
30th International Conference, TACAS 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings, Part I

Tools and Algorithms
for the Construction
and Analysis of SystemsLN

CS
 1

45
70

AR
Co

SS
Bernd Finkbeiner
Laura Kovács (Eds.)

Lecture Notes in Computer Science 14570

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Bernd Finkbeiner • Laura Kovács
Editors

Tools and Algorithms
for the Construction
and Analysis of Systems
30th International Conference, TACAS 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings, Part I

123

Editors
Bernd Finkbeiner
CISPA Helmholtz Center for Information
Security
Saarbrücken, Germany

Laura Kovács
TU Wien
Vienna, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-57245-6 ISBN 978-3-031-57246-3 (eBook)
https://doi.org/10.1007/978-3-031-57246-3

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-4280-8441
https://orcid.org/0000-0002-8299-2714
https://doi.org/10.1007/978-3-031-57246-3
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérôme Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wa sowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also

organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wa sowski (Copenhagen), Thomas Noll (Aachen), Jan Kofroň (Prague),
Barbara König (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Křetínský (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luı s Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hähnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovács (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This three-volume proceedings contains the papers presented at the 30th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2024). TACAS 2024 was part of the 27th European Joint Conferences on
Theory and Practice of Software (ETAPS 2024), which was held between April 6–11,
2024, in Luxembourg City, Luxembourg.

TACAS is a forum for researchers, developers and users interested in rigorous tools
and algorithms for the construction and analysis of systems. The conference aims to
bridge the gaps between different communities with this common interest and to
support them in their quest to improve the utility, reliability, flexibility, and efficiency
of tools and algorithms for building systems. TACAS 2024 interleaves and integrates
various disciplines, including formal verification of software and hardware systems,
static analysis, probabilistic programming, program synthesis, concurrency, testing,
simulations, verification of machine learning/autonomous systems, Cyber-Physical
Systems, SAT/SMT solving, automated and interactive theorem proving, and proof
checking.

There were four submission categories for TACAS 2024:

1. Regular research papers identifying and justifying a principled advance to the
theoretical foundations for the construction and analysis of systems.

2. Case study papers describing the application of techniques developed by the
community to a single problem or a set of problems of practical importance,
preferably in a real-world setting.

3. Regular tool papers presenting a novel tool or a new version of an existing tool
built using novel algorithmic and engineering techniques.

4. Tool demonstration papers demonstrating a new tool or application of an existing
tool on a significant case-study.

Regular research, case study, and regular tool paper submissions were restricted to
16 pages, whereas tool demonstration papers to 6 pages, excluding the bibliography
and appendices.

TACAS 2024 received 159 submissions, consisting of 114 regular research papers,
10 case study papers, 28 regular tool papers, and 7 tool demonstration papers. Each
submission was assigned for review to at least three Program Committee (PC) mem-
bers, who made use of subreviewers. Regular research papers were reviewed in double-
blind mode, whereas case study, regular tool, and tool-demonstration papers were
reviewed using a single-blind reviewing process.

Similarly to previous years, it was possible to submit an artifact alongside a paper.
Artifact submission was mandatory for regular tool and tool demo papers, and vol-
untary for regular research and case study papers at TACAS 2024. An artifact might
consist of a tool, models, proofs, or other data required for validation of the results
of the paper. The Artifact Evaluation Committee (AEC) was tasked with reviewing the

artifacts, based on their documentation, ease of use, and, most importantly, whether the
results presented in the corresponding paper could be accurately reproduced. Most
of the evaluation was carried out using a standardized virtual machine to ensure
consistency of the results, except for those artifacts that had special hardware or
software requirements. Artifact evaluation at TACAS 2024 consisted of two rounds.
The first round implemented the mandatory artifact evaluation of regular tool and tool
demonstration papers; this round was carried out in parallel with the work of the PC.
The judgment of the AEC was communicated to the PC and weighed in their dis-
cussion. The second round of artifact evaluation carried out the voluntary artifact
evaluation of regular research and case study papers, and took place after paper
acceptance notifications were sent out; authors of accepted regular research and case
study papers were able to update and revise their respective artifacts before artifact
evaluation started. In both rounds, the AEC provided 3 reviews per artifact and
anonymously communicated with the authors to resolve apparent technical issues. In
total, 104 artifacts were submitted and the AEC evaluated a total of 62 artifacts
regarding their availability, functionality, and/or reusability. Papers with an artifact that
were successfully evaluated include one or more badges on the first page, certifying the
respective properties.

Selected papers were requested to provide a rebuttal in case a PC review gave rise to
questions. Using the review reports and rebuttals, the PC had a thorough discussion on
each paper. For regular tool and tool demonstration papers, the PC also discussed the
corresponding artifact, using the AEC recommendations. As a result, the PC decided to
accept 53 papers, out of which there were 35 regular research papers, 11 regular tool
papers, 3 case study papers, and 4 tool demonstration papers. This corresponds to an
overall acceptance rate of 33%. Each accepted paper at TACAS 2024 had either all
positive reviews and/or a “championing” PC member who argued in favor of accepting
the paper. All accepted papers at TACAS 2024 had a positive average review score.

TACAS 2024 also hosted SV-COMP 2024, the 13th International Competition on
Software Verification. This event to compare tools evaluated 59 software systems for
automatic verification of C and Java programs and 17 software systems for witness
validation. The TACAS 2024 proceedings contains a competition report by the SV-
Comp chair and organizer. From the 46 actively participating teams, the SV-Comp jury
selected 16 short papers that describe the participating verification and validation
systems. These 16 short papers are also published in the proceedings and were
reviewed by a separate program committee (jury); each of these short papers was
assessed by at least four jury members. Two sessions in the TACAS 2024 program
were reserved for the presentation of the results: (1) a presentation session with a report
by the competition chair and summaries by the developer teams of participating tools,
and (2) an open community meeting in the second session.

We would like to thank everyone who helped to make TACAS 2024 successful. We
thank the authors for submitting their papers to TACAS 2024. The PC members and
additional reviewers did an excellent job in reviewing papers: they provided detailed
reports and engaged in the PC discussions. We thank the TACAS steering committee,
and especially its chair, Joost-Pieter Katoen, for his valuable advice. We are grateful to
the ETAPS steering committee, and in particular its chair, Marieke Huisman, for
supporting our changes and suggestions on the TACAS 2024 review process and final

viii Preface

program. We also acknowledge the invaluable support provided by the EasyChair
developers. Lastly, we would like to thank the overall organization team of ETAPS
2024.

April 2024 Bernd Finkbeiner
Laura Kovács

PC Chairs

Hadar Frenkel
Michael Rawson

AEC Chairs

Dirk Beyer
SV-Comp Chair

Preface ix

Organization

Program Committee Chairs

Bernd Finkbeiner CISPA Helmholtz Center for Information Security,
Germany

Laura Kovács TU Wien, Austria

Program Committee

Alessandro Abate University of Oxford, UK
Erika Ábrahám RWTH Aachen University, Germany
S. Akshay IIT Bombay, India
Elvira Albert Universidad Complutense de Madrid, Spain
Leonardo Alt Ethereum Foundation
Suguman Bansal Georgia Institute of Technology, USA
Nikolaj Bjørner Microsoft Research, USA
Ahmed Bouajjani IRIF, Université Paris Cité, France
Claudia Cauli Amazon Web Services, UK
Rance Cleaveland University of Maryland, USA
Mila Dalla Preda University of Verona, Italy
Rayna Dimitrova CISPA Helmholtz Center for Information Security,

Germany
Madalina Erascu West University of Timişoara, Romania
Javier Esparza Technical University of Munich, Germany
Carlo A. Furia USI - Università della Svizzera Italiana, Switzerland
Alberto Griggio Fondazione Bruno Kessler, Italy
Arie Gurfinkel University of Waterloo, Canada
Holger Hermanns Saarland University, Germany
Marijn Heule Carnegie Mellon University, USA
Hossein Hojjat Tehran Institute for Advanced Studies, Iran
Nils Jansen Ruhr-University Bochum, Germany and Radboud

University, Netherlands
Sebastian Junges Radboud University, Netherlands
Amir Kafshdar Goharshady Hong Kong University of Science and Technology,

China
Benjamin Lucien Kaminski Saarland University, Germany and University College

London, UK
Guy Katz The Hebrew University of Jerusalem, Israel
Gergely Kovásznai Eszterházy Károly University, Eger, Hungary
Tamás Kozsik Eötvös Loránd University, Budapest, Hungary
Anthony Widjaja Lin TU Kaiserslautern, Germany
Dorel Lucanu Alexandru Ioan Cuza University, Romania

Filip Maric University of Belgrade, Serbia
Laura Nenzi University of Trieste, Italy
Aina Niemetz Stanford University, USA
Elizabeth Polgreen University of Edinburgh, UK
Kristin Yvonne Rozier Iowa State University, USA
Cesar Sanchez IMDEA Software Institute, Spain
Mark Santolucito Barnard College, USA
Anne-Kathrin Schmuck Max-Planck-Institute for Software Systems, Germany
Sharon Shoham Tel Aviv University, Israel
Mihaela Sighireanu University Paris-Saclay, ENS Paris-Saclay, CNRS,

LMF, France
Martin Suda Czech Technical University in Prague, Czech Republic
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Caterina Urban Inria & ENS—PSL, France
Yakir Vizel Technion, Israel
Tomas Vojnar Brno University of Technology, Czech Republic
Georg Weissenbacher TU Wien, Austria
Sarah Winkler Free University of Bozen-Bolzano, Italy
Ningning Xie University of Toronto and Google Brain, Canada

Artifact Evaluation Committee Chairs

Hadar Frenkel CISPA Helmholtz Center for Information Security,
Germany

Michael Rawson TU Wien, Austria

Artifact Evaluation Committee

Tripti Agarwal University of Utah, USA
Guy Amir The Hebrew University of Jerusalem, Israel
Ahmed Bhayat The University of Manchester, UK
Martin Blicha University of Lugano, Switzerland
Alexander Bork RWTH Aachen University, Germany
Lea Salome Brugger ETH Zürich, Switzerland
Marco Campion Inria & École Normale Supérieure—Université PSL,

France
David Cerna Czech Academy of Sciences Institute of Computer

Science, Czech Republic
Kevin Cheang Amazon Web Services, USA
Md Solimul Chowdhury Carnegie Mellon University, USA
Vlad Craciun BitDefender, UAIC, Romania
Jip J. Dekker Monash University, Australia
Rafael Dewes CISPA Helmholtz Center for Information Security,

Germany
Oyendrila Dobe Michigan State University, USA
Clemens Eisenhofer TU Wien, Austria

xii Organization

Yizhak Elboher The Hebrew University of Jerusalem, Israel
Raya Elsaleh The Hebrew University of Jerusalem, Israel
Ferhat Erata Yale University, USA
Zafer Esen Uppsala University, Sweden
Aoyang Fang Chinese University of Hong Kong, Shenzhen, China
Pritam Gharat Microsoft Research, India
R. Govind Uppsala University, Sweden
Thomas Hader TU Wien, Austria
Philippe Heim CISPA Helmholtz Center for Information Security,

Germany
Maximilian Heisinger Johannes Kepler University Linz, Austria
Alejandro

Hernández-Cerezo
Complutense University of Madrid, Spain

Singh Hitarth Hong Kong University of Science and Technology,
China

Petra Hozzová TU Wien, Austria
Jingmei Hu Amazon, USA
Tobias John University of Oslo, Norway
Martin Jonáš Masaryk University, Czech Republic
Aniruddha Joshi UC Berkeley, USA
Cezary Kaliszyk University of Innsbruck, Austria
Elad Kinsbruner Technion – Israel Institute of Technology, Israel
Åsmund Aqissiaq Arild

Kløvstad
University of Oslo, Norway

Paul Kobialka University of Oslo, Norway
Kerim Kochekov Hong Kong University of Science and Technology,

China
Satoshi Kura National Institute of Informatics, Japan
Lorenz Leutgeb Max Planck Institute for Informatics, Germany
Marco Lewis Newcastle University, UK
Jing Liu University of California, Irvine, USA
Yonghui Liu Monash University, Australia
Ioan Vlad Luca West University of Timişoara, Romania
Kaushik Mallik Institute of Science and Technology Austria, Austria
Denis Mazzucato École Normale Supérieure, France
Baoluo Meng GE Global Research, USA
Niklas Metzger CISPA Helmholtz Center for Information Security,

Germany
Srinidhi Nagendra Chennai Mathematical Institute, India
Jens Otten University of Oslo, Norway
Jiří Pavela FIT VUT, Czech Republic
Bartosz Piotrowski IDEAS NCBR, Poland
Sumanth Prabhu TRDDC, India
Jyoti Prakash University of Passau, Germany
Siddharth Priya University of Waterloo, Canada
Felipe R. Monteiro Amazon Web Services, USA

Organization xiii

Idan Refaeli Hebrew University of Jerusalem, Israel
Simon Robillard Université de Montpellier, France
Clara Rodríguez-Núñez Complutense University of Madrid, Spain
Hans-Jörg Schurr University of Iowa, USA
Tobias Seufert University of Freiburg, Germany
Akshatha Shenoy Tata Consultancy Services, India
Boris Shminke Independent Researcher
Julian Siber CISPA Helmholtz Center for Information Security,

Germany
Cristian Simionescu Alexandru Ioan Cuza University, Romania
Abhishek Kr Singh Tel Aviv University, Israel
Alexander Steen University of Greifswald, Germany
Geoff Sutcliffe University of Miami, USA
Joseph Tafese University of Waterloo, Canada
Jinhao Tan University of Hong Kong, China
Abhishek Tiwari University of Passau, Germany
Divyesh Unadkat Synopsys, India
Lena Verscht Saarland University and RWTH Aachen University,

Germany
Christoph Wernhard University of Potsdam, Germany
Haoze Wu Stanford University, USA
Jiong Yang National University of Singapore, Singapore
Yi Zhou Carnegie Mellon University, USA

SV-COMP Program Committee and Jury

(more info: https://sv-comp.sosy-lab.org/2024/committee.php, sorted by tool name)

Dirk Beyer (Chair) LMU Munich, Germany
Viktor Malík Brno University of Technology, Czech Republic
Zhenbang Chen National University of Defense Technology, China
Lei Bu Nanjing University, China
Marek Chalupa ISTA, Austria
Levente Bajczi Budapest University of Technology and Economics,

Hungary
Daniel Baier LMU Munich, Germany
Thomas Lemberger LMU Munich, Germany
Po-Chun Chien LMU Munich, Germany
Hernán Ponce de León Huawei Dresden Research Center, Germany
Fei He Tsinghua University, China
Fatimah Aljaafari University of Manchester, UK
Franz Brauße University of Manchester, UK
Martin Spiessl LMU Munich, Germany
Falk Howar TU Dortmund, Germany
Simmo Saan University of Tartu, Estonia

xiv Organization

https://sv-comp.sosy-lab.org/2024/committee.php

Hassan Mousavi University of Tehran, Tehran Institute for Advanced
Studies, Iran

Peter Schrammel University of Sussex and Diffblue, UK
Zaiyu Cheng University of Manchester, UK
Gidon Ernst LMU Munich, Germany
Raphaël Monat Inria and University of Lille, France
Jana (Philipp) Berger RWTH Aachen, Germany
Veronika Šoková Brno University of Technology, Czech Republic
Ravindra Metta TCS, India
Vesal Vojdani University of Tartu, Estonia
Nils Loose University of Luebeck, Germany
Paulína Ayaziová Masaryk University, Brno, Czech Republic
Martin Jonáš Masaryk University, Brno, Czech Republic
Matthias Heizmann University of Freiburg, Germany
Dominik Klumpp University of Freiburg, Germany
Frank Schüssele University of Freiburg, Germany
Daniel Dietsch University of Freiburg, Germany
Priyanka Darke Tata Consultancy Services, India
Marian Lingsch-Rosenfeld LMU Munich, Germany

TACAS Steering Committee

Dirk Beyer LMU Munich, Germany
Rance Cleaveland University of Maryland, USA
Dana Fisman Ben-Gurion University, Israel
Holger Hermanns Universität des Saarlandes, Germany
Joost-Pieter Katoen (Chair) RWTH Aachen, Germany and Universiteit Twente,

Netherlands
Kim G. Larsen Aalborg University, Denmark
Corina Păsăreanu NASA Ames, USA

Additional Reviewers

Parosh Aziz Abdulla
Guy Amir
Andrei Arusoaie
Shaun Azzopardi
Thom Badings
Milan Banković
Chinmayi Prabhu Baramashetru
Sebastien Bardin
Ludovico Battista
Anna Becchi
Lena Becker
Sidi Mohamed Beillahi
Yoav Ben Shimon

Csaba Biró
León Bohn
Alberto Bombardelli
Wael-Amine Boutglay
Eline Bovy
Matías Brizzio
Gianpiero Cabodi
Francesca Cairoli
Marco Campion
Marco Carbone
Martin Ceresa
Kevin Cheang
Md Solimul Chowdhury

Organization xv

Alessandro Cimatti
Stefan Ciobaca
Cayden Codel
Jesús Correas
Arthur Correnson
Florin Craciun
Philipp Czerner
Tomáš Dacík
Luis Miguel Danielsson
Alessandro De Palma
Aldric Degorre
Rafael Dewes
Antonio Di Stasio
Denisa Diaconescu
Crystal Chang Din
Clemens Dubslaff
Serge Durand
Alec Edwards
Neta Elad
Yizhak Elboher
Raya Elsaleh
Constantin Enea
Zafer Esen
Soroush Farokhnia
Csaba Fazekas
Jan Fiedor
Emmanuel Fleury
James Fox
Felix Freiberger
Eden Frenkel
Florian Frohn
Maris Galesloot
Samir Genaim
Blaise Genest
Pamina Georgiou
Debarghya Ghoshdastidar
Adwait Godbole
Miguel Gomez-Zamalloa
Pablo Gordillo
Felipe Gorostiaga
R. Govind
Orna Grumberg
Roland Guttenberg
Serge Haddad
Philippe Heim
Martin Helfrich

Alejandro Hernández-Cerezo
Ivan Homoliak
Dániel Horpácsi
Karel Horák
Tzu-Han Hsu
Attila Házy
Miguel Isabel
Omri Isac
Radoslav Ivanov
Predrag Janicic
Chris Johannsen
Eduard Kamburjan
Ambrus Kaposi
Joost-Pieter Katoen
Lutz Klinkenberg
Paul Kobialka
Wietze Koops
Katherine Kosaian
David Kozák
Merlijn Krale
Valentin Krasotin
Loes Kruger
Gabor Kusper
Maximilian Alexander Köhl
Faezeh Labbaf
Nham Le
Matthieu Lemerre
Ondrej Lengal
Dániel Lukács
Michael Luttenberger
Viktor Malík
Alessio Mansutti
Niccolò Marastoni
Oliver Markgraf
Enrique Martin-Martin
Ruben Martins
Denis Mazzucato
Tobias Meggendorfer
Roland Meyer
Marcel Moosbrugger
Federico Mora
Alexander Nadel
Satya Prakash Nayak
Tobias Nießen
Andres Noetzli
Mohammed Nsaif

xvi Organization

Robin Ohs
Emanuel Onica
Michele Pasqua
Andrea Pferscher
Zoltan Porkolab
Kostiantyn Potomkin
Mathias Preiner
Siddharth Priya
Tim Quatmann
Peter Rakyta
Omer Rappoport
Jakob Rath
Rodrigo Raya
Adrian Rebola Pardo
Gianluca Redondi
Joseph Reeves
Luke Rickard
Andoni Rodriguez
Clara Rodríguez-Núñez
Adam Rogalewicz
Enrique Román Calvo
Guillermo Román-Díez
Vlad Rusu
Krishna S.
Irmak Saglam
Matteo Sammartino
Raimundo Saona Urmeneta
Gaia Saveri
Andre Schidler
Christoph Schmidl
Andreas Schmidt
Yannik Schnitzer

Philipp Schröer
Stefan Schwoon
Traian Florin Serbanuta
Daqian Shao
Xujie Si
Mate Soos
Martin Steffen
Gregory Stock
Sana Stojanović-Ɖurđević
Bernardo Subercaseaux
Marnix Suilen
Mantas Šimkus
Máté Tejfel
Simon Thompson
Hazem Torfah
Dmitriy Traytel
Marck van der Vegt
Sarat Varanasi
Sarat Chandra Varanasi
Ennio Visconti
Sebastian Wolff
Yechuan Xia
Mitsuharu Yamamoto
Raz Yerushalmi
Emre Yolcu
Pian Yu
Hanwei Zhang
Zhiwei Zhang
Shufang Zhu
Djordje Zikelic
Zoltán Zimborás
Dominic Zimmer

Organization xvii

Contents – Part I

SAT and SMT Solving

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 3
Nick Feng, Alan J. Hu, Sam Bayless, Syed M. Iqbal, Patrick Trentin,
Mike Whalen, Lee Pike, and John Backes

Z3-NOODLER: An Automata-based String Solver . 24
Yu-Fang Chen, David Chocholatý, Vojtěch Havlena, Lukáš Holík,
Ondřej Lengál, and Juraj Síč

TaSSAT: Transfer and Share SAT . 34
Md Solimul Chowdhury, Cayden R. Codel, and Marijn J. H. Heule

Speculative SAT Modulo SAT . 43
V. K. Hari Govind, Isabel Garcia-Contreras, Sharon Shoham,
and Arie Gurfinkel

Happy Ending: An Empty Hexagon in Every Set of 30 Points 61
Marijn J. H. Heule and Manfred Scheucher

Synthesis

Fully Generalized Reactivity(1) Synthesis. 83
Rüdiger Ehlers and Ayrat Khalimov

Knor: reactive synthesis using Oink. 103
Tom van Dijk, Feije van Abbema, and Naum Tomov

On Dependent Variables in Reactive Synthesis . 123
S. Akshay, Eliyahu Basa, Supratik Chakraborty, and Dror Fried

CESAR: Control Envelope Synthesis via Angelic Refinements 144
Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer

Logic and Decidability

Answering Temporal Conjunctive Queries over Description Logic
Ontologies for Situation Recognition in Complex Operational Domains 167

Lukas Westhofen, Christian Neurohr, Jean Christoph Jung,
and Daniel Neider

Deciding Boolean Separation Logic via Small Models 188
Tomáš Dacík, Adam Rogalewicz, Tomáš Vojnar, and Florian Zuleger

Asynchronous Subtyping by Trace Relaxation . 207
Laura Bocchi, Andy King, and Maurizio Murgia

Program Analysis and Proofs

SootUp: A Redesign of the Soot Static Analysis Framework 229
Kadiray Karakaya, Stefan Schott, Jonas Klauke, Eric Bodden,
Markus Schmidt, Linghui Luo, and Dongjie He

Formally verified asymptotic consensus in robust networks 248
Mohit Tekriwal, Avi Tachna-Fram, Jean-Baptiste Jeannin,
Manos Kapritsos, and Dimitra Panagou

Formally Verifying an Efficient Sorter . 268
Bernhard Beckert, Peter Sanders, Mattias Ulbrich, Julian Wiesler,
and Sascha Witt

Explainable Online Monitoring of Metric First-Order Temporal Logic 288
Leonardo Lima, Jonathan Julián Huerta y Munive, and Dmitriy Traytel

Proof Checking

IsaRARE: Automatic Verification of SMT Rewrites in Isabelle/HOL. 311
Hanna Lachnitt, Mathias Fleury, Leni Aniva, Andrew Reynolds,
Haniel Barbosa, Andres Nötzli, Clark Barrett, and Cesare Tinelli

Automate where Automation Fails: Proof Strategies for Frama-C/WP 331
Loïc Correnson, Allan Blanchard, Adel Djoudi, and Nikolai Kosmatov

VeSCMul: Verified Implementation of S-C-Rewriting for Multiplier
Verification . 340

Mertcan Temel

A Logical Treatment of Finite Automata . 350
Nishant Rodrigues, Mircea Octavian Sebe, Xiaohong Chen,
and Grigore Roşu

A State-of-the-Art Karp-Miller Algorithm Certified in Coq. 370
Thibault Hilaire, David Ilcinkas, and Jérôme Leroux

Author Index . 391

xx Contents – Part I

http://dx.doi.org/10.1007/978-3-031-50524-9_8

Contents – Part II

Model Checking

JPF: From 2003 to 2023 . 3
Cyrille Artho, Pavel Parízek, Daohan Qu, Varadraj Galgali,
and Pu (Luke) Yi

Hitching a Ride to a Lasso: Massively Parallel On-The-Fly LTL Model
Checking . 23

Muhammad Osama and Anton Wijs

Towards Safe Autonomous Driving: Model Checking a Behavior Planner
during Development . 44

Lukas König, Christian Heinzemann, Alberto Griggio, Michaela Klauck,
Alessandro Cimatti, Franziska Henze, Stefano Tonetta,
Stefan Küperkoch, Dennis Fassbender, and Michael Hanselmann

Enhancing GenMC’s Usability and Performance . 66
Michalis Kokologiannakis, Rupak Majumdar, and Viktor Vafeiadis

Automata and Learning

Scalable Tree-based Register Automata Learning . 87
Simon Dierl, Paul Fiterau-Brostean, Falk Howar, Bengt Jonsson,
Konstantinos Sagonas, and Fredrik Tåquist

Small Test Suites for Active Automata Learning . 109
Loes Kruger, Sebastian Junges, and Jurriaan Rot

MATA: A Fast and Simple Finite Automata Library . 130
David Chocholatý, Tomáš Fiedor, Vojtěch Havlena, Lukáš Holík,
Martin Hruška, Ondřej Lengál, and Juraj Síč

Software Verification

Accelerated Bounded Model Checking Using Interpolation Based
Summaries . 155

Mayank Solanki, Prantik Chatterjee, Akash Lal, and Subhajit Roy

Weakest Precondition Inference for Non-Deterministic Linear Array
Programs . 175

Sumanth Prabhu S, Deepak D’Souza, Supratik Chakraborty,
R Venkatesh, and Grigory Fedyukovich

Automated Software Verification of Hyperliveness . 196
Raven Beutner

A Comprehensive Specification and Verification of the L4
Microkernel API . 217

Leping Zhang, Yongwang Zhao, and Jianxin Li

Probabilistic Systems

Accurately Computing Expected Visiting Times and Stationary
Distributions in Markov Chains . 237

Hannah Mertens, Joost-Pieter Katoen, Tim Quatmann,
and Tobias Winkler

CTMCs with Imprecisely Timed Observations . 258
Thom Badings, Matthias Volk, Sebastian Junges, Marielle Stoelinga,
and Nils Jansen

Pareto Curves for Compositionally Model Checking String Diagrams of
MDPs . 279

Kazuki Watanabe, Marck van der Vegt, Ichiro Hasuo, Jurriaan Rot,
and Sebastian Junges

Learning Explainable and Better Performing Representations of POMDP
Strategies . 299

Alexander Bork, Debraj Chakraborty, Kush Grover, Jan Křetínský,
and Stefanie Mohr

Simulations

Dissipative quadratizations of polynomial ODE systems. 323
Yubo Cai and Gleb Pogudin

Forward and Backward Constrained Bisimulations for Quantum Circuits 343
A. Jiménez-Pastor, K. G. Larsen, M. Tribastone, and M. Tschaikowski

xxii Contents – Part II

A Parallel and Distributed Quantum SAT Solver Based on Entanglement
and Teleportation . 363

Shang-Wei Lin, Tzu-Fan Wang, Yean-Ru Chen, Zhe Hou, David Sanán,
and Yon Shin Teo

Author Index . 383

Contents – Part II xxiii

Contents – Part III

Neural Networks

Provable Preimage Under-Approximation for Neural Networks 3
Xiyue Zhang, Benjie Wang, and Marta Kwiatkowska

Training for Verification: Increasing Neuron Stability to Scale DNN
Verification . 24

Dong Xu, Nusrat Jahan Mozumder, Hai Duong, and Matthew B. Dwyer

NeuroSynt: A Neuro-symbolic Portfolio Solver for Reactive Synthesis 45
Matthias Cosler, Christopher Hahn, Ayham Omar, and Frederik Schmitt

Testing and Verification

HaliVer: Deductive Verification and Scheduling Languages Join Forces 71
Lars B. van den Haak, Anton Wijs, Marieke Huisman,
and Mark van den Brand

Gray-Box Fuzzing via Gradient Descent and Boolean Expression Coverage . . . 90
Martin Jonáš, Jan Strejček, Marek Trtík, and Lukáš Urban

Fast Symbolic Computation of Bottom SCCs . 110
Anna Blume Jakobsen, Rasmus Skibdahl Melanchton Jørgensen,
Jaco van de Pol, and Andreas Pavlogiannis

Btor2-Cert: A Certifying Hardware-Verification Framework Using
Software Analyzers . 129

Zsófia Ádám, Dirk Beyer, Po-Chun Chien, Nian-Ze Lee,
and Nils Sirrenberg

Games

Auction-Based Scheduling . 153
Guy Avni, Kaushik Mallik, and Suman Sadhukhan

Most General Winning Secure Equilibria Synthesis in Graph Games 173
Satya Prakash Nayak and Anne-Kathrin Schmuck

On-The-Fly Algorithm for Reachability in Parametric Timed Games 194
Mikael Bisgaard Dahlsen-Jensen, Baptiste Fievet, Laure Petrucci,
and Jaco van de Pol

Rabin Games and Colourful Universal Trees . 213
Rupak Majumdar, Irmak Sağlam, and K. S. Thejaswini

Concurrency

Decidable Verification under Localized Release-Acquire Concurrency 235
Abhishek Kr Singh and Ori Lahav

OxiDD: A Safe, Concurrent, Modular, and Performant Decision
Diagram Framework in Rust. 255

Nils Husung, Clemens Dubslaff, Holger Hermanns,
and Maximilian A. Köhl

Verification under TSO with an infinite Data Domain 276
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Florian Furbach,
and Shashwat Garg

13th Competition on Software Verification—SV-Comp 2024

State of the Art in Software Verification and Witness Validation:
SV-COMP 2024 . 299

Dirk Beyer

ConcurrentWitness2Test: Test-Harnessing the Power of Concurrency
(Competition Contribution). 330

Levente Bajczi, Zsófia Ádám, and Zoltán Micskei

GOBLINT VALIDATOR: Correctness Witness Validation by Abstract
Interpretation (Competition Contribution) . 335

Simmo Saan, Julian Erhard, Michael Schwarz, Stanimir Bozhilov,
Karoliine Holter, Sarah Tilscher, Vesal Vojdani, and Helmut Seidl

WITCH 3: Validation of Violation Witnesses in the Witness Format 2.0
(Competition Contribution). 341

Paulína Ayaziová and Jan Strejček

AISE: A Symbolic Verifier by Synergizing Abstract Interpretation
and Symbolic Execution (Competition Contribution) 347

Zhen Wang and Zhenbang Chen

xxvi Contents – Part III

BUBAAK-SpLit: Split what you cannot verify (Competition contribution) 353
Marek Chalupa and Cedric Richter

CPACHECKER 2.3 with Strategy Selection (Competition Contribution) 359
Daniel Baier, Dirk Beyer, Po-Chun Chien, Marek Jankola,
Matthias Kettl, Nian-Ze Lee, Thomas Lemberger,
Marian Lingsch-Rosenfeld, Martin Spiessl, Henrik Wachowitz,
and Philipp Wendler

CPV: A Circuit-Based Program Verifier (Competition Contribution) 365
Po-Chun Chien and Nian-Ze Lee

EmergenTheta: Verification Beyond Abstraction Refinement (Competition
Contribution) . 371

Levente Bajczi, Dániel Szekeres, Milán Mondok, Zsófia Ádám,
Márk Somorjai, Csanád Telbisz, Mihály Dobos-Kovács,
and Vince Molnár

ESBMC v7.4: Harnessing the Power of Intervals (Competition
Contribution) . 376

Rafael Sá Menezes, Mohannad Aldughaim, Bruno Farias, Xianzhiyu Li,
Edoardo Manino, Fedor Shmarov, Kunjian Song, Franz Brauße,
Mikhail R. Gadelha, Norbert Tihanyi, Konstantin Korovin,
and Lucas C. Cordeiro

GOBLINT: Abstract Interpretation for Memory Safety and Termination
(Competition Contribution). 381

Simmo Saan, Julian Erhard, Michael Schwarz, Stanimir Bozhilov,
Karoliine Holter, Sarah Tilscher, Vesal Vojdani, and Helmut Seidl

Mopsa-C: Improved Verification for C Programs, Simple Validation of
Correctness Witnesses (Competition Contribution). 387

Raphaël Monat, Marco Milanese, Francesco Parolini, Jérôme Boillot,
Abdelraouf Ouadjaout, and Antoine Miné

PROTON: PRObes for Termination Or Not (Competition Contribution). 393
Ravindra Metta, Hrishikesh Karmarkar, Kumar Madhukar,
R. Venkatesh, and Supratik Chakraborty

SWAT: Modular Dynamic Symbolic Execution for Java Applications using
Dynamic Instrumentation (Competition Contribution) 399

Nils Loose, Felix Mächtle, Florian Sieck, and Thomas Eisenbarth

Contents – Part III xxvii

Symbiotic 10: Lazy Memory Initialization and Compact Symbolic
Execution (Competition Contribution) . 406

Martin Jonáš, Kristián Kumor, Jakub Novák, Jindřich Sedláček,
Marek Trtík, Lukáš Zaoral, Paulína Ayaziová, and Jan Strejček

Theta: Abstraction Based Techniques for Verifying Concurrency
(Competition Contribution). 412

Levente Bajczi, Csanád Telbisz, Márk Somorjai, Zsófia Ádám,
Mihály Dobos-Kovács, Dániel Szekeres, Milán Mondok,
and Vince Molnár

Ultimate Automizer and the Abstraction of Bitwise Operations
(Competition Contribution). 418

Frank Schüssele, Manuel Bentele, Daniel Dietsch, Matthias Heizmann,
Xinyu Jiang, Dominik Klumpp, and Andreas Podelski

Author Index . 425

xxviii Contents – Part III

SAT and SMT Solving

DRAT Proofs of Unsatisfiability for
SAT Modulo Monotonic Theories

2 Dept. of Computer Science, University of British Columbia, Vancouver, Canada
ajh@cs.ubc.ca

3 Amazon Web Services, Seattle, Minneapolis, Portland, USA
{sabayles,iqsye,trentinp,mww,leepike,jbackes}@amazon.com

Abstract. Generating proofs of unsatisfiability is a valuable capability
of most SAT solvers, and is an active area of research for SMT solvers.
This paper introduces the first method to efficiently generate proofs of
unsatisfiability specifically for an important subset of SMT: SAT Mod-
ulo Monotonic Theories (SMMT), which includes many useful finite-
domain theories (e.g., bit vectors and many graph-theoretic properties)
and is used in production at Amazon Web Services. Our method uses
propositional definitions of the theory predicates, from which it generates
compact Horn approximations of the definitions, which lead to efficient
DRAT proofs, leveraging the large investment the SAT community has
made in DRAT. In experiments on practical SMMT problems, our proof
generation overhead is minimal (7.41% geometric mean slowdown, 28.8%
worst-case), and we can generate and check proofs for many problems
that were previously intractable.

An extended version of this paper, which includes appendices with proofs and
additional results, is available at https: // doi. org/ 10. 48550/ arXiv. 2401.
10703

1 Introduction

This paper introduces the first method to efficiently generate and check proofs
of unsatisfiability for SAT Modulo Monotonic Theories (SMMT), an important
fragment of general SMT. The motivation for this work rests on these premises:

– Proofs of UNSAT are valuable, for propositional SAT as well as SMT. Ob-
viously, an independently checkable proof increases trust, which is impor-
tant because an incorrect UNSAT result can result in certifying correctness
of an incorrect system. Additionally, proofs are useful for computing ab-
stractions [30,17,25] via interpolation in many application domains including
model checking [30] and software analysis [29,23].

Nick Feng1(B), Alan J. Hu2, Sam Bayless3, Syed M. Iqbal3, Patrick Trentin3,
Mike Whalen3, Lee Pike3, and John Backes3

1 Dept. of Computer Science, University of Toronto, Toronto, Canada
fengnick@cs.toronto.edu

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 3–23, 2024.
https://doi.org/10.1007/978-3-031-57246-3_1

https://doi.org/10.48550/arXiv.2401.10703
https://doi.org/10.48550/arXiv.2401.10703
https://doi.org/10.1007/978-3-031-57246-3_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_1&domain=pdf

– SMMT is a worthy fragment of SMT as a research target. SMMT [9] is a
technique for efficiently supporting finite, monotonic theories in SMT solvers.
E.g., reachability in a graph is monotonic in the sense that adding edges to
the graph only increases reachability, and an example SMMT query would
be whether there exists a configuration of edges such that node a can reach
node b, but node c can’t reach node d. (More formal background on SMMT is
in Sec. 2.2.) The most used SMMT theories are graph reachability and max-
flow, along with bit-vector addition and comparison. Applications include
circuit escape routing [11], CTL synthesis [28], virtual data center alloca-
tion [12], and cloud network security and debugging [2,8], with the last two
applications being deployed in production by Amazon Web Services (AWS).
Indeed, our research was specifically driven by industrial demand.

– DRAT is a desirable proof format. (Here, we include related formats like
DRUP [27], GRIT [19], and LRAT [18]. DRAT is explained in Sec. 2.1.)
For an independent assurance of correctness, the proof checker is the criti-
cal, trusted component, and hence must be as trustworthy as possible. For
(propositional) SAT, the community has coalesced around the DRAT proof
format [37], for which there exist independent, efficient proof checkers [37],
mechanically verified proof checkers [38], and even combinations that are
fast as well as mechanically proven [18]. The ability to emit DRAT proof
certificates has been required for solvers in the annual SAT Competition
since 2014.
Unfortunately, DRAT is propositional, so general SMT solvers need addi-
tional mechanisms to handle theory reasoning [6]. For example, Z3 [32] out-
puts natural-deduction-style proofs [31], which can be reconstructed inside
the interactive theorem prover Isabelle/HOL [14,15]. Similarly, veriT [16]
produces resolution proof traces with theory lemmas, and supports proof
reconstruction in both Coq [1] and Isabelle [21,5,4]. As a more general ap-
proach, CVC4 [7] produces proofs in the LFSC format [36], which is a meta-
logic that allows describing theory-specific proof rules for different SMT the-
ories. Nevertheless, given the virtues of DRAT, SMT solvers have started
to harness it for the propositional reasoning, e.g., CVC4 supports DRAT
proofs for bit-blasting of the bit-vector theory, which are then translated
into LFSC [34], and Otoni et al. [33] propose a DRAT-based proof certifi-
cate format for propositional reasoning that they extend with theory-specific
certificates. However, in both cases, the final proof certificate is not purely
DRAT, and any theory lemmas must be checked by theory-specific certificate
checkers.

– For typical finite-domain theories, defining theory predicates propositionally
is relatively straightforward. The skills to design and implement theory-
specific proof systems are specialized and not widely taught. In contrast, if we
treat a theory predicate as simply a Boolean function, then anyone with ba-
sic digital design skills can build a circuit to compute the predicate (possibly
using readily available commercial tools) and then apply the Tseitin trans-
form to convert the circuit to CNF. (This is known as “bit-blasting”, but we
will see later that conventional bit-blasting is too inefficient for SMMT.)

4 N. Feng et al.

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 5

From a practical, user-level perspective, the contribution of this paper is
the first efficient proof-generating method for SMMT. Our method scales to
industrial-size instances and generates pure DRAT proofs.

From a theoretical perspective, the following contributions underlie our
method:

– We introduce the notion of one-sided propositional definitions for refutation
proof. Having different definitions for a predicate vs. its complement allows
for more compact and efficient constructions.

– We show that SMMT theories expressed in Horn theory enable linear-time
(in the size of the Horn definition) theory lemma checking via reverse unit
propagation (RUP), and hence DRAT.

– We propose an on-the-fly transformation that uses hints from the SMMT
solver to over-approximate any CNF encoding of a monotonic theory pred-
icate into a linear-size Horn upper-bound, and prove that the Horn upper-
bound is sufficient for checking theory lemmas in any given proof via RUP.

– We present efficient, practical propositional definitions for the main mono-
tonic theories used in practice: bit-vector summation and comparison, and
reachability and max-flow on symbolic graphs.

(As an additional minor contribution, we adapt the BackwardCheck procedure
from DRAT-Trim [27] for use with SMT, and evaluate its effectiveness in our
proof checker.)

We implemented our method in the MonoSAT SMMT solver [10]. For evalua-
tion, we use two sets of benchmarks derived from practical, industrial problems:
multilayer escape routing [11], and cloud network reachability [2].4 Our results
show minimal runtime overhead on the solver (geometric mean slowdown 7.4%,
worst-case 28.8% in our experiments), and we generate and check proofs for
many problem instances that are otherwise intractable.

2 Background

2.1 Propositional SAT and DRAT

We assume the reader is familiar with standard propositional satisfiability on
CNF. Some notational conventions in our paper are: we use lowercase letters
for literals and uppercase letters for clauses (or other sets of literals); for a
literal x, we denote the variable of x by var(x); we will interchangeably treat an
assignment either as a mapping of variables to truth values ⊤ (true) or ⊥ (false),
or as a set of non-conflicting (i.e., does not contain both x and its complement x̄)
literals, with positive (negative) literals for variables assigned ⊤ (⊥); assignments
can be total (assigns truth values to every variable) or partial (some variables
unassigned); and given a formula F and assignment M , we use the vertical bar
F |M to denote reducing the formula by the assignment, i.e., discarding falsified

4 Available at https://github.com/NickF0211/MonoProof.

https://github.com/NickF0211/MonoProof

literals from clauses and satisfied clauses from the formula. (An empty clause
denotes ⊥; an empty formula, ⊤.)

This paper focuses on proofs of unsatisfiability. In proving a formula F UN-
SAT, a clause C is redundant if F and F ∧C are equisatisfiable [26]. A proof of
unsatisfiability is simply a sequence of redundant clauses culminating in ⊥, but
where the redundancy of each clause can be easily checked. However, checking
redundancy is coNP-hard. A clause that is implied by F , which we denote by
F |= C, is guaranteed redundant, and we can check implication by checking the
unsatisfiability of F ∧ C, but this is still coNP-complete. Hence, proofs use re-
stricted proof rules that guarantee redundancy. For example, the first automated
proofs of UNSAT used resolution to generate implied clauses, until implying ⊥
by resolving a literal l with its complement l̄ [20,39]. In practice, however, reso-
lution proofs grow too large on industrial-scale problems.

DRAT [37] is a much more compact and efficient system for proving unsatis-
fiability. It is based on reverse unit propagation (RUP), which we explain here.5

A unit clause is a clause containing one literal. If L is the set of literals appearing
in the unit clauses of a formula F , the unit clause rule computes F |L, and the
repeated application of the unit clause rule until a fixpoint is called unit prop-
agation (aka Boolean constraint propagation). Given a clause C, its negation C
is a set of unit clauses, and we denote by F ⊢1 C if F ∧ C derives a conflict
through unit propagation. Notice that F ⊢1 C implies F |= C, but is computa-
tionally easy to check. The key insight [24] behind RUP is that modern CDCL
SAT solvers make progress by deriving learned clauses, whose redundancy is,
by construction, checkable via unit propagation. Proof generation, therefore, is
essentially just logging the sequence of learned clauses leading to ⊥, and proof
checking is efficiently checking ⊢1 of the relevant learned clauses.

2.2 SAT Modular Monotonic Theories (SMMT)

We define a Boolean positive monotonic predicate as follows:

Definition 1 (Positive Monotonic Predicate). A predicate p : {0, 1}n →
{0, 1} is positively monotonic with respect to the input ai iff

p(a1, . . . , ai−1, 0, ai+1, . . .) =⇒ p(a1, . . . , ai−1, 1, ai+1, . . .)

The predicate p is a positive monotonic predicate iff p is positively monotonic
with respect to every input.

Negative monotonic predicates are defined analogously. If a predicate p is pos-
itively monotonic w.r.t. some inputs A+ and negatively monotonic w.r.t. the
rest of inputs A−, it is always possible to rewrite the predicate as a positive
monotonic predicate p′ over input A+ and {a | a ∈ A−}. For ease of exposition,

5 RUP is all we use in this paper. RAT is a superset of RUP, by essentially doing
one step of resolution as a “lookahead” before checking RUP of the resolvents. The
“D” in DRAT stands for “deletion”, meaning the proof format also records clause
deletions.

6 N. Feng et al.

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 7

and without loss of generality, we will describe our theoretical results assuming
positive monotonic predicates only (except where noted otherwise).

Given a monotonic predicate p over input A, we will use boldface p as the
predicate atom for p, i.e., the predicate atom is a Boolean variable in the CNF
encoding of the theory, indicating whether p(A) is true or not. The theory of p
is the set of valid implications in the form of MA ⇒ p where MA is a partial
assignment over A.

The following are the most used monotonic theories:

Graph Reachability: Given a graph G = (V,E), where V and E are sets of
vertices and edges, the graph reachability theory contains the reachability
predicates reachv

u on the input variables e1, e2 . . . em ∈ E, where u, v ∈ V .
The predicate holds iff node u can reach v in the graph G by using only
the subset of edges whose corresponding variable ei is true. The predicate
is positively monotonic because enabling more edges will not make reach-
able nodes unreachable, and disabling edge will not make unreachable nodes
reachable.

Bit-Vector Summation and Comparison: Given two bit-vectors (BV) a⃗

and b⃗, the theory of BV comparison contains the predicate a⃗ ≥ b⃗, whose
inputs are the bits of a⃗ and b⃗. The predicate holds iff the value (interpreted

as an integer) of a⃗ is greater or equal to the value of b⃗. The predicate is
positively monotonic for the variables of a⃗ and negatively monotonic for
the variables of b⃗, because changing any 0 to a 1 in a⃗ makes it bigger, and
changing any 1 to 0 in b⃗ makes it smaller. Similarly, given two sets of BVs
A⃗ and B⃗, the theory of comparison between sums contains the predicate∑

A⃗ ≥
∑

B⃗ whose inputs are the boolean variables from all BVs in A⃗ and

B⃗. The predicate holds iff the sum of the BVs in A⃗ is greater or equal to
the sum of the BVs in B⃗, and is positively monotonic in A⃗ and negatively
monotonic in B⃗.

S-T Max Flow Given a graph G = (V,E), for every edge e ∈ E, let its capacity
be represented by the BV ⃗cape. For two vertices s, t ∈ V , and a BV z⃗, the
max-flow theory contains the predicates MF t

s ≥ z⃗ over the input variables
e1, e2 . . . en ∈ E and ⃗cape1 , ⃗cape2 . . . ⃗capen . The predicate holds iff the max-
imum flow from the source s to the target t is greater or equal to z⃗, using
only the enabled edges (as in the reachability theory) with their specified
capacities.

The SMMT Framework [10] describes how to extend a SAT or SMT solver
with Boolean monotonic theories. The framework has been implemented in the
SMT solver MonoSAT, which has been deployed in production by Amazon Web
Services to reason about a wide range of network properties [2,8]. The framework
performs theory propagation and clause learning for SMMT theories as follows:
(In this description, we use P for the set of positive monotonic predicates, and
S for the set of Boolean variables that are arguments to the predicates.)

Theory Propagation: Given a partial assignment M , let Ms be the partial
assignment over S. The SMMT framework forms two complete assignments

of Ms: one with all unassigned s atoms assigned to false (M−
s), one with

all unassigned s atoms assigned to true (M+
s). Since M−

s and M+
s are each

complete assignments of S, they can be used to determine the value of P
atoms. Since every p ∈ P is positively monotonic, (1) if M−

s ⇒ p, then
Ms ⇒ p, and (2) if M+

s ⇒ ¬p, then Ms ⇒ ¬p. The framework uses M−
s

and M+
s as the under- and over-approximation for theory propagation over

P atoms. Moreover, the framework attaches Ms ⇒ p or Ms ⇒ ¬p as the
reason clause for the theory propagation.

Clause Learning: For some predicates, a witness can be efficiently generated
during theory propagation, as a sufficient condition to imply the predicate p.
For example, in graph reachability, suppose M−

s ⇒ reachu,v,G for a given
under-approximation M−

s . Standard reachability algorithms can efficiently
find a set of edges M ′

s ⊆ Ms that forms a path from u to v. When such
a witness is available, instead of learning Ms ⇒ p, the framework would
use the path witness to learn the stronger clause M ′

s ⇒ p. Witness-based
clause learning is theory specific (and implementation specific); if a witness
is not available or cannot be efficiently generated in practice for a particular
predicate, the framework will learn the weaker clause Ms ⇒ p.

3 Overview of Our Method

Most leading SMT solvers, including MonoSAT, use the DPLL(T) frame-
work [22], in which a CDCL propositional SAT solver coordinates one or more
theory-specific solvers. A DPLL(T) solver behaves similarly to a CDCL proposi-
tional SAT solver — making decisions, performing unit propagation, analyzing
conflicts, learning conflict clauses — except that the theory solvers will also in-
troduce new clauses (i.e., theory lemmas) into the clause database, which were
derived via theory reasoning, and whose correctness relies on the semantics of
the underlying SMT theory. These theory lemmas cannot (in general) be de-
rived from the initial clause database, and so cannot be verified using DRAT.
Therefore, the problem of producing a proof of UNSAT in SMT reduces to the
problem of proving the theory lemmas.

A direct approach would be to have the SMT solver emit a partial DRAT
proof certificate, in which each theory lemma is treated as an axiom. This par-
tial proof is DRAT-checkable, but each theory lemma becomes a new proof
obligation. The theory lemmas could subsequently be verified using external
(non-DRAT), trusted, theory-specific proof-checking procedures. This is the ap-
proach recently proposed by Otoni et al. [33].

We take such an approach as a starting point, but instead of theory-specific
proof procedures, we use propositional definitions of the theory semantics to add
clauses sufficient to prove (by RUP) the theory lemmas. The resulting proof is
purely DRAT, checkable via standard DRAT checkers, with no theory-specific
proof rules. Fig. 1 explains our approach in more detail; Sec. 4 dives into how we
derive the added clauses; and Sec. 5 gives sample propositional theory definitions.

8 N. Feng et al.

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 9

Fig. 1. Overview of Our Proof Generation and Checking Method. Inputs (the problem
instance file and the propositional definitions of theory predicates) are colored blue;
new and modified components are colored orange. Starting from the top-left is the
SMMT problem instance, which is solved by MonoSAT. We extended MonoSAT to
emit a DRAT-style proof certificate, consisting of learned (via propositional or theory
reasoning) clauses, similar to what is proposed in [33]. The proof certificate is op-
tionally pre-processed by drat-trim-theory, in which we modified the BackwardCheck
procedure [27] to perform a backward traversal from the final ⊥, outputting a subset
of lemmas sufficient (combined with the original clause database) to derive ⊥. This is
extra work (since a full BackwardCheck is later performed by unmodified drat-trim for
the final proof verification at the top-right of the figure), but allows us to avoid verifying
some theory lemmas that are not relevant to the final proof. The resulting core lemmas
are split between the propositional learned clauses, which go straight (right) to drat-
trim, and the theory learned clauses, which are our proof obligations. The heart of our
method is the instantiation-based Horn approximation (bottom-center, described in
Sec. 4). In this step, we use the proof obligations as hints to transform the pre-defined,
propositional theory definitions (bottom-left, examples in Sec. 5) into proof-specific
Horn definitions. The resulting proof-specific definitions together with the CNF from
the input instance can efficiently verify UNSAT using unmodified drat-trim [37].

4 Instantiation-Based Horn Approximation

This section describes how we derive a set of clauses sufficient to make theory
lemmas DRAT-checkable. Section 4.1 introduces one-sided propositional defini-
tions and motivates the goal of a compact, Horn-clause-based definition. Sec-
tion 4.2 gives a translation from an arbitrary propositional definition of a mono-
tonic predicate to a monotonic definition, as an intermediate step toward con-
structing the final proof-specific, Horn definition in Section 4.3.

4.1 One-Sided Propositional Definitions and Horn Clauses

Definition 2 (Propositional Definition). Let p be the positive predicate
atom of predicate p over Boolean arguments A. A propositional definition of
p, denoted as Σp, is a CNF formula over variables V ⊇ (var(p) ∪A) such that
for every truth assignment M to the variables in A, (1) Σp|M is satisfiable and

Fig. 2. Directed Graph for Running Example in Sec. 4. In the symbolic graph (left),
the reachability predicate reacht

s is a function of the edge inputs a, . . . , h.

(2) Σp |= (M ⇒ p) if and only if p(M) is ⊤. The propositional definition of p̄
is defined analogously.

For example, the Tseitin-encoding of a logic circuit that computes p(M) satisfies
this definition. However, note that a propositional definition for p can be one-
sided: it is not required that Σp |= (M ⇒ p̄) when p(M) is ⊥. That case
is handled by a separate propositional definition for p̄. We will see that this
one-sidedness gives some freedom to admit more compact definitions.

Given a propositional definition Σp, any theory lemma MA ⇒ p is a logical
consequence of Σp, but this might not be RUP checkable. One could prove
Σp |= (MA ⇒ p) by calling a proof-generating SAT solver on Σp ∧MA ⇒ p,
i.e., bit-blasting the specific lemma, but we will see experimentally (in Sec. 6)
that this works poorly. However, if the propositional definition is limited to Horn
theory (i.e., each clause has at most one positive literal), then every SMMT
theory lemma can be proven by unit propagation:

Theorem 1. Let p be a positive monotonic predicate over input A, and let Σh
p

be a propositional definition for the positive atom p. If Σh
p is set of Horn clauses,

then for any theory lemma MA ⇒ p where MA is a set of positive atoms from
A, Σh

p |= (MA ⇒ p) if and only if Σh
p ⊢1 (MA ⇒ p).

Proof. Suppose Σh
p |= (MA ⇒ p), then Σh

p ∧ (MA ∧ p̄) is unsatisfiable. Since

MA ∧ p̄ is equivalent to a set of unit clauses, Σh
p ∧ (MA ∧ p̄) still contains only

Horn clauses, so satisfiability can be determined by unit propagation.

Example 1. Let reacht
s be the reachability predicate for the directed graph

shown in Fig. 2 (left). The definition schema for graph reachability in Sec. 5
yields the following set of Horn clauses: Σh

reacht
s
:= (1) s∨a∨v1, (2) v1∨c∨v3,

(3) v3 ∨ h ∨ t, (4) s ∨ b ∨ v2, (5) v3 ∨ e ∨ v2, (6) v2 ∨ d ∨ v4, (7) v4 ∨ f ∨ v3,
(8) v4 ∨ g ∨ t, (9) t ∨ reacht

s, (10) s, where v1, . . . , v5, s, and t are auxiliary
variables. Any theory lemma of the form MA ⇒ p, e.g., a∨c∨h∨reacht

s, can be
proven from Σh

reacht
s
via unit propagation. Also, note that one-sidedness allows

a simpler definition, despite the cycle in the graph, e.g., consider assignment
M = {a,b, c,d, e, f ,g,h}. Then, reacht

s = ⊥, but Σh
reacht

s
̸|= (M ⇒ reacht

s).

Horn theory has limited expressiveness, but it is always sufficient to encode
a propositional definition for any SMMT theory: Given a monotonic predicate

10 N. Feng et al.

atom p, we can always encode a Horn propositional definition Σh
p as the con-

junction of all valid theory lemmas from the theory of p. This is because every
theory lemma is restricted to the form (MA ⇒ p), where MA is a set of positive
atoms (due to monotonicity). Hence, Σh

p is a set of Horn clauses. However, such
a näıve encoding blows up exponentially. Instead, we will seek a compact Horn
definition Σh

p that approximates a non-Horn propositional definition Σp:

Definition 3 (Horn Upper-Bound). Let Σp be a propositional definition of
p. A set of Horn clauses Σh↑

p is a Horn upper-bound if Σp |= Σh↑
p .

For the strongest proving power, we want the tightest Horn upper-bound
possible. Unfortunately, the least Horn upper-bound of a non-Horn theory can
still contain exponentially many Horn clauses [35]. Fortunately, we don’t actually
need a Horn upper-bound on the exact theory definition, but only of enough of
the definition to prove the fixed set of theory lemmas that constitute the proof
obligations. This motivates the next definition.

Definition 4 (Proof-Specific Horn Definition). Given an exact definition
Σp and a set of theory lemmas O := {C1, . . . Cn} from the theory of p, a proof-
specific Horn definition of p is a Horn upper-bound Σh↑

p of Σp such that Σh↑
p ⊢1

C for every C ∈ O.

Our goal in the next two subsections is how to derive such compact, proof-specific
Horn definitions.

Example 2. Continuing Ex. 1, given a proof obligation O with two theory
lemmas: {a∨c∨h∨reacht

s, b∨d∨g∨reacht
s}, the subset of Horn clauses with

IDs (1), (2), (3), (4), (6), (8), (9) and (10) is a proof-specific Horn definition for
reacht

s, which can be visualized in Fig. 2 (middle).

Given a proof obligation O, we can make all theory lemmas in O DRAT
checkable if we have exact propositional definitions for the theories and if we
can dynamically transform them into compact, proof-specific Horn definitions
at the time of proof checking. We simply add these additional clauses to the
input of the DRAT-proof-checker.

4.2 Monotonic Definitions

The derivation of compact, proof-specific Horn definitions from arbitrary propo-
sitional definitions is a two-step process: we first show that every propositional
definition for a monotonic predicate atom can be converted into a monotonic
definition of linear size (this section), and then use theory lemmas in the proof
obligations to create the Horn approximation of the definition (Sec. 4.3).

Definition 5 (Monotonic Definition). Let a monotonic predicate p over in-
put A be given. A CNF formula Σ+

p is a monotonic definition of the positive
predicate atom p if Σ+

p is a propositional definition of p, and it satisfies the fol-
lowing syntax restrictions: (1) Σ+

p does not contain positive atoms from A, (2)
Σ+

p does not contain p̄, and (3) p appears only in Horn clauses. The monotonic
definition for p̄ is defined analogously.

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 11

12 N. Feng et al.

We now define the procedure, MonoT, for transforming a propositional def-
inition into a linear-size monotonic definition:

Definition 6 (Monotonic Transformation). Let a monotonic predicate p
over input A and a propositional definition Σp for the positive predicate atom p
be given. MonoT(p, Σp) is the result of the following transformations on Σp:
(1) replace every occurrence of an input atom (a for a ∈ A) in Σp with a new
atom a′ (a is replaced with a′), (2) replace every occurrence of p and p with p′

and p′ respectively, and (3) add the following Horn clauses: a ⇒ a′ for every
a ∈ A, and p′ ⇒ p.

Theorem 2 (Correctness of Monotonic Transformation). Given a mono-
tonic predicate p over input A and the monotonic predicate atom p, if we have
any propositional definition Σp with n clauses, then MonoT(p, Σp) results in
a monotonic definition Σ+

p with at most n+ |A|+ 1 clauses.

The proof of Theorem 2 is in the extended version of this paper. The cor-
rectness relies on the fact that the predicate p is indeed monotonic, and that our
propositional definitions need only be one-sided. If the monotonic definition is
already in Horn theory, it can be used directly verify theory lemmas via RUP;
otherwise, we proceed to Horn approximation, described next.

4.3 Instantiation-Based, Proof-Specific Horn Definition

We present the transformation from monotonic definitions into proof-specific
Horn definitions. The transformation exploits the duality between predicates’
positive and negative definitions.

Lemma 1 (Duality). Let p be a monotonic predicate over Boolean arguments
A. Suppose Σp and Σp̄ are positive and negative propositional definitions, re-
spectively. For every assignment M to the variables in A:

1. Σp |= (M ⇒ p) if and only if Σp̄ ∧M∧ p is satisfiable.
2. Σp̄ |= (M ⇒ p̄) if and only if Σp ∧M∧ p̄ is satisfiable.

The proof of Lemma 1 is in the extended version of this paper. The duality
of the positive (Σp) and negative (Σp̄) definitions allows us to over-approximate
positive (negative) definitions by instantiating the negative (positive) definitions.

Example 3. Returning to Ex. 1 and Fig. 2, consider the assignment M =
{a,b, c,d, e, f ,g,h}. Since s cannot reach t under this assignment, any proposi-
tional definition Σreacht

s
must imply M ⇒ reacht

s. Dually, Σh
reacht

s
∧M ∧reacht

s

is satisfiable, e.g., {s,v1,v2,v3,v4, t}.

Lemma 2 (Instantiation-Based Upper-Bound). Let a predicate p over in-
put A and a positive definition Σp be given. For any partial assignment M ′ over
var(Σp) \ (var(p) ∪A), Σp|M ′∪p̄ ⇒ p is an over-approximation of Σp.

6

6 Note that Σp|M′ is encoded in CNF, so to compactly (i.e., linear-size) encode
Σp|M′ ⇒ p in CNF, we introduce a new literal li for each clause Ci ∈ Σp|M′ ,
create clauses cij ∨ li for each literal cij ∈ Ci, and add clause l1 ∨ l2 ∨ . . . ∨ ln ∨ p.

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 13

The proof of Lemma 2 (in the extended paper) relies on the duality in
Lemma 1. Lemma 2 enables upper-bound construction and paves the way for
constructing an instantiation-based Horn upper-bound of a monotonic definition.

Lemma 3 (Instantiation-Based Horn Upper-Bound). Given a monotonic
predicate p over input A and a positive monotonic definition Σ+

p , let X repre-
sent the set of auxiliary variables: var(Σ+

p) \ (A ∪ var(p)). For any complete
satisfying assignment MX∪A to Σ+

p |p̄, the formula (Σ+
p |p̄∪MX

) ⇒ p̄ serves as a
Horn upper-bound for any propositional definition of p̄, where MX is a partial
assignment derived from MX∪A for the auxiliary variables X.

(Proof in the extended paper.) Note that the instantiation-based Horn upper-
bound of a negative predicate atom p̄ is constructed from a monotonic definition
of the positive predicate atom Σ+

p , and vice-versa.
For a given theory lemma, the instantiation-based Horn upper-bound con-

struction (Lemma 3) enables the verification of the theory lemma if we can find
a sufficient “witness” MX for the instantiation. We now prove that a witness
always exists for every valid theory lemma and does not exist otherwise.

Theorem 3 (Lemma-Specific Horn Upper-Bound). Let a monotonic pred-
icate p over input A, a monotonic definition Σ+

p and a lemma in the form
MA ⇒ p be given. We denote X as the set of auxiliary variables: var(Σ+

p) \
(A ∪ var(p)). The lemma MA ⇒ p is in the theory of p if and only if there
exists an assignment MX on X such that: (1) Σ+

p |p̄∪MX∪MA
is satisfiable and

(2) (Σ+
p |p̄∪MX

⇒ p̄) ⊢1 (MA ⇒ p̄).

(Proof in the extended paper.) Theorem 3 states that a lemma-specific Horn
upper-bound for a theory lemma MA ⇒ p can be constructed by instantiat-
ing the monotonic definition using a “witness” assignment MX . 7 The witness
could be obtained by performing SAT solving on the formula Σ+

p |M+
A∪p, (where

M+
A is the extension of MA by assigning unassigned input variables in A to ⊤

(Sec. 2.2)). However, in practice, a better approach is to modify the SMMT solver
to produce the witness during the derivation of theory lemmas. In Section 5, we
provide examples of witnesses for commonly used monotonic predicates.

Note that the witness is not part of the trusted foundation for the proof.
An incorrect witness might not support verification of a theory lemma, but if
a theory lemma is verified using a specific witness MX , Theorem 3 guarantees
that the lemma is valid.

Example 4. Continuing the example, let a theory lemma L := c ∨ d ∨ reacht
s

be given. To derive a lemma-specific Horn upper-bound for Σreacht
s
, we first ob-

tain a witness MX by finding a satisfying assignment to the formula Σh
reacht

s
∧

M ∧ reacht
s, where M := {a,b, c,d, e, f ,g,h} (by assigning the unassigned

7 Instead of instantiating a complete assignment on every auxiliary variable in X, a
partial instantiation is sufficient so long as it determines the assignments on the
other variables.

14 N. Feng et al.

input variables in L to ⊤). Since M is a complete assignment to the edge vari-
ables, the graph is fully specified, and a suitable witness MX can be efficiently
computed using a standard graph-reachability algorithm, to compute the reach-
ability status of each vertex. The witness MX is {s,v1,v2,v3,v4, t}. Following
the construction in Theorem 3, the formula Σh

reacht
s
| reacht

s∪MX
simplifies to

two (unit) clauses: c and d (from clauses (2) and (6) in Ex. 1), which can be
visualized as the cut in Fig. 2 (right). The lemma-specific Horn upper bound
Σh

reacht
s
| reacht

s∪MX
⇒ reacht

s is, therefore, c ∧ d ⇒ reacht
s, which in this ex-

ample is already CNF, but more generally, we would introduce two literals to
encode the implication: {c∨l1, d∨l2, l1∨l2∨reacht

s}. The lemma-specific Horn
upper-bound is dual-Horn and implies the theory lemma L by unit propagation.

From the lemma-specific Horn upper-bounds, we construct the proof-specific
Horn definition by combining the lemma-specific Horn upper-bounds for all lem-
mas in the proof obligations.

In summary, to efficiently verify SMMT theory lemmas, we propose the fol-
lowing approach: (1) define the propositional definitions (in CNF) for the atoms
of theory predicates; (2) transform the definitions into monotonic definitions of-
fline; (3) during proof checking, approximate a proof-specific Horn definition (if
not already Horn) from the constructed monotonic definition using theory lem-
mas in the proof; (4) combine the proof-specific definition together and verify
the proof via RUP. The only theory-specific, trusted foundation for the proof is
the definition for the theory atoms. (The extended version of this paper contains
a figure to help visualize this workflow.)

Example 5. Summarizing, the positive propositional definition Σreacht
s
in Ex. 1

is already Horn, so is sufficient for verifying via DRAT any SMMT lemmas that
imply reacht

s. To verify lemmas that imply reacht
s, we can compute a proof-

specific definition of reacht
s from Σreacht

s
using Theorem 3.

Remark 1. The only trusted basis of our approach are the propositional defini-
tions of theory atoms. For the monotonic theories in the section 5, we considered
the definitions intuitively understandable, and therefore sufficiently trustworthy.
But to further increase confidence, propositional definitions can be validated us-
ing techniques from hardware validation/verification, e.g., simulation to sanity-
check general behavior, equivalence checking against known-good circuits, etc.

5 Example Propositional Definitions

In this section, we illustrate the monotonic definitions for the most commonly
used monotonic predicates. Due to space constraints, we present only graph
reachability here in detail, and only sketch bit-vector comparison and summa-
tion, and max-flow. Full definitions for those theories are in the extended version
of this paper.

Graph Reachability: Given a graph G = (V,E) where V and E are sets
of vertices and edges, respectively, as discussed in Sect. 2, the graph reacha-
bility theory contains the reachability predicate reachv

u for u, v ∈ V over input

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 15

e1, e2 . . . en ∈ E. For convenience, we refer to the positive edge atom for the edge
from vertex i to vertex j as ei→j . The predicate is positively monotonic for E,
and the monotonic definition for the positive predicate atom reachv

u contains
the clauses:

1. reachi ∨ ei→j ∨ reachj for every edge eji ∈ E and the unit clause reachu

2. reachv ∨ reachv
u

The monotonic definition introduces a reachability atom reachi for every
i ∈ V and asserts the fact that u is reachable from itself. For every edge (i, j), if
the edge (i, j) is enabled (ei→j) and i is reachable (reachi), then j must also be
reachable (reachj). The predicate atom reachv

u is implied by the reachability
of v (reachv). The definition is monotonic since it only contains negative edge
atoms. Moreover, the definition is already a Horn definition and can be used
directly for proving theory lemmas in the theory of reachv

u without the need for
transformation into a proof-specific Horn definition. The size of the definition is
O(|E|).

Instead of defining the monotonic definition for the negative predicate atom
reachv

u, we construct its proof-specific definition from the monotonic definition
of the positive predicate atom reachv

u. For each theory lemma in the proof, the
witness for constructing the lemma-specific Horn upper-bound is the reachability
status (reachi) of every vertex i ∈ V , which is efficiently computed in the SMMT
solver using standard graph-reachability algorithms.

Bit-Vector Comparison (sketch): The positive definition is just the Tseitin
encoding of a typical bit-vector comparison circuit, with some simplification due
to being one-sided: For each bit position i, we introduce auxiliary variables gei
and gti, which indicate that the more-significant bits from this position have
already determined vector a⃗ to be ≥ or > b⃗, respectively. Simple clauses compute
gei−1 and gti−1 from gei and gti and the bits at position i− 1 of a⃗ and b⃗. The
negative definition is similar. These are both Horn, so can be used without
further transformation into proof-specific Horn definitions.

Bit-Vector Summation and Comparison (sketch): These are basically
Tseitin encodings of ripple-carry adders, combined with the comparison theory
above — using Def. 6 to handle the fact that the the Tseitin encodings of the
XOR gates in the adders are non-monotonic with respect to the input bit-vectors.
The resulting propositional definitions are not Horn, so we use witnesses to
construct lemma-specific Horn definitions. The witnesses come from the SMMT
solver maintaining lower and upper bounds on the possible values of the bit-
vectors, e.g., a witness for

∑
A⃗ ≥

∑
B⃗ are lower bounds for the vectors in A⃗

and upper bounds for the vectors in B⃗ such that their sums make the inequality
true. (Mutadis mutandis for the negative witness.)

Max-Flow (sketch): For the positive definition (that the max-flow exceeds
some value), we introduce auxiliary bit-vectors to capture the flow asisgned to
each edge. We use the bit-vector theories to ensure that the flows do not exceed
the edge capacities, that each node’s (except the source) outgoing flows do not
exceed the incoming flows (equality is unnecessary due to the one-sidedness), and

16 N. Feng et al.

that the flow to the sink exceeds the target value. For the negative definition, we
exploit the famous max-flow/min-cut duality. We introduce an auxiliary variable
incute for each edge. We use the graph reachability theory to ensure that the
edges in the cut separate the source from the sink, and the bit-vector summation
theory to ensure that the capacity of the cut does not exceed the target max-
flow value. Both the positive and negative definitions are not Horn, so require
instantiation-based upper-bounds. The witnesses are the flow values or the cuts,
and are easily computed by the SMMT solver.

6 Experimental Evaluation

To evaluate our proposed method, we implemented it as shown earlier in Fig. 1
(Sec. 3). We call our implementation MonoProof (available at https://github.
com/NickF0211/MonoProof).

The two basic questions of any proof-generating SAT/SMT solver are: (1)
how much overhead does the support for proofs add to the solving time, and
(2) how efficiently can a proof be prepared from the proof log, and verified?
For the first question, we compare the runtime of unmodified MonoSAT ver-
sus the MonoSAT that we have extended to produce proof certificates. For the
second question, we need a baseline of comparison. MonoProof is the first proof-
generating SMMT solver, so there is no obvious comparison. However, since
SMMT theories are finite-domain, and bit-blasting (i.e., adding clauses that
encode the theory predicates to the problem instance and solving via a proposi-
tional SAT solver) is a standard technique for finite-domain theories, we compare
against bit-blasting. Arguably, this comparison is unfair, since MonoSAT out-
performs bit-blasting when solving SMMT theories [9]. Thus, as an additional
baseline, we propose an obvious hybrid of SMMT and bit-blasting, which we dub
Lemma-Specific Bit-Blasting (LSBB): we run MonoProof until the core theory
lemmas have been extracted, benefitting from MonoSAT’s fast solving time, but
then instead of using our techniques from Sec. 4, we bit-blast only the core theory
lemmas.8

We ran experiments on 3GHZ AMD Epyc 7302 CPUs with 512GB of DDR4
RAM, with a timeout of 1 hour and memory limit of 64GB. For the bit-blasting
SAT solver, we use the state-of-the-art SAT solver Kissat [13]. In all cases, the
proof is verified with standard DRAT-trim [37].

6.1 Benchmarks

We wish to evaluate scalability on real, industrial problems arising in practice.
MonoProof has successfully generated and verified industrial UNSAT proofs for

8 We implemented this both via separate SAT calls per lemma; and also by providing
all lemmas in a single SAT call (with auxiliary variables to encode the resulting
DNF), to allow the solver to re-use learned clauses on different lemmas. The latter
approach generally worked better, so we report those results, but (spoiler) neither
worked well.

https://github.com/NickF0211/MonoProof
https://github.com/NickF0211/MonoProof

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 17

a set of hard, unsatisfiable Tiros [2,8] queries collected in production use at AWS
over a multi-week period. However, these instances are proprietary and cannot
be published, making them irreproducible by others. Instead, we evaluate on two
sets of benchmarks that we can publicly release (also at https://github.com/
NickF0211/MonoProof):

Network Reachability Benchmarks. These are synthetic benchmarks that
mimic the real-world problems solved by Tiros, without disclosing any propri-
etary information. Network reachability is the problem of determining whether a
given pair of network resources (source and destination) can communicate. The
problem is challenging because network components can intercept, transform,
and optionally re-transmit packets traveling through the network (e.g., a fire-
wall or a NAT gateway). Network components come in various types, each with
their own complex behaviors and user-configurable network controls. In these
benchmarks, we abstract to two types of intermediate components: simple and
transforming. Simple components relay an incoming packet as long as its des-
tination address belongs to a certain domain, expressed in terms of a network
CIDR (Classless Interdomain Routing), e.g., 10.0.0.0/24. Transforming network
components intercept an incoming packet and rewrite the source address and
ports to match their own before re-transmitting it. The simple network compo-
nents are akin to subnets, VPCs, and peering connections; transforming network
components are a highly abstracted version of load balancers, NAT gateways,
firewalls, etc. The SMT encoding uses the theories of bit vectors and of graph
reachability. The network packets are symbolically represented using bit vectors,
and the network is modeled as a symbolic graph. Network behavior is modeled
as logical relations between packets and elements in the network graph. Unsatis-
fiability of a query corresponds to unreachability in the network: for all possible
packet headers that the source could generate, and for all possible paths connect-
ing the source to the destination, the combined effect of packet transformations
and network controls placed along the path cause the packet to be dropped from
the network before it reaches its destination.

We generated 24 instances in total, varying the size and structure of the
randomly generated network. Graph sizes ranged from 1513 to 15524 (average
5485) symbolic edges.

Escape Routing Benchmarks. Escape routing is the problem of routing all
the signals from a component with extremely densely packed I/O connections
(e.g., the solder bumps on a Ball-Grid Array (BGA)) to the periphery of the com-
ponent, where other routing techniques can be used. For a single-layer printed
circuit board (PCB), escape routing is optimally solvable via max-flow, but real
chips typically require multiple layers. The multi-layer problem is difficult be-
cause the vias (connections between layers) are wider than the wires on a layer,
disrupting what routes are possible on that layer. Bayless et al. [11] proposed a
state-of-the-art solution using SMMT: max-flow predicates determine routability
for each layer on symbolic graphs, whose edges are enabled/disabled by logical
constraints capturing the design rules for vias.

https://github.com/NickF0211/MonoProof
https://github.com/NickF0211/MonoProof

18 N. Feng et al.

Fig. 3. Cactus Plots for Solving (left) and Proof Preparation&Checking (right). Each
point is the runtime for one instance, so the plot shows the number of instances (x-
axis) that ran in less than any time bound (y-axis). BB denotes standard bit-blasting;
LSBB, lemma-specific bit-blasting; and MonoProof is our new method. The left graph
shows that MonoProof (and LSBB, which uses MonoProof’s solver) is vastly faster
than bit-blasting for solving the instances. The right graph shows that MonoProof is
also vastly faster than bit-blasting for proving the result; LSBB timed-out on all proofs.

In [11], 24 commercial BGAs were analyzed under two different via technolo-
gies and different numbers of layers. For our benchmark set, we select all con-
figurations where the provable minimum number of layers were reported. This
results in 24 unsatisfiable SMMT problems instances (routing with one fewer
layer than the minimum), which exercise the bit-vector and max-flow theories.
Graph sizes ranged from 193994 to 3084986 (average 717705) symbolic edges.

6.2 Results

Returning to the two questions for our evaluation:

1. The solver overhead of our proof certificate generation is minimal. On the
network reachability benchmarks, the geometric mean (GM) runtime overhead
was 14.10% (worst case 28.8%). On the escape routing benchmarks, the GM
runtime overhead was only 1.11% (the worst case 5.71%). (The lower overhead
is because MonoSAT spent more time learning theory lemmas vs. recording
them in the proof.) The overall GM runtime overhead across all benchmarks
was 7.41%. These overhead figures are comparable to state-of-the-art, proof-
generating SAT solvers, which is not surprising, since our proof certificates are
essentially the same as a DRAT proof certificate in SAT. This compares favorably
with the solver overhead of heavier-weight, richer, and more expressive SMT
proof certificates like LFSC [34].

2. MonoProof’s time to prepare and check a proof of unsatisfiability is markedly
faster than standard bit-blasting or lemma-specific bit-blasting. Fig. 3 summa-
rizes our results. (A full table is in the extended version of this paper.) The left

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 19

graph shows solving times (with proof logging). Since the proof-logging over-
head is so low for both bit-blasting (Kissat generating DRAT) and MonoProof,
these results are consistent with prior work showing the superiority of the SMMT
approach for solving [9]. Note that bit-blasting (BB) solved all 24 network reach-
ability instances, but failed to solve any of the 24 escape routing instances in the
1hr timeout. Lemma-specific bit-blasting (LSBB) and MonoProof share the same
solving and proof-logging steps. The right graph shows proof-checking times (in-
cluding BackwardCheck and proof-specific Horn upper-bound construction for
MonoProof). Here, BB could proof-check only 11/24 reachability instances that
it had solved. Restricting to only the 11 instances that BB proof-checked, Mono-
Proof was at least 3.7× and geometric mean (GM) 10.2× faster. LSBB timed out
on all 48 instances. Summarizing, MonoProof solved and proved all 48 instances,
whereas BB managed only 11 instances, and LSBB failed to prove any.

The above results were with our modified BackwardCheck enabled (drat-
trim-theory in Fig. 1). Interestingly, with BackwardCheck disabled, MonoProof
ran even faster on 37/48 benchmarks (min speedup 1.03×, max 6.6×, GM 1.7×).
However, enabling BackwardCheck ran faster in 10/48 cases (min speedup 1.02×,
max 7.9×, GM 1.6×), and proof-checked one additional instance (69 sec. vs. 1hr
timeout). The modified BackwardCheck is a useful option to have available.

7 Conclusion

We have introduced the first efficient proof-generating method for SMMT. Our
approach uses propositional definitions of the theory semantics and derives com-
pact, proof-specific Horn-approximations sufficient to verify the theory lemmas
via RUP. The resulting pure DRAT proofs are checkable via well-established (and
even machine verified) tools. We give definitions for the most common SMMT
theories, and experimental results on industrial-scale problems demonstrate that
the solving overhead is minimal, and the proof preparation and checking times
are vastly faster than the alternative of bit-blasting.

The immediate line of future work is to support additional finite domain
monotonic theories, such as richer properties on pseudo-boolean reasoning. We
also aim to apply our approach to support monotonic theories beyond finite
domains. In addition, we plan to extend our proof support to emerging proof
format such as LRAT [18] and FRAT [3] that enable faster proof checking.

Acknowledgments

Nick Feng was supported in part by an Amazon Research Award. Alan Hu was
supported in part by a Discovery Grant from the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). The authors would like to thank
Marijn Heule for insightful feedback and mentorship during Nick’s internship at
Amazon Web Services in 2021. We also thank Dan Dacosta, Nadia Labai, and
Nate Launchbury for reviewing earlier drafts of this work.

References

1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.:
A Modular Integration of SAT/SMT Solvers to Coq through Proof Wit-
nesses. In: Jouannaud, J., Shao, Z. (eds.) Certified Programs and Proofs -
First International Conference, CPP 2011, Kenting, Taiwan, December 7-9,
2011. Proceedings. Lecture Notes in Computer Science, vol. 7086, pp. 135–
150. Springer (2011). https://doi.org/10.1007/978-3-642-25379-9 12, https://

doi.org/10.1007/978-3-642-25379-9_12

2. Backes, J., Bayless, S., Cook, B., Dodge, C., Gacek, A., Hu, A.J., Kahsai, T., Kocik,
B., Kotelnikov, E., Kukovec, J., McLaughlin, S., Reed, J., Rungta, N., Sizemore,
J., Stalzer, M., Srinivasan, P., Subotić, P., Varming, C., Whaley, B.: Reachability
analysis for AWS-based networks. In: Dillig, I., Tasiran, S. (eds.) International
Conference on Computer Aided Verification (CAV). pp. 231–241. Springer (2019)

3. Baek, S., Carneiro, M., Heule, M.J.H.: A Flexible Proof Format for SAT Solver-
Elaborator Communication. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems — 27th International Con-
ference, TACAS 2021. Lecture Notes in Computer Science, vol. 12651, pp. 59–75.
Springer (2021). https://doi.org/10.1007/978-3-030-72016-2 4, https://doi.org/
10.1007/978-3-030-72016-2_4

4. Barbosa, H., Blanchette, J., Fleury, M., Fontaine, P., Schurr, H.J.: Better SMT
proofs for easier reconstruction. In: AITP 2019-4th Conference on Artificial Intel-
ligence and Theorem Proving (2019)

5. Barbosa, H., Blanchette, J.C., Fontaine, P.: Scalable Fine-Grained Proofs for For-
mula Processing. In: de Moura, L. (ed.) Automated Deduction - CADE 26 -
26th International Conference on Automated Deduction, Gothenburg, Sweden, Au-
gust 6-11, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10395, pp.
398–412. Springer (2017). https://doi.org/10.1007/978-3-319-63046-5 25, https:
//doi.org/10.1007/978-3-319-63046-5_25

6. Barrett, C., De Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories.
All about proofs, Proofs for all 55(1), 23–44 (2015)

7. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6806, pp. 171–177. Springer (2011). https://doi.org/10.1007/978-3-642-22110-
1 14, https://doi.org/10.1007/978-3-642-22110-1_14

8. Bayless, S., Backes, J., DaCosta, D., Jones, B., Launchbury, N., Trentin, P.,
Jewell, K., Joshi, S., Zeng, M., Mathews, N.: Debugging Network Reachability
with Blocked Paths. In: International Conference on Computer Aided Verification
(CAV). pp. 851–862. Springer (2021)

9. Bayless, S., Bayless, N., Hoos, H., Hu, A.: SAT modulo monotonic theories. In:
Proceedings of the AAAI Conference on Artificial Intelligence. vol. 29 (2015)

10. Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: SAT Modulo Monotonic Theories.
In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. pp. 3702–3709.
AAAI Press (2015), http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/
view/9951

11. Bayless, S., Hoos, H.H., Hu, A.J.: Scalable, high-quality, SAT-based multi-layer
escape routing. In: Liu, F. (ed.) Proceedings of the 35th International Conference

20 N. Feng et al.

https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-030-72016-2_4
https://doi.org/10.1007/978-3-030-72016-2_4
https://doi.org/10.1007/978-3-030-72016-2_4
https://doi.org/10.1007/978-3-319-63046-5_25
https://doi.org/10.1007/978-3-319-63046-5_25
https://doi.org/10.1007/978-3-319-63046-5_25
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9951
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9951

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 21

on Computer-Aided Design, ICCAD 2016, Austin, TX, USA, November 7-10, 2016.
p. 22. ACM (2016). https://doi.org/10.1145/2966986.2967072, https://doi.org/
10.1145/2966986.2967072

12. Bayless, S., Kodirov, N., Iqbal, S.M., Beschastnikh, I., Hoos, H.H., Hu, A.J.: Scal-
able Constraint-Based Virtual Data Center Allocation. Artif. Intell. 278(C) (jan
2020). https://doi.org/10.1016/j.artint.2019.103196, https://doi.org/10.1016/

j.artint.2019.103196

13. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling, and Treengeling Entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) SAT Competition
2020 — Solver and Benchmark Descriptions. Department of Computer Science
Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

14. Böhme, S.: Proof reconstruction for Z3 in Isabelle/HOL. In: 7th International
Workshop on Satisfiability Modulo Theories (SMT’09) (2009)

15. Böhme, S., Weber, T.: Fast LCF-Style Proof Reconstruction for Z3. In:
Kaufmann, M., Paulson, L.C. (eds.) Interactive Theorem Proving, First In-
ternational Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Pro-
ceedings. Lecture Notes in Computer Science, vol. 6172, pp. 179–194.
Springer (2010). https://doi.org/10.1007/978-3-642-14052-5 14, https://doi.

org/10.1007/978-3-642-14052-5_14

16. Bouton, T., Oliveira, D.C.B.D., Déharbe, D., Fontaine, P.: veriT: An Open,
Trustable and Efficient SMT-Solver. In: Schmidt, R.A. (ed.) Automated Deduc-
tion - CADE-22, 22nd International Conference on Automated Deduction, Mon-
treal, Canada, August 2-7, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5663, pp. 151–156. Springer (2009). https://doi.org/10.1007/978-3-642-02959-
2 12, https://doi.org/10.1007/978-3-642-02959-2_12

17. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT
Solver. In: Donaldson, A.F., Parker, D. (eds.) Model Checking Software -
19th International Workshop, SPIN 2012, Oxford, UK, July 23-24, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7385, pp. 248–254.
Springer (2012). https://doi.org/10.1007/978-3-642-31759-0 19, https://doi.

org/10.1007/978-3-642-31759-0_19

18. Cruz-Filipe, L., Heule, M.J.H., Jr., W.A.H., Kaufmann, M., Schneider-Kamp, P.:
Efficient Certified RAT Verification. In: de Moura, L. (ed.) Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction, Gothen-
burg, Sweden, August 6-11, 2017, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 10395, pp. 220–236. Springer (2017). https://doi.org/10.1007/978-3-319-
63046-5 14, https://doi.org/10.1007/978-3-319-63046-5_14

19. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient Certified Resolu-
tion Proof Checking. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 118–135. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2017)

20. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. J.
ACM 7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034, http://doi.
acm.org/10.1145/321033.321034

21. Fleury, M., Schurr, H.: Reconstructing veriT Proofs in Isabelle/HOL. In: Reis,
G., Barbosa, H. (eds.) Proceedings Sixth Workshop on Proof eXchange for The-
orem Proving, PxTP 2019, Natal, Brazil, August 26, 2019. EPTCS, vol. 301, pp.
36–50 (2019). https://doi.org/10.4204/EPTCS.301.6, https://doi.org/10.4204/
EPTCS.301.6

https://doi.org/10.1145/2966986.2967072
https://doi.org/10.1145/2966986.2967072
https://doi.org/10.1145/2966986.2967072
https://doi.org/10.1016/j.artint.2019.103196
https://doi.org/10.1016/j.artint.2019.103196
https://doi.org/10.1016/j.artint.2019.103196
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1145/321033.321034
http://doi.acm.org/10.1145/321033.321034
http://doi.acm.org/10.1145/321033.321034
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.301.6
https://doi.org/10.4204/EPTCS.301.6

22 N. Feng et al.

22. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL (T):
Fast decision procedures. In: International Conference on Computer Aided Verifi-
cation. pp. 175–188. Springer (2004)

23. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F.,
Fuhs, C., Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder,
T., Swiderski, S., Thiemann, R.: Analyzing Program Termination and
Complexity Automatically with AProVE. J. Autom. Reason. 58(1), 3–31
(2017). https://doi.org/10.1007/s10817-016-9388-y, https://doi.org/10.1007/

s10817-016-9388-y

24. Goldberg, E., Novikov, Y.: Verification of Proofs of Unsatisfiability for CNF Formu-
las. In: Proceedings of the Conference on Design, Automation and Test in Europe
- Volume 1. p. 10886. DATE ’03, IEEE Computer Society, USA (2003)

25. Gurfinkel, A., Vizel, Y.: DRUPing for interpolates. In: Formal Methods in
Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-24,
2014. pp. 99–106. IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987601,
https://doi.org/10.1109/FMCAD.2014.6987601

26. Heule, M.J.H., Kiesl, B., Biere, A.: Strong Extension-Free Proof Systems. J. Auto-
mated Reasoning 64, 533–554 (2020). https://doi.org/10.1007/s10817-019-09516-0

27. Heule, M.J., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs. In:
2013 Formal Methods in Computer-Aided Design. pp. 181–188. IEEE (2013)

28. Klenze, T., Bayless, S., Hu, A.J.: Fast, Flexible, and Minimal CTL Synthesis via
SMT. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification. pp. 136–
156. Springer International Publishing, Cham (2016)

29. Luckow, K.S., Dimjasevic, M., Giannakopoulou, D., Howar, F., Isberner, M.,
Kahsai, T., Rakamaric, Z., Raman, V.: JDart: A Dynamic Symbolic Analy-
sis Framework. In: Chechik, M., Raskin, J. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9636, pp.
442–459. Springer (2016). https://doi.org/10.1007/978-3-662-49674-9 26, https:
//doi.org/10.1007/978-3-662-49674-9_26

30. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Jr., W.A.H.,
Somenzi, F. (eds.) Computer Aided Verification, 15th International Conference,
CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. Lecture Notes in Com-
puter Science, vol. 2725, pp. 1–13. Springer (2003). https://doi.org/10.1007/978-
3-540-45069-6 1, https://doi.org/10.1007/978-3-540-45069-6_1

31. de Moura, L.M., Bjørner, N.: Proofs and Refutations, and Z3. In: Rudnicki, P.,
Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the LPAR
2008 Workshops, Knowledge Exchange: Automated Provers and Proof Assistants,
and the 7th International Workshop on the Implementation of Logics, Doha, Qatar,
November 22, 2008. CEURWorkshop Proceedings, vol. 418. CEUR-WS.org (2008),
http://ceur-ws.org/Vol-418/paper10.pdf

32. de Moura, L.M., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24, https://doi.org/10.1007/978-3-540-78800-3_24

https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1109/FMCAD.2014.6987601
https://doi.org/10.1109/FMCAD.2014.6987601
https://doi.org/10.1007/s10817-019-09516-0
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
http://ceur-ws.org/Vol-418/paper10.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories 23

33. Otoni, R., Blicha, M., Eugster, P., Hyvärinen, A.E.J., Sharygina, N.:
Theory-Specific Proof Steps Witnessing Correctness of SMT Executions.
In: 58th ACM/IEEE Design Automation Conference, DAC 2021, San
Francisco, CA, USA, December 5-9, 2021. pp. 541–546. IEEE (2021).
https://doi.org/10.1109/DAC18074.2021.9586272, https://doi.org/10.1109/

DAC18074.2021.9586272

34. Ozdemir, A., Niemetz, A., Preiner, M., Zohar, Y., Barrett, C.W.: DRAT-based Bit-
Vector Proofs in CVC4. In: Janota, M., Lynce, I. (eds.) Theory and Applications
of Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT 2019,
Lisbon, Portugal, July 9-12, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11628, pp. 298–305. Springer (2019). https://doi.org/10.1007/978-3-030-24258-
9 21, https://doi.org/10.1007/978-3-030-24258-9_21

35. Selman, B., Kautz, H.A.: Knowledge Compilation using Horn Approximations. In:
Dean, T.L., McKeown, K.R. (eds.) Proceedings of the 9th National Conference on
Artificial Intelligence, Anaheim, CA, USA, July 14-19, 1991, Volume 2. pp. 904–
909. AAAI Press / The MIT Press (1991), http://www.aaai.org/Library/AAAI/
1991/aaai91-140.php

36. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof check-
ing using a logical framework. Formal Methods Syst. Des. 42(1), 91–118
(2013). https://doi.org/10.1007/s10703-012-0163-3, https://doi.org/10.1007/

s10703-012-0163-3

37. Wetzler, N., Heule, M., Jr., W.A.H.: DRAT-trim: Efficient Checking and Trim-
ming Using Expressive Clausal Proofs. In: Sinz, C., Egly, U. (eds.) Theory and
Applications of Satisfiability Testing - SAT 2014 - 17th International Confer-
ence, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8561, pp.
422–429. Springer (2014). https://doi.org/10.1007/978-3-319-09284-3 31, https:
//doi.org/10.1007/978-3-319-09284-3_31

38. Wetzler, N., Heule, M.J.H., Hunt, W.A.: Mechanical Verification of SAT Refu-
tations with Extended Resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie,
D. (eds.) Interactive Theorem Proving. pp. 229–244. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013)

39. Zhang, L., Malik, S.: Validating SAT Solvers Using an Independent Resolution-
Based Checker: Practical Implementations and Other Applications. In: 2003
Design, Automation and Test in Europe Conference and Exposition (DATE
2003), 3-7 March 2003, Munich, Germany. pp. 10880–10885. IEEE Com-
puter Society (2003). https://doi.org/10.1109/DATE.2003.10014, http://doi.

ieeecomputersociety.org/10.1109/DATE.2003.10014

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/DAC18074.2021.9586272
https://doi.org/10.1109/DAC18074.2021.9586272
https://doi.org/10.1109/DAC18074.2021.9586272
https://doi.org/10.1007/978-3-030-24258-9_21
https://doi.org/10.1007/978-3-030-24258-9_21
https://doi.org/10.1007/978-3-030-24258-9_21
http://www.aaai.org/Library/AAAI/1991/aaai91-140.php
http://www.aaai.org/Library/AAAI/1991/aaai91-140.php
https://doi.org/10.1007/s10703-012-0163-3
https://doi.org/10.1007/s10703-012-0163-3
https://doi.org/10.1007/s10703-012-0163-3
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1109/DATE.2003.10014
http://doi.ieeecomputersociety.org/10.1109/DATE.2003.10014
http://doi.ieeecomputersociety.org/10.1109/DATE.2003.10014
http://creativecommons.org/licenses/by/4.0/

Z3-Noodler: An Automata-based String Solver

Yu-Fang Chen 1, David Chocholatý 2, Vojtěch Havlena 2,
Lukáš Holı́k , Ondřej Lengál 2, and Juraj Sı́č 2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
2 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Abstract. Z3-Noodler is a fork of Z3 that replaces its string theory solver
with a custom solver implementing the recently introduced stabilization-based
algorithm for solving word equations with regular constraints. An extensive ex-
perimental evaluation shows that Z3-Noodler is a fully-fledged solver that can
compete with state-of-the-art solvers, surpassing them by far on many bench-
marks. Moreover, it is often complementary to other solvers, making it a suitable
choice as a candidate to a solver portfolio.

1 Introduction

Recently, many tools for solving string constraints have been developed, motivated
mainly by techniques for finding security vulnerabilities such as SQL injection or cross-
site scripting (XSS) in web applications [34,35,36]. String solving has also found its
applications in, e.g., analysis of access user policies in Amazon Web Services [26,8,39]
or smart contracts [7]. Solvers for string constraints are usually implemented as string
theory solvers inside SMT solvers, such as cvc5 [9] or Z3 [31], allowing combination
with other theories, most commonly the theory of integers for string lengths. Other
well known string solvers include Z3str3RE [13,12], Z3-Trau [1], Z3str4 [30], OS-
TRICH [19], and others.

In this paper, we present Z3-Noodler 1.0.0 [47], a fork of Z3 4.12.2 where the
string theory solver is replaced with the stabilization-based procedure for solving string
(dis)equations with regular and length constraints [14,20]. The procedure makes heavy
use of nondeterministic finite automata (NFAs) and operations over them, for which we
use the efficient Mata library for NFAs [23,29].

The presented version implements multiple improvements over a previous Z3-
Noodler prototype from [20]. Firstly, it extends the support for string predicates from
the SMT-LIB string theory standard [11] by (1) applying smarter and more specific
axiom saturation and (2) adding support for their solving inside the decision procedure
(e.g., for the ¬contains predicate). It also implements various optimizations (e.g., for
regular constraints handling) and other decision procedures, e.g., the Nielsen transfor-
mation [32] for quadratic equations and a procedure for regular language (dis)equations;
moreover, we added heuristics for choosing the best decision procedure to use.

We compared Z3-Noodler with other string solvers on standard SMT-LIB bench-
marks [10,42,43]. The results indicate that Z3-Noodler is competitive, superior espe-
cially on benchmarks containing mostly regular constraints and word (dis)equations, and
that the improvements since [20] had a large impact on the number of solved instances
as well as its overall performance.

2(B)

holik@fit.vutbr.cz

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 24–33, 2024.
https://doi.org/10.1007/978-3-031-57246-3_2

https://doi.org/10.1007/978-3-031-57246-3_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_2&domain=pdf
http://orcid.org/0000-0003-2872-0336
http://orcid.org/0009-0006-5614-1592
http://orcid.org/0000-0003-4375-7954
http://orcid.org/0000-0001-6957-1651
http://orcid.org/0000-0002-3038-5875
http://orcid.org/0000-0001-7454-3751
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

2 Architecture

Z3-Noodler replaces the string theory solver in the DPLL(T)-based SMT solver Z3 [31]
(version 4.12.2) with our string solver Noodler [14], which is based on the stabilization
algorithm (cf. Section 3). DPLL(T)-based solvers in general combine a SAT solver
providing satisfying assignments to the Boolean skeleton of a formula with multiple
theory solvers for checking conjunctions of theory literals.

Z3-Noodler still uses the infrastructure of Z3, most importantly the parser, string
theory rewriter and the linear integer arithmetic (LIA) solver. The Z3 parser takes
formulae in the SMT-LIB format [10], where Z3-Noodler can handle nearly all pred-
icates/functions (such as substr, len, at, replace, regular membership, word equa-
tions, etc.) in the string theory as defined by SMT-LIB [11].

Even though we do use the string theory rewriter of Z3, we disabled those rewritings
that do not benefit our core string solver. For instance, we removed rules that rewrite
regular membership constraints to other types of constraints since solving regular con-
straints and word equations using our stabilization-based approach is efficient.

Noodler
string theory

LIA solver
instance

Mata LIA solver

core string
rewriter

SMT string formula

1 2

43

Z3

Fig. 1: Architecture of Z3-Noodler

The interaction of the Noodler solver with
Z3 is shown in Fig. 1 and works as follows. Upon
receiving a satisfying Boolean assignment from
the SAT solver (1), we first remove irrelevant
assignments (using Z3’s relevancy propagation),
which allows us to work with smaller instances
and return more general theory lemmas. A the-
ory assignment obtained from the Boolean as-
signment consists of string (dis)equations, regu-
lar constraints, and, possibly, predicates that were
not axiom-saturated before (cf. Section 3).

The core Noodler string decision procedure then reduces the conjunction of string
literals to a LIA constraint over string lengths, and returns it to Z3 as a theory lemma (2),
to be solved together with the rest of the input arithmetic constraints by Z3’s internal
LIA solver. Noodler implements a couple of decision procedures (discussed in Sec-
tion 3), heavily employing the Mata automata library (version 0.109.0) [29] (3). As
an optimization of the theory lemma generation, when the string constraint reduces into
a disjunction of LIA length constraints, we check the satisfiability of individual dis-
juncts (generated lazily on demand) separately in order to get a positive answer as soon
as possible. For testing the disjuncts, the current solver context is cloned and queried
about satisfiability of the LIA constraint conjoined with the disjunct (4).

3 String Theory Core

In this section, we provide details about Z3-Noodler’s string theory implementation,
including initial axiom saturation, proprocessing, the core procedure, and limitations.

Axiom Saturation. In order to best utilize the power of Z3’s internal LIA solver during the
generation of a satisfiable assignment, we saturate the input formula with length-aware

Z3-Noodler: An Automata-Based String Solver 25

theory axioms and axioms for string predicates (this happens during Z3’s processing
of the input formula, before the main SAT solver starts generating assignments). We
can then avoid checking SAT assignments that trivially violate length conditions. Most
importantly, we add length axioms len(𝑡1) ≥ 0, len(𝑡1.𝑡2) = len(𝑡1) + len(𝑡2) where
𝑡1, 𝑡2 are arbitrary string terms, and len(𝑡1) = len(𝑡2) for the word equation 𝑡1 = 𝑡2.

Moreover, for string functions/predicates, Noodler saturates the original formula
with an equivalent formula composed of word (dis)equations and length/regular con-
straints, which are more suitable for our core procedure (e.g., for ¬contains(𝑠, "abc")
in the input formula, we add the regular constraint 𝑠 ∉ Σ∗abcΣ∗). We use differ-
ent saturation rules for instances of predicates with concrete values. For instance, for
substr(𝑠, 4, 1), we add just the term at(𝑠, 4). On the other hand, for substr(𝑠, 𝑡𝑖 , 𝑡 𝑗),
where 𝑠 is a string term and 𝑡𝑖 , 𝑡 𝑗 are general integer terms (possibly containing vari-
ables), we need to add a more general formula talking about the prefix and suffix of 𝑠
of given lengths. The original predicate occurrence is then removed from received
assignments by Noodler (Z3 does not allow to remove parts of the original formula).

Decision Procedures. Z3-Noodler’s string theory core contains several complementary
decision procedures. The main one is the stabilization-based algorithm for solving word
equations with regular constraints introduced in [14] and later extended with efficient
handling of length constraints and disequations [20]. The stabilization-based algorithm
starts, for every string variable, with an NFA encoding regular constraints on the variable
and iteratively refines the NFA according to the word equations until the stability
condition is achieved. The stability condition holds when, for every word equation,
the language of the left-hand side (obtained as the language of the concatenation of
NFAs for variables and string literals) equals the language of the right-hand side. When
stability is achieved, length constraints of the solutions are generated and passed to the
LIA solver. The algorithm is complete for the chain-free [5] combinations of equations,
regular and length constraints, together with unrestricted disequations, making it the
largest known decidable fragment of these types of constraints.

The stabilization-based decision procedure starts by inductively converting the initial
regular constraints into NFAs. During the construction, we utilize eager simulation-based
reduction [16,17] with on-demand determinization and minimization.

For an efficient handling of quadratic equations (systems of equations with at most
two occurrences of each variable) with lengths, Noodler implements a decision pro-
cedure based on the Nielsen transformation [32]. The algorithm constructs a graph
corresponding to the system and reasons about it to determine if the input formula is
satisfiable or not [38,22]. If the system contains length variables, we also create a counter
automaton corresponding to the Nielsen graph (in a similar way as in [28]). In the subse-
quent step, we contract edges, saturating the set of self-loops and, finally, we iteratively
generate flat counter sub-automata (a flat counter automaton only allows cycles that
are self-loops), which are later transformed into LIA formulae describing lengths of all
possible solutions.

In order to solve (dis)equations of regular expressions, we reduce the problem to
reasoning about the corresponding NFAs (similarly as for regular constraints handling).
In particular, we use efficient NFA equivalence and universality checking from Mata,
which implements advanced antichain-based algorithms [46,6].

26 Y.Chen, D. Chocholatý, V. Havlena, L. Hoĺık, O. Lengál, J. Śıč

Preprocessing. Each decision procedure employs a sequence of preprocessing rules
transforming the string constraint to a more suitable form. Our portfolio of rules includes
transformations reducing the number of equations by a conversion to regular constraints,
propagating epsilons and variables over equations, underapproximation rules, and rules
reducing the number of disequations (cf. [20]). On top of that, Z3-Noodler employs
information about length-equivalent variables allowing to infer simpler constraints (e.g.,
for 𝑥𝑦 = 𝑧𝑤 with len(𝑥) = len(𝑧), we can infer 𝑦 = 𝑤). Z3-Noodler also checks for
simple unsatisfiable patterns for early termination. A sequence of preprocessing rules is
composed for each of the decision procedures differently, maximizing their strengths.

Supported String Predicates and Limitations. Z3-Noodler currently supports handling
of basic string predicates replace, substr, at, indexof, prefix, suffix, contains,
and a limited support for ¬contains. From the set of extended constraints, the core
solver currently does not support the replace all function (and variants of replacement
based on regular expressions) and to/from int conversions. The decision procedures
used in Z3-Noodler make it complete for the chain-free fragment with unbounded
disequations and regular constraints [20], and quadratic equations. Outside this fragment,
our theory core is sound but incomplete.

4 Experiments

Tools and environment. We compared Z3-Noodler with the following state-of-the-art
tools: cvc5 [9] (version 1.0.8), Z3 [31] (version 4.12.2), Z3str3RE [13,12], Z3str4 [30],
OSTRICH [19]3, and Z3-Noodlerpr (version 0.1.0 used in [20]). We did not compare
with Z3-Trau [2] as it is no longer under active development and gives incorrect results
on newer benchmarks. The experiments were executed on a workstation with an Intel
Xeon Silver 4314 CPU @ 2.4 GHz with 128 GiB of RAM running Debian GNU/Linux.
The timeout was set to 120 s, memory limit was set to 8 GiB.

Benchmarks. The benchmarks come from the SMT-LIB [10] repository, specifically
categories QF S [42] and QF SLIA [43]. These benchmarks were also used in SMT-
COMP’23 [41], in which Z3-Noodler participated (version 0.2.0). As Z3-Noodler
does not support to/from int conversions and replace all-like predicates, we ex-
cluded formulae whose satisfiability checking needs their support. Based on the occur-
rences of different kinds of constraints, we divide the benchmarks into three groups:

Regex This category contains formulae with dominating regular membership and
length constraints. It consists of AutomatArk [13], Denghang, StringFuzz [15],
and Sygus-qgen benchmark sets. We excluded 1,568 formulae from StringFuzz
that require support of the to int predicate.

Equations The formulae in this category consist mostly of word equations with length
constraints and a small amount of other predicates. It contains Kaluza [40,27], Ke-
pler [25], Norn [3,4], Slent [44], Slog [45], Webapp, and Woorpje [24] benchmark
sets. We excluded 414 formulae from Webapp that require support of replace all,
replace re, and replace re all predicates.

3 Latest commit 70d01e2d2, run with -portfolio=strings option.

Z3-Noodler: An Automata-Based String Solver 27

Table 1: Results of experiments on all benchmark sets. For each tool and benchmark set (as well
as whole groups under Σ), we give the number of unsolved instances. Results for tools with the
highest number of solved instances are in bold. Numbers with ∗ contain also incorrect results.

Regex Equations Predicates-small

Aut Den StrFuzz Syg Σ Kal Kep Norn Slent Slog Web Woo Σ StrInt Leet StrSm Σ PyEx
Included 15,995 999 10,050 343 27,387 19,432 587 1,027 1,128 1,976 267 809 25,226 11,669 2,652 1,670 15,991 23,845
Unsupported 0 0 1,568 0 1,568 0 0 0 0 0 414 0 414 5,299 0 210 5,509 0

Z3-Noodler 62 0 0 0 62 259 4 0 5 0 0 243 511 4 4 55 63 4,424
cvc5 94 18 1037 0 1149 0 240 85 22 0 40 54 441 0 0 4 4 34
Z3 113 118 340 0 571 164 313 124 74 71 61 25 832 4 0 32 36 1,071
Z3str4 60 4 27 0 91 174 254 73 73 16 62 78 730 5 4 37 46 570
OSTRICH 55 15 229 0 299 288 387 1 130 7 65 53 931 37 26 ∗106 ∗169 12,290
Z3str3RE 66 27 ∗143 1 ∗237 ∗144 311 133 87 55 ∗104 ∗118 ∗952 64 192 ∗179 ∗435 17,764
Z3-Noodlerpr 86 1 ∗1,014 0 ∗1,101 508 575 0 6 0 ∗3 256 ∗1,348 40 29 ∗493 ∗562 ∗13,362

Predicates-small Although Z3-Noodler focuses mainly on word equations with length
and regular constraints, the evaluation includes also a group consisting of smaller
formulae that use string predicates such as substr, at, contains, etc. It is formed
from FullStrInt, LeetCode, and StrSmallRw [33] benchmark sets. We removed 5,509
formulae containing the to/from int predicates from FullStrInt and StrSmallRw.

We also consider the PyEx [37] benchmark, which we do not put into any of these
groups, as it contains large formulae with complex predicates (substr, contains,
etc.). We note that we omit the small Transducer+ [18] benchmark because it contains
exclusively formulae with replace all.

Table 2: Average run times (in sec-
onds) of solved instances and their
standard deviations.

Reg Eq Pred
avg std avg std avg std

Z3-Noodler 0.11 1.35 0.11 2.13 0.11 2.16
cvc5 1.17 8.51 0.11 2.15 0.03 0.15
Z3 1.92 9.71 0.18 2.83 0.04 0.42
Z3str4 0.35 2.00 0.25 3.40 0.02 0.31
OSTRICH 4.29 8.67 4.28 9.28 12.71 15.08
Z3str3RE 0.31 3.28 0.13 2.72 0.01 0.08
Z3-Noodlerpr 0.27 2.86 0.12 2.93 0.09 1.69

Results. We show the number of unsolved instances
for each benchmark and tool (as well as whole
groups) in Table 1. Some tools gave incorrect re-
sults (determined by comparing to the output of cvc5
and Z3) for some benchmarks. Usually, this was less
than 10 instances, except for Z3str3RE on String-
Fuzz and StrSmallRw (50 and 12 incorrect results re-
spectively) and Z3-Noodlerpr on StrSmallRw (218
incorrect results). Table 2 then shows the average
run times and their standard deviations for solved
instances for each category and tool.

The results show that Z3-Noodler outperforms other tools on the Regex group (in
particular on Denghang, StringFuzz, and Sygus-qgen) both in the number of solved
instances and the average run time. Only on AutomatArk it cannot solve the most
formulae (but it solves only 7 less than the winner OSTRICH, while being much faster).

On the Equations group, Z3-Noodler also outperforms other tools on most of the
benchmarks. In particular on Kepler, Norn, Slent, Slog, and Webapp. On Kaluza, it is
outperformed by other tools, but it still solves the vast majority of formulae. Z3-Noodler
has worse performance on Woorpje, which seems to be a synthetic benchmark generated
to showcase the strength of a specialized algorithm [24] (this benchmark is the reason
for Z3-Noodler taking the second place in the whole group). With 0.11 s, Z3-Noodler
and cvc5 have the lowest average run time.

28 Y.Chen, D. Chocholatý, V. Havlena, L. Hoĺık, O. Lengál, J. Śıč

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

cv
c5

(a) Z3-Noodler vs. cvc5

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

Z3
(b) Z3-Noodler vs. Z3

0.01 0.1 1 10 100
0.01

0.1

1

10

100

Z3-Noodler

Vi
rtu

al
 B

es
t S

ol
ve

r

(c) Z3-Noodler vs. VBS

Fig. 2: Comparison of Z3-Noodler with cvc5, Z3, and the virtual best solver (VBS).
Times are in seconds, axes are logarithmic. Dashed lines represent timeouts (120 s).
Colours distinguish groups: •Regex, •Equations, and •Predicates-small.

The winner of Predicates-small is cvc5. In particular, on FullStrInt and LeetCode
the difference with Z3-Noodler is equally 4 instances and on StrSmallRw the difference
is 51 cases. The average time of Z3-Noodler is also a bit higher, with 0.11 s for Z3-
Noodler compared to the 0.03 s for cvc5. Similarly, Z3-Noodler is outperformed by
cvc5, Z3, and Z3str4 on PyEx. Indeed, we have not optimized Z3-Noodler for formulae
with large numbers of predicates yet. The results of Z3-Noodler could, however, be
further improved by proper axiom saturation for predicates or lazy predicate evaluation.

Table 3: Evaluating solver contribution to
a portfolio. Times are in seconds.

Regex Equations
Unsolved Time Unsolved Time

VBS+ 1 427 19 1,304
VBS+- Z3-Noodler 1 2,914 131 6,830
VBS+- cvc5 1 549 145 1,401
VBS+- Z3 1 430 29 1,579
VBS+- Z3str4 1 473 19 1,416
VBS+- OSTRICH 1 427 21 1,270
VBS+- Z3str3RE 1 510 20 1,307
cvc5 + Z3 + Z3-Noodler 1 608 22 1,471
cvc5 + Z3 278 27,916 303 2,805

In Fig. 2 we show scatter plots compar-
ing running time of Z3-Noodler with cvc5,
Z3, and virtual best solver (VBS; a solver
that takes the best result from all tools other
than Z3-Noodler) on all three benchmark
groups. The plots show that Z3-Noodler
outperforms the competitors on a vast num-
ber of instances, in many cases being comple-
mentary to them. To validate this claim, we
also checked how different solvers contribute
to a portfolio. That is, we took the VBS in-
cluding Z3-Noodler (VBS+) and then checked how well the portfolio works without
each of the solvers. Table 3 shows the results on the Regex and Equations groups (we
omit Predicates-small, where Z3-Noodler does not help the portfolio). The results
show that on the two groups, Z3-Noodler is the most valuable solver in the portfolio.
We also include results on the small portfolio of Z3 and cvc5 (with and without Z3-
Noodler) showing that, on the two groups, using just these three solvers is almost as
good as using the whole portfolio of all solvers.

Comparing with the older version Z3-Noodlerpr from [20], we can see that there
is a significant improvement in most benchmarks, most significantly in AutomatArk,
StringFuzz, Kepler, StrSmallRw, and Kaluza. We note that adding more complicated
algorithm selection strategies significantly improved the overall performance of Z3-

Z3-Noodler: An Automata-Based String Solver 29

Noodler, but, on the other hand, decreased the performance on Kaluza (cf. [20]). Better
results in AutomatArk and StringFuzz stem from the improvements in Mata and from
heuristics tailored for regular expressions handling. Including Nielsen’s algorithm [32]
has the largest impact on the Kepler benchmark. The improvement on predicate-intensive
benchmarks is caused by optimizations in axiom saturation for predicates. The older
version also had multiple bugs that have been fixed in the current version.

Acknowledgments

This work has been supported by the Czech Ministry of Education, Youth and Sports
ERC.CZ project LL1908, the Czech Science Foundation project 23-07565S, and the
FIT BUT internal project FIT-S-23-8151.

Data Availability Statement

An environment with the tools and data used for the experimental evaluation in the
current study is available at [21].

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Dolby, J., Janků, P., Lin, H., Holı́k, L., Wu,
W.: Efficient handling of string-number conversion. In: Proc. of PLDI’20. pp. 943–957. ACM
(2020). https://doi.org/10.1145/3385412, https://doi.org/10.1145/3385412

2. Abdulla, P.A., Atig, M.F., Chen, Y., Diep, B.P., Holı́k, L., Rezine, A., Rümmer, P.: Trau: SMT
solver for string constraints. In: Bjørner, N.S., Gurfinkel, A. (eds.) 2018 Formal Methods in
Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018.
pp. 1–5. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8602997, https://
doi.org/10.23919/FMCAD.2018.8602997

3. Abdulla, P.A., Atig, M.F., Chen, Y., Holı́k, L., Rezine, A., Rümmer, P., Stenman, J.:
String constraints for verification. In: Biere, A., Bloem, R. (eds.) Computer Aided Veri-
fication - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8559, pp. 150–166. Springer (2014). https://doi.org/10.1007/
978-3-319-08867-9_10, https://doi.org/10.1007/978-3-319-08867-9_10

4. Abdulla, P.A., Atig, M.F., Chen, Y., Holı́k, L., Rezine, A., Rümmer, P., Stenman, J.: Norn: An
SMT solver for string constraints. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp. 462–469.
Springer (2015). https://doi.org/10.1007/978-3-319-21690-4_29, https://doi.
org/10.1007/978-3-319-21690-4_29

5. Abdulla, P.A., Atig, M.F., Diep, B.P., Holı́k, L., Janků, P.: Chain-free string constraints.
In: Chen, Y., Cheng, C., Esparza, J. (eds.) Automated Technology for Verification and
Analysis - 17th International Symposium, ATVA 2019, Taipei, Taiwan, October 28-31,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11781, pp. 277–293. Springer
(2019).https://doi.org/10.1007/978-3-030-31784-3_16,https://doi.org/10.
1007/978-3-030-31784-3_16

Y.Chen, D. Chocholatý, V. Havlena, L. Hoĺık, O. Lengál, J. Śıč30

https://doi.org/10.1145/3385412
https://doi.org/10.1145/3385412
https://doi.org/10.1145/3385412
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16

6. Abdulla, P.A., Chen, Y.F., Holı́k, L., Mayr, R., Vojnar, T.: When simulation meets antichains.
In: TACAS’10. LNCS, vol. 6015, pp. 158–174. Springer (2010)

7. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: SolCMC: Solidity compiler’s model
checker. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th International
Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 13371, pp. 325–338. Springer (2022).https://doi.org/10.1007/
978-3-031-13185-1_16, https://doi.org/10.1007/978-3-031-13185-1_16

8. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K., Rungta, N., Tkachuk,
O., Varming, C.: Semantic-based automated reasoning for aws access policies using smt.
In: 2018 Formal Methods in Computer Aided Design (FMCAD). pp. 1–9 (2018). https:
//doi.org/10.23919/FMCAD.2018.8602994

9. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed, A.,
Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng, Y.,
Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-strength smt solver. In: Fisman, D.,
Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
415–442. Springer International Publishing, Cham (2022)

10. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org (2016)

11. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB):
Strings. https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml (2023)

12. Berzish, M., Day, J.D., Ganesh, V., Kulczynski, M., Manea, F., Mora, F., Nowotka, D.: To-
wards more efficient methods for solving regular-expression heavy string constraints. Theor.
Comput. Sci. 943, 50–72 (2023). https://doi.org/10.1016/j.tcs.2022.12.009,
https://doi.org/10.1016/j.tcs.2022.12.009

13. Berzish, M., Kulczynski, M., Mora, F., Manea, F., Day, J.D., Nowotka, D., Ganesh, V.:
An SMT solver for regular expressions and linear arithmetic over string length. In: Silva,
A., Leino, K.R.M. (eds.) Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 12760, pp. 289–312. Springer (2021). https://doi.org/10.1007/
978-3-030-81688-9_14, https://doi.org/10.1007/978-3-030-81688-9_14

14. Blahoudek, F., Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Word
equations in synergy with regular constraints. In: Chechik, M., Katoen, J.P., Leucker, M.
(eds.) Formal Methods. pp. 403–423. Springer International Publishing, Cham (2023)

15. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: StringFuzz: A fuzzer for
string solvers. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification. pp.
45–51. Springer International Publishing, Cham (2018)

16. Bustan, D., Grumberg, O.: Simulation based minimization. In: Proceedings of CADE-17.
LNCS, vol. 1831, pp. 255–270. Springer (2000)

17. Cécé, G.: Foundation for a series of efficient simulation algorithms. In: LICS’17. pp. 1–12.
IEEE Computer Society (2017)

18. Chen, T., Hague, M., He, J., Hu, D., Lin, A.W., Rümmer, P., Wu, Z.: A decision procedure for
path feasibility of string manipulating programs with integer data type. In: Hung, D.V., Sokol-
sky, O. (eds.) Automated Technology for Verification and Analysis - 18th International Sym-
posium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings. Lecture Notes in
Computer Science, vol. 12302, pp. 325–342. Springer (2020).https://doi.org/10.1007/
978-3-030-59152-6_18, https://doi.org/10.1007/978-3-030-59152-6_18

19. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proc. ACM Pro-
gram. Lang. 3(POPL), 49:1–49:30 (2019). https://doi.org/10.1145/3290362, https:
//doi.org/10.1145/3290362

Z3-Noodler: An Automata-Based String Solver 31

https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
www.SMT-LIB.org
https://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3290362
https://doi.org/10.1145/3290362

20. Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Solving string con-
straints with lengths by stabilization. Proc. ACM Program. Lang. 7(OOPSLA2) (oct 2023).
https://doi.org/10.1145/3622872

21. Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Z3-Noodler:
An automata-based string solver (Oct 2023). https://doi.org/10.5281/zenodo.
10041441, https://doi.org/10.5281/zenodo.10041441

22. Chen, Y.F., Havlena, V., Lengál, O., Turrini, A.: A symbolic algorithm for the case-split
rule in solving word constraints with extensions. Journal of Systems and Software 201,
111673 (2023). https://doi.org/https://doi.org/10.1016/j.jss.2023.111673,
https://www.sciencedirect.com/science/article/pii/S0164121223000687

23. Chocholatý, D., Fiedor, T., Havlena, V., Holı́k, L., Hruška, M., Lengál, O., Sı́č, J.: Mata:
A fast and simple finite automata library. In: Proc. of TACAS’24. LNCS, Springer (2024)

24. Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: On solving
word equations using SAT. In: Filiot, E., Jungers, R.M., Potapov, I. (eds.) Reachability
Problems - 13th International Conference, RP 2019, Brussels, Belgium, September 11-13,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11674, pp. 93–106. Springer
(2019). https://doi.org/10.1007/978-3-030-30806-3_8, https://doi.org/10.
1007/978-3-030-30806-3_8

25. Le, Q.L., He, M.: A decision procedure for string logic with quadratic equations, regular
expressions and length constraints. In: Ryu, S. (ed.) Programming Languages and Systems.
pp. 350–372. Springer International Publishing, Cham (2018)

26. Liana Hadarean: String solving at Amazon. https://mosca19.github.io/program/
index.html (2019), presented at MOSCA’19

27. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An efficient SMT
solver for string constraints. Formal Methods in System Design 48(3), 206–234 (2016)

28. Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints, counter systems,
and presburger arithmetic with divisibility. In: Automated Technology for Verification and
Analysis. pp. 352–369. Springer International Publishing, Cham (2018)

29. Mata: An efficient automata library (2023), https://github.com/VeriFIT/mata
30. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: A multi-armed string

solver. In: Huisman, M., Pasareanu, C.S., Zhan, N. (eds.) Formal Methods - 24th International
Symposium, FM 2021, Virtual Event, November 20-26, 2021, Proceedings. Lecture Notes in
Computer Science, vol. 13047, pp. 389–406. Springer (2021).https://doi.org/10.1007/
978-3-030-90870-6_21, https://doi.org/10.1007/978-3-030-90870-6_21

31. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS’08. LNCS, vol. 4963,
pp. 337–340. Springer (2008), https://doi.org/10.1007/978-3-540-78800-3_24

32. Nielsen, J.: Die isomorphismen der allgemeinen, unendlichen gruppe mit zwei erzeugenden.
Mathematische Annalen 78(1), 385–397 (1917)

33. Nötzli, A., Reynolds, A., Barbosa, H., Niemetz, A., Preiner, M., Barrett, C., Tinelli, C.:
Syntax-guided rewrite rule enumeration for SMT solvers. In: Janota, M., Lynce, I. (eds.)
Theory and Applications of Satisfiability Testing – SAT 2019. pp. 279–297. Springer Inter-
national Publishing, Cham (2019)

34. OWASP: Top 10. https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.
pdf (2013)

35. OWASP: Top 10. https://owasp.org/www-project-top-ten/2017/ (2017)
36. OWASP: Top 10. https://owasp.org/Top10/ (2021)
37. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up DPLL(T)

string solvers using context-dependent simplification. In: Majumdar, R., Kunčak, V. (eds.)
Computer Aided Verification. pp. 453–474. Springer International Publishing, Cham (2017)

38. Robson, J.M., Diekert, V.: On quadratic word equations. In: Annual Symposium on Theoret-
ical Aspects of Computer Science. pp. 217–226. Springer (1999)

Y.Chen, D. Chocholatý, V. Havlena, L. Hoĺık, O. Lengál, J. Śıč32

https://doi.org/10.1145/3622872
https://doi.org/10.1145/3622872
https://doi.org/10.5281/zenodo.10041441
https://doi.org/10.5281/zenodo.10041441
https://doi.org/10.5281/zenodo.10041441
https://doi.org/10.5281/zenodo.10041441
https://doi.org/10.5281/zenodo.10041441
https://doi.org/https://doi.org/10.1016/j.jss.2023.111673
https://doi.org/https://doi.org/10.1016/j.jss.2023.111673
https://www.sciencedirect.com/science/article/pii/S0164121223000687
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-30806-3_8
https://mosca19.github.io/program/index.html
https://mosca19.github.io/program/index.html
https://github.com/VeriFIT/mata
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/Top10/

39. Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham, S., Vizel, Y. (eds.)
Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel,
August 7-10, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13371, pp.
3–18. Springer (2022). https://doi.org/10.1007/978-3-031-13185-1_1, https://
doi.org/10.1007/978-3-031-13185-1_1

40. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: Kaluza web site (2023),
https://webblaze.cs.berkeley.edu/2010/kaluza/

41. SMT-COMP’23: https://smt-comp.github.io/2023/ (2023)
42. SMT-LIB: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_S

(2023)
43. SMT-LIB: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_

SLIA (2023)
44. Wang, H.E., Chen, S.Y., Yu, F., Jiang, J.H.R.: A symbolic model checking approach to the

analysis of string and length constraints. In: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering. p. 623–633. ASE 2018, Association
for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/
3238147.3238189, https://doi.org/10.1145/3238147.3238189

45. Wang, H., Tsai, T., Lin, C., Yu, F., Jiang, J.R.: String analysis via automata manipulation with
logic circuit representation. In: CAV’16. LNCS, vol. 9779, pp. 241–260. Springer (2016)

46. Wulf, M.D., Doyen, L., Henzinger, T.A., Raskin, J.: Antichains: A new algorithm for checking
universality of finite automata. In: CAV’06. LNCS, vol. 4144, pp. 17–30. Springer (2006)

47. Z3-Noodler: Automata-based string solver (2023), https://github.com/VeriFIT/
z3-noodler

Z3-Noodler: An Automata-Based String Solver 33

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://webblaze.cs.berkeley.edu/2010/kaluza/
https://smt-comp.github.io/2023/
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_S
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1145/3238147.3238189
https://github.com/VeriFIT/z3-noodler
https://github.com/VeriFIT/z3-noodler
http://creativecommons.org/licenses/by/4.0/

TaSSAT: Transfer and Share SAT⋆

Carnegie Mellon University, Pittsburgh, PA, USA
{mdsolimc,ccodel,mheule}@cs.cmu.edu

Abstract. We present TaSSAT, a powerful local search SAT solver that
effectively solves hard combinatorial problems. Its unique approach of
transferring clause weights in local minima enhances its efficiency in
solving problem instances. Since it is implemented on top of YalSAT,
TaSSAT benefits from practical techniques such as restart strategies and
thread parallelization. Our implementation includes a parallel version
that shares data structures across threads, leading to a significant re-
duction in memory usage. Our experiments demonstrate that TaSSAT
outperforms similar solvers on a vast set of SAT competition bench-
marks. Notably, with the parallel configuration of TaSSAT, we improve
lower bounds for several van der Waerden numbers.

Keywords: Local Search for SAT · Weight Transfer · Memory Efficiency

1 Introduction

The SAT problem asks if there exists a satisfying truth assignment for a given
formula in propositional logic. SAT is known to be intractable [11], but modern
SAT solvers, particularly conflict-driven clause learning (CDCL) solvers, have
made significant progress in solving large formulas from various application do-
mains. When it comes to combinatorial problems, stochastic local search (SLS)
solvers are often more effective than CDCL. Because SLS and CDCL solvers
have complementary strengths, some SAT solvers like Kissat [7] and CryptoMin-
iSAT [17] combine SLS and CDCL techniques, and SLS methods play a key role
in shaping the capabilities of modern SAT solvers.

SLS solvers explore truth assignments by flipping the truth value of individual
variables until a solution is found or until timeout. The solver generally tries to
flip variables that will minimize the number of falsified clauses. When a solver
determines that no variable flip will lead to an improvement according to some
heuristic or metric, it has reached a local minimum.

To escape local minima, the solver can either make random flips or adjust its
internal state until improvement is possible. Despite being an effective family of
algorithms for escaping local minima, Dynamic Local Search (DLS) has attracted

⋆ The authors were supported by NSF grant CCF-2229099. Md Solimul Chowdhury
was partially supported by a NSERC Postdoctoral Fellowship.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 34–42, 2024.
https://doi.org/10.1007/978-3-031-57246-3_3

Md Solimul Chowdhury(B) , Cayden R. Codel , and Marijn J. H. Heule

https://doi.org/10.1007/978-3-031-57246-3_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_3&domain=pdf
http://orcid.org/0000-0001-8429-2108
http://orcid.org/0000-0003-3588-4873
http://orcid.org/0000-0002-5587-8801
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

limited attention in the recent years. DLS algorithms assign weights to clauses,
search to find a solution by minimizing the total amount of weight held by
falsified clauses, and adjust these weights in local minima as a means of escaping
them.

The tool we present in this paper is ultimately based on DDFW [16] (di-
vide and distribute fixed weights), a DLS algorithm that dynamically transfers
weight from satisfied to falsified clauses along neighborhood relationships in local
minima. DDFW is remarkably effective at solving hard combinatorial problems,
such as matrix multiplication [14], graph coloring [13], edge matching [12], the
coloring of the Pythagorean triples [15], and finding bounds for van der Waer-
den numbers [3]. Notably, DDFW solves satisfiable instances of the Pythagorean
triples problem in under a minute, whereas CDCL solvers take CPU years.

In this paper, we introduce Transfer and Share SAT (TaSSAT), a novel par-
allel SLS solver. TaSSAT implements LiWeT, a simplification of the algorithm
from our recent work [10] modifying DDFW. Our implementation of TaSSAT is
built on top of a leading SLS solver YalSAT [5], and it adds two new features.
First, it incorporates the weight-transfer methods from LiWeT, leading to more
efficient solving. Specifically, a new weight-transfer parameter allows TaSSAT to
shift more clause weight in local minima, enhancing its adaptability during the
search. Second, TaSSAT’s parallel mode shares data structures among threads
to reduce its memory footprint by up to 80%.

Our results show that TaSSAT substantially outperforms YalSAT on an ex-
tensive benchmark set of 5355 anniversary instances from the 2022 SAT Compe-
tition. Further, TaSSAT’s parallel version improves the lower bounds for nine van
der Waerden numbers, surpassing prior work by Ahmed et al. [3] that used 29
algorithms (including DDFW) and extensive parallelization. Our results demon-
strate the clear algorithmic and practical improvements of TaSSAT.

2 Preliminaries

A SAT formula in conjunctive normal form (CNF) is a conjunction of clauses,
each of which is a disjunction of literals (Boolean variables or their negations).
A clause C is satisfied by a truth assignment α if α satisfies at least one of its
literals, and is otherwise falsified. A formula F is satisfied by α when all of its
clauses are. Clauses C and D are neighbors if they share a common literal.

In DLS, clauses are assigned weights, denoted as W : C → R≥0, representing
the cost of leaving a clause falsified. The total weight of the falsified clauses
is the falsified weight. Variables that reduce the falsified weight when flipped
are called weight-reducing variables, while those that do not impact the falsified
weight when flipped are called sideways variables.

DDFW starts with a random initial truth assignment and sets all clause
weights to parameter w0 (w0 = 8 in the original paper [16]). It then flips weight-
reducing variables until none remain. Upon reaching a local minimum, DDFW
randomly chooses between making a sideways flip (if possible, and with a 15%
chance) or entering the weight transfer phase. During weight transfer, each falsi-

TaSSAT: Transfer and Share SAT 35

0.0
0.05

0.1
0.15

0.20.0
0.1

0.2
0.3

1,000

1,200

cur
rcp

tbasepct

PA
R

-2
sc

or
e

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.1

0.2
0.3

1,000

1,200

ini
tpc

tbasepct

PA
R

-2
sc

or
e

Fig. 1: PAR-2 scores for parameter searches on initpct, basepct, and currpct.
The plots are oriented to best show the performance trends, so the axes vary.

fied clause receives a fixed weight from a maximum-weight satisfied neighbor CS

(except for 1% of the time, when a random satisfied clause is chosen instead). The
amount of weight transferred from CS depends on its weight: if W (CS) > w0,
then a weight of 2 is taken; otherwise, a weight of 1 is taken.

3 LiWeT: The Linear Weight Transfer Algorithm

TaSSAT takes ideas from DDFW and distills them into an algorithm called
LiWeT (Linear Weight Transfer), which is a simplification of our prior work [10].
LiWeT uses a novel linear weight transfer rule to determine how much weight
to move in local minima. The rule takes three parameters: currpct, a multiplier
on the current clause’s weight; basepct, a multiplier on the initial weight w0;
and initpct, a multiplier for clauses with exactly w0 weight. For most clauses
Cs, the amount of weight that is transferred is currpct ·W (CS)+ basepct ·w0.
For clauses with W (CS) = w0, the amount taken is initpct · w0. As a result,
initpct controls how much weight is initially taken from a clause.

