate the presence of a 4-gon {a,b,c,d} with the
property that the pomts a,b,c,d appear in this order from left to right and b
and ¢ are below the line ad. The clauses that encode these variables are:

V:c’d V 0q,b,c V Ob,c.d witha<b<c<d (12)

Using the variables ui,c) 4 and vﬁ,c@d we are now ready to block the configu-
ration of the third type of a 6-hole where two points lie above and two points lie
below the hne connecting the leftmost and rightmost points; see Fig. 5 (right).
Recall that u!  denotes a 4-gon situated above the line ad, with ¢ being the
second-rightmost point. Also, vﬁ_cc 4 denotes a 4-gon below the line @, with ¢/
as the second-rightmost point. A 6-hole exists if both u? c.q and vﬁ’c,’ 4 are true
for some points @ and d when there are no points within the triangle formed by
a, ¢, and ¢’. Or, in clauses:

a,c,d

Md\/v /d\/hacc/ witha<c<d <d (13)

d\/v d\/hac/c witha <d <ec<d (14)
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The remaining configurations to consider involve those with three or four
points below the line joining the leftmost and rightmost points. As we discussed
at the end of Section 4.1, these configurations can be encoded more compactly.
We only need to block the existence of 5-holes {a,b,c,d, e} with the property
that the points 1, a, b, ¢, d, e appear in this order from left to right and the points
b, ¢, and d are below the line @e. The reasoning is as follows: if such a 5-hole
exists, it can be expanded into a 6-hole by the closest point to line ab within
the triangle {1, a,b} (which is point 1 if the triangle is empty). Additionally, by
blocking these specific 5-holes, we simultaneously block all 6-holes with three or
four points below the line between the leftmost and rightmost points. Following
the earlier cases, we only require a single 3-hole literal which ensures that the
triangle {a, ¢, e} is empty. The clauses to block these 5-holes are as follows:

Vﬁ,c,d VoedeVhace withl<a<ec<d<e (15)

This encoding uses O(n*) clauses, while it has the same propagation power as
having all the 16 x (g) clauses in the domain-consistent encoding of Section 4.1. In
general, the trusted encoding for k-holes uses O(n*) clauses, while the optimized
encoding when generalized to k-holes has only O(kn) clauses, or O(n?) for every
fixed k. An encoding of size O(n*) for k-gons is analogous: simply remove the

3-hole literals from the clauses.

4.3 Minor Optimizations

We can make the encoding even more compact by removing a large fraction of
the clauses from the trusted encoding. Note that constraints to forbid 6-holes
contain only negative 3-hole literals. That means that only half of the constraints
to define the 3-hole variables are actually required. This in turn shows that only
half of the inside variable definitions are required. So, instead of (1), (2), and (3),
it suffices to use the following:

Cisa,b,c — <(Oa,b,c — (Oa,i,b A Oa,i,c)) A (oa,b,c — (oa,i,b A oa,i,c))

Ciza,b,c — ((Oa,b,c — (Oa,i,c A Ob,i,c)) A (Oa,b,c — (Oa,i,c A Ob,i,c))) (17)

hape <\ Ciabe: (18)
a<i<c
i#£b
It is worth noting that the SAT preprocessing technique blocked-clause elim-
ination (BCE) can automatically remove the omitted clauses [22]. However, for
means of efficiency, BCE is turned off by default in top-tier solvers, including
the solver CaDiCal, which we used for the proof. During initial experiments, we
observed that omitting these clauses slightly improves the performance.
Finally, the variables uic, 4 and vg,c) 4 can be used to more compactly encode
the clauses (6). We can replace them with the following clauses:

(ui)qd V Oucd) N (vic)d V Oa,c,d) with a < c < d (19)
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4.4 Breaking the Reflection Symmetry

Holes are invariant to reflectional symmetry: If we mirror a point set S, then
the counterclockwise order around the extremal point p; (which is po, ..., py)
is reversed (to py,...,p2). By relabeling points to preserve the counterclockwise
order, we preserve o1 o = true for a < b, while the original orientation variables
Og.b,e With 2 < a < b < ¢ < n are mapped to 0,,—c12,n—b+2,n—at2. A similar
mapping applies to the containment and 3-hole variables. The trusted encoding
maps almost onto itself, except for the missing reflection clauses of (5) and (6).
As a fix for verification, we add each reflected clause using one resolution step.

Since only a tiny fraction of triple orientations map to themselves (so-called
involutions), breaking the reflectional symmetry reduces the search space by a
factor of almost 2. We partially break this symmetry by constraining the vari-
ables 04,441,042 With 2 < a < n — 2. We used the symmetry-breaking predicate
below, because it is compatible with our cube generation, described in Section 5.

O[m]_1,[2],[2]4+1s---1023,4 X O[2|11,[2 |42 |2]+3,---:On—2n—1,n (20)

One symmetry that remains is the choice of the first point. Any point on
the convex hull could be picked for this purpose, and breaking it can potentially
reduce the search space by at least a factor of 3. However, breaking this symmetry
effectively is complicated and we therefore left it on the table.

5 Problem Partitioning

The formula to determine that h(6) < 30 requires CPU years to solve. To com-
pute this in reasonable time, the problem needs to be partitioned into many
small subproblems that can be solved in parallel. Although there exist tools to
do the partitioning automatically [18], we observed that this partitioning was
ineffective. As a consequence, we focused on manual partitioning.

During our initial experiments, we determined which orientation variables
were suitable for splitting. We used the formula for g(6) < 17 for this purpose
because its runtime is large enough to make meaningful observations and small
enough to explore many options. It turned out that the variables 04 441,442
were the most effective choice for splitting the problem. Assigning one of these
Og,a+1,a+2 Variables to true/false roughly halves the search space and reduces
the runtime by a factor of roughly 2.

A problem with n points has n—3 free variables of the form 04 g1 4+2, as the
variable o; 2 3 is already fixed by the symmetry breaking. One cannot generate
2773 equally easy subproblems, because (64 011,012 V0ut 1,042,013 VOat2.at3.a44)
and (0g,441,a42 V Oa+1,a+2,a+3 V Oa+2.a+3,a+4 V Oat3,a+4,a+5) follow directly from
the optimized formula after unit propagation. Thus, assigning three consecutive
Oq,a+1,a+2 variables to true results directly in a falsified clause, as it would create
a 6-hole among the points p1, pa, - . ., Pata. The same holds for four consecutive
Og,a+1,a+2 variables assigned to false, which would create a 6-hole among the
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points pq, ..., Pat+s. The asymmetry is due to fixing the variables 0q 43 to true.
If we assigned them to false, then the opposite would happen.

We observed that limiting the partition to variables involving the middle
points reduces the total runtime. We will demonstrate such experiments in Sec-
tion 6.2. So, to obtain suitable cubes, we considered all assignments of the se-
qUeNce Og q+1,a+2, Oat1,a+2,a+3s - - -» Oatl—1,a+f,at+é+1 for a suitable constant ¢
and a = "'QM —1 such that the above properties are fulfilled, that is, no three con-
secutive entries are true and no four consecutive entries are false. In the following
we refer to £ as the length of the cube-space. In our experiments, we observed
that picking ¢/ < n — 3 reduces the overall computational costs. Specifically, for
the h(6) < 30 experiments, we use length ¢ = 21.

Our initial experiments showed that the runtime of cubes grows exponen-
tially with the number of occurrences of the alternating pattern oy p11,p+2 = +,
Ob+1,b+42,b+43 = —, Op+2b+3,b+4 = +. As a consequence, the hardest cube for
h(6) < 30 would still require days of computing time, thereby limiting par-
allelism. To deal with this issue, we further partition cubes that contain this
pattern. For each occurrence of the alternating pattern in a cube, we split the
cube into two cubes: one that extends it with op p42,5+4 and one that extends it
with 0p p12,5+4. Note that we do this for each occurrence. So a cube containing
m of these patterns is split into 2™ cubes. This reduced the computational costs
of the hardest cubes to less than an hour.

6 Evaluation

For the experiments, we use the solver CaDiCal (version 1.9.3) [1], which is cur-
rently the only top-tier solver that can produce LRAT proofs directly. The effi-
cient, verified checker cakeLPR [32] validated the proofs. We run CaDiCal with
command-line options: --sat --reducetarget=10 --forcephase --phase=0.
The first option reduces the number of restarts. This is typically more useful
for satisfiable formulas (as the name suggests), but in this case it is also help-
ful for unsatisfiable formulas. The second option turns off the aggressive clause
deletion strategy. The last two options turn on negative branching, a MiniSAT
heuristic [7]. Experiments were run on a specialized, internal Amazon Web Ser-
vices solver framework that provides cloud-level scaling. The framework used
m6i.xlarge instances, which have two physical cores and 16 GB of memory.

6.1 Impact of the Encoding

To illustrate the impact of the encoding on the performance, we show some statis-
tics on various encodings of the h(6) < 30 formula. We restricted this experiment
to solving a single randomly-picked subproblem. For other subproblems, the re-
sults were similar. We experimented with the following five encodings:

— T the trusted encoding presented in Section 3
— O1: T with (4) replaced by the domain-consistent encoding (7) of Section 4.1
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— Os: O with (7) replaced by the O(n*) encoding (8) - (15) of Section 4.2

— O3: Oz with the minor optimizations that replace (1), (2), (3), and (6) by
(17), (18), (18), and (19), respectively, see Section 4.3

— Oy4: O3 extended with the symmetry-breaking predicate from Section 4.4

Table 1 summarizes the results. The domain-consistent encoding can be
solved more efficiently than the trusted encoding while having over five times
as many clauses. The reason for the faster performance becomes clear when
looking at the number of conflicts and propagations. The domain-consistent en-
coding requires just over a fifth as many conflicts and propagations to determine
unsatisfiability. The auxiliary variables that enable the O(n*) encoding reduce
the size by almost an order of magnitude. The resulting formula can be solved
three times as fast, while using a similar number of conflicts and propagations.
The minor optimizations reduce the size by roughly a third and further improve
the runtime. Finally, the addition of the symmetry-breaking predicate doesn’t
impact the performance. Its main purpose is to halve the number of cubes.

We also solved the optimized encoding (O3) of the formula g(6) < 17, which
takes 41.99 seconds using 623 540 conflicts. Adding the symmetry-breaking pred-
icate (O4) reduces the runtime to 17.39 seconds using 316 785 conflicts. So the
symmetry-breaking predicate reduces the number of conflicts by roughly a fac-
tor of 2 (as expected) while the runtime is reduced even more. The latter is due
to the slowdown caused by maintaining more conflict clauses while solving the
formula without the symmetry-breaking predicate.

6.2 Impact of the Partitioning

All known point sets witnessing the lower bound h(6) > 30 contain a 7-gon.
To obtain a possibly easier problem to test and compare heuristics, we studied
how many points are required to guarantee the existence of a 6-hole or a 7-
gon. It turned out that the answer is at most 24 (Theorem 2). Computing this
is still hard but substantially easier compared to our main result. During our
experiments, we observed that increasing the number of cubes can increase the
total runtime. We therefore explored which parameters produce the lowest total
runtime. The experimental results are shown in Table 2 for various values for
the parameter /. Incrementing ¢ by 2 increases the number of cubes roughly by
a factor of 3. The optimal total runtime is achieved for ¢ = 15, which is a 62%

Table 1. Comparison of the different encodings.

formula #variables #clauses #conflicts #propagations time (s)

T 62930 1171942 1082569 1338662627  243.07
O 62930 5823078 228838 282774472  136.20
O3 75110 667005 211272 343 388 591 45.49
O3 75110 436 047 234755 340 387692 39.46

O4 75110 444238 234 587 342904 580 39.41




74 M.J.H. Heule and M. Scheucher

‘

10°

10%

\m

10®

102

10!

runtime (seconds)

—o— (=7 —o— (=9
(=11—4—/¢=13
(=15 (=17

—o—/(=19—e—/(=21

10°

1071

| | |
0% 20% 40% 60% 80% 100%

Fig. 6. Runtime to solve the subproblems of Theorem 2 for various splitting parameters.

reduction compared to full partitioning (¢ = 21). Note that the solving time
for the hardest cube (the max column) increases substantially when using fewer
cubes. This in turn reduces the effectiveness of parallelism. The runtime without
partitioning is expected to be about 1000 CPU hours, so partitioning achieves
super-linear speedups and more than a factor of 4 speedup for ¢ = 15. Fig. 6
shows plots of cumulatively solved cubes, with similar curves for all settings.

We also evaluated the off-the-shelf tool March for partitioning. This tool
was used to prove Schur Number Five [16]. We used option -d 13 to cut off
partitioning at depth 13 to create 8192 cubes. That partition turned out to be
very poor: at least 18 cubes took over 100000 seconds. The expected total costs
are about 10000 CPU hours, so 10 times the estimated partition-free runtime.

A partitioning can also guide the search to solve the formula g(6) < 17. The
partitioning of this formula using ¢ = 12 results in 1108 cubes. If we add these
cubes to the formula with the symmetry-predicate (O4) in the iCNF format [34],
then CaDiCal. can solve it in 8.53 seconds using 205 153 conflicts.

Table 2. Runtime comparison for different values of partitioning parameter ¢

¢  #cubes average time (s) max time (s) total time (h)

21 312418 6.99 66.86 606.55
19 89384 13.61 123.70 337.96
17 25663 34.29 293.10 244.50
15 7393 112.61 949.50 231.27
13 2149 431.26 3347.59 257.44
11 629 1847.46 11 844.05 322.79

9 188 7745.14 32 329.05 404.47

7 57 32905.90 105937.76 521.01
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Fig. 7. Reported process time to solve the subproblems of ~A(6) < 30 with proof logging
while running a formally-verified checker to validate the solver’s output.

6.3 Theorem 1

To show that the optimized encoding for h(6) < 30 is unsatisfiable, we par-
titioned the problem with the splitting algorithm described in Section 5 with
parameter ¢ = 21, which results in 312418 cubes. We picked this setting based
on the experiments shown in Table 2. Fig. 7 shows the runtime of solving the
subproblems. The average runtime was just below 200 seconds. All subproblems
were solved in less than an hour. Almost 24 000 subproblems could be solved
within a second. For these subproblems, the cube resulted directly in a conflict,
so the solver didn’t have to do any search.

The total runtime is close to 17300 CPU hours, or slightly less than 2 CPU
years. We could achieve practically a linear speedup using 1000 m6i.xlarge
instances. The timings include producing and validating the proof as described in
Section 7.1. The combined size of the proofs is 180 terabytes in the uncompressed
LRAT format used by the cakeLPR checker. In past verification efforts of hard
math problems, the produced proofs were in the DRAT format. For this problem,
the LRAT proofs are roughly 2.3 times as large as the corresponding DRAT
proof. We estimate that the DRAT proof would have been 78 terabytes in size,
so approximately one third to the proof of the Pythagorean triples problem [17].
For all problems, the checker was able to easily catch up with the solver while
running on a different core, thereby finishing as soon as the solver was done.

7 Verification

We applied three verification steps to increase trust in the correctness of our
results. In the first step, we check the results produced by the SAT solver. The
second step consists of checking the correctness of the optimizations discussed
in Section 4. In the third step, we validate that the case split covers all cases.
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7.1 Concurrent Solving and Checking

The most commonly used approach to validate SAT-solving results works as
follows. First, a SAT solver produces a DRAT proof. This proof is checked and
trimmed using an unverified efficient tool that produces a LRAT proof. The
difference between a DRAT proof and a LRAT proof is that the latter contains
hints. The LRAT proof is then validated by a formally-verified checker, which
uses the hints to obtain efficient performance.

Recently, the SAT solver CaDiCaL added support for producing LRAT proofs
directly (since version 1.7.0). This allows us to produce the proof and validate
it concurrently. To the best of our knowledge, we are the first to take advantage
of this possibility. CaDiCal sends its proof to a pipe and the verified checker
cakeLPR reads it from the pipe. This tool chain works remarkably well and adds
little overhead while avoiding storing large files.

7.2 Reencoding Proof

We validated the four optimizations presented in Section 4. Only the trusted
encoding has the reflection symmetry, as each of the optimizations don’t preserve
this symmetry. Each of the clauses in the symmetry-breaking predicate have the
substitution redundancy (SR) property [5] with respect to the trusted encoding.
However, there doesn’t exist a SR checker. Instead, we transformed the SR check
into a sequence of DRAT addition and deletion steps. This is feasible for small
point sets (up to 10 points), but is too expensive for the full problem. It may
therefore be more practical to verify this optimization in a theorem prover.
Transforming the trusted encoding into the domain-consistent one is challeng-
ing to validate because the solver cannot easily infer the existence of a 6-hole
using only the clauses (7). Since we are replacing (4) by (7) and clause deletion
trivially preserves satisfiability, we only need to check whether each of the clauses
(7) is entailed by the trusted encoding. This can be achieved by constructing a
formula that asks whether there exists an assignment that satisfies the trusted
encoding, but falsifies at least one of the clauses (7). We validated that this
formula is unsatisfiable for n < 12 (around 300 seconds).® The formula becomes
challenging to solve for larger n. However, the validation for small n provides
substantial evidence of the correctness of the encoding and the implementation.
Checking the correctness of the other two optimizations is easier. Observe
that one can obtain the domain-consistent encoding from the O(n*) encoding
by applying Davis-Putnam resolution [6] on the auxiliary variables. This can be
expressed using DRAT steps. The DRAT derivation from the domain-consistent
encoding to the O(n*) encoding applies all these steps in reverse order. The
minor optimizations mostly delete clauses, which is trivially correct for proofs
of unsatisfiability. The clauses (19) have the RAT property on the auxiliary
variables and their redundancy can easily be checked using a DRAT checker.

® We implemented an entailment tool, see https://github.com/marijnheule /entailment
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7.3 Tautology Proof

The final validation step consists of checking whether the partition of the problem
covers the entire search space. This part has also been called the tautology
proof [16], because in most cases it needs to determine whether the disjunction
of cubes is a tautology. We take a slightly different approach and validate that
the following formula is unsatisfiable: the conjunction of the negated cubes; the
symmetry-breaking predicate; and some clauses from the formula.

Recall that we omitted various cubes because they resulted in a conflict with
the clauses (64 a11,0+2 VOati.atz.at3 VOatz.ats.ata) With a € {2,...,n—4} and
(Oa,a+1,a+2 \ Oa+1,a+2,a+3 \ Oa+2,a+3,a+4 \ 0a+3,a+4,a+5) with a € {27 sy 5}
We checked with DRATtrim that these clauses are implied by the optimized
formulas, which takes 0.3 CPU seconds. We combined them with the negated
cubes and the symmetry-breaking predicate, which results in an unsatisfiable
formula that can be solved by CaDiCal in 12 CPU seconds.

8 Conclusion

We closed the final case regarding k-holes in the plane by showing h(6) = 30.
This is another example that SAT-solving techniques can effectively solve a range
of long-standing open problems in mathematics. Other successes include the
Pythagorean triples problem [17], Schur number five [16], and Keller’s conjec-
ture [4]. Also, we recomputed g(6) = 17 many orders of magnitude faster com-
pared to the original computation by Szekeres and Peters [31] even when taking
into account the difference in hardware. So, SAT techniques overwhelmingly out-
performed a dedicated approach on this geometry problem. Key contributions in-
clude an effective, compact encoding and a partitioning strategy enabling linear-
time speedups even when using thousands of cores. We also presented a new
concurrent proof-checking procedure to significantly decrease validation costs.

Although the tools are fully automatic, some aspects of our solution require
the ingenuity of the user. In particular, we had to develop encoding optimizations
and a search-space partitioning strategy to take full advantage of the power of
the tools. Constructing the domain-consistent encoding automatically appears
challenging. Most other optimizations can be achieved automatically, for example
via structured bounded variable elimination [13]. However, the resulting formula
cannot be solved as efficiently as the presented one. Substantial research into
generating effective partitionings is required to enable non-experts to solve such
hard problems. Although we validated most steps, formally verifying the trusted
encoding or even the domain-consistent encoding would further increase trust in
the correctness of our result.
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Abstract. Generalized Reactivity(1) (GR(1)) synthesis is a reactive
synthesis approach in which the specification is split into two parts: a
symbolic game graph, describing the safe transitions of a system, a live-
ness specification in a subset of Linear Temporal Logic (LTL) on top of it.
Many specifications can naturally be written in this restricted form, and
the restriction gives rise to a scalable synthesis procedure — the reasons
for the high popularity of the approach. For specifications even slightly
beyond GR(1), however, the approach is inapplicable. This necessitates a
transition to synthesizers for full LTL specifications, introducing a huge
efficiency drop. This paper proposes a synthesis approach that smoothly
bridges the efficiency gap from GR(1) to LTL by unifying synthesis for
both classes of specifications. The approach leverages a recently intro-
duced canonical representation of omega-regular languages based on a
chain of good-for-games co-Biichi automata (COCOA). By constructing
COCOA for the liveness part of a specification, we can then build a
fixpoint formula that can be efficiently evaluated on the symbolic game
graph. The COCOA-based synthesis approach outperforms standard ap-
proaches and retains the efficiency of GR(1) synthesis for specifications
in GR(1) form and those with few non-GR(1) specification parts.

1 Introduction

Reactive synthesis is the process of automatically computing a provably correct
reactive system from its formal specification [13]. A safety-critical system is
often developed twice: first, when it is described using a formal specification,
and second, when a system is implemented according to this specification. The
dream of reactive synthesis is to fully eliminate manual implementation phase.

Reactive synthesis is however computationally hard. For specifications in the
commonly used linear temporal logic (LTL), checking whether an implementa-
tion exists is 2EXPTIME-complete [30]. The classical approach to solve reactive
synthesis from LTL is to first translate the LTL formula into a deterministic
parity automaton, followed by solving the induced two-player parity game [7].
The system player wins this game if and only if there is an implementation
satisfying the specification. It is the first phase of translating LTL to parity au-
tomaton that usually represents a bottleneck. This observation spurred a series
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of synthesis approaches. For instance, in bounded synthesis, either the maximal
number of states that a system can have [22] or the longest system response
time [20] is restricted. If there exists a system realizing the specification, then
there exists one that adheres to some bounds, and bounded synthesis works well
whenever small bounds suffice for realizing the given specification. Another ap-
proach is to synthesize implementations for parts of the specification, and to then
compose them into one that realizes the whole specification [25,31,21]. The ap-
proach of [26] avoids constructing one large deterministic parity automaton and
instead constructs many smaller ones that—when composed together—represent
the original specification. Such decomposition proved beneficial on practical ex-
amples [1]. Finally, there are approaches that consider “synthesis-friendly” sub-
sets of LTL. Alur and La Torre identified a number of such LTL fragments with
a simpler synthesis problem [3], and this eventually led to the introduction of
Generalized Reactivity(1) synthesis by Piterman et al. [28], GR(1) for short.
GR(1) synthesis gained a lot of prominence and was applied in domains such
as robotics [34,24], cyber-physical system control [36,35], and chip component
design [8,23]. We describe it in more detail.

In GR(1) synthesis, the specification is divided into two parts. The first part
represents the safety properties of a system and encodes a symbolic game graph.
Each graph vertex encodes a valuation of last system inputs and outputs. The
transitions in the graph represent how these variables can evolve in one step.
For instance, a robot on a grid can move from its current cell to the left, right,
up, or down, but cannot jump; this is easily encoded as a symbolic game graph.
Secondly, there are liveness properties of the following form: if certain vertices
are visited infinitely often, then certain other vertices must be visited infinitely
often as well. The liveness properties are encoded symbolically using LTL formu-
las of the shape A, GFp; — /\j GF1;, where ¢; and 1); are Boolean formulas over
input and output system propositions. Synthesis problems from many domains
can be encoded naturally, or after some manual effort, into the GR(1) setting.

Constraining specifications to GR(1) form reduces the synthesis problem’s
complexity from doubly-exponential to singly-exponential (in the number of
propositions), or polynomial when the number of propositions is fixed [8]. The
GR(1) synthesis problem can be solved by evaluating a fixpoint formula on the
symbolic game arena. The fixpoint formula defines the set of vertices from which
the system player satisfies the GR(1) liveness properties while staying in the
game arena. The simple shape of GR(1) liveness properties makes the fixpoint
formula simple. Moreover, evaluating the fixpoint formula on the symbolic game
graph can be done efficiently using Binary Decision Diagrams (BDDs, [12]) as the
underlying data structure. These factors together — efficient implementation and
relatively expressive specification language — made GR(1) synthesis popular.

GR(1) synthesis has a drawback. A single property outside of GR(1) — for in-
stance, “eventually the robot always stays in some stable zone” (FG inStableZone)
— makes GR(1) synthesis inapplicable. Switching to full-LTL synthesizers intro-
duces an abrupt efficiency drop, as they do not take advantage of the simple
structure of GR(1)-like specifications. For improving the practical applicability
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of reactive synthesis, a synthesis approach exhibiting a smooth efficiency curve
on the way from GR(1) to LTL would hence be useful. While there are are
some GR(1) synthesis extensions (e.g., [4,17]), they only extend it by certain
specification classes and consequently do not support full LTL.

This paper unifies synthesis for GR(1) and full LTL. Like in GR(1) synthesis,
we aim at synthesis for specifications split into the safety part encoded as a
symbolic game graph and the liveness part. Unlike the standard GR(1) synthesis,
the liveness part can be any LTL or omega-regular property. For standard GR(1)
specifications, our approach inherits the efficiency of GR(1) synthesis, including
when a specification does not fall syntactically into this class, but is semantically
a GR(1) specification. At the same time, for specifications that go beyond GR(1)
and only have a few non-GR(1) components, our approach scales well.

Our solution is based on the same fixpoint-evaluation-of-symbolic-game-graph
idea. Our starting point is a folklore approach based on solving parity games by
evaluating fixpoint equations [11]. We modify it so that it becomes applicable to
specifications given in the form of a chain of good-for-games co-Biichi automata
(COCOA). Such chains have recently been proposed as a new canonical repre-
sentation of omega-regular languages [19], and it has been shown how minimal
and canonical COCOA can be computed in polynomial time from a deterministic
parity automaton of the language. Our COCOA-based synthesis approach con-
verts the liveness part of the specification into a parity automaton, constructs
the chain, builds the fixpoint formula from the chain, and finally evaluates it
on the symbolic game graph. We show that the fixpoint formula built from the
chain has a structure similar to GR(1) fixpoint formulas. This is not the case
for the folklore approach via parity games, and as a result, our COCOA-based
synthesizer is roughly an order of magnitude faster. The COCOA-based synthe-
sis approach inherits the efficiency of GR(1) synthesis, and it is also efficient on
specifications slightly beyond GR(1). Finally, our approach is the first applica-
tion of the new canonical representation of omega-regular languages.

2 Preliminaries

Automata and languages

Let N = {0,1,2,...} be the set of natural numbers including 0. Let AP be a
set of atomic propositions; 2°F denotes the valuations of these propositions. A
Boolean formula represents a set of valuations: for instance, a A b, also written
ab, encodes valuations in which proposition a has value false and b is true. A
Boolean function maps valuations of propositions to either true or false. Binary
decision diagrams (BDDs) are a data structure for manipulating such functions.
A word is a sequence of proposition valuations w = xoz; ... € (2AP)¥U(2AP)*.
A word can be finite or infinite. A language is a set of infinite words. Given a
language L, the suffiz language of L for some finite word p € (2AP)* is L(L,p) =
{zoz1... € (2*")% | p-2ozy... € L}. The words in this set are called suffiz
words. The set of all suffix languages of L is the set {L£(L,p) | p € (227)*}.
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Automata over infinite words are used to finitely represent languages. We
consider parity and co-Biichi automata with transition-based acceptance. A par-
ity automaton is a tuple A = (X,Q,qo,d) with a finite alphabet X' (usually
X = 2AP) a finite set of states @, an initial state gy € ), and a finite transition
relation 6 C Q x X' x @ x N satisfying (¢, z,¢,¢) € § = (¢,2,¢',c) & ¢ for all
q,7,q" and ¢’ # c. An automaton is complete if for every state q and letter x
there exists at least one pair (¢/,¢) € @ x N s.t. (¢,z,¢',¢) € §; it is determin-
istic if exactly one such pair (¢/,c) exists. Wlog. we assume that automata are
complete. An automaton is co-Biichi if only colors 1 and 2 occur in §, and then
we call the transitions with color 1 rejecting and those with color 2 accepting.

A run of A on a word w = xgx1... € X% is a sequence m = w7y ... € Q¥
starting in 7wy = ¢o and such that (m;, x;, 741, ¢;) € 0 for some ¢; for every i € N;
the induced color sequence ¢ = cycy ... is uniquely defined by w and 7. A run
is accepting if the lowest color occurring infinitely often in the induced color
sequence is even (“min-even acceptance”). When this minimal color is uniquely
defined, e.g. when there is only one accepting run, it is called the color of w
wrt. A. A word is accepted if it has an accepting run. The automaton’s language
L(A) is the set of accepted words. The language of the automaton A’ derived
from A by changing the initial state to ¢ is denoted by L(A, q).

A co-Biichi language is a language representable by a nondeterministic (equiv.,
deterministic) co-Biichi automaton. The Co-Biichi languages are a strict subset
of the omega-regular languages.

An automaton is good-for-games if there exists a strategy f : X* — Q to
resolve the nondeterminism to produce accepting runs on the accepted words,
formally: for every infinite word w = xpx; ..., the sequence w7y ... defined by
i = f(xo...2;-1) for all i € N is a run, and it is accepting whenever w belongs
to the language.

Games and our realizability problem

LTL. A commonly used formalism to represent system specifications is Linear
Temporal Logic (LTL, [29]). It uses temporal operators U, X, and derived ones
G and F, which we do not define here. For details, we refer the reader to [27].

Games. An edge-labelled game is a tuple G = (AP, APo,V, vy, d,0bj) where
V is a finite set of vertices, vg € V is initial, § : V x 2AP1 x 2APo V' g
a partial function describing possible moves (safety specification), and obj is a
winning objective (liveness specification). A play is a maximal (finite or infinite)
sequence of transitions of the form (wp,ig, 09, v1)(v1,%1,01,v2)(V2,d2,02,v3) .. ;
the corresponding sequence (ig U 0g)(i1 U 01) ... is called the action sequence.
An infinite play is winning for the system if it satisfies the objective obj; when
obj is an LTL objective over AP; U APg, the infinite play satisfies obj iff the
action sequence satisfies it. A system strategy is a function f : (2AP71)+ — 2APo,
The game is won by the system if it has a strategy f such that every play
(vo, 10,00, v1)(v1,41,01,02) ... is infinite and it satisfies the objective, where o; =
f(io...1;) for all j. To define parity games, the winning objective obj is set to be
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a parity-assigning function obj : V' — N, and then an infinite play satisfies obj
iff the minimal parity visited infinitely often in the sequence obj(vg)obj(vy) ...
is even (min-even acceptance on states).

The enforceable predecessor operator [1<> reads a set of tuples  C 2AP x V
and returns the set of positions from which the system can enforce taking one
of the transitions into the destination set:

OO(@) ={veV |Vido:(iUo,d(v,i,0)) € P} (1)

Symbolic games with LTL objectives. Games can be represented symbolically.
For instance, the vertices can be encoded as valuations of Boolean variables AP,
and transitions between the vertices can be encoded using a Boolean formula.
This paper focuses on solving symbolic games with LTL objectives:

Given a symbolic game with LTL objective. Who wins the game?

The particular symbolic representation is not important as long as it provides
the operations for union, intersection, and complementation of sets of label-
position tuples, and the enforceable predecessor operator []<. This paper focuses
exclusively on the realizability problem; the extraction of compact and efficient
implementations merits a separate study.

Mu-calculus fizpoint formulas. For an introduction to using fixpoint formulas in
synthesis, we refer the reader to [7], and to [10,5] for mu-calculus in general. The
fixpoint formulas use the greatest (v) and least (i) fixpoint operators, and the
enforceable-predecessor operator [1<>. For instance, the formula Y. X.OO(Y A
(Z V X)) represents the biggest set of vertices such that from all vertices in the
set, the system can enforce that either z does not hold along the next transition
and this transition leads back to the same set, or the play gets closer to a position
from which this can be enforced. This formula hence characterizes the positions
from which the system can enforce that T holds infinitely often along a play.

Generalized Reactivity(1)

Generalized Reactivity(1) is a class of assume-guarantee specifications that in-
cludes safety and liveness components. It gained popularity because many spec-
ifications naturally fall into the GR(1) class, and the restricted nature of GR(1)
admits an efficient synthesis approach. For the purpose of this paper, we define
a GR(1) specification as a game Gg1 = (AP, AP0, V, v, d,P) with an LTL win-
ning objective of the form & = A\i", GFa; — A\_; GFg;, where each assumption
a; and guarantee g; are Boolean formulas over AP; U APo. The original GR(1)
specification class [28] uses logical formulas to describe the symbolic arena.

Solving GR(1) games using fixpoints

We now show how to solve GR(1) games by evaluating fixpoint formulas on
GR(1) game arenas. Consider a GR(1) game Gg1 = (AP, APo, V, vg,d, #) with
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® = N\~ GFa; — AJ_, GFg;. The set of positions W C V from which the
system player wins the game is characterized by the fixpoint equation [18,8]:

W =vZ ;\MY.\T'}VX.DO [(g;NZ) VY V (ma; A X)] (2)
j=1 =1

This fixpoint formula ensures that the system chooses to move into states of
one of the three kinds: (1) states where it waits for an environment goal a; to
be reached, possibly forever (—a; A X), (2) states that move the system closer
to reaching its goal number j (Y), or (3) winning states that satisfy system
goal number j (g; A Z). The conjunction over all guarantees to the right of
vZ ensures that all liveness guarantees are satisfied from all winning positions
(unless some environment liveness assumption is violated). The disjunction over
the environment goals permits the system to wait for the satisfaction of any of
the environment liveness goals. At the end of evaluating the fixpoint formula,
Z consists of the winning positions for the system. The system wins the GR(1)
game if and only if W includes vy.

Ezample. Consider a GR(1) game with AP; = {u}, APp = {x,y}, and & =
GFu — (GFz A GFy). Equation 2 becomes:

pYrX.0O@Z VY Vv aX) A

W=vZ | yvux.0oZ v Y v aX) (3)

For conciseness, we write zZ instead of x A Z, and a instead of —a.

Solving symbolic parity games using fixpoints

Consider a parity game (AP, AP, V, vy, 6, ¢) with colors {0, ..., n}. The winning
positions for the system player in such game are characterized by the fixpoint
formula from [33,11] adapted to our setting:

W =vX%uX'. . . oX".OO(V™ color; A X*) (4)

The operators v and pu alternate, so the symbol o is p if n is odd and v if n is
even; color; = {v | ¢(v) = i} denotes the set of vertices of color i.

Solving symbolic LTL games using fixpoints

Let G be a game with LTL objective ¢. We can construct a deterministic parity
automaton A for @, build the product parity game G ® A, and solve it with the
help of Equation 4. An alternative approach is to embed the product into the
fixpoint formula by using vector notation [10].

Consider an example. Let G = (AP, AP, V,vg,d, P) be a game with ¢ =
GFu — (GFz A GFy). The parity automaton for @ is shown on Figure 1. It has
two states, g and ¢;, and uses three colors. For three colors, the parity fixpoint
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Zu:l yu:l

Fig. 1. Parity automaton for GFu — (GFz A GFy). Transitions are labeled by the
proposition valuations for which they can be taken as well as the color of the transition.

formula in Equation 4 has structure vZ.uY.v X. We index each set variable with
the state of the automaton, thus Z is split into Zy and Z1, etc. The formula is:

Wol _ |Zo| |Yo| [Xo xZ, V ZuYy V zuXg
{Wl] -v {ZJ'“ [YJ'V [Xl]'DQ{yZO V guY: V gax, (5)

The top row encodes the transitions from state gy of the parity automaton:
Qo =9 q1 becomes x 77, qq Tl q1 becomes TuY7, qo a2 qo becomes TuXy. After
formula evaluation, the variable W} contains game positions winning for the
system wrt. the parity automaton A,,, while W; does so wrt. A, .

In general, suppose we are given a game whose winning objective is a deter-
ministic parity automaton (27, Q, qo,d) with transition function 6 : Q x X —
@ x N that uses n colors {0,...,n — 1}. The set of winning game positions is
characterized by the fixpoint formula:

Wi X7 X{ X! 1
Pl =v 0 N7 1 e 51.|:|<> : (6)
Wig) Xal K Xial ]
where for all j € {1,...,|Q|}, we have ¢); = \/ x A fnd(q)
x € 2AP
let (q,c) = d(q;,x)
where ind : Q — {1,...,|Q|} is some state numbering (one-to-one) that maps

the initial automaton state gg to 1. The game is won by the system if and only
if the initial game position belongs to Wi.

3 Chains of Good-for-Games co-Biichi Automata

This section reviews the chain of good-for-games co-Biichi automata represen-
tation [19] for w-regular languages used by our synthesis approach in Section 4.
Like parity automata, a chain of co-Biichi automaton representation of a
language assigns colors to words. The central difference is that the chain repre-
sentation relies on a sequence of automata, each taking care of a single color.

Definition 1. Let L C X% be an omega-reqular language. A falling chain of
languages L1 D Lo D ... D Ly is a chain-of-co-Biichi representation of L if

— every language L; for i € {1,...,n} is a co-Biichi language, and
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— for every w € X%, the word w is in L if and only if w & Ly or the highest
index © such that w € L; is even.

Exzamples. The universal language X* has the singleton-chain L; = ), and the
empty language has the chain (L; = %) D (Ly = (). The language of the LTL
formula GFa over a single atomic proposition a is expressed by the chain (L; =
L(FGa)) D (Ls = 0), and L(FGa) by (L1 = X*“) D (Ly = L(FGa)) D (L3 = 0).
The definition of the natural color of a word from [19] provides a canonical
way to represent L as a chain of co-Biichi languages L1 D Lo D ... D Ly, which
uses the minimal number of colors. Moreover, Abu Radi and Kupferman describe
a procedure to construct a minimal and canonical good-for-games co-Biichi au-
tomaton for a given co-Biichi language [2]. Thus, every omega-regular language
has a canonical minimal chain-of-co-Biichi-automata representation (COCOA).
The canonization procedure in [2, Thm.4.7] ensures the following property.

Lemma 1 (|2]). Fiz a canonical GFG co-Biichi automaton A computed by [2,
Thm.4.7]. For every state q and letter x, either there is

— ezxactly one accepting transition, or there are
— one or more rejecting transitions. In this case:
e all successors of q on x share the same suffiz language L', i.e., for every
two successors s1 and sy of ¢ on x: L(A, s1) = L(A,s2), and
e for every state ¢ with suffiz language L', there is a rejecting transition
to ¢’ from q on x.

Figure 2 on page 12 shows an example of a COCOA.

Strategies to get back on the track

Every GFG automaton has a strategy to resolve its nondeterminism such that
a word is accepted if and only if the run adhering to this strategy is accepting.
We allow such strategies to diverge for a finite number of steps, and show that
this divergence does not affect the acceptance by canonical GFG automata.

Given a COCOA A', ..., A", define the natural color of a word to be the
largest level [ such that A! accepts the word, or 0 if no such [ exists. Thus, a
word is accepted by the COCOA if and only if the natural color is even.

GFGness strategies f'. Let f': X* — Q' be a GFG witness resolving nondeter-
minism in A, for every [ € {1,...,n}; we call f' a golden strategy of A!, and
the induced run for some given word is called its golden run.

