
27th International Conference, FoSSaCS 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings, Part II

Foundations
of Software Science and
Computation StructuresLN

CS
 1

45
75

AR
Co

SS
Naoki Kobayashi
James Worrell (Eds.)

Lecture Notes in Computer Science 14575

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Naoki Kobayashi • James Worrell
Editors

Foundations
of Software Science and
Computation Structures
27th International Conference, FoSSaCS 2024
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2024
Luxembourg City, Luxembourg, April 6–11, 2024
Proceedings, Part II

123

Editors
Naoki Kobayashi
The University of Tokyo
Tokyo, Japan

James Worrell
University of Oxford
Oxford, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-57230-2 ISBN 978-3-031-57231-9 (eBook)
https://doi.org/10.1007/978-3-031-57231-9

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-0537-0604
https://orcid.org/0000-0001-8151-2443
https://doi.org/10.1007/978-3-031-57231-9
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 27th ETAPS! ETAPS 2024 took place in Luxembourg City, the
beautiful capital of Luxembourg.

ETAPS 2024 is the 27th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each con-
ference has its own Program Committee (PC) and its own Steering Committee (SC).
The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming languages, analysis tools, and formal
approaches to software engineering. Organising these conferences in a coherent, highly
synchronized conference programme enables researchers to participate in an exciting
event, having the possibility to meet many colleagues working in different directions in
the field, and to easily attend talks of different conferences. On the weekend before the
main conference, numerous satellite workshops took place that attracted many
researchers from all over the globe.

ETAPS 2024 received 352 submissions in total, 117 of which were accepted,
yielding an overall acceptance rate of 33%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2024 featured the unifying invited speakers Sandrine Blazy (University of
Rennes, France) and Lars Birkedal (Aarhus University, Denmark), and the invited
speakers Ruzica Piskac (Yale University, USA) for TACAS and Jérôme Leroux
(Laboratoire Bordelais de Recherche en Informatique, France) for FoSSaCS. Invited
tutorials were provided by Tamar Sharon (Radboud University, the Netherlands) on
computer ethics and David Monniaux (Verimag, France) on abstract interpretation.

As part of the programme we had the first ETAPS industry day. The goal of this day
was to bring industrial practitioners into the heart of the research community and to
catalyze the interaction between industry and academia. The day was organized by
Nikolai Kosmatov (Thales Research and Technology, France) and Andrzej Wa sowski
(IT University of Copenhagen, Denmark).

ETAPS 2024 was organized by the SnT - Interdisciplinary Centre for Security,
Reliability and Trust, University of Luxembourg. The University of Luxembourg was
founded in 2003. The university is one of the best and most international young
universities with 6,000 students from 130 countries and 1,500 academics from all over
the globe. The local organisation team consisted of Peter Y.A. Ryan (general chair),
Peter B. Roenne (organisation chair), Maxime Cordy and Renzo Gaston Degiovanni
(workshop chairs), Magali Martin and Isana Nascimento (event manager), Marjan
Skrobot (publicity chair), and Afonso Arriaga (local proceedings chair). This team also

organised the online edition of ETAPS 2021, and now we are happy that they agreed to
also organise a physical edition of ETAPS.

ETAPS 2024 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Marieke Huisman (Twente,
chair), Andrzej Wa sowski (Copenhagen), Thomas Noll (Aachen), Jan Kofroň (Prague),
Barbara König (Duisburg), Arnd Hartmanns (Twente), Caterina Urban (Inria), Jan
Křetínský (Munich), Elizabeth Polgreen (Edinburgh), and Lenore Zuck (Chicago).

Other members of the steering committee are: Maurice ter Beek (Pisa), Dirk Beyer
(Munich), Artur Boronat (Leicester), Luı s Caires (Lisboa), Ana Cavalcanti (York),
Ferruccio Damiani (Torino), Bernd Finkbeiner (Saarland), Gordon Fraser (Passau),
Arie Gurfinkel (Waterloo), Reiner Hähnle (Darmstadt), Reiko Heckel (Leicester),
Marijn Heule (Pittsburgh), Joost-Pieter Katoen (Aachen and Twente), Delia Kesner
(Paris), Naoki Kobayashi (Tokyo), Fabrice Kordon (Paris), Laura Kovács (Vienna),
Mark Lawford (Hamilton), Tiziana Margaria (Limerick), Claudio Menghi (Hamilton
and Bergamo), Andrzej Murawski (Oxford), Laure Petrucci (Paris), Peter Y.A. Ryan
(Luxembourg), Don Sannella (Edinburgh), Viktor Vafeiadis (Kaiserslautern), Stepha-
nie Weirich (Pennsylvania), Anton Wijs (Eindhoven), and James Worrell (Oxford).

I would like to take this opportunity to thank all authors, keynote speakers, atten-
dees, organizers of the satellite workshops, and Springer Nature for their support.
ETAPS 2024 was also generously supported by a RESCOM grant from the Luxem-
bourg National Research Foundation (project 18015543). I hope you all enjoyed
ETAPS 2024.

Finally, a big thanks to both Peters, Magali and Isana and their local organization
team for all their enormous efforts to make ETAPS a fantastic event.

April 2024 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This volume contains the papers presented at the 27th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS 2024), which
was held during April 8–11, 2024 in Luxembourg City, Luxembourg. The conference
is dedicated to foundational research with a clear significance for software science and
brings together research on theories and methods to support the analysis, integration,
synthesis, transformation, and verification of programs and software systems.

In addition to an invited talk by Jérôme Leroux (Laboratoire Bordelais de Recherche
en Informatique, France) on “Ackermannian Completion of Separators”, the program
consisted of 24 talks on contributed papers, selected from 79 submissions. Each sub-
mission was assessed by three or more Program Committee members, with the help of
external reviewers. The conference management system EasyChair was used to handle
the submissions, to conduct the electronic Program Committee discussions, and to
assist with the assembly of the proceedings.

We wish to thank all the authors who submitted papers for consideration, the
members of the Program Committee for their conscientious work, and all additional
reviewers who assisted the Program Committee in the evaluation process. We would
also like to thank Andrzej Murawski, the FoSSaCS Steering Committee Chair for
various pieces of advice, and the members of the ESOP/FASE/FoSSaCS joint Artifact
Evaluation Committee for the artifact evaluation. Finally, we would like to thank the
ETAPS organization for providing an excellent environment for FoSSaCS, the other
conferences and the workshops.

February 2024 Naoki Kobayashi
James Worrell

Organization

Program Committee Chairs

Naoki Kobayashi The University of Tokyo, Japan
James Worrell University of Oxford, UK

Program Committee

Sandra Alves University of Porto, Portugal
Mauricio Ayala-Rincón Universidade de Brasília, Brazil
Stephanie Balzer CMU, USA
Udi Boker Reichman University, Israel
James Brotherston University College London, UK
Corina Cirstea University of Southampton, UK
Yuxin Deng East China Normal University, China
Claudia Faggian CNRS - Université Paris Cité, France
Pierre Ganty IMDEA Software Institute, Spain
Ichiro Hasuo National Institute of Informatics, Japan
Naoki Kobayashi The University of Tokyo, Japan
Robbert Krebbers Radboud University, the Netherlands
Antonin Kucera Masaryk University, the Czech Republic
Karoliina Lehtinen CNRS - Université Aix-Marseille, France
Bas Luttik Eindhoven University of Technology, the Netherlands
Rasmus Ejlers Møgelberg IT University of Copenhagen, Denmark
Luca Padovani Università di Camerino, Italy
Catuscia Palamidessi Inria, France
Paritosh Pandya IIT Bombay, India
Elaine Pimentel University College London, UK
Damien Pous CNRS - ENS Lyon, France
Ana Sokolova University of Salzburg, Austria
Lidia Tendera University of Opole, Poland
Nikos Tzevelekos Queen Mary University of London, UK
Tarmo Uustalu Reykjavik University, Iceland
Franck van Breugel York University, Canada
James Worrell University of Oxford, UK

ESOP/FASE/FoSSaCS Joint Artifact Evaluation Committee

AEC Co-chairs

Tobias Kappé Open Universiteit and ILLC, University of Amsterdam,
The Netherlands

Ryosuke Sato University of Tokyo, Japan
Stefan Winter LMU Munich, Germany

AEC Members

Arwa Hameed Alsubhi University of Glasgow, UK
Levente Bajczi Budapest University of Technology and Economics,

Hungary
James Baxter University of York, UK
Matthew Alan Le Brun University of Glasgow, UK
Laura Bussi University of Pisa, Italy
Gustavo Carvalho Universidade Federal de Pernambuco, Brazil
Chanhee Cho Carnegie Mellon University, USA
Ryan Doenges Northeastern University, USA
Zainab Fatmi University of Oxford, UK
Luke Geeson University College London, UK
Hans-Dieter Hiep Leiden University, Belgium
Philipp Joram Tallinn University of Technology, Estonia
Ulf Kargén Linköping University, Sweden
Hiroyuki Katsura University of Tokyo, Japan
Calvin Santiago Lee Reykjavík University, Iceland
Livia Lestingi Politecnico di Milano, Italy
Nuno Macedo University of Porto and INESC TEC, Portugal
Kristóf Marussy Budapest University of Technology and Economics,

Hungary
Ivan Nikitin University of Glasgow, UK
Hugo Pacheco University of Porto, Portugal
Lucas Sakizloglou Brandenburgische Technische Universität Cottbus-

Senftenberg, Germany
Michael Schröder TU Wien, Austria
Michael Schwarz TU Munich, Germany
Wenjia Ye University of Hong Kong, China

x Organization

Additional Reviewers

Abraham, Erika
Ajdarow, Michal
An, Jie
Asada, Kazuyuki
Avanzini, Martin
Balasubramanian, A. R.
Barbosa, João
Basold, Henning
Batz, Kevin
Beohar, Harsh
Bertrand, Nathalie
Beyersdorff, Olaf
Bohn, León
Bonelli, Eduardo
Bonsangue, Marcello
Breuvart, Flavien
Bruyère, Véronique
Carette, Titouan
Chadha, Rohit
Clemente, Lorenzo
Cockett, Robin
Czerwiński, Wojciech
D’Osualdo, Emanuele
Dagnino, Francesco
De Moura, Flavio L. C.
De, Abhishek
Di Stasio, Antonio
Espírito Santo, José
Fahrenberg, Uli
Feng, Yuan
Fijalkow, Nathanaël
Filiot, Emmanuel
Fokkink, Wan
Frumin, Daniil
Galal, Zeinab
Geatti, Luca
Geuvers, Herman
van Glabbeek, Rob
van Gool, Sam
Goy, Alexandre
Guha, Shibashis
Guttenberg, Roland
Hague, Matthew