The weight transfer rule offers two key advantages. First, the use of floating-
point parameters rapidly establishes distinct weights for clauses, eliminating the
need for tie-breaking near local minima and, consequently, explicit sideways flips.
Second, the initpct parameter enables LiWeT to release a larger proportion of
the total clause weight, enhancing its adaptability to challenging formulas. In
DDFW and LiWeT, maximum-weight neighbors are selected for each falsified
clause within local minima. Clauses with weights less than w0 are unlikely to
contribute more weight, artificially reducing the total amount of weight LiWeT
can move around. The initpct parameter prevents this from happening.

LiWeT differs from DDFW in one other respect: in local minima, it increases
the probability of choosing a randomly satisfied clause, rather than a maximum-
weight neighbor, to 10%. We found that this improves overall performance.

Algorithm 1 shows LiWeT’s pseudocode.

S. Chowdhury et al.36

Algorithm 1: The LiWeT algorithm

Input: CNF formula F , w0, initpct, basepct, currpct
Output: Satisfiability of F

1 W (C)← w0 for all C ∈ F
2 α← random truth assignment on the variables in F
3 for 1 to MAXFLIPS do
4 if α satisfies F then return “SAT”
5 else
6 if a weight reducing variable is available then
7 flip the variable that reduces the falsified weight the most
8 else
9 foreach clause C ∈ F falsified under α do

10 CS ← select a satisfied clause
11 if W (CS) = w0 then w ← initpct · w0

12 else w ← currpct ·W (CS) + basepct · w0

13 transfer w from CS to C

14 return “No SAT”

To determine the effect of the three parameters, we conducted parameter
searches across them. We ranged basepct ∈ [0, 0.3], currpct ∈ [0, 0.2], and
initpct ∈ [0, 1.0] with increments of 0.1, 0.05 and 0.2, respectively. Our searches
were done on a combined 168 instances from the 2019 SAT Race and the 2021
and 2022 SAT competitions, each with a 900-second timeout. We picked these
instances because they were solved by previous versions of LiWeT and DDFW,
and thus were less likely to result in timeout.

Figure 1 shows the PAR-2 scores for two parameter searches, where a lower
score indicates better performance.1 The left plot shows that TaSSAT performs
better with higher values of both basepct and currpct when initpct = 1.
The optimal configuration is (basepct, currpct) = (0.175, 0.075). The right
plot shows that LiWeT performs best when initpct = 1 for any basepct value
when currpct = 0. This suggests that taking all weight from satisfied clauses
early in the search is crucial for better performance. We ran all subsequent
TaSSAT experiments with (initpct, basepct, currpct) = (1, 0.175, 0.075).

We conclude this section by outlining the distinctions between the algorithm
presented in [10] and LiWeT, underscoring the simplifications introduced in the
latter compared to the former. Compared to the algorithm from our previous
work [10], LiWeT has two fewer parameters. Previously, the algorithm used two
pairs of (a, c) parameters to transfer a ∗W (CS)+ c weight from satisfied clauses
CS in local minima. One pair of (a, c) values was used when W (CS) > w0, and
the other for when W (CS) = w0. In LiWeT, we replaced the second pair with
initpct. Then based on the observation in the right plot of Figure 1, we set

1 The PAR-2 score is defined as the average solving time, with twice the timeout as
the time for unsolved instances.

TaSSAT: Transfer and Share SAT 37

initpct to 1 for performance reasons. This adjustment eliminates initpct from
line 11 of Algorithm 1, transforming it into a two-parameter algorithm.

Another simplification was the the removal of sideways variable flips from
LiWeT. DDFW and previous versions of our algorithm would flip sideways vari-
ables, but we found that they rarely occured with floating-point weights, and
refusing to flip them didn’t affect performance. Notably, these simplifications
enhance the algorithmic power of LiWeT over the previous algorithm, which we
demonstrate in section 5.

4 Implementation of TaSSAT and PaSSAT

We implemented TaSSAT on top of YalSAT [6], a state-of-the-art SLS solver that
implements the ProbSAT algorithm [4]. As a result, our implementation benefits
from the practical techniques present in YalSAT, including restart techniques.
Our TaSSAT implementation2 includes a parallel version, called PaSSAT, that
improves the memory management of the parallel version of YalSAT.

Because LiWeT is computationally expensive when there are a higher number
of falsified clauses, TaSSAT has an optional mode to run ProbSAT until the
number of falsified clauses drops beneath a dynamically computed threshold
based on the formula’s size, at which point it resumes LiWeT. By default, we
ran TaSSAT with this option disabled in our experiments, but we enabled it for
the van der Waerden experiments.

We also improve on the parallel features in YalSAT. The main issue in the
parallel version of YalSAT was that the formula data structures were not shared.
As a result, each thread had to independently parse, store, and simplify the input
formula, resulting in redundant computation and a bloated memory footprint.
We solved this problem in PaSSAT by nominating a primary thread to parse and
simplify the formula and to allocate the core data structures. Once the primary
thread finishes, it hands solving off to the secondary threads, which can then
jointly refer to the shared data structures.

5 Evaluation

We now present our experimental results3 of TaSSAT against similar algorithms.
Our baseline solvers are the original YalSAT (YalSAT-Prob); our DDFW-inspired,
YalSAT-based solver from previous work [10] (YalSAT-Lin); a YalSAT-based im-
plementation of DDFW (YalSAT-DDFW); and the UBCSAT implementation of
DDFW (UBCSAT-DDFW). We include two DDFW implementations to check
that the YalSAT version performs similarly to the UBCSAT one, despite being
implemented with a different base solver.

We ran these four solvers on two benchmark sets: a set of 5355 instances
from the 2022 SAT Competition’s anniversary track (the anni set) [1] cover-
ing instances from the previous 20 years of competition, and a set of nine van

2 TaSSAT source code is available at https://github.com/solimul/tassat.
3 Details are available at https://github.com/solimul/TACAS-24-solve_details.

S. Chowdhury et al.38

https://github.com/solimul/tassat
https://github.com/solimul/TACAS-24-solve_details

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
600

650

700

750

800

850

900

950

1,000

1,050

runtime (secs)

so
lv

ed
an

ni
ve

rs
ar

y
tr

ac
k

in
st

an
ce

s

TaSSAT(1040)
YalSAT-Lin(969)
UBCSAT-DDFW(874)
YalSAT-DDFW(859)
YalSAT-Prob(857)

Fig. 2: Performance profiles for solver modifications on the anni benchmark set
show that TaSSAT significantly outperforms the others. Since all solvers can
quickly solve 600 instances, we start the y-axis at 600 to improve readability.

der Waerden number instances.4 For reproducibility, we set all randomization
seeds to 0. For the anni instances, we ran TaSSAT and our baseline solvers in
the StarExec Cluster [2] with a 5000-second timeout. For the van der Waeren
instances, we ran the parallel version of TaSSAT with and without the ProbSAT-
LiWeT option with a 48-hour timeout on the Bridges-2 cluster [8] with AMD
EPYC 7742 CPUs (128 cores, 512GB RAM).

Figure 2 illustrates our results for the anni dataset. TaSSAT performed the
best by solving 1040 problem instances, surpassing YalSAT-Lin, UBCSAT-DDFW,
YalSAT-DDFW, and YalSAT-Prob with 969, 874, 859, and 857 solved instances,
respectively. In particular, TaSSAT solved 71 more instances than YalSAT-Lin,
the solver from our previous work, showing that our algorithmic changes are,
in fact, improvements. The slight difference in solve counts between UBCSAT-
DDFW and YalSAT-DDFW (874 vs. 859) can be attributed to random noise.

Notably, TaSSAT exclusively solved 12 instances that no 2022 SAT Compe-
tition solver could. However, YalSAT-Prob, YalSAT-Lin, UBCSAT-DDFW, and
YalSAT-DDFW solved 73, 42, 40, and 38 anni instances, respectively, that TaS-
SAT could not.

We also present new lower bounds for van der Waerden numbers by running
PaSSAT. The van der Waerden number w(2; 3, t) is the smallest natural number n

4 Available at https://github.com/solimul/vdw9.

TaSSAT: Transfer and Share SAT 39

https://github.com/solimul/vdw9

Table 1: Lower bounds for van der Waerden numbers w(2; 3, t).

t 31 32 33 34 35 36 37 38 39

Ahmed et al. [3] 930 1006 1063 1143 1204 1257 1338 1378 1418
Our work 953 1011 1071 1145 1208 1260 1341 1380 1419

where for any partition of {1, . . . , n} into P0 and P1, either P0 contains a 3-
term arithmetic progression or P1 contains a t-term arithmetic progression. In
Table 1, we present in the top row previously-known lower bounds for w(2; 3, t)
for 31 ≤ t ≤ 39.

The best lower bounds are obtained when PaSSAT leverages TaSSAT with the
activation of the ProbSAT-LiWeT toggle and integrates YalSAT-style restarts.
This configuration solves all 9 vdw benchmarks, pushing the lower bounds of
these 9 numbers to values that are highlighted in the bottom row of Table 1. In
contrast, using the default TaSSAT configuration, PaSSAT solves 7 vdw bench-
marks, establishing same lower bounds for all the numbers shown in the bottom
row of Table 1, except for w(2; 3, 32) and w(2; 3, 37). Hence, this version enhances
the lower bounds for w(2; 3, 32) and w(2; 3, 37) to 1010 and 1340, respectively,
just 1 short of their best-evaluated lower bounds. The performance of TaSSAT-
Prob-LiWeT compared to TaSSAT-LiWeT is evident in their respective average
PAR-2 scores, with values of 31,943 and 91,744.

Putting these results into perspective, Ahmed et al. [3] were unable to solve
any of these vdw instances, despite employing 29 algorithms and extensive par-
allelization. Notably, the best result attained by Ahmed et al. using only SLS
methods for w(2; 3, 31) was 919. We improved this bound to 953 These results
emphasize the unique algorithmic strengths of our solver.

In addition to improved solving, PaSSAT achieves significant memory re-
duction compared to our previous parallel solver [10]. Across the seven vdw

benchmarks solved by both PaSSAT and the parallel solver, the average memory
reduction is substantial, decreasing from 3.2 GB to 686.17 MB, a nearly 80%
reduction. The reduction held even for the largest problem instance (t = 39),
where the memory footprint decreased by nearly 80%, from 4.42 GB to 966 MB.

Code and Data Availability Statement

The code and data that support the contributions of this work are openly avail-
able in the “Artifact for TaSSAT: A Stochastic Local Search Solver for SAT”
at https://zenodo.org/records/10042124 [9]. The authors confirm that the
data supporting the findings of this study are available within the article and
the artifact.

S. Chowdhury et al.40

https://zenodo.org/records/10042124

References

1. SAT Competition 2022. https://satcompetition.github.io/2022/downloads.

html, 2022.
2. Cesare Tinelli Aaron Stump, Geoff Sutcliffe. StarExec. https://www.starexec.

org/starexec/public/about.jsp, 2013.
3. Tanbir Ahmed, Oliver Kullmann, and Hunter S. Snevily. On the van der Waerden

numbers w(2; 3, t). Discrete Applied Mathematics, 174:27–51, 2014.
4. Adrian Balint. Engineering stochastic local search for the satisfiability problem.

PhD thesis, University of Ulm, 2014.
5. Adrian Balint, Armin Biere, Andreas Fröhlich, and Uwe Schöning. Improving

implementation of SLS solvers for SAT and new heuristics for k-SAT with long
clauses. In Proceedings of SAT-2014, pages 302–316, 2014.

6. Armin Biere. YalSAT: Yet Another Local Search Solver. http://fmv.jku.at/

yalsat/, 2010.
7. Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger. CADI-

CAL, KISSAT, PARACOOBA, PLINGELING and TREENGELING entering the
SAT Competition. In Proceedings of SAT Competition, pages 50–53, 2020.

8. Shawn T. Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin Scibek,
and Nicholas A. Nystrom. Bridges-2: A platform for rapidly-evolving and data
intensive research. In Association for Computing Machinery, New York, NY, USA,
pages 1–4, 2021.

9. Md Solimul Chowdhury, Cayden Codel, and Marijn Heule. Artifact for TaSSAT:
A stochastic local search solver for SAT.

10. Md Solimul Chowdhury, Cayden R. Codel, and Marijn J.H. Heule. A linear weight
transfer rule for local search. In NASA Formal Methods, 2023.

11. Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971,
Shaker Heights, Ohio, USA, pages 151–158, 1971.

12. Marijn J. H. Heule. Solving edge-matching problems with satisfiability solvers. In
SAT 2009 competitive events booklet, pages 69–82, 2009.

13. Marijn J. H. Heule, Anthony Karahalios, and Willem-Jan van Hoeve. From cliques
to colorings and back again. In Proceedings of CP-2022, pages 26:1–26:10, 2022.

14. Marijn J. H. Heule, Manuel Kauers, and Martina Seidl. New ways to multiply
3x3-matrices. J. Symb. Comput., 104:899–916, 2019.

15. Marijn J. H. Heule and Oliver Kullmann. The science of brute force. Commun.
ACM, 60(8):70–79, 2017.

16. Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar, and Duc Nghia Pham. Neigh-
bourhood clause weight redistribution in local search for SAT. In Proceedings of
CP-2005, Lecture Notes in Computer Science, pages 772–776, 2005.

17. Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to
cryptographic problems. In Oliver Kullmann, editor, Proceedings of SAT-2009,
pages 244–257, 2009.

TaSSAT: Transfer and Share SAT 41

https://satcompetition.github.io/2022/downloads.html
https://satcompetition.github.io/2022/downloads.html
https://www.starexec.org/starexec/public/about.jsp
https://www.starexec.org/starexec/public/about.jsp
http://fmv.jku.at/yalsat/
http://fmv.jku.at/yalsat/

S. Chowdhury et al.42

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Speculative SAT Modulo SAT

1 University of Waterloo, Waterloo, Canada
{hgvedira,igarciac,agurfink}@uwaterloo.ca

2 Tel-Aviv University, Tel Aviv, Israel
sharon.shoham@cs.tau.ac.il

Abstract. State-of-the-art model-checking algorithms like IC3/PDR are
based on uni-directional modular SAT solving for finding and/or blocking
counterexamples. Modular SAT-solvers divide a SAT-query into multiple
sub-queries, each solved by a separate SAT-solver (called a module), and
propagate information (lemmas, proof obligations, blocked clauses, etc.)
between modules. While modular solving is key to IC3/PDR, it is obvi-
ously not as effective as monolithic solving, especially when individual
sub-queries are harder to solve than the combined query. This is par-
tially addressed in SAT modulo SAT (SMS) by propagating unit literals
back and forth between the modules and using information from one
module to simplify the sub-query in another module as soon as possible
(i.e., before the satisfiability of any sub-query is established). However,
bi-directionality of SMS is limited because of the strict order between de-
cisions and propagation – only one module is allowed to make decisions,
until its sub-query is SAT. In this paper, we propose a generalization
of SMS, called specSMS, that speculates decisions between modules.
This makes it bi-directional – decisions are made in multiple modules,
and learned clauses are exchanged in both directions. We further extend
DRUP proofs and interpolation, these are useful in model checking, to
specSMS. We have implemented specSMS in Z3 and empirically vali-
date it on a series of benchmarks that are provably hard for SMS.

1 Introduction

IC3/PDR [3] is an efficient SAT-based Model Checking algorithm. Among many
other innovations in IC3/PDR is the concept of a modular SAT-solver that di-
vides a formula into multiple frames and each frame is solved by an individual
SAT solver. The solvers communicate by exchanging proof obligations (i.e., sat-
isfying assignments) and lemmas (i.e., learned clauses).

While modular reasoning in IC3/PDR is very efficient for a Model Checker,
it is not as efficient as a classical monolithic SAT-solver. This is not surprising
since modularity restricts the solver to colorable refutations [11], which are, in the
worst case, exponentially bigger than unrestricted refutations. On the positive
side, IC3/PDR’s modular SAT-solving makes interpolation trivial, and enables

1(B) , Isabel Garcia-Contreras1 , Sharon Shoham2 ,
and Arie Gurfinkel1

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 43–60, 2024.
https://doi.org/10.1007/978-3-031-57246-3_4

V. K. Hari Govind

https://doi.org/10.1007/978-3-031-57246-3_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_4&domain=pdf
http://orcid.org/0000-0002-2789-5997
http://orcid.org/0000-0001-6098-3895
http://orcid.org/0000-0002-7226-3526
http://orcid.org/0000-0002-5964-6792
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

generalizations of proof obligations and inductive generalization of lemmas –
both are key to the success of IC3/PDR.

This motivates the study of modular SAT-solving, initiated by SMS [1]. Our
strategic vision is that our study will contribute to improvements in IC3/PDR.
However, in this paper, we focus on modular SAT-solving in isolation.

In modular SAT-solving, multiple solvers interact to check satisfiability of a
partitioned CNF formula, where each part of the formula is solved by one of the
solvers. In this paper, for simplicity, we consider the case of two solvers ⟨Ss, Sm⟩
checking satisfiability of a formula pair ⟨Φs, Φm⟩. Sm is a main solver and Ss is
a secondary solver. In the notation, the solvers are written right-to-left to align
with IC3/PDR, where the main solver is used for frame 1 and the secondary
solver is used for frame 0.

When viewed as a modular SAT-solver, IC3/PDR is uni-directional. First,
Sm finds a satisfying assignment σ to Φm and only then, Ss extends σ to an
assignment for Φs. Learned clauses, called lemmas in IC3/PDR, are only shared
(or copied) from the secondary solver Ss to the main solver Sm.

SAT Modulo SAT (SMS) [1] is a modular SAT-solver that extends IC3/PDR
by allowing inter-modular unit propagation and conflict analysis: whenever an
interface literal is placed on a trail of any solver, it is shared with the other solver
and both solvers run unit propagation, exchanging unit literals. This makes mod-
ular SAT-solving in SMS bi-directional as information flows in both directions
between the solvers. Bi-directional reasoning can simplify proofs, but it signifi-
cantly complicates conflict analysis. To manage conflict analysis, SMS does not
allow the secondary solver Ss to make any decisions before the main solver Sm is
able to find a complete assignment to its clauses. As a result, learned clauses are
either local to each solver, or flow only from Ss to Sm, restricting the structure
of refutations similarly to IC3/PDR.

Both IC3/PDR and SMS require Sm to find a complete satisfying assignment
to Φm before the solving is continued in Ss. This is problematic since Φm might
be hard to satisfy, causing them to get stuck in Φm, even if considering both
formulas together quickly reveals the (un)satisfiability of ⟨Φs, Φm⟩.

In this paper, we introduce specSMS — a modular SAT-solver that em-
ploys a truly bi-directional reasoning. specSMS builds on SMS, while facilitat-
ing deeper communication between the modules by (1) allowing learnt clauses to
flow in both directions, and (2) letting the two solvers interleave their decisions.
The key challenge is in the adaptation of conflict analysis to properly handle the
case of a conflict that depends on decisions over local variables of both solvers.
Such a conflict cannot be explained to either one of the solvers using only in-
terface clauses (i.e., clauses over interface variables). It may, therefore, require
backtracking the search without learning any conflict clauses. To address this
challenge, specSMS uses speculation, which tames decisions of the secondary
solver that are interleaved with decisions of the main solver. If the secondary
solver satisfies all of its clauses during speculation, a validation phase is em-
ployed, where the main solver attempts to extend the assignment to satisfy its
unassigned clauses. If speculation leads to a conflict which depends on local deci-

44 Hari Govind V K et al.

sions of both solvers, refinement is employed to resolve the conflict. Refinement
ensures progress even if no conflict clause can be learnt. With these ingredients,
we show that specSMS is sound and complete (i.e., always terminates).

To certify specSMS’s result when it determines that a formula is unsatisfi-
able, we extract a modular clausal proof from its execution. To this end, we ex-
tend DRUP proofs [12] to account for modular reasoning, and devise a procedure
for trimming modular proofs. Such proofs are applicable both to specSMS and
to SMS. Finally, we propose an interpolation algorithm that extracts an inter-
polant [4] from a modular proof. Since clauses are propagated between the solvers
in both directions, the extracted interpolants have the shape

∧
i(Ci ⇒ clsi),

where Ci are conjunctions of clauses and each clsi is a clause.
Original SMS is implemented on top of MiniSAT. For this paper, we im-

plemented both SMS and specSMS in Z3 [5], using the extendable SAT-solver
interface of Z3. Thanks to its bi-directional reasoning, specSMS is able to ef-
ficiently solve both sat and unsat formulas that are provably hard for existing
modular SAT-solvers, provided that speculation is performed at the right time.
We describe a simple heuristic to decide when to speculate.

In summary, we make the following contributions: (i) the specSMS algo-
rithm that leverages bi-directional modular reasoning (Sec. 3); (ii) modular
DRUP proofs for specSMS (Sec. 4.1); (iii) proof-based interpolation algorithm;
(iv) heuristics to guide speculation (Sec. 5); and (v) implementation and valida-
tion (Sec. 6).

2 Motivating examples

In this section, we discuss two examples in which both IC3/PDR-style uni-
directional reasoning and SMS-style shallow bi-directional reasoning are ineffec-
tive. The examples illustrate why existing modular reasoning gets stuck. To bet-
ter convey our intuition, we present our problems at word level using bit-vector
variables directly, without explicitly converting them to propositional variables.

Example 1. Consider the following modular sat query: ⟨φin , φSHA-1⟩, where φin ≜
(in = in1) ∨ (in = in2), in is a 512-bit vector, in1, in2 are 512-bit values,
φSHA-1 ≜ (SHA-1circ(in) = SHA-1in1

), SHA-1circ(in) is a circuit that computes
SHA-1 of in, and SHA-1in1

is the 20 byte SHA-1 message digest of in1.
Checking the satisfiability of φin ∧ φSHA-1 is easy because it contains both

the output and the input of the SHA-1 circuit. However, existing modular SAT-
solvers attempt to solve the problem starting by finding a complete satisfying
assignment to φSHA-1. This is essentially the problem of inverting the SHA-1
function, which is known to be very hard for a SAT-solver. The improvements in
SMS allow unit propagation between the two modules. However, this does not
help since there are no unit clauses in φin .

On the other hand, specSMS proceeds as follows: (1) when checking satisfia-
bility of φSHA-1, it decides to speculate, (2) it starts checking satisfiability of φin ,
branches on variables in, finds an assignment σ to in and unit propagates σ to

Speculative Sat Modulo Sat 45

φSHA-1, (3) if there is a conflict in φSHA-1, it learns the conflict clause in ̸= in2,
and (4) it terminates with a satisfying assignment in = in1. Speculation in step
(1) is what differentiates specSMS from IC3/PDR and SMS. The specifics of
when exactly specSMS speculates is guided by a heuristic that is explained in
Sec. 5.

Example 2. Speculation is desirable for unsatisfiable formulas as well. Consider
the modular sat query ⟨φ+, φ−⟩, where φ+ ≜ (a < 0 ⇒ x) ∧ (a ≥ 0 ⇒ x) ∧
PHP 1

32 and φ− ≜ (b < 0 ⇒ ¬x) ∧ (b ≥ 0 ⇒ ¬x) ∧ PHP 2
32. Here, a and

b are 32-wide bitvectors and local to the respective modules. PHP32 encodes
the problem of fitting 32 pigeons into 31 holes and PHP 1

32 and PHP 2
32 denote

a partitioning of PHP32 into 2 problems such that both formulas contain all
variables. The modular problem ⟨φ+, φ−⟩ is unsatisfiable, x and PHP 1

32 being
two possible interpolants. IC3/PDR and SMS only find the second interpolant.
This is because, all satisfying assignments to φ− immediately produce a conflict
in PHP 1

32 part of φ+, without having to make any decisions. However, learning
an interpolant containing x requires searching (i.e., deciding) in both φ+ and
φ−. specSMS solves this problem by speculating right after deciding on all b
variables. During speculation, the secondary solver hits a conflict on x once it
tries to find an assignment to a variables. Note here that speculating after finding
assignments to b variables and before finding an assignment to PHP 2

32 is crucial
for specSMS to find the small interpolant.

These examples highlight the need to speculate while doing modular rea-
soning. Even though speculation by itself is quite powerful, to make specSMS
effective in practice, we need good heuristics to decide when to enter speculation.
We discuss some simple heuristics in Sec. 5.

3 Speculative SAT Modulo SAT

This section presents specSMS — a modular bi-directional SAT algorithm. For
simplicity, we restrict our attention to the case of two modules. However, the
algorithm easily generalizes to any sequence of modules.

3.1 Sat Modulo Sat

We assume that the reader has some familiarity with internals of a MiniSAT-
like SAT solver [6] and with SMS [1]. We give a brief background on SMS,
highlighting some of the key aspects. SMS decides satisfiability of a partitioned
CNF formula ⟨Φs, Φm⟩ with a set of shared interface variables I. It uses two
modules ⟨Ss, Sm⟩, where Sm is a main module used to solve Φm, and Ss is a
secondary module to solve Φs. Each module is a SAT solver (with a slightly
extended interface, as described in this section). We refer to them as modules
or solvers, interchangeably. Each solver has its own clause database (initialized
with Φi for i ∈ {m, s}), and a trail of literals, just as a regular SAT solver. The
solvers keep their decision levels in sync. Whenever a decision is made in one

46 Hari Govind V K et al.

solver, the decision level of the other solver is incremented as well (adding a null
literal to its trail if necessary). Whenever one solver back-jumps to level i, the
other solver back-jumps to level i as well. Assignments to interface variables are
shared between the solvers: whenever such a literal is added to the trail of one
solver (either as a decision or due to propagation), it is also added to the trail
of the other solver. SMS requires that Ss does not make any decisions, until Sm

finds a satisfying assignment to its clauses.

Inter-modular propagation and conflict analysis The two key features of SMS
are inter-modular unit propagation (called PropagateAll in [1]) and the cor-
responding inter-modular conflict analysis. In PropagateAll, whenever an in-
terface literal is added to the trail of one solver, it is added to the trail of the
other, and both solvers run unit propagation. Whenever a unit literal ℓ is copied
from the trail of one solver to the other, the reason for ℓ in the destination solver
is marked using a marker ext. This indicates that the justification for the unit is
external to the destination solver3. Propagation continues until either there are
no more units to propagate or one of the solvers hits a conflict.

Conflict analysis in SMS is extended to account for units with no reason
clauses. If such a literal ℓ is used in conflict analysis, its reason is obtained by
using AnalyzeFinal(ℓ) on the other solver to compute a clause (s ⇒ ℓ) over the
interface literals. This clause is copied to the requesting solver and is used as the
missing reason. Multiple such clauses can be copied (or learned) during analysis
of a single conflict clause – one clause for each literal in the conflict that is
assigned by the other solver.

In SMS, it is crucial that AnalyzeFinal(ℓ) always succeeds to generate a reason
clause over the interface variables. This is ensured by only calling AnalyzeFinal(ℓ)
in the Ss solver on literals that were added to the trail when Ss was not yet
making decisions. This can happen in one of two scenarios: either Sm hits a
conflict due to literals propagated from Ss, in which case AnalyzeFinal is invoked
in Ss on each literal marked ext in Sm that is involved in the conflict resolution
to obtain its reason; or Ss hits a conflict during unit propagation, in which case
it invokes AnalyzeFinal to obtain a conflict clause over the interface variables
that blocks the partial assignment of Sm. In both cases, new reason clauses are
always copied from Ss to Sm. We refer the reader to [1] for the pseudo-code of
the above inter-modular procedures for details.

3.2 Speculative Sat Modulo Sat

specSMS extends SMS [1] by a combination of speculation, refinement, and vali-
dation. During the search in the main solver Sm, specSMS non-deterministically
speculates by allowing the secondary solver Ss to extend the current partial as-
signment of Φm to a satisfying assignment of Φs. If Ss is unsuccessful (i.e., hits
a conflict), and the conflict depends on a combination of a local decision of Sm

3 This is similar to theory propagation in SMT solvers.

Speculative Sat Modulo Sat 47

SMS and specSMS only specSMS

⟨P,D0⟩start ⟨Di, P ⟩

⟨F,DM ⟩unsat

⟨DN , F ⟩

⟨F, F ⟩

Sm : c@0

⋆

Sm : sat

Ss : sat

Ss : c@≤i

REFINE

⋆

REFINE

Sm
: sat

Ss : c@≤N

Ss : sat

Fig. 1: State transitions of specSMS. A state ⟨P,D0⟩ means that the secondary
solver Ss is in propagate mode and the main solver Sm is in decide mode. Each
edge is guarded with a condition. The condition Sm : sat means that Sm found
a full satisfying assignment to Φm. The condition Sm : c@ ≤j means that Sm hit
a conflict at a decision level below j. The four states in yellow corresponds to
SMS; two states in green are unique to specSMS.

with some decision of Ss, then the search reverts to Sm and its partial assign-
ment is refined by forcing Sm to decide on an interface literal from the conflict.
On the other hand, if Ss is successful, solving switches to the main solver Sm

that validates the current partial assignment by extending it to all of its clauses.
This either succeeds (meaning, ⟨Φs, Φm⟩ is sat), or fails and another refinement
is initiated. Note that the two sub-cases where Ss is unsuccessful but the reason
for the conflict is either local to Ss or local to Sm are handled as in SMS.

Search modes specSMS controls the behavior of the solvers and their interaction
through search modes. Each solver can be in one of the following search modes:
Decide, Propagate, and Finished. In Decide, written Di, the solver treats all
decisions below level i as assumptions and is allowed to both make decisions and
do unit propagation. In Propagate, written P , the solver makes no decisions, but
does unit propagation whenever new literals are added to its trail. In Finished,
written F , the clause database of the solver is satisfied; the solver neither makes
decisions nor propagates unit literals.

The pair of search modes of both modules is called the state of specSMS,
where we add a unique state called unsat for the case when the combination
of the modules is known to be unsatisfiable. The possible states and transitions
of specSMS are shown in Fig. 1. States unsat and ⟨F, F ⟩ are two final states,
corresponding to unsat and sat, respectively. In all other states, exactly one of
the solvers is in a state Di. We refer to this solver as active. The part of the
transition system highlighted in yellow correspond to SMS, and the green part
includes the states and transitions that are unique to specSMS.

48 Hari Govind V K et al.

Normal execution with bi-directional propagation specSMS starts in the state
⟨P,D0⟩, with the main solver being active. In this state, it can proceed like SMS
by staying in the yellow region of Fig. 1. We call this normal execution with
bi-directional propagation, since (only) unit propagation goes between solvers.

Speculation What sets specSMS apart is speculation: at any non-deterministically
chosen decision level i, specSMS can pause deciding on the main solver and ac-
tivate the secondary solver (i.e., transition to state ⟨Di, P ⟩). During speculation,
only the secondary solver makes decisions. Since the main solver does not have
a full satisfying assignment to its clauses, the secondary solver propagates as-
signments to the main solver and vice-versa.

Speculation terminates when the secondary solver Ss either: (1) hits a conflict
that cannot be resolved by inter-modular conflict analysis; (2) hits a conflict
below decision level i; or (3) finds a satisfying assignment to Φs.

Case (1) is most interesting, and is what makes specSMS differ from SMS.
Note that a conflict clause is not resolved by inter-modular conflict analysis only
if it depends on an external literal on the trail of Ss that cannot be explained
by an interface clause from Sm. This is possible when both Sm and Ss have
partial assignments during speculation. So the conflict might depend on the
local decisions of Sm. This cannot be communicated to Ss using only interface
variables.

Refinement In specSMS, this is handled by modifying the Reason method in
the solvers to fail (i.e., return ext) whenever AnalyzeFinal returns a non-interface
clause. Additionally, the literal on which AnalyzeFinal failed is recorded in a
global variable refineLit . This is shown in Alg. 1. The inter-modular conflict
analysis is modified to exit early whenever Reason fails to produce a justifi-
cation. At this point, specSMS exits speculation, returns to the initial state
⟨P,D0⟩, both solvers back-jump to decision level i at which speculation was
initiated, and Sm is forced to decide on refineLit .

We call this transition a refinement because the partial assignment of the
main solver Sm (which we view as an abstraction) is updated (a.k.a., refined)
based on the information that was not available to it (namely, a conflict with a
set of decisions in the secondary solver Ss). Since refineLit was not decided on
in Sm prior to speculation, deciding on it is a new decision that ensures progress
in Sm. The next speculation is possible only under strictly more decisions in Sm

than before, or when Sm back-jumps and flips an earlier decision.
We illustrate the refinement process on a simple example:

Example 3. Consider the query ⟨Φs, Φm⟩ with:
Φs(i, j, k, z):

z ∨ i (3)

i ∨ j ∨ k (4)

Φm(a, i, j, k):

a ∨ i ∨ j (1)

j ∨ k (2)

First, Sm decides a (at level 1), which causes no propagations. Then, specSMS

Speculative Sat Modulo Sat 49

enters speculative mode, transitions to ⟨D1, P ⟩ and starts making decisions in
Ss. Ss decides z and calls PropagateAll. Afterwards, the trails for Sm and Ss

are as follows:

Sm a @ 1 null @ 2 i (ext) j (1) k (2)

Ss null @ 1 z @ 2 i (3) j (ext) k (ext)

where x @ i denotes that literal x is decided at level i, and x (r) denotes that
literal x is propagated using a reason clause r, or due to the other solver (if
r = ext). A conflict is hit in Ss in clause (4). Inter-modular conflict analysis
begins. Ss first asks for the reason for k, which is clause (2) in Sm. This clause is
copied to Ss. Note that unlike SMS, clauses can move from Sm to Ss. The new
conflict to be analyzed is (i∨ j ∨ j). Now the reason for j is asked of Sm. In this
case, Sm cannot produce a clause over shared variables to justify j, so conflict
analysis fails with refineLit = j. This causes specSMS to exit speculation mode
and move to state ⟨P,D0⟩ and Sm must decide variable j before speculating
again. In this case either decision on j results in ⟨Φs, Φm⟩ being sat. ⊓⊔

In addition to refining when conflict analysis fails, specSMS also has the
ability to refine non-deterministically. That is, at any point during speculation,
Ss can decide to stop speculation, back-jump to the decision level from which it
started speculation, and choose any interface literal as refineLit .

Case (2) is similar to what happens in SMS when a conflict is detected in Ss.
The reason for the conflict is below level i which is below the level of any decision
of Ss. Since decision levels below i are treated as assumptions in Ss, calling
AnalyzeFinal in Ss returns an interface clause c that blocks the current assignment
in Sm. The clause c is added to Sm. The solvers back-jump to the smallest
decision level j that makes c an asserting clause in Sm. Finally, specSMS moves
to ⟨P,D0⟩.

Validation Case (3), like Case (1), is unique to specSMS. While all clauses of
Ss are satisfied, the current assignment might not satisfy all clauses of Sm. Thus,
specSMS enters validation by switching to the configuration ⟨F,DM ⟩, whereM
is the current decision level. Thus, Sm becomes active and starts deciding and
propagating. This continues, until one of two things happen: (3a) Sm extends
the assignment to satisfy all of its clauses, or (3b) a conflict that cannot be re-
solved with inter-modular conflict analysis is found. In the case (3a), specSMS
transitions to ⟨F, F ⟩ and declares that ⟨Φm, Φs⟩ is sat. The case (3b) is han-
dled exactly the same as Case (1) – the literal on the trail without a reason is
stored in refineLit , specSMS moves to ⟨P,D0⟩, backjumps to the level in which
speculation was started, and Sm is forced to decide on refineLit .

Theorem 1. specSMS terminates. If it reaches the state ⟨F, F ⟩, then Φs ∧Φm

is satisfiable and the join of the trails of ⟨Ss, Sm⟩ is a satisfying assignment. If
it reaches the state unsat, Φs ∧ Φm is unsatisfiable.

50 Hari Govind V K et al.

Algorithm 1 The Reason method in modular SAT solvers inside specSMS

1: function Reason(lit)
2: if reason[lit] = ext then
3: c← other .AnalyzeFinal(lit)
4: if ∃v ∈ c :: v ̸∈ I then
5: refineLit ← lit
6: return ext
7: AddClause(c)
8: reason[lit]← c

9: return reason[lit]

4 Validation and interpolation

In this section, we augment specSMS with an interpolation procedure. To this
end, we first introduce modular DRUP proofs, which are generated from spec-
SMS in a natural way. We then present an algorithm for extracting an inter-
polant from a modular trimmed DRUP proof in the spirit of [11].

4.1 DRUP proofs for modular SAT

Modular DRUP proofs – a form of clausal proofs [9] – extend (monolithic) DRUP
proofs [12]. A DRUP proof [12] is a sequences of steps, where each step either
asserts a clause, deletes a clause, or adds a new Reverse Unit Propagation (RUP)
clause. Given a set of clauses Γ , a clause cls is an RUP for Γ , written Γ ⊢UP cls , if
cls follows from Γ by unit propagation [8]. For a DRUP proof π, let asserted(π)
denote all clauses of the asserted commands in π, then π shows that all RUP
clauses of π follow from asserted(π). If π contains a ⊥ clause, then π certifies
asserted(π) is unsat.

A Modular DRUP proof is a sequence of clause addition and deletion steps,
annotated with indices idx (m or s). Intuitively, steps with the same index must
be validated together (within the same module idx), and steps with different
indices may be checked independently. The steps are:

1. (asserted, idx , cls) denotes that cls is asserted in idx ,
2. (rup, idx , cls) denotes adding RUP clause cls to idx ,
3. (cp(src), dst , cls) denotes copying a clause cls from src to dst , and
4. (del, idx , cls) denotes removing clause cls from idx .

We denote the prefix of length k of a sequence of steps π by πk. Given
a sequence of steps π and a formula index idx , we use act clauses(π, idx) to
denote the set of active clauses with index idx . Formally,

{cls | ∃cj ∈ π·
(cj = (t, idx , cls) ∧ (t = asserted ∨ t = rup ∨ t = cp()))

∧ ¬∃ck ∈ π · k > j ∧ ck = (del, idx , cls)}

Speculative Sat Modulo Sat 51

seq step to clause

1 asserted m ¬s1 ⇒ lb1
2 asserted m ¬s1 ⇒ ¬lb1
3 asserted s (s1 ∧ la1)⇒ s2
4 asserted s (s1 ∧ ¬la1)⇒ s2
5 asserted m (s2 ∧ lb2)⇒ s3
6 asserted m (s2 ∧ ¬lb2)⇒ s3
7 asserted s (s3 ∧ la2)⇒ s4
8 asserted s (s3 ∧ ¬la2)⇒ s4
9 asserted m s4 ⇒ lb3

10 asserted m s4 ⇒ ¬lb3
11 rup m s1
12 rup m ¬s4
13 rup m s2 ⇒ s3
14 cp(m) s s2 ⇒ s3
15 rup s s3 ⇒ s4
16 rup s s1 ⇒ s4
17 cp(s) m s1 ⇒ s4
18 rup m ⊥

Fig. 2: An example of a modular DRUP proof. Clauses are written in human-
readable form as implications, instead of in the DIMACS format.

A sequence of steps π = c1, . . . , cn is a valid modular DRUP proof iff for each
ci ∈ π:

1. if ci = (rup, idx , cls) then act clauses(πi, idx) ⊢UP cls ,
2. if ci = (cp(idx), , cls) then act clauses(πi, idx) ⊢UP cls , and
3. c|π| is either (rup,m,⊥) or (cp(s),m,⊥).

Let asserted(π, idx) be the set of all asserted clauses in π with index idx.

Theorem 2. If π is a valid modular DRUP proof, then asserted(π, s) ∧
asserted(π,m) is unsatisfiable.

Modular DRUP proofs may be validated with either one or two solvers. To
validate with one solver we convert the modular proof into a monolithic one
(i.e., where the steps are asserted, rup, and del). Let modDRUP2DRUP be a
procedure that given a modular DRUP proof π, returns a DRUP proof π′ that
is obtained from π by (a) removing idx from all the steps; (b) removing all cp
steps; (c) removing all del steps. Note that del steps are removed for simplicity,
otherwise it is necessary to account for deletion of copied and non-copied clauses
separately.

Lemma 1. If π is a valid modular DRUP proof then π′ = modDRUP2DRUP(π)
is a valid DRUP proof.

Modular validation is done with two monolithic solvers working in lock step:
(asserted, cls , idx) steps are added to the idx solver; (rup, idx , cls) steps are val-
idated locally in solver idx using all active clauses (asserted, copied, and rup);

52 Hari Govind V K et al.

Speculative Sat Modulo Sat 53

and for (cp(src), dst , cls) steps, cls is added to dst but not validated in it, and
cls is checked to exist in the src solver.

From now on, we consider only valid proofs. We say that a (valid) modular
DRUP proof π is a proof of unsatisfiability of Φs ∧ Φm if asserted(π, s) ⊆ Φs

and asserted(π,m) ⊆ Φm (inclusion here refers to the sets of clauses).
specSMS produces modular DRUP proofs by logging the clauses that are

learnt, deleted, and copied between solvers. Note that in SMS clauses may only be
copied from Ss to Sm, but in specSMS they might be copied in both directions.

Theorem 3. Let Φs and Φm be two Boolean formulas s.t. Φs ∧ Φm |= ⊥. spec-
SMS produces a valid modular DRUP proof for unsatisfiability of Φs ∧ Φm.

Algorithm 2 Trimming a modular DRUP
proof

Input: Solver instances Ss, Sm with the empty
clause on the trail, and a modular clausal proof
π = c1, . . . , cn.
Output: A proof π′ s.t. all steps are core.

1: π′ = ∅
2: Ms,Mm ← {⊥}, ∅ ▷ Relevant clauses
3: for i = n to 0 do
4: match ci with (type, idx , cls)
5: if cls ̸∈Midx then continue

6: if type = del then
7: Sidx .Revive(cls)
8: continue
9: π′.append(ci)

10: if type = rup then
11: Sidx .chk rup(cls,Midx)
12: else if type = cp(src) then
13: Sidx .Delete(cls)
14: Msrc .add(cls)

15: π′.reverse()
16: function solver::chk rup(cls,M)
17: if IsOnTrail(cls) then
18: UndoTrail(cls)

19: Delete(cls)
20: SaveTrail()
21: Enqueue(¬cls)
22: r ← Propagate()
23: ConflictAnalysis(r,M) ▷ Updates M with

conflict clauses
24: RestoreTrail()

Algorithm 3 Interpolating a mod-
ular DRUP proof.

Input: Propositional formulas ⟨Φ0, Φ1⟩
Input: A modular trimmed DRUP
proof π = c1, . . . , cn of unsatisfiability
of Φ0 ∧ Φ1

Output: An interpolant itp s.t. Φ0 ⇒
itp and itp ∧ Φ1 |= ⊥
1: Ss, Sm ← SAT Solver()
2: itp ← ⊤
3: for i = 0 to n do
4: match ci
5: with (asserted, s, cls):
6: sup(cls)← ⊤
7: with (cp(m), s, cls):
8: sup(cls)← cls

9: with (rup, s, cls):
10: M ← ∅
11: Ss.chk rup(cls,M)
12: sup(cls)← {sup(c) | c ∈M}
13: with (cp(s),m, cls):
14: itp ← itp ∧ (sup(cls)⇒ cls)

15: Sci.idx.add(cls)

Trimming modular DRUP proofs. A step in a modular DRUP proof π is core if
removing it invalidates π. Under this definition, del steps are never core since

removing them does not affect validation. Alg. 2 shows an algorithm to trim
modular DRUP proofs based on backward validation. The input are two modular
solvers Sm and Ss in a final conflicting state, and a valid modular DRUP proof
π = c1, . . . , cn. The output is a trimmed proof π′ s.t. all steps of π′ are core.

We assume that the reader is familiar with MiniSAT [6] and use the following
solver methods: Propagate, exhaustively applies unit propagation (UP) rule by
resolving all unit clauses; ConflictAnalysis analyzes the most recent conflict and
marks which clauses are involved in the conflict; IsOnTrail checks whether a clause
is an antecedent of a literal on the trail; Enqueue enqueues one or more literals
on the trail; IsDeleted, Delete, Revive check whether a clause is deleted, delete a
clause, and add a previously deleted clause, respectively; SaveTrail, RestoreTrail
save and restore the state of the trail.

Alg. 2 processes the steps of the proof backwards, rolling back the states
of the solvers. Midx marks which clauses were relevant to derive clauses in the
current suffix of the proof. While the proof is constructed through inter-modular
reasoning, the trimming algorithm processes each of the steps in the proof com-
pletely locally. During the backward construction of the trimmed proof, steps
that include unmarked clauses are ignored (and, in particular, not added to the
proof). For each (relevant) rup step, function chk rup, using ConflictAnalysis,
adds clauses toM . del steps are never added to the trimmed proof, but the clause
is revived from the solver. For cp steps, if the clause was marked, it is marked as
used for the solver it was copied from and the step is added to the proof. Finally,
asserted clauses that were marked are added to the trimmed proof. Note that,
as in [11], proofs may be trimmed in different ways, depending on the strategy
for ConflictAnalysis.

The following theorem states that trimming preserves validity of the proof:

Theorem 4. Let Φs and Φm be two formulas such that Φs ∧ Φm |= ⊥. If π is a
modular DRUP proof produced by solvers Ss and Φm for Φs∧Φm, then a trimmed
proof π′ by Alg. 2 is also a valid modular DRUP proof for Φs ∧ Φm.

Fig. 2 shows a trimmed proof after specSMS is executed on ⟨ψ0, ψ1⟩ such
that ψ0 ≜ ((s1∧la1) ⇒ s2))∧((s1∧¬la1) ⇒ s2)∧((s3∧la2) ⇒ s4)∧((s3∧¬la2) ⇒
s4) and ψ1 ≜ (¬s1 ⇒ lb1) ∧ (¬s1 ⇒ ¬lb1) ∧ ((s2 ∧ lb2) ⇒ s3) ∧ ((s2 ∧ ¬lb2) ⇒
s3) ∧ (s4 ⇒ lb3) ∧ (s4 ⇒ ¬lb3)).

4.2 Interpolation

Given a modular DRUP proof π of unsatisfiability of Φs ∧ Φm, we give an algo-
rithm to compute an interpolant of Φs ∧ Φm. For simplicity of the presentation,
we assume that π has no deletion steps; this is the case in trimmed proofs, but
we can also adapt the interpolation algorithm to handle deletions by keeping
track of active clauses.

Our interpolation algorithm relies only on the clauses copied between the
modules. Notice that whenever a clause is copied from module i to module j, it
is implied by all the clauses in Φi together with all the clauses that have been
copied from module j. We refer to clauses copied from Sm to Ss as backward

54 Hari Govind V K et al.

Speculative Sat Modulo Sat 55

clauses and clauses copied from Ss to Sm as forward clauses. The conjunction of
forward clauses is unsatisfiable with Sm. This is because, in the last step of π, ⊥
is added to Sm, either through rup or by cp ⊥ from Ss. Since all the clauses in
module m are implied by Φm together with forward clauses, this means that the
conjunction of forward clauses is unsatisfiable with Φm. In addition, all forward
clauses were learned in module s, with support from backward clauses. This
means that every forward clause is implied by Φs together with the subset of the
backward clauses used to derive it. Intuitively, we should therefore be able to
learn an interpolant with the structure: backward clauses imply forward clauses.

Alg. 3 describes our interpolation algorithm. It traverses a modular DRUP
proof forward. For each clause cls learned in module s, the algorithm collects the
set of backward clauses used to learn cls . This is stored in the sup datastucture
— a mapping from clauses to sets of clauses. Finally, when a forward clause c is
copied, it adds sup(c) ⇒ c to the interpolant.

Example 4. We illustrate our algorithm using the modular DRUP proof from
Fig. 2. On the first cp step (cp(m), s, s2 ⇒ s3), the algorithm assigns the
sup for clause s2 ⇒ s3 as itself (line 8). The first clause learnt in module s,
(rup, s, s3 ⇒ s4), is derived from just the clauses in module s and no backward
clauses. Therefore, after RUP, our algorithm sets sup(s3 ⇒ s4) to ⊤ (line 12).
The second clause learnt in module s, s1 ⇒ s4, is derived from module s with the
support of the backward clause s2 ⇒ s3. Therefore, sup(s1 ⇒ s4) = {s2 ⇒ s3}.
When this clause is copied forward to module 1, the algorithm updates the in-
terpolant to be (s2 ⇒ s3) ⇒ (s1 ⇒ s4). ⊓⊔

Next, we formalize the correctness of the algorithm. Let LB(π) = {cls |
(cp(m), s, cls) ∈ π} be the set of clauses copied from module m to s and LF (π) =
{cls | (cp(s),m, cls) ∈ π} be clauses copied from module s to m. From the validity
of modular DRUP proofs, we have that:

Lemma 2. For any step ci = (cp(s),m, cls) ∈ π, (LB(π
i) ∧ Φs) ⇒ cls and for

any step cj = (cp(m), s, cls) ∈ π, (LF (π
j) ∧ Φm) ⇒ cls.

For any clause cls copied from one module to the other, we use the shorthand
♯(cls) to refer to the position of the copy command in the proof π. That is, ♯(cls)
is the smallest k such that ck = (cp(i), j, cls) ∈ π. The following is an invariant
in a valid modular DRUP proof:

Lemma 3.

∀cls ∈ LF (π) · (Φm ∧ (LF (π
♯(cls))) ⇒ LB(π

♯(cls)))

These properties ensure that adding LB(π
♯(cls)) ⇒ cls for every forward

clause cls results in an interpolant. Alg. 3 adds (sup(cls) ⇒ cls) as an opti-
mization. Correctness is preserved since sup(cls) is a subset of LB(π

♯(cls)) that
together with Φs suffices to derive cls (formally, sup(cls) ∧ Φs ⊢UP cls).

Theorem 5. Given a modular DRUP proof π for Φs ∧ Φm, itp ≜ {sup(c) ⇒ c |
c ∈ LF (π)} is an interpolant for ⟨Φs, Φm⟩.

Proof. Since all copy steps are over interface variables, the interpolant is also
over interface variables. By Lemma 2 (and the soundness of sup optimization),
Φs ⇒ itp. Next, we prove that (Φm ∧ itp) ⇒ ⊥. From Lemma 3, we have that for
all c ∈ LF (π), (Φm∧LF (π

♯(c))) ⇒ sup(c). Therefore, (Φm∧LF (π
♯(c))∧(sup(c) ⇒

c)) ⇒ c

It is much simpler to extract interpolants from modular DRUP proofs then
from arbitrary DRUP proofs. This is not surprising since the interpolants capture
exactly the information that is exchanged between solvers. The interpolants are
not in CNF, but can be converted to CNF after extraction.

5 Heuristics for guiding specSMS

Theoretically, speculation makes specSMS more powerful than SMS and
IC3/PDR. However, in practice, deciding when to enter speculation has a ma-
jor impact on the performance of specSMS. If the speculation is too greedy,
specSMS performs poorly on examples where the main module is easy to solve.
Similarly, if the speculation is too lazy, specSMS performs poorly on problems
in which any solution to the secondary module makes the main module easy to
solve. We illustrate this trade-off using an example.

Example 5. Consider a modular query: ⟨γin(ℓ, x, in), γSHA-1(in, x, out)⟩, where
x is an 512-bit vector, ℓ is a 160-bit vector, chksi are 512-bit vector, and the
remaining variables are the same as in ψin and ψSHA-1, and

γin ≜ SHA-1circ(x, ℓ) ∧(
(ℓ = chks0 ∧ in = msg0) ∨ (ℓ = chks1 ∧ in = msg1) ∨
(ℓ = chks2 ∧ in = msg2) ∨ (ℓ = chks3 ∧ in = msg3)

)
γSHA-1 ≜ (x = 1 ∨ x = 4) ∧ SHA-1circ(in, out) ∧ out = shaVal

This is an example where bi-directional search is necessary to efficiently solve the
query. If deciding only on γSHA-1, we encounter the hard problem of inverting
SHA-1circ , if deciding in γin , we encounter the same problem, since an assign-
ment for x needs to be found, based on the four values for ℓ. Therefore, neither
immediate nor late speculation makes specSMS efficient on the problem. The
ideal strategy here is to speculate after an assignment to x, to simplify γin . ⊓⊔

Ideally, we would like to speculate when the current modular query is too
hard for the solver. As a proxy for hardness, we measure the number of conflicts
the SAT solver hits. We first speculate when the main solver hits a predeter-
mined number of conflicts. We then exponentially widen the number of conflicts
between speculations. Exiting from speculation is just as important as entering
speculation: the secondary solver might also get stuck in solving its module.
Therefore, we use the same heuristic in the secondary solver to exit speculation.

While this is a simple heuristic, we found it to be useful in our benchmarks.
The best strategy for speculation is problem-dependent. We leave development
of a robust heuristic for future work.

56 Hari Govind V K et al.

Speculative Sat Modulo Sat 57

time (s) – sat
rounds SMS specSMS

16 0.86 0.94
21 – 0.49
26 – 2.93
31 – 1.33
36 – 1.35
40 – 1.56

time (s) – unsat
rounds SMS specSMS

16 1.09 0.93
21 – 1.17
26 – 1.95
31 – 2.06
36 – 2.13
40 – 2.64

Table 1: Solving time with a timeout of 600s.

6 Implementation and Validation

We implemented specSMS (and SMS) inside the extensible SAT-solver of Z3 [5]4.
For SMS, we simply disable speculation

We have validated specSMS on a set of handcrafted benchmarks, based
on Ex. 1. Each benchmark is of the form ⟨ψin(ℓ, in), ψSHA-1(in, out)⟩, where ℓ is
a 2-bit vector, in is a 512-bit vector (shared), out is 160-bit vector. ψin encodes
that there are four possible messages:

ψin ≜ (ℓ = 0 ∧ in = msg0) ∨ (ℓ = 1 ∧ in = msg1) ∨
(ℓ = 2 ∧ in = msg2) ∨ (ℓ = 3 ∧ in = msg3)

and ψSHA-1(in, out) encodes the SHA-1 circuit together with some hash:

ψSHA-1 ≜ (SHA-1circ(in) ∧ out = shaVal)

In the first set of experiments, we check sat queries by generating one msg i in
ψin that produces shaVal . In the second set, we check unsat queries, by ensuring
that no msg i produces shaVal . To evaluate performance, we make ψSHA-1 harder
to solve by increasing the number of rounds of SHA-1 circuit encoded in the
SHA-1circ clauses. We used SAT-encoding [13]5 to generate the SHA-1circ with
the different number of rounds (SAT-encoding supports 16 to 40 rounds).

We use the heuristic described in Sec. 5 to decide when to enter and exit
speculation. Thus, specSMS switches modules when it hits too many conflicts
in the module. In contrast, SMS only switches to the secondary solver after
finding a full satisfying assignment in the main solver.

Results for each set of the queries are shown in Tab. 1. Column “# rounds”
shows the number of SHA-1 rounds encoded in ψSHA-1. The problems quickly
become too hard for SMS. At the same time, specSMS solves all the queries
quickly. Furthermore, the run-time of specSMS appears to grow linearly with
the number of rounds.

The experiments validate our claim that switching between modules is quite
effective in solving the problem. As expected, SMS gets stuck in inverting the

4 we will provide the repository url after the double-blind review process
5 Available at https://github.com/saeednj/SAT-encoding.

(Table 1).

https://github.com/saeednj/SAT-encoding

SHA-1 function. It cannot make progress without using information from the
secondary module. In contrast, specSMS switches to the secondary module
once it finds that solving SHA-1circ(in) is hard. Note that, in this problem, the
ideal strategy is to speculate eagerly and then branch on all the ℓ variables.
However, specSMS spend some time solving SHA-1circ(in). It only switches to
the secondary module when it hits many conflicts in SHA-1circ(in).

7 Conclusion and Future Work

Modular SAT-solving is crucial for efficient SAT-based unbounded Model Check-
ing. Existing techniques, embedded in IC3/PDR [3] and extended in SMS [1],
trade the efficiency of the solver for the simplicity of conflict resolution. In this
paper, we propose a new modular SAT-solver, called specSMS, that extends
SMS with truly bi-directional reasoning. We show that it is provably better
than SMS (and, therefore, IC3/PDR). We implement specSMS in Z3 [5], ex-
tend it with DRUP-style [12] proofs, and proof-based interpolation. This work is
an avenue to future efficient SAT- and SMT-based Model Checking algorithms.

In this paper, we rely on a simple heuristic to guide specSMS when to
start speculation and exit speculation. This is sufficient to show the power of
bi-directional reasoning over uni-directional reasoning on our benchmarks. How-
ever, other application domains might need more complicated heuristics to make
this decision. In the future, we plan to explore guiding speculation using similar
strategy used for guiding restarts in a modern CDCL SAT-solver[2].

A much earlier version of speculation, called weak abstraction, is implemented
in the Spacer Constrained Horn Clause (CHC) solver [10]. Since Spacer ex-
tends IC3/PDR to SMT, the choice of speculation is based on theory reasoning.
Speculation starts when the main solver is satisfied modulo some theories (e.g.,
Linear Real Arithmetic or Weak Theory of Arrays). Speculation often prevents
Spacer from being stuck in any one SMT query. However, Spacer has no inter-
modular propagation and no refinement. If validation fails, speculation is simply
disabled and the query is tried again without it. We hope that extending spec-
SMS to theories will make Spacer heuristics much more flexible and effective.

DPLL(T)-style [7] SMT-solvers can be seen as modular SAT-solvers where
the main module is a SAT solver and the secondary solver is a theory solver (often
EUF-solver that is connected to other theory solvers such as a LIA solver). This
observation credited as an intuition for SMS [1]. In modern SMT-solvers, all
decisions are made by the SAT-solver. For example, if a LIA solver wants to
split on a bound of a variable x, it first adds a clause (x ≤ (b−1)∨x ≥ b), where
b is the desired bound, to the SAT-solver and then lets the SAT-solver branch on
the clause. specSMS extends this interaction by allowing the secondary solver
(i.e., the theory solver) to branch without going back to the main solver. Control
is returned to the main solver only if such decisions tangle local decisions of the
two solvers. We hope that the core ideas of specSMS can be lifted to SMT
and allow more flexibility in the interaction between the DPLL-core and theory
solvers.

58 Hari Govind V K et al.

Speculative Sat Modulo Sat 59

Acknowledgment The research leading to these results has received funding
from the European Research Council under the European Union’s Horizon 2020
research and innovation programme (grant agreement No [759102-SVIS]). This
research was partially supported by the Israeli Science Foundation (ISF) grant
No. 2117/23. We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), and MathWorks Inc. The first
author was funded by Microsoft Research PhD Fellowship. The second author
is not affiliated with the University of Waterloo at the time of publication.

References

1. S. Bayless, C. G. Val, T. Ball, H. H. Hoos, and A. J. Hu. Efficient modular SAT
solving for IC3. In Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, pages 149–156. IEEE, 2013.

2. A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In T. Balyo,
N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, editors, Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of De-
partment of Computer Science Report Series B, pages 51–53. University of Helsinki,
2020.

3. A. R. Bradley. SAT-based model checking without unrolling. In R. Jhala and
D. A. Schmidt, editors, Verification, Model Checking, and Abstract Interpretation
- 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-
25, 2011. Proceedings, volume 6538 of Lecture Notes in Computer Science, pages
70–87. Springer, 2011.

4. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log., 22(3):269–285, 1957.

5. L. M. de Moura and N. S. Bjørner. Z3: an efficient SMT solver. In C. R. Ra-
makrishnan and J. Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of
Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

6. N. Eén and N. Sörensson. An extensible sat-solver. In E. Giunchiglia and A. Tac-
chella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518.
Springer, 2003.

7. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
fast decision procedures. In R. Alur and D. A. Peled, editors, Computer Aided
Verification, 16th International Conference, CAV 2004, Boston, MA, USA, July
13-17, 2004, Proceedings, volume 3114 of Lecture Notes in Computer Science, pages
175–188. Springer, 2004.

8. A. V. Gelder. Verifying RUP proofs of propositional unsatisfiability. In Interna-
tional Symposium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort
Lauderdale, Florida, USA, January 2-4, 2008, 2008.

9. E. I. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In 2003 Design, Automation and Test in Europe Conference and Exposi-

tion (DATE 2003), 3-7 March 2003, Munich, Germany, pages 10886–10891. IEEE
Computer Society, 2003.

10. A. Gurfinkel. Program verification with constrained horn clauses (invited paper).
In S. Shoham and Y. Vizel, editors, Computer Aided Verification - 34th Interna-
tional Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
I, volume 13371 of Lecture Notes in Computer Science, pages 19–29. Springer,
2022.

11. A. Gurfinkel and Y. Vizel. DRUPing for interpolates. In Formal Methods in
Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-24,
2014, pages 99–106. IEEE, 2014.

12. M. Heule, W. A. H. Jr., and N. Wetzler. Trimming while checking clausal proofs. In
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 181–188. IEEE, 2013.

13. S. Nejati, J. H. Liang, V. Ganesh, C. Gebotys, and K. Czarnecki. Sha-1 preimage
instances for sat. SAT COMPETITION 2017, page 45.

60 Hari Govind V K et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Happy Ending: An Empty Hexagon
in Every Set of 30 Points

Abstract. Satisfiability solving has been used to tackle a range of long-
standing open math problems in recent years. We add another success by
solving a geometry problem that originated a century ago. In the 1930s,
Esther Klein’s exploration of unavoidable shapes in planar point sets in
general position showed that every set of five points includes four points
in convex position. For a long time, it was open if an empty hexagon,
i.e., six points in convex position without a point inside, can be avoided.
In 2006, Gerken and Nicolás independently proved that the answer is no.
We establish the exact bound: Every 30-point set in the plane in gen-
eral position contains an empty hexagon. Our key contributions include
an effective, compact encoding and a search-space partitioning strategy
enabling linear-time speedups even when using thousands of cores.

Keywords: Erdős–Szekeres problem · empty hexagon theorem · planar
point set · cube-and-conquer · proof of unsatisfiability

1 Introduction

In 1932, Esther Klein showed that every set of five points in the plane in general
position (i.e., no three points on a common line) has a subset of four points in
convex position. Shortly after, Erdős and Szekeres [8] generalized this result by
showing that, for every integer k, there exists a smallest integer g(k) such that
every set of g(k) points in the plane in general position contains a k-gon (i.e., a
subset of k points that form the vertices of a convex polygon). As the research
led to the marriage of Szekeres and Klein, Erdős named it the happy ending
problem. Erdős and Szekeres constructed witnesses of g(k) > 2k−2 [9], which
they conjectured to be maximal. The best upper bound is g(k) ≤ 2k+o(k) [20,30].

Determining the value g(5) = 9 requires a more involved case distinction
compared to g(4) = 5 [23]. It took until 2006 to determine that g(6) = 17
via an exhaustive computer search by Szekeres and Peters [31] using 1500 CPU
hours. Marić [25] and Scheucher [28] independently verified g(6) = 17 using
satisfiability (SAT) solving in a few CPU hours. This was later reduced to 10
CPU minutes [29]. The approach presented in this paper computes it in 8.53 CPU
seconds, showing the effectiveness of SAT compared to the original method.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 61–80, 2024.
https://doi.org/10.1007/978-3-031-57246-3_5

Marijn J. H. Heule1,2(B) and Manfred Scheucher3

1 Carnegie Mellon University, Pittsburgh, USA
marijn@cmu.edu

2 Amazon Scholar, Seattle, USA
3 Institute of Mathematics, Technische Universität Berlin, Berlin, Germany

scheucher@math.tu-berlin.de

https://doi.org/10.1007/978-3-031-57246-3_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_5&domain=pdf
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0002-1657-9796

Fig. 1. An illustration for the proof of h(4) = 5: The three possibilities of how five
points can be placed. Each possibility implies a 4-hole.

Erdős also asked whether every sufficiently large point set contains a k-hole:
a k-gon without a point inside. We denote by h(k) the smallest integer—if it
exists—such that every set of h(k) points in general position in the plane contains
a k-hole. Both h(3) = 3 and h(4) = 5 are easy to compute (see Fig. 1 for an
illustration) and coincide with the original setting. Yet the answer can differ a
lot, as Horton [21] constructed arbitrarily large point sets without 7-holes.

While Harborth [14] showed in 1978 that h(5) = 10, the existence of 6-
holes remained open until the late 2000s, when Gerken [12]4 and Nicolás [26]
independently proved that h(6) is finite. Gerken proved that every 9-gon yields
a 6-hole, thereby showing that h(6) ≤ g(9) ≤ 1717 [33]. The best-known lower
bound h(6) ≥ 30 is witnessed by a set of 29 points without 6-holes which was
found by Overmars [27] using a local search approach.

We close the gap between the upper and lower bound and ultimately answer
Erdős’ question by proving that every set of 30 points yields a 6-hole.

Theorem 1. h(6) = 30.

Our result is actually stronger and shows that the bounds for 6-holes in point sets
coincide with the bounds for 6-holes in counterclockwise systems [24]. This rep-
resents another success of solving long-standing open problems in mathematics
using SAT, similar to results on Schur number five [16] and Keller’s conjecture [4].

We also investigate the combination of 6-holes and 7-gons and show

Theorem 2. Every set of 24 points in the plane in general position contains a
6-hole or a 7-gon.

We achieve these results through the following contributions:

– We develop a compact and effective SAT encoding for k-gon and k-hole
problems that uses O(n4) clauses, while existing encodings use O(nk) clauses.

– We construct a partitioning of k-gon and k-hole problems that allows us to
solve them with linear-time speedups even when using thousands of cores.

– We present a novel method of validating SAT-solving results that checks the
proof while solving the problem using substantially less overhead.

– We verify most of the presented results using clausal proof checking.
4 Gerken’s groundbreaking work was awarded the Richard-Rado prize by the German

Mathematical Society in 2008.

62 M.J.H. Heule and M. Scheucher

2 Preliminaries

The SAT problem. The satisfiability problem (SAT) asks whether a Boolean
formula can be satisfied by some assignment of truth values to its variables.
The Handbook of Satisfiability [2] provides an overview. We consider formulas
in conjunctive normal form (CNF), which is the default input of SAT solvers.
As such, a formula Γ is a conjunction (logical “AND”) of clauses. A clause is a
disjunction (logical “OR”) of literals, where a literal is a Boolean variable or its
negation. We sometimes write (sets of) clauses using other logical connectives.

If a formula Γ is found to be satisfiable, modern SAT solvers commonly
output a truth assignment of the variables. Additionally, if a formula turns out
to be unsatisfiable, sequential SAT solvers produce an independently-checkable
proof that there exists no assignment that satisfies the formula.

Verification. The most commonly-used proofs for SAT problems are expressed
in the DRAT clausal proof system [15]. A DRAT proof of unsatisfiability is a
list of clause addition and clause deletion steps. Formally, a clausal proof is a
list of pairs ⟨s1, C1⟩, . . . , ⟨sm, Cm⟩, where for each i ∈ {1, . . . ,m}, si ∈ {a, d} and
Ci is a clause. If si = a, the pair is called an addition, and if si = d, it is called
a deletion. For a given input formula Γ0, a clausal proof gives rise to a set of
accumulated formulas Γi (i ∈ {1, . . . ,m}) as follows:

Γi =

{
Γi−1 ∪ {Ci} if si = a

Γi−1 \ {Ci} if si = d

Each clause addition must preserve satisfiability, which is usually guaranteed
by requiring the added clauses to fulfill some efficiently decidable syntactic cri-
terion. Deletions help to speed up proof checking by keeping the accumulated
formula small. A valid proof of unsatisfiability must add the empty clause.

Cube And Conquer. The cube-and-conquer approach [18] aims to split a SAT
instance Γ into multiple instances Γ1, . . . , Γm in such a way that Γ is satisfiable
if and only if at least one of the instances Γi is satisfiable, thus allowing work
on the different instances Γi in parallel. A cube is a conjunction of literals. Let
ψ = (c1 ∨ · · · ∨ cm) be a disjunction of cubes. When ψ is a tautology, we have

Γ ⇐⇒ Γ ∧ ψ ⇐⇒
m∨
i=1

(Γ ∧ ci) ⇐⇒
m∨
i=1

Γi,

where the different Γi := (Γ ∧ ci) are the instances resulting from the split.
Intuitively, each cube ci represents a case, i.e., an assumption about a sat-

isfying assignment to Γ , and soundness comes from ψ being a tautology, which
means that the split into cases is exhaustive. If the split is well designed, then
each Γi is a particular case that is substantially easier to solve than Γ , and thus
solving them all in parallel can give significant speed-ups, especially considering
the sequential nature of CDCL at the core of most solvers.

However, the quality of the split (ψ) has an enormous impact on the effec-
tiveness of the approach. A key challenge is figuring out a high-quality split.

Happy Ending: An Empty Hexagon in Every Set of 30 Points 63

a b

c

i

a b

c

i

a b

c

i

a b

c

i

Fig. 2. The four ways a point pi can be inside triangle {pa, pb, pc} based on whether
i < b (left two images) and whether pc is above the line papb (first and third image).

3 Trusted Encoding

To obtain an upper-bound result using a SAT-based approach, we need to show
that every set of n points contains a k-hole. We will do this by constructing
a formula based on n points that asks whether a k-hole can be avoided. If this
formula is unsatisfiable, then we obtain the bound h(k) ≤ n. Instead of reasoning
directly whether an empty k-gon can be avoided, we ask whether every k points
contain at least one triangle with a point inside. The latter implies the former.

We only need to know for each triple of points whether it is empty. Through-
out the paper, we assume that points are sorted with strictly increasing x-
coordinates. This gives us only four options for a point pi to be inside the triangle
formed by points pa, pb, pc, see Fig. 2. For example, the left image shows that
pi is inside if a < i < b, pc and pi are above the line papb , and pi is below
the line papc . So we need some machinery to express that points are above or
below certain lines. That is what the encoding will provide. For readability, we
sometimes identify points by their indices, that is, we refer to pa by its index a.

We first present what we call the trusted encoding to determine whether a
6-hole can be avoided. The encoding needs to be trusted in the sense that we
do not provide a mechanically verified proof of its correctness. Building upon
existing work [28], our primary focus is on 6-holes, which constitute our main
result. The encoding of 6-gons and 7-gons is similar and more simple. During an
initial study, the estimated runtime for showing h(6) ≤ 30 using this encoding
and off-the-shelf partitioning was roughly 1000 CPU years. The optimizations
in Sections 4 and 5 reduce the computational costs to about 2 CPU years.

3.1 Orientation Variables

a
b

c

d

+

−

Fig. 3. An illustration
of triple orientations.

We formulate the problem in such a way that all rea-
soning is based solely on the relative positions of points.
Thus, we do not encode coordinates but only orienta-
tions of point triples. For a point set S = {p1, . . . , pn}
with pi = (xi, yi), the triple (pa, pb, pc) with a < b < c
is positively oriented (resp. negatively oriented) if pc lies
above (resp. below) the line papb through pa and pb. The
notion of positive orientation corresponds to Knuth’s
counterclockwise relation [24]. Fig. 3 illustrates a posi-
tively-oriented triple (pa, pb, pc) and a negatively-oriented triple (pa, pb, pd).

64 M.J.H. Heule and M. Scheucher

To search for point sets without k-gons and k-holes, we introduce a Boolean
orientation variable oa,b,c for each triple (pa, pb, pc) with a < b < c. Intuitively,
oa,b,c is supposed to be true if the triple is positively oriented. Since we assume
general position, no three points lie on a common line, so oa,b,c being false means
that the triple is negatively oriented.

3.2 Containment Variables, 3-Hole Variables, and Constraints

Using orientation variables, we can now express what it means for a triangle to
be empty. We define containment variables ci;a,b,c to encode whether point pi
lies inside the triangle spanned by {pa, pb, pc}. Since the points have increasing
x-coordinates, containment is only possible if a < i < c. We use two kinds of
definitions, depending on whether i is smaller or larger than b (see Fig. 2). The
first definition is for the case a < i < b. Note that if oa,b,c is true, we only need to
know whether i is above the line papb and below the line papc . Earlier work [28]
used an extended definition that included the redundant variable oi,b,c. Avoiding
this variable makes the definition more compact (six instead of eight clauses)
and the resulting formula is easier to solve.

ci;a,b,c ↔
((

oa,b,c → (oa,i,b ∧ oa,i,c)
)
∧
(
oa,b,c → (oa,i,b ∧ oa,i,c)

))
(1)

The second definition is for b < i < c, which avoids using the variable oa,b,i:

ci;a,b,c ↔
((

oa,b,c → (oa,i,c ∧ ob,i,c)
)
∧
(
oa,b,c → (oa,i,c ∧ ob,i,c)

))
(2)

Each definition translates into six clauses (without using Tseitin variables).
Additionally, we introduce definitions ha,b,c of 3-hole variables that express

whether the triangle spanned by {pa, pb, pc} is a 3-hole. The triangle {pa, pb, pc}
forms a 3-hole if and only if no point pi lies in its interior. A point pi can only
be an inner point if it lies in the vertical strip between pa and pc and if it is
distinct from pb. Since the points are sorted, the index i of an interior point pi
must therefore fulfill a < i < c and i ̸= b. Logically, the definition is as follows:

ha,b,c ↔
∧

a<i<c
i ̸=b

ci;a,b,c. (3)

Finally, we encode the “forbid k-hole” constraint as follows: For each subset
X ⊆ S of size k, at least one of the triangles formed by three points in X must
not be a 3-hole. So for k = 6, each clause consists of

(
k
3

)
= 20 literals.∧

X⊆S
|X|=k

(∨
a,b,c∈X
a<b<c

ha,b,c
)

(4)

In Section 4, we will optimize the encoding. Most optimizations aim to im-
prove the encoding of the constraint (4).

Happy Ending: An Empty Hexagon in Every Set of 30 Points 65

a

b

c

d oa,b,c oa,b,d oa,c,d ob,c,d

+ + + +
+ + + −
+ + − −
+ − − −
− − − −
− − − +
− − + +
− + + +

Fig. 4. All possibilities to place four points, when points are sorted from left to right.

3.3 Forbidding Non-Realizable Patterns

Only a small fraction of all assignments to the
(
n
3

)
orientation variables, 2Θ(n log n),

actually describe point sets [3]. However, we can reduce the search space from
2Θ(n3) to 2Θ(n2) by forbidding non-realizable patterns [24]. Consider four points
pa, pb, pc, pd in a sorted point set with a < b < c < d. The leftmost three
points determine three lines papb , papc , pbpc , which partition the open half-
plane {(x, y) ∈ R2 : x > xc} into four regions (see Fig. 4). After placing pa,
pb, pc, observe that all realizable positions of point pd obey the following im-
plications: oa,b,c ∧ oa,c,d ⇒ oa,b,d and oa,b,c ∧ ob,c,d ⇒ oa,c,d. Similarly for the
negations, oa,b,c ∧ oa,c,d ⇒ oa,b,d and oa,b,c ∧ ob,c,d ⇒ oa,c,d. These implications
are equivalent to the following clauses (grouping positive and negative):

(oa,b,c ∨ oa,c,d ∨ oa,b,d) ∧ (oa,b,c ∨ oa,c,d ∨ oa,b,d) (5)
(oa,b,c ∨ ob,c,d ∨ oa,c,d) ∧ (oa,b,c ∨ ob,c,d ∨ oa,c,d) (6)

Forbidding these non-realizable assignments was also used for g(6) ≤ 17 [31].
Some call the restriction signotope axioms [10]. The counterclockwise system
axioms [24] achieve the same effect, but require Θ(n5) clauses instead of Θ(n4).

3.4 Initial Symmetry Breaking

To further reduce the search space, we ensure that p1 lies on the boundary of the
convex hull (i.e., it is an extremal point) and that p2, . . . , pn appear around p1 in
counterclockwise order, thus providing us the unit clauses (o1,a,b) for 1 < a < b.
Without loss of generality, we can label points to satisfy the above, because the
labeling doesn’t affect gons and holes. However, we also want points to be sorted
from left to right. One can satisfy both orderings at the same time using the
lemma below. We attach a proof in the extended version [19].

Lemma 1 ([28, Lemma 1]). Let S = {p1, . . . , pn} be a point set in the plane
in general position such that p1 is extremal and p2, . . . , pn appear (clockwise or
counterclockwise) around p1. Then there exists a point set S̃ = {p̃1, . . . , p̃n} with
the same triple orientations (in particular, p̃1 is extremal and p̃2, . . . , p̃n appear
around p̃1) such that the points p̃1, . . . , p̃n have increasing x-coordinates.

66 M.J.H. Heule and M. Scheucher

4 Optimizing the Encoding

An ideal SAT encoding has the following three properties:

1) it is compact to reduce the cost of unit propagation (and cache misses);
2) it detects conflicts as early as possible (i.e., is domain consistent [11]); and
3) it contains variables that can generalize conflicts effectively.

The trusted encoding lacks these properties because it has O(n6) clauses,
cannot quickly detect holes, and has no variables that can generalize conflicts.
In this section, we show how to modify the trusted encoding to obtain all three
properties. All the modifications are expressible in a proof to ensure correctness.

4.1 Toward Domain Consistency

The effectiveness of an encoding depends on how quickly the solver can determine
a conflict. Given an assignment, we want to derive as much as possible via unit
propagation. This is known as domain consistency [11]. The trusted encoding
does not have this property. We modify the encoding below to boost propagation.

We borrow from the method by Szekeres and Peters that a k-gon can be de-
tected by looking at assignments to k−2 orientation variables [31]. For example,
if oa,b,c, ob,c,d, oc,d,e, and od,e,f with a<b<c<d<e<f are assigned to the same
truth value, then this implies that the points form a 6-gon. An illustration of
this assignment is shown in Fig. 5 (left). We combine this with our observation
below that only a specific triangle has to be empty to infer a 6-hole somewhere.

Consider a scenario involving six points, a, b, c, d, e, and f , that are arranged
from left to right. In this scenario, the orientation variables oa,b,c, ob,c,d, oc,d,e,
and od,e,f are all set to false, while the 3-hole variable ha,c,e is set to true. As
mentioned above, this implies that the points form a 6 -gon. Together with 3 -
hole variable ha,c,e being set to true, we can deduce the existence of a 6-hole: The
6-gon is either a 6-hole or it contains a 6-hole. The reasoning will be explained
in the next paragraph. Note that in the trusted encoding of this scenario, only
one out of the twenty literals in the corresponding ‘forbid 6-hole’ clause is false.
This suggests that the solver is still quite far from detecting a conflict.

A crucial insight underpinning our efficient encoding is the understanding
that the truth of the variable ha,c,e alone is sufficient to infer the existence of
a 6-hole. Consider the following rationale: If the triangle {a, b, c} contains any
points, then there must be at least one point inside the triangle that is closer to
the line ac than point b is. Let’s denote the nearest point as i. The proximity of
i to the line ac guarantees that the triangle {a, i, c} is empty. We can substitute
b with i to create a smaller but similarly shaped hexagon. This logic extends to
other triangles as well; specifically, the truth values of hc,d,e and ha,e,f are not
necessary to infer the presence of a 6-hole.

Our insight emerged when we noticed that the SAT solver eliminated 3-hole
literals from previous encodings. This elimination occurred primarily when only
a few points existed between the leftmost and rightmost points of a triangle. On

Happy Ending: An Empty Hexagon in Every Set of 30 Points 67

a

b
c d

e

f

a

b

c

d
e

f

a

b

c

d

e

f

Fig. 5. Three types of 6-gons: left, all points are on one side of line af (2 cases);
middle, three points are on one side and one point is on the other side of line af

(8 cases); and right, two points are on either side of line af (6 cases). If the marked
triangle is empty, we can conclude that there exists a 6-hole.

the other hand, the solver struggles significantly to identify the redundancy of
these 3-hole literals when the leftmost and rightmost points of a triangle were
far apart. Therefore, to enhance the encoding’s effectiveness, we chose to omit
these 3-hole literals (instead of letting the solver figure it out).

Blocking the existence of a 6-hole within the 6-gon described above can be
achieved with the following clause (which simply negates the assignment):

oa,b,c ∨ ob,c,d ∨ oc,d,e ∨ od,e,f ∨ ha,c,e (7)

For each set of six points, 16 different configurations can result in a 6-hole.
These configurations depend on which points are positioned left or right the line
connecting the leftmost and rightmost points among the six. The three types of
such configurations are illustrated in Fig. 5, while the remaining configurations
are symmetrical to these. It is important to note that this adds 16×

(
n
6

)
clauses

to the formula, significantly increasing its size.
We can reduce the number of clauses by about a 30% by strategically selecting

which triangle within a 6-gon is checked to be empty (i.e., which 3-hole literal
will be used). The two options are the triangle that includes the leftmost point
(as depicted in Fig. 5) and the triangle with the second-leftmost point. If the
leftmost point is p1, we opt for the second-leftmost point; otherwise, we choose
the leftmost point. After propagating the unit clauses o1,a,b, the clauses that
describe configurations with three points below the line af become subsumed
by the clause for the configuration with four points below the line 1f .

4.2 An O(n4) Encoding

This section is rather technical. It introduces auxiliary variables to reduce our
encoding to O(n4) clauses. The process is known as structured bounded vari-
able addition (SBVA) [13], which in each step adds a new auxiliary variable to
encode a subset of the formula more compactly. SBVA heuristically selects the
auxiliary variables. Instead, we select them manually because it is more effective,
the new variables have meaning, and SBVA is extremely slow on this problem.
Eliminating the auxiliary variables results in the encoding of Section 4.1.

68 M.J.H. Heule and M. Scheucher

The first type of these variables, u4a,c,d, represents the presence of a 4-gon
{a, b, c, d} such that points a, b, c, d appear in this order from left to right and
b and c are above the line ad. Furthermore, the variables u5a,d,e indicate the
existence of a 5-gon {a, b, c, d, e} with the property that the points a, b, c, d, e
appear in this order from left to right, the points b, c, and d are above the line
ae, and the triangle {a, c, e} is empty. This configuration implies the existence of
a 5-hole within {a, b, c, d, e} using similar reasoning as described in Section 4.1.
The clauses enforcing these properties are outlined below.

u4a,c,d ∨ oa,b,c ∨ ob,c,d with a < b < c < d (8)

u5a,d,e ∨ u4a,c,d ∨ oc,d,e ∨ ha,c,e with a < c < d < e (9)

In the following we distinguish five types of 6-holes by the number of its
points that lie above/below the line connecting its leftmost and rightmost points.
Fig. 5 shows the three configurations with four, three, and two points above the
line, respectively. The two cases with three and four points below the line are
symmetric but will be handled in a different and more efficient manner below.

To block all 6-holes with configurations having three or four points above the
line connecting the leftmost and rightmost points, we utilize the variables u5a,d,e.
Specifically, a configuration with three points above occurs if there is a point b
situated between a and e, lying below the line ae. Also, the configuration with
four points above arises when a point f , located to the right of e, falls below
the line de. The associated clauses for these configurations are detailed below.
The omission of 3-hole literals is justified by our knowledge that a 3-hole exists
among a, c, and e for some point c positioned above the line ae.

u5a,d,e ∨ oa,b,e with a < d < e, a < b < e (10)

u5a,d,e ∨ od,e,f with a < d < e < f (11)

To block the third type of a 6-hole, we need to introduce variables v4a,c,d
which, similar as u4a,c,d, indicate the presence of a 4-gon {a, b, c, d} with the
property that the points a, b, c, d appear in this order from left to right and b
and c are below the line ad. The clauses that encode these variables are:

v4a,c,d ∨ oa,b,c ∨ ob,c,d with a < b < c < d (12)

Using the variables u4a,c,d and v4a,c′,d we are now ready to block the configu-
ration of the third type of a 6-hole where two points lie above and two points lie
below the line connecting the leftmost and rightmost points; see Fig. 5 (right).
Recall that u4a,c,d denotes a 4-gon situated above the line ad, with c being the
second-rightmost point. Also, v4a,c′,d denotes a 4-gon below the line ad, with c′

as the second-rightmost point. A 6-hole exists if both u4a,c,d and v4a,c′,d are true
for some points a and d when there are no points within the triangle formed by
a, c, and c′. Or, in clauses:

u4a,c,d ∨ v4a,c′,d ∨ ha,c,c′ with a < c < c′ < d (13)

u4a,c,d ∨ v4a,c′,d ∨ ha,c′,c with a < c′ < c < d (14)

Happy Ending: An Empty Hexagon in Every Set of 30 Points 69

The remaining configurations to consider involve those with three or four
points below the line joining the leftmost and rightmost points. As we discussed
at the end of Section 4.1, these configurations can be encoded more compactly.
We only need to block the existence of 5-holes {a, b, c, d, e} with the property
that the points 1, a, b, c, d, e appear in this order from left to right and the points
b, c, and d are below the line ae. The reasoning is as follows: if such a 5-hole
exists, it can be expanded into a 6-hole by the closest point to line ab within
the triangle {1, a, b} (which is point 1 if the triangle is empty). Additionally, by
blocking these specific 5-holes, we simultaneously block all 6-holes with three or
four points below the line between the leftmost and rightmost points. Following
the earlier cases, we only require a single 3-hole literal which ensures that the
triangle {a, c, e} is empty. The clauses to block these 5-holes are as follows:

v4a,c,d ∨ oc,d,e ∨ ha,c,e with 1 < a < c < d < e (15)

This encoding uses O(n4) clauses, while it has the same propagation power as
having all the 16×

(
n
6

)
clauses in the domain-consistent encoding of Section 4.1. In

general, the trusted encoding for k-holes uses O(nk) clauses, while the optimized
encoding when generalized to k-holes has only O(kn4) clauses, or O(n4) for every
fixed k. An encoding of size O(n4) for k-gons is analogous: simply remove the
3-hole literals from the clauses.

4.3 Minor Optimizations

We can make the encoding even more compact by removing a large fraction of
the clauses from the trusted encoding. Note that constraints to forbid 6-holes
contain only negative 3-hole literals. That means that only half of the constraints
to define the 3-hole variables are actually required. This in turn shows that only
half of the inside variable definitions are required. So, instead of (1), (2), and (3),
it suffices to use the following:

ci;a,b,c →
((

oa,b,c → (oa,i,b ∧ oa,i,c)
)
∧
(
oa,b,c → (oa,i,b ∧ oa,i,c)

))
(16)

ci;a,b,c →
((

oa,b,c → (oa,i,c ∧ ob,i,c)
)
∧
(
oa,b,c → (oa,i,c ∧ ob,i,c)

))
(17)

ha,b,c ←
∧

a<i<c
i ̸=b

ci;a,b,c. (18)

It is worth noting that the SAT preprocessing technique blocked-clause elim-
ination (BCE) can automatically remove the omitted clauses [22]. However, for
means of efficiency, BCE is turned off by default in top-tier solvers, including
the solver CaDiCaL, which we used for the proof. During initial experiments, we
observed that omitting these clauses slightly improves the performance.

Finally, the variables u4a,c,d and v4a,c,d can be used to more compactly encode
the clauses (6). We can replace them with the following clauses:

(u4a,c,d ∨ oa,c,d) ∧ (v4a,c,d ∨ oa,c,d) with a < c < d (19)

70 M.J.H. Heule and M. Scheucher

4.4 Breaking the Reflection Symmetry

Holes are invariant to reflectional symmetry: If we mirror a point set S, then
the counterclockwise order around the extremal point p1 (which is p2, . . . , pn)
is reversed (to pn, . . . , p2). By relabeling points to preserve the counterclockwise
order, we preserve o1,a,b = true for a < b, while the original orientation variables
oa,b,c with 2 ≤ a < b < c ≤ n are mapped to on−c+2,n−b+2,n−a+2. A similar
mapping applies to the containment and 3-hole variables. The trusted encoding
maps almost onto itself, except for the missing reflection clauses of (5) and (6).
As a fix for verification, we add each reflected clause using one resolution step.

Since only a tiny fraction of triple orientations map to themselves (so-called
involutions), breaking the reflectional symmetry reduces the search space by a
factor of almost 2. We partially break this symmetry by constraining the vari-
ables oa,a+1,a+2 with 2 ≤ a ≤ n− 2. We used the symmetry-breaking predicate
below, because it is compatible with our cube generation, described in Section 5.

o⌈n
2 ⌉−1,⌈n

2 ⌉,⌈n
2 ⌉+1, . . . , o2,3,4 ≼ o⌊n

2 ⌋+1,⌊n
2 ⌋+2,⌊n

2 ⌋+3, . . . , on−2,n−1,n (20)

One symmetry that remains is the choice of the first point. Any point on
the convex hull could be picked for this purpose, and breaking it can potentially
reduce the search space by at least a factor of 3. However, breaking this symmetry
effectively is complicated and we therefore left it on the table.

5 Problem Partitioning

The formula to determine that h(6) ≤ 30 requires CPU years to solve. To com-
pute this in reasonable time, the problem needs to be partitioned into many
small subproblems that can be solved in parallel. Although there exist tools to
do the partitioning automatically [18], we observed that this partitioning was
ineffective. As a consequence, we focused on manual partitioning.

During our initial experiments, we determined which orientation variables
were suitable for splitting. We used the formula for g(6) ≤ 17 for this purpose
because its runtime is large enough to make meaningful observations and small
enough to explore many options. It turned out that the variables oa,a+1,a+2

were the most effective choice for splitting the problem. Assigning one of these
oa,a+1,a+2 variables to true/false roughly halves the search space and reduces
the runtime by a factor of roughly 2.

A problem with n points has n−3 free variables of the form oa,a+1,a+2, as the
variable o1,2,3 is already fixed by the symmetry breaking. One cannot generate
2n−3 equally easy subproblems, because (oa,a+1,a+2∨oa+1,a+2,a+3∨oa+2,a+3,a+4)
and (oa,a+1,a+2∨oa+1,a+2,a+3∨oa+2,a+3,a+4∨oa+3,a+4,a+5) follow directly from
the optimized formula after unit propagation. Thus, assigning three consecutive
oa,a+1,a+2 variables to true results directly in a falsified clause, as it would create
a 6-hole among the points p1, pa, . . . , pa+4. The same holds for four consecutive
oa,a+1,a+2 variables assigned to false, which would create a 6-hole among the

Happy Ending: An Empty Hexagon in Every Set of 30 Points 71

points pa, . . . , pa+5. The asymmetry is due to fixing the variables o1,a,b to true.
If we assigned them to false, then the opposite would happen.

We observed that limiting the partition to variables involving the middle
points reduces the total runtime. We will demonstrate such experiments in Sec-
tion 6.2. So, to obtain suitable cubes, we considered all assignments of the se-
quence oa,a+1,a+2, oa+1,a+2,a+3, . . ., oa+ℓ−1,a+ℓ,a+ℓ+1 for a suitable constant ℓ
and a = n+ℓ

2 −1 such that the above properties are fulfilled, that is, no three con-
secutive entries are true and no four consecutive entries are false. In the following
we refer to ℓ as the length of the cube-space. In our experiments, we observed
that picking ℓ < n − 3 reduces the overall computational costs. Specifically, for
the h(6) ≤ 30 experiments, we use length ℓ = 21.

Our initial experiments showed that the runtime of cubes grows exponen-
tially with the number of occurrences of the alternating pattern ob,b+1,b+2 = +,
ob+1,b+2,b+3 = −, ob+2,b+3,b+4 = +. As a consequence, the hardest cube for
h(6) ≤ 30 would still require days of computing time, thereby limiting par-
allelism. To deal with this issue, we further partition cubes that contain this
pattern. For each occurrence of the alternating pattern in a cube, we split the
cube into two cubes: one that extends it with ob,b+2,b+4 and one that extends it
with ob,b+2,b+4. Note that we do this for each occurrence. So a cube containing
m of these patterns is split into 2m cubes. This reduced the computational costs
of the hardest cubes to less than an hour.

6 Evaluation

For the experiments, we use the solver CaDiCaL (version 1.9.3) [1], which is cur-
rently the only top-tier solver that can produce LRAT proofs directly. The effi-
cient, verified checker cakeLPR [32] validated the proofs. We run CaDiCaL with
command-line options: ––sat ––reducetarget=10 ––forcephase ––phase=0.
The first option reduces the number of restarts. This is typically more useful
for satisfiable formulas (as the name suggests), but in this case it is also help-
ful for unsatisfiable formulas. The second option turns off the aggressive clause
deletion strategy. The last two options turn on negative branching, a MiniSAT
heuristic [7]. Experiments were run on a specialized, internal Amazon Web Ser-
vices solver framework that provides cloud-level scaling. The framework used
m6i.xlarge instances, which have two physical cores and 16 GB of memory.

6.1 Impact of the Encoding

To illustrate the impact of the encoding on the performance, we show some statis-
tics on various encodings of the h(6) ≤ 30 formula. We restricted this experiment
to solving a single randomly-picked subproblem. For other subproblems, the re-
sults were similar. We experimented with the following five encodings:

– T : the trusted encoding presented in Section 3
– O1: T with (4) replaced by the domain-consistent encoding (7) of Section 4.1

72 M.J.H. Heule and M. Scheucher

– O2: O1 with (7) replaced by the O(n4) encoding (8) - (15) of Section 4.2
– O3: O2 with the minor optimizations that replace (1), (2), (3), and (6) by

(17), (18), (18), and (19), respectively, see Section 4.3
– O4: O3 extended with the symmetry-breaking predicate from Section 4.4

Table 1 summarizes the results. The domain-consistent encoding can be
solved more efficiently than the trusted encoding while having over five times
as many clauses. The reason for the faster performance becomes clear when
looking at the number of conflicts and propagations. The domain-consistent en-
coding requires just over a fifth as many conflicts and propagations to determine
unsatisfiability. The auxiliary variables that enable the O(n4) encoding reduce
the size by almost an order of magnitude. The resulting formula can be solved
three times as fast, while using a similar number of conflicts and propagations.
The minor optimizations reduce the size by roughly a third and further improve
the runtime. Finally, the addition of the symmetry-breaking predicate doesn’t
impact the performance. Its main purpose is to halve the number of cubes.

We also solved the optimized encoding (O3) of the formula g(6) ≤ 17, which
takes 41.99 seconds using 623 540 conflicts. Adding the symmetry-breaking pred-
icate (O4) reduces the runtime to 17.39 seconds using 316 785 conflicts. So the
symmetry-breaking predicate reduces the number of conflicts by roughly a fac-
tor of 2 (as expected) while the runtime is reduced even more. The latter is due
to the slowdown caused by maintaining more conflict clauses while solving the
formula without the symmetry-breaking predicate.

6.2 Impact of the Partitioning

All known point sets witnessing the lower bound h(6) ≥ 30 contain a 7-gon.
To obtain a possibly easier problem to test and compare heuristics, we studied
how many points are required to guarantee the existence of a 6-hole or a 7-
gon. It turned out that the answer is at most 24 (Theorem 2). Computing this
is still hard but substantially easier compared to our main result. During our
experiments, we observed that increasing the number of cubes can increase the
total runtime. We therefore explored which parameters produce the lowest total
runtime. The experimental results are shown in Table 2 for various values for
the parameter ℓ. Incrementing ℓ by 2 increases the number of cubes roughly by
a factor of 3. The optimal total runtime is achieved for ℓ = 15, which is a 62%

Table 1. Comparison of the different encodings.

formula #variables #clauses #conflicts #propagations time (s)

T 62 930 1 171 942 1 082 569 1 338 662 627 243.07
O1 62 930 5 823 078 228 838 282 774 472 136.20
O2 75 110 667 005 211 272 343 388 591 45.49
O3 75 110 436 047 234 755 340 387 692 39.46
O4 75 110 444 238 234 587 342 904 580 39.41

Happy Ending: An Empty Hexagon in Every Set of 30 Points 73

0% 20% 40% 60% 80% 100%

10−1

100

101

102

103

104

105

ru
nt

im
e

(s
ec

on
ds

)

ℓ = 7 ℓ = 9

ℓ = 11 ℓ = 13

ℓ = 15 ℓ = 17

ℓ = 19 ℓ = 21

Fig. 6. Runtime to solve the subproblems of Theorem 2 for various splitting parameters.

reduction compared to full partitioning (ℓ = 21). Note that the solving time
for the hardest cube (the max column) increases substantially when using fewer
cubes. This in turn reduces the effectiveness of parallelism. The runtime without
partitioning is expected to be about 1000 CPU hours, so partitioning achieves
super-linear speedups and more than a factor of 4 speedup for ℓ = 15. Fig. 6
shows plots of cumulatively solved cubes, with similar curves for all settings.

We also evaluated the off-the-shelf tool March for partitioning. This tool
was used to prove Schur Number Five [16]. We used option -d 13 to cut off
partitioning at depth 13 to create 8192 cubes. That partition turned out to be
very poor: at least 18 cubes took over 100 000 seconds. The expected total costs
are about 10 000 CPU hours, so 10 times the estimated partition-free runtime.

A partitioning can also guide the search to solve the formula g(6) ≤ 17. The
partitioning of this formula using ℓ = 12 results in 1108 cubes. If we add these
cubes to the formula with the symmetry-predicate (O4) in the iCNF format [34],
then CaDiCaL can solve it in 8.53 seconds using 205 153 conflicts.

Table 2. Runtime comparison for different values of partitioning parameter ℓ

ℓ #cubes average time (s) max time (s) total time (h)

21 312 418 6.99 66.86 606.55
19 89 384 13.61 123.70 337.96
17 25 663 34.29 293.10 244.50
15 7393 112.61 949.50 231.27
13 2149 431.26 3 347.59 257.44
11 629 1 847.46 11 844.05 322.79
9 188 7 745.14 32 329.05 404.47
7 57 32 905.90 105 937.76 521.01

74 M.J.H. Heule and M. Scheucher

100K 200K 300K
10−1

100

101

102

103
ru

nt
im

e
(s

ec
on

ds
)

Fig. 7. Reported process time to solve the subproblems of h(6) ≤ 30 with proof logging
while running a formally-verified checker to validate the solver’s output.

6.3 Theorem 1

To show that the optimized encoding for h(6) ≤ 30 is unsatisfiable, we par-
titioned the problem with the splitting algorithm described in Section 5 with
parameter ℓ = 21, which results in 312 418 cubes. We picked this setting based
on the experiments shown in Table 2. Fig. 7 shows the runtime of solving the
subproblems. The average runtime was just below 200 seconds. All subproblems
were solved in less than an hour. Almost 24 000 subproblems could be solved
within a second. For these subproblems, the cube resulted directly in a conflict,
so the solver didn’t have to do any search.

The total runtime is close to 17 300 CPU hours, or slightly less than 2 CPU
years. We could achieve practically a linear speedup using 1000 m6i.xlarge
instances. The timings include producing and validating the proof as described in
Section 7.1. The combined size of the proofs is 180 terabytes in the uncompressed
LRAT format used by the cakeLPR checker. In past verification efforts of hard
math problems, the produced proofs were in the DRAT format. For this problem,
the LRAT proofs are roughly 2.3 times as large as the corresponding DRAT
proof. We estimate that the DRAT proof would have been 78 terabytes in size,
so approximately one third to the proof of the Pythagorean triples problem [17].
For all problems, the checker was able to easily catch up with the solver while
running on a different core, thereby finishing as soon as the solver was done.

7 Verification

We applied three verification steps to increase trust in the correctness of our
results. In the first step, we check the results produced by the SAT solver. The
second step consists of checking the correctness of the optimizations discussed
in Section 4. In the third step, we validate that the case split covers all cases.

Happy Ending: An Empty Hexagon in Every Set of 30 Points 75

7.1 Concurrent Solving and Checking

The most commonly used approach to validate SAT-solving results works as
follows. First, a SAT solver produces a DRAT proof. This proof is checked and
trimmed using an unverified efficient tool that produces a LRAT proof. The
difference between a DRAT proof and a LRAT proof is that the latter contains
hints. The LRAT proof is then validated by a formally-verified checker, which
uses the hints to obtain efficient performance.

Recently, the SAT solver CaDiCaL added support for producing LRAT proofs
directly (since version 1.7.0). This allows us to produce the proof and validate
it concurrently. To the best of our knowledge, we are the first to take advantage
of this possibility. CaDiCaL sends its proof to a pipe and the verified checker
cakeLPR reads it from the pipe. This tool chain works remarkably well and adds
little overhead while avoiding storing large files.

7.2 Reencoding Proof

We validated the four optimizations presented in Section 4. Only the trusted
encoding has the reflection symmetry, as each of the optimizations don’t preserve
this symmetry. Each of the clauses in the symmetry-breaking predicate have the
substitution redundancy (SR) property [5] with respect to the trusted encoding.
However, there doesn’t exist a SR checker. Instead, we transformed the SR check
into a sequence of DRAT addition and deletion steps. This is feasible for small
point sets (up to 10 points), but is too expensive for the full problem. It may
therefore be more practical to verify this optimization in a theorem prover.

Transforming the trusted encoding into the domain-consistent one is challeng-
ing to validate because the solver cannot easily infer the existence of a 6-hole
using only the clauses (7). Since we are replacing (4) by (7) and clause deletion
trivially preserves satisfiability, we only need to check whether each of the clauses
(7) is entailed by the trusted encoding. This can be achieved by constructing a
formula that asks whether there exists an assignment that satisfies the trusted
encoding, but falsifies at least one of the clauses (7). We validated that this
formula is unsatisfiable for n ≤ 12 (around 300 seconds).5 The formula becomes
challenging to solve for larger n. However, the validation for small n provides
substantial evidence of the correctness of the encoding and the implementation.

Checking the correctness of the other two optimizations is easier. Observe
that one can obtain the domain-consistent encoding from the O(n4) encoding
by applying Davis-Putnam resolution [6] on the auxiliary variables. This can be
expressed using DRAT steps. The DRAT derivation from the domain-consistent
encoding to the O(n4) encoding applies all these steps in reverse order. The
minor optimizations mostly delete clauses, which is trivially correct for proofs
of unsatisfiability. The clauses (19) have the RAT property on the auxiliary
variables and their redundancy can easily be checked using a DRAT checker.

5 We implemented an entailment tool, see https://github.com/marijnheule/entailment

76 M.J.H. Heule and M. Scheucher

https://github.com/marijnheule/entailment

7.3 Tautology Proof

The final validation step consists of checking whether the partition of the problem
covers the entire search space. This part has also been called the tautology
proof [16], because in most cases it needs to determine whether the disjunction
of cubes is a tautology. We take a slightly different approach and validate that
the following formula is unsatisfiable: the conjunction of the negated cubes; the
symmetry-breaking predicate; and some clauses from the formula.

Recall that we omitted various cubes because they resulted in a conflict with
the clauses (oa,a+1,a+2∨oa+1,a+2,a+3∨oa+2,a+3,a+4) with a ∈ {2, . . . , n−4} and
(oa,a+1,a+2 ∨ oa+1,a+2,a+3 ∨ oa+2,a+3,a+4 ∨ oa+3,a+4,a+5) with a ∈ {2, . . . , n− 5}.
We checked with DRATtrim that these clauses are implied by the optimized
formulas, which takes 0.3 CPU seconds. We combined them with the negated
cubes and the symmetry-breaking predicate, which results in an unsatisfiable
formula that can be solved by CaDiCaL in 12 CPU seconds.

8 Conclusion

We closed the final case regarding k-holes in the plane by showing h(6) = 30.
This is another example that SAT-solving techniques can effectively solve a range
of long-standing open problems in mathematics. Other successes include the
Pythagorean triples problem [17], Schur number five [16], and Keller’s conjec-
ture [4]. Also, we recomputed g(6) = 17 many orders of magnitude faster com-
pared to the original computation by Szekeres and Peters [31] even when taking
into account the difference in hardware. So, SAT techniques overwhelmingly out-
performed a dedicated approach on this geometry problem. Key contributions in-
clude an effective, compact encoding and a partitioning strategy enabling linear-
time speedups even when using thousands of cores. We also presented a new
concurrent proof-checking procedure to significantly decrease validation costs.

Although the tools are fully automatic, some aspects of our solution require
the ingenuity of the user. In particular, we had to develop encoding optimizations
and a search-space partitioning strategy to take full advantage of the power of
the tools. Constructing the domain-consistent encoding automatically appears
challenging. Most other optimizations can be achieved automatically, for example
via structured bounded variable elimination [13]. However, the resulting formula
cannot be solved as efficiently as the presented one. Substantial research into
generating effective partitionings is required to enable non-experts to solve such
hard problems. Although we validated most steps, formally verifying the trusted
encoding or even the domain-consistent encoding would further increase trust in
the correctness of our result.

Acknowledgements Heule is partially supported by NSF grant CCF-2108521.
Scheucher was supported by the DFG grant SCHE 2214/1-1. We thank Donald
Knuth, Benjamin Kiesl-Reiter, John Mackey, and the reviewers for their valuable
feedback. The authors met for the first time during Dagstuhl meeting 23261 “SAT
Encodings and Beyond”, which kicked off the research published in this paper.

Happy Ending: An Empty Hexagon in Every Set of 30 Points 77

References

1. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020),
http://hdl.handle.net/10138/318754

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 336. IOS Press, second edn.
(2021), https://www.iospress.com/catalog/books/handbook-of-satisfiability-2

3. Björner, A., Las Vergnas, M., White, N., Sturmfels, B., Ziegler, G.M.: Oriented
Matroids, Encyclopedia of Mathematics and its Applications, vol. 46. Cambridge
University Press, 2 edn. (1999). https://doi.org/10/bhb4rn

4. Brakensiek, J., Heule, M.J.H., Mackey, J., Narváez, D.E.: The resolution of keller’s
conjecture. Journal of Automated Reasoning 66(3), 277–300 (2022). https://doi.
org/10.1007/S10817-022-09623-5

5. Buss, S., Thapen, N.: DRAT and propagation redundancy proofs without new
variables. Logical Methods in Computer Science 17(2) (2021). https://doi.org/10/
mbdx

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960). https://doi.org/10/bw9h55

7. Eén, N., Sörensson, N.: An extensible sat-solver. In: Theory and Applications of
Satisfiability Testing. pp. 502–518. Springer (2004)

8. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math-
ematica 2, 463–470 (1935), http://www.renyi.hu/~p_erdos/1935-01.pdf

9. Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry.
Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae,
Sectio Mathematica 3–4, 53–63 (1960), https://www.renyi.hu/~p_erdos/1960-09.
pdf

10. Felsner, S., Weil, H.: Sweeps, arrangements and signotopes. Discrete Applied Math-
ematics 109(1), 67–94 (2001). https://doi.org/10/dc4tb4

11. Gent, I.P.: Arc consistency in SAT. In: European Conference on Artificial In-
telligence (ECAI 2002). FAIA, vol. 77, pp. 121–125. IOS Press (2002), https:
//frontiersinai.com/ecai/ecai2002/pdf/p0121.pdf

12. Gerken, T.: Empty Convex Hexagons in Planar Point Sets. Discrete & Computa-
tional Geometry 39(1), 239–272 (2008). https://doi.org/10/c4kn3s

13. Haberlandt, A., Green, H., Heule, M.J.H.: Effective Auxiliary Variables via Struc-
tured Reencoding. In: International Conference on Theory and Applications of
Satisfiability Testing (SAT 2023). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 271, pp. 11:1–11:19. Dagstuhl, Dagstuhl, Germany (2023).
https://doi.org/10.4230/LIPIcs.SAT.2023.11

14. Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elemente der Math-
ematik 33, 116–118 (1978), http://www.digizeitschriften.de/dms/img/?PID=
GDZPPN002079801

15. Heule, M.J.H.: The DRAT format and DRAT-trim checker (2016),
arXiv:1610.06229

16. Heule, M.J.H.: Schur number five. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence. AAAI’18, AAAI Press (2018)

17. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Theory and Applications

78 M.J.H. Heule and M. Scheucher

http://hdl.handle.net/10138/318754
https://www.iospress.com/catalog/books/handbook-of-satisfiability-2
https://doi.org/10/bhb4rn
https://doi.org/10/bhb4rn
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10/mbdx
https://doi.org/10/mbdx
https://doi.org/10/mbdx
https://doi.org/10/mbdx
https://doi.org/10/bw9h55
https://doi.org/10/bw9h55
http://www.renyi.hu/~p_erdos/1935-01.pdf
https://www.renyi.hu/~p_erdos/1960-09.pdf
https://www.renyi.hu/~p_erdos/1960-09.pdf
https://doi.org/10/dc4tb4
https://doi.org/10/dc4tb4
https://frontiersinai.com/ecai/ecai2002/pdf/p0121.pdf
https://frontiersinai.com/ecai/ecai2002/pdf/p0121.pdf
https://doi.org/10/c4kn3s
https://doi.org/10/c4kn3s
https://doi.org/10.4230/LIPIcs.SAT.2023.11
https://doi.org/10.4230/LIPIcs.SAT.2023.11
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
http://arXiv.org/abs/1610.06229

of Satisfiability Testing (SAT 2016). LNCS, vol. 9710, pp. 228–245. Springer (2016).
https://doi.org/10/gkkscn

18. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and Conquer: Guiding
CDCL SAT Solvers by Lookaheads. In: Hardware and Software: Verification and
Testing. pp. 50–65. Springer (2012). https://doi.org/10/f3ss29

19. Heule, M.J.H., Scheucher, M.: Happy Ending: An Empty Hexagon in Every Set of
30 Points (Extended Version) (2024), arxiv.org/abs/2403.00737

20. Holmsen, A.F., Mojarrad, H.N., Pach, J., Tardos, G.: Two extensions of the Erdős–
Szekeres problem. Journal of the European Mathematical Society pp. 3981–3995
(2020). https://doi.org/10/gsjw4m

21. Horton, J.: Sets with no empty convex 7-gons. Canadian Mathematical Bulletin
26, 482–484 (1983). https://doi.org/10/chf6dk

22. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: Tools and
Algorithms for the Construction and Analysis of Systems. pp. 129–144. Springer
(2010)

23. Kalbfleisch, J., Kalbfleisch, J., Stanton, R.: A combinatorial problem on convex
regions. In: Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing,
Congressus Numerantium, vol. 1, Baton Rouge, La.: Louisiana State Univ. pp.
180–188 (1970)

24. Knuth, D.E.: Axioms and Hulls, LNCS, vol. 606. Springer (1992). https://doi.org/
10/bwfnz9

25. Marić, F.: Fast formal proof of the Erdős–Szekeres conjecture for convex polygons
with at most 6 points. Journal of Automated Reasoning 62, 301–329 (2019). https:
//doi.org/10/gsjw4r

26. Nicolás, M.C.: The Empty Hexagon Theorem. Discrete & Computational Geome-
try 38(2), 389–397 (2007). https://doi.org/10/bw3hnd

27. Overmars, M.: Finding Sets of Points without Empty Convex 6-Gons. Discrete &
Computational Geometry 29(1), 153–158 (2002). https://doi.org/10/cnqmr4

28. Scheucher, M.: Two disjoint 5-holes in point sets. Computational Geometry 91,
101670 (2020). https://doi.org/10/gsjw2z

29. Scheucher, M.: A SAT Attack on Erdős–Szekeres Numbers in Rd and the Empty
Hexagon Theorem. Computing in Geometry and Topology 2(1), 2:1–2:13 (2023).
https://doi.org/10/gsjw22

30. Suk, A.: On the Erdős–Szekeres convex polygon problem. Journal of the AMS 30,
1047–1053 (2017). https://doi.org/10/gsjw44

31. Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős–Szekeres prob-
lem. Australia and New Zealand Industrial and Applied Mathematics 48(2), 151–
164 (2006). https://doi.org/10/dkb9j3

32. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: Verified propagation redundancy and
compositional UNSAT checking in cakeml. International Journal on Software Tools
for Technology 25(2), 167–184 (2023). https://doi.org/10/grw7wm

33. Tóth, G., Valtr, P.: The Erdős–Szekeres theorem: Upper Bounds and Related Re-
sults. In: Combinatorial and Computational Geometry. vol. 52, pp. 557–568. MSRI
Publications, Cambridge Univ. Press (2005), http://www.ams.org/mathscinet-
getitem?mr=2178339

34. Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: A framework for parallelized
bounded model checking. In: International Workshop on Parallel and Distributed
Methods in verifiCation, PDMC 2009. EPTCS, vol. 14, pp. 62–76 (2009). https:
//doi.org/10.4204/EPTCS.14.5

Happy Ending: An Empty Hexagon in Every Set of 30 Points 79

https://

https://doi.org/10/gkkscn
https://doi.org/10/gkkscn
https://doi.org/10/f3ss29
https://doi.org/10/f3ss29
https://arxiv.org/abs/2403.00737
https://doi.org/10/gsjw4m
https://doi.org/10/gsjw4m
https://doi.org/10/chf6dk
https://doi.org/10/chf6dk
https://doi.org/10/bwfnz9
https://doi.org/10/bwfnz9
https://doi.org/10/bwfnz9
https://doi.org/10/bwfnz9
https://doi.org/10/gsjw4r
https://doi.org/10/gsjw4r
https://doi.org/10/gsjw4r
https://doi.org/10/gsjw4r
https://doi.org/10/bw3hnd
https://doi.org/10/bw3hnd
https://doi.org/10/cnqmr4
https://doi.org/10/cnqmr4
https://doi.org/10/gsjw2z
https://doi.org/10/gsjw2z
https://doi.org/10/gsjw22
https://doi.org/10/gsjw22
https://doi.org/10/gsjw44
https://doi.org/10/gsjw44
https://doi.org/10/dkb9j3
https://doi.org/10/dkb9j3
https://doi.org/10/grw7wm
https://doi.org/10/grw7wm
http://www.ams.org/mathscinet-getitem?mr=2178339
http://www.ams.org/mathscinet-getitem?mr=2178339
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.4204/EPTCS.14.5

80 M.J.H. Heule and M. Scheucher

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Synthesis

Fully Generalized Reactivity(1) Synthesis⋆

Abstract. Generalized Reactivity(1) (GR(1)) synthesis is a reactive
synthesis approach in which the specification is split into two parts: a
symbolic game graph, describing the safe transitions of a system, a live-
ness specification in a subset of Linear Temporal Logic (LTL) on top of it.
Many specifications can naturally be written in this restricted form, and
the restriction gives rise to a scalable synthesis procedure – the reasons
for the high popularity of the approach. For specifications even slightly
beyond GR(1), however, the approach is inapplicable. This necessitates a
transition to synthesizers for full LTL specifications, introducing a huge
efficiency drop. This paper proposes a synthesis approach that smoothly
bridges the efficiency gap from GR(1) to LTL by unifying synthesis for
both classes of specifications. The approach leverages a recently intro-
duced canonical representation of omega-regular languages based on a
chain of good-for-games co-Büchi automata (COCOA). By constructing
COCOA for the liveness part of a specification, we can then build a
fixpoint formula that can be efficiently evaluated on the symbolic game
graph. The COCOA-based synthesis approach outperforms standard ap-
proaches and retains the efficiency of GR(1) synthesis for specifications
in GR(1) form and those with few non-GR(1) specification parts.

1 Introduction

Reactive synthesis is the process of automatically computing a provably correct
reactive system from its formal specification [13]. A safety-critical system is
often developed twice: first, when it is described using a formal specification,
and second, when a system is implemented according to this specification. The
dream of reactive synthesis is to fully eliminate manual implementation phase.

Reactive synthesis is however computationally hard. For specifications in the
commonly used linear temporal logic (LTL), checking whether an implementa-
tion exists is 2EXPTIME-complete [30]. The classical approach to solve reactive
synthesis from LTL is to first translate the LTL formula into a deterministic
parity automaton, followed by solving the induced two-player parity game [7].
The system player wins this game if and only if there is an implementation
satisfying the specification. It is the first phase of translating LTL to parity au-
tomaton that usually represents a bottleneck. This observation spurred a series

⋆ This work has been partially supported by the DFG through Grant No. 322591867
(GUISynth) and the BMWi through Grant No. 19A21026E (SafeWahr).

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 83–102, 2024.
https://doi.org/10.1007/978-3-031-57246-3_6

Rüdiger Ehlers and Ayrat Khalimov(B)

TU Clausthal, Clausthal-Zellerfeld, Germany

rudiger.ehlers,ayrat.khalimov{ }@tu-clausthal.de

https://doi.org/10.1007/978-3-031-57246-3_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_6&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

of synthesis approaches. For instance, in bounded synthesis, either the maximal
number of states that a system can have [22] or the longest system response
time [20] is restricted. If there exists a system realizing the specification, then
there exists one that adheres to some bounds, and bounded synthesis works well
whenever small bounds suffice for realizing the given specification. Another ap-
proach is to synthesize implementations for parts of the specification, and to then
compose them into one that realizes the whole specification [25,31,21]. The ap-
proach of [26] avoids constructing one large deterministic parity automaton and
instead constructs many smaller ones that—when composed together—represent
the original specification. Such decomposition proved beneficial on practical ex-
amples [1]. Finally, there are approaches that consider “synthesis-friendly” sub-
sets of LTL. Alur and La Torre identified a number of such LTL fragments with
a simpler synthesis problem [3], and this eventually led to the introduction of
Generalized Reactivity(1) synthesis by Piterman et al. [28], GR(1) for short.
GR(1) synthesis gained a lot of prominence and was applied in domains such
as robotics [34,24], cyber-physical system control [36,35], and chip component
design [8,23]. We describe it in more detail.

In GR(1) synthesis, the specification is divided into two parts. The first part
represents the safety properties of a system and encodes a symbolic game graph.
Each graph vertex encodes a valuation of last system inputs and outputs. The
transitions in the graph represent how these variables can evolve in one step.
For instance, a robot on a grid can move from its current cell to the left, right,
up, or down, but cannot jump; this is easily encoded as a symbolic game graph.
Secondly, there are liveness properties of the following form: if certain vertices
are visited infinitely often, then certain other vertices must be visited infinitely
often as well. The liveness properties are encoded symbolically using LTL formu-
las of the shape

∧
i GFφi →

∧
j GFψj , where φi and ψj are Boolean formulas over

input and output system propositions. Synthesis problems from many domains
can be encoded naturally, or after some manual effort, into the GR(1) setting.

Constraining specifications to GR(1) form reduces the synthesis problem’s
complexity from doubly-exponential to singly-exponential (in the number of
propositions), or polynomial when the number of propositions is fixed [8]. The
GR(1) synthesis problem can be solved by evaluating a fixpoint formula on the
symbolic game arena. The fixpoint formula defines the set of vertices from which
the system player satisfies the GR(1) liveness properties while staying in the
game arena. The simple shape of GR(1) liveness properties makes the fixpoint
formula simple. Moreover, evaluating the fixpoint formula on the symbolic game
graph can be done efficiently using Binary Decision Diagrams (BDDs, [12]) as the
underlying data structure. These factors together — efficient implementation and
relatively expressive specification language — made GR(1) synthesis popular.

GR(1) synthesis has a drawback. A single property outside of GR(1) – for in-
stance, “eventually the robot always stays in some stable zone” (FG inStableZone)
– makes GR(1) synthesis inapplicable. Switching to full-LTL synthesizers intro-
duces an abrupt efficiency drop, as they do not take advantage of the simple
structure of GR(1)-like specifications. For improving the practical applicability

84 R. Ehlers and A. Khalimov

of reactive synthesis, a synthesis approach exhibiting a smooth efficiency curve
on the way from GR(1) to LTL would hence be useful. While there are are
some GR(1) synthesis extensions (e.g., [4,17]), they only extend it by certain
specification classes and consequently do not support full LTL.

This paper unifies synthesis for GR(1) and full LTL. Like in GR(1) synthesis,
we aim at synthesis for specifications split into the safety part encoded as a
symbolic game graph and the liveness part. Unlike the standard GR(1) synthesis,
the liveness part can be any LTL or omega-regular property. For standard GR(1)
specifications, our approach inherits the efficiency of GR(1) synthesis, including
when a specification does not fall syntactically into this class, but is semantically
a GR(1) specification. At the same time, for specifications that go beyond GR(1)
and only have a few non-GR(1) components, our approach scales well.

Our solution is based on the same fixpoint-evaluation-of-symbolic-game-graph
idea. Our starting point is a folklore approach based on solving parity games by
evaluating fixpoint equations [11]. We modify it so that it becomes applicable to
specifications given in the form of a chain of good-for-games co-Büchi automata
(COCOA). Such chains have recently been proposed as a new canonical repre-
sentation of omega-regular languages [19], and it has been shown how minimal
and canonical COCOA can be computed in polynomial time from a deterministic
parity automaton of the language. Our COCOA-based synthesis approach con-
verts the liveness part of the specification into a parity automaton, constructs
the chain, builds the fixpoint formula from the chain, and finally evaluates it
on the symbolic game graph. We show that the fixpoint formula built from the
chain has a structure similar to GR(1) fixpoint formulas. This is not the case
for the folklore approach via parity games, and as a result, our COCOA-based
synthesizer is roughly an order of magnitude faster. The COCOA-based synthe-
sis approach inherits the efficiency of GR(1) synthesis, and it is also efficient on
specifications slightly beyond GR(1). Finally, our approach is the first applica-
tion of the new canonical representation of omega-regular languages.

2 Preliminaries

Automata and languages

Let N = {0, 1, 2, . . .} be the set of natural numbers including 0. Let AP be a
set of atomic propositions ; 2AP denotes the valuations of these propositions. A
Boolean formula represents a set of valuations: for instance, ā ∧ b, also written
āb, encodes valuations in which proposition a has value false and b is true. A
Boolean function maps valuations of propositions to either true or false. Binary
decision diagrams (BDDs) are a data structure for manipulating such functions.

A word is a sequence of proposition valuations w = x0x1 . . . ∈ (2AP)ω∪(2AP)∗.
A word can be finite or infinite. A language is a set of infinite words. Given a
language L, the suffix language of L for some finite word p ∈ (2AP)∗ is L(L, p) =
{x0x1 . . . ∈ (2AP)ω | p · x0x1 . . . ∈ L}. The words in this set are called suffix
words. The set of all suffix languages of L is the set {L(L, p) | p ∈ (2AP)∗}.

Fully Generalized Reactivity(1) Synthesis 85

Automata over infinite words are used to finitely represent languages. We
consider parity and co-Büchi automata with transition-based acceptance. A par-
ity automaton is a tuple A = (Σ,Q, q0, δ) with a finite alphabet Σ (usually
Σ = 2AP), a finite set of states Q, an initial state q0 ∈ Q, and a finite transition
relation δ ⊆ Q × Σ × Q × N satisfying (q, x, q′, c) ∈ δ ⇒ (q, x, q′, c′) ̸∈ δ for all
q, x, q′ and c′ ̸= c. An automaton is complete if for every state q and letter x
there exists at least one pair (q′, c) ∈ Q × N s.t. (q, x, q′, c) ∈ δ; it is determin-
istic if exactly one such pair (q′, c) exists. Wlog. we assume that automata are
complete. An automaton is co-Büchi if only colors 1 and 2 occur in δ, and then
we call the transitions with color 1 rejecting and those with color 2 accepting.

A run of A on a word w = x0x1 . . . ∈ Σω is a sequence π = π0π1 . . . ∈ Qω

starting in π0 = q0 and such that (πi, xi, πi+1, ci) ∈ δ for some ci for every i ∈ N;
the induced color sequence c = c0c1 . . . is uniquely defined by w and π. A run
is accepting if the lowest color occurring infinitely often in the induced color
sequence is even (“min-even acceptance”). When this minimal color is uniquely
defined, e.g. when there is only one accepting run, it is called the color of w
wrt. A. A word is accepted if it has an accepting run. The automaton’s language
L(A) is the set of accepted words. The language of the automaton A′ derived
from A by changing the initial state to q is denoted by L(A, q).

A co-Büchi language is a language representable by a nondeterministic (equiv.,
deterministic) co-Büchi automaton. The Co-Büchi languages are a strict subset
of the omega-regular languages.

An automaton is good-for-games if there exists a strategy f : Σ∗ → Q to
resolve the nondeterminism to produce accepting runs on the accepted words,
formally: for every infinite word w = x0x1 . . ., the sequence π0π1 . . . defined by
πi = f(x0 . . . xi−1) for all i ∈ N is a run, and it is accepting whenever w belongs
to the language.

Games and our realizability problem

LTL. A commonly used formalism to represent system specifications is Linear
Temporal Logic (LTL, [29]). It uses temporal operators U, X, and derived ones
G and F, which we do not define here. For details, we refer the reader to [27].

Games. An edge-labelled game is a tuple G = (API ,APO, V, v0, δ, obj) where
V is a finite set of vertices, v0 ∈ V is initial, δ : V × 2API × 2APO ⇀ V is
a partial function describing possible moves (safety specification), and obj is a
winning objective (liveness specification). A play is a maximal (finite or infinite)
sequence of transitions of the form (v0, i0, o0, v1)(v1, i1, o1, v2)(v2, i2, o2, v3) . . .;
the corresponding sequence (i0 ∪ o0)(i1 ∪ o1) . . . is called the action sequence.
An infinite play is winning for the system if it satisfies the objective obj; when
obj is an LTL objective over API ∪ APO, the infinite play satisfies obj iff the
action sequence satisfies it. A system strategy is a function f : (2API)+ → 2APO .
The game is won by the system if it has a strategy f such that every play
(v0, i0, o0, v1)(v1, i1, o1, v2) . . . is infinite and it satisfies the objective, where oj =
f(i0 . . . ij) for all j. To define parity games, the winning objective obj is set to be

86 R. Ehlers and A. Khalimov

a parity-assigning function obj : V → N, and then an infinite play satisfies obj
iff the minimal parity visited infinitely often in the sequence obj(v0)obj(v1) . . .
is even (min-even acceptance on states).

The enforceable predecessor operator reads a set of tuples Φ ⊆ 2AP × V
and returns the set of positions from which the system can enforce taking one
of the transitions into the destination set:

(Φ) = {v ∈ V | ∀i.∃o : (i ∪ o, δ(v, i, o)) ∈ Φ} (1)

Symbolic games with LTL objectives. Games can be represented symbolically.
For instance, the vertices can be encoded as valuations of Boolean variables AP,
and transitions between the vertices can be encoded using a Boolean formula.
This paper focuses on solving symbolic games with LTL objectives:

Given a symbolic game with LTL objective. Who wins the game?

The particular symbolic representation is not important as long as it provides
the operations for union, intersection, and complementation of sets of label-
position tuples, and the enforceable predecessor operator . This paper focuses
exclusively on the realizability problem; the extraction of compact and efficient
implementations merits a separate study.

Mu-calculus fixpoint formulas. For an introduction to using fixpoint formulas in
synthesis, we refer the reader to [7], and to [10,5] for mu-calculus in general. The
fixpoint formulas use the greatest (ν) and least (µ) fixpoint operators, and the
enforceable-predecessor operator . For instance, the formula νY.µX. (Y ∧
(x ∨X)) represents the biggest set of vertices such that from all vertices in the
set, the system can enforce that either x does not hold along the next transition
and this transition leads back to the same set, or the play gets closer to a position
from which this can be enforced. This formula hence characterizes the positions
from which the system can enforce that x holds infinitely often along a play.

Generalized Reactivity(1)

Generalized Reactivity(1) is a class of assume-guarantee specifications that in-
cludes safety and liveness components. It gained popularity because many spec-
ifications naturally fall into the GR(1) class, and the restricted nature of GR(1)
admits an efficient synthesis approach. For the purpose of this paper, we define
a GR(1) specification as a game Ggr1 = (API ,APO, V, v0, δ, Φ) with an LTL win-
ning objective of the form Φ =

∧m
i=1 GFai →

∧n
j=1 GFgj , where each assumption

ai and guarantee gj are Boolean formulas over API ∪ APO. The original GR(1)
specification class [28] uses logical formulas to describe the symbolic arena.

Solving GR(1) games using fixpoints

We now show how to solve GR(1) games by evaluating fixpoint formulas on
GR(1) game arenas. Consider a GR(1) game Ggr1 = (API ,APO, V, v0, δ, Φ) with

Fully Generalized Reactivity(1) Synthesis 87

Φ =
∧m

i=1 GFai →
∧n

j=1 GFgj . The set of positions W ⊆ V from which the
system player wins the game is characterized by the fixpoint equation [18,8]:

W = νZ.

n∧
j=1

µY.

m∨
i=1

νX.
[
(gj ∧ Z) ∨ Y ∨ (¬ai ∧X)

]
(2)

This fixpoint formula ensures that the system chooses to move into states of
one of the three kinds: (1) states where it waits for an environment goal ai to
be reached, possibly forever (¬ai ∧ X), (2) states that move the system closer
to reaching its goal number j (Y), or (3) winning states that satisfy system
goal number j (gj ∧ Z). The conjunction over all guarantees to the right of
νZ ensures that all liveness guarantees are satisfied from all winning positions
(unless some environment liveness assumption is violated). The disjunction over
the environment goals permits the system to wait for the satisfaction of any of
the environment liveness goals. At the end of evaluating the fixpoint formula,
Z consists of the winning positions for the system. The system wins the GR(1)
game if and only if W includes v0.

Example. Consider a GR(1) game with API = {u}, APO = {x, y}, and Φ =
GFu→ (GFx ∧ GFy). Equation 2 becomes:

W = νZ.

[
µY.νX. (xZ ∨ Y ∨ ūX) ∧
µY.νX. (yZ ∨ Y ∨ ūX)

]
(3)

For conciseness, we write xZ instead of x ∧ Z, and ā instead of ¬a.

Solving symbolic parity games using fixpoints

Consider a parity game (API ,APO, V, v0, δ, c) with colors {0, . . . , n}. The winning
positions for the system player in such game are characterized by the fixpoint
formula from [33,11] adapted to our setting:

W = νX0µX1 . . . σXn. (∨n
i=1colori ∧Xi) (4)

The operators ν and µ alternate, so the symbol σ is µ if n is odd and ν if n is
even; colori = {v | c(v) = i} denotes the set of vertices of color i.

Solving symbolic LTL games using fixpoints

Let G be a game with LTL objective Φ. We can construct a deterministic parity
automaton A for Φ, build the product parity game G⊗A, and solve it with the
help of Equation 4. An alternative approach is to embed the product into the
fixpoint formula by using vector notation [10].

Consider an example. Let G = (API ,APO, V, v0, δ, Φ) be a game with Φ =
GFu → (GFx ∧ GFy). The parity automaton for Φ is shown on Figure 1. It has
two states, q0 and q1, and uses three colors. For three colors, the parity fixpoint

88 R. Ehlers and A. Khalimov

q0 q1x̄ū:2

x̄u:1

x:0
ȳū:2

ȳu:1

y:0

Fig. 1. Parity automaton for GFu → (GFx ∧ GFy). Transitions are labeled by the
proposition valuations for which they can be taken as well as the color of the transition.

formula in Equation 4 has structure νZ.µY.νX. We index each set variable with
the state of the automaton, thus Z is split into Z0 and Z1, etc. The formula is:[

W0

W1

]
= ν

[
Z0

Z1

]
.µ

[
Y0
Y1

]
.ν

[
X0

X1

]
.

[
xZ1 ∨ x̄uY0 ∨ x̄ūX0

yZ0 ∨ ȳuY1 ∨ ȳūX1

]
(5)

The top row encodes the transitions from state q0 of the parity automaton:
q0

x:0→ q1 becomes xZ1, q0
x̄u:1→ q1 becomes x̄uY1, q0

x̄ū:2→ q0 becomes x̄ūX0. After
formula evaluation, the variable W0 contains game positions winning for the
system wrt. the parity automaton Aq0 , while W1 does so wrt. Aq1 .

In general, suppose we are given a game whose winning objective is a deter-
ministic parity automaton (2AP, Q, q0, δ) with transition function δ : Q × Σ →
Q × N that uses n colors {0, . . . , n − 1}. The set of winning game positions is
characterized by the fixpoint formula: W1

...

W|Q|

 = ν

 X0
1

...

X0
|Q|

.µ
 X1

1
...

X1
|Q|

 . . . σ
Xn−1

1
...

Xn−1
|Q|

.
 ψ1

...

ψ|Q|

 (6)

where for all j ∈ {1, . . . , |Q|},we have ψj =
∨

x ∈ 2AP

let (q, c) = δ(qj , x)

x ∧Xc
ind(q)

where ind : Q → {1, . . . , |Q|} is some state numbering (one-to-one) that maps
the initial automaton state q0 to 1. The game is won by the system if and only
if the initial game position belongs to W1.