Restrictions g'. The synthesis approach, which will be described later, considers
combined runs of all automata. Its efficiency depends on the number of reachable
states in Q' x ... x Qm, so it is beneficial to reduce this number. To this end,
we introduce a restriction on successor choices. We first define a helpful notion:
for a co-Biichi automaton A and its state ¢, let L*“(q) denote the set of words
which have a run from q visiting only accepting transitions. For several automata
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Al ..., Al and their states ¢', . .., ¢!, define L2°(¢",. .., ¢") = A\, L%“(¢*). Then,
for I € {1,...,n}, define a restriction function g' : Q' x ¥ x Q' x ... x Q™' —
29" for every ¢!, x, vt ..,r7 let gl(¢h x, . . TY) = S C 8¢l ) be
a maximal set such that for every r! € S there exists no other # € S with
Loce(rt . et F) € Lece(rl, ... r!). Intuitively, given a current state ¢ of
the automaton A, a letter z, and successor states r',...,7!~! of the automata
on lower levels, the function ¢! returns a set of states among which A’ should
pick a successor. Runs p! = ¢lqi ...,...,p" = qiq? ... of AL,..., A" on a word
ToT1 ... satisfy restrictions g', ..., g" if for every level [ € {1,...,n} and step
i eN: qéH € gl(qﬁ,zi,qilﬂ, .. ,qiﬁ) Strategies f!: X* — Q' for I € {1,...,n}
satisfy restrictions ¢!, ..., ¢" if on every word the strategies yield runs satisfying
the restrictions.

The following lemma states that requiring runs of A!,..., A" to satisfy the
restrictions g, ..., g" preserves the natural colors and the GFGness.

Lemma 2. There exist strategies f' : X* — Q' for 1 € {1,...,n} satisfying the
restrictions g', ..., g" such that for every word of a natural color c, the strategies
yield accepting runs p', ..., p° of A',..., A°.

Proof. Fix a word w of a natural color ¢. Each automaton A’ of the chain has a
GFG witness in the form of a strategy h! : X* — Q' to resolve nondeterminism.
From such strategies and the restrictions g',...,g", we construct the sought
strategies f1,..., f", inductively on the level, starting from the smallest level 1
and proceeding upwards to n.

Fix [ € {1,...,n}, and suppose the strategies f!,..., f'=! are already de-
fined; we define the strategy f': X* — Q'. Fix a moment i — 1. Let ¢!_; be the
state of the run p' proceeding according to f, (jﬁ = h!(xg...2;_1) the successor
state in the original run j' according to h', q,. .. ,qf the successor states in
pt, ..., p7 1 adhering to f1,..., f"71 and Q! = ¢'(¢l_,,®i 1,4}, .., qffl) the
allowed successors on level . Then:

— if Q! = {q!} describes a unique choice, then f!(xq...7; 1) = ¢! takes it,

— else f! picks any ¢! € Q! s.t. Lacc(q},...,qﬁfl,qﬁ) D Loe(gl, .. .,qﬁfl,(ﬁ).
Note that such qé always exists because in canonical GFG co-Biichi automata
a choice of a nondeterministic transition does not narrow the subsequent
nondeterminism resolution.

We now show that the strategies f', ..., f! preserve the natural colors. Fix a
word w. It suffices to prove that the original strategy h! yields an accepting run
pt if and only if f! yields an accepting run p'. If p! is rejecting, then p! is also
rejecting, for h! is a witness of GFGness. Now assume that j is accepting. After
some moment m, the runs p', .. ., pl_l, ﬁl never make a rejecting transition, hence
Wi Wit --- € LO(q, ..., ¢ G,). Let m’ > m be the first moment after m
when p' visits a rejecting transition; if no such m/ exists, we are done. At moment

m/, the strategy f' picks a successor ¢.,,,; such that L*(q}, 1, ..., ¢, 4q) 2

~ . 1—1 ~
Lo(qhyqy ooy @hypq) SINCE Wyyg1 ... € LO(qhyyqs- s Gryrs @ gr)s that
suffix also belongs to a larger L% wrt. ¢, 41- Hence the run p is accepting. 0O
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Get-back strategies f!. We now consider runs that diverge from golden runs.
Given an individual strategy f': X* — Q', define f!: ¥* x Q' x ¥ — Q' to be
a strategy-like function which, when presented with a choice, makes the same
choice as f!. Formally: for every p € X*, ¢ € Q' reachable from the initial state
on reading p, and z € X, the value fl(p,q,x) = fl(p-x) if Al needs to take a
rejecting transition from ¢ on z, otherwise there is no choice to be made and
fip,q,7) = ¢ for the unique successor ¢’ of ¢ on reading . It follows from
properties of canonical GFG automata (Lemma 1) that every successor chosen
by f! satisfies the transition relation of A!. We now prove that it is sufficent to
adhere to f! only eventually.

Lemma 3. Fiz a COCOA and a word w. Forl € {1,...,n}, suppose A" on w
has a rejecting run p that eventually adheres to f', where f is constructed from
ft of Lemma 2. Then Al rejects w.

The proof is based on Lemma 1, which implies that two diverging runs of a
canonical GFG automaton on the same word can always be converged once a
rejecting transition is taken.

Proof. For | = 0 the claim trivially holds; assume [ > 0. Let p!\ be the golden
run of A’ on the word. Let m be the moment starting from which p' adheres
to the golden strategy of A'. Let n be the first moment n > m when A! makes
a rejecting transition: by properties of canonical GFG automata (Lemma 1),
there must be a rejecting transition to the same state as in p.. The strategy f!
moves the automaton A’ in p' into the same state at moment n + 1 as it is in
pL. Afterwards, the strategy f! ensures that A' in p' follows exactly the same
transitions as A’ in p.. Hence, the golden run p! is rejecting: A’ rejects w. O

COCOA product

In this section, we compose individual automata of COCOA into a product which
is a good-for-games alternating parity automaton [9]. The results above imply
that the languages of a COCOA and its product coincide. Later we use COCOA
products to solve games with LTL objectives.

Alternating automata. A simple! alternating parity automaton (X, Q,qo,d) has
a transition function of type § : Q x ¥ — 29 x N x {rej, acc}. For instance,
0(¢,z) = ({q1,92}, 1, rej) means that from state ¢ on reading letter z there are
transitions to g; and g9, both labelled with color 1, and the choice between ¢
and ¢o is controlled by the rejector player. There are two players, rejector and
acceptor, and the acceptance of a word w = xgx ... is defined via the following
word-checking game. Starting in qg, the two players resolve nondeterminism and
build a play (qo, co, plo, q1)(q1, ¢1, pl1, g2) - . .: suppose the play sequence is in state

L «Simple’ refers to a simpler form of the transition function. We use § : Q x ¥ —
29 x N x {rej, acc} while the general form is § : Q x ¥ — BT (Q) plus parity
assignment @@ x X x @ — N. We forbid mixing conjunctions and disjunctions.
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qi, let 0(qi, ;) = (Qit1,¢i,pl;): if pl; = rej then the rejector chooses a state
Gi+1 € Qiy1, otherwise the acceptor chooses. The play sequence is then extended
by (¢, ci,pli,giy1) and the procedure repeats from state g; 1. The play is won
by the acceptor if the minimal color appearing infinitely often in cyc; ... is even
(min-even acceptance), otherwise it is won by the rejector. The word-checking
game is won by the acceptor if it has a strategy f, : @* — @ to resolve its
nondeterminism to win every play; otherwise the game is won by the rejector,
who then also has a winning strategy. Note that although the acceptor strategy
does not know the rejector choices beforehand, it knows the word w. The word
is accepted by the automaton if the word-checking game is won by the acceptor.

A simple alternating automaton is good-for-games, abbreviated A-GFG, if
the acceptor player has a strategy face : (@ X X)* — @ to win the word-
checking game for every accepting word, and the rejector player has a strategy
Jrej 1 (Q X X)* — @ winning for every rejected word. These strategies depend
only on the currently seen word prefix, not the whole word. We remark that our
definition of GFGness differs from [9] but they show the equivalence [9, Thm.8§].

COCOA product. The product is built in three steps. First, we define a naive
product, which combines individual chain automata into A-GFG in a straightfor-
ward way. The naive product may contain states whose removal does not affect
its language, hence in the second step we define a product with reduced sets of
states and transitions. In turn, the reduced product may miss transitions ben-
eficial for synthesis. Therefore, in the last step, we enrich the reduced product
with transitions to derive the optimized, and final, COCOA product.

Given a COCOA A! = (X,Q', ¢}, 6") with I € {1,...,n}, the naive COCOA
product is the following simple alternating parity automaton (X, Q, ¢°,d). Each
state is a tuple from Q' x ... x Q", ¢° = (¢,...,q}), and the set of states
consists of those reachable from the initial state under the transition relation
defined next. The transition relation 6 : Q x ¥ — 29 x N x {rej, acc} simulates
individual automata of the COCOA. Consider an arbitrary (¢',...,q") € Q,
x € X5 let r be the smallest number such that A" has a rejecting transition from
q" on reading z, i.e., (¢",z,¢",1) € §" for some ¢§" € Q", otherwise set r to n+ 1.
By abuse of notation, define §'(¢',x) = {¢* | 3p: (¢!, x,d,p) € 6'} to be the set
of successor states of ¢' on reading = in A'. Let pl” be rej for odd r and acc for
even r. Then, 6((¢*,...,q"),z) = (Q,r — 1,pl"), where:

Q=1{(d"....d" | § € d(q",x) for every I}.

Notice that the automata on levels [ < r have unique successors ((jl is unique) as
their transitions are accepting and hence deterministic (by Lemma 1 on page 8).
The automata on levels [ > r may need to resolve nondeterminism, which is
done by a single player pl” in the product.

The reduced COCOA product is defined by replacing the definition of Q by

Q= {(ql, g | q e gl(ql, .. .,(jl_l,x,ql) for every 1}

where the restriction function ¢! was defined on page 9. As a result, this set Q has
no two states (¢',...,¢") and (¢,...,q") with Le(q!,...,q") C L*(gt,...,
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Al A
FGZ V FGj FGza v FGya

Fig. 2. COCOA for the language GFu — (GFz AGFy). Rejecting transitions are dashed.

G"). The set of states of the reduced COCOA product is the set of states from
Q"' x ... x Q™ reachable under the above definition.

Finally, given a reduced COCOA product (X, Q, % dr), we now define the
optimized COCOA product (X, Q,q",60). It has the same states Q as the reduced
product but adds transitions. For (¢',...,¢") € Q, z € X, let (Qr,7—1,pl") =

dr((¢,...,q"),z). Then do((q',...,q"),x) = (Q,r — 1,pl"), where

Q:QRU{(qla7qn) EQ:
Vie{l,....,r—1}: ¢ € 8'(¢', z) A
Vie{r,...,n}3(qh, ., d%) € Qr: L(G) = L(dk)}.

In the first condition, the successor ¢! for I < r—1 is uniquely defined. The second
condition on levels higher than r — 1 allows for state jumping.

Lemma 4. For every COCOA, the optimized product is A-GFG and has the
same language as the COCOA.

Proof. We describe two strategies, facc : (@ x X)* — @ for the acceptor and
Jrej 1 (@ x X)* — @ for the rejector, and prove two claims: for every word,
(1) if the word is accepted by COCOA, the acceptor wins the word-checking
game using face, (2) if the word is rejected by COCOA, the rejector wins the
word-checking game using f;cj. The lemma follows from these claims.

We define facc. Given a finite history h = ((qf, ..., ¢7'), z1)...((q}, -, @), 4),
let face(h) = (qi1, - ¢ 1), Where for 1 =1,...,n:

—ifliseven: ¢\ = fl(z1... i1, ¢}, 2;);
— if [ is odd, pick arbitrary ¢!, € g'(ql 1, -, qﬁﬁ, qb).

The strategy frej is built similarly but f!is used for odd [. Finally, the two items
are then proven using contraposition and then applying Lemma 3. a

Example. Figure 3 shows the optimized product for COCOA in Figure 2.

4 Solving LTL Games Using Chain of co-Biichi Automata

This section shows how to solve symbolic games with LTL objectives by going
through COCOA. For a given LTL specification we construct a deterministic



Fully Generalized Reactivity(1) Synthesis 95

Fig. 3. Optimized COCOA product for GFu — (GFxz A GFy). It has only two nonde-
terministic transitions, connecting (qo, po) and (q1,p1), controlled by the rejector. For
instance, 6((qo,po), z) = ({(q0,po), (q1,p1)}, 0, rej).

parity automaton and then a COCOA using the effective procedure of [19]. We
then compute the COCOA product. Finally, we encode the symbolic game with
a COCOA product objective into a fixpoint formula. The latter step is simple
because the COCOA product is a good-for-games alternating automaton, and
such automata are composable with games [9, Thm.8]. Finally, we show that the
GR(1) fixpoint equation is a special case of the COCOA fixpoint formula.

Fixpoint formula for games with COCOA objectives

Given a game with an objective in the form of an optimized COCOA product
(22 Q, qo,8), we construct a fixpoint formula that characterizes the set of win-
ning positions. Since the COCOA product is a good-for-games parity automaton,
the formula resembles Equation 6. It has the structure vX%.uX?!....ocX"™ where
n + 1 is the number of colors in the COCOA product, and the operators v and
v alternate. As before, we use the vector notation, and split each variable X'
into |Q| variables X!, ... ,X‘lQ‘, one per state of the COCOA product, and the
kth row in the fixpoint formula encodes transitions from state ¢ of the product.
Let ind : Q@ — {1,...,]|Q|} be some one-to-one state numbering with the initial
state of the COCOA product mapped to 1, and let OP” denote \/ when pl is
acc otherwise it is . The following fixpoint formula computes, for each state ¢
of the COCOA product, the set W, q(,) of game positions from which the system
player wins the game wrt. the COCOA product whose initial state is set to ¢:

Wi X7 Xi Xt i
: =v| i Jpu| ¢ |...0o| ¢ [.OO| ¢ |, where forall j: (7)
0 1 n
Wia Kol e Xal el
l c
b= V  (¢AOPY Xty
x € 2AP

let (chvpl) = 6(qj<z)

The game wrt. the COCOA product is won by the system player if and only
if vy € Wy. Since the languages of COCOA and its optimized product coincide
(Lemma 4), we arrive at the following theorem.
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Theorem 1. A game with an LTL objective @ is won by the system if and only if
the initial game position belongs to W1 computed by Equation 7 for the optimized
COCOA product for .

Ezample. Consider the LTL specification GFu — (GFz A GFy). The optimized
product contains only states (go,po) and (g1, p1). The fixpoint formula is:

y Zoo| | Yoo y Xoo 0 xZooZ11 vV TuYoo V ZTuXog
211 H Yii|© [ X YyZooZ11 V yuYir V yuXyp

where the subscript index ij denotes a state (¢;,p;) of the optimized COCOA
product. The LTL game is won by the system if and only if at the end of eval-
uation the initial game position vy belongs to Zyg. This formula has a structure
similar to the GR(1) Equation 3, in particular it uses the conjunction over Z
variables which leads to a reduction of the number of fixpoint iterations. In
contrast, the parity formula in Equation 5 misses this acceleration.

GR(1) synthesis as a special case

We argue that for GR(1) specifications, the COCOA fixpoint Equation 7 be-
comes similar — in spirit — to GR(1) fixpoint Equation 2. Consider a GR(1)
formula A;”, GFa; — AJ_, GFg;. Its COCOA has two automata, A" and A*.
The automaton A' accepts exactly the words that violate one of the guarantees,
while A? accepts exactly the words that violate one of the guarantees and one
of the assumptions. In order to reason able number of states in canonical au-
tomata, we assume henceforth that in the GR(1) formula, no assumption implies
another assumption or guarantee, and no guarantee implies another guarantee.
The structures of A! and A2 are as follows. The automaton A! has one state per
guarantee (n in total), while A% has one per combination of liveness assumption
and guarantee (m - n in total). The optimized COCOA product has exactly one
state for each assumption-guarantee combination, m-n in total, versus n- (m-n)
for the non-optimized product. Let {1,...,m} x {1,...,n} be the states of the
optimized product, and let (1,1) be initial. For each state (i, j):

— for every z |= a@;g;: 6((i,4), =) = ({(i,4)},2, rej),

— for every z |= a;9;: 0((i,7),2) = ({(7,4) | € {1,...,m}},1, acc), and
— for every z = g;: 0((3,5),2) = ({1,...,m}x{1,...,n},0, rej).

The fixpoint formula for such COCOA product has the form:
Wi Z1a Yia X1 (!

: =v o lp 7 S N O I , where for all 7, j:
Wm,n Zm,n Ym,n Xm,n wm,n

Vij=09;(NZij) v aigi(\/Ye;) Vv ag;X;

i'e{l,..., m} i'e{1,....,m}
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The conjunction /\;, ;, Zy, ; and disjunctions \/;, Y ; enable faster information
propagation which results in smaller number of fixpoint iterations. Such infor-
mation sharing is present in GR(1) fixpoint Equation 2, and it is in this sense the
COCOA approach generalizes GR(1) approach. In contrast, the parity fixpoint
formula for GR(1) specifications misses this acceleration.

We now optimize the equation to reduce the number of variables. First, we
introduce variables Y; and Z;, for j € {1,...,n}, and transform the formula into

W VA Vil [V;®i1
l=v e | : , where
W, Z| Vul |V, Pin
P11 X1 Y11
: =v S .O8| ¢ |, where
Prnn Xmn Ymn
Vi =0;(\Zi) vV ag¥; vV a:g;X:,
j'e{1,...,n}

Note that for every ¢ € {1,...,m}, the value W, ; computed by the old formula
equals the value W; computed by the new formula (W;; = W;), where j €
{1,...,n}. We then introduce a fresh variable Z, and transform the formula to:

W =vZ. /\ U;, where

je{l,...,n}
[ Y V,; Pia
= : , where
_Wn Yn Vz éi,n
D11 [ X141 g1Z vV ag1Yr V a1g1X1,1
: =v SO :
Qsm,n _Xm,n gnZ \ amgnyn \ afmgn)(rn,n

After this transformation, we have W = W, for every j € {1,...,n}. Finally,
the last equations can be folded into the formula

W=vz \ uY.\/ vX.OO0 (9,2 V a:g;Y V a:g;X]
j=1 i=1

which is equal to Equation 2 modulo expressions in front of the variables. Our
prototype tool implements a generalized version of such formula optimization.

5 Evaluation

Evaluation goals are: (G1) show that standard LTL synthesizers do not fit our
synthesis problem, (G2) compare our approach against specialized GR(1) syn-
thesizer, and (G3) compare the COCOA approach against the parity approach.
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We implemented COCOA and parity approaches in a prototype tool reboot.
It uses SPOT [16] to convert LTL specifications (the liveness part of GR(1))
to deterministic parity automata. From it, reboot builds COCOA using the
construction described in [19]. The COCOA is then compiled into a fixpoint for-
mula in Equation 7, and symbolically evaluated on the game graph. For symbolic
encoding of game positions and transitions, we use the BDD library CUDD [32].

We compare our approaches with GR(1) synthesis tool slugs [18] and the
LTL synthesis tool strix [26] which represent the state of the art. The experi-
ments were performed on a Linux machine with AMD EPYC 7502 processor; the
timeout was set to 1 hour. To implement the comparison, we collected existing
and created new benchmarks: AMBA, lift, and robot on a grid. Each specifica-
tion is written in an extension of the slugs format: it encodes a symbolic game
graph using logical formulas over system and environment propositions, and an
LTL property on top of it. In total, there are 80 benchmarks, all realizable.

The evaluation data is available at https://doi.org/10.5281 /zenodo.10448487

AMBA and lift. We use two parameterized benchmarks inspired by [8], each
having two versions, a GR(1) and an LTL version. The first specification en-
codes an elevator behaviour and is parameterized by the number of floors. Its
GR(1) specification has one liveness assumption and a parameterized number
of guarantees (GF — A, GF). Lift’s LTL version adds an additonal request-
response assumption and has the form GFA (GF — GF) — A, GF, which requires
5 parity colors. There are 24 GR(1) instances and 21 LTL instances, with the
number of Boolean propositions ranging from 7 to 34. The AMBA specification
describes the behaviour of an industrial on-chip bus arbiter serving a param-
eterized number of clients. Its GR(1) version has the shape GF — A, GF; our
new LTL modification replaces one safety guarantee ¢ by FGp, which allows
the system to violate it during some initial phase, and we add an assumption
of the form GF — GF. Overall, the AMBA’s LTL specification has the form
GF A (GF — GF) — FGA A, GF, and requires 7 parity colors. There are 14 GR(1)
instances and 7 LTL instances; the number of Boolean propositions is 22 for the
specification serving two clients, and 77 for the 15-client version.

Robot on a grid. This benchmark describes the standard scenario from robotics
domain: a robot moves on a grid, there are walls, doors, pickup and delivery
locations, and a moving obstacle. When requested, the robot has to pickup a
package and deliver it to the target location, while avoiding collisions with the
walls and the obstacle and passing through the doors only when they are open.
The GR(1) specification has parameterized number of assumptions and guaran-
tees: A, GF — A, GF. The LTL version introduces preferential paths: the robot
has to eventually always use it assuming that the moving obstacle only moves
along her preferred path. This yields the shape FG A A, GF — FG A A\, GF (5
colors). There are 16 maps of size 8 x 16 with varying number of delivery-pickup
locations and doors. The number of Boolean propositions ranges from 24 to 53.
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Fig. 4. From left to right: (G1) Cactus plot comparing our approaches with LTL syn-
thesizer strix [26]; (G2a) Comparing COCOA-based approach with GR(1) synthesizer
slugs [17]; (G2b) The same but excluding LTL-to-parity translation time; (G3) Com-
paring COCOA and parity approaches (excluding LTL-to-parity translation time).

G1: Comparing with LTL synthesizer. Figure 4 shows a cactus plot. On these
problems, the LTL synthesizer strix is slower than specialized solvers. The rea-
son is the sheer number of states in benchmark game arenas: e.g., benchmark
ambalb uses 77 Boolean propositions, yielding the naive estimate of game arena
size in 277 states. Solver strix tries to construct an explicit-state automaton
describing this game arena and the LTL property, which is a bottleneck. In con-
trast, symbolic solvers like slugs or reboot represent game arenas symbolically
using BDDs, and reboot constructs explicit automata only for LTL properties.

G2: Comparing with GR(1) synthesizer. The second diagram in Figure 4 com-
pares the COCOA approach with slugs on the GR(1) benchmarks. The diagram
shows the total solving time, including the time reboot spends calling SPOT for
translating GR(1) liveness formula to parity automaton. On Lift examples, most
of the time is spent in this translation when the number of floors exceeds 15:
for instance, on benchmark lift20 reboot spent 650 out of total 670 seconds in
translation. If we count only the time spent in fixpoint evaluation — and that is a
more appropriate measure since GR(1) liveness formulas have a fixed structure
— the performances are comparable, see the third diagram.

G3: COCOA wvs. parity. The last diagram in Figure 4 compares COCOA and
parity approaches on all the benchmarks, and shows that the COCOA approach
is significantly faster than the parity one. We note that on these examples, the
number of states in the optimized COCOA product was equal to or less than
the number of states in the parity automaton. At the same time, the number of
fixpoint iterations performed by the COCOA approach was always significantly
smaller than for the parity one. Intuitively, this is due to the structure of COCOA
fixpoint equation that propagates information faster than the parity one.

Remarks. We did not compare with other symbolic approaches for solving parity
or Rabin games [15,14,6]: although they use symbolic algorithms, as input these
tools require games in explicit form or their game encoding separates positions
into those of player-1 and player-2; both significantly affects the performance.

While all our benchmarks were realizable, the prototype tool was system-
atically compared against other approaches on both realizable and unrealizable
random specifications using fuzz testing.
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Abstract. We present an innovative approach to the reactive synthesis
of parity automaton specifications, which plays a pivotal role in the
synthesis of linear temporal logic. We find that our method efficiently
solves the SYNTCOMP synthesis competition benchmarks for parity
automata from LTL specifications, solving all 288 models in under a
minute. We therefore direct our attention to optimizing the circuit size
and propose several methods to reduce the size of the constructed circuits:
(1) leveraging different parity game solvers, (2) applying bisimulation
minimisation to the winning strategy, (3) using alternative encodings from
the strategy to an and-inverter graph, (4) integrating post-processing with
the ABC tool. We implement these methods in the Knor tool, which has
secured us multiple victories in the PGAME track of the SYNTCOMP
competition.

Keywords: Reactive synthesis - Parity games - Binary decision diagrams

1 Introduction

Reactive synthesis as first stated by Church [8,9] and outlined in [32] is the
act of automatically constructing a reactive system such that all interactions
with an unknown environment satisfy a linear temporal logic (LTL) specification.
While early solutions were proposed to solve the synthesis problem via finite-
state automata [7], until recently reactive synthesis using deterministic parity
automata and parity games was deemed infeasible in practice, in part due to
the lack of efficient translations from LTL to deterministic w-automata. With
the rise of direct translations, LTL synthesis tools such as ltlsynt [27,33,34] and
Strix [26] are capable of solving a wide range of specifications via deterministic
parity automata and parity games, and perform better than some of the previous
techniques avoiding deterministic parity automata.

The advantage of reactive synthesis is that synthesized systems are correct
by construction and therefore do not need to be tested nor model checked for
correctness. The reactive synthesis (SYNTCOMP) competition was founded to
increase the impact of reactive synthesis in industry and improve the quality of
synthesis tools [22,23]. Motivated by the new PGAME track in the SYNTCOMP
competition, we seek to use the Oink parity game solver [11] in the competition and
to implement the necessary infrastructure that translates the parity automata
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of the competition into parity games suitable for Oink, and that translates
the winning strategy computed by Oink into a Boolean circuit. We name this
implementation Knor!.

Knor leverages Oink to solve parity games with state-of-the-art parity game
solvers [16], and the Sylvan binary decision diagrams (BDD) package [14] to
implement most of the steps before and after solving and a purely symbolic parity
game solver based on [25]. The techniques implemented in Knor have secured us
multiple victories in the SYNTCOMP competition, in 2021, 2022 and 2023.

Following initial success of Knor in the competition, we observe a major
difference with main competitors ltlsynt and Strix. While Knor can solve all
benchmarks in a remarkably short time, the constructed circuits are sometimes
several orders of magnitude larger than the circuits constructed by other tools.
Thus, we propose several techniques, mostly symbolic techniques that rely on
binary decision diagrams, to reduce the size of the constructed circuits.

Contribution. We present the Knor tool that solves the synthesis problem of
parity automata to Boolean circuits, built around the parity game solver Oink.
We consider three methods to translate the given parity automaton to a parity
game, and present a novel symbolic approach that improves upon an explicit
translation by several orders of magnitude. As Oink implements several parity
game solvers that have been shown in [16] to perform well for parity games
derived from reactive synthesis benchmarks, we consider whether changing the
algorithm impacts the size of the constructed circuit. We study whether applying
bisimulation minimisation as in [15], which aims to minimize the number of states
of the winning strategy after solving the parity game, can reduce the size of the
circuits. Similarly, we study different encodings from the winning strategies into
Boolean logic, in particular whether a onehot encoding of the states improves
the circuit size. Finally, we apply a similar post-processing step as Strix by using
the ABC tool [4,5] to minimize the constructed circuit after encoding it as an
and-inverter graph. Sec. 3 describes Knor and provides accessible descriptions of
the implemented techniques. We evaluate these techniques in Sec. 4. We discuss
our findings in Sec. 5.

2 Preliminaries

Given two disjoint sets of Boolean variables I and O representing input and output
signals, and an w-regular language L of infinite words over the alphabet 2/9©
representing a specification, the reactive synthesis problem asks us to construct
a controller that enforces L. The controller is a function (QI UO)* x 21 — 20 that
yields a valuation of the output signals 2© based on a history of input and output
signals (ZIUO)* and the current input signals 27.

While we are interested in the broader context of the synthesis of reactive
systems that enforce specifications given in linear temporal logic (LTL), we

! Knor is the Dutch word for the sound that a pig makes, i.e., “oink”.
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assume in this paper that L is given as a deterministic parity automaton. LTL
specifications can be translated to a parity automaton of doubly-exponential size.

Deterministic parity automata (DPA) are w-regular automata that accept
w-regular languages. A DPA is a tuple (Q,qo, AP, A, F), where @ is a finite
set of states, qo € @ is the initial state, AP is a set of atomic propositions,
A C Q x 247 x @ is the transition relation and F: Q — N assigns to each state
a priority. A run of the automaton is an infinite sequence of states consistent
with the transition relation. A run is accepting if and only if the maximum
priority that occurs infinitely often along the run is an even number. We define
parity automata with priorities on states. Alternatively, priorities can also be on
transitions.

A parity game is a DPA with two players Even and Odd, where the set of
states @) is partitioned into two sets Qo and (1. In this paper, we refer to the
states of the parity game as vertices and the transitions of the parity game as
edges. A run on a parity game is an infinite sequence of vertices where player
Even decides the next vertex if the current vertex is in (g, and player Odd if
it is in 1. A fundamental result for parity games is that they are memoryless
determined [18], i.e., each vertex is winning for exactly one player, and both
players have a positional strategy for each of their winning vertices.

To solve the synthesis problem, given a deterministic parity automaton over
AP = I UQO, we construct a parity game by splitting the automaton across I
and O, letting one player (the environment) choose a valuation of variables in T
and the other player (the controller) a valuation of variables in O.

The result of reactive synthesis is a Boolean circuit, structured as an and-
inverter graph (AIG). An AIG is a directed acyclic graph, featuring terminal
nodes that denote Boolean inputs (input signals and latches), internal nodes
representing AND-gates, and edges with complementation for logical negation.

Binary decision diagrams [6,17] (BDDs) are a well known data structure for
representing and manipulating Boolean functions. A binary decision diagram is a
rooted, directed acyclic graph. Its internal nodes represent decisions based on
the values of Boolean variables, directing the path to one of the two child nodes,
via the “true” edge (depicted as a solid arrow) and the “false” edge (depicted as a
dashed arrow). Reaching the terminal node “1” indicates that the represented
Boolean function evaluates to true for that particular valuation, and reaching
the “0” node indicates a false evaluation. BDDs are recognized as a canonical
representation of Boolean functions when they meet two conditions. First, they
must be ordered; that is, they follow a fixed variable ordering when encountering
Boolean variables. Second, they must be reduced, meaning that any redundant
decision nodes with identical successors are eliminated [6]. BDDs can be incredibly
efficient if a suitable variable ordering is found and the represented set is encoded
in a way that results in small decision diagrams.

Multi-terminal binary decision diagrams (MTBDDs) extend BDDs by allowing
terminal nodes to hold various types of data, not just the Boolean values true
and false. The MTBDD implementation in Sylvan [14] in particular allows for
terminal nodes to be labeled by 64-bit values. These labels can represent a wide
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Fig. 1. Overview of Knor from input file to output file.

range of data, including 64-bit integers, pointers, floating-point numbers, or even
pairs of 32-bit values.

3 Knor

We study reactive synthesis from parity automata to Boolean circuits in the
Knor research tool. Knor is written in C++ and is publicly available under a
permissive license via https://www.github.com /trolando/knor. See Fig. 1 for an
overview of Knor. All steps of the program are discussed in the following sections.

3.1 Input format

Knor reads input files formatted using the extended Hanoi Omega-Automata
(HOA) format [31].

The HOA format [1] is a file format to describe finite-state automata that
accept sets of infinite words. The automata consist of a finite set of states @), one or
more initial states I C @, a set of atomic propositions AP, and a labeled transition
relation A C @ x B(AP) x @, where each transition is labeled with a Boolean
formula ¢ € B(AP), where we use B(AP) to denote the set of Boolean formulas
over AP. Furthermore, the HOA format describes an acceptance condition of
the automaton, i.e., a set of infinite runs of the automaton which are considered
accepting. For the purposes of the current paper, we are only interested in the
parity condition, i.e., the automaton is accepting if and only if the lowest /highest
priority seen infinitely often along the run is even/odd, depending on whether
the acceptance condition is min even, min odd, max even or max odd. In the
HOA format, the priorities are either on states or on transitions.

The extended HOA format adds a distinction between controllable (output)
and uncontrollable (input) atomic propositions [31].
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Fig. 2. Splitting a transition on the parity automaton (left) to construct the parity
game (right), with priorities on the states (above) or on the transitions (below). We
depict states by squares, vertices of the environment player by pentagons and vertices
of the controller player by circles.

3.2 OQutput format

Knor can produce parity games in the standard PGSolver [20] format that is also
accepted by Oink, as well as Boolean circuits in the AIGER format [3].

3.3 Translation from automaton to game

As described above, the parity automaton consists of a number of states with
transitions labeled by a Boolean formula, and with the priorities either on the
transitions or on the states.

To translate the automaton to a parity game, we need to split every transition
into two parts. The environment player “moves first” by choosing a valuation of
the input signals, and the controller player responds by setting output signals such
that the specification is guaranteed. That is, the output signals are determined
by the current state and the current input signals.

We propose three methods to convert the parity automaton to a parity game:
a naive explicit method, a half-symbolic method and a fully symbolic method.

(Naive) Explicit method. The explicit method simply creates a parity game
vertex for every state in the parity automaton, and then splits the transitions
into two parts as in Fig. 2.
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For every valuation 7 of the input signals, we create an intermediate vertex
that is controlled by the controller player. This intermediate vertex should have
the least relevant priority, typically 0. For every transition with a label (Boolean
formula) that is satisfiable for i, we then create an edge from the intermediate
vertex to the successor of the transition.

Since we want our parity games to have priorities on the vertices and not on
the edges, we need to create extra vertices in case the automaton has priorities
on transitions. This is also shown in Fig. 2. Priorities on the source vertex,
intermediate vertex, and target vertices should be set to the least relevant
priority (typically 0) or be ignored by the solver.

The result is an explicit parity game which Knor directly constructs using
Oink. The game is then solved with any algorithm implemented by Oink.

Half-symbolic method. The fully explicit method works reasonably well for
many of the smaller input models, however some models result in a significant
exponential blowup of the parity game, as any game with n input signals has 2"
outgoing edges per source vertex. The extended HOA format actually encodes the
labels on the transitions symbolically using Boolean formulas, so an exponential
blowup in some cases can be expected. We propose a method that still results
in an explicit game constructed using Oink, but that employs binary decision
diagrams to reduce the number of intermediate vertices and extra transitions in
the parity game.

For every state, we produce a multi-terminal binary decision diagram (MTBDD)
encoding all outgoing transitions, with decision variables representing input sig-
nals ordered before variables representing output signals, and terminal nodes
encoding both priority and successor state as a pair of two 32-bit numbers.

We then collect all subroots of the MTBDD after the input signals, i.e.,
along each path from the root node to a terminal node, we find the first node that
is either a decision node with a variable of an output signal, or a terminal node.
For every such node N, we create a corresponding intermediate vertex owned
by the controller player. The paths leading to IV correspond to valuations of
the input signals that lead to that intermediate vertex, where the controller can
decide how to respond. We let the controller choose to go to any state (vertex)
encoded by a terminal node that is reachable from N. For every such terminal
node, we simply add an edge from the intermediate vertex to the target vertex.

Fully-symbolic method. While the half-symbolic method already results in a
major reduction in the size of the parity games, we can go further and encode
the full transition relation of the parity automaton as a single BDD, which can
then automatically be interpreted as a symbolic parity game simply by ordering
variables as follows:

1. Variables s corresponding to the source state.
2. Variables ¢ corresponding to input signals.
3. Variables o corresponding to output signals.
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4. Variables p and s’ corresponding to the priority (either from the transition
or from the target state) and the target state.

One can read this BDD intuitively as follows: given some current state (1)
and some current input values (2), if the controller sets certain output values (3)
we arrive with some priority at our next state (4). Variables within these four
groups can be ordered freely; however, we implement a naive approach and have
not optimized this ordering; this is left as an opportunity for future work.

Since we encode the entire automaton as a single BDD, states that share
some transitions can benefit from the automatic reduction offered by BDDs.

We present a translation from this symbolic parity game to an explicit parity
game that explicitly uses the structure of the decision diagram to construct the
game. This procedure consists of the following steps:

1. We create a state vertex controlled by the environment player for every state
(with transitions) in the symbolic parity game. These vertices get priority 0.

2. Along each path in the BDD, we find the first decision node after the input
signals. We create an intermediate vertex controlled by the controller
player for every such node. These vertices also get priority 0.

3. Along each path in the BDD, we find the first decision node after the output
signals. We decode the priority and the target state and create a priority
vertex for the environment player with the decoded priority and with a
single edge to the state vertex corresponding to the target state.

4. For every state, we compute the reachable decision nodes of step 2 and create
edges from the state vertices to the intermediate vertices.

5. For every decision node of step 2, we compute the reachable decision nodes of
step 3 and create edges from the intermediate vertices to the priority vertices.

Further improvements to this procedure are possible by considering that
vertices may share many transitions, and additional vertices could be added
based on the structure of the BDD. This could reduce the number of edges at
the cost of more vertices. Furthermore, we do not merge the state vertices and
priority vertices, which might reduce the number of vertices. This is left as an
opportunity for future work.

3.4 Solving the parity game

Using the procedure described above, we can produce an explicit parity game
that can be solved by Oink. As shown in [16], several solvers implemented in
Oink are very efficient for parity games derived from reactive synthesis:

— strategy iteration (psi) [11,19]

tangle learning (t1) [10]

priority promotion (npp) [2,11]

— Zielonka’s recursive algorithm (z1k) [11,35]
fixpoint iteration using freezing (fpi) [16]

— fixpoint iteration using justifications (£pj) [24]
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We also implement a symbolic solver based on [25]. This symbolic solver
implements fixpoint iteration with freezing using BDD operations, and operates
directly on the BDD obtained by the fully-symbolic translation.

3.5 Post-processing the strategy

After applying the strategy to the symbolic parity game, we perform two post-
processing steps. In the case that the strategy does not give all output signals a
value, we default to setting output signals to false (or 0). We also compute all
reachable vertices of the parity game from the initial state vertex, restricted to
the winning strategy, and remove unreachable vertices.

3.6 Bisimulation minimisation

To further reduce the number of vertices of the parity game, we apply bisimulation
minimisation. Bisimulation minimisation computes equivalence classes of vertices,
i.e., all vertices that have the same behavior w.r.t. input and output signals. We
use the signature-based partition refinement approach of [15].

Recall that the symbolic parity game is a BDD over the variables s, 1,0, p, s’
as described in Sec. 3.3. We first drop the priority variables p from the BDD, as
the priorities on the states are not relevant after solving. We reserve fresh BDD
variables ¢ for the classes, which are ordered after the next state variables, i.e.,
s <1< o<s <c We maintain the current assignment from states to classes
in a BDD over variables s’ and ¢. The reason for s’ rather than s is that this
reduces the number of BDD operations. The initial partition assigns all states
to a single equivalence class. We then repeatedly compute the current signature
of all states, which is a BDD encoding for every state the classes that can be
reached and the input/output values to reach them, as follows:

1. Given a BDD G encoding the symbolic parity game over the variables s, 1, 0, s',
and a BDD P encoding the current partition over the variables s’ and c, we
compute the BDD S representing the signatures over variables s, 1,0, c by
performing the operation and_exists(G, P, s').

2. We use the refine operation of [15] to replace the signatures (over variables
i,0,c¢) in S by new classes, reusing previous class identifiers whenever possible,
and renaming s variables to s’ variables on-the-fly, resulting in the next BDD
P over the variables s’ and c.

3. We repeat steps 1 and 2 until the number of classes is stable.

Afterwards, we apply the obtained partition by replacing the states in the symbolic
parity game by the equivalence classes.

3.7 Encoding the strategy as a circuit

There are several methods to create a Boolean circuit from the solver parity game.
We first need to encode all reachable states of the parity game as latches in the
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Fig. 3. Sketch of the encoding from a BDD decision node (left) to three AND-gates
(right), representing the Boolean formula (Fr—1 A z) V (mz A Fy—o).

Boolean circuit. We employ two methods for this: (1) one latch per state; and (2)
one latch per BDD state variable. We call the former method onehot and the
latter binary; in the first case at all times only a single latch is set, whereas in
the second case the latches form a binary encoding of the states, similar to how
they are encoded in the symbolic parity game. As the initial state of a Boolean
circuit has all latches reset (to 0), we invert the latch that encodes the initial
state for the onehot encoding and we encode the initial state as state 0 for the
binary encoding.

We then compute a BDD F' for every latch and for every output signal, where
F is a BDD over the variables s,i (current state and current input signals) such
that the latch or signal will be set if and only if F' evaluates to true. We then
translate each BDD F' to an and-inverter graph. Again we propose two methods
to achieve this:

— by using Shannon expansion (ITE) as in Fig. 3 recursively;

— by first obtaining the irredundant sum-of-products [28] (ISOP) of F' in the
form of a ZBDD [29], which can then directly be translated to an AIG: first all
products are created, and then the products are connected through inverted
AND-gates (as ab V c¢d = —(—(ab) A =(cd))).