Hainry, Emmanuel
Harper, Robert
Hausmann, Daniel
Hedges, Jules
Hinrichsen, Jonas Kastberg
Ho, Hsi-Ming
Jaber, Guilhem
Jafarrahmani, Farzad
Jakl, Tomas
Jancar, Petr
Kanazawa, Makoto
Kaposi, Ambrus
Katsumata, Shin-Ya
Kavvos, Alex
Keiren, Jeroen J. A.
Kelmendi, Edon
Klaška, David
Klock Ii, Felix S.
Knight, Sophia
Koutavas, Vasileios
Krivine, Jean
König, Barbara
Laurent, Olivier
Leroux, Jérôme
Lhote, Nathan
Li, Yong
Long, Huan
Lopez, Aliaume
Loreti, Michele
Maarand, Hendrik
Madnani, Khushraj
Mallik, Kaushik
Martens, Jan
Marti, Johannes
Mascle, Corto
Mazzocchi, Nicolas
McDermott, Dylan
Melliès, Paul-André
Mery, Daniel
Michaliszyn, Jakub
Michielini, Vincent
Miculan, Marino
Moot, Richard

Organization xi

Morawska, Barbara
Mulder, Ike
Nguyễn, Lê Thành Dũng
Novotný, Petr
Paquet, Hugo
Piedeleu, Robin
Pinto, Luís
Proença, José
Pérez, Jorge A.
Rehak, Vojtech
Riba, Colin
Rivas, Exequiel
Rogalewicz, Adam
Rot, Jurriaan
Rowe, Reuben
Sakayori, Ken
Sarkis, Ralph
Schmid, Todd
Schmitz, Sylvain
Schröder, Lutz
Sin’Ya, Ryoma

Skrzypczak, Michał
Sobociński, Paweł
Staton, Sam
Stein, Dario
Takagi, Tsubasa
Tini, Simone
Totzke, Patrick
Urbat, Henning
Valencia, Frank
Vandenhove, Pierre
Varacca, Daniele
Veltri, Niccolò
Ventura, Daniel
Waga, Masaki
Wagemaker, Jana
Wan, Cheng-Syuan
Weil-Kennedy, Chana
Winskel, Glynn
Witkowski, Piotr
Wißmann, Thorsten
Wolter, Frank

xii Organization

Contents – Part II

Types and Programming Languages

From Rewrite Rules to Axioms in the kP-Calculus Modulo Theory 3
Valentin Blot, Gilles Dowek, Thomas Traversié,
and Théo Winterhalter

Light Genericity . 24
Beniamino Accattoli and Adrienne Lancelot

Logical Predicates in Higher-Order Mathematical Operational Semantics 47
Sergey Goncharov, Alessio Santamaria, Lutz Schröder, Stelios Tsampas,
and Henning Urbat

On Basic Feasible Functionals and the Interpretation Method 70
Patrick Baillot, Ugo Dal Lago, Cynthia Kop, and Deivid Vale

Logic and Proofs

Succinctness of Cosafety Fragments of LTL via Combinatorial
Proof Systems . 95

Luca Geatti, Alessio Mansutti, and Angelo Montanari

A Resolution-Based Interactive Proof System for UNSAT 116
Philipp Czerner, Javier Esparza, and Valentin Krasotin

Craig Interpolation for Decidable First-Order Fragments 137
Balder ten Cate and Jesse Comer

Clones, closed categories, and combinatory logic . 160
Philip Saville

Infinite-State Systems

Reachability in Fixed VASS: Expressiveness and Lower Bounds 185
Andrei Draghici, Christoph Haase, and Andrew Ryzhikov

From Innermost to Full Almost-Sure Termination of Probabilistic
Term Rewriting . 206

Jan-Christoph Kassing, Florian Frohn, and Jürgen Giesl

Dimension-Minimality and Primality of Counter Nets 229
Shaull Almagor, Guy Avni, Henry Sinclair-Banks, and Asaf Yeshurun

Parameterized Broadcast Networks with Registers: from NP to the Frontiers
of Decidability . 250

Lucie Guillou, Corto Mascle, and Nicolas Waldburger

Author Index . 271

xiv Contents – Part II

http://dx.doi.org/10.1007/978-3-031-57228-9_13

Contents – Part I

Invited Talk

Ackermannian Completion of Separators . 3
Jérôme Leroux

Infinite Games

Fair x-Regular Games . 13
Daniel Hausmann, Nir Piterman, Irmak Sağlam,
and Anne-Kathrin Schmuck

Stochastic Window Mean-Payoff Games . 34
Laurent Doyen, Pranshu Gaba, and Shibashis Guha

Symbolic Solution of Emerson-Lei Games for Reactive Synthesis 55
Daniel Hausmann, Mathieu Lehaut, and Nir Piterman

Parity Games on Temporal Graphs . 79
Pete Austin, Sougata Bose, and Patrick Totzke

Categorical Semantics

Drawing from an Urn is Isometric. 101
Bart Jacobs

Enriching Diagrams with Algebraic Operations . 121
Alejandro Villoria, Henning Basold, and Alfons Laarman

Monoidal Extended Stone Duality . 144
Fabian Birkmann, Henning Urbat, and Stefan Milius

Towards a Compositional Framework for Convex Analysis
(with Applications to Probability Theory). 166

Dario Stein and Richard Samuelson

Automata and Synthesis

Determinization of Integral Discounted-Sum Automata is Decidable 191
Shaull Almagor and Neta Dafni

Checking History-Determinism is NP-hard for Parity Automata 212
Aditya Prakash

Tighter Construction of Tight Büchi Automata . 234
Marek Jankola and Jan Strejček

Synthesis with Privacy Against an Observer . 256
Orna Kupferman, Ofer Leshkowitz, and Naama Shamash Halevy

Author Index . 279

xvi Contents – Part I

http://dx.doi.org/10.1007/978-3-031-50524-9_12

Types and Programming Languages

From Rewrite Rules to Axioms
in the λΠ-Calculus Modulo Theory

1 Université Paris-Saclay, Inria, ENS Paris-Saclay, CNRS, LMF, Gif-sur-Yvette,
France

{valentin.blot,gilles.dowek,thomas.traversie,theo.winterhalter}@inria.fr
2 Université Paris-Saclay, CentraleSupélec, MICS, Gif-sur-Yvette, France

Abstract. The λΠ-calculus modulo theory is an extension of simply
typed λ-calculus with dependent types and user-defined rewrite rules.
We show that it is possible to replace the rewrite rules of a theory of the
λΠ-calculus modulo theory by equational axioms, when this theory fea-
tures the notions of proposition and proof, while maintaining the same
expressiveness. To do so, we introduce in the target theory a heteroge-
neous equality, and we build a translation that replaces each use of the
conversion rule by the insertion of a transport. At the end, the theory
with rewrite rules is a conservative extension of the theory with axioms.

Keywords: Rewrite rules · Equality · Logical Framework.

1 Introduction

For Poincaré, the reasoning by which we deduce that 2+2 = 4 is not a meaningful
proof, but a simple verification. He concludes that the goal of exact sciences is to
“dispense with these direct verifications” [20]. Far from being solely a philosoph-
ical issue, this principle impacts the foundations of logical systems and in partic-
ular the choice between axioms and rewrite rules. For instance, in systems with
axioms x+succ y = succ (x+y) and x+0 = x, we can prove that 2+2 = 4. On the
other hand, in systems with rewrite rules x+succ y ↪→ succ (x+y) and x+0 ↪→ x,
we just need to prove 4 = 4 as we can compute that (2 + 2 = 4) ≡ (4 = 4).
In that respect, logical systems with computation rules are convenient tools for
making proofs. That is why rewrite rules have been added to systems such as
Agda [5] or Coq [12] and why Dowek [9,10] developed Deduction modulo the-
ory, an extension of first-order logic that mixes computation and proof. Since
logical systems with rewrite rules are more user-friendly, one may ask whether
or not the results are the same as in axiomatic logical systems.

Rewrite rules are at the core of the λΠ-calculus modulo theory, an exten-
sion of simply typed λ-calculus with dependent types and user-definable rewrite
rules [6]. The combination of β-reduction and of the rewrite rules of a signature
Σ forms the conversion ≡βΣ . If we know that t : A with conversion A ≡βΣ B,

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 3–23, 2024.
https://doi.org/10.1007/978-3-031-57231-9_1

Valentin Blot1, Gilles Dowek1 , Thomas Traversié1,2(B),
and Théo Winterhalter1

https://orcid.org/0000-0001-6253-935X
https://orcid.org/0000-0002-9881-3696
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_1&domain=pdf

then we can derive that t : B. In this system, a theory is a set of rewrite rules, to-
gether with a set of axioms (that are typed constants). The λΠ-calculus modulo
theory is a powerful logical framework in which many theories can be expressed,
such as Predicate logic, Simple type theory or the Calculus of constructions [3].
It is the theory behind the Dedukti language [2,16] and the Lambdapi proof
assistant.

In this paper, we choose to study the replacement of rewrite rules by axioms in
the λΠ-calculus modulo theory. Since it is a logical framework, the result applies
to many theories. Moreover, as Dedukti is geared towards the interoperability
between proof systems, if we want to exchange proofs between a system with
rewrite rules and a system without rewrite rules via Dedukti, we need to replace
rewrite rules by axioms in the λΠ-calculus modulo theory. Working in this logical
framework rather than in an extension of Martin-Löf type theory [17] is therefore
relevant on both theoretical and practical levels, but complicates the task as
the λΠ-calculus modulo theory does not feature identity types or an infinite
hierarchy of sorts.

One method to replace rewrite rules by axioms is to mimic the behavior of
the conversion rule using transports: if we have t : A and A ≡βΣ B with p an
equality between A and B, then we can deduce that transp p t : B, but we do not
directly have t : B. However trivial this seems, we face several challenges when
trying to demonstrate it fully: the insertion of transports in terms and types is
difficult due to the presence of dependent types, and the building of transports
is involved as we cannot have inside the λΠ-calculus modulo theory an equality
between types.