3 Chains of Good-for-Games co-Büchi Automata

This section reviews the chain of good-for-games co-Büchi automata represen-
tation [19] for ω-regular languages used by our synthesis approach in Section 4.

Like parity automata, a chain of co-Büchi automaton representation of a
language assigns colors to words. The central difference is that the chain repre-
sentation relies on a sequence of automata, each taking care of a single color.

Definition 1. Let L ⊆ Σω be an omega-regular language. A falling chain of
languages L1 ⊃ L2 ⊃ . . . ⊃ Ln is a chain-of-co-Büchi representation of L if

– every language Li for i ∈ {1, . . . , n} is a co-Büchi language, and

Fully Generalized Reactivity(1) Synthesis 89

– for every w ∈ Σω, the word w is in L if and only if w ̸∈ L1 or the highest
index i such that w ∈ Li is even.

Examples. The universal language Σω has the singleton-chain L1 = ∅, and the
empty language has the chain (L1 = Σω) ⊃ (L2 = ∅). The language of the LTL
formula GFa over a single atomic proposition a is expressed by the chain (L1 =
L(FGa)) ⊃ (L2 = ∅), and L(FGa) by (L1 = Σω) ⊃ (L2 = L(FGa)) ⊃ (L3 = ∅).

The definition of the natural color of a word from [19] provides a canonical
way to represent L as a chain of co-Büchi languages L1 ⊃ L2 ⊃ . . . ⊃ Ln, which
uses the minimal number of colors. Moreover, Abu Radi and Kupferman describe
a procedure to construct a minimal and canonical good-for-games co-Büchi au-
tomaton for a given co-Büchi language [2]. Thus, every omega-regular language
has a canonical minimal chain-of-co-Büchi-automata representation (COCOA).

The canonization procedure in [2, Thm.4.7] ensures the following property.

Lemma 1 ([2]). Fix a canonical GFG co-Büchi automaton A computed by [2,
Thm.4.7]. For every state q and letter x, either there is

– exactly one accepting transition, or there are
– one or more rejecting transitions. In this case:

• all successors of q on x share the same suffix language L′, i.e., for every
two successors s1 and s2 of q on x: L(A, s1) = L(A, s2), and

• for every state q′ with suffix language L′, there is a rejecting transition
to q′ from q on x.

Figure 2 on page 12 shows an example of a COCOA.

Strategies to get back on the track

Every GFG automaton has a strategy to resolve its nondeterminism such that
a word is accepted if and only if the run adhering to this strategy is accepting.
We allow such strategies to diverge for a finite number of steps, and show that
this divergence does not affect the acceptance by canonical GFG automata.

Given a COCOA A1, . . . ,An, define the natural color of a word to be the
largest level l such that Al accepts the word, or 0 if no such l exists. Thus, a
word is accepted by the COCOA if and only if the natural color is even.

GFGness strategies f l. Let f l : Σ∗ → Ql be a GFG witness resolving nondeter-
minism in Al, for every l ∈ {1, . . . , n}; we call f l a golden strategy of Al, and
the induced run for some given word is called its golden run.

Restrictions gl. The synthesis approach, which will be described later, considers
combined runs of all automata. Its efficiency depends on the number of reachable
states in Q1 × . . . × Qn, so it is beneficial to reduce this number. To this end,
we introduce a restriction on successor choices. We first define a helpful notion:
for a co-Büchi automaton A and its state q, let Lacc(q) denote the set of words
which have a run from q visiting only accepting transitions. For several automata

90 R. Ehlers and A. Khalimov

A1, . . . ,Al and their states q1, . . . , ql, define Lacc(q1, . . . , ql) =
∧

i L
acc(qi). Then,

for l ∈ {1, . . . , n}, define a restriction function gl : Ql ×Σ ×Q1 × . . .×Ql−1 →
2Q

l

: for every ql, x, r1, . . . , rl−1, let gl(ql, x, r1, . . . , rl−1) = S ⊆ δl(ql, x) be
a maximal set such that for every rl ∈ S there exists no other r̃l ∈ S with
Lacc(r1, . . . , rl−1, r̃l) ⊆ Lacc(r1, . . . , rl). Intuitively, given a current state ql of
the automaton Al, a letter x, and successor states r1, . . . , rl−1 of the automata
on lower levels, the function gl returns a set of states among which Al should
pick a successor. Runs ρ1 = q10q

1
1 . . . , . . . , ρ

n = qn0 q
n
1 . . . of A1, . . . ,An on a word

x0x1 . . . satisfy restrictions g1, . . . , gn if for every level l ∈ {1, . . . , n} and step
i ∈ N: qli+1 ∈ gl(qli, xi, q

1
i+1, . . . , q

l−1
i+1). Strategies f l : Σ∗ → Ql for l ∈ {1, . . . , n}

satisfy restrictions g1, . . . , gn if on every word the strategies yield runs satisfying
the restrictions.

The following lemma states that requiring runs of A1, . . . ,An to satisfy the
restrictions g1, . . . , gn preserves the natural colors and the GFGness.

Lemma 2. There exist strategies f l : Σ∗ → Ql for l ∈ {1, . . . , n} satisfying the
restrictions g1, . . . , gn such that for every word of a natural color c, the strategies
yield accepting runs ρ1, . . . , ρc of A1, . . . ,Ac.

Proof. Fix a word w of a natural color c. Each automaton Al of the chain has a
GFG witness in the form of a strategy hl : Σ∗ → Ql to resolve nondeterminism.
From such strategies and the restrictions g1, . . . , gn, we construct the sought
strategies f1, . . . , fn, inductively on the level, starting from the smallest level 1
and proceeding upwards to n.

Fix l ∈ {1, . . . , n}, and suppose the strategies f1, . . . , f l−1 are already de-
fined; we define the strategy f l : Σ∗ → Ql. Fix a moment i− 1. Let qli−1 be the
state of the run ρl proceeding according to f l, q̃li = hl(x0 . . . xi−1) the successor
state in the original run ρ̃l according to hl, q1i , . . . , q

l−1
i the successor states in

ρ1, . . . , ρl−1 adhering to f1, . . . , f l−1, and Ql
i = gl(qli−1, xi−1, q

1
i , . . . , q

l−1
i) the

allowed successors on level l. Then:

– if Ql
i = {qli} describes a unique choice, then f l(x0 . . . xi−1) = qli takes it,

– else f l picks any qli ∈ Ql
i s.t. Lacc(q1i , . . . , q

l−1
i , qli) ⊇ Lacc(q1i , . . . , q

l−1
i , q̃li).

Note that such qli always exists because in canonical GFG co-Büchi automata
a choice of a nondeterministic transition does not narrow the subsequent
nondeterminism resolution.

We now show that the strategies f1, . . . , f l preserve the natural colors. Fix a
word w. It suffices to prove that the original strategy hl yields an accepting run
ρ̃l if and only if f l yields an accepting run ρl. If ρ̃l is rejecting, then ρl is also
rejecting, for hl is a witness of GFGness. Now assume that ρ̃l is accepting. After
some momentm, the runs ρ1, . . . , ρl−1, ρ̃l never make a rejecting transition, hence
wmwm+1 . . . ∈ Lacc(q1m, . . . , q

l−1
m , q̃lm). Let m′ ≥ m be the first moment after m

when ρl visits a rejecting transition; if no such m′ exists, we are done. At moment
m′, the strategy f l picks a successor qlm′+1 such that Lacc(q1m′+1, . . . , q

l
m′+1) ⊇

Lacc(q1m′+1, . . . , q̃
l
m′+1). Since wm′+1 . . . ∈ Lacc(q1m′+1, . . . , q

l−1
m′+1, q̃

l
m′+1), that

suffix also belongs to a larger Lacc wrt. qlm′+1. Hence the run ρl is accepting. ⊓⊔

Fully Generalized Reactivity(1) Synthesis 91

Get-back strategies f l⋆. We now consider runs that diverge from golden runs.
Given an individual strategy f l : Σ∗ → Ql, define f l⋆ : Σ∗ ×Ql ×Σ ⇀ Ql to be
a strategy-like function which, when presented with a choice, makes the same
choice as f l. Formally: for every p ∈ Σ∗, q ∈ Ql reachable from the initial state
on reading p, and x ∈ Σ, the value f l⋆(p, q, x) = f l(p · x) if Al needs to take a
rejecting transition from q on x, otherwise there is no choice to be made and
f l⋆(p, q, x) = q′ for the unique successor q′ of q on reading x. It follows from
properties of canonical GFG automata (Lemma 1) that every successor chosen
by f l⋆ satisfies the transition relation of Al. We now prove that it is sufficent to
adhere to f l⋆ only eventually.

Lemma 3. Fix a COCOA and a word w. For l ∈ {1, . . . , n}, suppose Al on w
has a rejecting run ρl that eventually adheres to f l⋆, where f l⋆ is constructed from
f l of Lemma 2. Then Al rejects w.

The proof is based on Lemma 1, which implies that two diverging runs of a
canonical GFG automaton on the same word can always be converged once a
rejecting transition is taken.

Proof. For l = 0 the claim trivially holds; assume l > 0. Let ρl⋆ be the golden
run of Al on the word. Let m be the moment starting from which ρl adheres
to the golden strategy of Al. Let n be the first moment n ≥ m when Al makes
a rejecting transition: by properties of canonical GFG automata (Lemma 1),
there must be a rejecting transition to the same state as in ρl⋆. The strategy f l⋆
moves the automaton Al in ρl into the same state at moment n + 1 as it is in
ρl⋆. Afterwards, the strategy f l⋆ ensures that Al in ρl follows exactly the same
transitions as Al in ρl⋆. Hence, the golden run ρl⋆ is rejecting: Al rejects w. ⊓⊔

COCOA product

In this section, we compose individual automata of COCOA into a product which
is a good-for-games alternating parity automaton [9]. The results above imply
that the languages of a COCOA and its product coincide. Later we use COCOA
products to solve games with LTL objectives.

Alternating automata. A simple1alternating parity automaton (Σ,Q, q0, δ) has
a transition function of type δ : Q × Σ → 2Q × N × {rej , acc}. For instance,
δ(q, x) = ({q1, q2}, 1, rej) means that from state q on reading letter x there are
transitions to q1 and q2, both labelled with color 1, and the choice between q1
and q2 is controlled by the rejector player. There are two players, rejector and
acceptor, and the acceptance of a word w = x0x1 . . . is defined via the following
word-checking game. Starting in q0, the two players resolve nondeterminism and
build a play (q0, c0, pl0, q1)(q1, c1, pl1, q2) . . .: suppose the play sequence is in state
1 ‘Simple’ refers to a simpler form of the transition function. We use δ : Q × Σ →
2Q × N × {rej , acc} while the general form is δ : Q × Σ → B+(Q) plus parity
assignment Q×Σ ×Q → N. We forbid mixing conjunctions and disjunctions.

92 R. Ehlers and A. Khalimov

qi, let δ(qi, xi) = (Qi+1, ci, pli): if pli = rej then the rejector chooses a state
qi+1 ∈ Qi+1, otherwise the acceptor chooses. The play sequence is then extended
by (qi, ci, pli, qi+1) and the procedure repeats from state qi+1. The play is won
by the acceptor if the minimal color appearing infinitely often in c0c1 . . . is even
(min-even acceptance), otherwise it is won by the rejector. The word-checking
game is won by the acceptor if it has a strategy fw : Q∗ → Q to resolve its
nondeterminism to win every play; otherwise the game is won by the rejector,
who then also has a winning strategy. Note that although the acceptor strategy
does not know the rejector choices beforehand, it knows the word w. The word
is accepted by the automaton if the word-checking game is won by the acceptor.

A simple alternating automaton is good-for-games, abbreviated A-GFG, if
the acceptor player has a strategy facc : (Q × Σ)∗ → Q to win the word-
checking game for every accepting word, and the rejector player has a strategy
frej : (Q × Σ)∗ → Q winning for every rejected word. These strategies depend
only on the currently seen word prefix, not the whole word. We remark that our
definition of GFGness differs from [9] but they show the equivalence [9, Thm.8].

COCOA product. The product is built in three steps. First, we define a naive
product, which combines individual chain automata into A-GFG in a straightfor-
ward way. The naive product may contain states whose removal does not affect
its language, hence in the second step we define a product with reduced sets of
states and transitions. In turn, the reduced product may miss transitions ben-
eficial for synthesis. Therefore, in the last step, we enrich the reduced product
with transitions to derive the optimized, and final, COCOA product.

Given a COCOA Al = (Σ,Ql, ql0, δ
l) with l ∈ {1, . . . , n}, the naive COCOA

product is the following simple alternating parity automaton (Σ,Q, q0, δ). Each
state is a tuple from Q1 × . . . × Qn, q0 = (q10 , . . . , q

n
0), and the set of states

consists of those reachable from the initial state under the transition relation
defined next. The transition relation δ : Q×Σ → 2Q ×N× {rej , acc} simulates
individual automata of the COCOA. Consider an arbitrary (q1, . . . , qn) ∈ Q,
x ∈ Σ; let r be the smallest number such that Ar has a rejecting transition from
qr on reading x, i.e., (qr, x, q̃r, 1) ∈ δr for some q̃r ∈ Qr, otherwise set r to n+1.
By abuse of notation, define δl(ql, x) = {q̃l | ∃p : (ql, x, q̃l, p) ∈ δl} to be the set
of successor states of ql on reading x in Al. Let plr be rej for odd r and acc for
even r. Then, δ((q1, . . . , qn), x) = (Q̃, r − 1, plr), where:

Q̃ = {(q̃1, . . . , q̃n) | q̃l ∈ δl(ql, x) for every l}.

Notice that the automata on levels l < r have unique successors (q̃l is unique) as
their transitions are accepting and hence deterministic (by Lemma 1 on page 8).
The automata on levels l ≥ r may need to resolve nondeterminism, which is
done by a single player plr in the product.

The reduced COCOA product is defined by replacing the definition of Q̃ by

Q̃ = {(q̃1, . . . , q̃n) | q̃l ∈ gl(q̃1, . . . , q̃l−1, x, ql) for every l}

where the restriction function gl was defined on page 9. As a result, this set Q̃ has
no two states (q1, . . . , qn) and (q̃1, . . . , q̃n) with Lacc(q1, . . . , qn) ⊆ Lacc(q̃1, . . . ,

Fully Generalized Reactivity(1) Synthesis 93

q0 q1x̄ ȳ

x yA1

FGx̄ ∨ FGȳ

x

y
p0 p1x̄ū ȳū

x ∨ u y ∨ uA2

FGx̄ū ∨ FGȳū

x ∨ u

y ∨ u

Fig. 2. COCOA for the language GFu → (GFx∧GFy). Rejecting transitions are dashed.

q̃n). The set of states of the reduced COCOA product is the set of states from
Q1 × . . .×Qn reachable under the above definition.

Finally, given a reduced COCOA product (Σ,Q, q0, δR), we now define the
optimized COCOA product (Σ,Q, q0, δO). It has the same states Q as the reduced
product but adds transitions. For (q1, . . . , qn) ∈ Q, x ∈ Σ, let (Q̃R, r− 1, plr) =
δR((q

1, . . . , qn), x). Then δO((q1, . . . , qn), x) = (Q̃, r − 1, plr), where

Q̃ = Q̃R ∪
{
(q̃1, . . . , q̃n) ∈ Q :

∀l ∈ {1, . . . , r − 1}: ql ∈ δl(ql, x) ∧
∀l ∈ {r, . . . , n}.∃(q̃1R, . . . , q̃nR) ∈ Q̃R: L(q̃

l) = L(q̃lR)
}
.

In the first condition, the successor ql for l ≤ r−1 is uniquely defined. The second
condition on levels higher than r − 1 allows for state jumping.

Lemma 4. For every COCOA, the optimized product is A-GFG and has the
same language as the COCOA.

Proof. We describe two strategies, facc : (Q × Σ)∗ → Q for the acceptor and
frej : (Q × Σ)∗ → Q for the rejector, and prove two claims: for every word,
(1) if the word is accepted by COCOA, the acceptor wins the word-checking
game using facc, (2) if the word is rejected by COCOA, the rejector wins the
word-checking game using frej. The lemma follows from these claims.

We define facc. Given a finite history h = ((q11 , ..., q
n
1), x1)...((q

1
i , ..., q

n
i), xi),

let facc(h) = (q1i+1, ..., q
n
i+1), where for l = 1, ..., n:

– if l is even: qli+1 = f l⋆(x1 . . . xi−1, q
l
i, xi);

– if l is odd, pick arbitrary qli+1 ∈ gl(q1i+1, . . . , q
l−1
i+1, q

l
i).

The strategy frej is built similarly but f l⋆ is used for odd l. Finally, the two items
are then proven using contraposition and then applying Lemma 3. ⊓⊔

Example. Figure 3 shows the optimized product for COCOA in Figure 2.

4 Solving LTL Games Using Chain of co-Büchi Automata

This section shows how to solve symbolic games with LTL objectives by going
through COCOA. For a given LTL specification we construct a deterministic

94 R. Ehlers and A. Khalimov

q0, p0 q1, p1x̄ū:2
rej

x̄u:1
acc

x:0
rej

ȳū:2
rej

ȳu:1
acc

y:0
rej

Fig. 3. Optimized COCOA product for GFu → (GFx ∧ GFy). It has only two nonde-
terministic transitions, connecting (q0, p0) and (q1, p1), controlled by the rejector. For
instance, δ((q0, p0), x) = ({(q0, p0), (q1, p1)}, 0, rej).

parity automaton and then a COCOA using the effective procedure of [19]. We
then compute the COCOA product. Finally, we encode the symbolic game with
a COCOA product objective into a fixpoint formula. The latter step is simple
because the COCOA product is a good-for-games alternating automaton, and
such automata are composable with games [9, Thm.8]. Finally, we show that the
GR(1) fixpoint equation is a special case of the COCOA fixpoint formula.

Fixpoint formula for games with COCOA objectives

Given a game with an objective in the form of an optimized COCOA product
(2AP, Q, q0, δ), we construct a fixpoint formula that characterizes the set of win-
ning positions. Since the COCOA product is a good-for-games parity automaton,
the formula resembles Equation 6. It has the structure νX0.µX1. . . . σXn where
n+ 1 is the number of colors in the COCOA product, and the operators ν and
µ alternate. As before, we use the vector notation, and split each variable X l

into |Q| variables X l
1, . . . , X

l
|Q|, one per state of the COCOA product, and the

kth row in the fixpoint formula encodes transitions from state qk of the product.
Let ind : Q → {1, . . . , |Q|} be some one-to-one state numbering with the initial
state of the COCOA product mapped to 1, and let OPpl denote

∨
when pl is

acc otherwise it is
∧

. The following fixpoint formula computes, for each state q
of the COCOA product, the set Wind(q) of game positions from which the system
player wins the game wrt. the COCOA product whose initial state is set to q: W1

...

W|Q|

 = ν

 X0
1

...

X0
|Q|

.µ
 X1

1
...

X1
|Q|

 . . . σ
 Xn

1
...

Xn
|Q|

.
 ψ1

...

ψ|Q|

, where for all j: (7)

ψj =
∨

x ∈ 2AP

let (Q̃, c, pl) = δ(qj , x)

(
x ∧OPpl

q∈Q̃
Xc

ind(q)

)

The game wrt. the COCOA product is won by the system player if and only
if v0 ∈ W1. Since the languages of COCOA and its optimized product coincide
(Lemma 4), we arrive at the following theorem.

Fully Generalized Reactivity(1) Synthesis 95

Theorem 1. A game with an LTL objective Φ is won by the system if and only if
the initial game position belongs to W1 computed by Equation 7 for the optimized
COCOA product for Φ.

Example. Consider the LTL specification GFu → (GFx ∧ GFy). The optimized
product contains only states (q0, p0) and (q1, p1). The fixpoint formula is:

ν

[
Z00

Z11

]
.µ

[
Y00
Y11

]
.ν

[
X00

X11

]
.

[
xZ00Z11 ∨ x̄uY00 ∨ x̄ūX00

yZ00Z11 ∨ ȳuY11 ∨ ȳūX11

]
where the subscript index ij denotes a state (qi, pj) of the optimized COCOA
product. The LTL game is won by the system if and only if at the end of eval-
uation the initial game position v0 belongs to Z00. This formula has a structure
similar to the GR(1) Equation 3, in particular it uses the conjunction over Z
variables which leads to a reduction of the number of fixpoint iterations. In
contrast, the parity formula in Equation 5 misses this acceleration.

GR(1) synthesis as a special case

We argue that for GR(1) specifications, the COCOA fixpoint Equation 7 be-
comes similar – in spirit – to GR(1) fixpoint Equation 2. Consider a GR(1)
formula

∧m
i=1 GFai →

∧n
j=1 GFgj . Its COCOA has two automata, A1 and A2.

The automaton A1 accepts exactly the words that violate one of the guarantees,
while A2 accepts exactly the words that violate one of the guarantees and one
of the assumptions. In order to reason able number of states in canonical au-
tomata, we assume henceforth that in the GR(1) formula, no assumption implies
another assumption or guarantee, and no guarantee implies another guarantee.
The structures of A1 and A2 are as follows. The automaton A1 has one state per
guarantee (n in total), while A2 has one per combination of liveness assumption
and guarantee (m · n in total). The optimized COCOA product has exactly one
state for each assumption-guarantee combination, m ·n in total, versus n · (m ·n)
for the non-optimized product. Let {1, . . . ,m} × {1, . . . , n} be the states of the
optimized product, and let (1, 1) be initial. For each state (i, j):

– for every x |= āiḡj : δ((i, j), x) =
(
{(i, j)}, 2, rej

)
,

– for every x |= aiḡj : δ((i, j), x) =
(
{(i′, j) | i′ ∈ {1, . . . ,m}}, 1, acc

)
, and

– for every x |= gj : δ((i, j), x) =
(
{1, . . . ,m}×{1, . . . , n}, 0, rej

)
.

The fixpoint formula for such COCOA product has the form:W1,1
...

Wm,n

 = ν

Z1,1
...

Zm,n

. µ
 Y1,1...

Ym,n

. ν
X1,1

...

Xm,n

.
 ψ1,1

...

ψm,n

 , where for all i, j:

ψi,j = gj(
∧

i′ ∈ {1, . . . ,m}
j′ ∈ {1, . . . , n}

Zi′,j′) ∨ aiḡj(
∨

i′∈{1,...,m}

Yi′,j) ∨ āiḡjXi,j

96 R. Ehlers and A. Khalimov

The conjunction
∧

i′, j′ Zi′, j′ and disjunctions
∨

i′ Yi′, j enable faster information
propagation which results in smaller number of fixpoint iterations. Such infor-
mation sharing is present in GR(1) fixpoint Equation 2, and it is in this sense the
COCOA approach generalizes GR(1) approach. In contrast, the parity fixpoint
formula for GR(1) specifications misses this acceleration.

We now optimize the equation to reduce the number of variables. First, we
introduce variables Yj and Zj , for j ∈ {1, ..., n}, and transform the formula intoW1

...

Wn

 = ν

Z1
...

Zn

. µ
Y1...
Yn

.
∨i Φi,1

...∨
i Φi,n

, where

 Φ1,1
...

Φm,n

 = ν

X1,1
...

Xm,n

.
 ψ1,1

...

ψm,n

, where

ψi,j = gj(
∧

j′∈{1,...,n}

Zj′) ∨ aiḡjYj ∨ āiḡjXi,j

Note that for every i ∈ {1, . . . ,m}, the value Wi,j computed by the old formula
equals the value Wj computed by the new formula (Wi,j = Wi), where j ∈
{1, . . . , n}. We then introduce a fresh variable Z, and transform the formula to:

W = νZ.
∧

j∈{1,...,n}

Ψj , where

Ψ1
...

Ψn

 = µ

Y1...
Yn

.
∨i Φi,1

...∨
i Φi,n

, where

 Φ1,1
...

Φm,n

 = ν

X1,1
...

Xm,n

.
 g1Z ∨ a1ḡ1Y1 ∨ ā1ḡ1X1,1

...

gnZ ∨ amḡnYn ∨ āmḡnXm,n


After this transformation, we have W = Wj for every j ∈ {1, . . . , n}. Finally,
the last equations can be folded into the formula

W = νZ.

n∧
j=1

µY.

m∨
i=1

νX.
[
gjZ ∨ aiḡjY ∨ āiḡjX

]
which is equal to Equation 2 modulo expressions in front of the variables. Our
prototype tool implements a generalized version of such formula optimization.

5 Evaluation

Evaluation goals are: (G1) show that standard LTL synthesizers do not fit our
synthesis problem, (G2) compare our approach against specialized GR(1) syn-
thesizer, and (G3) compare the COCOA approach against the parity approach.

Fully Generalized Reactivity(1) Synthesis 97

We implemented COCOA and parity approaches in a prototype tool reboot.
It uses SPOT [16] to convert LTL specifications (the liveness part of GR(1))
to deterministic parity automata. From it, reboot builds COCOA using the
construction described in [19]. The COCOA is then compiled into a fixpoint for-
mula in Equation 7, and symbolically evaluated on the game graph. For symbolic
encoding of game positions and transitions, we use the BDD library CUDD [32].

We compare our approaches with GR(1) synthesis tool slugs [18] and the
LTL synthesis tool strix [26] which represent the state of the art. The experi-
ments were performed on a Linux machine with AMD EPYC 7502 processor; the
timeout was set to 1 hour. To implement the comparison, we collected existing
and created new benchmarks: AMBA, lift, and robot on a grid. Each specifica-
tion is written in an extension of the slugs format: it encodes a symbolic game
graph using logical formulas over system and environment propositions, and an
LTL property on top of it. In total, there are 80 benchmarks, all realizable.

The evaluation data is available at https://doi.org/10.5281/zenodo.10448487

AMBA and lift. We use two parameterized benchmarks inspired by [8], each
having two versions, a GR(1) and an LTL version. The first specification en-
codes an elevator behaviour and is parameterized by the number of floors. Its
GR(1) specification has one liveness assumption and a parameterized number
of guarantees (GF →

∧
i GF). Lift’s LTL version adds an additonal request-

response assumption and has the form GF∧ (GF → GF) →
∧

i GF, which requires
5 parity colors. There are 24 GR(1) instances and 21 LTL instances, with the
number of Boolean propositions ranging from 7 to 34. The AMBA specification
describes the behaviour of an industrial on-chip bus arbiter serving a param-
eterized number of clients. Its GR(1) version has the shape GF →

∧
i GF; our

new LTL modification replaces one safety guarantee φ by FGφ, which allows
the system to violate it during some initial phase, and we add an assumption
of the form GF → GF. Overall, the AMBA’s LTL specification has the form
GF∧ (GF → GF) → FG∧

∧
i GF, and requires 7 parity colors. There are 14 GR(1)

instances and 7 LTL instances; the number of Boolean propositions is 22 for the
specification serving two clients, and 77 for the 15-client version.

Robot on a grid. This benchmark describes the standard scenario from robotics
domain: a robot moves on a grid, there are walls, doors, pickup and delivery
locations, and a moving obstacle. When requested, the robot has to pickup a
package and deliver it to the target location, while avoiding collisions with the
walls and the obstacle and passing through the doors only when they are open.
The GR(1) specification has parameterized number of assumptions and guaran-
tees:

∧
i GF →

∧
i GF. The LTL version introduces preferential paths: the robot

has to eventually always use it assuming that the moving obstacle only moves
along her preferred path. This yields the shape FG ∧

∧
i GF → FG ∧

∧
i GF (5

colors). There are 16 maps of size 8×16 with varying number of delivery-pickup
locations and doors. The number of Boolean propositions ranges from 24 to 53.

98 R. Ehlers and A. Khalimov

https://doi.org/10.5281/zenodo.10448487

strix
parity
cocoa

ti
m

e

0

500

1000

2500

3000

3500

#
0 10 20 30 40 50 60 70

lift
amba
robot

co
co

a

0,01

0,1

1

100

1000

slugs
0,01 0,1 1 10 100 1000

lift
amba
robot

co
co

a	
(f

p
)

0,01

0,1

1

100

1000

slugs
0,01 0,1 1 10 100 1000

lift
amba
robot

co
co

a	
(f

p
)

0,01

0,1

1

100

1000

parity	(fp)
0,01 0,1 1 10 100 1000

Fig. 4. From left to right: (G1) Cactus plot comparing our approaches with LTL syn-
thesizer strix [26]; (G2a) Comparing COCOA-based approach with GR(1) synthesizer
slugs [17]; (G2b) The same but excluding LTL-to-parity translation time; (G3) Com-
paring COCOA and parity approaches (excluding LTL-to-parity translation time).

G1: Comparing with LTL synthesizer. Figure 4 shows a cactus plot. On these
problems, the LTL synthesizer strix is slower than specialized solvers. The rea-
son is the sheer number of states in benchmark game arenas: e.g., benchmark
amba15 uses 77 Boolean propositions, yielding the naive estimate of game arena
size in 277 states. Solver strix tries to construct an explicit-state automaton
describing this game arena and the LTL property, which is a bottleneck. In con-
trast, symbolic solvers like slugs or reboot represent game arenas symbolically
using BDDs, and reboot constructs explicit automata only for LTL properties.

G2: Comparing with GR(1) synthesizer. The second diagram in Figure 4 com-
pares the COCOA approach with slugs on the GR(1) benchmarks. The diagram
shows the total solving time, including the time reboot spends calling SPOT for
translating GR(1) liveness formula to parity automaton. On Lift examples, most
of the time is spent in this translation when the number of floors exceeds 15:
for instance, on benchmark lift20 reboot spent 650 out of total 670 seconds in
translation. If we count only the time spent in fixpoint evaluation – and that is a
more appropriate measure since GR(1) liveness formulas have a fixed structure
– the performances are comparable, see the third diagram.

G3: COCOA vs. parity. The last diagram in Figure 4 compares COCOA and
parity approaches on all the benchmarks, and shows that the COCOA approach
is significantly faster than the parity one. We note that on these examples, the
number of states in the optimized COCOA product was equal to or less than
the number of states in the parity automaton. At the same time, the number of
fixpoint iterations performed by the COCOA approach was always significantly
smaller than for the parity one. Intuitively, this is due to the structure of COCOA
fixpoint equation that propagates information faster than the parity one.

Remarks. We did not compare with other symbolic approaches for solving parity
or Rabin games [15,14,6]: although they use symbolic algorithms, as input these
tools require games in explicit form or their game encoding separates positions
into those of player-1 and player-2; both significantly affects the performance.

While all our benchmarks were realizable, the prototype tool was system-
atically compared against other approaches on both realizable and unrealizable
random specifications using fuzz testing.

Fully Generalized Reactivity(1) Synthesis 99

References

1. Reactive synthesis competition SyntComp 2023: Results. http://www.syntcomp.
org/syntcomp-2023-results, accessed: 15-09-2023

2. Abu Radi, B., Kupferman, O.: Minimization and canonization of GFG transition-
based automata. Log. Methods Comput. Sci. 18(3) (2022)

3. Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments. ACM
Trans. Comput. Log. 5(1), 1–25 (2004)

4. Amram, G., Maoz, S., Pistiner, O.: GR(1)*: GR(1) specifications extended with
existential guarantees. In: Third World Congress on Formal Methods (FM). pp.
83–100 (2019)

5. Arnold, A., Niwiński, D.: Rudiments of mu-calculus. Elsevier (2001)
6. Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.K., Soudjani, S.: Fast symbolic

algorithms for omega-regular games under strong transition fairness. TheoretiCS
2 (2023)

7. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph Games and Reactive Synthesis,
pp. 921–962. Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-319-10575-8_27, https://doi.org/10.1007/978-3-319-10575-8_27

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

9. Boker, U., Lehtinen, K.: Good for Games Automata: From Nondeterminism to
Alternation. In: Fokkink, W., van Glabbeek, R. (eds.) 30th International Con-
ference on Concurrency Theory (CONCUR 2019). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 140, pp. 19:1–19:16. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.org/10.4230/
LIPIcs.CONCUR.2019.19, http://drops.dagstuhl.de/opus/volltexte/2019/10921

10. Bradfield, J.C., Walukiewicz, I.: The mu-calculus and model checking. In: Hand-
book of Model Checking, pp. 871–919 (2018)

11. Bruse, F., Falk, M., Lange, M.: The fixpoint-iteration algorithm for parity games.
In: Fifth International Symposium on Games, Automata, Logics and Formal Ver-
ification (GandALF). pp. 116–130 (2014)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

13. Church, A.: Logic, arithmetic, and automata. In: International Congress of Mathe-
maticians (Stockholm, 1962), pp. 23–35. Institute Mittag-Leffler, Djursholm (1963)

14. Di Stasio, A., Murano, A., Vardi, M.Y.: Solving parity games: Explicit vs symbolic.
In: Implementation and Application of Automata: 23rd International Conference,
CIAA 2018, Charlottetown, PE, Canada, July 30–August 2, 2018, Proceedings 23.
pp. 159–172. Springer (2018)

15. van Dijk, T.: Oink: An implementation and evaluation of modern parity game
solvers. In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 291–308. Springer International Publishing,
Cham (2018)

16. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A framework for LTL and \omega -automata manipulation. In: 14th
International Symposium on Automated Technology for Verification and Analysis
(ATVA). pp. 122–129 (2016)

17. Ehlers, R.: Generalized Rabin(1) synthesis with applications to robust system syn-
thesis. In: Third International NASA Formal Methods Symposium (NFM). pp.
101–115 (2011)

R. Ehlers and A. Khalimov100

http://www.syntcomp.org/syntcomp-2023-results
http://www.syntcomp.org/syntcomp-2023-results
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
https://doi.org/10.4230/LIPIcs.CONCUR.2019.19
http://drops.dagstuhl.de/opus/volltexte/2019/10921

18. Ehlers, R., Raman, V.: Slugs: Extensible GR(1) synthesis. In: 28th International
Conference on Computer Aided Verification. pp. 333–339 (2016)

19. Ehlers, R., Schewe, S.: Natural colors of infinite words. In: 42nd IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS) (2022), presentation available at https://www.youtube.com/
watch?v=RSd25TiELUo

20. Filiot, E., Jin, N., Raskin, J.: An antichain algorithm for LTL realizability. In:
21st International Conference on Computer Aided Verification (CAV). pp. 263–
277 (2009)

21. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for ltl
synthesis. Formal Methods in System Design 39, 261–296 (2011)

22. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
15(5-6), 519–539 (2013)

23. Godhal, Y., Chatterjee, K., Henzinger, T.A.: Synthesis of AMBA AHB from formal
specification: a case study. Int. J. Softw. Tools Technol. Transf. 15(5-6), 585–601
(2013)

24. Gritzner, D., Greenyer, J.: Synthesizing executable PLC code for robots from
scenario-based GR(1) specifications. In: Software Technologies: Applications and
Foundations - STAF 2017 Collocated Workshops. pp. 247–262 (2017)

25. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
International Conference on Computer Aided Verification. pp. 31–44. Springer
(2006)

26. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Computer Aided Verification: 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I. pp. 578–586. Springer (2018)

27. Piterman, N., Pnueli, A.: Temporal Logic and Fair Discrete Systems, pp. 27–
73. Springer International Publishing, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8_2, https://doi.org/10.1007/978-3-319-10575-8_2

28. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. In: Verifica-
tion, Model Checking, and Abstract Interpretation: 7th International Conference,
VMCAI 2006, Charleston, SC, USA, January 8-10, 2006. Proceedings 7. pp. 364–
380. Springer (2006)

29. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (FOCS). pp. 46–57 (1977)

30. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module.
In: 16th International Colloquium on Automata, Languages and Programming
(ICALP). pp. 652–671 (1989)

31. Sohail, S., Somenzi, F.: Safety first: a two-stage algorithm for the synthesis of
reactive systems. International Journal on Software Tools for Technology Transfer
15, 433–454 (2013)

32. Somenzi, F.: CUDD: CU Decision Diagram package release 3.0.0 (2016)
33. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theoretical

computer science 275(1-2), 311–346 (2002)
34. Wong, K.W., Kress-Gazit, H.: From high-level task specification to robot operating

system (ROS) implementation. In: First IEEE International Conference on Robotic
Computing, IRC 2017, Taichung, Taiwan, April 10-12, 2017. pp. 188–195 (2017)

35. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software
toolbox for receding horizon temporal logic planning. In: 14th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC). pp. 313–314
(2011)

Fully Generalized Reactivity(1) Synthesis 101

https://www.youtube.com/watch?v=RSd25TiELUo
https://www.youtube.com/watch?v=RSd25TiELUo
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1007/978-3-319-10575-8_2

36. Zudaire, S.A., Nahabedian, L., Uchitel, S.: Assured mission adaptation of UAVs.
ACM Trans. Auton. Adapt. Syst. 16(3–4) (jul 2022)

R. Ehlers and A. Khalimov102

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 103–122, 2024.
https://doi.org/10.1007/978-3-031-57246-3_7

Knor: reactive synthesis using Oink

Formal Methods and Tools
University of Twente, Enschede, The Netherlands

t.vandijk@utwente.nl, {f.vanabbema,n.tomov}@student.utwente.nl

Abstract. We present an innovative approach to the reactive synthesis
of parity automaton specifications, which plays a pivotal role in the
synthesis of linear temporal logic. We find that our method efficiently
solves the SYNTCOMP synthesis competition benchmarks for parity
automata from LTL specifications, solving all 288 models in under a
minute. We therefore direct our attention to optimizing the circuit size
and propose several methods to reduce the size of the constructed circuits:
(1) leveraging different parity game solvers, (2) applying bisimulation
minimisation to the winning strategy, (3) using alternative encodings from
the strategy to an and-inverter graph, (4) integrating post-processing with
the ABC tool. We implement these methods in the Knor tool, which has
secured us multiple victories in the PGAME track of the SYNTCOMP
competition.

Keywords: Reactive synthesis · Parity games · Binary decision diagrams

1 Introduction

Reactive synthesis as first stated by Church [8,9] and outlined in [32] is the
act of automatically constructing a reactive system such that all interactions
with an unknown environment satisfy a linear temporal logic (LTL) specification.
While early solutions were proposed to solve the synthesis problem via finite-
state automata [7], until recently reactive synthesis using deterministic parity
automata and parity games was deemed infeasible in practice, in part due to
the lack of efficient translations from LTL to deterministic ω-automata. With
the rise of direct translations, LTL synthesis tools such as ltlsynt [27,33,34] and
Strix [26] are capable of solving a wide range of specifications via deterministic
parity automata and parity games, and perform better than some of the previous
techniques avoiding deterministic parity automata.

The advantage of reactive synthesis is that synthesized systems are correct
by construction and therefore do not need to be tested nor model checked for
correctness. The reactive synthesis (SYNTCOMP) competition was founded to
increase the impact of reactive synthesis in industry and improve the quality of
synthesis tools [22,23]. Motivated by the new PGAME track in the SYNTCOMP
competition, we seek to use the Oink parity game solver [11] in the competition and
to implement the necessary infrastructure that translates the parity automata

Tom van Dijk(B) , Feije van Abbema, and Naum Tomov

https://doi.org/10.1007/978-3-031-57246-3_7
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_7&domain=pdf
http://orcid.org/0000-0002-5366-1051
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

of the competition into parity games suitable for Oink, and that translates
the winning strategy computed by Oink into a Boolean circuit. We name this
implementation Knor1.

Knor leverages Oink to solve parity games with state-of-the-art parity game
solvers [16], and the Sylvan binary decision diagrams (BDD) package [14] to
implement most of the steps before and after solving and a purely symbolic parity
game solver based on [25]. The techniques implemented in Knor have secured us
multiple victories in the SYNTCOMP competition, in 2021, 2022 and 2023.

Following initial success of Knor in the competition, we observe a major
difference with main competitors ltlsynt and Strix. While Knor can solve all
benchmarks in a remarkably short time, the constructed circuits are sometimes
several orders of magnitude larger than the circuits constructed by other tools.
Thus, we propose several techniques, mostly symbolic techniques that rely on
binary decision diagrams, to reduce the size of the constructed circuits.

Contribution. We present the Knor tool that solves the synthesis problem of
parity automata to Boolean circuits, built around the parity game solver Oink.
We consider three methods to translate the given parity automaton to a parity
game, and present a novel symbolic approach that improves upon an explicit
translation by several orders of magnitude. As Oink implements several parity
game solvers that have been shown in [16] to perform well for parity games
derived from reactive synthesis benchmarks, we consider whether changing the
algorithm impacts the size of the constructed circuit. We study whether applying
bisimulation minimisation as in [15], which aims to minimize the number of states
of the winning strategy after solving the parity game, can reduce the size of the
circuits. Similarly, we study different encodings from the winning strategies into
Boolean logic, in particular whether a onehot encoding of the states improves
the circuit size. Finally, we apply a similar post-processing step as Strix by using
the ABC tool [4,5] to minimize the constructed circuit after encoding it as an
and-inverter graph. Sec. 3 describes Knor and provides accessible descriptions of
the implemented techniques. We evaluate these techniques in Sec. 4. We discuss
our findings in Sec. 5.

2 Preliminaries

Given two disjoint sets of Boolean variables I and O representing input and output
signals, and an ω-regular language L of infinite words over the alphabet 2I∪O

representing a specification, the reactive synthesis problem asks us to construct
a controller that enforces L. The controller is a function

(
2I∪O

)∗ × 2I → 2O that
yields a valuation of the output signals 2O based on a history of input and output
signals

(
2I∪O

)∗ and the current input signals 2I .
While we are interested in the broader context of the synthesis of reactive

systems that enforce specifications given in linear temporal logic (LTL), we

1 Knor is the Dutch word for the sound that a pig makes, i.e., “oink”.

T. van Dijk et al.104

assume in this paper that L is given as a deterministic parity automaton. LTL
specifications can be translated to a parity automaton of doubly-exponential size.

Deterministic parity automata (DPA) are ω-regular automata that accept
ω-regular languages. A DPA is a tuple (Q, q0, AP,∆, F), where Q is a finite
set of states, q0 ∈ Q is the initial state, AP is a set of atomic propositions,
∆ ⊆ Q× 2AP ×Q is the transition relation and F :Q → N assigns to each state
a priority. A run of the automaton is an infinite sequence of states consistent
with the transition relation. A run is accepting if and only if the maximum
priority that occurs infinitely often along the run is an even number. We define
parity automata with priorities on states. Alternatively, priorities can also be on
transitions.

A parity game is a DPA with two players Even and Odd, where the set of
states Q is partitioned into two sets Q0 and Q1. In this paper, we refer to the
states of the parity game as vertices and the transitions of the parity game as
edges. A run on a parity game is an infinite sequence of vertices where player
Even decides the next vertex if the current vertex is in Q0, and player Odd if
it is in Q1. A fundamental result for parity games is that they are memoryless
determined [18], i.e., each vertex is winning for exactly one player, and both
players have a positional strategy for each of their winning vertices.

To solve the synthesis problem, given a deterministic parity automaton over
AP = I ∪ O, we construct a parity game by splitting the automaton across I
and O, letting one player (the environment) choose a valuation of variables in I
and the other player (the controller) a valuation of variables in O.

The result of reactive synthesis is a Boolean circuit, structured as an and-
inverter graph (AIG). An AIG is a directed acyclic graph, featuring terminal
nodes that denote Boolean inputs (input signals and latches), internal nodes
representing AND-gates, and edges with complementation for logical negation.

Binary decision diagrams [6,17] (BDDs) are a well known data structure for
representing and manipulating Boolean functions. A binary decision diagram is a
rooted, directed acyclic graph. Its internal nodes represent decisions based on
the values of Boolean variables, directing the path to one of the two child nodes,
via the “true” edge (depicted as a solid arrow) and the “false” edge (depicted as a
dashed arrow). Reaching the terminal node “1” indicates that the represented
Boolean function evaluates to true for that particular valuation, and reaching
the “0” node indicates a false evaluation. BDDs are recognized as a canonical
representation of Boolean functions when they meet two conditions. First, they
must be ordered; that is, they follow a fixed variable ordering when encountering
Boolean variables. Second, they must be reduced, meaning that any redundant
decision nodes with identical successors are eliminated [6]. BDDs can be incredibly
efficient if a suitable variable ordering is found and the represented set is encoded
in a way that results in small decision diagrams.

Multi-terminal binary decision diagrams (MTBDDs) extend BDDs by allowing
terminal nodes to hold various types of data, not just the Boolean values true
and false. The MTBDD implementation in Sylvan [14] in particular allows for
terminal nodes to be labeled by 64-bit values. These labels can represent a wide

Knor: reactive synthesis using Oink 105

eHOA file parse file

translate to game
either explicit, or
half-symbolic, or
symbolic

solve game
any symbolic or
explicit solver

post-process strategy
bisimulation
minimisation
(optional)

encoding
ISOP or ITE
binary or onehot

AIGER file

minimization
with ABC
compress2rs
or drewrite

AIGER file

Fig. 1. Overview of Knor from input file to output file.

range of data, including 64-bit integers, pointers, floating-point numbers, or even
pairs of 32-bit values.

3 Knor

We study reactive synthesis from parity automata to Boolean circuits in the
Knor research tool. Knor is written in C++ and is publicly available under a
permissive license via https://www.github.com/trolando/knor. See Fig. 1 for an
overview of Knor. All steps of the program are discussed in the following sections.

3.1 Input format

Knor reads input files formatted using the extended Hanoi Omega-Automata
(HOA) format [31].

The HOA format [1] is a file format to describe finite-state automata that
accept sets of infinite words. The automata consist of a finite set of states Q, one or
more initial states I ⊆ Q, a set of atomic propositions AP , and a labeled transition
relation ∆ ⊆ Q× B(AP)×Q, where each transition is labeled with a Boolean
formula ϕ ∈ B(AP), where we use B(AP) to denote the set of Boolean formulas
over AP . Furthermore, the HOA format describes an acceptance condition of
the automaton, i.e., a set of infinite runs of the automaton which are considered
accepting. For the purposes of the current paper, we are only interested in the
parity condition, i.e., the automaton is accepting if and only if the lowest/highest
priority seen infinitely often along the run is even/odd, depending on whether
the acceptance condition is min even, min odd, max even or max odd. In the
HOA format, the priorities are either on states or on transitions.

The extended HOA format adds a distinction between controllable (output)
and uncontrollable (input) atomic propositions [31].

T. van Dijk et al.106

https://www.github.com/trolando/knor

pA

pB

pC

pD

ϕ1

ϕ2

ϕ3

pA

pB

pC

pD

i

ϕ1
(i)

ϕ2(i)

ϕ
3 (i)

p1,
ϕ1

p2, ϕ2

p3 , ϕ3

p1

p2

p3

i

ϕ1
(i)

ϕ2(i)

ϕ
3 (i)

Fig. 2. Splitting a transition on the parity automaton (left) to construct the parity
game (right), with priorities on the states (above) or on the transitions (below). We
depict states by squares, vertices of the environment player by pentagons and vertices
of the controller player by circles.

3.2 Output format

Knor can produce parity games in the standard PGSolver [20] format that is also
accepted by Oink, as well as Boolean circuits in the AIGER format [3].

3.3 Translation from automaton to game

As described above, the parity automaton consists of a number of states with
transitions labeled by a Boolean formula, and with the priorities either on the
transitions or on the states.

To translate the automaton to a parity game, we need to split every transition
into two parts. The environment player “moves first” by choosing a valuation of
the input signals, and the controller player responds by setting output signals such
that the specification is guaranteed. That is, the output signals are determined
by the current state and the current input signals.

We propose three methods to convert the parity automaton to a parity game:
a naive explicit method, a half-symbolic method and a fully symbolic method.

(Naive) Explicit method. The explicit method simply creates a parity game
vertex for every state in the parity automaton, and then splits the transitions
into two parts as in Fig. 2.

Knor: reactive synthesis using Oink 107

For every valuation i of the input signals, we create an intermediate vertex
that is controlled by the controller player. This intermediate vertex should have
the least relevant priority, typically 0. For every transition with a label (Boolean
formula) that is satisfiable for i, we then create an edge from the intermediate
vertex to the successor of the transition.

Since we want our parity games to have priorities on the vertices and not on
the edges, we need to create extra vertices in case the automaton has priorities
on transitions. This is also shown in Fig. 2. Priorities on the source vertex,
intermediate vertex, and target vertices should be set to the least relevant
priority (typically 0) or be ignored by the solver.

The result is an explicit parity game which Knor directly constructs using
Oink. The game is then solved with any algorithm implemented by Oink.

Half-symbolic method. The fully explicit method works reasonably well for
many of the smaller input models, however some models result in a significant
exponential blowup of the parity game, as any game with n input signals has 2n

outgoing edges per source vertex. The extended HOA format actually encodes the
labels on the transitions symbolically using Boolean formulas, so an exponential
blowup in some cases can be expected. We propose a method that still results
in an explicit game constructed using Oink, but that employs binary decision
diagrams to reduce the number of intermediate vertices and extra transitions in
the parity game.

For every state, we produce a multi-terminal binary decision diagram (MTBDD)
encoding all outgoing transitions, with decision variables representing input sig-
nals ordered before variables representing output signals, and terminal nodes
encoding both priority and successor state as a pair of two 32-bit numbers.

We then collect all subroots of the MTBDD after the input signals, i.e.,
along each path from the root node to a terminal node, we find the first node that
is either a decision node with a variable of an output signal, or a terminal node.
For every such node N , we create a corresponding intermediate vertex owned
by the controller player. The paths leading to N correspond to valuations of
the input signals that lead to that intermediate vertex, where the controller can
decide how to respond. We let the controller choose to go to any state (vertex)
encoded by a terminal node that is reachable from N . For every such terminal
node, we simply add an edge from the intermediate vertex to the target vertex.

Fully-symbolic method. While the half-symbolic method already results in a
major reduction in the size of the parity games, we can go further and encode
the full transition relation of the parity automaton as a single BDD, which can
then automatically be interpreted as a symbolic parity game simply by ordering
variables as follows:

1. Variables s corresponding to the source state.
2. Variables i corresponding to input signals.
3. Variables o corresponding to output signals.

T. van Dijk et al.108

4. Variables p and s′ corresponding to the priority (either from the transition
or from the target state) and the target state.

One can read this BDD intuitively as follows: given some current state (1)
and some current input values (2), if the controller sets certain output values (3)
we arrive with some priority at our next state (4). Variables within these four
groups can be ordered freely; however, we implement a naive approach and have
not optimized this ordering; this is left as an opportunity for future work.

Since we encode the entire automaton as a single BDD, states that share
some transitions can benefit from the automatic reduction offered by BDDs.

We present a translation from this symbolic parity game to an explicit parity
game that explicitly uses the structure of the decision diagram to construct the
game. This procedure consists of the following steps:

1. We create a state vertex controlled by the environment player for every state
(with transitions) in the symbolic parity game. These vertices get priority 0.

2. Along each path in the BDD, we find the first decision node after the input
signals. We create an intermediate vertex controlled by the controller
player for every such node. These vertices also get priority 0.

3. Along each path in the BDD, we find the first decision node after the output
signals. We decode the priority and the target state and create a priority
vertex for the environment player with the decoded priority and with a
single edge to the state vertex corresponding to the target state.

4. For every state, we compute the reachable decision nodes of step 2 and create
edges from the state vertices to the intermediate vertices.

5. For every decision node of step 2, we compute the reachable decision nodes of
step 3 and create edges from the intermediate vertices to the priority vertices.

Further improvements to this procedure are possible by considering that
vertices may share many transitions, and additional vertices could be added
based on the structure of the BDD. This could reduce the number of edges at
the cost of more vertices. Furthermore, we do not merge the state vertices and
priority vertices, which might reduce the number of vertices. This is left as an
opportunity for future work.

3.4 Solving the parity game

Using the procedure described above, we can produce an explicit parity game
that can be solved by Oink. As shown in [16], several solvers implemented in
Oink are very efficient for parity games derived from reactive synthesis:

– strategy iteration (psi) [11,19]
– tangle learning (tl) [10]
– priority promotion (npp) [2,11]
– Zielonka’s recursive algorithm (zlk) [11,35]
– fixpoint iteration using freezing (fpi) [16]
– fixpoint iteration using justifications (fpj) [24]

Knor: reactive synthesis using Oink 109

We also implement a symbolic solver based on [25]. This symbolic solver
implements fixpoint iteration with freezing using BDD operations, and operates
directly on the BDD obtained by the fully-symbolic translation.

3.5 Post-processing the strategy

After applying the strategy to the symbolic parity game, we perform two post-
processing steps. In the case that the strategy does not give all output signals a
value, we default to setting output signals to false (or 0). We also compute all
reachable vertices of the parity game from the initial state vertex, restricted to
the winning strategy, and remove unreachable vertices.

3.6 Bisimulation minimisation

To further reduce the number of vertices of the parity game, we apply bisimulation
minimisation. Bisimulation minimisation computes equivalence classes of vertices,
i.e., all vertices that have the same behavior w.r.t. input and output signals. We
use the signature-based partition refinement approach of [15].

Recall that the symbolic parity game is a BDD over the variables s, i, o, p, s′

as described in Sec. 3.3. We first drop the priority variables p from the BDD, as
the priorities on the states are not relevant after solving. We reserve fresh BDD
variables c for the classes, which are ordered after the next state variables, i.e.,
s < i < o < s′ < c. We maintain the current assignment from states to classes
in a BDD over variables s′ and c. The reason for s′ rather than s is that this
reduces the number of BDD operations. The initial partition assigns all states
to a single equivalence class. We then repeatedly compute the current signature
of all states, which is a BDD encoding for every state the classes that can be
reached and the input/output values to reach them, as follows:

1. Given a BDD G encoding the symbolic parity game over the variables s, i, o, s′,
and a BDD P encoding the current partition over the variables s′ and c, we
compute the BDD S representing the signatures over variables s, i, o, c by
performing the operation and_exists(G,P, s′).

2. We use the refine operation of [15] to replace the signatures (over variables
i, o, c) in S by new classes, reusing previous class identifiers whenever possible,
and renaming s variables to s′ variables on-the-fly, resulting in the next BDD
P over the variables s′ and c.

3. We repeat steps 1 and 2 until the number of classes is stable.

Afterwards, we apply the obtained partition by replacing the states in the symbolic
parity game by the equivalence classes.

3.7 Encoding the strategy as a circuit

There are several methods to create a Boolean circuit from the solver parity game.
We first need to encode all reachable states of the parity game as latches in the

T. van Dijk et al.110

x

Fx=1 Fx=0

x

Fx=1

Fx=0

Fig. 3. Sketch of the encoding from a BDD decision node (left) to three AND-gates
(right), representing the Boolean formula (Fx=1 ∧ x) ∨ (¬x ∧ Fx=0).

Boolean circuit. We employ two methods for this: (1) one latch per state; and (2)
one latch per BDD state variable. We call the former method onehot and the
latter binary; in the first case at all times only a single latch is set, whereas in
the second case the latches form a binary encoding of the states, similar to how
they are encoded in the symbolic parity game. As the initial state of a Boolean
circuit has all latches reset (to 0), we invert the latch that encodes the initial
state for the onehot encoding and we encode the initial state as state 0 for the
binary encoding.

We then compute a BDD F for every latch and for every output signal, where
F is a BDD over the variables s, i (current state and current input signals) such
that the latch or signal will be set if and only if F evaluates to true. We then
translate each BDD F to an and-inverter graph. Again we propose two methods
to achieve this:

– by using Shannon expansion (ITE) as in Fig. 3 recursively;
– by first obtaining the irredundant sum-of-products [28] (ISOP) of F in the

form of a ZBDD [29], which can then directly be translated to an AIG: first all
products are created, and then the products are connected through inverted
AND-gates (as ab ∨ cd ≡ ¬(¬(ab) ∧ ¬(cd))).

We thus have four combinations: ITE with binary or onehot encoding and
ISOP with binary or onehot encoding. Furthermore, we use a cache when creating
AND-gates to avoid duplicate gates.

3.8 Post-processing with ABC

After encoding the strategy as a circuit, we apply optional post-processing of the
circuit using ABC [5].

Similar to Strix, we apply the compress2rs script, which is described in [4].
The compress2rs script performs rewriting, refactoring, balancing, and truth-
table-based resubstitution. While Strix applies the script until no further im-
provement is found, we halt when the improvement is less than 2.5%.

We also apply a sequence of three ABC commands, drw, balance and drf,
which we call the drewrite script here. We apply this script until the improvement
is less than 1%.

Knor: reactive synthesis using Oink 111

3.9 Usage of Knor

Knor expects an eHOA file on standard input; it also accepts a filename as
a command line parameter instead. With the options -a and -b, Knor writes
the constructed circuits to standard output as an AIGER file in ASCII or
binary format respectively. With the option -v, Knor prints timings and other
information to standard error.

By default, Knor uses the fully symbolic translation to a parity game. One can
use --naive for the naive explicit encoding and --explicit for the half-symbolic
encoding, and --print-game to print the resulting parity game in PGSolver
format to standard output. Only the fully symbolic translation supports the full
synthesis pipeline.

To choose an explicit-state solver of Oink, one can pick any solver from the list
obtained with --solvers, in particular the solvers --tl, --npp, --fpi, --fpj,
--psi. and --zlk. To solve using the symbolic solver, use --sym. With the option
--real, Knor will only decide realizability and use tangle learning (--tl) as the
default solver. The default solver for synthesis is the symbolic solver (--sym).

Bisimulation minimisation is applied by default, unless the --no-bisim option
is used. To encode the circuit, Knor uses by default ITE and onehot encoding.
To change this one can use the options --isop and --binary. To apply post-
processing with ABC after constructing the circuits, use the options --compress
and --drewrite.

4 Empirical Evaluation

We present the empirical results here.

4.1 Benchmarking

We evaluate the techniques implemented in Knor using the benchmarks of
SYNTCOMP for the PGAME track that come from reactive synthesis, i.e.,
they are based on LTL specifications in the TLSF file format. In recent years,
SYNTCOMP has also incorporated benchmarks in the PGAME track that do not
come from reactive synthesis, such as artificial hard games that are designed to
be time consuming for specific parity game solvers. Oink can easily handle such
hard games by using a solver for which no hard game has been designed yet, and
since our aim is to develop techniques for reactive synthesis specifically, we limit
ourselves to benchmarks from the TLSF dataset2. We also exclude input files that
are not parity automata; this removes the aut*.ehoa files, two test*.ehoa files,
and UnderapproxStrengthenedDemo, which is a Büchi automaton consisting of
a single state. In total 288 input files remain.

The benchmarks are run on a machine with an Intel i5-13600KF processor.
This is a 14-core processor, but we only use a single thread. Knor is compiled using
gcc version 13.2.1. We repeat benchmarks 5 times and take the median to obtain
2 https://github.com/SYNTCOMP/benchmarks/tree/v2023.4/parity/tlsf_based

T. van Dijk et al.112

https://github.com/SYNTCOMP/benchmarks/tree/v2023.4/parity/tlsf_based

Model explicit half-symbolic symbolic

amba_decomposed_lock_15 T.O. 46 24
amba_decomposed_lock_14 T.O. 46 24
amba_decomposed_lock_13 T.O. 46 24
TwoCountersDisButA9 T.O. 668,065 7,249
amba_decomposed_lock_12 402,997,254 46 24
amba_decomposed_lock_11 100,820,998 46 24
amba_decomposed_lock_10 25,237,510 46 24
TwoCountersGui 21,022,475 256 155
TwoCountersDisButA8 15,254,863 497,310 4,721
full_arbiter_8 11,287,306 1,669,066 177,690
amba_decomposed_lock_9 6,323,718 46 24
amba_decomposed_encode_16 4,981,507 876 330
TwoCountersDisButA7 3,939,305 98,947 2,365
TwoCountersDisButA6 3,806,249 101,175 1,733

Table 1. Sizes in number of vertices of the largest parity games, sorted descending by
size of parity games constructed using the explicit method.

Technique Sum of Vertices Time (sec)

explicit 622,987,565 1,177.91
half-symbolic 8,491,540 18.28
symbolic 620,510 11.76

Table 2. Cumulative size of parity games and time required for construction of the
parity games of the 284 inputs that could be constructed by all three techniques.

the runtimes. All experimental scripts and log files are available as [12], and are
also available online via http://www.github.com/trolando/knor-experiments.

4.2 Translating the parity automaton to a parity game

We first compare the three different techniques to obtain a parity game from the
parity automaton: explicit, half-symbolic (only symbolic splitting) and fully
symbolic.

Of the 288 benchmarks, the explicit method could not construct the parity
game for four benchmarks within the timeout of 3600 seconds. See Table 1 for the
largest parity games constructed by the explicit method, as well as the four input
models for which no parity game could be constructed within 3600 seconds. The
two other methods could construct the parity games within a reasonable amount
of time, as is displayed in Table 2. The given time is only the time required for
constructing the games and excludes time required for parsing the input file,
which is the same for all methods.

Clearly, the fully symbolic method is superior to the other methods, both in
the speed of construction and in the size of the constructed parity games. When

Knor: reactive synthesis using Oink 113

http://www.github.com/trolando/knor-experiments

Solver Circuit size Time (sec)
binary onehot

symbolic fpi (--sym) 317,403 122,514 18.45
fixpoint with justifications (--fpj) 350,035 139,900 0.16
fixpoint with freezing (--fpi) 353,120 140,297 0.22
strategy iteration (--psi) 334,149 140,916 0.57
priority promotion (--npp) 427,048 161,244 0.17
Zielonka (--zlk) 480,472 175,427 0.18
tangle learning (--tl) 604,044 213,632 0.17

Table 3. Cumulative circuit size in number of gates and cumulative solving time in
number of seconds for the tested parity game solvers.

we consider individual input models, we find 20 cases where the half-symbolic
approach results in slightly smaller parity games than the fully symbolic approach.
The largest difference is 13 vertices (100 vertices instead of 113 vertices), which
is negligible compared to the several orders of magnitude advantage that the
fully symbolic method has in larger parity games, as Table 1 demonstrates. The
cumulative time for the fully symbolic method is dominated by a handful of input
models that require more than a second. Almost all parity games are constructed
in fewer than 10 milliseconds.

Although the size of the parity game does not necessarily always correspond
to the size of the constructed circuit or the required time for the entire synthesis
process, it seems an obvious choice to only consider the fully symbolic translation
in the remainder of this study.

4.3 Solving the parity game

We consider several parity game solvers, which have been shown in the past
to be successful for solving games derived from synthesis: Zielonka’s recursive
algorithm, priority promotion, tangle learning, the two fixpoint algorithms using
freezing and justifications, strategy iteration, and symbolic fixpoint iteration. One
of these, symbolic fixpoint iteration, directly operates on the symbolic parity
game constructed by the fully symbolic method. All other solvers require the
procedure outlined in Sec. 3.3 to translate the symbolic representation to an
explicit game. The game is then solved, and we construct the circuit using the
standard ITE encoding and either the binary or the onehot encoding of the states.
We do not yet perform bisimulation minimisation or postprocessing using ABC.

The reason that it is interesting to consider different solvers is that different
solvers may result in entirely different strategies to win the parity game. In
particular, it may be that some solvers favor winning regions that reach either
higher priorities or lower priorities, which can result in significant differences.
This is in fact supported by the results presented here.

We report runtimes for solving the parity games (thus excluding time
before solving and after solving) as well as the sizes of the circuits in Table 3.

T. van Dijk et al.114

0.1ms

1ms

10ms

0.1s

1s

10s

200 210 220 230 240 250 260 270 280 290
Model count

T
im

e
(s

ec
)

Solver
fpi
fpj
pp
psi
tl
sym
zlk

Fig. 4. Cactus plot of the number of parity games that can be solved within the given
amount of time per solver.

Model tl sym pp psi zlk fpi fpj

generalized_buffer_unreal1 0.02 7.36 0.02 0.14 0.02 0.03 0.02
generalized_buffer 0.01 5.37 0.01 0.07 0.01 0.02 0.01
genbuf2 0.01 1.98 0.01 0.03 0.01 0.01 0.01
full_arbiter_unreal3 0.00 1.00 0.00 0.06 0.00 0.02 0.01
amba_decomposed_arbiter_10 0.02 0.76 0.01 0.04 0.01 0.02 0.02
full_arbiter_8 0.02 0.74 0.02 0.08 0.02 0.02 0.02

Table 4. Overview of individual runtimes of each solver in seconds for the benchmarks
for which at least one solver requires at least 500 milliseconds.

We observe that only the symbolic algorithm requires any time at all. The
other algorithms each require less than a second to solve all benchmarks! When
we consider the circuit sizes, the fully symbolic algorithm is superior with a
cumulative 122,514 gates for all circuits. If we are interested in the best solver
that solves all benchmarks in a fraction of a second, then clearly FPJ is the best
algorithm, with a cumulative time of 0.16 seconds and a cumulative circuit size
of 139,900 gates, although the difference with FPI is not that great.

Remarks. The solving time with the symbolic fixpoint iteration algorithm is
dominated by just a few benchmarks. All algorithms solve the vast majority of
parity games in a fraction of a second. See Fig. 4. Notice the logarithmic scale
and that the vast majority of models are computed within a second for all solvers.
Just a few models require more than 500 milliseconds to be solved, as is shown
in Table 4.

We also did not take parallel operation into account. The symbolic FPI
solver, the explicit FPI solver, and the strategy iteration solver have parallel
implementations; the symbolic solver leverages the automatic parallelisation of
decision diagram operations in Sylvan.

Knor: reactive synthesis using Oink 115

Solver Circuit size Time (sec)
binary onehot

symbolic fpi (--sym) + minimisation 166,839 106,500 0.19
fixpoint with justifications (--fpj) + min. 205,937 124,489 0.15
symbolic fpi (--sym) 317,403 122,514 –
fixpoint with justifications (--fpj) 350,035 139,900 –

Table 5. Cumulative circuit size in number of gates and cumulative minimisation time
in number of seconds for the symbolic fpi and the fixpoint with justifications solvers,
with and without bisimulation minimisation after solving.

Solver Encoding Circuit size Time

symbolic fpi (--sym) ISOP, onehot 102,294 0.69
symbolic fpi (--sym) ITE, onehot 106,500 0.61
fixpoint with justifications (--fpj) ISOP, onehot 113,134 0.72
fixpoint with justifications (--fpj) ITE, onehot 124,489 0.64
symbolic fpi (--sym) ITE, binary 166,839 0.09
fixpoint with justifications (--fpj) ITE, binary 205,937 0.12
symbolic fpi (--sym) ISOP, binary 431,316 1.39
fixpoint with justifications (--fpj) ISOP, binary 476,502 1.61

Table 6. Cumulative circuit size in number of gates and cumulative encoding time in
seconds for the symbolic fpi and fixpoint with justification solvers, after bisimulation
minimisation, using different encodings to obtain the circuit.

4.4 Bisimulation minimisation

We study the effects of bisimulation minimisation for the fully symbolic fixpoint
iteration solver and for the explicit fixpoint iteration with justifications solver
implemented in Oink.

As Table 5 shows, running bisimulation minimisation on the resulting strategy
reduces the total circuit size in all cases. The required time to perform bisimulation
minimisation is negligible with a cumulative time of a fraction of a second.

Bisimulation minimisation does not always improve the circuit size. There are
a few cases where the procedure slightly increases the circuit size. There are also
several models where the circuit size is reduced by several orders of magnitude.
Interestingly, in some cases the circuit size is reduced to 0 AND-gates. It seems
worthwhile to always apply bisimulation minimisation.

4.5 Encoding strategy to circuit

We now consider different encodings from the BDD of the strategy to the controller
circuit. See Table 6. Surprisingly, the combination of ISOP and a binary encoding
leads to a significantly worse result; whereas using ISOP with a onehot encoding
slightly reduces the circuit sizes, but not by a significant amount.

T. van Dijk et al.116

Solver Encoding Method Circuit size Time

symbolic fpi (--sym) ISOP compress 61,434 149.26
symbolic fpi (--sym) ITE compress 62,506 121.27
fixpoint with justifications (--fpj) ISOP compress 71,240 125.29
fixpoint with justifications (--fpj) ITE compress 72,897 108.10
symbolic fpi (--sym) ISOP drewrite 80,077 58.72
symbolic fpi (--sym) ITE drewrite 80,425 53.21
fixpoint with justifications (--fpj) ISOP drewrite 80,454 60.88
fixpoint with justifications (--fpj) ITE drewrite 80,903 58.58
symbolic fpi (--sym) ISOP 102,294 44.88
symbolic fpi (--sym) ITE 106,500 39.81
fixpoint with justifications (--fpj) ISOP 113,134 31.66
fixpoint with justifications (--fpj) ITE 124,489 25.77

Table 7. Cumulative circuit size in number of gates for the two solvers, after bisimulation
minimisation and using onehot encoding, then using different postprocessing methods to
reduce circuit sizes. Given times are total times from parsing until writing, in seconds.

Tool Circuit size
no post-processing with post-processing

strix 68,550 41,314
sym-bisim-isop-onehot 87,823 50,624
ltlsynt 544,804 98,996

Table 8. Cumulative size of the circuits for the 201 realizable inputs that could be
constructed by all three tools, before and after post-processing with ABC.

Looking at individual benchmarks, we find that the most interesting differences
occur with the full_arbiter_* and amba_decomposed_arbiter_* benchmarks.
For these benchmarks, ISOP performs much worse than ITE with a binary
encoding, but shows moderate improvement with the onehot encoding.

While there are some differences in the encoding times between the different
approaches, the cumulative encoding time is less than two seconds in all cases.

4.6 Postprocessing with ABC

Finally, we apply postprocessing of the constructed circuit using ABC. See Table 7
for the results. We observe a very clear tradeoff of space and time. The best
result is obtained by using the compress algorithm, which reduces the number
of gates by about 40%, but this triples the runtime.

4.7 Comparison with other tools

We compare Knor to the tools Strix [26] and ltlsynt [27,33,34]. We obtain the two
competing tools from the SYNTCOMP 2023 artifact [21]. We use the following

Knor: reactive synthesis using Oink 117

command lines, similar to those used in the SYNTCOMP 2023 competition, to
run the tools:

– Run Strix without post-processing in ABC:
strix --auto --no-compress-circuit -t --hoa <filename>

– Run Strix with post-processing in ABC:
strix --auto -t --hoa <filename>

– Run ltlsynt (without post-processing in ABC):
ltlsynt --from-pgame=<filename> --aiger --verbose

In the competition, ltlsynt had optional post-processing in ABC as part of
the script rather than the executable. This script executed the following ABC
commands: collapse;strash;refactor;rewrite. The Strix executable runs
an embedded version of ABC, repeating the compress2rs script until no more
improvement is found. To improve the fairness of the comparison, we change the
post-processing for ltlsynt to start with collapse;strash, as this re-encoding of
the circuit via binary decision diagrams significantly improves upon the circuit
encoding by ltlsynt, followed by repeating the compress2rs script until there
is no more improvement. This gives better results than obtained by ltlsynt in
SYNTCOMP 2023.

Only 208 of the 288 input files are realizable. Of these, Strix did not solve the
following inputs within the 3600 seconds time limit: amba_decomposed_lock_14,
amba_decomposed_lock_15, Automata325, Gamelogic, genbuf2, SPIPureNext,
generalized_buffer. Except for amba_decomposed_lock_15, ltlsynt solved all
inputs. Disregarding inputs that could not be solved by Strix or ltlsynt, we
have 201 realizable inputs that can be solved within the time limit by all three
tools. We provide the results with and without post-processing using ABC in
Table 8. Considering individual results, we observe that Strix yielded smaller
circuits in 142 cases (147 with post-processing) and Knor yielded smaller cir-
cuits in 47 cases (also 47 with post-processing). For the larger circuits, the
amba_decomposed_arbiter_* inputs favored Knor (1527 vs 8282 gates, after
post-processing), while Strix did better on the full_arbiter_ inputs (1594 vs
26040 gates, after post-processing).

Table 8 clearly shows that all tools benefit from the post-processing. While
Strix gives the best results for circuit size, the cumulative circuit size of Knor is
only 23% more. Knor solves the entire set of inputs, including post-processing by
ABC, in about 2.5 minutes, while Strix and ltlsynt cannot solve some benchmarks
within the time limit of 1 hour, before post-processing.

5 Discussion

In this work, we studied techniques to improve reactive synthesis of parity
automata to Boolean circuits using a new tool named Knor. We proposed
a number of techniques and empirically evaluated these techniques using the
benchmarks of the SYNTCOMP competition derived from LTL specifications.
Knor has won the PGAME track of the competition several times.

T. van Dijk et al.118

The evidence presented in the empirical evaluation suggests that the best
approach for deciding realizability is to use the fully symbolic translation from
parity automaton to parity game, and any fast explicit-state parity game solver
(like a tangle learning variation) for which no hard games have yet been designed.
The latter is only needed to counteract any efforts aimed at impairing Knor’s
performance in SYNTCOMP through the introduction of artificially difficult
benchmarks.

For synthesis, considering a low circuit size as our primary objective, the clear
solution is to use either symbolic fpi (--sym) or fixpoint with justifications (--fpj),
preferring the former at the cost of speed in a few benchmarks, always apply
bisimulation minimisation (--bisim), use a onehot encoding (--onehot) with
either ITE or ISOP encoding, and apply postprocessing using ABC’s compress2rs
script (--compress).

Knor is publicly available via https://www.github.com/trolando/knor.

Future work There are many opportunities for future improvements to the
entire pipeline. We already mentioned playing with the variable ordering within
the variable groups of the symbolic parity game, and considering slightly more
efficient translations from the symbolic parity game to an explicit game in Oink.

We could also consider designing a parity game solving algorithm that explic-
itly results in small strategies. Some solvers might yield a multi-strategy, where
multiple edges in the parity game can be taken to win the game. This could
potentially be exploited to simplify the circuits.

It may also be useful to consider bisimulation minimisation on the parity
game before solving, and to change the encoding of the states into the BDD, as
we currently use a naive binary encoding of the state identifiers in the eHOA
format. There may also be other encoding strategies to obtain the Boolean circuit,
such as a different encoding of the latches or the approach of [30].

Beyond the reactive synthesis of parity automaton specifications, we may
also explore symbolic techniques, including those outlined in this paper, for the
synthesis of LTL specifications, building on the preliminary results from our
earlier prototype described in [13].

Acknowledgements

We thank Alan Mishchenko for his helpful comments on using ABC for Boolean
circuit minimisation. The first author is supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 893732.

Data availability statement

The software, benchmarks and analysed dataset are available as [12]. In addition,
the version of Knor studied in the current paper is tagged in the Github repository
of Knor as: https://github.com/trolando/knor/tree/TACAS24.

Knor: reactive synthesis using Oink 119

https://www.github.com/trolando/knor
https://github.com/trolando/knor/tree/TACAS24

References

1. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kretínský, J., Müller, D.,
Parker, D., Strejcek, J.: The Hanoi Omega-Automata Format. In: CAV (1). Lecture
Notes in Computer Science, vol. 9206, pp. 479–486. Springer (2015)

2. Benerecetti, M., Dell’Erba, D., Mogavero, F.: Solving Parity Games via Priority
Promotion. In: CAV 2016. LNCS, vol. 9780, pp. 270–290. Springer (2016)

3. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2,
Formal Models and Verification, Johannes Kepler University (2011), https://fmv.
jku.at/papers/BiereHeljankoWieringa-FMV-TR-11-2.pdf

4. Brayton, R., Mishchenko, A.: Scalable logic synthesis using a simple circuit structure.
In: Proc. of Internal Workshop on Logic Synthesis. vol. 6, pp. 15–22 (2006)

5. Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: CAV. Lecture Notes in Computer Science, vol. 6174, pp. 24–40. Springer
(2010)

6. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv. 24(3), 293–318 (1992)

7. Buchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies.
Transactions of the American Mathematical Society 138, 295–311 (1969)

8. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
Summaries of the Summer Institute of Symbolic Logic 1, 3–50 (1957)

9. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International
Congress of Mathematicians. pp. 23–35 (1962)

10. van Dijk, T.: Attracting tangles to solve parity games. In: CAV (2). Lecture Notes
in Computer Science, vol. 10982, pp. 198–215. Springer (2018)

11. van Dijk, T.: Oink: An implementation and evaluation of modern parity game
solvers. In: TACAS (1). Lecture Notes in Computer Science, vol. 10805, pp. 291–308.
Springer (2018)

12. van Dijk, T.: Artifact of Knor: reactive synthesis using Oink (2023). https://doi.
org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7

13. van Dijk, T., Abraham, R., Sickert, S.: Almost-symbolic synthesis via delta-2-
normalisation for linear temporal logic. In: 10th Workshop on Synthesis (2021)

14. van Dijk, T., van de Pol, J.: Sylvan: multi-core framework for decision diagrams.
Int. J. Softw. Tools Technol. Transf. 19(6), 675–696 (2017)

15. van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation. Int. J.
Softw. Tools Technol. Transf. 20(2), 157–177 (2018)

16. van Dijk, T., Rubbens, B.: Simple fixpoint iteration to solve parity games. In:
GandALF. EPTCS, vol. 305, pp. 123–139 (2019)

17. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. Int. J.
Softw. Tools Technol. Transf. 3(2), 112–136 (2001)

18. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended
abstract). In: FOCS. pp. 368–377. IEEE Computer Society (1991)

19. Fearnley, J.: Efficient parallel strategy improvement for parity games. In: CAV (2).
LNCS, vol. 10427, pp. 137–154. Springer (2017)

20. Friedmann, O., Lange, M.: Solving parity games in practice. In: ATVA. LNCS,
vol. 5799, pp. 182–196. Springer (2009)

21. Jacobs, S., Perez, G., Schlehuber-Caissier, P.: Data, scripts, and results from
SYNTCOMP 2023. Zenodo (2023). https://doi.org/10.5281/zenodo.8161423

22. Jacobs, S., Bloem, R.: The reactive synthesis competition: SYNTCOMP 2016 and
beyond. In: SYNT@CAV. EPTCS, vol. 229, pp. 133–148 (2016)

T. van Dijk et al.120

https://fmv.jku.at/papers/BiereHeljankoWieringa-FMV-TR-11-2.pdf
https://fmv.jku.at/papers/BiereHeljankoWieringa-FMV-TR-11-2.pdf
https://doi.org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7
https://doi.org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7
https://doi.org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7
https://doi.org/10.4121/8794d8c0-5959-42f9-ba34-68f2137145a7
https://doi.org/10.5281/zenodo.8161423
https://doi.org/10.5281/zenodo.8161423

23. Jacobs, S., Pérez, G.A., Abraham, R., Bruyère, V., Cadilhac, M., Colange, M.,
Delfosse, C., van Dijk, T., Duret-Lutz, A., Faymonville, P., Finkbeiner, B., Khalimov,
A., Klein, F., Luttenberger, M., Meyer, K.J., Michaud, T., Pommellet, A., Renkin,
F., Schlehuber-Caissier, P., Sakr, M., Sickert, S., Staquet, G., Tamines, C., Tentrup,
L., Walker, A.: The reactive synthesis competition (SYNTCOMP): 2018-2021.
CoRR abs/2206.00251 (2022)

24. Lapauw, R., Bruynooghe, M., Denecker, M.: Improving parity game solvers with
justifications. In: VMCAI. Lecture Notes in Computer Science, vol. 11990, pp.
449–470. Springer (2020)

25. Lijzenga, O., van Dijk, T.: Symbolic parity game solvers that yield winning strategies.
In: GandALF. EPTCS, vol. 326, pp. 18–32 (2020)

26. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of reactive systems
from LTL specifications via parity games. Acta Informatica 57(1-2), 3–36 (2020)

27. Michaud, T., Colange, M.: Reactive synthesis from ltl specification with spot. In:
Proceedings of the 7th Workshop on Synthesis, SYNT@CAV. vol. 5 (2018)

28. Minato, S.: Fast generation of prime-irredundant covers from binary decision
diagrams. IEICE transactions on fundamentals of electronics, communications and
computer sciences 76(6), 967–973 (1993)

29. Minato, S.: Zero-suppressed bdds for set manipulation in combinatorial problems.
In: DAC. pp. 272–277. ACM Press (1993)

30. Miyasaka, Y., Mishchenko, A., Wawrzynek, J., Fraser, N.J.: Synthesizing a class of
practical boolean functions using truth tables. In: 31st International Workshop on
Logic and Synthesis (2022)

31. Pérez, G.A.: The extended HOA format for synthesis. CoRR abs/1912.05793
(2019)

32. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL. pp.
179–190. ACM Press (1989)

33. Renkin, F., Schlehuber, P., Duret-Lutz, A., Pommellet, A.: Improvements to ltlsynt.
In: 10th Workshop on Synthesis (2021)

34. Renkin, F., Schlehuber-Caissier, P., Duret-Lutz, A., Pommellet, A.: Dissect-
ing ltlsynt. Formal Methods in System Design (2023). https://doi.org/10.1007/
s10703-022-00407-6

35. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

Knor: reactive synthesis using Oink 121

https://doi.org/10.1007/s10703-022-00407-6
https://doi.org/10.1007/s10703-022-00407-6
https://doi.org/10.1007/s10703-022-00407-6
https://doi.org/10.1007/s10703-022-00407-6

T. van Dijk et al.122

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

On Dependent Variables in Reactive Synthesis

, Eliyahu Basa2, Supratik Chakraborty1, and Dror Fried2

Abstract. Given a Linear Temporal Logic (LTL) formula over input
and output variables, reactive synthesis requires us to design a deter-
ministic Mealy machine that gives the values of outputs at every time
step for every sequence of inputs, such that the LTL formula is satisfied.
In this paper, we investigate the notion of dependent variables in the
context of reactive synthesis. Inspired by successful pre-processing tech-
niques in Boolean functional synthesis, we define dependent variables in
reactive synthesis as output variables that are uniquely assigned, given
an assignment to all other variables and the history so far. We describe
an automata-based approach for finding a set of dependent variables. Us-
ing this, we show that dependent variables are surprisingly common in
reactive synthesis benchmarks. Next, we develop a novel synthesis frame-
work that exploits dependent variables to construct an overall synthesis
solution. By implementing this framework using the widely used library
Spot, we show that reactive synthesis that exploits dependent variables
can solve some problems beyond the reach of existing techniques. Fur-
thermore, we observe that among benchmarks with dependent variables,
if the count of non-dependent variables is low (≤ 3 in our experiments),
our method outperforms state-of-the-art tools for synthesis.

Keywords: Reactive synthesis · Functionally dependent variables· BDDs

1 Introduction

Reactive synthesis concerns the design of deterministic transducers (often Mealy
or Moore machines) that generate a sequence of outputs in response to a sequence
of inputs such that a given temporal logic specification is satisfied. Church intro-
duced the problem [12] in 1962, and there has been a rich and storied history of
work in this area over the past six decades. Recently, it was shown that a form of
pre-processing, viz. decomposing a Linear Temporal Logic (LTL) specification,
can lead to significant performance gains in downstream synthesis steps [15]. The
general idea of pre-processing a specification to simplify synthesis has also been
used very effectively in the context of Boolean functional synthesis [4,5,17,18,25].
Motivated by the success of one such pre-processing step, viz. identification of
uniquely defined outputs, in Boolean functional synthesis, we introduce the no-
tion of dependent outputs in the context of reactive synthesis in this paper. We
develop its theory and show by means of extensive experiments that dependent
outputs are common in reactive synthesis benchmarks, and can be effectively

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 123–143, 2024.
https://doi.org/10.1007/978-3-031-57246-3_8

S. Akshay1(B)

1 IIT Bombay, Mumbai, India
akshayss@cse.iitb.ac.in

2 The Open University of Israel, Ra’anana, Israel

https://doi.org/10.1007/978-3-031-57246-3_8
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_8&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

exploited to obtain synthesis techniques with orthogonal strengths vis-a-vis ex-
isting state-of-the-art techniques.

In the context of propositional specifications, it is not uncommon for a spec-
ification to uniquely define an output variable in terms of the input variables
and other output variables. A common example of this arises when auxiliary
variables, called Tseitin variables, are introduced to efficiently convert a specifi-
cation not in conjunctive normal form (CNF) to one that is in CNF [28]. Being
able to identify such uniquely defined variables efficiently can be very helpful,
whether it be for checking satisfiability, for model counting or synthesis. This
is because these variables do not alter the basic structure or cardinality of the
solution space of a specification regardless of whether they are projected out
or not. Hence, one can often simplify the reasoning about the specification by
ignoring (or projecting out) these variables. In fact, the remarkable practical suc-
cess of Boolean functional synthesis tools such as Manthan [18] and BFSS [4,5]
can be partly attributed to efficient techniques for identifying a large number of
uniquely defined variables. We draw inspiration from these works and embark
on an investigation into the role of uniquely defined variables, or dependent vari-
ables, in the context of reactive synthesis. To the best of our knowledge, this is
the first attempt at directly using dependent variables for reactive synthesis.

We start by first defining the notion of dependent variables in LTL specifi-
cations for reactive synthesis. Specifically, given an LTL formula φ over a set of
input variables I and output variables O, a set of variables X ⊆ O is said to be
dependent on a set of variables Y ⊆ I ∪ (O\X) in φ, if at every step of every
infinite sequence of inputs and outputs satisfying φ, the finite history of the se-
quence together with the current assignment for Y uniquely defines the current
assignment for X. The above notion of dependency generalizes the notion of
uniquely defined variables in Boolean functional synthesis, where the value of a
uniquely defined output at any time is completely determined by the values of
inputs and (possibly other) outputs at that time. We show that our generaliza-
tion of dependency in the context of reactive synthesis is useful enough to yield
a synthesis procedure with improved performance vis-a-vis competition-winning
tools, for a non-trivial number of reactive synthesis benchmarks.

We present a novel automata-based technique for identifying a subset-maximal
set of dependent variables in an LTL specification φ. Specifically, we convert φ
to a language-equivalent non-deterministic Büchi automaton (NBA) Aφ, and
then deploy practically efficient techniques to identify a subset-maximal set of
outputs X that are dependent on Y = I ∪ (O \X). We implemented our method
to determine the prevalence of dependent variables in existing reactive synthesis
benchmarks. Our finding shows that out of 1141 benchmarks taken from the
SYNTCOMP [21] competition, 300 had at least one dependent output variable
and 26 had all output variables dependent.

Once a subset-maximal set, say X, of dependent variables is identified, we
proceed with the synthesis process as follows. Referring to the NBA Aφ alluded
to above, we first transform it to an NBA A′

φ that accepts the language L′

obtained from L(φ) after removing (or projecting out) the X variables. Our

S. Akshay, E. Basa, S. Chakraborty, D. Fried124

experiments show that A′
φ is more compactly representable compared to Aφ,

when using BDD-based representations of transitions (as is done in state-of-the-
art tools like Spot [7]). Viewing A′

φ as a new (automata-based) specification
with output variables O \X, we now synthesize a transducer TY from A′ using
standard reactive synthesis techniques. This gives us a strategy fY : Σ∗

I → ΣO\X
for each non-dependent variable in O \X. Next, we use a novel technique based
on Boolean functional synthesis to directly construct a circuit that implements a
transducer TX that gives a strategy fX : Σ∗

Y → ΣX for the dependent variables.
Significantly, this circuit can be constructed in time polynomial in the size of
the (BDD-based) representation of Aφ. The transducers TY and TX are finally
merged to yield an overall transducer T that describes a strategy f : Σ∗

I → ΣO

solving the synthesis problem for φ.
We implemented our approach in a tool called DepSynt. Our tool is devel-

oped in C++ using APIs from the widely used library Spot for representing and
manipulating non-deterministic Büchi automata. We performed a comparative
analysis of our tool with winning entries of the SYNTCOMP [21] competition to
evaluate how knowledge of dependent variables helps reactive synthesis. Our ex-
perimental results show that identifying and utilizing dependent variables results
in improved synthesis performance when the count of non-dependent variables
is low. Specifically, our tool outperforms state-of-the-art and highly optimized
synthesis tools on benchmarks that have at least one dependent variable and
at most 3 non-dependent variables. This leads us to hypothesize that exploiting
dependent variables benefits synthesis when the count of non-dependent vari-
ables is below a threshold. Given the preliminary and un-optimized nature of
our implementation, we believe there is significant scope for improvement.

Related work. Reactive synthesis has been an extremely active research area for
the last several decades (see e.g. [9, 12, 15, 16, 24]). Not only is the theoretical
investigation of the problem rich, there are also several tools that are available
to solve synthesis problems in practice. These include solutions like ltlsynt [23]
based on Spot [7], Strix [22] and BoSY [14]. Our tool relies heavily on Spot and its
APIs, which we use liberally to manipulate non-deterministic Büchi automata.
Our synthesis approach is based on the standard conversion of LTL formula to
NBA, and then from NBA to deterministic parity automata (DPA) (see [8] for
an overview of the challenges of reactive synthesis).

Our work may be viewed as lifting the idea of uniquely defined variables used
in Boolean functional synthesis to the context of reactive synthesis. Viewed from
this perspective, our work is not the first to lift ideas from Boolean functional
synthesis to the reactive context. Following an approach for Boolean functional
synthesis that decomposes a specification into separate formulas on input vari-
ables and on output variables [11], the work in [6] constructed a reactive synthe-
sis tool for specific benchmarks that admit a separation of the specification into
formulas for only environment variables and formulas for only system variables.
The current work serves as an additional example in support of the hypothesis
that intuition from Boolean functional synthesis can be helpful and effective in
the reactive synthesis context.

On Dependent Variables in Reactive Synthesis 125

The remainder of the paper is structured as follows. We introduce definitions
and notations in Section 2. In Section 3 we define dependent variables for LTL
formulas, and describe an algorithm to find them. In Section 4 we describe our
automata-based synthesis framework and discuss its implementation details in
Section 5. We describe our evaluation in Section 6 and conclude in Section 7.
Missing proofs and additional experiments can be found in the full-version [2].

2 Preliminaries

Given a finite alphabet Σ, an infinite word w is a sequence w0w1w2 · · · where for
every i, the ith letter of w, denoted wi, is in Σ. The prefix w0 · · ·wi (of size i+1)
of w is denoted by w[0, i]. Note that w[0, 0] = w0. We use w[0,−1] to denote
the empty word. The set of all infinite words over Σ is denoted by Σω. We call
L ⊆ Σω a language over infinite words in ω. For our work, the alphabet Σ is
often the product of two distinct alphabets ΣX and ΣY , i.e. Σ = ΣX ×ΣY . In
such cases, for every a = (a1, a2) ∈ Σ, we abuse notation and use a.X to denote
the projection of a on ΣX , i.e. the letter a1 ∈ ΣX . Similarly, a.Y denotes the
projection of a on ΣY , i.e. the letter a2 ∈ ΣY . For an infinite word w ∈ Σω, we
use w.X to denote the infinite word in Σω

X obtained by projecting each letter in
w on ΣX i.e. w.X = w0.Xw1.X

Linear Temporal Logic. A Linear Temporal Logic (LTL) formula is constructed
with a finite set of propositional variables V , using Boolean operators such as
∨,∧, and ¬, and temporal operators such as next (X), until (U), etc. The set
V induces an alphabet ΣV = 2V of all possible assignments (true/false) to
the variables of V . The semantics of the operators and satisfiability relation are
defined as usual [20]. The language of an LTL formula φ, denoted L(φ) is the
set of all words in Σω

V that satisfy φ. For an LTL formula φ over V , we use
|V | to denote the number of variables in V , and |φ| to denote the size of the
formula, i.e., count of its subformulas. For clarity of exposition, we sometimes
abuse notation and identify the singleton variable set {z} with z. We also use Σ
for ΣV , when V is clear from the context.

Nondeterministic Büchi Automata. ANondeterministic Büchi Automaton (NBA)
is a tuple A = (Σ,Q, δ, q0, F) where Σ is the alphabet, Q is a finite set of states,
δ : Q × Σ → 2Q is a non-deterministic transition function, q0 is the initial
state and F ⊆ Q is a set of accepting states. Automaton A can be seen as a
directed labeled graph with vertices Q and an edge (q, q′) exists with a label a
if q′ ∈ δ(q, a). We denote the set of incoming edges to q by in(q) and the set of
outgoing edges from q by out(q). A path in A is a (possibly infinite) sequence of
states ρ = (qi0 , qi1 , · · ·) in which for every j > 0, (qij , qij+1

) is an edge in A. A
run is a path that starts in q0, and is accepting if it visits a state in F infinitely
often. A word w = σi0σi1 · · · induces a run ρ = (qi0 , qi1 , · · ·) of A if qi0 = q0 and
for every j ≥ 0, qij+1 ∈ δ(qij , σij). Since A is nondeterministic, a word can have
many runs. A word is accepting if it has an accepting run in A. The language

S. Akshay, E. Basa, S. Chakraborty, D. Fried126

L(A) is the set of all accepting words in A. Wlog, we assume that all states and
edges that are not a part of any accepting run (i.e. do not reach a cycle with an
accepting state) are removed. This can be done by a simple pre-processing pass
on the NBA. Finally, every LTL formula φ can be transformed in time exponen-
tial time in the size of φ to an NBA Aφ for which L(φ) = L(Aφ) [20,29]. When φ
is clear from the context we omit the subscript and refer to Aφ as A. We denote
by |A| the size of an automaton, i.e., number of its states and transitions.

Reactive Synthesis. A reactive LTL formula is an LTL formula φ over a set of
input variables I and output variables O, with I∩O = ∅. In reactive synthesis we
are given a reactive LTL formula φ, and the challenge is to synthesize a function,
called strategy, f : Σ∗

I → ΣO such that every word w ∈ (ΣI ×ΣO)
ω obtained by

using this strategy at every time step is in L(φ). If such a strategy exists we say
that φ is realizable. Otherwise, we say that φ is unrealizable. In what follows, we
always consider only reactive LTL formulas and hence omit the ”reactive” prefix
while referring to them. The synthesized strategy f : Σ∗

I → ΣO is typically
described (explicitly or symbolically) as a transducer T = (ΣI , ΣO, S, s0, δ, λ)
in which ΣI and ΣO are input and output alphabet respectively, S is a set of
states with an initial state s0, δ : S × ΣI → S is a deterministic transition
function, and λ : S ×ΣI → ΣO is the output function. A standard procedure in
solving reactive synthesis is to transform a given LTL formula φ to an NBA Aφ

for which L(Aφ) = L(φ). Subsequently, Aφ is transformed to a Deterministic
Parity Automata (DPA) that turns to a parity game, whose solution is described
as a transducer TAφ

. As the following theorem shows, this approach incurs a
double exponential blowup in the worst-case.

Theorem 1. 1. Reactive synthesis can be solved in O(2n·2
n

), where n is the
size of the LTL formula.

2. Given an NBA A with n states, computing transducer TA takes Ω(2n log n).

3 Dependent variables in reactive LTL

We begin by defining dependent variables for (reactive) LTL formulas and pro-
pose an algorithm for finding a maximal set of dependent variables. While there
are several notions of dependency that can be considered, we discuss one that
we have found to be useful in reactive synthesis. Specifically, we require that the
value of a dependent output variable be completely determined by the values of
inputs and other output variables and their finite history at every step of the
interaction between the reactive system and its environment. We consider de-
pendencies restricted to output variables, since having dependent input variables
would preclude some input sequences, rendering the specification unrealizable.

Definition 1 (Variable Dependency in LTL). Let φ be an LTL formula
over V with input variables I ⊆ V and output variables O = V \I. Let X,Y be
disjoint sets of variables where X ⊆ O. We say that X is dependent on Y in φ
if for every pair of words w,w′ ∈ L(φ) and i ≥ 0 if w[0, i− 1] = w′[0, i− 1] and

On Dependent Variables in Reactive Synthesis 127

wi.Y = w′
i.Y , then we have wi.X = w′

i.X. Further, we say that X is dependent
in φ if X is dependent on V \X in φ, i.e., it is dependent on all the remaining
variables.

Note that two words in L(φ) with different prefixes can have different values
for X for the same values for Y , if X is dependent on Y . Also, observe that if
X is dependent on Y in φ for some Y , then it is also dependent in φ.

As an example, consider an LTL formula φ with input variable y and output
variable x. The corresponding input and output alphabets are ΣX = {x,¬x} and
ΣY = {y,¬y} respectively. Suppose L(φ) = {w1, w2, w3} where w1 = (y, x)ω,
w2 = (¬y, x)ω and w3 = (y, x)(¬y, x)(y,¬x)ω. Then x is dependent on y in φ.
Specifically, note that w1[0, 1] ̸= w3[0, 1], and hence the dependency of x is not
violated although w1

2.y = w3
2.y and w1

2.x ̸= w3
2.x.

3.1 Maximally dependent sets of variables Given an LTL formula φ(I,O),
we say that a set X ⊆ O is a maximal dependent set in φ if X is dependent
in φ and every set of outputs that strictly contains X is not dependent in φ.
As in the propositional case [27], finding maximum or minimum dependent sets
is intractable, hence we focus on subset-maximality. Given a variable z and
set Y , checking whether z is dependent on Y , can easily be used to finding a
maximal dependent set. Indeed, we would just need to start from the empty
set and iterate over output variables, checking for each if it is dependent on
the remaining variables. We give the pseudocode for this in [2]. Note that when
all output variables are not dependent, the order in which output variables are
chosen may play a significant role in the size of the maximal set obtained. We
currently use a naive ordering (first appearance), and leave the problem of better
heuristics for getting larger maximal independent sets to future work.

3.2 Finding dependent variables via automata As explained above, the
heart of the dependency check is to verify whether a given output variable is
dependent on a set of other variables. We now develop an approach for doing
so based on the nondeterministic Büchi automaton Aφ that represents the same
language as the LTL formula φ. Our framework uses the notion of compatible
pairs of states of the automaton:

Definition 2. Let A = (Σ,Q, δ, q0, F) be an NBA with states s, s′ in Q. Then
the pair (s, s′) is compatible in A if there are runs from q0 to s and from q0 to
s′ on the same word w ∈ Σ∗.

Recall that in our definition, only states and edges that are part of an accepting
run exist in A. Then we have the following definition.

Definition 3. Let φ be an LTL formula over V with input variables I ⊆ V and
output variables O = V \I. Let X,Y be disjoint sets of variables where X ⊆ O.
Let Aφ be an NBA that describes φ. We say that X is automata dependent on
Y in Aφ, if for every pair of compatible states s, s′ and assignments σ, σ′ for V ,
where σ.Y = σ′.Y and σ.X ̸= σ′.X, δ(s, σ) and δ(s, σ′) cannot both exist in Aφ.
We say that X is automata dependent in Aφ if X is automata dependent on Y
in Aφ and Y = V \X.

S. Akshay, E. Basa, S. Chakraborty, D. Fried128

As an example, consider NBA A1 in Figure 1, constructed from some LTL
formula with input I = {i} and outputs O = {o1, o2}. For notational simplicity,
we useΣI = {0, 1}, ΣO = {0, 1}2, and edges are labeled by values of (i, o1o2). It is
easy to see that (q0, q0), (q1, q1) are compatible pairs, but so are (q0, q1), (q1, q0)
since both q0 and q1 be reached from the initial state on reading the word
(0, 00)(0, 00) of length 2. Now consider output o1. It is not dependent on {i},
i.e., only the input, since from q0 with i = 0, we can go to different states with
different values of o1. But o1 is indeed dependent on {i, o2}. To see this consider
every pair of compatible states – in this case all pairs. Then if we fix the values
of i and o2, there is a unique value of o1 that permits state transitions to happen
from the compatible pair. For example, regardless of which state we are in, if
i = 0, o2 = 0, o1 must be 0 for a state transition to happen. On the other hand,
o2 is not dependent on either {i} or {i, o1} (as can be seen from (q0, q1) with
i = 1, o1 = 1). The following theorem relates automata-based dependency and
dependency in LTL (for proof, see [2]), allowing us to focus only on the former.

Theorem 2. Let φ be an LTL formula with set of variables V = I ∪ O, where
X ⊆ O and Y ⊆ I ∪ (O \X). Let Aφ be an NBA with L(φ) = L(Aφ). Then X
is dependent on Y in φ if and only if X is automata dependent on Y in Aφ.

q0 q1

0,11
0,00

1,11

1,10
0,11

0,00

1,11

0,00

Fig. 1. An Example NBA A1

Finding Compatible States. We find all compatible
states in an automaton in Algorithm 1 as follows.
We maintain a list of in-process compatible pairs
C that is initialized with (q0, q0) – an undoubtedly
compatible pair. At each step, until C becomes
empty, we pick a pair (si, sj) ∈ C, add it to the
compatible pair set P , and remove it from C (in
line 4). Then (in lines 5-8), we check (in line 6)
if outgoing transitions from (si, sj) lead to a new
pair (s′i, s

′
j) not already in P or C, that can be

reached on reading the same letter σ. If so, we add this pair to the in-process set
C. All pairs that we add to P,C are indeed compatible, and nothing is removed
from P . When the algorithm terminates, C is empty, which means all possible
ways (from initial state pair) to reach a compatible pair have been explored,
thus showing correctness.

Finally, we show how to check dependency using automata, by implement-
ing procedure isAutomataDependent, shown in Algorithm 2. This procedure
takes an NBA Aφ, a candidate dependent output z and a candidate dependency
set Y ⊆ V \ {z} as inputs, and tries to find a witness to z not being dependent
on Y . If no such witness exists, then z is declared as being dependent on Y .
Procedure isAutomataDependent first uses Algorithm 1 to construct a list P
of all compatible pairs in A (line 4). Then for every pair (s, s′) ∈ P , the algo-
rithm checks using procedure AreStatesColliding (lines 1-2) whether there exists
an assignment σ, σ′ for which both δ(s, σ) and δ(s′, σ′) exist, σ.Y = σ′.Y and
σ.{z} ≠ σ′.{z}. If so, z is not dependent on Y (line 7) and the algorithm returns
false. Otherwise, afterchecking all the pairs, the algorithm returns true.

On Dependent Variables in Reactive Synthesis 129

Algorithm 1 Find All Compatible States in NBA

Input NBA Aφ = (Σ,Q, δ, q0, F) of φ.
Output Set P ⊆ Q×Q of all compatible state pairs in Aφ

1: P ← ∅; C ← {(q0, q0)}
2: while C ̸= ∅ do
3: Let (si, sj) ∈ C
4: P ← P ∪ {(si, sj)}; C ← C \ {(si, sj)}
5: for (s′i, s

′
j) ∈ out(s1)× out(s2) do

6: if (s′i, s
′
j) /∈ P ∪ C and ∃σ ∈ 2Σ s.t. s′i ∈ δ(si, σ) ∧ s′j ∈ δ(sj , σ) then

7: C ← C ∪ {(s′i, s′j)}
8: end if
9: end for
10: end while
11: return P

Algorithm 2 Check Dependency Based Automaton

Input NBA Aφ = (Σ,Q, δ, q0, F) from φ, Candidate dependent variable z,
Candidate dependency set Y .

Output Is z dependent on Y by Definition 3

1: procedure AreStateColliding(p, q)
2: return ∃σp, σq ∈ 2Σ s.t. δ(p, σp) ̸= ∅ ∧ δ(q, σq) ̸= ∅ ∧ σp.Y = σq.Y ∧ σp.{z} ̸=

σq.{z}
3: end procedure
4: P ← FindAllCompatibleStates(Aφ)
5: for (s1, s2) ∈ P do
6: if AreStateColliding(s1, s2) then
7: return False
8: end if
9: end for
10: return True

Lemma 1. Algorithm 2 returns True if and only if z is automata-dependent on
Y in Aφ.

Using the above algorithm to perform dependency check, it is easy to compute
a maximal set of dependent variables (as explained earlier). Note that all the
above algorithms run in time polynomial (in fact, quadratic) in size of the NBA.

Corollary 1. Given NBA Aφ, a maximal dependent set of outputs can be com-
puted in time polynomial in the size of Aφ.

Note that if all output variables are dependent, then regardless of the order in
which the outputs are considered, for every finite history of inputs, there is a
unique value for each output that makes the specification true. Therefore, there
is a unique winning strategy for the specification, assuming it is realizable.

S. Akshay, E. Basa, S. Chakraborty, D. Fried130

φ 1. LTL to NBA Aφ 2. Identify Dep

3. Projdep 4. Syn-Nondep TY

5. Syn-Dep TX 6. Syn-Comb T f

Aφ, X, Y

A′
φ, Y

Aφ, X
fY

fX

Fig. 2. Synthesis using dependencies. Note that Steps 2., 3., 5, are novel, while Steps
1., 4., 6. (shaded in gray) use pre-existing techniques.

4 Exploiting Dependency in Reactive Synthesis

In this section, we explain how dependencies can be beneficially exploited in a
reactive synthesis pipeline. Our approach can be described at a high level as
shown in Figure 2. This flow-chart has the following 6 steps:

1. Given an LTL formula φ over a set of variables V with input variables I ⊆ V
and output variables O = V \I, we first construct a language-equivalent NBA
Aφ = (ΣI ∪ΣO, S, s0, δ, F) by standard means, e.g [29].

2. Then, as described in Section 3, we find in Aφ a maximal set of output
variables X that are dependent in φ. For notational convenience, in the
remainder of the discussion, we use Y for I ∪ (O\X) and ΣY for ΣI ×ΣO\X .

3. Next, we construct an NBA A′
φ from Aφ by projecting out (or eliminating)

all X variables from labels of transitions. Thus, A′
φ has the same sets of

states and transitions as Aφ. We simply remove valuations of variables in X
from the label of every state transition in Aφ to obtain A′

φ. Note that after
this step, L(A′

φ) = {w | ∃u ∈ L(Aφ) s.t. w = u.Y } ⊆ Σω
Y .

4. Treating A′
φ as a (automata-based) specification with inputs I and outputs

O \X, we next use existing reactive synthesis techniques (e.g., [8]) to obtain
a transducer TY that describes a strategy fY : Σ∗

I → ΣO\X for L(A′
φ).

5. We also construct a transducer TX that describes a function fX : (Σ∗
Y →

ΣX) with the following property: for every word w′ ∈ L(A′
φ) there exists a

unique word w ∈ L(φ) such that w.Y = w′ and for all i, wi.X = fX(w′[0, i]).
6. Finally, we compose TX and TY to construct a transducer T that defines the

final strategy f : Σ∗
I → ΣO. Recall that transducer TY has I as inputs and

O \X as outputs, while transducer TX has I and O \X as inputs and X as
outputs. Composing TX and TY is done by simply connecting the outputs
O \X of TY to the corresponding inputs of TX .

In the above flow, we use standard techniques from the literature for Steps 1
and 4, as explained above. Hence we do not dwell on these steps in detail. Step
2 was detailed in Section 3. Step 3 is easy when we have an explicit representa-
tion of the automata, but it has interesting consequences when using symbolic
representations of automata. Step 6 is also easy to implement. Hence, in the
remainder of this section, we focus on Step 5, a key contribution of this paper.
In the next section, we will discuss how steps 2, 3 and 5 are implemented using
symbolic representations (viz. ROBDDs).

On Dependent Variables in Reactive Synthesis 131

Constructing transducer TX Let A = (ΣI ×ΣO, Q, δ, q0, F) be the NBA Aφ

obtained in step 1 of the pipeline shown above. Since each letter in ΣO can be
thought of as a pair (σ, σ′), where σ ∈ ΣO\X and σ′ ∈ ΣX , the transition function
δ can be viewed as a map from Q× (ΣI ×ΣO\X ×ΣX) to 2Q. The transducer
TX we wish to construct is a deterministic Mealy machine described by the 6-
tuple (ΣY , ΣX ∪ {⊥}, QX , qX0 , δX , λX), where ΣY = ΣI × Σ(O\X) is the input
alphabet, ΣX is the output alphabet with ⊥ ̸∈ ΣX being a special symbol that is
output when no symbol of ΣX suffices, QX = 2Q, that is the powerset of Q is the
set of states of TX , qX0 = {q0} is the initial state, δX : QX ×ΣI ×Σ(O\X) → QX

is the state transition function, and λX : QX ×ΣI ×Σ(O\X) → ΣX is the output
function. The state transition function δX is defined by the Rabin-Scott subset
construction applied to the automaton Aφ [19]. Formally, for every U ⊆ Q,
σI ∈ ΣI and σ ∈ Σ(O\X), we define δX

(
U, (σI , σ)

)
= {q′ | q′ ∈ Q, ∃q ∈ U and

∃σ′ ∈ ΣX s.t. q′ ∈ δ
(
q, (σI , σ, σ

′)
)
}. Before defining the output function λX , we

state an important property of TX that follows from the definition of δX above.

Lemma 2. If X is automata dependent in Aφ, then every state U reachable
from qX0 in TX satisfies the property: ∀q, q′ ∈ U , (q, q′) is compatible in Aφ.

The lemma is easily proved by induction on the number of steps needed to
reach U from qX0 . Details of the proof may be found in [2]. We are now ready
to define the output function λX of TX . Let U be a state reachable from qX0
in TX and let U ′ = δX

(
U, (σI , σ)

)
, where (σI , σ) ∈ ΣY . If U ′ ̸= ∅, we can

infer that (see Proof of Lemma 2 in [2]) that there is a unique σX ∈ ΣX s.t.
U ′ = {q′ | ∃q ∈ U s.t. q′ ∈ δ

(
q, (σI , σ, σX)

)
}. We define λX

(
U, (σI , σ)

)
= σX in

this case. If, on the other hand, U ′ = ∅, we define λX
(
U, (σI , σ)

)
= ⊥.

Theorem 3. If φ is realizable, the transducer T obtained by composing TX and
TY as in step 6 of Fig. 2 solves the synthesis problem for φ.

An interesting corollary of the above result is that for realizable specifications
with all output variables dependent, we can solve the synthesis problem in time
O(2k) instead of Ω(2k log k), where k = |Aφ|. This is because the subset construc-
tion on Aφ suffices to obtain TX , while Aφ must be converted to a deterministic
parity automaton to solve the synthesis problem in general.

5 Symbolic Implementation

In this section, we describe symbolic implementations of each of the non-shaded
steps in the synthesis flow depicted in Fig. 2. Before we delve into the details, a
note on the representation of NBAs is relevant. We use the same representation
as used in Spot [7] – a state-of-the-art platform for representing and manipulating
LTL formulas and ω-automata. Specifically, the transition structure of an NBA
A is represented as a directed graph, with nodes representing states of A, and
directed edges representing state transitions. Furthermore, every edge from state
s to state s′ is labeled by a Boolean function B(s,s′) over I ∪ O. The Boolean

S. Akshay, E. Basa, S. Chakraborty, D. Fried132

function can itself be represented in several forms. We assume it is represented
as a Reduced Ordered Binary Decision Diagram (ROBDD) [10], as is done in
Spot. Each such labeled edge represents a set of state transitions from s to s′,
with one transition for each satisfying assignment of B(s,s′).

Implementing Algorithms 1 and 2 (Step 2) : Since states of the NBA Aφ

are explicitly represented as nodes of a graph, it is straightforward to imple-
ment Algorithms 1 and 2. The check in line 6 of Algorithm 1 is implemented by
checking the satisfiability of B(si,s′i)

(I,O) ∧ B(sj ,s′j)
(I,O) using ROBDD oper-

ations. Similarly, the check in line 2 of Algorithm 2 is implemented by checking
the satisfiability of

∨
(s,s′)∈out(p)×out(q) B(p,s)(I,O) ∧B(q,s′)(I

′, O′) ∧
∧

y∈Y (y ↔
y′) ∧ (z ↔ ¬z′) using ROBDD operations. In the above formula, I ′ (resp. O′)
denotes a set of fresh, primed copies of variables in I (resp. O).

Implementing transformation of Aφ to A′
φ (Step 3): To obtain A′

φ, we
simply replace the ROBDD for B(s,s′) on every edge (s, s′) of the NBA Aφ by an
ROBDD for ∃X B(s,s′). While the worst-case complexity of computing ∃X B(s,s′)

using ROBDDs is exponential in |X|, this doesn’t lead to inefficiencies in practice
because |X| is typically small. Indeed, our experiments reveal that the total
size of ROBDDs in the representation of A′

φ is invariably smaller, sometimes
significantly, compared to the total size of ROBDDs in the representation of
Aφ. Indeed, this reduction can be significant in some cases, as the following
proposition shows (see proof in [2]).

Proposition 1. There exists an NBA Aφ with a single dependent output such
that the ROBDD labeling its edge is exponentially (in number of inputs and
outputs) larger than that labeling the edge of A′

φ.

Implementing transducer TX (Step 5): We now describe how to construct a
Mealy machine corresponding to the transducer TX . As explained in the previous
section, the transition structure of the Mealy machine is obtained by applying
the subset construction to Aφ. While this requires O(2|Aφ|) time if states and
transitions are explicitly represented, we show below that a sequential circuit
implementing the Mealy machine can be constructed directly from Aφ in time
polynomial in |X| and |Aφ|. This reduction in construction complexity crucially
relies on the fact that all variables in X are dependent on I ∪ (O \X).

Let S = {s0, . . . sk−1} be the set of states of Aφ, and let in(si) denote the set
of states that have an outgoing transition to si in Aφ. To implement the desired
Mealy machine, we construct a sequential circuit with k state-holding flip-flops.
Every state U (⊆ S) of the Mealy machine is represented by the state of these k
flip-flops, i.e. by a k-dimensional Boolean vector. Specifically, the ith component
is set to 1 iff si ∈ U . For example, if S = {s0, s1, s2} and U = {s0, s2}, then
U is represented by the vector ⟨1, 0, 1⟩. Let ni and pi denote the next-state
input and present-state output of the ith flip-flop. The next-state function δX

from p′is to n′
is of the Mealy machine is implemented by a circuit, say ∆X , with

inputs {p0, . . . pk−1} ∪ I ∪ (O\X) and outputs {n0, . . . nk−1}. For i ∈ {0, . . . k−

On Dependent Variables in Reactive Synthesis 133

1}, output ni of this circuit implements the Boolean function
∨

sj ∈ in(si)

(
pj ∧

∃X B(sj ,si)

)
. To see why this works, suppose ⟨p0, . . . pk−1⟩ represents the current

state U ⊆ S of the Mealy machine. Then the above function sets ni to true iff
there is a state sj ∈ U (i.e. pj = 1) s.t. there is a transition from sj to si on some
values of outputs X and for the given values of I∪(O\X) (i.e. ∃X B(sj ,si) = 1).
This is exactly the condition for si to be present in the state U ′ ⊆ S reached
from U for the given values of I ∪ (O \ X) in the Mealy machine obtained by
subset construction.

It is known from the knowledge compilation literature (see e.g. [1,4,13]) that
every ROBDD can be compiled in linear time to a Boolean circuit in Decom-
posable Negation Normal Form (DNNF), and that every DNNF circuit admits
linear time projection of variables, yielding a resultant DNNF circuit. Hence, a
Boolean circuit for ∃X B(sj ,si) can be constructed in time linear in the size of
the ROBDD representation of B(sj ,si). This allows us to construct the circuit

∆X , implementing the next-state transition logic of our Mealy machine, in time
(and space) linear in |X| and |Aφ|.

Next, we turn to constructing a circuit ΛX that implements the output func-
tion λX of our Mealy machine. It is clear that ΛX must have inputs {p0, . . . pk−1}∪
I ∪ (O \X) and outputs X. Since X is automata dependent on I ∪ (O \X) in
Aφ, the following proposition is easily seen to hold.

Proposition 2. Let B(s,s′) be a Boolean function with support I ∪O that labels
a transition (s, s′) in Aφ. For every (σI , σ) ∈ ΣI×ΣO\X , if (σI , σ) |= ∃X B(s,s′),
then there is a unique σ′ ∈ ΣX such that (σI , σ, σ

′) |= B(s,s′).

Considering only the transition (s, s′) referred to in Proposition 2, we first discuss

how to synthesize a vector of Boolean functions, say F (s,s′) = ⟨F (s,s′)
1 , . . . F

(s,s′)
|X| ⟩,

where each component function has support I ∪ (O \X), such that F (s,s′)[I 7→
σI][O \X 7→ σ] = σ′. Generalizing beyond the specific assignment of I ∪O, our
task effectively reduces to synthesizing an |X|-dimensional vector of Boolean
functions F (s,s′) s.t. ∀I ∪ (O \ X)

(
∃XB(s,s′) → B(s,s′)[X 7→ F (s,s′)]

)
holds.

Interestingly, this is an instance of Boolean functional synthesis – a problem
that has been extensively studied in the recent past (see e.g. [1, 3, 4, 6, 11]). In
fact, we know from [1, 26] that if B(s,s′) is represented as an ROBDD, then a

Boolean circuit for F(s,s′) can be constructed in O
(
|X|2.|B(s,s′)|

)
time, where

|B(s,s′)| denotes the size of the ROBDD for B(s,s′). For every xi ∈ X, we use this

technique to construct a Boolean circuit for F
(s,s′)
i for every edge (s, s′) in A. The

overall circuit ΛX is constructed such that the output for xi ∈ X implements

the function
∨

transition (s,s′) in A

(
ps ∧ (B(s,s′)[X 7→ F (s,s′)]) ∧ F

(s,s′)
i

)
.

Lemma 3. Let U ⊆ S be a non-empty set of pairwise compatible states of A.
For (σI , σ) ∈ ΣI × ΣO\X , if δX

(
U, (σI , σ)

)
̸= ∅, then the outputs X of ΛX

evaluate to λX
(
U, (σI , σ)

)
. In all other cases, every output of ΛX evaluates to 0.

Note that δX
(
U, (σI , σ)

)
= ∅ iff all outputs ni of the circuit ∆X evaluate to

0. This case can be easily detected by checking if
∨k−1

i=0 ni evaluates to 0. We
therefore have the following result.

S. Akshay, E. Basa, S. Chakraborty, D. Fried134

Theorem 4. The sequential circuit obtained with ∆X as next-state function and
ΛX as output function is a correct implementation of transducer TX , assuming
(a) the initial state is p0 = 1 and pj = 0 for all j ∈ {1, . . . k − 1}, and (b) the

output is interpreted as ⊥ whenever
∨k−1

i=0 ni evaluates to 0.

6 Experiments and Evaluation

We implemented the synthesis pipeline depicted in Figure 2 in a tool called
DepSynt (accessible at https://github.com/eliyaoo32/DepSynt), using sym-
bolic approach of Section 5. For Steps 1., 4., of the pipeline, i.e., construction
of Aφ and synthesis of TY , we used the tool Spot [7], a widely used library for
representing and manipulating NBAs. We then experimented with all available
reactive synthesis benchmarks from the SYNTCOMP [21] competition, a total
of 1,141 LTL specifications over 31 benchmark families.

All our experiments were run on a computer cluster, with each problem in-
stance run on an Intel Xeon Gold 6130 CPU clocking at 2.1 GHz with 2GB
memory and running Rocky Linux 8.6. Our investigation was focussed on an-
swering two main research questions:
RQ1: How prevalent are dependent outputs in reactive synthesis benchmarks?
RQ2: Under what conditions, if any, is reactive synthesis benefited by our ap-
proach, i.e., of identifying and separately processing dependent output variables?

Dependency Prevalence. To answer RQ1, we implemented the algorithm in
Section 3 and executed it with a timeout of 1 hour. Within this time, we were
able to find 300 benchmarks out of 1,141 SYNTCOMP benchmarks, that had
at least 1 dependent output variable (as per Definition 3). Out of the 1,141
benchmarks, 260 had either timeout (41 total) or out-of-memory (219 total),
out of which 227 failed because of the NBA construction (adapted from Spot),
i.e, Step 1 in our pipeline, did not terminate. We found that all the bench-
marks with at least 1 dependent variable in fact belong to one of 5 bench-
mark families, as seen in Table 1. In order to measure the prevalence of de-
pendency we evaluated (1) the number of dependent variables and (2) the
dependency ratio = Total dependent vars

Total output vars . Out of those depicted, Mux (for mul-

Benchmark Family Total Completed Found Dep Avg Dep Ratio

ltl2dpa 24 24 24 .434
mux 12 12 4 1
shift 11 4 4 1
tsl-paper 118 117 115 .46
tsl-smart-home-jarvis 189 167 153 .33

Table 1. Summary for 5 benchmark families, indicating the no. of benchmarks, where
the dependency-finding process was completed, the total count of benchmarks with
dependent variables, and the average dependency ratio among those with dependencies.

tiplexer) and shift (for shift-operator operator) were two benchmark families

On Dependent Variables in Reactive Synthesis 135

where dependency ratio was 1. In total, among all those where our dependency
checking algorithm terminated, we found 26 benchmarks with all the output
variables dependent. Of these 4 benchmarks were from Shift, 4 benchmarks
from mux, 14 benchmarks from tsl-paper, and 4 from tsl-smart-home-jarvis.

Fig. 3. Cumulative count of benchmarks
for each unique value of Total Dependent
Variables. F (x) on y-axis represents how
many benchmarks have at most x (on x-
axis) dependent variables.

Looking beyond total dependency,
among the 300 benchmarks with at
least 1 dependent variable, we found a
diverse distribution of dependent vari-
ables as shown in Figure 3 (distribu-
tion wrt dependency ratio is in [2]).

Utilizing Dependency for Reac-
tive Synthesis: Comparison with
other tools. Despite a large 1 hr
time out, we noticed that most de-
pendent variables were found within
10-12 seconds. Hence, in our tool
DepSynt, we limited the time for
dependency-check to an empirically
determined 12 seconds, and declared
unchecked variables after this time
as non-dependent. Since synthesis of
non-dependents TY (Step 5. of the
pipeline) is implemented directly us-
ing Spot APIs, the difference between our approach and Spot is minimal when
there are a large number of non-dependent variables. This motivated us to di-
vide our experimental comparison, among the 300 benchmarks where at least
one dependent variables was found, into benchmarks with at most 3 non-
dependent variables (162 benchmarks) and more than 3 non-dependent variables
(138 benchmarks). We compared DepSynt with two state-of-the-art synthesis
tools, that won in different tracks of SYNTCOMP23’ [21]: (i) Ltlsynt (based on
Spot) [7] with different configurations ACD, SD, DS, LAR, and (ii) Strix [22]
with the configuration of BFS for exploration and FPI as parity game solver (the
overall winning configuration/tool in SYNTCOMP’23). All the tools had a total
timeout of 3 hours per benchmark. As can be seen from Figure 4, indeed for the
case of ≤ 3 non-dependent variables, DepSynt outperforms the highly optimized
competition-winning tools. Even for > 3 case, as shown in Figure 5, the perfor-
mance of DepSynt is comparable to other tools, only beaten eventually by Strix.
DepSynt uniquely solved 2 specifications for which both Strix and Ltlsynt timed
out after 3600s, the benchmarks are mux32, and mux64, and solved in 2ms, and
4ms respectively.

Analyzing time taken by different parts of the pipeline. In order to better
understand where DepSynt spends its time, we plotted in Figure 6 the normalized
time distribution of DepSynt. We can see that synthesizing a strategy for depen-
dent variables is very fast (the yellow portion)- justifying its theoretical linear
complexity bound, and so is the pink region depicting searching for dependency

S. Akshay, E. Basa, S. Chakraborty, D. Fried136

(again, a poly-time algorithm), especially compared to the blue synthesizing a
strategy for the non-dependent variables, and the green which is NBA build time.
This also explains why having a high dependency ratio alone does not help our
approach, since even with a high ratio, the number of non-dependent variables
could be large, resulting in worse performance overall.

Analysis of the Projection step (Step 3.) of Pipeline. The rationale for
projecting variables from the NBA is to reduce the number of output non-
dependent variables in the synthesis of the NBA, which is the most expen-
sive phase as Figure 6 shows. To see if this indeed contributes to our bet-
ter performance, we asked if projecting the dependent variables reduces the
BDDs’ sizes, in terms of total nodes, (the BDD represents the transitions).
Figure 7 shows that the BDDs’ sizes
are reduced significantly where the to-
tal of non-dependent variables is at
most 3, in cases of total dependency,
the BDD just vanishes and is replaced
by the constant true/false. For the
case of total non-dependent is 4 or
more, the BDD size is reduced as well.

An ablation experiment with
Spot. As a final check, that depen-
dency was causing the improvements
seen, we conducted a control/ablation
experiment where in DepSynt we gave
zero-timeout to find dependency, clas-
sified all output variables as non-
dependent, and called this SpotModular. As can be seen in Figure 8, for the
case of benchmarks with at least 1 dependent and at most 3 non-dependent
variables, this clearly shows the benefit of dependency-checking. In the full ver-
sion [2], we show that for other cases we do not see this.

Summary. Overall, we answered both the research questions we started with.
Indeed there are several benchmarks with dependent variables, and using our
pipeline does give performance benefits when no. of non-dependent variables is
low. Our recipe would be to first run our poly-time check to see if there are depen-
dents and use our approach if there are not too many non-dependents; otherwise
switch to any existing method. To summarize our comparisons: wrt Strix, we
found 252 benchmarks that had dependent variables in which DepSynt took less
time than Strix. Out of which, in 126 benchmarks DepSynt took at least 1 second
less than Strix. Among these, for 10 benchmarks (shift16, LightsTotal d65ed84e,
LightsTotal 9cbf2546, LightsTotal 06e9cad4, Lights2 f3987563, Lights2 0f5381e9,
FelixSpecFixed3.core b209ff21, Lights2 b02056d6, Lights2 06e9cad4, LightsTo-
tal 2c5b09da) the time taken by DepSynt was at least 10 seconds less than that
taken by Strix. These are the examples that are easier to solve by DepSynt
than by Strix. For shift16, the difference was more than 1056 seconds in favor of
DepSynt. Interestingly, shift16 also has all output variables dependent.

On Dependent Variables in Reactive Synthesis 137

Fig. 8. Cactus plot comparing DepSynt
and SpotModular on 162 benchmarks with
at most 3 non-dependent variables.

When comparing with Ltlsynt, we found 193 benchmarks that had dependent
variables in which DepSynt took less time than Ltlsynt. Among these, in 27
benchmarks DepSynt took at least 1 second less than Ltlsynt. Of these, there is
one benchmark (ModifiedLedMatrix5X) for which the time taken by DepSynt
was at least 10 seconds less than that taken by Ltlsynt. Specifically, DepSynt
took 5 seconds and Ltlsynt took 55 seconds.

7 Conclusion

In this work, we have introduced the notion of dependent variables in the con-
text of reactive synthesis. We showed that dependent variables are prevalent
in reactive synthesis benchmarks and suggested a synthesis approach that may
utilize these dependency for better synthesis. As part of future work, we wish to
explore heuristics for choosing ”good” maximal subsets of dependent variables.
We also wish to explore integration of our method in other reactive synthesis
tools such as Strix.

S. Akshay, E. Basa, S. Chakraborty, D. Fried138

Fig. 4. Cactus plot comparing DepSynt, LtlSynt, and Strix on
162 benchmarks with at most 3 non-dependent variables.

Fig. 5. Cactus plot comparing DepSynt, LtlSynt, and Strix on
138 benchmarks with more than 3 non-dependent variables.

On Dependent Variables in Reactive Synthesis 139

Fig. 6. Normalized time distribution of DepSynt sorted by total duration over bench-
marks that could be solved successfully by DepSynt. Each color represents a different
phase of DepSynt. Pink is searching for dependency, green is the NBA build, blue is
synthesis of non-dependent variables and yellow is dependent variables synthesis.

Fig. 7. This figure illustrates the total BDD sizes of the NBA edges before and after
the projection of the dependent variables from the NBA edges, the left figure is over
benchmarks with at most 3 non-dependent variables and the right figure is over bench-
marks with 4 or more non-dependent variables. The solid line presents the projected
BDD size and the dotted line presents the original BDD size. The y-axis is presented
in symmetric log-scale. Benchmarks are sorted by the projected NBA’s BDD total size.

S. Akshay, E. Basa, S. Chakraborty, D. Fried140

References

1. Akshay, S., Arora, J., Chakraborty, S., Krishna, S.N., Raghunathan, D., Shah, S.:
Knowledge compilation for boolean functional synthesis. In: Barrett, C.W., Yang,
J. (eds.) 2019 Formal Methods in Computer Aided Design, FMCAD 2019, San
Jose, CA, USA, October 22-25, 2019. pp. 161–169. IEEE (2019)

2. Akshay, S., Basa, E., Chakraborty, S., Fried, D.: On dependent variables in reactive
synthesis (full version). arXiv preprint arXiv:2401.11290 (2024)

3. Akshay, S., Chakraborty, S.: Synthesizing skolem functions: A view from theory and
practice. In: Sarukkai, S., Chakraborty, M. (eds.) Handbook of Logical Thought in
India, pp. 1–36. Springer (2022)

4. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: What’s hard about
boolean functional synthesis? In: Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 10981, pp. 251–269. Springer (2018)

5. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: Boolean functional syn-
thesis: hardness and practical algorithms. Formal Methods Syst. Des. 57(1), 53–86
(2021). https://doi.org/10.1007/s10703-020-00352-2, https://doi.org/10.1007/

s10703-020-00352-2

6. Amram, G., Bansal, S., Fried, D., Tabajara, L.M., Vardi, M.Y., Weiss, G.: Adapting
behaviors via reactive synthesis. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided
Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-
23, 2021, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12759, pp.
870–893. Springer (2021)

7. Blahoudek, F., Duret-Lutz, A., Strejček, J.: Seminator 2 can complement gener-
alized Büchi automata via improved semi-determinization. In: Proceedings of the
32nd International Conference on Computer-Aided Verification (CAV’20). Lecture
Notes in Computer Science, vol. 12225, pp. 15–27. Springer (Jul 2020)

8. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis.
In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking, pp. 921–962. Springer (2018)

9. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

10. Bryant, R.E.: Binary decision diagrams and beyond: Enabling technologies for
formal verification. In: Proceedings of IEEE International Conference on Computer
Aided Design (ICCAD). pp. 236–243. IEEE (1995)

11. Chakraborty, S., Fried, D., Tabajara, L.M., Vardi, M.Y.: Functional synthesis via
input-output separation. Formal Methods Syst. Des. 60(2), 228–258 (2022)

12. Church, A.: Logic, arithmetic, and automata. In: International Congress of Math-
ematicians. p. 23–35 (1962)

13. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)
14. Faymonville, P., Finkbeiner, B., Tentrup, L.: Bosy: An experimentation framework

for bounded synthesis. In: Computer Aided Verification: 29th International Con-
ference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II.
pp. 325–332. Springer (2017)

15. Finkbeiner, B., Geier, G., Passing, N.: Specification decomposition for reactive
synthesis. In: NASA Formal Methods - 13th International Symposium, NFM 2021,
Virtual Event, May 24-28, 2021, Proceedings. Lecture Notes in Computer Science,
vol. 12673, pp. 113–130. Springer (2021)

On Dependent Variables in Reactive Synthesis 141

16. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
15(5-6), 519–539 (2013)

17. Golia, P., Roy, S., Meel, K.S.: Manthan: A data-driven approach for boolean func-
tion synthesis. Computer Aided Verification 12225, 611 – 633 (2020)

18. Golia, P., Slivovsky, F., Roy, S., Meel, K.S.: Engineering an efficient boolean func-
tional synthesis engine. 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD) pp. 1–9 (2021)

19. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company (1979)

20. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, USA (2004)

21. Jacobs, S., Perez, G.A., Abraham, R., Bruyere, V., Cadilhac, M., Colange, M.,
Delfosse, C., van Dijk, T., Duret-Lutz, A., Faymonville, P., Finkbeiner, B., Khal-
imov, A., Klein, F., Luttenberger, M., Meyer, K., Michaud, T., Pommellet, A.,
Renkin, F., Schlehuber-Caissier, P., Sakr, M., Sickert, S., Staquet, G., Tamines,
C., Tentrup, L., Walker, A.: The reactive synthesis competition (syntcomp): 2018-
2021 (2022)

22. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Computer Aided Verification: 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I. pp. 578–586. Springer (2018)

23. Michaud, T., Colange, M.: Reactive synthesis from ltl specification with spot. In:
Proceedings of the 7th Workshop on Synthesis, SYNT@ CAV (2018)

24. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. pp. 179–190 (1989)

25. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Theory and Applica-
tions of Satisfiability Testing - SAT 2016 - 19th International Conference, Bor-
deaux, France, July 5-8, 2016, Proceedings. pp. 375–392 (2016)

26. Shah, P., Bansal, A., Akshay, S., Chakraborty, S.: A normal form characteriza-
tion for efficient boolean skolem function synthesis. In: 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July
2, 2021. pp. 1–13. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.9470741,
https://doi.org/10.1109/LICS52264.2021.9470741

27. Soos, M., Meel, K.S.: Arjun: An efficient independent support computation tech-
nique and its applications to counting and sampling. In: ICCAD (Nov 2022)

28. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Automa-
tion of reasoning: 2: Classical papers on computational logic 1967–1970 pp. 466–483
(1983)

S. Akshay, E. Basa, S. Chakraborty, D. Fried142

29. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information
and Computation 115(1), 1–37 (1994). https://doi.org/10.1006/inco.1994.1092
https://www.sciencedirect.com/science/article/pii/S0890540184710923

On Dependent Variables in Reactive Synthesis 143

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

CESAR: Control Envelope Synthesis via
Angelic Refinements ⋆

1 Carnegie Mellon University, Pittsburgh, USA
akabra@cs.cmu.edu

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{jonathan.laurent,platzer}@kit.edu

3 DePaul University, Chicago, USA
smitsch@depaul.edu

Abstract. This paper presents an approach for synthesizing provably
correct control envelopes for hybrid systems. Control envelopes charac-
terize families of safe controllers and are used to monitor untrusted con-
trollers at runtime. Our algorithm fills in the blanks of a hybrid system’s
sketch specifying the desired shape of the control envelope, the possible
control actions, and the system’s differential equations. In order to max-
imize the flexibility of the control envelope, the synthesized conditions
saying which control action can be chosen when should be as permissive
as possible while establishing a desired safety condition from the avail-
able assumptions, which are augmented if needed. An implicit, optimal
solution to this synthesis problem is characterized using hybrid systems
game theory, from which explicit solutions can be derived via symbolic
execution and sound, systematic game refinements. Optimality can be
recovered in the face of approximation via a dual game characterization.
The resulting algorithm, Control Envelope Synthesis via Angelic Refine-
ments (CESAR), is demonstrated in a range of safe control envelope
synthesis examples with different control challenges.