We thus have four combinations: ITE with binary or onehot encoding and
ISOP with binary or onehot encoding. Furthermore, we use a cache when creating
AND-gates to avoid duplicate gates.

3.8 Post-processing with ABC

After encoding the strategy as a circuit, we apply optional post-processing of the
circuit using ABC [5].

Similar to Strix, we apply the compress2rs script, which is described in [4].
The compress2rs script performs rewriting, refactoring, balancing, and truth-
table-based resubstitution. While Strix applies the script until no further im-
provement is found, we halt when the improvement is less than 2.5%.

We also apply a sequence of three ABC commands, drw, balance and drf,
which we call the drewrite script here. We apply this script until the improvement
is less than 1%.
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3.9 Usage of Knor

Knor expects an eHOA file on standard input; it also accepts a filename as
a command line parameter instead. With the options -a and -b, Knor writes
the constructed circuits to standard output as an AIGER file in ASCII or
binary format respectively. With the option -v, Knor prints timings and other
information to standard error.

By default, Knor uses the fully symbolic translation to a parity game. One can
use --naive for the naive explicit encoding and --explicit for the half-symbolic
encoding, and --print-game to print the resulting parity game in PGSolver
format to standard output. Only the fully symbolic translation supports the full
synthesis pipeline.

To choose an explicit-state solver of Oink, one can pick any solver from the list
obtained with --solvers, in particular the solvers --t1, --npp, --fpi, --fpj,
--psi. and --z1k. To solve using the symbolic solver, use --sym. With the option
--real, Knor will only decide realizability and use tangle learning (--t1) as the
default solver. The default solver for synthesis is the symbolic solver (--sym).

Bisimulation minimisation is applied by default, unless the --no-bisim option
is used. To encode the circuit, Knor uses by default ITE and onehot encoding.
To change this one can use the options --isop and --binary. To apply post-
processing with ABC after constructing the circuits, use the options --compress
and --drewrite.

4 Empirical Evaluation

We present the empirical results here.

4.1 Benchmarking

We evaluate the techniques implemented in Knor using the benchmarks of
SYNTCOMP for the PGAME track that come from reactive synthesis, i.e.,
they are based on LTL specifications in the TLSF file format. In recent years,
SYNTCOMP has also incorporated benchmarks in the PGAME track that do not
come from reactive synthesis, such as artificial hard games that are designed to
be time consuming for specific parity game solvers. Oink can easily handle such
hard games by using a solver for which no hard game has been designed yet, and
since our aim is to develop techniques for reactive synthesis specifically, we limit
ourselves to benchmarks from the TLSF dataset?. We also exclude input files that
are not parity automata; this removes the aut*.ehoa files, two test*.ehoa files,
and UnderapproxStrengthenedDemo, which is a Biichi automaton consisting of
a single state. In total 288 input files remain.

The benchmarks are run on a machine with an Intel i5-13600KF processor.
This is a 14-core processor, but we only use a single thread. Knor is compiled using
gce version 13.2.1. We repeat benchmarks 5 times and take the median to obtain

2 https://github.com /SYNTCOMP /benchmarks/tree/v2023.4/parity /tlsf based
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Model explicit half-symbolic symbolic
amba_decomposed_lock_15 T.O. 46 24
amba_decomposed_lock_14 T.O. 46 24
amba_decomposed_lock_13 T.0. 46 24
TwoCountersDisButA9 T.O. 668,065 7,249
amba_decomposed_lock_12 402,997,254 46 24
amba_decomposed_lock_11 100,820,998 46 24
amba_decomposed_lock_10 25,237,510 46 24
TwoCountersGui 21,022,475 256 155
TwoCountersDisButA8 15,254,863 497,310 4,721
full_arbiter_8 11,287,306 1,669,066 177,690
amba_decomposed_lock_9 6,323,718 46 24
amba_decomposed_encode_16 4,981,507 876 330
TwoCountersDisButA7 3,939,305 98,947 2,365
TwoCountersDisButA6 3,806,249 101,175 1,733

Table 1. Sizes in number of vertices of the largest parity games, sorted descending by
size of parity games constructed using the explicit method.

Technique Sum of Vertices Time (sec)
explicit 622,987,565 1,177.91
half-symbolic 8,491,540 18.28
symbolic 620,510 11.76

Table 2. Cumulative size of parity games and time required for construction of the
parity games of the 284 inputs that could be constructed by all three techniques.

the runtimes. All experimental scripts and log files are available as [12], and are
also available online via http://www.github.com /trolando/knor-experiments.

4.2 Translating the parity automaton to a parity game

We first compare the three different techniques to obtain a parity game from the
parity automaton: explicit, half-symbolic (only symbolic splitting) and fully
symbolic.

Of the 288 benchmarks, the explicit method could not construct the parity
game for four benchmarks within the timeout of 3600 seconds. See Table 1 for the
largest parity games constructed by the explicit method, as well as the four input
models for which no parity game could be constructed within 3600 seconds. The
two other methods could construct the parity games within a reasonable amount
of time, as is displayed in Table 2. The given time is only the time required for
constructing the games and excludes time required for parsing the input file,
which is the same for all methods.

Clearly, the fully symbolic method is superior to the other methods, both in
the speed of construction and in the size of the constructed parity games. When
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Solver Circuit size Time (sec)
binary onehot
symbolic fpi (--sym) 317,403 122,514 18.45
fixpoint with justifications (--£p3) 350,035 139,900 0.16
fixpoint with freezing (--fpi) 353,120 140,297 0.22
strategy iteration (--psi) 334,149 140,916 0.57
priority promotion (--npp) 427,048 161,244 0.17
Zielonka (--z1k) 480,472 175,427 0.18
tangle learning (--t1) 604,044 213,632 0.17

Table 3. Cumulative circuit size in number of gates and cumulative solving time in
number of seconds for the tested parity game solvers.

we consider individual input models, we find 20 cases where the half-symbolic
approach results in slightly smaller parity games than the fully symbolic approach.
The largest difference is 13 vertices (100 vertices instead of 113 vertices), which
is negligible compared to the several orders of magnitude advantage that the
fully symbolic method has in larger parity games, as Table 1 demonstrates. The
cumulative time for the fully symbolic method is dominated by a handful of input
models that require more than a second. Almost all parity games are constructed
in fewer than 10 milliseconds.

Although the size of the parity game does not necessarily always correspond
to the size of the constructed circuit or the required time for the entire synthesis
process, it seems an obvious choice to only consider the fully symbolic translation
in the remainder of this study.

4.3 Solving the parity game

We consider several parity game solvers, which have been shown in the past
to be successful for solving games derived from synthesis: Zielonka’s recursive
algorithm, priority promotion, tangle learning, the two fixpoint algorithms using
freezing and justifications, strategy iteration, and symbolic fixpoint iteration. One
of these, symbolic fixpoint iteration, directly operates on the symbolic parity
game constructed by the fully symbolic method. All other solvers require the
procedure outlined in Sec. 3.3 to translate the symbolic representation to an
explicit game. The game is then solved, and we construct the circuit using the
standard ITE encoding and either the binary or the onehot encoding of the states.
We do not yet perform bisimulation minimisation or postprocessing using ABC.

The reason that it is interesting to consider different solvers is that different
solvers may result in entirely different strategies to win the parity game. In
particular, it may be that some solvers favor winning regions that reach either
higher priorities or lower priorities, which can result in significant differences.
This is in fact supported by the results presented here.

We report runtimes for solving the parity games (thus excluding time
before solving and after solving) as well as the sizes of the circuits in Table 3.
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Fig. 4. Cactus plot of the number of parity games that can be solved within the given
amount of time per solver.

Model tl sym pp psi zlk fpi fpj

generalized_buffer_unreall 0.02 7.36 0.02 0.14 0.02 0.03 0.02
generalized_buffer 0.01 5.37 0.01 0.07 0.01 0.02 0.01
genbuf?2 0.01 1.98 0.01 0.03 0.01 0.01 0.01
full_arbiter_unreal3 0.00 1.00 0.00 0.06 0.00 0.02 0.01
amba_decomposed_arbiter_10 0.02 0.76 0.01 0.04 0.01 0.02 0.02
full_arbiter_8 0.02 0.74 0.02 0.08 0.02 0.02 0.02

Table 4. Overview of individual runtimes of each solver in seconds for the benchmarks
for which at least one solver requires at least 500 milliseconds.

We observe that only the symbolic algorithm requires any time at all. The
other algorithms each require less than a second to solve all benchmarks! When
we consider the circuit sizes, the fully symbolic algorithm is superior with a
cumulative 122,514 gates for all circuits. If we are interested in the best solver
that solves all benchmarks in a fraction of a second, then clearly FPJ is the best
algorithm, with a cumulative time of 0.16 seconds and a cumulative circuit size
of 139,900 gates, although the difference with FPI is not that great.

Remarks. The solving time with the symbolic fixpoint iteration algorithm is
dominated by just a few benchmarks. All algorithms solve the vast majority of
parity games in a fraction of a second. See Fig. 4. Notice the logarithmic scale
and that the vast majority of models are computed within a second for all solvers.
Just a few models require more than 500 milliseconds to be solved, as is shown
in Table 4.

We also did not take parallel operation into account. The symbolic FPI
solver, the explicit FPI solver, and the strategy iteration solver have parallel
implementations; the symbolic solver leverages the automatic parallelisation of
decision diagram operations in Sylvan.
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Solver Circuit size Time (sec)
binary onehot

symbolic fpi (--sym) + minimisation 166,839 106,500 0.19

fixpoint with justifications (--£pj) + min. 205,937 124,489 0.15

symbolic fpi (--sym) 317,403 122,514 -

fixpoint with justifications (--fpj) 350,035 139,900 -

Table 5. Cumulative circuit size in number of gates and cumulative minimisation time
in number of seconds for the symbolic fpi and the fixpoint with justifications solvers,
with and without bisimulation minimisation after solving.

Solver Encoding Circuit size Time
symbolic fpi (--sym) ISOP, onehot 102,294 0.69
symbolic fpi (--sym) ITE, onehot 106,500 0.61
fixpoint with justifications (--fpj) ISOP, onehot 113,134 0.72
fixpoint with justifications (--fpj) ITE, onehot 124,489 0.64
symbolic fpi (--sym) ITE, binary 166,839 0.09
fixpoint with justifications (--fpj) ITE, binary 205,937 0.12
symbolic fpi (--sym) ISOP, binary 431,316 1.39
fixpoint with justifications (--fpj) ISOP, binary 476,502 1.61

Table 6. Cumulative circuit size in number of gates and cumulative encoding time in
seconds for the symbolic fpi and fixpoint with justification solvers, after bisimulation
minimisation, using different encodings to obtain the circuit.

4.4 Bisimulation minimisation

We study the effects of bisimulation minimisation for the fully symbolic fixpoint
iteration solver and for the explicit fixpoint iteration with justifications solver
implemented in Oink.

As Table 5 shows, running bisimulation minimisation on the resulting strategy
reduces the total circuit size in all cases. The required time to perform bisimulation
minimisation is negligible with a cumulative time of a fraction of a second.

Bisimulation minimisation does not always improve the circuit size. There are
a few cases where the procedure slightly increases the circuit size. There are also
several models where the circuit size is reduced by several orders of magnitude.
Interestingly, in some cases the circuit size is reduced to 0 AND-gates. It seems
worthwhile to always apply bisimulation minimisation.

4.5 Encoding strategy to circuit

We now consider different encodings from the BDD of the strategy to the controller
circuit. See Table 6. Surprisingly, the combination of ISOP and a binary encoding
leads to a significantly worse result; whereas using ISOP with a onehot encoding
slightly reduces the circuit sizes, but not by a significant amount.
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Solver Encoding Method Circuit size Time
symbolic fpi (--sym) ISOP compress 61,434 149.26
symbolic fpi (--sym) ITE compress 62,506 121.27
fixpoint with justifications (--fpj) ISOP compress 71,240 125.29
fixpoint with justifications (--fpj) ITE compress 72,897 108.10
symbolic fpi (--sym) ISOP drewrite 80,077 58.72
symbolic fpi (--sym) ITE drewrite 80,425 53.21
fixpoint with justifications (--fpj) ISOP drewrite 80,454 60.88
fixpoint with justifications (--fpj) ITE drewrite 80,903 58.58
symbolic fpi (--sym) ISOP 102,294 44.88
symbolic fpi (--sym) ITE 106,500 39.81
fixpoint with justifications (--fpj) ISOP 113,134 31.66
fixpoint with justifications (--fpj) ITE 124,489 25.77

Table 7. Cumulative circuit size in number of gates for the two solvers, after bisimulation
minimisation and using onehot encoding, then using different postprocessing methods to
reduce circuit sizes. Given times are total times from parsing until writing, in seconds.

Tool Circuit size

no post-processing with post-processing
strix 68,550 41,314
sym-bisim-isop-onehot 87,823 50,624
ltlsynt 544,804 98,996

Table 8. Cumulative size of the circuits for the 201 realizable inputs that could be
constructed by all three tools, before and after post-processing with ABC.

Looking at individual benchmarks, we find that the most interesting differences
occur with the full_arbiter_* and amba_decomposed_arbiter_* benchmarks.
For these benchmarks, ISOP performs much worse than ITE with a binary
encoding, but shows moderate improvement with the onehot encoding.

While there are some differences in the encoding times between the different
approaches, the cumulative encoding time is less than two seconds in all cases.

4.6 Postprocessing with ABC

Finally, we apply postprocessing of the constructed circuit using ABC. See Table 7
for the results. We observe a very clear tradeoff of space and time. The best
result is obtained by using the compress algorithm, which reduces the number
of gates by about 40%, but this triples the runtime.

4.7 Comparison with other tools

We compare Knor to the tools Strix [26] and ltlsynt [27,33,34]. We obtain the two
competing tools from the SYNTCOMP 2023 artifact [21]. We use the following
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command lines, similar to those used in the SYNTCOMP 2023 competition, to
run the tools:

— Run Strix without post-processing in ABC:

strix --auto --no-compress-circuit -t --hoa <filename>
— Run Strix with post-processing in ABC:

strix --auto -t --hoa <filename>
— Run ltlsynt (without post-processing in ABC):

1tlsynt --from-pgame=<filename> --aiger --verbose

In the competition, ltlsynt had optional post-processing in ABC as part of
the script rather than the executable. This script executed the following ABC
commands: collapse;strash;refactor;rewrite. The Strix executable runs
an embedded version of ABC, repeating the compress2rs script until no more
improvement is found. To improve the fairness of the comparison, we change the
post-processing for ltlsynt to start with collapse;strash, as this re-encoding of
the circuit via binary decision diagrams significantly improves upon the circuit
encoding by ltlsynt, followed by repeating the compress2rs script until there
is no more improvement. This gives better results than obtained by ltlsynt in
SYNTCOMP 2023.

Only 208 of the 288 input files are realizable. Of these, Strix did not solve the
following inputs within the 3600 seconds time limit: amba_decomposed_lock_14,
amba_decomposed_lock_15, Automata325, Gamelogic, genbuf2, SPTPureNext,
generalized_buffer. Except for amba_decomposed_lock_15, ltlsynt solved all
inputs. Disregarding inputs that could not be solved by Strix or ltlsynt, we
have 201 realizable inputs that can be solved within the time limit by all three
tools. We provide the results with and without post-processing using ABC in
Table 8. Considering individual results, we observe that Strix yielded smaller
circuits in 142 cases (147 with post-processing) and Knor yielded smaller cir-
cuits in 47 cases (also 47 with post-processing). For the larger circuits, the
amba_decomposed_arbiter_* inputs favored Knor (1527 vs 8282 gates, after
post-processing), while Strix did better on the full_arbiter_ inputs (1594 vs
26040 gates, after post-processing).

Table 8 clearly shows that all tools benefit from the post-processing. While
Strix gives the best results for circuit size, the cumulative circuit size of Knor is
only 23% more. Knor solves the entire set of inputs, including post-processing by
ABC, in about 2.5 minutes, while Strix and ltlsynt cannot solve some benchmarks
within the time limit of 1 hour, before post-processing.

5 Discussion

In this work, we studied techniques to improve reactive synthesis of parity
automata to Boolean circuits using a new tool named Knor. We proposed
a number of techniques and empirically evaluated these techniques using the
benchmarks of the SYNTCOMP competition derived from LTL specifications.
Knor has won the PGAME track of the competition several times.
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The evidence presented in the empirical evaluation suggests that the best
approach for deciding realizability is to use the fully symbolic translation from
parity automaton to parity game, and any fast explicit-state parity game solver
(like a tangle learning variation) for which no hard games have yet been designed.
The latter is only needed to counteract any efforts aimed at impairing Knor’s
performance in SYNTCOMP through the introduction of artificially difficult
benchmarks.

For synthesis, considering a low circuit size as our primary objective, the clear
solution is to use either symbolic fpi (--sym) or fixpoint with justifications (--£pj),
preferring the former at the cost of speed in a few benchmarks, always apply
bisimulation minimisation (--bisim), use a onehot encoding (--onehot) with
either ITE or ISOP encoding, and apply postprocessing using ABC’s compress2rs
script (--compress).

Knor is publicly available via https://www.github.com /trolando/knor.

Future work There are many opportunities for future improvements to the
entire pipeline. We already mentioned playing with the variable ordering within
the variable groups of the symbolic parity game, and considering slightly more
efficient translations from the symbolic parity game to an explicit game in Oink.

We could also consider designing a parity game solving algorithm that explic-
itly results in small strategies. Some solvers might yield a multi-strategy, where
multiple edges in the parity game can be taken to win the game. This could
potentially be exploited to simplify the circuits.

It may also be useful to consider bisimulation minimisation on the parity
game before solving, and to change the encoding of the states into the BDD, as
we currently use a naive binary encoding of the state identifiers in the eHOA
format. There may also be other encoding strategies to obtain the Boolean circuit,
such as a different encoding of the latches or the approach of [30].

Beyond the reactive synthesis of parity automaton specifications, we may
also explore symbolic techniques, including those outlined in this paper, for the
synthesis of LTL specifications, building on the preliminary results from our
earlier prototype described in [13].
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Abstract. Given a Linear Temporal Logic (LTL) formula over input
and output variables, reactive synthesis requires us to design a deter-
ministic Mealy machine that gives the values of outputs at every time
step for every sequence of inputs, such that the LTL formula is satisfied.
In this paper, we investigate the notion of dependent variables in the
context of reactive synthesis. Inspired by successful pre-processing tech-
niques in Boolean functional synthesis, we define dependent variables in
reactive synthesis as output variables that are uniquely assigned, given
an assignment to all other variables and the history so far. We describe
an automata-based approach for finding a set of dependent variables. Us-
ing this, we show that dependent variables are surprisingly common in
reactive synthesis benchmarks. Next, we develop a novel synthesis frame-
work that exploits dependent variables to construct an overall synthesis
solution. By implementing this framework using the widely used library
Spot, we show that reactive synthesis that exploits dependent variables
can solve some problems beyond the reach of existing techniques. Fur-
thermore, we observe that among benchmarks with dependent variables,
if the count of non-dependent variables is low (< 3 in our experiments),
our method outperforms state-of-the-art tools for synthesis.

Keywords: Reactive synthesis - Functionally dependent variables- BDDs

1 Introduction

Reactive synthesis concerns the design of deterministic transducers (often Mealy
or Moore machines) that generate a sequence of outputs in response to a sequence
of inputs such that a given temporal logic specification is satisfied. Church intro-
duced the problem [12] in 1962, and there has been a rich and storied history of
work in this area over the past six decades. Recently, it was shown that a form of
pre-processing, viz. decomposing a Linear Temporal Logic (LTL) specification,
can lead to significant performance gains in downstream synthesis steps [15]. The
general idea of pre-processing a specification to simplify synthesis has also been
used very effectively in the context of Boolean functional synthesis [4,5,17,18,25].
Motivated by the success of one such pre-processing step, viz. identification of
uniquely defined outputs, in Boolean functional synthesis, we introduce the no-
tion of dependent outputs in the context of reactive synthesis in this paper. We
develop its theory and show by means of extensive experiments that dependent
outputs are common in reactive synthesis benchmarks, and can be effectively
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exploited to obtain synthesis techniques with orthogonal strengths vis-a-vis ex-
isting state-of-the-art techniques.

In the context of propositional specifications, it is not uncommon for a spec-
ification to uniquely define an output variable in terms of the input variables
and other output variables. A common example of this arises when auxiliary
variables, called Tseitin variables, are introduced to efficiently convert a specifi-
cation not in conjunctive normal form (CNF) to one that is in CNF [28]. Being
able to identify such uniquely defined variables efficiently can be very helpful,
whether it be for checking satisfiability, for model counting or synthesis. This
is because these variables do not alter the basic structure or cardinality of the
solution space of a specification regardless of whether they are projected out
or not. Hence, one can often simplify the reasoning about the specification by
ignoring (or projecting out) these variables. In fact, the remarkable practical suc-
cess of Boolean functional synthesis tools such as Manthan [18] and BFSS [4, 5]
can be partly attributed to efficient techniques for identifying a large number of
uniquely defined variables. We draw inspiration from these works and embark
on an investigation into the role of uniquely defined variables, or dependent vari-
ables, in the context of reactive synthesis. To the best of our knowledge, this is
the first attempt at directly using dependent variables for reactive synthesis.

We start by first defining the notion of dependent variables in LTL specifi-
cations for reactive synthesis. Specifically, given an LTL formula ¢ over a set of
input variables I and output variables O, a set of variables X C O is said to be
dependent on a set of variables Y C I U (O\X) in ¢, if at every step of every
infinite sequence of inputs and outputs satisfying ¢, the finite history of the se-
quence together with the current assignment for Y uniquely defines the current
assignment for X. The above notion of dependency generalizes the notion of
uniquely defined variables in Boolean functional synthesis, where the value of a
uniquely defined output at any time is completely determined by the values of
inputs and (possibly other) outputs at that time. We show that our generaliza-
tion of dependency in the context of reactive synthesis is useful enough to yield
a synthesis procedure with improved performance vis-a-vis competition-winning
tools, for a non-trivial number of reactive synthesis benchmarks.

We present a novel automata-based technique for identifying a subset-maximal
set of dependent variables in an LTL specification ¢. Specifically, we convert ¢
to a language-equivalent non-deterministic Biichi automaton (NBA) A, and
then deploy practically efficient techniques to identify a subset-maximal set of
outputs X that are dependent on Y = TU(O\ X ). We implemented our method
to determine the prevalence of dependent variables in existing reactive synthesis
benchmarks. Our finding shows that out of 1141 benchmarks taken from the
SYNTCOMP [21] competition, 300 had at least one dependent output variable
and 26 had all output variables dependent.

Once a subset-maximal set, say X, of dependent variables is identified, we
proceed with the synthesis process as follows. Referring to the NBA A, alluded
to above, we first transform it to an NBA A{, that accepts the language L'
obtained from L(p) after removing (or projecting out) the X variables. Our
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experiments show that A{, is more compactly representable compared to A,
when using BDD-based representations of transitions (as is done in state-of-the-
art tools like Spot [7]). Viewing A}, as a new (automata-based) specification
with output variables O \ X, we now synthesize a transducer Ty from A’ using
standard reactive synthesis techniques. This gives us a strategy f¥ : X7 — Yo\x
for each non-dependent variable in O\ X. Next, we use a novel technique based
on Boolean functional synthesis to directly construct a circuit that implements a
transducer Tx that gives a strategy fx : Xy — Yx for the dependent variables.
Significantly, this circuit can be constructed in time polynomial in the size of
the (BDD-based) representation of A,. The transducers Ty and T'x are finally
merged to yield an overall transducer 7' that describes a strategy f: X7 — Yo
solving the synthesis problem for .

We implemented our approach in a tool called DepSynt. Our tool is devel-
oped in C++ using APIs from the widely used library Spot for representing and
manipulating non-deterministic Biichi automata. We performed a comparative
analysis of our tool with winning entries of the SYNTCOMP [21] competition to
evaluate how knowledge of dependent variables helps reactive synthesis. Our ex-
perimental results show that identifying and utilizing dependent variables results
in improved synthesis performance when the count of non-dependent variables
is low. Specifically, our tool outperforms state-of-the-art and highly optimized
synthesis tools on benchmarks that have at least one dependent variable and
at most 3 non-dependent variables. This leads us to hypothesize that exploiting
dependent variables benefits synthesis when the count of non-dependent vari-
ables is below a threshold. Given the preliminary and un-optimized nature of
our implementation, we believe there is significant scope for improvement.

Related work. Reactive synthesis has been an extremely active research area for
the last several decades (see e.g. [9,12,15,16,24]). Not only is the theoretical
investigation of the problem rich, there are also several tools that are available
to solve synthesis problems in practice. These include solutions like 1t1synt [23]
based on Spot [7], Strix [22] and BoSY [14]. Our tool relies heavily on Spot and its
APIs, which we use liberally to manipulate non-deterministic Biichi automata.
Our synthesis approach is based on the standard conversion of LTL formula to
NBA, and then from NBA to deterministic parity automata (DPA) (see [8] for
an overview of the challenges of reactive synthesis).

Our work may be viewed as lifting the idea of uniquely defined variables used
in Boolean functional synthesis to the context of reactive synthesis. Viewed from
this perspective, our work is not the first to lift ideas from Boolean functional
synthesis to the reactive context. Following an approach for Boolean functional
synthesis that decomposes a specification into separate formulas on input vari-
ables and on output variables [11], the work in [6] constructed a reactive synthe-
sis tool for specific benchmarks that admit a separation of the specification into
formulas for only environment variables and formulas for only system variables.
The current work serves as an additional example in support of the hypothesis
that intuition from Boolean functional synthesis can be helpful and effective in
the reactive synthesis context.
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The remainder of the paper is structured as follows. We introduce definitions
and notations in Section 2. In Section 3 we define dependent variables for LTL
formulas, and describe an algorithm to find them. In Section 4 we describe our
automata-based synthesis framework and discuss its implementation details in
Section 5. We describe our evaluation in Section 6 and conclude in Section 7.
Missing proofs and additional experiments can be found in the full-version [2].

2 Preliminaries

Given a finite alphabet Y/, an infinite word w is a sequence wowjiws - - - where for
every i, the it" letter of w, denoted w;, is in X. The prefiz wo - - - w; (of size i+ 1)
of w is denoted by w[0,i]. Note that w[0,0] = wy. We use w[0, —1] to denote
the empty word. The set of all infinite words over X' is denoted by X“. We call
L C X* a language over infinite words in w. For our work, the alphabet X' is
often the product of two distinct alphabets X'x and Xy, ie. X = Yx x Xy. In
such cases, for every a = (a1,a2) € X, we abuse notation and use a.X to denote
the projection of a on Xy, i.e. the letter a; € Xx. Similarly, a.Y denotes the
projection of a on Xy, i.e. the letter as € Xy . For an infinite word w € X¥, we
use w.X to denote the infinite word in X§ obtained by projecting each letter in
won Yy ie w.X =wp.Xw. X ...

Linear Temporal Logic. A Linear Temporal Logic (LTL) formula is constructed
with a finite set of propositional variables V', using Boolean operators such as
V, A, and —, and temporal operators such as next (X), until (U), etc. The set
V induces an alphabet Yy = 2V of all possible assignments (true/false) to
the variables of V. The semantics of the operators and satisfiability relation are
defined as usual [20]. The language of an LTL formula ¢, denoted L(yp) is the
set of all words in X}, that satisfy . For an LTL formula ¢ over V, we use
|V| to denote the number of variables in V', and |p| to denote the size of the
formula, i.e., count of its subformulas. For clarity of exposition, we sometimes
abuse notation and identify the singleton variable set {z} with z. We also use X
for Xy, when V is clear from the context.

Nondeterministic Biichi Automata. A Nondeterministic Blichi Automaton (NBA)
is a tuple A = (X, Q, 0, qo, F') where X is the alphabet, @ is a finite set of states,
§:Q x XY — 29 is a non-deterministic transition function, go is the initial
state and F' C @ is a set of accepting states. Automaton A can be seen as a
directed labeled graph with vertices @ and an edge (g, ¢’) exists with a label a
if ¢ € 6(q,a). We denote the set of incoming edges to g by in(q) and the set of
outgoing edges from ¢ by out(q). A path in A is a (possibly infinite) sequence of
states p = (qi,,¢i,,--+) in which for every j > 0, (qi;,qi,,,) is an edge in A. A
run is a path that starts in qg, and is accepting if it visits a state in F' infinitely
often. A word w = 0,04, -+ induces a run p = (¢;,, ¢, - ) of A if ¢;; = qo and
for every j >0, q;,,, € 0(qi;,04;). Since A is nondeterministic, a word can have
many runs. A word is accepting if it has an accepting run in A. The language
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L(A) is the set of all accepting words in A. Wlog, we assume that all states and
edges that are not a part of any accepting run (i.e. do not reach a cycle with an
accepting state) are removed. This can be done by a simple pre-processing pass
on the NBA. Finally, every LTL formula ¢ can be transformed in time exponen-
tial time in the size of ¢ to an NBA A, for which L(y) = L(A,) [20,29]. When ¢
is clear from the context we omit the subscript and refer to A, as A. We denote
by |A]| the size of an automaton, i.e., number of its states and transitions.

Reactive Synthesis. A reactive LTL formula is an LTL formula ¢ over a set of
input variables I and output variables O, with INO = . In reactive synthesis we
are given a reactive LTL formula ¢, and the challenge is to synthesize a function,
called strategy, f : X5 — Yo such that every word w € (X x Xp)¥ obtained by
using this strategy at every time step is in L(p). If such a strategy exists we say
that ¢ is realizable. Otherwise, we say that ¢ is unrealizable. In what follows, we
always consider only reactive LTL formulas and hence omit the ”reactive” prefix
while referring to them. The synthesized strategy f : X7 — Yo is typically
described (explicitly or symbolically) as a transducer T = (X1, Yo, S, s0,0, A)
in which Y; and Yo are input and output alphabet respectively, S is a set of
states with an initial state sg, 0 : S x X; — S is a deterministic transition
function, and X : S x X; — X is the output function. A standard procedure in
solving reactive synthesis is to transform a given LTL formula ¢ to an NBA A,
for which L(A,) = L(y). Subsequently, A, is transformed to a Deterministic
Parity Automata (DPA) that turns to a parity game, whose solution is described
as a transducer T4 ,. As the following theorem shows, this approach incurs a
double exponential blowup in the worst-case.

Theorem 1. 1. Reactive synthesis can be solved in O(2"2"), where n is the
size of the LTL formula.
2. Given an NBA A with n states, computing transducer Ty takes §2(271°8™).

3 Dependent variables in reactive LTL

We begin by defining dependent variables for (reactive) LTL formulas and pro-
pose an algorithm for finding a maximal set of dependent variables. While there
are several notions of dependency that can be considered, we discuss one that
we have found to be useful in reactive synthesis. Specifically, we require that the
value of a dependent output variable be completely determined by the values of
inputs and other output variables and their finite history at every step of the
interaction between the reactive system and its environment. We consider de-
pendencies restricted to output variables, since having dependent input variables
would preclude some input sequences, rendering the specification unrealizable.

Definition 1 (Variable Dependency in LTL). Let ¢ be an LTL formula
over V' with input variables I C'V and output variables O = V\I. Let X,Y be
disjoint sets of variables where X C O. We say that X is dependent on'Y in ¢
if for every pair of words w,w’ € L(p) and i >0 if w[0,i — 1] = w'[0,7 — 1] and
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w;.Y = w..Y, then we have w;. X = w,.X. Further, we say that X is dependent
in ¢ if X is dependent on V' \ X in @, i.e., it is dependent on all the remaining
variables.

Note that two words in L(p) with different prefixes can have different values
for X for the same values for Y, if X is dependent on Y. Also, observe that if
X is dependent on Y in ¢ for some Y, then it is also dependent in .

As an example, consider an LTL formula ¢ with input variable y and output
variable z. The corresponding input and output alphabets are Xx = {x, -z} and
Yy = {y,~y} respectively. Suppose L(p) = {w', w?, w3} where w! = (y, )%,
w? = (—y,r)* and w® = (y,2)(~y, x)(y, ~2)*. Then z is dependent on y in .
Specifically, note that w![0,1] # w3[0, 1], and hence the dependency of x is not
violated although wi.y = w3.y and wi.x # wj.x.

3.1 Maximally dependent sets of variables Given an LTL formula ¢(I,O),
we say that a set X C O is a mazimal dependent set in ¢ if X is dependent
in ¢ and every set of outputs that strictly contains X is not dependent in .
As in the propositional case [27], finding maximum or minimum dependent sets
is intractable, hence we focus on subset-maximality. Given a variable z and
set Y, checking whether z is dependent on Y, can easily be used to finding a
maximal dependent set. Indeed, we would just need to start from the empty
set and iterate over output variables, checking for each if it is dependent on
the remaining variables. We give the pseudocode for this in [2]. Note that when
all output variables are not dependent, the order in which output variables are
chosen may play a significant role in the size of the maximal set obtained. We
currently use a naive ordering (first appearance), and leave the problem of better
heuristics for getting larger maximal independent sets to future work.

3.2 Finding dependent variables via automata As explained above, the
heart of the dependency check is to verify whether a given output variable is
dependent on a set of other variables. We now develop an approach for doing
so based on the nondeterministic Biichi automaton A, that represents the same
language as the LTL formula ¢. Our framework uses the notion of compatible
pairs of states of the automaton:

Definition 2. Let A = (¥,Q,6,qo0, F) be an NBA with states s,s" in Q. Then
the pair (s,s’) is compatible in A if there are runs from qo to s and from qo to
s’ on the same word w € X*.

Recall that in our definition, only states and edges that are part of an accepting
run exist in A. Then we have the following definition.

Definition 3. Let ¢ be an LTL formula over V' with input variables I CV and
output variables O = V\I. Let X,Y be disjoint sets of variables where X C O.
Let A, be an NBA that describes . We say that X is automata dependent on
Y in Ay, if for every pair of compatible states s, s’ and assignments o, o' for V,
where 0.Y = 0'.Y and 0.X # o' X, §(s,0) and §(s,0") cannot both exist in A,.
We say that X is automata dependent in A, if X is automata dependent on'Y
in Ay and Y =V\X.
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As an example, consider NBA A; in Figure 1, constructed from some LTL
formula with input I = {i} and outputs O = {01, 02}. For notational simplicity,
we use X1 = {0,1}, ¥o = {0,1}?, and edges are labeled by values of (i, 0102). It is
easy to see that (go,qo), (¢1,¢1) are compatible pairs, but so are (qo, ¢1), (¢1,40)
since both gy and ¢; be reached from the initial state on reading the word
(0,00)(0,00) of length 2. Now consider output o7. It is not dependent on {i},
i.e., only the input, since from g9 with ¢ = 0, we can go to different states with
different values of 01. But o7 is indeed dependent on {i,05}. To see this consider
every pair of compatible states — in this case all pairs. Then if we fix the values
of 7 and 09, there is a unique value of 0, that permits state transitions to happen
from the compatible pair. For example, regardless of which state we are in, if
1t = 0,09 = 0, 01 must be 0 for a state transition to happen. On the other hand,
09 is not dependent on either {i} or {i,01} (as can be seen from (g, q1) with
i = 1,010 = 1). The following theorem relates automata-based dependency and
dependency in LTL (for proof, see [2]), allowing us to focus only on the former.

Theorem 2. Let ¢ be an LTL formula with set of variables V.= 1U O, where
XCOandY CIU(O\X). Let A, be an NBA with L(yp) = L(Ay). Then X
is dependent on'Y in ¢ if and only if X is automata dependent on'Y in A,.

Finding Compatible States. We find all compatible

states in an automaton in Algorithm 1 as follows. 1,11
We maintain a list of in-process compatible pairs
C that is initialized with (qo, go) — an undoubtedly
compatible pair. At each step, until C' becomes
empty, we pick a pair (s;,s;) € C, add it to the
compatible pair set P, and remove it from C (in
line 4). Then (in lines 5-8), we check (in line 6)
if outgoing transitions from (s;, s;) lead to a new
pair (s},s)) not already in P or C, that can be Fig.1. An Example NBA A4,
reached on reading the same letter o. If so, we add this pair to the in-process set
C. All pairs that we add to P, C are indeed compatible, and nothing is removed
from P. When the algorithm terminates, C is empty, which means all possible
ways (from initial state pair) to reach a compatible pair have been explored,
thus showing correctness.

Finally, we show how to check dependency using automata, by implement-
ing procedure isAutomataDependent, shown in Algorithm 2. This procedure
takes an NBA A, a candidate dependent output z and a candidate dependency
set Y C V'\ {z} as inputs, and tries to find a witness to z not being dependent
on Y. If no such witness exists, then z is declared as being dependent on Y.
Procedure isAutomataDependent first uses Algorithm 1 to construct a list P
of all compatible pairs in A (line 4). Then for every pair (s,s’) € P, the algo-
rithm checks using procedure AreStatesColliding (lines 1-2) whether there exists
an assignment o, ¢’ for which both §(s,0) and 6(s',0’) exist, 0.Y = ¢’.Y and
o.{z} # o' {z}. If so, z is not dependent on Y (line 7) and the algorithm returns
false. Otherwise, afterchecking all the pairs, the algorithm returns true.

1,11

1,10
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Algorithm 1 Find All Compatible States in NBA
Input NBA A, = (¥,Q,6,q0, F) of ¢.
Output Set P C @ x @ of all compatible state pairs in A,
P+ 0; C < {(q0,90)}
while C # () do
Let (si,s5) € C
P« PU{(si,s;)}; C< C\{(si,s;)}
for (s}, s}) € out(s1) x out(s2) do
if (s,s}) ¢ PUC and 30 € 2% s.t. s; € §(si,0) A s € §(s;,0) then
C' CU{(shs)}
end if
end for
: end while
: return P

_
=N I A A

—_

Algorithm 2 Check Dependency Based Automaton

Input NBA A, = (X,Q,6,qo, F) from ¢, Candidate dependent variable z,
Candidate dependency set Y.
Output Is z dependent on Y by Definition 3

procedure ARESTATECOLLIDING(p, q)
return 3o,,0, € 2% s.t. 8(p,0p) ZONAS(q,04) DA 0pY =0, Y ANop.{z} #
0q-{z}
end procedure
P + FindAllCompatibleStates(Ay)
for (s1,s2) € P do
if AreStateColliding(s1,s2) then
return False
end if
end for
: return True

N

—_

Lemma 1. Algorithm 2 returns True if and only if z is automata-dependent on
Y in A,.

Using the above algorithm to perform dependency check, it is easy to compute
a maximal set of dependent variables (as explained earlier). Note that all the
above algorithms run in time polynomial (in fact, quadratic) in size of the NBA.

Corollary 1. Given NBA A, a mazimal dependent set of outputs can be com-
puted in time polynomial in the size of A,.

Note that if all output variables are dependent, then regardless of the order in
which the outputs are considered, for every finite history of inputs, there is a
unique value for each output that makes the specification true. Therefore, there
is a unique winning strategy for the specification, assuming it is realizable.
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ALY
w 3. Projdep 4. Syn-Nondep Ty
¢ 1. LTL to NBA |— A, —] 2. Identify Dep fy‘[
He, X
T Ix
5. Syn-Dep Tx 6. Syn-Comb T — f

Fig. 2. Synthesis using dependencies. Note that Steps 2., 3., 5, are novel, while Steps
1., 4., 6. (shaded in gray) use pre-existing techniques.

4 Exploiting Dependency in Reactive Synthesis

In this section, we explain how dependencies can be beneficially exploited in a
reactive synthesis pipeline. Our approach can be described at a high level as
shown in Figure 2. This flow-chart has the following 6 steps:

1. Given an LTL formula ¢ over a set of variables V' with input variables I C V'
and output variables O = V\I, we first construct a language-equivalent NBA
A, = (21U X0,8, 50,0, F) by standard means, e.g [29)].