A similar problem is the elimination of equality reflection from extensional
systems. Equality reflection states that ℓ = r implies ℓ ≡ r, just like ℓ ↪→ r im-
plies ℓ ≡ r in systems with rewrite rules. In extensional systems, typing is eased
by a more powerful conversion. Hofmann [14,15] investigated categorically the
problem. Oury [19] developed a translation of proofs from an extensional ver-
sion of the Calculus of Constructions to the Calculus of Inductive Constructions
with equality axioms. Winterhalter, Sozeau and Tabareau [23,24] built upon this
result to reduce the number of axioms needed.

The replacement of rewrite rules by axioms paves the way for the interpre-
tation of a theory into another inside the λΠ-calculus modulo theory. Indeed,
when interpreting a theory into another, we represent each constant of the source
theory by a term in the target theory, but we cannot generally do the same for
rewrite rules. We can however pre-process the source theory to replace its rewrite
rules by axioms, and then interpret it. The interpretation of theories allows to
prove relative consistency and relative normalization theorems [8].

Contribution. The main contribution of this paper is the translation of a theory
with rewrite rules to a theory with equational axioms. To do so, we restrict the
theories considered to theories with an encoding of the notions of proposition and
proof inside the λΠ-calculus modulo theory. So as to compare objects that pos-
sibly do not have the same type, we define a heterogeneous equality—following
the one defined by McBride [18]. The restriction considered allows us to build an

4 V. Blot et al.

equality between particular types—called small types. We define a type system
with typed conversion for the λΠ-calculus modulo theory, so that the proofs are
done by induction on the derivation trees more easily.

Outline of the paper. In Section 2, we present the λΠ-calculus modulo theory,
we detail a prelude encoding of the notions of proposition and proof in it, and
we identify the assumptions made on the considered theories. The heterogeneous
equality and the equality between small types are presented in Section 3. The
replacement of rewrite rules by axioms and the translation of terms, judgments
and theories are presented in Section 4.

2 Theories in the λΠ-Calculus Modulo Theory

In this section, we give a more detailed overview of the λΠ-calculus modulo the-
ory [6] and its type system. In particular, we present an encoding of the notions
of proposition and proof in the λΠ-calculus modulo theory [3]. We characterize
small types—a subclass of types for which we can define an equality.

2.1 The λΠ-Calculus Modulo Theory

The λΠ-calculus, also known as the Edinburgh Logical Framework [13], is an
extension of simply typed λ-calculus with dependent types. The λΠ-calculus
modulo theory (λΠ/≡) [6] is an extension of the λΠ-calculus, in which user-
definable rewrite rules have been added [7]. Its syntax is given by:

Sorts s ::= TYPE | KIND

Terms t, u, A, B ::= c | x | s | Πx : A. B | λx : A. t | t u

Contexts Γ ::= ⟨⟩ | Γ, x : C

Signatures Σ ::= ⟨⟩ | Σ, c : D | Σ, ℓ ↪→ r

where c is a constant and x is a variable (ranging over disjoint sets), C and r
are terms, D is a closed term (i.e. a term with no free variables) and ℓ is a term
such that ℓ = c t1 . . . tk with c a constant. TYPE and KIND are two sorts: terms of
type TYPE are called types, and terms of type KIND are called kinds. Πx : A. B
is a dependent product, λx : A. t is an abstraction and t u is an application.
Πx : A. B is simply written A → B if x does not appear in B. Signatures
and contexts are finite sequences, and are written ⟨⟩ when empty. Signatures
contain both typed constants and rewrite rules (written ℓ ↪→ r). λΠ/≡ is a
logical framework, in which Σ is fixed by the user depending on the logic they
are working in.

The relation ↪→βΣ is generated by β-reduction and by the rules of Σ. More
explicitly, ↪→βΣ is the smallest relation, closed by context, such that if t rewrites
to u for some rule in Σ or by β-reduction then t ↪→βΣ u. Conversion ≡βΣ is the
reflexive, symmetric, and transitive closure of ↪→βΣ .

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 5

2.2 The Type System of the λΠ-Calculus Modulo Theory

We introduce in Figs. 1 and 2 typing rules for λΠ/≡. Fig. 1 presents the usual
typing rules while Fig. 2 focuses on the conversion rules. We write ⊢ Γ when
the context Γ is well formed and Γ ⊢ t : A when t is of type A in the context
Γ . ⟨⟩ ⊢ t : A is simply written ⊢ t : A. The notation (⊢ Γ1) ≡ (⊢ Γ2) means
that Γ1 and Γ2 are both well formed, have the same length and have the same
variables with convertible types. We write (Γ1 ⊢ t1 : A1) ≡ (Γ2 ⊢ t2 : A2) when
t1 and t2 are convertible with Γ1 ⊢ t1 : A1 and Γ2 ⊢ t2 : A2. In particular,
convertible terms t1 ≡ t2 are authorized to have different types—provided that
both types are convertible—and to be typed in different contexts—provided
that both contexts are convertible. In ConvRule, x is a vector representing the
free variables of ℓ. The standard weakening rule and substitution lemma can be
derived from this type system.

⊢ ⟨⟩
[Empty]

⊢ Γ Γ ⊢ A : s

⊢ Γ, x : A
[Decl] x /∈ Γ

⊢ Γ

Γ ⊢ TYPE : KIND
[Sort]

⊢ Γ ⊢ A : s

Γ ⊢ c : A
[Const] c : A ∈ Σ

⊢ Γ

Γ ⊢ x : A
[Var] x : A ∈ Γ

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s

Γ ⊢ Πx : A. B : s
[Prod]

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s Γ, x : A ⊢ t : B

Γ ⊢ λx : A. t : Πx : A. B
[Abs]

Γ ⊢ t : Πx : A. B Γ ⊢ u : A

Γ ⊢ t u : B[x 7→ u]
[App]

Γ ⊢ t : A (Γ ⊢ A : s) ≡ (Γ ⊢ B : s)
Γ ⊢ t : B

[Conv]

Fig. 1. Typing rules of the λΠ-calculus modulo theory

Lemma 1 (Substitution).

– If we have ⊢ Γ, x : A, ∆ and Γ ⊢ u : A, then ⊢ Γ, ∆[x 7→ u].
– If we have Γ, x : A, ∆ ⊢ t : B and Γ ⊢ u : A, then Γ, ∆[x 7→ u] ⊢ t[x 7→ u] :

B[x 7→ u].
– If we have (⊢ Γ1, x : A1, ∆1) ≡ (⊢ Γ2, x : A2, ∆2) and Γ1 ⊢ u : A1, then

(⊢ Γ1, ∆1[x 7→ u]) ≡ (⊢ Γ2, ∆2[x 7→ u]).

6 V. Blot et al.

Γ ⊢ u : A

(Γ ⊢ u : A) ≡ (Γ ⊢ u : A)
[ConvRefl]

(Γ ⊢ u : A) ≡ (Γ ⊢ v : B)
(Γ ⊢ v : B) ≡ (Γ ⊢ u : A)

[ConvSym]

(Γ ⊢ u : A) ≡ (Γ ⊢ v : B) (Γ ⊢ v : B) ≡ (Γ ⊢ w : C)
(Γ ⊢ u : A) ≡ (Γ ⊢ w : C)

[ConvTrans]

(⊢ Γ1) ≡ (⊢ Γ2) (Γ1 ⊢ A1 : s) ≡ (Γ2 ⊢ A2 : s)
(⊢ Γ1, x : A1) ≡ (⊢ Γ2, x : A2)

[ConvDecl] x /∈ Γ1, Γ2

(⊢ Γ1) ≡ (⊢ Γ2) ⊢ A : s

(Γ1 ⊢ c : A) ≡ (Γ2 ⊢ c : A)
[ConvConst] c : A ∈ Σ

(⊢ Γ1) ≡ (⊢ Γ2)
(Γ1 ⊢ x : A1) ≡ (Γ2 ⊢ x : A2)

[ConvVar] x : A1 ∈ Γ1, x : A2 ∈ Γ2

(Γ1 ⊢ A1 : TYPE) ≡ (Γ2 ⊢ A2 : TYPE)
(Γ1, x : A1 ⊢ B1 : s) ≡ (Γ2, x : A2 ⊢ B2 : s)

(Γ1 ⊢ Πx : A1. B1 : s) ≡ (Γ2 ⊢ Πx : A2. B2 : s)
[ConvProd]

(Γ1 ⊢ A1 : TYPE) ≡ (Γ2 ⊢ A2 : TYPE)
(Γ1, x : A1 ⊢ B1 : s) ≡ (Γ2, x : A2 ⊢ B2 : s)

(Γ1, x : A1 ⊢ t1 : B1) ≡ (Γ2, x : A2 ⊢ t2 : B2)
(Γ1 ⊢ λx : A1. t1 : Πx : A1. B1) ≡ (Γ2 ⊢ λx : A2. t2 : Πx : A2. B2)

[ConvAbs]

(Γ1 ⊢ t1 : Πx : A1. B1) ≡ (Γ2 ⊢ t2 : Πx : A2. B2)
(Γ1 ⊢ u1 : A1) ≡ (Γ2 ⊢ u2 : A2)

(Γ1 ⊢ t1 u1 : B1[x 7→ u1]) ≡ (Γ2 ⊢ t2 u2 : B2[x 7→ u2])
[ConvApp]

Γ ⊢ A : TYPE Γ, x : A ⊢ t : B Γ, x : A ⊢ B : s Γ ⊢ u : A

(Γ ⊢ (λx : A. t) u : B[x 7→ u]) ≡ (Γ ⊢ t[x 7→ u] : B[x 7→ u])
[ConvBeta]

x : B ⊢ ℓ : A x : B ⊢ r : A Γ ⊢ t : B

(Γ ⊢ ℓ[x 7→ t] : A[x 7→ t]) ≡ (Γ ⊢ r[x 7→ t] : A[x 7→ t])
[ConvRule] ℓ ↪→ r ∈ Σ

Γ ⊢ u : A (Γ ⊢ A : s) ≡ (Γ ⊢ B : s)
(Γ ⊢ u : A) ≡ (Γ ⊢ u : B)

[ConvConv]

Fig. 2. Convertibility rules of the λΠ-calculus modulo theory

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 7

– If we have (Γ1, x : A1, ∆1 ⊢ t1 : B1) ≡ (Γ2, x : A2, ∆2 ⊢ t2 : B2) and
Γ1 ⊢ u : A1, then (Γ1, ∆1[x 7→ u] ⊢ t1[x 7→ u] : B1[x 7→ u]) ≡ (Γ2, ∆2[x 7→
u] ⊢ t2[x 7→ u] : B2[x 7→ u]).