Keywords: Hybrid systems · Program synthesis · Differential game logic

1 Introduction

Hybrid systems are important models of many applications, capturing their dif-
ferential equations and control [27,41,3,33,4,28]. For overall system safety, the
correctness of the control decisions in a hybrid system is crucial. Formal verifica-
tion techniques can justify correctness properties. Such correct controllers have

⋆ This work was funded by the Federal Railroad Administration Office of Research,
Development and Technology under contract number 693JJ620C000025, a Swartz
Center Innovation Commercialization Fellowship, and an Alexander von Humboldt
Professorship.

Aditi Kabra1(B) , Jonathan Laurent1,2 , Stefan Mitsch1,3 ,
and André Platzer1,2

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 144–164, 2024.
https://doi.org/10.1007/978-3-031-57246-3_9

https://doi.org/10.1007/978-3-031-57246-3_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_9&domain=pdf
http://orcid.org/0000-0002-2252-0539
http://orcid.org/0000-0002-8477-1560
http://orcid.org/0000-0002-3194-9759
http://orcid.org/0000-0001-7238-5710
https://eapls.org/pages/artifact_badges/

been identified in a sequence of challenging case studies [34,40,12,32,19,14,22]. A
useful approach to verified control is to design and verify a safe control envelope
around possible safe control actions. Safe control envelopes are nondeterminis-
tic programs whose every execution is safe. In contrast with controllers, control
envelopes define entire families of controllers to allow control actions under as
many circumstances as possible, as long as they maintain the safety of the hybrid
system. Safe control envelopes allow the verification of abstractions of control
systems, isolating the parts relevant to the safety feature of interest, without in-
volving the full complexity of a specific control implementation. The full control
system is then monitored for adherence to the safe control envelope at run-
time [29]. The control envelope approach allows a single verification result to
apply to multiple specialized control implementations, optimized for different
objectives. It puts industrial controllers that are too complex to verify directly
within the reach of verification, because a control envelope only needs to model
the safety-critical aspects of the controller. Control envelopes also enable applica-
tions like justified speculative control [17], where machine-learning-based agents
control safety-critical systems safeguarded within a verified control envelope, or
[36], where these envelopes generate reward signals for reinforcement learning.

Control envelope design is challenging. Engineers are good at specifying the
shape of a model and listing the possible control actions by translating client
specifications, which is crucial for the fidelity of the resulting model. But identi-
fying the exact control conditions required for safety in a model is a much harder
problem that requires design insights and creativity, and is the main point of the
deep area of control theory. Most initial system designs are incorrect and need
to be fixed before verification succeeds. Fully rigorous justification of the safety
of the control conditions requires full verification of the resulting controller in
the hybrid systems model. We present a synthesis technique that addresses this
hard problem by filling in the holes of a hybrid systems model to identify a
correct-by-construction control envelope that is as permissive as possible.

Our approach is called Control Envelope Synthesis via Angelic Refinements
(CESAR). The idea is to implicitly characterize the optimal safe control envelope
via hybrid games yielding maximally permissive safe solutions in differential
game logic [33]. To derive explicit solutions used for controller monitoring at
runtime, we successively refine the games while preserving safety and, if possible,
optimality. Our experiments demonstrate that CESAR solves hybrid systems
synthesis challenges requiring different control insights.

Contributions. The primary contributions of this paper behind CESAR are:

– optimal hybrid systems control envelope synthesis via hybrid games.

– differential game logic formulas identifying optimal safe control envelopes.

– refinement techniques for safe control envelope approximation, including
bounded fixpoint unrollings via a recurrence, which exploits action perma-
nence (a hybrid analogue to idempotence).

– a primal/dual game counterpart optimality criterion.

CESAR: Control Envelope Synthesis via Angelic Refinements 145

2 Background: Differential Game Logic

We use hybrid games written in differential game logic (dGL, [33]) to represent
solutions to the synthesis problem. Hybrid games are two-player noncooperative
zero-sum sequential games with no draws that are played on a hybrid system
with differential equations. Players take turns and in their turn can choose to
act arbitrarily within the game rules. At the end of the game, one player wins,
the other one loses. The players are classically called Angel and Demon. Hybrid
systems, in contrast, have no agents, only a nondeterministic controller running
in a nondeterministic environment. The synthesis problem consists of filling in
holes in a hybrid system. Thus, expressing solutions for hybrid system synthesis
with hybrid games is one of the insights of this paper.

An example of a game is (v := 1 ∩ v :=−1) ; {x′ = v}. In this game, first
Demon chooses between setting velocity v to 1, or to -1. Then, Angel evolves
position x as x′ = v for a duration of her choice. Differential game logic uses
modalities to set win conditions for the players. For example, in the formula
[(v := 1 ∩ v := −1) ; {x′ = v}]x ̸= 0, Demon wins the game when x ̸= 0 at the
end of the game and Angel wins otherwise. The overall formula represents the
set of states from which Demon can win the game, which is x ̸= 0 because when
x < 0, Demon has the winning strategy to pick v :=−1, so no matter how long
Angel evolves x′ = v, x remains negative. Likewise, when x > 0, Demon can pick
v := 1. However, when x = 0, Angel has a winning strategy: to evolve x′ = v for
zero time, so that x remains zero regardless of Demon’s choice.

We summarize dGL’s program notation (Table 1). See [33] for full exposition.
Assignment x := θ instantly changes the value of variable x to the value of θ.
Challenge ?ψ continues the game if ψ is satisfied in the current state, otherwise
Angel loses immediately. In continuous evolution x′ = θ & ψ Angel follows the
differential equation x′ = θ for some duration of her choice, but loses immediately
on violating ψ at any time. Sequential game α;β first plays α and when it

Table 1: Hybrid game operators for two-player hybrid systems

Game Effect

x := θ assign value of term θ to variable x
?ψ Angel passes challenge if formula ψ holds in current state, else loses

immediately(
x′1 = θ1, . . . , Angel evolves xi along differential equation system x′i = θi
x′n = θn & ψ

)
for choice of duration ≥ 0, loses immediately when violating ψ

α;β sequential game, first play hybrid game α, then hybrid game β
α ∪ β Angel chooses to follow either hybrid game α or β
α∗ Angel repeats hybrid game α, choosing to stop or go after each α

αd dual game switches player roles between Angel and Demon

α ∩ β demonic choice (αd ∪ βd)d gives choice between α and β to Demon

α× demonic repetition ((αd)
∗
)d gives control of repetition to Demon

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer146

terminates without a player having lost, continues with β. Choice α∪β lets Angel
choose whether to play α or β. For repetition α∗, Angel repeats α some number
of times, choosing to continue or terminate after each round. The dual game αd

switches the roles of players. For example, in the game ?ψd, Demon passes the
challenge if the current state satisfies ψ, and otherwise loses immediately.

In games restricted to the structures listed above but without αd, all choices
are resolved by Angel alone with no adversary, and hybrid games coincide with
hybrid systems in differential dynamic logic (dL) [33]. We will use this restriction
to specify the synthesis question, the sketch that specifies the shape and safety
properties of control envelopes. But to characterize the solution that fills in the
blanks of the control envelope sketch, we use games where both Angel and Demon
play. Notation we use includes demonic choice α ∩ β, which lets Demon choose
whether to run α or β. Demonic repetition α× lets Demon choose whether to
repeat α choosing whether to stop or go at the end of every run. We define α∗≤n

and α×≤n for angelic and demonic repetitions respectively of at most n times.
In order to express properties about hybrid games, differential game logic

formulas refer to the existence of winning strategies for objectives of the games
(e.g., a controller has a winning strategy to achieve collision avoidance despite
an adversarial environment). The set of dGL formulas is generated by the follow-
ing grammar (where ∼ ∈ {<,≤,=,≥, >} and θ1, θ2 are arithmetic expressions
in +,−, ·, / over the reals, x is a variable, α is a hybrid game):

ϕ := θ1 ∼ θ2 | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ∀xϕ | ∃xϕ | [α]ϕ | ⟨α⟩ϕ

Comparisons of arithmetic expressions, Boolean connectives, and quantifiers over
the reals are as usual. The modal formula ⟨α⟩ϕ expresses that player Angel has
a winning strategy to reach a state satisfying ϕ in hybrid game α. Modal formula
[α]ϕ expresses the same for Demon. The fragment without modalities is first-
order real arithmetic. Its fragment without quantifiers is called propositional
arithmetic PR. Details on the semantics of dGL can be found in [33]. A formula
ϕ is valid, written ⊨ ϕ, iff it is true in every state ω. States are functions assigning
a real number to each variable. For instance, ϕ→ [α]ψ is valid iff, from all initial
states satisfying ϕ, Demon has a winning strategy in game α to achieve ψ.

Control Safety Envelopes by Example. In order to separate safety critical aspects
from other system goals during control design, we abstractly describe the safe
choices of a controller with safe control envelopes that deliberately underspecify
when and how to exactly execute certain actions. They focus on describing in
which regions it is safe to take actions. For example, Model 1 designs a train
control envelope [34] that must stop by the train by the end of movement au-
thority e located somewhere ahead, as assigned by the train network scheduler.
Past e, there may be obstacles or other trains. The train’s control choices are
to accelerate or brake as it moves along the track. The goal of CESAR is to
synthesize the framed formulas in the model, that are initially blank.

Line 6 describes the safety property that is to be enforced at all times: the
train driving at position p with velocity v must not go past position e. Line 1

CESAR: Control Envelope Synthesis via Angelic Refinements 147

Model 1 The train ETCS model (slightly modified from [34]). Framed formulas
are initially blank and are automatically synthesized by our tool as indicated.

assum
∣∣ 1 A > 0 ∧B > 0 ∧ T > 0 ∧ v ≥ 0 ∧

ctrlable
∣∣ 2 e− p > v2/2B → [{

ctrl

∣∣∣∣∣ 3 ((? e− p > vT +AT 2/2 + (v +AT)2/2B ; a :=A)

4 ∪ (? true ; a :=−B)) ;

plant
∣∣ 5 (t := 0 ; {p′ = v, v′ = a, t′ = 1 & t ≤ T ∧ v ≥ 0})

safe
∣∣ 6 }∗](e− p > 0)

lists modeling assumptions : the train is capable of both acceleration (A>0) and
deceleration (B>0), the controller latency is positive (T>0) and the train cannot
move backwards as a product of braking (this last fact is also reflected by having
v ≥ 0 as a domain constraint for the plant on Line 5). These assumptions are
fundamentally about the physics of the problem being considered. In contrast,
Line 2 features a controllability assumption that can be derived from careful
analysis. Here, this synthesized assumption says that the train cannot start so
close to e that it won’t stop in time even if it starts braking immediately. Line 3
and Line 4 describe a train controller with two actions: accelerating (a := A)
and braking (a :=−B). Each action is guarded by a synthesized formula, called
an action guard that indicates when it is safe to use. Angel has control over
which action runs, and adversarially plays with the objective of violating safety
conditions. But Angel’s options are limited to only safe ones because of the
synthesized action guards, ensuring that Demon still wins and the overall formula
is valid. In this case, braking is always safe whereas acceleration can only be
allowed when the distance to end position e is sufficiently large. Finally, the
plant on Line 5 uses differential equations to describe the train’s kinematics. A
timer variable t is used to ensure that no two consecutive runs of the controller
are separated by more than time T . Thus, this controller is time-triggered.

Overview of CESAR. CESAR first identifies the optimal solution for the blank
of Line 2. Intuitively, this blank should identify a controllable invariant, which
denotes a set of states where a controller with choice between acceleration and
braking has some strategy (to be enforced by the conditions of Line 3 and Line 4)
that guarantees safe control forever. Such states can be characterized by the fol-
lowing dGL formula where Demon, as a proxy for the controller, decides whether
to accelerate or brake: [((a := A ∩ a := −B) ; plant)∗] safe where plant and safe
are from Model 1. When this formula is true, Demon, who decides when to brake
to maintain the safety contract, has a winning strategy that the controller can
mimic. When it is false, Demon, a perfect player striving to maintain safety, has
no winning strategy, so a controller has no guaranteed way to stay safe either.

This dGL formula provides an implicit characterization of the optimal con-
trollable invariant from which we derive an explicit formula in PR to fill the blank
with using symbolic execution. Symbolic execution solves a game following the

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer148

axioms of dGL to produce an equivalent PR formula (Section 3.7). However, our
dGL formula contains a loop, for which symbolic execution will not terminate
in finite time. To reason about the loop, we refine the game, modifying it so
that it is easier to symbolically execute, but still at least as hard for Demon to
win so that the controllable invariant that it generates remains sound. In this
example, the required game transformation first restricts Demon’s options to
braking. Then, it eliminates the loop using the observation that the repeated
hybrid iterations (a := −B; plant)∗ behave the same as just following the con-
tinuous dynamics of braking for unbounded time. It replaces the original game
with a := −B ; t := 0 ; {p′ = v, v′ = a & ∧ v ≥ 0}, which is loop-free and
easily symbolically executed. Symbolically executing this game to reach safety

condition safe yields controllable invariant e− p > v2

2B to fill the blank of Line 2.
Intuitively, this refinement (formalized in Section 3.4) captures situations

where the controller stays safe forever by picking a single control action (brak-
ing). It generates the optimal solution for this example because braking forever
is the dominant strategy: given any state, if braking forever does not keep the
train safe, then certainly no other strategy will. However, there are other prob-
lems where the dominant control strategy requires the controller to strategically
switch between actions, and this refinement misses some controllable invariant
states. So we introduce a new refinement: bounded game unrolling via a recur-
rence (Section 3.5). A solution generated by unrolling n times captures states
where the controller can stay safe by switching control actions up to n times.

Having synthesized the controllable invariant, CESAR fills the action guards
(Line 3 and Line 4). An action should be permissible when running it for one
iteration maintains the controllable invariant. For example, acceleration is safe

to execute exactly when [a := A; plant]e − p > v2

2B . We symbolically execute
this game to synthesize the formula that fills the guard of Line 3.

3 Approach

This section formally introduces the Control Envelope Synthesis via Angelic Re-
finements (CESAR) approach for hybrid systems control envelope synthesis.

3.1 Problem Definition

We frame the problem of control envelope synthesis in terms of filling in holes
in a problem of the following shape:

prob ≡ assum ∧ → [
(
(∪i (? i ; acti)) ; plant

)∗
] safe. (1)

Here, the control envelope consists of a nondeterministic choice between a finite
number of guarded actions. Each action acti is guarded by a condition i to be
determined in a way that ensures safety within a controllable invariant [6,18]
to be synthesized also. The plant is defined by the following template:

plant ≡ t := 0 ; {x′ = f(x), t′ = 1 & domain ∧ t ≤ T}. (2)

CESAR: Control Envelope Synthesis via Angelic Refinements 149

This ensures that the plant must yield to the controller after time T at most,
where T is assumed to be positive and constant. In addition, we make the fol-
lowing assumptions:

1. Components assum, safe and domain are propositional arithmetic formulas.
2. Timer variable t is fresh (does not occur except where shown in template).
3. Programs acti are discrete dL programs that can involve choices, assignments

and tests with propositional arithmetic. Variables assigned by acti must not
appear in safe. In addition, acti must terminate in the sense that ⊨ ⟨acti⟩ true.

4. The modeling assumptions assum are invariant in the sense that ⊨ assum→
[(∪i acti) ; plant] assum. This holds trivially for assumptions about constant
parameters such as A > 0 in Model 1 and this ensures that the controller
can always rely on them being true.

Definition 1. A solution to the synthesis problem above is defined as a pair
(I,G) where I is a formula and G maps each action index i to a formula Gi. In
addition, the following conditions must hold:

1. Safety is guaranteed: prob(I,G) ≡ prob[7→ I, i 7→ Gi] is valid and
(assum ∧ I) is a loop invariant that proves it so.

2. There is always some action: (assum ∧ I)→
∨

iGi is valid.

Condition 2 is crucial for using the resulting nondeterministic control envelope,
since it guarantees that safe actions are always available as a fallback.

3.2 An Optimal Solution

Solutions to a synthesis problem may differ in quality. Intuitively, a solution is
better than another if it allows for a strictly larger controllable invariant. In
case of equality, the solution with the more permissive control envelope wins.
Formally, given two solutions S = (I,G) and S′ = (I ′, G′), we say that S′ is
better or equal to S (written S ⊑ S′) if and only if ⊨ assum → (I → I ′) and
additionally either ⊨ assum → ¬(I ′ → I) or ⊨ (assum ∧ I) →

∧
i (Gi → G′

i).
Given two solutions S and S′, one can define a solution S ⊓ S′ = (I ∨ I ′, i 7→
(I ∧ Gi ∨ I ′ ∧ G′

i)) that is better or equal to both S and S′ (S ⊑ S ⊓ S′ and
S′ ⊑ S⊓S′). A solution S′ is called the optimal solution when it is the maximum
element in the ordering, so that for any other solution S, S ⊑ S′. The optimal
solution exists and is expressible in dGL:

I opt ≡ [((∩i acti) ; plant)∗] safe (3)

Gopt
i ≡ [acti ; plant] I

opt. (4)

Intuitively, I opt characterizes the set of all states from which an optimal con-
troller (played here by Demon) can keep the system safe forever. In turn, Gopt is
defined to allow any control action that is guaranteed to keep the system within
I opt until the next control cycle as characterized by a modal formula. Section 3.3
formally establishes the correctness and optimality of S opt ≡ (I opt, Gopt).

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer150

While it is theoretically reassuring that an optimal solution exists that is
at least as good as all others and that this optimum can be characterized in
dGL, such a solution is of limited practical usefulness since Eq. (3) cannot be
executed without solving a game at runtime. Rather, we are interested in explicit
solutions where I and G are quantifier-free real arithmetic formulas. There is no
guarantee in general that such solutions exist that are also optimal, but our goal
is to devise an algorithm to find them in the many cases where they exist or find
safe approximations otherwise.

3.3 Controllable Invariants

The fact that S opt is a solution can be characterized in logic with the notion of
a controllable invariant that, at each of its points, admits some control action
that keeps the plant in the invariant for one round. All lemmas and theorems
throughout this paper are proved in the extended preprint [21, Appendix B].

Definition 2 (Controllable Invariant). A controllable invariant is a formula
I such that ⊨ I → safe and ⊨ I →

∨
i [acti ; plant] I.

From this perspective, I opt can be seen as the largest controllable invariant.

Lemma 1. I opt is a controllable invariant and it is optimal in the sense that
⊨ I → I opt for any controllable invariant I.

Moreover, not just I opt, but every controllable invariant induces a solution.
Indeed, given a controllable invariant I, we can define G(I) ≡ (i 7→ [acti ; plant] I)
for the control guards induced by I. G(I) chooses as the guard for each action
acti the modal condition ensuring that acti, preserves I after the plant.

Lemma 2. If I is a controllable invariant, then (I,G(I)) is a solution (Def. 1).

Conversely, a controllable invariant can be derived from any solution.

Lemma 3. If (I,G) is a solution, then I ′ ≡ (assum∧ I) is a controllable invari-
ant. Moreover, we have (I,G) ⊑ (I ′,G(I ′)).

Solution comparisons w.r.t. ⊑ reduce to implications for controllable invariants.

Lemma 4. If I and I ′ are controllable invariants, then (I,G(I)) ⊑ (I ′,G(I ′)) if
and only if ⊨ assum→ (I → I ′).

Taken together, these lemmas allow us to establish the optimality of S opt.

Theorem 1. S opt is an optimal solution (i.e. a maximum w.r.t. ⊑) of Def. 1.

This shows the roadmap for the rest of the paper: finding solutions to the control
envelope synthesis problem reduces to finding controllable invariants that imply
I opt, which can be found by restricting the actions available to Demon in I opt

to guarantee safety, thereby refining the associated game.

CESAR: Control Envelope Synthesis via Angelic Refinements 151

3.4 One-Shot Fallback Refinement

The simplest refinement of I opt is obtained when fixing a single fallback action
to use in all states (if that is safe). A more general refinement considers different
fallback actions in different states, but still only plays one such action forever.

Using the dGL axioms, any loop-free dGL formula whose ODEs admit solutions
expressible in real arithmetic can be automatically reduced to an equivalent
first-order arithmetic formula (in FOLR). An equivalent propositional arithmetic
formula in PR can be computed via quantifier elimination (QE). For example:

[(v := 1 ∩ v :=−1) ; {x′ = v}]x ̸= 0

≡ [v := 1 ∩ v :=−1] [{x′ = v}]x ̸= 0 by [;]

≡ [v := 1] [{x′ = v}]x ̸= 0 ∨ [v :=−1] [{x′ = v}]x ̸= 0 by [∩]
≡ [{x′ = 1}]x ̸= 0 ∨ [{x′ = −1}]x ̸= 0 by [:=]

≡ (∀t≥0x+ t ̸= 0) ∨ (∀t≥0x− t ̸= 0) by [′],[:=]

≡ x > 0 ∨ x < 0 by QE .

Even when a formula features nonsolvable ODEs, techniques exist to compute
weakest preconditions for differential equations, with conservative approxima-
tions [38] or even exactly in some cases [35,8]. In the rest of this section and for
most of this paper, we are therefore going to assume the existence of a reduce
oracle that takes as an input a loop-free dGL formula and returns a quantifier-
free arithmetic formula that is equivalent modulo some assumptions. Section 3.7
shows how to implement and optimize reduce.

Definition 3 (Reduction Oracle). A reduction oracle is a function reduce
that takes as an input a loop-free dGL formula F and an assumption A ∈ PR. It
returns a formula R ∈ PR along with a boolean flag exact such that the formula
A→ (R→ F) is valid, and if exact is true, then A→ (R↔ F) is valid as well.

Back to our original problem, I opt is not directly reducible since it involves a
loop. However, conservative approximations can be computed by restricting the
set of strategies that the Demon player is allowed to use. One extreme case allows
Demon to only use a single action acti repeatedly as a fallback (e.g. braking in the
train example). In this case, we get a controllable invariant [(acti ; plant)

∗
] safe,

which further simplifies into [acti ; plant∞] safe with

plant∞≡ {x′ = f(x), t′ = 1 & domain}

a variant of plant that never yields control. For this last step to be valid though,
a technical assumption is needed on acti, which we call action permanence.

Definition 4 (Action Permanence). An action acti is said to be permanent
if and only if (acti ; plant ; acti) ≡ (acti ; plant), i.e., they are equivalent games.

Intuitively, an action is permanent if executing it more than once in a row
has no consequence for the system dynamics. This is true in the common case
of actions that only assign constant values to control variables that are read but
not modified by the plant, such as a :=A and a :=−B in Model 1.

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer152

Lemma 5. If acti is permanent, ⊨ [(acti ; plant)
∗
] safe↔ [acti ; plant∞] safe.

Our discussion so far identifies the following approximation to our original syn-
thesis problem, where P denotes the set of all indexes of permanent actions:

I 0 ≡ [(∩i∈P acti) ; plant∞] safe,

G0
i ≡ [acti ; plant] I

0.

Here, I 0 encompasses all states from which the agent can guarantee safety in-
definitely with a single permanent action. G0 is constructed according to G(I 0)
and only allows actions that are guaranteed to keep the agent within I 0 until
the next control cycle. Note that I 0 degenerates to false in cases where there are
no permanent actions, which does not make it less of a controllable invariant.

Theorem 2. I 0 is a controllable invariant.

Moreover, in many examples of interest, I 0 and I opt are equivalent since an
optimal fallback strategy exists that only involves executing a single action.
This is the case in particular for Model 1, where

I 0 ≡ [a :=−B ; {p′ = v, v′ = a & v ≥ 0}] e− p > 0

≡ e− p > v2/2B

characterizes all states at safe braking distance to the obstacle and G0 associates
the following guard to the acceleration action:

G0
a:=A ≡ [a :=A ; {p′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ T}] e− p > v2/2B

≡ e− p > vT +AT 2/2 + (v +AT)2/2B

That is, accelerating is allowed if doing so is guaranteed to maintain sufficient
braking distance until the next control opportunity. Section 3.6 discusses auto-
matic generation of a proof that (I 0, G0) is an optimal solution for Model 1.

3.5 Bounded Fallback Unrolling Refinement

In Section 3.4, we derived a solution by computing an underapproximation of
I opt where the fallback controller (played by Demon) is only allowed to use
a one-shot strategy that picks a single action and plays it forever. Although
this approximation is always safe and, in many cases of interest, happens to be
exact, it does lead to a suboptimal solution in others. In this section, we allow
the fallback controller to switch actions a bounded number of times before it
plays one forever. There are still cases where doing so is suboptimal (imagine a
car on a circular race track that is forced to maintain constant velocity). But
this restriction is in line with the typical understanding of a fallback controller,
whose mission is not to take over a system indefinitely but rather to maneuver
it into a state where it can safely get to a full stop [32].

CESAR: Control Envelope Synthesis via Angelic Refinements 153

For all bounds n ∈ N, we define a game where the fallback controller (played
by Demon) takes at most n turns to reach the region I0 in which safety is guar-
anteed indefinitely. During each turn, it picks a permanent action and chooses a
time θ in advance for when it wishes to play its next move. Because the environ-
ment (played by Angel) has control over the duration of each control cycle, the
fallback controller cannot expect to be woken up after time θ exactly. However,
it can expect to be provided with an opportunity for its next move within the
[θ, θ + T] time window since the plant can never execute for time greater than
T . Formally, we define In as follows:

In ≡ [step×≤n ; forever] safe forever ≡ (∩i∈P acti) ; plant∞

step ≡ (θ := ∗ ; ?θ ≥ 0)d ; (∩i∈P acti) ; plantθ+T ; ?safed ; ?t ≥ θ

where plantθ+T is the same as plant, except that the domain constraint t ≤ T is
replaced by t ≤ θ + T . Equivalently, we can define In by induction as follows:

In+1 ≡ In ∨ [step] In I 0 ≡ [forever] safe, (5)

where the base case coincides with the definition of I 0 in Section 3.4. Importantly,
In is a loop-free controllable invariant and so reduce can compute an explicit
solution to the synthesis problem from In.

Theorem 3. In is a controllable invariant for all n ≥ 0.

Theorem3 establishes a nontrivial result since it overcomes the significant gap
between the fantasized game that defines In and the real game being played by
a time-triggered controller. The proof critically relies on the action permanence
assumption along with a result [21, Lemma 6] establishing that ODEs preserve
a specific form of reach-avoid property as a result of being deterministic.

Example. As an illustration, consider the example in Fig. 1 and Model 2 of a
2D robot moving in a corridor that forms an angle. The robot is only allowed
to move left or down at a constant velocity and must not crash against a wall.
Computing I 0 gives us the vertical section of the corridor, in which going down
is a safe one-step fallback. Computing I 1 forces us to distinguish two cases. If the
corridor is wider than the maximal distance travelled by the robot in a control
cycle (V T > 2R), then the upper section of the corridor is controllable (with the
exception of a dead-end that we prove to be uncontrollable in Section 3.6). On the
other hand, if the corridor is too narrow, then I 1 is equivalent to I 0. Formally,
we have I1 ≡ (y > −R ∧ |x| < R) ∨ (V T < 2R ∧ (x > −R ∧ |y| < R)).
Moreover, computing I2 gives a result that is equivalent to I1. From this, we
can conclude that I1 is equivalent to In for all n ≥ 1. Intuitively, it is optimal
with respect to any finite fallback strategy (restricted to permanent actions).

The controllable invariant unrolling In has a natural stopping criterion.

Lemma 6. If In ↔ In+1 is valid for some n ≥ 0, then In ↔ Im is valid for
all m ≥ n and In ↔ Iω is valid where Iω ≡ [step× ; forever] safe.

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer154

Fig. 1: Robot navigating a corridor (Model 2). A 2D robot must navigate safely
within a corridor with a dead-end without crashing against a wall. The corridor
extends infinitely on the bottom and on the right. The robot can choose between
going left and going down with a constant speed V . The left diagram shows I0

in gray. The right diagram shows I1 under the additional assumption V T < 2R
(I1 and I0 are otherwise equivalent). A darker shade of gray is used for regions
of I1 where only one of the two available actions is safe according to G1.

Model 2 Robot navigating a corridor with framed solutions of holes.

assum
∣∣ 1 V > 0 ∧ T > 0

ctrlable
∣∣ 2 ∧ (y > −R ∧ |x| < R) ∨ (V T < 2R ∧ (x > −R ∧ |y| < R)) → [{

ctrl

∣∣∣∣ 3 ((? x > −R+ V T ; vx :=−V ; vy := 0)

4 ∪ (? y < R− V T ∨ x < R ; vx := 0 ; vy := V)) ;

plant
∣∣ 5 (t := 0 ; {x′ = vx, y

′ = vy, t
′ = 1 & t ≤ T})

safe
∣∣ 6 }∗]((x > −3R ∧ |y| < R) ∨ (y > −R ∧ |x| < R))

3.6 Proving Optimality via the Dual Game

Suppose one found a controllable invariant I using techniques from the previous
section. To prove it optimal, one must show that ⊨ assum → (I opt → I). By
contraposition and [α]P ↔ ¬⟨α⟩ ¬P ([·]), this is equivalent to proving that:

⊨ assum ∧ ¬I → ⟨((∩i acti) ; plant)∗⟩ ¬safe︸ ︷︷ ︸
¬I opt

. (6)

We define the largest uncontrollable region U opt ≡ ¬I opt as the right-hand side
of implication 6 above. Intuitively, U opt characterizes the set of all states from
which the environment (played by Angel) has a winning strategy against the
controller (played by Demon) for reaching an unsafe state. In order to prove the
optimality of I, we compute a sequence of increasingly strong approximations U
of U opt such that U → U opt is valid. We do so via an iterative process, in the
spirit of how we approximate I opt via bounded fallback unrolling (Section 3.5),
although the process can be guided by the knowledge of I this time. If at any
point we manage to prove that assum→ (I ∨ U) is valid, then I is optimal.

CESAR: Control Envelope Synthesis via Angelic Refinements 155

One natural way to compute increasingly good approximations of U opt is
via loop unrolling. The idea is to improve approximation U by adding states
from where the environment can reach U by running the control loop once,
formally, ⟨(∩i acti) ; plant⟩U . This unrolling principle can be useful. However,
it only augments U with new states that can reach U in time T at most. So
it cannot alone prove optimality in cases where violating safety from an unsafe
state takes an unbounded amount of time.

For concreteness, let us prove the optimality of I 0 in the case of Model 1.
In [34] essentially the following statement is proved when arguing for optimality:
⊨ assum ∧ ¬I0 → ⟨(a := −B ; plant)∗⟩ ¬safe. This is identical to our optimality
criterion from Eq. (6), except that Demon’s actions are restricted to braking.
Intuitively, this restriction is sound since accelerating always makes things worse
as far as safety is concerned. If the train cannot be saved with braking alone,
adding the option to accelerate will not help a bit. In this work, we propose a
method for formalizing such arguments within dGL to arbitrary systems.

Our idea for doing so is to consider a system made of two separate copies of
our model. One copy has all actions available whereas the other is only allowed
a single action (e.g. braking). Given a safety metric m (i.e. a term m such that
⊨ m ≤ 0→ ¬safe), we can then formalize the idea that “action i is always better
w.r.t safety metric m” within this joint system.

Definition 5 (Uniform Action Optimality). Consider a finite number of
discrete dL programs αi and p ≡ {x′ = f(x) & Q}. Let V = BV(p) ∪

⋃
i BV(αi)

be the set of all variables written by p or some αi. For any term θ and integer
n, write θ(n) for the term that results from θ by renaming all variables v ∈ V to
a fresh tagged version x(n). Using a similar notation for programs and formulas,
define p(1,2) ≡ {(x(1))′ = f(x(1)), (x(2))′ = f(x(2)) & Q(1) ∧ Q(2)}. We say that
action j is uniformly optimal with respect to safety metric m if and only if:

⊨ m(1) ≥ m(2) → [αj
(1) ; (∪i αi

(2)) ; p(1,2)]m(1) ≥ m(2).

bestj((αi)i, p,m) denotes that action j is uniformly optimal with respect to m
for actions αi and dynamics p.

With such a concept in hand, we can formally establish the fact that criterion
Eq. (6) can be relaxed in the existence of uniformly optimal actions.

Theorem 4. Consider a finite number of discrete dL programs αi such that
⊨ ⟨αi⟩ true for all i and p ≡ {x′ = f(x) & q ≥ 0}. Then, provided that
bestj((αi)i, p,m) and bestj((αi)i, p,−q) (no other action stops earlier because
of the domain constraint), we have:

⊨ ⟨((∩αi) ; p)
∗⟩m ≤ 0↔ ⟨(αj ; p)

∗⟩m ≤ 0 .

A general heuristic for leveraging Theorem4 to grow U automatically works as
follows. First, it considers R ≡ assum∧¬I∧¬U that characterizes states that are
not known to be controllable or uncontrollable. Then, it picks a disjunct

∧
j Rj of

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer156

the disjunctive normal form of R and computes a forward invariant region V that
intersects with it: V ≡

∧
j{Rj : assum, Rj ⊢ [(∪i acti) ; plant]Rj}. Using V as

an assumption to simplify ¬U may suggest metrics to be used with Theorem4.
For example, observing ⊨ V → (¬U → (θ1 > 0 ∧ θ2 > 0)) suggests picking
metric m ≡ min(θ1, θ2) and testing whether bestj(act, p,m) is true for some
action j. If such a uniformly optimal action exists, then U can be updated as
U ← U ∨ (V ∧⟨(actj ; plant)∗⟩m ≤ 0). The solution I 1 for the corridor (Model 2)
can be proved optimal automatically using this heuristic in combination with
loop unrolling.

3.7 Implementing the Reduction Oracle

The CESAR algorithm assumes the existence of a reduction oracle that takes as
an input a loop-free dGL formula and attempts to compute an equivalent formula
within the fragment of propositional arithmetic. When an exact solution cannot
be found, an implicant is returned instead and flagged appropriately (Def. 3).
This section discusses our implementation of such an oracle.

As discussed in Section 3.4, exact solutions can be computed systematically
when all ODEs are solvable by first using the dGL axioms to eliminate modalities
and then passing the result to a quantifier elimination algorithm for first-order
arithmetic [9,42]. Although straightforward in theory, a näıve implementation of
this idea hits two practical barriers. First, quantifier elimination is expensive and
its cost increases rapidly with formula complexity [11,44]. Second, the output
of existing QE implementations can be unnecessarily large and redundant. In
iterated calls to the reduction oracle, these problems can compound each other.

To alleviate this issue, our implementation performs eager simplification
at intermediate stages of computation, between some axiom application and
quantifier-elimination steps. This optimization significantly reduces output solu-
tion size and allows CESAR to solve a benchmark that would otherwise timeout
after 20 minutes in 26s. [21, Appendix E] further discusses the impact of eager
simplification. Still, the doubly exponential complexity of quantifier elimination
puts a limit on the complexity of problems that CESAR can currently tackle.

In the general case, when ODEs are not solvable, our reduction oracle is still
often able to produce approximate solutions using differential invariants gener-
ated automatically by existing tools [38]. Differential invariants are formulas that
stay true throughout the evolution of an ODE system. 4 To see how they apply,
consider the case of computing reduce([{x′ = f(x)}]P,A) where P is the post-
condition formula that must be true after executing the differential equation,
and A is the assumptions holding true initially. Suppose that formula D(x) is a
differential invariant such that D(x)→ P is valid. Then, a precondition sufficient
to ensure that P holds after evolution is A→ D(x). For example, to compute the
precondition for the dynamics of the parachute benchmark, our reduction ora-
cle first uses the Pegasus tool [38] to identify a Darboux polynomial, suggesting

4 dGL provides ways to reason about differential invariants without solving the corre-
sponding differential equation. For example, for an invariant of the form e = 0, the
differential invariant axiom is [{x′ = f(x)}] e = 0↔ (e = 0 ∧ [{x′ = f(x)}] e′ = 0).

CESAR: Control Envelope Synthesis via Angelic Refinements 157

an initial differential invariant D0. Once we have D0, the additional information
required to conclude post condition P is D0 → P . To get an invariant formula
that implies D0 → P , eliminate all the changing variables {x, v} in the formula
∀x ∀v (D0 → P), resulting in a formula D1. D1 is a differential invariant since it
features no variable that is updated by the ODEs. Our reduction oracle returns
D0 ∧D1, an invariant that entails postcondition P .

3.8 The CESAR Algorithm

The CESAR algorithm for synthesizing control envelopes is summarized in Al-
gorithm1. It is expressed as a generator that yields a sequence of solutions with
associated optimality guarantees. Possible guarantees include “sound” (no op-
timality guarantee, only soundness), “k-optimal” (sound and optimal w.r.t all
k-switching fallbacks with permanent actions), “ω-optimal” (sound and opti-
mal w.r.t all finite fallbacks with permanent actions) and “optimal” (sound and
equivalent to S opt). Line 11 performs the optimality test described in Section 3.6.
Finally, Line 10 performs an important soundness check for the cases where an
approximation has been made along the way of computing (In, Gn). In such
cases, I is not guaranteed to be a controllable invariant and thus Case (2) of
Def. 1 must be checked explicitly.

When given a problem with solvable ODEs and provided with a complete QE
implementation within reduce, CESAR is guaranteed to generate a solution in
finite time with an “n-optimal” guarantee at least (n being the unrolling limit).

4 Benchmarks and Evaluation

To evaluate our approach to the Control Envelope Synthesis problem, we curate a
benchmark suite with diverse optimal control strategies. As Table 2 summarizes,
some benchmarks have non-solvable dynamics, while others require a sequence
of clever control actions to reach an optimal solution. Some have state-dependent
fallbacks where the current state of the system determines which action is “safer”,
and some are drawn from the literature. We highlight a couple of benchmarks
here. See [21, Appendix D] for a discussion of the full suite and the synthesized
results, and [20] for the benchmark files and evaluation scripts.

Power Station is an example where the optimal control strategy involves
two switches, corresponding to two steps of unrolling. A power station can ei-
ther produce power or dispense it to meet a quota, but never give out more
than it has produced. Charging is the fallback action that is safe for all time
after the station has dispensed enough power. However, to cover all controllable
states, we need to switch at least two times, so that the power station has a
chance to produce energy and then dispense it, before settling back on the safe
fallback. Parachute is an example of a benchmark with non-solvable, hyperbolic
dynamics. A person jumps off a plane and can make an irreversible choice to
open their parachute. The objective is to stay within a maximum speed that is
greater than the terminal velocity when the parachute is open.

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer158

Algorithm 1 CESAR: Control Envelope Synthesis via Angelic Refinements

1: Input: a synthesis problem (as defined in Section 3.1), an unrolling limit n.
2: Remark: valid is defined as valid(F, A) ≡ (first(reduce(¬F,A)) = false).
3: k ← 0
4: I, eI ← reduce([forever] safe, assum)
5: while k ≤ n do
6: eG ← true
7: for each i do
8: Gi, e← reduce([acti ; plant] I, assum)
9: eG ← eG and e

10: if (eG and eI) or valid(I →
∨

iGi, assum) then
11: if eG and optimal(I) then
12: yield ((I,G), “optimal”)
13: return
14: else if eG and eI then yield ((I,G), “k-optimal”)
15: else yield ((I,G), “sound”)

16: I ′, e← reduce(I ∨ [step] I, assum)
17: eI ← eI and e
18: if eG and eI and valid(I ′ → I, assum) then
19: yield ((I,G), “ω-optimal”)
20: return
21: I ← I ′

22: k ← k + 1

We implement CESAR in Scala, using Mathematica for simplification and
quantifier elimination, and evaluate it on the benchmarks. Simplification is an
art [25,23]. We implement additional simplifiers with the Egg library [45] and
SMT solver z3 [30]. Experiments were run on a 32GB RAM M2 MacBook Pro
machine. CESAR execution times average over 5 runs.

CESAR synthesis is automatic. The optimality tests were computed man-
ually. Table 2 summarizes the result of running CESAR. Despite a variety of
different control challenges, CESAR is able to synthesize safe and in some cases
also optimal safe control envelopes within a few minutes. As an extra step of val-
idation, synthesized solutions are checked by the hybrid system theorem prover
KeYmaera X [16]. All solutions are proved correct, with verification time as
reported in the last column of Table 2.

5 Related Work

Hybrid controller synthesis has received significant attention [26,41,7], with pop-
ular approaches using temporal logic [5,7,46], games [31,43], and CEGIS-like
guidance from counterexamples [39,1,37,10]. CESAR, however, solves the differ-
ent problem of synthesizing control envelopes that strive to represent not one
but all safe controllers of a system. Generating valid solutions is not an issue (a
trivial solution always exists that has an empty controllable set). The real chal-
lenge is optimality which imposes a higher order constraint because it reasons

CESAR: Control Envelope Synthesis via Angelic Refinements 159

Table 2: Summary of CESAR experimental results

Benchmark
Synthesis
Time (s)

Checking
Time (s)

Optimal
Needs

Unrolling

Non
Solvable
Dynamics

ETCS Train [34] 14 9 ✓
Sled 20 8 ✓
Intersection 49 44 ✓
Parachute [15] 46 8 ✓
Curvebot 26 9 ✓
Coolant 49 20 ✓ ✓
Corridor 20 8 ✓ ✓
Power Station 26 17 ✓ ✓

about the relationship between possible valid solutions, and cannot, e.g., fit in
the CEGIS quantifier alternation pattern ∃∀. So simply adapting existing con-
troller synthesis techniques does not solve symbolic control envelope synthesis.

Safety shields computed by numerical methods [2,13,24] serve a similar func-
tion to our control envelopes and can handle dynamical systems that are hard
to analyze symbolically. However, they scale poorly with dimensionality and do
not provide rigorous formal guarantees due to the need of discretizing continuous
systems. Compared to our symbolic approach, they cannot handle unbounded
state spaces (e.g. our infinite corridor) nor produce shields that are parametric
in the model’s parameters without hopelessly increasing dimensionality.

On the optimality side, a systematic but manual process was used to design
a safe European Train Control System (ETCS) and justify it as optimal with re-
spect to specific train criteria [34]. Our work provides the formal argument filling
the gap between such case-specific criteria and end-to-end optimality. CESAR
is more general and automatic.

6 Conclusion

This paper presents the CESAR algorithm for Control Envelope Synthesis via
Angelic Refinements. It is the first approach to automatically synthesize symbolic
control envelopes for hybrid systems. The synthesis problem and optimal solu-
tion are characterized in differential game logic. Through successive refinements,
the optimal solution in game logic is translated into a controllable invariant and
control conditions. The translation preserves safety. For the many cases where
refinement additionally preserves optimality, an algorithm to test optimality of
the result post translation is presented. The synthesis experiments on a bench-
mark suite of diverse control problems demonstrate CESAR’s versatility. For
future work, we plan to extend to additional control shapes, and to exploit the
synthesized safe control envelopes for reinforcement learning.

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer160

References

1. Abate, A., Bessa, I., Cordeiro, L.C., David, C., Kesseli, P., Kroening, D., Pol-
green, E.: Automated formal synthesis of provably safe digital controllers for
continuous plants. Acta Informatica 57(1-2), 223–244 (2020). doi: 10.1007/

s00236-019-00359-1

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. Proceedings of the Aaai Conference on Arti-
ficial Intelligence 32 (2018). doi: 10.1609/aaai.v32i1.11797

3. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)

4. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada,
P.: Control barrier functions: Theory and applications. In: 17th European Con-
trol Conference, ECC 2019, Naples, Italy, June 25-28, 2019. pp. 3420–3431. IEEE
(2019). doi: 10.23919/ECC.2019.8796030

5. Antoniotti, M., Mishra, B.: Discrete event models+temporal logic=supervisory
controller: automatic synthesis of locomotion controllers. In: Proceedings of 1995
IEEE International Conference on Robotics and Automation. vol. 2, pp. 1441–1446
vol.2 (1995). doi: 10.1109/ROBOT.1995.525480

6. Basile, G., Marro, G.: Controlled and conditioned invariant subspaces in linear
system theory. Journal of Optimization Theory and Applications 3, 306–315 (05
1969). doi: 10.1007/BF00931370

7. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical
Systems. Springer Cham (2017)

8. Boreale, M.: Complete algorithms for algebraic strongest postconditions and weak-
est preconditions in polynomial ODE’s. In: Tjoa, A.M., Bellatreche, L., Biffl, S.,
van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018: Theory and Practice of
Computer Science - 44th International Conference on Current Trends in Theory
and Practice of Computer Science, Krems, Austria, January 29 - February 2, 2018,
Proceedings. LNCS, vol. 10706, pp. 442–455. Springer (2018)

9. Caviness, B.F., Johnson, J.R.: Quantifier elimination and cylindrical algebraic de-
composition. Springer Science & Business Media (2012)

10. Dai, H., Landry, B., Pavone, M., Tedrake, R.: Counter-example guided synthesis
of neural network lyapunov functions for piecewise linear systems. 2020 59th IEEE
Conference on Decision and Control (CDC) pp. 1274–1281 (2020)

11. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1/2), 29–35 (1988)

12. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid sys-
tems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Hand-
book of Model Checking, pp. 1047–1110. Springer, Cham (2018). doi: 10.1007/
978-3-319-10575-8_30

13. Fisac, J., Akametalu, A., Zeilinger, M., Kaynama, S., Gillula, J., Tomlin, C.: A
general safety framework for learning-based control in uncertain robotic systems.
Ieee Transactions on Automatic Control 64, 2737–2752 (2019). doi: 10.1109/tac.
2018.2876389

14. Freiberger, F., Schupp, S., Hermanns, H., Ábrahám, E.: Controller verification
meets controller code: A case study. In: Proceedings of the 19th ACM-IEEE Inter-
national Conference on Formal Methods and Models for System Design. p. 98–103.
MEMOCODE ’21, Association for Computing Machinery, New York, NY, USA
(2021). doi: 10.1145/3487212.3487337

CESAR: Control Envelope Synthesis via Angelic Refinements 161

https://doi.org/10.1007/s00236-019-00359-1
https://doi.org/10.1007/s00236-019-00359-1
https://doi.org/10.1609/aaai.v32i1.11797
https://doi.org/10.23919/ECC.2019.8796030
https://doi.org/10.1109/ROBOT.1995.525480
https://doi.org/10.1007/BF00931370
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1109/tac.2018.2876389
https://doi.org/10.1109/tac.2018.2876389
https://doi.org/10.1145/3487212.3487337

15. Fulton, N., Mitsch, S., Bohrer, R., Platzer, A.: Bellerophon: Tactical theorem prov-
ing for hybrid systems. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP. LNCS, vol.
10499, pp. 207–224. Springer (2017). doi: 10.1007/978-3-319-66107-0_14

16. Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., Platzer, A.: KeYmaera X: An ax-
iomatic tactical theorem prover for hybrid systems. In: CADE. pp. 527–538 (2015).
doi: 10.1007/978-3-319-21401-6_36

17. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Ar-
tificial Intelligence Conference and Eighth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence. AAAI’18/IAAI’18/EAAI’18, AAAI Press (2018)

18. Ghosh, B.K.: Controlled invariant and feedback controlled invariant subspaces in
the design of a generalized dynamical system. In: 1985 24th IEEE Conference on
Decision and Control. pp. 872–873 (1985). doi: 10.1109/CDC.1985.268620

19. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Case
study: Verifying the safety of an autonomous racing car with a neural network
controller. In: Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control. HSCC ’20, Association for Computing Machinery, New
York, NY, USA (2020). doi: 10.1145/3365365.3382216

20. Kabra, A., Laurent, J., Mitsch, S., Platzer, A.: Control Envelope Synthesis via
Angelic Refinements (CESAR): Artifact (1 2024). doi: 10.6084/m9.figshare.

24922896.v1, https://figshare.com/articles/software/Control_Envelope_

Synthesis_via_Angelic_Refinements_CESAR_Artifact/24922896

21. Kabra, A., Laurent, J., Mitsch, S., Platzer, A.: Cesar: Control envelope synthe-
sis via angelic refinements (2023). doi: https://doi.org/10.48550/arXiv.2311.
02833, arXiv:2311.02833

22. Kabra, A., Mitsch, S., Platzer, A.: Verified train controllers for the federal rail-
road administration train kinematics model: Balancing competing brake and track
forces. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 41(11), 4409–4420 (2022). doi: 10.1109/TCAD.2022.3197690

23. Knuth, D.E.: The Art of Computer Programming. Addison Wesley Longman Pub-
lishing Co., Inc., USA (1997)

24. Kochenderfer, M.J., Holland, J.E., Chryssanthacopoulos, J.P.: Next generation air-
borne collision avoidance system. Lincoln Laboratory Journal 19(1), 17–33 (2012)

25. Lara, M., López, R., Pérez, I., San-Juan, J.F.: Exploring the long-term dy-
namics of perturbed keplerian motion in high degree potential fields. Com-
munications in Nonlinear Science and Numerical Simulation 82, 105053
(2020). doi: https://doi.org/10.1016/j.cnsns.2019.105053, https://www.

sciencedirect.com/science/article/pii/S1007570419303727

26. Liu, S., Trivedi, A., Yin, X., Zamani, M.: Secure-by-construction synthesis of cyber-
physical systems. Annual Reviews in Control 53, 30–50 (2022). doi: https://doi.
org/10.1016/j.arcontrol.2022.03.004

27. Lunze, J., Lamnabhi-Lagarrigue, F. (eds.): Handbook of Hybrid Systems Control:
Theory, Tools, Applications. Cambridge Univ. Press, Cambridge (2009). doi: 10.
1017/CBO9780511807930

28. Mitra, S.: Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT Press
(2021)

29. Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-
physical system models. Formal Methods Syst. Des. 49(1-2), 33–74 (2016). doi:
10.1007/s10703-016-0241-z

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer162

https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1109/CDC.1985.268620
https://doi.org/10.1145/3365365.3382216
https://doi.org/10.6084/m9.figshare.24922896.v1
https://doi.org/10.6084/m9.figshare.24922896.v1
https://figshare.com/articles/software/Control_Envelope_Synthesis_via_Angelic_Refinements_CESAR_Artifact/24922896
https://figshare.com/articles/software/Control_Envelope_Synthesis_via_Angelic_Refinements_CESAR_Artifact/24922896
https://doi.org/https://doi.org/10.48550/arXiv.2311.02833
https://doi.org/https://doi.org/10.48550/arXiv.2311.02833
https://doi.org/10.1109/TCAD.2022.3197690
https://doi.org/https://doi.org/10.1016/j.cnsns.2019.105053
https://www.sciencedirect.com/science/article/pii/S1007570419303727
https://www.sciencedirect.com/science/article/pii/S1007570419303727
https://doi.org/https://doi.org/10.1016/j.arcontrol.2022.03.004
https://doi.org/https://doi.org/10.1016/j.arcontrol.2022.03.004
https://doi.org/10.1017/CBO9780511807930
https://doi.org/10.1017/CBO9780511807930
https://doi.org/10.1007/s10703-016-0241-z

30. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

31. Nerode, A., Yakhnis, A.: Modelling hybrid systems as games. In: Decision and
Control, 1992., Proceedings of the 31st IEEE Conference on. pp. 2947–2952 vol.3
(1992). doi: 10.1109/CDC.1992.371272

32. Pek, C., Althoff, M.: Fail-safe motion planning for online verification of autonomous
vehicles using convex optimization. IEEE Transactions on Robotics 37(3), 798–814
(2020)

33. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). doi: 10.1007/978-3-319-63588-0

34. Platzer, A., Quesel, J.: European train control system: A case study in for-
mal verification. In: Formal Methods and Software Engineering, 11th Interna-
tional Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro,
Brazil, December 9-12, 2009. Proceedings. pp. 246–265 (2009). doi: 10.1007/

978-3-642-10373-5_13

35. Platzer, A., Tan, Y.K.: Differential equation invariance axiomatization. Journal of
the ACM (JACM) 67(1), 1–66 (2020)

36. Qian, M., Mitsch, S.: Reward shaping from hybrid systems models in reinforcement
learning. In: Rozier, K.Y., Chaudhuri, S. (eds.) NFM. LNCS, vol. 13903. Springer
(2023)

37. Ravanbakhsh, H., Sankaranarayanan, S.: Robust controller synthesis of switched
systems using counterexample guided framework. In: 2016 International Conference
on Embedded Software, EMSOFT 2016, Pittsburgh, Pennsylvania, USA, October
1-7, 2016. pp. 8:1–8:10 (2016). doi: 10.1145/2968478.2968485

38. Sogokon, A., Mitsch, S., Tan, Y.K., Cordwell, K., Platzer, A.: Pegasus: Sound
continuous invariant generation. Form. Methods Syst. Des. 58(1), 5–41 (2022).
doi: 10.1007/s10703-020-00355-z, special issue for selected papers from FM’19

39. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013). doi: 10.
1007/s10009-012-0249-7

40. Squires, E., Pierpaoli, P., Egerstedt, M.: Constructive barrier certificates with ap-
plications to fixed-wing aircraft collision avoidance. In: 2018 IEEE Conference
on Control Technology and Applications (CCTA). pp. 1656–1661 (2018). doi:
10.1109/CCTA.2018.8511342

41. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Berlin (2009). doi: 10.1007/978-1-4419-0224-5

42. Tarski, A.: A decision method for elementary algebra and geometry. In: Caviness,
B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic De-
composition. pp. 24–84. Springer Vienna, Vienna (1998)

43. Tomlin, C.J., Lygeros, J., Sastry, S.: A game theoretic approach to controller design
for hybrid systems. Proc. IEEE 88(7), 949–970 (2000). doi: 10.1109/5.871303

44. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.
5(1-2), 3–27 (1988)

45. Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: Egg:
Fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL) (jan
2021). doi: 10.1145/3434304, https://doi.org/10.1145/3434304

46. Yang, S., Yin, X., Li, S., Zamani, M.: Secure-by-construction optimal path planning
for linear temporal logic tasks. In: 2020 59th IEEE Conference on Decision and
Control (CDC). pp. 4460–4466 (2020). doi: 10.1109/CDC42340.2020.9304153

CESAR: Control Envelope Synthesis via Angelic Refinements 163

https://doi.org/10.1109/CDC.1992.371272
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1145/2968478.2968485
https://doi.org/10.1007/s10703-020-00355-z
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1109/CCTA.2018.8511342
https://doi.org/10.1007/978-1-4419-0224-5
https://doi.org/10.1109/5.871303
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1109/CDC42340.2020.9304153

Aditi Kabra, Jonathan Laurent, Stefan Mitsch, and André Platzer164

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Logic and Decidability

Answering Temporal Conjunctive Queries over
Description Logic Ontologies for Situation

Recognition in Complex Operational Domains⋆

Abstract. For developing safe automated systems, recognizing safety-
critical situations in data from their complex operational domain is im-
perative. This capability is, for example, essential when evaluating the
system’s conformance to specified requirements in test run data. The
requirements involve a temporal dimension, as the system operates over
time. Moreover, the generated data are usually relational and require
additional background knowledge about the domain for correctly recog-
nizing the situation. This fact makes propositional temporal logics, an
established tool, unsuitable for the task. We address this issue by de-
veloping a tailored temporal logic to query for situations in relational
data over complex domains. Our language combines mission-time lin-
ear temporal logic with conjunctive queries to access time-stamped data
with background knowledge formulated in an expressive description logic.
Currently, however, no tools exist for answering queries in such settings.
We hence also contribute an implementation in the logic reasoner Open-
llet, leveraging the efficacy of well-established conjunctive query an-
swering. Moreover, we present a benchmark generator in the setting of
automated driving and demonstrate that our tool performs well when
tasked with recognizing safety-critical situations in road traffic.

Keywords: Temporal Conjunctive Queries · Description Logics · Tem-
poral Logics.

⋆ This work was partially funded by the German Federal Ministries of Education and
Research (’AutoDevSafeOps’) and Economic Affairs and Climate Action (’VVM –
Verification & Validation Methods for Automated Vehicles Level 4 and 5’).

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 167–187, 2024.
https://doi.org/10.1007/978-3-031-57246-3_10

Lukas Westhofen1(B) , Christian Neurohr1 , Jean Christoph Jung2 ,
and Daniel Neider2,3

1 German Aerospace Center (DLR) e.V., Institute of Systems Engineering for Future
Mobility, Oldenburg, Germany

lukas.westhofen@dlr.de, christian.neurohr@dlr.de
2 TU Dortmund University, Dortmund, Germany

jean.jung@tu-dortmund.de, daniel.neider@tu-dortmund.de
3 Center for Trustworthy Data Science and Security, University Alliance Ruhr,

Dortmund, Germany

http://orcid.org/0000-0002-0950-4163
https://doi.org/10.1007/978-3-031-57246-3_10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_10&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0003-1065-4182
http://orcid.org/0000-0001-8847-5147
http://orcid.org/0000-0002-4159-2255
http://orcid.org/0000-0001-9276-6342

1 Introduction

Recent technological advances in, e.g., sensors and computer vision, gave up-
draft to the development of automated systems performing safety-critical tasks
in complex domains. These systems are expected to safely operate without hu-
man intervention in these contexts. Consider, for example, automated driving
systems (ADSs), where the responsibility of safely navigating the environment
lies fully with the system [35]. The combination of their safety-critical nature
and the complex operational domain makes it hard to guarantee the absence
of unreasonable risk before public release, which is, however, required by many
homologation authorities. Alas, correct-by-design techniques are rendered in-
applicable by the high system complexity. Thus, manufactures must resort to
empirically assessing the system’s risk prior to deployment. As automated sys-
tems interact with their environment over time, a promising approach for risk
assessment is to decompose the complex operational domain into finite-time se-
quences (’scenarios’) [34]. Safety requirements – aiming to mitigate unreasonable
risks – are then specified for these scenarios. Hence, a formal specification of the
actors’ temporal behavior becomes essential. An exemplary requirement reads
as follows: ’In situations where the absence of pedestrians is not guaranteed,
adapt the speed appropriately.’ Note that this rule consists of a premise (the
situation) and a consequence (the behavior). The number of situations to write
requirements for can be enormous, e.g., occlusions [42], violating the safety dis-
tance [43], and maneuvers such as passing parking vehicles [11]. Due to their
large number, testing the most widely used option for verification, i.e., to check
the system’s conformance with requirements. For this, data of test runs of the
system operating within its environment are recorded. Adherence to the require-
ments is then evaluated by recognizing the situation (’no guaranteed absence of
pedestrians’) and testing for the implied behavior (’adapted speed’). We argue
that this approach has three requirements:

Relational and Temporal Domain Formally modelling traffic situations in-
herently requires a relational language since they refer to individuals and
their relationships, e.g., drives. Moreover, the number of individuals is not
fixed beforehand. Finally, scenarios over such situations involve the descrip-
tion of temporal aspects. A typical example is the process of overtaking.

Rich Background Knowledge We do not assume that the data is complete
in the sense that we can observe all facts about all individuals. Instead,
we assume to have rich knowledge about the relations used in the situation
descriptions. Examples for this are:
– a Driver is equivalent to a Human which drives some Vehicle, or
– a Driver is never a Pedestrian.

Such knowledge must be included since otherwise situations may not be
correctly recognized in the data and test evaluation produces false results.

Formal Specifications of Properties It is established that specifying and
testing requirements benefits greatly from formal approaches. Standard re-
quirement formalization languages, like linear temporal logic, are however
propositional and thus unsuitable for our purposes.

L. Westhofen et al.168

An established way to address the first two aspects is to model situations via tem-
poral knowledge bases K = (O,D) which consist of a domain ontology O that de-
scribes the background knowledge and a temporal database D that describes the
evolution of the situation over time. Formally, D is a sequence D = (D0, . . . ,Dn)
of time-stamped databases. Note that, in using temporal knowledge bases, we
adopt the open world assumption (OWA), which intuitively says that the true
facts are not only those in D but those that are entailed by O and D.

As to address the third aspect above, i.e., to formally specify properties, we
use a suitable extension of linear temporal logic (LTL). Recall that LTL is a
language for describing properties over a set of propositions by using modalities
such as ♢φ (φ holds eventually), □φ (φ holds globally), φ1 Uφ2 (φ1 holds until
φ2), and φ (φ holds in the next step). Unfortunately, this does not suffice when
working over relational data. A natural option to extend LTL in the required way
is to replace propositions by queries. In this work, we use conjunctive queries
(CQs). CQs are one of the most common query language for databases and
expressively equivalent to the SELECT-FROM-WHERE fragment of SQL. For
example, we can ask for all drivers d of a vehicle by the CQ ∃v.Vehicle(v) ∧
drives(d, v) with one existentially quantified variable v and one answer variable
d. In terms of the temporal expressivity, our application further requires that

(1) we operate on finite traces whose length is bounded by the length of the
temporal database D specified in the temporal knowledge base,

(2) as duration constraints are used in specifications, e.g., to distinguish maneu-
vers of certain lengths, we incorporate metric operators, and

(3) we analyze the data a-posteriori. Hence we are not in a run-time verification
setting and require only future time operators.

We term the resulting language metric temporal conjunctive queries (MTCQs),
which features both unbounded and bounded future time operators over finite
traces and uses CQs in its atoms and is based on Mission-Time LTL (MLTL) [29].
MTCQs can, for example, express properties like Φex

0 (x) = ♢¬Pedestrian(x),
asking for all individuals x that are eventually not a pedestrian. A more involved
MTCQ asking for all x that move past a parking vehicle y on a two-lane road is

Φex
1 (x, y) = □

(
∃r.Vehicle(x) ∧ 2_Lane_Road(r) ∧ intersects(r, x)∧

Parking_Vehicle(y)) ∧ ♢
(
in_front_of(y, x) ∧(

(in_proximity(x, y) ∧ to_the_side_of(y, x))Ubehind(y, x)
))
.

Recognizing such a situation for checking a requirement translates to the task
of evaluating an MTCQ Φ(x⃗) with answer variables x⃗ over a temporal knowledge
base K. Informally, if we want to verify that a tuple of individuals a⃗ conforms
to some specification Φ(x⃗) in a situation K = (O,D), we have to check whether
the entailment (O,D) |= Φ(⃗a) is true, cf. Section 3 for precise definitions.

This task obviously depends on the chosen ontology language. For this, we
use description logics (DLs), an established knowledge representation formalism,
which offers a good compromise between complexity and expressivity [10]. Our

Answering Temporal Conjunctive Queries over Description Logic Ontologies 169

approach works up to the SRIQ(D) fragment of DLs. It is close to the formalism
behind the Web Ontology Language (OWL) 2, an expressive and widespread DL
language. The mentioned task of entailment has been studied for DL temporal
knowledge bases and a different yet related extension of LTL [8], cf. Section 2.

We now illustrate this setup by means of a simple example. A DL ontology
O is a set of concept inclusions C ⊑ D for concept descriptions C and D. We also
write C ≡ D to denote concept equivalence. DLs allow for arbitrary names as
basic concepts. We have special names for nothing (⊥) and all things (⊤). Besides
concepts, DLs also allow so-called roles (relations) between concepts. From these,
we can inductively build new concepts. For an example ontology Oex , we might
state that every driver is a human by Driver ⊑ Human ∈ Oex . As to illustrate the
combination of roles and concepts we define drivers as the intersection (using the
⊓-operator) of all humans and all things that drive some (using the ∃-operator)
vehicle, written as Driver ≡ Human⊓∃drives.Vehicle ∈ Oex . We can use ⊥ to
express that pedestrians and drivers are disjoint: Driver ⊓ Pedestrian ⊑ ⊥ ∈
Oex .

These operators may be enough for simple domains. However, knowledge
about relations in complex domains is often involved, in which case even more
expressive operators can be allowed. For example, the MTCQ Φex

1 requires recog-
nizing situations of passing parking vehicles. Here, expressive DLs allow modeling
two-lane roads to have exactly two lanes (by the concept =2 has_lane.Lane)
and be a road (by the concept Road ⊓ =2 has_lane.Lane). Moreover, parking
vehicles are standing (with a speed of the datatype literal 0.0) dynamical objects
on a parking spot. This is expressed by the following DL ontology:

– 2_Lane_Road ≡ Road ⊓=2 has_lane.Lane
– Vehicle⊓ Standing_Dynamical_Object⊓∃intersects.Parking_Spot ⊑

Parking_Vehicle
– Parking_Spot ≡ Parking_Lane ⊔ Walkway
– Standing_Dynamical_Object ≡ Dynamical_Object ⊓ ∃has_speed.{0.0}

Let us now use the simple example to give an intuition on the semantics of
MTCQs over DL ontologies. First, we create an exemplary database with facts
over so-called individuals (concrete objects that are perceived). For example, we
can assert for the first time point that the individual h is a human driving the
individual v, a vehicle, by writing the facts as Dex

0 = {Human(h), drives(h, v),
Vehicle(v)}. Next, we may perceive Dex

1 = ∅, i.e., no information at all. Together
with the ontology, it forms a temporal knowledge base Kex = (Oex , (Dex

0 ,Dex
1)).

If we query Kex w.r.t. Φex
0 (x) = ♢¬Pedestrian(x), we get h as the only answer,

as h is a driver in Dex
0 and the ontology states that drivers can never be pedestri-

ans. However, if we change the query to Φex
2 = □¬Pedestrian(x), no individual

satisfies the constraint, since Dex
1 asserts nothing – it can very well be possible

that h has become a pedestrian (due to the OWA).
This example highlights that languages like MTCQs are important for testing

requirements on systems in complex domains. However, up to now, only the
theoretical work by Baader et al. examines a related but hard-to-implement
setting over infinite traces for complexity-theoretic analyses [8]. No language

L. Westhofen et al.170

has yet been defined that is practically suitable for implementation and has the
required expressiveness. Moreover, there currently is no tooling for any temporal
query language over expressive DLs. Our work on MTCQs addresses this gap.

For this, we first introduce the formal foundation of MTCQs in Section 3.
We implement the framework in an answering engine for a large and practically
relevant subclass of MTCQs in Section 4, closing the identified research gap. To
evaluate its efficacy, we present a benchmark generator for temporal knowledge
bases, as described in Section 5. We show the efficacy of our tool in this practical
setting in Section 6. To summarize, the main contributions of our work are

1. MTCQs as a practically implementable and expressive temporal query lan-
guage and the first tool for answering such queries up to the DL SRIQ(D),

2. a benchmark generator for the evaluation of inference tasks on temporal
knowledge bases, and

3. an application of the tool in our motivational setting of situation recognition
for urban automated driving.

2 Related Work

We previously claimed that for our motivational domain of ADS development
the usefulness of temporal logics (TLs) and related mechanisms – e.g., regular ex-
pressions – for scenario extraction has been recognized, which is supported by the
literature [26, 31, 18, 16]. More specifically, work exists in specifying behavioral
requirements, e.g., based on traffic rules, using TLs [1, 33, 19]. However, none of
these approaches formally incorporate an ontology. In general, the importance of
ontologies in automated driving is recognized, see, e.g., ASAM OpenXOntology
[7] for an international standardization project as well as Westhofen et al. [42]
and Zipfl et al. [44] for non-systematic reviews. Some ontological approaches
are in fact based on DLs [27]. However, we are not aware of work within the
automotive domain that uses DLs and TLs for analyzing temporal traffic data.

On the theoretical side, a plethora of temporal DLs have been introduced [2,
32, 5], also on finite traces [6]. These classical combinations were not conceived in
a query answering context, so more recently, several frameworks for addressing
that have been introduced [3]. We mention the most important ones here. There
is work on ontologies formulated in the lightweight (i.e., comparatively inexpres-
sive) DLs DL-Lite [12, 38] and EL [13, 22]. For expressive DLs, an important
line of work theoretically examines answering temporal conjunctive queries – es-
sentially infinite-time LTL over conjunctive queries – over temporal knowledge
bases with the ontology language ranging from ALC [8] to SHQ [30, 9]. Related,
but orthogonal to combinations of DLs with TLs, are combinations of Datalog
with TLs. This line of research started around 1990 with Datalog1S [15], and
lead to other combinations [14, 39] for which also tools exist [40].

Answering Temporal Conjunctive Queries over Description Logic Ontologies 171

3 Formal Foundations

We introduce the formal foundations of the relevant DLs and their temporal
extension. For the sake of simplicity, we focus on the ontology language ALC,
which is a prototypical language in the class of expressive DLs. However, our
approach generalizes to (and is actually implemented for) the more expressive
logic SRIQ(D), cf. Horrocks et al. for further reference on this DL fragment [24].

We start with an introduction to non-temporal knowledge bases which we
later use as a foundation for defining the temporal case. As sketched in Section 1,
in ALC we can describe the relationship of roles and concepts in an ontology O
and assert individuals to these concepts and roles in a database D. Any knowl-
edge base is thus a tuple (O,D) and relies upon concept, role, and individual
names. For the remainder, we fix countably infinite supplies NC,NR,NI of con-
cept, role, and individual names, respectively. An ALC-concept description C is
formed according to C ::= A | ¬C | C ⊓ C | C ⊔ C | ∀r.C | ∃r.C where A ranges over
NC and r ranges over NR. We can thus compose new concepts using negation,
intersection, and union. For a role r, we moreover allow for universal (enforcing a
concept to only have r-successors in C) and existential quantification (enforcing a
concept to have an r-successor in C). Section 1 already introduced an example of
an existentially quantified role using ∃drives.Vehicle – the concept of all things
driving some vehicle. An ontology is a set of concept inclusions C ⊑ D for ALC-
concepts C and D, denoting subsumption of the concept C to the concept D. We
write C ≡ D (concept equivalence) for C ⊑ D and D ⊑ C. Again, the introduction
used Human⊓∃drives.Vehicle ≡ Driver as an example for concept equivalence.
The data is a set of facts of the form A(a) and r(a, b) for a, b ∈ NI, r ∈ NR, and
A ∈ NC, hence assigning individuals to concepts and roles. We denote the set of
individuals that occur in D by Ind(D). The introductory example of Section 1
used the set of individuals {h, v} and asserted the role drives(h, v).

The semantics of ontologies and data is defined via interpretations I =
(∆I , ·I) of a domain ∆I and a mapping ·I that assigns a set AI ⊆ ∆I to
every A ∈ NC, a binary relation rI ⊆ ∆I × ∆I to every role name r ∈ NR,
and an element aI ∈ ∆I to every a ∈ NI [10, Chapter 2.2]. As to incorporate
ALC-concept descriptions, the interpretation function is inductively defined as:

(¬C)I := ∆I \ CI

(C ⊓ D)I := CI ∩ DI

(C ⊔ D)I := CI ∪ DI

(∀r.C)I := {c ∈ ∆I | ∀d ∈ ∆I . (c, d) ∈ RI → d ∈ CI}
(∃r.C)I := {c ∈ ∆I | ∃d ∈ ∆I . (c, d) ∈ RI ∧ d ∈ CI}

Then, we say I |= C ⊑ D if CI ⊆ DI , I |= A(a) if aI ∈ AI , and I |= r(a, b) if
(aI , bI) ∈ rI . As to lift these definitions to ontologies and data, we write I |= O
and I |= D if O resp. D satisfy all concept inclusions in O resp. assertions in
D. Finally, for a complete knowledge base, we define I |= (O,D) if I |= O and
I |= D. More details on the semantics of DLs are given by Baader et al. [10].

L. Westhofen et al.172

We now extend this definition of non-temporal knowledge bases to the tempo-
ral case, where a knowledge base consists of an ontology O and a finite sequence
of assertions that describe the databases over time.

Definition 1 (Temporal Knowledge Base). A temporal knowledge base
(KB) is a tuple K = (O, (Di)i∈{0,...,n}) where O is an ontology and each Di
is a database.

Their semantics is defined by temporal interpretations using the non-temporal
case as its basis.

Definition 2 (Temporal Interpretation). A temporal interpretation I is a
finite sequence I = (Ii)i∈{0,...,m} of interpretations over a fixed domain ∆ such
that aIi = aIj , for all a ∈ NI and 0 ≤ i, j ≤ m. We call I a model of the temporal
KB (O, (Di)i∈{0,...,n}), written I |= K, if m = n and Ii |= Di and Ii |= O, for
all i ∈ {0, . . . , n}.

The assumption that all interpretations share a common domain is called con-
stant domain assumption. We define next the language MTCQ that we use to
query temporal KBs. It is a combination of standard conjunctive queries with
temporal operators inspired by MLTL [29].

Definition 3 (Syntax of MTCQs). Let NV be a countably infinite set of vari-
able names. A conjunctive query (CQ) φ is an expression of the form φ(x⃗) =
∃y⃗.ψ(x⃗, y⃗) where x⃗, y⃗ are tuples of variables from NV and ψ is a conjunction of
concept atoms A(t) and role atoms r(t, t′) with A ∈ NC, r ∈ NR, and t, t′ ∈
x⃗∪ y⃗ ∪NI. Metric temporal conjunctive queries (MTCQs) Φ are built from CQs
using negation ¬Φ, conjunction Φ ∧ Φ′, and two versions of until, ΦUΦ′ and
ΦU[a,b]Φ

′ for a, b ∈ N. We denote with Ind(Φ) the set of individuals and Var(Φ)
the set of variables in an MTCQ Φ.

Note that we extend MLTL by borrowing the unconstrained until operator from
LTL, because it is a frequent operator in practice. Additionally, it allows for
a more direct translation to finite automata in our system presented later on.
We call the variables x⃗ the answer variables and y⃗ the quantified variables. An
MTCQ is Boolean if it does not have answer variables. The semantics of Boolean
CQs is defined in terms of matches into interpretations.

Definition 4 (Semantics of Boolean CQs). For a Boolean conjunctive query
φ and an interpretation I, I |= φ iff there exists a function π : Var(φ)∪Ind(φ) →
∆I with 1. π(a) = aI for all a ∈ Ind(φ), 2. π(t) ∈ CI for all C(t) in φ, and
3. (π(t), π(t′)) ∈ rI for all r(t, t′) in φ.

Hence, an interpretation satisfies a Boolean CQ if the interpretation can respect
its constraints. Boolean CQs form the basis for the semantics of Boolean MTCQs.

Definition 5 (Semantics of Boolean MTCQs). Let I = (Ii)i∈{0,...,m} be a
temporal interpretation and i ∈ {0, . . . ,m}. The semantics of Boolean MTCQs
is given by structural induction:

– I, i |= Φ iff Ii |= Φ, if Φ is a Boolean CQ;

Answering Temporal Conjunctive Queries over Description Logic Ontologies 173

– I, i |= ¬Φ iff I, i ̸|= Φ;
– I, i |= Φ1 ∧ Φ2 iff I, i |= Φ1 and I, i |= Φ2;
– I, i |= Φ1 U[a,b]Φ2 iff there is a k ∈ [a, b] with i+k ≤ m such that I, i+k |= Φ2

and I, i+ j |= Φ1, for all j ∈ [a, k);
– I, i |= Φ1 UΦ2 iff there is a k ∈ [i,m] such that I, k |= Φ2 and I, j |= Φ1, for

all j ∈ [i, i+ k).

We allow the typical abbreviations Φ ∨ Φ′ for ¬(¬Φ ∧ ¬Φ′), false for ∃x.A(x) ∧
¬∃x.A(x) for some A ∈ NC, true for ¬false, ♢[a,b]Φ for trueU[a,b]Φ, ♢Φ for trueUΦ,
□[a,b]Φ for ¬♢[a,b]¬Φ, and □Φ for ¬♢¬Φ. The strong next-operator is defined as
Φ ≡ ♢[1,1]Φ and weak next as Φ ≡ □[1,1]Φ. Note that finite trace semantics

exhibit some non-obvious behaviors, e.g., ♢□Φ is equivalent to □♢Φ [17].
A central problem over Boolean MTCQs is entailment : For a temporal KB

K and an MTCQ Φ, we say K |= Φ if for all temporal interpretations I with
I |= K also I, 0 |= Φ holds. For example, for Kex from Section 1, it holds that
Kex |= ♢¬Pedestrian(h) as for any temporal interpretation I = (I0, I1) with
I0 |= Oex and I0 |= Dex

0 , it must also hold that hI0 ∈ (¬Pedestrian)I0 due to
the fact that h is inferred to be a driver and thus cannot be a pedestrian.

We remark that this semantics is closely related to the one over temporal
conjunctive queries (TCQs) introduced by Baader et al. [8] to query temporal
KBs over arbitrary models, i.e., not restricted to mission time. In fact, it is not
difficult to see that entailment K |= Φ for Boolean MTCQs Φ can be reduced to
deciding whether K entails Φ̂ in the sense of Baader et al. [8] for some TCQ Φ̂
that can be computed in polynomial time from Φ; we denote the latter entailment
relation with K |=BBL Φ̂. In the mentioned paper it is also shown that the latter
entailment problem is in ExpTime. Together with the ExpTime-lower bound for
subsumption in ALC this shows that MTCQ entailment is ExpTime-complete.
Of course, the complexity is potentially higher for ontology languages beyond
ALC. Finally, if in place of CQs in MTCQs we allow for ALC-concepts, the
resulting language can be embedded into the metric temporal DLs discussed by
Gutiérrez-Basulto et al. [23].

While Boolean MTCQ entailment is the natural problem to consider for com-
plexity analysis, a practical system needs support for answering non-Boolean
MTCQs, which is defined based on entailment. Let K = (O, (Di)i∈{0,...,n}) be a
temporal KB, Φ(x⃗) an MTCQ with answer variables x⃗, and a⃗ a tuple of indi-
viduals from K, i.e., a⃗ ⊆ Ind(K) :−

⋃
i=0,...,n Ind(Di). We call a⃗ a certain answer

to Φ(x⃗) over K if K |= Φ(⃗a). Here, Φ(⃗a) is the uniform replacement of the vari-
ables in x⃗ by the individual names in a⃗, leading to a Boolean MTCQ. Our main
reasoning task is to compute the set certK(Φ) of certain answers of Φ over K.
Section 1 gives an example for this set: certKex (♢¬Pedestrian(x)) = {h}.

4 Computing Certain Answers in Practice

We start with noting that to compute certK(Φ), it is not sufficient to answer all
of Φ’s CQs at time i and combine them inductively according to the semantics

L. Westhofen et al.174

due to the presence of disjunction in our query language. An example is the
MTCQ Φ∨(x) := B(x) ∨ C(x) over the temporal KB K∨ := (A ⊑ B ⊔ C, (A(a))),
where certK∨(Φ∨) = {(a)}. A separate check of B(x) and C(x) returns no answer,
and inductive combination falsely yields no answer as well. This issue explains
the restriction to conjunctions in existing CQ answering implementations over
expressive DLs, as complexity is reduced and various optimizations can be em-
ployed. Therefore, and in contrast to both LTLf over propositional atoms and
CQ answering, we require a more involved procedure for checking MTCQs.

The correct but naïve way to compute certK(Φ) is to enumerate all candidate
answers a⃗ ⊆ Ind(K) and decide whether K |=BBL Φ̂(⃗a) via the algorithms pro-
vided by Baader et al. [8] (for the temporal aspects) and Horrocks and Tessaris
[25] (for answering disjunctions of conjunctive queries). This, however, suffers
from several problems. First, there are potentially many answer candidates since
the number of relevant tuples is exponential in the arity of the query Φ. Sec-
ond, while the mentioned algorithm for deciding |=BBL is useful for a complexity
analysis, it does not lend itself to a direct implementation. Finally, the algo-
rithm of Baader et al. works over unrestricted models and is thus more difficult
to implement. This section provides the foundations for the algorithm that we
implemented in our tool and the central improvements needed to make it work
in practice.

As MTCQs are closed under negation, entailment is just the complement of
satisfiability : a Boolean MTCQ Φ is satisfiable w.r.t. a temporal KB K if there
is a model I of K with I, 0 |= Φ. As K |= Φ iff ¬Φ is unsatisfiable w.r.t. K, we
can, for the sake of convenience, focus on satisfiability in the following.

We need some preliminary notions. Given an MTCQ Φ (possibly with answer
variables), we denote with CQ(Φ) the set of all CQs in Φ. The propositional ab-
straction PA(Φ) of Φ is the replacement of each φ ∈ CQ(Φ) with a propositional
variable pφ. Note that the propositional abstraction of an MTCQ is an MLTL
formula potentially with an unconstrained until, which is the underlying tempo-
ral formalism. This TL is interpreted over finite words P0 · · ·Pn where each Pi
specifies the propositional variables that are satisfied at time point i. Boolean
operators are interpreted as usual and temporal operators U and U[a,b] are inter-
preted in line with Definition 5. The following characterization of satisfiability
is easy to prove from the definitions.

Lemma 1. For a Boolean MTCQ Φ and a temporal KB K = (O, (Di)i∈{0,...,n}),
Φ is satisfiable w.r.t. K iff there is a sequence X0, . . . , Xn of subsets of CQ(Φ)
such that:

1. there are interpretations I0, . . . , In over the same domain such that, for all
i ∈ {0, . . . , n}, we have Ii |= O, Ii |= Di, and Ii |= φ for every φ ∈ Xi, and
Ii ̸|= φ for every φ ∈ CQ(Φ) \Xi, and

2. ({pφ | φ ∈ Xi})i∈{0,...,n} satisfies PA(Φ).

Intuitively, Lemma 1 splits the problem of deciding MTCQ satisfiability into sep-
arate DL and TL tasks which are only connected by the sets of CQs X0, . . . , Xn.

Answering Temporal Conjunctive Queries over Description Logic Ontologies 175

Lemma 1 can be further refined as follows. The requirement that all inter-
pretations I0, . . . , In be over the same domain can be dropped without com-
promising correctness. Indeed, we can combine I0, . . . , In witnessing Point 1 in
Lemma 1 but with potentially different domains into I ′

0, . . . , I ′
n with the same

domain using a standard argument, cf. the proof of Theorem 5.21 by Lippmann
[30]: Since ALC cannot enforce finite models, we can assume that each Ii is infi-
nite. By the downward Löwenheim-Skolem-Theorem, we can assume that the Ii
are countably infinite and thus have the same domain. It remains to identify the
interpretation of the individual names. Note that the argument goes through for
more expressive logics such as SRIQ(D).

Lemma 2. Lemma 1 remains valid when “over the same domain” is dropped
from Point 1.

Hence, the checks at each time in (the modified) Point 1 are independent. It
remains to show how we can implement the check of Point 1, which includes
negated CQs. By the natural connection between satisfiability and entailment, we
can leverage an engine for answering disjunctions of CQs over non-temporal ALC
KBs for this, i.e., computing certK(Φ) for K = (O,D) and Φ a disjunction of CQs.
For doing so, we associate with every Boolean CQ φ its canonical database Dφ
which is just the set of all conjuncts that occur in φ. (For the sake of simplicity,
we allow variable names from φ as individual names in Dφ.) We then exploit the
following observation.

Observation 1 Let X be a set of Boolean CQs, let O be an ALC-ontology and
D the data. Then the following are equivalent for every subset Z ⊆ X:

(a) There is a model I of O and D such that I |= φ for every φ ∈ Z, and I ̸|= φ
for every φ ∈ X \ Z.

(b) (O,D′) ̸|=
∨
φ∈X\Z φ where D′ is the union of D with Dφ for each φ ∈ Z

(with variables across different Dφ suitably renamed).

Thus, to check the modified Point 1 for some time point (a condition of shape (a)
in the above Lemma), we can check its reformulation as (b) using a (non-
temporal) query engine for disjunctions of CQs. As demonstrated by the exem-
plary query Φ∨(x), this is, however, more involved than answering each disjunc-
tion separately, a problem already known to the DL community. For correctly
answering such disjunctions of CQs, we require a reformulation in of the disjunc-
tion into conjunctive normal form, and then answer each conjunct separately as
described by Horrocks et al. [25]. For P ⊆ {pφ | φ ∈ CQ(Φ)}, we define VALiΦ(P)
as true iff. O,D := Di, Z := {φ | pφ ∈ P}, X := CQ(Φ) pass the test in Point (b),
and thus the modified Point 1.

To implement Point 2, we exploit that for each MLTL formula χ over some
set of propositions Σ, one can compute an equivalent LTLf (LTL over finite
traces) formula χ′ over Σ [29] which in turn can be transformed into a finite
automaton (FA) Aχ over 2Σ which recognizes precisely the models of χ′ and
thus of χ [17]. Both these transformations are not polynomial and there is, in
general, no efficient conversion of an MLTL formula to an FA. However, since

L. Westhofen et al.176

q0 q1 q2

pA(x) ∧ ¬pr(x,y)

pA(x) ∧ pr(x,y)

¬pA(x)

pA(x)

¬pA(x)

true

Fig. 1. FA for PA(¬(□A(x) ∧ ♢r(x, y))).

Algorithm 1 Computing certain answers to MTCQs.
Input: MTCQ Φ(x⃗), temporal KB K = (O, (D)i∈{0,...,n})
Output: certK(Φ).
1: D := Construct_FA(PA(¬Φ));
2: // states Q, initial state q0, final states F , transitions ∆
3: C := ind(D)k where k = |x⃗|
4: Initialize S(⃗a, 0) := {q0} for all a⃗ ∈ C
5: for i := 1 to n+ 1 do
6: for a⃗ ∈ C do
7: S(⃗a, i) := ∅
8: for q ∈ S(⃗a, i− 1) do
9: S(⃗a, i) := S(⃗a, i) ∪ {q′ | (q,X, q′) ∈ ∆,VALi−1

¬Φ(a⃗)(X)}
10: end for
11: end for
12: end for
13: return {a⃗ ∈ C | S(⃗a, n+ 1) ∩ F = ∅};

queries are often small in practice, this is still feasible. For example, the minimal
FA for p1 U≤a♢≤bp2 has a + b + 3 states. Figure 1 shows the FA for answering
the simple MTCQ Φex (x, y) = □A(x) ∧ ♢r(x, y). Note that the transitions are
labeled with Boolean formulas over the propositions indicating a transition for
each model of the formula, which can be exponentially more succinct.

What was said so far suggests the basic procedure for computing certK(Φ)
that is depicted in Algorithm 1. It considers for each answer candidate a⃗ all pos-
sible ’runs’ X0, . . . , Xn in a step-by-step fashion and checks (modified) Points 1
and 2 after each step; the set S(⃗a, i) contains all states the FA corresponding to
¬Φ(⃗a) can reach after i steps. The central test happens in Line 7 and is given
here for the direct encoding of the transitions; it can easily be adapted for the
mentioned succinct encoding. The algorithm returns all a⃗ for which no final state
is reachable after n+1 steps. Applied to the example FA in Figure 1 and a can-
didate answer (a, b) this means that the FA ends up in state q1 in all possible
runs, according to the temporal KB. The only way to achieve this is for the FA
to not stay in q0 or q2. For this, it has to eventually change from q0 to q1 by
having neither A(a) ∧ ¬r(a, b) nor ¬A(a) but A(a) ∧ r(a, b) satisfiable. The FA
shall then stay solely in q1 with only A(a) satisfiable for the remainder. Clearly,
in this case (a, b) is a certain answer.

Answering Temporal Conjunctive Queries over Description Logic Ontologies 177

4.1 Improvements

Some standard improvements over Algorithm 1 are applicable, e.g., to work
directly on a minimal FA. However, this does not yet address the problem of
the many answer candidates to consider, of which, in practice, only few will be
entailed. Algorithm 1 considers each candidate individually, which is inefficient
since similar tasks are repeatedly executed. We instead leverage existing systems
that implement efficient algorithms specifically tailored towards answering CQs
over standard (non-temporal) KBs. As an example, consider again the FA in
Figure 1. Observe that q2 ∈ S(⃗a, i) for all a⃗, i for which (O,Di−1) ̸|= A(⃗a).
Indeed, ¬A(⃗a) is satisfiable w.r.t. (O,Di−1), for those a⃗, i. Since q2 is a sink, this
allows us to instantly reject all non-answers to A(x). We now generalize this to
extract certain (non-)answers by answering the CQs occurring in the edges.

The main idea is to perform an under-approximating traversal of the FA
prior to Algorithm 1. More concretely, we use CQ answering to construct sets
R(⃗a, i) ⊆ S(⃗a, i) and U (⃗a, i) ⊆ Q \ S(⃗a, i) that under-approximate the reachable
and unreachable states, respectively, for a candidate a⃗ at time i. This serves two
purposes. First, we can already extract some certain answers from U and some
certain non-answers from R, namely the sets {a⃗ ∈ C | U (⃗a, n + 1) ⊇ F} and
{a⃗ ∈ C | R(⃗a, n + 1) ⊆ F}, respectively. These candidates are not considered
anymore during the run of Algorithm 1. Second, we are able to re-use cached
answers to CQs in the first traversal during Algorithm 1.

We now describe how to construct the sets R and U during FA traversal.
R(⃗a, 0) is initialized as {q0} and U (⃗a, 0) is initialized as Q\{q0}, for all a⃗. For the
update step with i > 0, we assume for all states qk, ql to have succinctly encoded
edges αk,l :=

∧
pφ∈P0

¬pφ ∧
∧
pφ∈P1

pφ for some sets P0, P1 ⊆ P , as already used
in Figure 1. When examining such an edge in the FA at time i, we use a CQ engine
on Ki := (O,Di) to compute certKi(φ) for all φ ∈ {ψ | pψ ∈ P0} ∪ {

∧
pψ∈P1

ψ}.
From these sets, we are able to extract information on the relevant queries:

1. for all a⃗ ̸∈ certKi(φ): ¬φ(⃗a) is satisfiable w.r.t. Ki;
2. for all a⃗ ∈ certKi(φ): φ(⃗a) is satisfiable and ¬φ(⃗a) is unsatisfiable w.r.t. Ki.

We transfer this knowledge about the (un-)satisfiability of φ(⃗a) and ¬φ(⃗a) to
the edges αk,l. Satisfiability knowledge is transferable if qk ∈ R(⃗a, i − 1) and
αk,l = pφ resp. αk,l = ¬pφ. We then add ql to R(⃗a, i). Unsatisfiability knowledge
on ¬φ(⃗a) is transferable if αk,l contains ¬pφ. Adding unsatisfiability knowledge
to U requires adaptations. Firstly, we can only add ql to U (⃗a, i) if all other
edges αj,l to ql also agree on unsatisfiability of a⃗ at time i, i.e., they contain
some ¬pφ′ for which φ′(⃗a) is known to be unsatisfiable or qj ∈ U (⃗a, i − 1).
Secondly, unsatisfiability generates new satisfiability information: for a state qk
with successors ql1 , . . . , qlh we know that {ql1 , . . . , qlh−1

} ⊆ U (⃗a, i) implies qlh ∈
R(⃗a, i). Together with the described acceptance condition, the sets R(⃗a, n + 1)
and U (⃗a, n+ 1) deliver an under-approximation of the certain (non-)answers.

L. Westhofen et al.178

4.2 Our System

We implemented this approach as a module in the DL reasoner Openllet [37].
The implementation is available at https://github.com/lu-w/topllet. Our
module does not support full MTCQs yet. Instead of allowing arbitrary CQs as
atoms, we allow the subclass tCQ of CQ which consists of all CQs φ s.t. in the
graph Gφ = (V,E) with V = Var(φ) ∪ Ind(φ) and E = {(t, r, t′) | r(t, t′) ∈ φ}
each vertex has at most one incoming edge and, if interpreted undirectedly, G
is acyclic, i.e., the query graph is tree-shaped4.

We denote with tMTCQ the subclass of MTCQ where each CQ is in fact a
tCQ. The reasons for considering this query class are two-fold. First, most queries
that occur in practice are tMTCQs. Second, tCQ answering can be implemented
by a straightforward procedure of ’rolling-up’ the query graph [25]. Therefore,
Openllet already provides an tCQ-answering engine over SROIQ(D) KBs,
implementing many optimizations [36]. Moreover, the procedure can be adapted
to answering disjunctions of tCQs as described by Horrocks and Tessaris [25],
which required for our algorithm, cf. Point (b) in Observation 1.

As a first necessary step, we thus extended Openllet to being able to an-
swer disjunctions of tCQs. For the construction of the FA, we implemented the
conversion of MLTL to LTLf described by Li et al. [29]: essentially, the intervals
in U[a,b] are encoded using sequences of the next-operator of length a and b,
respectively. We then rely on Lydia, which converts LTLf formulas to equivalent
deterministic FA [20]. We extend and use the AutomataLib [28] to access the
resulting FA. We provide a test suite for our system to highlight correctness of
the implemented algorithms.

5 Benchmarks

Our CQ answering approach motivates the need for empirical evaluation, for
which ideally controlled real-world data is used. In fact, for one experiment, we
obtained drone data from an intersection in Germany. These data turned out to
be insufficient for a thorough evaluation, as they are proprietary and not scalable.
This calls for synthetic yet realistic benchmark data that can be randomized,
scaled in size, and are freely available for replicability. However, we are currently
not aware of any public benchmark data on querying temporal KBs. The same
was noted by the developers of MeTeoR, where data of the Lehigh University
Benchmark [21] are extended with random intervals to enable an evaluation on
the OWL RL fragment of LUBM. Unfortunately, a random extension of a non-
temporal benchmark might not reflect actual temporal data, e.g., in continuity of
concepts over time, and thus might not transfer to real-world applications. As our
final contribution, we hence present the Traffic Ontology Benchmark (TOBM), a
benchmark generator for scenarios of automated driving applications that mimics
4 This constraint allows us to perform the rolling-up procedure on the BCQs of the

FA. However, it is actually just a sufficient condition for rolling-up. More precisely,
we require the FA to contain only BCQs where each negated query is a tCQ.

Answering Temporal Conjunctive Queries over Description Logic Ontologies 179

Fig. 2. A scene of the T-crossing scenario sampled from TOBM.

real-world data and enables to evaluate tools on temporal KBs, including MTCQ
answering. The tool is available at https://github.com/lu-w/tobm.

For the ontology we rely on the publicly available Automotive Urban Traffic
Ontology (A.U.T.O.) [42, Section 5]. It is a conglomerate of SRIQ(D) ontologies
for the traffic domain and related fields, and currently consists of 1449 axioms
over 676 concepts and 213 roles. A.U.T.O. was already successfully used for
analyzing real-world traffic data from drone recordings [42, Section 8].

The benchmark generator creates temporal data for A.U.T.O. with individu-
als scaling linear to some N > 0. A seed S can be used for pseudo-randomization.
From both parameters, it generates scenarios of a certain length (by default, 20
seconds). These can be sampled from two settings:

1. A T-crossing setup with parking vehicles, a pedestrian crossing, bikeway
lanes, pedestrians, bicyclists, and passenger cars (cf. Figure 2). It has 8·N+22
individuals.

2. An X-crossing of two urban roads with traffic signs and dysfunctional traffic
lights. Compared to the T-crossing, there are no bicyclists and 5 · N + 69
individuals.

The scenarios are created based on behavior models for pedestrians, bicy-
clists, and passenger cars. Passenger cars and bicyclists drive up to a speed limit
if their front area is free, otherwise they use a following mode. Vehicles yield on a
predicted intersecting path. Moreover, a random successor lane is selected when
turning at intersections, giving a turning signal with a probability of 3% each
time point. Pedestrians follow their walkway, but can randomly initiate road
crossing with a probability of 0.7%. We give a visualization of two exemplary
scenarios can be found in the linked repository.

Our implementation models temporal KBs as a list of OWL2-files for the
data, each importing a shared ontology. Geometrical data are abstracted to
spatial predicates (e.g., is_in_front_of) in a pre-processing step. For S = 0,
N = 3, and 20 seconds sampled with 10 Hertz on the T-crossing setting, this
results in a data sequence with 46 individuals and 647 847 assertions in total
(approx. 3 239 per time point) with constant assertions only counted once.

L. Westhofen et al.180

6 Evaluation

We now examine practical feasibility of our system by an evaluation on TOBM,
answering the following questions:

1. Is the approach applicable to practical, a-posteriori situation recognition
tasks (such as evaluating test data) with larger numbers of assertions?

2. What is the impact of our improvement of leveraging CQ answering on
overall applicability?

3. In practical settings, how much satisfiability knowledge can be generated by
CQ answering?

As inputs, we sampled TOBM with S = 0 and N ∈ {1, . . . , 5} for both the
X- and T-crossing. We fix a 20 second duration with ten Hertz, as our algorithm
performs linear in N . The supplementary artifact provides both the benchmarks
and a wrapper around TOBM for reproducible re-generation. We used four
queries (given in the supplementary artifact) asking for: intersecting paths with
VRUs (Φ1), passing of parking vehicles on two-lane roads (Φ2), vehicles turning
right (Φ3), and vehicles changing lanes without signals (Φ4), where Φ1, Φ2, and
Φ3 have two and Φ4 has three answer variables. The corresponding FAs have 8
(Φ1), 4 (Φ2, Φ4), and 3 (Φ3) states. Our tool is executed once per benchmark
and query combination, as deviations are not be expected due to determinism,
on an Intel Core i9-13900K with 64 GB RAM and a time limit of ten hours per
run, using a Windows Subsystem for Linux 1 on a Windows 10 host. The input
files and tool, with the exact version and configuration used for benchmarking,
are available online [41].

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
101

102

103

104
timeout

Φ1, x
Φ2, x

Φ3, x

Φ4, x

Φ1, t

Φ2, t

Φ3, t

Φ4, t

benchmark size (N)

w
al

lc
lo

ck
ru

n
ti

m
e

(s
)

Fig. 3. Wall clock running times of benchmark queries Φi, i ∈ {1, . . . , 4} and the T-
(t) resp. X-crossing (x) of size N .

For the first question, we show wall clock running times of our improved
algorithm in Figure 3. We exclude parsing and loading of queries and KBs as
we aim to only evaluate our algorithm. Running times indicate an exponential
dependency on the data size. There are also dependencies on the benchmark

Answering Temporal Conjunctive Queries over Description Logic Ontologies 181

type, e.g., for Φ2, where the non-existence of parking vehicles on the X-crossing
improves performance, and Φ4, where more lanes on the X-crossing increases
running time. This answers the first question positively, as our approach termi-
nates in minutes to hours, with the lowest being 25.54 seconds for Φ1 on the
20 second T-crossing scenario. However, the timeout was reached for Φ4 on the
X-crossing and N ≥ 2 for reasons to be discussed later.

101 102 103 104 105 106

Φ1

Φ2

Φ3

Φ4

s

w.o. CQ ans. w. CQ ans. (t1) w. CQ ans. (t2)

Fig. 4. Log-scaled running times with and without the CQ answering optimization
enabled for the TOBM T-crossing S = 0, N = 3. Running times without the opti-
mization are extrapolated after one hour.

The second question is addressed by comparing the running time of the im-
proved algorithm to the basic algorithm from Algorithm 1. The results in Figure 4
show that the naïve approach fails for real-world data, even for two answer vari-
ables. Moreover, most of the time is still spent using the expensive, full semantics
check despite iterating only through a fraction of all candidates (cf. Table 1).
Hence, leveraging the CQ engine makes MTCQ answering practically feasible.
However, some queries may trigger special cases in the optimizations of the CQ
engine, leading to higher running times, e.g., role inclusion axioms for Φ3.

The strong effect of leveraging CQ answering motivates deeper examination.
For this final question, we show wall clock times of both the CQ answering run t1
(’first run’) and the full-semantics run t2 (’second run’) in Figure 4. The effect
of CQ answering can be twofold: Firstly, a set of candidates can be excluded
globally. Secondly, even if a candidate was not globally excluded, it generates
’local’ (non-)answers that can be cached for subsequent checks of Point 1 of
Lemma 1. We thus report both exclusions, averaged over all time points and
checked edges at each time point, in Table 1. Moreover, one can ask whether the
second run is actually worthwhile. Table 1 reports how many certain answers
(certK) were already found in the first run (cert1K).

Our results show CQ answering to aid mainly by excluding candidates glob-
ally in a highly-optimized fashion, as it can resort to techniques like binary
instance retrieval, and often avoids consistency checks [36]. Local exclusion has
minor but non-negligible effects, e.g., avoiding on average 42 additional candi-
dates for Φ3. Moreover, all certain answers were already found in the first run,
indicating suitability of using only the incomplete first run.

L. Westhofen et al.182

Table 1. Effects of CQ answering on MTCQ answering for the TOBM T-crossing
S = 0, N = 3.

Query Φ1 Φ2 Φ3 Φ4

Globally excluded candidates (%) 97.88 99.29 97.88 99.71
Globally and locally excluded candidates (%) 98.73 99.55 99.54 99.80
|cert1K|/|certK| 1 1 1 1

However, leveraging CQ answering has its limitations. For Φ4 on the X-
crossing and N = 2, the first run excluded 99.83% of all candidates after 2.38
minutes, leaving 960 candidates for the second run. However, this is no small
task: for 200 time points in the data this leaves 180 seconds per time point to
finish within 10 hours. Hence, each candidate must not take up more than 0.1875
seconds per time point on average, which entails checking multiple edges in mul-
tiple states. Experiments indicate each edge check to take a two-digit millisecond
duration. Thus, to efficiently handle large candidate sets in the second run, we
require further optimizations.

7 Conclusion

In this work, we introduced MTCQs as a suitable tool for situation recognition
when testing requirements in complex operational domains, as illustrated by ur-
ban automated driving. Our tool, based on Openllet, brings MTCQ answering
into practice by leveraging efficient CQ answering algorithms. Our custom bench-
marks on safety-critical traffic situations show feasibility of our implementation
for test evaluation settings and a potential to use our tool in other domains.
These include risk assessments of other automated transportation systems, e.g.,
trams, maritime vessels, or delivery robots, and big-data analyses, e.g., process
mining in business applications over intricate real-world structures.

As future work, we plan to investigate both practical optimizations and the-
oretical adaptations for increasing performance. For the former, it is interesting
to (i) study how one can reuse query answers in consecutive time points given
that potentially only small portions of the data change, (ii) identify fragments
of MTCQs that can be answered more efficiently in practice (e.g., for runtime
verification), and (iii) treat the spatial information more efficiently. On the the-
oretical side, it is interesting to study rewriting approaches, where the idea is to
reduce the computation of certain answers to query evaluation in a target logic
such as first-order logic (possibly with +, <) or DatalogMTL [39]. The bene-
fit of such rewriting approaches is that one can leverage existing systems for
evaluation in the target language. First-order rewritings have been studied in
the context of more lightweight ontology and query languages [4]. While query
rewritings need not exist in general (for complexity reasons), they might be very
fruitful for practically occurring queries and ontologies.

Answering Temporal Conjunctive Queries over Description Logic Ontologies 183

References

1. Arechiga, N.: Specifying safety of autonomous vehicles in signal temporal logic.
In: 2019 IEEE Intelligent Vehicles Symposium. pp. 58–63. IEEE, New York, USA
(2019)

2. Artale, A., Franconi, E.: A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence 30(1), 171–210 (Jun 2000)

3. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Za-
kharyaschev, M.: Ontology-mediated query answering over temporal data: A survey
(invited talk). In: Schewe, S., Schneider, T., Wijsen, J. (eds.) 24th International
Symposium on Temporal Representation and Reasoning, TIME 2017, October 16-
18, 2017, Mons, Belgium. LIPIcs, vol. 90, pp. 1:1–1:37. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.TIME.2017.1,
https://doi.org/10.4230/LIPIcs.TIME.2017.1

4. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Za-
kharyaschev, M.: First-order rewritability and complexity of two-dimensional
temporal ontology-mediated queries. Journal of Artificial Intelligence Research
75, 1223–1291 (2022). https://doi.org/10.1613/jair.1.13511, https://doi.org/10.
1613/jair.1.13511

5. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for
temporal conceptual data modelling with description logics. ACM Transactions on
Computational Logic 15(3), 25:1–25:50 (2014). https://doi.org/10.1145/2629565,
https://doi.org/10.1145/2629565

6. Artale, A., Mazzullo, A., Ozaki, A.: Temporal description logics over finite traces.
In: Ortiz, M., Schneider, T. (eds.) Proceedings of the 31st International Workshop
on Description Logics co-located with 16th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2018), Tempe, Arizona, US,
October. CEUR Workshop Proceedings, vol. 2211. CEUR-WS.org (2018)

7. ASAM e.V.: Openxontology user guide 1.0.0 (01 2022), https://www.asam.net/
standards/asam-openxontology/, hoehenkirchen, Germany. Standard

8. Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data ac-
cess. In: Bonacina, M.P. (ed.) Automated Deduction – CADE-24. pp. 330–344.
Springer, Berlin, Germany (2013)

9. Baader, F., Borgwardt, S., Lippmann, M.: Temporal query entailment in
the description logic shq. Journal of Web Semantics 33, 71–93 (2015).
https://doi.org/10.1016/j.websem.2014.11.008

10. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D.: The
description logic handbook: Theory, implementation and applications. Cambridge
University Press (2003)

11. Babisch, S., Neurohr, C., Westhofen, L., Schoenawa, S., Liers, H., et al.: Leveraging
the gidas database for the criticality analysis of automated driving systems. Journal
of Advanced Transportation 2023 (2023)

12. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the descrip-
tion logic dl-lite. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) Frontiers of
Combining Systems. pp. 165–180. Springer, Berlin, Germany (2013)

13. Borgwardt, S., Thost, V.: Temporal query answering in the description logic el.
In: Proceedings of the 24th International Conference on Artificial Intelligence. pp.
2819–2825. AAAI Press, Palo Alto, USA (2015)

14. Brandt, S., Kalaycı, E.G., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev,
M.: Ontology-based data access with a horn fragment of metric temporal logic. In:

L. Westhofen et al.184

Proceedings of the AAAI Conference on Artificial Intelligence. vol. 31. AAAI Press,
Palo Alto, USA (2017)

15. Chomicki, J.: Polynomial time query processing in temporal deductive databases.
In: Rosenkrantz, D.J., Sagiv, Y. (eds.) Proceedings of the Ninth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. pp. 379–
391. ACM Press, New York, USA (1990). https://doi.org/10.1145/298514.298589,
https://doi.org/10.1145/298514.298589

16. De Gelder, E., Manders, J., Grappiolo, C., Paardekooper, J.P., Den Camp, O.O.,
De Schutter, B.: Real-world scenario mining for the assessment of automated ve-
hicles. In: 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). pp. 1–8. IEEE, New York, USA (2020)

17. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: IJCAI’13 Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence. pp. 854–860. AAAI Press, Palo Alto, USA
(2013)

18. Elspas, P., Langner, J., Aydinbas, M., Bach, J., Sax, E.: Leveraging regular ex-
pressions for flexible scenario detection in recorded driving data. In: 2020 IEEE
International Symposium on Systems Engineering (ISSE). pp. 1–8. IEEE, New
York USA (2020)

19. Esterle, K., Gressenbuch, L., Knoll, A.: Formalizing traffic rules for machine in-
terpretability. In: 2020 IEEE 3rd Connected and Automated Vehicles Symposium
(CAVS). pp. 1–7. IEEE (2020)

20. Giacomo, G.D., Favorito, M.: Compositional approach to translate ltlf/ldlf into
deterministic finite automata. In: Biundo, S., Do, M., Goldman, R., Katz, M., Yang,
Q., Zhuo, H.H. (eds.) Proceedings of the Thirty-First International Conference on
Automated Planning and Scheduling. pp. 122–130. AAAI Press, Palo Alto, USA
(2021)

21. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Journal of Web Semantics 3(2), 158–182 (2005)

22. Gutiérrez-Basulto, V., Jung, J.C., Kontchakov, R.: Temporalized EL ontologies
for accessing temporal data: Complexity of atomic queries. In: Kambhampati, S.
(ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence. pp. 1102–1108. IJCAI/AAAI Press, Palo Alto, USA (2016)

23. Gutiérrez-Basulto, V., Jung, J.C., Ozaki, A.: On metric temporal description logics.
In: Kaminka, G.A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V., Dignum,
F., van Harmelen, F. (eds.) ECAI 2016 - 22nd European Conference on Artificial
Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 837–
845. IOS Press, Amsterdam, The Netherlands (2016). https://doi.org/10.3233/978-
1-61499-672-9-837

24. Horrocks, I., Kutz, O., Sattler, U.: The irresistible SRIQ. In: Grau, B.C., Hor-
rocks, I., Parsia, B., Patel-Schneider, P.F. (eds.) Proceedings of the OWLED*05
Workshop on OWL: Experiences and Directions, Galway, Ireland, November 11-12,
2005. CEUR Workshop Proceedings, vol. 188. CEUR-WS.org (2005)

25. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic aboxes.
In: Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence. pp.
399–404. AAAI Press, Palo Alto, USA (2000)

26. Hülnhagen, T., Dengler, I., Tamke, A., Dang, T., Breuel, G.: Maneuver recognition
using probabilistic finite-state machines and fuzzy logic. In: 2010 IEEE Intelligent
Vehicles Symposium. pp. 65–70. IEEE, New York, USA (2010)

Answering Temporal Conjunctive Queries over Description Logic Ontologies 185

27. Hummel, B.: Description logic for scene understanding at the example of urban
road intersections. Ph.D. thesis, Universität Karlsruhe (TH) (2009)

28. Isberner, M., Howar, F., Steffen, B.: The open-source learnlib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) Computer Aided Verification. pp. 487–495. Springer, Berlin,
Germany (2015)

29. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for mission-time ltl. In:
Dillig, I., Tasiran, S. (eds.) Computer Aided Verification. pp. 3–22. Springer, Berlin,
Germany (2019)

30. Lippmann, M.: Temporalised description logics for monitoring partially observable
events. Ph.D. thesis, Dresden University of Technology (2014)

31. Lucchetti, A., Ongini, C., Formentin, S., Savaresi, S.M., Del Re, L.: Automatic
recognition of driving scenarios for adas design. In: IFAC Proceedings Volumes,
Symposium on Advances in Automotive Control. vol. 49, pp. 109–114. Elsevier,
Amsterdam, The Netherlands (2016)

32. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey. In:
2008 15th International Symposium on Temporal Representation and Reasoning.
pp. 3–14. IEEE, New York, USA (2008)

33. Maierhofer, S., Rettinger, A.K., Mayer, E.C., Althoff, M.: Formalization of inter-
state traffic rules in temporal logic. In: 2020 IEEE Intelligent Vehicles Symposium
(IV). pp. 752–759. IEEE, New York, USA (2020)

34. Neurohr, C., Westhofen, L., Henning, T., de Graaff, T., Möhlmann, E., Böde,
E.: Fundamental Considerations around Scenario-Based Testing for Automated
Driving. In: 2020 IEEE Intelligent Vehicles Symposium. pp. 121–127. IEEE, New
York, USA (2020). https://doi.org/10.1109/IV47402.2020.9304823

35. SAE International: J3016: Taxonomy and Definitions for Terms Related to Driv-
ing Automation Systems for On-Road Motor Vehicles (2021), Warrendale, USA.
Standard

36. Sirin, E., Parsia, B.: Optimizations for answering conjunctive abox queries: First
results. In: Proc. of the 2006 Int. Workshop on Description Logics (DL’06). pp.
215–222 (2006)

37. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

38. Thost, V., Holste, J., Özçep, Ö.: On implementing temporal query answering in dl-
lite. In: Proc. of the 28th Int. Workshop on Description Logics (DL’15). vol. 1350,
pp. 552–555 (2015)

39. Wałega, P.A., Grau, B.C., Kaminski, M., Kostylev, E.V.: Datalogmtl over the
integer timeline. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proceed-
ings of the 17th International Conference on Principles of Knowledge Represen-
tation and Reasoning. pp. 768–777. IJCAI/AAAI Press, Palo Alto, USA (2020).
https://doi.org/10.24963/kr.2020/79, https://doi.org/10.24963/kr.2020/79

40. Wang, D., Hu, P., Wałega, P.A., Grau, B.C.: Meteor: practical reasoning in dat-
alog with metric temporal operators. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 36, pp. 5906–5913. AAAI Press, Palo Alto, USA (2022)

41. Westhofen, L.: Openllet Temporal Query Benchmarks (Dec 2023).
https://doi.org/10.5281/zenodo.10436065, https://doi.org/10.5281/zenodo.
10436065

42. Westhofen, L., Neurohr, C., Butz, M., Scholtes, M., Schuldes, M.: Using ontologies
for the formalization and recognition of criticality for automated driving. IEEE
Open Journal of Intelligent Transportation Systems 3, 519–538 (2022)

L. Westhofen et al.186

43. Westhofen, L., Stierand, I., Becker, J.S., Möhlmann, E., Hagemann, W.: Towards
a congruent interpretation of traffic rules for automated driving-experiences and
challenges. In: Proceedings of the International Workshop on Methodologies for
Translating Legal Norms into Formal Representations (LN2FR 2022) in associa-
tion with the 35th International Conference on Legal Knowledge and Information
Systems (JURIX 2022). pp. 8–21 (2022)

44. Zipfl, M., Koch, N., Zöllner, J.M.: A comprehensive review on ontologies
for scenario-based testing in the context of autonomous driving. In: 2023
IEEE Intelligent Vehicles Symposium. pp. 1–7. IEEE, New York, USA (2023).
https://doi.org/10.1109/IV55152.2023.10186681

Answering Temporal Conjunctive Queries over Description Logic Ontologies 187

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Deciding Boolean Separation Logic via Small Models ∗

Abstract. We present a novel decision procedure for a fragment of separation
logic (SL) with arbitrary nesting of separating conjunctions with boolean con-
junctions, disjunctions, and guarded negations together with a support for the
most common variants of linked lists. Our method is based on a model-based
translation to SMT for which we introduce several optimisations—the most im-
portant of them is based on bounding the size of predicate instantiations within
models of larger formulae, which leads to a much more efficient translation of
SL formulae to SMT. Through a series of experiments, we show that, on the fre-
quently used symbolic heap fragment, our decision procedure is competitive with
other existing approaches, and it can outperform them outside the symbolic heap
fragment. Moreover, our decision procedure can also handle some formulae for
which no decision procedure has been implemented so far.

1 Introduction
In the last decade, separation logic (SL) [15, 30] has become one of the most popular
formalisms for reasoning about programs working with dynamically-allocated memory,
including approaches based on deductive verification [32], abstract interpretation [34],
symbolic execution [31], or bi-abductive analysis [6,12,18]. The key ingredients of SL
used in these approaches include the separating conjunction ∗, which allows modular
reasoning by stating that the program heap can be decomposed into disjoint parts satis-
fying operands of the separating conjunction, along with inductive predicates describing
shapes of data structures, such as lists, trees, or their various combinations.

The high expressive power of SL comes with the price of high complexity and even
undecidability when several of its features are combined together. The existing decision
procedures are usually limited to the so-called symbolic heap fragment that disallows
any boolean structure of spatial assertions.

In this paper, we present a novel decision procedure for a fragment of SL that we
call boolean separation logic (BSL). The fragment allows arbitrary nesting of sepa-
rating conjunctions and boolean connectives of conjunction, disjunction, and a limited
form of negation of the form φ∧¬ψ called guarded negation. To the best of our knowl-
edge, no existing, practically applicable decision procedure supports a fragment with
such a rich boolean structure and at least basic inductive predicates. The decision pro-
cedure for SL in CVC5 [29] supports arbitrary nesting of boolean connectives (including
even unguarded negation, which is considered very expensive in the context of SL) but
no inductive predicates. A support for conjunctions and disjunctions under separating

∗ The work was supported by the Czech Science Foundation project GA23-06506S. Basic re-
search funding of the Czech team was provided by the FIT BUT internal project FIT-S-23-
8151 and the ERC.CZ project LL1908. Tomáš Dacı́k was supported by the Brno Ph.D. Talent
Scholarship funded by the Brno City Municipality.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 188–206, 2024.
https://doi.org/10.1007/978-3-031-57246-3_11

Tomáš Dacı́k1(B) , Adam Rogalewicz1 , Tomáš Vojnar1 , and Florian Zuleger2

1 Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
idacik@fit vut cz

2 Faculty of Informatics, Vienna University of Technology, Vienna, Austria

https://doi.org/10.1007/978-3-031-57246-3_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_11&domain=pdf
http://orcid.org/0000-0003-4083-8943
http://orcid.org/0000-0002-7911-0549
http://orcid.org/0000-0002-2746-8792
http://orcid.org/0000-0003-1468-8398
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

conjunctions is available in the backend solver of the GRASSHOPPER verifier [27, 28]
though not described in the papers. In our experimental evaluation, we outperform both
of these approaches on some benchmarks (and can decide some formulae beyond the
capabilities of both of them). We further show that adding guarded negations to BSL
makes its satisfiability problem PSPACE-hard.

To motivate the usefulness of the fragment we consider, we now give several ex-
amples when SL formulae with a rich boolean structure are useful. First, in symbolic
execution of heap manipulating programs, one usually needs to consider functions that
involve some non-determinism—typically, at least the malloc statement has the non-
deterministic contract {emp} x = malloc() {x 7→ f ∨ (x = nil ∧ emp)} (where f
is a fresh variable) stating that when the statement is started in the empty heap, once it
finishes, x is either allocated, or the allocation had failed and the heap is empty. Such
contracts typically need a dedicated (and usually incomplete) treatment when no sup-
port of disjunctions is available.3 Further, the guarded negation semantically represents
the set of counterexamples of the entailment φ |= ψ, and hence allows one to reduce
entailment queries to UNSAT checking. Guarded negation can also be used when one
needs to obtain several models of a formula φ by joining formulae representing the
already obtained models to φ using guarded negations. One can also use the guarded
negation to express interesting properties such as the fact that given a list sls(x, y) and
a pointer y 7→ z, the pointer does not point back somewhere into the list closing a lasso.
This can be expressed through the formula

(
sls(x, y)∧¬

(
sls(x, z)∗ sls(z, y)

))
∗y 7→ z.

Finally, boolean connectives can be introduced by translating quantitative separation
logic into the classical SL [2].

In this work, we consider BSL with three fixed, built-in inductive predicates repre-
senting the most-common variants of lists: singly-linked (SLL), doubly-linked (DLL),
and nested singly-linked (NLL). Our results can be easily extended for their variations
such as nested doubly-linked lists of singly-linked lists and the like, but for the price of
manually defining their semantics in the SMT encoding. We do, however, believe that
our approach of bounding the sizes of models and instantiations of the individual pred-
icates can be lifted to more complex inductive definitions and can serve as a starting
point for allowing integration of SL with inductive definitions into SMT.

Contributions. Our approach to deciding BSL formulae is inspired by previous works
on translation of SL to SMT. The early works [27] and [28] translate SL to intermediate
theories first. Our approach is closer to the more recent approach of [16], which builds
on small-model properties and axiomatizes reachability through pointer links directly.
We extend the SL fragment considered in [16] by going beyond the so-called unique
footprint property (under which it is much easier to obtain an efficient translation). Fur-
ther, we define a more precise way to obtain global bounds on models of entire formu-
lae, and, most importantly, we modify the translation of inductive predicates in a way
that allows us to encode them succinctly by computing local bounds on their instanti-
ations. According to our experiments, this makes the decision procedure efficient and
competitive with the state-of-the-art approaches on the symbolic heap fragment (despite
the increased decisive power). The claims we make in this paper are proven in [9].

3 Note that, while the post-condition with a single disjunction might seem simple, the formulae
typically start growing in the further symbolic execution.

Deciding Boolean Separation Logic via Small Models 189

Related work. In [3], a proof system for deciding entailments of symbolic heaps with
lists was proposed. This problem was later shown to be solvable in polynomial time
in [8] via graph homomorphism checking. A superposition-based calculus for the frag-
ment was presented in [23], and a model-based approach enhancing SMT solvers was
proposed in [24]. In [24], a combination of SL with SMT theories is considered but still
limited to the symbolic heap fragment. A more expressive boolean structure and inte-
gration with SMT theories was developed in [27] for lists and extended for trees in [28]
but still without a support for guarded negations.

Other decision procedures are focusing on more general, user-defined inductive
predicates (usually of some restricted form). They are based, e.g., on cyclic proof sys-
tems (CYCLIST [5], S2S [19, 20]); lemma synthesis (SONGBIRD [33]); or automata—
tree automata are used in the tools SLIDE [13] and SPEN [11], and a specialised type of
automata, called heap automata, is used in HARRSH [17]. These procedures do, how-
ever, not support nested use of boolean connectives and separating conjunctions.

There also exist works on deciding much more expressive fragments of SL such
as [10,14,21,26] but they do not lead to practically implementable decision procedures.

2 Preliminaries

Partial functions. We write f : X ⇀ Y to denote a partial function fromX to Y . For a
partial function f , dom(f) and img(f) denote its domain and image, respectively; |f | =
|dom(f)| denotes its size, and f(x) = ⊥ denotes that f is undefined for x. A restriction
f |A of f to A ⊆ X is defined as f(x) for x ∈ A and undefined otherwise. To represent
a finite partial function f , we often use the set notation f = {x1 7→ y1, . . . , xn 7→ yn}
meaning that f maps each xi to yi, and is undefined for other values. We call partial
functions f1 and f2 disjoint if dom(f1) ∩ dom(f2) = ∅ and define their disjoint union
f1 ⊎ f2 as f1 ∪ f2, which is otherwise undefined.

Graphs and paths. Let G = (V,−→1, . . . ,−→m) be a directed graph with vertices V and
edges −→=−→1 ∪ · · · ∪ −→m. For 1 ≤ f ≤ m, a sequence σ = ⟨v0, v1, . . . , vn⟩ ∈ V +

is a path from v0 to vn via −→f in G, denoted as σ : v0 ⇝f vn, if all elements of σ are
distinct, and for all 0 ≤ i < n, it holds that vi −→f vi+1. By the definition, paths cannot
be cyclic. The domain of the path σ is the set dom(σ) = {v0, v1, ..., vn−1}, and the
length of the path is defined as |σ| = |dom(σ)| = n.

Formulae. For a first-order formula φ, we denote by φ[t/x] the formula obtained by
simultaneously replacing all free occurrences of the variable x in φ with the term t. For
a first-order model M and a term t, we write tM to denote the evaluation of t in M
defined as usual.

3 Separation Logic
Syntax. Let Vars be a countably infinite set of sorted variables. We denote by xS a
variable x of a sort S ∈ Sort = {S,D,N} representing a location in an SLL, DLL,
or NLL, respectively. We omit the sorts when they are not relevant or clear from the
context. We further assume that there exists a distinguished, unsorted variable nil. We
write vars(φ) to denote the set of all variables in φ plus nil (even when it does not
appear in φ). Analogically, varsS(φ) stands for all variables of the sort S plus nil.

190 T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger

(s, h) |= x ▷◁ y iff s(x) ▷◁ s(y) and dom(h) = ∅ for ▷◁ ∈ {=, ̸=}
(s, h) |= x 7→ ⟨fi : fi⟩i∈I iff h = {s(x) 7→ ⟨fi : s(fi)⟩i∈I}
(s, h) |= ψ1 ▷◁ ψ2 iff (s, h) |= ψ1 ▷◁ (s, h) |= ψ2 for ▷◁ ∈ {∧,∧¬,∨}
(s, h) |= ψ1 ∗ ψ2 iff ∃h1, h2. h = h1 ⊎ h2 ̸= ⊥ and (s, hi) |= ψi for i = 1, 2

(s, h) |= ∃x. ψ iff there exists ℓ such that (s[x 7→ ℓ], h) |= ψ

(s, h) |= sls(x, y) iff (s, h) |= x = y, or s(x) ̸= s(y)

and (s, h) |= ∃n. x 7→ n ∗ sls(n, y)
(s, h) |= dls(x, y, x′, y′) iff (s, h) |= x = y ∗ x′ = y′, or s(x) ̸= s(y), s(x′) ̸= s(y′),

and (s, h) |= ∃n. x 7→ ⟨n : n, p : y′⟩ ∗ dls(n, y, x′, x)
(s, h) |= nls(x, y, z) iff (s, h) |= x = y, or s(x) ̸= s(y)

and (s, h) |= ∃n, t. x 7→ ⟨n : n, t : t⟩ ∗ sls(n, z) ∗ nls(t, y, z)

Fig. 1: The semantics of the separation logic. The existential quantifier is used for the
definition of the semantics of inductive predicates and it is not a part of our fragment.

The syntax of our fragment is given by the following grammar:

p ::= xS 7→ ⟨n : n⟩ | xD 7→ ⟨n : n, p : p⟩ | xN 7→ ⟨n : n, t : t⟩ (points-to predicates)

π ::= sls(xS, yS) | dls(xD, yD, xDb , yDb) | nls(xN, yN, zS) (inductive predicates)
φA ::= x = y | x ̸= y | p | π (atomic formulae)
φ ::= φA | φ ∗ φ | φ ∧ φ | φ ∨ φ | φ ∧ ¬φ (formulae)

The points-to predicate x 7→ ⟨f1 : f1, . . . , fn : fn⟩ denotes that x is a structure
whose fields fi point to values fi. We often write x 7→ n instead of x 7→ ⟨n : n⟩ and
x 7→ if the right-hand side is not relevant. We call x the root of the points-to predicate.
If π is an inductive predicate sls(x, y), dls(x, y, x′, y′), or nls(x, y, z), we again call x
the root of π, y is the sink of π, and we write π(x, y) to denote the root and the sink.
We define the sort of the predicate π, denoted as Sπ , as the sort of its root. Then, there
is a one-to-one correspondence of predicates and sorts, which we often implicitly use.

Memory model. Let Loc be a countably infinite set of memory locations, and let Field =
{n, p, t} be the set of fields. A stack is a finite partial function s : Vars ⇀ Loc. A heap
is a finite partial function h : Loc ⇀ (Field ⇀ Loc). For succinctness, we write h(ℓ, f)
instead of h(ℓ)(f). To represent heap elements in a readable way, we write functions
Field⇀ Loc as vectors with labels, i.e., h(ℓ) = ⟨f : h(ℓ, f) | f ∈ Field ∧ h(ℓ, f) ̸= ⊥⟩
and we write img(h) for {ℓ ∈ Loc | ∃ℓ′, f. h(ℓ′, f) = ℓ}. Moreover, we use h(ℓ) = n
when h(ℓ) = ⟨n : n⟩. A stack-heap model is a pair (s, h) where s is stack and h is
a heap such that s(nil) ̸= ⊥ and h(s(nil)) = ⊥. We define the set of locations of the
model (s, h) as locs(s, h) = img(s) ∪ dom(h) ∪ img(h).

Semantics. The semantics of our SL over stack-heap models is given in Fig. 1. For pure
formulae, we use the so-called precise semantics, which additionally requires that the
heap must be empty4. The semantics of pointer assertions, boolean connectives, and

4 This is a common approach to avoid the atom true to be expressed as nil = nil. In our fragment,
we forbid true in order not to introduce “unbounded” negations as ¬φ ≜ true ∧ ¬φ. Due to
this change, symbolic heaps are formulae of form ∗ψi where each ψi is an atom.

Deciding Boolean Separation Logic via Small Models 191

separating conjunctions is as usual. The intuition behind the semantics of the inductive
predicates is as follows. An SLL segment sls(x, y) is either empty or represents an
acyclic sequence of allocated locations starting from x and leading via the n field to y,
which is not allocated. A DLL segment dls(x, y, x′, y′) is either empty with x = y and
x′ = y′, or it represents an acyclic sequence that is doubly-linked via the n and p fields
and leads from the first allocated location x of the segment to its last allocated location
x′ (x and x′ may coincide) with y/y′ being the n/p-successors of x′/x, respectively. Both
y and y′ are not allocated. An NLL segment nls(x, y, z) is a (possibly empty) acyclic
sequence of locations starting from x and leading to y via the t (top) field in which
successor of each locations starts a disjoint inner SLL to z via n.

Stack-heap graphs. We frequently identify stack-heap models with their graph repre-
sentation. A stack-heap model (s, h) defines a graphG[(s, h)] = (V, (−→f)f∈Field) where
V = locs(s, h) and u −→f v iff h(u, f) = v. We frequently use the fact that if there exists
a path σ : x⇝f y in a stack-heap graph, then it is uniquely determined because f-edges
are given by a partial function.

4 Small-Model Property

Small-model properties, which state that each satisfiable formula has a model of bound-
ed size, are frequently used for various fragments of SL to prove their decidability [7] or
to design decision procedures [16, 26, 29]. The latter is also the case of our translation-
based decision procedure which will heavily rely on enumeration over all locations,
and, for its efficiency, it is therefore necessary to obtain location bounds that are as
small as possible.

The way we obtain our small-model property is inspired by the approach of [16]
and by insights from the so-called strong-separation logic [26]. The main idea is to
define a satisfiability-preserving reduction ↓sh which takes a heap h (referenced from a
stack s), decomposes it into basic sub-heaps (which we call chunks), and reduces it per
the sub-heaps in such a way that its size can be easily bounded by a linear expression.
To define the reduction, we first need to introduce some auxiliary notions related to
stack-heap models.

We say that a model (s, h) is positive if there exists φ with (s, h) |= φ. A positive
model (s, h) is atomic if it is non-empty, and for all positive models (s, h1) and (s, h2),
h = h1 ⊎ h2 implies that h1 = ∅ or h2 = ∅. In other words, atomic models cannot be
decomposed into two non-empty positive models. Several examples of atomic models
are shown in Fig. 2. Observe that the models of dls (Figure 2b) and nls (Figure 2c) are
indeed atomic as any of their decomposition, in particular the split at the location u,
does not give two positive models.

A sub-heap c ⊆ h is a chunk of a model (s, h) if c is a maximal sub-heap of h such
that (s, c) is an atomic positive model. Notice that the way the definition of chunks is
constructed excludes the possibility of using as a chunk a sub-heap of a heap that itself
forms an atomic model. The reason is that otherwise the remaining part of the larger
atomic model could not described by the available predicates. For example, in nested
lists as shown in Fig. 2c, one cannot take as a chunk a part of some inner list (e.g., the
pointer u 7→ z) as the heap shown in the figure itself forms an atomic model. Indeed, if
u 7→ z was removed, one would need a more general version of the NLL predicate to
cover the remaining heap by atomic models.

192 T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger

x

ℓ

y

(a) A singly-linked list sls(x, y).

y′ x

ℓ

u x′ y

(b) A doubly-linked list dls(x, y, x′, y′).

x

ℓ

y

zu

(c) A nested singly-linked list nls(x, y, z).

Fig. 2: An illustration of reductions of atomic models of inductive predicates. Removed
heap locations are red, removed edges are dotted, and added edges are highlighted.

Lemma 1 (Chunk decomposition). A positive model (s, h) can be uniquely decom-
posed into the set of its chunks, denoted chunks(s, h), i.e., h =

⊎
chunks(s, h).