2. Then, as described in Section 3, we find in A, a maximal set of output
variables X that are dependent in ¢. For notational convenience, in the
remainder of the discussion, we use Y for /U (O\X) and Yy for £ x Yo\ x.

3. Next, we construct an NBA A:o from A, by projecting out (or eliminating)
all X variables from labels of transitions. Thus, A:O has the same sets of
states and transitions as A,. We simply remove valuations of variables in X
from the label of every state transition in A, to obtain Af,. Note that after
this step, L(A},) = {w | Ju € L(A,) st. w=uY} C LY.

4. Treating A{, as a (automata-based) specification with inputs / and outputs
O\ X, we next use existing reactive synthesis techniques (e.g., [8]) to obtain
a transducer Ty that describes a strategy fy : X7 — Yo\ x for L(A,).

5. We also construct a transducer Tx that describes a function fx : (X} —
Yx) with the following property: for every word w’" € L(A{,) there exists a
unique word w € L(p) such that w.Y = w’ and for all i, w;. X = fx(w’[0,7]).

6. Finally, we compose T'x and Ty to construct a transducer T' that defines the
final strategy f : X7 — Yo. Recall that transducer Ty has I as inputs and
O\ X as outputs, while transducer T'x has I and O \ X as inputs and X as
outputs. Composing T'x and Ty is done by simply connecting the outputs
O\ X of Ty to the corresponding inputs of T'x.

In the above flow, we use standard techniques from the literature for Steps 1
and 4, as explained above. Hence we do not dwell on these steps in detail. Step
2 was detailed in Section 3. Step 3 is easy when we have an explicit representa-
tion of the automata, but it has interesting consequences when using symbolic
representations of automata. Step 6 is also easy to implement. Hence, in the
remainder of this section, we focus on Step 5, a key contribution of this paper.
In the next section, we will discuss how steps 2, 3 and 5 are implemented using
symbolic representations (viz. ROBDDs).
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Constructing transducer Tx Let A = (X7 x X0, Q,d,qo, F) be the NBA A,
obtained in step 1 of the pipeline shown above. Since each letter in Yo can be
thought of as a pair (o, 0’), where o € Yo\x and o' € Xx, the transition function
d can be viewed as a map from Q x (X7 x o\ x x Yx) to 29, The transducer
Tx we wish to construct is a deterministic Mealy machine described by the 6-
tuple (Zy, Ux U {1}, Q%, ¢, 6%, \%), where Ly = X1 x Yo\x) is the input
alphabet, X is the output alphabet with 1 ¢ X'y being a special symbol that is
output when no symbol of ¥'x suffices, Q¥ = 29, that is the powerset of Q is the
set of states of T'x, gg° = {qo} is the initial state, % : Q* x X x X0\ x) = @~
is the state transition function, and A¥X : Q¥ x Xy x Yo\x) = Yx is the output
function. The state transition function % is defined by the Rabin-Scott subset
construction applied to the automaton A, [19]. Formally, for every U C @,
or € X1 and 0 € X0\ x), we define 6% (U, (o7,0)) ={¢' | ¢ € Q, 3¢ € U and
Jo’ € Xx s.t. ¢’ €6(q, (07,0,0"))}. Before defining the output function A, we
state an important property of TX that follows from the definition of §% above.

Lemma 2. If X is automata dependent in A,, then every state U reachable
from g in Tx satisfies the property: Vq,q' € U, (q,q') is compatible in A,.

The lemma is easily proved by induction on the number of steps needed to
reach U from ¢g. Details of the proof may be found in [2]. We are now ready
to define the output function A\* of Tx. Let U be a state reachable from gg
in Tx and let U’ = (5X(U, (UI,U)), where (o7,0) € Yy. If U’ # (), we can
infer that (see Proof of Lemma 2 in [2]) that there is a unique ox € Xx s.t.
U ={q¢ |3qeUst. ¢ €d(q(or,0,0x))}. We define \* (U, (07,0)) = ox in
this case. If, on the other hand, U’ = ), we define AX (U, (O'],O')) = 1.

Theorem 3. If ¢ is realizable, the transducer T obtained by composing Tx and
Ty as in step 6 of Fig. 2 solves the synthesis problem for ¢.

An interesting corollary of the above result is that for realizable specifications
with all output variables dependent, we can solve the synthesis problem in time
O(2") instead of £2(2%1°8 %) where k = |A,|. This is because the subset construc-
tion on A, suffices to obtain Ty, while A, must be converted to a deterministic
parity automaton to solve the synthesis problem in general.

5 Symbolic Implementation

In this section, we describe symbolic implementations of each of the non-shaded
steps in the synthesis flow depicted in Fig. 2. Before we delve into the details, a
note on the representation of NBAs is relevant. We use the same representation
as used in Spot [7] — a state-of-the-art platform for representing and manipulating
LTL formulas and w-automata. Specifically, the transition structure of an NBA
A is represented as a directed graph, with nodes representing states of A, and
directed edges representing state transitions. Furthermore, every edge from state
s to state s’ is labeled by a Boolean function B, .y over I U O. The Boolean
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function can itself be represented in several forms. We assume it is represented
as a Reduced Ordered Binary Decision Diagram (ROBDD) [10], as is done in
Spot. Each such labeled edge represents a set of state transitions from s to &/,
with one transition for each satisfying assignment of B, ).

Implementing Algorithms 1 and 2 (Step 2) : Since states of the NBA A,
are explicitly represented as nodes of a graph, it is straightforward to imple-
ment Algorithms 1 and 2. The check in line 6 of Algorithm 1 is implemented by
checking the satisfiability of By, «)(I,0) A B(Sjys;)(l, O) using ROBDD oper-
ations. Similarly, the check in line 2 of Algorithm 2 is implemented by checking
the satisfiability of /i) eout(p)xout(q) B.s) (L, O) A Bigsn(I', O ) AN\ ey (y
y') A (z < —z') using ROBDD operations. In the above formula, I’ (resp. O')
denotes a set of fresh, primed copies of variables in I (resp. O).

Implementing transformation of A, to Afp (Step 3): To obtain A:o, we
simply replace the ROBDD for By, ;) on every edge (s,s’) of the NBA A, by an
ROBDD for 3X By, ,). While the worst-case complexity of computing 3X B, )
using ROBDDs is exponential in | X, this doesn’t lead to inefficiencies in practice
because |X| is typically small. Indeed, our experiments reveal that the total
size of ROBDDs in the representation of Afp is invariably smaller, sometimes
significantly, compared to the total size of ROBDDs in the representation of
A,. Indeed, this reduction can be significant in some cases, as the following
proposition shows (see proof in [2]).

Proposition 1. There exists an NBA A, with a single dependent output such
that the ROBDD labeling its edge is exponentially (in number of inputs and
outputs) larger than that labeling the edge of Ai,.

Implementing transducer Tx (Step 5): We now describe how to construct a
Mealy machine corresponding to the transducer T'x. As explained in the previous
section, the transition structure of the Mealy machine is obtained by applying
the subset construction to A,. While this requires O(214¢!) time if states and
transitions are explicitly represented, we show below that a sequential circuit
implementing the Mealy machine can be constructed directly from A, in time
polynomial in | X| and |Ay|. This reduction in construction complexity crucially
relies on the fact that all variables in X are dependent on I U (O \ X).

Let S = {so,...5k—1} be the set of states of A, and let in(s;) denote the set
of states that have an outgoing transition to s; in A,. To implement the desired
Mealy machine, we construct a sequential circuit with &k state-holding flip-flops.
Every state U (C S) of the Mealy machine is represented by the state of these k
flip-flops, i.e. by a k-dimensional Boolean vector. Specifically, the i*” component
is set to 1 iff s; € U. For example, if S = {sg, 51,52} and U = {sg, s2}, then
U is represented by the vector (1,0,1). Let n; and p; denote the next-state
input and present-state output of the i** flip-flop. The next-state function §¥
from p’s to n}s of the Mealy machine is implemented by a circuit, say A%, with
inputs {po,...pk—1} U I U (O\X) and outputs {ng,...nx_1}. Fori € {0,... k—
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1}, output n; of this circuit implements the Boolean function \/sj Ein(sy) (pj A

Ix B(Sj,si)). To see why this works, suppose (po, . . . px—1) represents the current
state U C S of the Mealy machine. Then the above function sets n; to true iff
there is a state s; € U (i.e. p; = 1) s.t. there is a transition from s; to s; on some
values of outputs X and for the given values of [U(O\ X) (i.e. 3X B, 5,y = 1).
This is exactly the condition for s; to be present in the state U’ C S reached
from U for the given values of T U (O \ X) in the Mealy machine obtained by
subset construction.

It is known from the knowledge compilation literature (see e.g. [1,4,13]) that
every ROBDD can be compiled in linear time to a Boolean circuit in Decom-
posable Negation Normal Form (DNNF), and that every DNNF circuit admits
linear time projection of variables, yielding a resultant DNNF circuit. Hence, a
Boolean circuit for 3X By, ;) can be constructed in time linear in the size of
the ROBDD representation of By, ;). This allows us to construct the circuit
AX | implementing the next-state transition logic of our Mealy machine, in time
(and space) linear in | X| and |Ay|.

Next, we turn to constructing a circuit AX that implements the output func-
tion A of our Mealy machine. It is clear that A% must have inputs {py, . ..pgr_1 }U
I'U(O\ X) and outputs X. Since X is automata dependent on I U (O \ X) in
A, the following proposition is easily seen to hold.

Proposition 2. Let B, sy be a Boolean function with support I UQO that labels
a transition (s, s") in A,. For every (or,0) € X1 x Yo\ x, if (01,0) |F 3X B oy,
then there is a unique o' € Xx such that (01,0,0") |= B o).

Considering only the transition (s, s") referred to in Proposition 2, we first discuss
how to synthesize a vector of Boolean functions, say Flss) = <F1(S’S ), . F‘(;f )>,

where each component function has support 7 U (O \ X), such that F()[[
o1][O\ X — o] = o’. Generalizing beyond the specific assignment of I U O, our
task effectively reduces to synthesizing an |X|-dimensional vector of Boolean
functions F*) s.t. VI U (O \ X) 3XBs,sn — Bis,sn[X = F&=)]) holds.
Interestingly, this is an instance of Boolean functional synthesis — a problem
that has been extensively studied in the recent past (see e.g. [1,3,4,6,11]). In
fact, we know from [1,26] that if B( s is represented as an ROBDD, then a
Boolean circuit for F(, ,y can be constructed in O(\X|2.|B(S’S/)|) time, where
| B(s,sy| denotes the size of the ROBDD for B, . For every x; € X, we use this

technique to construct a Boolean circuit for Fi(s’s/) for every edge (s, s’) in A. The
overall circuit AX is constructed such that the output for z; € X implements
the function \/,,..,.sition (5,5') in A (ps A (Bs,sn [ X = FO)) A Fl_(s,s ))_

Lemma 3. Let U C S be a non-empty set of pairwise compatible states of A.
For (o1,0) € X1 x Yo\x, if (5X(U, (01,0)) £ (), then the outputs X of AX
evaluate to A\X (U, (o7, a)). In all other cases, every output of AX evaluates to 0.
Note that 6% (U, (UI,U)) = () iff all outputs n; of the circuit AX evaluate to

0. This case can be easily detected by checking if \/i:o1 n; evaluates to 0. We
therefore have the following result.
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Theorem 4. The sequential circuit obtained with AX as next-state function and
A% as output function is a correct implementation of transducer Tx, assuming
(a) the initial state is po = 1 and p; = 0 for all j € {1,...k — 1}, and (b) the
output is interpreted as L whenever \/f;o1 n; evaluates to 0.

6 Experiments and Evaluation

We implemented the synthesis pipeline depicted in Figure 2 in a tool called
DepSynt (accessible at https://github.com/eliyaoo32/DepSynt), using sym-
bolic approach of Section 5. For Steps 1., 4., of the pipeline, i.e., construction
of A, and synthesis of Ty, we used the tool Spot [7], a widely used library for
representing and manipulating NBAs. We then experimented with all available
reactive synthesis benchmarks from the SYNTCOMP [21] competition, a total
of 1,141 LTL specifications over 31 benchmark families.

All our experiments were run on a computer cluster, with each problem in-
stance run on an Intel Xeon Gold 6130 CPU clocking at 2.1 GHz with 2GB
memory and running Rocky Linux 8.6. Our investigation was focussed on an-
swering two main research questions:

RQ1: How prevalent are dependent outputs in reactive synthesis benchmarks?
RQ2: Under what conditions, if any, is reactive synthesis benefited by our ap-
proach, i.e., of identifying and separately processing dependent output variables?

Dependency Prevalence. To answer RQ1, we implemented the algorithm in
Section 3 and executed it with a timeout of 1 hour. Within this time, we were
able to find 300 benchmarks out of 1,141 SYNTCOMP benchmarks, that had
at least 1 dependent output variable (as per Definition 3). Out of the 1,141
benchmarks, 260 had either timeout (41 total) or out-of-memory (219 total),
out of which 227 failed because of the NBA construction (adapted from Spot),
i.e, Step 1 in our pipeline, did not terminate. We found that all the bench-
marks with at least 1 dependent variable in fact belong to one of 5 bench-
mark families, as seen in Table 1. In order to measure the prevalence of de-
pendency we evaluated (1) the number of dependent variables and (2) the

de endency ratio = otal dependent S Qut of those depicted, Mux (for mul-
Total output vars ’

Benchmark Family|Total|Completed|Found Dep|Avg Dep Ratio
1t12dpa 24 24 24 434
mux 12 12 4 1
shift 11 4 4 1
tsl-paper 118 117 115 .46
tsl-smart-home-jarvis 189 167 153 .33

Table 1. Summary for 5 benchmark families, indicating the no. of benchmarks, where
the dependency-finding process was completed, the total count of benchmarks with
dependent variables, and the average dependency ratio among those with dependencies.

tiplexer) and shift (for shift-operator operator) were two benchmark families
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where dependency ratio was 1. In total, among all those where our dependency
checking algorithm terminated, we found 26 benchmarks with all the output
variables dependent. Of these 4 benchmarks were from Shift, 4 benchmarks
from mux, 14 benchmarks from tsl-paper, and 4 from tsl-smart-home-jarvis.
Looking beyond total dependency,
among the 300 benchmarks with at
least 1 dependent variable, we found a
diverse distribution of dependent vari- 250
ables as shown in Figure 3 (distribu-
tion wrt dependency ratio is in [2]).

300

Utilizing Dependency for Reac-
tive Synthesis: Comparison with
other tools. Despite a large 1 hr
time out, we noticed that most de-
pendent variables were found within 0
10-12 seconds. Hence, in our tool
DepSynt, we limited the time for
dependency-check to an empirically Fig. 3. Cumulative count of benchmarks
determined 12 seconds, and declared g5, gach unique value of Total Dependent
unchecked variables after this time Variables. F(z) on y-axis represents how
as non-dependent. Since synthesis of many benchmarks have at most z (on x-
non-dependents Ty (Step 5. of the axis) dependent variables.

pipeline) is implemented directly us-

ing Spot APIs, the difference between our approach and Spot is minimal when
there are a large number of non-dependent variables. This motivated us to di-
vide our experimental comparison, among the 300 benchmarks where at least
one dependent variables was found, into benchmarks with at most 3 non-
dependent variables (162 benchmarks) and more than 3 non-dependent variables
(138 benchmarks). We compared DepSynt with two state-of-the-art synthesis
tools, that won in different tracks of SYNTCOMP23’ [21]: (i) Ltlsynt (based on
Spot) [7] with different configurations ACD, SD, DS, LAR, and (ii) Strix [22]
with the configuration of BFS for exploration and FPI as parity game solver (the
overall winning configuration/tool in SYNTCOMP’23). All the tools had a total
timeout of 3 hours per benchmark. As can be seen from Figure 4, indeed for the
case of < 3 non-dependent variables, DepSynt outperforms the highly optimized
competition-winning tools. Even for > 3 case, as shown in Figure 5, the perfor-
mance of DepSynt is comparable to other tools, only beaten eventually by Strix.
DepSynt uniquely solved 2 specifications for which both Strix and Ltlsynt timed
out after 3600s, the benchmarks are mux32, and mux64, and solved in 2ms, and
4ms respectively.

Analyzing time taken by different parts of the pipeline. In order to better
understand where DepSynt spends its time, we plotted in Figure 6 the normalized
time distribution of DepSynt. We can see that synthesizing a strategy for depen-
dent variables is very fast (the yellow portion)- justifying its theoretical linear
complexity bound, and so is the pink region depicting searching for dependency

Total Benchmarks
@
3

0 5 10 15 20 5 30 35
Total Dependent Variables
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(again, a poly-time algorithm), especially compared to the blue synthesizing a
strategy for the non-dependent variables, and the green which is NBA build time.
This also explains why having a high dependency ratio alone does not help our
approach, since even with a high ratio, the number of non-dependent variables
could be large, resulting in worse performance overall.

Analysis of the Projection step (Step 3.) of Pipeline. The rationale for
projecting variables from the NBA is to reduce the number of output non-
dependent variables in the synthesis of the NBA, which is the most expen-
sive phase as Figure 6 shows. To see if this indeed contributes to our bet-
ter performance, we asked if projecting the dependent variables reduces the
BDDs’ sizes, in terms of total nodes, (the BDD represents the transitions).
Figure 7 shows that the BDDs’ sizes

are reduced significantly where the to- [ amn

tal of non-dependent variables is at m |
most 3, in cases of total dependency,
the BDD just vanishes and is replaced
by the constant true/false. For the
case of total non-dependent is 4 or e
more, the BDD size is reduced as well. A

g

Time (seconds)
2
7,

An ablation experiment with </
0 20 40 60 80 100 120 140 160

Spot. As a final check, that depen- instances

dency was causing the improvements

seen, we conducted a control/ablation Fig.8. Cactus plot comparing DepSynt

experi.ment where in DepSynt we gave and SpotModular on 162 benchmarks with
zero-timeout to find dependency, clas- .t most 3 non-dependent, variables.

sified all output variables as non-

dependent, and called this SpotModular. As can be seen in Figure 8, for the
case of benchmarks with at least 1 dependent and at most 3 non-dependent
variables, this clearly shows the benefit of dependency-checking. In the full ver-
sion [2], we show that for other cases we do not see this.

Summary. Overall, we answered both the research questions we started with.
Indeed there are several benchmarks with dependent variables, and using our
pipeline does give performance benefits when no. of non-dependent variables is
low. Our recipe would be to first run our poly-time check to see if there are depen-
dents and use our approach if there are not too many non-dependents; otherwise
switch to any existing method. To summarize our comparisons: wrt Strix, we
found 252 benchmarks that had dependent variables in which DepSynt took less
time than Strix. Out of which, in 126 benchmarks DepSynt took at least 1 second
less than Strix. Among these, for 10 benchmarks (shift16, LightsTotal_d65ed84e,
LightsTotal 9cbf2546, LightsTotal_06e9cad4, Lights2 3987563, Lights2_0f5381e9,
FelixSpecFixed3.core_b209ff21, Lights2_b02056d6, Lights2_06e9cad4, LightsTo-
tal_2c5b09da) the time taken by DepSynt was at least 10 seconds less than that
taken by Strix. These are the examples that are easier to solve by DepSynt
than by Strix. For shift16, the difference was more than 1056 seconds in favor of
DepSynt. Interestingly, shift16 also has all output variables dependent.
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When comparing with Ltlsynt, we found 193 benchmarks that had dependent
variables in which DepSynt took less time than Ltlsynt. Among these, in 27
benchmarks DepSynt took at least 1 second less than Ltlsynt. Of these, there is
one benchmark (ModifiedLedMatrix5X) for which the time taken by DepSynt
was at least 10 seconds less than that taken by Ltlsynt. Specifically, DepSynt
took 5 seconds and Ltlsynt took 55 seconds.

7 Conclusion

In this work, we have introduced the notion of dependent variables in the con-
text of reactive synthesis. We showed that dependent variables are prevalent
in reactive synthesis benchmarks and suggested a synthesis approach that may
utilize these dependency for better synthesis. As part of future work, we wish to
explore heuristics for choosing ”good” maximal subsets of dependent variables.
We also wish to explore integration of our method in other reactive synthesis
tools such as Strix.
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Fig. 6. Normalized time distribution of DepSynt sorted by total duration over bench-
marks that could be solved successfully by DepSynt. Each color represents a different
phase of DepSynt. Pink is searching for dependency, green is the NBA build, blue is
synthesis of non-dependent variables and yellow is dependent variables synthesis.
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Fig. 7. This figure illustrates the total BDD sizes of the NBA edges before and after
the projection of the dependent variables from the NBA edges, the left figure is over
benchmarks with at most 3 non-dependent variables and the right figure is over bench-
marks with 4 or more non-dependent variables. The solid line presents the projected
BDD size and the dotted line presents the original BDD size. The y-axis is presented
in symmetric log-scale. Benchmarks are sorted by the projected NBA’s BDD total size.
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Abstract. This paper presents an approach for synthesizing provably
correct control envelopes for hybrid systems. Control envelopes charac-
terize families of safe controllers and are used to monitor untrusted con-
trollers at runtime. Our algorithm fills in the blanks of a hybrid system’s
sketch specifying the desired shape of the control envelope, the possible
control actions, and the system’s differential equations. In order to max-
imize the flexibility of the control envelope, the synthesized conditions
saying which control action can be chosen when should be as permissive
as possible while establishing a desired safety condition from the avail-
able assumptions, which are augmented if needed. An implicit, optimal
solution to this synthesis problem is characterized using hybrid systems
game theory, from which explicit solutions can be derived via symbolic
execution and sound, systematic game refinements. Optimality can be
recovered in the face of approximation via a dual game characterization.
The resulting algorithm, Control Envelope Synthesis via Angelic Refine-
ments (CESAR), is demonstrated in a range of safe control envelope
synthesis examples with different control challenges.

Keywords: Hybrid systems - Program synthesis - Differential game logic

1 Introduction

Hybrid systems are important models of many applications, capturing their dif-
ferential equations and control [27,41,3,33,4,28]. For overall system safety, the
correctness of the control decisions in a hybrid system is crucial. Formal verifica-
tion techniques can justify correctness properties. Such correct controllers have
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been identified in a sequence of challenging case studies [34,40,12,32,19,14,22]. A
useful approach to verified control is to design and verify a safe control envelope
around possible safe control actions. Safe control envelopes are nondeterminis-
tic programs whose every execution is safe. In contrast with controllers, control
envelopes define entire families of controllers to allow control actions under as
many circumstances as possible, as long as they maintain the safety of the hybrid
system. Safe control envelopes allow the verification of abstractions of control
systems, isolating the parts relevant to the safety feature of interest, without in-
volving the full complexity of a specific control implementation. The full control
system is then monitored for adherence to the safe control envelope at run-
time [29]. The control envelope approach allows a single verification result to
apply to multiple specialized control implementations, optimized for different
objectives. It puts industrial controllers that are too complex to verify directly
within the reach of verification, because a control envelope only needs to model
the safety-critical aspects of the controller. Control envelopes also enable applica-
tions like justified speculative control [17], where machine-learning-based agents
control safety-critical systems safeguarded within a verified control envelope, or
[36], where these envelopes generate reward signals for reinforcement learning.

Control envelope design is challenging. Engineers are good at specifying the
shape of a model and listing the possible control actions by translating client
specifications, which is crucial for the fidelity of the resulting model. But identi-
fying the exact control conditions required for safety in a model is a much harder
problem that requires design insights and creativity, and is the main point of the
deep area of control theory. Most initial system designs are incorrect and need
to be fixed before verification succeeds. Fully rigorous justification of the safety
of the control conditions requires full verification of the resulting controller in
the hybrid systems model. We present a synthesis technique that addresses this
hard problem by filling in the holes of a hybrid systems model to identify a
correct-by-construction control envelope that is as permissive as possible.

Our approach is called Control Envelope Synthesis via Angelic Refinements
(CESAR). The idea is to implicitly characterize the optimal safe control envelope
via hybrid games yielding maximally permissive safe solutions in differential
game logic [33]. To derive explicit solutions used for controller monitoring at
runtime, we successively refine the games while preserving safety and, if possible,
optimality. Our experiments demonstrate that CESAR, solves hybrid systems
synthesis challenges requiring different control insights.

Contributions. The primary contributions of this paper behind CESAR are:

optimal hybrid systems control envelope synthesis via hybrid games.

— differential game logic formulas identifying optimal safe control envelopes.

— refinement techniques for safe control envelope approximation, including
bounded fixpoint unrollings via a recurrence, which exploits action perma-
nence (a hybrid analogue to idempotence).

— a primal/dual game counterpart optimality criterion.
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2 Background: Differential Game Logic

We use hybrid games written in differential game logic (dGL, [33]) to represent
solutions to the synthesis problem. Hybrid games are two-player noncooperative
zero-sum sequential games with no draws that are played on a hybrid system
with differential equations. Players take turns and in their turn can choose to
act arbitrarily within the game rules. At the end of the game, one player wins,
the other one loses. The players are classically called Angel and Demon. Hybrid
systems, in contrast, have no agents, only a nondeterministic controller running
in a nondeterministic environment. The synthesis problem consists of filling in
holes in a hybrid system. Thus, expressing solutions for hybrid system synthesis
with hybrid games is one of the insights of this paper.

An example of a game is (v:=1Nwv:=-1); {/ =v}. In this game, first
Demon chooses between setting velocity v to 1, or to -1. Then, Angel evolves
position x as ' = v for a duration of her choice. Differential game logic uses
modalities to set win conditions for the players. For example, in the formula
[(v:=1Nwv:=-1); {a&’ = v}]x # 0, Demon wins the game when z # 0 at the
end of the game and Angel wins otherwise. The overall formula represents the
set of states from which Demon can win the game, which is z # 0 because when
x < 0, Demon has the winning strategy to pick v:= —1, so no matter how long
Angel evolves ' = v, x remains negative. Likewise, when x > 0, Demon can pick
v:=1. However, when = = 0, Angel has a winning strategy: to evolve 2’ = v for
zero time, so that x remains zero regardless of Demon’s choice.

We summarize dGL’s program notation (Table 1). See [33] for full exposition.
Assignment x := 6 instantly changes the value of variable = to the value of 6.
Challenge 7% continues the game if v is satisfied in the current state, otherwise
Angel loses immediately. In continuous evolution z’ = 6 & 1) Angel follows the
differential equation ' = 6 for some duration of her choice, but loses immediately
on violating v at any time. Sequential game «; 3 first plays o« and when it

Table 1: Hybrid game operators for two-player hybrid systems

Game Effect
r:=0 assign value of term 6 to variable z
T Angel passes challenge if formula v holds in current state, else loses
immediately
(7 =61,..., Angel evolves z; along differential equation system x} = 6;
x, =0, & 1/)) for choice of duration > 0, loses immediately when violating v
a; B sequential game, first play hybrid game «, then hybrid game 8
aUp Angel chooses to follow either hybrid game a or 8
a* Angel repeats hybrid game «, choosing to stop or go after each «
a? dual game switches player roles between Angel and Demon
anpg demonic choice (oed U ﬂd)d gives choice between o and 8 to Demon

a demonic repetition ((a?)")? gives control of repetition to Demon
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terminates without a player having lost, continues with 8. Choice aUf lets Angel
choose whether to play « or 8. For repetition o*, Angel repeats o some number
of times, choosing to continue or terminate after each round. The dual game a?
switches the roles of players. For example, in the game ?¢%, Demon passes the
challenge if the current state satisfies ¢, and otherwise loses immediately.

In games restricted to the structures listed above but without a?, all choices
are resolved by Angel alone with no adversary, and hybrid games coincide with
hybrid systems in differential dynamic logic (dL) [33]. We will use this restriction
to specify the synthesis question, the sketch that specifies the shape and safety
properties of control envelopes. But to characterize the solution that fills in the
blanks of the control envelope sketch, we use games where both Angel and Demon
play. Notation we use includes demonic choice o N 3, which lets Demon choose
whether to run « or 8. Demonic repetition a* lets Demon choose whether to
repeat o choosing whether to stop or go at the end of every run. We define o*<"
and a*=" for angelic and demonic repetitions respectively of at most n times.

In order to express properties about hybrid games, differential game logic
formulas refer to the existence of winning strategies for objectives of the games
(e.g., a controller has a winning strategy to achieve collision avoidance despite
an adversarial environment). The set of dGL formulas is generated by the follow-
ing grammar (where ~ € {<,<,=,> >} and 6,0, are arithmetic expressions
in +, —, -,/ over the reals, x is a variable, « is a hybrid game):

o=t~ || oAV [¢VY o=t |Veo|Tze|[a]¢] ()

Comparisons of arithmetic expressions, Boolean connectives, and quantifiers over
the reals are as usual. The modal formula (o) ¢ expresses that player Angel has
a winning strategy to reach a state satisfying ¢ in hybrid game a. Modal formula
[a] ¢ expresses the same for Demon. The fragment without modalities is first-
order real arithmetic. Its fragment without quantifiers is called propositional
arithmetic Pgr. Details on the semantics of dGL can be found in [33]. A formula
¢ is valid, written F ¢, iff it is true in every state w. States are functions assigning
a real number to each variable. For instance, ¢ — [a] v is valid iff, from all initial
states satisfying ¢, Demon has a winning strategy in game « to achieve .

Control Safety Envelopes by Example. In order to separate safety critical aspects
from other system goals during control design, we abstractly describe the safe
choices of a controller with safe control envelopes that deliberately underspecify
when and how to exactly execute certain actions. They focus on describing in
which regions it is safe to take actions. For example, Model 1 designs a train
control envelope [34] that must stop by the train by the end of movement au-
thority e located somewhere ahead, as assigned by the train network scheduler.
Past e, there may be obstacles or other trains. The train’s control choices are
to accelerate or brake as it moves along the track. The goal of CESAR is to
synthesize the framed formulas in the model, that are initially blank.

Line 6 describes the safety property that is to be enforced at all times: the
train driving at position p with velocity v must not go past position e. Line 1
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Model 1 The train ETCS model (slightly modified from [34]). Framed formulas
are initially blank and are automatically synthesized by our tool as indicated.

assum|1 A>0AB>0AT >0Av>0A

ctrlable | 2 - [{

3 ( (?le=p>oT +AT?/2+ (v + AT)*/2B[; a:= A)
4 U (?;a::fB) K
plant| 5 (t:=0;{p =v,v =a,t' =1 &t<TAv>0})
safe| 6 }"](e—p>0)

ctrl

lists modeling assumptions: the train is capable of both acceleration (A>0) and
deceleration (B>0), the controller latency is positive (7>0) and the train cannot
move backwards as a product of braking (this last fact is also reflected by having
v > 0 as a domain constraint for the plant on Line5). These assumptions are
fundamentally about the physics of the problem being considered. In contrast,
Line 2 features a controllability assumption that can be derived from careful
analysis. Here, this synthesized assumption says that the train cannot start so
close to e that it won’t stop in time even if it starts braking immediately. Line 3
and Line4 describe a train controller with two actions: accelerating (a := A)
and braking (a:= —B). Each action is guarded by a synthesized formula, called
an action guard that indicates when it is safe to use. Angel has control over
which action runs, and adversarially plays with the objective of violating safety
conditions. But Angel’s options are limited to only safe ones because of the
synthesized action guards, ensuring that Demon still wins and the overall formula
is valid. In this case, braking is always safe whereas acceleration can only be
allowed when the distance to end position e is sufficiently large. Finally, the
plant on Line 5 uses differential equations to describe the train’s kinematics. A
timer variable t is used to ensure that no two consecutive runs of the controller
are separated by more than time 7. Thus, this controller is time-triggered.

Overview of CESAR. CESAR first identifies the optimal solution for the blank
of Line 2. Intuitively, this blank should identify a controllable invariant, which
denotes a set of states where a controller with choice between acceleration and
braking has some strategy (to be enforced by the conditions of Line 3 and Line 4)
that guarantees safe control forever. Such states can be characterized by the fol-
lowing dGL formula where Demon, as a proxy for the controller, decides whether
to accelerate or brake: [((a := AN a:= —B); plant)*] safe where plant and safe
are from Model 1. When this formula is true, Demon, who decides when to brake
to maintain the safety contract, has a winning strategy that the controller can
mimic. When it is false, Demon, a perfect player striving to maintain safety, has
no winning strategy, so a controller has no guaranteed way to stay safe either.
This dGL formula provides an implicit characterization of the optimal con-
trollable invariant from which we derive an explicit formula in Py to fill the blank
with using symbolic execution. Symbolic execution solves a game following the
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axioms of dGL to produce an equivalent Py formula (Section 3.7). However, our
dGL formula contains a loop, for which symbolic execution will not terminate
in finite time. To reason about the loop, we refine the game, modifying it so
that it is easier to symbolically execute, but still at least as hard for Demon to
win so that the controllable invariant that it generates remains sound. In this
example, the required game transformation first restricts Demon’s options to
braking. Then, it eliminates the loop using the observation that the repeated
hybrid iterations (a := —B;plant)* behave the same as just following the con-
tinuous dynamics of braking for unbounded time. It replaces the original game
with a := —B;t:=0;{p’ = v,v’ = a & A v > 0}, which is loop-free and
easily symbolically executed. Symbolically executing this game to reach safety
condition safe yields controllable invariant e —p > % to fill the blank of Line 2.

Intuitively, this refinement (formalized in Section3.4) captures situations
where the controller stays safe forever by picking a single control action (brak-
ing). It generates the optimal solution for this example because braking forever
is the dominant strategy: given any state, if braking forever does not keep the
train safe, then certainly no other strategy will. However, there are other prob-
lems where the dominant control strategy requires the controller to strategically
switch between actions, and this refinement misses some controllable invariant
states. So we introduce a new refinement: bounded game unrolling via a recur-
rence (Section3.5). A solution generated by unrolling n times captures states
where the controller can stay safe by switching control actions up to n times.

Having synthesized the controllable invariant, CESAR fills the action guards
(Line3 and Line4). An action should be permissible when running it for one
iteration maintains the controllable invariant. For example, acceleration is safe
to execute exactly when [a := A;plantle — p >%. We symbolically execute
this game to synthesize the formula that fills the guard of Line 3.

3 Approach

This section formally introduces the Control Envelope Synthesis via Angelic Re-
finements (CESAR) approach for hybrid systems control envelope synthesis.

3.1 Problem Definition

We frame the problem of control envelope synthesis in terms of filling in holes
L in a problem of the following shape:

prob = assum A s — [((U; (?u; 5 act;)) ; plant) ] safe. (1)

Here, the control envelope consists of a nondeterministic choice between a finite
number of guarded actions. Each action act; is guarded by a condition .; to be
determined in a way that ensures safety within a controllable invariant [6,18]
to be synthesized also. The plant is defined by the following template:

plant = ¢t:=0; {2’ = f(z),t =1 & domain At < T}. (2)
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This ensures that the plant must yield to the controller after time 7' at most,
where T is assumed to be positive and constant. In addition, we make the fol-
lowing assumptions:

1. Components assum, safe and domain are propositional arithmetic formulas.

2. Timer variable ¢ is fresh (does not occur except where shown in template).

3. Programs act; are discrete dL programs that can involve choices, assignments
and tests with propositional arithmetic. Variables assigned by act; must not
appear in safe. In addition, act; must terminate in the sense that £ (act;) true.

4. The modeling assumptions assum are invariant in the sense that F assum —
[(U; act;) ; plant] assum. This holds trivially for assumptions about constant
parameters such as A > 0 in Model 1 and this ensures that the controller
can always rely on them being true.

Definition 1. A solution to the synthesis problem above is defined as a pair
(I, Q) where I is a formula and G maps each action index i to a formula G;. In
addition, the following conditions must hold:

1. Safety is guaranteed: prob(I,G) = prob[.u — I,; — Gy] is valid and
(assum A I) is a loop invariant that proves it so.
2. There is always some action: (assum A1) — \/. G; is valid.

Condition 2 is crucial for using the resulting nondeterministic control envelope,
since it guarantees that safe actions are always available as a fallback.

3.2 An Optimal Solution

Solutions to a synthesis problem may differ in quality. Intuitively, a solution is
better than another if it allows for a strictly larger controllable invariant. In
case of equality, the solution with the more permissive control envelope wins.
Formally, given two solutions S = (I,G) and S' = (I',G’), we say that S’ is
better or equal to S (written S C S’) if and only if F assum — (I — I’) and
additionally either F assum — —(I" — I) or E (assum A 1) — A, (G; — GY).
Given two solutions S and S’; one can define a solution SMS" = (IV I i~
(ING; vV I' NGY)) that is better or equal to both S and S" (S C SM.S" and
S’ C S1S"). A solution S’ is called the optimal solution when it is the maximum
element in the ordering, so that for any other solution S, S C S’. The optimal
solution exists and is expressible in dGL:

I opt

[((N; act;) ; plant)*] safe (3)
GP' = J[act; ; plant] I°Pt. (4)

Intuitively, I°P' characterizes the set of all states from which an optimal con-
troller (played here by Demon) can keep the system safe forever. In turn, G°P' is
defined to allow any control action that is guaranteed to keep the system within
I°Pt until the next control cycle as characterized by a modal formula. Section 3.3
formally establishes the correctness and optimality of S°Pt = (I°Pt GOP).
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While it is theoretically reassuring that an optimal solution exists that is
at least as good as all others and that this optimum can be characterized in
dGL, such a solution is of limited practical usefulness since Eq.(3) cannot be
executed without solving a game at runtime. Rather, we are interested in explicit
solutions where I and G are quantifier-free real arithmetic formulas. There is no
guarantee in general that such solutions exist that are also optimal, but our goal
is to devise an algorithm to find them in the many cases where they exist or find
safe approximations otherwise.

3.3 Controllable Invariants

The fact that S°P is a solution can be characterized in logic with the notion of
a controllable invariant that, at each of its points, admits some control action
that keeps the plant in the invariant for one round. All lemmas and theorems
throughout this paper are proved in the extended preprint [21, Appendix B].

Definition 2 (Controllable Invariant). A controllable invariant is a formula
I such that = I — safe and F I —\/, [act;; plant] I.

From this perspective, I°P* can be seen as the largest controllable invariant.

Lemma 1. I°Pt is a controllable invariant and it is optimal in the sense that
E I — I°PY for any controllable invariant I.

Moreover, not just I°P', but every controllable invariant induces a solution.
Indeed, given a controllable invariant I, we can define G(I) = (i — [act; ; plant] I)
for the control guards induced by I. G(I) chooses as the guard for each action
act; the modal condition ensuring that act;, preserves I after the plant.

Lemma 2. If I is a controllable invariant, then (I,G(I)) is a solution (Def. 1).

Conversely, a controllable invariant can be derived from any solution.

Lemma 3. If (I,G) is a solution, then I' = (assum A ) is a controllable invari-
ant. Moreover, we have (I,G) C (I',G(I")).

Solution comparisons w.r.t. C reduce to implications for controllable invariants.
Lemma 4. If I and I’ are controllable invariants, then (I,G(I)) C (I',G(I")) if
and only if E assum — (I — I').

Taken together, these lemmas allow us to establish the optimality of S°P*.
Theorem 1. S°P' is an optimal solution (i.e. a mazimum w.r.t. ©) of Def. 1.
This shows the roadmap for the rest of the paper: finding solutions to the control
envelope synthesis problem reduces to finding controllable invariants that imply

I°Pt which can be found by restricting the actions available to Demon in I °P
to guarantee safety, thereby refining the associated game.
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3.4 One-Shot Fallback Refinement

The simplest refinement of I°P! is obtained when fixing a single fallback action
to use in all states (if that is safe). A more general refinement considers different
fallback actions in different states, but still only plays one such action forever.
Using the dGL axioms, any loop-free dGL formula whose ODEs admit solutions
expressible in real arithmetic can be automatically reduced to an equivalent
first-order arithmetic formula (in FOLg). An equivalent propositional arithmetic
formula in Pg can be computed via quantifier elimination (QE). For example:

[(vi=1Nv:i==1); {2 =v}]z #0
[v:i=1nv:=-1][{z’ = v}z #0 by [;]
w=1][{z" =v}z#0 v [v:=-1][{z" =v}z#0  by[n]
{z' =1}z #0 Vv [{z/ =-1}z #0 =]

(Vt>0xz + ¢ #0)V (Vt>0xz —t #0) by ['],[:=]
>0V z<0 by QE .