Proof. We proceed by induction on the typing derivation.

We chose to present a type system with typed conversion (written ≡)—so as
to easily do proofs on the derivations—while the usual type system for λΠ/
≡ features untyped conversion (written ≡βΣ). The equivalence between type
systems with typed conversion and type systems with untyped conversion has
been a longstanding question: Geuvers and Werner [11] investigated the case
of Pure Type Systems with βη-convertibility, Adams [1] proved the equivalence
in the case of functional Pure Type Systems, and Siles [21,22] later proved the
equivalence in the general case of the Pure Type Systems. The case of λΠ/≡,
in which we have β-convertibility but also user-defined rewrite rules, remains to
be investigated.

We write |Σ| for the set of constants of Σ, and Λ(Σ) for the set of terms t
whose constants belong to |Σ|. We say that T = Σ is a theory when for each
rule ℓ ↪→ r ∈ Σ we have ℓ and r in Λ(Σ), when ↪→βΣ is confluent on Λ(Σ), and
when every rule of Σ preserves typing in Σ (that is when for all context Γ and
for all term A ∈ Λ(Σ), if Γ ⊢ ℓ : A then Γ ⊢ r : A).

Example 1 (Natural numbers and lists). We can define in λΠ/≡ a partial theory
of natural numbers and indexed lists of natural numbers. nat represents the type
of natural numbers and list represents the dependent type of indexed lists of
natural numbers. cons adds a new element to a list, concat concatenates two
lists, and isRev checks if the first given list is the reverse of the second.

nat : TYPE 0 : nat succ : nat → nat + : nat → nat → nat

x + 0 ↪→ x x + succ y ↪→ succ (x + y) list : nat → TYPE nil : list 0

cons : Πx : nat. list x → nat → list (succ x)

isRev : Πx : nat. list x → list x → TYPE

concat : Πx, y : nat. list x → list y → list (x + y)

In the context ℓ : list (succ 0), we have concat (succ 0) 0 ℓ nil of type list (succ 0+
0). If we want to compare ℓ and this new list with isRev, we cannot directly do
it because they do not have the same type. However, we can use the conversion
rule with list (succ 0 + 0) ≡βΣ list (succ 0). This conversion derives from the
rewrite rule x + 0 ↪→ x instantiated with x := succ 0.

2.3 A Prelude Encoding for the λΠ-Calculus Modulo Theory
It is possible to introduce in λΠ/≡ the notions of proposition and proof [3].
In particular, this encoding—called prelude encoding—gives the possibility to
quantify on certain propositions through codes, which is not possible inside the
standard λΠ/≡. This encoding is defined by following signature.

8 V. Blot et al.

Definition 1. The signature Σpre contains the following constants and rewrite
rules:

Set : TYPE o : Set
El : Set → TYPE Prf : El o → TYPE

⇝d : Πx : Set. (El x → Set) → Set ⇒d : Πx : El o. (Prf x → El o) → El o

π : Πx : El o. (Prf x → Set) → Set ∀ : Πx : Set. (El x → El o) → El o

El (x⇝d y) ↪→ Πz : El x. El (y z) Prf (x ⇒d y) ↪→ Πz : Prf x. Prf (y z)
El (π x y) ↪→ Πz : Prf x. El (y z) Prf (∀ x y) ↪→ Πz : El x. Prf (y z)

We declare the constant Set, which represents the universe of types, along with
the injection El that maps terms of type Set into TYPE. o is a term of type
Set such that El o defines the universe of propositions. The injection Prf maps
propositions into TYPE. ⇝d (respectively ⇒d) is written infix and is used to
represent dependent function types between terms of type Set (respectively El o).
The symbol π (respectively ∀) is used to represent dependent function types
between elements of type El o and Set (respectively Set and El o).

The main advantage of this encoding is that it allows us to quantify on
propositions. Indeed, in λΠ/≡, we cannot quantify on TYPE. Instead, we can
quantify on objects of type El o, and then inject them into TYPE using Prf .

2.4 Small Types and Small Derivations
As we work in λΠ/≡ rather than in an extension of Martin-Löf type theory,
we do not have a pre-defined equality. Moreover, we cannot define an equality
between types since such object would have type TYPE → TYPE → TYPE, which
is not allowed in λΠ/≡.

If we want to compare types Prf a and Prf b, we cannot do it directly, but
we can compare a and b (that are of type El o). We can proceed similarly to
compare types El a and El b (with a and b of type Set). In that respect, we
want types to be into a special form—called small type—that takes advantages
of the prelude encoding, so as to compare them if necessary. To put types of the
prelude encoding into this special form, we use the reverse of the rewrite rules of
Σpre to represent dependent types with the symbols ⇝d, ⇒d, π and ∀ whenever
it is possible. This is achieved by the partial function ν, defined by:

ν(Set) = Set ν(Prf a) = Prf a ν(El a) = El a

ν(Πx : A. B) = Prf (a ⇒d (λx : Prf a. b)) if ν(A) = Prf a and ν(B) = Prf b
El (a⇝d (λx : El a. b)) if ν(A) = El a and ν(B) = El b
Prf (∀ a (λx : El a. b)) if ν(A) = El a and ν(B) = Prf b
El (π a (λx : Prf a. b)) if ν(A) = Prf a and ν(B) = El b
Πx : ν(A). ν(B) otherwise

Therefore, when ν(A) is defined, we have A ≡βΣpre
ν(A). Note that ν is partial

because we do not handle the case where a type is a β-reducible expression, as
in practice we will not have types under λ-abstraction form.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 9

To continue to characterize a particular form of types, we define the three
following grammars:

S ::= Set | S → S P ::= Prf a | P → S | Πz : S. P

E ::= El b | E → S | Πz : S. E

with a : El o and b : Set. The notation A ∈ S means that A is generated by the
grammar S. The grammar S generates types that only contain Set. Therefore,
if ν(A) ∈ S then ν(A) = A. The grammars P and E generate types that contain
a central symbol Prf or El.

Definition 2 (Small type, Small context). A type A is small when ν(A) is
defined and ν(A) ∈ S ∪ P ∪ E . In that case, ν(A) is called the small form of A.
A context Γ is small when for every x : A ∈ Γ we have that A is a small type.

Example 2. Prf a → Prf b, with a, b : El o, is a small type since its small form
Prf (a⇒d(λz. b)) is generated by the grammar P. The type Πx : Prf b. El c, with
c : Set depending on x, is a small type since its small form El (π b (λx : Prf b. c))
is generated by the grammar E . The type Prf a → Set → Prf b is not small,
since ν(Prf a → Set → Prf b) = Prf a → Set → Prf b /∈ S ∪ P ∪ E .

We would ideally like all the types to be small, so that we can compare them if
necessary. Therefore, if Γ ⊢ t : A, we want A to be a small type, or t to be a
small type and A = TYPE. However, small types are built using the constants of
Σpre. In particular, the type of the constants o, ⇝d, ⇒d and ∀ are small, but
the types of π, Prf and El are not. Note that the type of an application of π,
Prf or El is small. We thus come up with the following notion.

Definition 3 (Small judgment). ⊢ Γ is a small judgment when Γ is a small
context. Γ ⊢ t : A is a small judgment when Γ is a small context and when

– t : A ∈ Σpre,
– or t is the type of a constant of Σpre,
– or A is a small type,
– or t is a small type.

(Γ1 ⊢ t1 : A1) ≡ (Γ2 ⊢ t2 : A2) is a small judgment when Γ1 ⊢ t1 : A1 and
Γ2 ⊢ t2 : A2 are small.

Definition 4 (Small derivation). A small derivation is a derivation in which
all the judgments are small.

2.5 Theories with Prelude Encoding

We define the theories we will consider in the rest of the paper: theories that
features the prelude encoding inside λΠ/≡.

Definition 5 (Theory with prelude encoding). We say that a theory T = Σ
in the λΠ/≡ is a theory with prelude encoding when:

10 V. Blot et al.

– there exists ΣT such that Σ = Σpre ∪ ΣT and Σpre ∩ ΣT = ∅,
– for every c : A ∈ ΣT , A is small and admits a small derivation ⊢ A : TYPE,
– for every ℓ ↪→ r ∈ ΣT , we have small derivations x : B ⊢ ℓ : A and

x : B ⊢ r : A with A a small type, where x represents the free variables of ℓ.

A theory with prelude encoding is a theory with the constants and rewrite rules
Σpre, and additional user-defined constants and rewrite rules. To ensure that ΣT
is encoded inside the prelude encoding, we can only define new constants whose
types are small. We do not allow the use of rewrite rules ℓ ↪→ r when ℓ has TYPE
in its type. In particular, we cannot define new rewrite rules on Prf or El and
change the behavior of these constants. It follows that the three grammars S, P
and E generate disjoint types.

In the following examples, we present three theories with prelude encoding
in λΠ/≡. The examples of predicate logic and set theory illustrate that the
restrictions considered are generally respected, even for expressive theories.

Example 3 (Predicate logic). Predicate logic can be encoded in a theory with
prelude encoding. We declare constants for tautology and contradiction ⊤, ⊥ :
El o, for negation ¬ : El o → El o, for conjunction and disjunction ∧, ∨ : El o →
El o → El o, and for existential quantification ∃ : Πz : Set. (El z → El o) → El o.
The semantics of tautology is defined by the rewrite rule ⊤ ↪→ ∀ o (λx : El o. x⇒
x), which is equivalent to the more common form Prf ⊤ ↪→ Πz : El o. Prf z →
Prf z. The rewrite rule Prf (A∧B) ↪→ ΠP : El o. (Prf A → Prf B → Prf P) →
Prf P can be encoded by A ∧ B ↪→ ∀ o (λP. (A → B → P) → P). The rule
Prf (¬A) ↪→ Prf A → Prf ⊥ is forbidden, but ¬A ↪→ A ⇒ ⊥ is allowed. We
proceed similarly the other rewrite rules.