Minimal atomic models of inductive predicates. The key reason why the small-model
property that we are going to state holds is that our fragment of SL cannot distinguish
atomic models of the considered predicates beyond certain small sizes—namely, two
for sls and nls, and three for dls. For further use, we will now state predicates describing
exactly the sets of the indistinguishable lists of the different kinds.

We start with SLLs and use a disequality to exclude empty lists: sls≥1(x, y) ≜
sls(x, y) ∗ x ̸= y, and a guarded negation to exclude lists of length one consisting of a
single pointer only: sls≥2(x, y) ≜ sls≥1(x, y) ∧ ¬(x 7→ y). A similar predicate can be
defined for NLLs too: nls≥2(x, y, z) ≜

(
nls(x, y, z) ∗ x ̸= y

)
∧ ¬(x 7→ ⟨n : z, t : y⟩).

For DLLs, we define dls≥2(x, y, x
′, y′) ≜ dls(x, y, x′, y′)∗x ̸= y∗x ̸= x′ to exclude

models that are either empty or consist of a single pointer; and dls≥3(x, y, x
′, y′) ≜

dls≥2(x, y, x
′, y′) ∧ ¬(x 7→ ⟨n : x′, p : y′⟩ ∗ x′ 7→ ⟨n : y, p : x⟩) to also exclude models

consisting of exactly two pointers.
It holds that atomic models, and consequently also chunks, are precisely either mod-

els of single pointers or of the above predicates.

Lemma 2. For atomic model (s, h), exactly one of the following conditions holds.

1. (s, h) |= x 7→ for some x. (pointer-atom)
2. (s, h) |= sls≥2(x, y) for some x and y. (sls-atom)
3. (s, h) |= dls≥3(x, y, x

′, y′) for some x, y, x′, and y’. (dls-atom)
4. (s, h) |= nls≥2(x, y, z) for some x, y, and z. (nls-atom)

We can now define the reduction in the way we have already sketched.

Definition 1. The heap of a positive model (s, h) reduces to ↓sh =
⊎

c∈chunks(s,h) ↓s c
where the reduction of a chunk c with a root x as follows:

– ↓s c = c if (s, c) |= x 7→ .
– ↓s c = {s(x) 7→ ℓ, ℓ 7→ s(y)} where ℓ = c(s(x), n) if (s, c) |=sls≥2(x, y) for some y.
– ↓s c = {s(x) 7→ ⟨n : ℓ, p : s(y′)⟩, ℓ 7→ ⟨n : s(x′), p : s(x)⟩, s(x′) 7→ ⟨n : s(y), p : ℓ⟩}

where ℓ = c(s(x), n) if (s, c) |= dls≥3(x, y, x
′, y′) for some x′, y′ and y.

– ↓s c = {s(x) 7→ ⟨t : ℓ, n : s(z)⟩, ℓ 7→ ⟨t : s(y), n : s(z)⟩} where ℓ = c(s(x), t) if
(s, c) |= nls≥2(x, y, z) for some y and z.

Deciding Boolean Separation Logic via Small Models 193

We lift the reduction to stack-heap models as ↓X (s, h) = (s′, ↓s′ h) where s′ = s|X
for some set of variables X and show that it preserves satisfiability when X = vars(φ).

Theorem 1. For a positive model (s, h), it holds that (s, h) |= φ iff ↓vars(φ) (s, h) |= φ.

The final step to show our small-model property is to find an upper bound on the
size of the reduced models. We define the size of a variable xS , ||xS ||, which represents
its contribution to the location bound, and is defined as 2 if S ∈ {S,N} and 1.5 if
S = D (this corresponds to the size of a reduced chunk of sort S divided by the number
of variables which are allocated in it). We further define ||nil|| = 0. The location bound
of φ is then given as bound(φ) = 1 + ⌊

∑
x∈vars(φ)||x||⌋ (the additional location is for

nil). Analogically, the location bound for a sort S is boundS(φ) = ⌊
∑

x∈varsS(φ)||x||⌋.

Theorem 2 (Small-model property). If a formula φ is satisfiable, then there exists a
model (s, h) |= φ such that |locs(s, h)| ≤ bound(φ).

We conjecture that the bound can be further improved, e.g., by showing that each
model can be transformed to an equivalent one (indistinguishable by BSL formulae)
such that the number of its chunks is bounded by the number of roots of spatial predi-
cates inφ. We demonstrate this on the formula sls(x, y)∗y 7→ z and its model in which y
points back into the middle of the list segment (thus splitting it into two chunks).
Clearly, this model can be transformed by redirecting z outside of the list domain.

5 Translation-Based Decision Procedure
In this section, we present our translation of SL to SMT. We first present an SMT
encoding of our memory model and a translation of basic predicates and boolean con-
nectives. Then we discuss methods for efficient translation of separating conjunctions
and inductive predicates with the focus on avoiding quantifiers by replacing them by
small enumerations of their instantiations.

We fix an input formula φ and let nS = boundS(φ) for each sort S ∈ Sort.

5.1 Encoding the Memory Model in SMT
To encode the heap, we use a classical approach which encodes its mapping and domain
separately [16, 27, 29]. Namely, we use arrays to encode mappings and sets to encode
domains. We also use the theory of datatypes to represent a finite sort of locations by a
datatype L ≜ locnil | locS1 | . . . | locSnS

| locD1 | . . . | locDnD
| locN1 | . . . | locNnN

.
Now, we define the signature of the translation’s language over the sort L. For each

x ∈ vars(φ), we introduce a constant x of the same name—its interpretation represents
the stack image s(x). To represent the heap, we introduce a set symbol D representing
the domain and an array symbol hf for each field f ∈ Field which represents the map-
ping of the partial function λℓ. h(ℓ, f). To distinguish sorts of locations, we further
introduce a set symbol DS for each sort S ∈ Sort. We define meaning of these symbols
by showing how a stack-heap model can be reconstructed from a first-order model.

Definition 2 (Inverse translation). Let M be a first-order model. We define its inverse
translation T−1

φ (M) = (s, h) where s(x) = xM if x ∈ vars(φ) and

h(ℓ) =


⟨n : hn[ℓ]M⟩ if ℓ ∈ (D ∩DS)

M

⟨n : hn[ℓ]M, p : hp[ℓ]
M⟩ if ℓ ∈ (D ∩DD)

M

⟨n : hn[ℓ]M, t : ht[ℓ]
M⟩ if ℓ ∈ (D ∩DN)

M.

194 T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger

To ensure consistency of the translation with the memory model used, we define the
following axioms that a result of translation needs to satisfy:

Aφ ≜ nil = locnil ∧ nil ̸∈ D ∧
∧

S∈Sort

(
DS = {locnil, locS1 , . . . , loc

S
nS

} ∧
∧

x∈varsS(φ)

x ∈ DS

)
.

The axioms ensure that nil is never allocated, that each variable is interpreted as a lo-
cation of the corresponding sort and they fix the interpretation of the sets DS, DD, DN,
which we will later use in the translation to assign sorts to locations.

5.2 Translation of SL to SMT

We define the translation as a function T(φ) = Aφ ∧ T(φ,D) where Aφ are the above
defined axioms and T(φ,D) is a recursive translation function of the formula φwith the
domain symbol D. The translation T(·) together with the inverse translation of models
T−1
φ (·) are linked by the following correctness theorem.

Theorem 3 (Translation correctness). An SL formula φ is satisfiable iff its translation
T(φ) is satisfiable. Moreover, if M |= T(φ), then T−1

φ (M) |= φ.

The translation of non-inductive predicates and boolean connectives is defined as:

T(x ▷◁ y, F) ≜ x ▷◁ y ∧ F = ∅ for ▷◁ ∈ {=, ̸=}
T(ψ1 ▷◁ ψ2, F) ≜ T(ψ1, F) ▷◁ T(ψ2, F) for ▷◁ ∈ {∧,∨,∧¬}

T(x 7→ ⟨fi : fi⟩i∈I , F) ≜ F = {x} ∧
∧
i∈I

hfi [x] = fi

The translation of boolean connectives follows the boolean structure and propagates
the domain symbol F to the operands. The translation of pointer assertions postulates
content of memory cells represented by arrays and also requires the domain F to be {x}.

Translation of separating conjunctions. The semantics of separating conjunctions in-
volves a quantification over sets (heap domains). The most direct way of translation is
to use quantifiers over sets leading to decidable formulae due to the bounded location
domain. This approach combined with a counterexample-guided quantifier instantiation
is used in the decision procedure for a fragment of SL supported in CVC5 [29]. In some
fragments, however, separating conjunctions can be translated in a way that completely
avoids quantifiers. An example is the fragment of boolean combinations of symbolic
heaps which has the so-called unique footprint property (UFP) [16, 27]—a formula ψ
has a (unique) footprint in a model (s, h) with (s, h) |= ψ ∗ true5, if there exists a
(unique) set F such that (s, h|F) |= ψ. The UFP-based approaches of [16, 27] axioma-
tize the footprints during translation and check operands of separating conjunctions just
on the sub-heaps induced by their footprints.

However, UFP does not hold for BSL because of disjunctions. As an example, take
the formula ψ ≜ x 7→ y ∨ emp and the heap h = {x 7→ y}. Both (s, h|{s(x)}) |= ψ
and (s, h|∅) |= ψ hold. The sets {s(x)} and ∅ are, however, the only footprints of ψ in
(s, h), and this observation can be used to generalise the idea of footprints beyond the
fragment in which they are unique.

5 Assuming the standard semantics of true which is not part of our logic.

Deciding Boolean Separation Logic via Small Models 195

Instead of axiomatizing the footprints, our translation builds a set of footprint terms
for operands of separating conjunctions. This change can be also seen as a simplifi-
cation of the former translations as it eliminates the need to deal with two kinds of
formulae (the actual translation and footprint axioms), which must be treated differ-
ently during the translation. However, the precise computation of the set of all foot-
prints of ψ in (s, h), denoted as FP(s,h)(ψ), is as hard as satisfiability—when the set
of footprints is non-empty, the formula ψ is satisfiable. Therefore, we compute just an
over-approximation denoted as FP#(ψ). This is justified by the following lemma which
gives an equivalent semantics of the separating conjunction in terms of footprints.

Lemma 3. Let φ ≜ ψ1∗ψ2 and let (s, h) be a model. Let F1 and F2 be sets of locations
such that FP(s,h)(ψi) ⊆ Fi. Then (s, h) |= ψ1 ∗ ψ2 iff∨

F1∈F1

∨
F2∈F2

∧
i=1,2

(s, h|Fi
) |= ψi ∧ F1 ∩ F2 = ∅ ∧ F1 ∪ F2 = dom(h).

Intuitively, to check whether a separating conjunction holds in a model, it is not nec-
essary to check all possible splits of the heap, but only the splits induced by (possibly
over-approximated) footprints of its operands. The lemma is therefore a generalisation
of UFP and leads to the following definition of the translation T(ψ1 ∗ ψ2, F):

∃F1 ∈ F1. ∃F2 ∈ F2. T(ψ1, F1) ∧ T(ψ2, F2) ∧ F1 ∩ F2 = ∅ ∧ F = F1 ∪ F2.

Here, we use a quantifier expression of the form ∃x ∈ X. ψ as a placeholder that helps
us to define two methods which the translation can use for separating conjunctions:

– The method SatEnum computes sets of footprints Fi as FP#(ψi) (the computation
is described below) and replaces expressions ∃x ∈ X. ψ with

∨
x′∈X ψ[x′/x] as

in Lemma 3. This strategy is quite efficient in many practical cases when we can
compute small sets of footprints F1 and F2.

– The method SatQuantif does not compute sets Fi at all and replaces ∃x ∈ X. ψ
simply with ∃x. ψ. This strategy is better when the existential quantifier can be
later eliminated by Skolemization or when the set of footprints would be too large.

We now show how to compute the set of footprint terms FP#(ψ). We again post-
pone inductive predicates to Section 5.3. We just note that their footprints are unique.
The cases of pure formulae and pointer assertions follow directly from the definition of
their semantics, which requires the heap to be empty and a single pointer, respectively.

FP#(x ▷◁ y) = {∅} for ▷◁ ∈ {=, ̸=} FP#(x 7→) = {{x}}

For the boolean conjunction, we can select from footprints of its operand the one with
the lesser cardinality. Since negations have many footprints (consider, e.g., ¬emp), we
define the case of the guarded negation by taking footprints of its guard. The disjunction
is the only case which brings non-uniqueness as we need to consider footprints of both
of its operands.

FP#(ψ1 ∧ ¬ψ2) = FP#(ψ1) FP#(ψ1 ∨ ψ2) = FP#(ψ1) ∪ FP#(ψ2)

FP#(ψ1 ∧ ψ2) = if |FP#(ψ1)| ≤ |FP#(ψ2)| then FP#(ψ1) else FP#(ψ2)

196 T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger

Finally, we define footprints of the separating conjunction by taking the union F1 ∪ F2

for each pair (F1, F2) of footprints of its operands. Notice that here F1 ∪ F2 represents
an SMT term, therefore we cannot replace it with a disjoint union which is not available
in the classical set theories in SMT. We can, however, use heuristics and filter out terms
for which we can statically determine that interpretations of F1 and F2 are not disjoint.

FP#(ψ1 ∗ ψ2) = {F1 ∪ F2 | F1 ∈ FP#(ψ1) and F2 ∈ FP#(ψ2)}

We state the correctness of the footprint computation in the following lemma.

Lemma 4. Let M be a first-order model with M |= T(φ) and let (s, h) = T−1
φ (M).

Then we have FP(s,h)(φ) ⊆ {FM | F ∈ FP#(φ)}.

5.3 Translation of Inductive Predicates

To translate inductive predicates, we express them in terms of reachability and paths
in the heaps. While unbounded reachability cannot be expressed in first-order logic, we
can efficiently express bounded linear reachability in our encoding. The linearity means
that each path uses only a single field (which is not the case, e.g., for paths in trees).
All predicates in this section are parametrised with an interval [m,n] which bounds the
length of the considered paths. When we do not state the bounds explicitly, we assume
conservative bounds [0, boundS(φ)] for a path starting from a root of a sort S. We
show how to compute more precise bounds in Section 6. We start with the translation
of reachability:

reach=n(h, x, y) ≜ hn[x] = y reach[m,n](h, x, y) ≜
∨

m≤i≤nreach
=i(h, x, y)

Here, the predicate reach=n(h, x, y) expresses that x can reach y via a field represented
by the array h in exactly n steps. Similarly, reach[m,n] expresses reachability in m to n
steps. Besides reachability, we will need a macro pathC(h, x, y) expressing the domain
of a path from x to y, or the empty set if such a path does not exists:

path=n
C (h, x, y) ≜

⋃
0≤i<n C(h

i[x])

path
[m,n]
C (h, x, y) ≜ if (reach=m(h, x, y)) then (path=m

C (h, x, y))

· · · else if (reach=n(h, x, y)) then (path=n
C (h, x, y)) else (∅)

The additional parameter C is a function applied to each element of the path that
can be used to define nested paths. We define a simple path path

[m,n]
S (h, x, y) ≜

path
[m,n]
C (h, x, y) with C ≜ λℓ. {ℓ} and a nested path as path[m,n]

N (h1, h2, x, y, z) ≜

path
[m,n]
C (h1, x, y) with C ≜ λℓ. pathS(h2, ℓ, z). In the case of the nested path, the

array h1 represents the top-level path from x to y, and h2 represents nested paths termi-
nating in the common location z. Now we can define footprints of inductive predicates
using path terms as follows:

FP#(π(x, y)) = {pathS(hn, x, y)} for π ∈ {sls, dls}
FP#(nls(x, y, z)) = {pathN (ht, hn, x, y, z)}

Deciding Boolean Separation Logic via Small Models 197

The common part of the translation T(π(x, y), F) postulates the existence of a top-
level path from x to y and a domain F based on this path (formalised in the formula
main path below); and ensures that all locations have the correct sort (through the for-
mula typing). For DLLs, we add an invariant which ensures that its locations are cor-
rectly doubly-linked (the back links formula), and we further need a special treatment
of the cases when the list is empty as well as a special treatment for its roots and sinks
(cf. the formula boundaries). For NLLs, we add an invariant stating that an inner list
starts from each location in its top-level path (the inner lists formula) and that those
inner paths are disjoint (the disjoint formula) .

– T(sls(x, y), F) ≜ main path ∧ typing where

main path ≜ reach(hn, x, y) ∧ F = pathS(hn, x, y) and typing ≜ F ⊆ DS.

– T(dls(x, y, x′, y′), F) ≜ empty ∨ nonempty where

empty ≜ x = y ∧ x′ = y′ ∧ F = ∅,
nonempty ≜ x ̸= y ∧ x′ ̸= y′ ∧main path ∧ boundaries ∧ typing ∧ back links,

main path ≜ reach(hn, x, y) ∧ F = pathS(hn, x, y),

boundaries ≜ hp[x] = y′ ∧ hn[x′] = y ∧ x′ ∈ F ∧ y′ ̸∈ F,

typing ≜ F ⊆ DD,

back links ≜ ∀ℓ. (ℓ ∈ F ∧ ℓ ̸= x′) −→ hp[hn[ℓ]] = ℓ.

– T(nls(x, y, z), F) ≜ main path ∧ typing ∧ inner lists ∧ disjoint where

main path ≜ reach(ht, x, y) ∧ F = pathN (ht, hn, x, y, z),

typing ≜ pathS(ht, x, y) ⊆ DN ∧ F \ pathS(ht, x, y) ⊆ DS,

inner lists ≜ ∀ℓ. ℓ ∈ F ∩DN −→ reach(hn, h[ℓ], z),

disjoint ≜ ∀ℓ1, ℓ2.
(
{ℓ1, ℓ2} ⊆ F ∧ ℓ1 ̸= ℓ2 ∧ hn[ℓ1] = hn[ℓ2]

)
−→ hn[ℓ1] ̸∈ F.

Path quantifiers. Invariants of paths are naturally expressed using universal quantifiers.
For quantifiers, however, we cannot directly take advantage of bounds on path lengths.
Therefore, similarly as for separating conjunctions, we use the idea of replacing quanti-
fiers by small enumerations of their instances, which is efficient when we can compute
small enough bounds on the paths. For example, if we know that the length of an f-path
with a root x is at most two, it is enough to instantiate its invariant for x, hf [x], and
h2f [x]. This idea is formalised using expressions P≤n

(h,x) ℓ. ψ, which we call path quanti-
fiers and which state that ψ holds for all locations of the path with the length n starting
from x via the array h:

P≤n
(h,x) ℓ. ψ ≜

∧
0≤i≤n ψ[hi[x]/ℓ].

If we need to quantify over nested paths, we need to use two path quantifiers (one for
the top-level path and one for the nested paths). The quantifiers in the last conjunct of
the NLL translation can be rewritten as P(ht,x) ℓ

′
1. P(ht,x) ℓ

′
2. P(hn,ℓ′1)

ℓ1. P(hn,ℓ′2)
ℓ2.

In this expression, ℓ′1 and ℓ′2 range over locations in the top-level list, and ℓ1 and ℓ2
range over locations in the nested paths starting from ℓ′1 and ℓ′2, respectively.

6

198 T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger

In the consequent of the disjoint formula, we could also write hn[ℓ1] = z instead of hn[ℓ1] 6∈

F , but the latter leads to better performance of SMT solvers.

6

5.4 Complexity
This section briefly discusses the complexity of the proposed decision procedure as well
as the complexity lower bound for the satisfiability problem in the considered fragment
of SL. We will use SAT(ω1, . . . , ωn) to denote the satisfiability problem for a sub-
fragment constructed of atomic formulae and the connectives ωi and SAT(ω1, . . . , ωn)
to denote the fragment where none of the connectives ωi appear.

Theorem 4. The procedure SatQuantif produces formula of polynomial size, and, for
SAT(∧¬), it runs in NP. The procedure SatEnum runs in NP for SAT(∨).

Proof (sketch). When not considering the instantiation of quantifiers over footprints,
both SatQuantif and SatEnum produce a formula T(φ) of a polynomial size dom-
inated by the translation of inductive predicates. For the variant of the translation of
inductive predicates using universal quantifiers over locations, the size is O(n3) for
SLLs and DLLs (dominated by the O(n3) size of the pathS term), and O(n5) for NLLs
(dominated by pathN). If the input formula does not contain guarded negations, then
all quantifiers can be eliminated using Skolemization. The translated formulae are then
in a theory decidable in NP (e.g., when sets are encoded as extended arrays [22]).

The procedure SatEnum can produce exponentially large formulae because of the
footprint enumeration. This can be prevented if the input formula does not contain dis-
junctions, in which case the footprints of all sub-formulae are unique, i.e., singleton
sets. The translated formulae are then again in a theory decidable in NP. ⊓⊔

Theorem 5. SAT(7→,∧¬,∧,∨, ∗) is PSPACE-complete.

Proof (sketch). Membership in PSPACE was proved in [26] for a more expressive frag-
ment. For the hardness part, we build on the reduction from QBF used in [7]. In this
reduction, the boolean value of a variable is represented by the corresponding SL vari-
able being allocated (always pointing to nil for simplicity). The fact that x is false is
expressed using a negative points-to predicate stating that x is not allocated. The exis-
tential quantifier is expressed using the separating conjunction, and the universal quan-
tifier is obtained using the (unguarded) negation. (For details, see [7].)

We show that this reduction can be done without the unguarded negation and the
negative points-to assertion, using the guarded negation instead. The key observation is
that, for a QBF formula with variables X , we can express that all variables in X can
have arbitrary boolean values as arbitrary[X] ≜ ∗x∈X(x 7→ nil ∨ emp). In the context
of variables X , we can then express negation as ¬F ≜ arbitrary[X] ∧ ¬F and the truth
values of a variable x as ¬x ≜ arbitrary[X \ {x}] and x ≜ arbitrary[X] ∗ x 7→ nil. The
rest of the reduction then easily follows [7]. ⊓⊔

6 Optimised Bound Computation

In many practical cases, the main source of complexity is the translation of induc-
tive predicates, which heavily depends on the possible lengths of paths between lo-
cations. We now propose how to bound the length of these paths based on the so-called
SL-graphs which are graph representations of constraints imposed by SL formulae.
SL-graphs were originally used for representation and deciding of symbolic heaps with
lists in [8]. Here, we use their generalised form which captures must-relations holding
in all models of a given formula. Note that the nodes of the graphs are implicitly given
by the domains of the involved relations, which themselves can be viewed as edges.

Deciding Boolean Separation Logic via Small Models 199

Definition 3. An SL-graph of φ is a tuple G[φ] = (⃝=,⃝̸=, (⃝7→ f ,⃝⇝ f ,⃝∗ f)f∈Field) where:

– ⃝= ⊆ vars(φ)× vars(φ) is an equivalence relation called must-equality,
– ⃝̸= ⊆ vars(φ)× vars(φ) is a symmetric relation called must-disequality,
– ⃝7→ f ⊆ vars(φ)× vars(φ) is a must-f-pointer relation,
– ⃝⇝ f ⊆ vars(φ)× vars(φ) is an irreflexive must-f-path relation,
– ⃝∗ f ⊆ vars(φ)2× vars(φ)2 is a symmetric relation called must-f-path-disjointness.

Except ⃝∗ f , the components of G[φ] represent atomic formulae—equalities, disequali-
ties, pointers, and paths (i.e., list segments)—holding within all models of φ. The fact
that (x1, y1)⃝∗ f (x2, y2) states that, in all models of φ, the domains of f-paths from x1
to y1 and from x2 to y2 are disjoint.

To compute the SL-graph G[φ], we define some auxiliary notation. We define G∅
to be an SL-graph where all the relations are empty. We write G ◁ {xi ▷◁i yi}i∈I to
denote the SL-graph G′ which is the same as G with the elements xi ▷◁i yi for i ∈ I
added to the corresponding relations. We use ⊔ and ⊓ as a component-wise union and
intersection of SL-graphs, respectively. We define the disjoint union of SL-graphs as:

G1 +⊔ G2 = (G1 ⊔G2)

◁ {x ⃝̸= y | x ∈ alloc(G1), y ∈ alloc(G2), and (x is not nil or y is not nil)}
◁ {e1 ⃝∗ f e2 | f ∈ Field, e1 ∈ pathsf(G1), and e2 ∈ pathsf(G2)}.

Here, pathsf(G) is defined as ⃝7→ f ∪ ⃝⇝ f , and the set of must-allocated variables is
alloc(G) = {x | ∃y, f. x⃝7→ f y or (x⃝⇝ f y and x ⃝̸= y)}∪{nil} (nil is added for technical
reasons). We further assume that all operations on SL-graphs (◁, ⊔, ⊓, and +⊔) preserve
relational properties (symmetry, transitivity, etc.) of the components of SL-graphs by
computing the corresponding closures after the operation is performed. We compute
the SL-graph G[φ] as follows.

G[x = y] = G∅ ◁ {x⃝= y} G[x 7→ ⟨fi : fi⟩i∈I] = G∅ ◁ {x⃝7→ fi fi}i∈I

G[x ̸= y] = G∅ ◁ {x ⃝̸= y} G[sls(x, y)] = G∅ ◁ {x⃝⇝n y}
G[ψ1 ∧ ¬ψ2] = G[ψ1] G[dls(x, y, x′, y′)] = G∅ ◁ {x⃝⇝n y, x

′ ⃝⇝p y
′}

G[ψ1 ∧ ψ2] = G[ψ1] ⊔G[ψ2] G[nls(x, y, z)] = G∅ ◁ {x⃝⇝n z, x⃝⇝ t y}
G[ψ1 ∨ ψ2] = G[ψ1] ⊓G[ψ2] G[ψ1 ∗ ψ2] = G[ψ1] +⊔ G[ψ2]

Observe that we only approximate dls and nls. After the construction is finished, we
apply the following rules for matching of pointers and for detection of inconsistencies.

x1 ⃝7→ f y1 x2 ⃝7→ f y2 x1 ⃝= x2 (7→-match)
y1 ⃝= y2

x⃝= y x ⃝̸= y
(contradiction)

φ is unsat

Tighter location bounds. Using SL-graphs, we can slightly improve the location bound
from Section 4 by considering equivalence classes of⃝= instead of individual variables
(this can be also used to refine the later described path bound computation) and by
defining ||x|| = 1 if x is a must-pointers, i.e., x⃝7→ f y for some f and y.

T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger200

a b c d
[0, 2] [1, 1] [1, 1]

[0, 2]

⃝̸=

⃝∗ n

(a) Fragment of SL-graph G[φ].

a b c
0 1

(b) Graph Gℓ
σ .

a b c d
2 1 1

2

(c) Graph Gu
σ .

Fig. 3: An illustration of the bound computation for the path σ from a to c on a fragment
of SL-graph of φ ≜

(
sls(a, b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d, a)

)
∧¬

(
sls(a, c) ∗ sls(c, a)

)
. The

highlighted edges denote the paths used to determine the bound [1, 3].

Path bounds. We now fix an f-path σ from xS to y and show how to compute an interval
[ℓ, u] that gives bounds on its length. The computation of the path bounds runs in two
steps. In the first step, we compute an initial bound [ℓ0e, u

0
e] for each edge e ∈ pathsf(G).

If e is a pointer edge, its bound is given as [1, 1]. For a path edge e = (a, b), we define
ℓ0e = 1 if a ⃝̸= b and 0 otherwise; while u0e is defined as boundS(φ)−

∑
v∈V ||v|| where

V = {v ∈ varsS(φ) | v is not x and ∃u. (v, u)⃝∗ f (x, y)}. This way, we exclude from
the computation of the initial upper bound the source v of each path disjoint with σ and
all locations possibly allocated in a chunk with the root v. Note that it can be the case
that the actual size of this chunk has a lesser size than ||v||, but this means that we were
too conservative when computing the global location bound and can decrease the path
bound by the same number anyway.

In the second phase, we compute the bounds of the path σ using initial bounds from
the first step. The computation is based on two weighted directed graphs derived from
the SL-graph G: Gu

σ for the upper bound and Gℓ
σ for the lower bound (in both cases,

the vertices are implicitly given as vars(φ), and the edge weight of an edge e is given
by u0e and ℓ0e computed in the previous step, respectively):

Gu
σ = {a→ b | (a, b) ∈ pathsf(G)},

Gℓ
σ = {a→ b | (a⃝7→ f b and a ⃝̸= y) or

(a⃝⇝ f b and ∃w. nonempty(y, w) and (y, w)⃝∗ f (a, b)}.

Here, the condition nonempty(y, w) states that a directed SL-graph edge (y, w) is non-
empty which holds if either y⃝7→ f w, or when y⃝⇝ f w and y ⃝̸= w.

Intuitively, the upper bound u is computed as the length of the shortest path from x
to y in Gu

σ . Since f-paths are uniquely determined, we know that no path can be longer
than the shortest one, and thus u is indeed a correct upper bound. The lower bound ℓ is
computed as the length of the longest path starting from x (ending anywhere) inGℓ

σ . By
construction, Gℓ

σ contains only those edges for which one can prove that they cannot
contain y in their domains. A path from x of a length ℓ therefore implies that x cannot
reach y in less than ℓ steps, and thus ℓ is indeed a correct lower bound.

Example. We demonstrate the path bound computation in Fig. 3, which shows a frag-
ment of the SL-graph of a formula φ (it shows only those ⃝∗ n edges that are relevant
in our example) and the graphs Gℓ

σ and Gu
σ for the path σ from a to c. We have that

||b|| = ||c|| = 1 and ||a|| = ||d|| = 2. This gives us the location bound, which is 6. In
the first phase, we compute the initial bound [0, 2] for paths of the predicates sls(a, b)
and sls(d, a) because both of them are disjoint with all the other paths in G[φ]. In the
second phase, we get the bound for σ equal to [1, 3] instead of the default bound [0, 6].

Deciding Boolean Separation Logic via Small Models 201

7 Experimental Evaluation
We have implemented the proposed decision procedure in a new solver called ASTRAL7.
ASTRAL is written in OCaml and can use multiple backend SMT solvers. With the en-
coding presented in Section 5, it can use either CVC5 supporting set theory directly [1]
or Z3 supporting it by a reduction to the extended theory of arrays [22]. We have also
developed an alternative encoding in which both locations and location sets are repre-
sented as bitvectors. The bitvector encoding differs only in expressing set operations
on the level of bitvectors with additional axioms ensuring that all locations “can fit”
into sets encoded by the bitvectors (for details, see [9]). With the bitvector encoding,
a backend solver only needs to support theories of bitvectors and arrays, which are
both standard and supported by many other SMT solvers. Another advantage is that the
quantification on bitvectors seems to perform significantly better than on sets.

In our experiments, if we do not say explicitly which encoding and solver is used,
we use the bitvector encoding and BITWUZLA [25] as the backend solver, which we
found to be the best performing combination. We set a limit for the method SatEnum to
64 footprints. If this limited is exceeded, we dynamically switch to SatQuantif. We
use path quantifiers when the path bound is at most half of the domain bound. These
are design choices that can be revisited in the future.

All experiments were run on a machine with 2.5 GHz Intel Core i5-7300HQ CPU
and 16 GiB RAM, running Ubuntu 18.04. The timeout was set to 60 s and the memory
limit to 1 GB. Our experiments were conducted using BENCHEXEC [4], a framework
for reliable benchmarking.

7.1 Entailments of Symbolic Heaps
In the first part of our evaluation, we focus on formulae from the symbolic heap frag-
ment which is frequently used by verification tools and for which there exist many
dedicated solvers. We therefore do not expect to outperform the best existing tools but
rather to obtain a comparison with other translation-based decision procedures.

In Table 1a, we provide results for the category QF SHLID ENTL (entailments
with SLLs). We divide the category into two subsets: verification conditions (which are
simpler) and more complex artificially generated formulae “bolognesa” and “clones”
from [23]. During the experiments, we found out that several “cloned” entailments con-
tain root variables on the right-hand side of the entailment that do not appear on the
left-hand side, making the entailment trivially invalid when its left-hand side is satis-
fiable. For a few hard clone instances, this makes a problem for ASTRAL as it can-
not use the path bound computation as such roots do not appear in the SL-graph. We
have therefore implemented a heuristic that detects entailments φ |= ψ that can be
reduced to satisfiability of φ. Since this is a benchmark-specific heuristic, we present
also the version without this heuristic (ASTRAL ∗) in Table 1a. The optimised version
of ASTRAL is able to solve all the formulae being faster than other translation-based
solvers GRASSHOPPER8 and SLOTH. For illustration, the table further contains the
second best solver in the latest edition of SL-COMP, S2S9.

7 https://github.com/TDacik/Astral
8 Since GRASSHOPPER is not an solver but a verification tool, we encode the entailment check-

ing as a verification of an empty program.
9 We had technical issues running the winner ASTERIX [24]. The difference between those tools

is, however, negligible.

T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger202

https://github.com/TDacik/Astral

Table 1: Experimental results for formulae from SL-COMP. The columns are: solved in-
stances (OK), out of time/memory (RO), instances on which ASTRAL wins—ASTRAL
can solve it and the other solver not or ASTRAL solves it faster (WIN), instances solved
in the time limits of 0.1 s and 1 s, and the total time for solved instances in seconds.

(a) Results for the category QF SHLS ENTL.

Verification conditions (86) bolognesa+clones (210)

Solver OK RO WIN <0.1 ≤1 Total time OK RO WIN <0.1 ≤1 Total time

ASTRAL 86 0 - 84 86 4.62 210 0 - 68 169 202.91
ASTRAL∗ 86 0 42 83 86 4.64 195 15 88 64 150 408.48
GRASSHOPPER 86 0 70 52 86 8.65 203 7 148 60 87 1229.35
S2S 86 0 5 86 86 2.08 210 0 3 203 210 8.18
SLOTH 64 3 86 0 28 235.28 70 140 210 0 50 149.42

(b) Results for a subset of the category QF SHLID ENTL.

Doubly-linked lists (17) Nested singly-linked lists (19)

Solver OK RO WIN <0.1 ≤1 Total time OK RO WIN <0.1 ≤1 Total time

ASTRAL 17 0 - 11 17 2.72 19 0 - 3 9 86.93
GRASSHOPPER 17 0 16 3 15 7.53 - - - - - -
HARRSH 17 0 17 0 0 95.18 14 5 18 0 0 183.01
S2S 17 0 0 17 17 0.15 19 0 0 19 19 0.43
SONGBIRD 11 5 14 5 9 13.39 11 5 8 4 11 1.38

In Table 1b, we provide results for a subset of the category QF SHLID ENTL (en-
tailments with linear inductive definitions from which we selected DLLs and NLLs)
for ASTRAL and three best-performing solvers competing in the latest edition of SL-
COMP—S2S, SONGBIRD (in the version with automated lemma synthesis called SLS),
and HARRSH. We also include GRASSHOPPER which supports DLLs only. Except
S2S which solves almost all formulae virtually immediately, ASTRAL is the only one
able to solve all the formulae in the given time limit.

7.2 Experiments on Formulae Outside of the Symbolic Heap Fragment
For formulae outside of the symbolic heap fragment and its top-level boolean closure,
there are currently no existing benchmarks. For now, we therefore limit ourselves to
randomly generated but extensive sets of formulae. In the future, we would like to
develop a program analyser using symbolic execution over BSL and make more careful
experiments on realistic formulae.

We first focus on the fragment with guarded negations but without inductive predi-
cates, on which we can compare ASTRAL with CVC5. We have prepared a set of 1000
entailments of the form φ |= ψ which are generated as random binary trees with depth 8
over 8 variables with the only atoms being pointer assertions. To reduce the number
of trivial instances, we only generated formulae for which vars(ψ) ⊆ vars(φ) and
ASTRAL cannot deduce contradiction from their SL-graphs. To avoid any suspicion
that the difference is caused by better performance of the backend solver rather than
the design of our translation, we used ASTRAL with the CVC5 backend and direct set

Deciding Boolean Separation Logic via Small Models 203

(a) Comparison with CVC5 (b) Comparison with GRASSHOPPER

Fig. 4: A comparison of ASTRAL with CVC5 and GRASSHOPPER on randomly gener-
ated formulae. Times are in seconds, axes are logarithmic. The timeout was set to 60 s.

encoding (with BITWUZLA and bitvector encoding, our results would be even better).
The results are given in Fig. 4a and suggest that our treatment of guarded negations
really brings a better performance—ASTRAL can solve all the instances and almost all
of them under 10 seconds. On the other hand, CVC5 timed out in 61 cases and is usu-
ally slower than ASTRAL, in particular on satisfiable formulae which represent invalid
entailments.

In the second experiment, we compared our solver with GRASSHOPPER on the
fragment which it supports, i.e., arbitrary nesting of conjunctions and disjunctions. We
again generated 1000 entailments, this time with depth 6, 6 variables and with atoms
being singly-linked lists (with 20 % probability) or pointer-assertions. The results are
given in Fig. 4b. ASTRAL ran out of memory in 5 cases, and GRASSHOPPER timed
out in 10 cases. In summary, ASTRAL is faster on more than 80 % of the formulae with
an almost 3 times lesser running time.

Finally, to illustrate that ASTRAL can indeed handle formulae out of the fragments
of all the other mentioned tools, we apply it on an entailment query that involves the
formula mentioned at the end of the introduction: ((sls(x, y)∧¬(sls(x, z)∗ sls(z, y)))∗
y 7→ z) |= sls(x, z), converted to an unsatisfiability query. ASTRAL resolves the query
in 0.12 s. Note that without the requirement ¬(sls(x, z) ∗ sls(z, y)), the entailment does
not hold as a cycle may be closed in the heap.

8 Conclusions and Future Work
We have presented a novel decision procedure based on a small-model property and
translation to SMT. Our experiments have shown very promising results, especially
for formulae with rich boolean structure for which our decision procedure outperforms
other approaches (apart from being able to solve more formulae).

In the future, we would like to extend our approach with some class of user-defined
inductive predicates, with more complex spatial connectives such as septractions and/or
magic wands, consider a lazy and/or interactive translation instead of the current eager
approach, and try ASTRAL within some SL-based program analyser.

T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger204

References

1. Bansal, K., Barrett, C., Reynolds, A., Tinelli, C.: A New Decision Procedure for Finite Sets
and Cardinality Constraints in SMT. In: IJCAR (2017)

2. Batz, K., Fesefeldt, I., Jansen, M., Katoen, J.P., Keßler, F., Matheja, C., Noll, T.: Foundations
for Entailment Checking in Quantitative Separation Logic. In: ESOP (2022)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: A Decidable Fragment of Separation Logic. In:
FSTTCS 2004. LNCS, vol. 3328 (2004)

4. Beyer, D., Löwe, S., Wendler, P.: Reliable Benchmarking: Requirements and Solutions. In-
ternational Journal on Software Tools for Technology Transfer 21 (2017)

5. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A Generic Cyclic Theorem Prover. In:
APLAS. LNCS, vol. 7705 (2012)

6. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional Shape Analysis by Means
of Bi-Abduction. Journal of the ACM 58(6) (2011)

7. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and Complexity Results for a Spatial
Assertion Language for Data Structures. In: FST TCS (2001)

8. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable Reasoning in a Frag-
ment of Separation Logic. In: CONCUR. LNCS, vol. 3901 (2011)

9. Dacı́k, T., Rogalewicz, A., Vojnar, T., Zuleger, F.: Deciding Boolean Separation Logic via
Small Models. Tech. rep. (10 2023), https://zenodo.org/records/10012893

10. Echenim, M., Iosif, R., Peltier, N.: The Bernays-Schönfinkel-Ramsey Class of Separation
Logic with Uninterpreted Predicates. ACM Transactions on Computational Logic 21 (2019)

11. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional Entailment Checking for a
Fragment of Separation Logic. In: APLAS (2014)

12. Holı́k, L., Peringer, P., Rogalewicz, A., Šoková, V., Vojnar, T., Zuleger, F.: Low-level bi-
abduction. In: ECOOP 2022. LIPIcs, vol. 222, pp. 19:1–19:30 (2022)

13. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding Entailments in Inductive Separation Logic
with Tree Automata. In: ATVA (2014)

14. Iosif, R., Zuleger, F.: Expressiveness results for an inductive logic of separated rela-
tions. In: Pérez, G.A., Raskin, J. (eds.) CONCUR. LIPIcs, vol. 279, pp. 20:1–20:20
(2023). https://doi.org/10.4230/LIPICS.CONCUR.2023.20, https://doi.org/10.4230/LIPIcs.
CONCUR.2023.20

15. Ishtiaq, S., O’Hearn, P.: Separation and Information Hiding. In: Proc. of POPL’01. ACM
(2001)

16. Katelaan, J., Jovanovic, D., Weissenbacher, G.: A Separation Logic with Data: Small Models
and Automation. In: IJCAR (2018)

17. Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Harrsh: A Tool for Unied Reasoning about
Symbolic-Heap Separation Logic. In: LPAR-22 Workshop and Short Paper Proceedings.
vol. 9 (2018)

18. Le, Q.L., Gherghina, C., Qin, S., Chin, W.N.: Shape Analysis via Second-Order Bi-
Abduction. In: Proc. of CAV’14. LNCS, vol. 8559. Springer (2014)

19. Le, Q.L.: Compositional Satisfiability Solving in Separation Logic. In: VMCAI. LNCS, vol.
12597 (2021)

20. Le, Q.L., Le, X.B.D.: An Efficient Cyclic Entailment Procedure in a Fragment of Separation
Logic. In: FoSSaCS (2023)

21. Matheja, C., Pagel, J., Zuleger, F.: A Decision Procedure for Guarded Separation Logic Com-
plete Entailment Checking for Separation Logic with Inductive Definitions. ACM Trans.
Comput. Logic 24(1) (2023)

22. de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In: FMCAD
(2009)

Deciding Boolean Separation Logic via Small Models 205

https://zenodo.org/records/10012893
https://doi.org/10.4230/LIPICS.CONCUR.2023.20
https://doi.org/10.4230/LIPIcs.CONCUR.2023.20
https://doi.org/10.4230/LIPIcs.CONCUR.2023.20

23. Navarro Pérez, J.A., Rybalchenko, A.: Separation Logic + Superposition Calculus = Heap
Theorem Prover. In: PLDI (2011)

24. Navarro Pérez, J.A., Rybalchenko, A.: Separation Logic Modulo Theories. In: APLAS.
LNCS, vol. 8301 (2013)

25. Niemetz, A., Preiner, M.: Bitwuzla. In: CAV. LNCS, vol. 13965 (2023)
26. Pagel, J., Zuleger, F.: Strong-separation logic. ACM Trans. Program. Lang. Syst. 44(3), 16:1–

16:40 (2022). https://doi.org/10.1145/3498847, https://doi.org/10.1145/3498847
27. Piskac, R., Wies, T., Zufferey, D.: Automating Separation Logic Using SMT. In: CAV (2013)
28. Piskac, R., Wies, T., Zufferey, D.: Automating Separation Logic with Trees and Data. In:

CAV (2014)
29. Reynolds, A., Iosif, R., King, T.: A Decision Procedure for Separation Logic in SMT. In:

ATVA (2016)
30. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proceedings

17th Annual IEEE Symposium on Logic in Computer Science (2002)
31. Santos, J., Maksimovic, P., Ayoun, S.E., Gardner, P.: Gillian, Part I: A Multi-Language Plat-

form for Symbolic Execution. In: Proc. of PLDI’20. ACM (2020)
32. Summers, A.J., Müller, P.: Automating deductive verification for weak-memory pro-

grams (extended version). Int. J. Softw. Tools Technol. Transf. 22(6), 709–728 (2020).
https://doi.org/10.1007/s10009-020-00559-y

33. Ta, Q.T., Le, T.C., Khoo, S.C., Chin, W.N.: Automated Lemma Synthesis in Symbolic-Heap
Separation Logic. In: POPL (2018)

34. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.: Scalable
Shape Analysis for Systems Code. In: Proc. of CAV’08. LNCS, vol. 5123. Springer (2008)

T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger206

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1145/3498847
https://doi.org/10.1145/3498847
https://doi.org/10.1007/s10009-020-00559-y
http://creativecommons.org/licenses/by/4.0/

Asynchronous Subtyping by Trace Relaxation

Abstract. Session subtyping answers the question of whether a program
in a communicating system can be safely substituted for another, when
their communication behaviours are described by session types. Asyn-
chronous session subtyping is undecidable, hence the interest in devising
sound, although incomplete, subtyping algorithms. State-of-the-art algo-
rithms are formulated in terms of a data-structure called input trees. We
show how input trees can be replaced by sets of traces, which opens up
opportunities for applying techniques abstract interpretation techniques
to the problem of asynchronous session subtyping. Sets of traces can be
relaxed (enlarged) whilst still allowing subtyping to be observed, and
one can choose relaxations that can be finitely represented, even when
the input trees are arbitrarily large. We instantiate this strategy using
regular expressions and show that it allows subtyping to be mechanically
proven for communication patterns that were previously out of reach.

Keywords: asynchrony, session subtyping, automata, abstract interpretation

1 Introduction

Protocols, which are used to communicate and orchestrate activity in distributed
systems, are notoriously difficult to write and understand. Session types [23, 34]
have thus been proposed for specifying protocol interaction and automatically
checking whether an implementation conforms to its specification. Session types
extend data types to describe communication behaviour, and express the be-
haviour of units of design (sessions) in terms of which types of messages can
be sent or received, and in what order. They have been integrated into main-
stream languages and proved to be a powerful tool for static [25, 26, 28, 31, 32]
and dynamic [1, 2] verification as well as API generation [24, 30].

Session Subtyping A fundamental problem in the application of session types
is checking whether the implementation of one component in a distributed sys-
tem can be substituted for another, without violating an overarching protocol.
This problem can be formulated as session subtyping [11, 18, 20, 21], which is
a preorder relation on session types: S′ is a sub-type of S, written S′ ≤ S, if
a program with type S can be safely substituted by a program with type S′.
Consider S and S′ below:

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 207–226, 2024.
https://doi.org/10.1007/978-3-031-57246-3_12

Laura Bocchi1 , Andy King1(B) , and Maurizio Murgia2

1 University of Kent, Canterbury, CT2 7NZ, UK
l.bocchi,a.m.king @kent.ac.uk

2 Gran Sasso Science Institute, 67100 L’Aquila, AQ, Italy

maurizio.murgia@gssi.it

{ }

https://doi.org/10.1007/978-3-031-57246-3_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_12&domain=pdf
http://orcid.org/0000-0002-7177-9395
http://orcid.org/0000-0001-5806-4822
http://orcid.org/0000-0001-7613-621X

S′:
q0 q1

!b

?d

?c

S:
p0 p1

!a

!b

?c

S:
r0 r1

?a

?b

!c

S and S′ are expressed in automata notation where !a (resp. ?a) denotes a send
(resp. receive) action on channel a. S models a process, which in state p0, can
repeatedly request a service a, or request b and then receive a confirmation c.

The overarching protocol is defined, in a binary (client-server) session, as
the parallel composition of S with its dual S, written S | S. The dual S is
obtained by swapping each send action with a corresponding receive action and
vice versa. Due to syntactic constraints posed by session types [23], S | S enjoys
a number of key properties (e.g., deadlock freedom, communication safety). A
process behaving as S can be safely substituted with another behaving as S′

that has less sends (e.g. the absent !a) and more receives (e.g. the additional ?d).
This notion of substitutability is co-variant on send actions and contra-variant
on receive actions, and preserves the key properties in protocol S′ | S.

We focus on asynchronous session subtyping (async subtyping for short) as
asynchronous communications (over FIFO channels) are key in distributed sys-
tems and languages such as Go and Rust. Async subtyping, however, is un-
decidable [6, 27] We focus on asynchronous session subtyping (async subtyping
for short) as asynchronous communications (over FIFO channels) are key in dis-
tributed systems and languages such as Go and Rust. Async subtyping, however,
is undecidable [6, 27] so the search is on for sound algorithms which are suffi-
ciently robust to prove subtyping in the majority of cases. Given a candidate
subtype and a supertype, the subtyping problem can be viewed as a simulation
game in which the supertype is required to mirror any input and output action
performed by the subtype. Since communication is asynchronous, the subtype
can send early in the sense that the supertype can only realise the same output
after some inputs. Consider M2 below, which models a server producing a news
feed (!b) on request from a client (?a), where M1 is a candidate subtype for M2:

M1 : p0 p2 p1

?a

!b!b

M2 : q0 q1

?a

!b

After receiving on a, M2 can immediately mimic the first send on b of M1,
but it can only perform the second send on b after receiving another request.
The input a is said to guard the output b. One needs to reason about these
dependencies to verify that M2 can follow the actions of M1, albeit with (a
possibly unbounded number of) send actions being delayed. This is the challenge
of asynchronous subtyping. Apart from substitutability, asynchronous subtyping
enables protocol optimisation in which receives are postponed, so as to minimise
busy waiting for messages [29]. In M2, if feed production was more efficient than
request processing then it would be better if the server bundled feeds, as in M1.

208 Laura Bocchi, Andy King and Maurizio Murgia

p0 ≤ q0 p1 ≤ q1 p2 ≤ q0 p0 ≤ T2

p1 ≤ q0p2 ≤ T2p0 ≤ T3p1 ≤ T2

p2 ≤ T3 p0 ≤ T4 . . .

?a !b !b

?a

!b!b?a

!b

!b ?a

T2 = ⟨a : q0⟩
T3 = ⟨a : T2⟩
T4 = ⟨a : T3⟩

...

p0 ≤ S

p1 ≤ S′

p2 ≤ S

?a

!b

!b

S0 = {q0}
Si+1 = {a · π | π ∈ Si}

S =
⋃

i≥0 Si

S′ = S ∪ {q1}

Fig. 1. A simulation tree (left) and collecting simulation graph (right) for M1 and M2

Existing techniques The state-of-the-art approach to async subtyping [4, 5] rep-
resents a simulation game between the (candidate) subtype and supertype, in
its entirety, with a simulation tree. The state of the supertype is modelled using
an input tree [4, 5, 11, 10], which records and accumulates input actions which
guard outputs. Figure 1 gives the simulation tree for M1 and M2. Simulation
commences at p0 ≤ q0 where M1 and M2 are in their initial states p0 and q0.
The edges in the tree follow the actions of M1, with M2 following along using its
input tree. Step p0 ≤ T2 models the scenario where M1 is in state p0 but, in M2,
a second send on b is guarded by a receive on a. Input tree T2 = ⟨a : q0⟩ expresses
this dependency by recording that M2 can continue at q0, after performing the
pending receive on a. As the simulation of M1 unfolds, however, the input trees
for M2 grow without bound, yielding an infinite simulation tree.

Previous work [4, 5] proposed a multi-step algorithm that computes a simu-
lation tree until violation of a syntactic condition [5, Theorem 3.8] that is for-
mulated in terms of the depth of input trees. The simulation tree is then divided
into sub-trees, which are checked against a safety property [5, Definition 3.16].
The sub-trees are then used to generate systems of equations which are solved
and checked against a compatibility condition [5, Definition 3.12]. The construc-
tion is ingenious, but the length of the proofs [5, p. 14, p. 19-20, p. 22-26] begs
the question of whether subtyping can be solved more simply. Furthermore, can
a strategy be found that is amenable to independent algorithmic checking? This
would explain why subtyping holds, further instilling confidence.

Contribution Our development starts with the observation that an input tree
can be represented, without loss of information, as a set of traces: one trace
for each branch through the input tree. The rationale behind this encoding
is that sets of traces can: (1) be relaxed (enlarged) and (2) be described as
regular expressions. As to (1), a trace-based representation allows the subtyping
algorithm to relax a set of traces to a strictly larger (possibly infinite) set, whilst
still allowing subtyping to be observed. By covering all the sets of traces that arise
in a simulation tree with a finite number of trace sets we can fold a simulation
tree onto a graph to obtain a tractable (finite) representation. Regarding (2),
(possibly infinite) sets of traces can themselves be finitely represented as regular
expressions. For example, Figure 1 (right) shows a collecting simulation graph

Asynchronous Subtyping by Trace Relaxation 209

where the states of M2 are relaxed to the set of traces S and S′, which can be
represented, say, as a∗q0 and a∗q0 + q1 respectively. The result is a subtyping
algorithm equipped with relaxation and termination machinery which can prove
subtyping on more (and more complex) problems than existing methods.

The use of sets of traces separates the proof for correctness of the core al-
gorithm, from the problem of how to finitely represent sets of traces. This sep-
aration simplifies the theoretical development. If higher fidelity was required,
regular expressions could be replaced with context-free grammars [13]; alterna-
tively the relaxations employed with regular expressions (string widening [12])
can be tuned without revisiting the correctness of the core algorithm.

Synopsis Section 2 introduces (session types as) communicating machines; Sec-
tion 3 defines asynch subtyping with the formulation in [5] to facilitate com-
parison and Section 4 gives a sound formulation based on collecting simulation
graphs. Section 5 gives an algorithm based on regular expressions and widening
over collecting simulation graph, and introduces and evaluates our tool. Conclu-
sion and related work are in Section 6.

2 Preliminaries on Communicating Machines

Let A denote a finite alphabet, and A = {!, ?}×A denote a finite set of send and
receive actions. A communicating machine M = (Q, q0, δ) (machine for short)
is defined by a finite set of states Q, an initial state q0 ∈ Q, and a transition
relation δ ⊆ Q × A × Q. For a fixed machine M = (Q, q0, δ), we write: q

w−→ q′

iff (q, w, q′) ∈ δ; q
w−→ iff there exists q′ such that q

w−→ q′; q0
w1,...,wn−−−−−−→ qn iff there

exist q1, . . . , qn−1 ∈ Q such that qi
wi+1−−−→ qi+1 for 0 ≤ i ≤ n− 1.

Given a sequence of labels a⃗ = a1, . . . , ak and a direction ⋆ ∈ {!, ?}, we write
⋆a⃗ for the sequence of actions ⋆a1, . . . , ⋆ak. The maps inM : Q → ℘(A) and

outM : Q → ℘(A) are defined: inM (q) = {a ∈ A | q ?a−→ } and outM (q) = {a ∈
A | q !a−→ }. The predicate sendM (q) holds iff outM (q) ̸= ∅ and recvM (q) holds iff
inM (q) ̸= ∅. The predicate finalM (q) holds iff ¬sendM (q) and ¬recvM (q).

Definition 1 (Session types correspondence). For a given M = (Q, q , δ0),
M is deterministic iff (q, w, q1), (q, w, q2) ∈ δ implies q1 = q2; M has no mixed
states iff ¬sendM (q) or ¬recvM (q) for all q ∈ Q. A session type corresponds [19]
to a deterministic machine without mixed states.

Henceforth we focus on systems of two deterministic machines without mixed
states, which correspond to binary session types. Binary session types describe
two-party protocols (e.g., client-server as POP2, SMTP). State-of-the-art asyn-
chronous subtyping algorithms [5] are formulated on binary sessions (each session
involving two rather than many participants). We focus on demonstrating how
abstraction can be applied to these algorithms and thus, likewise, adopt the
binary setting.

210 Laura Bocchi, Andy King and Maurizio Murgia

Because M is deterministic, the relation δ can be interpreted as a partial

function Q×A ⇀ Q defined by δ(q, ℓ) = q′ iff q
ℓ−→ q′. Following [5] we introduce

the predicate cycleM (!, q) to aid the characterisation of orphan messages:

Definition 2. The predicate cycleM (!, q) holds iff there exist a⃗ ∈ A∗, b⃗ ∈ A+

and q′ ∈ Q such that q
!⃗a−→ q′ and q′

!⃗b−→ q′.

The predicate cycleM (!, q) thus holds iff from q one can reach, using a possibly
empty sequence of send actions, a cycle (from q′ to q′ itself) of send actions. The
predicate cycleM (?, q) is defined analogously.

3 Asynchronous Subtyping with Input Trees

We define input trees and asynchronous subtyping, adopting the formulation
of [5]. Input trees are defined over the states Q of a supertype. Asynchronous
subtyping is then defined in terms of input trees, the trees capturing input
accumulation for guarded outputs.

Definition 3. The set of input trees TQ over Q is the least set such that: (1)
if q ∈ Q then q ∈ TQ; (2) if I is an index set, ∀i ∈ I.ai ∈ A, ti ∈ TQ and
∀i, j ∈ I.i ̸= j =⇒ ai ̸= aj then ⟨ai : ti | i ∈ I⟩ ∈ TQ

An input tree over Q is either a state in Q or an accumulated input. A term
of the form ⟨ai : ti | i ∈ I⟩ represents an accumulated input that presents an
options ai for each i ∈ I, followed by a tree ti. Note that any input tree of TQ

is necessarily finite. The following definition shows how to build the input tree
inTreeM (q) for a state q of a given machine M , and defines the associated set of
leaves leaf(t) of the input tree t.

Definition 4 (Input tree). Define inTreeM : Q ⇀ TQ and leaf : TQ → ℘(Q)

inTreeM (q) =

⊥ if cycleM (?, q)
q else if inM (q) = ∅
⟨ai : inTreeM (δ(q, ?ai)) | i ∈ I⟩ else inM (q) = {ai | i ∈ I}

leaf(t) =

{
{t} if t ∈ Q⋃
{leaf(ti) | i ∈ I} else if t = ⟨ai : ti | i ∈ I⟩

The cycleM (?, q) condition (also used in [5]) ensures that inTreeM (q), if defined, is
finite. Note that ai : inTreeM (qi) is well-defined in the above. To see why, suppose
δ(q, ai) = qi. Observe that if ¬cycleM (?, q) then ¬cycleM (?, qi). Repeating this
argument it follows inTreeM (qi) ̸= ⊥, as required.

Example 1 (Running example: input trees and leaves). The machines 14may2
and 14may1 specified in Figure 2 originate from the GitHub repository which
accompanies [5]. Henceforth let N1 = 14may2 and N2 = 14may1.

inTreeN2(q0) = ⟨a : ⟨a : q2, c : q3⟩, c : q5⟩
inTreeN2

(q1) = ⟨a : q2, c : q3⟩
inTreeN2

(qi) = qi for all 2 ≤ i ≤ 6

leaf(inTreeN2(q0)) = {q2, q3, q5}
leaf(inTreeN2

(q1)) = {q2, q3}
leaf(q3) = {q3}

Asynchronous Subtyping by Trace Relaxation 211

N1 :

p0p1 p2

p3

?a

!b

?c

!d
N2 :

q0q1

q2

q3

q4

q5

q6

?a ?c

?a

?c

!b

!b

!d

!b

!d

Fig. 2. Communicating machines N1 (14may2) and N2 (14may1)

Next, we introduce a substitution θ that we use, in the definition of asyn-
chronous subtyping, to model the accumulation of inputs as simulation unfolds.
Input trees are extended at their leaves by the application of a substitution θ.

Definition 5 (Substitution). If qi ∈ Q and ti ∈ TQ for all i ∈ I then θ =
{qi 7→ ti | i ∈ I} denotes an operator TQ → TQ where θ(t) is the input tree
obtained by simultaneously substituting each occurrence of qi in t with ti.

In Definition 6 we introduce the notion of an async subtyping relation be-
tween states of a candidate subtype and input trees of a supertype. We follow
[11] and, like [5], adopt the conventional orphan-free version of asynchronous
subtyping [7, Definition 2.4] adapted to the setting of communicating machines:

Definition 6. An async subtyping relation for M1 = (P, p0, δ1) and M2 =
(Q, q0, δ2) is a binary relation R ⊆ P × TQ such that (p, t) ∈ R implies:

1. if finalM1
(p) then t = q for some q ∈ Q and finalM2

(q)
2. if recvM1(p) then

(a) if t = q for some q ∈ Q then recvM2
(q) and if q

?a−→ q′ there exist p
?a−→ p′

and (p′, q′) ∈ R
(b) if t = ⟨ai : ti | i ∈ I⟩ then for all i ∈ I there exist p

?ai−−→ p′ and (p′, ti) ∈ R
3. if sendM1

(p) then:

(a) if t = q for some q ∈ Q and sendM2(q) then if p
!a−→ p′ there exist q

!a−→ q′

and (p′, q′) ∈ R
(b) otherwise if leaf(t) = {qi | i ∈ I} then

i. ¬cycleM1
(!, p)

ii. ti = inTreeM2(qi) ̸= ⊥ for all i ∈ I

iii. if p
!a−→ p′ and θ = {q 7→ q′ | q ∈ Q, q

!a−→ q′} then leaf(ti) ⊆ dom(θ)
for all i ∈ I and (p′, κ(t)) ∈ R where κ = {qi 7→ θ(ti) | i ∈ I}

Case (1) is self-explanatory. Case (2) is for input actions in M1 and realises
contra-variance with respect to inputs. Case (2.a) applies when the states p
and q are in sync, whereas case (2.b) applies when an accumulated input ai
in M2 is consumed by a corresponding input action of M1. In case (2.a), con-

dition recvM2
(q) ensures that the guarded clause q

?a−→ q′ does not hold vacu-
ously. Case (3) is for output actions in M1 and implements output co-variance.

212 Laura Bocchi, Andy King and Maurizio Murgia

Case (3.a) applies when M1 and M2 are in sync, while case (3.b) is for accu-
mulated inputs. The negated cycleM1

of clause (3.b.i) predicate mirrors [5] and
prevents orphan messages, ensuring that accumulated inputs are eventually con-
sidered. Clause (3.b.ii) was implicit in [5] but is used in the proofs for structuring,
and is thus made explicit. Clause (3.b.iii) ensures that if p in M1 can send, then
every leaf of the corresponding input tree t in M2 can make a matching send
action.

Definition 7 (Async Subtyping). M1 = (P, p0, δ1) is an (async) subtype of
M2 = (Q, q0, δ2), written M1 ≤ M2, iff there exists an async subtyping relation
R ⊆ P × TQ for M1 and M2 such that (p0, q0) ∈ R.

4 Asynchronous Subtyping with Input Traces

Simulation trees [5] provide a foundation for checking subtyping, but because
their branches can grow arbitrarily long, they are not tractable in themselves.
To obtain a model which is amenable to abstraction, we substitute an input tree
with a set of input traces. Sets of input traces can be easily relaxed by adding
more input traces, which is key to deriving a finite alternative representation.

Definition 8 (Input Traces). Given a fixed alphabet A and a set of states Q,
input traces (traces for short) are words formed from the alphabet A (which are
ranged over by π) followed by a state in Q: TrQ = {π · q | π ∈ A∗, q ∈ Q}. The
empty word is denoted ϵ.

The development begins by lifting a simulation tree to sets of traces, a construc-
tion which itself requires some set-level auxiliary operations:

Definition 9 (Traces of an input tree). The set of traces of an input tree is
given by the map tr : TQ ∪ {⊥} → ℘(TrQ) defined by:

tr(t) =

 ∅ if t = ⊥
{t} if t ∈ Q

{ai · π | π ∈ tr(ti), i ∈ I} if t = ⟨ai : ti | i ∈ I⟩

Example 2 (Running example: traces). Continuing with N1 and N2 of Example 1
(Figure 2), tr(inTreeN2

(q0)) = {aaq2, acq3, cq5} and tr(inTreeN2
(q1)) = {aq2, cq3}.

4.1 Collecting simulation

A (collecting) simulation tree is formulated in terms of a (collecting) simulation
relation, defined below. The term collecting has been chosen to resonate with
abstract interpretation [15] where a semantics is lifted to operate on sets of
data points (to give a so-called collecting semantics) which provides a semantic
substrate for synthesising an algorithm.

Asynchronous Subtyping by Trace Relaxation 213

inM2(q) ⊆ inM1(p) q
?a−→ q′

p ≤ q
?a
↪−→ δM1(p, ?a) ≤ q′

[Recv]
outM1(p) ⊆ outM2(q) p

!a−→ p′

p ≤ q
!a
↪−→ p′ ≤ δM2(q, !a)

[Send]

a ∈ inM1(p)

p ≤ a · π ?a
↪−→ δM1(p, ?a) ≤ π

[RecvTr]

¬cycleM1
(!, p)

tr(inTreeM2(q)) = {ϕi · qi | i ∈ I} k ∈ I

∀i ∈ I : outM1(p) ⊆ outM2(qi) p
!a−→ p′

p ≤ ϕ · q !a
↪−→ p′ ≤ ϕ · ϕk · δM2(qk, !a)

[SendTr]

∀π ∈ S : ∃b ∈ A : p ≤ π
?b
↪−→ Sa = {π′ | π ∈ S, p ≤ π

?a
↪−→ p′ ≤ π′} ̸= ∅

p ≤ S
?a
↪−→ p′ ≤ Sa

[RecvSet]

∀π ∈ S : p ≤ π
!a
↪−→ Sa = {π′ | π ∈ S, p ≤ π

!a
↪−→ p′ ≤ π′} ̸= ∅

p ≤ S
!a
↪−→ p′ ≤ Sa

[SendSet]

Fig. 3. Rules for trace-based asynchronous subtyping

Definition 10 (Collecting simulation). The collecting simulation relation of
two machines M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) is the least 5-place relation
↪−→ ∈ P × ℘(TrQ) × A × P × ℘(TrQ), satisfying the rules in Figure 3, where

p ≤ S
ℓ
↪−→ p′ ≤ S′ abbreviates (p, S, ℓ, p′, S′) ∈ ↪−→ .

In Figure 3, rules Recv and RecvTr collectively realise the second case of Defini-
tion 6: rule Recv realises case (2.a) for interactions in sync, and RecvTr realises
case (2.b) that consumes an accumulated input. The contra-variance of receive
manifests as inM2(q) ⊆ inM1(p) in Recv and a ∈ inM1(p) in RecvTr. Rules Send
and SendTr realise case (3.a) and case (3.b) of Definition 6, respectively. In
these rules, the co-variance of send appears as premise outM1

(p) ⊆ outM2
(q) in

Send and ∀i ∈ I : outM1
(p) ⊆ outM2

(qi) in SendTr. In rule SendTr, the leaf(tj) ⊆
dom(θ) condition in case (3.b.) follows from the premise outM1

(p) ⊆ outM2
(qi) for

all i ∈ I. To see this, let q ∈ leaf(tj) for some j ∈ J . Since p
!a−→ p′, a ∈ outM1

(p)
thus a ∈ outM2

(q) therefore q ∈ dom(θ).

The absence of mixed states (Definition 1) ensures that if both Send and
SendTr are applicable then the traces which result coincide. The force of this is
that clause ‘otherwise if ...’ of Definition 6(3.b) can be simplified to ‘if ...’ (so
there is no need to prioritise the application of Send over SendTr). The current
formulation of Definition 6(3.b) was chosen to align with that used in [5].

Rules RecvSet and SendSet lift subtyping from traces to sets of traces. In
RecvSet, the first premise specifies a covering requirement: that a receive is pos-
sible for each trace of S. The second premise prescribes a grouping requirement:
for a given receive action ?a, the second precondition accumulates all those traces
which can be derived by receiving on a. The requirement Sa ̸= ∅ ensures that
a non-empty subset of S contributes to Sa. The Sa ̸= ∅ requirement, which

214 Laura Bocchi, Andy King and Maurizio Murgia

likewise shows up in SendSet, also inhibits meaningless transitions of the form

p ≤ ∅ ?a
↪−→ p′ ≤ ∅ and p ≤ ∅ !a

↪−→ p′ ≤ ∅, which would otherwise hold vacuously.
For any given p ≤ S, relaxing S to T , can result in either p ≤ T becoming

stuck, or a move that preserves the inclusion of traces. To formulate this property,

let p ≤ T ̸ ℓ↪−→ denote the absence of a transition of the form p ≤ T
ℓ
↪−→ p′ ≤ T ′.

Proposition 1 (Monotonicity). Let T ⊆ S ⊆ TrQ and ℓ ∈ A. Then if

p ≤ T
ℓ
↪−→ p′ ≤ T ′ either: p ≤ S ̸ ℓ↪−→ or p ≤ S

ℓ
↪−→ p′ ≤ S′ where T ′ ⊆ S′.

4.2 Collecting simulation trees and graphs

First, we provide an infinite model for collecting simulation using collecting
simulation trees, that is an alternative presentation of simulation trees [5] where
we represent the state of a supertype as a set of traces rather than an input tree.

Definition 11 (Collecting simulation (sim) tree). A collecting sim tree for

M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) is a labelled tree (N,n0,
ℓ
↪−→t ,L) where

ℓ
↪−→t ⊆ N ×N is a tree rooted at n0 and L : N → P × ℘(TrQ) such that:

1. L(n0) = (p0, {q0})
2. if p ≤ S

ℓ
↪−→ p′ ≤ S′ and L(n) = (p, S) then n

ℓ
↪−→t n′ for some n′ ∈ N such

that L(n′) = (p′, S′)

3. if n
ℓ
↪−→t n′ and L(n) = (p, S) then L(n′) = (p′, S′) such that p ≤ S

ℓ
↪−→ p′ ≤ S′

Case (2) above ensures that a collecting sim tree enumerates all the transitions

of
ℓ
↪−→ whereas case (3) ensures that the tree only enumerates

ℓ
↪−→ transitions.

Note that a collecting sim tree is unique up to tree isomorphism.
Theorem 1 shows that subtyping can be expressed in terms of successful

branches (Definition 12) of collecting sim trees.

Definition 12 (branches). A branch of a collecting sim tree (N,n0,
ℓ
↪−→t ,L)

is a (possibly infinite) sequence n0, n1, . . . ⊆ N such that ni
ℓ
↪−→t ni+1 for all

consecutive ni, ni+1. A complete branch of the collecting sim tree is a branch
which is not a strict prefix of another branch of the collecting sim tree. A suc-
cessful branch is a complete branch which is either infinite or whose last node n
is labelled L(n) = (p, F) with F ⊆ Q, finalM1

(p), and finalM2
(q) for all q ∈ F .

The concept of successful branch allows for F to include multiple final states.
This degree of generality supports supertypes with two or more final states (such
as q4 and q6 of the machine N2 of Example 1) when, later, successful branches
are deployed in the context of collecting simulation graphs (see Figure 4).

Theorem 1 (Equivalence). Let (N,n0,
ℓ
↪−→t ,L) be a collecting sim tree for

M1 = (P, p0, δ1) and M2 = (Q, q0, δ2). M1 ≤ M2 iff every complete branch in

(N,
ℓ
↪−→t) is successful.

Asynchronous Subtyping by Trace Relaxation 215

Simulation trees and collecting simulation trees can grow without bound.
However, growth can be curtailed by the judicious application of relaxation:

Definition 13 (Collecting simulation (sim) graph). A collecting sim graph

for M1 = (P, p0, δ1) and M2 = (Q, q0, δ2) is a labelled graph (N,n0,
ℓ
↪−→g ,L)

where
ℓ
↪−→g ⊆ N ×N is a graph rooted at n0 and L : N → P × ℘(TQ) such that:

1. L(n0) = (p0, {q0})
2. if p ≤ S

ℓ
↪−→ p′ ≤ T and L(n) = (p, S) then there exists n′ ∈ N such that

n
ℓ
↪−→g n′, L(n′) = (p′, S′) for some S′ ⊇ T

3. if n
ℓ
↪−→g n′ and L(n) = (p, S) then L(n′) = (p′, S′) such that S′ ⊇ T and

p ≤ S
ℓ
↪−→ p′ ≤ T

Relaxation manifests in case (2) of Definition 13 in that S′ ⊇ T : S′ is thus a
relaxation of T . Note too that n′ is not necessarily on the branch from n0 to n.
Case (3) ensures that each transition in a collecting sim graph has a counterpart
in the collecting sim tree.

The concepts of (complete and successful) branch can be defined analogously
for a collecting sim graph. With these concepts in place, the following result,
which is consequence of Proposition 1, explains how a collecting sim graph sim-
ulates a collecting sim tree: each branch in the tree is described by a branch
in the graph with possibly enlarged trace sets. This correspondence between a
branch in the graph and a branch in the tree only holds if the branch in the
collecting sim graph does not get stuck.

Corollary 1. Let (N,n0,
ℓ
↪−→t ,L) (resp. (N ′, n′

0,
ℓ
↪−→g ,L′)) be a collecting sim

tree (resp. graph) for M1 = (P, p0, δ1) and M2 = (Q, q0, δ2). If b = n0 · · ·ni

is a branch in the tree (N,
ℓ
↪−→t) then there exists b′ = n′

0 · · ·n′
k in the graph

(N ′,
ℓ
↪−→g) with either: k = i or k < i and n′

k ̸ ℓ↪−→g . Moreover, L(nj) = (pj , Sj),
L′(n′

j) = (pj , S
′
j) and Sj ⊆ S′

j for all j ≤ k.

Example 3. Figure 1 (left) shows an infinite simulation tree (following the nota-
tion of [5]) for machines M1 andM2 given in the introduction. The corresponding
collecting sim tree has the same structure but T2 = ⟨a : q0⟩ is substituted with
{aq0}, T3 = ⟨a : ⟨a : q0⟩⟩ with {aaq0}, whereas q0 and q1 (at and beneath the
root of the tree) are replaced with {q0} and {q1} in the collecting sim tree. A
(finite) collecting sim graph for M1 and M2 is shown in Figure 1 (right). Observe
q0 ∈ S, q1 ∈ S′, q0 ∈ S, aq0 ∈ S, aq0 ∈ S′, aaq0 ∈ S, aq0 ∈ S, q0 ∈ S′, etc.

The force of collecting sim graphs is that they still act as a vehicle for estab-
lishing asynchronous subtyping, as the following result asserts:

Theorem 2 (Soundness). Let (N ′, n′
0,

ℓ
↪−→g ,L) be a collecting sim graph for

M1 = (P, p0, δ1) and M2 = (Q, q0, δ2). Then M1 ≤ M2 if every complete branch

in (N ′,
ℓ
↪−→g) is successful.

216 Laura Bocchi, Andy King and Maurizio Murgia

p0 ≤ S0

p1 ≤ S1 p0 ≤ S4 p1 ≤ S5

p2 ≤ S′
8 p3 ≤ S9

?a
↪−→g

?c
↪−→g

!b
↪−→g

?a
↪−→g

?c
↪−→g

!b
↪−→g

!d
↪−→g

n0

n1 n2 n3

n4 n5

S0 = {q0}
S1 = {q1}
S4 = {ϕ · π | ϕ ∈ ∪i≥0Ai, π ∈ {q0, cq3, cq5}}
S5 = {q1} ∪ S4

S′
8 = {q3, q5}

S9 = {q4, q6}

where A0 = {ϵ} and Ai+1 = {a · π | π ∈ Ai}

Fig. 4. A collecting sim graph for N1 and N2

Example 4 informally anticipates how finite representations of infinite execu-
tions can be algorithmically computed (using regular expressions) ahead of the
detailed presentation and evaluation of the algorithm in the following sections.

Example 4 (Running example: collecting sim graph). Continuing with Example 1
(Figure 2), N1 and N2 are examples of machines for which [5] cannot prove
subtyping, even though it does hold. In contrast, Figure 4 presents a collecting
sim graph showing N1 ≤ N2. The graph is rooted at n0 where L(n0) = (p0, S0).

5 Async Subtyping with Regular Expressions

Our work was motivated by the question of whether subtyping can be addressed
with a simpler and more general approach. Beyond this conceptual question,
there is the practical matter of whether our subtyping can algorithmically es-
tablish subtyping on more problems than before [4, 5]. To do so, we represent sets
of traces using regular expressions and simulate the operations on sets of traces
with analogous operations on regular expressions. To derive a finite collecting
sim graph, we apply regular expression widening [12].

5.1 Representing sets of traces with regular expressions

A set of traces can be represented as a finite set of regular expressions drawn
from the syntactic category RegA which is parameterised by alphabet A. RegA
is inductively defined as RegA = ϵ | C | r · r′ | r∗ where C ⊆ A, r, r′ ∈ RegA, and
· is concatenation of words. To specify the language (set of words) represented
by a regular expression, recall that Kleene closure W ∗ of a set of words W is
defined as W ∗ = ∪∞

i=0Wi where W0 = {ϵ} and Wi+1 = {ω ·ω′ | ω ∈ W,ω′ ∈ Wi}.
Then the language of r ∈ RegA, denoted JrK, is defined as JϵK = {ϵ}, JCK = C,
Jr · r′K = {ω · ω′ | ω ∈ JrK, ω′ ∈ Jr′K} and Jr∗K = JrK∗.

If r ∈ RegA and q ∈ Q the pair (r, q) represents the sets of traces J(r, q)K =
{π · q | π ∈ JrK}. Furthermore, if R ⊆ RegA × Q then R represents the traces
JRK = ∪{J(r, q)K | (r, q) ∈ R}. Henceforth rq will abbreviate the pair (r, q).

Asynchronous Subtyping by Trace Relaxation 217

Example 5. To illustrate, J{a∗q0, cq3}K = {cq3} ∪ {π · q0 | π ∈ ∪i≥0Ai} with Ai

defined as in Figure 4.

Our technique uses the existing notion of widening [15, 16] to approximate
regular expressions, namely to relax a sequence of regular expressions to derive
another sequence which is not strictly increasing (thereby inducing convergence):

Definition 14. An operation ▽ : RegA ×RegA → RegA is a widening iff given
a sequence s0, s1, . . . ∈ RegA such that JsiK ⊆ Jsi+1K for all i ≥ 0, the (widened)
sequence w0 = s0 and wi+1 = wi▽si+1 satisfies the following properties:

– JsiK ⊆ JwiK and JwiK ⊆ Jwi+1K for all i ≥ 0
– the sequence Jw0K, Jw1K, . . . is not strictly increasing

Our approach is parametric on the widening (of which there are many [14]). We
provide a primer on (string) widening to keep the presentation self-contained.

5.2 Widening regular expressions (a self-contained primer)

The intuition behind the widening we adopt [12] is to preserve commonality
across two regular expressions and resolve any difference using Kleene star for
relaxation. The widening scans both expressions left-to-right and, as it does so,
it partitions each expression into a prefix p which has been traversed and a suffix
s which is yet to be considered. The state of the scan thus represented by a pair
(p, s), with widenk operating on two such pairs simultaneously:

widenk((p, ϵ), (p
′, s′)) = mashk(p, p

′ · s′) widenk((p, s), (p
′, ϵ)) = mashk(p · s, p′)

widenk((p, q · s), (p′, q′ · s′)) =
mashk(p, p

′) ◦ q ◦ widenk((ϵ, s), (ϵ, s′)) if q = q′ and sh(q) ≤ k
widenk((p · q, s), (p′ · q, s′)) if q = q′ and sh(q) > k
widenk((p · q, s), (p′, q′ · s′)) if q ̸= q′ and |s| > |s′|
widenk((p, q · s), (p′ · q′, s′)) if q ̸= q′ and |s| ≤ |s′|

The widening is defined in terms of two notions of size: (1) star height defined
sh(ϵ) = sh(C) = 0, sh(r∗) = sh(r) + 1 and sh(r · s) = max(sh(r), sh(s)); (2)
star length defined |ϵ| = 0, |C| = |r∗| = 1 and |r · s| = |r| + |s|. Given two
expressions r and s, the auxiliary mashk(r, s) computes a relaxation of r and
s such that sh(mashk(r, s)) ≤ k where k is a predefined depth bound. Thus
JrK ⊆ Jmashk(r, s)K and JsK ⊆ Jmashk(r, s)K.

Now consider scans of the form (p, q · s) and (p′, q′ · s′) where q and q′ are
sub-expressions of the form C or r∗. If q = q′ then the common q is preserved
provided sh(q) ≤ k and widening continues with scans (ϵ, s) and (ϵ, s). Op-
erator ◦ is concatenation followed by a normalisation step [12] which ensures
that no consecutive stars are introduced. If sh(q) > k both q and q′ are ap-
pended onto r and r′ to be relaxed subsequently by mashk. If q ̸= q′ either
q or q′ is appended onto its prefix depending on |s| > |s′| so that the re-
maining suffices are closer in length (which is merely a heuristic for improv-
ing their similarity). Analogous to mashk, widenk((p, s), (p

′, s′)) relaxes p · s and
p′ · s′ such that sh(widenk((p, s), (p

′, s′))) ≤ k. The star height bound ensures
r▽s = widenk((ϵ, r), (ϵ, s)) yields a sequence which is not strictly increasing [12].

218 Laura Bocchi, Andy King and Maurizio Murgia

Algorithm 1 Algorithm for async subtyping (
ℓ
↪−→ is defined in Figure 3)

1: function Subtype(M1, M2, ∆) // M1 = (P, p0, δ1) M2 = (Q, q0, δ2)
2: for (p ∈ P) do
3: if (∆(p) ̸= ∅ ∧ p ≤ ∆(p) ↪̸−→) then return maybe

4: Rp :=
⋃

p′∈P {R | ∃ℓ. p′ ≤ ∆(p′)
ℓ
↪−→ p ≤ R}

5: ∆′(p) := if (p ∈ wp) then ∆(p)▽Rp else ∆(p) ∪Rp

6: if (∆′ ⊆ ∆) then return ∆
7: return Subtype(M1, M2, ∆

′)

Example 6. For brevity, we refer the reader to [12] for a definition and commen-
tary on the auxiliary mashk(r, s) but note that mashk(r, ϵ) = r∗ if sh(r∗) ≤ k
and conversely mashk(ϵ, s) = s∗ if sh(s∗) ≤ k. Hence

(a · c · d)▽(a · b · c) = widen1((ϵ, a · c · d), (ϵ, a · b · c)) = ϵ · a · widen1((ϵ, c · d), (ϵ, b · c))
= ϵ · a ·mash1(ϵ, b) · c · widen1((ϵ, d), (ϵ, ϵ))
= ϵ · a · b∗ · c ·mash1(d, ϵ) = ϵ · a · b∗ · c · d∗

The widening can be lifted from a pair of regular expressions to a pair of sets of
regular expressions in a point-wise fashion [12]. In our setting, regular expressions
represent traces, where each trace takes the form rq, and thus it is natural to
partition a set of traces according to the state q in which they end. Two sets of
expressions can be widened point-wise, for each q separately.

5.3 Computing a collecting sim graph with regular expressions

Before outlining the algorithm, we illustrate it by example. Example 7 revisits
Example 4 and shows how the sets of traces in Figure 2 can be algorithmically
generated by using regular expressions and widening in tandem.

Example 7. Figure 5 presents a collecting sim graph for N1 ≤ N2. Some nodes
are shadowed by grey nodes that elaborate their relaxations by widening or
union. The construction of the graph commences at node for p0 ≤ R0 and pro-
ceeds iteratively, the number to the top-right of a node indicating the iteration
at which that node is added to the graph. Iteration 1 is computed merely using
the rules of Figure 3. On iteration 2, p0 ≤ R2 is computed, again using the rules.
Since p0 was visited before, to ensure that p0 is not revisited ad infinitum, a
relaxation is applied, denoted ▽ following [15, 16], which relaxes R2 using R0 to
obtain R′

2. Observe how JR0K ⊆ JR′
2K and JR2K ⊆ JR′

2K but crucially the regular
expression R′

2 is computed using a (widening) algorithm [12] which ensures that
only a finite number of regular expressions are ever generated for p0. Not all
nodes of Figure 5 need to be relaxed using widening. On iteration 3, p1 is revis-
ited. In this case, R′

3 is derived from R3 and R1 by computing their union. Thus
again JR1K ⊆ JR′

3K and JR3K ⊆ JR′
3K. The general strategy is to apply widening

only as required, namely on a set of nodes which cut any cycle [3]. The machine
N1 of Figure 2 has a single cycle through p0 and p1, thus it is sufficient to widen

Asynchronous Subtyping by Trace Relaxation 219

p0 ≤ R0 p1 ≤ R1 p0 ≤ R2 p0 ≤ R′
2 p1 ≤ R3 p1 ≤ R′

3 p0 ≤ R4

p0 ≤ R4

p1 ≤ R5

p1 ≤ R5

p2 ≤ R6

p3 ≤ R7

p2 ≤ R8

p2 ≤ R′
8

p3 ≤ R9p3 ≤ R9

?a
↪−→ !b

↪−→ ▽

▽

?a
↪−→ ∪

∪

!b
↪−→

▽
▽

?a
↪−→

?c
↪−→

∪

∪

!b
↪−→

?c
↪−→

!d
↪−→

?c
↪−→

∪∪

!d
↪−→

∪

∪

0

1

1

2

2 2 3 3

3

3

44

4

4

5

5

R0={q0}

R1={q1}
R6={q5}

R2={aq0, cq3}
R′

2={a∗q0, cq3}
R7={q6}

R3={a∗q0}
R′

3={a∗q0, q1}
R8={q3}
R′

8={q3, q5}

R4={a∗q0, a
∗cq3, a

∗cq5}
R9={q4, q6}

R5={a∗q0, q1, a
∗cq3, a

∗cq5}

Fig. 5. A collecting simulation graph for proving N1 ≤ N2: reprise

at either p0 or p1. We elect to widen at p0, whereas for all other nodes of N2, the
relaxation is union. On iteration 5, p1 ≤ R5 is computing as before, the union of

R′
3 with R5 being R5. The following

?b
↪−→ transition derives a regular expression

R which is subsumed by R4, that is, p1 ≤ R5
?b
↪−→ p0 ≤ R where JRK ⊆ JR4K. Thus

the graph is no longer developed along the cycle. Despite employing relaxation,
R9 only contains q4 and q6 for which finalN2(q4) and finalN1(q6) hold. Recall
finalN1

(p3) holds, hence subtyping is demonstrated.

Our Subtype algorithm takes as input two machines M1 = (P, p0, δ1) and
M2 = (Q, q0, δ2) and is parametric on: (1) a widening ▽ : ℘(RegA)×℘(RegA) →
℘(RegA) and (2) a set wp ⊆ P of widening points. At least one state of wp must
appear in any cycle of M1; a condition which is sufficient for widening to induce
termination [3]. The mapping ∆ : P → ℘(RegA ×Q) represents the nodes of an
evolving collecting sim graph: Subtype(M1,M2, ∆) is initially primed with ∆ =
λp. if (p = p0) then {(ϵ, q0)} else ∅. In line 3, maybe is returned if the simulation

gets stuck. Note that p ≤ R
ℓ
↪−→ p′ ≤ R′ abbreviates p ≤ JRK

ℓ
↪−→ p′ ≤ JR′K and

likewise p ≤ R↪̸−→ abbreviates p ≤ JRK ↪̸−→ . In line 4, Rp collects all the (r, q) pairs
reachable at p in the current iteration ∆. ∆(p) is then relaxed to ∆′(p) applying
widening if P ∈ wp and union otherwise. In line 5, ∆′ ⊆ ∆ iff J∆(p)K ⊆ J∆′(p)K
for all p ∈ P . This check determines whether a fix-point is reached: if so the

220 Laura Bocchi, Andy King and Maurizio Murgia

M1 M2 |M1| |M2| [5] regex time

ctxta1 ctxta2 7 5 ✗ ✓ 110
ctxtb1 ctxtb2 6 7 ✗ ✓ 41

14may2 14may1 4 7 ✗ ✓ 10
badseq1 badseq2 5 12 ✗ ✓ 1127

march3testa1 march3testa2 6 7 ✗ ✓ 222
aaaaaab1 aaaaaab2 5 3 ✗ ✓ 43
ex1okloop ex2okloop 10 8 ✗ ✓ 1757

march3testa1 march3testb2 6 10 ✗ ✗ 8

Fig. 6. Comparison of subtyping experiments: success rates and execution time (in ms)

algorithm returns ∆. Subtyping is sound and, due to widening, is guaranteed
to terminate. In short, if Subtyping returns ∆ then M1 ≤ M2, otherwise it
returns maybe and the subtyping check is deemed inconclusive.

For complexity, observe that wp can be chosen so that each state of P \ wp
has at most one incoming edge. Then algorithm 1 updates each state of P at
most (c|Q|)|wp| times, updating ∆ at most |P |(c|Q|)|wp| times, where c bounds the
number of times a regular string can be relaxed. But c ≤ (2|Q|)k+2 .

5.4 Implementation and benchmarking

If successful, our tool generates a collecting sim graph (in the form of ∆) which
provides a concrete artifact that certifies s u btyping. T h e r e gular e x pression-
based subtyping algorithm has been implemented in Scala 3.2.2 on a laptop
running Ubuntu 22.04.2 with 32 GB of DDR3 and a 2.8GHz Intel i7 processor.
The code base is 1059 LOC, making use of parser combinators and the mutable
and immutable Set libraries. No attempt has been made to improve the iteration
strategy (which is normally a source of speedups). The tool and benchmarks
are available at https://github.com/murgia88/AsynchSubtypingRegex. The
benchmarks3 consists of 175 pairs of session types: 83 pairs where one type is
known to be a subtype of the other (the positive problems); and 92 pairs which
are known not to be in a subtyping relation (the negative problems).

This is a positive outcome. Alternatively, the algorithm terminates with an
inconclusive verdict. We have applied our tool to all the subtyping problems in
the benchmarking suite. Our tool gave positive outcome for 82 of them, whereas
the tool in [4, 5] gave 75 positive outcomes. In addition to certifying all positive
cases in [4, 5], the tool could certify 7 “complex accumulation [input tree] pat-
terns” [5] that were inconclusive cases in previous work. All 92 negative problems
were (rightly) categorised as inconclusive by our tool.

An analysis of the 7 complex accumulation patterns is summarised in Fig-
ure 6. The M1 (resp. M2) column give the candidate subtype (resp. type). To

3 The suite is based on the benchmark in [4, 5] with the addition of one (positive) case
that is used in [4, 5] as a running example.

Asynchronous Subtyping by Trace Relaxation 221

convey some indication of the size of the problems, the |M1| (resp. |M2|) column
gives the number of states in M1 (resp. M2). The [5] column indicates whether
subtyping can be proven using the algorithm of [5] using their distribution. The
regex column indicates whether subtyping can be proven using collecting sim
graphs instantiated with regular expressions, as proposed in our work. Time is
walltime measured in milliseconds, the median of 5 runs. Widening was per-
formed with a maximum star height of just 1 (k = 1). The last example in
Figure 6, marchtesta1 ≤ marchtestb2, is known to be positive but neither our
tool nor the one in [4, 5] could prove it. Nevertheless, it is remarkable that the
widening of [12] performs so well considering it was originally devised for ex-
tracting SQL queries from database application programs.

The certificate produced by the algorithm (in the form of ∆) can be checked
against the rules of Figure 3, without using widening or iteration. This could
conceivably be performed by a proof assistant for high-assurance applications.

We finally comment on one complex example, marchtesta1 ≤ marchtestb2,
that neither our tool nor the one in [4, 5] could prove. A post mortem reveals
that p4 ≤ S4 gets stuck: traces of S4 of the form bπq3 cannot make any move thus
RecvSet does not apply. However, bπq3 originates from {a, b}∗q3 in p0 ≤ S0 which
itself stems from (ϵq3 ▽1 aq3)▽1 b(ϵq3 ▽1 aq3). Setting k = 2 (or higher) does not
remedy the problem, which suggests that the widening needs tuning. Indeed,
replacing {a, b}∗q3 in S0 with a more nuanced relaxation, namely (a∗(ba)∗a∗)∗q3,
is sufficient to establish subtyping. Crucially, this shows that the problem does
not lie in collecting sim graph construction itself but in the widening (something
which can be tuned without change to the underlying framework).

6 Conclusion and Related Work

We presented an algorithm for (binary) asynchronous session subtyping based on
the application of abstract interpretation to session types. Our approach centres
on the use of sets of traces to obtain a tractable representation of input trees.
Sets of traces allow us to separate the proof for correctness of the core algorithm,
from the problem of how to finitely represent and manipulate traces. This sep-
aration makes the methodology modular and tunable. As well as providing a
conceptually simple approach for proving subtyping, the resulting algorithm,
when instantiated with an off-the-shelf string widening, can prove subtyping for
rich forms of interaction that were previously out-of-reach [5]. From a large suite
of benchmarks, our algorithm was able to verify subtyping all but one problem
and, even for that, we have shown that the collecting simulation approach is still
adequate for proving subtyping. These results show that abstract interpretation
is a clean, useful and powerful vehicle for inferring subtyping. Furthermore, a
collecting sim graph once obtained constitutes a certificate for validating subtyp-
ing. The certificate can be then checked by a third-party, without consideration
for how the graph is actually derived (whether algorithmically or manually).

Related work Async subtyping was first explored in [29] where subtyping rules
consider a restricted form of permutation on actions. These concepts were then

222 Laura Bocchi, Andy King and Maurizio Murgia

refined [10, 11] to disallow orphan messages, a requirement adopted in [5] and
inherited into our study for ease of comparison.

Since async subtyping is undecidable [6, 27], some works proposed decidable
safe approximated algorithms. For instance, subtyping can be approximated by
k-bounded asynchronous subtyping [7]. The state of the art is [4, 5] that inspired
our work. Fragments of session types for which asyn subtyping is decidable in-
clude: alternating session types [7] and single-out (resp. single-in) types [7] where
internal (resp. external) choices are singletons.

Fair subtyping [9, 33] is an alternative to standard subtyping that preserves
the possibility of correct termination. Asynchronous fair subtyping [8] is unde-
cidable, and a sound algorithm has been proposed [8], which extends [5]. We
would expect trace relaxation to extend to this setting as well.

The work above mostly focuses on binary sessions. The subtyping algorithm
of [17], instead, focuses on the more general case of async multiparty subtyping.
When restricted to binary types, the algorithm in [17] is less powerful than both
[5] and our algorithm. The last case of [17, Table 1], taken from the running
example in [5], is undetected with deadlock-free subtyping [17] but is proven
by [5] and ourselves (see case ‘sub− runningex ≤ sup− runningex’ in https:

//github.com/murgia88/AsynchSubtypingRegex). [17] is still able to establish
subtyping for several realistic protocols. A precise definition of async multiparty
subtyping (AMS) has been provided in Ghilezan et al. [22]. This means that
AMS in [22] is sound and complete with respect to async multiparty typing
with a subsumption rule. Such definition is not obviously useful for algorithmic
purposes: it contains quantifications over uncountably infinite sets. Application
of our methodology to AMS is an interesting future direction.

Acknowledgements This work has been partially supported by EPSRC project
EP/T014512/1 (STARDUST), the BehAPI project funded by the EU H2020
RISE under the Marie Sklodowska-Curie action (No: 778233) and MUR project
PON REACT EU DM 1062/21.

References

1. Bartoletti, M., Murgia, M., Scalas, A., Zunino, R.: Verifiable Abstractions for
Contract-oriented Systems. J. Log. Algebraic Methods Program. 86(1), 159–207
(2017)

2. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring Net-
works through Multiparty Session Types. Theoretical Computer Science 669, 33–
58 (2017), https://doi.org/10.1016/j.tcs.2017.02.009

3. Bourdoncle, F.: Efficient Chaotic Iteration Strategies with Widenings.
In: Formal Methods in Programming and Their Applications. Lecture
Notes in Computer Science, vol. 735, pp. 128–141. Springer-Verlag (1993).
https://doi.org/10.1007/BFb0039704

4. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A Sound Algo-
rithm for Asychronous Session Subtyping. In: International Conference on Concur-
rency Theory. LIPIcs, vol. 140, pp. 38:1–38:16. Schloss Dagstuhl, Leibniz-Zentrum
für Informatik (2019), http://dx.doi.org/10.4230/LIPIcs.CONCUR.2019.38

Asynchronous Subtyping by Trace Relaxation 223

5. Bravetti, M., Carbone, M., Lange, J., Yoshida, N., Zavattaro, G.: A Sound Algo-
rithm for Asychronous Session Subtyping and its Implementation. Logical Meth-
ods in Computer Science 17(1), 1–35 (2021). https://doi.org/10.23638/LMCS-
17(1:20)2021

6. Bravetti, M., Carbone, M., Zavattaro, G.: Undecidability of Asynchronous Session
Subtyping. Information and Computation 256, 300–320 (2017), https://doi.org/
10.1016/j.ic.2017.07.010

7. Bravetti, M., Carbone, M., Zavattaro, G.: On the Boundary between Decidabil-
ity and Undecidability of Asynchronous Session Subtyping. Theoretical Computer
Science 722, 19–51 (2018), https://doi.org/10.1016/j.tcs.2018.02.010

8. Bravetti, M., Lange, J., Zavattaro, G.: Fair Refinement for Asynchronous Session
Types. In: Foundations of Software Science and Computation Structures. Lec-
ture Notes in Computer Science, vol. 12650, pp. 144–163. Springer-Verlag (2021).
https://doi.org/10.1007/978-3-030-71995-1 8

9. Bravetti, M., Zavattaro, G.: A Foundational Theory of Contracts for Multi-party
Service Composition. Fundamenta Informaticae 89(4), 451–478 (2008)

10. Chen, T.C., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the Preciseness
of Subtyping in Session Types. Logical Methods in Computer Science 13(2), 1–61
(2017). https://doi.org/10.23638/LMCS-13(2:12)2017

11. Chen, T.C., Dezani-Ciancaglini, M., Yoshida, N.: On the Preciseness of Subtyping
in Session Types. In: Principles and Practice of Declarative Programming. pp.
135–146. ACM Press (2014). https://doi.org/10.1145/2643135.2643138

12. Choi, T., Lee, O., Kim, H., Doh, K.: A Practical String Analyzer by the
Widening Approach. In: Asian Symposium on Programming and Systems. Lec-
ture Notes in Computer Science, vol. 4279, pp. 374–388. Springer-Verlag (2006).
https://doi.org/10.1007/11924661 23

13. Christensen, A.S., Moller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Static Analysis Symposium. Lecture Notes in Computer Science,
vol. 2694, pp. 1–18. Springer-Verlag (2003). https://doi.org/10.1007/3-540-44898-
5 1

14. Costantini, G., Ferrara, P., Cortesi, A.: A Suite of Abstract Domains for Static
Analysis of String Values. Software Practice and Experience 45, 245–287 (2015)

15. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In:
Principles of Programming Languages. pp. 238–252. ACM Press (1977),

16. Cousot, P., Cousot, R.: Comparing the Galois connection andWidening/Narrowing
approaches to Abstract Interpretation. In: Programming Language Implementation
and Logic Programming. pp. 269–295. No. 631 in Lecture Notes in Computer
Science, Springer-Verlag (1992),

17. Cutner, Z., Yoshida, N., Vassor, M.: Deadlock-Free Asynchronous Message Re-
ordering in Rust with Multiparty Session Types. In: Symposium on Princi-
ples and Practice of Parallel Programming. pp. 246–261. ACM Press (2022).
https://doi.org/10.1145/3503221.3508404

18. Demangeon, R., Honda, K.: Full Abstraction in a Subtyped pi-Calculus with
Linear Types. In: International Conference on Concurrency Theory. Lecture
Notes in Computer Science, vol. 6901, pp. 280–296. Springer-Verlag (2011).
https://doi.org/10.1007/978-3-642-23217-6 19

19. Deniélou, P.M., Yoshida, N.: Multiparty Compatibility in Communicating Au-
tomata: Characterisation and Synthesis of Global Session Types. In: In-
ternational Colloquium on Automata, Languages and Programming. Lecture

224 Laura Bocchi, Andy King and Maurizio Murgia

https://doi.org/10.1007/3-540-55844-6_142

https://doi.org/10.1145/512950.512973

Notes in Computer Science, vol. 7966, pp. 174–186. Springer-Verlag (2013).
https://doi.org/10.1007/978-3-642-39212-2 18

20. Gay, S., Hole, M.: Types and Subtypes for Client-Server Interactions. In: European
Symposium on Programming. Lecture Notes in Computer Science, vol. 1576, pp.
74–90. Springer-Verlag (1999)

21. Gay, S., Hole, M.: Subtyping for Session Types in the Pi Calculus. Acta Informatica
42, 191–225 (2005). https://doi.org/10.1007/s00236-005-0177-z

22. Ghilezan, S., Pantovic, J., Prokic, I., Scalas, A., Yoshida, N.: Precise Subtyping
for Asynchronous Multiparty Sessions. Proc. ACM Program. Lang. 5(POPL), 1–28
(2021). https://doi.org/10.1145/3434297

23. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disci-
plines for Structured Communication-based Programming. In: European Sympo-
sium on Programming. Lecture Notes in Computer Science, vol. 1381, pp. 22–138.
Springer-Verlag (1998). https://doi.org/10.1007/BFb0053567

24. Hu, R., Yoshida, N.: Hybrid Session Verification Through Endpoint API Genera-
tion. In: Formal Aspects of Software Engineering. Lecture Notes in Computer Sci-
ence, vol. 9633, pp. 401–418. Springer-Verlag (2016). https://doi.org/10.1007/978-
3-662-49665-7 24

25. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming
in Java. In: European Conference on Object-Oriented Programming. Lecture
Notes in Computer Science, vol. 5142, pp. 516–541. Springer-Verlag (2008).
https://doi.org/10.1007/978-3-540-70592-5 22

26. Lagaillardie, N., Neykova, R., Yoshida, N.: Stay Safe Under Panic: Affine Rust
Programming with Multiparty Session Types. In: European Conference on Object-
Oriented Programming. vol. 222, pp. 4:1–4:29. Schloss Dagstuhl, Leibniz-Zentrum
für Informatik (2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.4

27. Lange, J., Yoshida, N.: On the Undecidability of Asynchronous Session Subtyping.
In: Foundations of Software Science and Computation Structures. Lecture Notes
in Computer Science, vol. 10203, pp. 441–457. Springer-Verlag (2017), https://
link.springer.com/chapter/10.1007/978-3-662-54458-7_26

28. Lindley, S., Morris, J.G.: Embedding session types in Haskell. In: In-
ternational Symposium on Haskell. pp. 133–145. ACM Press (2016).
https://doi.org/10.1145/2976002.2976018

29. Mostrous, D., Yoshida, N., Honda, K.: Global Principal Typing in Partially Com-
mutative Asynchronous Sessions. In: European Symposium on Programming. Lec-
ture Notes in Computer Science, vol. 5502, pp. 316–332. Springer-Verlag (2009).
https://doi.org/10.1007/978-3-642-00590-9 23

30. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A Session Type Provider:
Compile-time API Generation of Distributed Protocols with Interaction Re-
finements in F#. In: Compiler Construction. pp. 128–138. ACM Press (2018).
https://doi.org/10.1145/3178372.3179495

31. Ng, N., Yoshida, N., Honda, K.: Multiparty Session C: Safe Parallel Program-
ming with Message Optimisation. In: Objects, Models, Components, Patterns. Lec-
ture Notes in Computer Science, vol. 7304, pp. 202–218. Springer-Verlag (2012).
https://doi.org/https://doi.org/10.1007/978-3-642-30561-0 15

32. Orchard, D., Yoshida, N.: Session Types with Linearity in Haskell. In: Be-
havioural Types: from Theory to Tools. pp. 219–241. River Publishers (2017).
https://doi.org/https://doi.org/10.13052/rp-9788793519817

33. Padovani, L.: Fair subtyping for multi-party session types. In: Coordination Mod-
els and Languages. Lecture Notes in Computer Science, vol. 6721, pp. 127–141.
Springer-Verlag (2011). https://doi.org/10.1007/978-3-642-21464-6 9

Asynchronous Subtyping by Trace Relaxation 225

34. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its
Typing System. In: Parallel Architectures and Languages Europe. Lecture
Notes in Computer Science, vol. 817, pp. 398–413. Springer-Verlag (1994).
https://doi.org/10.1007/3-540-58184-7 118

226 Laura Bocchi, Andy King and Maurizio Murgia

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Program Analysis and Proofs

SootUp: A Redesign of the Soot Static Analysis
Framework

1 Heinz Nixdorf Institute, Paderborn University, Paderborn, Germany
{kadiray.karakaya,stefan.schott,jonas.klauke,

eric.bodden,markus.schmidt}@upb.de
2 Fraunhofer IEM, Paderborn, Germany

3 Amazon Web Services, Berlin, Germany
llinghui@amazon.de

4 Chongqing University, Chongqing, China
dongjiehe@cqu.edu.cn

Abstract. Since its inception two decades ago, Soot has become one of
the most widely used open-source static analysis frameworks. Over time
it has been extended with the contributions of countless researchers. Yet,
at the same time, the requirements for Soot have changed over the years
and become increasingly at odds with some of the major design decisions
that underlie it. In this work, we thus present SootUp, a complete reim-
plementation of Soot that seeks to fulfill these requirements with a novel
design, while at the same time keeping elements that Soot users have
grown accustomed to.

Keywords: Static program analysis · Soot · SootUp.

1 Introduction

Soot is a program analysis framework for Java and Android. It has been pop-
ular in academia for prototyping novel static and dynamic analysis approaches,
many of which have been published at international conferences [1, 3, 5, 6, 14,
15, 20, 21, 23, 29]. In 2000 [30], Soot was introduced as an optimization frame-
work for Java. Back then, when just-in-time compilers were still in their infancy,
ahead-of-time optimization of Java code was a major field of research. Over the
years, the research community’s interest has been dominantly shifting to static
code analysis, for diverse purposes. Soot remained relevant due to some of its
strengths, particularly its popular intermediate representations.

One of the core features of Soot is its main intermediate representation
(IR), Jimple [31]. When seeking to perform program analysis on Java, both
bytecode and source code are usually suboptimal representations to work with.
Java bytecode represents a program to be executed, using a stack-based instruc-
tion set. Java source code, on the other hand, represents it on a higher level, using

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 229–247, 2024.
https://doi.org/10.1007/978-3-031-57246-3_13

Linghui Luo: The work was done prior to joining Amazon.

Kadiray Karakaya1, Stefan Schott1, Jonas Klauke1, Eric Bodden1,2,
Markus Schmidt1, Linghui Luo3(B), and Dongjie He4

https://doi.org/10.1007/978-3-031-57246-3_13
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_13&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

nested scopes and control-flow constructs for better readability. Soot’s Jimple
IR is a so-called three-address code representation [13] that combines the best of
both worlds: It uses local variables instead of a stack. This simplifies data-flow
equations because all values that an operation consumes or produces are readily
accessible through its operands. It also uses explicit control flow without nesting,
i.e., solely through conditional or unconditional gotos. In result, every Jimple
instruction is atomic, there can be no nesting. Complex source-code statements,
which perform multiple consecutive operations, e.g. a numerical computation
with a subsequent cast, are broken down into multiple individual IR instruc-
tions. This enables the creation of simple control flow graphs (CFGs), which one
can then use to analyze a method’s control and data flow with relative ease.

Furthermore, Soot offers multiple algorithms, with varying degrees of pre-
cision and complexity, for constructing call graphs. They resemble an essential
data structure for performing inter-procedural static analysis, as it models how a
program’s methods call one another. For object-oriented programming languages
like Java, call graph construction is particularly challenging. This is because in
Java method calls are virtual by default, in which case their call target is de-
pendent on an object’s runtime type. A reference variable’s declared type can
only bound the possible call targets. To resolve call targets precisely one must
compute all of the variable’s possible runtime types. A popular way to do this is
through pointer analysis. Soot provides such call graph computation through
its pointer analysis framework Spark.

Over the years, Soot has frequently been extended to incorporate new fea-
tures, and, in doing so, even early on it became clear that some of its design
decisions were suboptimal, yet hard to remedy after the fact. For instance, Soot
has always been all-round monolithic. It heavily uses the singleton design pat-
tern, causing strong coupling, and it always sought to be both a command line
tool and a library, causing sometimes conflicting views on who owns the thread
of control. In Soot, everything can be accessed and manipulated via the single-
ton “scene”. This forbids keeping multiple scenes in memory, and any sensible
parallelization. Soot also contains many features that by now are considered ob-
solete, e.g. other barely used IRs and an outdated source-code frontend, which
are hard to remove without breaking useful but untested functionality.

This paper presents Soot’s successor framework SootUp. With SootUp,
we aim to keep the most important features of Soot, yet to also overcome its
major drawbacks. We designed SootUp as a modular library. This allows one
to pick out the necessary modules for a specific use case. For instance, clients
that only require bytecode analysis would add a dependency to the bytecode
frontend module. This is possible due to SootUp’s core module being a generic
implementation that allows plugging in frontends for arbitrary programming
languages. Instead of a singleton scene object, SootUp introduces the concept
of views, where each view may hold a different version of the analyzed program,
or different programs altogether. To enable safe parallelization and caching, the
new Jimple IR is immutable by default, allowing instrumentation only at certain

K. Karakaya et al.230

safe points. At the time of writing, SootUp’s most recent release is v1.1.21 and
SootUp is open-sourced at GitHub.2

To summarize, this paper presents the following contributions:

– The design decisions behind SootUp’s architecture that accommodate cur-
rent research requirements,

– a demonstration of its new API, which aims for better usability,
– suggestions for Soot-based analysis tools on how to switch to SootUp, and
– the roadmap for further development of SootUp.

The remainder of this paper is organized as follows. In Section 2, we introduce
the design decisions that shaped SootUp. In Section 3, we demonstrate the new
API on example use cases. In Section 4, we list currently supported tools and
discuss how to upgrade tools to use SootUp. In Section 5, we explain SootUp’s
development process and how one can contribute to it. We present the future
work in Section 6, related work in Section 7 and conclude with Section 8.

2 Design Decisions

We next discuss the main design decisions that underly SootUp, and how they
address some of the major shortcomings of Soot. We introduce the new archi-
tecture and excerpts of the new API.

2.1 Modular Architecture

SootUp’s most notable architectural difference from its predecessor is the clear
separation of its components into independent modules. Figure 1 shows its archi-
tectural overview. One of the goals of the new architecture is to allow SootUp
to be used as a language-independent static analysis framework. It is not tightly
coupled to any programming language. The most recent release (v1.1.2) in-
cludes frontends for Java bytecode, Java source code and a now generic, i.e.,
language-independent form of Jimple. We delegate the language support to ex-
ternal frontend providers and expect them to extend the generic Jimple. This is
a significantly different mechanism than Soot had offered for language support
before. Previously, to analyze programs not in Java, one needed to convert their
code to the (Java-specific) Jimple. With SootUp, instead one defines language-
specific features by extending the core set of Jimple language constructs.

The core module encapsulates the main functionality based on the generic
Jimple. It defines the Jimple language constructs such as expressions, constants
and statements. The statements make up control-flow graphs (CFGs), which may
be forward, backward, mutable or immutable. The CFGs are representations for
the bodies of SootMethods. SootMethods constitute SootClasses, the backbone
of SootUp’s core object model. All of these objects are accessible through Views.

1 https://doi.org/10.5281/zenodo.10037587
2 https://github.com/soot-oss/SootUp/

SootUp: A Redesign of the Soot Static Analysis Framework 231

https://doi.org/10.5281/zenodo.10037587
https://github.com/soot-oss/SootUp/

Java Bytecode
Frontend

Java Source
Code

Frontend

Jimple
Frontend

Other
Frontends

Conversion

Call Graph Pointer
Analysis

Views

Other
Backends

Generic
Jimple

SootUp Core

CFG Core Object
Model

Type
Hierarchy

Dataflow
Analysis

Fig. 1. Overview of SootUp’s Architecture. White boxes are Java modules.

We have conceptualized the View as the main interface the user interacts
with. In the case of a single view, this corresponds to the Scene object in Soot.
Because of the Scene’s singleton nature, running multiple analyses simultane-
ously was virtually impossible in Soot [16]. SootUp overcomes this drawback
by allowing as many Views as desired to co-exist.

Additionally, SootUp comes with a new extensible Call Graph framework.
It allows plugging in arbitrary strategies for resolving virtual method dispatches.
These strategies could vary, for instance, to optimize the precision or scalability,
which are often tweaked using different Pointer Analysis algorithms. Interproce-
dural Dataflow Analysis is one of the most successful methods for detecting bugs
and security vulnerabilities. SootUp supports out-of-the-box context-sensitive
data-flow analysis using the popular Heros [4] dataflow analysis framework.

2.2 On-Demand Class Loading

While Soot loads all SootClasses that are referenced in a currently resolving
SootClass, SootUp is designed with a layer of indirection. SootUp makes use
of identifiers to reference actual, possibly already loaded, instances of a respec-
tive SootClass and stores those identifiers that reference other SootClasses,
SootMethods or SootFields. This decreases unnecessary computations of un-
used SootClasses, i.e. those which are referenced but whose contents are not of
interest. Doing so, additionally, enables parallel class loading. Because the load-
ing of a class does not depend on the loading of the classes that it references,
each class can be loaded independently. As a side effect, it renders the concept
of phantom classes, known from Soot, obsolete, as its purpose is to create a fa-
cade SootClass in case of missing a class definition of a referenced SootClass.

K. Karakaya et al.232

ClassCache<ClassType, SootClass>
ClassType

View

ClassSource

ClassType
SootClass

MethodCache<MethodSig, SootMethod>

SootClass
MethodSig

SootMethod

FieldCache<FieldSig, SootField>
FieldSig

SootField

SootClass

MethodSig

SootMethod

FieldSig
SootField

CacheProvider

FullCache

LRUCache

MutableFullCache

Fig. 2. SootUp’s On-Demand Class Loading Mechanism

This case is now cleanly handled by the View, which simply returns no further
information.

Figure 2 models SootUp’s new on-demand class loading mechanism. The
View is the central access point that streamlines the resolving and caching pro-
cess. The caching strategy can be configured by using one of the cache providers.
FullCache is the default option, which suffices in most cases where the cache
does not need to be freed. Alternatively LRUCache manages the cache based on
the least recent use and MutableFullCache gives the control of the cache to
the client. After obtaining a SootClass, by querying it with its unique identifier
(ClassType) from the View, one can obtain its SootMethods and SootFields
that are cached within the SootClass.

2.3 Focus on an Intuitive API

Soot’s users often complain about a lack of documentation. Its issue tracker is
filled with ”how to”3 questions. We believe the underlying problem is, primarily,
its complicated API design. Based on our past experience, when developing
SootUp, an intuitive API design has always been strongly in focus.

Figure 3 shows the process of setting up a Project, creating a View and
accessing a SootMethod object. First, users create an AnalysisInputLocation

that points to a target program’s path. Second, they create a Project by spec-
ifying the target language. The Project can be used to create a View. At this

3 https://github.com/soot-oss/soot/issues?q=how+to+in%3Atitle

SootUp: A Redesign of the Soot Static Analysis Framework 233

https://github.com/soot-oss/soot/issues?q=how+to+in%3Atitle

view

AnalysisInput-
Location

create(path)

Project

create(AnInputlocation, language)

createView()

IdentifierFactory

getClassType(className)

classType

getMethodSignature(classType, methodName, returnType, params)

methodSignature

View

getSootMethod(methodSignature)

sootMethod

Fig. 3. SootUp’s API for Creating a View and Accessing a SootMethod

point, the View knows where the target program is located and which language
frontend needs to be used to load its classes.

The View loads the elements of the target program only when they are
queried, and memoizes them through configurable caching providers enabled
by the new immutable IR design. The memoization is fine-grained, it works
at the level of field, method, interface and modifier definitions. SootUp can
create references to all of these objects via a corresponding language-specific
IdentifierFactory. The references, i.e., the identifiers, are then used to access
the queried elements of the target program.

Class types and signatures (for methods and fields) are considered global
identifiers, across possibly concurrent instances of Projects and Views. They
are created and pooled by the singleton instance of IdentifierFactory to re-
duce memory consumption. Additionally, it is cheaper to invoke hashCode() and
equals() on the identifiers than on the IR objects that the identifiers reference.

2.4 Library by Default

Soot had always been designed to be a standalone CLI (command-line interface)
tool. This meant that it was expected to own the thread of control, which often
hindered a tight integration of Soot into integrated development environments
(IDEs) or CI/CD pipelines, which are themselves frameworks and expect to
own the thread of control as well. Also, a CLI aggregates all of the underlying
functionality and makes it accessible via a single channel. This requires bundling
everything together and contradicts our goals of providing lean modules.

K. Karakaya et al.234

To avoid this, we have conceptualized SootUp as a library by default. In
SootUp, clients can depend on individual modules. For instance, to access the
CFGs of a compiled program’s methods, one needs to add a dependency to the
Java Bytecode Frontend and Core modules. Further module dependencies can
gradually be added later on when needed.

The library nature allows the clients to own the thread of control. This is
preferable, especially, when using SootUp for other purposes than program
analysis, or when using it as part of other analysis frameworks. SootUp also
provides rather sophisticated functionality as a framework, with inversion of
control, for instance when building call graphs or performing dataflow analyses.

Yet, SootUp is not quite stateless. As shown in Figure 3, the state is man-
aged mainly by the IdentifierFactory and View. View instances keep ref-
erences to all the memoized objects, they are not garbage collected unless the
client releases the reference to the View. IdentifierFactory, on the other hand,
maintains the global state of unique identifiers statically. It is the only singleton
in SootUp, which might be shared across different views. In other words, if the
client terminates then only the state in the IdentifierFactory will be retained.

2.5 Immutable IR by Design

Soot was designed as a program optimization tool. Its main purpose was to
enable the analysis and transformation of method bodies. As the research trend
has shifted from program optimization to program analysis, we believe there is
limited use in still maintaining mutable objects in a mutable IR.

Mutable objects are not easily shared between several entities. One needs
to constantly account for unintended changes. They very much complicate par-
allelization at any level. To counter this problem, we have designed SootUp’s
Jimple IR to be immutable by default. This assures that there are no accidental
modifications and that values can be safely shared and cached.

1 class Body {

2 ...

3
4 Body withStmts(List<Stmt> stmts) {

5 return new Body(stmts);

6 }

7 }

Listing 1.1. Modifying a Method Body via Withers

To ensure immutability we have slightly adjusted the API as well. Many
classes do not have setters anymore, they have withers instead. Withers still
allow modifications via new object copies with modified properties. Listing 1.1,
for instance, shows how one can still modify the statements of a method body.

2.6 Changes to Jimple

Originally, Jimple was designed to be an IR for program optimization to fit
Soot’s primary use case. Since the purpose of SootUp has been shifted to-

SootUp: A Redesign of the Soot Static Analysis Framework 235

wards program analysis instead of optimization, we adjusted the Jimple IR to-
wards this purpose. For efficiency reasons, a Java compiler compiles any switch

statement to either a tableswitch or a lookupswitch bytecode instruction.
Since the distinction is needed to transform the optimized Jimple back to byte-
code, Jimple also made a distinction between tableswitch and lookupswitch

statements. However, virtually all program analyses will treat both kinds of
statements identically. Because of this, in SootUp both statements have been
merged into a single switch statement, simplifying analysis implementations.

Another novelty in SootUp’s Jimple is the added support for language
extensibility. SootUp is designed to be an analysis framework that not just
supports Java, but also other programming languages as well. To allow for this
multi-language support, a basic Jimple IR has been implemented in a generic
way that allows for easy extension with language-specific features. For the Java
implementation, we extended this basic Jimple IR with import statements and
annotations, two features that are highly specific to the Java language. Anno-
tations are supported by extending Jimple’s class type definition. Just like in
Java source code, import statements improve the readability of Java-Jimple
statements. Java-Jimple now allows referring to simple class names by defining
their fully qualified names as imports. Likewise, basic Jimple can be extended
to support features specific to other languages, e.g. JavaScript or Python.

3 Demonstration

In Section 2.3, we provided a glimpse of the new API. In this section, we demon-
strate the new API with a set of most common use cases.

3.1 Setup

The code snippet in Listing 1.2 shows the starting point in SootUp to build
an analysis project. The project builder requires two inputs: (1) the language of
code to be analyzed and its version, as SootUp supports multiple languages; (2)
the location of the analysis target. In this example, we are setting the analysis
language as Java with version 8 and adding a Java classpath analysis input loca-
tion that points to the analysis target. Note that one can add multiple analysis
input locations to the project builder. The Java bytecode frontend accepts any
of the Java archive formats (JAR or WAR), Android packages (APK), ZIPs or
individual .class files. The Java source and the Jimple frontends accept .java
and .jimple files respectively. To resolve a given class, the view will inspect all
of the given analysis input locations.

1 JavaLanguage language = new JavaLanguage(8);

2 JavaProject project = JavaProject.builder(language)

3 .addInputLocation(new JavaClassPathAnalysisInputLocation("/path"))

4 .build();

5 JavaView view = project.createView();

Listing 1.2. The creation of a view in SootUp

K. Karakaya et al.236

3.2 Obtaining a Method Body

Assume the target code example in Listing 1.3. Following the API usage in
Section 2.3, next we need to obtain a reference to the target class. To do so,
as shown in Listing 1.4, we get the IdentifierFactory from the view at Line
6. We obtain the target class type at Line 7 and likewise the target method’s
signature at Line 8. A class is rather straightforward to identify, i.e. with a
string corresponding to its fully qualified name, e.g. "org.example.Main" in
this example.

package org.example;

public class Main {

void run(String[] args) {

...

}

}

Listing 1.3. Target code example

Identifying methods requires a
bit more information, as one needs
to specify its containing class type,
name, return type and parameter list
to uniquely identify it. In this exam-
ple, we use the target class type (ct)
that we have created, set the name as
"run" and return type as "void". It
is important to refer to any class type
with its fully qualified name. For in-
stance, while in Java it suffices to write String[] args to define the parameters
as a string array, SootUp needs the definition as java.lang.String[].

6 IdentifierFactory factory = view.getIdentifierFactory();

7 ClassType ct = factory.getClassType("org.example.Main");

8 MethodSignature mSig = factory.getMethodSignature(

9 ct, "run", "void", Collections.singletonList("java.lang.String[]"));

Listing 1.4. Definition of a class type and a method signature using SootUp

The method signature that we created (mSig) can now be used to query the
actual method object from the view. This is shown at Line 10 in Listing 1.5. As
the new API follows the modern Java best practices, view.getMethod() returns
an optional, at Line 11, we therefore test this optional for its presence and obtain
the methods body. At Line 12, we output all the statements of the method.

10 view.getMethod(mSig)

11 .ifPresent(method ->method.getBody()

12 .getStmts().forEach(System.out::println));

Listing 1.5. Output all statements in a method body using SootUp

3.3 Call Graph Generation

A call graph models the calls between the methods of a target program, which
makes it an essential data structure when performing interprocedural program
analyses. SootUp’s new call graph framework is based on a generic notion of
a CallGraphAlgorithm, which can be extended by specific call graph algorithm
implementations. The call graph algorithms only need to specify how they resolve

SootUp: A Redesign of the Soot Static Analysis Framework 237

a call. Resolving can be based on the static class hierarchy (e.g. CHA [7], RTA [2])
or based on sophisticated pointer analyses [17].

13 CallGraphAlgorithm cha = new ClassHierarchyAnalysisAlgorithm(view);

14 CallGraph cg = cha.initialize(Collections.singletonList(mSig));

15 cg.containsMethod(anotherMethod)

16 cg.callsFrom(mSig)

Listing 1.6. Call graph generation using SootUp

Listing 1.6 shows an example of call graph generation using the new API.
Since the view maintains all the classes and methods, it needs to be passed to
the call graph algorithm, e.g. the ClassHierarchyAnalysisAlgorithm at Line
13. The call graph algorithm is initialized at Line 14, by specifying the entry
method, which returns a CallGraph object. The call graph can be queried for
method reachability, e.g. at Line 15, or can be iterated by retrieving the calls
from the entry method, e.g. at Line 16.

3.4 Body Interceptors

Body interceptors in SootUp replace the concept of transformers in Soot.
They essentially allow modifying method bodies, for instance, to add, remove
or replace statements. As with the other objects, methods are immutable by
default. Therefore, in SootUp any modifications to the method body must be
performed during the body-building phase.

1 ClassLoadingOptions clo = new ClassLoadingOptions() {

2 @Override

3 public List < BodyInterceptor > getBodyInterceptors() {

4 return Collections.singletonList(new DeadAssignmentEliminator());

5 }

6 };

7 JavaView view = project.createView(analysisInputLocation -> clo);

Listing 1.7. Specifying Body Interceptors

Listing 1.7 shows an example of specifying a body interceptor. In this example
the DeadAssignmentEliminator is specified. The body interceptors must be
defined as part of the class loading options, as they are applied during class
loading. The options are passed during the view creation.

4 Tool Support

Soot-based tools can be upgraded to use SootUp instead, however, depending
on their implementation, the upgrading effort may vary. We next present the
tools that SootUp currently supports and provides as submodules. We also
suggest the roadmap for Soot-based tools for switching to SootUp.

K. Karakaya et al.238

4.1 Heros

Heros [4] enables defining interprocedural dataflow analysis using the IFDS
(interprocedural, finite, distributive subset) [24] and IDE (inter-procedural dis-
tributive environments) [25] conceptual frameworks. Both frameworks reduce
dataflow analysis problems to graph reachability. While IDE well suits the anal-
ysis problems with large domains (such as typestate or constant propagation
analysis), IFDS is the primary choice for reachability analyses with a small do-
main (e.g. taint analysis).

1 JimpleBasedInterproceduralCFG icfg =

2 new JimpleBasedInterproceduralCFG(view, entryMethod);

3
4 IFDSTaintAnalysisProblem problem =

5 new IFDSTaintAnalysisProblem(icfg, entryMethod);

6
7 JimpleIFDSSolver<?, InterproceduralCFG<Stmt, SootMethod>> solver =

8 new JimpleIFDSSolver(problem);

9
10 solver.solve();

Listing 1.8. IFDS analysis using Heros

SootUp provides the Heros framework within its analysis submodule. List-
ing 1.8 shows an example on running an IFDS analysis using Heros. SootUp
implements Heros’ InterproceduralCFG interface with the Jimple-specific
JimpleBasedInterproceduralCFG. To instantiate it, the client needs to pass
the view and an entry method as shown at line 1. Heros defines IFDS problems
as an abstract class with DefaultIFDSTabulationProblem, this is extended by
DefaultJimpleIFDSTabulationProblem in SootUp. However, the clients still
need to define their custom IFDS analyses with problem-specific lattices, flow-
functions and merge operators. An example of a basic IFDS-based taint analysis
problem is available in SootUp, which is instantiated at line 4. SootUp ex-
tends Heros’ generic IFDSSolver with the JimpleIFDSSolver by concretizing
it with Stmt (equivalent to Unit in Soot) and SootMethod.

4.2 Qilin

Pointer information is an integral part of precise program analyses. Soot’s
pointer analysis frameworks, Spark [17] and its context-sensitive alternative
Paddle [18], have been popular in academia, as they provide a solid ground
for researching novel algorithms. As we observe, however, the research trend is
moving towards more sophisticated approaches with increased pointer analysis
precision. For instance, context-sensitivity can be applied selectively rather than
uniformly across the whole program [19].

Qilin [12] is a state-of-the-art flow-insensitive pointer analysis framework
that was recently designed for supporting fine-grained selective context sensi-
tivity while subsuming existing traditional method-level context sensitivity as

SootUp: A Redesign of the Soot Static Analysis Framework 239

a special case. Since Qilin is fully written in Java and operates on the Jim-
ple IR of Soot, we were able to seamlessly incorporate Qilin into SootUp
as a submodule with only minor engineering efforts. Qilin supports a rich
set of pointer analyses such as Andersen’s context-insensitive analysis as im-
plemented in Spark [17], k-limiting callsite-sensitive analysis [27], k-limiting
object-sensitive analysis [22,28], and other recent advancements in pointer anal-
ysis. By providing Qilin as a SootUp submodule, we aim to foster comparative
research using a broader set of pointer analysis algorithms.

1 PTAPattern ptaPattern = new PTAPattern("2o");

2 Collection entries = Collections.singleton(mainSig);

3 PTA pta = PTAFactory.createPTA(ptaPattern, view, entries);

4 pta.run();

5 CallGraph cg = pta.getCallGraph();

Listing 1.9. Call graph generation using a pointer analysis in Qilin

Listing 1.9 gives an example of 2-object sensitive pointer analysis using Qilin.
In lines 1 and 2 the flavor of pointer analysis is specified and the entry method
is set. In line 3 an instance of 2-object sensitive analysis is created which is
subsequently executed in line 4. As the pointer analysis in Qilin supports on-
the-fly call graph construction, the resulting call graph is retrieved in line 5.
In addition, the pointer analysis API in Qilin provides reachingObjects(),
for computing the points-to set of any variable and mayAlias(), for checking
whether two variables are aliases. Note that Qilin is not part of SootUp’s
current release.

4.3 Roadmap for Other Soot-based Tools

SootUp is not a drop-in replacement for Soot. It is essentially a complete
rewrite with a new architecture and API. We therefore primarily recommend
SootUp to be used for new projects. However, existing tools that are based on
Soot can be upgraded to SootUp with some effort. The SootUp team has
been working on upgrading some Soot-based tools to SootUp. So far, we see
that the roadmap, and thus the effort, for a specific tool to upgrade to SootUp
will differ heavily based on how it is implemented. We have been seeing three
recurring patterns: (1) generic tools that do not directly depend on Soot, (2)
tools that depend on Soot but work with their own domain objects, (3) tools
that depend on Soot and work directly with Soot objects.

Generic tools can swiftly be upgraded to SootUp. For instance, the API
of the Heros solver provides interfaces based on Java generics. Its interfaces
can be extended with concrete tool-specific objects. The only requirement for
SootUp to use the IFDS solver was to extend necessary interfaces by providing
SootUp-specific objects.

Upgrading tools that use their own domain objects to SootUp is also simple.
For instance, Boomerang [29] and SparseBoomerang [15], state-of-the-art
demand-driven pointer analysis frameworks, implement their core functionality

K. Karakaya et al.240

within their own domain objects that correspond to classes, methods and state-
ments. These tools require SootUp’s objects to be converted to their domain
objects via implementing an adapter.

Upgrading tools that work directly with Soot objects is a more complex task.
FlowDroid [1], a popular Android information flow analysis tool, is highly in-
tertwined with Soot. It is hard to determine where exactly the boundaries of
FlowDroid are and how to separate it from Soot. Therefore, at this point, we
anticipate that FlowDroid and tools of similar nature need a major rewrite
to upgrade to SootUp. Nonetheless, we are considering upgrading even Flow-
Droid to SootUp in the future.

5 Development

We next explain SootUp’s development process, and how one can extend or
contribute to SootUp.

5.1 SootUp’s Development Process

We have incepted SootUp as a greenfield project. This choice not only granted
us more freedom to restructure its architecture but also to employ a more mod-
ern software development process. Our new development process centers around
continuous quality assurance. Soot lacked proper test coverage, which compli-
cated adding new features or any kind of nontrivial refactoring. To overcome this,
we made testing an integral part of SootUp from the very beginning. SootUp
is loaded with exhaustive unit and regression tests. We continuously observe
its test coverage and enforce newly added code to maintain the same level of
coverage. SootUp’s tests currently account for 63.70% line coverage4 (9656 out
of 15159 lines). To ensure that no new feature breaks or unintendedly changes
SootUp’s behavior, tests are executed for every new commit to SootUp’s code
repository through a continuous integration pipeline.

We seek to make SootUp more accessible to everyone. Our focus on an intu-
itive API design, as we explained in Section 2.3, is the first step in this direction.
Further, we prioritize documentation and make it part of the development pro-
cess. Our public-facing API elements are required to have Javadoc. Yet, we have
learned, considering the questions in Soot’s issue tracker, that Javadoc alone is
not enough. We thus maintain a documentation page5 to elaborate on some of
the main concepts of SootUp’s usage and provide more insight. To make the
documentation beginner-friendly, we demonstrate the most common use cases
with supporting code examples. From experience, we know that documentation
tends to fall behind the most recent development state. To prevent this, we
maintain the example code as part of SootUp’s code repository. By doing so
we ensure that the example code always compiles and functions with the most
recent state.

4 https://app.codecov.io/gh/soot-oss/SootUp
5 https://soot-oss.github.io/SootUp/

SootUp: A Redesign of the Soot Static Analysis Framework 241

https://app.codecov.io/gh/soot-oss/SootUp
https://soot-oss.github.io/SootUp/

SootUp is currently published at Maven Central. We have announced the
first release (v1.0.0) in December 2022. Since then, we have been frequently
releasing new features and bug fixes, the most recent version (v1.1.2) was pub-
lished in June 2023. While, due to existing tool dependencies, Soot and SootUp
will coexist for a while, the bulk of our maintenance efforts will henceforth be
directed toward SootUp rather than Soot.