Even when a formula features nonsolvable ODEs, techniques exist to compute
weakest preconditions for differential equations, with conservative approxima-
tions [38] or even exactly in some cases [35,8]. In the rest of this section and for
most of this paper, we are therefore going to assume the existence of a reduce
oracle that takes as an input a loop-free dGL formula and returns a quantifier-
free arithmetic formula that is equivalent modulo some assumptions. Section 3.7
shows how to implement and optimize reduce.

Definition 3 (Reduction Oracle). A reduction oracle is a function reduce
that takes as an input a loop-free dGL formula F' and an assumption A € Pg. It
returns a formula R € Pr along with a boolean flag exact such that the formula
A = (R — F) is valid, and if exact is true, then A — (R < F) is valid as well.

Back to our original problem, I°P* is not directly reducible since it involves a
loop. However, conservative approximations can be computed by restricting the
set of strategies that the Demon player is allowed to use. One extreme case allows
Demon to only use a single action act; repeatedly as a fallback (e.g. braking in the
train example). In this case, we get a controllable invariant [(act; ; plant)”] safe,
which further simplifies into [act; ; plant,] safe with

plant, = {2’ = f(x),t' =1 & domain}

a variant of plant that never yields control. For this last step to be valid though,
a technical assumption is needed on act;, which we call action permanence.

Definition 4 (Action Permanence). An action act; is said to be permanent
if and only if (act;; plant; act;) = (act; ; plant), i.e., they are equivalent games.

Intuitively, an action is permanent if executing it more than once in a row
has no consequence for the system dynamics. This is true in the common case
of actions that only assign constant values to control variables that are read but
not modified by the plant, such as a:= A and a:= —B in Model 1.
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Lemma 5. If act; is permanent, F [(act; ; plant)*] safe <+ [act; ; plant__] safe.

Our discussion so far identifies the following approximation to our original syn-
thesis problem, where P denotes the set of all indexes of permanent actions:

I° = [(Niepact;) ; plant ] safe,
GY = [act; ; pIant]IO.

2

Here, 19 encompasses all states from which the agent can guarantee safety in-
definitely with a single permanent action. G is constructed according to G(I°)
and only allows actions that are guaranteed to keep the agent within I° until
the next control cycle. Note that I° degenerates to false in cases where there are
no permanent actions, which does not make it less of a controllable invariant.

Theorem 2. I° is a controllable invariant.

Moreover, in many examples of interest, I° and I°P* are equivalent since an
optimal fallback strategy exists that only involves executing a single action.
This is the case in particular for Model 1, where

I = [a=-B;{p=v,v'  =a&v>0}e—p>0
= e—p>1®/2B

characterizes all states at safe braking distance to the obstacle and G° associates
the following guard to the acceleration action:

Gy =[a=A;{p=vv =a,t/ =1 & v>0At<T}e—p>v?/2B
= e—p>vT + AT?/2+ (v + AT)*/2B

That is, accelerating is allowed if doing so is guaranteed to maintain sufficient
braking distance until the next control opportunity. Section 3.6 discusses auto-
matic generation of a proof that (I°,G%) is an optimal solution for Model 1.

3.5 Bounded Fallback Unrolling Refinement

In Section 3.4, we derived a solution by computing an underapproximation of
I°PY where the fallback controller (played by Demon) is only allowed to use
a one-shot strategy that picks a single action and plays it forever. Although
this approximation is always safe and, in many cases of interest, happens to be
exact, it does lead to a suboptimal solution in others. In this section, we allow
the fallback controller to switch actions a bounded number of times before it
plays one forever. There are still cases where doing so is suboptimal (imagine a
car on a circular race track that is forced to maintain constant velocity). But
this restriction is in line with the typical understanding of a fallback controller,
whose mission is not to take over a system indefinitely but rather to maneuver
it into a state where it can safely get to a full stop [32].
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For all bounds n € N, we define a game where the fallback controller (played
by Demon) takes at most n turns to reach the region I° in which safety is guar-
anteed indefinitely. During each turn, it picks a permanent action and chooses a
time 6 in advance for when it wishes to play its next move. Because the environ-
ment (played by Angel) has control over the duration of each control cycle, the
fallback controller cannot expect to be woken up after time 6 exactly. However,
it can expect to be provided with an opportunity for its next move within the
[6,6 + T) time window since the plant can never execute for time greater than
T. Formally, we define I" as follows:

I" = [step”="; forever| safe forever = (M;ep act;) ; plant,

step = (A:=x; 70 > 0)¢; (Niep act;) ; planty, 1 ; ?safe; 7t >0

where plantg, 1 is the same as plant, except that the domain constraint ¢ < T is
replaced by t < 6 4+ T'. Equivalently, we can define I" by induction as follows:

It = 1™ v [step] I" 1% = [forever] safe, (5)

where the base case coincides with the definition of I° in Section 3.4. Importantly,
I™ is a loop-free controllable invariant and so reduce can compute an explicit
solution to the synthesis problem from I™.

Theorem 3. I" is a controllable invariant for all n > 0.

Theorem 3 establishes a nontrivial result since it overcomes the significant gap
between the fantasized game that defines I"™ and the real game being played by
a time-triggered controller. The proof critically relies on the action permanence
assumption along with a result [21, Lemma 6] establishing that ODEs preserve
a specific form of reach-avoid property as a result of being deterministic.

Example. As an illustration, consider the example in Fig.1 and Model2 of a
2D robot moving in a corridor that forms an angle. The robot is only allowed
to move left or down at a constant velocity and must not crash against a wall.
Computing I° gives us the vertical section of the corridor, in which going down
is a safe one-step fallback. Computing I'* forces us to distinguish two cases. If the
corridor is wider than the maximal distance travelled by the robot in a control
cycle (VT > 2R), then the upper section of the corridor is controllable (with the
exception of a dead-end that we prove to be uncontrollable in Section 3.6). On the
other hand, if the corridor is too narrow, then I' is equivalent to I°. Formally,
we have I' = (y > —-R A Jz| < R) V (VT <2R A (x > —R A |y| < R)).
Moreover, computing I? gives a result that is equivalent to I'. From this, we
can conclude that I' is equivalent to I™ for all n > 1. Intuitively, it is optimal
with respect to any finite fallback strategy (restricted to permanent actions).
The controllable invariant unrolling /™ has a natural stopping criterion.

Lemma 6. If I" < I™*! s valid for some n > 0, then I™ « I™ is valid for
allm >n and I™ + 1% is valid where [¥ = [step™ ; forever] safe.
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Fig. 1: Robot navigating a corridor (Model2). A 2D robot must navigate safely
within a corridor with a dead-end without crashing against a wall. The corridor
extends infinitely on the bottom and on the right. The robot can choose between
going left and going down with a constant speed V. The left diagram shows I°
in gray. The right diagram shows I' under the additional assumption VT < 2R
(I' and I° are otherwise equivalent). A darker shade of gray is used for regions
of I' where only one of the two available actions is safe according to G*.

Model 2 Robot navigating a corridor with framed solutions of holes.

assum|1 V>0AT>0

ctrlable| 2 A [(y>-RAJa[<R)V(VT <2RA (x> —-RA [y[<R)|—[{
( (as —RiVT]i 0o = V:vy=0)

UMy<R=—VT Va<R|;v:=0;vy:=V) );

plant‘5 (t:=0; {2’ =ve, 9 =v,,t' =1 & t<TY})

safe| 6 }*]((z>—-3R A |y <R)V(y>—R A |z| < R))

3
ctrl
4

3.6 Proving Optimality via the Dual Game

Suppose one found a controllable invariant I using techniques from the previous
section. To prove it optimal, one must show that F assum — (I°P* — [). By
contraposition and [a] P + —{a) =P ([-]), this is equivalent to proving that:

F assum A =1 — (((N; act;) ; plant)™) —safe. (6)

—J opt

We define the largest uncontrollable region U °P* = =] °P' ag the right-hand side
of implication 6 above. Intuitively, U °P* characterizes the set of all states from
which the environment (played by Angel) has a winning strategy against the
controller (played by Demon) for reaching an unsafe state. In order to prove the
optimality of I, we compute a sequence of increasingly strong approximations U
of U°P* such that U — U°P! is valid. We do so via an iterative process, in the
spirit of how we approximate I°P* via bounded fallback unrolling (Section 3.5),
although the process can be guided by the knowledge of I this time. If at any
point we manage to prove that assum — (I vV U) is valid, then [ is optimal.
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One natural way to compute increasingly good approximations of U°P' is
via loop unrolling. The idea is to improve approximation U by adding states
from where the environment can reach U by running the control loop once,
formally, ((N;act;); plant) U. This unrolling principle can be useful. However,
it only augments U with new states that can reach U in time T at most. So
it cannot alone prove optimality in cases where violating safety from an unsafe
state takes an unbounded amount of time.

For concreteness, let us prove the optimality of 7% in the case of Model 1.
In [34] essentially the following statement is proved when arguing for optimality:
F assum A 1% — ((a := — B plant)*) —safe. This is identical to our optimality
criterion from Eq. (6), except that Demon’s actions are restricted to braking.
Intuitively, this restriction is sound since accelerating always makes things worse
as far as safety is concerned. If the train cannot be saved with braking alone,
adding the option to accelerate will not help a bit. In this work, we propose a
method for formalizing such arguments within dGL to arbitrary systems.

Our idea for doing so is to consider a system made of two separate copies of
our model. One copy has all actions available whereas the other is only allowed
a single action (e.g. braking). Given a safety metric m (i.e. a term m such that
F m < 0 — —safe), we can then formalize the idea that “action i is always better
w.r.t safety metric m” within this joint system.

Definition 5 (Uniform Action Optimality). Consider a finite number of
discrete dL programs o; and p = {2’ = f(z) & Q}. Let V. =BV(p) UJ, BV ()
be the set of all variables written by p or some «;. For any term 6 and integer
n, write 0 for the term that results from 6 by renaming all variables v € V to
a fresh tagged version (™. Using a similar notation for programs and formulas,
define pt2) = {(2M) = f(2M), (@) = (@) & QM A QP}. We say that
action j is uniformly optimal with respect to safety metric m if and only if:

Eom® > m® 50,0 (U a®); p0D)m® > m®,

best;((c)i, p,m) denotes that action j is uniformly optimal with respect to m
for actions a; and dynamics p.

With such a concept in hand, we can formally establish the fact that criterion
Eq. (6) can be relaxed in the existence of uniformly optimal actions.

Theorem 4. Consider a finite number of discrete dL programs a; such that
E (a;) true for all i and p = {2’ = f(z) & ¢ > 0}. Then, provided that
best;((a;)i,p,m) and best;((a;)i,p, —q) (no other action stops earlier because
of the domain constraint), we have:

F (((Nai); p)")m <0 ((a;;p))m <0 .
A general heuristic for leveraging Theorem 4 to grow U automatically works as

follows. First, it considers R = assum A—I A—=U that characterizes states that are
not known to be controllable or uncontrollable. Then, it picks a disjunct A iR of
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the disjunctive normal form of R and computes a forward invariant region V that
intersects with it: V' = A {R; : assum, R; I [(U; act;); plant] R;}. Using V' as
an assumption to simplify =U may suggest metrics to be used with Theorem 4.
For example, observing E V — (-U — (6, > 0 A6y > 0)) suggests picking
metric m = min(6,,62) and testing whether best;(act, p,m) is true for some
action j. If such a uniformly optimal action exists, then U can be updated as
U « UV (VA{(act;; plant)*) m < 0). The solution I'* for the corridor (Model 2)
can be proved optimal automatically using this heuristic in combination with
loop unrolling.

3.7 Implementing the Reduction Oracle

The CESAR algorithm assumes the existence of a reduction oracle that takes as
an input a loop-free dGL formula and attempts to compute an equivalent formula
within the fragment of propositional arithmetic. When an exact solution cannot
be found, an implicant is returned instead and flagged appropriately (Def. 3).
This section discusses our implementation of such an oracle.

As discussed in Section 3.4, exact solutions can be computed systematically
when all ODEs are solvable by first using the dGL axioms to eliminate modalities
and then passing the result to a quantifier elimination algorithm for first-order
arithmetic [9,42]. Although straightforward in theory, a naive implementation of
this idea hits two practical barriers. First, quantifier elimination is expensive and
its cost increases rapidly with formula complexity [11,44]. Second, the output
of existing QE implementations can be unnecessarily large and redundant. In
iterated calls to the reduction oracle, these problems can compound each other.

To alleviate this issue, our implementation performs eager simplification
at intermediate stages of computation, between some axiom application and
quantifier-elimination steps. This optimization significantly reduces output solu-
tion size and allows CESAR to solve a benchmark that would otherwise timeout
after 20 minutes in 26s. [21, Appendix E] further discusses the impact of eager
simplification. Still, the doubly exponential complexity of quantifier elimination
puts a limit on the complexity of problems that CESAR can currently tackle.

In the general case, when ODEs are not solvable, our reduction oracle is still
often able to produce approzimate solutions using differential invariants gener-
ated automatically by existing tools [38]. Differential invariants are formulas that
stay true throughout the evolution of an ODE system. # To see how they apply,
consider the case of computing reduce([{z’ = f(z)}] P, A) where P is the post-
condition formula that must be true after executing the differential equation,
and A is the assumptions holding true initially. Suppose that formula D(x) is a
differential invariant such that D(z) — P is valid. Then, a precondition sufficient
to ensure that P holds after evolution is A — D(z). For example, to compute the
precondition for the dynamics of the parachute benchmark, our reduction ora-
cle first uses the Pegasus tool [38] to identify a Darboux polynomial, suggesting

4 dGL provides ways to reason about differential invariants without solving the corre-
sponding differential equation. For example, for an invariant of the form e = 0, the
differential invariant axiom is [{z’' = f(z)}e =0+ (e=0A[{z' = f(x)}] ' =0).
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an initial differential invariant Dg. Once we have Dy, the additional information
required to conclude post condition P is Dy — P. To get an invariant formula
that implies Dy — P, eliminate all the changing variables {z, v} in the formula
Va Vv (Dg — P), resulting in a formula D;. D; is a differential invariant since it
features no variable that is updated by the ODEs. Our reduction oracle returns
Do A Dy, an invariant that entails postcondition P.

3.8 The CESAR Algorithm

The CESAR algorithm for synthesizing control envelopes is summarized in Al-
gorithm 1. It is expressed as a generator that yields a sequence of solutions with
associated optimality guarantees. Possible guarantees include “sound” (no op-
timality guarantee, only soundness), “k-optimal” (sound and optimal w.r.t all
k-switching fallbacks with permanent actions), “w-optimal” (sound and opti-
mal w.r.t all finite fallbacks with permanent actions) and “optimal” (sound and
equivalent to S°P'). Line 11 performs the optimality test described in Section 3.6.
Finally, Line 10 performs an important soundness check for the cases where an
approximation has been made along the way of computing (I, G™). In such
cases, I is not guaranteed to be a controllable invariant and thus Case (2) of
Def. 1 must be checked explicitly.

When given a problem with solvable ODEs and provided with a complete QE
implementation within reduce, CESAR is guaranteed to generate a solution in
finite time with an “n-optimal” guarantee at least (n being the unrolling limit).

4 Benchmarks and Evaluation

To evaluate our approach to the Control Envelope Synthesis problem, we curate a
benchmark suite with diverse optimal control strategies. As Table 2 summarizes,
some benchmarks have non-solvable dynamics, while others require a sequence
of clever control actions to reach an optimal solution. Some have state-dependent
fallbacks where the current state of the system determines which action is “safer”,
and some are drawn from the literature. We highlight a couple of benchmarks
here. See [21, Appendix D] for a discussion of the full suite and the synthesized
results, and [20] for the benchmark files and evaluation scripts.

Power Station is an example where the optimal control strategy involves
two switches, corresponding to two steps of unrolling. A power station can ei-
ther produce power or dispense it to meet a quota, but never give out more
than it has produced. Charging is the fallback action that is safe for all time
after the station has dispensed enough power. However, to cover all controllable
states, we need to switch at least two times, so that the power station has a
chance to produce energy and then dispense it, before settling back on the safe
fallback. Parachute is an example of a benchmark with non-solvable, hyperbolic
dynamics. A person jumps off a plane and can make an irreversible choice to
open their parachute. The objective is to stay within a maximum speed that is
greater than the terminal velocity when the parachute is open.
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Algorithm 1 CESAR: Control Envelope Synthesis via Angelic Refinements

1: Input: a synthesis problem (as defined in Section 3.1), an unrolling limit n.
2: Remark: valid is defined as valid(F, A) = (first(reduce(—F, A)) = false).
3: k«+0

4: I,er <+ reduce([forever] safe, assum)

5: while £k <n do

6: eq + true

7 for each i do

8: G, e « reduce([act; ; plant] I, assum)

9: eq < eq and e

10: if (e¢ and er) or valid(I — \/, G;, assum) then

11: if e¢ and optimal(I) then

12: yield ((I, G), “optimal”)

13: return

14: else if e¢ and e; then yield ((I,G), “k-optimal”)
15: else yield ((I,G), “sound”)

16: I',)e < reduce(I V [step] I, assum)

17: er ey and e

18: if e¢ and e; and valid(I’ — I, assum) then

19: yield ((I, G), “w-optimal”)
20: return
21: I+«7T1
22: kE+—k+1

We implement CESAR, in Scala, using Mathematica for simplification and
quantifier elimination, and evaluate it on the benchmarks. Simplification is an
art [25,23]. We implement additional simplifiers with the Egg library [45] and
SMT solver z3 [30]. Experiments were run on a 32GB RAM M2 MacBook Pro
machine. CESAR execution times average over 5 runs.

CESAR synthesis is automatic. The optimality tests were computed man-
ually. Table2 summarizes the result of running CESAR. Despite a variety of
different control challenges, CESAR is able to synthesize safe and in some cases
also optimal safe control envelopes within a few minutes. As an extra step of val-
idation, synthesized solutions are checked by the hybrid system theorem prover
KeYmaera X [16]. All solutions are proved correct, with verification time as
reported in the last column of Table 2.

5 Related Work

Hybrid controller synthesis has received significant attention [26,41,7], with pop-
ular approaches using temporal logic [5,7,46], games [31,43], and CEGIS-like
guidance from counterexamples [39,1,37,10]. CESAR, however, solves the differ-
ent problem of synthesizing control envelopes that strive to represent not one
but all safe controllers of a system. Generating valid solutions is not an issue (a
trivial solution always exists that has an empty controllable set). The real chal-
lenge is optimality which imposes a higher order constraint because it reasons
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Table 2: Summary of CESAR experimental results

Benchmark Synthesis Checking Optim. Need§ Soll\ifc:kl)le
Time (s) Time (s) Unrolhng .
Dynamics

ETCS Train [34] 14 9 v
Sled 20 8 v
Intersection 49 44 v
Parachute [15] 46 8 v
Curvebot 26 9 v
Coolant 49 20 v v
Corridor 20 8 v v
Power Station 26 17 v v

about the relationship between possible valid solutions, and cannot, e.g., fit in
the CEGIS quantifier alternation pattern 3V. So simply adapting existing con-
troller synthesis techniques does not solve symbolic control envelope synthesis.

Safety shields computed by numerical methods [2,13,24] serve a similar func-
tion to our control envelopes and can handle dynamical systems that are hard
to analyze symbolically. However, they scale poorly with dimensionality and do
not provide rigorous formal guarantees due to the need of discretizing continuous
systems. Compared to our symbolic approach, they cannot handle unbounded
state spaces (e.g. our infinite corridor) nor produce shields that are parametric
in the model’s parameters without hopelessly increasing dimensionality.

On the optimality side, a systematic but manual process was used to design
a safe European Train Control System (ETCS) and justify it as optimal with re-
spect to specific train criteria [34]. Our work provides the formal argument filling
the gap between such case-specific criteria and end-to-end optimality. CESAR
is more general and automatic.

6 Conclusion

This paper presents the CESAR algorithm for Control Envelope Synthesis via
Angelic Refinements. It is the first approach to automatically synthesize symbolic
control envelopes for hybrid systems. The synthesis problem and optimal solu-
tion are characterized in differential game logic. Through successive refinements,
the optimal solution in game logic is translated into a controllable invariant and
control conditions. The translation preserves safety. For the many cases where
refinement additionally preserves optimality, an algorithm to test optimality of
the result post translation is presented. The synthesis experiments on a bench-
mark suite of diverse control problems demonstrate CESAR’s versatility. For
future work, we plan to extend to additional control shapes, and to exploit the
synthesized safe control envelopes for reinforcement learning.
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1 Introduction

Recent technological advances in, e.g., sensors and computer vision, gave up-
draft to the development of automated systems performing safety-critical tasks
in complex domains. These systems are expected to safely operate without hu-
man intervention in these contexts. Consider, for example, automated driving
systems (ADSs), where the responsibility of safely navigating the environment
lies fully with the system [35]. The combination of their safety-critical nature
and the complex operational domain makes it hard to guarantee the absence
of unreasonable risk before public release, which is, however, required by many
homologation authorities. Alas, correct-by-design techniques are rendered in-
applicable by the high system complexity. Thus, manufactures must resort to
empirically assessing the system’s risk prior to deployment. As automated sys-
tems interact with their environment over time, a promising approach for risk
assessment is to decompose the complex operational domain into finite-time se-
quences (’scenarios’) [34]. Safety requirements — aiming to mitigate unreasonable
risks — are then specified for these scenarios. Hence, a formal specification of the
actors’ temporal behavior becomes essential. An exemplary requirement reads
as follows: ’'In situations where the absence of pedestrians is not guaranteed,
adapt the speed appropriately.” Note that this rule consists of a premise (the
situation) and a consequence (the behavior). The number of situations to write
requirements for can be enormous, e.g., occlusions [42], violating the safety dis-
tance [43], and maneuvers such as passing parking vehicles [11]. Due to their
large number, testing the most widely used option for verification, i.e., to check
the system’s conformance with requirements. For this, data of test runs of the
system operating within its environment are recorded. Adherence to the require-
ments is then evaluated by recognizing the situation ('no guaranteed absence of
pedestrians’) and testing for the implied behavior ("adapted speed’). We argue
that this approach has three requirements:

Relational and Temporal Domain Formally modelling traffic situations in-
herently requires a relational language since they refer to individuals and
their relationships, e.g., drives. Moreover, the number of individuals is not
fixed beforehand. Finally, scenarios over such situations involve the descrip-
tion of temporal aspects. A typical example is the process of overtaking.

Rich Background Knowledge We do not assume that the data is complete
in the sense that we can observe all facts about all individuals. Instead,
we assume to have rich knowledge about the relations used in the situation
descriptions. Examples for this are:

— a Driver is equivalent to a Human which drives some Vehicle, or

— a Driver is never a Pedestrian.
Such knowledge must be included since otherwise situations may not be
correctly recognized in the data and test evaluation produces false results.

Formal Specifications of Properties It is established that specifying and
testing requirements benefits greatly from formal approaches. Standard re-
quirement formalization languages, like linear temporal logic, are however
propositional and thus unsuitable for our purposes.
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An established way to address the first two aspects is to model situations via tem-
poral knowledge bases K = (O, D) which consist of a domain ontology O that de-
scribes the background knowledge and a temporal database D that describes the
evolution of the situation over time. Formally, D is a sequence D = (Dy, ..., D,)
of time-stamped databases. Note that, in using temporal knowledge bases, we
adopt the open world assumption (OWA), which intuitively says that the true
facts are not only those in D but those that are entailed by O and D.

As to address the third aspect above, i.e., to formally specify properties, we
use a suitable extension of linear temporal logic (LTL). Recall that LTL is a
language for describing properties over a set of propositions by using modalities
such as Q¢ (¢ holds eventually), Op ( holds globally), w1 Ups (p1 holds until
©2), and Oy (¢ holds in the next step). Unfortunately, this does not suffice when
working over relational data. A natural option to extend LTL in the required way
is to replace propositions by queries. In this work, we use conjunctive queries
(CQs). CQs are one of the most common query language for databases and
expressively equivalent to the SELECT-FROM-WHERE fragment of SQL. For
example, we can ask for all drivers d of a vehicle by the CQ Jv.Vehicle(v) A
drives(d,v) with one existentially quantified variable v and one answer variable
d. In terms of the temporal expressivity, our application further requires that

(1) we operate on finite traces whose length is bounded by the length of the
temporal database D specified in the temporal knowledge base,

(2) as duration constraints are used in specifications, e.g., to distinguish maneu-
vers of certain lengths, we incorporate metric operators, and

(3) we analyze the data a-posteriori. Hence we are not in a run-time verification
setting and require only future time operators.

We term the resulting language metric temporal conjunctive queries (MTCQs),
which features both unbounded and bounded future time operators over finite
traces and uses CQs in its atoms and is based on Mission-Time LTL (MLTL) [29].
MTCQs can, for example, express properties like &§%(z) = ¢—Pedestrian(z),
asking for all individuals x that are eventually not a pedestrian. A more involved
MTCQ asking for all z that move past a parking vehicle y on a two-lane road is

¢ (x,y) = O(3r.Vehicle(z) A 2_Lane_Road(r) A intersects(r,z)A
Parking Vehicle(y)) A O(in_front_of(y,z) AO
((in_proximity(z,y) Ato_the side_ of(y,z))Ubehind(y,x))).

Recognizing such a situation for checking a requirement translates to the task
of evaluating an MTCQ &(&) with answer variables & over a temporal knowledge
base K. Informally, if we want to verify that a tuple of individuals @ conforms
to some specification @(Z) in a situation K = (O, D), we have to check whether
the entailment (O, D) = &(a) is true, cf. Section 3 for precise definitions.

This task obviously depends on the chosen ontology language. For this, we
use description logics (DLs), an established knowledge representation formalism,
which offers a good compromise between complexity and expressivity [10]. Our
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approach works up to the SRZ o™ fragment of DLs. It is close to the formalism
behind the Web Ontology Language (OWL) 2, an expressive and widespread DL
language. The mentioned task of entailment has been studied for DL temporal
knowledge bases and a different yet related extension of LTL [8], cf. Section 2.

We now illustrate this setup by means of a simple example. A DL ontology
O is a set of concept inclusions C C D for concept descriptions C and D. We also
write C = D to denote concept equivalence. DLs allow for arbitrary names as
basic concepts. We have special names for nothing (L) and all things (T ). Besides
concepts, DLs also allow so-called roles (relations) between concepts. From these,
we can inductively build new concepts. For an example ontology O “*, we might
state that every driver is a human by Driver T Human € O¢. As to illustrate the
combination of roles and concepts we define drivers as the intersection (using the
M-operator) of all humans and all things that drive some (using the J-operator)
vehicle, written as Driver = Human N 3drives.Vehicle € O°*. We can use L to
express that pedestrians and drivers are disjoint: Driver [ Pedestrian C 1 €
o,

These operators may be enough for simple domains. However, knowledge
about relations in complex domains is often involved, in which case even more
expressive operators can be allowed. For example, the MTCQ @{” requires recog-
nizing situations of passing parking vehicles. Here, expressive DLs allow modeling
two-lane roads to have exactly two lanes (by the concept =2has lane.Lane)
and be a road (by the concept Road M =2has lane.Lane). Moreover, parking
vehicles are standing (with a speed of the datatype literal 0.0) dynamical objects
on a parking spot. This is expressed by the following DL ontology:

— 2 Lane Road =Roadl1=2has lane.Lane

— VehiclelStanding Dynamical Objectlldintersects.Parking Spot C
Parking Vehicle

— Parking Spot = Parking Lane U Walkway

— Standing Dynamical Object = Dynamical Object M Jhas speed.{0.0}

Let us now use the simple example to give an intuition on the semantics of
MTCQs over DL ontologies. First, we create an exemplary database with facts
over so-called individuals (concrete objects that are perceived). For example, we
can assert for the first time point that the individual h is a human driving the
individual v, a vehicle, by writing the facts as D§® = {Human(h),drives(h,v),
Vehicle(v)}. Next, we may perceive D{* = (), i.e., no information at all. Together
with the ontology, it forms a temporal knowledge base K¢ = (0, (D§", D{*)).
If we query K w.r.t. §5%(z) = O—Pedestrian(x), we get h as the only answer,
as h is a driver in D§* and the ontology states that drivers can never be pedestri-
ans. However, if we change the query to 5% = J—-Pedestrian(x), no individual
satisfies the constraint, since Df* asserts nothing — it can very well be possible
that h has become a pedestrian (due to the OWA).

This example highlights that languages like MTCQs are important for testing
requirements on systems in complex domains. However, up to now, only the
theoretical work by Baader et al. examines a related but hard-to-implement
setting over infinite traces for complexity-theoretic analyses [8]. No language
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has yet been defined that is practically suitable for implementation and has the
required expressiveness. Moreover, there currently is no tooling for any temporal
query language over expressive DLs. Our work on MTCQs addresses this gap.

For this, we first introduce the formal foundation of MTCQs in Section 3.
We implement the framework in an answering engine for a large and practically
relevant subclass of MTCQs in Section 4, closing the identified research gap. To
evaluate its efficacy, we present a benchmark generator for temporal knowledge
bases, as described in Section 5. We show the efficacy of our tool in this practical
setting in Section 6. To summarize, the main contributions of our work are

1. MTCQs as a practically implementable and expressive temporal query lan-
guage and the first tool for answering such queries up to the DL. SRZ o),

2. a benchmark generator for the evaluation of inference tasks on temporal
knowledge bases, and

3. an application of the tool in our motivational setting of situation recognition
for urban automated driving.

2 Related Work

We previously claimed that for our motivational domain of ADS development
the usefulness of temporal logics (TLs) and related mechanisms — e.g., regular ex-
pressions — for scenario extraction has been recognized, which is supported by the
literature [26, 31,18, 16]. More specifically, work exists in specifying behavioral
requirements, e.g., based on traffic rules, using TLs [1, 33, 19]. However, none of
these approaches formally incorporate an ontology. In general, the importance of
ontologies in automated driving is recognized, see, e.g., ASAM OpenXOntology
[7] for an international standardization project as well as Westhofen et al. [42]
and Zipfl et al. [44] for non-systematic reviews. Some ontological approaches
are in fact based on DLs [27]. However, we are not aware of work within the
automotive domain that uses DLs and TLs for analyzing temporal traffic data.

On the theoretical side, a plethora of temporal DLs have been introduced [2,
32, 5], also on finite traces [6]. These classical combinations were not conceived in
a query answering context, so more recently, several frameworks for addressing
that have been introduced [3]. We mention the most important ones here. There
is work on ontologies formulated in the lightweight (i.e., comparatively inexpres-
sive) DLs DL-Lite [12,38] and L [13,22]. For expressive DLs, an important
line of work theoretically examines answering temporal conjunctive queries — es-
sentially infinite-time LTL over conjunctive queries — over temporal knowledge
bases with the ontology language ranging from ALC [8] to SHQ [30, 9]. Related,
but orthogonal to combinations of DLs with TLs, are combinations of Datalog
with TLs. This line of research started around 1990 with DataloglS [15], and
lead to other combinations [14, 39] for which also tools exist [40].
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3 Formal Foundations

We introduce the formal foundations of the relevant DLs and their temporal
extension. For the sake of simplicity, we focus on the ontology language ALC,
which is a prototypical language in the class of expressive DLs. However, our
approach generalizes to (and is actually implemented for) the more expressive
logic SRZQ™®), cf. Horrocks et al. for further reference on this DL fragment [24].

We start with an introduction to non-temporal knowledge bases which we
later use as a foundation for defining the temporal case. As sketched in Section 1,
in ALC we can describe the relationship of roles and concepts in an ontology O
and assert individuals to these concepts and roles in a database D. Any knowl-
edge base is thus a tuple (O, D) and relies upon concept, role, and individual
names. For the remainder, we fix countably infinite supplies N¢, Ng, N} of con-
cept, role, and individual names, respectively. An ALC-concept description C is
formed according to C:= A | —-C|CMC|CUC|Vr.C| Ir.C where A ranges over
Nc and r ranges over Ng. We can thus compose new concepts using negation,
intersection, and union. For a role r, we moreover allow for universal (enforcing a
concept to only have r-successors in C) and existential quantification (enforcing a
concept to have an r-successor in C). Section 1 already introduced an example of
an existentially quantified role using ddrives.Vehicle — the concept of all things
driving some vehicle. An ontology is a set of concept inclusions C E D for ALC-
concepts C and D, denoting subsumption of the concept C to the concept D. We
write C =D (concept equivalence) for C £ D and D C C. Again, the introduction
used Humanddrives.Vehicle = Driver as an example for concept equivalence.
The data is a set of facts of the form A(a) and r(a,b) for a,b € Ny, € Ng, and
A € N¢, hence assigning individuals to concepts and roles. We denote the set of
individuals that occur in D by Ind(D). The introductory example of Section 1
used the set of individuals {h, v} and asserted the role drives(h,v).

The semantics of ontologies and data is defined via interpretations 7 =
(AT, 1) of a domain AZ and a mapping -Z that assigns a set AT C AT to
every A € N¢, a binary relation rZ C AZ x AT to every role name r € Ng,
and an element aZ € AT to every a € N, [10, Chapter 2.2]. As to incorporate
ALC-concept descriptions, the interpretation function is inductively defined as:

(=)t == AT\ ¢t
(cnp)? :=cfnpt
(cup)? :=cfup?
(vr.C)t = {ce AT |Vd € AT.(c,d) e R — d e ¢’}
(Fr.c)? :={cec AT |3d € AT.(c,d) e RF Ad € CT}
Then, we say Z = C C D if ¢Z C D%, T |= A(a) if aZ € AT, and Z = r(a,b) if
(aT,vT) € rZ. As to lift these definitions to ontologies and data, we write Z = O
and Z |= D if O resp. D satisfy all concept inclusions in O resp. assertions in

D. Finally, for a complete knowledge base, we define Z = (O, D) if Z = O and
T |=D. More details on the semantics of DLs are given by Baader et al. [10].
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We now extend this definition of non-temporal knowledge bases to the tempo-
ral case, where a knowledge base consists of an ontology O and a finite sequence
of assertions that describe the databases over time.

Definition 1 (Temporal Knowledge Base). A temporal knowledge base
(KB) is a tuple K = (O, (Di)icqo,....n}) where O is an ontology and each D;
is a database.

Their semantics is defined by temporal interpretations using the non-temporal
case as its basis.

Definition 2 (Temporal Interpretation). A temporal interpretation J is a
finite sequence T = (I;)icqo,....m} of interpretations over a fived domain A such
that a¥t = a%9, for alla € Ny and 0 < 4,5 < m. We call 3 a model of the temporal
KB (O, (Di)ieqo,....n}), written I = K, if m = n and Z; = D; and Z; |= O, for
alli €{0,...,n}.

The assumption that all interpretations share a common domain is called con-
stant domain assumption. We define next the language MTCQ that we use to
query temporal KBs. It is a combination of standard conjunctive queries with
temporal operators inspired by MLTL [29].

Definition 3 (Syntax of MTCQs). Let Ny be a countably infinite set of vari-
able names. A conjunctive query (CQ) ¢ is an expression of the form (%) =
IG.(Z,y) where T, 7 are tuples of variables from Ny and ¢ is a conjunction of
concept atoms A(t) and role atoms r(t,t') with A € Nc, r € Ng, and t,t' €
ZUgFUN,. Metric temporal conjunctive queries (MTCQs) @ are built from CQs
using negation —®, conjunction @ A &', and two versions of until, PUP' and
DU D" for a,b € N. We denote with Ind(P) the set of individuals and Var(P)
the set of variables in an MTCQ .

Note that we extend MLTL by borrowing the unconstrained until operator from
LTL, because it is a frequent operator in practice. Additionally, it allows for
a more direct translation to finite automata in our system presented later on.
We call the variables & the answer variables and 3 the quantified variables. An
MTCQ is Boolean if it does not have answer variables. The semantics of Boolean
CQs is defined in terms of matches into interpretations.

Definition 4 (Semantics of Boolean CQs). For a Boolean conjunctive query
¢ and an interpretation T, T |= ¢ iff there exists a function 7: Var(p)UInd(p) —
AT with 1. w(a) = aF for all a € Ind(p), 2. 7(t) € CT for all C(t) in ¢, and
3. (w(t),n(t) € £ for all x(t,t') in ¢.

Hence, an interpretation satisfies a Boolean CQ if the interpretation can respect
its constraints. Boolean CQs form the basis for the semantics of Boolean MTCQs.

Definition 5 (Semantics of Boolean MTCQs). Let J = (Z;);c{o,....m} be a
temporal interpretation and ¢ € {0,...,m}. The semantics of Boolean MTCQs
is giwen by structural induction:

- J3iEQIfL, E®P, if P is a Boolean CQ;
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— i b iff 3,0 e b;

- j,’L ':@1 /\@2 Zﬁj,l ':dsl and j,l ):@2,'

— 3,1 | @1Ujq 5 P2 iff there is a k € [a,b] withi+k < m such that J,i+k = @,
and 3,3+ j = D1, for all j € [a, k);

— J,i |E ®1UDs iff there is a k € [i,m] such that T,k = Py and J,j = &y, for
al j € li,i+k).

We allow the typical abbreviations @ V &' for ~(=® A —9'), false for Jz. A(x) A
—3x.A(x) for some A € Nc, true for —false, 014,41 ® for truel, 5@, OP for true U,
Ula,5®@ for =045y, and (0P for =O—&. The strong next-operator is defined as
O = On,1® and weak next as 00 = Op,11®- Note that finite trace semantics
exhibit some non-obvious behaviors, e.g., QTP is equivalent to JOP [17].

A central problem over Boolean MTCQs is entailment: For a temporal KB
K and an MTCQ &, we say K = & if for all temporal interpretations J with
J E K also 73,0 = @ holds. For example, for £ from Section 1, it holds that
K = ¢Q—Pedestrian(h) as for any temporal interpretation J = (Zp,Z;) with
Ty = O and Ty = DE, it must also hold that h’o € (—Pedestrian)Z due to
the fact that h is inferred to be a driver and thus cannot be a pedestrian.

We remark that this semantics is closely related to the one over temporal
conjunctive queries (TCQs) introduced by Baader et al. [8] to query temporal
KBs over arbitrary models, i.e., not restricted to mission time. In fact, it is not
difficult to see that entailment K |= @ for Boolean MTCQs ¢ can be reduced to
deciding whether K entails @ in the sense of Baader et al. [8] for some TCQ o
that can be computed in polynomial time from ®; we denote the latter entailment
relation with K =BBY @, In the mentioned paper it is also shown that the latter
entailment problem is in ExpTime. Together with the ExpTime-lower bound for
subsumption in ALC this shows that MTCQ entailment is ExpTime-complete.
Of course, the complexity is potentially higher for ontology languages beyond
ALC. Finally, if in place of CQs in MTCQs we allow for ALC-concepts, the
resulting language can be embedded into the metric temporal DLs discussed by
Gutiérrez-Basulto et al. [23].

While Boolean MTCQ entailment is the natural problem to consider for com-
plexity analysis, a practical system needs support for answering non-Boolean
MTCQs, which is defined based on entailment. Let K = (O, (D;);eqo,... n}) be a
temporal KB, @(Z) an MTCQ with answer variables Z, and @ a tuple of indi-
viduals from £, i.e., @ C Ind(K) :— U, ., Ind(D;). We call @ a certain answer
to (&) over K if K |= &(@). Here, &(d) is the uniform replacement of the vari-
ables in Z by the individual names in @, leading to a Boolean MTCQ. Our main
reasoning task is to compute the set certx(®) of certain answers of ¢ over K.
Section 1 gives an example for this set: certie=(O—Pedestrian(x)) = {h}.