Example 4 (Natural numbers and lists). We can define our small theory of nat-
ural numbers and lists in the prelude encoding, by replacing TYPE by Set (in the
universe of types) or El o (in the universe of propositions), and by adding El
and Prf at the necessary positions.

nat : Set 0 : El nat succ : El nat → El nat + : El nat → El nat → El nat

list : El nat → Set x + 0 ↪→ x x + succ y ↪→ succ (x + y)

nil : El (list 0) cons : Πx : El nat. El list x → El nat → El (list (succ x))

isRev : Πx : El nat. El (list x) → El (list x) → El o

concat : Πx, y : El nat. El (list x) → El (list y) → El (list (x + y))

Example 5 (Set theory). The implementation in Dedukti of set theory [4] is a
theory with prelude encoding. In this implementation, sets are represented by a
more primitive notion of pointed graphs: we have graph and node of type Set.
The predicate η : El graph → El node → El node → El o is such that η a x y
is the proposition asserting that there is an edge in a from y to x. The operator
root : El graph → El node returns the root of a, which is a node.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 11

In practice, the derivations of small judgments are small derivations. As we con-
sider theories with prelude encoding, the only way of introducing a judgment
that is not small is through λ-abstractions. For instance in Example 4 the judg-
ment ⊢ El (list ((λx : El nat. λy : Set. x) 0 nat)) : TYPE is small, but in its
derivation we have ⊢ λx : El nat. λy : Set. x : El nat → Set → El nat which
is not a small judgment. However, ⊢ El (list 0) : TYPE admits a small deriva-
tion. If the derivation is not small, we can in practice apply β-reduction on the
fragments of the derivation that are not small to obtain a small derivation.

3 Equalities

Since we want to replace rewrite rules ℓ ↪→ r by equational axioms ℓ = r, we
need to define an equality in the target theory. In this section, we present a het-
erogeneous equality and a method to compare small types. The heterogeneous
equality is necessary to compare objects that do not have the same type. Al-
though we cannot define an equality between types in λΠ/≡, it is possible to
develop an equality between small types, taking advantage of their structure.

3.1 Heterogeneous Equality

In our development, we need to have an equality between two translations of the
same term. However, the two translations do not necessarily have the same type,
as we may have introduced transports over the course of the translation. To that
end, we define a heterogeneous equality inspired by the one of McBride [18]. Our
heterogeneous equality is defined by the constant schemas heqA,B : A → B →
El o where A and B are of type TYPE. We write u A≈B v for Prf (heqA,B u v).
Heterogeneous equality is reflexive, symmetric, and transitive.

reflA : Πu : A. u A≈A u
symA,B : Πu : A. Πv : B. u A≈B v → v B≈A u
transA,B,C : Πu : A. Πv : B. Πw : C. u A≈B v → v B≈C w → u A≈C w

When two objects have the same type, heterogeneous equality acts as Leibniz
equality. In particular, we can replace u by v in the universes of propositions
and types. The result of a Leibniz substitution on t remains equal to t.

leibPrf
A : Πu, v : A. Πp : u A≈A v. ΠP : A → El o. Prf (P u) → Prf (P v)

eqLeibPrf
A : Πu, v : A. Πp : u A≈A v. ΠP : A → El o. Πt : Prf (P u).

leibPrf
A u v p P t Prf (P v)≈Prf (P u) t

The same axiom schemas exist for the universe of types, with superscript El
instead of Prf, El instead of Prf , and Set instead of El o.

Finally, we add axioms for the congruence of each constructor of λΠ/≡.

12 V. Blot et al.

Application constructor. For the application, we take:

appA1,A2,B1,B2 : Πt1 : (Πx : A1. B1). Πt2 : (Πx : A2. B2).
Πu1 : A1. Πu2 : A2. t1 ≈ t2 → u1 ≈ u2
→ t1 u1 B1[x 7→u1]≈B2[x 7→u2] t2 u2

For the λ-abstraction and Π-type constructors, we cannot directly build equality
axioms. Indeed, if we want to define an equality between functional terms t1 of
type Πx : A1. B1 and t2 of type Πx : A2. B2, we need to ensure that types A1
and A2 are equal. Therefore, we would like to have

funA1,A2,B1,B2 : Πt1 : (Πx : A1. B1). Πt2 : (Πy : A2. B2). A1 ≈ A2
→ (Πx : A1. Πy : A2. x ≈ y → t1 x ≈ t2 y)
→ t1 ≈ t2

but we cannot take such an axiom, since the heterogeneous equality is not defined
to compare objects that have type TYPE, and A1 ≈ A2 is therefore ill typed. This
shortcoming is addressed by developing an equality between small types.

3.2 Equality between Small Types

We cannot build an equality between types, since such an equality would have
type TYPE → TYPE → TYPE, which is impossible in λΠ/≡. An option would be to
take axiom schemas A ≈ B for every equality between types A and B. Such an
equality would be too far from standard and would require additional axioms to
build transports. An alternative is to define an equality between small types. By
construction, if ν(A) ∈ P , then ν(A) is generated from Prf a for some a : El o,
and if ν(A) ∈ E , then ν(A) is generated from El a for some a : Set. If the small
form of A contains Prf a and the small form of B contains Prf b, then we want
an equality between a and b. We define the partial function κ on small forms by

κ(Prf a1, Prf a2) = a1 ≈ a2 κ(El a1, El a2) = a1 ≈ a2

κ(S, S) = True if S ∈ S κ(T1 → S, T2 → S) = κ(T1, T2) if S ∈ S

κ(Πz : S. T1, Πz : S. T2) = Πz : S. κ(T1, T2) if S ∈ S

where True := ΠP : El o. Prf P → Prf P , so we can always give a witness
of κ(S, S) if S ∈ S. By convention, we simply write κ(A, B) for the result of
κ(ν(A), ν(B)).

Example 6. κ(Πx : Set. Prf P → Prf Q, Πx : Set. Prf R) = Πx : Set. (P ⇒d

λz : P. Q) ≈ R since ν(Πx : Set. Prf P → Prf Q) = Πx : Set. Prf (P ⇒d (λz :
P. Q)).

We can now go back to the definition of equality axioms for the constructors of
λΠ/≡.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 13

Function constructor. If A1 and A2 are small types, we can take κ(A1, A2). We
do not compare objects of type TYPE anymore, but objects that have either type
El o or type Set. The axiom schema for the function constructor is thus:

funA1,A2,B1,B2 : Πt1 : (Πx : A1. B1). Πt2 : (Πy : A2. B2). κ(A1, A2)
→ (Πx : A1. Πy : A2. x ≈ y → t1 x ≈ t2 y)
→ t1 ≈ t2

This axiom schema is a generalization of the functional extensionality principle
with distinct domains A1 and A2 in the case of heterogeneous equality. Func-
tional extensionality states that two pointwise-equal functions are equal. If the
domains A1 and A2 are generated by S, then they are syntactically equal and
we can derive a simpler axiom schema:

funA,B1,B2 : Πt1 : (Πx : A. B1). Πt2 : (Πx : A. B2). (Πx : A. t1 x ≈ t2 x)
→ t1 ≈ t2

Π-type constructor. The congruence axiom for dependent types aims at build-
ing κ(Πx : A1. B1, Πx : A2 B2). There are different cases depending on the
grammars generating ν(A1), ν(A2), ν(B1) and ν(B2). If ν(A1), ν(A2), ν(B1),
ν(B2) ∈ S, then Πx : A1. B1 and Πx : A2. B2 are syntactically equal and we
can build an object of type True. If ν(A1), ν(A2) ∈ S and ν(B1), ν(B2) ∈ P ∪ E ,
then A1 = A2 and κ(Πx : A1. B1, Πx : A2 B2) = Πx : A1. κ(B1, B2). If
ν(A1), ν(A2) ∈ P ∪ E and ν(B1), ν(B2) ∈ S, then B1 = B2 and κ(Πx :
A1. B1, Πx : A2 B2) = κ(A1, A2). If ν(A1), ν(A2), ν(B1), ν(B2) ∈ P ∪ E ,
then there are four cases, corresponding to ⇝d, ⇒d, π and ∀. For instance, if
ν(A1), ν(A2), ν(B1) and ν(B2) are all generated by E , then necessarily we have
ν(A1) = El a1, ν(A2) = El a2, ν(B1) = El b1 and ν(B2) = El b2. Therefore
κ(Πx : A1. B1, Πx : A2. B2) := (a1⇝d(λx : El a1. b1)) ≈ (a2⇝d(λy : El a2. b2)).
The axiom is:

prod⇝d
: Πa1, a2 : Set. Πb1 : (El a1 → Set). Πb2 : (El a2 → Set). a1 ≈ a2
→ (Πx : El a1. Πy : El a2. x ≈ y → b1 x ≈ b2 y)
→ (a1⇝d b1) ≈ (a2⇝d b2)

Note that this axiom is derivable from the previous axioms. We proceed similarly
for the cases ⇒d, π and ∀.

We write Σeq for the signature formed by the axiom schemas defining the
heterogeneous equality. Reflexivity, symmetry, and transitivity are standard ax-
ioms of equality. We have also added axioms stating that a heterogeneous equal-
ity comparing two objects of the same type acts like Leibniz equality. Finally,
we have an axiom for the application constructor and one axiom for the ab-
straction constructor—that is functional extensionality. Both axioms are used
by Oury [19], who also assumes the uniqueness of identity proofs principle that
entails the Leibniz principle we use.

14 V. Blot et al.

4 Replacing Rewrite Rules

When working in theories with prelude encoding, rewriting originates from the
rewrite rules of Σpre (which are generic rewrite rules), from the rewrite rules ΣT
(which are defined by the user) and from β-reduction. The goal of this work is to
replace the user-defined rewrite rules ΣT by equational axioms. In the rest of the
paper, we write ⊢R for a derivation inside the source theory—the theory with
user-defined rewrite rules—and ⊢ for a derivation inside the target theory—the
theory with axioms instead of user-defined rewrite rules.