5.2 Extending and Contributing to SootUp

Concerning community engagement, SootUp will follow in the footsteps of
Soot. While SootUp’s development is currently still carried by Paderborn Uni-
versity, we are open for others to join the team. The main motivation behind our
development efforts until the first release was to realize the design decisions laid
out in Section 2. Since the first release, we have been focusing more on commu-
nity feedback, such as bug reports and feature requests. Just like its predecessor,
we expect SootUp to be shaped around the needs and contributions of the re-
search community. We are eager to incorporate external contributions and very
much welcome feature and pull requests. Repeat contributors may become core
development team members with full commit rights.

To maintain an active community, we set up a discussion board on GitHub.
This allows the community to participate in Q&As, suggest new ideas or simply
discuss in an informal setting. SootUp is open-sourced with a GNU General
Lesser Public License v2.1 (LGPL-2.1) [11]. It allows SootUp to be modified as
long as the modifications are stated and licensed under the same license.

6 Future Work

SootUp is set to be the successor of the old Soot framework. Soot has been
developed and improved for more than 20 years, so there are still multiple analy-
sis utilities that need to be adapted to SootUp. Furthermore, we aim to keep up
with advancements in the field of static program analysis and implement support
for better callgraph construction approaches and more precise pointer-analysis
techniques in SootUp as they are developed.

Being able to analyze Android applications was one of the main reasons for
Soot’s popularity. SootUp currently allows one to analyze Android applica-
tions with the help of dex2jar.6 This is an interim solution, as dex2jar is no
longer actively maintained. In the meantime, we are working on a more robust
solution based on Dexpler [3].

SootUp was designed with extensibility for other programming languages
in mind. To allow for cross-boundary program analyses, we aim to implement
new frontends for other languages. We especially aim at implementing a Python
and a JavaScript frontend, due to the popularity of these languages. SootUp ’s
IR can be extended to cover at least other languages that, unlike C/C++, do

6 https://github.com/pxb1988/dex2jar

K. Karakaya et al.242

https://github.com/pxb1988/dex2jar

not allow direct pointer accesses. However, language-specific challenges are not
out of the scope of this paper and need to be further investigated in the future.

Another goal for SootUp is to provide a means to enable the analysis of
partial programs. To process an uncompiled Java source code project using Soot
or SootUp, the whole code base of the project, alongside all its dependencies,
needs to be available either during compilation or during processing with the
source code frontend. However, in some scenarios only part of the code base is
available. In the future, we aim to provide support for processing such partial
programs. By being able to generate Jimple from only partially available source
code and substituting the missing information with either data that can be
inferred from whatever is available of the code base or providing a means to
additionally specify missing parts.

Performance comparison to Soot or other tools was not possible because
one would have to compare two identical analyses within these frameworks.
Such analyses are still lacking at the moment. We, nevertheless, compared to
Soot on the unit test level. By design, SootUp shows significant performance
improvements, particularly in class loading. The immutable IR was also designed
to support much faster analyses than what is currently possible with Soot’s old
Jimple IR. In the future, as SootUp-based analyses mature, we will conduct
detailed performance evaluations.

In the future, we plan to also perform more evaluations regarding SootUp’s
usability. An API design that is as intuitive as possible for its users was one of the
primary considerations when designing SootUp. To validate the API design, we
plan to perform user studies with various types of user groups like researchers and
software developers. Furthermore, we plan to benchmark SootUp’s performance
and compare it against other analysis frameworks and especially its predecessor.

7 Related Work

Apart from Soot, there are various research-oriented static analysis frameworks.
The most notable ones for Java are WALA [32], Doop [5] and OPAL [9]. WALA
enables analyzing multiple programming languages such as Java, Javascript, and
recently also Python [8]. It focuses on efficient static analysis by using specialized
data structures. WALA’s IR is close to JVM bytecode, but in contrast, it is based
on SSA (static single assignment). Instead of operand stacks, it uses symbolic
registers. SootUp is currently integrated with WALA’s source code frontend,
which enables SootUp to support source code in the same capacity as WALA
does. Doop was originally developed as a pointer analysis framework. It enables
defining static analyses declaratively and uses a Datalog solver. Doop’s IR is also
based on Jimple. It could probably be upgraded to SootUp with minor effort.
OPAL provides highly configurable static analysis using abstract interpretation.
PhASAR [26] is another notable static analysis framework that enables static
analysis for C and C++ applications through the LLVM IR. LiSA [10] static
analysis library enables novice users to implement static analyses that can target
arbitrary languages based on the IMP programming language.

SootUp: A Redesign of the Soot Static Analysis Framework 243

8 Conclusion

We have presented SootUp, a complete overhaul of the popular Soot opti-
mization and analysis framework for Java. SootUp shifts the purpose from
optimization to static code analysis and fully modernizes the original Soot im-
plementation. SootUp implements all the lessons learned from the last 20+
years of development and usage of the original Soot framework. It comprises
many improvements like a new user-centric API, a fully parallelizable archi-
tecture and an new variant of the Jimple intermediate representation offering
extensibility for multi-language support. With all these changes and improve-
ments in place, SootUp aims to be a worthy successor of the good old Soot
framework and to enable the implementation of modern Java code analyses.

Acknowledgements. We gratefully acknowledge the contributions of Christian
Brüggemann, Zun Wang, Andreas Dann, Marcus Nachtigall, Manuel Benz, Jan
Martin Persch, Ben Hermann and Julian Dolby to SootUp’s initial design and
development. The development of SootUp was generously supported by the Re-
search Software Sustainability funding line of the German Research Foundation
(DFG) within the project FutureSoot, the Heinz Nixdorf Institute, and Amazon
Web Services. It has also been partially funded by the German Federal Ministry
of Education and Research (BMBF) through grant 01IS17046 Software Campus
2.0 (Paderborn University) as part of the project API ASSIST. Responsibility
for the content of this publication lies with the authors.

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices 49(6),
259–269 (2014)

2. Bacon, D.F., Sweeney, P.F.: Fast static analysis of c++ virtual function calls. In:
Proceedings of the 11th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications. pp. 324–341 (1996)

3. Bartel, A., Klein, J., Le Traon, Y., Monperrus, M.: Dexpler: converting android
dalvik bytecode to jimple for static analysis with soot. In: Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java Program analysis.
pp. 27–38 (2012)

4. Bodden, E.: Inter-procedural data-flow analysis with ifds/ide and soot. In: Pro-
ceedings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program analysis. pp. 3–8 (2012)

5. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisti-
cated points-to analyses. In: Proceedings of the 24th ACM SIGPLAN Confer-
ence on Object Oriented Programming Systems Languages and Applications. p.
243–262. OOPSLA ’09, Association for Computing Machinery, New York, NY,
USA (2009). https://doi.org/10.1145/1640089.1640108, https://doi.org/10.1145/
1640089.1640108

K. Karakaya et al.244

https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108

6. Dann, A., Hermann, B., Bodden, E.: Sootdiff: Bytecode comparison across different
java compilers. In: Proceedings of the 8th ACM SIGPLAN International Workshop
on State of the Art in Program Analysis. pp. 14–19 (2019)

7. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs us-
ing static class hierarchy analysis. In: ECOOP’95—Object-Oriented Programming,
9th European Conference, Åarhus, Denmark, August 7–11, 1995 9. pp. 77–101.
Springer (1995)

8. Dolby, J., Shinnar, A., Allain, A., Reinen, J.: Ariadne: analysis for machine learning
programs. In: Proceedings of the 2Nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages. pp. 1–10 (2018)

9. Eichberg, M., Hermann, B.: A software product line for static analyses:
The opal framework. In: Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on the State of the Art in Java Program Analysis.
p. 1–6. SOAP ’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2614628.2614630, https://doi.org/10.1145/
2614628.2614630

10. Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for dum-
mies: experiencing lisa. In: Proceedings of the 10th ACM SIGPLAN In-
ternational Workshop on the State Of the Art in Program Analysis. p.
1–6. SOAP 2021, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3460946.3464316, https://doi.org/10.1145/
3460946.3464316

11. Free Software Foundation, I.: Gnu lesser general public license v2.1 - gnu project
- free software foundation. https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.
html (1999), (Accessed on 10/09/2023)

12. He, D., Lu, J., Xue, J.: Qilin: A New Framework For Supporting Fine-
Grained Context-Sensitivity in Java Pointer Analysis. In: Ali, K., Vitek, J. (eds.)
36th European Conference on Object-Oriented Programming (ECOOP 2022).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 222, pp. 30:1–
30:29. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2022). https://doi.org/10.4230/LIPIcs.ECOOP.2022.30, https://drops.dagstuhl.
de/opus/volltexte/2022/16258

13. Hoe, A.V., Sethi, R., Ullman, J.D.: Compilers—principles, techniques, and tools
(1986)

14. Karakaya, K., Bodden, E.: Sootfx: A static code feature extraction tool for java
and android. In: 2021 IEEE 21st International Working Conference on Source Code
Analysis and Manipulation (SCAM). pp. 181–186. IEEE (2021)

15. Karakaya, K., Bodden, E.: Two sparsification strategies for accelerating demand-
driven pointer analysis. In: 2023 IEEE Conference on Software Testing, Verification
and Validation (ICST). pp. 305–316. IEEE (2023)

16. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The Soot framework for Java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infrastructure Work-
shop (CETUS 2011) (Oct 2011), https://www.bodden.de/pubs/lblh11soot.pdf

17. Lhoták, O., Hendren, L.: Scaling java points-to analysis using spark. In: Hedin,
G. (ed.) Compiler Construction. pp. 153–169. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

18. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 18(1), 1–53 (2008)

SootUp: A Redesign of the Soot Static Analysis Framework 245

https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/2614628.2614630
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1145/3460946.3464316
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://drops.dagstuhl.de/opus/volltexte/2022/16258
https://drops.dagstuhl.de/opus/volltexte/2022/16258
https://www.bodden.de/pubs/lblh11soot.pdf

19. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: A principled approach to selective
context sensitivity for pointer analysis. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 42(2), 1–40 (2020)

20. Li, Y., Tan, T., Zhang, Y., Xue, J.: Program tailoring: Slicing by sequential criteria.
In: 30th European Conference on Object-Oriented Programming (ECOOP 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

21. Luo, L., Bodden, E., Späth, J.: A qualitative analysis of android taint-analysis re-
sults. In: 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). pp. 102–114. IEEE (2019)

22. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14(1), 1–41
(jan 2005). https://doi.org/10.1145/1044834.1044835, https://doi.org/10.1145/
1044834.1044835

23. Piskachev, G., Krishnamurthy, R., Bodden, E.: Secucheck: Engineering config-
urable taint analysis for software developers. In: 2021 IEEE 21st International
Working Conference on Source Code Analysis and Manipulation (SCAM). pp. 24–
29. IEEE (2021)

24. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages. pp. 49–61 (1995)

25. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with ap-
plications to constant propagation. Theoretical Computer Science 167(1-2), 131–
170 (1996)

26. Schubert, P.D., Hermann, B., Bodden, E.: Phasar: An inter-procedural static anal-
ysis framework for c/c++. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 393–410. Springer (2019)

27. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnick, S.S., Jones, N.D. (eds.) Program Flow Analysis: Theory and Applica-
tions, chap. 7, pp. 189–234. Prentice-Hall (1981)

28. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: Un-
derstanding object-sensitivity. In: Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. p.
17–30. POPL ’11, Association for Computing Machinery, New York, NY,
USA (2011). https://doi.org/10.1145/1926385.1926390, https://doi.org/10.1145/
1926385.1926390

29. Späth, J., Nguyen Quang Do, L., Ali, K., Bodden, E.: Boomerang: Demand-driven
flow-and context-sensitive pointer analysis for java. In: 30th European Confer-
ence on Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2016)

30. Vallée-Rai, R., Gagnon, E.M., Hendren, L.J., Lam, P., Pominville, P., Sundare-
san, V.: Optimizing java bytecode using the soot framework: Is it feasible? In:
International Conference on Compiler Construction (2000)

31. Vallee-Rai, R., Hendren, L.J.: Jimple: Simplifying java bytecode for analyses and
transformations. Tech. rep., Technical report, McGill University (1998)

32. WALA: wala/wala: T.j. watson libraries for analysis, with frontends for java, an-
droid, and javascript, and may common static program analyses. https://github.
com/wala/WALA, (Accessed on 10/04/2023)

K. Karakaya et al.246

https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://github.com/wala/WALA
https://github.com/wala/WALA

SootUp: A Redesign of the Soot Static Analysis Framework 247

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Formally verified asymptotic consensus
in robust networks

University of Michigan, Ann Arbor, MI 48109, USA
{tmohit,avitf,jeannin,manosk,dpanagou}@umich.edu

Abstract. Distributed architectures are used to improve performance
and reliability of various systems. Examples include drone swarms and
load-balancing servers. An important capability of a distributed architec-
ture is the ability to reach consensus among all its nodes. Several consen-
sus algorithms have been proposed, and many of these algorithms come
with intricate proofs of correctness, that are not mechanically checked.
In the controls community, algorithms often achieve consensus asymp-
totically, e.g., for problems such as the design of human control systems,
or the analysis of natural systems like bird flocking. This is in contrast
to exact consensus algorithm such as Paxos, which have received much
more recent attention in the formal methods community.

This paper presents the first formal proof of an asymptotic consensus al-
gorithm, and addresses various challenges in its formalization. Using the
Coq proof assistant, we verify the correctness of a widely used consen-
sus algorithm in the distributed controls community, the Weighted-Mean
Subsequence Reduced (W-MSR) algorithm. We formalize the necessary
and sufficient conditions required to achieve resilient asymptotic con-
sensus under the assumed attacker model. During the formalization, we
clarify several imprecisions in the paper proof, including an imprecision
on quantifiers in the main theorem.

Keywords: Resilient asymptotic consensus · W–MSR algorithm · Net-
work robustness.

1 Introduction

To enhance reliability, robustness and performance, many modern systems use a
distributed architecture, composed of multiple nodes communicating with each
other. Examples range from coordinated control of multi-robot systems such as
swarms of mobile and aerial robots, to load-balancing among servers answering
many queries per second. A fully decentralized system, where decisions are made
collectively by the nodes rather than by one master node, greatly improves reli-
ability by ensuring there is no single point of failure in the system. A distributed
architecture also provides greater performance (depending on the context, in
terms of load capacity, reduced latency, smaller communication overhead, etc.)

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 248–267, 2024.
https://doi.org/10.1007/978-3-031-57246-3_14

Mohit Tekriwal, Avi Tachna-Fram, Jean-Baptiste Jeannin(B),
Manos Kapritsos, and Dimitra Panagou

https://doi.org/10.1007/978-3-031-57246-3_14
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_14&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

than any single node could ever achieve. Distributed architectures are supported
by distributed algorithms, which particularly focus on carefully handling situa-
tions where some nodes become faulty, stop responding, or become malicious.

One central aspect of distributed algorithms is the ability to achieve consen-
sus. Consensus is said to be achieved in a network if all normal (correct) nodes
agree on a certain value, where a node is normal if it is not faulty [34]. The
value agreed upon by all nodes can be a reference point for the next position
of a swarm, or the sequence of commands executed by a set of replicas in State
Machine Replication [44]. Consensus has been studied extensively in different
communities. In the distributed computer systems communities, some promi-
nent algorithms achieving consensus are Paxos [29], MultiPaxos [47], Raft [36],
and Practical Byzantine Fault Tolerance (PBFT) [6]. However, these algorithms
deal with the problem of exact consensus. There are many scenarios where exact
consensus is not achievable, ranging from the design of human controlled sys-
tems to analysis of natural systems like bird flocking. These problems have to be
solved under harsh environmental restrictions such as restricted communication
abilities and presence of communication uncertainty. Therefore, these problems
warrant the study of asymptotic consensus problems, which unlike exact con-
sensus, do not require strong assumptions on the underlying network [16].

This paper presents the first formal proof of an asymptotic consensus al-
gorithm, by formalizing the Weighted-Mean Subsequence Reduced (W-MSR)
algorithm [30, 50]. The problem of asymptotic consensus is of much importance
to the distributed robotics and controls community, who have studied algorithms
like the Mean Subsequence Reduced (MSR) algorithm [27] and its recent exten-
sion W-MSR. These algorithms are designed to achieve asymptotic consensus in
partially connected groups of nodes, but have not been formally verified. Formal
verification of consensus algorithms is important as has been emphasized by the
distributed computer systems community, who have long invested in producing
mechanically checked proofs of its consensus protocols. The controls commu-
nity, however, lags behind in this direction. In recent years, the distributed sys-
tems community has embraced formal methods to provide mechanically-checked
proofs of its consensus protocols and their implementations, using a wide range
of techniques from interactive and automated theorem proving [48, 25, 8, 5, 18,
9, 31] to automatic generation of inductive invariants [33, 21, 49, 20]. In the dis-
tributed robotics and controls community however, researchers usually prove
their consensus protocols with paper proofs, using mathematical analysis based
on Lyapunov theory and its extensions, without computer-checked formaliza-
tions. As we show in this paper, our formalization of asymptotic consensus for
the W-MSR algorithm [30] reveals imprecisions in the placement of quantifiers
in the main theorem and several missing pieces in the proof, thereby highlight-
ing the importance of machine-checked proofs. Thus a significant contribution
of our work is providing the first mechanically checked formalism of the asymp-
totic consensus and its application to the W-MSR algorithm, widely used in the
controls community. We have chosen to formalize this algorithm since it is a
widely-used algorithm for resilient consensus [42, 41, 46]. From the perspective

Formally verified asymptotic consensus in robust networks 249

of practical applications, enabling resilient consensus in the presence of misbe-
having or faulty nodes is desirable for many applications in autonomous systems
and robotics, e.g., for coordinated control of multi-robot systems.

The MSR and W-MSR algorithms are very different from exact consensus
algorithms such as MultiPaxos, Raft or PBFT. As such our formal verification
of the correctness of W-MSR uses different techniques than previous proofs of
exact consensus algorithms. The first major difference is that MSR and W-MSR
guarantee asymptotic consensus rather than finite-time consensus. A second ma-
jor difference is that MSR and W-MSR provide consensus in networks that are
not fully connected : two normal nodes might not be able to communicate with
each other directly, but might have to rely on another (possibly faulty) node to
forward their messages to each other. This last property is crucial to model multi-
robot systems where complete communication between any two robots may not
be feasible at all times. Because of those differences, providing a mechanically-
checked proof of W-MSR requires the development and use of different tech-
niques than the ones typically used to mechanically check Multipaxos, Raft or
PBFT. In particular, our formalization crucially relies on formalization of limits
and real analysis, because many of the techniques used in model-checking or for
generating invariants are not well-suited to prove asymptotic properties.

Contributions: The original contribution of this work is the formalization in
the Coq theorem prover of the convergence results of the W-MSR algorithm [30].
Specifically, we provide a machine-checked concrete counterexample for the proof
of necessity, a clean proof of Lemma 1 and the Coq formalization of the main the-
orem (Theorem 1). We also fill in several missing details and clarify imprecisions
in the proof of sufficiency, which can be viewed as an addition to the existing
proof [30]. Additionally, this is, to our knowledge, the first mechanical formal-
ization of a consensus algorithm where the consensus is obtained asymptotically,
opening the door to more such proofs.

This paper is organized as follows. In Section 2, we discuss the problem
setup and define terminologies related to graph topology and the W–MSR al-
gorithm [30]. In Section 3, we discuss the formalization of the necessary and
sufficient conditions in Coq, for achieving resilient asymptotic consensus. We
also discuss some specific challenges we encountered during the formalization.
After reviewing some related work in Section 4, we conclude in Section 5 by
discussing key takeaways from our work and generic challenges we encountered
during the formalization. We also lay down a few directions that could be ad-
dressed in future work.

2 Preliminaries

In this paper we consider the problem of formalizing consensus in a network,
and adopt the problem formulation from [30]. While the original paper discusses
consensus in a distributed control graph for both malicious and byzantine threat
models for both time-varying and time-invariant graph structures, we limit our
formalization to the case of a time-invariant graph for a malicious threat model
and for a particular threat scope: F-total, where the total number of malicious

M. Tekriwal et al.250

nodes in the control graph is bounded. We will next discuss briefly what each of
these highlighted terms means in the context of the following problem.

2.1 Problem formulation

Consider a network that is modeled by a digraph (directed graph), D = (V, E),
where V = {1, . . . , n} is the node set and E ⊂ V × V is the directed edge set.
The node set is partitioned into a set of normal nodes N , and a set of adversary
nodes A, which are unknown a priori to the normal nodes. Each directed edge
(j, i) ∈ E models information flow and indicates that node i can be influenced
by (or receive information from) node j at time-step t. The set of in-neighbors
of node i is defined as Vi = {j ∈ V|(j, i) ∈ E}. Intuitively, the set of in-neighbors
contains all neighboring nodes of i, such that the direction of information flow
is from those nodes to i. The cardinality of the set of in-neighbors is called the
in-degree, di = |Vi|. Since each node has access to its own value at time-step t,
we also consider a set of inclusive neighbors of node i, denoted by Ji = Vi ∪{i}.

2.2 Threat Model

As discussed earlier, we formalize a threat model (F-total malicious model [30])
in which every adversary node in the graph is malicious, and there exists an
upper bound F on the number of malicious agents in the graph, i.e., the set
of adversary nodes are F -totally bounded. In the context of the problem in
Section 2.1, some relevant formal definitions pertaining to the threat model are
stated as:

Definition 1 (Malicious node [30]). A node i ∈ A is called Malicious if it
sends the same value xi(t) to all its neighbors at each time step t, but applies a
different update function f ′

i(.) at some time step.

Definition 2 (F-total set [30]). A set S ⊂ V is F-total if it contains at most
F nodes in the network, i.e., |S| ≤ F , F ∈ Z≥0.

Definition 3 (F-totally bounded [30]). A set of adversary nodes is F-totally
bounded if it is an F-total set.

Note that while Definitions 2 and 3 may appear similar, they define different
terminologies. Definition 2 defines an F-total set with at most F nodes in a
network. Definition 3 specializes this to a set of adversary nodes saying that
there are at most F adversarial nodes in a network.

2.3 Robust network topologies

The ability of a set of normal nodes in a control graph to achieve consensus
depends on its ability to make local decisions effectively. Le Blanc et al. [30]
defined a topological property called network robustness for reasoning about the
effectiveness of purely local algorithms to succeed, which we formalize in Coq.
In particular, they define a property called (r, s)-robustness, which is stated as:

Formally verified asymptotic consensus in robust networks 251

Definition 4 ((r, s)-robustness [30]). : A digraph D = (V, E) on n nodes
(n ≥ 2) is (r, s)-robust, for nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for
every pair of nonempty, disjoint subsets S1 and S2 of V at least one of the
following holds (i) |X r

S1
| = |S1|; (ii) |X r

S2
| = |S2|; (iii) |X r

S1
|+ |X r

S2
| ≥ s, where

X r
Sk

= {i ∈ Sk : |Vi\Sk| ≥ r} for k ∈ {1, 2}.

The condition (iii) states that there are a total of at least s nodes from the union
of sets S1 and S2, such that each of those nodes have at least r nodes outside
of their respective sets in the union S1 ∪S2. The idea is that “enough” nodes in
every pair of nonempty, disjoint sets S1,S2 ⊂ V have at least r neighbors outside
of their respective sets. This ensures that the network is well connected, and that
loss of information from a node due to malicious attack does not affect the whole
network. Figure 1 illustrates an example of a network with (2, 2) robustness.

𝑆! 𝑆"

….

𝑆! ∪ 𝑆"

(𝑎) (𝑏)

Fig. 1. Illustration for (2, 2) robustness. In the illustration (a), every node of the set
S2 has 2 neighboring nodes outside S2. Similarly every node in the set S1 has at least
2 neighboring nodes outside S1. In the illustration (b), there are 2 nodes in the union
S1∪S2 that have 2 neighbors outside the set. Note that the sets S1 and S2 are disjoint.

2.4 Update model for the normal nodes

In this paper, we formalize a consensus algorithm, called the W–MSR algo-
rithm [30]. This algorithm provides an update model for the normal nodes in
the network. A schematic of the algorithm is illustrated in Figure 2. We denote
the value emitted by node i at time t as xi(t), and the value of the directed
weighted edge from node j, to node i at time t as wij(t). The value xi(t) could
represent a measurement like position, velocity, or it could be an optimization
variable. The quantity xi

j(t) is the information that the jth node in the neigh-
boring set of node i sends to the node i. Each node also has a varying set of
neighbors which it ignores that we denote as Ri(t). The set Ri(t) changes be-
cause the nodes are removed depending on their value with respect to the value
of node i at time t. In this algorithm, the updated value of a normal node i
at time t + 1 is the convex sum of the values of its neighboring set including
itself. Hence, xi(t+1) =

∑
j∈Ji\Ri(t)

wij(t)x
i
j(t), where we assume the existence

of a constant α ∈ R, such that 0 < α < 1, and the weights wij(t) satisfy the
conditions:

M. Tekriwal et al.252

Formally verified asymptotic consensus in robust networks 253

1. wij(t) = 0 whenever j /∈ Ji;
2. wij(t) ≥ α, ∀j ∈ Ji; and
3.

∑
j∈Ji\Ri(t)

wij(t) = 1

for all i ∈ N , and t ∈ Z≥0. It is important to note that the third condition
depends on the set of removed nodes, which may change over time. In order to
satisfy this condition the values of the weights may need to change over time.

The choice of neighboring sets in the W–MSR algorithm is defined as follows:

1. At each time-step t, each normal node i obtains the values of its neighbors,
and forms a sorted list

2. If there are fewer than F nodes with values strictly greater than the value
of i, then the normal node removes all those nodes. Otherwise, it removes
precisely the largest F values in the sorted list. Likewise, if there are less
than F nodes with values strictly less than the normal node i, the normal
node removes all such nodes. Otherwise, it removes precisely the smallest F
nodes in the sorted list.

Node 𝑖𝑖

𝑥𝑥𝑗𝑗𝑖𝑖(𝑡𝑡)

𝑥𝑥𝑗𝑗𝑖𝑖(𝑡𝑡)

Node 𝑖𝑖

Remove top F nodes
with values greater than
or equal to the value of
node 𝑖𝑖. If there are less
than F nodes with values
greater than the value of
node 𝑖𝑖, all of them are
removed

Remove bottom F nodes
with values less than or
equal to the value of
node 𝑖𝑖. If there are less
than F nodes with values
less than the value of
node 𝑖𝑖, all of them are
removed

Neighboring
nodes are
sorted in
ascending
order.

The order is
decided by
their values
w.r.t the value
of node 𝑖𝑖

Fig. 2. Schematic of the W-MSR update. At time t, the node i obtains values from
its neighbors and forms a sorted list. The algorithm then removes the largest and the
smallest F nodes in the sorted list, or if there are less than F nodes with values strictly
greater than or less than the value of i, the algorithm removes all those nodes.

3 A formal proof of consensus for the W–MSR algorithm

Theorem 1. [30] Consider a time-invariant network modeled by a digraph
D = (V, E) where each normal node updates its value according to the W–MSR
algorithm with parameter F . Under the F-total malicious model, resilient asymp-
totic consensus is achieved if and only if the network topology is (F + 1, F + 1)-
robust.

An important point to note here is that the above update model holds only for
the normal nodes, i.e., i ∈ N . The update function for adversary nodes, i.e.
i ∈ A, and their influence on the normal nodes depend on the threat model. We
will next discuss the formalization of the W–MSR algorithm in Coq.

The proof of this theorem requires us to prove both a sufficiency and a necessity
condition. The original paper proof relies on a safety condition, which provides
an invariant condition that must hold at all times in the state update. We will
next discuss the proof of the safety condition (Section 3.1), then sufficiency
(Section 3.2) and necessity (Section 3.3) conditions individually.

3.1 Proof of the safety condition in W-MSR

Lemma 1 (Safety condition). [30] Suppose each node updates its value ac-
cording to the W-MSR algorithm with parameter F under the F-total malicious
model. Then for each node i ∈ N , xi(t + 1) ∈ [m(t),M(t)], regardless of the
network topology.

Here, m(t) = mini∈N {xi(t)} and M(t) = maxi∈N {xi(t)}. Note that the
original paper [30] does not provide a proof of this lemma, and our proof, which
we formalize in this paper, is an original contribution. We provide a detailed
proof of the lemma by explicitly enumerating the cases from the definition of
the W-MSR algorithm. On the other hand, the original paper [30] merely states
an outline, making a careful check of the proof difficult.

Proof. We prove Lemma 1 by showing inductively, that at each time t, and for
every normal node i, there exists a node j1 ∈ Ji ∩ N such that ∀k ∈ Ji \
Ri(t), xj1(t) ≤ xk(t), thus:

xi(t+ 1) =
∑

j∈Ji\Ri(t)

wij(t)x
i
j(t) ≥

∑
j∈Ji\Ri(t)

wij(t)x
i
j1(t) = xi

j1(t) ≥ m(t) (1)

Symmetrically there exists a j2 ∈ Ji∩N such that ∀k ∈ Ji\Ri(t), xj2(t) ≥ xk(t).
Thus, the symmetric inequality xi(t+1) ≤ M(t), holds for the same reason. Since
the proof of the existence of j1 and j2 are nearly identical, we only show the
proof of the former in Appendix A of the extended version [45].

Formalization in Coq: We formalize Lemma 1 in Coq as:

Lemma lem_1: ∀ (i:D) (t:nat) (mal:nat → D → R) (init:D → R)
(A:D → bool) (w:nat → D ∗D → R),
F_total_malicious mal init A w →
wts_well_behaved A mal init w →
i ∈ Normal A → ((x mal init A w (t+1) i ≤ M mal init A w t)
∧ (m mal init A w t ≤ x mal init A w (t+1) i)).

The definition of F total malicious states that the model is F-total malicious
if the set of adversary nodes are F-totally bounded (i.e., there are at most F
adversary nodes in the network) and all the adversary nodes are malicious. Here
A: D → bool is a tagging function. If A i == true, then i is classified as an
Adversary node else it is classified as a Normal node. mal : nat → D → R is an
arbitrary update function for a malicious node. Since we do not know beforehand,
how this function would look like, we assume it as a parameter. The function
init : D → R is an initial value associated with a node. We define a malicious
node in Coq as that node in the graph for which the normal update model does
not hold, i.e., there exists a time t such that xi(t+1) ̸=

∑
j∈Ji\Ri(t)

wij(t)x
i
j(t).

M. Tekriwal et al.254

(** Condition for a node to have malicious behavior at a given time **)

Definition malicious_at_i_t (mal:nat → D → R) (init:D → R) (A:D → bool)
(w:nat → D ∗D → R) (i:D) (t:nat): bool :=
(x mal init A w (t+1) i) !=

∑
j∈Ji\Ri(t)

((x mal init A w t j) ∗ (w t (i,j)))

(** Define maliciousness **)

Definition malicious (mal:nat → D → R) (init:D → R) (A:D → bool)
(w:nat → D ∗D → R) (i:D) := ∃ t:nat, malicious_at_i_t mal init A w i t.

The second hypothesis wts well behaved states that we respect those three
conditions on weights that we discussed in Section 2.4. The assignment of weights
depend on whether a node j ∈ Ji\Ri(t) or not. Here, Ji denotes the inclusive
set of neighbors of the node i. Ri(t) denotes the removed set of nodes according
to the W–MSR algorithm, and we define Ri(t) in Coq as follows

Definition remove_extremes (i:D) (l:seq D) (x:D → R) : (seq D) :=
filter (fun (j:D) ⇒
(((Rge_dec (x j) (x i)) || (F ≤ (index j l))) && (Rle_dec (x j) (x i)
|| (index j l ≤ ((size l) − F − 1))))) l.

Note that we use the filter function from the MathComp sequence library. This is
crucial as it gives us lemmas that allow us to assert that any node in Ji \ Ri(t)
satisfies the conditions of the filter. Additionally, the filter function requires that
its first argument has a pred type, D → bool in our case. Therefore, we need
our inequality operations to be decidable. Hence, we used the decidable versions
of the inequality operations, such as Rle dec, provided by Coq’s reals library
instead of it’s built-in ≤ operation. We then define the set Ji \ Ri(t) in Coq as

Definition incl_neigh_minus_extremes

(i:D) (x:D → R) : (seq D) := remove_extremes i (inclusive_neighbor_list i x) x.

Since Ji\Ri(t) is defined based on the value of node i, xi(t), which indeed
depends on A, mal, init. Hence, wts well behaved depends on A, mal, init.

The trickiest parts of the proof of Lemma 1 rely on the fact that we desire
Ji \ Ri(t) when treated as a list to be sorted. In order to fulfill this condition
we use the formalization for sorting found in the MathComp library. To do this
we first define a relation on D as:

Definition sorted_Dseq_rel (x: D → R) (i j : D) :=
if Rle_dec (x i) (x j) then

if (x i = = x j) then (index i (enum D) ≤ index j (enum D)) else true

else false.

This definition ensures that if xi(t) < xj(t), then i is ordered as less than j with
respect to this relationship. In the case of nodes with equivalent values we use an
arbitrary mechanism to break ties. Doing so ensures that this relation is total,
and satisfies transitivity, anti-symmetry, and reflexivity. This relation lets us use
the sorting lemmas in MathComp’s path library [13], and it ensures the weaker
condition that we occasionally use in the proof:

Definition sorted_Dseq (x:D → R) (l:seq D) :=
∀ (a b:D), a ∈ l → b ∈ l → (index a l < index b l) → (x a ≤ x b).

Formally verified asymptotic consensus in robust networks 255

The biggest difficulty with formalizing this proof arises when dealing with the
case that |R<

i (t)| < F , whereR<
i (t) := {j ∈ Ji : xj(t) < xi(t) and idxJi

(xj(t)) <
F}, and define idxl(xk(t)), to be the index of the value xk(t) in a given list l
of values, or the size of l if xk(t) is not present.. In particular, showing that
idxJi\Ri(t)(j) = 0 =⇒ nj(Ji) = |R<

i (t)|. This requires proving an extra lemma
on the Ji list:

Lemma partition_incl: ∀ (i:D) (t:nat) (mal:nat → D → R)
(init:D → R) (A:D → bool) (w:nat → D ∗D → R),
inclusive_neighbor_list i (x mal init A w t) =
(sort ((sorted_Dseq_rel (x mal init A w t)))
(enum (R_i_less_than mal init A w i t))) + +

(incl_neigh_minus_extremes i (x mal init A w t)) + +
(sort ((sorted_Dseq_rel (x mal init A w t)))
(enum (R_i_greater_than mal init A w i t))).

With this lemma, we can reason that the zero-th index of Ji \ Ri(t), is the
|R<

i (t)|-th index of Ji. Using this lemma, we can prove the existence of j1 in
the proof of lem 1. Symmetrically, we can show the existence of j2 such that
∀k ∈ Ji \ Ri(t), xj2(t) ≥ xk(t). Tying it all together, we complete the proof of
the lemma lem 1 in Coq.

3.2 Proof of Sufficiency

Lemma 2. [30] Consider a time-invariant network modeled by a digraph D =
(V, E) where each normal node updates its value according to the W–MSR al-
gorithm with parameter F . Under the F-total malicious model, if a network is
(F+1, F+1) robust, resilient asymptotic consensus is achieved.

This is an important lemma because we would like to design a network such that
the normal nodes in the network reach an asymptotic consensus in the presence
of malicious nodes in the network. Next we will discuss an informal proof of the
Lemma 2 followed by its formalization in the Coq proof assistant.

Proof. The proof of Lemma 2 is done by contradiction. We start by assuming
that the limits AM and Am of the functions M(t) and m(t) respectively are
different, i.e., AM ̸= Am. The limits AM and Am of the functions M(t) and m(t),
respectively, exist because M(t) andm(t) are both continuous and monotonously
decreasing functions of t. Therefore, by definition of limits for M(t) and m(t),
we know that ∀ t, AM ≤ M(t) ∧ m(t) ≤ Am, as illustrated in Figure 3. We
will show that by carefully constructing the sets S1 and S2 in the definition of
(r, s)-robustness, and unrolling the definition of (r, s)-robustness at every time-
step inductively, we eventually arrive at the desired contradiction: ∃ t, M(t) <
AM ∨ Am < m(t). We discuss the details of the proof in Appendix B of the
extended version [45].

Formalization in Coq: We introduce the following axiom in Coq to support
reasoning by contradiction.

M. Tekriwal et al.256

𝐴𝐴𝑀𝑀

𝐴𝐴𝑚𝑚𝑚𝑚(𝑡𝑡)

𝑀𝑀(𝑡𝑡) 𝐴𝐴𝑀𝑀 + 𝜖𝜖

𝐴𝐴𝑚𝑚 − 𝜖𝜖

𝑡𝑡𝜖𝜖
𝑡𝑡 ≥ 𝑡𝑡𝜖𝜖

Fig. 3. Illustration of the tube of convergence bounded above by AM + ϵ and bounded
below by Am − ϵ. We observe the behavior of functions M(t) and m(t) inside this tube
of convergence ∀t ≥ tϵ. We prove that M(t) and m(t) are monotonous ∀t ≥ tϵ, and
they approach the limits AM and Am, respectively. We start by assuming that AM ̸=
Am, but later prove that AM = Am by contradiction, thereby proving asymptotic
consensus.

Axiom proposition_degeneracy : ∀ A : Prop, A = True ∨ A = False.

This is a propositional completeness lemma that allows us to reason classically
and is consistent with the formalization of classical facts in Coq’s standard li-
brary. We need this lemma because we prove the sufficiency condition using
contradiction. We are choosing to use classical reasoning because the original
paper [30] does not provide a constructive proof. The reasoning used in the
paper is classical. This requires us to state the following lemma in Coq

Lemma P_not_not_P: ∀ (P:Prop), P ↔ ¬(¬ P).

The proof of P not not P uses the axiom proposition degeneracy.
We state the sufficiency condition (Lemma 2) for the network to achieve resilient
asymptotic consensus as the following in Coq.

Lemma strong_sufficiency:
∀ (A:D → bool) (mal:nat → D → R) (init:D → R) (w: nat → D ∗D → R),
nonempty_nontrivial_graph →
(0 < F+1 ≤ |D|)%N →
wts_well_behaved A mal init w →
r_s_robustness (F + 1) (F + 1) →
Resilient_asymptotic_consensus A mal init w.

The sufficiency condition requires that the graph is non-trivial, i.e., there are at
least two nodes in the graph, and the number of faulty nodes F in the graph is
bounded by the total number of nodes D. We define r s robustness in Coq as

Definition r_s_robustness (r s:nat):=
nonempty_nontrivial_graph ∧ ((1 ≤ s ≤ |D|) →

Formally verified asymptotic consensus in robust networks 257

∀ (S1 S2: {set D}),
(S1 ⊂ Vertex ∧ (|S1|>0)) →
(S2 ⊂ Vertex ∧ (|S2|>0)) →
[disjoint S1 & S2] →
((| Xi_S_r S1 r| = = |S1|) ||((| Xi_S_r S2 r| = = |S2|) ||

(| Xi_S_r S1 r| + |Xi_S_r S2 r| ≥ s)))).

where Xi S r S1 r is the set of all nodes in the set S1 such that all of its nodes
have at least r neighboring nodes outside S1. In Coq, we define Xi S r as

Definition Xi_S_r (S: {set D}) (r:nat):=
[set i:D | i ∈ S & (| (in_neighbor i) − S| ≥ r)].

We define Resilient asymptotic consensus in Coq as

Definition Resilient_asymptotic_consensus

(A:D → bool) (mal:nat → D → R) (init:D → R) (w:nat → D ∗D → R):=
(F_total_malicious mal init A w) → (∃ L:Rbar, ∀ (i:D),
i ∈ (Normal A) → is_lim_seq (fun t: nat ⇒ x mal init A w t i) L) ∧
(∀ t:nat, (m mal init A w 0 ≤ m mal init A w t) ∧
(M mal init A w t ≤ M mal init A w 0)).

Here, is lim seq is a predicate in Coquelicot that defines limits of sequences.
Rbar is the extended set of reals, which includes +∞ and −∞. To prove that the
network achieves resilient asymptotic consensus under the (F +1, F +1)- robust-
ness condition, we need to prove the following two conditions in the definition
of Resilient asymptotic consensus: (i) ∀t,m(0) ≤ m(t)∧M(t) ≤ M(0), and
(ii) ∃L, ∀i, i ∈ N → lim

t→∞
xi(t) = L. We state the first subproof as the lemma

statement interval bound in Coq. The proof of lemma interval bound is a
consequence of Lemma 1. We prove this lemma by an induction on time t and
then apply Lemma 1 to complete the proof.

We prove the second subproof by contradiction in Coq. To start the proof of
contradiction, we need to assume that the limits AM and Am of the maximum
and minimum functions M(t) andm(t) are different. We then instantiate the sets
S1 and S2 in the definition of (r, s)- robustness with XM (tϵ, ϵo) and Xm(tϵ, ϵo)
respectively, where XM (t, ϵl) = {i ∈ V : xi(t) > AM − ϵl} and Xm(t, ϵl) = {i ∈
V : xi(t) < Am + ϵl}. In Coq, we define the sets XM for any epsilon and t as
follows

Definition X_m_t_e_i (e_i: R) (A_m :R) (t:nat) (mal : nat → D → R) (init : D → R)
(A: D → bool) (w: nat → D ∗D → R) :=
[set i:D | Rlt_dec (x mal init A w t i) (A_m + e_i)].

where Rlt dec is Coq’s standard decidability lemma for less than operation.
We need to prove that the sets XM and Xm are disjoint at all times till we

reach a point when either XM or Xm are empty. This requires us to prove the
following lemma in Coq

Lemma X_M_X_m_disjoint_at_j

(mal : nat → D → R) (init: D → R) (A: D → bool) (w: nat → D ∗D → R):
∀ (t_eps l:nat) (a A_M A_m :R) (eps_0 eps :posreal),

M. Tekriwal et al.258

(A_M − (eps_j l eps_0 eps a) > A_m + (eps_j l eps_0 eps a)) →
[disjoint (X_M_t_e_i (eps_j l eps_0 eps a) A_M (t_eps+l) mal init A w) &
(X_m_t_e_i (eps_j l eps_0 eps a) A_m (t_eps+l) mal init A w)].

Since Xm(tϵ+ l, ϵl) is a set of all nodes with values at least, AM − ϵl and Xm(tϵ+
l, ϵl) is a set of all nodes with values at most Am + ϵl, these two sets are disjoint
if AM − ϵl > Am + ϵl. For l = 0, we have defined ϵo such that AM − ϵo >
Am + ϵo. To prove that AM − ϵl > Am + ϵl, ∀l, 0 < l, we need to show that
AM − ϵl > AM − ϵo and Am + ϵo > Am + ϵl. This would indeed require us to
show that ϵl < ϵo, ∀l, 0 < l. This holds since we had defined ϵl recursively as
ϵl := αϵl−1 + (1− α)ϵ.

A crucial aspect of the sufficiency proof is proving that the (F + 1, F + 1)-
robustness implies that there exists a node in the union of the set XM ∩N and
Xm∩N such that it has at least F+1 nodes outside the set. This was particularly
challenging because in the original paper [30], the authors do not use all three
conditions in the definition of (F + 1, F + 1) robustness condition to informally
prove the implication. They use only the third condition (F + 1 ≤ |XF+1

XM
| +

|XF+1
Xm

|) to state the implication, while leaving it up on the readers to connect
the missing dots with the first two conditions. For the implication to hold, all
three conditions in the definition of (F + 1, F + 1)- robustness should imply the
existence of such a node since there is an or in the definition of (F + 1, F + 1)-
robustness connecting the three conditions. To prove the implication from the
first two conditions, we need to first prove the existence of a normal node in the
sets XM and Xm for all l ≤ N . This holds since the node i with value M(tϵ + l)
will always be above the threshold AM − ϵl because M(t) ≥ AM , ∀t due to the
existence of the limit AM . Hence, 0 < |XM (tϵ + l, ϵl)|, ∀l ≤ N . Since the first
condition of (F+1, F+1)- robustness states that |XF+1

XM (tϵ+l,ϵl)
| = |XM (tϵ+l, ϵl)|,

0 < |XF+1
XM (tϵ+l,ϵl)

|. Hence by definition of XF+1
XM (tϵ+l,ϵl)

, there exists a normal node

in the set XM (tϵ+l, ϵl) such that it has at least F+1 nodes outside XM (tϵ+l, ϵl).
We prove this formally in Coq using the following lemma statement

Lemma X_m_normal_exists_at_j (t_eps l N: nat) (a A_m: R)(eps_0 eps:posreal)
(mal : nat → D → R) (init : D → R) (A: D → bool) (w: nat → D ∗D → R):
F_total_malicious mal init A w →
wts_well_behaved A mal init w →
(0 < F + 1 ≤ |D|) →
is_lim_seq [eta m mal init A w] A_m →
(0 < N) → (l ≤ N) → (0 < a < 1) → (eps < aN / (1 − aN) ∗ eps_0) →
∃ i:D, i ∈ (X_m_t_e_i (eps_j l eps_0 eps a) A_m (t_eps + l) mal init A w) ∧

i ∈ Normal A.

By symmetry, we prove that 0 < |XF+1
Xm(tϵ+l,ϵl)

|. The other part that was not

explicit from the paper proof in the original paper [30] was that the largest
value that the node i uses at time step tϵ + l is M(tϵ + l), which is provided
without proof. This was a challenge during our formalization. To formally prove
this we had to split the neighbor set of i into two parts depending on their
relative position with respect to i. While it is easy to bound the values of the

Formally verified asymptotic consensus in robust networks 259

nodes positioned in the left side of i with M(tϵ + l) since the neighboring list is
assumed to be sorted at the time of update and we have established this upper
bound for any normal node from lemma 1, bounding the values for the nodes
positioned in the right of the normal node i was not trivial. We proved this using
a case analysis on the cardinality of the set R>

i (t). In Coq, we formally prove
this using the lemma statement x right ineq 1 in Coq. We do not expand on
this lemma here for brevity.

Another challenge during the formalization was using the bound of the neigh-
boring node of i, AM − ϵl in the update of the value of i at the next time step.
We know that the neighbors outside the set Ji(tϵ + l)\XM (tϵ + l, ϵl) have value
at most AM −ϵl. But to use these nodes in the update function, we need to show
that these neighboring nodes are in the inclusive set of the normal node i minus
the extremes, i.e, there exists a node in the intersection of the sets Ji(tϵ+ l) and
the set s which contains nodes outside the set Ji(tϵ + l)\XM (tϵ + l, ϵl).We prove
the existence of such a node using the following lemma statement in Coq

Lemma exists_in_intersection: ∀ (A B: {set D}) (s: seq D) (F:nat),
| s| = (F+1)%N → (|B| ≤ F)%N →
{subset s <= A − B} → ∃ x:D, x ∈ [set x | x ∈ s] ∩ A.

We instantiate the set A with Ji\Ri(t) and the set B with R<
i (t). We know

that by definition of the W–MSR algorithm, |R<
i (t)| ≤ F . To use the lemma

exists in intersection, we first had to prove that s ⊂ (Ji\Ri(t)) ∪ R<
i (t).

Applying the lemma exists in intersection then gives us a node k as a wit-
ness which lies in the intersection of the set s and Ji\Ri(t). We use this node
to apply the bound AM − ϵl in the proof of inequality 1 for l ≤ N . All other
nodes in the neighboring list of the normal node i minus extremes are shown to
be bounded by M(t).

To show that the inequality ∃t,M(t) < AM ∨ Am < m(t) holds, we need to
prove that for every l such that l ≤ N , the cardinality of the set XM decreases
or the cardinality of the set Xm decreases or both under the (F + 1, F + 1)-
robustness condition. This requires us proving the following lemma in Coq

Lemma sj_ind_var (s1 s2: nat → nat) (N:nat): (0< N) → (s1 1 + s2 1 < N) →
(∀ l:nat, (0 < l) → (l ≤ N) → (0< s1 l) → (0 < s2 l) →
(s1 l ≤ s1 l.−1) ∧ (s2 l ≤ s2 l.−1) ∧ ((s1 l < s1 l.−1) ∨ (s2 l < s2 l.−1))) →
∃ T:nat, (T ≤ N) ∧ (s1 T = 0 ∨ s2 T = 0)

We instantiate s1 and s2 with XM (tϵ + l, ϵl) and Xm(tϵ + l, ϵl) respectively. We
use the lemma sj ind var to arrive at a contradiction and complete the proof
of the sufficiency.

3.3 Proof of necessity

Lemma 3. [30] Consider a time-invariant network modeled by a digraph D =
(V, E) where each normal node updates its value according to the W–MSR algo-
rithm with parameter F. Under the F-total malicious model, if resilient asymp-
totic consensus is achieved then the network is (F+1, F+1)-robust.

M. Tekriwal et al.260

Necessity is a secondary, but still significant lemma. It tells us that there is no
weaker condition than (F + 1, F + 1)-robustness such that the normal nodes
within the network reach asymptotic consensus. We now discuss an informal
proof of Lemma 3. Note that the original paper [30] does not provide a clean proof
of this lemma. For example, the original paper provides a sketch of the proof of
Lemma 3 by contrapositivity, but does not provide a concrete counterexample to
discharge the proof by contrapositive. The paper proof in [30] does not talk about
construction of weights or the proof that these weights are not well-behaved
under non-(r, s)-robustness. These issues were non-trivial and posed challenges
in Coq, as will be explained in this section. We also highlight challenges in the
construction of this counterexample and the proof of necessity in Coq, including
an issue of mutual recursion in Coq. The issues with missing details in the
original paper proof, which we had to develop explicitly, make the proof in this
paper an original contribution.

Proof. We proceed by proving the contrapositive of necessity, that is: if the
network is not (F +1, F +1) robust then it does not achieve resilient asymptotic
consensus. Assuming that the network is not (F +1, F +1)-robust we know that
there are non-empty sets S1, S2 ⊂ V , such that S1 ∩ S2 = ∅, |χF+1

S1
| ̸= |S1|,

|χF+1
S2

| ̸= |S2|, and |χF+1
S1

| + |χF+1
S2

| < F + 1. It follows that |χF+1
S1

| < F + 1,

and |χF+1
S2

| < F + 1. Also recall that χF+1
S1

⊆ S1, and χF+1
S2

⊆ S2. One way of
interpreting this condition is that the number of nodes within S1 and S2 that
can receive a lot of information from outside of their respective sets is less than
F+1 in total, and less than the number of nodes in each set respectively. We seek
to construct a set of adversaries, initial values, malicious functions, and weights
such that resilient asymptotic consensus is not achieved. In particular we seek to
prove that there exists two normal nodes i, j such that lim

t→∞
xi(t) ̸= lim

t→∞
xj(t).

We discuss the details of the proof in the Appendix D of the extended version [45].

Formalization in Coq: We formalize the lemma 3 in Coq as

Lemma necessity_proof:
nonempty_nontrivial_graph →
(¬ r_s_robustness (F + 1) (F + 1) →
¬ (∀ (A:D → bool) (mal:nat → D → R) (init:D → R) (w:nat → D ∗D → R),

wts_well_behaved A mal init w →
Resilient_asymptotic_consensus A mal init w)).

Formalization of necessity proof exposed some inconsistencies in definitions
in the original paper [30]. In particular, the paper defines those three conditions
on weights, that we discussed in the Section 2.4, only for normal nodes. During
our formalization, we found this to be restrictive. Those conditions on weights
should hold for any node. The need for applying the conditions in the paper to
the weights of adversary nodes, is that in order to ensure that a node i ∈ A
is malicious, as defined in the paper, there must exist a time t such that the
quantity xi(t + 1) ̸=

∑
j∈Ji\Ri(t)

wij(t)x
i
j(t). In other words at some time the

value emitted by a given node must not equal the value it would emit if it was

Formally verified asymptotic consensus in robust networks 261

normal, but the sum is clearly undefined if the weights of an adversary node are
undefined. Therefore, we relax the condition that the set of weights described
in the paper only exists for normal nodes. Fortunately this does not create a
problem as adversary nodes can update their values according to any function
they wish, meaning that they do not have to use the described set of weights, or
any weights at all, leaving their values unconstrained by this condition.

Another thing that was not explicit in the original paper [30] was the right
placement of quantifiers. Formalizing the proof of necessity helped us identify
the right placement of quantifiers and provide an accurate formal specification
for the W–MSR algorithm. At the start of our formalization it was not evidently
clear to us whether the paper meant to imply that:

(∀ (A:D → bool) (mal:nat → D → R) (init:D → R), wts_well_behaved A mal init →
(Resilient_asymptotic_consensus A mal init ↔ r_s_robustness (F + 1) (F + 1))).

or:

(∀ (A:D → bool) (mal:nat → D → R) (init:D → R),
wts_well_behaved A mal init →

Resilient_asymptotic_consensus A mal init) ↔ r_s_robustness (F + 1) (F + 1).

In the first formula, the quantified values A, mal, init are not bound to the
definition of resilient asymptotic consensus. Therefore, in the necessity proof,
we cannot construct a counterexample by appropriate instantiation of A, mal
and init, to discharge the proof by contradiction. In the second formula, the
quantified values are bound to the definition of resilient asymptotic consensus,
which allows us to construct the counterexample by propagating the negation
through the quantified values. Essentially, the difference is between the formulae
(∀X,P (X) → Q(X)) and ((∀X. P (X)) → (∀X. Q(X))), where X represents the
tuple (A, mal, init), and the first statement is stronger. Therefore, the former,
stronger condition is not necessarily true in the necessity direction, while the
weaker later condition is.

Another difficulty we encountered was defining the weights in such a way
that wij(t) =

1
|Ji\Ri| . This is a result of Coq’s sensitivity to ill-defined recursion.

The issue arises because defining wij at time t requires knowing the value of xi

at time t, however, as we had defined xi, it takes the set of weights it uses as a
parameter, even though mathematically there is no issue since xi(t) only relies
on the values of xj(t− 1), and wij(t− 1). In order to solve this issue we defined
a function which returns a pair of functions (xi, wij). In order to ensure that
Coq could guess the parameter being recursed on we also had to add another
parameter twot which is initialized as 2 ·t, and ensure that the pair (xi(t), wij(t))
is returned when twot = 2·t, and (xt+1, wij(t)) is returned when twot = (2·t)+1.

3.4 Formal proof of the main theorem

We state the main theorem statement 1 in Coq as:

Theorem F_total_consensus:
nonempty_nontrivial_graph →

M. Tekriwal et al.262

(0 < F+1 ≤ |D|)%N →
(∀ (A:D → bool) (mal:nat → D → R) (init:D → R) (w:nat → D ∗D → R),
wts_well_behaved A mal init w →
Resilient_asymptotic_consensus A mal init w) ↔ r_s_robustness (F + 1) (F + 1).

We close the proof of F total consensus by splitting the theorem into suffi-
ciency and necessity sub-proofs and applying the lemmas sufficiency proof

and necessity proof. The only detail worth noting is that necessity proof

relies on the decidable of r s robustness, which we need the axiom of the ex-
cluded middle to conclude.

4 Related Work

Recently there has been a growing interest in the formalization of distributed
systems and control theory, using both automated and interactive verification
approaches.

Some notable works in the area of automated verification use model checking,
temporal logic, and reachability techniques. For instance, Cimatti et al. [11] have
used model checking techniques to formally verify the implementation of a part
of safety logic for railway interlocking system. Schrer et al. [43] extended the
JavaPathFinder [24] model checker to support modeling of a real-time sched-
uler and physical system that are defined by differential equations. They ver-
ify the safety and liveness properties of a control system, and also verify the
programming errors. Besides model checking, temporal logic based techniques
have been applied to control synthesis [40], robust model predictive control [14]
and automatic verification of sequential control systems [35]. Other approaches
for verifying safety use reachability methods like flow pipe approximations [10],
zonotope approximation algorithms [19, 28, 2], and ellipsoidal calculus [4].

There has also been significant work in the formalization of control theory
using interactive theorem provers [39, 1, 38]. In the area of formalization of sta-
bility analysis for control theory, Cyril Cohen and Damien Rouhling formalized
the LaSalle’s principle in Coq [12]. Stability is important for the control of dy-
namical systems since it guarantees that trajectories of dynamical systems like
cars and airplanes, are bounded. Chan et al. [7] formalize safety properties like
Lyapunov stability and exponential stability of cyber-physical systems, in Coq.
In [39], Damien Rouhling formalized the soundness of a control function [32]
for an inverted pendulum. Some works have also emerged in the area of signal
processing for controls. Gallois-Wang et al. [17] formalized some error analysis
theorems about digital filters in Coq. Araiza-Illan et al. [3] formally verified high
level properties of control systems such stability, feedback gain, or robustness us-
ing the Why3 tool [15]. Rashid et al. [38] formalized the transform methods in
HOL-Light [22]. Transform methods are used in signal processing and controls
to switch between the time domain and the frequency domains for design and
analysis of control systems. A few works have emerged in the area of formaliza-
tion of the feedback control theory to guarantee robustness of control systems.
Jasim and Veres et al [26] proved one of the most fundamental and general

Formally verified asymptotic consensus in robust networks 263

result of nonlinear feedback system - the Small-gain theorem (SGT), formally
using Isabelle/HOL [37]. Hasan et al [23] formalized the theoretical foundations
of feedback controls in HOL Light. Another notable work in the formalization of
control systems is the formalization of safety properties of robot manipulators
by Affeldt et al. [1].

Most of the above works deal with the problem of formalizing the theoretic
foundations of control theory – stability analysis, transform methods, filtering
algorithms for signal processing, feedback control design. But, to our knowledge,
none of these works tackles the problem of consensus in a formal setting. Given
that consensus is a quantity of interest in distributed control applications, our
work on the formalization of the W–MSR algorithm, is a first step towards
formally verified distributed control systems.

5 Conclusion

In this work, we formalize a consensus algorithm [30] for distributed controls
in Coq. We formally prove the necessary and sufficient conditions for a set of
normal nodes in the network to achieve asymptotic consensus in the presence of
a fix bound of malicious nodes in the network. During the process of formaliza-
tion we discover several areas where the proof in the original paper is imprecise,
especially when defining the lemma statements of sufficiency and necessity. In
particular, the order of quantifiers on some variables was unclear, and we had to
spend time clarifying their order. We also prove a stronger version of the suffi-
ciency condition than the original theorem requires. This is done to ensure that
the conditions in both directions of the double implication holds. The definitions
and lemmas we formalize in this paper can be used for verifying consensus for
other threat models described in the original paper [30]. Overall our work is
a first of its kind to provide formal specifications of a consensus algorithm in
distributed controls. The total length of Coq proofs is about 11 thousand lines
of code. It took us 6 person months for the entire formalization.

A possible future direction of work is to verify the implementation of the
algorithm. The proof of this algorithm in the original paper [30], and our for-
malization assume that all computations are in the real field. However, an actual
implementation would need to use finite precision arithmetic. It would therefore
be interesting to study the effect of finite precision on the robustness of this al-
gorithm. It would also be interesting to formalize the algorithm for time-variant
networks in which the edge relation between the nodes can change with time.
Possible use cases for such network model are drone swarms for military and
rescue operations, in which each drone in the network could be expected to
dynamically change the flow of information from its neighbors.

Acknowledgments: This research was funded in part by NSF grant CCF-
2219997.

M. Tekriwal et al.264

References

1. Affeldt, R., Cohen, C.: Formal foundations of 3d geometry to model robot ma-
nipulators. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs. pp. 30–42 (2017)

2. Althoff, M., Krogh, B.H.: Zonotope bundles for the efficient computation of reach-
able sets. In: 2011 50th IEEE conference on decision and control and European
control conference. pp. 6814–6821. IEEE (2011)

3. Araiza-Illan, D., Eder, K., Richards, A.: Formal verification of control systems’
properties with theorem proving. In: 2014 UKACC International Conference on
Control (CONTROL). pp. 244–249. IEEE (2014)

4. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. In: International Workshop on Hybrid
Systems: Computation and Control. pp. 73–88. Springer (2000)

5. Carr, H., Jenkins, C., Moir, M., Miraldo, V.C., Silva, L.: Towards formal verifica-
tion of hotstuff-based byzantine fault tolerant consensus in agda. In: NASA Formal
Methods Symposium. pp. 616–635. Springer (2022)

6. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI. vol. 99,
pp. 173–186 (1999)

7. Chan, M., Ricketts, D., Lerner, S., Malecha, G.: Formal verification of stability
properties of cyber-physical systems. Proc. CoqPL (2016)

8. Charron-Bost, B., Merz, S.: Formal verification of a consensus algorithm in the
heard-of model. Int. J. Softw. Informatics 3(2-3), 273–303 (2009)

9. Charron-Bost, B., Merz, S.: Formal Verification of a Consensus Algorithm in the
Heard-Of Model. International Journal of Software and Informatics (IJSI) 3(2-3),
273–303 (2009), https://inria.hal.science/inria-00426388

10. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In: International workshop on hybrid
systems: computation and control. pp. 76–90. Springer (1999)

11. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.:
Formal verification of a railway interlocking system using model checking. Formal
aspects of computing 10(4), 361–380 (1998)

12. Cohen, C., Rouhling, D.: A formal proof in coq of lasalle’s invariance principle. In:
International Conference on Interactive Theorem Proving. pp. 148–163. Springer
(2017)

13. Doczkal, C., Pous, D.: Graph theory in coq: Minors, treewidth, and isomorphisms.
Journal of Automated Reasoning 64(5), 795–825 (2020)

14. Farahani, S.S., Raman, V., Murray, R.M.: Robust model predictive control for
signal temporal logic synthesis. IFAC-PapersOnLine 48(27), 323–328 (2015)

15. Filliâtre, J.C., Paskevich, A.: Why3—where programs meet provers. In: European
symposium on programming. pp. 125–128. Springer (2013)

16. Függer, M., Nowak, T., Schwarz, M.: Tight bounds for asymptotic and approximate
consensus. Journal of the ACM (JACM) 68(6), 1–35 (2021)

17. Gallois-Wong, D., Boldo, S., Hilaire, T.: A coq formalization of digital filters. In: In-
ternational Conference on Intelligent Computer Mathematics. pp. 87–103. Springer
(2018)

18. Gao, S., Zhan, B., Liu, D., Sun, X., Zhi, Y., Jansen, D.N., Zhang, L.: Formal
verification of consensus in the taurus distributed database. In: Formal Methods:
24th International Symposium, FM 2021, Virtual Event, November 20–26, 2021,
Proceedings 24. pp. 741–751. Springer (2021)

Formally verified asymptotic consensus in robust networks 265

19. Girard, A., Guernic, C.L.: Zonotope/hyperplane intersection for hybrid systems
reachability analysis. In: International Workshop on Hybrid Systems: Computation
and Control. pp. 215–228. Springer (2008)

20. Goel, A., Sakallah, K.: On symmetry and quantification: A new approach to ver-
ify distributed protocols. In: NASA Formal Methods Symposium. pp. 131–150.
Springer (2021)

21. Hance, T., Heule, M., Martins, R., Parno, B.: Finding invariants of distributed
systems: It’s a small (enough) world after all. In: 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). pp. 115–131 (2021)

22. Harrison, J.: Hol light: A tutorial introduction. In: International Conference on
Formal Methods in Computer-Aided Design. pp. 265–269. Springer (1996)

23. Hasan, O., Ahmad, M.: Formal analysis of steady state errors in feedback control
systems using hol-light. In: 2013 Design, Automation & Test in Europe Conference
& Exhibition (DATE). pp. 1423–1426. IEEE (2013)

24. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder.
International Journal on Software Tools for Technology Transfer 2(4), 366–381
(2000)

25. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Ironfleet: proving practical distributed systems correct. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles. pp. 1–17 (2015)

26. Jasim, O.A., Veres, S.M.: Towards formal proofs of feedback control theory. In:
2017 21st International Conference on System Theory, Control and Computing
(ICSTCC). pp. 43–48. IEEE (2017)

27. Kieckhafer, R.M., Azadmanesh, M.H.: Reaching approximate agreement with
mixed-mode faults. IEEE Transactions on Parallel and Distributed Systems 5(1),
53–63 (1994)

28. Kochdumper, N., Althoff, M.: Sparse polynomial zonotopes: A novel set represen-
tation for reachability analysis. IEEE Transactions on Automatic Control 66(9),
4043–4058 (2020)

29. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
30. LeBlanc, H.J., Zhang, H., Koutsoukos, X., Sundaram, S.: Resilient asymptotic

consensus in robust networks. IEEE Journal on Selected Areas in Communications
31(4), 766–781 (2013)

31. Losa, G., Dodds, M.: On the formal verification of the stellar consensus proto-
col. In: 2nd Workshop on Formal Methods for Blockchains (FMBC 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

32. Lozano, R., Fantoni, I., Block, D.J.: Stabilization of the inverted pendulum around
its homoclinic orbit. Systems & control letters 40(3), 197–204 (2000)

33. Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: I4: in-
cremental inference of inductive invariants for verification of distributed protocols.
In: Proceedings of the 27th ACM Symposium on Operating Systems Principles.
pp. 370–384 (2019)

34. Mesbahi, M., Egerstedt, M.: Graph theoretic methods in multiagent networks.
Princeton University Press (2010)

35. Moon, I., Powers, G.J., Burch, J.R., Clarke, E.M.: Automatic verification of se-
quential control systems using temporal logic. AIChE Journal 38(1), 67–75 (1992)

36. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). pp. 305–
319 (2014)

37. Paulson, L.C.: Isabelle: A generic theorem prover. Springer (1994)

M. Tekriwal et al.266

38. Rashid, A., Hasan, O.: Formalization of transform methods using hol light. In:
International Conference on Intelligent Computer Mathematics. pp. 319–332.
Springer (2017)

39. Rouhling, D.: A formal proof in coq of a control function for the inverted pendulum.
In: Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs. pp. 28–41 (2018)

40. Sadraddini, S., Belta, C.: Robust temporal logic model predictive control. In: 2015
53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton). pp. 772–779. IEEE (2015)

41. Saldana, D., Prorok, A., Sundaram, S., Campos, M.F., Kumar, V.: Resilient con-
sensus for time-varying networks of dynamic agents. In: 2017 American control
conference (ACC). pp. 252–258. IEEE (2017)

42. Saulnier, K., Saldana, D., Prorok, A., Pappas, G.J., Kumar, V.: Resilient flocking
for mobile robot teams. IEEE Robotics and Automation letters 2(2), 1039–1046
(2017)

43. Scherer, S., Lerda, F., Clarke, E.M.: Model checking of robotic control systems
(2005)

44. Schneider, F.B.: Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (dec 1990).
https://doi.org/10.1145/98163.98167, https://doi.org/10.1145/98163.98167

45. Tekriwal, M., Tachna-Fram, A., Jeannin, J.B., Kapritsos, M., Panagou, D.: For-
mally verified asymptotic consensus in robust networks (extended version). arXiv
preprint arXiv:2202.13833 (2022)

46. Usevitch, J., Garg, K., Panagou, D.: Finite-time resilient formation control with
bounded inputs. In: 2018 IEEE Conference on Decision and Control (CDC). pp.
2567–2574. IEEE (2018). https://doi.org/10.1109/CDC.2018.8619697

47. Van Renesse, R., Altinbuken, D.: Paxos made moderately complex. ACM Com-
puting Surveys (CSUR) 47(3), 1–36 (2015)

48. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., An-
derson, T.: Verdi: a framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 357–368 (2015)

49. Yao, J., Tao, R., Gu, R., Nieh, J., Jana, S., Ryan, G.: DistAI: Data-driven auto-
mated invariant learning for distributed protocols. In: 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21). pp. 405–421 (2021)

50. Zhang, H., Sundaram, S.: Robustness of information diffusion algorithms to locally
bounded adversaries. In: 2012 American Control Conference (ACC). pp. 5855–
5861. IEEE (2012)

Formally verified asymptotic consensus in robust networks 267

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Formally Verifying an Efficient Sorter

Karlsruhe Institute of Technology, Karlsruhe, Germany
{beckert,sanders,ulbrich,sascha.witt}@kit.edu

Abstract. In this experience report, we present the complete formal
verification of a Java implementation of inplace superscalar sample sort
(ips4o) using the KeY program verification system. As ips4o is one of
the fastest general purpose sorting algorithms, this is an important step
towards a collection of basic toolbox components that are both provably
correct and highly efficient. At the same time, it is an important case
study of how careful, highly efficient implementations of complicated
algorithms can be formally verified directly. We provide an analysis of
which features of the KeY system and its verification calculus are in-
strumental in enabling algorithm verification without any compromise
on algorithm efficiency.

1 Introduction

The core task of computer scientists can be seen as writing correct and efficient
computer programs. However, although both correctness and efficiency have been
intensively studied, there is comparably little work on fully combining both fea-
tures. We would like formally verified code that is efficient on modern machines.
We believe that a library of verified high-performance implementations of the
basic toolbox of most frequently used algorithms and data structures is a cru-
cial step towards this goal: often, these components take a considerable part of
the overall computation time, and they have a simple specification which allows
reusing their verified functionality in a large number of programs. Since the re-
maining code may be simpler from an algorithmic point of view, verifying such
programs could thus be considerably simplified.

To make progress in this direction, we perform a case study on sorting, which
is one of the most frequently used basic toolbox algorithms. For example, a
recent study identified hundreds of performance relevant sorting calls in Google’s
central software depot [36]. Taking correctness of even standard library routines
for granted is also not an option. For example, during a verification attempt of
the built-in sorting routine of the OpenJDK TimSort routine, researchers were
able to detect a bug, using the KeY verifier [11].

Although some sorters have been formally verified [12,4,20], it turns out that
these do not achieve state-of-the-art performance because only rather simple
combinations and variants of quicksort, mergesort, or heapsort have been used

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 268–287, 2024.
https://doi.org/10.1007/978-3-031-57246-3_15

Bernhard Beckert , Peter Sanders , Mattias Ulbrich(B) , Julian Wiesler,
and Sascha Witt

https://doi.org/10.1007/978-3-031-57246-3_15
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_15&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0002-9672-3291
http://orcid.org/0000-0003-3330-9349
http://orcid.org/0000-0002-2350-1831
http://orcid.org/0000-0002-7867-3200

that lack cache efficiency when applied to large data sets and have performance
bottlenecks that limit instruction parallelism. The best available sorters are con-
siderably more complex (≈ 1000 lines of code) and even more likely to contain
bugs when not formally verified. Moreover, previous verifications do not prove
all required properties or they operate only on an abstraction of the code, which
makes it difficult to relate to highly tuned implementations.

For our verification of a state-of-the-art sorter, we consider ips4o (in-place
super scalar sample sort) [2]. Sample sort [10] generalises quicksort by parti-
tioning the data into many pieces in a single pass over the data, which makes it
more cache efficient (indeed I/O-optimal up to lower order terms). Additionally,
ips4o works in-place (an important requirement for standard libraries and large
inputs), avoids branch mispredictions, and allows high instruction parallelism
by reducing data dependencies in the innermost loops. The algorithm also has
an efficient parallelisation and parts of it can be used for fast integer sorting
[2,36]. Extensive experiments indicate that a C++ implementation of ips4o con-
siderably outperforms quicksort, mergesort and heapsort on large inputs and is
several times faster than adaptive sorters such as TimSort on inputs that are not
already almost sorted [2]. Our experiments in Sec. 5 indicate that the verified
Java implementation is 1.3 to 1.8 times faster than the standard library sorter
of OpenJDK 20 for large inputs on three different architectures.

We use the Java Modeling Language (JML) [22] to directly specify the effi-
cient Java implementation of sequential ips4o. We obtain a largely automated
proof using the KeY theorem prover [1] in part aided by external theory solvers
(in particular Z3 [33]) and KeY’s support for interactively guiding the proof con-
struction process. This yields a full functional correctness proof of the full Java
implementation of ips4o showing, for all possible inputs, sortedness, the permu-
tation property, exception safety, memory safety, termination, and absence of
arithmetic overflows. The complete 8-line specification of the toplevel sorting
method can be seen in Fig. 1.

The verified code is available for download1 and can easily be used in real-
world Java applications (through the maven packaging mechanism). It spans
over 900 lines of Java code with the main properties specified on 8 lines of
JML, annotated with some 2500 lines of JML auxiliary annotations for prover
guidance. The project required a total of 1 million proof steps (of which 4000
were performed manually) on 179 proof obligations (with one or more proof
obligation per Java method). The project required about 4 person months.

The verification revealed a subtle bug in the original version, where the algo-
rithm would not terminate if presented with an array containing the same single
value many times.2 This flaw was subsequently fixed. Moreover, the formal ver-
ification revealed that the code could be simplified at one point.

This case study demonstrates that competitive code hand-optimised for the
application on modern processors can be deductively verified within a reason-

1 at the github repository https://github.com/KeYProject/ips4o-verify
2 The bug was latently present in the original C++-code also. However, it cannot
occur when the default parameter values are used in C++.

Formally Verifying an Efficient Sorter 269

https://github.com/KeYProject/ips4o-verify

able time frame. It resulted from a fruitful collaboration of experts in program
verification and experts in algorithm engineering. An extended version of this
paper [3] is available containing more in-depth information about the specifica-
tion and verification.

2 Background

2.1 Formal Specification with the Java Modeling Language

The Java Modeling Language (JML) [22] is a behavioural interface specifica-
tion language [15] following the paradigm of design-by-contract [29]. JML is
the de-facto standard for the formal specification of Java programs. The main
artefact of JML specifications are method contracts comprised of preconditions
(specified via requires clauses), postconditions (ensures) and a frame condi-
tion (assignable) which describes the set of heap locations to which a method
invocation is allowed to write. A contract specifies that, if a method starts in
a state satisfying its preconditions, then it must terminate and the postcondi-
tion must be satisfied in the post-state of the method invocation. Additionally,
any modified heap location already allocated at invocation time must lie within
the specified assignable clause. Termination witnesses (measured by clauses) are
used to reason about the termination of recursive methods. Java loops can be
annotated with invariants (loop invariant), which must be true whenever the
loop condition is evaluated, termination witnesses (decreases), and frame con-
ditions (assignable) that limit the heap locations the loop body may modify.
Loop specifications and method contracts of internal methods allow one to con-
duct proofs modularly and inductively.

Expressions in JML are a superset of side-effect-free Java expressions. In
particular, JML allows the use of field references and the invocation of pure
methods in specifications. JML-specific syntax includes first-order quantifiers
(\forall and \exists) and generalised quantifiers. One generalised quantifier
is the construct (\num of T x; φ) which evaluates to the number of elements
of type T that satisfy the condition φ (if that number is finite). (\sum T x; φ;
e) sums the expression e over all values of type T satisfying φ. Quantifiers in
JML support range predicates to constrain the bound variable; the expression
(\forall T x; φ; ψ) is hence equivalent to (\forall T x; φ ==> ψ).

JML specifications are annotated in the Java source code directly and en-
closed in special comments beginning with /*@ or //@ to allow them to be com-
piled by a standard Java compiler. JML supports the definition of verification-
only (model and ghost) entities within JML comments that are only visible at
verification time and do not influence runtime behaviour (see also Sec. 4.1).

Fig. 1 shows the specification of the top-level sort method as an example.
Since that JML contract is labelled normal behaviour, it requires (in addition
to satisfying the pre-post contract) that the method does not terminate abruptly
by throwing an exception.

B.Beckert et al.270

1 /*@ public normal_behaviour
2 @ requires v.length <= MAX_LEN;
3 @ ensures seqPerm(array2seq(v), \old(array2seq(v)));
4 @ ensures (\forall int i; 0 <= i < v.length-1; v[i] <= v[i+1]);
5 @ assignable v[*];
6 @*/
7 public static void sort(int[] v) { ... }

Fig. 1: Specification of the sorting entry method specifying that after the method
call, the array values contains a permutation of the input values (line 3) and
is sorted (quantified expression in line 4). Only entries in the array are modified
in the process (line 5).

2.2 Deductive Verification with the KeY System

The KeY verification tool [1] is a deductive theorem prover which can be used to
verify Java programs against JML specifications. KeY translates JML specifica-
tions into proof obligations formalised in the dynamic logic [13] variant JavaDL,
in which Java program fragments can occur within formulas. The JavaDL for-
mula φ → ⟨o.m();⟩ψ is similar to the total Hoare triple [φ] o.m(); [ψ], with
both stating that the method invocation o.m() terminates in a state satisfying
ψ if started in a state satisfying φ. Proofs in KeY are conducted by apply-
ing inference rules in a sequent calculus. Using a set of inference rules for Java
statements, the Java code (⟨o.m()⟩ψ in the above statement) is symbolically
executed such that the approach yields the weakest precondition for o.m() and
ψ as a formula in first-order predicate logic. KeY can settle many proof obliga-
tions automatically, but also allows interactive rule application and invocation
of external provers like satisfiability modulo theories (SMT) solvers.

3 Our Java Implementation of ips4o

3.1 The Algorithm

In-place (parallel) super scalar sample sort (ips4o), is a state-of-the-art general
sorting algorithm [2]. Sample sorting can be seen as a generalisation of quick sort,
where instead of choosing a single pivot to partition elements into two parts, we
choose a sorted sequence of k − 1 splitters which define k buckets consisting
of the elements lying between adjacent splitters. One advantage of this is the
reduced recursion depth and the resulting better cache efficiency. “Super-scalar”
refers to enabling instruction parallelism by avoiding branches and reducing data
dependencies while classifying elements into buckets. “In-place” means that the
algorithm needs only logarithmic space in addition to the input. Although ips4o
has a parallel version, this work is concerned with the sequential case.

The algorithm works by recursively partitioning the input into buckets; when
the sub-problems are small enough, they are sorted using insertion sort. The
maximum number of buckets kmax and the base-case size, i.e., the maximum

Formally Verifying an Efficient Sorter 271

Buffers

B

B

(a)

(b)

(c)

(d)

(e)

Fig. 2: Overview of all steps of ips4o: (a) input with elements classifying as the
four classes blue, green, orange and red, (b) After classification (B = 2); bucket
sizes are indicated by brackets and white elements are empty, (c) after permu-
tation, (d) the operations done by the cleanup step, (e) partitioned output.

problem size for insertion sort, are configuration parameters. In our implemen-
tation, we chose kmax = 256 and base-case size 128 experimentally. Partitioning
consists of four steps: Sampling, classification, permutation, and cleanup.

Sampling. This step finds the splitters as equally spaced elements from a
(recursively) sorted random sample of the current subproblem. There are special
cases to handle small or skewed inputs. These are fully handled in our proof,
but to simplify the exposition, we will assume in this summary that k = kmax

distinct3 splitters are found this way.
Classification. The goal of the classification step is two-fold: (1) to assign

each element to one of the k buckets defined by the splitters, and (2) to pre-
sort elements into fixed-size blocks such that all elements in a block belong to
the same bucket. To find the right bucket for each element, the largest splitter
element smaller than that element must be identified. A number of algorithm en-
gineering optimisations make the classification efficient: it is implemented using
an implicit perfect binary search tree with logarithmic lookup complexity. More-
over, the tree data structure also supports an implementation without branching
statements and unrolled loops that eliminates branch mispredictions and facili-
tates high instruction parallelism and the use of SIMD instruction. We will come
back to this classification tree implementation in Sect. 4.2 where we discuss how
this efficiency choice was dealt with in the formal proof.

After classification is done, the input array consists of blocks in which all
elements belong to the same bucket, followed by some empty space, with the
remaining elements still remaining in the (partially filled) buffers. The block size
B is chosen experimentally to be 1KiB. Fig. 2.b shows the output of this step.

Permutation. By now, it is known how many elements are in each bucket,
and therefore where in the array each bucket begins and ends after partitioning
is done. The objective of the permutation step is to rearrange the blocks so that

3 If equal splitters do appear, duplicates are removed and equality buckets are used
that do not require recursive sorting. Details can be found in the extended version [3].

B.Beckert et al.272

each block starts in the correct bucket. Then, if the block is not already correctly
placed, it is moved to its bucket, possibly displacing another (incorrectly placed)
block, which is then similarly moved. Refer to Fig. 2.c for the state of the input
array after this step.

Cleanup. In general, bucket boundaries will not coincide with block bound-
aries. Since the permutation step works on block granularity, there may be over-
lap where elements spill into an adjacent bucket. These elements are corrected
in the cleanup step. In addition, the remaining elements in the buffers from
the classification step are written back into the input array. Fig. 2.d shows an
example of the steps performed during cleanup.

3.2 Algorithm Engineering for Java

While the original implementation of ips4o was written in C++, the verification
target of this case study is a translation by one of the authors of the original
code to Java. No performance-relevant compromises where made, e.g., to achieve
easier verification. We started with a Java implementation as close as possible to
the C++ implementation. We then performed profiling-driven tuning. Adjusting
configuration parameters improved performance by 12%. The only algorithmi-
cally significant change resulting from tuning is when small sub-problems are
sorted. In the C++ implementation this is done during cleanup in order to im-
prove cache locality. In Java it turned out to be better to remove this special case,
i.e., to sort all sub-problems in the recursion step. This improved performance
by a further 4%.

4 Specification and Verification

In this case study, the following properties of the Java ips4o implementation
have been specified and successfully verified:

Sorting Property: The array is sorted after the method invocation.
Permutation Property: The content of the input array after sorting is a per-

mutation of the initial content.
Exception Safety: No uncaught exceptions are thrown.
Memory Safety: The implementation does not modify any previously allo-

cated memory location except the entries of the input array.
Termination: Every method invocation terminates.
Absence of Overflows: During the execution of the method, no integer oper-

ation will overflow or underflow.

We assume that no out-of-memory or stack-overflow errors can ever occur at
runtime. Since the algorithm is in-place, and the recursion depth is in O(log n),
this is a reasonable assumption to make.

Fig. 1 shows the JML specification of the entry method sort of the ips4o
implementation, i.e., the top-level requirements specification of the sorting algo-
rithm. The annotation normal behaviour in line 1 specifies exception safety (i.e.

Formally Verifying an Efficient Sorter 273

the absence of both explicitly and implicitly thrown uncaught exceptions). Mem-
ory safety is required by the framing condition in line 5. The permutation and
sorting property are formulated as postconditions in lines 3 resp. 4. Termination
is a default specification case with JML (unless explicitly specified otherwise).
The absence of overflows is not specified in JML, but is an option that can be
switched on in KeY. The precondition in line 2 of the method contract ensures
that there are no overflows and is of little practical restriction since it is very
close to the maximum integer value (MAX LEN = 231 − 256).

The implementation of Java ips4o comprises 900 lines of code, annotated
with 2500 lines in JML. Besides the requirement specification, this comprises
auxiliary specifications such as method contracts for (sub-)methods, class and
loop invariants, function or predicate definitions and lemmata. We will focus
on selected specification items and emphasise the algorithm’s classification step
since it has sophisticated, interesting loop invariants that are at the same time
comprehensible, exemplifying the techniques we were using.

4.1 Enabling KeY Features

A few advanced features of KeY were essential for completing the proof. They
are needed to abstract from sophisticated algorithmic concepts and to decompose
larger proofs into more manageable units.

We followed a mostly autoactive program verification approach [25] with as
much automation as possible while supporting interactive prover guidance in
form of source code annotations (e.g. assertions). This concept has been widely
adapted throughout the program verification community [35,31,24,9]. Most pro-
gram verification tools only allow guidance by source code annotations. However,
the KeY theorem prover also supports an interactive proof mode in which infer-
ence rules can be applied manually – and we resorted also to this way of proof
construction where needed.

Model methods. Due to the scale of the project, it was useful to encapsu-
late important properties of the data structures into named abstract predicates
or functions. The vehicle to formulate such abstraction in JML are model meth-
ods [32], which are side-effect free (pure) methods defined within JML annota-
tions. For ips4o, around 100 different model methods were used.

The benefits of using model methods are two-fold: (1) They structure and
decompose specifications making them more comprehensible and (2) they sim-
plify resp. enable automated verification by abstraction of the proof state. An
example for a widely used (50 occurrences) model method is shown in Fig. 3.

Ghost fields and variables provide further abstractions from the memory
state by defining verification-only memory locations. In the present case study, all
Java classes except simple pure data containers required at least one ghost field.
Sec. 4.2 reports a challenge were ghost variables and ghost code (i.e. assignments
to ghost variables) made verification possible in the first place.

Assertions are the main proof-guidance tool in autoactive verification as
they provide means to formulate intermediate proof targets that the automa-
tion can discharge more easily and that thus may provide a deductive chain

B.Beckert et al.274

1 /*@ public model_behaviour
2 @ accessible values[begin..end - 1];
3 @ static model int countElement(int[] values, int begin, int end, int e) {
4 @ return (\num_of int i; begin <= i < end; values[i] == e); } */

Fig. 3: Model method that counts the occurrences of the integer element in the
index range begin, . . . , end− 1. The accessible clause specifies that the model
method may only read the values between begin and end-1 (inclusively).

Written slice Empty Elements to read

1. Flush

2. Push

Buffers

Fig. 4: Intermediate state of the classification step after processing some ele-
ments. The first element to be read is being pushed to the orange buffer which
gets flushed beforehand.

completing the proof. This corresponds to making case distinctions or to intro-
ducing intermediate goals in a manual proof. In the present case study, assertions
avoided many tedious interactive proof steps as the annotations in the source
code guide the proof search such that it now runs automatically.

Block contracts.Much like method contracts, block contracts abstract from
details in control flow and implementation details of a Java code block they an-
notate (similar to a method contract). Block contracts can decompose large and
complex method implementation and allow one to focus on the relevant effects
of individual components (i.e., code blocks) formalised in the postconditions of
the block contracts.

4.2 Central Ideas Used in the Proofs of the Steps of ips4o

In this section we zoom in on a few central concepts from the proofs of the algo-
rithm. We mainly focus on the classification step which (1) establishes the most
relevant invariants of the recursion step, and (2) showcases a particular proof
technique related to the verification of the efficient algorithm implementation
used in this case study.

Relevant Invariants. During classification, the algorithm rearranges the
input elements into blocks (of a given size B) such that all elements in a block
are classified into the same bucket. Furthermore, it counts the elements in each
bucket. Fig. 4 shows an intermediate state of the classification step. It is checked
to which bucket the next element belongs, that bucket’s buffer is flushed if
needed, and then the element is pushed to the buffer according to its classifica-
tion. This is done in batches of m elements at once such that the classification
can take advantage of batched queries (that allow the CPU to apply instruction
parallelism).

Formally Verifying an Efficient Sorter 275

1 /*@ loop_invariant begin <= i <= end && begin <= write <= i;

2 loop_invariant (\forall int b; 0 <= b < num_buckets; (\forall int i; // (1)

3 b * BUFFER_SIZE <= i < b * BUFFER_SIZE + buffers.lengths[b];

4 classOf(buffers.buffer[i]) == b));

5 loop_invariant (\forall int block; 0 <= block < (end-begin)/BUFFER_SIZE; // (2)

6 (\exists int b; 0 <= b < num_buckets; (\forall int i;

7 begin + block * BUFFER_SIZE <= i < begin + (block+1)*BUFFER_SIZE;

8 classOf(values[i]) == b)));

9 loop_invariant (\forall int element; // (3)

10 \old(countElement(values, begin, begin, begin, end, buffers, element)) ==

11 countElement(values, begin, write, i, end, buffers, element)

12 loop_invariant (\forall int b; 0 <= b < num_buckets; bucket_counts[b] == // (4)

13 (\num_of int i; begin <= i < write; classOf(values[i]) == b));

14 loop_invariant write - begin == (\sum int b; // (5)

15 0 <= b < num_buckets; bucket_counts[b]);

16 loop_invariant (\forall int b; 0 <= b < num_buckets; // (6)

17 isValidBufferLen(buffers.lengths[b], bucket_counts[b]));

18 loop_invariant buffers.count() == i - write; // (7a)

19 loop_invariant (i - begin) loop_invariant (write - begin)

Fig. 5: Specification of the classification loop. begin and end are the boundaries
of the slice that is being processed, i is the offset of the next element that will be
classified, write is the end offset of the written slice. The array bucket counts

contains the element count for each bucket.

After classifying all elements, the count of all elements in each bucket’s buffer
is added to get the full element count for each bucket. We define the written slice
to be the elements that were already flushed to the input array.

To exemplify the nature of the specification used in this case study, we discuss
the inductive loop invariants of the classification loop which allowed us to close
the proof for this step. Fig. 5 shows the corresponding JML annotations4.

1. The buffers contain only bucket elements of their respective bucket.
2. The written slice is made up of blocks of size B where each block contains

only elements of exactly one bucket.
3. The permutation property is maintained.
4. The per bucket element counts are exactly the number of elements of the

corresponding bucket in the written slice.
5. The sum of all per bucket element counts equals the size of the written slice.
6. The buffer size of each bucket is valid.
7. The spacings are well formed:

(a) The total element count in all buffers equals the length of the free slice.
(b) The start offset of the current batch is a multiple of m.
(c) The length of the written slice is a multiple of B.

Invariants 1 and 2 straightforwardly encode the block structure during clas-
sification from the abstract algorithm. They are also needed as preconditions

4 In the actual implementation, the invariants are grouped in several model methods.

B.Beckert et al.276

for the following partitioning step. The permutation invariant 3 ensures that no
elements are lost during classification by stating that the original array content
is a permutation of the union of all elements not yet handled, the written slice
and the union of all buffers. Invariants 4 and 5 are needed to show that the
bucket element counts are correct and to show that all elements of the input
will have been taken into account eventually. These invariants were engineered
by translating the ideas from the abstract algorithm into the Java situation.
The remaining two invariants were discovered later in the verification process:
The validity invariant 6 was only discovered during the proof of the cleanup step
(where it becomes relevant). A buffer is called valid, if (1) the number of elements
written back during classification is a multiple of the block size B and (2) empty
buffers are only allowed when nothing has yet been written back. Invariant 7
was discovered last by inspecting the open proof goals of failed attempts, and is
mostly needed to show that write operations to the heap remain in bounds.

Invariant 5, while in principle derivable from the other invariants, simplifies
the proof that the sum of all bucket element counts is the size of the input after
termination. Adding it as a redundant loop invariant avoids having to prove the
same statement repeatedly using the other invariants.

When flushing a buffer, the algorithm must not overwrite the batch that it is
currently processing nor the elements that were not processed yet. This property
is captured in invariant 7. First and foremost, 7a ensures that there is enough
space to write a whole buffer if a buffer is full. When pushing the elements of
the current batch to their buckets, the algorithm makes sure that the start of
the batch will never be overwritten. However, this was not provable from the
scope of this loop: For example, let there be B total elements in all buffers, all of
which are in the buffer of some bucket b when we are trying to push the second
element of a batch to b’s buffer. A flush may then happen before the push which
would illegally overwrite the first element of the batch. This case is shown to be
impossible by adding invariants 7b and 7c. In general, this holds for any values
where B is a multiple of the batch size m.

Classification Search Tree. As mentioned in Sec. 3, classification employs
an implicit binary search-tree data structure to find the bucket to which an
element belongs. This is a complete binary tree where the root of a subtree
stores the median of the splitters belonging to the subtree. The splitters are
stored in an array with the root at index one. The children of the node stored
at index i are stored at indices 2i and 2i+ 1. Fig. 6 shows the branch-free loop
to compute the bucket c(e) for an element e.

It was difficult to verify this routine with hard to find loop invariants. On the
other hand, an implementation using binary search on a linearly sorted array
would have been easier to verify; but without the benefits of branch-freedom.
Hence, this optimisation is an example where algorithm engineering decisions
make verification more complicated. Our solution to the problem was to imple-
ment the binary search algorithm on the array of indices in parallel next to the
efficient tree search by means of ghost variables and ghost code. A set of coupling
invariants set the variables of heap and array into relation. Fig. 7 illustrates the

Formally Verifying an Efficient Sorter 277

1 public int classify(int value) {
2 int b = 1;
3 for (int i = 0; i < log_2(k); ++i)
4 b = 2 * b + (tree[b] < value ? 1 : 0);
5 return b - k;
6 }

Fig. 6: Classifying a single element without branches. The loop at line 3 can be
unrolled, because log2 k is at most 8. The conditional in line 4 can be compiled
into predicated instructions, such as CMOV, or, more commonly, into a CMP/SETcc

sequence, rending the code effectively branch-free.

4

2

1

0 1

3

2 3

6

5

4 5

7

6 7

1○

2○ 3○

4○ 5○ 6○ 7○

0 1 2 3 4 5 6 7

Fig. 7: Visualisation of finding the classification for an element; in the binary
heap search tree (left) and in a linearly sorted array (right) for k = 8 buckets.
The red path indicates the same classification as a path on the heap tree and
a nesting of intervals for the binary search. The circled numbers indicate the
index in the array representing the search tree; the italic numbers show the
bucket number and the upright numbers the index of the splitters against which
is compared.

relationship between the search in the binary heap and the search in the ghost
code sorted index array.

Besides Classification. The algorithm’s initial step of drawing samples
and determining the splitters to be used in the recursion step operates on a
fixed number of elements such that most of the properties of this step can be
shown by an exhaustive bounded analysis5. The permutation and cleanup steps
build upon the same general principles already established during classification,
but require more and additional book keeping to relate different indices into
the array. The implementation consists of four quadruply nested loops and the
innermost loop has three different exit paths. Hence, verifying the permutation
and cleanup part needed the most proof rule applications to close.

4.3 Selected Cross-cutting Concerns of the Proofs

While constructing the correctness proofs for ips4o, we made the following note-
worthy observations.

5 The extended version [3] elaborates on this.

B.Beckert et al.278

Non-trivial termination proofs. For many algorithms, termination is an
easy to show property. However, even though ips4o follows essentially an array-
based divide-and-conquer strategy, its termination proofs are non-trivial. We
exemplify this on the termination of the partitioning step.

The textbook version of quicksort removes the splitter element (pivot) from
the partitions. Hence, the partition size is a variant (termination witness) as
each recursive call receives a strictly smaller slice to work on. For our ips4o
implementation, however, this is not the case as the splitter elements remain
within the partitions. It is the following observation that ensures termination:
If there are two elements e1, e2 in the input slice that are classified into two
different buckets (c(e1) ̸= c(e2)), then the number of elements in each bucket
is strictly below the size of the input slice. While this observation may look
trivial to a human reader, it requires a non-trivial interactive proof in KeY. One
has to reason that for every bucket b1, there is a different non-empty bucket b2
implying that b1 is smaller than the input slice. This variant allows proving the
termination of the recursion.

Multiple variants of property formalisations. One important insight
from the case study is that for some properties it pays off to have not one but two
(or multiple) syntactically different, yet semantically equivalent formalisations
at hand and to be able to use them at different places in the proofs. We give
examples on sortedness and permutation properties.

Sortedness of an array can be expressed in first-order logic by either of the
following equivalent formulae:

∀i : 0 ≤ i < n− 1 ⇒ v[i] ≤ v[i+ 1] (1)
∀i, j : 0 ≤ i < n ∧ i ≤ j < n⇒ v[i] ≤ v[j] (2)

While (1) compares every array element with its successor, (2) allows compar-
ison between arbitrary indices in the array. In the case study, when proving
sortedness, (1) is used. However, when assuming sortedness in a proof (e.g., in
preconditions), the transitive representation (2) is more useful. Technically, both
representations are formulated as model methods and their equivalence has been
shown using a simple inductive argument, which allowed us to switch between
representations as needed.

A similar effect with two formalisation variations can be observed for the
permutation property: For two sequences s1, s2, the expression seqPerm(s1, s2)
formulates that there exists a bijection π between the indices of s1 and s2 such
that s1[π(i)] = s2[i] for all indices i. This straightforward formulation of the
property using an explicit permutation witness π proved helpful to show state-
ments like

∑n
i=0 s1[i] =

∑n
i=0 s2[i] under the assumption that s1 and s2 are

permutations of one another. However, proving the permutation property using
this definition can be difficult since one has to provide the explicit witness for π.
Therefore, an alternative formulation has been used based on the fact that two
sequences are permutations of one another iff they are equal when considered
as multisets, i.e., iff every element occurs equally often in both sequences6. The
equivalence of the two notions is made available to KeY as an (proved) axiom.

6 which is a standard formalisation often used in proofs of sorting algorithms

Formally Verifying an Efficient Sorter 279

Proving frame conditions. To reason that the memory footprints of dif-
ferent data structures do not overlap, KeY supports the concept of dynamic
frames [18]. To be cache-efficient, the ips4o implementation uses a number of
auxiliary buffers, realised as Java arrays. In the Java language, array variables
may alias. In the case study, methods have up to 11 array parameters which all
must not alias with each other. JML possesses an operator \disjoint which can
be used to specify that the sets of memory locations provided as arguments must
be disjoint. KeY then generates the (quadratically many) inequalities capturing
the non-aliasing. KeY is not slowed down since all generated formulas are in-
equalities between identifiers. We used an auxiliary class to group all arrays for
reuse during the recursion which reduced the required specification overhead.
This shows that dynamic frames are an adequate formalism to deal with the
framing problem for this type of algorithmic verification challenge.

Integer overflow. As mentioned above, KeY uses mathematical integers to
model machine int values. For this to be sound, arithmetic expressions must not
over- or underflow the ranges of their respective primitive type. We hence verified
the absence of integer overflows in all methods proved in KeY. Corresponding
assertions are automatically generated by KeY during symbolic execution: every
arithmetic operation generates a new goal where the absence of overflow for
this operation is checked. There were only a few lines of additional specification
required. The overwhelming majority of those proofs closed without interactions
since they could be derived from already proven invariants.

Performance and Verifiability. Optimisations to the code in the case
study sometimes had an impact on the required effort to verify and sometimes
did not: verifying the binary search tree optimisation explained in Sec. 4.2 was
pretty costly whereas the reverification of the project after the optimisations
mentioned in Sec. 3.2 went through pretty automatically. Both optimisations
bought a noteworthy bit of performance. A key factor for the complexity of the
verification is how much the optimisation modifies data representation.

4.4 Proof Statistics

Table 1 gives an overview of the size of the proofs in this case study. A rule
application in the KeY system may be part of the symbolic execution of Java
code, part of first-order or theory reasoning.

The overall ratio between specification and source code lines is about 3:1,
which since many model methods were declared, is still quite low. Using models
methods to formulate lemmas deduplicating the proofs allowed us to obtain an
overall proof with only 106 steps. Consider in comparison a recent case study [5]
performed with KeY: The numbers of branches and rule applications are in the
same order of magnitude; but our case study has 6× as many the lines of code,
and 7× as many lines of specification. However it also required twice the number
of manual interactions.

The specification consists of 179 JML contracts of which 114 could be ver-
ified with fewer than ten manual interactions. However, some methods require
extensive interaction. Most interactions were needed to prove the contract of a

B.Beckert et al.280

Table 1: Proof statistics: total number of rule applications, number of interactive
rule applications, proof branches, branches closed by calls to an SMT solver, lines
of Java code (LOC), lines of JML specification (LOS), ratio LOS/LOC.

Class Rule apps Interactions Branches SMT LOC LOS LOS
LOC

BucketPtrs 206 348 683 585 24 48 441 9.19
Buffers 47 258 120 291 0 44 175 3.98
Classifier 265 743 747 1 540 348 123 481 3.91
Permute 160 431 1 139 1 104 272 130 413 3.18
Cleanup 113 903 485 648 207 102 181 1.77
Sorter 120 079 519 705 7 93 382 4.11

Other 215 629 724 742 44 249 430 1.73

Total 1 015 488 3 932 5 615 789 902 2 503 3.17

Table 2: Most common manual proof interactions in the largest proof (contract
of Permute::swap block).

Proof Step Count

Expanding model method
definitions

95

Proof state simplification 71
Memory footprint reasoning 69
Applying model method contracts 65

Proof Step Count

Expanding conditionals 64
First order equality reasoning 83
Quantifier instantiation 53
Splitting if-then-else expressions 36
Case distinctions on equalities 35

method wrapping an inner loop from the permutation stepwith 836 interactions
and the cleanup method with 475. Those were also the biggest proofs for method
contracts with about 125 000 and 110 000 rule applications, respectively. With-
out heavy usage of lemma methods, those proofs would have been multiple times
larger. Notably, most of the interactions for constructing these proofs were un-
packing model methods, using their contracts, simplifying the sequent and using
observer dependencies, see Table 2.

5 Performance of the ips4o Java Version

As our stated goal is an implementation that is both verified and has state-of-
the-art efficiency, we performed experiments to measure the performance of our
Java implementation of ips4o. Our experimental setup is similar to that of the
original ips4o paper [2] – in particular, we use all of the same input distributions
in our evaluation:

– Uniform: Values are pseudo-random numbers in [0, 232].
– Ones: All values are 1.
– Sorted: Values are increasing.
– Reversed: Values are decreasing.

Formally Verifying an Efficient Sorter 281

0.0

0.5

1.0

1.5

2.0

20 210 220 230

Input size n

S
p
ee
d
u
p

Intel

AMD

ARM

Fig. 8: Speedup of ips4o over Arrays.sort() for the Uniform distribution.

– Unsorted-Tail: Like Sorted, except the last ⌊
√
n⌋ elements are shuffled.

– Almost-Sorted: Like Sorted, except ⌊
√
n⌋ random adjacent pairs are

swapped.
– Exponential: Values are distributed exponentially.
– RootDup: Sets A[i] = i mod ⌊

√
n⌋.

– TwoDup: Sets A[i] = i2 + m
2 mod m, where m = ⌊log2 n⌋.

– EightDup: Sets A[i] = i8 + m
2 mod m, where m = ⌊log2 n⌋.

We performed experiments using OpenJDK 20 on three different machi-
nes/CPUs: An Intel i7 11700 at 4.8GHz, an AMD Ryzen 3950X at 3.5Ghz,
and an Ampere Altra Q80-30 ARM processor at 3GHz. We repeated each mea-
surement multiple times and report the mean execution times of all iterations.
For input sizes n ≤ 213, we took 1000 measurements, for 214 ≤ n ≤ 220 we took
25 measurements, and for 221 ≤ n ≤ 230 we took 5 measurements. In addition,
we repeated the entire benchmark 5 times to get results across different invoca-
tions of the JVM. This means that there are between 25 and 5000 data points
for each input size, distribution, and architecture.

On all three machines, ips4o outperforms OpenJDK’s Arrays.sort() for int

by a factor of 1.33 to 1.83 for large inputs on the Uniform distribution. These
results can be found in Fig. 8. For comparison, Fig. 9 shows the runtimes, in-
cluding the C++ implementation of ips4o, on the Intel machine.

Most other distributions show similar results (with a speedup factor of up
to 2.27), with the exception of pre-sorted or almost sorted inputs. These dis-
tributions – which include Ones, Sorted, Reversed, and Almost-Sorted,
but not Unsorted-Tail – are detected by the adaptive implementation of
Arrays.sort() and are not actually sorted by the default dual-pivot quicksort,
but by a specialised merging algorithm, which ends up doing almost no work on
these distributions.

In summary, our experiments show that the verified Java implementation of
ips4o outperforms the standard dual-pivot quicksort algorithm across a variety

B.Beckert et al.282

1

10

100

20 210 220 230

Input size n

T
im

e
t/
n
lo
g
2
n
(n
s) Arrays.sort()

ips4o

ips4o (C++)

Fig. 9: Runtime for the Uniform distribution on Intel.

of input distributions and hardware. The same opportunistic merging algorithm
currently implemented by Arrays.sort() could be used in conjunction with ips4o,
which would shortcut the work in case the input is already (almost) sorted.

6 Related Work

JML and KeY have been used previously to verify sorting algorithms. Besides the
verifications of nontrivial proof-of-concept implementations like Counting Sort
and Radixsort [12], KeY has been used to verify the sorting algorithms deployed
with OpenJDK: The formal analysis with KeY revealed a relevant bug in the
TimSort implementation shipped with the JDK as the standard algorithm for
generic data types [11]. A bugfix was proposed and it was shown that the fixed
code does not throw exceptions (but sortedness or permutation were not shown).
For the Dual Pivot Quicksort implementation of the JDK (used to sort arrays
of primitive values), the sorting and permutation property were successfully
specified and verified using KeY [4]. However, the complexity and size of those
verification proofs are considerably smaller than our ips4o case study. Other
pivotal classes of the JDK were also successfully verified using KeY [5,16].

Lammich et al. [20,14] verified efficient sorting routines by proving functional
propertieson abstract high-level algorithmic descriptions in the Isabelle/HOL
theorem prover and then refining them down to LLVM code. In that framework,
even parallelised implementations can be analysed to some degree if no shared
memory is used [21]. While the verified algorithms are on par with the perfor-
mance of the standard library, they do not reach the efficiency of ips4o, and the
authors explicitly list sample sorting as future work. Mohsen and Huisman [34]
provide a general framework for the formal verification of swap-based sequential
and parallel sorting routines, but restrict it to the analysis of the permutation
property. Since ips4o is not entirely swap-based (due to the external buffers in
the classification step), it is not covered by their approach.

Formally Verifying an Efficient Sorter 283

There exists a large number of prominent algorithm verification case studies
that focus on the challenges provided by the verification and do not consider the
performance of the implementation [8,7,28,17,27,6,26,30].

Finally, there are several large-scale verification projects like the verified mi-
crokernel L4.verified [19], the CertiOS framework [37] for the verification of pre-
emptive OS kernels, or the verified Hypervisor Hyper-V [23] that easily top this
case study w.r.t. both verified lines of code and invested person years. However,
they target a completely different type of system to be verified and have their
focus on operating-system-related challenges, like handling concurrent low-level
data structures or concurrent accesses to resources. While they also address sim-
ilar performance questions, the algorithmic aspects are considerably different

7 Conclusions and Future Work

We have demonstrated that a state-of-the-art sorting algorithm like ips4o can be
formally verified starting directly with an efficient implementation that has not
been modified to ease verification. The involved effort of several person months
was considerable but seems worthwhile for a widely used basic toolbox function
with potential to become part of the standard library of important programming
languages. Parts of this verification or at least the basic approach can be reused
for related algorithms like radix sort, semisorting, aggregation, hash-join, random
permutations, index construction etc.

Future work could look at parallel versions of ips4o or implementations that
use advanced features such as vector-instructions (e.g., as in [36]). Of course,
further basic toolbox components like collection classes (hash tables, search trees
etc.) should also be considered.

On the methodology side it would be interesting to compare our approach of
direct verification with approaches that start from a verified abstraction of the
actual code that is later refined to an implementation. Besides the required effort
for verification and the efficiency of the resulting code, a comparison should also
consider the ease of communicating with algorithm engineers, which on the one
hand may benefit from an abstraction but on the other hand is easier when
based on their original implementation. Our case study involved both experts in
program verification and experts in algorithm engineering, which proved essential
to its success.

For much of the desirable future work, verification tools and methods need
further development, in particular for efficient parallel programs and high-per-
formance languages like C++ or Rust. It is also important to better support
evolution of the implementation, since it is quite rare that one wants to keep
an implementation over decades – algorithm libraries have to evolve with added
functionality and changes in hardware, compilers or operating systems.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification - The KeY Book - From Theory to Prac-

B.Beckert et al.284

tice, Lecture Notes in Computer Science, vol. 10001. Springer (2016). https:
//doi.org/10.1007/978-3-319-49812-6

2. Axtmann, M., Ferizovic, D., Sanders, P., Witt, S.: Engineering in-place (shared-
memory) sorting algorithms. ACM Transaction on Parallel Computing 9(1), 2:1–
2:62 (2022), see also github.com/ips4o. Conference version in ESA 2017

3. Beckert, B., Sanders, P., Ulbrich, M., Wiesler, J., Witt, S.: Formally verifying an
efficient sorter, extended version. Tech. rep., Karlsruhe Institute of Technology
(2024). https://doi.org/10.5445/IR/1000167846

4. Beckert, B., Schiffl, J., Schmitt, P.H., Ulbrich, M.: Proving JDK’s dual pivot quick-
sort correct. In: Working Conference on Verified Software: Theories, Tools, and
Experiments. pp. 35–48. Springer (2017)

5. Boer, M.d., Gouw, S.d., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: Formal
specification and verification of JDK’s identity hash map implementation. In: In-
ternational Conference on Integrated Formal Methods. pp. 45–62. Springer (2022)

6. Bottesch, R., Haslbeck, M.W., Thiemann, R.: A verified efficient implementation
of the LLL basis reduction algorithm. In: LPAR-22. 22nd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia,
16-21 November 2018. pp. 164–180 (2018). https://doi.org/10.29007/xwwh

7. Broy, M., Pepper, P.: Combining algebraic and algorithmic reasoning: An approach
to the schorr-waite algorithm. ACM Trans. Program. Lang. Syst. 4(3), 362–381
(1982). https://doi.org/10.1145/357172.357175

8. Bubel, R.: The Schorr-Waite-algorithm. In: Verification of Object-Oriented Soft-
ware. The KeY Approach - Foreword by K. Rustan M. Leino, pp. 569–587 (2007).
https://doi.org/10.1007/978-3-540-69061-0 15

9. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Programming
Languages and Systems - 22nd European Symposium on Programming, ESOP
2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. pp. 125–128
(2013). https://doi.org/10.1007/978-3-642-37036-6 8

10. Frazer, W.D., McKellar, A.C.: Samplesort: A sampling approach to minimal stor-
age tree sorting. Journal of the ACM (JACM) 17(3), 496–507 (1970)

11. de Gouw, S., de Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. Journal of Automated Reasoning
62(1), 93–126 (2019)

12. de Gouw, S., de Boer, F.S., Rot, J.: Verification of counting sort and radix sort.
In: Deductive Software Verification - The KeY Book - From Theory to Practice,
pp. 609–618 (2016). https://doi.org/10.1007/978-3-319-49812-6 19

13. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
14. Haslbeck, M.P.L., Lammich, P.: For a few dollars more: Verified fine-grained algo-

rithm analysis down to LLVM. ACMTrans. Program. Lang. Syst. 44(3), 14:1–14:36
(2022). https://doi.org/10.1145/3486169

15. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.J.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012).
https://doi.org/10.1145/2187671.2187678

16. Hiep, H.A., Maathuis, O., Bian, J., de Boer, F.S., de Gouw, S.: Verifying Open-
JDK’s linkedlist using key (extended paper). Int. J. Softw. Tools Technol. Transf.
24(5), 783–802 (2022). https://doi.org/10.1007/s10009-022-00679-7

17. Hubert, T., Marché, C.: A case study of C source code verification: the Schorr-
Waite algorithm. In: Third IEEE International Conference on Software Engineering
and Formal Methods (SEFM 2005), 7-9 September 2005, Koblenz, Germany. pp.
190–199 (2005). https://doi.org/10.1109/SEFM.2005.1

Formally Verifying an Efficient Sorter 285

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
github.com/ips4o
https://doi.org/10.5445/IR/1000167846
https://doi.org/10.5445/IR/1000167846
https://doi.org/10.29007/xwwh
https://doi.org/10.29007/xwwh
https://doi.org/10.1145/357172.357175
https://doi.org/10.1145/357172.357175
https://doi.org/10.1007/978-3-540-69061-0_15
https://doi.org/10.1007/978-3-540-69061-0_15
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-49812-6_19
https://doi.org/10.1007/978-3-319-49812-6_19
https://doi.org/10.1145/3486169
https://doi.org/10.1145/3486169
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1007/s10009-022-00679-7
https://doi.org/10.1007/s10009-022-00679-7
https://doi.org/10.1109/SEFM.2005.1
https://doi.org/10.1109/SEFM.2005.1

18. Kassios, I.T.: The dynamic frames theory. Formal Aspects Comput. 23(3), 267–288
(2011). https://doi.org/10.1007/s00165-010-0152-5

19. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D.A., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an OS kernel. In: Proceedings of the 22nd
ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big Sky,
Montana, USA, October 11-14, 2009. pp. 207–220 (2009). https://doi.org/10.1145/
1629575.1629596

20. Lammich, P.: Efficient verified implementation of introsort and pdqsort. In: Auto-
mated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France,
July 1-4, 2020, Proceedings, Part II. pp. 307–323 (2020). https://doi.org/10.1007/
978-3-030-51054-1 18

21. Lammich, P.: Refinement of parallel algorithms down to LLVM. In: 13th Interna-
tional Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022,
Haifa, Israel. pp. 24:1–24:18 (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.24

22. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., et al.: JML reference manual (2008)

23. Leinenbach, D., Santen, T.: Verifying the microsoft Hyper-V hypervisor with VCC.
In: FM 2009: Formal Methods, Second World Congress, Eindhoven, The Nether-
lands, November 2-6, 2009. Proceedings. pp. 806–809 (2009). https://doi.org/10.
1007/978-3-642-05089-3 51

24. Leino, K.R.M.: Accessible software verification with Dafny. IEEE Softw. 34(6),
94–97 (2017). https://doi.org/10.1109/MS.2017.4121212

25. Leino, K.R.M., Moskal, M.: Usable auto-active verification. Usable Verification
Workshop, Redmond, WS (2010)

26. Mahboubi, A.: Proving formally the implementation of an efficient gcd algorithm
for polynomials. In: Automated Reasoning, Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings. pp. 438–452
(2006). https://doi.org/10.1007/11814771 37

27. Medina-Bulo, I., Palomo-Lozano, F., Ruiz-Reina, J.: A verified common lisp imple-
mentation of Buchberger’s algorithm in ACL2. J. Symb. Comput. 45(1), 96–123
(2010). https://doi.org/10.1016/j.jsc.2009.07.002

28. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. In: Auto-
mated Deduction - CADE-19, 19th International Conference on Automated Deduc-
tion Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings. pp. 121–135
(2003). https://doi.org/10.1007/978-3-540-45085-6 10

29. Meyer, B.: Applying ”design by contract”. Computer 25(10), 40–51 (1992). https:
//doi.org/10.1109/2.161279

30. Mohan, A., Leow, W.X., Hobor, A.: Functional correctness of C implementa-
tions of Dijkstra’s, Kruskal’s, and Prim’s algorithms. In: Computer Aided Ver-
ification - 33rd International Conference, CAV 2021, Virtual Event, July 20-
23, 2021, Proceedings, Part II. pp. 801–826 (2021). https://doi.org/10.1007/
978-3-030-81688-9 37

31. Mommen, N., Jacobs, B.: Verification of C++ programs with VeriFast. CoRR
abs/2212.13754 (2022). https://doi.org/10.48550/arXiv.2212.13754

32. Mostowski, W., Ulbrich, M.: Dynamic dispatch for method contracts through
abstract predicates. LNCS Trans. Modul. Compos. 1, 238–267 (2016). https:
//doi.org/10.1007/978-3-319-46969-0 7

33. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the Joint European Conferences on Theory and

B.Beckert et al.286

https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1007/11814771_37
https://doi.org/10.1007/11814771_37
https://doi.org/10.1016/j.jsc.2009.07.002
https://doi.org/10.1016/j.jsc.2009.07.002
https://doi.org/10.1007/978-3-540-45085-6_10
https://doi.org/10.1007/978-3-540-45085-6_10
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-030-81688-9_37
https://doi.org/10.1007/978-3-030-81688-9_37
https://doi.org/10.1007/978-3-030-81688-9_37
https://doi.org/10.1007/978-3-030-81688-9_37
https://doi.org/10.48550/arXiv.2212.13754
https://doi.org/10.48550/arXiv.2212.13754
https://doi.org/10.1007/978-3-319-46969-0_7
https://doi.org/10.1007/978-3-319-46969-0_7
https://doi.org/10.1007/978-3-319-46969-0_7
https://doi.org/10.1007/978-3-319-46969-0_7

Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings. pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

34. Safari, M., Huisman, M.: A generic approach to the verification of the permutation
property of sequential and parallel swap-based sorting algorithms. In: Integrated
Formal Methods - 16th International Conference, IFM 2020, Lugano, Switzerland,
November 16-20, 2020, Proceedings. pp. 257–275 (2020). https://doi.org/10.1007/
978-3-030-63461-2 14

35. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: Autoproof: Auto-active
functional verification of object-oriented programs. In: Tools and Algorithms for
the Construction and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. pp. 566–580
(2015). https://doi.org/10.1007/978-3-662-46681-0 53

36. Wassenberg, J., Blacher, M., Giesen, J., Sanders, P.: Vectorized and performance-
portable quicksort. Softw. Pract. Exp. 52(12), 2684–2699 (2022). https://doi.org/
10.1002/spe.3142

37. Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A practical verification
framework for preemptive OS kernels. In: Computer Aided Verification - 28th In-
ternational Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part II. pp. 59–79 (2016). https://doi.org/10.1007/978-3-319-41540-6 4

Formally Verifying an Efficient Sorter 287

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-63461-2_14
https://doi.org/10.1007/978-3-030-63461-2_14
https://doi.org/10.1007/978-3-030-63461-2_14
https://doi.org/10.1007/978-3-030-63461-2_14
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1002/spe.3142
https://doi.org/10.1002/spe.3142
https://doi.org/10.1002/spe.3142
https://doi.org/10.1002/spe.3142
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/978-3-319-41540-6_4
http://creativecommons.org/licenses/by/4.0/

Explainable Online Monitoring of
Metric First-Order Temporal Logic

Leonardo Lima , Jonathan Julián Huerta y Munive , and Dmitriy Traytel

Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

1 Introduction

Runtime monitoring is concerned with the analysis of events produced by a system during
its execution. An online monitor searches for given complex patterns in event streams,
processing the stream incrementally, i.e., one event at a time. If it finds a pattern match,
the monitor outputs a verdict to its user. The nature of a verdict depends on both the
monitor and its pattern specification language. For propositional specification languages,
such as metric temporal logic (MTL) [6, 21], typical verdicts are streams of Booleans [8,
28,31], where each Boolean signifies the presence or the absence of a pattern match, i.e.,
the satisfaction or violation of the MTL formula at every position in the input stream.

Users might find Boolean outputs difficult to interpret, especially when complex pat-
terns like nesting temporal operators are involved. In particular, Boolean verdicts give no
insight into how monitors produce them—we have to trust their correctness. Even when
assuming infallible monitors, verdict justifications can help us to ensure that we expressed
correctly our intentions in the specification and, e.g., that it is not vacuously true [23].

Lima et al. [25] propose the use of richer verdicts in an MTL monitor. Specifically,
they use proof trees in a dedicated proof system resembling MTL’s semantics to explain
why a formula is satisfied or violated. They develop the EXPLANATOR2 monitor, which
outputs a stream of size-minimal proof trees, and design an interactive graphical user
interface for exploring and understanding these informative verdicts. In addition, they
formally verify, in the Isabelle/HOL proof assistant, a proof tree checker certifying that
their proof system rules were correctly applied. Thus proof tree verdicts serve a two-fold
purpose: as machine-checkable certificates and human-readable explanations.

In this work, we significantly widen the scope of the “proof tree verdicts” approach.
We provide certifiable and explainable monitoring verdicts for metric first-order temporal
logic (MFOTL) [14] with bounded future operators and without equality between vari-
ables. MFOTL extends MTL with data parameters and first-order quantification and is an

(B)

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 288–307, 2024.
https://doi.org/10.1007/978-3-031-57246-3_16

(B)

{leonardo,traytel}@di.ku.dk

Abstract. Metric first-order temporal logic (MFOTL) is an expressive formal-
ism for specifying temporal and data-dependent constraints on streams of time-
stamped, data-carrying events. It serves as the specification language of several
runtime monitors. These monitors input an MFOTL formula and an event stream
prefix and output satisfying assignments to the formula’s free variables. For com-
plex formulas, it may be unclear why a certain assignment is output. We propose
an approach that accompanies assignments with detailed explanations, in the form
of proof trees. We develop a new monitor that outputs such explanations. Our
tool incorporates a formally verified checker that certifies the explanations and a
visualization that allows users to interactively explore and understand the outputs.

https://doi.org/10.1007/978-3-031-57246-3_16
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_16&domain=pdf
http://orcid.org/0000-0003-1701-0435
http://orcid.org/0000-0003-3279-3685
http://orcid.org/0000-0001-7982-2768
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

expressive formalism with many practical applications [7,10–13]. We extend Lima et al.’s
MTL proof system to MFOTL with the expected rules for quantifiers (Section 2): e.g., the
universally quantified formula ∀x. α is satisfied if α with x replaced by d is satisfied for
all domain values d. The key challenge here is that the domain is typically infinite, which
results in the above proof rule for ∀ to be infinitely branching. This is problematic because
it is unclear how to validate a correct application of the ∀ rule in a proof tree checker.

A crucial observation is that without equality between variables, proof trees cannot
distinguish values outside of the active domain, i.e., the finite set of data values from
the monitored event stream prefix and from the formula’s constants. Thus, the active
domain’s size plus one bounds the number of choices for d requiring different proof
trees, and we can reuse them–with the extra “plus one” representing values outside the
active domain. Thus, to represent the ∀ rule it suffices to store a finite partition of the
domain and one subproof for each part. We obtain finite proof objects, develop a checker
for them, and formally verify the checker’s correctness in Isabelle/HOL (Section 3).

The proof system explains how to deal with closed MFOTL formulas. A Boolean ver-
dict for a formula with free variables only makes sense relative to a variable assignment.
Hence, traditional MFOTL monitors compute sets of satisfying variable assignments [15,
30] instead of Boolean verdicts. In our setting, an explanation for a formula with free vari-
ables must provide a proof tree for any variable assignment (satisfying or violating). For
infinite domains, there are infinitely many assignments, but the same idea that worked for
quantifiers comes to our rescue: it suffices to consider a finite partition of the domain for
each variable. Inspired by binary decision diagrams (BDDs) [16], we organize the parti-
tions for different variables hierarchically in partitioned decision trees (PDTs). PDTs are
trees where each leaf stores a generic data item and each node (representing a variable)
branches on a finite partition of the domain (Section 4). The partitions may change from
one node to the other. PDTs can be compacted (or reduced in BDD terminology).

We thus have arrived at our notion of explainable verdicts for MFOTL formulas:
PDTs whose leaves are proof objects. We extend our verified checker from proof objects
to such verdicts and Lima et al.’s algorithm for MTL [25] to MFOTL (Section 5). Our
algorithm extension is modular in the sense that it merely adds a layer of PDTs, but keeps
Lima et al.’s algorithms for temporal operators unchanged. We implement the extended
algorithm in a new monitor and also extend Lima et al.’s interactive visualization of
proof objects. We demonstrate the effectiveness of our new tool on MFOTL policies
from the literature (Section 6). In summary, we make the following contributions:

– We develop a proof system for MFOTL satisfaction and violation at a time-point for
a given event stream and verify its soundness and completeness in Isabelle/HOL.

– We finitely represent our proof system’s proof trees and formally verify a checker
for them. The key idea is that finite partitions of infinite domains are sufficient.

– We design partitioned decision trees (PDTs) to represent functions from variable
assignments to generic data items in a way that enables sharing and compression.

– We develop an algorithm computing explanations: PDTs with proof objects as leaves.
We implement the algorithm in a new monitor, along with an interactive visualization
of explanations and integrated with the verified proof tree checker for certification.

Our tool, called WHYMON, is publicly available [2].

Explainable Online Monitoring of Metric First-Order Temporal Logic 289

v, i ⊨ tt v, i ⊨ ∃x.α iff v[x 7→ d], i ⊨ α for some d ∈ D
v, i ⊭ ff v, i ⊨ ∀x.α iff v[x 7→ d], i ⊨ α for all d ∈ D
v, i ⊨ p(t) iff p(JtKv) ∈ Γi v, i ⊨ Iα iff i > 0, τi−τi−1 ∈ I, and v, i−1 ⊨ α

v, i ⊨ x≈ c iff v(x) = c v, i ⊨#Iα iff τi+1−τi ∈ I and v, i+1 ⊨ α

v, i ⊨ ¬α iff v, i ⊭ α v, i ⊨ ♦Iα iff v, j ⊨ β for some j≤ i with τi−τ j ∈ I
v, i ⊨ α∧β iff v, i ⊨ α and v, i ⊨ β v, i ⊨ ♢Iα iff v, j ⊨ β for some j≥ i with τ j−τi ∈ I
v, i ⊨ α∨β iff v, i ⊨ α or v, i ⊨ β v, i ⊨ ■Iα iff v, j ⊨ β for all j≤ i with τi−τ j ∈ I
v, i ⊨ α→ β iff v, i ⊭ α or v, i ⊨ β v, i ⊨ □Iα iff v, j ⊨ β for all j≥ i with τ j−τi ∈ I
v, i ⊨ α SI β iff v, j ⊨ β for some j≤ i with τi−τ j ∈ I and v,k ⊨ α for all j < k ≤ i
v, i ⊨ α UI β iff v, j ⊨ β for some j≥ i with τ j−τi ∈ I and v,k ⊨ α for all i≤ k < j

Fig. 1: Semantics of MFOTL for a fixed stream σ= ⟨τi,Γi⟩i∈N.

Further Related Work Lima et al.’s work [25], which we extend, is based on the work by
Basin et al. [9] that employed proof trees as explanations in the context of understanding
counterexamples of LTL model checkers. We refer to these works for a discussion of
related proof systems for propositional temporal logics and regular expressions.

In the first-order monitoring setting, we are on unexplored territory with verdicts that
go beyond satisfying assignments. Nonetheless our work incorporates ideas from exist-
ing first-order monitors. Most closely related is Havelund et al’s DEJAVU monitor [18],
which uses BDDs to represent sets of satisfying assignments. Our work generalizes BDDs
to branching over partitions of the domain and storing generic data (e.g., proof objects)
instead of Booleans in the leaves. In addition, the DEJAVU authors make use of the fact
that without equality between variables the formula’s satisfaction cannot be influenced by
different values outside the active domain. We generalize this observation so that not only
the satisfaction but rather entire proof trees can be reused when exchanging values outside
the active domain. Finally, DEJAVU only supports past temporal operators and closed for-
mulas, whereas our algorithm supports both past and future operators and free variables.

Havelund et al.’s key observation fails for equalities between variables. For example,
the formula x≈ y→ p(x,y) is satisfied for any pair of distinct values c ̸= d outside of the
predicate p’s interpretation, but it is violated if we pick the same value c for both x and y.
A classic result by Ailamazyan et al. [5,19] shows that for the relational calculus (MFOTL
without temporal operators) it suffices to distinguish a finite number of equivalence
classes of values outside of the active domain. While it is conceivable that this result
generalizes to MFOTL with equality, we leave this generalization as future work.

The MFOTL monitor MonPoly [14, 15] and its formally verified counterpart Veri-
Mon [30] output streams of satisfying assignments for formulas in the so-called mon-
itorable fragment. The fragment ensures that all subformulas always evaluate to finite
sets of satisfying assignments. Our monitor does not suffer from this limitation; even
more it returns all satisfying and violating assignments (labeled and explained as such).

Outside of first-order monitoring, our visualization takes some inspiration from the
stream runtime verification tool TeSSLa [24], which can provide output for all interme-
diate streams. Similarly, we provide output for all subformulas, but our proof trees allow
us to focus on the relevant dependencies between a formula and its subformulas.

Metric first-order temporal logic (MFOTL) We recall MFOTL’s syntax and semantics.
We fix an infinite domain D (e.g., containing integers and strings). Terms t ∈ T are either
variables x,y,z ∈ V or constants c,d ∈ D. Overlines indicate lists (finite sequences), e.g.,

L. Lima, J.J. Huerta y Munive, and D. Traytel290

if t is a term, then t is a list of terms. The grammar below specifies MFOTL’s syntax,
where p ∈ E is a predicate name (e.g., a string) and I ∈ I⊆ 2N is a non-empty interval.

α ::= tt | ff | p(t) | x≈ c | ¬α | α∧α | α∨α | α→ α | ∃x. α | ∀x. α |
 Iα |#Iα | ♦Iα | ♢Iα |■Iα |□Iα | α SI α | α UI α

Besides the first-order logic operators, the syntax includes the past (previous), ♦ (once),
■ (historically), S (since) and future # (next), ♢ (eventually), □ (always), U (until)
temporal operators. We use

∧
for universal and

∨
for existential quantification at the met-

alanguage level to avoid confusion with MFOTL formulas. We also use common interval
notation [a,b) = {n | a≤ n < b} or [a,c] = {n | a≤ n≤ c}, for a,c ∈N and b ∈N∪{∞},
and omit intervals when I = [0,∞) =N. Whenever we write [a,c], we exclusively denote
the range [a, . . . ,c] (rather than the two element sequence [a,c]). Furthermore, we assume
that the future operators (♢, □, and U) intervals are finite (also called bounded). We
write a+ I for {a+ x | x ∈ I} and aR I for

∧
x ∈ I. aR x (whereR∈ {<,≤,>,≥}). We

interpret formulas over streams σ: infinite sequences of time-stamped sets of events σ=
⟨τi,Γi⟩i∈N. We call the indices i ∈N time-points, so that Γi is the set of events and τi ∈N
is the time-stamp at time-point i. The time-stamps τi must be monotone (

∧
i j. i≤ j−→

τi ≤ τ j) and eventually increasing (
∧
τ.

∨
i. τi > τ). Each event has the form p(d1, . . . ,dn)

where p is the event name and di ∈D. Given a total assignment v mapping variables to val-
ues in D, we define J xKv = v(x) and JcKv = c. The notation J t Kv = c lifts this operation to
lists of terms. We define the satisfaction relation v, i ⊨σ α in the usual way (Figure 1). Fi-
nally, the earliest time-point ETPσ(τ) of τ∈N on σ is the smallest time-point i such that
τi≥ τ. Analogously, the latest time-point LTPσ(τ) of τ≥ τ0 on σ is the largest i such that
τi ≤ τ. We omit the stream σ

(
e.g., ⊨, ETP(τ) and LTP(τ)

)
if it is clear from the context.

2 Proof System

We introduce a local proof system for MFOTL (Figure 2). “Local" means here that the
proof system does not talk about satisfiability in general, but rather about the formula’s
satisfaction or violation for a fixed stream, assignment, and time-point.

Our proof system consists of two mutually dependent judgments, ⊢+σ and ⊢−σ (again
σ is omitted when clear), that characterize a formula’s satisfaction v, i ⊢+σ α and violation
v, i ⊢−σ α relations for assignment v, stream σ, and time-point i. The rules of our proof
system closely follow the MFOTL semantics (Figure 1) and extend the proof system used
by Lima et al. [25] with assignments (that are mostly passed around without modification)
and the rules for quantifiers (which modify the assignments). The rules for atomic
predicates and Boolean constants and operators are self-explanatory: e.g., predicates
are satisfied if a matching event is present in the trace; a conjunction is satisfied if both
conjuncts are satisfied; a conjunction is violated if either of the conjuncts is violated.

The rule ∃+ states that for v to satisfy ∃x. α at i, it suffices to provide a domain value
d such that the updated assignment v[x 7→ d] setting x to d satisfies α at i. Conversely,
∃− asserts that the violation of ∃x. α under v at i requires showing that all domain values
make v[x 7→ d] violate α at i. Since the universal quantifier is dual to the existential one,
the rules ∀− and ∀+ exchange the relations ⊢+σ and ⊢−σ compared to ∃+ and ∃−.