4 Computing Certain Answers in Practice

We start with noting that to compute certc(®), it is not sufficient to answer all
of @’s CQs at time i and combine them inductively according to the semantics
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due to the presence of disjunction in our query language. An example is the
MTCQ éy(z) = B(x) V C(z) over the temporal KB Ky = (A C BUC, (A(a))),
where certic, (Pv) = {(a)}. A separate check of B(z) and C(x) returns no answer,
and inductive combination falsely yields no answer as well. This issue explains
the restriction to conjunctions in existing CQ answering implementations over
expressive DLs, as complexity is reduced and various optimizations can be em-
ployed. Therefore, and in contrast to both LTL¢ over propositional atoms and
CQ answering, we require a more involved procedure for checking MTCQs.

The correct but naive way to compute certc(®) is to enumerate all candidate
answers @ C Ind(K) and decide whether K [=BBE &(d) via the algorithms pro-
vided by Baader et al. [8] (for the temporal aspects) and Horrocks and Tessaris
[25] (for answering disjunctions of conjunctive queries). This, however, suffers
from several problems. First, there are potentially many answer candidates since
the number of relevant tuples is exponential in the arity of the query ®. Sec-
ond, while the mentioned algorithm for deciding =PBT is useful for a complexity
analysis, it does not lend itself to a direct implementation. Finally, the algo-
rithm of Baader et al. works over unrestricted models and is thus more difficult
to implement. This section provides the foundations for the algorithm that we
implemented in our tool and the central improvements needed to make it work
in practice.

As MTCQs are closed under negation, entailment is just the complement of
satisfiability: a Boolean MTCQ @ is satisfiable w.r.t. a temporal KB K if there
is a model J of K with 3,0 = @. As K = & iff - is unsatisfiable w.r.t. K, we
can, for the sake of convenience, focus on satisfiability in the following.

We need some preliminary notions. Given an MTCQ @ (possibly with answer
variables), we denote with CQ(®) the set of all CQs in @. The propositional ab-
straction PA(P) of @ is the replacement of each ¢ € CQ(P) with a propositional
variable p,. Note that the propositional abstraction of an MTCQ is an MLTL
formula potentially with an unconstrained until, which is the underlying tempo-
ral formalism. This TL is interpreted over finite words P, --- P, where each P;
specifies the propositional variables that are satisfied at time point i. Boolean
operators are interpreted as usual and temporal operators U and U], ) are inter-
preted in line with Definition 5. The following characterization of satisfiability
is easy to prove from the definitions.

Lemma 1. For a Boolean MTCQ @ and a temporal KB K = (O, (D;)icqo,....n})>
& is satisfiable w.r.t. K iff there is a sequence Xo, ..., X, of subsets of CQ(®P)
such that:

1. there are interpretations Iy, ..., I, over the same domain such that, for all
i€{0,...,n}, we have Z; = O, I, =D;, and T; |= ¢ for every ¢ € X;, and
Z; = ¢ for every ¢ € CQ(P) \ X;, and

2. ({py | v € Xi})iE{O,.A.,n} satisfies PA(P).

Intuitively, Lemma 1 splits the problem of deciding MTCQ satisfiability into sep-
arate DL and TL tasks which are only connected by the sets of CQs Xy, ..., X,,.
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Lemma 1 can be further refined as follows. The requirement that all inter-
pretations Zg,...,Z, be over the same domain can be dropped without com-
promising correctness. Indeed, we can combine Zy, ..., 7, witnessing Point 1 in
Lemma 1 but with potentially different domains into Zj, ..., Z;, with the same
domain using a standard argument, cf. the proof of Theorem 5.21 by Lippmann
[30]: Since ALC cannot enforce finite models, we can assume that each Z; is infi-
nite. By the downward Léwenheim-Skolem-Theorem, we can assume that the Z;
are countably infinite and thus have the same domain. It remains to identify the
interpretation of the individual names. Note that the argument goes through for

more expressive logics such as SRZ o),

Lemma 2. Lemma 1 remains valid when “over the same domain” is dropped
from Point 1.

Hence, the checks at each time in (the modified) Point 1 are independent. It
remains to show how we can implement the check of Point 1, which includes
negated CQs. By the natural connection between satisfiability and entailment, we
can leverage an engine for answering disjunctions of CQs over non-temporal ALC
KBs for this, i.e., computing certx (P) for £ = (O, D) and & a disjunction of CQs.
For doing so, we associate with every Boolean CQ ¢ its canonical database D,
which is just the set of all conjuncts that occur in . (For the sake of simplicity,
we allow variable names from ¢ as individual names in D,.) We then exploit the
following observation.

Observation 1 Let X be a set of Boolean CQs, let O be an ALC-ontology and
D the data. Then the following are equivalent for every subset Z C X:

(a) There is a model T of O and D such that I |= ¢ for every ¢ € Z, and I [~ ¢
for every p € X\ Z.

(b) (0, D) ¥ V,ex\z ¢ where D' is the union of D with Dy, for each ¢ € Z
(with variables across different Dy, suitably renamed).

Thus, to check the modified Point 1 for some time point (a condition of shape (a)
in the above Lemma), we can check its reformulation as (b) using a (non-
temporal) query engine for disjunctions of CQs. As demonstrated by the exem-
plary query @ (), this is, however, more involved than answering each disjunc-
tion separately, a problem already known to the DL community. For correctly
answering such disjunctions of CQs, we require a reformulation in of the disjunc-
tion into conjunctive normal form, and then answer each conjunct separately as
described by Horrocks et al. [25]. For P C {p, | ¢ € CQ(®)}, we define VALy(P)
astrueiff. O,D =D;,Z :={¢ | p, € P}, X := CQ(P) pass the test in Point (b),
and thus the modified Point 1.

To implement Point 2, we exploit that for each MLTL formula y over some
set of propositions X, one can compute an equivalent LTL (LTL over finite
traces) formula x’ over X' [29] which in turn can be transformed into a finite
automaton (FA) 2, over 2* which recognizes precisely the models of ' and
thus of x [17]. Both these transformations are not polynomial and there is, in
general, no efficient conversion of an MLTL formula to an FA. However, since
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Pa(z) N 7Pr(z,y) Da(z) true

Da(z) N Pr(z,y) A “Pa(z)
q1

N

Fig. 1. FA for PA(—(OA(z) A Ox(z,y))).

Algorithm 1 Computing certain answers to MTCQs.
Input: MTCQ &(Z), temporal KB K = (O, (D);cqo,...,n})
Output: certi (D).
: © := ConsTRUCT _FA(PA(=9));
// states @, initial state qo, final states F', transitions A
C = ind(D)* where k = |Z|
Initialize S(@,0) := {qo} for all @ € C
fori:=1ton+1do
for @ € C' do
S(a,i) =10
for ¢ € S(@,i— 1) do
8(@,1) = (@) U{d' | (0, X, ) € A, VAL'ZL, (X))}
end for
end for
: end for
sreturn {a € C | S(@n+1)NF =0}

e S
GhEoSw

queries are often small in practice, this is still feasible. For example, the minimal
FA for p; U<, O<pp2 has a + b+ 3 states. Figure 1 shows the FA for answering
the simple MTCQ P, (z,y) = OA(z) A Or(z,y). Note that the transitions are
labeled with Boolean formulas over the propositions indicating a transition for
each model of the formula, which can be exponentially more succinct.

What was said so far suggests the basic procedure for computing certy(®)
that is depicted in Algorithm 1. It considers for each answer candidate @ all pos-
sible 'runs’ Xy, ..., X, in a step-by-step fashion and checks (modified) Points 1
and 2 after each step; the set S(d, i) contains all states the FA corresponding to
—®(a@) can reach after i steps. The central test happens in Line 7 and is given
here for the direct encoding of the transitions; it can easily be adapted for the
mentioned succinct encoding. The algorithm returns all @ for which no final state
is reachable after n + 1 steps. Applied to the example FA in Figure 1 and a can-
didate answer (a,b) this means that the FA ends up in state ¢; in all possible
runs, according to the temporal KB. The only way to achieve this is for the FA
to not stay in gg or ¢o. For this, it has to eventually change from ¢y to ¢; by
having neither A(a) A —r(a,b) nor —A(a) but A(a) A r(a,b) satisfiable. The FA
shall then stay solely in ¢; with only A(a) satisfiable for the remainder. Clearly,
in this case (a,b) is a certain answer.
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4.1 Improvements

Some standard improvements over Algorithm 1 are applicable, e.g., to work
directly on a minimal FA. However, this does not yet address the problem of
the many answer candidates to consider, of which, in practice, only few will be
entailed. Algorithm 1 considers each candidate individually, which is inefficient
since similar tasks are repeatedly executed. We instead leverage existing systems
that implement efficient algorithms specifically tailored towards answering CQs
over standard (non-temporal) KBs. As an example, consider again the FA in
Figure 1. Observe that ¢ € S(d,i) for all @, ¢ for which (O,D;_1) ¥ A(a).
Indeed, —A(d) is satisfiable w.r.t. (O, D;_1), for those @, 4. Since ¢ is a sink, this
allows us to instantly reject all non-answers to A(z). We now generalize this to
extract certain (non-)answers by answering the CQs occurring in the edges.

The main idea is to perform an under-approximating traversal of the FA
prior to Algorithm 1. More concretely, we use CQ answering to construct sets
R(d,i) € S(d,i) and U(d,i) C Q\ S(@, ) that under-approximate the reachable
and unreachable states, respectively, for a candidate @ at time i. This serves two
purposes. First, we can already extract some certain answers from U and some
certain non-answers from R, namely the sets {d € C | U(d,n + 1) D F} and
{d € C| R(@n+ 1) C F}, respectively. These candidates are not considered
anymore during the run of Algorithm 1. Second, we are able to re-use cached
answers to CQs in the first traversal during Algorithm 1.

We now describe how to construct the sets R and U during FA traversal.
R(d,0) is initialized as {go} and U(d, 0) is initialized as Q\ {qo}, for all @. For the
update step with i > 0, we assume for all states ¢, ¢; to have succinctly encoded
edges ay,; = /\MGP0 P N /\:%GP1 P, for some sets Fy, P C P, as already used
in Figure 1. When examining such an edge in the FA at time i, we use a CQ engine
on K; := (O, D;) to compute certic, (o) for all ¢ € {4 [ py € P} U{\, cp, ¢}
From these sets, we are able to extract information on the relevant queries:

1. for all @ & certi, (p): —(a) is satisfiable w.r.t. KC;;
2. for all @ € certi, (¢): ¢(@) is satisfiable and —p(@) is unsatisfiable w.r.t. K;.

We transfer this knowledge about the (un-)satisfiability of (@) and —¢(a@) to
the edges ay,. Satisfiability knowledge is transferable if ¢, € R(@,i — 1) and
Qi = Py resp. ap; = —p,. We then add ¢ to R(d, ). Unsatisfiability knowledge
on —p(d) is transferable if ay; contains —p,. Adding unsatisfiability knowledge
to U requires adaptations. Firstly, we can only add ¢, to U(d,) if all other
edges a;; to ¢ also agree on unsatisfiability of @ at time 4, i.e., they contain
some —p,s for which ¢'(d@) is known to be unsatisfiable or ¢; € U(d,i — 1).
Secondly, unsatisfiability generates new satisfiability information: for a state gy
with successors ¢, ..., q, we know that {q,,...,q,_,} C U(@,4) implies ¢, €
R(ad,i). Together with the described acceptance condition, the sets R(d,n + 1)
and U(d,n + 1) deliver an under-approximation of the certain (non-)answers.
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4.2 QOwur System

We implemented this approach as a module in the DL reasoner OPENLLET [37].
The implementation is available at https://github.com/lu-w/topllet. Our
module does not support full MTCQs yet. Instead of allowing arbitrary CQs as
atoms, we allow the subclass tCQ of CQ which consists of all CQs ¢ s.t. in the
graph G, = (V, E) with V = Var(p) U Ind(p) and E = {(t,r,t') | r(t,t') € ¢}
each vertex has at most one incoming edge and, if interpreted undirectedly, G
is acyclic, i.e., the query graph is tree-shaped®.

We denote with tMTCQ the subclass of MTCQ where each CQ is in fact a
tCQ. The reasons for considering this query class are two-fold. First, most queries
that occur in practice are tMTCQs. Second, tCQ answering can be implemented
by a straightforward procedure of ’rolling-up’ the query graph [25]. Therefore,
OPENLLET already provides an tCQ-answering engine over SROTQP) KBs,
implementing many optimizations [36]. Moreover, the procedure can be adapted
to answering disjunctions of tCQs as described by Horrocks and Tessaris [25],
which required for our algorithm, cf. Point (b) in Observation 1.

As a first necessary step, we thus extended OPENLLET to being able to an-
swer disjunctions of tCQs. For the construction of the FA, we implemented the
conversion of MLTL to LTL described by Li et al. [29]: essentially, the intervals
in U,y are encoded using sequences of the next-operator O of length a and b,
respectively. We then rely on LyDIA, which converts LTL ; formulas to equivalent
deterministic FA [20]. We extend and use the AUTOMATALIB [28] to access the
resulting FA. We provide a test suite for our system to highlight correctness of
the implemented algorithms.

5 Benchmarks

Our CQ answering approach motivates the need for empirical evaluation, for
which ideally controlled real-world data is used. In fact, for one experiment, we
obtained drone data from an intersection in Germany. These data turned out to
be insufficient for a thorough evaluation, as they are proprietary and not scalable.
This calls for synthetic yet realistic benchmark data that can be randomized,
scaled in size, and are freely available for replicability. However, we are currently
not aware of any public benchmark data on querying temporal KBs. The same
was noted by the developers of METEOR, where data of the Lehigh University
Benchmark [21] are extended with random intervals to enable an evaluation on
the OWL RL fragment of LUBM. Unfortunately, a random extension of a non-
temporal benchmark might not reflect actual temporal data, e.g., in continuity of
concepts over time, and thus might not transfer to real-world applications. As our
final contribution, we hence present the Traffic Ontology Benchmark (TOBM), a
benchmark generator for scenarios of automated driving applications that mimics

4 This constraint allows us to perform the rolling-up procedure on the BCQs of the
FA. However, it is actually just a sufficient condition for rolling-up. More precisely,
we require the FA to contain only BCQs where each negated query is a tCQ.
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Fig. 2. A scene of the T-crossing scenario sampled from TOBM.

real-world data and enables to evaluate tools on temporal KBs, including MTCQ
answering. The tool is available at https://github.com/lu-w/tobm.

For the ontology we rely on the publicly available Automotive Urban Traffic
Ontology (A.U.T.O.) [42, Section 5]. It is a conglomerate of SRZQP) ontologies
for the traffic domain and related fields, and currently consists of 1449 axioms
over 676 concepts and 213 roles. A.U.T.O. was already successfully used for
analyzing real-world traffic data from drone recordings [42, Section §].

The benchmark generator creates temporal data for A.U.T.O. with individu-
als scaling linear to some N > 0. A seed S can be used for pseudo-randomization.
From both parameters, it generates scenarios of a certain length (by default, 20
seconds). These can be sampled from two settings:

1. A T-crossing setup with parking vehicles, a pedestrian crossing, bikeway
lanes, pedestrians, bicyclists, and passenger cars (cf. Figure 2). It has 8- N+22
individuals.

2. An X-crossing of two urban roads with traffic signs and dysfunctional traffic
lights. Compared to the T-crossing, there are no bicyclists and 5 - N + 69
individuals.

The scenarios are created based on behavior models for pedestrians, bicy-
clists, and passenger cars. Passenger cars and bicyclists drive up to a speed limit
if their front area is free, otherwise they use a following mode. Vehicles yield on a
predicted intersecting path. Moreover, a random successor lane is selected when
turning at intersections, giving a turning signal with a probability of 3% each
time point. Pedestrians follow their walkway, but can randomly initiate road
crossing with a probability of 0.7%. We give a visualization of two exemplary
scenarios can be found in the linked repository.

Our implementation models temporal KBs as a list of OWL2-files for the
data, each importing a shared ontology. Geometrical data are abstracted to
spatial predicates (e.g., is_in front of) in a pre-processing step. For S = 0,
N = 3, and 20 seconds sampled with 10 Hertz on the T-crossing setting, this
results in a data sequence with 46 individuals and 647847 assertions in total
(approx. 3239 per time point) with constant assertions only counted once.
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6 Evaluation

We now examine practical feasibility of our system by an evaluation on TOBM,
answering the following questions:

1. Is the approach applicable to practical, a-posteriori situation recognition
tasks (such as evaluating test data) with larger numbers of assertions?

2. What is the impact of our improvement of leveraging CQ answering on
overall applicability?

3. In practical settings, how much satisfiability knowledge can be generated by
CQ answering?

As inputs, we sampled TOBM with S =0 and N € {1,...,5} for both the
X- and T-crossing. We fix a 20 second duration with ten Hertz, as our algorithm
performs linear in N. The supplementary artifact provides both the benchmarks
and a wrapper around TOBM for reproducible re-generation. We used four
queries (given in the supplementary artifact) asking for: intersecting paths with
VRUs (@1), passing of parking vehicles on two-lane roads (®2), vehicles turning
right (®3), and vehicles changing lanes without signals (®4), where @1, @5, and
@3 have two and @, has three answer variables. The corresponding FAs have 8
(®1), 4 (P2,P4), and 3 (P3) states. Our tool is executed once per benchmark
and query combination, as deviations are not be expected due to determinism,
on an Intel Core i9-13900K with 64 GB RAM and a time limit of ten hours per
run, using a Windows Subsystem for Linux 1 on a Windows 10 host. The input
files and tool, with the exact version and configuration used for benchmarking,
are available online [41].

timeout
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Fig. 3. Wall clock running times of benchmark queries &;, i € {1,...,4} and the T-
(t) resp. X-crossing (x) of size N.

For the first question, we show wall clock running times of our improved
algorithm in Figure 3. We exclude parsing and loading of queries and KBs as
we aim to only evaluate our algorithm. Running times indicate an exponential
dependency on the data size. There are also dependencies on the benchmark
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type, e.g., for @5, where the non-existence of parking vehicles on the X-crossing
improves performance, and @4, where more lanes on the X-crossing increases
running time. This answers the first question positively, as our approach termi-
nates in minutes to hours, with the lowest being 25.54 seconds for @; on the
20 second T-crossing scenario. However, the timeout was reached for @4 on the
X-crossing and N > 2 for reasons to be discussed later.

Dy : : = ; ; ; —
o3 ]

2 ; _—

Py ——

[Jw.o. CQ ans. w. CQ ans. (t1)lw. CQ ans. (t2)

Fig. 4. Log-scaled running times with and without the CQ answering optimization
enabled for the TOBM T-crossing S = 0, N = 3. Running times without the opti-
mization are extrapolated after one hour.

The second question is addressed by comparing the running time of the im-
proved algorithm to the basic algorithm from Algorithm 1. The results in Figure 4
show that the naive approach fails for real-world data, even for two answer vari-
ables. Moreover, most of the time is still spent using the expensive, full semantics
check despite iterating only through a fraction of all candidates (cf. Table 1).
Hence, leveraging the CQ engine makes MTCQ answering practically feasible.
However, some queries may trigger special cases in the optimizations of the CQ
engine, leading to higher running times, e.g., role inclusion axioms for @3.

The strong effect of leveraging CQ answering motivates deeper examination.
For this final question, we show wall clock times of both the CQ answering run t;
(first run’) and the full-semantics run ¢y (’second run’) in Figure 4. The effect
of CQ answering can be twofold: Firstly, a set of candidates can be excluded
globally. Secondly, even if a candidate was not globally excluded, it generates
'local’ (non-)answers that can be cached for subsequent checks of Point 1 of
Lemma 1. We thus report both exclusions, averaged over all time points and
checked edges at each time point, in Table 1. Moreover, one can ask whether the
second run is actually worthwhile. Table 1 reports how many certain answers
(certic) were already found in the first run (cert}.).

Our results show CQ answering to aid mainly by excluding candidates glob-
ally in a highly-optimized fashion, as it can resort to techniques like binary
instance retrieval, and often avoids consistency checks [36]. Local exclusion has
minor but non-negligible effects, e.g., avoiding on average 42 additional candi-
dates for @3. Moreover, all certain answers were already found in the first run,
indicating suitability of using only the incomplete first run.
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Table 1. Effects of CQ answering on MTCQ answering for the TOBM T-crossing

S=0,N =3.
Query @1 @2 @3 454
Globally excluded candidates (%) 97.88 99.29 97.88 99.71
Globally and locally excluded candidates (%) 98.73 99.55 99.54 99.80
|certi|/|certk| 1 1 1 1

However, leveraging CQ answering has its limitations. For &, on the X-
crossing and N = 2, the first run excluded 99.83% of all candidates after 2.38
minutes, leaving 960 candidates for the second run. However, this is no small
task: for 200 time points in the data this leaves 180 seconds per time point to
finish within 10 hours. Hence, each candidate must not take up more than 0.1875
seconds per time point on average, which entails checking multiple edges in mul-
tiple states. Experiments indicate each edge check to take a two-digit millisecond
duration. Thus, to efficiently handle large candidate sets in the second run, we
require further optimizations.

7 Conclusion

In this work, we introduced MTCQs as a suitable tool for situation recognition
when testing requirements in complex operational domains, as illustrated by ur-
ban automated driving. Our tool, based on OPENLLET, brings MTCQ answering
into practice by leveraging efficient CQ answering algorithms. Our custom bench-
marks on safety-critical traffic situations show feasibility of our implementation
for test evaluation settings and a potential to use our tool in other domains.
These include risk assessments of other automated transportation systems, e.g.,
trams, maritime vessels, or delivery robots, and big-data analyses, e.g., process
mining in business applications over intricate real-world structures.

As future work, we plan to investigate both practical optimizations and the-
oretical adaptations for increasing performance. For the former, it is interesting
to (i) study how one can reuse query answers in consecutive time points given
that potentially only small portions of the data change, (ii) identify fragments
of MTCQs that can be answered more efficiently in practice (e.g., for runtime
verification), and (%) treat the spatial information more efficiently. On the the-
oretical side, it is interesting to study rewriting approaches, where the idea is to
reduce the computation of certain answers to query evaluation in a target logic
such as first-order logic (possibly with +, <) or DatalogMTL [39]. The bene-
fit of such rewriting approaches is that one can leverage existing systems for
evaluation in the target language. First-order rewritings have been studied in
the context of more lightweight ontology and query languages [4]. While query
rewritings need not exist in general (for complexity reasons), they might be very
fruitful for practically occurring queries and ontologies.
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Abstract. We present a novel decision procedure for a fragment of separation
logic (SL) with arbitrary nesting of separating conjunctions with boolean con-
junctions, disjunctions, and guarded negations together with a support for the
most common variants of linked lists. Our method is based on a model-based
translation to SMT for which we introduce several optimisations—the most im-
portant of them is based on bounding the size of predicate instantiations within
models of larger formulae, which leads to a much more efficient translation of
SL formulae to SMT. Through a series of experiments, we show that, on the fre-
quently used symbolic heap fragment, our decision procedure is competitive with
other existing approaches, and it can outperform them outside the symbolic heap
fragment. Moreover, our decision procedure can also handle some formulae for
which no decision procedure has been implemented so far.

1 Introduction

In the last decade, separation logic (SL) [15, 30] has become one of the most popular
formalisms for reasoning about programs working with dynamically-allocated memory,
including approaches based on deductive verification [32], abstract interpretation [34],
symbolic execution [31], or bi-abductive analysis [6, 12, 18]. The key ingredients of SL
used in these approaches include the separating conjunction *, which allows modular
reasoning by stating that the program heap can be decomposed into disjoint parts satis-
fying operands of the separating conjunction, along with inductive predicates describing
shapes of data structures, such as lists, trees, or their various combinations.

The high expressive power of SL comes with the price of high complexity and even
undecidability when several of its features are combined together. The existing decision
procedures are usually limited to the so-called symbolic heap fragment that disallows
any boolean structure of spatial assertions.

In this paper, we present a novel decision procedure for a fragment of SL that we
call boolean separation logic (BSL). The fragment allows arbitrary nesting of sepa-
rating conjunctions and boolean connectives of conjunction, disjunction, and a limited
form of negation of the form ¢ A — called guarded negation. To the best of our knowl-
edge, no existing, practically applicable decision procedure supports a fragment with
such a rich boolean structure and at least basic inductive predicates. The decision pro-
cedure for SL in CvC5 [29] supports arbitrary nesting of boolean connectives (including
even unguarded negation, which is considered very expensive in the context of SL) but
no inductive predicates. A support for conjunctions and disjunctions under separating
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conjunctions is available in the backend solver of the GRASSHOPPER verifier [27,28]
though not described in the papers. In our experimental evaluation, we outperform both
of these approaches on some benchmarks (and can decide some formulae beyond the
capabilities of both of them). We further show that adding guarded negations to BSL
makes its satisfiability problem PSPACE-hard.

To motivate the usefulness of the fragment we consider, we now give several ex-
amples when SL formulae with a rich boolean structure are useful. First, in symbolic
execution of heap manipulating programs, one usually needs to consider functions that
involve some non-determinism—typically, at least the malloc statement has the non-
deterministic contract {emp} x = malloc () {x — fV (x = nil Aemp)} (where f
is a fresh variable) stating that when the statement is started in the empty heap, once it
finishes, x is either allocated, or the allocation had failed and the heap is empty. Such
contracts typically need a dedicated (and usually incomplete) treatment when no sup-
port of disjunctions is available.? Further, the guarded negation semantically represents
the set of counterexamples of the entailment ¢ = 1, and hence allows one to reduce
entailment queries to UNSAT checking. Guarded negation can also be used when one
needs to obtain several models of a formula ¢ by joining formulae representing the
already obtained models to ¢ using guarded negations. One can also use the guarded
negation to express interesting properties such as the fact that given a list sls(x, y) and
a pointer y — z, the pointer does not point back somewhere into the list closing a lasso.
This can be expressed through the formula (sls(z, y) A= (sls(z, z) xsls(z,y)) ) xy +— 2.
Finally, boolean connectives can be introduced by translating quantitative separation
logic into the classical SL [2].

In this work, we consider BSL with three fixed, built-in inductive predicates repre-
senting the most-common variants of lists: singly-linked (SLL), doubly-linked (DLL),
and nested singly-linked (NLL). Our results can be easily extended for their variations
such as nested doubly-linked lists of singly-linked lists and the like, but for the price of
manually defining their semantics in the SMT encoding. We do, however, believe that
our approach of bounding the sizes of models and instantiations of the individual pred-
icates can be lifted to more complex inductive definitions and can serve as a starting
point for allowing integration of SL with inductive definitions into SMT.

Contributions. Our approach to deciding BSL formulae is inspired by previous works
on translation of SL to SMT. The early works [27] and [28] translate SL to intermediate
theories first. Our approach is closer to the more recent approach of [16], which builds
on small-model properties and axiomatizes reachability through pointer links directly.
We extend the SL fragment considered in [16] by going beyond the so-called unique
footprint property (under which it is much easier to obtain an efficient translation). Fur-
ther, we define a more precise way to obtain global bounds on models of entire formu-
lae, and, most importantly, we modify the translation of inductive predicates in a way
that allows us to encode them succinctly by computing local bounds on their instanti-
ations. According to our experiments, this makes the decision procedure efficient and
competitive with the state-of-the-art approaches on the symbolic heap fragment (despite
the increased decisive power). The claims we make in this paper are proven in [9].

3 Note that, while the post-condition with a single disjunction might seem simple, the formulae
typically start growing in the further symbolic execution.
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Related work. In [3], a proof system for deciding entailments of symbolic heaps with
lists was proposed. This problem was later shown to be solvable in polynomial time
in [8] via graph homomorphism checking. A superposition-based calculus for the frag-
ment was presented in [23], and a model-based approach enhancing SMT solvers was
proposed in [24]. In [24], a combination of SL with SMT theories is considered but still
limited to the symbolic heap fragment. A more expressive boolean structure and inte-
gration with SMT theories was developed in [27] for lists and extended for trees in [28]
but still without a support for guarded negations.

Other decision procedures are focusing on more general, user-defined inductive
predicates (usually of some restricted form). They are based, e.g., on cyclic proof sys-
tems (CYCLIST [5], S2S [19,20]); lemma synthesis (SONGBIRD [33]); or automata—
tree automata are used in the tools SLIDE [13] and SPEN [11], and a specialised type of
automata, called heap automata, is used in HARRSH [17]. These procedures do, how-
ever, not support nested use of boolean connectives and separating conjunctions.

There also exist works on deciding much more expressive fragments of SL such
as [10,14,21,26] but they do not lead to practically implementable decision procedures.

2 Preliminaries

Partial functions. We write f : X — Y to denote a partial function from X to Y. For a
partial function f, dom(f) and img(f) denote its domain and image, respectively; | f| =
|dom(f)| denotes its size, and f(x) = L denotes that f is undefined for z. A restriction
flaof fto A C X is defined as f(x) for z € A and undefined otherwise. To represent
a finite partial function f, we often use the set notation f = {x1 — y1,..., 2, = yn}
meaning that f maps each z; to y;, and is undefined for other values. We call partial
functions f; and fs disjoint if dom(f1) N dom(f2) = 0 and define their disjoint union
f1W faas f1 U fa, which is otherwise undefined.

Graphs and paths. Let G = (V,—1, ..., —n,) be a directed graph with vertices V' and
edges —-=—1 U---U —,,. For 1 < f < m, a sequence 0 = {vg, V1,...,V,) € VT
is a path from v to v,, via —¢ in G, denoted as o : vy ~~¢ v, if all elements of ¢ are
distinct, and for all 0 < ¢ < n, it holds that v; —¢ v; 1. By the definition, paths cannot
be cyclic. The domain of the path o is the set dom(o) = {vg,v1,...,Un—1}, and the
length of the path is defined as |o| = |[dom(o)| = n.

Formulae. For a first-order formula ¢, we denote by ¢[t/z] the formula obtained by
simultaneously replacing all free occurrences of the variable z in ¢ with the term ¢. For
a first-order model M and a term ¢, we write ™ to denote the evaluation of ¢ in M
defined as usual.

3 Separation Logic

Syntax. Let Vars be a countably infinite set of sorted variables. We denote by z° a
variable z of a sort S € Sort = {S,D, N} representing a location in an SLL, DLL,
or NLL, respectively. We omit the sorts when they are not relevant or clear from the
context. We further assume that there exists a distinguished, unsorted variable nil. We
write vars(y) to denote the set of all variables in ¢ plus nil (even when it does not
appear in ). Analogically, varsg(y) stands for all variables of the sort .S plus nil.
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(s,h) Exxxy iff s(z) > s(y) and dom(h) = @ for <t € {=, #}

(s,h) Ex— (fi: fiyicr iffth={s(z)— {fi : s(fi))ier}

(s,h) =91 pxeho iff (s, h) =91 > (s, h) = 92 fora € {A, A, V}

(s,h) E Y1 %12 iff 3h1, ho. h =hi1 Why # L and (s, h;) = 9, fori = 1,2
(s,h) E3Jz. ¢ iff there exists £ such that (s[z — £],h) = ¢

(s,h) E=sls(z,y) iff (s,h) Ex =y, or s(x) # s(y)

and (s, h) = In. z — n xsls(n,y)

(5,h) | dise,y,2'yf) i (5,h) 2 =y 2 = o, or s(z) # s(y), 5(2') £ 5(¥),
and (s,h) = 3n. z+— (n:n,p:y') xdis(n,y,z’, x)

(s,h) = nls(z,y, 2) iff (s,h) E x =y, or s(z) # s(y)
and (s,h) E In,t. x — (n:n,t: t) xsls(n, 2) * nls(¢,y, 2)

Fig. 1: The semantics of the separation logic. The existential quantifier is used for the
definition of the semantics of inductive predicates and it is not a part of our fragment.

The syntax of our fragment is given by the following grammar:

pu=as (n:n) | 2% (n:n,p:p) | 2N (n:n,t:t)  (points-to predicates)

NNS)

7 u=sls(z®,y%) | dis(z®, %, 2P, y2) | nls(2™, 4", 2 (inductive predicates)

par=z=ylzFy|p|n (atomic formulae)
pr=palexeloneleVelen-p (formulae)
The points-to predicate © — (f; : fi,...,f, : f,) denotes that x is a structure

whose fields f; point to values f;. We often write = — n instead of © — (n: n) and
x +— _ if the right-hand side is not relevant. We call x the root of the points-to predicate.
If 7 is an inductive predicate sls(z,y), dIs(z, y,2',y'), or nls(z, y, z), we again call
the root of 7, y is the sink of w, and we write 7(x,y) to denote the root and the sink.
We define the sort of the predicate 7, denoted as S, as the sort of its root. Then, there
is a one-to-one correspondence of predicates and sorts, which we often implicitly use.

Memory model. Let Loc be a countably infinite set of memory locations, and let Field =
{n, p, t} be the set of fields. A stack is a finite partial function s : Vars — Loc. A heap
is a finite partial function h : Loc — (Field — Loc). For succinctness, we write h (¢, f)
instead of h(¢)(f). To represent heap elements in a readable way, we write functions
Field — Loc as vectors with labels, i.e., h(¢) = (f : h(¢{,f) | f € Field A h(£,f) # L)
and we write img(h) for {£ € Loc | 3¢',f. h(¢',f) = £}. Moreover, we use h({) = n
when h(¢) = (n : n). A stack-heap model is a pair (s, h) where s is stack and h is
a heap such that s(nil) # L and h(s(nil)) = L. We define the set of locations of the
model (s, h) as locs(s, h) = img(s) Udom(h) Uimg(h).

Semantics. The semantics of our SL over stack-heap models is given in Fig. 1. For pure
formulae, we use the so-called precise semantics, which additionally requires that the
heap must be empty*. The semantics of pointer assertions, boolean connectives, and

* This is a common approach to avoid the atom true to be expressed as nil = nil. In our fragment,
we forbid true in order not to introduce “unbounded” negations as = = true A —p. Due to
this change, symbolic heaps are formulae of form * 1); where each 1); is an atom.
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separating conjunctions is as usual. The intuition behind the semantics of the inductive
predicates is as follows. An SLL segment sls(z,y) is either empty or represents an
acyclic sequence of allocated locations starting from x and leading via the n field to y,
which is not allocated. A DLL segment dls(x, y, z’,y') is either empty with © = y and
x' =4/, or it represents an acyclic sequence that is doubly-linked via the n and p fields
and leads from the first allocated location x of the segment to its last allocated location
2’ (x and 2’ may coincide) with y/y’ being the n/p-successors of x'/x, respectively. Both
y and y' are not allocated. An NLL segment nls(x,y, z) is a (possibly empty) acyclic
sequence of locations starting from z and leading to y via the t (top) field in which
successor of each locations starts a disjoint inner SLL to z via n.

Stack-heap graphs. We frequently identify stack-heap models with their graph repre-
sentation. A stack-heap model (s, h) defines a graph G[(s, k)] = (V, (—+¢)fcField) Where
V =locs(s, h) and u —¢ v iff h(u, f) = v. We frequently use the fact that if there exists
apath o : x ~>¢ y in a stack-heap graph, then it is uniquely determined because f-edges
are given by a partial function.

4 Small-Model Property

Small-model properties, which state that each satisfiable formula has a model of bound-
ed size, are frequently used for various fragments of SL to prove their decidability [7] or
to design decision procedures [16,26,29]. The latter is also the case of our translation-
based decision procedure which will heavily rely on enumeration over all locations,
and, for its efficiency, it is therefore necessary to obtain location bounds that are as
small as possible.

The way we obtain our small-model property is inspired by the approach of [16]
and by insights from the so-called strong-separation logic [26]. The main idea is to
define a satisfiability-preserving reduction | * h which takes a heap h (referenced from a
stack s), decomposes it into basic sub-heaps (which we call chunks), and reduces it per
the sub-heaps in such a way that its size can be easily bounded by a linear expression.
To define the reduction, we first need to introduce some auxiliary notions related to
stack-heap models.

We say that a model (s, h) is positive if there exists ¢ with (s, h) = . A positive
model (s, h) is atomic if it is non-empty, and for all positive models (s, k1) and (s, ha),
h = hi @ hy implies that h; = () or ho = (. In other words, atomic models cannot be
decomposed into two non-empty positive models. Several examples of atomic models
are shown in Fig. 2. Observe that the models of dIs (Figure 2b) and nls (Figure 2c) are
indeed atomic as any of their decomposition, in particular the split at the location w,
does not give two positive models.

A sub-heap ¢ C h is a chunk of a model (s, h) if ¢ is a maximal sub-heap of h such
that (s, ¢) is an atomic positive model. Notice that the way the definition of chunks is
constructed excludes the possibility of using as a chunk a sub-heap of a heap that itself
forms an atomic model. The reason is that otherwise the remaining part of the larger
atomic model could not described by the available predicates. For example, in nested
lists as shown in Fig. 2c, one cannot take as a chunk a part of some inner list (e.g., the
pointer u — 2) as the heap shown in the figure itself forms an atomic model. Indeed, if
u — z was removed, one would need a more general version of the NLL predicate to
cover the remaining heap by atomic models.
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@000 - 00w

(a) A singly-linked list sls(x, y).

@f' . e

(b) A doubly-linked list dIs(z, y, ', y"). (c) A nested singly-linked list nls(z, y, 2).

Fig.2: An illustration of reductions of atomic models of inductive predicates. Removed
heap locations are red, removed edges are dotted, and added edges are highlighted.

Lemma 1 (Chunk decomposition). A positive model (s, h) can be uniquely decom-
posed into the set of its chunks, denoted chunks(s, h), i.e., h = [t} chunks(s, h).

Minimal atomic models of inductive predicates. The key reason why the small-model
property that we are going to state holds is that our fragment of SL cannot distinguish
atomic models of the considered predicates beyond certain small sizes—namely, two
for sls and nls, and three for dls. For further use, we will now state predicates describing
exactly the sets of the indistinguishable lists of the different kinds.

We start with SLLs and use a disequality to exclude empty lists: sls>1(z,y) =
sls(z,y) * x # y, and a guarded negation to exclude lists of length one consisting of a
single pointer only: sls>2(z,y) £ sls>1(x,y) A =(z — y). A similar predicate can be
defined for NLLs too: nls>s(z,y,2) = (nls(z,y, 2) * x # y) A =(z = (n: z,t: y)).

For DLLs, we define dls>o (7, y, 7', y') £ dIs(z,y, 2,y )z # y*x # 2’ to exclude
models that are either empty or consist of a single pointer; and dls>3(z,y,2',y') =
dissa(z,y, 2,y ) A=(x — (n: 2/, p: y) « 2’ — (n: y,p: x)) to also exclude models
consisting of exactly two pointers.

It holds that atomic models, and consequently also chunks, are precisely either mod-
els of single pointers or of the above predicates.

Lemma 2. For atomic model (s, h), exactly one of the following conditions holds.

1. (s,h) =2~ _ for some . (pointer-atom)
. (s,h) Esls>a(z,y) for some x and y. (sls-atom)
3. (s,h) Edlsss(x,y,2’,y) for some z, y, x', and y’. (dls-atom)
. (s,h) E nls>a(x, vy, 2) for some x, y, and z. (nls-atom)

We can now define the reduction in the way we have already sketched.

Definition 1. The heap of a positive model (s, h) reduces to |° h = Hcechunks(&h) IPc
where the reduction of a chunk c with a root x as follows:
- e=cif(s,c) Ex— _.
- e={s(z) — £,0— s(y)} where £ = c(s(x),n)if (s, c) =sls>a(x, y) for some y.
Ve ={s(z) > (i, prs(y)), £ o> (n:s(a),p:s(z)), s(2') o (n:5(y), p:0)}
where { = c(s(z),n) if (s,c) | dls>sg(z,y,2',y') for some 2, y' and y.
- e={s(x) = (t: €,n:s(2)),l— (t:s(y),n: s(z))} where L = c(s(x),t) if

(s,¢) = nls>a(z, y, 2) for some y and z.
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We lift the reduction to stack-heap models as | X (s, h) = (s', 1%  h) where s’ = s|x
for some set of variables X and show that it preserves satisfiability when X = vars(ip).

Theorem 1. For a positive model (s, h), it holds that (s, h) |= @ iff 1Y% (s, h) = .