We now have all the tools to replace rewrite rules by equational axioms. To
do so, we build suitable transports, such that if Γ ⊢ t : A and Γ ⊢ p : κ(A, B),
then Γ ⊢ transp p t : B. The goal is to insert such transports into the terms
instead of using conversion with the rules of ΣT . In the signature, each rewrite
rule ℓ ↪→ r is replaced by the equational axiom ℓ ≈ r.

4.1 Transports

If we have Γ ⊢ t : A and Γ ⊢ p : κ(A, B), we want to transport t from A to B,
that is to build a term transp p t such that Γ ⊢ transp p t : B. A paramount
result is that t and transp p t are heterogeneously equal.

Lemma 2 (Transport). Given Γ ⊢ t : A and Γ ⊢ p : κ(A, B) with A and B
small types, there exists transp p t, called transport of t along p, such that:

– Γ ⊢ transp p t : B,
– there exists eqTransp such that Γ ⊢ eqTransp p t : transp p t B≈A t.

Proof. A and B are small types and we have an equality κ(A, B). If A, B ∈ S
then ν(A) = ν(B) = A = B and we take transp p t := t and eqTransp p t :=
reflA t. Otherwise, by construction of κ, we know that ν(A), ν(B) ∈ P, or
ν(A), ν(B) ∈ E , and that ν(A) and ν(B) have the same structure. Moreover,
using A ≡βΣpre

ν(A), we have Γ ⊢ t : ν(A). We proceed by induction on the
grammar P (we proceed similarly for the grammar E).

– If ν(A) = Prf a and ν(B) = Prf b, then we have Γ ⊢ p : a ≈ b. We take
transp p t := leibPrf

El o a b p (λw : El o. w) t. We conclude using eqLeibPrf
El o.

– If ν(A) = A′ → S and ν(B) = B′ → S, with A′, B′ ∈ P and S ∈ S, then we
have κ(A′, B′) = κ(A, B). From Γ ⊢ p : κ(A′, B′) we can build some p′ such
that Γ ⊢ p′ : κ(B′, A′) (using sym). By weakening, we also have p′ : κ(B′, A′)
in the context Γ, mb : B′. By induction, we have transp p′ mb : A′ and
eqTransp p′ mb : transp p′ mb ≈ mb in the context Γ, mb : B′. We take
transp p t := λmb : B′. t (transp p′ mb). Using trans and app we obtain an
equality t (transp p′ mb) ≈ t ma in the context Γ, ma : A′, mb : B′, pm :
ma ≈ mb. Using fun and ≡βΣpre

, we have λmb : B′. t (transp p′ mb) ≈ t in
the context Γ .

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 15

– If ν(A) = Πz : S. A′ and ν(B) = Πz : S. B′ with A′, B′ ∈ P and S ∈ S, then
we have κ(A, B) = Πz : S. κ(A′, B′). By weakening and application, we have
Γ, z : S ⊢ p z : κ(A′, B′). By induction we have transp (p z) (t z) : B′ and
eqTransp (p z) (t z) : transp (p z) (t z) ≈ t z in the context Γ, z : S. We take
transp p t := λz : S. transp (p z) (t z). We obtain λz : S. transp (p z) (t z) ≈ t
using fun and ≡βΣpre

. ⊓⊔

The transport of t from A to B depends on the small form of A and B. In that
respect, there exists a different transport for each possible family of small form,
and such transport is indexed over an equality of a small type.

4.2 Translation of Terms

To translate a theory with rewrite rules into a theory with equational axioms,
we add transports at the proper locations in the terms and types. If we have
Γ ⊢R t : A in the source theory, we want to find Γ , t and A that are translations
of Γ , t and A, and such that Γ ⊢ t : A in the target theory.

We add transports in a term by induction on a typing derivation—which is
not unique—so we may have different translations for a same term. As such, we
define a relation ◁ where t ◁ t states that t is a translation of t. The relation
is defined by induction on the terms of λΠ/≡. Variables, constants, TYPE and
KIND are translations of themselves. The translations of λ-abstractions λx : A. t,
dependent types Πx : A. B and applications t u rely on the translations of t,
u, A and B. The most important part of the definition is that the translation is
stable by transports: if t is a translation of t, then transp p t is also a translation
of t, with p typically an equality. This relation captures all possible translations,
but some are not correct as they may not be well typed. For instance, λx : A. t
is not a valid translation of λx : A. t when the variable x used in t does not
expect type A but another translation A′.

Definition 6. The translation relation ◁ is defined by:

x ◁ x c ◁ c TYPE ◁ TYPE KIND ◁ KIND

A ◁ A t ◁ t

(λx : A. t) ◁ (λx : A. t)
A ◁ A B ◁ B

(Πx : A. B) ◁ (Πx : A. B)

t ◁ t u ◁ u

(t u) ◁ (t u)
t ◁ t

(transp p t) ◁ t

where p is an arbitrary term.

Due to the typing rules of λΠ/≡, transports for objects that have TYPE in their
type do not exist. Therefore, the only well-typed translations of TYPE, KIND, Set,
Prf and El are themselves, and the well-typed translations of Πx : A. B are
of the form Πx : A. B with A ◁ A and B ◁ B. It follows that a well-typed

16 V. Blot et al.

translation of a small type is still a small type. In particular, if A ∈ S then
for any A we have A := A; if ν(A) ∈ P then ν(A) ∈ P; and if ν(A) ∈ E then
ν(A) ∈ E .

We extend the relation to contexts and signatures. For each rewrite rule
ℓ ↪→ r of a signature, we have x : B ⊢R ℓ : A and x : B ⊢R r : A, for some B
and A, and some x representing the free variables of ℓ. The translation of the
rewrite rule ℓ ↪→ r is given by the equational axiom eqℓr : Πx : B. ℓ A≈A r.
Since the type of a term is not unique in λΠ/≡, we have made a choice of B
and A, which is not a problem as we will see in the proof of Theorem 1.

Definition 7. ◁ is defined on contexts and signatures by:

⟨⟩ ◁ ⟨⟩
Γ ◁ Γ A ◁ A

(Γ , x : A) ◁ (Γ, x : A)
Σ ◁ Σ A ◁ A

(Σ, c : A) ◁ (Σ, c : A)

Σ ◁ Σ ℓ ◁ ℓ r ◁ r B ◁ B A ◁ A

(Σ, eqℓr : Πx : B. ℓ A≈A r) ◁ (Σ, ℓ ↪→ r)

Lemma 3. If t ◁ t and u ◁ u then t[x 7→ u] ◁ t[x 7→ u].

Proof. By induction on the derivation of t ◁ t. For the case with the transport,
we can prove that (transp p t)[x 7→ u] = transp p[x 7→ u] t[x 7→ u]. ⊓⊔

Definition 8 (Relation ∼). We say that t1 ∼ t2 when there exists some t such
that t1 ◁ t and t2 ◁ t.

Lemma 4. ∼ is an equivalence relation.

Proof. ∼ is reflexive, symmetric and transitive. When proving transitivity we
exploit the fact that whenever t ◁ u1 and t ◁ u2, we have u1 = u2. Reflexivity
is proved by induction on the term. ⊓⊔

An important result we need to prove is that two well-typed translations t1 and
t2 of the same term t are heterogeneously equal. By construction, both terms do
not necessarily have the same type or the same context. We will always consider
Γ1 ⊢ t1 : A1 and Γ2 ⊢ t2 : A2, where Γ1 and Γ2 have the same length and the same
variables (with possibly different types). The equality between t1 and t2 must be
typed in some context, but Γ1 and Γ2 are not sufficient. That is why we define
a common context Γ1 ⋆ Γ2 (written Pack Γ1 Γ2 in the work of Winterhalter et
al. [23]) by duplicating each variable and by assuming a witness of heterogeneous
equality between these two duplicates. More precisely, we partially define ⋆ by
induction on small contexts:

⟨⟩ ⋆ ⟨⟩ := ⟨⟩

(Γ1, x : A1) ⋆ (Γ2, x : A2) := Γ1 ⋆ Γ2, x1 : A1[γ1], x2 : A2[γ2], px : x1 ≈ x2

where γ1 substitutes variables z by z1 and γ2 substitutes variables z by z2. We
write γ12 for the substitution that replaces the variables z1 and z2 by z and the
variable pz by refl z.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 17

Lemma 5. If Γ ⋆ Γ ⊢ t : A, then we can derive Γ ⊢ t[γ12] : A[γ12].

Proof. We proceed by induction on the length of Γ . If we have ⟨⟩ ⋆ ⟨⟩ ⊢ t : A
then by definition we have ⟨⟩ ⊢ t : A. Suppose that we have (Γ, x : B) ⋆ (Γ, x :
B) ⊢ t : A. We apply successively Lemma 1 to replace x2 and x1 by x and then
px by refl x. ⊓⊔

The following lemma states that two translations of a same term are heteroge-
neously equal.

Lemma 6 (Equal translations). Let t1 ∼ t2 such that Γ1 ⊢ t1 : A1 and
Γ2 ⊢ t2 : A2 with Γ1 and Γ2 small contexts.

1. If Γ1 ⊢ A1 : TYPE and Γ2 ⊢ A2 : TYPE, then there exists some p such that
Γ1 ⋆ Γ2 ⊢ p : t1[γ1] A1[γ1]≈A2[γ2] t2[γ2].

2. If t1 and t2 are small types, then there exists some p such that Γ1 ⋆ Γ2 ⊢ p :
κ(t1[γ1], t2[γ2]).

Proof. We proceed by induction on the derivation of t1 ∼ t2. We show two
interesting cases.

– Transport (transp p t1) ∼ t2
We have Γ1 ⊢ transp p t1 : A1 and Γ2 ⊢ t2 : A2. By inversion of typ-
ing, we have Γ1 ⊢ t1 : A′

1 and Γ1 ⊢ p : κ(A′
1, A1). By induction there

exists some pt such that Γ1 ⋆ Γ2 ⊢ pt : t1[γ1] ≈ t2[γ2]. We also have Γ1 ⊢
eqTransp p t1 : transp p t1 ≈ t1. We derive that Γ1 ⋆Γ2 ⊢ (eqTransp p t1)[γ1] :
(transp p t1)[γ1] ≈ t1[γ1]. We conclude using transitivity.