Explainable Online Monitoring of Metric First-Order Temporal Logic 291

v, i ⊢+ tt
tt+

v, i ⊢− ff
ff−

p(JtKv) ∈ Γi

v, i ⊢+ p(t)
p+

p(JtKv) /∈ Γi

v, i ⊢− p(t)
p−

v, i ⊢+ α v, i ⊢− β

v, i ⊢− α→ β
→−

v, i ⊢− α

v, i ⊢+ ¬α ¬
+

v, i ⊢− α

v, i ⊢− α∧β
∧−L

v, i ⊢− β

v, i ⊢− α∧β
∧−R

v, i ⊢+ α v, i ⊢+ β

v, i ⊢+ α∧β ∧+
v, i ⊢− α

v, i ⊢+ α→ β
→+

L

v, i ⊢+ α

v, i ⊢− ¬α ¬
− v, i ⊢+ α

v, i ⊢+ α∨β
∨+L

v, i ⊢+ β

v, i ⊢+ α∨β
∨+R

v, i ⊢− α v, i ⊢− β

v, i ⊢− α∨β ∨−
v, i ⊢+ β

v, i ⊢+ α→ β
→+

R

v[x 7→ d], i ⊢+ α

v, i ⊢+ ∃x. α
∃+

∧
d. v[x 7→ d], i ⊢+ α

v, i ⊢+ ∀x. α
∀+

∧
d. v[x 7→ d], i ⊢− α

v, i ⊢− ∃x. α
∃−

v[x 7→ d], i ⊢− α

v, i ⊢− ∀x. α
∀−

v,0 ⊢− Iα
 −0

i > 0 τi−τi−1 < I

v, i ⊢− Iα
 −<I

i > 0 τi−τi−1 > I

v, i ⊢− Iα
 −>I

i > 0 v, i−1 ⊢− α

v, i ⊢− Iα
 −

τi+1−τi ∈ I v, i+1 ⊢+ α

v, i ⊢+ #Iα
#+

τi+1−τi < I

v, i ⊢− #Iα
#−<I

τi+1−τi > I

v, i ⊢− #Iα
#−>I

v, i+1 ⊢− α

v, i ⊢− #Iα
#−

j≤ i τi−τ j ∈ I v, j ⊢+ α

v, i ⊢+ ♦Iα
♦+ τi < τ0 + I

v, i ⊢− ♦Iα
♦−<l

j≥ i τ j−τi ∈ I v, j ⊢+ α

v, i ⊢+ ♢Iα
♢+

τi ≥ τ0 + I
∧

j ∈ [E
p
i (I),L

p
i (I)]. v, j ⊢− α

v, i ⊢− ♦Iα
♦−

∧
j ∈ [Ef

i(I),L
f
i(I)]. v, j ⊢− β

v, i ⊢− ♢Iα
♢−

j≤ i τi−τ j ∈ I v, j ⊢− α

v, i ⊢− ■Iα
■−

τi < τ0 + I
v, i ⊢+ ■Iα

■+
<l

j≥ i τ j−τi ∈ I v, j ⊢− α

v, i ⊢+ □Iα
□−

τi ≥ τ0 + I
∧

j ∈ [E
p
i (I),L

p
i (I)]. v, j ⊢+ α

v, i ⊢+ ■Iα
■+

∧
j ∈ [Ef

i(I),L
f
i(I)]. v, j ⊢+ β

v, i ⊢+ □Iα
□+

j≤ i τi−τ j ∈ I v, j ⊢+ β
∧

k ∈ (j, i]. v,k ⊢+ α

v, i ⊢+ α SI β
S+

i > 0 τi−τi−1 ∈ I v, i−1 ⊢+ α

v, i ⊢+ Iα
 +

i≤ j τ j−τi ∈ I v, j ⊢+ β ∀k ∈ [i, j). v,k ⊢+ α

v, i ⊢+ α UI β
U+

τi < τ0 + I

v, i ⊢− α SI β
S−<I

v(x) = c

v, i ⊢+ x≈ c
≈+

τi ≥ τ0 + I
∧

k ∈ [E
p
i (I),L

p
i (I)]. v,k ⊢− β

v, i ⊢− α SI β
S−∞

∧
k ∈ [Ef

i(I),L
f
i(I)]. v,k ⊢− β

v, i ⊢− α UI β
U−∞

E
p
i (I)≤ j j≤ i τi ≥ τ0 + I v, j ⊢− α

∧
k ∈ [j,Lp

i (I)]. v,k ⊢− β

v, i ⊢− α SI β
S−

i≤ j j < Lf
i(I) v, j ⊢− α ∀k ∈ [Ef

i(I), j]. v,k ⊢− β

v, i ⊢− α UI β
U−

v(x) ̸= c

v, i ⊢− x≈ c
≈−

Fig. 2: Local proof system for MFOTL on a fixed stream σ= ⟨τi,Γi⟩i∈N.

The rules ♦+ and ♢+ are mere restatements of the MFOTL semantics. Since the oper-
ators ■I and □I are respectively dual to ♦I and ♢I , their violation rules ■− and □− once
again exchange ⊢+σ and ⊢−σ compared to ♦+ and ♢+. The rule ■+

<l accounts for the vacu-
ous truth of the operator ■I near the start of the stream (when no time-points fall within
the interval I). Dually, the rule ♦−<l asserts the violation of ♦I near the start of the stream.
The remaining rules ♦−, ♢−, ■+, and □+ use notation Ep

i (I), L
p
i (I), E

f
i(I), and Lf

i(I) to
refer to time-points of particular interest relative to the current time-point i. Specifically,

L. Lima, J.J. Huerta y Munive, and D. Traytel292

for a future formula φ=FI α withF ∈ {#,♢,□} and interval I = [a,b] or I = [a,b) such
that b ̸= ∞, the formula’s semantics at time-point i may need to refer to any time-point
with time-stamp in [τi +a, . . . , τi +b]. The latest such time-point is Lf

i(I) = LTP(τi +b)
while the earliest one is Ef

i(I) = max(i,ETP(τi +a)). For past operators P ∈ { ,♦,■},
the relevant time-stamp interval is [τi−b, . . . , τi−a] and the interval’s earliest time-point
is Ep

i (I) = ETP(τi−b) and its latest time-point is Lp
i (I) = min(i,LTP(τi−a)).

Proof trees emerging from repeated application of the rules in our proof system
contain all the necessary information to explain why a formula is satisfied or violated. In
other words, our proof system is sound and complete, i.e., the following result holds.

Theorem 1. Let α be a formula, v a variable assignment, i ∈ N a time-point, and
σ= ⟨τi,Γi⟩i∈N a trace. Then v, i ⊢+σ α←→ v, i ⊨σ α and v, i ⊢−σ α←→ v, i ⊭σ α.

We have formalized and verified this result in Isabelle/HOL.

Example 1. Consider the standard publish–approve example [14] requiring that any file
f published by an author a, must first be approved by a manager m of a within the
previous seven days. The formalization of this policy as a closed MFOTL formula is:

φ= ∀a. ∀ f . publish(a, f)→
(
♦[0,7]∃m. (¬mgrF(m,a) S mgrS(m,a))∧approve(m, f)

)
.

Here, the events mgrS(m,a) and mgrF(m,a) mark m starting and finishing being a’s
manager. Formally, m is currently a manager of a if m started being a’s manager in the
past and has not finished being a’s manager since. Thus, the manager relation changes
over time. Consider the stream ⟨τi,Γi⟩i∈N, where τ0 = τ1 = 0, τ2 = 4, τ3 = 10, and

Γ0 = {mgrS(Mallory,Alice),mgrS(Merlin,Bob),mgrS(Merlin,Charlie)}, and
Γ1 = {approve(Mallory,152)}, and
Γ2 = {approve(Merlin,163),publish(Alice,160),mgrF(Merlin,Charlie)}, and
Γ3 = {approve(Merlin,187),publish(Bob,163),publish(Alice,163),

publish(Charlie,163),publish(Charlie,152)}.

In the following we abbreviate the subformulas of φ as follows: φL = publish(a, f), φ1 =
¬mgrF(m,a) S mgrS(m,a), φ2 = approve(m, f), φ∃ = ∃m. φ1∧φ2, φR = ♦[0,7]φ∃, and
φ′ = φL→ φR. The following proof tree shows that φ is violated at time-point 3 for any v:

publish(Charlie,152) ∈ Γ3

v[a 7→ Charlie, f 7→ 152],3 ⊢+ φL
p+

approve(d,152) /∈ Γi

v[a 7→ Charlie, f 7→ 152,m 7→ d], i ⊢− φ2
p−

v[a 7→ Charlie, f 7→ 152,m 7→ d], i ⊢− φ1∧φ2
∧−R

v[a 7→ Charlie, f 7→ 152], i ⊢− φ∃
∃−

v[a 7→ Charlie, f 7→ 152],3 ⊢− φR
♦−

v[a 7→ Charlie, f 7→ 152],3 ⊢− φL→ φR
→−

v[a 7→ Charlie],3 ⊢− ∀ f . φ′
∀−

v,3 ⊢− ∀a. ∀ f . φ′
∀−

Given φR’s temporal constraint, we note that τ3 ≥ 0 and need to check v, i ⊢− φ∃ for the
time-points i ∈ {2,3} (as [Ep

3([0,7]),L
p
3([0,7])] = {2,3}). Both subproofs are identical,

so we parameterize them over i. In addition, the ∃− subproofs are valid for an arbitrary
manager d ∈ D (abbreviating infinite branching over all possible domain values).

Explainable Online Monitoring of Metric First-Order Temporal Logic 293

sp = tt+(N) | p+(N,E, t) | ¬+(vp) | ∧+(sp,sp) | ∨+L (sp) | ∨
+
R (sp) | →

+
L (vp) | →

+
R (sp)

| ∀+(V,
⊎
D(sp)) | ∃+(V,D,sp) | +(sp) |#+(sp) | ♦+(N,sp) | ♢+(N,sp)

| ■+
<I(N) |■

+(N,sp) |□+(N,sp) | S+(sp,sp) | U+(sp,sp) ,
vp= ff−(N) | p−(N,E, t) | ¬−(sp) | ∧−R (vp) | ∧

−
L (vp) | ∨

−(vp,vp) | →−(sp,vp)
| ∀−(V,D,vp) | ∃−(V,

⊎
D(vp)) | −(vp) | −<I(N) |

−
>I(N) |

−
0 |#

−(vp) |#−<I(N)
| #−>I(N) | ♦

−(N,vp) | ♦−<I(N) | ♢
−(N,vp) |■−(N,vp) |□−(N,vp)

| S−<I(N) | S
−(N,vp,vp) | S−∞(N,vp) | U−(N,vp,vp) | U−∞(N,vp)

Fig. 3: Grammar for our proof objects.

3 Proof Object Checker

This section introduces our proof objects and their checker: finite data-representations of
our proof system’s trees, and an algorithm that certifies if a given proof object faithfully
proves the satisfaction or violation of a formula under a given assignment and stream.
We discuss the soundness, completeness, and executability of these constructions.

To algorithmically manipulate proof trees, we define an explicit representation of
satisfactions sp and violations vp via the grammar in Figure 3, where each constructor
corresponds to a proof rule of our proof system (Figure 2), and its arguments represent
subproofs and parameters that are part of a rule. The disjoint union p= sp⊎vp is our
type of proof objects. The proof object ∀+ requires information about satisfactions for
all domain elements d ∈ D which we finitely represent with our valued partitions P ∈⊎

D(sp). Recall that a partition P of a set A is a collection of non-empty, pair-wise disjoint
subsets of A that cover A. That is, Di∩D j =∅ for Di, D j ∈ P with Di ̸= D j and

⋃
P = A.

Partitions enable us to finitely represent all elements of the domain using finitely many
finite sets and the co-finite complement of their union. In valued partitions P ∈

⊎
D(sp),

each set in the partition is tagged with a satisfaction explaining why its elements satisfy
the argument of a universally quantified formula. Formally, our valued partitions P ∈⊎

D(Z) are lists of pairs of a set Di and a value z ∈ Z from a given set Z such that the sets
Di form a partition of D. Similarly, ∃− stores a valued partition P∈

⊎
D(vp) of violations.

Our proof objects p ∈ p represent satisfactions or violations at a certain time-point.
We define a function tp(p) (omitted) to compute this time-point. Either this information
can be obtained recursively (e.g., tp(#+(p)) = tp(p)−1) or, in cases where it cannot, it
is stored directly in the proof objects (e.g., tp(tt+(i)) = i). We lift tp to sequences (yield-
ing sequences of time-points) and valued partitions as tp(P) = tp(p1), where (D1, p1)
is the partition P’s first entry. To characterize valid proof objects, we define the relation
⊢σ (Figure 4) that checks that proof objects constitute correct applications of our proof
system’s rules. Here, ⊢ is not an executable algorithm yet since the proof objects ∀+ and
∃− require a recursive call for each element of each set in the partition, and at least one of
such sets is infinite for infinite domains. We will improve on this aspect after an example.
Example 2. The following violation proof object p at time-point 3 (i.e., tp(p) = 3) is
valid for formula φ on stream σ from Example 1 (i.e., v, p ⊢σ φ for any assignment v):

p = ∀−(a,Charlie,∀−(f ,152, p−→)), where
p−→ =→−(p+L , p

−
♦), p+L = p+(3,publish, [a, f]),

p−♦ = ♦−(3, [∃−(x, [
(
D, p−2

)
]),∃−(x, [

(
D, p−3

)
])]), and

p−i = ∧−R (p−(i,approve, [m, f])) for i ∈ {2,3}.

L. Lima, J.J. Huerta y Munive, and D. Traytel294

v, tt+(i) ⊢ tt v, ff−(i) ⊢ ff
v,p+(i,p, t) ⊢ p(t) iff p(JtKv) ∈ Γi v,p−(i,p, t) ⊢ p(t) iff p(JtKv) /∈ Γi
v,≈+(i, x,c) ⊢ x≈ c iff v(x) = c v,≈−(i, x,c) ⊢ x≈ c iff v(x) ̸= c
v,¬+(vp) ⊢ ¬α iff v,vp ⊢ α v,¬−(sp) ⊢ ¬α iff v,sp ⊢ α
v,→+

L (vp) ⊢ α→ β iff v,vp ⊢ α v,∧−L (vp) ⊢ α∧β iff v,vp ⊢ α
v,→+

R (sp) ⊢ α→ β iff v,sp ⊢ β v,∧−R (vp) ⊢ α∧β iff v,vp ⊢ β
v,∃+(x,d,sp) ⊢ ∃x. α iff v[x 7→ d],sp ⊢ α v,∨+L (sp) ⊢ α∨β iff v,sp ⊢ α
v,∀−(x,d,vp) ⊢ ∀x. α iff v[x 7→ d],vp ⊢ α v,∨+R (sp) ⊢ α∨β iff v,sp ⊢ β
v,∧+(sp1,sp2) ⊢ α∧β iff v,sp1 ⊢ α and v,sp2 ⊢ β and tp(sp1) = tp(sp2)
v,∨−(vp1,vp2) ⊢ α∨β iff v,vp1 ⊢ α and v,vp2 ⊢ β and tp(vp1) = tp(vp2)
v,→−(sp1,vp2) ⊢ α→ β iff v,sp1 ⊢ α and v,vp2 ⊢ β and tp(sp1) = tp(vp2)
v,∀+(x,P) ⊢ ∀x. α iff

∧
(Dk,spk) ∈ P. tp(spk) = tp(P)and

∧
d ∈ Dk. v[x 7→ d],spk ⊢ α

v,∃−(x,P) ⊢ ∃x. α iff
∧
(Dk,vpk) ∈ P. tp(vpk) = tp(P)and

∧
d ∈ Dk.v[x 7→ d],vpk ⊢ α

v, +(sp) ⊢ Iα iff v,sp ⊢ α and tp(+(sp)) = tp(sp)+1 and τtp(+(sp))−τtp(sp) ∈ I
v,#+(sp) ⊢#Iα iff v,sp ⊢ α and tp(#+(sp))+1 = tp(sp) and τtp(sp)−τtp(#+(sp)) ∈ I
v,♦+(i,sp) ⊢ ♦Iα iff v,sp ⊢ α and i≥ tp(sp) and τi−τtp(sp) ∈ I
v,♢+(i,sp) ⊢ ♢Iα iff v,sp ⊢ α and i≤ tp(sp) and τtp(sp)−τi ∈ I
v,■+(i,sp) ⊢■Iα iff (

∧
sp ∈ sp. v,sp ⊢ α) and tp(sp) =

[
E

p
i (I),L

p
i (I)

]
and τi ≥ τ0 + I

v,□+(i,sp) ⊢□Iα iff (
∧

sp ∈ sp. v,sp ⊢ α) and tp(sp) =
[
Ef

i(I),L
f
i(I)

]
v,S+(sp,sp) ⊢ α SI β iff (

∧
sp′ ∈ sp. v,sp′ ⊢ α) and v,sp ⊢ β and tp(S+(sp,sp))≥ tp(sp)

and tp(sp) =
[
tp(sp)+1,tp(S+(sp,sp))

]
and τtp(S+(sp,sp))−τtp(sp) ∈ I

v,U+(sp,sp) ⊢ α UI β iff (
∧

sp′ ∈ sp. v,sp′ ⊢ α) and v,sp ⊢ β and tp(U+(sp,sp))≤ tp(sp)
and tp(sp) =

[
tp(U+(sp,sp)),tp(sp)

)
and τtp(sp)−τtp(U+(sp,sp)) ∈ I

v, −0 ⊢ Iα iff tp(−0) = 0 v, −<I(i) ⊢ Iα iff i > 0 and τi−τi−1 < I
v,#−<I(i) ⊢#Iα iff τi+1−τi < I v, −>I(i) ⊢ Iα iff i > 0 and τi−τi−1 > I
v,#−>I(i) ⊢#Iα iff τi+1−τi > I v,■+

<I(i) ⊢■Iα iff τi < τ0 + I
v,♦−<I(i) ⊢ ♦Iα iff τi < τ0 + I v,S−<I(i) ⊢ α SI β iff τi < τ0 + I
v, −(vp) ⊢ Iα iff v,vp ⊢ α and tp(−(vp)) = tp(vp)+1
v,#−(vp) ⊢#Iα iff v,vp ⊢ α and tp(#−(vp))+1 = tp(vp)
v,♦−(i,vp) ⊢ ♦Iα iff (

∧
vp ∈ vp. v,vp ⊢ α) and tp(vp) =

[
E

p
i (I),L

p
i (I)

]
and τi ≥ τ0 + I

v,♢−(i,vp) ⊢ ♢Iα iff (
∧

vp ∈ vp. v,vp ⊢ α) and tp(vp) =
[
Ef

i(I),L
f
i(I)

]
v,■−(i,vp) ⊢■Iα iff v,vp ⊢ α and i≥ tp(vp) and τi−τtp(vp) ∈ I
v,□−(i,vp) ⊢□Iα iff v,vp ⊢ α and i≤ tp(vp) and τtp(vp)−τi ∈ I
v,S−∞(i,vp) ⊢ α SI β iff (

∧
vp ∈ vp. v,vp ⊢ β) and tp(vp) =

[
E

p
i (I),L

p
i (I)

]
and τi ≥ τ0 + I

v,S−(i,vp,vp) ⊢ α SI β iff (
∧

vp ∈ vp. v,vp ⊢ β) and v,vp ⊢ α and E
p
i (I)≤ tp(vp)≤ i

and tp(vp) =
[
tp(vp),Lp

i (I)
]

and τi ≥ τ0 + I
v,U−∞(i,vp) ⊢ α UI β iff (

∧
vp ∈ vp. v,vp ⊢ β) and tp(vp) =

[
Ef

i(I),L
f
i(I)

]
v,U−(i,vp,vp) ⊢ α UI β iff (

∧
vp ∈ vp. v,vp ⊢ β) and v,vp ⊢ α and i≤ tp(vp) < Lf

i(I)
and tp(vp) =

[
Ef

i(I),tp(vp)
]

Fig. 4: Proof checker for a fixed stream σ= ⟨τi,Γi⟩i∈N.

Indeed, we use the definition in Figure 4 to certify that v, p ⊢σ φ:

v, p ⊢ φ iff v[a 7→ Charlie],∀−(f ,152, p−→) ⊢ ∀ f . φL→ φR
iff v[a 7→ Charlie, f 7→ 152], p−→ ⊢ φL→ φR
iff v[a 7→ Charlie, f 7→ 152], p+L ⊢ φL and tp(p+L) = 3 = tp(p−♦) and

v[a 7→ Charlie, f 7→ 152], p−♦ ⊢ φR

iff v[a 7→ Charlie, f 7→ 152],∃−(x, [
(
D, p−i

)
]) ⊢ φ∃ for i ∈ {2,3}

iff v[a 7→ Charlie, f 7→ 152, x 7→ d], p−i ⊢ φ1∧φ2 for all d ∈ D, i ∈ {2,3}
iff approve(d,152) /∈ Γi for all d ∈ D, i ∈ {2,3}, which is true.

Explainable Online Monitoring of Metric First-Order Temporal Logic 295

LRTP i tt = LRTP i ff = LRTP i (p(t)) = LRTP i (x≈ c) = i,
LRTP i (Q x. α) = LRTP i (¬α) = LRTP i α for Q ∈ {∀,∃},
LRTP i (α⊕β) = max (LRTP i α) (LRTP i β) for ⊕ ∈ {∨,∧,→},
LRTP i (Iα) = LRTP (i−1)α, LRTP i (#Iα) = LRTP (i+1)α,
LRTP i (♢Iα) = LRTP i (□Iα) = LRTP (Lf

i(I))α,
LRTP i (♦Iα) = LRTP i (■Iα) = LRTP (LTP

past
i I)α,

LRTP i (α SI β) = max (LRTP i α) (LRTP (LTP
past
i I)β),

LRTP i (α UI β) = max (LRTP (Lf
i(I)−1)α) (LRTP (Lf

i(I))β), where
LTP

past
i I =

(
if τi ≥ τ0 + I then L

p
i (I) else 0

)
.

Fig. 5: The formula’s latest relevant time-point at i for a fixed stream σ= ⟨τi,Γi⟩i∈N.

We implicitly use in the above the true statements publish(Charlie,152) ∈ Γ3, 0≤ τ3,
and tp([∃−(x, [

(
D, p−2

)
]),∃−(x, [

(
D, p−3

)
])]) = [2,3] = [Ep

i (I),L
p
i (I)].

Theorem 2. Fix a stream σ. The relation ⊢ is sound and complete in the sense that
v, i ⊨ α iff there is a satisfaction sp such that v,sp ⊢ α and tp(sp) = i. Similarly v, i ⊭ α
iff there is a violation vp such that v,vp ⊢ α and tp(vp) = i.

We have established the above result in Isabelle. Below we sketch our overall ap-
proach and highlight the main challenge. We show both soundness and completeness
by relating proof object validity (⊢) to the proof system (⊢+ and ⊢−), which we already
know to be sound and complete, i.e., related to the semantics ⊨. Soundness is easy as the
proof object directly provides the recipe for correctly applying the proof system rules.
Formally, if v,sp ⊢ α then v, tp(sp) ⊢+ α, and if v,vp ⊢ α, then v, tp(vp) ⊢− α. The proof
follows immediately by mutual induction on the proof object structure.

Completeness of ⊢ requires us to provide a valid proof object just from knowing
v, i ⊢+ α or v, i ⊢− α. We proceed by mutual induction on the derivations of ⊢+ and ⊢−.
Only two of the quantifier cases are challenging. For the satisfaction of the universal
quantifier (and similarly for the violation of ∃), we must construct a valued partition
with finitely many subproofs. However, the induction hypothesis yields a separate proof
object for every element of the domain D, and all these proof objects may a priori be
different. The crucial observation is that for all values that do not occur in the stream
(or at least are not in reach of α with respect to a time-point i) we can reuse the same
proof object. To formalize this observation, we first define a formula’s active domain at i,
written ADi(α), which formalizes the in “reach” intuition. To this end, we first define the
latest relevant time point (LRTP i α) of α at i (Figure 5). Intuitively, LRTP i α marks the
largest time-point that may influence α’s satisfiability at i. It exists, because we assume
that future temporal operators have bounded intervals. Based on this, we define:

ADi(α) = D(α)∪
⋃

k≤LRTP i α
{d | d appears in some p(d1, . . . ,dn) ∈ Γk}.

Here we write D(α) for the set of constants d ∈ D occurring in subformulas of the form
x≈ d in α. (In contrast to constants occurring in atomic predicates, constants occurring in
equalities may appear in α’s satisfying assignments even if they are not part of the trace.)
Note that ADi(α) is finite. The active domain lets us formalize the key observation:

Lemma 1. Fix a stream σ, a formula α, a proof p, and two assignments v and v′. Let
i = tp(p), AD = ADi(α), and V be the set of α’s free variables. Assume that v and v′

L. Lima, J.J. Huerta y Munive, and D. Traytel296

may only disagree on V for values outside of the active domain at i, i.e.,

∀x ∈ V. v(x) = v′(x)∨ (v(x) /∈ AD∧ v′(x) /∈ AD).

Then, p’s validity status is the same for both assignments, i.e., v, p ⊢ α iff v′, p ⊢ α.

We now can finish the ∀+ case of the completeness proof. By the induction hy-
pothesis, there is a satisfaction p(d) ∈ sp for each domain element d ∈ D. Moreover,
{{d} | d ∈ ADi(α)}∪{D\ADi(α)} is a finite partition of D. Hence, the list of pairings
({d}, p(d)) for each d ∈ ADi(α) and (D\ADi(α), p(z)) for some z ∈D\ADi(α) (which
exists as D is infinite) is a valued partition. Moreover, all subproofs are valid for all the
values contained in the partition sets by combining the induction hypothesis with the
above congruence Lemma 1 (for p = p(z)), and thus so is the overall ∀+ proof object.

Lastly, we address the executability issue. The validity relation ⊢ works with assign-
ments v of values to variables. To avoid performing infinitely many recursive calls for the
∀+ and ∃− proof objects we now will work with set assignments V of sets of values to
variables. We define a validity relation V, p ⊢ α based on set assignments. The definition
is the same as the one of v, p ⊢ α except for the predicate and the quantifier cases:

V, p+(i,p, t) ⊢ p(t) iff {p}× JtKV ⊆ Γi
V, p−(i,p, t) ⊢ p(t) iff {p}× JtKV ⊆ D\Γi
V, ∀+(x,P) ⊢ ∀x. α iff

∧
(Dk,spk) ∈ P. tp(spk)=tp(P) and V[x 7→ Dk], spk ⊢ α

V, ∃+(x,d,sp) ⊢ ∃x. α iff V[x 7→ {d}], sp ⊢ α

and dually for ∃− and ∀−. Here, JtKV represents a transformation of the list of values
JtKv to the set of all possible lists of values generated by V . Set assignments allow us
to delay deciding values for quantifier subproofs to the predicate base case. Note that
{p}× JtKV ⊆ Γi and {p}× JtKV ⊆ D\Γi are decidable because due to our partitions, we
only encounter finite and co-finite sets. The set-assignment-based validity check is thus
executable and thus provides the algorithm that we use as our formally verified proof
object checker: v, p ⊢ α= (λx.{v(x)}), p ⊢ α (proved by induction on α using Lemma 1).

4 Partitioned Decision Trees

Our proof system is parameterized with an assignment, but in our monitoring approach
we are interested in computing a proof object for every assignment. In this section, we
introduce partitioned decision trees (PDTs), a specialized data structure for representing
and efficiently manipulating variable assignments, inspired by the use of BDDs in run-
time verification [17]. We want to represent functions of the form f : D× . . .×D→ p,
i.e., mappings from tuples of domain elements to proof trees, where each tuple corre-
sponds to a variable assignment to the formula’s free variables. As argued in the previous
section, we are only interested in such functions with a finite range. Thus, we organize
the domain into a finite number of subsets D× . . .×D such that each tuple element is
partitioned separately (using valued partitions over the domain). As before, we work with
finite and co-finite sets in the partition. PDTs P(A) are defined inductively as follows:

P(A) = Leaf A | Node (V,
⊎

D
(P(A)))

Explainable Online Monitoring of Metric First-Order Temporal Logic 297

a

f f f f

▲−1 ▲+ ▲+
2 ▲+ ▲−3 ▲−4 ▲+ ▲+

{Alice}

{Bob} {Charlie}

D\{Alice,Bob,Charlie}

{163} D\{163}{163} D\{163} {152} {163}

D\{152,163}

D

Fig. 6: Resulting PDT for our running example at time-point 3.

PDTs have leaves and nodes. Leaves store objects from the set A, while nodes store pairs
of the form (x,P), where x is a variable and P, a valued partition of the domain storing
PDTs. PDTs generalize binary decision trees along two dimensions. First, the branching
of their nodes is not binary but follows a given partition of the infinite domain D. Second,
their leaves do not store Boolean values. Instead, they store arbitrary objects, even though
we will mostly use them with proof objects A = p. PDTs provide a way to organize
the infinitely many possible variable assignments in a structured manner, storing only
finitely many different proof objects. In monitoring, partitions will arise naturally, guided
by the values occurring in the stream and assembled via operations that combine them.

Example 3. We continue
publish(a, f) /∈ Γ3

v,3 ⊢− publish(a, f)
p−

v,3 ⊢+ φ′
→+

L

Fig. 7: Proof tree ▲+.

Example 3. We continue the publish–approve example from
Example 1. We consider the same stream but drop the top-
level quantifiers from the formula φ: we only consider φ′

with its free variables a and f . Figure 6 shows the PDT
representing all assignments for φ′ at time-point 3. The root
node represents variable a, and the edges partition the values that a can take into the fol-
lowing domain subsets: {Alice},{Bob},{Charlie}, and D\{Alice,Bob,Charlie}.
The second level is analogous for variable f . At every level of the PDT, the union of all
choices cover the entire domain D (by definition of partitions) and the partitions may dif-
fer at every node. The leaves of the PDT are different proof trees (formally, proof objects)
which we represent by small black triangles. For example, ▲−3 is the proof tree of φ′’s
violation shown in Example 1. In contrast, ▲+ (occurring in multiple leaves) is the proof
tree shown in Figure 7 of φ′’s vacuous satisfaction: the left hand side of the implication
(publish(a, f)) is violated for any assignment v updated by following the path from the
PDT’s root to the respective leaf (e.g., taking a = Alice and f = 42 ∈ D\{163}).

Since PDTs are a generalization of BDDs, we use similar functions to manipulate
them. We list the most important ones, for partitions and PDTs in Figure 8, but we only
show and discuss the implementation of apply2, merge2, and hide. Most PDT-functions
are parameterized by a variable list vs :: V fixing the variable order. The functions
map_part and apply1 lift unary functions on objects to partitions and PDTs respectively.

The functions merge2 and apply2 do the same for binary functions; apply2 gener-
alizes the well-known apply function on BDDs [16]. On leaves, apply2 maps f to the
objects. When operating on a leaf and a node, apply2 pushes f partially applied to the
leaf to the node’s leaves using apply1. Finally, on pairs of nodes, it proceeds recursively
depending which of x, y, and z are equal. The most interesting case, x = y = z occurs
when both PDTs partition the domain values for z in different ways. Thus, we must

L. Lima, J.J. Huerta y Munive, and D. Traytel298

map_part :: (A⇒ B)⇒
⊎
D(A)⇒

⊎
D(B)

merge2 :: (A⇒ B⇒C)⇒
⊎
D(A)⇒

⊎
D(B)⇒

⊎
D(C)

merge2 f [] P2 = []
merge2 f ((D1, v1) # P1) P2 =

let P3 =map_filter (λ(D2, v2). if D1∩D2 ̸=∅ then Some (D1∩D2, f v1 v2) else None) P2;
P4 =map_filter (λ(D2, v2). if D2 \D1 ̸=∅ then Some (D2 \D1, v2) else None) P2

in P3 @ merge2 f P1 P4

pdt_of :: V⇒ A⇒ A⇒ 2(V⇀D)⇒ P(A) split_prod :: P(A×B)⇒ P(A)×P(B)
apply1 :: V⇒ (A⇒ B)⇒ P(A)⇒ P(B) split_list :: P(A)⇒ P(A)
apply2 :: V⇒ (A⇒ B⇒C)⇒ P(A)⇒ P(B)⇒ P(C)
apply2 vs f (Leaf l1) (Leaf l2) = Leaf (f l1 l2)
apply2 vs f (Leaf l1) (Node (x, P2)) = Node (x,map_part (apply1 vs (λl2. f l1 l2)) P2)
apply2 vs f (Node (x, P1)) (Leaf l2) = Node (x,map_part (apply1 vs (λl1. f l1 l2) P1)
apply2 (z # vs) f (Node (x, P1)) (Node (y, P2)) =

if x = z and y = z then Node (z, merge2 (apply2 vs f) P1 P2)
else if x = z then Node (x,map_part (λl. apply2 vs f l (Node (y, P2))) P1)
else if y = z then Node (y,map_part (λr. apply2 vs f (Node (x, P1)) r) P2)
else apply2 vs f (Node (x, P1)) (Node (y, P2))

apply3 :: V⇒ (A⇒ B⇒C⇒ D)⇒ P(A)⇒ P(B)⇒ P(C)⇒ P(D)

hide :: V⇒ (A⇒ A)⇒ (
⊎
D(A)⇒ A)⇒ P(A)⇒ P(A)

hide vs leaf node (Leaf l) = Leaf (leaf l)
hide [z] leaf node (Node (x, P)) = Leaf (node (map_part unleaf P))
hide (z # vs) leaf node (Node (x, P)) =

if x = z then Node (z, map_part (hide vs leaf node) P) else hide vs leaf node (Node (x, P))

Fig. 8: Selected functions on partitions and PDTs.

combine both partitions. For this, we use merge2 that takes two valued partitions P1 and
P2, and iteratively “erodes” P2 by intersecting its elements with the sets in P1 while
applying f . Since both P1 and P2 cover D, the resulting set of intersections is a valued
partition. The function apply3 analogously combines three PDTs into one.

The function hide traverses the PDT similarly to apply1, while eliminating the last
variable in the given variable list. It uses two higher-order arguments, in case the last
layer is present (node) or absent (leaf). The function pdt_of vs A B V constructs a PDT
from a finite set of partial assignments (V :: 2(V⇀D)) using A for leaves reached by paths
from the set, and B for the other leaves. Finally, the split_∗ functions transpose a PDT
storing pairs (lists of equal length) into a pair (list) of PDTs.

5 Monitoring Algorithm

We follow the typical online monitoring algorithm structure consisting of an initialization
and a step (evaluation) function [25, 30]. The initializer init (omitted as standard) com-
putes our monitor’s initial state s ∈ S from an MFOTL specification α. Figure 9 shows
an excerpt of our monitor’s state, which recursively follows the formula structure and
augments some operators with additional information, such as buffers storing verdicts
from subformulas (B2 for ∧ and B3 for S) or an operator-specific state (Ssaux for S).

Explainable Online Monitoring of Metric First-Order Temporal Logic 299

B2 = P(p)×P(p) B3 = P(p)×P(p)×N×N Ssaux = . . .

S=MPred E T |MAnd S S B2 |MExists E S |MSince I S S B3 (P(Ssaux)) | · · ·
eval :: V⇒ N⇒ N⇒ E×D⇒ S⇒ P(p)×S
eval vs τ i Γ (MPred p ts) =

let e = pdt_of (filter (λv. v ∈ fv(ts)) vs) (p+(i,p, ts)) (p−(i,p, ts))
{σ | ∃ds. p(ds) ∈ Γ∧match ts ds = Some σ} in ([e],MPred p ts)

eval vs τ i Γ (MAnd s1 s2 buf) = let (es1,s′1) = eval vs τ i Γ s1; (es2,s′2) = eval vs τ i Γ s2;
(es,buf ′) = buf2_take (apply2 vs do_and) (buf2_add buf es1 es2) in (es,MAnd s′1 s′2 buf ′)

eval vs τ i Γ (MExists x s) = let (es,s′) = eval (vs@[x]) τ i Γ s
in (map (hide (vs@[x]) (do_exists_leaf x) (do_exists_node x)) es,MExists x s′)

eval vs τ i Γ (MSince I s1 s2 buf saux) =
let (es1,s′1) = eval vs τ i Γ s1; (es2,s′2) = eval vs τ i Γ s2;

(es,buf ′,saux′) = buf2t_take (λe1 e2 (τ, i) saux.
let (saux′,es′) = split_prod (apply3 vs (update_since I τ i) e1 e2 saux′)
in (saux′,split_list es′)) (buf2t_add buf es1 es2 [(τ, i)]) saux

in (es,MSince I s′1 s′2 buf ′ saux′)

Fig. 9: Involved types and selected cases of the monitor’s eval function

do_exists_leaf x p = if p ∈ sp then ∃+(x,d← D,p) else ∃−(x, [(D,p)])
do_exists_node x P = if

∨
(Di, p) ∈ P. p ∈ sp

then min (map_filter (λ(Di, p). if p ∈ sp then Some (∃+(x,d← Di,p))) else None) P)
else ∃−(x,P)

Fig. 10: Functions do_exists_leaf and do_exists_node.

Our function eval, partly shown in Figure 9, takes as inputs a new time-point i (along
with its time-stamp τ and database Γ) and a monitor state s and outputs the next state
s′ and a list of PDTs of proof objects as verdicts. (In addition, eval keeps track of the
variable ordering used in PDTs via the parameter vs.) Lists in the output are necessary
because delays may occur for (bounded) future operators and a single time-point might
trigger multiple outputs. Our algorithm extends Lima et al.’s algorithm [25] computing
proof trees for MTL. We highlight our key additions to eval and the state Figure 9 in gray.

We focus on the predicate, conjunction, existential quantifier, and since cases. In the
predicate case, we find all partial assignments σ mapping the predicate’s variables to
the values ds, so that p(ds) ∈ Γ. We reuse VeriMon’s match function [30] to compute
such partial assignments. We convert this set of assignments to a PDT using pdt_of.
In the resulting PDT, matching assignments lead to leaves using the satisfaction proof
p+(i,p, ts), whereas the others lead to the corresponding violation proof p−(i,p, ts).

The conjunction case is taken almost without changes from Lima et al.’s [25] MTL
algorithm. We reuse the buffering functions buf2_add and buf2_take. The first adds
partial results to the buffer, while the second combines these results and dequeues them
once both subformulas have produced results for a time-point. The only difference is that
our buffers store PDTs of proof objects, whereas the MTL algorithm works with proposi-
tional proof objects. Accordingly, we reuse the Lima et al.’s function do_and :: p⇒ p⇒ p
to combine two proof objects conjunctively, but lift it to PDTs using apply2.

The quantifier cases are a new addition of our work. As both cases proceed dually,
we focus on ∃x.α formulas. Considering that α may have one more free variable than
∃x.α, the recursive call appends x to the variable list ordering. The recursive call’s output

L. Lima, J.J. Huerta y Munive, and D. Traytel300

is processed using our function hide to eliminate the quantified variable. The interesting
cases occur near the leaves of α’s PDTs. If x is not present, hide will encounter a leaf,
i.e., a proof object, and use the function do_exists_leaf (Figure 10) to perform a case
distinction: satisfactions result in a satisfaction (sp) of ∃x.α with an arbitrary element
d of the domain as the witness (we write x← X to denote an arbitrarily chosen element
x of a non-empty set X); violations result in a violation (vp) with the trivial partition. If
x is present as the last decision node, then hide will use do_exists_node (Figure 10) to
construct the proof object for ∃x.α. It performs a case distinction whether a satisfaction
proof is contained in the partition of this last node. If it is, ∃x.α is satisfied and we
compute the smallest (in proof size) such satisfaction proof, taking as our witness an
arbitrary element of the respective partition set. Otherwise, all leaves are violations and
we obtain a violation proof of ∃x.α.

To reuse Lima et al.’s [25] temporal operator evaluation, our state stores a PDT whose
leaves are the auxiliary state of these algorithms (instead of proof objects). This allows us
to keep the complex auxiliary state and its update unchanged. For example, we use apply3
to lift Lima et al.’s [25] update_since function to two PDTs storing proof objects for sub-
formulas and a third one storing the auxiliary state. The resulting PDT has type P(Ssaux×
p), which we transpose into the desired P(Ssaux)×P(p) using split_prod and split_list.

6 Implementation and Case Study

We implement our algorithm in a new monitoring tool, called WHYMON [2]. Our im-
plementation consists of 4500 lines of OCaml code and incorporates an optimization of
collapsing partition sets with the same stored values both in proof objects and in PDTs.
Our formally verified checker contributes additional 1700 lines of OCaml code gener-
ated from our Isabelle formalization, which itself comprises 6400 lines of definitions
and proofs. The checker’s main function lifts the validity check of proof objects (⊢) to
PDTs, i.e., check : trace→ formula→ pdt→ bool, and is used to certify WHYMON’s
output. WHYMON includes a visualization [3] implemented in React [20] that consists
of 2400 lines of JavaScript and invokes a JavaScript version of our monitor, gener-
ated by Js_of_ocaml [32]. Here, we consider the data race policy [18] that captures
possible concurrency issues in multithreaded programs on a stream prefix generated
by Raszyk [27, Section 4.3]. Furthermore, we consider Nokia’s Data-collection Cam-
paign [4], which comes with a stream prefix of around 5 million time-points [1], for which
we focus on the del-2-3 policy [12] controlling data propagation between databases. We
describe a violation for each scenario highlighting the advantages of our approach.

Example 4. We first return to Example 3 in our visualization tool, depicted in Figure 11.
The table includes TP (time-points), TS (time-stamps), and Values columns. The follow-
ing columns show the topmost operator of φ′’s subformulas or its predicate names (and
their variables). In the Values column, for each of the already evaluated time-points, there
is an associated button enclosing a ✓ (for satisfactions), or a ✗ (for violations) or both.
After clicking on this button, we are presented with a dropdown menu (as in Figure 12)
that corresponds to a partition. The listed values are the (potentially multiple) variable
assignments of the resulting PDT for that specific time-point. The formula φ′ contains
two free variables, a and f , and to single out a verdict we must select one value for

Explainable Online Monitoring of Metric First-Order Temporal Logic 301

each. In particular, at time-point 3 we select a = Charlie and f = 152. Note that in the
visualization we focus on readability and omit set parentheses. Moreover, Other denotes
the complement of the listed values. After choosing the assignments, a Boolean verdict
appears in the next column matching the topmost operator of φ′, namely→. Clicking
on this Boolean verdict reveals and highlights the Boolean verdicts associated with its
justification. The subformulas’ columns of the current inspection are also highlighted.
In this case, the implication is violated because the left side is satisfied, while the ♦[0,7]
subformula is violated. We can explore this verdict further: the violation is justified by
those of its subformula at time-points 2 and 3 (the time-points inside the interval are
also highlighted). For each time-point, there is another dropdown menu where we can
select an assignment for m. Here, the only listed value is Any, which corresponds to D.
Thus, the existential quantifier is violated because the subformula approve(m,152) is
violated for all values that m can be assigned to (D), and all justifications are identical.

Data Race Detection Multithreaded programs are pervasive and hard to debug. In par-
ticular, they are prone to data races, which occur when two threads access (read or write
to) a shared address concurrently and at least one of these accesses is a write. Locking
mechanisms that synchronize access to variables shared between threads are a plausible
solution. We consider the following policy to detect data race potentials [18]:

φdr = datarace(t1, t2, x)→∃l.(acqnrel(t1, x, l)∧acqnrel(t2, x, l)), with
datarace(t1, t2, x) = ♦ (read(t1, x)∨write(t1x))∧♦write(t2, x) , and
acqnrel(t, x, l) = ■ ((read(t, x)∨write(t, x))→ (¬rel(t, l) S acq(t, l)))

where the predicates read(t, x) and write(t, x) specify read and write operations per-
formed by thread t to shared address x, and acq(t, l) and rel(t, l) specify the acquisition
and the release of lock l by thread t. Havelund et al. [18] consider a closed formula
variant of this policy as their tool, DEJAVU, only supports closed formulas. In contrast,
WHYMON supports open formulas. We consider the stream prefix:

⟨(0,{acq(9,9)}),(1,{read(9,3)}),(2,{acq(13,19)}),(3,{acq(15,3)}),
(4,{acq(18,15)}),(5,{read(13,5)}),(6,{write(15,4)}),(7,{write(15,3)}), . . .⟩

At time-point 7, WHYMON outputs a PDT with non-trivial assignments. We focus on the
single violation in this PDT, which corresponds to the assignment ({9},{15},{3}) for (t1,
t2, x). This violation is shown in Figure 13. The topmost operator of φdr is an implication,
and it is violated because the left side is satisfied (there was a data race), while the right
side (the lock requirement) is violated. Specifically, the data race occurred because
thread t1 = 9 read address 3 at time-point 1, satisfying the ♦[0,∞) subformula in the left
conjunct, and thread t2 = 15 wrote to address 3 at the current time-point 7, satisfying the
♦[0,∞) subformula in the right conjunct. Moving to the right side of the implication, the
violation of the existential indicates that its subformula is violated for every value of D.
In particular, the subsets of the domain {9} and {9}C are each associated with a different
violation. Here, we focus on the violation where l = 9. The subformula is a conjunction,
and to be violated it suffices that one of the conjuncts is violated. This violation stems
from the violation of the right conjunct ■[0,∞) (note that t2 = 15 is listed as the variable
in the predicate columns). We omit the columns referring to the left conjunct, since all

L. Lima, J.J. Huerta y Munive, and D. Traytel302

Explainable Online Monitoring of Metric First-Order Temporal Logic 303

Fi
g.

11
:V

is
ua

liz
at

io
n

of
φ
′ ’s

vi
ol

at
io

n
at

tim
e-

po
in

t3
fo

r(
{C
ha
rl
ie
},
{1
52
})

.
Fi

g.
12

:A
ss

ig
nm

en
ts

el
ec

tio
n

fo
rφ
′ a

tt
im

e-
po

in
t3

.

··
·

Fi
g.

13
:V

is
ua

liz
at

io
n

of
φ

dr
’s

vi
ol

at
io

n
at

tim
e-

po
in

t7
fo

r(
{9
},
{1
5}

,{
3}

).

··
·

Fi
g.

14
:V

is
ua

liz
at

io
n

of
φ

de
l’s

vi
ol

at
io

n
at

tim
e-

po
in

t7
9

fo
r(
{1
89
81
03
27
},
{u
se
r2
},
{[
un
kn
ow
n]
})

.

entries are empty. Once again, the implication is violated because the left side is satisfied,
i.e., thread t2 = 15 wrote to address 3 at time-point 7, satisfying the disjunction, but
S[0,∞) on the right side is violated, because thread t2 = 15 never acquired the lock l = 9.

Data Propagation Nokia’s Data-collection Campaign [4] used three databases db1, db2
and db3 in the collection of sensitive information from mobile phones of participants. We
focus on the policy φdel [12], which controls the data propagation between databases db2
and db3: if data is deleted from db2, then it must be deleted from db3 within 1 minute.

φdel = delete(x,db2,y,data)∧data ̸≈ [unknown]→ ♢[0,60]∃u,v. delete(u,db3,v,data)

where db2, db3, and [unknown] are constants and delete(dbuser,db, pid,data) specifies
the deletion of data from participant pid from database db using database user dbuser.
We used the REPLAYER tool [22] to convert the stream prefix to WHYMON’s format.
We executed WHYMON’s command line interface with the entire prefix and found two
violations. The following experiments were conducted on a computer with an Apple M1
Chip (8 cores) and 16GB of RAM. WHYMON took 17m51s to process the entire prefix.
We also executed MONPOLY with a slightly modified yet equivalent policy (due to moni-
torability restrictions), and its running time amounted to 1m10s. MONPOLY outperforms
WHYMON, but we must acknowledge the different outputs both monitors produce. MON-
POLY only outputs variable assignments, whereas WHYMON outputs entire PDTs con-
taining all assignments and a justification of the verdict in the form of a proof tree for each.
We extract 100 time-points containing both violations and focus on the violation at time-
point 79 for the assignment ({189810327},{user2},{[unknown]}) for (data,x,y),
depicted in Figure 14. Time-stamps are converted to actual dates (by enabling the option)
and we omit time-points that do not contain relevant events for the violation. Let

Γ79 = {delete(user2,db2,[unknown],189810327),
Γ80 = {delete(triggers,db3,[unknown],[unknown])},
Γ81 = {delete(user2,db2,[unknown],189810328)}, and Γ82 = Γ83 = Γ84 =∅.

The implication is violated because the left side is satisfied (there was a deletion at the cur-
rent time-point 79), but ♢[0,59] is violated. Note that [0,60) was replaced with the equiva-
lent interval [0,59]. For each time-point of [Ef

79([0,59]),Lf
79([0,59])] = {79, . . . ,84}, the

subformula is violated. Regardless of the values we assign to u and v (all violations are
identical), the subformula delete(u,db3,v,189810327) is violated.

7 Conclusion

We describe an approach for MFOTL monitoring with verdicts in the form of proof ob-
jects for every free variable assignment. Such verdicts are useful for understandability and
certification, which increases the monitor’s trustworthiness. We implement our approach
in the tool WHYMON along with an interactive visualization for these verdicts, which we
invite the reader to explore [3]. As future work, we plan to provide support for equality
between variables and to improve our monitor’s performance by, e.g., stream slicing [29].

Data Availability Statement Our artifact [26] includes WHYMON’s source code at the
artifact submission time together with instructions on how to set up WHYMON locally,
extract our PDT checker, execute our examples, and replicate our case study.

L. Lima, J.J. Huerta y Munive, and D. Traytel304

Acknowledgements This research is supported by a Novo Nordisk Fonden start pack-
age grant (NNF20OC0063462). We thank David Basin, François Hublet, Srd̄an Krstić,
Matthias Lott, Joshua Schneider for their suggestions on WHYMON’s and EXPLANA-
TOR2’s user interfaces. We are also grateful to anonymous TACAS 2024 reviewers, who
helped us improve the presentation of this paper with their valuable comments.

References

1. The Nokia case study log file (2014), https://sourceforge.net/projects/monpoly/files/ldcc.tar/
download

2. WHYMON repository (2023), https://github.com/runtime-monitoring/whymon
3. WHYMON web interface (2023), https://runtime-monitoring.github.io/whymon
4. Aad, I., Niemi, V.: NRC data collection campaign and the privacy by design principles. In:

Proceedings of the International Workshop on Sensing for App Phones (PhoneSense) (2010)
5. Ailamazyan, A.K., Gilula, M.M., Stolboushkin, A.P., Schwartz, G.F.: Reduction of a relational

model with infinite domains to the case of finite domains. Doklady Akademii Nauk SSSR
286(2), 308–311 (1986), http://mi.mathnet.ru/dan47310

6. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comput.
104(1), 35–77 (1993). https://doi.org/10.1006/inco.1993.1025

7. Arfelt, E., Basin, D.A., Debois, S.: Monitoring the GDPR. In: Sako, K., Schneider, S.A.,
Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 681–699. Springer (2019).
https://doi.org/10.1007/978-3-030-29959-0_33

8. Basin, D.A., Bhatt, B.N., Krstić, S., Traytel, D.: Almost event-rate independent monitoring.
Formal Methods Syst. Des. 54(3), 449–478 (2019). https://doi.org/10.1007/s10703-018-00328-
3

9. Basin, D.A., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on lasso words.
In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 37–55. Springer (2018).
https://doi.org/10.1007/978-3-030-01090-4_3

10. Basin, D.A., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable offline
monitoring of temporal specifications. Formal Methods Syst. Des. 49(1-2), 75–108 (2016).
https://doi.org/10.1007/s10703-016-0242-y

11. Basin, D.A., Dietiker, D.S., Krstić, S., Pignolet, Y., Raszyk, M., Schneider, J., Ter-Gabrielyan,
A.: Monitoring the internet computer. In: Chechik, M., Katoen, J., Leucker, M. (eds.) FM
2023. LNCS, vol. 14000, pp. 383–402. Springer (2023). https://doi.org/10.1007/978-3-031-
27481-7_22

12. Basin, D.A., Harvan, M., Klaedtke, F., Zalinescu, E.: Monitoring data usage
in distributed systems. IEEE Trans. Software Eng. 39(10), 1403–1426 (2013).
https://doi.org/10.1109/TSE.2013.18

13. Basin, D.A., Klaedtke, F., Müller, S.: Monitoring security policies with metric first-order
temporal logic. In: Joshi, J.B.D., Carminati, B. (eds.) SACMAT 2010. pp. 23–34. ACM (2010).
https://doi.org/10.1145/1809842.1809849

14. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/2699444

15. Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G.,
Havelund, K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 19–28.
EasyChair (2017). https://doi.org/10.29007/89hs

16. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
puters 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

Explainable Online Monitoring of Metric First-Order Temporal Logic 305

https://sourceforge.net/projects/monpoly/files/ldcc.tar/download
https://sourceforge.net/projects/monpoly/files/ldcc.tar/download
https://github.com/runtime-monitoring/whymon
https://runtime-monitoring.github.io/whymon
http://mi.mathnet.ru/dan47310
https://doi.org/10.1006/inco.1993.1025
https://doi.org/10.1007/978-3-030-29959-0_33
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1007/s10703-016-0242-y
https://doi.org/10.1007/978-3-031-27481-7_22
https://doi.org/10.1007/978-3-031-27481-7_22
https://doi.org/10.1109/TSE.2013.18
https://doi.org/10.1145/1809842.1809849
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89hs
https://doi.org/10.1109/TC.1986.1676819

17. Havelund, K., Peled, D.: BDDs for representing data in runtime verification. In: Desh-
mukh, J., Nickovic, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 107–128. Springer (2020).
https://doi.org/10.1007/978-3-030-60508-7_6

18. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with BDDs. Formal
Methods Syst. Des. 56(1), 1–21 (2020). https://doi.org/10.1007/s10703-018-00327-4

19. Hull, R., Su, J.: Domain independence and the relational calculus. Acta Informatica 31(6),
513–524 (1994). https://doi.org/10.1007/BF01213204

20. Hunt, P., O’Shannessy, P., Smith, D., Coatta, T.: React: Facebook’s functional turn on writing
JavaScript. ACM Queue 14(4), 40 (2016). https://doi.org/10.1145/2984629.2994373

21. Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst.
2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

22. Krstić, S., Schneider, J.: A benchmark generator for online first-order monitoring. In: Desh-
mukh, J., Nickovic, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 482–494. Springer (2020).
https://doi.org/10.1007/978-3-030-60508-7_27

23. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int. J. Softw.
Tools Technol. Transf. 4(2), 224–233 (2003). https://doi.org/10.1007/s100090100062

24. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime verifica-
tion of non-synchronized real-time streams. In: Haddad, H.M., Wainwright, R.L., Chbeir, R.
(eds.) SAC 2018. pp. 1925–1933. ACM (2018). https://doi.org/10.1145/3167132.3167338

25. Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Explainable online monitoring of
metric temporal logic. In: TACAS 2023. LNCS, vol. 13994, pp. 473–491. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_28

26. Lima, L., Huerta y Munive, J.J., Traytel, D.: Artifact for "Explainable online monitoring of
metric first-order temporal logic" (2024). https://doi.org/10.5281/zenodo.10439544

27. Raszyk, M.: Efficient, Expressive, and Verified Temporal Query Evaluation. Ph.D. thesis,
ETH Zürich (2022). https://doi.org/10.3929/ethz-b-000553221

28. Raszyk, M., Basin, D.A., Krstić, S., Traytel, D.: Multi-head monitoring of metric temporal
logic. In: Chen, Y., Cheng, C., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 151–170.
Springer (2019). https://doi.org/10.1007/978-3-030-31784-3_9

29. Schneider, J., Basin, D.A., Brix, F., Krstić, S., Traytel, D.: Scalable online first-
order monitoring. Int. J. Softw. Tools Technol. Transf. 23(2), 185–208 (2021).
https://doi.org/10.1007/s10009-021-00607-1

30. Schneider, J., Basin, D.A., Krstić, S., Traytel, D.: A formally verified monitor for metric
first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757,
pp. 310–328. Springer (2019). https://doi.org/10.1007/978-3-030-32079-9_18

31. Ulus, D.: Online monitoring of metric temporal logic using sequential networks. CoRR
abs/1901.00175 (2019). https://doi.org/10.48550/arxiv.1901.00175

32. Vouillon, J., Balat, V.: From bytecode to JavaScript: the Js_of_ocaml compiler. Softw. Pract.
Exp. 44(8), 951–972 (2014). https://doi.org/10.1002/spe.2187

L. Lima, J.J. Huerta y Munive, and D. Traytel306

https://doi.org/10.1007/978-3-030-60508-7_6
https://doi.org/10.1007/s10703-018-00327-4
https://doi.org/10.1007/BF01213204
https://doi.org/10.1145/2984629.2994373
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-030-60508-7_27
https://doi.org/10.1007/s100090100062
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1007/978-3-031-30820-8_28
https://doi.org/10.5281/zenodo.10439544
https://doi.org/10.3929/ethz-b-000553221
https://doi.org/10.1007/978-3-030-31784-3_9
https://doi.org/10.1007/s10009-021-00607-1
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.48550/arxiv.1901.00175
https://doi.org/10.1002/spe.2187

Explainable Online Monitoring of Metric First-Order Temporal Logic 307

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Proof Checking

Abstract. Satisfiability modulo theories (SMT) solvers are widely used
to ensure the correctness of safety- and security-critical applications.
Therefore, being able to trust a solver’s results is crucial. One way to
increase trust is to generate independently checkable proof certificates,
which record the reasoning steps done by the solver. A key challenge
with this approach is that it is difficult to efficiently and accurately pro-
duce proofs for reasoning steps involving term rewriting rules. Previous
work showed how a domain-specific language, Rare, can be used to cap-
ture rewriting rules for the purposes of proof production. However, in
that work, the Rare rules had to be trusted, as the correctness of the
rules themselves was not checked by the proof checker. In this paper,
we present IsaRare, a tool that can automatically translate Rare rules
into Isabelle/HOL lemmas. The soundness of the rules can then be veri-
fied by proving the lemmas. Because an incorrect rule can put the entire
soundness of a proof system in jeopardy, our solution closes an important
gap in the trustworthiness of SMT proof certificates. The same tool also
provides a necessary component for enabling full proof reconstruction of
SMT proof certificates in Isabelle/HOL. We evaluate our approach by
verifying an extensive set of rewrite rules used by the cvc5 SMT solver.

1 Introduction

Satisfiability modulo theories (SMT) [8] solvers provide the back-end reasoning
power for many formal methods applications. These applications are often used
to provide safety or security guarantees for critical systems [1, 15, 21, 23]. For
such applications, an incorrect result from a solver could have catastrophic con-
sequences. Thus, ensuring the correctness of a solver’s results is crucial. However,
industrial-strength SMT solvers are large and complex software systems which
are under constant active development. As with any other large software project,

⋆ This work was supported in part by the Stanford Center for Automated Reasoning
and by a gift from Amazon Web Services.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 311–330, 2024.
https://doi.org/10.1007/978-3-031-57246-3_17

: Automatic Verification of SMT

Rewrites in Isabelle/HOL

Hanna Lachnitt1(B) , Mathias Fleury4 , Leni Aniva1 ,
Andrew Reynolds2 , Haniel Barbosa3 , Andres Nötzli5 , Clark Barrett1 ,

and Cesare Tinelli2

1 Stanford University, Stanford, USA
lachnitt@stanford.edu

2 The University of Iowa, Iowa City, USA
3 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

4 University of Freiburg, Freiburg, Germany
5 Cubist, Inc., San Diego, USA

IsaRare

https://doi.org/10.1007/978-3-031-57246-3_17
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_17&domain=pdf
http://orcid.org/0000-0003-3355-7828
http://orcid.org/0000-0002-1705-3083
http://orcid.org/0000-0002-6033-9140
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0003-0188-2300
http://orcid.org/0000-0001-8669-0011
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

H. Lachnitt et al.

even when employing software engineering best practices, it is unrealistic to ex-
pect that solvers do not contain implementation bugs that could, in the worst
case, compromise the correctness of their answers.

One solution is to formally verify the SMT solver itself. Unfortunately, that
would be a massive effort. It would likely require performance compromises [17]
and impose a tremendous maintenance burden, as changes to solvers are frequent,
and each change would require revisiting the verification.

Fortunately, there is a less expensive alternative: we can independently check
each result produced by a solver. This is generally easy when the result is “satis-
fiable,” at least for quantifier-free inputs. The solver can produce a model and we
can check via evaluation that the input formula indeed holds in it. To have a sim-
ilar ability to check a result of “unsatisfiable,” solvers must be instrumented to
produce proof certificates that can be independently verified by a separate proof
checker. To maximize trustworthiness, the proof checker should be small, sim-
ple, and, ideally, formally verified. Alternatively, the checker can be embedded
in a highly trusted system such as a skeptical interactive theorem prover. The
SMT community is increasingly embracing proof production, with it becoming
a major focus in recent years [3, 4, 19, 29].

One of the main challenges faced by SMT proof production efforts is the
extensive use of theory-specific term rewriting rules. There are hundreds of such
rules in modern solvers, each of which must be justifiable using some proof
rule. Nötzli et al. [28] introduced a methodology for producing proofs for term
rewriting rules by using the Rare domain-specific language. In that work, rules
are defined in Rare, imported by a solver, and then used to elaborate the solver’s
term rewriting proof steps into finer-grained proofs using the Rare rules. This
approach has proved to be viable in the cvc5 SMT solver [2]. However, previous
work did not address the correctness of the rules, i.e., it does not ensure that an
incorrect Rare rule does not compromise the correctness of proof certificates.

An incorrect rule can have severe consequences. First of all, it may affect the
ability of the solver to produce a proof certificate at all: if the incorrect rule does
not match what the solver code does, then the elaboration of the term rewriting
proof steps with Rare may fail. More concerningly, if both the code and the
proof rule are incorrect in the same way (perhaps because one was modeled
after the other), then proof elaboration may succeed, but the proof certificate
will be incorrect because it uses an invalid rule. This is especially problematic
when using proof checkers that consider proof rules as trusted—that is, they only
check whether rules are applied correctly and do not check the rules themselves.

There are two ways to fill this gap. One is to separately verify the proof rules;
another is to use a more sophisticated proof checker, for example, one embedded
in a skeptical interactive theorem prover, that will fail if an invalid rule is used.
In this paper, we introduce IsaRare, a new plugin for the Isabelle/HOL proof
assistant [27] (abbreviated to just Isabelle going forward), which can do the for-
mer and is a necessary step towards the latter. The plugin translates Rare rules
into the language of Isabelle where they can then be formally proved as lemmas.
Note that when using IsaRare simply as a rewrite rule verifier, the translation

312

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL

from Rare to Isabelle becomes another trusted component. We mitigate this by
reusing extensively-tested infrastructure in Isabelle for the translation.

To show the effectiveness of IsaRare, we implemented a large number of
new rules in Rare (beyond those in [28]) needed to elaborate term rewriting
steps in proofs generated by the cvc5 SMT solver [2]. We show that IsaRare
can translate all of these rules into corresponding lemmas in Isabelle and can
prove the majority of them automatically. In ongoing work, we are manually
providing proofs for the rest, and have already proven most of them.

Our long-term vision is to enable the full integration of cvc5 and Isabelle via
proof certificate reconstruction. Currently, Isabelle can send proof obligations to
cvc5, but it is unable to automatically reconstruct Isabelle proofs from cvc5’s
proof certificates. Our goal is to enable Isabelle to reconstruct every step in these
proof certificates. In order to reach this goal, it is essential to have rewrite lemmas
available for reconstructing rewrite steps, as they appear in almost all proofs, and
without dedicated support for discharging rewrite proof steps, reconstruction in
Isabelle can fail [11, 31].

In summary, we make the following contributions:

– we introduce IsaRare, an Isabelle plugin for generating correctness lemmas
for Rare rules;

– we add several new features to Rare itself and implement 163 new rewrite
rules in Rare, almost tripling the size of the rule database from [28];

– we evaluate IsaRare, showing that it can translate all of the Rare rules
into Isabelle lemmas and can prove the majority of them automatically.

In the rest of the paper, after surveying related work, we give an overview
of proof production and the interface to Isabelle (Section 2). Then, we present
the Rare language and our extensions (Section 3). We next introduce IsaRare
and explain the challenges in transforming a Rare rule to an Isabelle lemma
(Section 4). Finally, we present an evaluation of our approach (Section 5).

1.1 Related Work

Various attempts at proof production in SMT solvers have been implemented in
the past [7, 13, 14, 22, 25], though these implementations typically either pro-
duce proofs certificates that are too coarse-grained (that is, they do not provide
enough information for efficient proof checking) or produce them only if critical
components are disabled, making solving while producing proofs slow or incom-
plete. Producing complete, independently-checkable proofs remains challenging.

One major challenge is solved by the modular framework by Barbosa et al. [3].
It enables proof production during term rewriting and formula processing and
has been implemented in the SMT solver veriT [13] using the Alethe proof format
[32]. Hoenicke and Schindler [19] introduce an alternative approach, implemented
in the solver SMTInterpol [14], which also allows proof production for term
rewriting and formula processing. Both of these approaches assume that the
set of rewrite rules that can be used in proofs is fixed. Their sets include rules

313

for rewriting over equality, rules for rewriting Boolean formulas, and rules for
reasoning about arithmetic. Notably absent, however, are rules for string and bit-
vector rewrites. In other work, Barbosa et al. [4] describe a general architecture
where the only holes in the generated proof certificates are those from rewrite
steps. One of their key ideas is to support lazy proof production via a post-
processing proof reconstruction step. This capability is leveraged in the work by
Nötzli et al. [28] to produce proofs for rewrite steps based on rules written in
Rare, which is the starting point for this work.

The interactive theorem prover Isabelle [30] includes a popular tool called
Sledgehammer [9], which encodes proof obligations as SMT problems and uses
SMT solvers to solve them. Sledgehammer currently supports proof reconstruc-
tion [12, 18] for two SMT solvers: z3 [26] and veriT [13]. However, z3 provides
only coarse-grained proofs, which can cause reconstruction to fail. This issue
was addressed for veriT by manually translating and proving correct in Isabelle
the predefined set of rewrite rules in Alethe [18, 31]. Our work improves on this
effort by providing an automatic mechanism for translating an extendable set of
rewrite rules into Isabelle and includes support for bit-vector and string rewrites
unsupported by veriT.

2 Preliminaries

2.1 Satisfiability Modulo Theories (SMT)

The underlying logic of SMT is many-sorted first-order logic with equality (see
e.g., [16]). A signature Σ consists of a set Σs⊆ S of sort symbols and a set Σf

of sorted function symbols with sorts from Σs. We assume the usual definitions
of well-sorted terms, literals, and formulas. We also use the usual definition of
interpretations and of a satisfiability relation |= between Σ-interpretations and
Σ-formulas. A Σ-theory T is a non-empty class of Σ-interpretations closed under
variable reassignment. A Σ-formula φ is T -satisfiable (resp., T -unsatisfiable, T -
valid) if it is satisfied by some (resp., no, all) interpretation(s) in T . For the rest
of the paper, we assume (un)satisfiability is always with respect to some given
background theory T .

2.2 SMT Proofs and Rewriting

A proof (of unsatisfiability) is a series of inference steps starting from an input
formula and terminating with ⊥, showing that the input formula is unsatisfiable.
The granularity of a proof step refers to how much reasoning it requires and
roughly corresponds to the complexity of checking that the step is correct. In
particular, steps (and thus the proofs containing them) are fine-grained if they
can be efficiently checked, and coarse-grained otherwise. We will often refer to
coarse-grained steps as holes.

One approach for the efficient production of proofs is to introduce coarse-
grained proof steps for certain performance-critical deductions made while solv-

H. Lachnitt et al.314

ing and then go back and fill in these holes with fine-grained steps as a post-
processing step. We refer to this as proof elaboration, and it is particularly appeal-
ing for rewriting steps, since SMT solvers have hundreds of different rewrites to
simplify and normalize terms, and instrumenting the rewriting code to produce
fine-grained proofs is difficult and may introduce an unacceptable degradation
in performance.

The approach taken by Nötzli et al. [28], and the one we also follow in this
paper, is to assume that the SMT solver uses generic proof steps for all rewrites
during solving and then elaborates these steps during post-processing by consult-
ing a database of specific rewrite rules. The database is constructed by defining
a set of rewrite rules in the domain-specific language Rare, which we discuss in
Section 3. The elaboration tries to find one or more rules from the database to
justify each generic, coarse-grained rewrite step. Additionally, it uses a built-in
evaluate rule to justify steps that hold purely via constant folding. If elabora-
tion is successful, the generic step is replaced by the fine-grained steps from the
database.

2.3 SMT in Isabelle

As mentioned above, Sledgehammer [9] is an Isabelle tactic that applies auto-
mated reasoning tools, including SMT solvers, to prove goals in Isabelle. When
targeting an SMT solver, the goal is encoded as an SMT-LIB [5] problem which
is unsatisfiable iff the goal is valid. Sledgehammer also selects facts that it thinks
will be relevant for solving the goal and includes encodings of them as well. The
problem is given to the solver which reports back to Sledgehammer whether it
was able to prove the goal [9]. Proving the goal externally, however, is not enough
since Isabelle is a skeptical proof assistant, in the sense that it does not trust
external solvers. Thus, a proof of the goal must somehow be constructed and
checked inside Isabelle.

Finding such a proof internally can be challenging. One useful technique is to
query the external solver for an unsat core, i.e., a subset of the facts it was given
that are sufficient to prove the goal valid. Sometimes, this information is enough
for Isabelle to search for an internal proof on its own. However, this process can
be greatly improved, if, instead of just communicating the result and the core
back to Sledgehammer, the solver also communicates a fine-grained proof. Then,
with the appropriate proof reconstruction machinery, each step in the proof can
be reconstructed as one or more steps using Isabelle’s internal inference engine.
As mentioned in Section 1.1, Sledgehammer can do this for proofs from the veriT
and z3 solvers, though the former supports only a limited set of theories, and
the latter produces only coarse-grained proofs.

Still, this means that Isabelle already has an integration with solvers sup-
porting the SMT-LIB standard and is able to translate to and from SMT-LIB
and internal terms. We build on this integration and extend it. Notice that such
an integration requires each SMT-LIB operator to be matched with a term in
Isabelle with the same semantics. Isabelle has built-in operators that match well
with those in the uninterpreted function and arithmetic SMT theories, and both

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 315

formalisms support quantifiers [18]. However, Isabelle only has partial support
for bit-vector operators. A more complete development of bit-vectors in Isabelle
is described by Böhme et al. [11], but unfortunately, parts of their work (in-
cluding parsing bit-vector proofs) never made it into Isabelle and now appear to
be lost. As we describe below, part of our effort includes improving support for
SMT theories in Isabelle, including bit-vectors and strings.

2.4 Approximate Sorts

Rare rules are meant to be easy and effortless to write. This is not the case when
users have to specify sort information that is either inferable from the context or
too restrictive. As an example of the latter, consider any rewrite rules involving
bit-vector sorts. The SMT-LIB standard provides bit-vectors sorts that are pa-
rameterized by their size, or bit-width. However, to keep sort checking simple, it
requires all bit-widths in SMT-LIB scripts to be concrete as, for instance, in (_
BitVec 8). A similar argument applies to polymorphic sorts because, although
SMT-LIB allows the definition of theories with such sorts (such as, for instance,
array, set, and sequence sorts), it restricts scripts to monomorphic instantiations
of polymorphic sorts — e.g., (Set Int).

Unfortunately, these restrictions are too strong for Rare. They make it im-
possible, for example, to write any rewrite rule involving bit-vector terms that
is naturally parametric in the bit-width of those terms, or any rule involving
terms with a polymorphic sort. The ideal solution would then be to introduce
dependent types (or sorts, to maintain the SMT-LIB terminology) in Rare,
allowing both value and type parameters in sorts — e.g., (_ BitVec n) with n
an integer variable, and (Array A B) with A and B type variables. However, this
would make it difficult for SMT solvers, cvc5 included, to process Rare rules
since, effectively, they only support non-dependent, monomorphic sorts.

Rare’s compromise solution is to add instead approximate sorts to the sort
system, following an approach analogous to gradual typing in programming lan-
guages [33], a hybrid type-checking discipline where some program types are
checked statically and others are checked dynamically. In our case, where there
is no notion of dynamic checking, we have instead two sort-checking phases in
the SMT solver for Rare rules: (i) as the rules are read by the solver, when sort
checking is done with respect to the declared approximate sorts, and (ii) during
proof elaboration, when the approximate sorts in the Rare rules are matched
against the exact sorts in the proof steps that correspond to those rules.

Approximate sorts are obtained by extending the sort system of SMT-LIB
with a distinguished unknown value and a distinguished unknown sort, both
denoted by ?, that can be used in place of a value or parameter in a sort. This
allows the construction of approximate sorts such as (_ BitVec ?), (Set ?), and
(Array ? ?) (abbreviated as ?BitVec, ?Set, and ?Array), while still allowing pre-
cise sorts such as (_ BitVec 1), (Set Real), and (Array Int Real). Approximate
sorts can be used to approximate dependently-sorted/polymorphic rewrite rules,
as we see in the next section.

H. Lachnitt et al.316

⟨rule⟩ ::= (define-rule ⟨symbol⟩ (⟨par⟩∗) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩)
| (define-rule* ⟨symbol⟩ (⟨par⟩∗) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩ [⟨expr⟩])
| (define-cond-rule ⟨symbol⟩ (⟨par⟩∗) [⟨defs⟩] ⟨expr⟩ ⟨expr⟩ ⟨expr⟩)

⟨par⟩ ::= ⟨symbol⟩ ⟨sort⟩ [:list]

⟨sort⟩ ::= ⟨symbol⟩ | ? | ?⟨symbol⟩ | (⟨symbol⟩ ⟨numeral⟩+)

⟨expr⟩ ::= ⟨const⟩ | ⟨id⟩ | (⟨id⟩ ⟨expr⟩+)

⟨id⟩ ::= ⟨symbol⟩ | (⟨symbol⟩ ⟨numeral⟩+)

⟨binding⟩ ::= (⟨symbol⟩ ⟨expr⟩)

⟨defs⟩ ::= (def ⟨binding⟩+)

Fig. 1: Overview of the grammar of Rare.

An additional advantage of this approach is that, by relieving the Rare user
from the burden of specifying the precise sort of variables in rewrite rules, it
makes them both easier to write and less error-prone. At the same time, the
loss of precision introduced by approximate sorts is not a serious hindrance in
practice: both the SMT solver, which relies on Rare rules for proof elaboration,
and IsaRare, which uses them during proof reconstruction, are able to infer the
exact sort represented by an approximate one thanks to their knowledge of the
(exact) sort of the constant and function symbols in the supported SMT theories.
Subsection 4.3 explains how IsaRare recovers exact sorts by type inference fully
automatically during the translation to Isabelle.

3 The RARE Language

The Rare language6 was introduced by Nötzli et al. [28]. As part of this work,
we have extended the language to be able to represent more rewrite rules. We
present the full updated language here and summarize the differences with [28]
at the end of the section.

A Rare file contains a list of rules whose syntax is defined by the grammar in
Figure 1. Expressions use SMT-LIB syntax with a few exceptions. These include
the use of approximate sorts for parameterized sorts (e.g., arrays and bit-vectors)
and the addition of a few extra operators (e.g., bvsize, described below). Rare
uses SMT-LIB 3 syntax [6], which is very close to SMT-LIB 2 and mostly differs
from its predecessor in that it uses higher-order functions for indexed operators.

We say that an expression e matches a match expression m if there is some
matching substitution σ that replaces each variable in m by a term of the same
sort to obtain e (i.e., mσ is syntactically identical to e). For example, the expres-
sion (or (bvugt x1 x2) (= x2 x3)), with variables x1, x2, x3, all of sort ?BitVec,
6 Rare comes from Rewrites, automatically reconstructed.

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 317

matches (or (bvugt a b) (= b a)) but not (or (bvugt a b) (= c a)), with a,
b, and c bit-vector constant symbols of the same bit-width.

Rare Rules A Rare rewrite rule is defined with the define-rule command
which starts with a parameter list containing variables with their sorts. These
variables are used for matching as explained below. After an optional definition
list (see below), there follow two expressions that form the main body of the rule:
the match expression and the target expression. The semantics of a rule with
match expression m and target expression t is that any expression e matching
m under some sort-preserving matching substitution σ can be replaced by tσ.
With approximate sorts, the sort preservation requirement is relaxed as follows.
In Rare, for any sort constructor S of arity n > 0, there is a corresponding
approximate sort (S ? · · · ?) with n occurrences of ? which is always abbreviated
as ?S. A variable x with sort ?S (e.g., ?BitVec) in a match expression matches
all expressions whose sort is constructed with S (e.g., (BitVec 1), (BitVec 2),
and so on). Variables with sort ? match expressions of any sort.

An optional definition list may appear in a Rare rule immediately after
the parameter list. It starts with the keyword def and provides a list of local
variables and their definitions, allowing the rewrite rule to be expressed more
succinctly. A rule with a definition list is equivalent to the same rule without it,
where each variable in the definition list has been replaced by its corresponding
expression in the body of the rule. For a rule to be well-formed, all variables in
the match and target expressions must appear either in the parameter list or the
definition list. Similarly, each variable in the parameter list must appear in the
match expression (while this second requirement could be relaxed, it is useful
for catching mistakes). Consider the following example.

(define-rule bv-sign-extend-eliminate ((x ?BitVec) (n Int))
(def (s (bvsize x)))
(sign_extend n x) (concat (repeat n (extract (- s 1) (- s 1) x)) x))

In this rule, there are two parameters, x and n. The sort annotation ?BitVec
indicates that x is a bit-vector without specifying its bit-width. The latter is
stored in the local variable s using the bvsize operator. The rule says that a
(sign_extend n x) expression can be replaced by repeating n times the most
significant bit of x and then prepending this to x.

The define-cond-rule command is similar to define-rule except that it has
an additional expression, the condition, immediately after the parameter and
definition lists. This restricts the rule’s applicability to cases where the condition
can be proven equivalent to true under the matching substitution. In the example
below, the condition (> n 1) can be verified by evaluation since in SMT-LIB,
the first argument of repeat must be a numeral.

(define-cond-rule bv-repeat-eliminate-1 ((x ?BitVec) (n Int))
(> n 1) (repeat n x) (concat x (repeat (- n 1) x)))

Note that the rule does not apply to terms like (repeat 1 t) or (repeat 0 t).

H. Lachnitt et al.318

Fixed-point Rules The define-rule* command defines rules that should be
applied repeatedly, to completion. This is useful, for instance, in writing rules
that iterate over the arguments of n-ary operators. Its basic form, with a body
containing just a match and target expression, defines a rule that, whenever is
applied, must be applied again on the resulting term until it no longer applies.

The user can optionally supply a context to control the iteration. This is
a third expression that must contain an underscore. The semantics is that the
match expression rewrites to the context expression, with the underscore re-
placed by the target expression. Then the rule is applied again to the target
expression only. In the example below, the :list modifier is used to represent
an arbitrary number of arguments, including zero, of the same type.

(define-rule* bv-neg-add ((x ?BitVec) (y ?BitVec) (zs ?BitVec :list))
(bvneg (bvadd x y zs)) (bvneg (bvadd y zs)) (bvadd (bvneg x) _))

This rule rewrites a term (bvneg (bvadd s t · · ·)) to the term (bvadd (bvneg s)
r) where r is the result of recursively applying the rule to (bvneg (bvadd t · · ·)).

Changes to Rare Here, we briefly mention the changes to Rare with respect
to [28]. First, we have support for a richer class of approximate sorts, including
approximate bit-vector and array sorts. Also, we replaced the let construct by
the new def construct. The definition list is more powerful as it applies to the
entire rest of the body (whereas let was local to a single expression).

Additionally, to aid with bit-vector rewrite rules, we added several operators:
bvsize, which returns the width of an expression of sort ?BitVec; bv, which
takes a integer n and natural w, and returns a bit-vector of width w and value
n mod 2w; int.log2 which returns the integer (base 2) logarithm of an integer,
and int.islog2, which returns true iff its integer argument is a power of 2.

We also removed the :const modifier, which was used previously to indicate
that a particular expression had to be a constant value. We found that this
adds complexity and is usually unnecessary. For rules that actually manipulate
specific constant values, we can specify those values explicitly, e.g., by using the
bv operator above.

4 IsaRare: from Rare Rewrites to Isabelle Lemmas

In this section, we introduce IsaRare, a plugin for Isabelle that automatically
translates a Rare rule into an Isabelle lemma stating the correctness of the
rule. Being able to generate such lemmas automatically is highly desirable, as
Rare rules may be added and/or changed frequently for a given solver, or differ
significantly between solvers, and manually translating Rare rules into lemmas
is time-consuming and error-prone. IsaRare can also suggest a proof sketch
which is sometimes sufficient to prove the lemma. If this automatic proof fails,
the user must provide the proof or determine that the lemma does not hold. In
the latter case, Isabelle’s counterexample-finder Nitpick [10] can be helpful.

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 319

(define-cond-rule str-len-replace-inv ((t String) (s String) (r String))
(= (str.len s) (str.len r))
(str.len (str.replace t s r)) (str.len t))

lemma s t r _ len _ replace _ inv :
f i x e s t : : s t r i n g and s : : s t r i n g and r : : s t r i n g
shows " smtlib _ s t r _ len s = smtlib _ s t r _ len r −→

smtlib _ s t r _ len (smtlib _ s t r _ replace t s r) = smtlib _ s t r _ len t "

Fig. 2: Rare rule and corresponding lemma.

Figure 2 shows an example of a Rare rule (which simplifies the length of
the result of a string replacement) and the Isabelle lemma generated from it by
IsaRare. Roughly speaking, a rule with parameters x1, . . . , xm, definition list
((y1 d1) · · · (yn dn)), condition c, match expression s, and target expression t
is converted by IsaRare into a lemma of the form ∀x1, . . . , xm. (c ⇒ s = t)σ
where σ is the substitution {y1 7→ d1, . . . , yn 7→ dn}. Type inference in Isabelle
is used to suitably instantiate the ? wildcards in any approximate sorts in the
rules.

Next we discuss the main challenges we encountered while implementing the
translation from Rare to Isabelle.

4.1 Adding New Theories

Since IsaRare uses Isabelle’s SMT-LIB parser, it was necessary to extend it
to handle SMT theories not previously supported and, in case there was no
corresponding Isabelle theory, to define new types, definitions and theorems cor-
responding to the SMT-LIB theory. For sets and arrays, Isabelle already provides
the required data structures (Set . s e t and Map.map respectively) and definitions
(e.g., union, and s t o r e). Translation from the SMT operators and types is thus
straightforward, requiring only simple extensions to the parser.

The SMT-LIB parser also had to be extended for the operators and sorts
of the SMT-LIB theory of strings. String terms are represented with Isabelle’s
HOL. s t r i n g , and regular expressions are represented as sets of strings. We de-
veloped a new theory with auxiliary definitions and theorems meant to facilitate
the proving of lemmas generated by IsaRare. Since strings are defined as lists
of characters, we were able to reuse many list operators for our definitions. For
example, string concatenation is defined as concatenation of lists.

As mentioned, bit-vectors are encoded in Isabelle using the word type, which
represents integers modulo 2n, where n is a type parameter (see Subsection 4.3).
Isabelle has support for reasoning about this type, but we still had to provide a
number of extensions. For example, to translate bit-vector rewrite rules, we had
to extend Isabelle’s SMT-LIB parser significantly. We added support for all of
the standard SMT-LIB operators, as well as some additional operators that cvc5

H. Lachnitt et al.320

(define-rule bv-extract-extract
((x ?BitVec) (i Int) (j Int) (k Int) (l Int)))
(extract l k (extract j i x)))
(extract (+ i l) (+ i k) x))

(a) A Rare rule

t0 = (extract j i x) ∧
size t0 = j + 1 - i ∧
t1 = (extract l k t0) ∧
size t1 = l + 1 - k ∧
t2 = (extract (i+l) (i+k) x) ∧
size t2 = (i+l) + 1 - (i+k) ∧
j < size x ∧ 0 ≤ i ∧ i ≤ j ∧
l < size t0 ∧ 0 ≤ k ∧ k ≤ l ∧
(i+l) < size x ∧ 0 ≤ (i+k) ∧
(i+k) ≤ (i+l)

(b) Additional Assumptions

Fig. 3: Implicit Assumption Generation

supports, such as bvuaddo (which checks for overflow from unsigned addition). It
was also necessary to add several new definitions and basic theorems to Isabelle,
for example for reasoning about the e x t r a c t operator.

4.2 Mismatch between Isabelle and SMT-LIB operators

An important challenge for the translation concerns the mismatch between
SMT-LIB operators and Isabelle functions. One of the main difficulties concerns
implicit assumptions. As an example, consider the bit-vector extract operator.
The term (extract i j t) denotes the sub-vector of bit-vector t from index i
through index j, where i is the more significant index. SMT-LIB specifies that
the second index j must be at most i, and both indices must be in the range
[0, n), where n is the bit-width of t — making the result a bit-vector of width
i+1− j. These assumptions are necessary to correctly capture the semantics of
SMT-LIB’s extract since the extract operator in Isabelle is more permissive.

There are several ways to address this issue. First, we could make the implicit
assumptions explicit in the Rare rules. However, this would be tedious and
error-prone and would greatly clutter the Rare rules. It is also superfluous to
always manually add them since the constraints are inherent in the SMT-LIB
semantics. A second option is to write custom definitions for SMT-LIB operators
in Isabelle that exactly match the SMT-LIB semantics (i.e., are undefined if the
implicit assumptions do not hold). The main disadvantage of this approach is
that it complicates proving the translated Rare rules, as those proofs cannot
directly use any existing Isabelle lemmas that use the standard definitions. It
also works against one of our long-term goals, which is to be able to use proof
reconstruction to provide proofs for Isabelle conjectures, conjectures which will
naturally use the existing Isabelle operators.

The last option, which we adopted, is to automatically add the implicit as-
sumptions during the translation of Rare rules to Isabelle lemmas. This does
make the lemmas a bit more complicated, but it is the minimal complexity
needed to bridge the semantic gap between the two extract operators. And, we
can be confident that these implicit assumptions will easily be discharged when
using the lemmas for proof reconstruction, since SMT proofs only use operators

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 321

in ways that are consistent with SMT-LIB semantics (unless there is a bug, in
which case proof reconstruction should fail). Figure 3 shows an example of a
Rare rule with three applications of the extract operator, together with the
assumptions added by IsaRare.

In a few cases, we had to fall back on the custom definition approach. For
example, we had to do this for the bit-vector concat operator for bit-vector
concatenation. To see why, note that the SMT-LIB operator can take two or
more arguments (abbreviating nested binary applications), each with arbitrary
bit-width. Recall that the :list annotation in Rare can be used to specify
a variable number of arguments. There is no way to even state lemmas cor-
responding to rewrite rules involving concatenations of a variable number of
arguments in Isabelle using its built-in binary concatenation operator. For this
case, we thus define a custom concatenation operator that matches the SMT-
LIB semantics. The implicit assumption that the bit-width of the result is the
sum of the bit-widths of the arguments is embedded in the custom definition.
Using the new definition, we can translate the problematic rules into Isabelle
lemmas. As expected, proving these lemmas requires extra work. Specifically, it
requires formulating and proving bridging theorems between Isabelle’s built-in
concatenation operator and the new one we defined.

4.3 Supporting Approximate Sorts

With the addition of approximate sorts to Rare, we had to extend Isabelle’s
SMT-LIB translator to support them. We observe that Isabelle/HOL is not
based on a dependently-typed logic. However, it supports an encoding of sorts
depending on integer values into polymorphic types with parameters that range
over types expressing ordinals. In particular, bit-vectors of width w are repre-
sented by the type (n word) of integers modulo 2w; for instance, 3 : : (8 word)
represents an integer with value 3 modulo 28. In fact, thanks to polymorphism,
it is possible for the bit-width to be a type variable (e.g., 3 : : (' a : : len word)).
Note that this is more precise than allowing the bit-width in the type to be com-
pletely unknown, as in approximate sorts: with type parameters one can state,
for instance, that two terms of unknown bit-width have the same width, whereas
two terms both of sort ?BitVec may have different bit-widths.

Conveniently then, all the approximate sorts in Rare correspond to poly-
morphic types in Isabelle. For instance, ?BitVec corresponds to ' a word and
?Array corresponds to (' a , ' b) map where ' a and ' b are type variables. During
parsing, each occurrence of a approximate sort is converted into an instance of
the corresponding polymorphic type obtained by instantiating each sort vari-
able with a fresh dummy type. For some bit-vector operators, the output sort
is dependent on the input sorts (e.g., extract and concat as mentioned above).
For applications of such operators, we also use a dummy type for the bit-width
of each argument for which the width is not known. Once translation is done,
we use Isabelle’s type inference algorithm to concretize each dummy type to a
monomorphic one. For example, during translation of the rule bv-ugt-eliminate
below, the variables x and y would both be assigned dummy types.

H. Lachnitt et al.322

(define-rule bv-ugt-eliminate ((x ?BitVec) (y ?BitVec))
(bvugt x y) (bvult y x)

)

However, bvugt requires that both of its arguments be bit-vectors of the same
width in SMT-LIB. This restriction is either already present in the definition
in Isabelle that we map an operator to, or added during parsing as an implicit
assumption, as we describe in Section 4.2. The type inference algorithm then
computes the most general type for x and y that satisfies all assumptions. In this
case, it correctly infers that they are bit-vectors of arbitrary but equal bit-width.

4.4 List Parameters

As mentioned earlier, SMT-LIB supports multi-arity syntax for certain binary
operators, and Rare supports a variable number of arguments via the :list
annotation. In contrast, in Isabelle all operators are fixed-arity. To facilitate the
translation in these cases we added a new datasort, ' a r a r e _ L i s t V a r , with a
single constructor L i s t V a r : : ' a l i s t → ' a r a r e _ L i s t V a r to encapsulate multi-
ple arguments in a list. We also introduced two second-order operators, called
r a r e _ l i s t _ l e f t and r a r e _ l i s t _ r i g h t , to encode Rare left-associative and right-
associative operators, respectively. As an example, a Boolean term of the form
(and x1 · · · xn y z) is translated to the Isabelle term (r a r e _ l i s t _ r i g h t (∧)
(L i s t V a r [x1, . . . , xn]) (y ∧ z)) . The r a r e _ l i s t _ l e f t and r a r e _ l i s t _ r i g h t
functionals fold the operator passed as first argument over the list stored in their
second argument to obtain properly nested binary applications. For example, if
n = 2, the Isabelle term above is translated to (x1 ∧ (x2 ∧ (y ∧ z))) .

For every multi-arity SMT-LIB operator, we prove that it can be built up
from Isabelle’s built-in binary version using f o l d (r) functions. For Rare rules
with list parameters, these transfer lemmas become part of the correctness proof
automatically generated by IsaRare. When proving the corresponding lemma,
we can take advantage of the many lemmas in Isabelle’s libraries about fold
functions without having to know the internals of the translation process.

If we have a Rare rule in which all arguments to an operator are lists, we
must handle the special case when the lists are all empty. When the operator
has an identity element, we return that. For example, applications of and to just
empty lists are translated as standing for true. So far, we have only encoun-
tered one operator without an identity: bit-vector concatenation. Since neither
SMT-LIB nor Isabelle support bit-vectors of bit-width 0, for that operator, we
explicitly add an assumption ruling out the case where all lists are empty.

4.5 Writing Lemmas and their Proofs

To generate a lemma from a Rare rewrite rule, IsaRare first introduces the pa-
rameters with their types using Isabelle’s f i x e s construct. Next, it generates the
statement of the lemma, the goal, which states that the implicit assumptions and
conditions imply the equality of the match and target terms. The types of any

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 323

bit-vector constants are fully specified (via type ascription), because otherwise
the lemma may be too general and not hold.

Lastly, IsaRare adds an Isabelle proof of the lemma. For lemmas that do not
contain lists, this is simply a call to the main automatic tactic auto. Otherwise,
the list constructs are eliminated as explained above, and any transfer lemmas
are applied to the resulting terms. This ensures that goals will not contain any
IsaRare list definitions. We then invoke induction for every list and use the
simp_ a l l tactic to attempt to solve and simplify the goals.

The proof is printed in apply style so that it can be easily modified and com-
pleted manually if Isabelle is unable to discharge all its sub-goals automatically.

4.6 Availability

IsaRare currently supports the theories of uninterpreted functions, linear arith-
metic, bit-vectors, arrays, strings, and sets. It is publicly available7 under the
BSD 3-Clause license. We plan to submit IsaRare to the Archive of Formal
Proofs [20]. We have also been working with the Isabelle maintainers to have
our extensions to Isabelle itself (e.g., to the SMT-LIB parser) included in the
official Isabelle distribution. Many features were already included in the lat-
est release. IsaRare requires the Word_Lib library (which is also included in
the Archive of Formal Proofs) if it is used on Rare rules containing bit-vector
operators not present in Isabelle itself.

5 Evaluation and Experience

We used IsaRare to help develop, translate, and verify new Rare rewrite rules.
These rules were designed to address coarse-grained rewrite steps appearing
in cvc5 proofs, i.e., steps that could not be elaborated into fine-grained steps
using the existing Rare rules and the approach mentioned in Section 2.2. In
this section, we report on this experience and also discuss challenges arising
from particular rewrites and theories.

5.1 Impact of New Rewrites on cvc5 Proof Holes

Previous work developed 85 Rare rules for cvc5 [28]. For our evaluation, we
ran cvc5 with these plus our 163 new rules, bringing the total number of Rare
rules in the cvc5 database to 248. We evaluated the impact of the new rules on
cvc5’s ability to produce fine-grained proof steps by comparing the success rate
of the elaboration (i.e., percentage of rewriting proof steps that are successfully
elaborated into fine-grained steps) before and after the addition of the new rules.
We ran cvc5 on 70,709 unsatisfiable benchmarks, as determined by cvc5 [2,
Sec. 4], in the SMT-LIB logics containing quantifier-free problems with equality
and uninterpreted functions, arrays, linear arithmetic, strings, and bit-vectors.
7 https://github.com/cvc5/IsaRARE

H. Lachnitt et al.324

https://github.com/cvc5/IsaRARE

rewrites

theory old new proven autoproven

EUF 22 43 43 37
Arithmetic 23 22 22 14
Sets 0 7 7 7
Arrays 0 4 4 4
Strings 40 57 57 37
Bit-vectors 0 115 84 62

Table 1: Rule and rule verification counts per theory

The results were generated with a cluster equipped with 16 x Intel(R) Xeon(R)
CPU E5-2637 v4 @ 3.50GHz, 62.79 GiB RAM machines, with one core per
solver/benchmark pair, 1200s time limit, and 8gb memory limit.

For string benchmarks (the only set evaluated in [28]), the success rate went
from 92% to 98%. Results on the logics with equality and uninterpreted func-
tions, arrays, and linear arithmetic were similar. By far the most challenging
theory, in terms of rewrite rules, is the bit-vector theory. Prior to our work,
there were no Rare rules for this theory, so no bit-vector rewrite steps could
be turned into fine-grained steps. With our 115 new Rare rules for bit-vectors,
92% of coarse-grained bit-vector rewrite steps are successfully elaborated into
fine-grained steps. We see this as tremendous progress towards full fine-grained
proofs for bit-vector problems.

5.2 Translating and Verifying Rewrites

In Table 1, we list the number of new rules in each theory, distinguishing between
how many were there before (old) and the total including both the old rules and
our new rules (new).8 We also show how many of the lemmas we have successfully
proven and how many of these were done automatically, i.e., either by the proof
suggested by IsaRare or by a single call to Sledgehammer. The proven column
shows that all non-bit-vector rules as well as most of the bit-vector rules have
now been proven. The numbers in the last column show that most of the proofs
were provided automatically by IsaRare.

For the theory of strings, the number of lemmas automatically proven is not
clear-cut. For other theories, libraries with useful background lemmas already
existed, but for strings we had to add many new general-purpose lemmas our-
selves and then decide whether these should count as background lemmas or as
part of the proof effort for a rewrite rule. We were rather conservative in that
decision, i.e., we did not count a lemma as automatically proved if it used a
lemma whose classification as a background lemma was in doubt. Many of the
8 Consolidation in the set of arithmetic rules actually resulted in one fewer rule than

existed previously.

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 325

translated string rewrites had to be proved manually because they required in-
duction on string length, especially since many operators are defined inductively.
However, we found that most of these manual proofs were fairly easy once an
appropriate induction variable was selected.

There are no performance issues—IsaRARE translates most files in millisec-
onds. Even for our biggest RARE database, the one containing bit-vector rules,
IsaRARE took only around 1-2 seconds on our machine.

5.3 Bugs Found in String Rules

We found several bugs in the existing Rare rules for strings by using Isabelle’s
counterexample finder Nitpick [10] on the translated Isabelle lemmas. We diag-
nosed and fixed each of them, so that now they can all be verified.9 The bugs
fall into three main categories.
Misinterpreted Semantics: The str.substr operator takes three arguments and
returns the substring of the first argument, starting at the position given by the
second argument, and continuing for the number of characters specified by the
third argument. The following (corrected) rule simplifies a substring expression
to the empty string whenever the third argument is 0 or negative.

(define-cond-rule str-substr-empty-range ((x String) (n Int) (m Int))
(>= 0 m) (str.substr x n m) "")

However, the first version of the rule had the wrong condition: (>= n m) rather
than (>= 0 m). This is likely due to the rule’s author mistaking the third argu-
ment of str.substr for an absolute index instead of a relative offset.
Forgotten Condition: The corrected rule below says that, under some assump-
tions, the length of a substring term is equal to the offset (third) argument.

(define-cond-rule str-len-substr-in-range ((s String) (n Int) (m Int))
(and (>= n 0) (>= m 0) (>= (str.len s) (+ n m)))
(str.len (str.substr s n m)) m)

The earlier version of the rule did not include the condition (>= m 0). This how-
ever, makes it unsound, because according to the semantics of str.substr, if the
offset is negative, the result is just the empty string. This led to a counterex-
ample with a negative value for m. Note that this condition is not automatically
added by IsaRare since str.substr is defined for negative offsets.

Misunderstanding the Rewrite: One rule was designed to closely mirror a
piece of cvc5 code implementing a rewrite, but it failed to properly capture all
cases. The code involved included several conditionals resulting in two different
ways a term could be rewritten. The original rule only captured one of the two
cases and even missed one of the conditions for the case it included. Since this
rule was quite complex and was only incorrect for some corner cases, it would
have been challenging to find this bug without our verification effort.
9 Fortunately, none of the bugs in rules corresponded to buggy code in cvc5 itself.

However, cvc5 could have used those rules to construct incorrect proofs.

H. Lachnitt et al.326

5.4 Bit-vector Rewrite Rules

Bit-vector theory solvers make extensive use of rewriting, employing large num-
bers of rewrite rules. In order to define Rare rules for cvc5’s bit-vector theory,
we began by analyzing the cvc5 rewriting code, which implements a total of
99 rewrite methods. We then wrote Rare rules to try to capture the behavior
of these methods. There are 5 methods that are too complex to be captured by
Rare (or by any straightforward extension of it). For each of these, we instead
added new hard-coded proof rules to the cvc5 proof rule database.10 These
hard-coded proof rules are not included in Table 1, but they are used to help
demonstrate the overall progress on SMT-LIB proofs (Section 5.1). The long-
term plan for reconstruction of proofs using these rules is to write custom Isabelle
tactics for reconstructing those proof steps.

Unlike with the string rules, where we applied IsaRare to already-written
rules, we used IsaRare extensively to help debug the bit-vector rules as they
were being written. We were able to quickly and easily find many kinds of mis-
takes this way. For example, rule authors mixed up bvneg (unary 2’s complement
negation) and bvnot (bit-wise Boolean negation). In other cases, rules used in-
consistent bit-widths. The type inference that IsaRare performs is particularly
helpful in such cases, as it is stricter than the cvc5 Rare parser.

Many of the bit-vector rules can be proved automatically, but others must
be proved manually and are quite challenging, especially those involving signed
arithmetic or division. Despite this, as shown in Table 1, the process of manually
proving the full set of bit-vector lemmas is largely complete. This is important
for our long-term goal of reconstructing SMT proofs in Isabelle.

6 Conclusion

We presented IsaRare, a tool providing an automatic pipeline for verifying
rewrite rules. We showed the effectiveness of our approach by proving the cor-
rectness of a large number of rewrite rules used in cvc5 proofs. Our experiments
show that many lemmas can be proved with minimal user interaction.

This work is also part of a long-term project that aims to further automate
proof search in Isabelle. The goal is to be able to reconstruct any cvc5 proof in
Isabelle’s internal inference engine. This, of course, also includes reconstructing
rewrite steps. The lemmas IsaRare generates are directly applicable to this
effort. We plan to provide a detailed description and evaluation of this larger
effort in future work.

Data Availability Statement The datasets generated and analyzed during the
current study are available in the Zenodo repository: https://zenodo.org/
records/10048664 [24].

10 This is analogous to the handling of polynomial normalization in [28].

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 327

https://zenodo.org/records/10048664
https://zenodo.org/records/10048664

References

1. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K., Rungta,
N., Tkachuk, O., Varming, C.: Semantic-based automated reasoning for AWS ac-
cess policies using SMT. In: 2018 Formal Methods in Computer Aided Design
(FMCAD). pp. 1–9. IEEE (2018)

2. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., et al.: cvc5: a versa-
tile and industrial-strength smt solver. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 415–442. Springer
(2022)

3. Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P.: Scalable fine-grained proofs
for formula processing. Journal of Automated Reasoning 64(3), 485–510 (2020)

4. Barbosa, H., Reynolds, A., Kremer, G., Lachnitt, H., Niemetz, A., Nötzli, A.,
Ozdemir, A., Preiner, M., Viswanathan, A., Viteri, S., Zohar, Y., Tinelli, C.,
Barrett, C.: Flexible proof production in an industrial-strength SMT solver. In:
Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated Reasoning. pp. 15–35.
Springer International Publishing, Cham (2022)

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available
at www.SMT-LIB.org

6. Barrett, C., Fontaine, P., Tinelli, C.: SMT-LIB Version 3.0 - Preliminary Proposal
(2021), https://smtlib.cs.uiowa.edu/version3.shtml

7. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories.
In: Delahaye, D., Woltzenlogel Paleo, B. (eds.) All about Proofs, Proofs for All,
Mathematical Logic and Foundations, vol. 55, pp. 23–44. College Publications,
London, UK (Jan 2015)

8. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability - Second Edition, Frontiers in Artificial Intelligence and Applications,
vol. 336, pp. 1267–1329. IOS Press (2021)

9. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction –
CADE-23. pp. 116–130. Springer Berlin Heidelberg (2011)

10. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
Interactive Theorem Proving. pp. 131–146. Springer Berlin Heidelberg (2010)

11. Böhme, S., Fox, A.C., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector
proofs in HOL4 and Isabelle/HOL. In: International Conference on Certified Pro-
grams and Proofs. pp. 183–198. Springer (2011)

12. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) Interactive Theorem Proving. pp. 179–194. Springer,
Berlin, Heidelberg (2010)

13. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) Automated Deduction
– CADE-22. pp. 151–156. Springer (2009)

14. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver. In:
Donaldson, A., Parker, D. (eds.) Model Checking Software. pp. 248–254. Springer
(2012)

15. Cook, B.: Formal reasoning about the security of Amazon web services. In: Chock-
ler, H., Weissenbacher, G. (eds.) Computer Aided Verification. pp. 38–47. Springer
(2018)

H. Lachnitt et al.328

16. Enderton, H.B.: A mathematical introduction to logic. Elsevier (2001)
17. Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M., Rozier, K.Y. (eds.)

NASA Formal Methods. Lecture Notes in Computer Science, vol. 11460, pp. 148–
165. Springer (2019)

18. Fleury, M., Schurr, H.J.: Reconstructing veriT proofs in isabelle/HOL. Electronic
Proceedings in Theoretical Computer Science 301, 36–50 (2019)

19. Hoenicke, J., Schindler, T.: A simple proof format for SMT. In: Déharbe, D.,
Hyvärinen, A.E.J. (eds.) International Workshop on Satisfiability Modulo Theories
(SMT). CEUR Workshop Proceedings, vol. 3185, pp. 54–70. CEUR-WS.org (2022)

20. Jaskelioff, M., Merz, S.: Proving the correctness of disk paxos. Archive of For-
mal Proofs (June 2005), https://isa-afp.org/entries/DiskPaxos.html, Formal
proof development

21. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: Certistr: a certified string solver.
In: Proceedings of the 11th ACM SIGPLAN International Conference on Certified
Produms and Proofs. pp. 210–224. Association for Computing Machinery (2022)

22. Katz, G., Barrett, C., Tinelli, C., Reynolds, A., Hadarean, L.: Lazy proofs for DPLL
(T)-based SMT solvers. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods
in Computer-Aided Design (FMCAD). pp. 93–100. IEEE (2016)

23. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: Formal verifica-
tion of an OSa kernel. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. pp. 207–220. Association for Computing Machinery
(2009)

24. Lachnitt, H., Fleury, M., Aniva, L., Reynolds, A., Barbosa, H., Noetzli, A., Barrett,
C., Tinelli, C.: IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL
(Oct 2023), https://doi.org/10.5281/zenodo.10048664

25. de Moura, L., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P., Sut-
cliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR) Workshops. CEUR Workshop Pro-
ceedings, vol. 418. CEUR-WS.org (2008)

26. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 337–340. Springer (2008)

27. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a proof assistant for higher-
order logic. Springer (2002)

28. Nötzli, A., Barbosa, H., Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli,
C.: Reconstructing fine-grained proofs of rewrites using a domain-specific language.
In: Griggio, A., Rungta, N. (eds.) 2022 Formal Methods in Computer-Aided Design
(FMCAD). p. 65 (2022)

29. Otoni, R., Blicha, M., Eugster, P., Hyvärinen, A.E.J., Sharygina, N.: Theory-
specific proof steps witnessing correctness of SMT executions. In: 2021 58th
ACM/IEEE Design Automation Conference (DAC). pp. 541–546. IEEE (2021)

30. Paulson, L.C., Nipkow, T., Wenzel, M.: From LCF to Isabelle/HOL. Formal As-
pects of Computing 31(6), 675–698 (2019)

31. Schurr, H., Fleury, M., Desharnais, M.: Reliable reconstruction of fine-grained
proofs in a proof assistant. In: Platzer, A., Sutcliffe, G. (eds.) Proc. Conference on
Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 12699,
pp. 450–467. Springer (2021)

32. Schurr, H.J., Fleury, M., Barbosa, H., Fontaine, P.: Alethe: Towards a generic SMT
proof format (extended abstract). Electronic Proceedings in Theoretical Computer
Science 336, 49–54 (2021)

IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL 329

33. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: ACM (ed.)
Proceedings of Scheme and Functional Programming Workshop (2006)

H. Lachnitt et al.330

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Automate where Automation Fails:
Proof Strategies for Frama-C/WP

1 Université Paris-Saclay, CEA, List, Palaiseau, France
{loic.correnson,allan.blanchard}@cea.fr

2 Thales Digital Identity & Security, Meudon, France

3 Thales Research & Technology, Palaiseau, France
nikolai.kosmatov@thalesgroup.com

Abstract. Modern deductive verification tools succeed in automatically
proving the great majority of program annotations thanks in particular
to constantly evolving SMT solvers they rely on. The remaining proof
goals still require interactively created proof scripts. This tool demo pa-
per presents a new solution for an automatic creation of proof scripts
in Frama-C/WP, a popular deductive verifier for C programs. The veri-
fication engineer defines a proof strategy describing several initial proof
steps, from which proof scripts are automatically generated and applied.
Our experiments on a large real-life industrial project confirm that the
new proof strategy engine strongly facilitates the verification process by
automating the creation of proof scripts, thus increasing the potential of
industrial applications of deductive verification on large code bases.

Keywords: deductive verification, proof automation, interactive proof scripts,
proof strategies, Frama-C.

1 Introduction

Recent years have seen many successful applications of deductive verification [7,
8]. Modern deductive verifiers manage to automatically prove the greatest num-
ber of proof goals, also called proof obligations, or verification conditions (VCs).
This is in particular due to powerful and constantly evolving SMT solvers they
rely on. The remaining unproven goals typically require some form of interac-
tive proof: either with a proof script indicating a few initial proof steps to make
the goal more suitable for an automatic prover, or a fully interactive proof in a
proof assistant like Coq. The need for an interactive proof remains an important
obstacle to a wider application of deductive verification on large projects.

It can be illustrated by a recent proof [6] of real-life smart card code—a
JavaCard Virtual Machine (JCVM)—that was performed by Thales for the high-
est EAL6–EAL7 levels of Common Criteria certification4 using Frama-C/WP [9],

4 The EAL7 certificate delivered by the French certification body ANSSI
is available at https://cyber.gouv.fr/sites/default/files/document_type/

Certificat-CC-2023_45fr_0.pdf.

Löıc Correnson1 , Allan Blanchard1 , Adel Djoudi2 ,
and Nikolai Kosmatov3(B)

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 331–339, 2024.
https://doi.org/10.1007/978-3-031-57246-3_18

adel.djoudi@thalesgroup.com

https://doi.org/10.1007/978-3-031-57246-3_18
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_18&domain=pdf
http://orcid.org/0000-0001-6554-404X
http://orcid.org/0000-0001-7922-4880
http://orcid.org/0000-0002-8238-6490
http://orcid.org/0000-0003-1557-2813
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

a popular deductive verifier for C programs. Even if a very high level of automa-
tion is achieved in that project and less than 2% of proof goals require manually
created proof scripts, a significant effort is still required for the remaining goals
because hundreds of properties are concerned.

Moreover, proof scripts are sensitive to the versions of the deductive verifier,
of the code and the specification. Thus, proof scripts not only need to be created
once for a given version of the target code, its specification and the verifier, but
often have to be recreated when the code or the specification are updated, or the
verifier evolves (and hence the way to generate VCs is modified). Thus, the need
for manually created proof scripts for the unproven goals is seen as an important
obstacle to a better maintenance of the proved code in the industrial setting.

This tool demo paper presents a new mechanism5 for an automatic creation
of proof scripts in Frama-C/WP. The verification engineer defines a proof strat-
egy describing the alternative proof steps to be tried, from which proof scripts
are automatically generated and applied. Our experiments on the JCVM verifi-
cation project confirm that the new mechanism strongly facilitates the verifica-
tion process, thus increasing the potential of industrial applications of deductive
verification on large code bases.

The contributions of this work include a demonstration of the new mech-
anism for automating the creation of proof scripts in Frama-C/WP based on
user-defined proof strategies, its illustration on simple examples and its evalua-
tion on a real-life industrial project.

2 Deductive Verification with Frama-C/WP

Frama-C is an open-source, industrially mature, extensible framework for ver-
ifying C programs annotated with ACSL [2] specifications. The WP plug-in of
Frama-C allows the user to prove that the C code respects the ACSL specifications
using deductive verification [7, 8]. More precisely, WP implements an efficient
variant of weakest precondition calculus [10], hence the name of the plug-in.

ACSL specifications, written inside special comments “/*@...*/”, basically
consist of function contracts and code annotations. Function contracts include
pre-conditions (requires clauses) and post-conditions (ensures clauses), con-
taining pure logical formulas that shall be verified respectively before and after
any call to a function. The assigns clause specifies the possible side effects of the
function on global variables and pointers received in parameters. Code annota-
tions (e.g. assert clauses) contain pure logical formulas attached to a particular
program point that shall be verified at each execution path going through this
program point. These clauses are illustrated by the program below:

1 /*@
2 requires 0 ≤ x ≤ y ;
3 ensures \result == (x + y) / 2;
4 assigns \nothing;
5 */
6 int middle(int x,int y)

5 publicly available on https://git.frama-c.com/pub/frama-c/ as part of the cur-
rent development version (and in the upcoming release planned for November 2023).

L. Correnson et al.332

7 {
8 /*@ assert 0 ≤ y - x < MAX_INT; */
9 /*@ assert 0 ≤ x + (y-x) / 2 < MAX_INT; */

10 return x + (y - x) / 2;
11 }

Frama-C contains plug-ins that can generate assertions, and plug-ins that
can prove assertions, or both. For instance, the RTE plug-in can generate code
annotations that are sufficient for the program to never go into unspecified or
undefined behaviors. The assertions in the previous example (Lines 8–9) show
two of the five assertions generated by RTE on this code.

WP is able to prove code annotations written by the user or generated by
other plug-ins. It works by using deductive verification: ACSL logic formula and
C-code instructions are translated to some equivalent pure logic formulæ in a
first-order logic language. Each generated formula is first simplified by a built-in
solver named Qed [4] and then submitted to external provers, generally auto-
mated SMT solvers such as Alt-Ergo, Z3, CVC4 or CVC5. On the above program,
WP can prove all ACSL annotations written by the user and generated by RTE:

1 $ frama -c -wp -wp-rte middle.c
2 [rte:annot] annotating function f
3 [wp] 8 goals scheduled
4 [wp] Proved goals: 8 / 8
5 Qed: 2
6 Alt -Ergo 2.4.2: 6 (4ms -14ms)

In this example, RTE generated 5 annotations and WP generated 8 formulas
for proving all resulting ACSL annotations, 2 of which being proved by Qed
simplification, and the remaining 6 being proved by Alt-Ergo in few milliseconds.

3 Automated vs. Interactive Proofs

In most cases, ACSL annotations are automatically proven by Qed and SMT
solvers. However, sometimes an automated proof might fail for a correct formula
because deductive verification is not complete in general, and WP in particular.

In such a situation, WP offers different features to complete the proofs. First,
the user might help SMT solvers by introducing intermediate code annotations,
hence providing proof hints and intermediate proof results. Second, the user
might enter the interactive proof mode with the Frama-C graphical interface,
in which the user can apply so-called tactics to transform a proof goal into a
conjunction of several, typically simpler ones, that WP can try to prove in turn.
This process can be iterated, and all the applied tactics can be saved on disk in
a proof script file that can be replayed later from the Frama-C command line.

After some efforts, the user can thus manage to achieve full automation in
proof replay for a proof campaign: all proof goals are discharged automatically
by SMT solvers, possibly thanks to proof hints provided as code annotations,
and possibly after applying tactics from saved proof scripts.

WP offers a large variety of tactics. Common ones include splitting over
a boolean expression; brute-forcing an integer expression within a given range
(detailed below); unfolding predicate or function definitions; removing hypothe-
ses; etc. Applying tactics is simple in spirit, although it raises complex issues in

Automate where Automation Fails: Proof Strategies for Frama-C/WP 333

practice. Consider for instance the Range tactic, which can be defined as follows,
where φ is the current goal, e some expression and a ≤ b two integer constants:

range(φ, e, a, b) ≡
∧

k∈a...b

(e = k =⇒ φ) ∧ (e < a =⇒ φ) ∧ (e > b =⇒ φ)

Applying it on goal φ consists in replacing6 φ by range(φ, e, a, b). It requires to
have at hand the expression e and the two constants a and b. Under the graphical
user interface (GUI), those arguments are selected by the user from the goal.
However, bookkeeping them in a proof script is not that simple, especially if we
want the proof script to resist to minor changes in the code or the specifications.
WP has dedicated features to achieve this choice but up to a certain extent.

In practice, managing proof scripts during the lifetime of large projects is
an industrial issue. On the contrary, proof hints in the form of intermediate
code annotations are quite robust. However, writing code annotations by hand
is tedious. On the other hand, applying tactics to decompose goals is quite
efficient, and it appears that, on a given application, many pending goals are
solved by applying few tactics with very similar patterns. Those observations
lead us to the design of proof strategies.

4 Definition of Proof Strategies

This section introduces the main principles and selected features of proof strate-
gies through illustrative examples, which can be tested using the companion
artifact [5]. We refer the reader to the WP manual [1] for a detailed description.

Proof strategies are user-defined specifications for combining automated sol-
vers with pattern-driven tactics. A proof strategy consists of a list of alternatives
to be tried in sequence on a proof goal until success. Elementary alternatives
consist in trying one or several SMT solvers with a specified timeout, or applying
a tactic on a goal. Lists of alternatives can be grouped and given a (strategy)
name, that can be used as an elementary alternative as well. Then, specific
proof strategies can be associated to specific proof goals, functions or lemmas.
For instance, the user may associate proof strategy A to every code annotation
with name P and proof strategy B to every code annotation without name Q,
and finally proof strategy C to other code annotations.

Proof strategies and their association to proof goals are user-written as spe-
cific ACSL extensions defined and managed by the Frama-C/WP plug-in. An
overview of these annotations is provided below:

strategy strategyname : alternative , . . . , alternative ;
proof strategyname : target , . . . , target ;

The strategy clause introduces a new proof strategy strategyname, whereas
the proof clause associates it to some property targets, i.e. individual goals

6 We have range(φ, e, a, b) =⇒ φ, which is sufficient for the tactic to be safely applied.

L. Correnson et al.334

or sets of goals, using the same syntax as for frama-c command line, which
simplifies users’ learning curve. As introduced above, each alternative might
consist of:

– \provers(p,...,p,time) which tries the specified provers in sequence with
a specified timeout.

– \tactic(id,param...) tries to apply the specified tactic with the associated
parameter(s).

– strategyname or \default tries the specified named strategy.

Parameters for applying tactics are the most expressive but also the most
complex components of proof strategies. As briefly introduced in previous sec-
tion, a tactic transforms a proof goal into one or several sub-goals that are suffi-
cient to entail the initial goal. The difficult point with tactics is that they need
parameters to be applied. For instance, the tactic range illustrated in previous
section must be applied to an expression and a range of two integer constants.
From the Frama-C GUI, proof engineers often pick those parameters from the
goal itself, according to some patterns of interest and their experience. Our proof
strategy language allows proof engineers to specify those patterns, and to build
tactic parameters with required values accordingly.

A trade-off between robustness and precise definition of tactic applications is
an important design objective. The proposed strategy language allows a signifi-
cant flexibility in choosing precise (and less robust) or more general (and more
robust) patterns. The latter include ’_’ for any expression, ’..’ for any number
of arguments, ’A:_’ to introduce a variable to name a subexpression and to use
it in a tactic parameter or a pattern to select, etc.

Consider lemma dn3 in Fig. 1, not proved by Alt-Ergo. It can now be proved
by associating to it the following strategy (we omit surrounding /*@...*/):

1 strategy RangeThenProver:
2 \tactic ("Wp.range",
3 \pattern(is_uint8(e)),
4 \select(e),

5 \param("inf" ,0) ,\param("sup" ,255),
6 \children(RangeThenProver)),
7 \prover("alt -ergo" ,2);
8 proof RangeThenProver: dn3;

The "Wp.range" name identifies the range tactic introduced above. This
strategy looks for a variable e of type unsigned char (pattern is_uint8(e), cf.
Line 3) in the goal. If such a pattern is found in goal φ, the tactic range(φ, e, 0, 255)
is applied on φ (cf. Lines 2–5). Otherwise, the Alt-Ergo prover is applied for 2 s
(Line 7). The tactic specification language also offers directives to specify which
strategies shall be applied on the resulting sub-goals. Line 6 above indicates that
the strategy should be applied recursively. In this way, it enumerates first the
values of c, then those of d. Indeed, the recursive application to all subgoals in
this case is equivalent to selecting a first variable of type unsigned char and
enumerating its values, then for each fixed value, doing so for a second variable
of type unsigned char (and in this case, there are no more such variables). WP
takes only ∼1 s to automatically create the script and prove the lemma, while
its manual creation would take several minutes.

Moreover, each sub-goal generated by applying a tactic has predefined names.
For instance, tactic range(φ, e, a, b) generates a sub-goal named "Lower a" for

Automate where Automation Fails: Proof Strategies for Frama-C/WP 335

1 lemma dn3:
2 ∀ unsigned char c d;
3 (c & 0x8E) == 2 ∧
4 (c & 0x01) == 1 ∧
5 (d & 0x8F) == 0
6 ⇒ ((c+d) & 0x03) == 0x03;

7 lemma vhm_preserved{L1 ,L2}:
8 valid_heap_model{L1} ∧
9 mem_model_footprint_intact{L1,L2} ∧

10 \at(gNumObjs ,L1) == \at(gNumObjs ,L2) ∧
11 object_headers_intact{L1,L2}
12 ⇒ valid_heap_model{L2};

Fig. 1. Two ACSL lemmas not proved by automatic prover Alt-Ergo (with a 5 min.
timeout).

1 strategy FastAltErgo: \prover("alt -ergo", 1); // run Alt -Ergo for 1s
2 strategy EagerAltErgo: \prover("alt -ergo" ,10); // run Alt -Ergo for 10s
3 strategy UnfoldVhmThenProver: // Strategy with three steps:
4 FastAltErgo , // 1) fast prover attempt
5 \tactic("Wp.unfold", // 2) if unproved , unfold
6 \pattern(P_valid_heap_model ((..))), // predicate valid_heap_model
7 \children(UnfoldVhmThenProver)), // and apply itself recursively
8 EagerAltErgo; // 3) longer prover attempt
9 proof UnfoldVhmThenProver: vhm_preserved; // Associate strategy to goal

Fig. 2. Strategies to automatically create a proof script for lemma vhm_preserved of
Fig. 1.

case e < a, "Upper b" for case e > b and "Value k" for each case e = k with k ∈
a..b. The user can then specify which strategy shall be used for each generated
sub-goal. More detailed documentation can be found in the WP manual [1].

The second lemma in Fig. 1 comes from the example in [6] on the proof of
the JCVM. It was not proved by the Alt-Ergo prover [3] (used in that work)
and required a proof script. Basically, lemma vhm_preserved deduces predicate
valid_heap_model at label (i.e. program point) L2 from the same predicate at
label L1 (Lines 8, 12 in Fig. 1) if additional conditions are satisfied: the variables
defining the memory state and the number of allocated objects do not change
between labels L1 and L2 (Lines 9–10), and the headers of the allocated objects
(indicating object owner, object size, etc.) do not change between labels7 L1 and
L2 either (Line 11). Such lemmas are useful in large verification projects with
lots of variables: by showing the preservation of values only for a few variables
between two program points, this lemma allows the tool to deduce the predicate
of interest at a new program point. The exact definition of predicates is not
necessary to follow the present paper (and can be found in [6]).

With the presented extension of WP, the verification engineer can define a
strategy UnfoldVhmThenProver (see Fig. 2) indicating which proof steps should
be applied in order to achieve the proof. First, it calls the Alt-Ergo prover to
check whether the goal can be proved with a short timeout (cf. Lines 4 and
1). If not, Lines 5–7 provide another alternative: to apply the Unfold tactic to
unfold the definition of predicate valid_heap_model (in any part of the goal
and with any number of arguments). Line 7 indicates that after a successful
unfolding, the same strategy should be applied iteratively on the resulting sub-

7 Labels L1 and L2 can be C labels or predefined ACSL labels [2]. While labels are not
directly preserved in the resulting VCs, the variables at those labels typically have
different names, so it is still possible to match the corresponding values.

L. Correnson et al.336

goals (children). Finally, Line 8 indicates that if the unfolding alternative cannot
be applied anymore, a longer prover attempt is tried (cf. Line 2). This strategy
allows WP to prove the target lemma in ∼2 s.

5 Industrial Evaluation and Conclusion

We have applied the presented extension of Frama-C/WP to the proof of the
real-life JCVM code8 (with 8,000+ lines of C and 30,000+ lines of ACSL) at
Thales. The complete proof for 85,000 goals using Alt-Ergo with a 250s timeout
requires 800+ proof scripts. The new tool saves a very significant effort: after a
manual creation of strategies (∼2 days), WP automatically produces more than
50% of the required scripts, whose manual creation would take ∼1 person-month.
This effort is estimated by the authors based on the experience of manual proof
script creation in the industrial context over four years. In this experiment, the
strategies are created by the same verification engineers who have previously
created proof scripts. The same strategy is often able to successfully prove several
dozens of proof goals, which confirms the reusability of strategies for multiple
goals.

We summarize our experiment as a two-step workflow. First, the verification
engineer creates proof strategies. Frequently used tactics (Unfold, Split, etc.)
may be used as an initial guess with a large timeout in order to maximize proof
automation. If some goals are still not proved, the engineer uses their experience
to propose new ones, tuned to failed goals. The generated scripts are then saved
for a proof replay session. Second, the engineer optimizes the strategies, e.g.
by optimizing the script generation or replay time. The creation of strategies
requires similar skills as for the creation of proof scripts.

We believe that an even greater number of proof scripts can be generated
from strategies, which will strongly facilitate industrial verification. Future steps
include identification and implementation of further strategy features, and their
rigorous evaluation on various industrial projects. A detailed analysis of the
reasons why some goals remained unproven in our experiment on the JCVM
code will provide a better understanding of the nature of those goals and the
required additional strategies. Finally, an evaluation of the usability of strategies
by various categories of users (e.g. verification engineers who are not familiar
with the target project or with proof scripts in Frama-C) is another future work
perspective.

Acknowledgment. Part of this work was supported by ANR (grants ANR-22-
CE39-0014, ANR-22-CE25-0018). We thank Nathan Koskas de Diego and Vir-
gile Prevosto for many fruitful discussions and preliminary investigations that
encouraged this work, as well as the anonymous referees for helpful comments.

8 Being highly security-critical, this code cannot be shared or included in an artifact.

Automate where Automation Fails: Proof Strategies for Frama-C/WP 337

References

1. Baudin, P., Bobot, F., Correnson, L., Dargaye, Z., Blanchard, A.: WP Plug-in
Manual (2023), https://frama-c.com/download/frama-c-wp-manual.pdf

2. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language (2021), https://www.frama-c.
com/download/acsl.pdf

3. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: Inter-
national Workshop on Satisfiability Modulo Theories(SMT 2018). https://hal.
inria.fr/hal-01960203

4. Correnson, L.: Qed. Computing what remains to be proved. In: NASA Formal
Methods Symp. (NFM 2014). LNCS, vol. 8430, pp. 215–229. Springer (2014)

5. Correnson, L., Blanchard, A., Djoudi, A., Kosmatov, N.: Automate where automa-
tion fails: Proof strategies for Frama-C/WP. Companion artifact for the paper sub-
mitted to TACAS 2024. (Nov 2023), https://doi.org/10.5281/zenodo.10047833

6. Djoudi, A., Hána, M., Kosmatov, N.: Formal verification of a JavaCard virtual
machine with Frama-C. In: the 24th Int. Symp. on Formal Methods (FM 2021).
vol. 13047, pp. 427–444. Springer (2021)

7. Filliâtre, J.: Deductive Software Verification. International Journal on Software
Tools for Technology Transfer 13(5), 397–403 (2011)

8. Hähnle, R., Huisman, M.: Deductive software verification: From pen-and-paper
proofs to industrial tools. In: Computing and Software Science – State of the Art
and Perspectives, LNCS, vol. 10000, pp. 345–373. Springer (2019)

9. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A software analysis perspective. Formal Asp. Comput. pp. 1–37 (2015)

10. Leino, K.R.M.: Efficient Weakest Preconditions. Information Processing Letters
93(6), 281–288 (2005)

L. Correnson et al.338

Automate where Automation Fails: Proof Strategies for Frama-C/WP 339

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

VeSCMul: Verified Implementation of
S-C-Rewriting for Multiplier Verification

Intel Corporation, Austin, TX, USA
mert.temel@intel.com

Abstract. Formal verification of multipliers is difficult. This paper pre-
sents a custom tool, VeSCMul, designed to address this problem. VeSC-
Mul can be effectively applied to a wide range of hardware verification
challenges, including multipliers with saturation, flags, shifting, trunca-
tion, accumulation, dot product, and even floating-point multiplication.
The tool is highly automated with a user-friendly interface, and it is very
efficient; for instance, verification for designs with 64-bit operands can
finish in seconds. Notably, VeSCMul has been successfully utilized for
both commercial designs and publicly available benchmarks. Regarding
the reliability of its results, VeSCMul itself is fully verified, instilling con-
fidence in its users for soundness. It also has the option to be used with
a SAT solver for completeness and counterexample generation. Readers
of this paper will gain insights into the capabilities and limitations of
VeSCMul, as well as how to employ it for the verification of their own
designs.

Keywords: Multipliers · Hardware Verification · Formal Methods

1 Introduction

Integer multipliers are crucial components in processing units. Ensuring their
correctness through formal verification is essential; however, historically, veri-
fying them has proven to be challenging [4,6,15,18]. Automated methods like
SAT solving, BDDs, and computer algebra systems have either failed to scale or
demonstrated limited applicability in this context [2,8,12,16,25]. On the other
hand, the S-C-Rewriting method has been shown to be very efficient in formally
verifying a large variety of RTL designs [21,24,25,26].

S-C-Rewriting and auxiliary programs are packaged into the VeSCMul tool
(pronounced “vesk-muhl”). VeSCMul is designed to be user-friendly and com-
prehensive for sound, fast, and automatic verification of multiplier-centric RTL
designs. It has an improved user interface tailored for non-experts, simplifying
tool usage. VeSCMul has also introduced the support for fully automatic verifi-
cation with its new adder detection program. VeSCMul has undergone extensive
testing on thousands of public benchmarks as well as proprietary industrial de-
signs at Intel Corporation. Its open-source and free-license status enables others
to use this tool for similar verification tasks.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 340–349, 2024.
https://doi.org/10.1007/978-3-031-57246-3_19

Mertcan Temel(B)

https://doi.org/10.1007/978-3-031-57246-3_19
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_19&domain=pdf
https://orcid.org/0000-0002-9738-587X
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

This paper presents VeSCMul, and it is outlined as follows. Sec. 2 walks
through a demo for VeSCMul, showing the user-interface. Sec. 3 gives an overview
of the tool flow. Sec. 4 lists some of the noteworthy features. Sec. 5 delivers exper-
imental results on both public and proprietary designs. Sec. 6 discusses related
work and concludes the paper.

2 Installation and a Demo

VeSCMul is implemented in the ACL2 theorem prover and programming lan-
guage [10], and it is fully verified. VeSCMul is open-source with the MIT license,
included as a Community Book in the ACL2 distribution on Github, which
can be found at https://github.com/acl2/acl2 under books/projects/vescmul.
Installing ACL2 and building the books will bring along VeSCMul.

A comprehensive and up-to-date documentation for VeSCMul is available as
part of ACL2’s manual, accessible at http://acl2.org/manual. This documenta-
tion is extensive, covering thousands of topics from ACL2 sources and Commu-
nity Books. Throughout this paper, various documentation topics are referenced
using the notation “:doc <topic>”.

Once ACL2 is installed and books are built, users can run a VeSCMul demo
by running the events from Listing 1.1 within an ACL2 interactive session.

Listing 1.1: Simple demo running VeSCMul on a signed 64x64-bit multiplier with
Booth radix-4 encoding, Dadda tree, and Han-Carlson adder.

(include -book "projects/vescmul/top" :dir :system)

(vescmul -parse
:name my -multiplier -example
:file "DT_SB4_HC_64_64_multgen.sv"
:topmodule "DT_SB4_HC_64_64 ")

(vescmul -verify
:name my-multiplier -example
:concl (equal RESULT

(loghead 128 (* (logext 64 IN1)
(logext 64 IN2)))))

The first event (include-book) loads VeSCMul and required libraries, which
takes about a minute. Alternatively, an executable can be created for instant
loading (see :doc save-exec). The second event (vescmul-parse) parses the
target design, taking a few seconds. The Verilog file is available in the ACL2 git
repository under the books/projects/vescmul/demo directory. The third event
(vescmul-verify) uses VeSCMul to verify the design. :concl specifies the con-
jecture, with RESULT as the output signal name, and IN1 and IN2 as input signal
names. logext sign-extends bit-vectors (represented as integers), and loghead
zero-extends or, in other words, truncates them. The inputs are 64-bit signed
numbers, producing a 128-bit multiplication result. VeSCMul can fully verify
this design in 1-2 seconds (as tested on a Macbook M1 pro).

VeSCMul: Verify Multipliers 341

https://github.com/acl2/acl2/tree/master/books/projects/vescmul
http://acl2.org/manual?topic=ACL2____VESCMUL
http://acl2.org/manual?topic=ACL2____SAVE-EXEC
http://acl2.org/manual?topic=ACL2____VESCMUL-PARSE
https://github.com/acl2/acl2/blob/master/books/projects/vescmul/demo
http://acl2.org/manual?topic=ACL2____VESCMUL-VERIFY

3 Tool Flow

The vescmul-parse and vescmul-verify utilities are two LISP macros that
invoke various programs to parse and then verify target designs.

The vescmul-parse macro packs VL/SV/SVTV utilities to parse Verilog de-
signs and create symbolic simulation vectors. These utilities are publicly available
and come with the ACL2 installation. They have been developed and used in
industry (i.e., Centaur Technology and Intel Corporation) (see :doc sv).

The vescmul-verify macro gathers the symbolic simulation objects, detects
adder components, applies the S-C-Rewriting algorithm, and maybe utilizes SAT
solving in the end. The program flow is shown in Fig. 1. These steps are explained
as follows.

Fig. 1: Flow chart of vescmul-verify. (1) User states a conjecture with high-
level specification. (2) VeSCMul receives a sea of gates from the design. (3) The
tool identifies and rebuilds half/full-adders in this sea of gates. (4) The design
and the spec are rewritten with the S-C-Rewriting methodology. (5) If rewriting
is not conclusive, rewritten conjecture can be passed to FGL for SAT solving.