The final step to show our small-model property is to find an upper bound on the
size of the reduced models. We define the size of a variable z°, ||2°]|, which represents
its contribution to the location bound, and is defined as 2 if S € {S,N} and 1.5 if
S = D (this corresponds to the size of a reduced chunk of sort S divided by the number
of variables which are allocated in it). We further define ||nil|| = 0. The location bound
of ¢ is then given as bound () = 1+ [}, ¢ ars(,)l 2] (the additional location is for
nil). Analogically, the location bound for a sort .S is boundg(yp) = Lzzevms(sa) [lll]-

Theorem 2 (Small-model property). If a formula ¢ is satisfiable, then there exists a
model (s, h) = ¢ such that |locs(s, h)| < bound(y).

We conjecture that the bound can be further improved, e.g., by showing that each
model can be transformed to an equivalent one (indistinguishable by BSL formulae)
such that the number of its chunks is bounded by the number of roots of spatial predi-
cates in ¢. We demonstrate this on the formula sls(x, y)*y — z and its model in which y
points back into the middle of the list segment (thus splitting it into two chunks).
Clearly, this model can be transformed by redirecting z outside of the list domain.

5 Translation-Based Decision Procedure

In this section, we present our translation of SL to SMT. We first present an SMT
encoding of our memory model and a translation of basic predicates and boolean con-
nectives. Then we discuss methods for efficient translation of separating conjunctions
and inductive predicates with the focus on avoiding quantifiers by replacing them by
small enumerations of their instantiations.

We fix an input formula ¢ and let ng = boundg(y) for each sort S € Sort.

5.1 Encoding the Memory Model in SMT

To encode the heap, we use a classical approach which encodes its mapping and domain
separately [16,27,29]. Namely, we use arrays to encode mappings and sets to encode
domains. We also use the theory of datatypes to represent a finite sort of locations by a
datatype L £ loc"" | locS | ... | IociS | loc? | ... | IocE)D | loc) | ... | Ioc,IjN.

Now, we define the signature of the translation’s language over the sort L. For each
x € vars(p), we introduce a constant x of the same name—its interpretation represents
the stack image s(x). To represent the heap, we introduce a set symbol D representing
the domain and an array symbol h¢ for each field f € Field which represents the map-
ping of the partial function A¢. h(¢,f). To distinguish sorts of locations, we further
introduce a set symbol Dg for each sort S € Sort. We define meaning of these symbols
by showing how a stack-heap model can be reconstructed from a first-order model.

Definition 2 (Inverse translation). Let M be a first-order model. We define its inverse
translation T;l(/\/l) = (s, h) where s(x) = 2™ if x € vars(p) and
(n: ol ™) ift e (DN D™
h(€) = ¢ (n: ho[)M, p: hp[(]M)  if € € (D N Dp)™M
(n: ha[OM t: R [OM)  if € € (DN Dy)M.
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To ensure consistency of the translation with the memory model used, we define the
following axioms that a result of translation needs to satisfy:

Ay 2 il =loc™ A nil g D A /\ (Ds = {Ioc"“,locfw..,locgs} A /\ z € Dg).

SESort zEvarss ()

The axioms ensure that nil is never allocated, that each variable is interpreted as a lo-
cation of the corresponding sort and they fix the interpretation of the sets Ds, Dp, Dy,
which we will later use in the translation to assign sorts to locations.

5.2 Translation of SL to SMT

We define the translation as a function T(y) = A, A T(p, D) where A, are the above
defined axioms and T (¢, D) is a recursive translation function of the formula ¢ with the
domain symbol D. The translation T(-) together with the inverse translation of models
T_'(:) are linked by the following correctness theorem.

Theorem 3 (Translation correctness). An SL formula p is satisfiable iff its translation
T(p) is satisfiable. Moreover, if M |= T (), then T;1 (M) = o.

The translation of non-inductive predicates and boolean connectives is defined as:

Ty, F)2zxy A F=0 for < € {=, #}
T(’(/Jl > wQ,F) £ T(’L/)l,F) > T(wQ,F) forx € {/\,\/7 /\ﬁ}
T(x'_)<flfz>1€I7F)éF:{x} A /\hfi[‘r]:fi
el

The translation of boolean connectives follows the boolean structure and propagates
the domain symbol F' to the operands. The translation of pointer assertions postulates
content of memory cells represented by arrays and also requires the domain F'to be {z}.

Translation of separating conjunctions. The semantics of separating conjunctions in-
volves a quantification over sets (heap domains). The most direct way of translation is
to use quantifiers over sets leading to decidable formulae due to the bounded location
domain. This approach combined with a counterexample-guided quantifier instantiation
is used in the decision procedure for a fragment of SL supported in CvC5 [29]. In some
fragments, however, separating conjunctions can be translated in a way that completely
avoids quantifiers. An example is the fragment of boolean combinations of symbolic
heaps which has the so-called unique footprint property (UFP) [16,27]—a formula v
has a (unique) footprint in a model (s, h) with (s,h) |= v * true’, if there exists a
(unique) set F' such that (s, h|r) = 1. The UFP-based approaches of [16,27] axioma-
tize the footprints during translation and check operands of separating conjunctions just
on the sub-heaps induced by their footprints.

However, UFP does not hold for BSL because of disjunctions. As an example, take
the formula ¢ £ 2 + y V emp and the heap h = {x ~ y}. Both (8, hl{s)y) E ¥
and (s, h|gp) | ¥ hold. The sets {s(z)} and () are, however, the only footprints of ¢ in
(s, h), and this observation can be used to generalise the idea of footprints beyond the
fragment in which they are unique.

5 Assuming the standard semantics of true which is not part of our logic.
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Instead of axiomatizing the footprints, our translation builds a set of footprint terms
for operands of separating conjunctions. This change can be also seen as a simplifi-
cation of the former translations as it eliminates the need to deal with two kinds of
formulae (the actual translation and footprint axioms), which must be treated differ-
ently during the translation. However, the precise computation of the set of all foot-
prints of ¢ in (s, h), denoted as FP, )(¢), is as hard as satisfiability—when the set
of footprints is non-empty, the formula v is satisfiable. Therefore, we compute just an
over-approximation denoted as FP# (¢). This is justified by the following lemma which
gives an equivalent semantics of the separating conjunction in terms of footprints.

Lemma 3. Let ¢ = 1y 1) and let (s, h) be a model. Let Fy and F be sets of locations
such that FP (s 1y (v;) € Fi. Then (s, h) |= ¢1 * ¥y iff

V V A Ghlr)Ew A FINF=0 A FLUF, = dom(h).

FieF, FoeFsy i=1,2

Intuitively, to check whether a separating conjunction holds in a model, it is not nec-
essary to check all possible splits of the heap, but only the splits induced by (possibly
over-approximated) footprints of its operands. The lemma is therefore a generalisation
of UFP and leads to the following definition of the translation T (1) * 1o, F):

dF; € Fp. dF, € Fs. T(’(/Jl,Fl) A\ T(’(/JQ,FQ) ANFINFE,=0ANF=F UF,.

Here, we use a quantifier expression of the form 3z € X. ¢ as a placeholder that helps
us to define two methods which the translation can use for separating conjunctions:

— The method SatEnum computes sets of footprints JF; as FP#(z/Ji) (the computation
is described below) and replaces expressions 3z € X. 1 with \/_,  ¥[2' /] as
in Lemma 3. This strategy is quite efficient in many practical cases when we can
compute small sets of footprints F; and Fo.

— The method SatQuantif does not compute sets F; at all and replaces 3z € X. ¢
simply with Jz. . This strategy is better when the existential quantifier can be
later eliminated by Skolemization or when the set of footprints would be too large.

We now show how to compute the set of footprint terms FP# (v0). We again post-
pone inductive predicates to Section 5.3. We just note that their footprints are unique.
The cases of pure formulae and pointer assertions follow directly from the definition of
their semantics, which requires the heap to be empty and a single pointer, respectively.

FP#(z >ay) = {0} for € {=,#} FP#(z — _) = {{z}}

For the boolean conjunction, we can select from footprints of its operand the one with
the lesser cardinality. Since negations have many footprints (consider, e.g., memp), we
define the case of the guarded negation by taking footprints of its guard. The disjunction
is the only case which brings non-uniqueness as we need to consider footprints of both
of its operands.

FP# (11 A —thg) = FP# (1)) FP# (11 V 4h2) = FP¥(1p1) U FP¥ ()
FP# (41 Atho) = if [FP#(¢p1)| < [FP# (1)o)| then FP# (1) else FP¥ (1))
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Finally, we define footprints of the separating conjunction by taking the union F; U F5
for each pair (7, F5) of footprints of its operands. Notice that here F; U F, represents
an SMT term, therefore we cannot replace it with a disjoint union which is not available
in the classical set theories in SMT. We can, however, use heuristics and filter out terms
for which we can statically determine that interpretations of F; and F5 are not disjoint.

FP# (41 % 4h2) = {F1 U Fy | Fy € FP#(¢y) and F» € FP#(¢,)}
We state the correctness of the footprint computation in the following lemma.

Lemma 4. Let M be a first-order model with M |= T(p) and let (s,h) = TQI(M)
Then we have FP (4 1y() C {FM|Fe FP#(SO)}-

5.3 Translation of Inductive Predicates

To translate inductive predicates, we express them in terms of reachability and paths
in the heaps. While unbounded reachability cannot be expressed in first-order logic, we
can efficiently express bounded linear reachability in our encoding. The linearity means
that each path uses only a single field (which is not the case, e.g., for paths in trees).
All predicates in this section are parametrised with an interval [m, n] which bounds the
length of the considered paths. When we do not state the bounds explicitly, we assume
conservative bounds [0, bounds()] for a path starting from a root of a sort S. We
show how to compute more precise bounds in Section 6. We start with the translation
of reachability:

reach™(h,z,y) 2 h*[z] =y reach™" (h,z,y) 2 \/mgignreach:i(h,%y)

Here, the predicate reach™" (h, x, y) expresses that  can reach y via a field represented
by the array h in exactly n steps. Similarly, reach[”" expresses reachability in m to n
steps. Besides reachability, we will need a macro path(h, x, y) expressing the domain
of a path from z to y, or the empty set if such a path does not exists:

pathz"(h,z,y) = U o<i<n C(h'[x])

path[én’n](h,x,y) £ if (reach=™(h, x,y)) then (pathg" (h,z,v))
- else if (reach™"(h, z,y)) then (pathz"(h,z,y)) else (0)

The additional parameter C' is a function applied to each element of the path that

can be used to define nested paths. We define a simple path pathg"”"](h,x,y)

path[én’n] (h,z,y) with C = M. {£} and a nested path as pathE\T’n](hl7 ha,x,y, 2)
path[én’n] (hy,z,y) with C = M. pathg(hs, £, z). In the case of the nested path, the
array h represents the top-level path from z to y, and ho represents nested paths termi-
nating in the common location z. Now we can define footprints of inductive predicates
using path terms as follows:

>

FP#(n(x,y)) = {pathg(hn, ,y)} for 7 € {sls, dis}
FP#(nls(z,y, 2)) = {pathy (he, hn, ,y, 2)}
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The common part of the translation T (7(x, y), F) postulates the existence of a top-
level path from x to y and a domain F based on this path (formalised in the formula
main_path below); and ensures that all locations have the correct sort (through the for-
mula typing). For DLLs, we add an invariant which ensures that its locations are cor-
rectly doubly-linked (the back_links formula), and we further need a special treatment
of the cases when the list is empty as well as a special treatment for its roots and sinks
(cf. the formula boundaries). For NLLs, we add an invariant stating that an inner list
starts from each location in its top-level path (the inner_lists formula) and that those
inner paths are disjoint (the disjoint formula)®.

- T(sls(z,%), F) £ main_path A typing where
main_path = reach(hy,, z,y) A F = pathg(hn, z,y) and typing 2 F C Ds.
- T(dis(x,y,2",y"), F) £ empty V nonempty where
empty 2z =yAx =y ANF =10,
nonempty = = # y A 2’ # y’ A main_path A boundaries A typing A back_links,
main_path = reach(hy,,z,y) A F = pathg(hn, 7,v),
boundaries £ hy[z] =y Ahol2'] =y Az’ € FAY ¢ F,
typing £ F C Dy,
back_links £ V. (£ € F AL # 2') — hy[hall]] = L.
- T(nls(z,y,2), F) £ main_path A typing A inner_lists A disjoint where
L

main_path = reach(hy, z,y) A F = pathy (ht, hn, 2,9, 2),

pathS(ht7x7y) g DN ANF \ paths(hhxay) g DS7
VL. ¢ € F N Dy — reach(hg, h{{], 2),
disjoint £ Wl,ég.({fl,ég} CFEFAl 75 s A hnwl] = hn[KQD—) hn[fl] € F.

Path quantifiers. Invariants of paths are naturally expressed using universal quantifiers.
For quantifiers, however, we cannot directly take advantage of bounds on path lengths.
Therefore, similarly as for separating conjunctions, we use the idea of replacing quanti-
fiers by small enumerations of their instances, which is efficient when we can compute
small enough bounds on the paths. For example, if we know that the length of an f-path
with a root z is at most two, it is enough to instantiate its invariant for x, h¢[x], and
h?[z]. This idea is formalised using expressions ]P’(Sffz) £. v, which we call path quanti-

fiers and which state that v holds for all locations of the path with the length n starting
from x via the array h:

[I>

typing

inner_lists

(1>

Pl 60 2 Posicn I0[a]/0).
If we need to quantify over nested paths, we need to use two path quantifiers (one for
the top-level path and one for the nested paths). The quantifiers in the last conjunct of
the NLL translation can be rewritten as P(y,, o) £1. P(n, 2) 5. P, 00y €1 P, 0) Lo
In this expression, ¢} and ¢, range over locations in the top-level list, and ¢; and /o
range over locations in the nested paths starting from ¢} and ¢}, respectively.

% In the consequent of the disjoint formula, we could also write hq[1] = z instead of hn[£1] &
F, but the latter leads to better performance of SMT solvers.
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5.4 Complexity

This section briefly discusses the complexity of the proposed decision procedure as well
as the complexity lower bound for the satisfiability problem in the considered fragment
of SL. We will use SAT (w1, ...,wy) to denote the satisfiability problem for a sub-
fragment constructed of atomic formulae and the connectives w; and SAT (w1, -~ -, w,,)
to denote the fragment where none of the connectives w; appear.

Theorem 4. The procedure SatQuantif produces formula of polynomial size, and, for
SAT (A=), it runs in NP. The procedure SatEnum runs in NP for SAT (V).

Proof (sketch). When not considering the instantiation of quantifiers over footprints,
both SatQuantif and SatEnum produce a formula T(y) of a polynomial size dom-
inated by the translation of inductive predicates. For the variant of the translation of
inductive predicates using universal quantifiers over locations, the size is O(n?) for
SLLs and DLLSs (dominated by the O(n?) size of the pathg term), and O(n®) for NLLs
(dominated by path ). If the input formula does not contain guarded negations, then
all quantifiers can be eliminated using Skolemization. The translated formulae are then
in a theory decidable in NP (e.g., when sets are encoded as extended arrays [22]).

The procedure SatEnum can produce exponentially large formulae because of the
footprint enumeration. This can be prevented if the input formula does not contain dis-
junctions, in which case the footprints of all sub-formulae are unique, i.e., singleton
sets. The translated formulae are then again in a theory decidable in NP. |

Theorem 5. SAT(—, A—, A, V, *) is PSPACE-complete.

Proof (sketch). Membership in PSPACE was proved in [26] for a more expressive frag-
ment. For the hardness part, we build on the reduction from QBF used in [7]. In this
reduction, the boolean value of a variable is represented by the corresponding SL vari-
able being allocated (always pointing to nil for simplicity). The fact that z is false is
expressed using a negative points-to predicate stating that z is not allocated. The exis-
tential quantifier is expressed using the separating conjunction, and the universal quan-
tifier is obtained using the (unguarded) negation. (For details, see [7].)

We show that this reduction can be done without the unguarded negation and the
negative points-to assertion, using the guarded negation instead. The key observation is
that, for a QBF formula with variables X, we can express that all variables in X can
have arbitrary boolean values as arbitrary[X] = *,cx (x + nil V emp). In the context
of variables X, we can then express negation as —F = arbitrary[X] A —F and the truth
values of a variable 2 as -z £ arbitrary[X \ {z}] and 2 £ arbitrary[X] * = + nil. The
rest of the reduction then easily follows [7]. O

6 Optimised Bound Computation

In many practical cases, the main source of complexity is the translation of induc-
tive predicates, which heavily depends on the possible lengths of paths between lo-
cations. We now propose how to bound the length of these paths based on the so-called
SL-graphs which are graph representations of constraints imposed by SL formulae.
SL-graphs were originally used for representation and deciding of symbolic heaps with
lists in [8]. Here, we use their generalised form which captures must-relations holding
in all models of a given formula. Note that the nodes of the graphs are implicitly given
by the domains of the involved relations, which themselves can be viewed as edges.



200 T. Dacik, A. Rogalewicz, T. Vojnar, and F. Zuleger
Definition 3. An SL-graph of ¢ is a tuple Glp] = (.8, (O, ¢, B¢ )terield) Where:

— © Cvars(p) x vars(p) is an equivalence relation called must-equality,

— @ C vars(p) x vars() is a symmetric relation called must-disequality,

— ©f Cvars(y) x vars(p) is a must-f-pointer relation,

— ©f Cvars(yp) x vars(yp) is an irreflexive must-f-path relation,

— ®f C vars(p)? x vars(p)? is a symmetric relation called must-f-path-disjointness.

Except )¢, the components of G[p] represent atomic formulae—equalities, disequali-
ties, pointers, and paths (i.e., list segments)—holding within all models of (. The fact
that (z1,y1) ®s (z2, y2) states that, in all models of ¢, the domains of f-paths from z;
to y; and from x5 to ys are disjoint.

To compute the SL-graph G[y], we define some auxiliary notation. We define Gy
to be an SL-graph where all the relations are empty. We write G < {z; ; y; }ier to
denote the SL-graph G’ which is the same as G with the elements z; >; y; for: € T
added to the corresponding relations. We use U and I as a component-wise union and
intersection of SL-graphs, respectively. We define the disjoint union of SL-graphs as:

G HGy = (Gl [ Gg)
<{r @y |z € alloc(G1),y € alloc(Gz), and (z is not nil or y is not nil) }
< {e1 ®seq | f € Field, ey € paths¢(G1), and es € paths;(G2)}.

Here, paths;(G) is defined as @y U @, and the set of must-allocated variables is
alloc(G) = {x | Fy,f. 2By y or (x @ y and x @ y) }U{nil} (nil is added for technical
reasons). We further assume that all operations on SL-graphs (<, L, 1, and H) preserve
relational properties (symmetry, transitivity, etc.) of the components of SL-graphs by
computing the corresponding closures after the operation is performed. We compute
the SL-graph G|[y] as follows.

Glr=y|=Gy<{z By} Gz (fi: fi)ict] = Gy <{z O}, fi}ier

[z
Glz#yl =Gy <{z@y} Glsls(z,y)] =Gy <{z©, y}
Glr A —1po] = Glu] Gldls(z,y,2",y")] = Go <{x O, v, 2’ O, '}
Gl1 ANpo] = G| UG2]  Glnls(z,y, 2)] = Gy <{z @, 2,2 O, y}
G1 Vo] = G| N G]  Gy1 + o] = Gi1] B Glapo]

Observe that we only approximate dls and nls. After the construction is finished, we
apply the following rules for matching of pointers and for detection of inconsistencies.

1@y 12Cr Y2 11O T2 (—-match) Ty Ay

- (contradiction)
Y1 O yo ( is unsat

Tighter location bounds. Using SL-graphs, we can slightly improve the location bound
from Section 4 by considering equivalence classes of © instead of individual variables
(this can be also used to refine the later described path bound computation) and by
defining ||z|| = 1 if = is a must-pointers, i.e., z ©) y for some f and y.
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[0,2]
2
G 0 1 m
[0,2] [1,1] [17 1] @_> o o a
(a) Fragment of SL-graph G[e]. (b) Graph G%. (c) Graph G75.

Fig. 3: An illustration of the bound computation for the path ¢ from a to c on a fragment
of SL-graph of ¢ £ (sls(a, b) xb — cx ¢+ dxsls(d,a)) A= (sls(a, c) xsls(c, a)). The
highlighted edges denote the paths used to determine the bound [1, 3].

Path bounds. We now fix an f-path o from z* to 3 and show how to compute an interval
[¢,u] that gives bounds on its length. The computation of the path bounds runs in two
steps. In the first step, we compute an initial bound [¢2, u0] for each edge e € paths¢(G).
If e is a pointer edge, its bound is given as [1, 1]. For a path edge e = (a,b), we define
02 = 1if a @ band 0 otherwise; while v is defined as boundg () — >°, /| |v|| where
V = {v € varsg(p) | visnot x and Ju. (v,u) ®¢ (z,y)}. This way, we exclude from
the computation of the initial upper bound the source v of each path disjoint with ¢ and
all locations possibly allocated in a chunk with the root v. Note that it can be the case
that the actual size of this chunk has a lesser size than ||v||, but this means that we were
too conservative when computing the global location bound and can decrease the path
bound by the same number anyway.

In the second phase, we compute the bounds of the path o using initial bounds from
the first step. The computation is based on two weighted directed graphs derived from
the SL-graph G: G for the upper bound and G for the lower bound (in both cases,
the vertices are implicitly given as vars(), and the edge weight of an edge e is given
by u? and £2 computed in the previous step, respectively):

Gy ={a—b] (a,b) € paths¢(G)},
G! ={a—=b|(aO®fband a@y) or
(a © b and Fw. nonempty(y, w) and (y, w) & (a,b)}.

Here, the condition nonempty(y, w) states that a directed SL-graph edge (y, w) is non-
empty which holds if either y ©f w, or when y & w and y @ w.

Intuitively, the upper bound u is computed as the length of the shortest path from =
to y in G'%. Since f-paths are uniquely determined, we know that no path can be longer
than the shortest one, and thus « is indeed a correct upper bound. The lower bound 7 is
computed as the length of the longest path starting from z (ending anywhere) in G%. By
construction, G contains only those edges for which one can prove that they cannot
contain y in their domains. A path from z of a length ¢ therefore implies that « cannot
reach y in less than ¢ steps, and thus ¢ is indeed a correct lower bound.

Example. We demonstrate the path bound computation in Fig. 3, which shows a frag-
ment of the SL-graph of a formula ¢ (it shows only those (¥),, edges that are relevant
in our example) and the graphs G and G2 for the path ¢ from a to c. We have that
[1b]] = |le|| = 1 and ||a|| = ||d|| = 2. This gives us the location bound, which is 6. In
the first phase, we compute the initial bound [0, 2] for paths of the predicates sls(a, b)
and sls(d, a) because both of them are disjoint with all the other paths in G[y]. In the
second phase, we get the bound for o equal to [1, 3] instead of the default bound [0, 6].
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7 Experimental Evaluation

We have implemented the proposed decision procedure in a new solver called ASTRAL’.
ASTRAL is written in OCaml and can use multiple backend SMT solvers. With the en-
coding presented in Section 5, it can use either CVC5 supporting set theory directly [1]
or Z3 supporting it by a reduction to the extended theory of arrays [22]. We have also
developed an alternative encoding in which both locations and location sets are repre-
sented as bitvectors. The bitvector encoding differs only in expressing set operations
on the level of bitvectors with additional axioms ensuring that all locations “can fit”
into sets encoded by the bitvectors (for details, see [9]). With the bitvector encoding,
a backend solver only needs to support theories of bitvectors and arrays, which are
both standard and supported by many other SMT solvers. Another advantage is that the
quantification on bitvectors seems to perform significantly better than on sets.

In our experiments, if we do not say explicitly which encoding and solver is used,
we use the bitvector encoding and BITWUZLA [25] as the backend solver, which we
found to be the best performing combination. We set a limit for the method SatEnum to
64 footprints. If this limited is exceeded, we dynamically switch to SatQuantif. We
use path quantifiers when the path bound is at most half of the domain bound. These
are design choices that can be revisited in the future.

All experiments were run on a machine with 2.5 GHz Intel Core i5-7300HQ CPU
and 16 GiB RAM, running Ubuntu 18.04. The timeout was set to 60 s and the memory
limit to 1 GB. Our experiments were conducted using BENCHEXEC [4], a framework
for reliable benchmarking.

7.1 Entailments of Symbolic Heaps

In the first part of our evaluation, we focus on formulae from the symbolic heap frag-
ment which is frequently used by verification tools and for which there exist many
dedicated solvers. We therefore do not expect to outperform the best existing tools but
rather to obtain a comparison with other translation-based decision procedures.

In Table la, we provide results for the category QF_SHLID_ENTL (entailments
with SLLs). We divide the category into two subsets: verification conditions (which are
simpler) and more complex artificially generated formulae “bolognesa” and “clones”
from [23]. During the experiments, we found out that several “cloned” entailments con-
tain root variables on the right-hand side of the entailment that do not appear on the
left-hand side, making the entailment trivially invalid when its left-hand side is satis-
fiable. For a few hard clone instances, this makes a problem for ASTRAL as it can-
not use the path bound computation as such roots do not appear in the SL-graph. We
have therefore implemented a heuristic that detects entailments ¢ |= 1 that can be
reduced to satisfiability of ¢. Since this is a benchmark-specific heuristic, we present
also the version without this heuristic (ASTRAL *) in Table 1a. The optimised version
of ASTRAL is able to solve all the formulae being faster than other translation-based
solvers GRASSHOPPER® and SLOTH. For illustration, the table further contains the
second best solver in the latest edition of SL-COMP, S2S8°.

7 https://github.com/TDacik/Astral

8 Since GRASSHOPPER is not an solver but a verification tool, we encode the entailment check-
ing as a verification of an empty program.

® We had technical issues running the winner ASTERIX [24]. The difference between those tools
is, however, negligible.


https://github.com/TDacik/Astral

Deciding Boolean Separation Logic via Small Models 203

Table 1: Experimental results for formulae from SL-COMP. The columns are: solved in-
stances (OK), out of time/memory (RO), instances on which ASTRAL wins—ASTRAL
can solve it and the other solver not or ASTRAL solves it faster (WIN), instances solved
in the time limits of 0.1 s and 1 s, and the total time for solved instances in seconds.

(a) Results for the category QF_SHLS_ENTL.

Verification conditions (86) bolognesa+clones (210)
Solver OK RO WIN <0.1 <1 Total time OK RO WIN <0.1 <1 Total time
ASTRAL 86 0 - 84 86 4.62 210 O - 68 169 20291
ASTRAL" 8 0 42 83 86 4.64 195 15 88 64 150 408.48
GRASSHOPPER 86 0 70 52 86 8.65 203 7 148 60 87 1229.35
S2S 86 0 5 86 86 2.08 210 O 3 203 210 8.18
SLOTH 64 3 86 0 28 235.28 70 140 210 0 50 14942

(b) Results for a subset of the category QF_SHLID_ENTL.

Doubly-linked lists (17) Nested singly-linked lists (19)
Solver OK RO WIN <0.1 <1 Total time OK RO WIN <0.1 <1 Total time
ASTRAL 17 0 - 11 17 2.72 19 0 - 3 9 86.93
GRASSHOPPER 17 0 16 3 15 7.53 - - - - - -
HARRSH 17 0 17 0 0 95.18 14 5 18 0 0 183.01
S2S 17 0 0 17 17 0.15 19 0 0 19 19 0.43
SONGBIRD 11 5 14 5 9 13.39 11 5 8 4 11 1.38

In Table 1b, we provide results for a subset of the category QF_SHLID_ENTL (en-
tailments with linear inductive definitions from which we selected DLLs and NLLs)
for ASTRAL and three best-performing solvers competing in the latest edition of SL-
COMP—S2S, SONGBIRD (in the version with automated lemma synthesis called SLS),
and HARRSH. We also include GRASSHOPPER which supports DLLs only. Except
S2S which solves almost all formulae virtually immediately, ASTRAL is the only one
able to solve all the formulae in the given time limit.

7.2 Experiments on Formulae Outside of the Symbolic Heap Fragment

For formulae outside of the symbolic heap fragment and its top-level boolean closure,
there are currently no existing benchmarks. For now, we therefore limit ourselves to
randomly generated but extensive sets of formulae. In the future, we would like to
develop a program analyser using symbolic execution over BSL and make more careful
experiments on realistic formulae.

We first focus on the fragment with guarded negations but without inductive predi-
cates, on which we can compare ASTRAL with CvC5. We have prepared a set of 1000
entailments of the form ¢ |= ¢ which are generated as random binary trees with depth 8
over 8 variables with the only atoms being pointer assertions. To reduce the number
of trivial instances, we only generated formulae for which vars(v)) C vars(y) and
ASTRAL cannot deduce contradiction from their SL-graphs. To avoid any suspicion
that the difference is caused by better performance of the backend solver rather than
the design of our translation, we used ASTRAL with the CvC5 backend and direct set
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Fig.4: A comparison of ASTRAL with cvc5 and GRASSHOPPER on randomly gener-
ated formulae. Times are in seconds, axes are logarithmic. The timeout was set to 60 s.

encoding (with BITWUZLA and bitvector encoding, our results would be even better).
The results are given in Fig. 4a and suggest that our treatment of guarded negations
really brings a better performance—ASTRAL can solve all the instances and almost all
of them under 10 seconds. On the other hand, CvC5 timed out in 61 cases and is usu-
ally slower than ASTRAL, in particular on satisfiable formulae which represent invalid
entailments.

In the second experiment, we compared our solver with GRASSHOPPER on the
fragment which it supports, i.e., arbitrary nesting of conjunctions and disjunctions. We
again generated 1000 entailments, this time with depth 6, 6 variables and with atoms
being singly-linked lists (with 20 % probability) or pointer-assertions. The results are
given in Fig. 4b. ASTRAL ran out of memory in 5 cases, and GRASSHOPPER timed
out in 10 cases. In summary, ASTRAL is faster on more than 80 % of the formulae with
an almost 3 times lesser running time.

Finally, to illustrate that ASTRAL can indeed handle formulae out of the fragments
of all the other mentioned tools, we apply it on an entailment query that involves the
formula mentioned at the end of the introduction: ((sls(z,y) A = (sls(x, z) xsls(z, y))) *
y — z) [ sls(z, z), converted to an unsatisfiability query. ASTRAL resolves the query
in 0.12 s. Note that without the requirement —(sls(x, z) xsls(z, y)), the entailment does
not hold as a cycle may be closed in the heap.

8 Conclusions and Future Work

We have presented a novel decision procedure based on a small-model property and
translation to SMT. Our experiments have shown very promising results, especially
for formulae with rich boolean structure for which our decision procedure outperforms
other approaches (apart from being able to solve more formulae).

In the future, we would like to extend our approach with some class of user-defined
inductive predicates, with more complex spatial connectives such as septractions and/or
magic wands, consider a lazy and/or interactive translation instead of the current eager
approach, and try ASTRAL within some SL-based program analyser.
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Abstract. Session subtyping answers the question of whether a program
in a communicating system can be safely substituted for another, when
their communication behaviours are described by session types. Asyn-
chronous session subtyping is undecidable, hence the interest in devising
sound, although incomplete, subtyping algorithms. State-of-the-art algo-
rithms are formulated in terms of a data-structure called input trees. We
show how input trees can be replaced by sets of traces, which opens up
opportunities for applying techniques abstract interpretation techniques
to the problem of asynchronous session subtyping. Sets of traces can be
relaxed (enlarged) whilst still allowing subtyping to be observed, and
one can choose relaxations that can be finitely represented, even when
the input trees are arbitrarily large. We instantiate this strategy using
regular expressions and show that it allows subtyping to be mechanically
proven for communication patterns that were previously out of reach.

Keywords: asynchrony, session subtyping, automata, abstract interpretation

1 Introduction

Protocols, which are used to communicate and orchestrate activity in distributed
systems, are notoriously difficult to write and understand. Session types [23, 34]
have thus been proposed for specifying protocol interaction and automatically
checking whether an implementation conforms to its specification. Session types
extend data types to describe communication behaviour, and express the be-
haviour of units of design (sessions) in terms of which types of messages can
be sent or received, and in what order. They have been integrated into main-
stream languages and proved to be a powerful tool for static [25, 26,28, 31, 32]
and dynamic [1, 2] verification as well as API generation [24, 30].

Session Subtyping A fundamental problem in the application of session types
is checking whether the implementation of one component in a distributed sys-
tem can be substituted for another, without violating an overarching protocol.
This problem can be formulated as session subtyping [11,18,20,21], which is
a preorder relation on session types: S’ is a sub-type of S, written S’ < S, if
a program with type S can be safely substituted by a program with type S’.
Consider S and S’ below:

© The Author(s) 2024
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S and S’ are expressed in automata notation where la (resp. ?a) denotes a send
(resp. receive) action on channel a. S models a process, which in state pg, can
repeatedly request a service a, or request b and then receive a confirmation c.

The overarching protocol is defined, in a binary (client-server) session, as
the parallel composition of S with its dual S, written S | S. The dual S is
obtained by swapping each send action with a corresponding receive action and
vice versa. Due to syntactic constraints posed by session types [23], S | S enjoys
a number of key properties (e.g., deadlock freedom, communication safety). A
process behaving as S can be safely substituted with another behaving as S’
that has less sends (e.g. the absent !a) and more receives (e.g. the additional ?d).
This notion of substitutability is co-variant on send actions and contra-variant
on receive actions, and preserves the key properties in protocol S’ | S.

We focus on asynchronous session subtyping (async subtyping for short) as
asynchronous communications (over FIFO channels) are key in distributed sys-
tems and languages such as Go and Rust. Async subtyping, however, is un-
decidable [6,27] We focus on asynchronous session subtyping (async subtyping
for short) as asynchronous communications (over FIFO channels) are key in dis-
tributed systems and languages such as Go and Rust. Async subtyping, however,
is undecidable [6,27] so the search is on for sound algorithms which are suffi-
ciently robust to prove subtyping in the majority of cases. Given a candidate
subtype and a supertype, the subtyping problem can be viewed as a simulation
game in which the supertype is required to mirror any input and output action
performed by the subtype. Since communication is asynchronous, the subtype
can send early in the sense that the supertype can only realise the same output
after some inputs. Consider My below, which models a server producing a news
feed (!b) on request from a client (?a), where M; is a candidate subtype for Moa:

g

7a 7a
M, - H My - H
b b 'b

After receiving on a, Ms can immediately mimic the first send on b of M,
but it can only perform the second send on b after receiving another request.
The input a is said to guard the output b. One needs to reason about these
dependencies to verify that My can follow the actions of M;, albeit with (a
possibly unbounded number of ) send actions being delayed. This is the challenge
of asynchronous subtyping. Apart from substitutability, asynchronous subtyping
enables protocol optimisation in which receives are postponed, so as to minimise
busy waiting for messages [29]. In Ms, if feed production was more efficient than
request processing then it would be better if the server bundled feeds, as in Mj.



Asynchronous Subtyping by Trace Relaxation 209

q0) %

1 H e

b

!b?a @ S'=Su{q}

Fig. 1. A simulation tree (left) and collecting simulation graph (right) for M; and M,

Ezisting techniques The state-of-the-art approach to async subtyping [4, 5] rep-
resents a simulation game between the (candidate) subtype and supertype, in
its entirety, with a simulation tree. The state of the supertype is modelled using
an input tree [4,5,11,10], which records and accumulates input actions which
guard outputs. Figure 1 gives the simulation tree for M; and Ms. Simulation
commences at pg < ¢o where M7 and M, are in their initial states pg and qq.
The edges in the tree follow the actions of M7, with Ms following along using its
input tree. Step pg < Ts models the scenario where Mj is in state py but, in M,
a second send on b is guarded by a receive on a. Input tree Th = {a : qg) expresses
this dependency by recording that M5 can continue at qg, after performing the
pending receive on a. As the simulation of M; unfolds, however, the input trees
for My grow without bound, yielding an infinite simulation tree.

Previous work [4, 5] proposed a multi-step algorithm that computes a simu-
lation tree until violation of a syntactic condition [5, Theorem 3.8] that is for-
mulated in terms of the depth of input trees. The simulation tree is then divided
into sub-trees, which are checked against a safety property [5, Definition 3.16].
The sub-trees are then used to generate systems of equations which are solved
and checked against a compatibility condition [5, Definition 3.12]. The construc-
tion is ingenious, but the length of the proofs [5, p. 14, p. 19-20, p. 22-26] begs
the question of whether subtyping can be solved more simply. Furthermore, can
a strategy be found that is amenable to independent algorithmic checking? This
would explain why subtyping holds, further instilling confidence.

Contribution Our development starts with the observation that an input tree
can be represented, without loss of information, as a set of traces: one trace
for each branch through the input tree. The rationale behind this encoding
is that sets of traces can: (1) be relaxed (enlarged) and (2) be described as
regular expressions. As to (1), a trace-based representation allows the subtyping
algorithm to relax a set of traces to a strictly larger (possibly infinite) set, whilst
still allowing subtyping to be observed. By covering all the sets of traces that arise
in a simulation tree with a finite number of trace sets we can fold a simulation
tree onto a graph to obtain a tractable (finite) representation. Regarding (2),
(possibly infinite) sets of traces can themselves be finitely represented as regular
expressions. For example, Figure 1 (right) shows a collecting simulation graph
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where the states of My are relaxed to the set of traces S and S’, which can be
represented, say, as a*qy and a*qo + g1 respectively. The result is a subtyping
algorithm equipped with relaxation and termination machinery which can prove
subtyping on more (and more complex) problems than existing methods.

The use of sets of traces separates the proof for correctness of the core al-
gorithm, from the problem of how to finitely represent sets of traces. This sep-
aration simplifies the theoretical development. If higher fidelity was required,
regular expressions could be replaced with context-free grammars [13]; alterna-
tively the relaxations employed with regular expressions (string widening [12])
can be tuned without revisiting the correctness of the core algorithm.

Synopsis Section 2 introduces (session types as) communicating machines; Sec-
tion 3 defines asynch subtyping with the formulation in [5] to facilitate com-
parison and Section 4 gives a sound formulation based on collecting simulation
graphs. Section 5 gives an algorithm based on regular expressions and widening
over collecting simulation graph, and introduces and evaluates our tool. Conclu-
sion and related work are in Section 6.

2 Preliminaries on Communicating Machines

Let A denote a finite alphabet, and A = {!, 7} x A denote a finite set of send and
receive actions. A communicating machine M = (@, go,d) (machine for short)
is defined by a finite set of states (), an initial state gg € ), and a transition
relation § C Q x A x Q. For a fixed machine M = (Q, qo,0), we write: q — ¢’

iff (q,w,q') € 6; ¢ = iff there exists ¢/ such that ¢ — ¢’; go —2"" q,, iff there

exist q1,...,qn—1 € @ such that g; %qiﬂ for0<i<n-—1.
Given a sequence of labels @ = ay, ..., a; and a direction x € {!, 7}, we write
*d for the sequence of actions xaq,...,*a. The maps iny; : Q@ — p(A) and

outy : Q@ — p(A) are defined: inp;(q) = {a € A | q?—a> } and outpys(q) = {a €

Alq la, }. The predicate sends(q) holds iff outps(q) # 0 and recvys(q) holds iff
inar(q) # 0. The predicate finalys(q) holds iff —sendps(q) and —recvy(q).

Definition 1 (Session types correspondence). For a given M = (Q, qo,9),
M is deterministic iff (¢, w, q1), (g, w, q2) € & implies g1 = q2; M has no mixed
states iff —sends(q) or —recvs(q) for all g € Q. A session type corresponds [19]
to a deterministic machine without mized states.

Henceforth we focus on systems of two deterministic machines without mixed
states, which correspond to binary session types. Binary session types describe
two-party protocols (e.g., client-server as POP2, SMTP). State-of-the-art asyn-
chronous subtyping algorithms [5] are formulated on binary sessions (each session
involving two rather than many participants). We focus on demonstrating how
abstraction can be applied to these algorithms and thus, likewise, adopt the
binary setting.
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Because M is deterministic, the relation § can be interpreted as a partial

function @ x A — @ defined by 6(q,¢) = ¢’ iff ¢ LN ¢'. Following [5] we introduce
the predicate cycle,, (!, q) to aid the characterisation of orphan messages:

Definition 2. The predicate cycley,(!,q) holds iff there exist @ € A*,b € AT

and ¢’ € Q such that q 4, q and q' 2, q.