– Application (t1 u1) ∼ (t2 u2)
Suppose that t1 u1 and t2 u2 are small types. Then the only possible cases
are t1 = t2 = Prf or t1 = t2 = El. If t1 = t2 = Prf , then we have Γ1 ⊢
Prf u1 : TYPE and Γ2 ⊢ Prf u2 : TYPE. Since κ(Prf u1, Prf u2) = u1 ≈ u2,
the result is simply the induction hypothesis Γ1 ⋆ Γ2 ⊢ p : u1[γ1] ≈ u2[γ2].
We proceed similarly for El u1 ∼ El u2.
Suppose that we have Γ1 ⊢ t1 u1 : T1 and Γ2 ⊢ t2 u2 : T2 with Γ ⊢ T1 : TYPE
and Γ ⊢ T2 : TYPE. Then by inversion of typing we have Γ1 ⊢ u1 : B1 and
Γ2 ⊢ u2 : B2 and Γ1 ⊢ t1 : Πx : A1. B1 and Γ2 ⊢ t2 : Πx : A2. B2, with
T1 ≡βΣpre

B1[x 7→ u1] and T2 ≡βΣpre
B2[x 7→ u2]. By induction hypotheses,

we have Γ1 ⋆ Γ2 ⊢ pt : t1[γ1] ≈ t2[γ2] and Γ1 ⋆ Γ2 ⊢ pu : u1[γ1] ≈ u2[γ2]. We
conclude using app. ⊓⊔

4.3 Translation of Judgments

In Section 4.2 we have seen all the possible translations for terms. However,
the only translations that matter are the translations of judgments: context
formation judgments and typing judgments.

18 V. Blot et al.

Definition 9. For any ⊢R Γ we define a set J⊢R Γ K of valid judgments such
that ⊢ Γ ∈ J⊢R Γ K if and only if Γ ◁ Γ . For any Γ ⊢R t : A we define a set
JΓ ⊢R t : AK of valid judgments such that Γ ⊢ t : A ∈ JΓ ⊢R t : AK if and only
if ⊢ Γ ∈ J⊢R Γ K, t ◁ t and A ◁ A.

We are now able to prove that it is possible to switch between two translations
of a small type.

Lemma 7 (Switching translations). Suppose that we have A a small type,
Γ ⊢ t : A ∈ JΓ ⊢R t : AK and Γ ⊢ A′ : TYPE ∈ JΓ ⊢R A : TYPEK with Γ a small
context. Then there exists t′ such that Γ ⊢ t′ : A′ ∈ JΓ ⊢R t : AK.

Proof. If ν(A) ∈ S, then A := A and A′ := A, and we take t′ := t. If ν(A) ∈ P ,
then ν(A), ν(A′) ∈ P (this is similar for E). As A and A′ are two translations of
A, we have A ∼ A′. From Lemma 6, we have Γ ⋆ Γ ⊢ p : κ(A[γ1], A′[γ2]). Using
Lemma 5 we obtain Γ ⊢ p[γ12] : κ(A, A′). Using Lemma 2, there exists some
transp p[γ12] t ◁ t (since t ◁ t) such that Γ ⊢ transp p[γ12] t : A′. ⊓⊔

4.4 Translation of Theories

Now that we have translated terms and judgments, we want to translate the-
ories, so that the translation of every provable judgment in the source theory
is provable in the target theory. The target theory T ax = Σpre ∪ Σeq ∪ ΣT is
obtained by adding the axioms of equality to the signature, and by translating
ΣT . To do so, we translate each typed constant and rewrite rule one by one. At
the end, the rewrite rules of ΣT have been replaced by equational axioms.

The paramount result of this paper is the following theorem. The first item
concerns context formation. The second item is about the translation of typing
judgments. The third item focuses on convertible contexts. The fourth and fifth
items are about the conversion rules. It is worth noting that in the second item
we use the universal quantifier on Γ instead of using the existential quantifier. We
have opted for the universal quantifier so we can obtain the induction hypotheses
for a common context.

Theorem 1 (Elimination of the rewrite rules). Let a theory T = Σ in
λΠ/≡ such that T is a theory with prelude encoding and such that all the deriva-
tions considered are small derivations. There exists a signature ΣT ◁ ΣT such
that the theory T ax = Σpre ∪ Σeq ∪ ΣT satisfies:

1. If ⊢R Γ , then there exists ⊢ Γ ∈ J⊢R Γ K.
2. If Γ ⊢R t : A, then for every ⊢ Γ ∈ J⊢R Γ K there exist t and A such that

Γ ⊢ t : A ∈ JΓ ⊢R t : AK.
3. If (⊢R Γ1) ≡ (⊢R Γ2), then for every ⊢ Γ 1 ∈ J⊢R Γ1K and ⊢ Γ 2 ∈ J⊢R Γ2K,

we have ⊢ Γ 1 ⋆ Γ 2.
4. If (Γ1 ⊢R u1 : A1) ≡ (Γ2 ⊢R u2 : A2) with Γ1 ⊢R A1 : TYPE and Γ2 ⊢R

A2 : TYPE, then for every ⊢ Γ 1 ∈ J⊢R Γ1K and ⊢ Γ 2 ∈ J⊢R Γ2K, we have
Γ 1 ⊢ u1 : A1 ∈ JΓ1 ⊢R u1 : A1K and Γ 2 ⊢ u2 : A2 ∈ JΓ2 ⊢R u2 : A2K and
there exists some p such that Γ 1 ⋆ Γ 2 ⊢ p : u1[γ1] A1[γ1]≈A2[γ2] u2[γ2].

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 19

5. If (Γ1 ⊢R u1 : TYPE) ≡ (Γ2 ⊢R u2 : TYPE), then for every ⊢ Γ 1 ∈ J⊢R Γ1K
and ⊢ Γ 2 ∈ J⊢R Γ2K, we have Γ 1 ⊢ u1 : TYPE ∈ JΓ1 ⊢R u1 : TYPEK and
Γ 2 ⊢ u2 : TYPE ∈ JΓ2 ⊢R u2 : TYPEK and there exists some p such that
Γ 1 ⋆ Γ 2 ⊢ p : κ(u1[γ1], u2[γ2]).

Proof. The proof of the five items is done by induction on the typing derivations,
assuming the existence of ΣT . We show three relevant cases.

– Prod:

Γ ⊢R A : TYPE Γ, x : A ⊢R B : s

Γ ⊢R Πx : A. B : s

Take ⊢ Γ ∈ J⊢R Γ K. By induction hypothesis, we have Γ ⊢ A : TYPE ∈
JΓ ⊢R A : TYPEK. We have (Γ , x : A) ◁ (Γ, x : A) and we know that the
only translation of sort s is itself, therefore by induction hypothesis we have
Γ , x : A ⊢ B : s ∈ JΓ, x : A ⊢R B : sK. We conclude that Γ ⊢ Πx : A. B : s
using the Prod rule.

– Conv:

Γ ⊢R t : A (Γ ⊢R A : s) ≡ (Γ ⊢R B : s)
Γ ⊢R t : B

Take ⊢ Γ ∈ J⊢R Γ K. As we consider small derivations, either A is a small
type or A and B are the same type.
If A is a small type, then by induction hypothesis we have Γ ⋆ Γ ⊢ p :
κ(A[γ1], B[γ2]). By Lemma 5 we obtain Γ ⊢ p[γ12] : κ(A, B). By Lemma 7
and induction hypothesis we have Γ ⊢ t : A ∈ JΓ ⊢R t : AK. Thanks to
Lemma 2, there exists some t′ such that Γ ⊢ t′ : B ∈ JΓ ⊢R t : BK.
If A and B are the same type, then no conversion is needed and the result
is simply given the induction hypothesis Γ ⊢ t : A.

– ConvRefl:

Γ ⊢R u : A

(Γ ⊢R u : A) ≡ (Γ ⊢R u : A)

Take ⊢ Γ ∈ J⊢R Γ K. By induction hypothesis, we have Γ ⊢ u : A ∈ JΓ ⊢R
u : AK.
If Γ ⊢R A : TYPE, then we build Γ ⋆ Γ ⊢ p : u[γ1] ≈ u[γ2] using all the
congruence rules of ≈.
We proceed similarly for the case A = TYPE.

The existence of ΣT is proved by induction on the length of ΣT , using the
previous five items and ⟨⟩ ◁ ⟨⟩. ⊓⊔

Corollary 1 (Preservation). If ⊢R t : A and ⊢ A : s ∈ J⊢R A : sK, then there
exists t such that ⊢ t : A.

20 V. Blot et al.

Proof. By Theorem 1 we have ⊢ t′ : A′ ∈ J⊢R t : AK. Using Lemma 7 with
A := A, we have some t such that ⊢ t : A ∈ J⊢R t : AK. ⊓⊔

We directly derive the two following conservativity and consistency results. We
say that a theory T2 is conservative over a theory T1 when every formula in the
common language of T1 and T2 that is provable in T2 is also provable in T1.

Corollary 2 (Conservativity). T is a conservative extension of T ax.

Corollary 3 (Relative consistency). If T ax is consistent then T is also con-
sistent.

5 Conclusion

Discussion. In this paper, we showed that it is possible to replace user-defined
rewrite rules by equational axioms, in the case of the λΠ-calculus modulo the-
ory. This result works for theories with prelude encoding—which is satisfied
by expressive theories such as predicate logic and set theory—and for small
derivations—which is in practice the case. So as to replace rewrite rules by equa-
tional axioms, we have defined a heterogeneous equality with standard axioms—
reflexivity, symmetry, transitivity, Leibniz principle—and congruences for each
constructor. At the end, the theory with rewrite rules is a conservative extension
of the theory with axioms.

Related work. The similar problem of the translation from an extensional sys-
tem to an intensional system has been investigated by Oury [19]. He proposed
a translation from the Extensional Calculus of Constructions to the Calculus
of Inductive Constructions with additional axioms that define a heterogeneous
equality. Winterhalter, Sozeau and Tabareau provided a translation from exten-
sional type theory to intensional type theory [23,24]. They took advantage of
the presence of dependent pairs to encode a heterogeneous equality, unlike Oury
who defined it with axioms.

In this paper, we have shown the existence of a translation from a theory with
rewrite rules to a theory with equational axioms. Technical challenges appear
as we are not in an extensional type system. In particular, Oury and Winter-
halter et al. had a homogeneous equality in their source theory and introduce
a heterogeneous equality in the target theory. In this work, the source theory
does not contain a homogeneous equality, and the target theory only contains a
heterogeneous equality.