(1) Specification is provided by the user, stating a relation between input and
output signals. This is typically a combination of multiplication (*), addition (+),
subtraction (-), truncation/zero-extension (loghead), sign-extension (logext),
part selection (part-select), and possibly user-defined functions.

(2)(3) S-C-Rewriting algorithm needs to differentiate and specially rewrite
adder components (e.g., full/half-adders) in a design. In previous work [25,26],
S-C-Rewriting algorithm was used only for designs whose design hierarchy in-
formation around adders was readily available. VeSCMul has been improved to
now support flattened designs. This is achieved by an internal program that goes
through a sea of gates to identify and mark the adder components before ap-
plying the S-C-Rewriting algorithm. Tests have shown that this program works
very well for successful verification of various architectures (see Sec. 5). Should

M. Temel342

http://acl2.org/manual?topic=ACL2____SV

the program not identify some adders and the verification attempt fails because
of that, users may also pass hierarchical verification hints (see :doc vescmul).

(4) When VeSCMul applies S-C-Rewriting, the rewriter tries to rewrite both
the specification and the design to the same form (i.e., s-c-form [25]), and the two
sides are compared syntactically. For correct multiplier designs, this is usually
enough to prove the conjecture.

(5) If S-C-Rewriting cannot show the conjecture to be correct, it returns its
rewritten form. Users have the option to automatically use the FGL utility [19]
(see :doc fgl) that can bit-blast the rewritten conjecture, perform AIG trans-
formations, and invoke an external SAT solver like CaDiCaL [1]. FGL is also a
verified program. This can either generate counterexamples for false conjectures,
or help finalize the proofs in some fringe cases. For example, in x86 multiplier
designs, extra circuitry is used to calculate flags based on multiplication results,
such as the overflow flag that is set when a certain portion of the result are not
homogeneously 0s or 1s. VeSCMul by itself may not be able to process the extra
flag logic; however, it can rewrite and simplify the multiplication component,
send the rewritten expression to an external SAT solver through FGL, and final-
ize such proofs in a matter of seconds or minutes. Note that if the multiplication
component is not rewritten as intended by S-C-Rewriting, it is unlikely for a
SAT solver to scale and finish the proofs for operand sizes greater than 16-bits.

4 Notable Features and Compatible Tools

This section highlights some of the useful and noteworthy features of VeSCMul
as well as compatible tools.

Customizable specification: Users can state their own specifications to
verify various multiplier configurations such as multiply-add, dot product, and
multipliers with shifted, truncated and/or saturated outputs.

Automatic adder detection: VeSCMul includes an adder-detection pro-
gram that identifies and marks adders before employing the S-C-Rewriting algo-
rithm. This makes the overall verification procedure fully automatic for a large
variety of multiplier designs (see Sec. 5 for experiments).

End-to-end verified: The author has rigorously verified, using ACL2, that
VeSCMul’s all rewriting operations on given conjectures are sound. Users can
place high confidence in the results when a design is claimed to be correct.
Verifying such a substantial program is a complex process, demanding ACL2
expertise [20,21,22].

Exporting a clean multiplier with design hierarchy: The included
adder-detection program can be used as a stand-alone feature. Given a flat-
tened multiplier design, VeSCMul can export a functionally equivalent Verilog
module with adder components separated as half/full-adder submodules. This
feature may be particularly useful for researchers addressing the multiplier veri-
fication problem, where adder detection can be a common challenge [7,11,12,14].
For soundness, VeSCMul includes a mechanism for formal equivalence checking
between the original and exported designs.

VeSCMul: Verify Multipliers 343

http://acl2.org/manual?topic=ACL2____VESCMUL
http://acl2.org/manual?topic=FGL____FGL

Integration into other verification flows: Proofs generated by VeSCMul
can be integrated into other ACL2-based verification workflows. For instance,
when verifying floating-point fused-multiply-add (FMA) operations, which often
involves decomposing the design into integer multiplication and post-multiplica-
tion parts, VeSCMul can be used for the multiplication part while SAT solving
can be employed for the rest. Existing and actively used decomposition tool flows
in ACL2 (see :doc decomposition-proofs) and VeSCMul are compatible.

Verification of sequential circuits: VeSCMul can handle sequential cir-
cuits, including pipelined designs. Additional key arguments can be provided to
vescmul-parse to verify such designs (see :doc vescmul-parse). Modules with
control logic reusing the same circuitry for various arithmetic operations (e.g.,
see :doc multiplier-verification-demo-2) are also supported.

Waveform generation: VeSCMul is compatible with another tool (see :doc
svtv-debug$) for generating waveforms in the VCD format. This capability can
be valuable for pinpointing the cause of bugs in case of counterexamples.

5 Experiments

VeSCMul has undergone extensive testing and utilization across various architec-
tures in both public benchmarks and proprietary x86 processor design projects
at Centaur Technology and Intel Corporation.

Various benchmarks are gathered for experiments using publicly available
generators [3,13,23]1. Summation trees include Dadda (dt), Wallace (wt), 4-to-
2 compressor (4:2), array (ar), redundant binary addition (rbat), balanced de-
lay (bdt), overturned stairs (os) trees. Partial products include signed/unsigned
(s/u) simple (sp), Booth radix-2 (b2), radix-4 (r4), radix-8 (r8), radix-16 (r16)
encodings. Final stage adders include block carry lookahead (bcla), carry looka-
head (cla), carry-select (csel), Ladner-Fischer (lf), carry-skip (csk), conditional
sum (cond), Brent-Kung (bk), ripple-carry (rp), Kogge-Stone (ks), Han-Carlson
(hc), J. Sklansky conditional (jsk) adders.

Table 1 contains a large number of benchmarks to compare the performance
of VeSCMul to other prominent verification tools: AMulet [8] and RevSCA2 [12]
that target n×n-bit multipliers with 2n-bit results. The newest version of AMulet
(AMulet2) timed out for the majority of the benchmarks; the owner is notified,
and AMulet1 is used in the experiments instead. The results for AMulet1 includes
the time to check for proof certificates. RevSCA2 is neither a verified program
nor does it produce certificates to check its results. These experimental results
show that VeSCMul scales much better for large multipliers.

In addition to standard input/output sizes (n × n-bit multipliers with 2n-
bit results), Table 2 includes VeSCMul’s verification results for variations such
as multiply-add (e.g., 64× 64 + 64), multipliers with asymmetric operand sizes
(e.g., 10 × 1024), shifted/truncated outputs (e.g., 64 × 64[95:32] returns the
output bit positions from 32 to 95), and dot product (e.g., 8(16× 16) + 32 is an
1 All tests are available at https://temelmertcan.github.io/mult-experiments.html, or

the peer-reviewed artifact is available at https://zenodo.org/records/10048797

M. Temel344

http://acl2.org/manual?topic=SV____DECOMPOSITION-PROOFS
http://acl2.org/manual?topic=ACL2____VESCMUL-PARSE
http://acl2.org/manual?topic=RP____MULTIPLIER-VERIFICATION-DEMO-2

Table 1: Proof-time results with success rates for a large set of nxn-bit multipliers
Op. Size PP Benchmarks RevSCA2 [12] AMulet1 [7] VeSCMul

32x32 sp 48 0.5s (77%) 0.4s (100%) 0.5s (100%)
r2 48 0.8s (62%) 1.4s (100%) 0.7s (100%)
r4 48 1.4s (87%) 1.3s (91%) 0.6s (100%)
r8 48 241s (44%) TO (0%) 0.7s (100%)
r16 48 TO (0%) TO (0%) 1.9s (100%)

64x64 sp 54 11s (77%) 1.9s (100%) 1.7s (100%)
r2 48 17s (62%) 32s (100%) 2.6s (100%)
r4 240 19s (75%) 4.9s (88%) 2.8s (90%)
r8 48 1630s (19%) TO (0%) 2.7s (100%)
r16 48 TO (0%) TO (0%) 8s (100%)

128x128 sp 54 83s (65%) 11s (100%) 6.6s (100%)
r2 48 356s (52%) 928s (100%) 10.1s (100%)
r4 48 642s (50%) 274s (91%) 8.4s (100%)
r8 48 TO (0%) TO (0%) 11s (100%)
r16 48 TO (0%) TO (0%) 37s (100%)

256x256 sp 48 2501s (65%) 82s (100%) 27s (100%)
r4 48 TO (0%) 9529s (91%) 33s (100%)

512x512 r4 6 TO (0%) TO (0%) 138s (100%)

1024x1024 r4 6 TO (0%) TO (0%) 776s (100%)

Multiplier sizes range from 32x32 to 1024x1024, grouped wrt. partial product algorithm.
Total of 1032 different benchmarks are used and the timing results of successful proof
attempts are averaged. The tools could not verify all the benchmarks and the success
ratios are given in parentheses. VeSCMul is used only for fully automatic verification
(without a SAT solver), but it can verify the missing cases with user-provided hints.
Time-out (TO) is set to 3600 seconds (1 hour) for up to 128x128; 16200 seconds (4.5
hours) for the rest. Collected on Intel® E-2378G CPU, 32GB memory.

Table 2: Proof-time and memory allocation for various designs
Arch. Function Time, Mem Arch. Function Time, Mem

dt-ub4-bcla 64x64 2.1s, 0.3GB 4:2-ub4-cla 64x64 9.7s, 0.7GB

ar-sb4-csel 64x64 2.0s, 0.3GB rbat-sb4-lf 64x64 2.4s, 0.3GB

bdt-sb4-csk 64x64 2.4s, 0.3GB os-sb4-cond 64x64 1.8s, 0.3GB

dt-ssp-bk 64x64 1.7s, 0.3GB ar-usp-rp 64x64 1.0s, 0.2GB

4:2-ub4-ks 64x64 3.7s, 0.5GB 4:2-ub8-lf 64x64 3.4s, 0.5GB

dt-sb16-hc 64x64 8.0s, 1.9GB wt-ub16-bk 64x64 8.3s, 1.9GB

dt-ssp-bk 128x128 5.9s, 1.0GB 4:2-ub4-hc 128x128 13.3s, 1.8GB

wt-usp-lf 256x256 28s, 4.4GB dt-sb4-jsk 256x256 27s, 4.4GB

dt-sb4-jsk 512x512 130s, 19GB dt-sb4-jsk 1024x1024 725s, 83GB

dt-sb4-ks 10x1024 32s, 5.1GB dt-sb4-ks 1024x10 32s, 5.7GB

dt-sb2-bk 64x64+64 2.5s, 0.4GB wt-sb4-lf 64x64[63:0] 0.9s, 0.2GB

wt-sb4-lf 64x64[95:32] 1.8s, 0.3GB wt-sb4-lf 64x64[127:64] 2.2s, 0.4GB

wt-sb8-bk 8(16x16)+32 2.0s, 0.3GB dt-sb4-ks 4(32x64)+128 5.2s, 1.1GB

VeSCMul: Verify Multipliers 345

8-point dot product with 16-bit operands accumulating onto a 32-bit number).
Comparable verification tools do not support these configurations. VeSCMul can
fully automatically verify these designs without user hints or SAT solvers.

Moreover, around 7500 different multiplier designs with diverse architectures,
operand sizes, operations, truncation, and shifting were randomly generated [23].
Overall, VeSCMul achieved a 98% success rate for fully automatic verification
without hints or SAT solvers. The remaining 2% is mostly made up of multipliers
with a special 7-to-3 compressor tree, and shifted multipliers, but they could still
be verified by VeSCMul with a user-provided design hierarchy hint.

VeSCMul has also proven successful in industrial designs, particularly for
Intel x86 instructions with various functional configurations, including multiply-
accumulate, dot product, output shifting/truncation, flag calculations based on
multiplication results, and saturation. In some cases, the assistance of a SAT
solver becomes necessary (for flags and saturation). These designs can be fully
verified rapidly and automatically, with results similar to those in the public
designs. To the best of the author’s knowledge, VeSCMul is the first tool to
achieve comparable verification tasks scalably and automatically.

Additionally, VeSCMul has played a vital role in the verification flow of
floating-point multiply and fused-multiply-add operations. Verifying these de-
signs is notably challenging, with no known fully automated verification method.
We employ decomposition techniques [5,17], where VeSCMul is used for the mul-
tiplication part, significantly reducing manual effort. Complete verification of
single and double precision operations can be completed in under an hour.

6 Related Work and Conclusion

AMulet [8], RevSCA2 [12], and DyPoSUB [14] are other state-of-the-art tools
for multiplier verification. Like VeSCMul, AMulet prioritizes soundness and can
produce proof certificates. In contrast, RevSCA2 and DyPoSUB lack such proofs
or mechanisms, and DyPoSUB has been identified as unsound [9]. Additionally,
these tools primarily focus on verifying n×n-bit multipliers with 2n-bit results.
On the other hand, VeSCMul stands out by offering scalable and automatic
verification for a broader range of multiplier-centric arithmetic circuits, and it
allows users to specify their conjectures. These target designs can encompass reg-
ular multipliers, multiply-add operations, dot products, and operations involving
shifting, truncation, accumulation, and saturation.

This paper has showcased VeSCMul for multiplier verification, which has
demonstrated favorable results in experiments involving both public and propri-
etary RTL designs. This tool is open-source and compatible with other hardware
verification tools. It has an improved user-interface tailored for ACL2 novices.
The tool itself is fully verified, so users can have a high level of confidence in its
soundness. Future work includes adding support for more input formats (cur-
rently limited to System Verilog) such as AIGER and DIMACS CNF, and further
enhancements in automation to handle corner-case designs that currently require
user hints for verification.

M. Temel346

References

1. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

2. Ciesielski, M., Su, T., Yasin, A., Yu, C.: Understanding Algebraic Rewrit-
ing for Arithmetic Circuit Verification: a Bit-Flow Model. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (2019).
https://doi.org/10.1109/tcad.2019.2912944

3. Homma, N., Watanabe, Y., Aoki, T., Higuchi, T.: Arithmetic module generator
(AMG) (2006), https://www.ecsis.riec.tohoku.ac.jp/views/amg-e

4. Hunt, W.A., Swords, S., Davis, J., Slobodova, A.: Use of Formal Verification
at Centaur Technology. In: Hardin, D. (ed.) Design and Verification of Micro-
processor Systems for High-Assurance Applications, pp. 65–88. Springer (2010).
https://doi.org/10.1007/978-1-4419-1539-9_3

5. Jacobi, C., Weber, K., Paruthi, V., Baumgartner, J.: Automatic formal verification
of fused-multiply-add FPUs. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe - Volume 2. p. 1298–1303. DATE ’05, IEEE Computer
Society, USA (2005). https://doi.org/10.1109/DATE.2005.75

6. Kaivola, R., O’Leary, J.: Verification of Arithmetic and Datapath Circuits with
Symbolic Simulation, pp. 1–52. Springer Nature Singapore, Singapore (2022).
https://doi.org/10.1007/978-981-15-6401-7_37-1

7. Kaufmann, D., Biere, A., Kauers, M.: Verifying Large Multipliers by Combining
SAT and Computer Algebra. In: 2019 Formal Methods in Computer Aided Design
(FMCAD). pp. 28–36 (Oct 2019). https://doi.org/10.23919/FMCAD.2019.8894250

8. Kaufmann, D., Biere, A.: AMulet 2.0 for verifying multiplier circuits. In: Groote,
J.F., Larsen, K.G. (eds.) International Conference on Tools and Algorithms for the
Construction and Analysis of Systems , TACAS 2021. Lecture Notes in Computer
Science, vol. 12652, pp. 357–364. Springer (2021). https://doi.org/10.1007/978-3-
030-72013-1_19

9. Kaufmann, D., Biere, A.: Fuzzing and delta debugging and-inverter graph verifica-
tion tools. In: Kovács, L., Meinke, K. (eds.) Tests and Proofs. pp. 69–88. Springer
International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-09827-
7_5

10. Kaufmann, M., Moore, J.S.: ACL2 and its applications to digital system verifi-
cation. In: Hardin, D.S. (ed.) Design and Verification of Microprocessor Systems
for High-Assurance Applications, pp. 1–21. Springer (2010), https://doi.org/10.
1007/978-1-4419-1539-9_1

11. Liew, V., Beame, P., Devriendt, J., Elffers, J., Nordström, J.: Verifying prop-
erties of bit-vector multiplication using cutting planes reasoning. In: 2020
Formal Methods in Computer Aided Design (FMCAD). pp. 194–204 (2020).
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_27

12. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to
Bring Light into Backward Rewriting for Big and Dirty Multipliers. In: Proceedings
of the 56th Annual Design Automation Conference 2019. pp. 185:1–185:6. DAC ’19,
ACM, New York, NY, USA (2019). https://doi.org/10.1145/3316781.3317898

13. Mahzoon, A., Große, D., Drechsler, R.: SCA multiplier generator GenMul (2019),
https://github.com/amahzoon/genmul

VeSCMul: Verify Multipliers 347

https://doi.org/10.1109/tcad.2019.2912944
https://www.ecsis.riec.tohoku.ac.jp/views/amg-e
https://doi.org/10.1007/978-1-4419-1539-9_3
https://doi.org/10.1109/DATE.2005.75
https://doi.org/10.1007/978-981-15-6401-7_37-1
https://doi.org/10.23919/FMCAD.2019.8894250
https://doi.org/10.1007/978-3-030-72013-1_19
https://doi.org/10.1007/978-3-030-72013-1_19
https://doi.org/10.1007/978-3-031-09827-7_5
https://doi.org/10.1007/978-3-031-09827-7_5
https://doi.org/10.1007/978-1-4419-1539-9_1
https://doi.org/10.1007/978-1-4419-1539-9_1
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_27
https://doi.org/10.1145/3316781.3317898
https://github.com/amahzoon/genmul

14. Mahzoon, A., Große, D., Scholl, C., Drechsler, R.: Towards formal verifi-
cation of optimized and industrial multipliers. In: 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE). pp. 544–549 (2020).
https://doi.org/10.23919/DATE48585.2020.9116485

15. Russinoff, D.M.: Formal Verification of Floating-Point Hardware Design: A Math-
ematical Approach. Springer (2019). https://doi.org/10.1007/978-3-319-95513-1

16. Sayed-Ahmed, A., Große, D., Kühne, U., Soeken, M., Drechsler, R.: Formal Ver-
ification of Integer Multipliers by Combining Gröbner Basis with Logic Reduc-
tion. In: Proceedings of the 2016 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). pp. 1048–1053. Research Publishing Services (2016).
https://doi.org/10.3850/9783981537079_0248

17. Slobodová, A.: Challenges for formal verification in industrial setting. In: Brim,
L., Haverkort, B., Leucker, M., van de Pol, J. (eds.) Formal Methods: Applications
and Technology. pp. 1–22. Springer Berlin Heidelberg, Berlin, Heidelberg (2007),
https://doi.org/10.1007/978-3-540-70952-7_1

18. Slobodova, A., Davis, J., Swords, S., Hunt, W.A.: A Flexible Formal Ver-
ification Framework for Industrial Scale Validation. In: Proceedings of the
9th IEEE/ACM International Conference on Formal Methods and Models for
Codesign (MEMOCODE). pp. 89–97. IEEE/ACM, Cambridge, UK (2011).
https://doi.org/10.1109/memcod.2011.5970515

19. Swords, S.: New rewriter features in FGL. Electronic Proceedings in Theoretical
Computer Science 327, 32–46 (Sep 2020). https://doi.org/10.4204/eptcs.327.3

20. Temel, M.: RP-Rewriter: An optimized rewriter for large terms in
ACL2. vol. 327, p. 61–74. Open Publishing Association (Sep 2020).
https://doi.org/10.4204/eptcs.327.5

21. Temel, M.: Automated, Efficient, and Sound Verification of Integer Multipliers.
Ph.D. thesis, The University of Texas at Austin (2021), https://repositories.
lib.utexas.edu/handle/2152/88056

22. Temel, M.: Verified implementation of an efficient term-rewriting algorithm for
multiplier verification on ACL2. International Workshop on the ACL2 The-
orem Prover and its Applications (ACL2 2022) 359, 116–133 (may 2022).
https://doi.org/10.4204/eptcs.359.11

23. Temel, M.: Multgen: a fast multiplier generator (2023), https://github.com/
temelmertcan/multgen

24. Temel, M.: Formal Verification of Booth Radix-8 and Radix-16 Multipliers. In: De-
sign, Automation & Test in Europe Conference & Exhibition (DATE) (to appear)
(2024)

25. Temel, M., Hunt, W.A.: Sound and automated verification of real-world
RTL multipliers. In: Formal Methods in Computer Aided Design, FMCAD
2021, New Haven, CT, USA, October 19-22, 2021. pp. 53–62. IEEE (2021).
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_13

26. Temel, M., Slobodova, A., Hunt, W.A.: Automated and scalable verification of
integer multipliers. In: Computer Aided Verification. pp. 485–507. Springer Inter-
national Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_23

M. Temel348

https://doi.org/10.23919/DATE48585.2020.9116485
https://doi.org/10.1007/978-3-319-95513-1
https://doi.org/10.3850/9783981537079_0248
https://doi.org/10.1007/978-3-540-70952-7_1
https://doi.org/10.1109/memcod.2011.5970515
https://doi.org/10.4204/eptcs.327.3
https://doi.org/10.4204/eptcs.327.5
https://repositories.lib.utexas.edu/handle/2152/88056
https://repositories.lib.utexas.edu/handle/2152/88056
https://doi.org/10.4204/eptcs.359.11
https://github.com/temelmertcan/multgen
https://github.com/temelmertcan/multgen
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_13
https://doi.org/10.1007/978-3-030-53288-8_23

VeSCMul: Verify Multipliers 349

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Logical Treatment of Finite Automata

{nishant2,osebe2,xc3,grosu}@illinois.edu

Abstract. We present a sound and complete axiomatization of finite
words using matching logic. A unique feature of our axiomatization is
that it gives a shallow embedding of regular expressions into matching
logic, and a logical representation of finite automata. The semantics
of both expressions and automata are precisely captured as matching
logic formulae that evaluate to the corresponding language. Regular
expressions are matching logic formulae as is, while the embedding of
automata is a structural analog—computational aspects of automata are
captured as syntactic features. We demonstrate that our axiomatization
is sound and complete by showing that runs of Brzozowski’s procedure for
equivalence checking correspond to matching logic proofs. We propose this
as a general methodology for producing machine-checkable formal proofs,
enabled by capturing structural analogs of computational artifacts in logic.
The proofs produced can be efficiently checked by the Metamath Zero
verifier. Work presented in this paper contributes to the general scheme of
achieving verifiable computing via logical methods, where computations
are reduced to logical reasoning, encoded as machine-checkable proof
objects, and checked by a trusted proof checker.

1 Motivation

Regular expressions are a powerful lens for studying the description, classification,
and implementation of regular languages [14]. A typical presentation of the syntax
of extended regular expressions (ERE) over a finite alphabet A is as follows:

α := ∅ | ϵ | a ∈ A | α1 · α2 | α1 + α2 | α∗ | ¬α

where ϵ is the empty word, α1 · α2 is concatenation, α1 + α2 is alternation (aka
choice; sum; union), and α∗ is the Kleene star. Given a regular expression α,
L(α) is the set of finite words that match α.

A second lens, of finite automata, allows us to view these languages from a
computational perspective. [14] and [27] show that a language is regular if and
only if it is accepted by a finite automaton. Besides providing deeper insight into
the study of languages, this dual viewpoint has practical importance—some tasks
are easier to tackle when viewed under one lens than another. For example, in
the implementation of a parser, it is easier to express the desired language as an
expression, whereas an automaton may be used to recognize that language. Model
checking [13], and runtime monitoring [3] also exploit these dual perspectives.

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 350–369, 2024.
https://doi.org/10.1007/978-3-031-57246-3_20

Nishant Rodrigues(B) , Mircea Octavian Sebe , Xiaohong Chen ,
and Grigore Roşu

University of Illinois at Urbana-Champaign, Champaign, USA

https://doi.org/10.1007/978-3-031-57246-3_20
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_20&domain=pdf
https://orcid.org/0000-0001-6253-9173
https://orcid.org/0000-0002-1503-4583
https://orcid.org/0000-0003-3208-4061
https://orcid.org/0000-0002-3102-0421
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

Much research has been carried out in the logical aspects of regular expressions,
and the computational aspects of finite automata. For example, [23] gives an
axiomatization of regular expressions in terms of eleven axioms and two inference
rules, while automata are used extensively to study complexity theory [13].

In this paper, we instead study logical aspects of automata. We present a new
axiomatization of finite words using matching logic [8]. This axiomatization
gives us a shallow embedding of regular expressions into matching logic where
expressions are matching logic formulae as is. Uniquely, we can also represent
automata as logical formulae. These formulae are a structural analog of the
automaton—computational aspects such as non-determinism and cycles are
captured using syntactic constructs such as logical disjunction and fixpoint
operators. We will compare our shallow embedding with prior work using second-
order logic, and other formalizations and axiomatizations in Section 2.

Based on our axiomatization, we propose a general technique for generating
machine checkable proofs of algorithms that manipulate finite automata. We
show that this technique is practical by generating proofs of equivalence between
regular expressions from a derivative of Brzozowski’s method [4], producing
concrete proofs in matching logic’s proof system realized in Metamath Zero [6].
As touched on in Section 7, an extension to this work may produce proofs for a
symbolic execution based compiler [25] allowing us to trust its correctness.

Work presented here contributes to the scheme of verifiable computing [2] via
logical methods: computations are reduced to logical reasoning, encoded as
machine-checkable proofs, and checked by a small trusted checker, thus reducing
our trust-base to the checker while avoiding the expense of full formal verification.

The rest of the paper is organized as follows:

– Section 2 briefly describes prior work in relation to our work.
– Section 3 reviews regular expressions, automata and related concepts.
– Section 4 introduces matching logic and presents a model of finite words.
– Section 5 shows how we may axiomatize this model, and prove equivalent

regular expressions and automata.
– Section 6 gives a brief description of our implementation.
– Section 7 lays out some future avenues for research.

Detailed proofs may be found in the companion technical report [21].

2 Related Work

Monadic Second-order-logic (MSO) over Words There is a well-known
connection between MSO and regular languages. Büchi, Elgot, and Trakhtenbrot
showed that MSO formulae and regular expressions are equally expressive [5, 11,
28]. Moreover, the transformation from expressions to formulae and back is easily
computable [26]. Models are sets of labeled positions, representing a word. The
set of models that satisfy a formula give us its language—e.g. the MSO formula

A Logical Treatment of Finite Automata 351

⊥ defines the empty language—no word satisfies it, while ∃x. Pax ∧ ∀y. x = y
defines the language containing the word a. Here, Pax indicates the letter at
position x is a. The concatenation of languages may be defined as:

∃X. ∀y, z. ((y ∈ X ∧ z ̸∈ X) → y < z) ∧ [φα]x∈X ∧ [φβ]x ̸∈X
Here, [φ]ψ(x) denotes the relativization of the formula φ to the formula ψ, a
transformation that forces it to apply to a particular subdomain of the model.
The translation of Kleene star is even more complex. This connection has been
used, e.g. in the verification of MSO formulae [29].

One concern about this connection between MSO and regular expressions is that
the translation of expressions is quite involved, including complex auxiliary clauses
and quantification, as well as the relativization transformation. Our goal here is
to define a shallow embedding, rather than a translation—regular expressions
are directly embedded as matching logic with minimal representational distance.

Salomaa’s Axiomatization In [23] Salomaa provides a complete axioma-
tization of regular expressions that may be used to prove equivalences. This
axiomatization is specific to unextended regular expressions and does not support
other representations such as negations in EREs, and finite automata.

Deep Embeddings of Automata and Languages There are several existing
formalizations of regular expressions and automata using mechanical theorem
provers, such as Coq [10] and Isabelle [16]. To the best of our knowledge, all
these formalizations use deep embeddings. In [10], the authors formalize regular
expressions and Brzozowski derivatives, with the denotations of regular expres-
sions defined using a membership predicate. Besides proving the soundness of
Brzozowski’s method, the authors also prove that the process of taking derivatives
terminates through a notion of finiteness called inductively finite sets. This is
something that is not likely provable in a shallow embedding like ours.

Fixpoint Reasoning in Matching Logic We consider our work an extension
of the work in [9], where the authors begin tackling the problem of fixpoint
reasoning in matching logic. Their goal was to use matching logic as unified
framework for fixpoint reasoning across domains. Using a small set of derived
matching logic inference rules, they proved various results in LTL, reachability,
and separation logic with inductive definitions. We employ many of the techniques
first described there, but in addition deal with more complex inductive proofs
and recursion schemes, besides producing formal proof certificates.

3 Preliminaries

3.1 Languages, Automata, and Expressions
A language is a set of finite sequences over letters of an alphabet. ERE and finite
automata are two ways to represent a class of languages called regular languages.

N. Rodrigues et al.352

Definition 1. Let A = {a1, a2, . . . an} be a finite alphabet. Then ERE over the
alphabet A are defined using the following grammar:

α := ∅ | ϵ | a ∈ A | α · α | α+ α | α∗ | ¬α

The language that an ERE represents, denoted L(α) is defined inductively:

L(∅) = ∅ L(ϵ) = {ϵ} L(a) = {a}
L(α1 + α2) = L(α1) ∪ L(α2)
L(α1 · α2) = {w1 · w2 | w1 ∈ L(α1) and w2 ∈ L(α2)}

L(α∗) =
⋃∞
n=0 L(αn) where α0 = ϵ, and αn = α · αn−1

L(¬α) = A∗ \ L(α)

Since EREs include both complement and choice, other operators like intersection,
subsumption and equivalence are definable as notation. We denote these as
α∧β ≡ ¬(α+¬β), α→β ≡ ¬α+β, and α↔ β ≡ (α→β)∧ (β→α) respectively.

Definition 2. A non-deterministic finite automaton (NFA) is a tuple Q =
(Q,A, δ, q0, F), where

– Q is a finite set of states,
– A is a finite set of input symbols called the alphabet,
– δ : Q×A→ P(Q) is a transition function,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is the set of accepting states.

If range(δ) has only singleton sets, Q is a deterministic finite automaton (DFA).

3.2 Brzozowski’s Method
In [4], Brzozowski introduced an operation over languages called its derivative,
denoted δa(α). This operation “consumes” a prefix from each word in the language:

Definition 3. Given a language L and a word s, the derivative of L with respect
to s is denoted by δs(L) and is defined as {t | s · t ∈ L}.

For EREs, it turns out that the derivative can also be defined syntactically, as a
recursive function, through the following equalities:

δa(ϵ) = ∅
δa(∅) = ∅
δa(a) = ϵ

δa(b) = ∅ if a ̸= b.
δϵ(α) = α

δa(α1 + α2) = δa(α1) + δa(α1)
δa(α1 · α2) = δa(α1) · α2 + α1|ϵ · δa(α2)

δa(α∗) = δa(α) · α∗

δa(¬α) = ¬δa(α)
δa·w(α) = δw(δa(α))

Here, α |ϵ is ϵ if the language of α contains ϵ and ∅ otherwise. There are two
properties of derivatives that are important to us. First, every ERE may be
transformed into an equivalent one partitioning its language per the initial letter:

A Logical Treatment of Finite Automata 353

Theorem 1 (Brzozowski Theorem 4.4). Every ERE α can be expressed as:

α = α|ϵ +
∑
a∈A

a · δa(α)

Second, repeatedly taking the derivative converges:

Theorem 2 (Brzozowski Theorem 5.2). Two EREs are similar iff they are
identical modulo associativity, commutativity and idempotency of the + operator.
Every ERE has only a finite number of dissimilar derivatives.

These two properties give rise to an algorithm for converting an ERE into a DFA,
illustrated in Figure 1. The automaton is constructed starting from the root node,
identifying each node with an ERE. The root node is identified with the original
ERE. Every node has transitions for each input letter to the node identified
by the derivative. A state is accepting if its language contains the empty word,
a property easily checked as a syntactic function of the identifying ERE. This
process must terminate by Theorem 2, giving us a DFA. We can check if the
ERE is valid by simply checking that all states are accepting.

4 Matching Logic and the Standard Model of Words

In this section, we will review the syntax and semantics of matching logic and
present a matching logic model W of finite words. We show how it may be used
to embed both EREs and finite automata. Matching logic, originally proposed
in [22], was revised in [8] to include a fixpoint operator. We present a variant,
called polyadic matching logic, omitting sorts since we do not need them1.

4.1 An Overview of Matching Logic

Matching logic has three parts—a syntax of formulae, also called patterns; a
semantics, defining a satisfaction relation ⊨; and a Hilbert-style proof system,
defining a provablility relation ⊢. We will only go over the first two, and then
return to matching logic’s proof system in the Section 5.

Syntax Matching logic formulae, or patterns, are built from propositional
operators, symbol applications, variables, quantifiers, and a fixpoint binder.

Definition 4. Let EVar, SVar, Σ be disjoint countable sets. Here, EVar contains
element variables, SVar contains set variables and the signature Σ = {Σn} is an
arity-indexed set of symbols. A Σ-pattern over Σ is defined by the grammar:

φ := σ(φ1, . . . , φn) | ¬φ | φ1 ∨ φ2 | φ1 = φ2 | φ1 ⊆ φ2 | x | ∃x. φ | X | µX.φ
1 It has since been observed that sorts may be defined axiomatically, and it is unneces-

sary to build them into the logic. It is called polyadic to distinguish it from applicative
matching logic with only nullary symbols but includes an explicit application operator.

N. Rodrigues et al.354

Note that we have assumed more operators than necessary—equality and subset
may be defined in terms of the remaining operators. Please refer to [8] for details.
We assume the usual notation for operators such as ⊤, ∨, ∧, ∀, ν etc. Here, ν is
the greatest fixpoint operator, defined as νX.φ ≡ ¬µX.¬φ[¬X/X].

Semantics: An Informal Overview Matching logic formulae have a pattern
matching semantics. Each pattern φ matches a set of elements |φ| in the model,
called its interpretation. As an example, consider the naturals N as a model
with symbols zero and succ. Here, the pattern ⊤ matches every natural, whereas
succ(x) matches x + 1. Conjunctions and disjunctions behave as intersections
and unions—the φ ∨ ψ matches every pattern that either φ or ψ match.

Unlike first-order logic, matching logic makes no distinction between terms and
formulae. We may write succ(x ∨ y) to match both x + 1 and y + 1. While
unintuitive at first, this syntactic flexibility allows us to shallowly embed varied
and diverse logics in matching logic with ease. Examples include first-order logic,
temporal logics, separation logic, and many more [8, 7]. Formulae are embedded
as patterns with little to no representational distance, quite often verbatim.

Patterns aren’t two valued as in first-order logic. We can restore the classic
semantics by using the set M to indicate “true” and ∅ for “false”. The operators
= and ⊆ are predicate patterns—they are either true or false. For example,
x ⊆ succ(⊤) matches every natural if x is non-zero, and no element otherwise.
This allows us to build constrained patterns of the form φstructure ∧ φconstraints.
Here, φstructure defines the structure, while φconstraints places logical constraints
on matched elements. For example, the pattern x ∧ (x ⊆ succ(⊤)) matches x,
but only if it is the successor of some element—i.e. non-zero.

Existential quantification works just as in first-order logic when working over
predicate patterns. Over more general patterns, it behaves as the union over a set
comprehension. For example, the pattern ∃x. x ∧ (x ⊆ succ(⊤)) matches every
non-zero natural. Finally, the fixpoint operator allows us to inductively build
sets, as in algebraic datatypes or inductive functions. For example, the pattern
µX. zero∨ succ(succ(X)) defines the set of even numbers.

Semantics: A Formal Treatment We will now formally define the semantics
of matching logic. In the interest of brevity we keep things concise. For a more
detailed treatment please refer to [8]. Matching logic patterns are interpreted in
a model, consisting of a nonempty set M of elements called the universe, and an
interpretation σM : Mn → P(M) for each n-ary symbol σ ∈ Σ.

Definition 5 (Matching logic semantics). An M -valuation is a function
EVar∪ SVar → P(M), such that each x ∈ EVar evaluates to a singleton. For a
model M and an M -valuation ρ, the interpretation of patterns is defined as:

A Logical Treatment of Finite Automata 355

|x|ρM = ρ(x), |X|ρM = ρ(X)
|¬φ|ρM = M \ |φ|ρM

|∃x. φ|ρM =
⋃
a∈M

|φ|M,ρ[a/x]

|φ1 ⊆ φ2|ρM =
{
M if |φ1|ρM ⊆ |φ2|ρM
∅ otherwise

|σ(φ1, . . . , φn)|ρM =
⋃

ai∈|φi|ρM

σM (φ1, . . . , φn)

|φ1 ∨ φ2|ρM = |φ1|ρM ∪ |φ2|ρM
|µX.φ|ρM = lfp

{
A 7→ |φ|M,ρ[A/X]

}
|φ1 = φ2|ρM =

{
M if |φ1|ρM = |φ2|ρM
∅ otherwise

For the most part, this definition is as expected. For the predicate patterns, the
corresponding patterns evaluate to M if they hold, otherwise to the empty set.
Besides these, patterns have the obvious evaluation—set and element variables
are evaluated according to ρ; logical operators are evaluated as the corresponding
set operation; symbols as defined by the model; existentials as the union for x
ranging over M ; and µ as the fixpoint of the interpretation of the pattern.

4.2 A Model of Finite Words

Let us introduce a model W as the standard model of finite words. Define
signature ΣWord containing constants ϵ and a for each a ∈ A, and a binary
symbol concat for concatenation. This model allows us to describe languages,
including those of regular expressions and finite automata as patterns.

Definition 6. Let W be a model for the signature ΣWord with universe the set
of finite sequences over alphabet A, and the following interpretations of symbols:

– ϵW := {()},
– for each letter a, aW := {(a)}, and
– concatW(s1, s2) := {s1 · s2}.

Patterns interpreted in model W define languages. ϵ is interpreted as the singleton
set containing the zero-length word, each letter as the singleton set containing the
corresponding single-letter sequence, and finally, concat as the function mapping
each pair of input words to the singleton containing their concatenation.

We may define the empty language simply as ⊥. The concatenation of two
patterns gives the concatenation of their languages. Matching logic’s disjunction
allows us to take the union for any languages, while negation gives us the
complement. Finally, we may define the Kleene closure of a language using the
fixpoint operator—µX. ϵ ∨ φ ·X gives us the Kleene closure of the language of φ.

A Shallow Embedding of Extended Regular Expressions It is easy to
define regular expressions as patterns, once we have the following notation:

∅ ≡ ⊥ (φ+ ψ) ≡ φ ∨ ψ φ∗ ≡ µX. ϵ ∨ (φ ·X)

Any ERE taken verbatim is interpreted in model W as its language.

N. Rodrigues et al.356

(aa)∗ → a∗a

a(aa)∗ → a∗a + ϵ ∅ → ∅

(aa)∗ → a∗a + ϵ + ∅

a b

a

b

b
a

a, b

1

2 3

4

L: 1
pat(1) : a · pat(2) ∨ b · pat(3)

L: 2
pat(2) : µY. ϵ ∨ a · pat(4) ∨ b · pat(3)

L: 4

pat(4) : ϵ ∨ a · pat(2’) ∨ b · pat(3)

L: 3
pat(3) : ...

L: 3

pat(3’) : X

L: 2

pat(2’) = Y

a b

a

b

a b

a

b

2 3

4

2’

3’

Fig. 1: A DFA Q for the ERE (aa)∗ → a∗a, and its corresponding unfolding
tree. Each node n shows its label L(n), and the pattern pat(n). Here pat(3) ≡
µX. ϵ ∨ a · pat(3’) ∨ b · pat(3’). The pattern for the automaton, patQ, is that
of the root node pat(1). Observe that its structure closely mirrors that of Q.
Accepting nodes include ϵ as a disjunct, whereas others do not. Starting a cycle
in the graph introduces a fixpoint binder, whereas completing one employs the
bound variable corresponding to that cycle. The major structural differences are
due to duplicate states to allow backlinks and nodes reachable via muliple paths.

Contrast this to the MSO translation of concatenation, shown in Section 2, and
especially of Kleene star.

Theorem 3. Let α be an ERE. Then L(α) = |α|W

4.3 Embedding Automata

While it is obvious how to embed expressions the representation of automata, be-
ing computational rather than logical, is less clear. Here, we define a pattern patQ
whose interpretation is the language of a finite automaton Q, either deterministic
or non-deterministic. Crucially, this pattern captures not just the language of
the automaton (in Section 2 we mentioned that it is possible to do this in MSO
as well), but also its structure—as shown in Table 1, structural elements of the
automata map to syntactic elements of the pattern—non-determinism maps to
logical disjunctions; cycles map to fixpoints. This allows us to represent transfor-
mations of automata, such as making a transition, union, or complementation,
as logical manipulations of this pattern in a proof system. This is imperative to
capturing the execution of an algorithm employing these in a formal proof. To
define patQ, we must first define the unfolding tree of the automaton Q.

Definition 7. For a finite automaton Q = (Q,A, δ, q0, F), its unfolding tree
is a labeled tree (N,E,L) where N is the set of nodes, E ⊆ A × N × N is a

A Logical Treatment of Finite Automata 357

Computational aspect of Q Syntactic aspect of patQ
Node n is accepting ϵ is a subclause of pat(n)
Non-determinism, union of FAs Logical union
Graph cycles Fixpoint binder and its bound variable
Changing the initial node Unfolding, framing
Table 1: Structural aspects of Q become syntactic aspects of patQ. This is crucial
to capturing the traces of algorithms as proofs.

labeled edge relation, and L : N → Q is a labeling function. It is the tree defined
inductively:

– the root node has label q0,
– if a node n has label q with no ancestors also labeled q, then for each a ∈ A

and q′ ∈ δ(q, a), there is a node n′ ∈ N with L(n′) = q′, and (a, n, n′) ∈ Ea.

When Q is a DFA, we use na to denote the unique child of node n along edge a.
All leaves in this tree are labeled by states that complete a cycle in the automaton.
We define a secondary labeling function, pat : N → Pattern over this tree.

Definition 8. Let (N,E,L) be an unfolding tree for Q = (Q,A, δ, q0, F). Let
X : Q→ SVar be an injective function. Then, we define pat recursively as follows:

1. For a leaf node n, pat(n) := X(L(n)).
2. For a non-leaf node,

a. if n doesn’t have a descendant with the same label, then:

pat(n) =


ϵ ∨

∨
(a,n,n′)∈E

a · pat(n′) if L(n) is accepting.∨
(a,n,n′)∈E

a · pat(n′) otherwise.

b. if n has a descendant with the same label, then:

pat(n) =


µX(L(n)). ϵ ∨

∨
(a,n,n′)∈E

a · pat(n′) if L(n) is accepting.

µX(L(n)).
∨

(a,n,n′)∈E

a · pat(n′) otherwise.

Finally, define patQ := pat(R), where R is the root of this tree.

For nodes of the form (2b), we “name” them by binding the variable X(L(n))
using the fixpoint operator. When we return to that state we use the bound
variable to complete a cycle. The use of fixpoints allows us to clearly embody the
inductive structure as a pattern. Figure 1 shows an example of unfolding tree.
The following theorem shows that this representation of automata is as expected.

Theorem 4. Let Q be a finite automaton. Then L(Q) = |patQ|W

N. Rodrigues et al.358

4.4 Embedding Brzozowski’s Derivative
Besides regular languages, other important constructs may be defined using this
model. Let us look at derivatives, needed to capture Brzozowski’s method as a
proof. The Brzozowski derivative of a language L w.r.t. a word w, is the set of
words obtainable from a word in L by removing the prefix w. Defining this is
quite simple in matching logic—for any word w and pattern ψ, we may define its
Brzozowski derivative as the pattern δw(ψ) ≡ ∃x. x ∧ (w · x ⊆ ψ).

This definition is quite interesting because it closely parallels the embedding of
separation logic’s magic wand in matching logic: φ−∗ψ ≡ ∃x. x∧ (φ ∗ x ⊆ ψ). At
first glance, this seems like a somewhat weak connection, but on closer inspection,
magic wand and derivatives are semantically quite similar—we may think of
magic wand as taking the derivative of one heap with respect to the other.

It is these connections between seemingly disparate areas of program verification
that matching logic seeks to bring to the foreground. In fact, both derivates and
magic wand generalize to a matching logic operator called contextual implication:
C ⊸ ψ ≡ ∃□.□ ∧ (C[□] ⊆ ψ) for any pattern ψ and application context C [9].
Using this notation, derivatives and magic wand become δw(φ) ≡ w · □ ⊸ φ
and φ −∗ ψ ≡ φ ∗ □ ⊸ φ respectively. This operator has proven key to many
techniques for fixpoint reasoning in matching logic, especially the derived rules
(wrap) and (unwrap) that enable applying Park induction within contexts [9]:

⊢ C[φ] → ψ
(unwrap)−−−−−−⇀↽−−−−−−

(wrap)
⊢ φ→ (C ⊸ ψ)

5 Proof Generation
In the previous section, we showed how we may capture languages as matching
logic patterns. Specifically, automata are captured as patterns that are structural
analogs. In this section, we will demonstrate how we capture runs of algorithms
that manipulate automata as proofs. In particular, we capture runs of Brzozowski’s
method using matching logic’s Hilbert style proof system.

This technique is only possible because of the structural similarity between an au-
tomata Q, and its pattern patQ. It gives us the ability to represent computational
transformations on automata as logical transformations of these patterns using
matching logic’s proof system. This section focuses on the theory and proofs
involved. The subsequent section, Section 6, will present our concrete implemen-
tation producing matching logic proofs that can be checked using Metamath
Zero. Let us first introduce matching logic’s proof system, and a theory ΓWord
within which we do our reasoning.

5.1 Matching Logic’s Proof System
The third component to matching logic is its proof system, shown in Figure 2. It
defines the provability relation, written Γ ⊢ φ, meaning that φ can be proved
using the proof system using the theory Γ as additional axioms.

A Logical Treatment of Finite Automata 359

(Propos. 1) φ→ (ψ → φ)
(Propos. 2) (φ→ (ψ → θ))

→((φ→ ψ) → (φ→ θ))
(Propos. 3) ((φ→ ⊥) → ⊥) → φ

(MP) φ φ→ ψ

ψ

(∃-Quant.) φ[y/x] → ∃x. φ

(Pre-fp) φ[(µX.φ)/X] → µX.φ

(Existence) ∃x. x
(Singleton) ¬(C1[x ∧ φ] ∧ C2[x ∧ ¬φ])

(Propag⊥) C[⊥] → ⊥
(Propag∨) C[φ ∨ ψ] → C[φ] ∨ C[ψ]
(Propag∃) C[∃x. φ] → ∃x.C[φ]

where x /∈ FV (C)

(Framing) φ→ ψ

C[φ] → C[ψ]

(∃-Gen.) φ→ ψ

(∃x. φ) → ψ

where x /∈ FV (ψ)

(kt) φ[ψ/X] → ψ

(µX.φ) → ψ

(Subst) φ

φ[ψ/X]

Fig. 2: Matching logic proof system. Here C,C1, C2 are application contexts, a
pattern in which a distinguished element variable □ occurs exactly once, and
only under applications. We use the notation C[φ] ≡ C[φ/□].

These proof rules fall into four categories. First, the FOL rules provide complete
FOL and propositional reasoning. The (propagation) rules allow applications
to commute through constructs with a “union” semantics, such as disjunction
and existentials. The proof rule (knaster-tarski) is an embodiement of the
Knaster-Tarski fixpoint theorem [24], and together with (prefixedpoint) corre-
spond to the Park induction rules of modal logic [18, 15]. Finally, (existence),
(singleton), and (subst) are technical rules, needed to work with variables.

5.2 A Theory of Finite Words

We may use a theory Γ , a set of patterns called axioms, to restrict the models we
consider to those in which every axiom is “true”. We say a pattern φ holds in a
model M , or that φ is valid in M , written M ⊨ φ if its interpretation is M under
all evaluations. For a theory Γ , we write M ⊨ Γ if every axiom in Γ is valid in
M . For a pattern ψ, we write Γ ⊨ ψ if for every model where M ⊨ Γ we have
M ⊨ ψ. These axioms also extend the provability relation ⊢ defined by the proof
system, allowing us to proof additional theorems. The soundness of matching
logic guarantees that each proved theorem holds in every model of the theory.

Figure 3 defines a theory, ΓWord, of finite words. The first set of the axioms
in ΓWord, (funcσ), gives each symbol a functional interpretation: for an n-ary
symbol σ, the axiom ∀x1, . . . , xn. ∃y. σ(x1, . . . , xn) = y, forces the interpretation
σM to return a single output for any input. This is because element variables are
always interpreted as singleton sets. Next, the (no-conf) axioms ensure that

N. Rodrigues et al.360

Signature: ϵ, _ · _, and a for each a ∈ A.
Axioms:

For each a ∈ A,

∃w. a = w (funca)
∃w. ϵ = w (funcϵ)

∀u, v. ∃w. u · v = w (func•)
∀u, v, w. (u · v) · w = u · (v · w)

(assoc)
∀x. (ϵ · x) = x (idL)
∀x. (x · ϵ) = x (idR)

For each distinct a, b ∈ A,

a ̸= b (no-confa)
ϵ ̸⊆ a ∨ b (no-confϵ)

∀u, v.ϵ = u · v →
u = ϵ ∧ v = ϵ (no-conf•-1)

∀x, y : Letter.∀u, v.
x · u = y · v → x = y ∧ u = v (no-conf•-2)

µX.ϵ ∨
∨

a∈A
a ·X (domain)

Fig. 3: ΓWord: A theory of finite words in matching logic. This theory is complete
for proving equivalence between representations of both automata and extended
regular expressions. Here, ∀x : Letter. φ is notation for ∀x. x ∈

(∨
a∈A a

)
→ φ.

interpretations of symbols are injective modulo AU—they have distinct interpre-
tations unless their arguments are equal modulo associativity of concatenation
with unit ϵ. Here, ∀x : Letter. φ is notation for ∀x. x ∈ (

∨
a∈A a) → φ, i.e. we

quantify over letters. The axioms (assoc), and (idL), and (idR) enforce the
corresponding properties and allow their use in proofs. The final axiom (domain)
defines our domain to be inductively constructed from ϵ, concatenation and
letters. It is easy to see the standard model W satisfies these axioms, giving us
the theorem, proved in the appendix [21]:

Theorem 5. W ⊨ ΓWord

The rest of this section is dedicated to showing that ΓWord is complete with respect
to both equivalence of automata and EREs—if two automata or expressions have
the same language their representations are provably equivalent.

5.3 Proving Equivalence between EREs

We are now ready to demonstrate our proof generation method. We will use
it to capture equivalence of expressions using matching logic’s Hilbert-style
proof system. Brzozowski’s method consists of two parts—converting an ERE
into a DFA Q, and checking that Q is total. Mirroring this, the proof for
equivalence between EREs ΓWord ⊢ α ↔ β has two parts. First, we prove that
ΓWord ⊢ patQ → (α↔ β)—the language of α↔ β subsumes that of Q. Second,
that ΓWord ⊢ patQ—the language of Q is total. We put these together using
(modus-ponens), giving us ΓWord ⊢ α↔ β—the EREs are provably equivalent.

Proving ΓWord ⊢ patQ → (α ↔ β) To prove this, we prove a more general,
inductive, lemma:

A Logical Treatment of Finite Automata 361

Lemma 1. Let n be a node in the unfolding tree of the DFA Q of the regular
expression α↔ β, where α and β have the same language. Then,

Γ ⊢ pat(n)[Λn] → δpath(n)(α↔ β)

where,

Λn =


λ, the empty substitution if n is the root node
Λp[δpath(p)(α↔ β)/X(p)] if n has parent p, and pat(p) binds X(p)
Λp otherwise.

The substitution Λn provides the inductive hypothesis—as we use the (knaster-
tarski) rule on each µ-binder in patQ, it replaces the bound variable with the
right-hand side of the goal. The left-hand side then becomes a disjuntion of the
form ϵ∨ a · pat(na)[Λna]∨ b · pat(nb)[Λnb

]. We decompose the right-hand side into
a similar structure using an important property of derivatives, proved in ΓWord:

Lemma 2. For any pattern φ, ΓWord ⊢ φ =
(
(ϵ ∧ φ) ∨

∨
a∈A a · δa(φ)

)
The derivatives are reduced to expressions using proved syntactic simplifications:

Lemma 3. For EREs α, β and distinct letters a and b, the following hold:

– ΓWord ⊢ δa(∅) = ∅; ΓWord ⊢ δa(ϵ) = ∅;
– ΓWord ⊢ δa(b) = ∅; ΓWord ⊢ δa(a) = ϵ;
– ΓWord ⊢ δa(α1 + α2) = δa(α1) + δa(α1);
– ΓWord ⊢ δa(α1 · α2) = δa(α1) · α2 + (α1 ∧ ϵ) · δa(α2);
– ΓWord ⊢ δa(¬α) = ¬δa(α);
– ΓWord ⊢ δa(α∗) = δa(α) · α∗.

Proving ΓWord ⊢ patQ The next part of the proof is a bit more technical,
requiring us to exploit the equivalence ΓWord ⊢ (µX. ϵ∨X ·φ) ↔ (µX. ϵ∨φ ·X),
and induct using the (domain) axiom. This reduces our goal to ΓWord ⊢ patQ ·
(
∨
a∈A a) → patQ, a consequence of the following inductive lemma:

Lemma 4. Let n be a node in the unfolding tree of a total DFA Q. Then,

ΓWord ⊢ pat(n)[Θn] ·
(∨

a∈A a
)
→ pat(n)[Un]

where,

Θn =


λ, the empty substitution if n is the root node
Θp[Ψp/XL(p)] if n has parent p, and pat(p) binds X(p)
Θp otherwise

Ψp = □ ·
(∨

a∈A a
)
⊸ pat(p)[Up]

Un =


λ, the empty substitution if n is the root node
Up[pat(p)[Up]/XL(p)] if n has parent p, and pat(p) binds X(p)
Up otherwise

N. Rodrigues et al.362

def checkValid (φ: Regex , prev: set[Regex] = ∅) → bool:
if φ ∈ prev: return True
if ¬hasEWP (φ): return False
return checkValid (canonicalize (δa(φ), prev ∪ {φ}))

and checkValid (canonicalize (δb(φ), prev ∪ {φ}))

Fig. 4: The algorithm instrumented to generate proofs. The canonicalize func-
tion reduces the pattern δa(φ) to an ERE, simplifying it to a form where choice
is left-associative, and the idemopotency and unit identities have been applied.

Again, Θn gives us the inductive hypothesis, this time in the form of a contex-
tual implication. To apply it, we leverage a general property about contextual
implications: ⊢ C[C ⊸ φ]→φ, allowing us combine framing with Park induction.
This gives us our main theorem, showing that our axiomatization is complete
with respect to extended regular expressions:

Theorem 6. For any EREs α and β with the same language, ΓWord ⊢ α↔ β.

5.4 From Expressions to Automata

Our uniform treatment of automata and expressions as patterns allows us to
apply Brzozowski’s method not just to EREs but also to more general patterns.
For example, it can be used to determinize NFAs, or take the complement, union,
or intersection of DFAs. The general principle is the same as above, except instead
of α↔ β, we use a pattern corresponding to the operation we wish to perform.
For example, to prove that the DFA Q has the same language as the intersection
of those of A and B, we prove ΓWord ⊢ patQ ↔ (patA ∧ patB). All we need is
the ability to take the derivative of arbitrary fixpoint patterns enabled by the
equivalence ΓWord ⊢ δa(µX.φ) ↔ δa(φ[µX.φ/X]).

6 Implementation and Evaluation

In this section, we describe the implementation of our method. The algorithm
implemented is shown in Figure 4. It recursively checks that the expression
and its derivatives have the empty-word property, keeping track of when it
has already visited an expression. Here, δa(φ) represents a pattern using the
derivative notation, and not the fully simplified regular expression. This notation
is simplified away in the (also instrumented) canonicalize function that also
normalizes the choice operator to be left-associative and commutes subterms into
lexicographic order, allowing the application of the idemopotency and unit axioms.
This results in a canonnical representation of expressions modulo similarity.

The intrumentation of successful runs of this method produces a proof-hint, an
example of which is shown in Figure 5. A proof-hint is an informal artifact

A Logical Treatment of Finite Automata 363

(der (a+ b)∗,

a : (simpl δa((a+ b)∗), der-∗, □, α 7→ (a+ b); l 7→ a,

(simpl (δa((a+ b)) · (a+ b)∗ der-∨, □ · (a+ b)∗, . . . ,

(simpl (δa(a) + δa(b))(a+ b)∗, der-same-letter, (□ + δa(b)) · (a+ b)∗, . . . ,

(simpl (ϵ+ δa(b))(a+ b)∗, der-diff-letter(ϵ+ □) · (a+ b)∗, . . . ,

(simpl (ϵ+ ⊥)(a+ b)∗, choice-identity-right, □ · (a+ b)∗, . . . ,

(simpl ϵ · (a+ b)∗, concat-identity-left, □, . . . ,

(backlink (a+ b)∗)))))))),
b : (simpl δb((a+ b)∗), . . .))

Fig. 5: An snippet of a proof-hint for expression (a + b)∗ produced by the in-
strumentation. Most substitutions are omitted for brevity. The lemma id der-∗
corresponds to the metamath theorem for ΓWord ⊢ δl(α∗) = δl(α) · α∗

containing all the information necessary to produce a formal proof. It is a term
defined by the following grammar.

Node := (backlink Pattern)
| (der Pattern, a : Node, b : Node)
| (simpl Pattern,LemmaID,Context, Subst,Node)

These terms are more detailed structures than unfolding trees—if we ignore the
simplification nodes, we get an unfolding tree. Each backlink and der node is
labeled by a regular expression, and correspond to the leaf and interior nodes of
an unfolding tree. In addition, der nodes have child nodes labeled by the patterns
δa(φ) and δb(φ). Note that these are patterns and not regular expressions—they
use the matching logic notation for derivative, and are distinct from the fully
simplified EREs. Each simpl node keeps track of equational simplifications needed
to reduce the derivative notation, and employs associativity, commutativity, and
idempotency of choice to reduce the expression into a canonical form, allowing
the construction of unfolding tree to terminate. The simpl nodes contain the
name of the simplification applied, the context in which it was applied, as well
as the substitutions with which it was applied. The LemmaID corresponds to a
hand-proved lemma in the Metamath Zero formalization.

To produce the proof of validity, proof-hints are used in three contexts. First,
to produce the pattern patQ; next, to produce an instance of Lemma 1; and
finally, to produce an instance of Lemma 4. For each lemma, we inductively
build up the proof from two manually proven Metamath Zero theorems, one
for the backlink node case, and another for the der node case. In the case of
Lemma 1, the simpl nodes are ignored. In the case of Lemma 4 we use them to
reduce the patterns to their canonical form. This is done by lifting a manually

N. Rodrigues et al.364

Benchmark Nodes .mmb size Gen. time Check time
Manual Lemmas 307 3
(a+ b)∗ 3 2 64 3
a∗∗ → a∗ 5 4 82 3
(aa)∗ → a∗a+ ϵ 9 15 179 3
¬(⊤ · a · ⊤) + ¬(b∗) 5 5 90 3
matchl(2) / matchl(8) 19 /43 13 / 266 273 / 27483 3 / 4
matchr(2) / matchr(8) 19 /43 13 / 228 337 / 21085 3 / 4
eql(2) / eql(8) 13 /37 15 / 446 374 / 91661 3 / 5
eqr(2) / eqr(8) 13 /37 15 / 330 368 / 31489 3 / 5

Table 2: Statistics for certificate generation. Sizes are in KiB, times in milliseconds.
We show the unfolding tree nodes, proof size, generation and checking time.

proven theorem corresponding to the LemmaId into the context, and applying
the substitution, all supplied by the simpl node.

Trust Base Our trust base consists of the Metamath Zero formalization of
matching logic proof system, including its syntax and meta-operations for its
sound application such as substitution, freshness (272 lines); the theory of words
instantiated with A = {a, b}, (13 lines); and the Metamath Zero proof checker,
mm0-c. Each of these are defined in .mm0 files in our repository [20, 19]. From these,
we prove by hand 354 supporting general theorems and 163 specific to ΓWord,
such as Lemmas 1 and 4, and those about derivatives and their simplification.

Evaluation We have evaluated our work against handcrafted tests, as well as
standard benchmarks for deciding equivalence presented in [17]. Some statistics
are shown in Table 2. Each match{l,r}(n) test, by [12], is an ERE asserting
that an matches (a+ ϵ) · an, that is, an → (a+ ϵ) · an. Here αn indicates n-fold
concatenation of α, with the l version using concatenation from the left, and the
r version on the right. That is, α3 may be either ((α ·α) ·α) or (α · (α ·α)). Each
eq{l,r}(n) test, by [1], checks if a∗ and (a0 +· · ·+an)·(an)∗ are equivalent. We also
include property testing using the Hypothesis testing framework. We randomly
generate an ERE α, and check that α→ α. Our procedure does not optimize for
this, so it allows testing correctness for a variety of expressions, augmenting the
few handcrafted ones, and the structurally monotonous benchmarks.

Performance In this work, our goal was to prove that this process is feasible—
we have not focused on performance. In fact, we find the performance numbers
here are quite poor. There are a number of reasons for this.

First, we made some poor implementation choices with reference to instrumenta-
tion. The prototype uses Maude and its meta-level to produce the instrumentation.
While Maude’s search command collects all the information needed for the proof
hint, it does not make it accessible. This forced us to repeatedly enter and exit

A Logical Treatment of Finite Automata 365

the meta-level to collect this information, bringing the running time of, e.g.,
matchl(8) to 27 seconds, compared to 3ms when implemented idiomatically.

Another reason is that we targeted simplicity, rather than even the most basic
optimizations. For example, when multiple identical nodes occur in an unfolding
tree, we do not reuse the subproofs for identical notes in the derivative tree, and
instead re-prove the result each time. This causes a significant blow up in proof
size. We believe that a relatively small engineering effort would greatly improve
performance both in terms of proof size and generation time.

Another issue is that handling machine generated proofs is not one of Metamath
Zero’s design goals. It is intended as a human-readable language, for human-
written proofs. We would rather output a succinct binary representation of proofs.
Although Metamath Zero does allow generation of proofs directly in the mmb
format, this seems closer to an embedded systems format than a formal language.

7 Future Work and Conclusion

Study of Languages Definable in ΓWord While this paper has focused on
regular languages in ΓWord, we can define more languages. For example, the
context-free language {an · bn|n ∈ N} may be defined as an · bn ≡ µX. ϵ∨ a ·X · b.
Extending this, we may define an · bn · ci, and ai · bn · cn for n, i ∈ N as the
patterns an · bn · c∗ and a∗ · bn · cn respectively. Finally, since patterns are closed
under intersection we may define the context-sensitive language an · bn · cn ≡
(an · bn · c∗) ∧ (a∗ · bn · cn). Extensive research has been done regarding languages
definable in fragments of MSO. A corresponding effort for matching logic would
be interesting. Likely, quantifiers and fixpoint operators will allow defining most
computable languages.

Application to Control Flow Graphs (CFGs) Through the K Framework,
the transition systems of programming languages are defined in matching logic.
The CFGs of programs in these languages may be viewed as automata. Our
technique would allow formal proofs of correctness of algorithms over the CFGs
of programs, such as the semantics-based compiler in [25].

Acknowledgements We warmly thank Mario Carneiro for his invaluable feed-
back on the usage of Metamath Zero. We are indebted to the anonymous reviewers
for their kind input and suggestions.

N. Rodrigues et al.366

References
[1] Valentin Antimirov. “Partial derivatives of regular expressions and finite

automata constructions”. In: STACS 95: 12th Annual Symposium on Theo-
retical Aspects of Computer Science Munich, Germany, March 2–4, 1995
Proceedings. Springer. 2005, pp. 455–466.

[2] Konstantine Arkoudas and Selmer Bringsjord. “Computers, justification,
and mathematical knowledge”. In: Minds and Machines 17 (2007), pp. 185–
202.

[3] Ezio Bartocci et al. “Introduction to runtime verification”. In: Lectures on
Runtime Verification: Introductory and Advanced Topics (2018), pp. 1–33.

[4] Janusz A Brzozowski. “Derivatives of regular expressions”. In: Journal of
the ACM (JACM) 11.4 (1964), pp. 481–494.

[5] J. Richard Buchi. “Weak Second-Order Arithmetic and Finite Automata”.
In: Mathematical Logic Quarterly 6.1-6 (1960), pp. 66–92. doi: https://doi
.org/10.1002/malq.19600060105. eprint: https://onlinelibrary.wiley.com/d
oi/pdf/10.1002/malq.19600060105. url: https://onlinelibrary.wiley.com/d
oi/abs/10.1002/malq.19600060105.

[6] Mario Carneiro. “Metamath Zero: Designing a theorem prover prover”. In:
Intelligent Computer Mathematics: 13th International Conference, CICM
2020, Bertinoro, Italy, July 26–31, 2020, Proceedings 13. Springer. 2020,
pp. 71–88.

[7] Xiaohong Chen and Grigore Roşu. “A general approach to define binders us-
ing matching logic”. In: Proceedings of the ACM on Programming Languages
4.ICFP (2020), pp. 1–32.

[8] Xiaohong Chen and Grigore Roşu. Matching µ-logic. Tech. rep.
http://hdl.handle.net/2142/102281. University of Illinois at Urbana-
Champaign, Jan. 2019.

[9] Xiaohong Chen et al. “Towards a unified proof framework for automated
fixpoint reasoning using matching logic”. In: Proceedings of the ACM on
Programming Languages 4.OOPSLA (2020), pp. 1–29.

[10] Thierry Coquand and Vincent Siles. “A decision procedure for regular
expression equivalence in type theory”. In: Certified Programs and Proofs:
First International Conference, CPP 2011, Kenting, Taiwan, December
7-9, 2011. Proceedings 1. Springer. 2011, pp. 119–134.

[11] Calvin C Elgot. “Decision problems of finite automata design and related
arithmetics”. In: Transactions of the American Mathematical Society 98.1
(1961), pp. 21–51.

[12] Sebastian Fischer, Frank Huch, and Thomas Wilke. “A play on regular
expressions: functional pearl”. In: Proceedings of the 15th ACM SIGPLAN
international conference on Functional programming. 2010, pp. 357–368.

[13] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. “Introduction to
automata theory, languages, and computation”. In: Acm Sigact News 32.1
(2001), pp. 60–65.

A Logical Treatment of Finite Automata 367

https://doi.org/https://doi.org/10.1002/malq.19600060105
https://doi.org/https://doi.org/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19600060105
https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19600060105

[14] SC Kleene. “Representation of events in nerve nets and finite automata”. In:
Automata Studies: Annals of Mathematics Studies. Number 34 34 (1956),
p. 3.

[15] Dexter Kozen. “Results on the propositional µ-calculus”. In: Theoretical
computer science 27.3 (1983), pp. 333–354.

[16] Alexander Krauss and Tobias Nipkow. “Proof pearl: Regular expression
equivalence and relation algebra”. In: Journal of Automated Reasoning 49
(2012), pp. 95–106.

[17] Tobias Nipkow and Dmitriy Traytel. “Unified decision procedures for regular
expression equivalence”. In: Interactive Theorem Proving: 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings 5. Springer. 2014,
pp. 450–466.

[18] David Park. “Fixpoint induction and proofs of program properties”. In:
Machine intelligence 5 (1969).

[19] Nishant Rodrigues and Mircea Sebe. A Logical Treatment of Finite Au-
tomata (Artifact). Dec. 2023. doi: 10.5281/zenodo.10431211. url: https:
//doi.org/10.5281/zenodo.10431211.

[20] Nishant Rodrigues and Mircea Sebe. Matching Logic in MM0. Oct. 2023.
url: https://github.com/formal-systems-laboratory/matching-logic-in-m
m0 (visited on 04/14/2023).

[21] Nishant Rodrigues et al. Technical Report: A Logical Treatment of Finite
Automata. Tech. rep. https://hdl.handle.net/2142/121770. 2024.

[22] Grigore Roşu. “Matching Logic”. In: Logical Methods in Computer Science
Volume 13, Issue 4 (Dec. 2017). doi: 10.23638/LMCS-13(4:28)2017. url:
https://lmcs.episciences.org/4153.

[23] Arto Salomaa. “Two complete axiom systems for the algebra of regular
events”. In: Journal of the ACM (JACM) 13.1 (1966), pp. 158–169.

[24] Alfred Tarski et al. “A lattice-theoretical fixpoint theorem and its applica-
tions.” In: Pacific journal of Mathematics 5.2 (1955), pp. 285–309.

[25] The K Team. KSummarizer. 2022. url: https://research.runtimeverificati
on.com/#the-k-summarizer (visited on 10/16/2023).

[26] Wolfgang Thomas. “Languages, automata, and logic”. In: Handbook of
Formal Languages: Volume 3 Beyond Words. Springer, 1997, pp. 389–455.

[27] Ken Thompson. “Programming Techniques: Regular Expression Search
Algorithm”. In: Commun. ACM 11.6 (June 1968), pp. 419–422. issn: 0001-
0782. doi: 10.1145/363347.363387. url: https://doi.org/10.1145/363347.3
63387.

[28] Boris Avraamovich Trakhtenbrot. “Finite automata and the logic of one-
place predicates”. In: Sibirskii Matematicheskii Zhurnal 3.1 (1962), pp. 103–
131.

[29] Dmitriy Traytel and Tobias Nipkow. “Verified decision procedures for MSO
on words based on derivatives of regular expressions”. In: ACM SIGPLAN
Notices 48.9 (2013), pp. 3–12.

N. Rodrigues et al.368

https://doi.org/10.5281/zenodo.10431211
https://doi.org/10.5281/zenodo.10431211
https://doi.org/10.5281/zenodo.10431211
https://github.com/formal-systems-laboratory/matching-logic-in-mm0
https://github.com/formal-systems-laboratory/matching-logic-in-mm0
https://doi.org/10.23638/LMCS-13(4:28)2017
https://lmcs.episciences.org/4153
https://research.runtimeverification.com/#the-k-summarizer
https://research.runtimeverification.com/#the-k-summarizer
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387

A Logical Treatment of Finite Automata 369

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A State-of-the-Art Karp-Miller Algorithm
Certified in Coq

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
{thibault.hilaire,david.ilcinkas,jerome.leroux}@labri.fr

Abstract. Petri nets constitute a well-studied model to verify and study
concurrent systems, among others, and computing the coverability set
is one of the most fundamental problems about Petri nets. Using the
proof assistant Coq, we certified the correctness and termination of the
MinCov algorithm by Finkel, Haddad, and Khmelnitsky (FOSSACS
2020). This algorithm is the most recent algorithm in the literature that
computes the minimal basis of the coverability set, a problem known to
be prone to subtle bugs. Apart from the intrinsic interest of a computer-
checked proof, our certification provides new insights on the MinCov
algorithm. In particular, we introduce as an intermediate algorithm a
small-step variant of MinCov of independent interest.

Keywords: Petri net · Karp-Miller tree algorithm · Minimal coverabil-
ity set · Coq · Certified decision procedure

1 Introduction

Petri nets constitute a well-studied model to verify and study concurrent sys-
tems, with several applications in other domains, like in chemical [1] and bi-
ological process [2,26] (see [31] for additional applications). Formally, a Petri
net is given by a finite set of places and a finite set of transitions. Each place
is marked with a natural number that can be incremented or decremented by
the transitions. A function that maps places to the marked numbers is called a
marking. The reachability set of a Petri net from an initial marking is the set of
markings that can be obtained by executing a sequence of transitions from the
initial marking.

The central problem about Petri nets is the reachability problem that consists
in deciding whether a final marking is in the reachability set. Many important
computational problems in logic and complexity reduce or are even equivalent
to this problem [15,31]. The reachability problem is known to be Ackermann-
complete [5,23,6,20]. On positive instances, it can be decided with efficient di-
rected exploration strategies [3], but general complete algorithms deciding the
problem are complex [24], and require a lot of implementation efforts [7].

This high complexity is not always a barrier in practice since many problems
related to Petri nets can be decided by introducing an over-approximation of the

Thibault Hilaire(B) , David Ilcinkas , and Jérôme Leroux

c© The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 370–389, 2024.
https://doi.org/10.1007/978-3-031-57246-3_21

https://doi.org/10.1007/978-3-031-57246-3_21
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57246-3_21&domain=pdf
http://orcid.org/0009-0008-7324-8767
http://orcid.org/0000-0002-0094-4330
http://orcid.org/0000-0002-7214-9467
https://eapls.org/pages/artifact_badges/

reachability set, called the coverability set [18]. This set is defined by introducing
the cover relation over the markings, defined by x ≤ y if x is less than or equal to
y component-wise, i.e., on each place. The coverability set is then defined as the
downward-closure of the reachability set. It provides a way to decide a variant
of the reachability problem, called the coverability problem. This latter problem
can be solved by computing what is called a basis of the coverability set. Its
definition uses the notion of ω-markings, an extension of markings that allows
to mark places with a special symbol denoted by ω, and interpreted as an infinite
number. The well-quasi-order theory [11] shows that any downward-closed set of
markings can be symbolically represented by a finite set of ω-markings, called a
basis. Moreover, this theory also proves that there exists a unique minimal one
for the inclusion relation.

The computation of bases of coverability sets is exactly the purpose of the
Karp-Miller algorithm introduced in [19]. This algorithm inductively computes
trees where nodes are labeled by ω-markings. When the algorithm stops, those
labels form a basis of the coverability set. Karp-Miller algorithms (including
all variants) are not optimal in worst-case complexity for deciding the cov-
erability problem. In fact, those algorithms have an Ackermannian computa-
tional complexity [8,25] while the coverability problem is known to be Expspace-
complete [28]. There exist other algorithms, based on backward computations
from the final marking, that are optimal in worst-case [4,21]. However, Karp-
Miller algorithms outperform backward computation algorithms in practice (see
[3] for benchmarks). Moreover, the computation of the coverability set bases
provides ways to decide other properties than the coverability problem, like the
termination and boundedness problems, as well as some liveness properties. It
follows that this algorithm is central for analyzing Petri nets.

Bases computed by the Karp-Miller algorithm are not minimal (for the in-
clusion relation) since they may contain distinct ω-markings x, y with x ≤ y.
Naturally, the unique minimal basis of the coverability set can be computed
by first invoking the Karp-Miller algorithm, and then applying a simple reduc-
tion algorithm. However, such a computation is not optimal in practice since it
requires computing several ω-markings that will be discarded only at the end
of the computation. A first attempt to avoid this problem was introduced by
Alain Finkel in [9]. This algorithm is an optimization of the original Karp-Miller
algorithm that seems very natural. However, a subtle problem when the compu-
tation is performed on a very particular instance was discovered only 14 years
later in [10]. Several authors tried to find patches for that bug by proposing
various solutions [13,29,27,30]. Finally, in [12], an efficient algorithm removing
on-the-fly useless basis elements was proved to be correct with a pen-and-paper
proof. This algorithm, called MinCov, is a state-of-the-art algorithm for com-
puting the minimal basis of the coverability set. It can be seen as a variant of
the Karp-Miller algorithm based on the new notions of abstractions and acceler-
ations. Since algorithms a la Karp-Miller are prone to subtle bugs, formal proofs
certified by proof assistants are called for.

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 371

Our Contributions.

– We developed a complete formal proof in Coq of the correctness and termi-
nation of the MinCov algorithm, via an intermediate algorithm called Ab-
stractMinCov. We follow the Coq formalization of Petri nets and mark-
ings introduced in [33], built on top of the Mathematical Components
library [14] (MathComp). This formalization contains several formal proofs
and basic concepts related to Petri nets and markings that we extended to
handle recent notions. Our proofs are based on this code to take benefits from
those developments, but also to easily measure the gap between Coq formal
proofs of two algorithms that compute coverability set bases: the original
Karp-Miller algorithm and a state-of-the-art one.

– We provide two new characterizations of the central notion of abstractions
used by the MinCov algorithm. A simple mathematical one, and an alge-
braic one that shows that three operators on abstractions (weakening, con-
traction, and acceleration) provide a complete set of rules for generating any
abstraction starting from the Petri net transitions. The proof of this result
is based on the Jančar well-quasi-order on executions [17,22].

– We introduce as an intermediate algorithm a small-step variant of MinCov,
called AbstractMinCov. We implemented in Coq proofs of the correct-
ness and termination of AbstractMinCov. Since the original MinCov
algorithm can be simulated by our algorithm, the proof that the original
MinCov algorithm is correct and terminates is obtained at the cost of a
simple Coq proof. Compared to a direct proof, our approach provides more
succinct proofs in Coq, because proving that some properties are invariant
is usually easier for a small step than for a big step. Additionally, our algo-
rithm provides room for optimization by decorrelating some transformations
performed by the original algorithm (this is discussed in the conclusion).

Outline. Our Coq formalization of Petri nets, markings, and ω-markings are
given in Section 2, while the ones on abstractions and accelerations are given in
Section 3. The Coq modelization of MinCov is provided in Section 4, and our
small-step algorithm AbstractMinCov is presented in Section 5. The code is
available on Software Heritage [16].

2 Petri Nets

A Petri net is a tuple P = ⟨P, T,Pre,Post⟩ where P, T are two finite sets of ele-
ments called respectively places and transitions, and Pre,Post are two mappings
from T to NP . An element x ∈ NP is called a marking. We denote by x(p) the
value of x at the place p. Markings Pre(t) and Post(t), where t is a transition in
T are called respectively the precondition and the postcondition of t.

We follow the Coq formalization of Petri nets and markings introduced in
[33]. That formalization was introduced to prove the correctness and termination
of the original Karp-Miller algorithm. This formalization is built on top of the

T. Hilaire, D. Ilcinkas, and J. Leroux372

Mathematical Components library [14] (MathComp). This library provides
finite types (see the Coq keyword finType below) that provides a useful type
for Petri net places and transitions, but also functions with finite domain (see
ffun). Markings are conveniently represented by these functions. More precisely,
in our Coq proofs, Petri nets and markings are defined as follows.

Record petri_net :=
PetriNet
{ place transition : finType;

_ _ : transition -> {ffun place -> nat}; (* pre, post *)
}.

Definition marking (pn : petri_net) := {ffun place pn -> nat}
(* Re-type the 3rd and 4th fields of PN to use the name "marking". *)
Definition pre (pn : petri_net) : transition pn -> marking pn :=

let: PetriNet _ _ p _ := pn in p.
Definition post (pn : petri_net) : transition pn -> marking pn :=

let: PetriNet _ _ _ p := pn in p.

Now, let us provide some elements of Petri net semantics. Given a Petri
net P, a transition t ∈ T is said to be fireable from a marking x if Pre(t) ≤ x;
where ≤ is the component-wise extension of the usual order ≤ on N, i.e. x ≤ m

iff x(p) ≤ m(p) for every place p ∈ P . In that case we write x
t−→ y where

y = x − Pre(t) + Post(t) is called the marking obtained after firing t from x.
We extend the notion of fireability to a sequence σ = t1 . . . tk of transitions
t1, . . . , tk ∈ T by x

σ−→ y if there exists a sequence x0, . . . , xk of markings such
that x0 = x, xk = y and xj−1

tj−→ xj for every 1 ≤ j ≤ k. In that case, we say
that σ is fireable from x and y is naturally called the marking obtained after
firing σ from x. When such a sequence σ exists, we say that y is reachable from
x (for the Petri net P).

The Petri net reachability problem consists in deciding, given a Petri net P
and two markings x, y, whether y is reachable from x. The reachability prob-
lem is Ackermann-complete [5,23,6,20] and algorithms deciding the problem are
complex [24]. However, this high lower bound is not always a barrier in practice
since many problems related to Petri nets can be decided by computing an over-
approximation of the reachability property, called the coverability, obtained by
introducing the downward-closed sets.

More formally, the downward closure of a set M of markings is defined as
the set {x ∈ NP | ∃y ∈ M, x ≤ y}. We say that M is downward-closed if it is
equal to its downward closure. Downward-closed sets can be finitely represented
by introducing the notion of ω-markings, a notion also known as the ideal repre-
sentation of downward-closed sets (see [11] for extra results). We first introduce
the set Nω defined as N ∪ {ω}, where ω is a special symbol not in N that is
interpreted as an infinite number. This interpretation is defined by extending
the total order ≤ over N into a total order on Nω by n ≤ ω for every n ∈ Nω. An

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 373

ω-marking is an element of x ∈ NP
ω . In [33] and in our Coq proofs, ω-markings

are defined with the type markingc as follows.

Definition natc := optiontop nat.
(* Here None (also denoted Top) denotes Omega and Some n denotes n *)
Definition markingc := {ffun place -> natc}.

We associate with an ω-marking x the downward-closed set ↓x of markings
defined as {y ∈ NP | y ≤ x}. We also denote by ↓B, where B is a finite set
of ω-markings, the downward-closed set

⋃
x∈B ↓x. Let us recall from the well-

quasi-order theory [11] that any downward-closed set M of markings admits a
finite set B of ω-markings, called a basis of M , such that M = ↓B. Bases provide
finite descriptions of downward-closed sets. Naturally a downward-closed set can
have several bases. However, among all the bases of a downward-closed set, the
unique minimal one (for the inclusion relation) can be computed from any basis
as follows. We say that a finite set B of ω-markings forms an antichain if for
every x, y ∈ B such that x ≤ y, we have x = y. Notice that if B is a basis of
a downward-closed set M that is not an antichain, then there exist x, y ∈ B
such that x < y. Since in that case B\{x} is also a basis of M , it follows that
by recursively removing from B the ω-markings that are strictly smaller than
another one in B, we derive from any basis another one that is an antichain. One
can prove that this antichain is the unique minimal basis of M (for the inclusion
relation).

Given a Petri net P, we say that a marking z ∈ NP is coverable from a
marking x0 if there exists a marking y ≥ z reachable from x0. The set of coverable
markings is called the coverability set.

Since coverability sets are downward-closed, they can be described by bases.
The computation of such those bases is exactly the purpose of Karp-Miller al-
gorithms. While ω components were introduced in the original Karp-Miller al-
gorithm [19] with some algorithmic techniques, this notion was abstracted away
in [12] as kind of meta-transitions, called accelerations and abstractions. Those
notions are recalled in the next section. They are used to compute the minimal
basis of the coverability set, called the clover in [12]. In our Coq proofs, we en-
code the clover as a list of ω-markings (a list is denoted by seq). The definition
uses the coverable predicate defined in [33].

Definition clover (m0 : marking) (l : seq markingc) :=
antichain l /\
forall m : marking,

coverable m0 m <-> exists mc : markingc, (mc \in l) && (m \in mc).

(* perm_eq is the list equivalence modulo permutation *)
Theorem clover_unique m0 (l1 l2: seq markingc):

clover m0 l1 -> clover m0 l2 -> perm_eq l1 l2.

T. Hilaire, D. Ilcinkas, and J. Leroux374

3 Abstractions and Accelerations

Abstractions provide a simple way to explain why some markings can be cov-
ered from other ones. In this section we first recall the definition and semantics
of ω-transitions. Then we introduce the abstractions following the definition
introduced in [12], based on ω-transitions. We show that this rather technical
definition is in fact equivalent to a new simpler one. Whereas the proof of equiva-
lence between the two definitions is simple, we think that our definition provides
interesting intuitions on abstractions. Finally, in the last part of this section we
show that three operators on abstractions (weakening, contraction, and acceler-
ation) provides a complete set of rules for generating any abstraction starting
from the Petri net transitions. The proof is based on the Jančar well-quasi-order
on executions [17,22].

Since our Coq proofs for this part are obtained by series of case analyses
(not complicated but lengthy in Coq), we do not provide additional information
concerning that part of our implementation. All proofs can be found in the file
New_transitions.v.

3.1 ω-Transitions

An ω-transition t is a pair t = (x, y) where x, y ∈ NP
ω are ω-markings such that

x(p) = ω ⇒ y(p) = ω for every place p ∈ P . The ω-markings x and y are
respectively denoted by Pre(t) and Post(t) and they are called respectively the
precondition and the postcondition of t. This notation provides a natural way to
identify transitions of a Petri net as particular ω-transitions. We implemented ω-
transitions in Coq with the dependent datatype omega_transition as follows.

Definition transitionc := (markingc * markingc)%type

(* t.pre = Pre(t) and t.post = Post(t) *)
Definition inv_omega_transition (t: transitionc) :=

[forall p , (t.pre p == None) ==> (t.post p == None)].

Definition omega_transition := { t | inv_omega_transition t }.

We introduce the operator ⊖ : NP
ω × NP

ω → NP
ω defined component-wise by

x⊖ y = 0 if x ≤ y, ω if x = ω and y ∈ N, and x− y otherwise. As expected, an
ω-transition t is said to be fireable from an ω-marking x if Pre(t) ≤ x. In that
case, we write x

t−→ y where y = (x ⊖ Pre(t)) + Post(t) is called the ω-marking
obtained after firing t from x.

In order to provide a way to manipulate a sequence of ω-transitions as just one
single ω-transition, the notion of Hurdle [15], known by the Petri net community
for sequences of transitions, was extended to sequences of ω-transitions [12]. More
formally, we introduce an internal binary operator ⊗ on ω-transitions, called the
contraction, as follows:

s⊗ t = ((Pre(t)⊖ Post(s)) + Pre(s) , (Post(s)⊖ Pre(t)) + Post(t))

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 375

We implemented in Coq the contraction operator and we formally proved
the following lemma.

Lemma 1. For every ω-markings x, z ∈ NP
ω , the ω-transition s⊗ t satisfies:

x
s⊗t−−→ z ⇐⇒ ∃y ∈ NP

ω , x
s−→ y

t−→ z

In the sequel, given a sequence of ω-transitions σ = t1 . . . tk, we call the ω-
transition t = t1 ⊗ · · ·⊗ tk the contraction of σ and, when there is no ambiguity,
we identify σ with its contraction. It follows that Pre(σ) and Post(σ) are well
defined.

3.2 Abstractions

Following [12], an abstraction is an ω-transition a such that for all n ≥ 0, there
exists σn ∈ T ∗ such that for all p ∈ P with Pre(a)(p) ∈ N:

– Pre(σn)(p) ≤ Pre(a)(p)
– If Post(a)(p) ∈ N then Post(a)(p) + Pre(σn)(p) ≤ Post(σn)(p) + Pre(a)(p)
– If Post(a)(p) = ω then Pre(σn)(p) + n ≤ Post(σn)(p)

Our Coq implementation of abstractions is a direct translation of the previous
definition. We provide the code just below. In that code, note that seq_to_one
is a function that maps sequences of transitions to their contractions. Also, we
provide a simplification of the actual code in which we use the same symbols
for comparisons and operations independently of whether nat, natc, or a mix
of the two, are used. Similarly, we assume in the sequel implicit coercions from
omega_transition, abstraction, or acceleration to transitionc.

Definition inv_abstraction_aux (t : transitionc) (y : marking*marking)
(p : place) (n : nat) :=

mem_nc (t.pre p) (y.pre p)
/\ (t.post p != None -> t.post p + y.pre p <= t.pre p + y.post p)
/\ (t.post p == None -> y.pre p + n <= y.post p).

Definition inv_abstraction (t : transitionc) :=
forall (n : nat), exists (o_n : seq transition), forall (p : place),
t.pre p != None -> (inv_abstraction_aux t (seq_to_one o_n) p n).

Definition abstraction := { a : omega_transition | inv_abstraction a }.

The previous definition of abstraction is in fact equivalent to the following
simpler one, where Cover(x,P) for some ω-marking x denotes the set of markings
z such that x

σ−→ y for some word σ of transitions and some ω-marking y ≥ z.

Lemma 2. A given ω-transition a is an abstraction if, and only if, it satisfies
↓Post(a) ⊆ Cover(Pre(a),P).

T. Hilaire, D. Ilcinkas, and J. Leroux376

Note that this new characterization provides a way to constructively check
whether an ω-transition is an abstraction. This would allow us to declare ab-
stractions as an eqType in a future work.

We also recall the following lemma proved in [12]. This result is central for
the correctness of the algorithm MinCov. We implemented its proof in Coq in
the file New_transitions.v.

Lemma 3 (Lemma 1 in [12]). Let x0 be a marking of a Petri net P. For
every ω-markings x, y such that x a−→ y for some abstraction a, we have:

↓x ⊆ Cover(x0,P) ⇒ ↓y ⊆ Cover(x0,P)

3.3 Abstraction Builder

In this last part, we show that any abstraction can be built from Petri net tran-
sitions by applying three operators: weakening, contraction, and acceleration.

Let us first start with the simplest operator, called the weakening. We intro-
duce a partial order ⊑ on the ω-transitions defined by s ⊑ t if Pre(t) ≤ Pre(s)
and Post(s)+Pre(t) ≤ Post(t)+Pre(s). The second inequality intuitively means
that the effect of t is larger than or equal to the effect of s (component-wise).
Based on Lemma 2, we deduce that if t is an abstraction and s an ω-transition
such that s ⊑ t, then s is also an abstraction. Based on this observation, we
introduce a weakening operator that just replaces an abstraction t by any other
abstraction s ⊑ t.

The second simplest operator is the contraction. Based on Lemmas 1 and 2,
we can deduce that if s, t are two abstractions, then s⊗ t is also an abstraction.

The last operator, called the acceleration, associates with an ω-transition t
the ω-transition tω that intuitively corresponds to the infinite firing of t. More
formally, tω is defined as follows for every place p ∈ P :

Pre(tω)(p) =

{
ω if Pre(t)(p) > Post(t)(p)

Pre(t)(p) otherwise

Post(tω)(p) =

{
ω if Pre(t)(p) ̸= Post(t)(p)

Post(t)(p) otherwise

In [12], it is proved that if a is an abstraction then aω is also an abstraction.

Notice that tω = t if, and only if, Post(t)(p) ∈ {Pre(t)(p), ω} for every p ∈
P . If a is an abstraction and aω = a, we say that a is an acceleration. Since
accelerations play a central role in the MinCov algorithm, we implemented
them in Coq as follows.

Definition inv_accel (t : transitionc) :=
[forall p, (t.post p == None) || (t.post p == t.pre p)].

Definition acceleration := { a : abstraction | inv_accel a }.

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 377

The following Lemma 4 is one of the main result of this section. It shows
that any abstraction can be derived from the Petri net transitions by applying
the previously mentioned operators.

Lemma 4. An ω-transition a is an abstraction if, and only if, there exist w0,
t1, w1, . . . , tk, wk where w0, . . . , wk ∈ T ∗ and t1, . . . , tk ∈ T such that:

a ⊑ wω
0 t1w

ω
1 . . . tkw

ω
k

4 The Original MinCov Algorithm

In this section, we present our Coq implementation of the MinCov algorithm.
We tried to be as close as possible to the algorithm introduced in [12], to provide
convincing evidence that it is correct and terminating. We however omitted the
trunc function used in the MinCov pseudocode presented in [12] but not in
their Python implementation. In practice this function differs from the identity
function only when numbers computed by the algorithm are larger than the
number of atoms in the universe.

4.1 Explicit Coverability Trees

As already mentioned, this algorithm computes the minimal basis of the cover-
ability set of a Petri net P from an initial ω-marking x0. Similarly to the original
Karp-Miller algorithm, it computes inductively a tree T such that nodes are la-
beled by ω-markings, and edges by transitions. In the case of MinCov, the
constructed tree, called an explicit coverability tree, contains additional labels
that are explained a bit later. We implement explicit coverability trees in Coq
as the following inductive definition KMTE:

Inductive KMTE := | Empty_E
| Br_E of markingc &

(seq acceleration) &
bool &
{ffun transition -> KMTE}.

A node obtained with the constructor Empty_E is called empty, whereas a
node obtained with the constructor Br_E is called valid. The first line of the
constructor Br_E of a valid node N provides the ω-marking denoted by λ(N)
that labels the node N . The fourth line provides a function that inductively
maps each transition t to a subtree. The root node of that subtree is denoted by
N.t and called the child of N following t. Given a node, we call the unique word
σ ∈ T ∗ that labels the edges of the tree from the root to that node the address
of that node. A word σ ∈ T ∗ is called a valid address if it is the address of a
valid node. This node is denoted by Nσ in that case. A node is called a leaf if it
is valid and if N.t is an empty node for every transition t.

T. Hilaire, D. Ilcinkas, and J. Leroux378

Compared to trees computed by the Karp-Miller algorithm, explicit cover-
ability trees computed by the MinCov algorithm have two additional pieces of
information on each valid node, provided by the second and third lines of the
constructor Br_E. First of all, since trees may be partially destroyed when a sub-
tree corresponding to redundant computations is detected, the computation is
no longer a DFS exploration. In order to keep track of nodes that are waiting for
further exploration, called front nodes, each valid node is marked with a boolean
flag that is assigned to true when it is a front one. The set of front nodes of an
explicit coverability tree T is denoted by Front(T). Last but not least, explicit
coverability trees contain additional information to recover the way the node
labels were generated. To do so, the second line of the constructor Br_E of a
valid node N provides a sequence a1 . . . ak of accelerations denoted by µ(N).

In our implementation, we prove that the following properties (called invari-
ant properties in the sequel) are maintained throughout any execution of the
algorithm.

– Front nodes are always leaves (predicate Front_leaves).
– Non-front node labels form an antichain (predicate Not_Front_Antichain).

– The root node is valid, and x0
µ(Nε)−−−−→ λ(Nε) (predicate consistentE_head).

– If a valid node N is not the root, i.e. N = N ′.t for some node N ′ and some
transition t, then λ(N ′)

tµ(N)−−−−→ λ(N) (predicate consistentE_tree).

4.2 Step Relation

The MinCov algorithm is a while loop algorithm that updates a pair (T , A),
where T is an explicit coverability tree, and A is a (finite) sequence of accel-
erations. Accelerations that occur in T (in the µ labeling) are taken from A.
Moreover, the sequence A can only grow with new discovered accelerations. Ini-
tially, the MinCov algorithm begins with the pair (T , A) where A is the empty
sequence ε and T is the explicit coverability tree reduced to a single valid front
node Nε labeled by λ(Nε) = x0 and µ(Nε) = ε. The algorithm picks nondeter-
ministically a front node at each iteration of the while loop to transform the tree.
It terminates when the set of front nodes is empty and, at that point, returns the
current T (the set A is discarded at the end). Our Coq implementation of this
algorithm is defined by introducing a binary relation Rel on those pairs (T , A).
Such a one-step encoding provides all the possible nondeterministic behaviors of
the algorithm. It follows that our proofs of correctness and termination are valid
whatever the implemented particular exploration heuristic.

Formally, the relation Rel is defined as follows, with three constructors
Rel_clean, Rel_accel, and Rel_explo that are defined later in this section:

Variant Rel :
(KMTE * seq acceleration) -> (KMTE * seq acceleration) -> Prop :=

| Rel_clean [...] (* cleaning operation *)
| Rel_accel [...] (* accelerating operation *)
| Rel_explo [...] (* exploring operation *) .

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 379

As will be discussed later, the termination of the MinCov algorithm is
proved by certifying that the relation Rel is well-founded. For that reason,
Rel (T',A') (T,A) corresponds to a step of the MinCov algorithm from (T , A)
to (T ′, A′), and not the other way around.

One central notion of the algorithm is the definition of saturated ω-markings.
An ω-marking x is saturated for a sequence A of accelerations if, for every accel-
eration a ∈ A such that x

a−→ y for some ω-marking y, we have x = y. When an
ω-marking is not saturated for a sequence A, it can be saturated with respect to
A as follows. Note that in general, given two ω-markings x, y such that x

a−→ y
for some acceleration a, then y(p) ∈ {x(p), ω} for every place p. It means that y
is obtained from x by setting to ω some places of x. In particular, if x ̸= y, then
the number of places with natural numbers is strictly decreasing from x to y.
It follows that an algorithm that tries to apply in a round-robin fashion all the
accelerations in A eventually terminates on a fixed point in at most |P | rounds.
We implement this algorithm in Coq with a function saturate_KMTree A T ad
that takes as input a sequence A of accelerations, an explicit coverability tree T ,
and a valid address σ ∈ T ∗ (denoted by ad), and returns the explicit coverability
tree obtained from T by saturating λ(Nσ) with respect to A, and by append-
ing to µ(Nσ) the sequence of accelerations used by the round-robin saturation
algorithm.

The MinCov algorithm is implemented in such a way the labels of the non-
front valid nodes form an antichain. To enforce that property, the cleaning op-
eration takes as input two explicit coverability trees T and T ′, a sequence A
of accelerations, and an address σ (denoted by ad below), and checks if σ is
the address of a front node, if T ′ is the tree obtained from T by saturating Nσ

with respect to A (see above), and if there exists a non-front node N ′ such that
λ(Nσ) ≤ λ(N ′) in T ′ (predicate ad_covered_not_front T' ad below). In that
case, the cleaning operation puts in the relation Rel the pair (T , A) with (T ′′, A),
where T ′′ is obtained from T ′ by removing the node at address σ (implemented
by removeE_add T' ad).

Rel_clean (T:KMTE) A ad T': Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ad_covered_not_front T' ad
-> Rel (removeE_add T' ad, A) (T,A)

When the previous cleaning operation cannot be applied on a front node
with address σ (~~ denotes the negation, and ad and ad' in the code refer
to σ and σ′), the algorithm checks if this front node, once saturated, is la-
beled by an ω-marking larger than the label of an ancestor with address σ′

(through the predicate Possible_acceleration, which also checks that σ′ is
the prefix of σ). If so, an accelerating operation is performed. It consists first in
computing the acceleration corresponding to the path between the two nodes.
More precisely, computingE_acceleration T' ad' ad computes the accelera-
tion a = (t1σ1 . . . tkσk)

ω, where σ = σ′t1 . . . tk for a sequence t1 . . . tk of transi-
tions, and σ1, . . . , σk are the sequences of accelerations that occur in T ′ from σ

T. Hilaire, D. Ilcinkas, and J. Leroux380

to σ′, i.e. σj = µ(Nσ′t1...tj). In that case, the accelerating operation puts in the
relation Rel the pair (T , A) with (T ′′, A′), where A′ is the sequence obtained by
adding a to A, and T ′′ is obtained from T ′ by removing the subtree of T ′ from
Nσ′ and by setting that node as a front node (to_FrontE T' ad below).

Rel_accel (T:KMTE) A ad T' ad' a: Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ~~ ad_covered_not_front T' ad
-> Possible_acceleration T' ad' ad
-> a = computingE_acceleration T' ad' ad
-> Rel (to_FrontE T' ad', a :: A) (T,A)

When the previous cleaning and accelerating operations cannot be applied on
a front node (tested through No_Possible_acc for the accelerating operation),
the algorithm performs an exploration from that front node by trying to fire all
the transitions from the label of that node. This label x is computed after sat-
uration via the function m_from_add, from the tree and the address σ (denoted
by ad below) of the node. The exploring operation (see Rel_explo below) puts
in the relation Rel the pair (T , A) with (T ′′′, A), where T ′′ is the tree obtained
from T ′ by removing valid nodes labeled by an ω-marking smaller than x (im-
plemented by removeE_strict_covered T' x), and T ′′′ is obtained from T ′′

by removing the node at address σ from the front list, and by creating, for each
transition t such that there exists an ω-marking y such that x t−→ y, a front node
Nσt labeled by λ(Nσt) = y and µ(Nσt) = ε (this last operation is implemented
by Front_extensionE).

Rel_explo (T:KMTE) A ad T' mc: Is_Front T ad
-> T'= saturate_KMTree A T ad
-> ~~ ad_covered_not_front T' ad
-> No_Possible_acc T' ad
-> Some mc = m_from_add T' ad
-> Rel (Front_extensionE (removeE_strict_covered T' mc) ad, A) (T,A)

5 The AbstractMinCov Algorithm

The Coq proofs of correctness and termination of the MinCov algorithm are
obtained by introducing a variant of that algorithm, called AbstractMinCov.
This new algorithm takes a small-step approach obtained by decomposing the
three main operations (cleaning, accelerating, and exploring) of the original Min-
Cov into sequences of five small-step operations presented in this section.

We implemented in Coq a formalization of AbstractMinCov and proved
the correctness and termination of that algorithm. Since the original MinCov
algorithm can be simulated by our algorithm, we obtain at the cost of a simple
Coq proof of simulation that the original MinCov algorithm is correct and

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 381

terminates. Compared to a direct proof, our approach provides more succinct
proofs in Coq, because proving that some properties are invariant is usually
easier for a small step than for a big step.

Compared to the original MinCov algorithm, which performs the three main
operations in a strict order, the five operations of AbstractMinCov can be
executed in any order. It follows that new exploration heuristics, for instance
the early discarding of subtrees after the discovering of an acceleration, can be
implemented without rewriting any proof of correctness or termination.

In Section 5.1, we introduce the (implicit) coverability trees, the central data
structure of the AbstractMinCov algorithm. In Section 5.2, we present the
five operations of the AbstractMinCov algorithm. Finally, in Section 5.3 we
provide some elements of our termination and correctness Coq proofs.

5.1 Coverability Trees

We implement the (implicit) coverability trees in Coq as the following inductive
definition KMTree:

Inductive KMTree := | Empty
| Br of markingc &

bool &
{ffun transition -> KMTree}.

As one can see, they are nearly the same as explicit coverability trees: we
just remove the sequence of accelerations that was previously part of the label
of a node. The invariant properties introduced for explicit coverability trees (see
the end of Section 4.1) have straightforward counterparts for the coverability
trees, which are similarly maintained throughout any execution of Abstract-
MinCov.

5.2 The Algorithm

AbstractMinCov also consists of a main while loop that updates a pair
(T , A), where T is a coverability tree instead of an explicit one, and A a fi-
nite sequence of accelerations. Initially, the AbstractMinCov algorithm be-
gins with the pair (T , A) where A is the empty sequence ε and T is the cov-
erability tree reduced to a single valid front node Nε labeled by λ(Nε) = x0.
This tree is built by the Coq function KMTree_init. Then, at each round of
the loop, it picks one of the five operations it can apply on the pair, the one
whose precondition is met, and apply it. It terminates when none of the opera-
tions have preconditions satisfied by the pair (T , A). At the end, A is discarded
and only T is returned. As AbstractMinCov is nondeterministic, we imple-
ment it as a relation, like we do for MinCov. More precisely, we implement it
in Coq as a binary relation Rel_small_step on those pairs (T , A) such that
Rel_small_step (T',A') (T,A) corresponds to a step of AbstractMinCov
from (T , A) to (T ′, A′). Hence all possible executions of AbstractMinCov

T. Hilaire, D. Ilcinkas, and J. Leroux382

are encoded into decreasing sequences of Rel_small_step. Hence, by proving
its well-foundedness and its correctness, we prove that every execution of the
AbstractMinCov algorithm is correct and terminates.

Variant Rel_small_step :
(KMTree * seq acceleration) -> (KMTree * seq acceleration) -> Prop :=

| Rel_small_step_sat [...] (* saturating operation *)
| Rel_small_step_cln [...] (* cleaning operation *)
| Rel_small_step_acc [...] (* accelerating operation *)
| Rel_small_step_cov [...] (* covering operation *)
| Rel_small_step_exp [...] (* exploring operation *) .

In the file MinCov.v, operations of MinCov are proved to be simulated by
sequences of AbstractMinCov operations matching the following regular expres-
sions (for readability, the prefixes Rel_ and Rel_small_step_ are removed):

clean ⊆ sat∗ cln accel ⊆ sat∗ acc explo ⊆ sat∗ cov∗ exp

In MinCov, accelerations are added to the set A only during the accelerat-
ing operation, and the added acceleration comes from the considered branch of
the tree. On the contrary, the five operations of AbstractMinCov allow new
accelerations to be added to A. Such accelerations could be computed from the
tree like in MinCov, but they could also be discovered by running an external
heuristic algorithm for example.

The saturating operation is a small-step version of the already seen function
saturate_KMTree, applying only one acceleration at a time instead of applying
as many accelerations as possible. It can be performed on any front node N of
label x and address ad such that x a−→ y (i.e. y = apply_transitionc x a) and
x ̸= y, for some a ∈ A and some ω-marking y. The saturating operation simply
sets λ(N) to y (which is what the function saturate_a_little a T ad does).

Rel_small_step_sat T A A' ad mc (a:acceleration) mc': Is_Front T ad
-> List.In a A
-> Some mc = m_from_add T ad
-> Some mc' = apply_transitionc mc a
-> mc != mc'
-> Rel_small_step (saturate_a_little a T ad, A'++A) (T,A)

The cleaning operation is basically the same as the one of MinCov. The dif-
ference is that now the ω-marking of the considered node is required to be already
saturated (which can be obtained via the Rel_small_step_sat operation). Also
note that the removeE_add function has been replaced by the remove_add func-
tion (with the same behavior) because of the change from KMTE to KMTree. This
is also the case for several other functions in the other operations.

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 383

Rel_small_step_cln T A A' ad: Is_Front T ad
-> saturated_node A T ad
-> ad_covered_not_front T ad
-> Rel_small_step (remove_add T ad, A'++A) (T,A)

The accelerating operation is abstracted compared to the MinCov equivalent
operation. More precisely, the acceleration used to justify the cut of the branch
via the to_Front function may come from previous stages of the algorithm, or
be guessed during the operation. In the latter case, the acceleration may be
computed as in MinCov. It follows that subtrees rooted in non-saturated nodes
can be discarded earlier than in MinCov.

Rel_small_step_acc T A A' ad mc : ~~ Is_Front T ad
-> Some mc = m_from_add T ad
-> ~~ (saturated_markingc mc (A'++A))
-> Rel_small_step (to_Front T ad, A'++A) (T,A)

The covering operation removes a node of T when it is covered by a node in
Front(T). It corresponds to a part of the exploring operation of MinCov. The
non-prefix requirement is here to ensure that a front node does not trigger its
own deletion.

Rel_small_step_cov T A A' ad mc ad' mc': Is_Front T ad
-> Some mc = m_from_add T ad
-> Some mc' = m_from_add T ad'
-> mc' <= mc
-> ~~ prefix ad' ad
-> Rel_small_step (remove_add T ad', A'++A) (T,A)

The exploring operation is an abstracted version of the one in MinCov.
It only performs the extension of some front node N without any additional
transformation. However, stronger requirements are needed. Namely, N must be
already saturated (this can be obtained thanks to the saturating operation), and
the non-front nodes must satisfy the Not_Front_Antichain property once the
front flag of N is switched to false (this can be obtained thanks to the covering
operation).

Rel_small_step_exp T A A' ad: Is_Front T ad
-> saturated_node A T ad
-> Not_Front_Antichain (remove_Front T ad)
-> Rel_small_step (Front_extension T ad, A'++A) (T,A).

5.3 Certification

Termination proofs of Karp-Miller algorithms are usually based on the fact that
≤ is a well-quasi-order over the set of ω-markings. As in [33], we replace this

T. Hilaire, D. Ilcinkas, and J. Leroux384

classical notion with the notion of almost-full relation [32]. This order is however
just an ingredient and further arguments are needed. This is especially true for
MinCov, because the tree maintained in this algorithm may not only grow, as
in the original Karp-Miller algorithm, but also shrink. The code can be found
in the file Termination.v, including the following theorem, where Acc is the
predicate of the Coq standard library used in the constructive definition of
well-foundedness.

Theorem wf_Rel_small_step: forall (T : KMTree) (A : seq acceleration),
Front_leaves T ->
Not_Front_Antichain T ->
Acc Rel_small_step (T,A).

This theorem is proved thanks to a general well-founded rewriting relation
on trees described in the file wbr_tree.v.

Our correctness proof in Coq is close to the pen-and-paper one of Min-
Cov [12]. Whereas the correctness proof of the original Karp-Miller algorithm
is based on branches, operations on trees performed by MinCov depend on the
complete tree. The correctness proof can be found in the file Correctness.v,
whose main theorem is the following one, where clos_refl_trans_1n is the
predicate for the reflexive and transitive closure, and Markings_of_T computes
the list of all ω-markings of the input coverability tree.

Theorem Correctness T A (m0: marking):
clos_refl_trans_1n _ Rel_small_step (T,A) (KMTree_init m0) ->
(forall T' A', ~ Rel_small_step (T',A') (T,A)) ->
clover m0 (Markings_of_T T).

As in [12], this theorem is a corollary of two results, corresponding to the
two directions of the equivalence in the clover definition.

The main theorem of the file KMTrees.v, shown below, provides the first
direction by observing that the desired implication follows from the consistent
properties mentioned in Sections 4.1 and 5.1. The fact that these properties are
invariant (proved in file AbstractMinCov.v) implies that this implication is in
fact satisfied throughout the execution and not just when the algorithm has
terminated.

Theorem cover_consistent_KMTree A m0 T:
consistent_tree A T ->
consistent_head A m0 T ->
forall (mc: markingc) m,
mc \in Markings_of_T T ->
m \in mc ->
coverable m0 m.

The other direction is the main theorem of file Completeness.v.

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 385

Theorem Rel_small_step_all_covered T A (m0: marking):
clos_refl_trans_1n _ Rel_small_step (T,A) (KMTree_init m0) ->
(forall T' A', ~ Rel_small_step (T',A') (T,A)) ->
forall m, coverable m0 m -> exists (mc:markingc),
mc \in Markings_of_T T /\
m \in mc.

The following table summarizes the size of [33]’s and our formalizations. We
import and use all files from [33] except the Karp-Miller part.

[33] (commit bbb0668)
Technical tools 631 lines

Petri net 1226 lines
Karp-Miller 775 lines

[This paper]
Technical tools 1790 lines

Petri net extension 1869 lines
MinCov and AbstractMinCov 5590 lines

6 Conclusion

We provide a complete Coq certification of MinCov, an algorithm that com-
putes the minimal basis of the coverability set (of a Petri net with an initial
marking). Our development is obtained by introducing a small-step variant of
that algorithm, called AbstractMinCov. This variant consists of smaller and
more abstract steps than in MinCov, and which can be performed in any order.
This gives a lot of freedom to an actual implementation of the algorithm, leav-
ing room for heuristics. In particular, the step Rel_small_step_acc can prune
any subtree rooted on a non-saturated node. Note that such a subtree is nec-
essarily removed at some step of the MinCov algorithm, since every node is
saturated when the algorithm terminates. This early removal will decrease the
total number of node comparisons that are performed by operations maintain-
ing the antichain property (Rel_small_step_cln and Rel_small_step_cov). It
would be interesting to quantify the actual impact of such a strategy, and more
generally, of all the heuristics permitted by our AbstractMinCov algorithm.

The constructive logic of Coq provides automatic correct-by-construction
Ocaml code extraction. This is however not currently possible because we use
relations to describe the algorithms in order to preserve their non-determinism. It
should be interesting in a future work to implement choice functions and boolean
versions of our Prop predicates, and to benchmark the extracted code against
the existing Python implementation of MinCov. Since most of our predicates
are already boolean functions (although their boolean natures are hidden by a
coercion), we think that obtaining an OCaml extraction would be reasonably
easy. However, obtaining an efficient one would require a significant additional
amount of work.

Acknowledgments. We thank the anonymous reviewers for their numerous
and very interesting remarks.

T. Hilaire, D. Ilcinkas, and J. Leroux386

References

1. Angeli, D., Leenheer, P.D., Sontag, E.D.: Persistence results for chemi-
cal reaction networks with time-dependent kinetics and no global conserva-
tion laws. SIAM Journal on Applied Mathematics 71(1), 128–146 (2011).
https://doi.org/10.1137/090779401, http://www.jstor.org/stable/41111581

2. Baldan, P., Cocco, N., Marin, A., Simeoni, M.: Petri nets for modelling
metabolic pathways: A survey. Natural Computing 9, 955–989 (12 2010).
https://doi.org/10.1007/s11047-010-9180-6

3. Blondin, M., Haase, C., Offtermatt, P.: Directed Reachability for Infinite-State
Systems. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 27th International Conference, TACAS 2021,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12652, pp. 3–23.
Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_1

4. Bozzelli, L., Ganty, P.: Complexity Analysis of the Backward Coverability Algo-
rithm for VASS. In: Delzanno, G., Potapov, I. (eds.) Reachability Problems - 5th
International Workshop, RP 2011, Genoa, Italy, September 28-30, 2011. Proceed-
ings. Lecture Notes in Computer Science, vol. 6945, pp. 96–109. Springer (2011).
https://doi.org/10.1007/978-3-642-24288-5_10

5. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachabil-
ity problem for Petri nets is not elementary. In: Charikar, M., Cohen, E. (eds.)
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. pp. 24–33. ACM (2019).
https://doi.org/10.1145/3313276.3316369

6. Czerwinski, W., Orlikowski, L.: Reachability in Vector Addition Systems is
Ackermann-complete. In: 62nd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. pp. 1229–1240.
IEEE (2021). https://doi.org/10.1109/FOCS52979.2021.00120

7. Dixon, A., Lazic, R.: KReach: A Tool for Reachability in Petri Nets. In: Biere,
A., Parker, D. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 12078, pp. 405–412. Springer (2020). https://doi.org/10.1007/978-3-
030-45190-5_22

8. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
Primitive-Recursive Bounds with Dickson’s Lemma. In: Proceedings of the 26th
Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-
24, 2011, Toronto, Ontario, Canada. pp. 269–278. IEEE Computer Society (2011).
https://doi.org/10.1109/LICS.2011.39

9. Finkel, A.: The Minimal Coverability Graph for Petri Nets. In: Rozenberg, G.
(ed.) Advances in Petri Nets 1993, Papers from the 12th International Confer-
ence on Applications and Theory of Petri Nets, Gjern, Denmark, June 1991.
Lecture Notes in Computer Science, vol. 674, pp. 210–243. Springer (1991).
https://doi.org/10.1007/3-540-56689-9_45

10. Finkel, A., Geeraerts, G., Raskin, J.F., Van Begin, L.: A counter-example to the
minimal coverability tree algorithm. Université Libre de Bruxelles, Tech. Rep 535
(2005)

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 387

https://doi.org/10.1137/090779401
http://www.jstor.org/stable/41111581
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1007/978-3-642-24288-5_10
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1007/3-540-56689-9_45

11. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part
I: completions. Math. Struct. Comput. Sci. 30(7), 752–832 (2020).
https://doi.org/10.1017/S0960129520000195

12. Finkel, A., Haddad, S., Khmelnitsky, I.: Minimal Coverability Tree Construction
Made Complete and Efficient. In: Goubault-Larrecq, J., König, B. (eds.) Founda-
tions of Software Science and Computation Structures - 23rd International Confer-
ence, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Pro-
ceedings. Lecture Notes in Computer Science, vol. 12077, pp. 237–256. Springer
(2020). https://doi.org/10.1007/978-3-030-45231-5_13

13. Geeraerts, G., Raskin, J.F., Van Begin, L.: On the Efficient Computation of
the Minimal Coverability Set for Petri Nets. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) Automated Technology for Verification and
Analysis. pp. 98–113. Springer Berlin Heidelberg, Berlin, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75596-8_9

14. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Ph.D. thesis, Inria Saclay Ile de France (2016)

15. Hack, M.: Decidability Questions for Petri Nets. Outstanding Dissertations in the
Computer Sciences, Garland Publishing, New York (1975)

16. Hilaire, T., Ilcinkas, D., Leroux, J.: Petri-net-in-coq (2024), https://archive.
softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;
origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git

17. Jančar, P.: Decidability of a Temporal Logic Problem for Petri Nets. Theor. Com-
put. Sci. 74(1), 71–93 (1990). https://doi.org/10.1016/0304-3975(90)90006-4

18. Kaiser, A., Kroening, D., Wahl, T.: Efficient Coverability Analysis by Proof Mini-
mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012 - Concurrency The-
ory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK,
September 4-7, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7454,
pp. 500–515. Springer (2012). https://doi.org/10.1007/978-3-642-32940-1_35

19. Karp, R.M., Miller, R.E.: Parallel Program Schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969). https://doi.org/10.1016/S0022-0000(69)80011-5

20. Lasota, S.: Improved Ackermannian Lower Bound for the Petri Nets Reach-
ability Problem. In: Berenbrink, P., Monmege, B. (eds.) 39th International
Symposium on Theoretical Aspects of Computer Science, STACS 2022,
March 15-18, 2022, Marseille, France (Virtual Conference). LIPIcs, vol. 219,
pp. 46:1–46:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.STACS.2022.46

21. Lazic, R., Schmitz, S.: The ideal view on Rackoff’s coverability technique. Inf.
Comput. 277, 104582 (2021). https://doi.org/10.1016/j.ic.2020.104582

22. Leroux, J.: Vector addition system reachability problem: a short self-
contained proof. In: Ball, T., Sagiv, M. (eds.) Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011. pp. 307–316. ACM (2011).
https://doi.org/10.1145/1926385.1926421

23. Leroux, J.: The Reachability Problem for Petri Nets is Not Primitive Recur-
sive. In: 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022. pp. 1241–1252. IEEE (2021).
https://doi.org/10.1109/FOCS52979.2021.00121

24. Leroux, J., Schmitz, S.: Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension. In: 34th Annual ACM/IEEE Symposium on Logic

T. Hilaire, D. Ilcinkas, and J. Leroux388

https://doi.org/10.1017/S0960129520000195
https://doi.org/10.1007/978-3-030-45231-5_13
https://doi.org/10.1007/978-3-540-75596-8_9
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://archive.softwareheritage.org/swh:1:rev:7b5523e30026266c471c73e911f0fda525c6f900;origin=https://gitub.u-bordeaux.fr/thhilaire/petri-net-in-coq.git
https://doi.org/10.1016/0304-3975(90)90006-4
https://doi.org/10.1007/978-3-642-32940-1_35
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.4230/LIPIcs.STACS.2022.46
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1109/FOCS52979.2021.00121

in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp.
1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785796

25. Mayr, E.W., Meyer, A.R.: The Complexity of the Finite Containment Problem for
Petri Nets. J. ACM 28(3), 561–576 (1981). https://doi.org/10.1145/322261.322271

26. Peleg, M., Rubin, D., Altman, R.B.: Using Petri Net Tools to Study Properties
and Dynamics of Biological Systems. Journal of the American Medical Informatics
Association 12(2), 181–199 (03 2005). https://doi.org/10.1197/jamia.M1637

27. Piipponen, A., Valmari, A.: Constructing Minimal Coverability Sets. Fundam. In-
formaticae 143(3-4), 393–414 (2016). https://doi.org/10.3233/FI-2016-1319

28. Rackoff, C.: The Covering and Boundedness Problems for Vector Addition Sys-
tems. Theor. Comput. Sci. 6, 223–231 (1978). https://doi.org/10.1016/0304-
3975(78)90036-1

29. Reynier, P.A., Servais, F.: Minimal coverability set for petri nets: Karp
and miller algorithm with pruning. In: International Conference on Applica-
tion and Theory of Petri Nets and Concurrency. pp. 69–88. Springer (2011).
https://doi.org/10.1007/978-3-642-21834-7_5

30. Reynier, P., Servais, F.: On the Computation of the Minimal Coverability Set of
Petri Nets. In: Filiot, E., Jungers, R.M., Potapov, I. (eds.) Reachability Problems
- 13th International Conference, RP 2019, Brussels, Belgium, September 11-13,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11674, pp. 164–177.
Springer (2019). https://doi.org/10.1007/978-3-030-30806-3_13

31. Schmitz, S.: The complexity of reachability in vector addition systems. ACM
SIGLOG News 3(1), 4–21 (2016). https://doi.org/10.1145/2893582.2893585

32. Vytiniotis, D., Coquand, T., Wahlstedt, D.: Stop When You Are Almost-Full -
Adventures in Constructive Termination. In: Beringer, L., Felty, A.P. (eds.) Inter-
active Theorem Proving - Third International Conference, ITP 2012, Princeton,
NJ, USA, August 13-15, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7406, pp. 250–265. Springer (2012). https://doi.org/10.1007/978-3-642-32347-
8_17

33. Yamamoto, M., Sekine, S., Matsumoto, S.: Formalization of Karp-Miller tree
construction on petri nets. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings
of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs,
CPP 2017, Paris, France, January 16-17, 2017. pp. 66–78. ACM (2017).
https://doi.org/10.1145/3018610.3018626

A State-of-the-Art Karp-Miller Algorithm Certified in Coq 389

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1145/322261.322271
https://doi.org/10.1197/jamia.M1637
https://doi.org/10.3233/FI-2016-1319
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/978-3-642-21834-7_5
https://doi.org/10.1007/978-3-030-30806-3_13
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1007/978-3-642-32347-8_17
https://doi.org/10.1007/978-3-642-32347-8_17
https://doi.org/10.1145/3018610.3018626
http://creativecommons.org/licenses/by/4.0/

Author Index

A
Abdulla, Parosh Aziz III-276
Ádám, Zsófia III-129, III-330, III-371,

III-412
Akshay, S. I-123
Aldughaim, Mohannad III-376
Aniva, Leni I-311
Artho, Cyrille II-3
Atig, Mohamed Faouzi III-276
Avni, Guy III-153
Ayaziová, Paulína III-341, III-406

B
Backes, John I-3
Badings, Thom II-258
Baier, Daniel III-359
Bajczi, Levente III-330, III-371, III-412
Barbosa, Haniel I-311
Barrett, Clark I-311
Basa, Eliyahu I-123
Bayless, Sam I-3
Beckert, Bernhard I-268
Bentele, Manuel III-418
Beutner, Raven II-196
Beyer, Dirk III-129, III-299, III-359
Blanchard, Allan I-331
Bocchi, Laura I-207
Bodden, Eric I-229
Boillot, Jérôme III-387
Bork, Alexander II-299
Bozhilov, Stanimir III-335, III-381
Brauße, Franz III-376

C
Cai, Yubo II-323
Chakraborty, Debraj II-299
Chakraborty, Supratik I-123, II-175, III-393
Chalupa, Marek III-353
Chatterjee, Prantik II-155

Chen, Xiaohong I-350
Chen, Yean-Ru II-363
Chen, Yu-Fang I-24
Chen, Zhenbang III-347
Chien, Po-Chun III-129, III-359, III-365
Chocholatý, David I-24, II-130
Chowdhury, Md Solimul I-34
Cimatti, Alessandro II-44
Codel, Cayden R. I-34
Cordeiro, Lucas C. III-376
Correnson, Loïc I-331
Cosler, Matthias III-45

D
D’Souza, Deepak II-175
Dacík, Tomáš I-188
Dahlsen-Jensen, Mikael Bisgaard III-194
de Pol, Jaco van III-194
Dierl, Simon II-87
Dietsch, Daniel III-418
Djoudi, Adel I-331
Dobos-Kovács, Mihály III-371, III-412
Dubslaff, Clemens III-255
Duong, Hai III-24
Dwyer, Matthew B. III-24

E
Ehlers, Rüdiger I-83
Eisenbarth, Thomas III-399
Erhard, Julian III-335, III-381

F
Farias, Bruno III-376
Fassbender, Dennis II-44
Fedyukovich, Grigory II-175
Feng, Nick I-3
Fiedor, Tomáš II-130
Fievet, Baptiste III-194
Fiterau-Brostean, Paul II-87

© The Editor(s) (if applicable) and The Author(s) 2024
B. Finkbeiner and L. Kovács (Eds.): TACAS 2024, LNCS 14570, pp. 391–394, 2024.
https://doi.org/10.1007/978-3-031-57246-3

https://doi.org/10.1007/978-3-031-57246-3

392 Author Index

Fleury, Mathias I-311
Fried, Dror I-123
Furbach, Florian III-276

G
Gadelha, Mikhail R. III-376
Galgali, Varadraj II-3
Garcia-Contreras, Isabel I-43
Garg, Shashwat III-276
Griggio, Alberto II-44
Grover, Kush II-299
Gurfinkel, Arie I-43

H
Hahn, Christopher III-45
Hanselmann, Michael II-44
Hari Govind, V. K. I-43
Hasuo, Ichiro II-279
Havlena, Vojtěch I-24, II-130
He, Dongjie I-229
Heinzemann, Christian II-44
Heizmann, Matthias III-418
Henze, Franziska II-44
Hermanns, Holger III-255
Heule, Marijn J. H. I-34, I-61
Hilaire, Thibault I-370
Holík, Lukáš I-24, II-130
Holter, Karoliine III-335, III-381
Hou, Zhe II-363
Howar, Falk II-87
Hruška, Martin II-130
Hu, Alan J. I-3
Huerta y Munive, Jonathan Julián I-288
Huisman, Marieke III-71
Husung, Nils III-255

I
Ilcinkas, David I-370
Iqbal, Syed M. I-3

J
Jakobsen, Anna Blume III-110
Jankola, Marek III-359
Jansen, Nils II-258
Jeannin, Jean-Baptiste I-248
Jiang, Xinyu III-418
Jiménez-Pastor, A. II-343
Jonáš, Martin III-90, III-406
Jonsson, Bengt II-87

Jørgensen, Rasmus Skibdahl Melanchton
III-110

Jung, Jean Christoph I-167
Junges, Sebastian II-109, II-258, II-279

K
Kabra, Aditi I-144
Kapritsos, Manos I-248
Karakaya, Kadiray I-229
Karmarkar, Hrishikesh III-393
Katoen, Joost-Pieter II-237
Kettl, Matthias III-359
Khalimov, Ayrat I-83
King, Andy I-207
Klauck, Michaela II-44
Klauke, Jonas I-229
Klumpp, Dominik III-418
Köhl, Maximilian A. III-255
Kokologiannakis, Michalis II-66
König, Lukas II-44
Korovin, Konstantin III-376
Kosmatov, Nikolai I-331
Křetínský, Jan II-299
Kruger, Loes II-109
Kumor, Kristián III-406
Küperkoch, Stefan II-44
Kwiatkowska, Marta III-3

L
Lachnitt, Hanna I-311
Lahav, Ori III-235
Lal, Akash II-155
Larsen, K. G. II-343
Laurent, Jonathan I-144
Lee, Nian-Ze III-129, III-359, III-365
Lemberger, Thomas III-359
Lengál, Ondřej I-24, II-130
Leroux, Jérôme I-370
Li, Jianxin II-217
Li, Xianzhiyu III-376
Lima, Leonardo I-288
Lin, Shang-Wei II-363
Lingsch-Rosenfeld, Marian III-359
Loose, Nils III-399
Luo, Linghui I-229

M
Mächtle, Felix III-399
Madhukar, Kumar III-393

Author Index 393

Majumdar, Rupak II-66, III-213
Mallik, Kaushik III-153
Manino, Edoardo III-376
Menezes, Rafael Sá III-376
Mertens, Hannah II-237
Metta, Ravindra III-393
Micskei, Zoltán III-330
Milanese, Marco III-387
Miné, Antoine III-387
Mitsch, Stefan I-144
Mohr, Stefanie II-299
Molnár, Vince III-371, III-412
Monat, Raphaël III-387
Mondok, Milán III-371, III-412
Mozumder, Nusrat Jahan III-24
Murgia, Maurizio I-207

N
Nayak, Satya Prakash III-173
Neider, Daniel I-167
Neurohr, Christian I-167
Nötzli, Andres I-311
Novák, Jakub III-406

O
Omar, Ayham III-45
Osama, Muhammad II-23
Ouadjaout, Abdelraouf III-387

P
Panagou, Dimitra I-248
Parízek, Pavel II-3
Parolini, Francesco III-387
Pavlogiannis, Andreas III-110
Petrucci, Laure III-194
Pike, Lee I-3
Platzer, André I-144
Podelski, Andreas III-418
Pogudin, Gleb II-323

Q
Qu, Daohan II-3
Quatmann, Tim II-237

R
Reynolds, Andrew I-311
Richter, Cedric III-353

Rodrigues, Nishant I-350
Rogalewicz, Adam I-188
Roşu, Grigore I-350
Rot, Jurriaan II-109, II-279
Roy, Subhajit II-155

S
S, Sumanth Prabhu II-175
Saan, Simmo III-335, III-381
Sadhukhan, Suman III-153
Sağlam, Irmak III-213
Sagonas, Konstantinos II-87
Sanán, David II-363
Sanders, Peter I-268
Scheucher, Manfred I-61
Schmidt, Markus I-229
Schmitt, Frederik III-45
Schmuck, Anne-Kathrin III-173
Schott, Stefan I-229
Schüssele, Frank III-418
Schwarz, Michael III-335, III-381
Sebe, Mircea Octavian I-350
Sedláček, Jindřich III-406
Seidl, Helmut III-335, III-381
Shmarov, Fedor III-376
Shoham, Sharon I-43
Síč, Juraj I-24, II-130
Sieck, Florian III-399
Singh, Abhishek Kr III-235
Sirrenberg, Nils III-129
Solanki, Mayank II-155
Somorjai, Márk III-371, III-412
Song, Kunjian III-376
Spiessl, Martin III-359
Stoelinga, Marielle II-258
Strejček, Jan III-90, III-341, III-406
Szekeres, Dániel III-371, III-412

T
Tachna-Fram, Avi I-248
Tåquist, Fredrik II-87
Tekriwal, Mohit I-248
Telbisz, Csanád III-371, III-412
Temel, Mertcan I-340
Teo, Yon Shin II-363
Thejaswini, K. S. III-213
Tihanyi, Norbert III-376

394 Author Index

Tilscher, Sarah III-335, III-381
Tinelli, Cesare I-311
Tomov, Naum I-103
Tonetta, Stefano II-44
Traytel, Dmitriy I-288
Trentin, Patrick I-3
Tribastone, M. II-343
Trtík, Marek III-90, III-406
Tschaikowski, M. II-343

U
Ulbrich, Mattias I-268
Urban, Lukáš III-90

V
Vafeiadis, Viktor II-66
van Abbema, Feije I-103
van de Pol, Jaco III-110
van den Brand, Mark III-71
van den Haak, Lars B. III-71
van der Vegt, Marck II-279
van Dijk, Tom I-103
Venkatesh, R. II-175, III-393
Vojdani, Vesal III-335, III-381
Vojnar, Tomáš I-188
Volk, Matthias II-258

W
Wachowitz, Henrik III-359
Wang, Benjie III-3
Wang, Tzu-Fan II-363
Wang, Zhen III-347
Watanabe, Kazuki II-279
Wendler, Philipp III-359
Westhofen, Lukas I-167
Whalen, Mike I-3
Wiesler, Julian I-268
Wijs, Anton II-23, III-71
Winkler, Tobias II-237
Witt, Sascha I-268

X
Xu, Dong III-24

Y
Yi, Pu (Luke) II-3

Z
Zaoral, Lukáš III-406
Zhang, Leping II-217
Zhang, Xiyue III-3
Zhao, Yongwang II-217
Zuleger, Florian I-188

	ETAPS Foreword
	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Contents – Part III
	SAT and SMT Solving
	DRAT Proofs of Unsatisfiability for SAT Modulo Monotonic Theories
	Z3-Noodler: An Automata-based String Solver
	TaSSAT: Transfer and Share SAT
	Speculative SAT Modulo SAT
	Happy Ending: An Empty Hexagon in Every Set of 30 Points
	Synthesis
	Fully Generalized Reactivity(1) Synthesis
	Knor: reactive synthesis using Oink
	On Dependent Variables in Reactive Synthesis
	CESAR: Control Envelope Synthesis via Angelic Refinements
	Logic and Decidability
	Answering Temporal Conjunctive Queries over Description Logic Ontologies for Situation Recognition in Complex Operational Domains
	Deciding Boolean Separation Logic via Small Models
	Asynchronous Subtyping by Trace Relaxation
	Program Analysis and Proofs
	SootUp: A Redesign of the Soot Static Analysis Framework
	Formally verified asymptotic consensus in robust networks
	Formally Verifying an Efficient Sorter
	Explainable Online Monitoring of Metric First-Order Temporal Logic
	Proof Checking
	IsaRare: Automatic Verification of SMT Rewrites in Isabelle/HOL
	Automate where Automation Fails: Proof Strategies for Frama-C/WP
	VeSCMul: Verified Implementation of S-C-Rewriting for Multiplier Verification
	A Logical Treatment of Finite Automata
	A State-of-the-Art Karp-Miller Algorithm Certified in Coq
	Author Index