The predicate cycle,; (!, ¢) thus holds iff from ¢ one can reach, using a possibly
empty sequence of send actions, a cycle (from ¢’ to ¢’ itself) of send actions. The
predicate cycle,,(?,¢q) is defined analogously.

3 Asynchronous Subtyping with Input Trees

We define input trees and asynchronous subtyping, adopting the formulation
of [5]. Input trees are defined over the states @ of a supertype. Asynchronous
subtyping is then defined in terms of input trees, the trees capturing input
accumulation for guarded outputs.

Definition 3. The set of input trees T over Q is the least set such that: (1)
if g € Q then ¢ € Tg; (2) if I is an index set, Vi € I.a; € A, t; € Tg and
Vi,jeli#j = a; #a; then (a; : t; |1 €I) €Ty

An input tree over @ is either a state in () or an accumulated input. A term
of the form (a; : t; | i € I) represents an accumulated input that presents an
options a; for each i € I, followed by a tree ¢;. Note that any input tree of T
is necessarily finite. The following definition shows how to build the input tree
inTreeps(q) for a state ¢ of a given machine M, and defines the associated set of
leaves leaf(t) of the input tree t.

Definition 4 (Input tree). Define inTreey : Q — T and leaf : Tg — p(Q)

L if cycley (7, q)
inTreenr(q) =} ¢ else if ina(q) = 0
(a; = inTreeps(6(q, 7a;)) | i € I) elseinp(q) ={a; | i € I}
_{ ifteq
leaf(t) = { Ulleaf(t,) | i € I} else if t = (a; < t; | i € I)

The cycle,, (7, ¢) condition (also used in [5]) ensures that inTreeps(q), if defined, is
finite. Note that a; : inTreeps(g;) is well-defined in the above. To see why, suppose
0(q,a;) = ¢;. Observe that if —cycle,;(?,¢) then —cycle,, (7, ¢;). Repeating this
argument it follows inTreeps(g;) # L, as required.

Ezample 1 (Running example: input trees and leaves). The machines 14may?2
and 14mayl specified in Figure 2 originate from the GitHub repository which
accompanies [5]. Henceforth let N3 = 14may2 and Ny = 14mayl.

inTreen, (qo) = (a: (a:qa,c:q3),c:qs) leaf(inTreen,(q0)) = {q2, 43, a5}
inTreen, (q1) = {(a: g2,¢: g3) leaf (inTreen, (1)) = {42, ¢3}
inTreen,(q;) = ¢; forall2<i<6 leaf(gs) ={q¢3}
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1 g ) ) (oo "o 1
Nz 4 V d

Fig. 2. Communicating machines N; (14may2) and N2 (14mayl)

Next, we introduce a substitution 6 that we use, in the definition of asyn-
chronous subtyping, to model the accumulation of inputs as simulation unfolds.
Input trees are extended at their leaves by the application of a substitution 6.

Definition 5 (Substitution). If ¢; € Q and t; € Tg for all i € I then 6 =
{g; — t; | i € I} denotes an operator Tg — Tg where 0(t) is the input tree
obtained by simultaneously substituting each occurrence of q; in t with t;.

In Definition 6 we introduce the notion of an async subtyping relation be-
tween states of a candidate subtype and input trees of a supertype. We follow
[11] and, like [5], adopt the conventional orphan-free version of asynchronous
subtyping [7, Definition 2.4] adapted to the setting of communicating machines:

Definition 6. An async subtyping relation for M; = (P,pg,d1) and My =
(@, qo, 62) is a binary relation R C P x T such that (p,t) € R implies:

1. if finalpy, (p) then t = q for some q € Q and finaly, (q)
2. if recvyy, (p) then
(a) if t = q for some q € Q then recvy, (q) and if q Za, q' there exist p ?—a>p’
and (p',q) €R
(b) ift = {a;: t; | i € I) then for alli € I there existp%p’ and (p',t;) € R
3. if sendypy, (p) then:
(a) if t = q for some ¢ € Q and sendyy,(q) then if p f»p’ there exist q la, q
and (p',q') €R
(b) otherwise if leaf(t) = {q; | i € I} then
i. —cycley, (4, p)
ii. t; = inTreep, (q;) # L foralliel
111. ifp!—a>p’ and 0 ={qg— ¢ | q € Q,q!—a>q’} then leaf(t;) C dom(6)
foralli eI and (p',k(t)) € R where k = {q; — 0(t;) | i € I'}

Case (1) is self-explanatory. Case (2) is for input actions in M; and realises
contra-variance with respect to inputs. Case (2.a) applies when the states p
and ¢ are in sync, whereas case (2.b) applies when an accumulated input a;
in Ms is consumed by a corresponding input action of M. In case (2.a), con-

dition recvyy, (¢) ensures that the guarded clause q?—a>q’ does not hold vacu-
ously. Case (3) is for output actions in M; and implements output co-variance.
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Case (3.a) applies when M; and My are in sync, while case (3.b) is for accu-
mulated inputs. The negated cycley, of clause (3.b.i) predicate mirrors [5] and
prevents orphan messages, ensuring that accumulated inputs are eventually con-
sidered. Clause (3.b.ii) was implicit in [5] but is used in the proofs for structuring,
and is thus made explicit. Clause (3.b.iii) ensures that if p in M; can send, then
every leaf of the corresponding input tree ¢ in My can make a matching send
action.

Definition 7 (Async Subtyping). M; = (P, pg,d1) is an (async) subtype of
My = (Q, qo,92), written My < Mo, iff there exists an async subtyping relation
R C P xTg for My and My such that (po, qo) € R.

4 Asynchronous Subtyping with Input Traces

Simulation trees [5] provide a foundation for checking subtyping, but because
their branches can grow arbitrarily long, they are not tractable in themselves.
To obtain a model which is amenable to abstraction, we substitute an input tree
with a set of input traces. Sets of input traces can be easily relaxed by adding
more input traces, which is key to deriving a finite alternative representation.

Definition 8 (Input Traces). Given a fized alphabet A and a set of states @,
input traces (traces for short) are words formed from the alphabet A (which are
ranged over by m) followed by a state in Q: Trg ={m-q|m € A*,q € Q}. The
empty word is denoted €.

The development begins by lifting a simulation tree to sets of traces, a construc-
tion which itself requires some set-level auxiliary operations:

Definition 9 (Traces of an input tree). The set of traces of an input tree is
giwen by the map tr : To U{L} = p(Trq) defined by:

0ift=1
w(t) = {thifteq
{a; - w|metr(ty),iel}ift="{a;:t;|i€l)

Ezample 2 (Running example: traces). Continuing with Ny and N» of Example 1
(Figure 2), tr(inTreen, (go)) = {aaqz, acgs, cqs } and tr(inTreen, (1)) = {ag2, cqg3}.

4.1 Collecting simulation

A (collecting) simulation tree is formulated in terms of a (collecting) simulation
relation, defined below. The term collecting has been chosen to resonate with
abstract interpretation [15] where a semantics is lifted to operate on sets of
data points (to give a so-called collecting semantics) which provides a semantic
substrate for synthesising an algorithm.
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inar, () Cinary (p)  g—¢' [Recv] outar, (p) Coutan(9)  p—=p' [Send]

?a la
p < q— 0 (p,%a) < ¢ p<q — p' <dm,(q,'a)

—cycley, (p)
tr(inTreenr, () = {¢i -qi |1 €I} kel

la 4

a € inar, (p) RecvT] Vi € I :outy, (p) Coutar, (i) p—p
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Fig. 3. Rules for trace-based asynchronous subtyping

Definition 10 (Collecting simulation). The collecting simulation relation of
two machines My = (P, po,01) and Ms = (Q, qo,02) is the least 5-place relation
— € Px p(Trqg) x A x P x p(Trg), satisfying the rules in Figure 3, where

p < S<—Z>p’ < S’ abbreviates (p,S,¢,p',S") € — .

In Figure 3, rules Recv and RecvTr collectively realise the second case of Defini-
tion 6: rule Recv realises case (2.a) for interactions in sync, and RecvTr realises
case (2.b) that consumes an accumulated input. The contra-variance of receive
manifests as inps, (¢) C inpg, (p) in Recv and a € inpy, (p) in RecvTr. Rules Send
and SendTr realise case (3.a) and case (3.b) of Definition 6, respectively. In
these rules, the co-variance of send appears as premise outyy, (p) C outas,(g) in
Send and Vi € I : outyy, (p) C outas,(g;) in SendTr. In rule SendTr, the leaf(¢;) C
dom(#) condition in case (3.b.) follows from the premise outyy, (p) C outay, (g;) for

all ¢ € I. To see this, let ¢ € leaf(t;) for some j € J. Since p!—a>p’, a € outyy, (p)
thus a € outyy,(q) therefore ¢ € dom(6).

The absence of mixed states (Definition 1) ensures that if both Send and
SendTr are applicable then the traces which result coincide. The force of this is
that clause ‘otherwise if ...” of Definition 6(3.b) can be simplified to “%f ... (so
there is no need to prioritise the application of Send over SendTr). The current
formulation of Definition 6(3.b) was chosen to align with that used in [5].

Rules RecvSet and SendSet lift subtyping from traces to sets of traces. In
RecvSet, the first premise specifies a covering requirement: that a receive is pos-
sible for each trace of S. The second premise prescribes a grouping requirement:
for a given receive action ?a, the second precondition accumulates all those traces
which can be derived by receiving on a. The requirement S, # @) ensures that
a non-empty subset of S contributes to S,. The S, # () requirement, which
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likewise shows up in SendSet, also inhibits meaningless transitions of the form

? !
p<0=3p <Pand p<0—>p <0, which would otherwise hold vacuously.
For any given p < S, relaxing S to T', can result in either p < T becoming
stuck, or a move that preserves the inclusion of traces. To formulate this property,

‘
let p<T #} denote the absence of a transition of the form p < T —p' < T".

Proposition 1 (Monotonicity). Let T C S C Trg and { € A. Then if
p§T<£>p’ <71 eitheT:pgSvg or p < S<—e>p' < S" where T C §'.

4.2 Collecting simulation trees and graphs

First, we provide an infinite model for collecting simulation using collecting
simulation trees, that is an alternative presentation of simulation trees [5] where
we represent the state of a supertype as a set of traces rather than an input tree.

Definition 11 (Collecting simulation (sim) tree). A collecting sim tree for
My, = (P,po,01) and My = (Q,qo,d2) is a labelled tree (N,ng, in,ﬁ) where
‘—£>t C N x N is a tree rooted at ng and L : N — P x p(Trq) such that:

1. L(no) = (po,{q0})

2. ifp < Si>p’ <S5 and L(n) = (p,S) then n in n' for somen’ € N such
that L(n') = (p',S")

3. ifn in n' and L(n) = (p,S) then L(n') = (p/, S") such that p < S(ip’ <9

Case (2) above ensures that a collecting sim tree enumerates all the transitions

L £ .-
of — whereas case (3) ensures that the tree only enumerates — transitions.
Note that a collecting sim tree is unique up to tree isomorphism.

Theorem 1 shows that subtyping can be expressed in terms of successful
branches (Definition 12) of collecting sim trees.

Definition 12 (branches). A branch of a collecting sim tree (N,nq, i>t L)

is a (possibly infinite) sequence ng,ny,... € N such that n; in niy1 for all
consecutive n;,n;y1. A complete branch of the collecting sim tree is a branch
which is not a strict prefiz of another branch of the collecting sim tree. A suc-
cessful branch is a complete branch which is either infinite or whose last node n
is labelled L(n) = (p, F) with F C @, finalpg, (p), and finalpg, (q) for all g € F.

The concept of successful branch allows for F' to include multiple final states.
This degree of generality supports supertypes with two or more final states (such
as g4 and gg of the machine Ny of Example 1) when, later, successful branches
are deployed in the context of collecting simulation graphs (see Figure 4).

Theorem 1 (Equivalence). Let (N, nyg, (—en,ﬁ) be a collecting sim tree for
My = (P, po,61) and My = (Q,qo,d2). My < My iff every complete branch in

(N, in) is successful.
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Simulation trees and collecting simulation trees can grow without bound.
However, growth can be curtailed by the judicious application of relaxation:

Definition 13 (Collecting simulation (sim) graph). A collecting sim graph
for My = (P,pg,01) and My = (Q, qo,02) is a labelled graph (N,ng, ‘—é>g,£)
where i>g C N X N is a graph rooted at ng and L : N — P x p(Tg) such that:

1. L(no) = (po,{q0})
2. ifp < S'—Z>p’ < T and L(n) = (p,S) then there exists ' € N such that

n <£>g n', L(n')=(p',S") for some 8" 2T
3. ifn i>g n' and L(n) = (p,S) then L(n') = (p',S") such that S’ O T and
p<SSp <T

Relaxation manifests in case (2) of Definition 13 in that S D T: S’ is thus a
relaxation of T'. Note too that n’ is not necessarily on the branch from ng to n.
Case (3) ensures that each transition in a collecting sim graph has a counterpart
in the collecting sim tree.

The concepts of (complete and successful) branch can be defined analogously
for a collecting sim graph. With these concepts in place, the following result,
which is consequence of Proposition 1, explains how a collecting sim graph sim-
ulates a collecting sim tree: each branch in the tree is described by a branch
in the graph with possibly enlarged trace sets. This correspondence between a
branch in the graph and a branch in the tree only holds if the branch in the
collecting sim graph does not get stuck.

Corollary 1. Let (N, ng, f—gn,ﬁ) (resp. (N',ng, <£>g,£’)) be a collecting sim
tree (resp. graph) for My = (P,po,01) and My = (Q,qo,02). If b = ng---n;

¢
is a branch in the tree (N, <) then there exists b/ = n{---n} in the graph

(N, <£>g) with either: k =14 or k < i and nj, <7E¢>g. Moreover, L(n;) = (p;,S;),
L'(n}) = (p;,S;) and S; C S} for all j < k.

Ezample 3. Figure 1 (left) shows an infinite simulation tree (following the nota-
tion of [5]) for machines M; and My given in the introduction. The corresponding
collecting sim tree has the same structure but 75 = (a : qo) is substituted with
{aqo}, T35 = (a : {a : qo)) with {aaqo}, whereas o and ¢; (at and beneath the
root of the tree) are replaced with {go} and {¢:} in the collecting sim tree. A
(finite) collecting sim graph for My and My is shown in Figure 1 (right). Observe
€S, eSS, qgeS agp €S, aq €S, aaqy €8S, aqy €S, qo € 5, ete.

The force of collecting sim graphs is that they still act as a vehicle for estab-
lishing asynchronous subtyping, as the following result asserts:

Theorem 2 (Soundness). Let (N, ny, ‘—Z>g,£) be a collecting sim graph for
My = (P, po,61) and My = (Q, qo,02). Then My < My if every complete branch

£
in (N', —g4) is successful.
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So = {qo}

Si={q}

Sy={¢ 7| ¢ € U>0di,m € {qo,cqgs,cqs}}
Ss ={q1} US4

S = {43, 95}

So = {q4,q6}

where Ag = {e} and A;11 ={a -7 |7 € A;}

Fig. 4. A collecting sim graph for N; and N»

Example 4 informally anticipates how finite representations of infinite execu-
tions can be algorithmically computed (using regular expressions) ahead of the
detailed presentation and evaluation of the algorithm in the following sections.

Ezample 4 (Running example: collecting sim graph). Continuing with Example 1
(Figure 2), N7 and Ny are examples of machines for which [5] cannot prove
subtyping, even though it does hold. In contrast, Figure 4 presents a collecting
sim graph showing N7 < Nj. The graph is rooted at ng where L(ng) = (po, So).

5 Async Subtyping with Regular Expressions

Our work was motivated by the question of whether subtyping can be addressed
with a simpler and more general approach. Beyond this conceptual question,
there is the practical matter of whether our subtyping can algorithmically es-
tablish subtyping on more problems than before [4, 5]. To do so, we represent sets
of traces using regular expressions and simulate the operations on sets of traces
with analogous operations on regular expressions. To derive a finite collecting
sim graph, we apply regular expression widening [12].

5.1 Representing sets of traces with regular expressions

A set of traces can be represented as a finite set of regular expressions drawn
from the syntactic category Reg, which is parameterised by alphabet A. Reg,4
is inductively defined as Regy =€ | C | r-7' | r* where C C A, 7,7’ € Reg,, and
- is concatenation of words. To specify the language (set of words) represented
by a regular expression, recall that Kleene closure W* of a set of words W is
defined as W* = U2, W; where Wy = {e} and W11 = {w o' |w € W,w' € W;}.
Then the language of r € Regy, denoted [r], is defined as [e] = {e}, [C] = C,
[r-7] ={w - |welr],w €[]} and [r*] = [r]*.

If r € Regy and g € Q the pair (r,q) represents the sets of traces [(r,q)] =
{m-q | 7 € [r]}. Furthermore, if R C Reg, x @ then R represents the traces
[R] = U{[(r,9)] | (r,q) € R}. Henceforth rq will abbreviate the pair (r, q).
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Ezxample 5. To illustrate, [{a*qo,cqs}] = {cgz} U{m-qo | 7 € Ui>0A;} with A;
defined as in Figure 4.

Our technique uses the existing notion of widening [15, 16] to approximate
regular expressions, namely to relax a sequence of regular expressions to derive
another sequence which is not strictly increasing (thereby inducing convergence):

Definition 14. An operation V : Regy4 X Regy4 — Regy is a widening iff given
a sequence So, 81, ... € Regy such that [s;] C [si+1] for all i > 0, the (widened)
sequence wy = So and w1 = w;VSs;+1 satisfies the following properties:

— [s:] € [w:] and Jw;] C [wiz1] for alli >0

— the sequence [wol), [w1], ... is not strictly increasing

Our approach is parametric on the widening (of which there are many [14]). We
provide a primer on (string) widening to keep the presentation self-contained.

5.2 Widening regular expressions (a self-contained primer)

The intuition behind the widening we adopt [12] is to preserve commonality
across two regular expressions and resolve any difference using Kleene star for
relaxation. The widening scans both expressions left-to-right and, as it does so,
it partitions each expression into a prefix p which has been traversed and a suffix
s which is yet to be considered. The state of the scan thus represented by a pair
(p, s), with wideny, operating on two such pairs simultaneously:

wideng ((p, €), (p',s")) = mashi(p,p’ - s) wideny ((p, s), (p’, €)) = mashi(p - 5,p")

widenk ((p, g - s), (¢, q' - 8)) =
mashy (p, p’) o q o wideny((¢, s), (¢,8")) if ¢ = ¢’ and sh(q) <k
>k

wideng((p - ¢,5), (0" - ¢, ")) if ¢ = ¢’ and sh(q)
wideng((p- q,s), (p',q - s")) if g # ¢ and |s| > |§/|
wideni ((p,q - 5), (0" - ¢',5")) if ¢ # ¢ and [s| < |5/|

The widening is defined in terms of two notions of size: (1) star height defined
sh(e) = sh(C) = 0, sh(r*) = sh(r) + 1 and sh(r - s) = max(sh(r),sh(s)); (2)
star length defined le] = 0, |C| = |r*| = 1 and |r - s| = |r| + |s]. Given two
expressions r and s, the auxiliary mashy(r, s) computes a relaxation of r and
s such that sh(mashy(r,s)) < k where k is a predefined depth bound. Thus
[r] C [mashg(r, s)] and [s] C [mashg(r, s)].

Now consider scans of the form (p,q-s) and (p',q' - s') where ¢ and ¢’ are
sub-expressions of the form C or r*. If ¢ = ¢’ then the common ¢ is preserved
provided sh(gq) < k and widening continues with scans (e, s) and (e,s). Op-
erator o is concatenation followed by a normalisation step [12] which ensures
that no consecutive stars are introduced. If sh(¢) > k both ¢ and ¢’ are ap-
pended onto r and r’ to be relaxed subsequently by mashy. If ¢ # ¢ either
q or ¢ is appended onto its prefix depending on |[s| > |s| so that the re-
maining suffices are closer in length (which is merely a heuristic for improv-
ing their similarity). Analogous to mashg, widen((p, s), (p', s’)) relaxes p - s and
p' - s’ such that sh(wideng((p,s), (p’,s’))) < k. The star height bound ensures
rVs = wideng((€,7), (€, $)) yields a sequence which is not strictly increasing [12].
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£
Algorithm 1 Algorithm for async subtyping (< is defined in Figure 3)
1: function SUBTYPE(M;, M2, A) // My = (P,po,01) M2 =(Q,qo,02)

2: for (p € P) do

if (A(p) #0 N p < A(p) +) then return maybe

¢

Ry :=UyeptR|3H.p <AQP)—p< R}

A'(p) := if (p € wp) then A(p)V R, else A(p) UR,
if (A’ C A) then return A
return SUBTYPE(M1, M, A')

Ezample 6. For brevity, we refer the reader to [12] for a definition and commen-
tary on the auxiliary mashy(r,s) but note that mashy(r,e) = r* if sh(r*) < k
and conversely mashy (e, s) = s* if sh(s*) < k. Hence

(a-c-d)V(a-b-c) =wideni((e,a-c-d),(e,a-b-c)) =€-a-wideni((¢,c-d), (,b-c))
= e-a-mashi(eb) - c-wideni((e,d), (€, ¢€))
=e¢c-a-b"-c-mashi(d,e) =€-a-b"-c-d"

The widening can be lifted from a pair of regular expressions to a pair of sets of
regular expressions in a point-wise fashion [12]. In our setting, regular expressions
represent traces, where each trace takes the form rq, and thus it is natural to
partition a set of traces according to the state g in which they end. Two sets of
expressions can be widened point-wise, for each ¢ separately.

5.3 Computing a collecting sim graph with regular expressions

Before outlining the algorithm, we illustrate it by example. Example 7 revisits
Example 4 and shows how the sets of traces in Figure 2 can be algorithmically
generated by using regular expressions and widening in tandem.

Ezxample 7. Figure 5 presents a collecting sim graph for N; < Nj. Some nodes
are shadowed by grey nodes that elaborate their relaxations by widening or
union. The construction of the graph commences at node for pg < Ry and pro-
ceeds iteratively, the number to the top-right of a node indicating the iteration
at which that node is added to the graph. Iteration 1 is computed merely using
the rules of Figure 3. On iteration 2, pyg < Ry is computed, again using the rules.
Since pg was visited before, to ensure that py is not revisited ad infinitum, a
relaxation is applied, denoted Vv following [15, 16], which relaxes Ry using Ry to
obtain R}. Observe how [Rg] C [R5] and [R2] C [R5] but crucially the regular
expression R} is computed using a (widening) algorithm [12] which ensures that
only a finite number of regular expressions are ever generated for pg. Not all
nodes of Figure 5 need to be relaxed using widening. On iteration 3, p; is revis-
ited. In this case, R} is derived from R3 and R; by computing their union. Thus
again [R1] C [R5] and [R3] C [R5]. The general strategy is to apply widening
only as required, namely on a set of nodes which cut any cycle [3]. The machine
N; of Figure 2 has a single cycle through pg and p;, thus it is sufficient to widen
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Ro={q}  R2={aqo,cqs} Rs={a"qo} Ry={a"qo,a"cq3,a"cgs}
Ry={a"qo,cqs}  Rs={a"qo,q1}  Ro={q,qs}

Ri={q:} R7={q¢s} Rs={qs}

Re={gs} Ry={qs, 45} Rs={a"qo,q1,a"cqs, a"cqs}

Fig. 5. A collecting simulation graph for proving N1 < Na: reprise

at either pg or p1. We elect to widen at pg, whereas for all other nodes of Ny, the
relaxation is union. On iteration 5, p; < R5 is computing as before, the union of

. . . ?b . . .
R, with R5 being Rj5. The following < transition derives a regular expression

R which is subsumed by Ry, that is, p; < Rs fgpo < R where [R] C [R4]. Thus
the graph is no longer developed along the cycle. Despite employing relaxation,
Ry only contains g4 and ¢g for which finaly,(¢4) and finaly, (¢s) hold. Recall
final, (p3) holds, hence subtyping is demonstrated.

Our SUBTYPE algorithm takes as input two machines M; = (P, pg,d1) and
M = (Q, o, 92) and is parametric on: (1) a widening V : p(Reg,) x p(Reg,) —
p(Reg4) and (2) a set wp C P of widening points. At least one state of wp must
appear in any cycle of M7; a condition which is sufficient for widening to induce
termination [3]. The mapping A : P — p(Reg, X Q) represents the nodes of an
evolving collecting sim graph: SUBTYPE(M7, Ms, A) is initially primed with A =
Ap. if (p = po) then {(e,qo)} else 0. In line 3, maybe is returned if the simulation
gets stuck. Note that p < Rf—€>p’ < R’ abbreviates p < [R] (—e>p' < [R] and
likewise p < R<A abbreviates p < [R]<4 . In line 4, R, collects all the (r, ¢) pairs
reachable at p in the current iteration A. A(p) is then relaxed to A’(p) applying
widening if P € wp and union otherwise. In line 5, A" C A iff [A(p)] C [A'(p)]
for all p € P. This check determines whether a fix-point is reached: if so the
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M1 M2 |M1| |M2| [5] regex time

ctxtal ctxta2 7 5 X v 110

ctxtbl ctxtb2 6 7 X v 41
14may?2 14mayl 4 71X v 10
badseql badseq?2 5 12| X v 1127
march3testal march3testa2 6 7 X v 222
aaaaaabl aaaaaab2 5 3| X v 43
exlokloop  ex2okloop 10 8| X v 1757
march3testal march3testb2 6 10| X X 8

Fig. 6. Comparison of subtyping experiments: success rates and execution time (in ms)

algorithm returns A. SUBTYPING is sound and, due to widening, is guaranteed
to terminate. In short, if SUBTYPING returns A then M; < M, otherwise it
returns maybe and the subtyping check is deemed inconclusive.

For complexity, observe that wp can be chosen so that each state of P\ wp
has at most one incoming edge. Then algorithm 1 updates each state of P at
most (¢|Q|)!"P|times, updating A at most | P|(c|@|)!*?! times, where ¢ bounds the
number of times a regular string can be relaxed. But ¢ < (2|Q|)**2.

5.4 Implementation and benchmarking

If successful, our tool generates a collecting sim graph (in the form of A) which
provides a concrete artifact that certifiess u btyping. T her e gulare x pression-
based subtyping algorithm has been implemented in Scala 3.2.2 on a laptop
running Ubuntu 22.04.2 with 32 GB of DDR3 and a 2.8GHz Intel i7 processor.
The code base is 1059 LOC, making use of parser combinators and the mutable
and immutable Set libraries. No attempt has been made to improve the iteration
strategy (which is normally a source of speedups). The tool and benchmarks
are available at https://github.com/murgia88/AsynchSubtypingRegex. The
benchmarks® consists of 175 pairs of session types: 83 pairs where one type is
known to be a subtype of the other (the positive problems); and 92 pairs which
are known not to be in a subtyping relation (the negative problems).

This is a positive outcome. Alternatively, the algorithm terminates with an
inconclusive verdict. We have applied our tool to all the subtyping problems in
the benchmarking suite. Our tool gave positive outcome for 82 of them, whereas
the tool in [4, 5] gave 75 positive outcomes. In addition to certifying all positive
cases in [4, 5], the tool could certify 7 “complex accumulation [input tree] pat-
terns” [5] that were inconclusive cases in previous work. All 92 negative problems
were (rightly) categorised as inconclusive by our tool.

An analysis of the 7 complex accumulation patterns is summarised in Fig-
ure 6. The M; (resp. M) column give the candidate subtype (resp. type). To

3 The suite is based on the benchmark in [4, 5] with the addition of one (positive) case
that is used in [4, 5] as a running example.
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convey some indication of the size of the problems, the |Mj| (resp. |Ms|) column
gives the number of states in M; (resp. Ms). The [5] column indicates whether
subtyping can be proven using the algorithm of [5] using their distribution. The
regex column indicates whether subtyping can be proven using collecting sim
graphs instantiated with regular expressions, as proposed in our work. Time is
walltime measured in milliseconds, the median of 5 runs. Widening was per-
formed with a maximum star height of just 1 (k = 1). The last example in
Figure 6, marchtestal < marchtestb2, is known to be positive but neither our
tool nor the one in [4,5] could prove it. Nevertheless, it is remarkable that the
widening of [12] performs so well considering it was originally devised for ex-
tracting SQL queries from database application programs.

The certificate produced by the algorithm (in the form of A) can be checked
against the rules of Figure 3, without using widening or iteration. This could
conceivably be performed by a proof assistant for high-assurance applications.

We finally comment on one complex example, marchtestal < marchtestb?2,
that neither our tool nor the one in [4,5] could prove. A post mortem reveals
that py < .Sy gets stuck: traces of Sy of the form brgs cannot make any move thus
RecvSet does not apply. However, brrgs originates from {a, b}*¢s in py < Sp which
itself stems from (eqs V1 ags) V1 b(egs V1 ags). Setting k = 2 (or higher) does not
remedy the problem, which suggests that the widening needs tuning. Indeed,
replacing {a, b}*q3 in Sy with a more nuanced relaxation, namely (a*(ba)*a*)*gs,
is sufficient to establish subtyping. Crucially, this shows that the problem does
not lie in collecting sim graph construction itself but in the widening (something
which can be tuned without change to the underlying framework).

6 Conclusion and Related Work

We presented an algorithm for (binary) asynchronous session subtyping based on
the application of abstract interpretation to session types. Our approach centres
on the use of sets of traces to obtain a tractable representation of input trees.
Sets of traces allow us to separate the proof for correctness of the core algorithm,
from the problem of how to finitely represent and manipulate traces. This sep-
aration makes the methodology modular and tunable. As well as providing a
conceptually simple approach for proving subtyping, the resulting algorithm,
when instantiated with an off-the-shelf string widening, can prove subtyping for
rich forms of interaction that were previously out-of-reach [5]. From a large suite
of benchmarks, our algorithm was able to verify subtyping all but one problem
and, even for that, we have shown that the collecting simulation approach is still
adequate for proving subtyping. These results show that abstract interpretation
is a clean, useful and powerful vehicle for inferring subtyping. Furthermore, a
collecting sim graph once obtained constitutes a certificate for validating subtyp-
ing. The certificate can be then checked by a third-party, without consideration
for how the graph is actually derived (whether algorithmically or manually).

Related work Async subtyping was first explored in [29] where subtyping rules
consider a restricted form of permutation on actions. These concepts were then
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refined [10,11] to disallow orphan messages, a requirement adopted in [5] and
inherited into our study for ease of comparison.

Since async subtyping is undecidable [6,27], some works proposed decidable
safe approximated algorithms. For instance, subtyping can be approximated by
k-bounded asynchronous subtyping [7]. The state of the art is [4, 5] that inspired
our work. Fragments of session types for which asyn subtyping is decidable in-
clude: alternating session types [7] and single-out (resp. single-in) types [7] where
internal (resp. external) choices are singletons.

Fair subtyping [9,33] is an alternative to standard subtyping that preserves
the possibility of correct termination. Asynchronous fair subtyping [8] is unde-
cidable, and a sound algorithm has been proposed [8], which extends [5]. We
would expect trace relaxation to extend to this setting as well.

The work above mostly focuses on binary sessions. The subtyping algorithm
of [17], instead, focuses on the more general case of async multiparty subtyping.
When restricted to binary types, the algorithm in [17] is less powerful than both
[5] and our algorithm. The last case of [17, Table 1], taken from the running
example in [5], is undetected with deadlock-free subtyping [17] but is proven
by [5] and ourselves (see case ‘sub — runningex < sup — runningex’ in https:
//github.com/murgia88/AsynchSubtypingRegex). [17] is still able to establish
subtyping for several realistic protocols. A precise definition of async multiparty
subtyping (AMS) has been provided in Ghilezan et al. [22]. This means that
AMS in [22] is sound and complete with respect to async multiparty typing
with a subsumption rule. Such definition is not obviously useful for algorithmic
purposes: it contains quantifications over uncountably infinite sets. Application
of our methodology to AMS is an interesting future direction.
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Abstract. Since its inception two decades ago, SOOT has become one of
the most widely used open-source static analysis frameworks. Over time
it has been extended with the contributions of countless researchers. Yet,
at the same time, the requirements for SOOT have changed over the years
and become increasingly at odds with some of the major design decisions
that underlie it. In this work, we thus present SOOTUP, a complete reim-
plementation of SOOT that seeks to fulfill these requirements with a novel
design, while at the same time keeping elements that SOOT users have
grown accustomed to.

Keywords: Static program analysis - Soot - SootUp.

1 Introduction

SOOT is a program analysis framework for Java and Android. It has been pop-
ular in academia for prototyping novel static and dynamic analysis approaches,
many of which have been published at international conferences [1,3,5,6, 14,
15,20,21, 23, 29]. In 2000 [30], SOOT was introduced as an optimization frame-
work for Java. Back then, when just-in-time compilers were still in their infancy,
ahead-of-time optimization of Java code was a major field of research. Over the
years, the research community’s interest has been dominantly shifting to static
code analysis, for diverse purposes. SOOT remained relevant due to some of its
strengths, particularly its popular intermediate representations.

One of the core features of SOOT is its main intermediate representation
(IR), JIMPLE [31]. When seeking to perform program analysis on Java, both
bytecode and source code are usually suboptimal representations to work with.
Java bytecode represents a program to be executed, using a stack-based instruc-
tion set. Java source code, on the other hand, represents it on a higher level, using
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nested scopes and control-flow constructs for better readability. Soot’s JIMPLE
IR is a so-called three-address code representation [13] that combines the best of
both worlds: It uses local variables instead of a stack. This simplifies data-flow
equations because all values that an operation consumes or produces are readily
accessible through its operands. It also uses explicit control flow without nesting,
i.e., solely through conditional or unconditional gotos. In result, every JIMPLE
instruction is atomic, there can be no nesting. Complex source-code statements,
which perform multiple consecutive operations, e.g. a numerical computation
with a subsequent cast, are broken down into multiple individual IR instruc-
tions. This enables the creation of simple control flow graphs (CFGs), which one
can then use to analyze a method’s control and data flow with relative ease.

Furthermore, SOOT offers multiple algorithms, with varying degrees of pre-
cision and complexity, for constructing call graphs. They resemble an essential
data structure for performing inter-procedural static analysis, as it models how a
program’s methods call one another. For object-oriented programming languages
like Java, call graph construction is particularly challenging. This is because in
Java method calls are virtual by default, in which case their call target is de-
pendent on an object’s runtime type. A reference variable’s declared type can
only bound the possible call targets. To resolve call targets precisely one must
compute all of the variable’s possible runtime types. A popular way to do this is
through pointer analysis. SOOT provides such call graph computation through
its pointer analysis framework SPARK.

Over the years, SOOT has frequently been extended to incorporate new fea-
tures, and, in doing so, even early on it became clear that some of its design
decisions were suboptimal, yet hard to remedy after the fact. For instance, SOOT
has always been all-round monolithic. It heavily uses the singleton design pat-
tern, causing strong coupling, and it always sought to be both a command line
tool and a library, causing sometimes conflicting views on who owns the thread
of control. In SOOT, everything can be accessed and manipulated via the single-
ton “scene”. This forbids keeping multiple scenes in memory, and any sensible
parallelization. SOOT also contains many features that by now are considered ob-
solete, e.g. other barely used IRs and an outdated source-code frontend, which
are hard to remove without breaking useful but untested functionality.

This paper presents SOOT’s successor framework SooTUP. With SooTUP,
we aim to keep the most important features of SOOT, yet to also overcome its
major drawbacks. We designed SOOTUP as a modular library. This allows one
to pick out the necessary modules for a specific use case. For instance, clients
that only require bytecode analysis would add a dependency to the bytecode
frontend module. This is possible due to SOOTUP’s core module being a generic
implementation that allows plugging in frontends for arbitrary programming
languages. Instead of a singleton scene object, SOOTUP introduces the concept
of views, where each view may hold a different version of the analyzed program,
or different programs altogether. To enable safe parallelization and caching, the
new JIMPLE IR is immutable by default, allowing instrumentation only at certain
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safe points. At the time of writing, SOOTUP’s most recent release is vi.1.2! and
SooTUP is open-sourced at GitHub.?
To summarize, this paper presents the following contributions:

The design decisions behind SOOTUP’s architecture that accommodate cur-
rent research requirements,

— a demonstration of its new API, which aims for better usability,

— suggestions for SOOT-based analysis tools on how to switch to SooTUP, and
the roadmap for further development of SooTUP.

The remainder of this paper is organized as follows. In Section 2, we introduce
the design decisions that shaped SOOTUP. In Section 3, we demonstrate the new
APT on example use cases. In Section 4, we list currently supported tools and
discuss how to upgrade tools to use SOOTUP. In Section 5, we explain SOOTUP’s
development process and how one can contribute to it. We present the future
work in Section 6, related work in Section 7 and conclude with Section 8.

2 Design Decisions

We next discuss the main design decisions that underly SOoTUP, and how they
address some of the major shortcomings of SOOT. We introduce the new archi-
tecture and excerpts of the new API.

2.1 Modular Architecture

SooTUP’s most notable architectural difference from its predecessor is the clear
separation of its components into independent modules. Figure 1 shows its archi-
tectural overview. One of the goals of the new architecture is to allow SooTUP
to be used as a language-independent static analysis framework. It is not tightly
coupled to any programming language. The most recent release (v1.1.2) in-
cludes frontends for Java bytecode, Java source code and a now generic, i.e.,
language-independent form of JIMPLE. We delegate the language support to ex-
ternal frontend providers and expect them to extend the generic JIMPLE. This is
a significantly different mechanism than SOOT had offered for language support
before. Previously, to analyze programs not in Java, one needed to convert their
code to the (Java-specific) JIMPLE. With SOOTUP, instead one defines language-
specific features by extending the core set of JIMPLE language constructs.

The core module encapsulates the main functionality based on the generic
JIMPLE. It defines the JIMPLE language constructs such as expressions, constants
and statements. The statements make up control-flow graphs (CFGs), which may
be forward, backward, mutable or immutable. The CFGs are representations for
the bodies of SootMethods. SootMethods constitute SootClasses, the backbone
of SOOTUP’s core object model. All of these objects are accessible through Views.

! https://doi.org/10.5281/zenodo. 10037587
% https://github.com/soot-oss/SootUp/
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Fig. 1. Overview of SOOTUP’s Architecture. White boxes are Java modules.

We have conceptualized the View as the main interface the user interacts
with. In the case of a single view, this corresponds to the Scene object in SOOT.
Because of the Scene’s singleton nature, running multiple analyses simultane-
ously was virtually impossible in SOOT [16]. SOOTUP overcomes this drawback
by allowing as many Views as desired to co-exist.

Additionally, SOOTUP comes with a new extensible Call Graph framework.
It allows plugging in arbitrary strategies for resolving virtual method dispatches.
These strategies could vary, for instance, to optimize the precision or scalability,
which are often tweaked using different Pointer Analysis algorithms. Interproce-
dural Dataflow Analysis is one of the most successful methods for detecting bugs
and security vulnerabilities. SOOTUP supports out-of-the-box context-sensitive
data-flow analysis using the popular HEROS [4] dataflow analysis framework.

2.2 On-Demand Class Loading

While SOOT loads all SootClasses that are referenced in a currently resolving
SootClass, SOOTUP is designed with a layer of indirection. SOOTUP makes use
of identifiers to reference actual, possibly already loaded, instances of a respec-
tive SootClass and stores those identifiers that reference other SootClasses,
SootMethods or SootFields. This decreases unnecessary computations of un-
used SootClasses, i.e. those which are referenced but whose contents are not of
interest. Doing so, additionally, enables parallel class loading. Because the load-
ing of a class does not depend on the loading of the classes that it references,
each class can be loaded independently. As a side effect, it renders the concept
of phantom classes, known from Soot, obsolete, as its purpose is to create a fa-
cade SootClass in case of missing a class definition of a referenced SootClass.
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Fig. 2. SooTUP’s On-Demand Class Loading Mechanism

This case is now cleanly handled by the View, which sim