The major difference with previous works is that we are in a logical frame-
work without an infinite hierarchy of sorts si : si+1 for i ∈ N. In λΠ/≡, we only
have TYPE : KIND, which is the reason why we cannot define an equality between
types. As such an equality is of paramount importance in the transports, we have
considered a subclass of types—called small types—for which we can define an
equality. However, it is worth noting that the sorts of λΠ/≡ allowed a simplifi-
cation: by construction, there is no transports on types, so the translation of a
dependent function type is directly a dependent function type.

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 21

References

1. Adams, R.: Pure type systems with judgemental equality. Journal of Functional
Programming 16(2), 219–246 (2006). https://doi.org/10.1017/S0956796805005770

2. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert,
F., Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a Logical Framework based
on the λΠ-Calculus Modulo Theory (2016), manuscript

3. Blanqui, F., Dowek, G., Grienenberger, E., Hondet, G., Thiré, F.: A modu-
lar construction of type theories. Logical Methods in Computer Science Vol-
ume 19, Issue 1 (Feb 2023). https://doi.org/10.46298/lmcs-19(1:12)2023, https:
//lmcs.episciences.org/10959

4. Blot, V., Dowek, G., Traversié, T.: An Implementation of Set Theory with Pointed
Graphs in Dedukti. In: LFMTP 2022 - International Workshop on Logical Frame-
works and Meta-Languages : Theory and Practice. Haïfa, Israel (Aug 2022),
https://inria.hal.science/hal-03740004

5. Cockx, J., Abel, A.: Sprinkles of extensionality for your vanilla type theory (2016)
6. Cousineau, D., Dowek, G.: Embedding Pure Type Systems in the Lambda-Pi-

Calculus Modulo. In: Della Rocca, S.R. (ed.) Typed Lambda Calculi and Applica-
tions. pp. 102–117. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

7. Dershowitz, N., Jouannaud, J.P.: Rewrite Systems. In: Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (1991)

8. Dowek, G., Miquel, A.: Relative normalization (2007), manuscript
9. Dowek, G.: La part du calcul. Habilitation à diriger des recherches, Université de

Paris 7 (Jun 1999), https://inria.hal.science/tel-04114581
10. Dowek, G., Werner, B.: Proof Normalization Modulo. Research Report RR-3542,

INRIA (1998), https://inria.hal.science/inria-00073143, projet COQ
11. Geuvers, H., Werner, B.: On the Church-Rosser property for expressive type sys-

tems and its consequences for their metatheoretic study. In: Proceedings Ninth
Annual IEEE Symposium on Logic in Computer Science. pp. 320–329 (1994).
https://doi.org/10.1109/LICS.1994.316057

12. Gilbert, G., Leray, Y., Tabareau, N., Winterhalter, T.: The Rewster: The Coq Proof
Assistant with Rewrite Rules (2023), https://types2023.webs.upv.es/TYPES2023.
pdf

13. Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal of
the ACM 40(1), 143–184 (January 1993). https://doi.org/10.1145/138027.138060,
https://doi.org/10.1145/138027.138060

14. Hofmann, M.: Conservativity of equality reflection over intensional type theory.
In: Berardi, S., Coppo, M. (eds.) Types for Proofs and Programs. pp. 153–164.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

15. Hofmann, M.: Extensional Constructs in Intensional Type Theory. Springer Lon-
don (1997). https://doi.org/10.1007/978-1-4471-0963-1

16. Hondet, G., Blanqui, F.: The New Rewriting Engine of Dedukti. In: FSCD 2020
- 5th International Conference on Formal Structures for Computation and De-
duction. p. 16. No. 167, Paris, France (Jun 2020). https://doi.org/10.4230/LIPIcs.
FSCD.2020.35, https://inria.hal.science/hal-02981561

17. Martin-Löf, P.: Constructive mathematics and computer programming. Studies
in logic and the foundations of mathematics 104, 167–184 (1984), https://api.
semanticscholar.org/CorpusID:61930968

18. McBride, C.: Dependently Typed Functional Programs and their Proofs. Ph.D.
thesis, University of Edinburgh (1999)

22 V. Blot et al.

https://doi.org/10.1017/S0956796805005770
https://doi.org/10.1017/S0956796805005770
https://doi.org/10.46298/lmcs-19(1:12)2023
https://doi.org/10.46298/lmcs-19(1:12)2023
https://lmcs.episciences.org/10959
https://lmcs.episciences.org/10959
https://inria.hal.science/hal-03740004
https://inria.hal.science/tel-04114581
https://inria.hal.science/inria-00073143
https://doi.org/10.1109/LICS.1994.316057
https://doi.org/10.1109/LICS.1994.316057
https://types2023.webs.upv.es/TYPES2023.pdf
https://types2023.webs.upv.es/TYPES2023.pdf
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/978-1-4471-0963-1
https://doi.org/10.1007/978-1-4471-0963-1
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://inria.hal.science/hal-02981561
https://api.semanticscholar.org/CorpusID:61930968
https://api.semanticscholar.org/CorpusID:61930968

19. Oury, N.: Extensionality in the Calculus of Constructions. In: Hurd, J., Melham,
T. (eds.) Theorem Proving in Higher Order Logics. pp. 278–293. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

20. Poincaré, H.: La Science et l’Hypothèse. Flammarion (1902)
21. Siles, V.: Investigation on the typing of equality in type systems. Ph.D. thesis, Ecole

Polytechnique (Nov 2010), https://pastel.archives-ouvertes.fr/pastel-00556578
22. Siles, V., Herbelin, H.: Pure Type System conversion is always typable. Journal of

Functional Programming 22(2), 153 – 180 (May 2012). https://doi.org/10.1017/
S0956796812000044, https://inria.hal.science/inria-00497177

23. Winterhalter, T., Sozeau, M., Tabareau, N.: Eliminating Reflection from Type
Theory. In: CPP 2019 - 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs. pp. 91–103. ACM, Lisbonne, Portugal (Jan 2019). https:
//doi.org/10.1145/3293880.3294095, https://hal.science/hal-01849166

24. Winterhalter, T.: Formalisation and meta-theory of type theory. Ph.D. thesis, Uni-
versité de Nantes (2020)

From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory 23

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://pastel.archives-ouvertes.fr/pastel-00556578
https://doi.org/10.1017/S0956796812000044
https://doi.org/10.1017/S0956796812000044
https://doi.org/10.1017/S0956796812000044
https://doi.org/10.1017/S0956796812000044
https://inria.hal.science/inria-00497177
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3293880.3294095
https://hal.science/hal-01849166
http://creativecommons.org/licenses/by/4.0/

Light Genericity

1 Inria & LIX, Ecole Polytechnique, UMR 7161, Palaiseau, France
{beniamino.accattoli,adrienne.lancelot}@inria.fr

2 Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Abstract. To better understand Barendregt’s genericity for the untyped
call-by-value λ-calculus, we start by first revisiting it in call-by-name,
adopting a lighter statement and establishing a connection with contextual
equivalence. Then, we use it to give a new, lighter proof of maximality
of head contextual equivalence, i.e. that H∗ is a maximal consistent
equational theory. We move on to call-by-value, where we adapt these
results and also introduce a new notion dual to light genericity, that we
dub co-genericity. Lastly, we give alternative proofs of (co-)genericity
based on applicative bisimilarity.

Keywords: lambda-calculus · semantics · call-by-value.

1 Introduction

Barendregt’s genericity lemma [14, Prop. 14.3.24] is a classic result in the theory of
the untyped λ-calculus. It expresses the fact that meaningless terms—also called
unsolvable terms, a notion generalizing the bad behaviour of the paradigmatic
looping term Ω := (λx.xx)(λx.xx)—are sort of black holes for evaluation: if
evaluation should ever enter them, it would never get out. This is specified
somewhat dually, saying that if a term t containing a meaningless term u evaluates
to a normal form, that is, if t is observable, then replacing u with any other term
in t gives a term t′ that is also observable. Roughly, if one can observe a term
containing a black hole then evaluation never enters the black hole.

Genericity is arguably more than a lemma, but it is so labeled because its
main use is as a tool in Barendregt’s proofs of collapsibility of meaningless terms,
that is, the fact that the equational theory H equating all meaningless terms
is consistent, i.e. it does not equate all terms. Such collapsibility is one of the
cornerstones of the semantics of the untyped λ-calculus.

Recap about Meaningless Terms. Meaningless terms were first studied in the 1970s,
by Wadsworth [45,46] and Barendregt [12,13], while working on denotational
models and the representation of partial recursive functions (PRFs). The starting
point is that the natural choice of representing the being undefined of PRFs—
considered as the paradigmatic meaningless computation—with terms not having
a normal form leads to a problematic representation of PRFs. The issue is visible
also at the equational level, as all theories collapsing all diverging terms are
c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575
https://doi.org/10.1007/978-3-031-57231-9_2

Beniamino Accattoli1 and Adrienne Lancelot1,2(B)

, pp. 24–46, 2024.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_2&domain=pdf
http://orcid.org/0000-0003-4944-9944

inconsistent. Wadsworth and Barendregt then identify the class of unsolvable
terms as a better notion of meaningless terms: the representation of PRFs using
them as undefined terms is better behaved, they are collapsible, and in particular
they are identified in Scott’s first D∞ model of the untyped λ-calculus.

Unsolvable terms are defined via a contextual property, but they are also
characterized as being diverging for head β-reduction →h, rather than plain
β-reduction →β . The dual notion of solvable terms, which are terminating for
head reduction, are taken as the right notion of defined term, replacing the natural
but misleading idea that β-normal forms are the right notion of defined term.

Barendregt classic book from the 1980s [14] is built around the concept of
(un)solvability. Visser and Statman noted that (un)solvability is not the only
partition of terms providing good representations of PRFs and being collapsible,
as summarized by Barendregt [15]. Typically, (in)scrutable terms, first studied
by Paolini and Ronchi della Rocca [38,36,41] (under the name (non-)potentially
valuable terms), provide an alternative good partition. In call-by-name (CbN),
(in)scrutable terms correspond to weak head normalizing/diverging terms.

This Paper. The work presented here stems from the desire to obtain genericity
for the untyped call-by-value λ-calculus. Perhaps surprisingly, the call-by-value
(shortened to CbV) λ-calculus behaves quite differently with respect to meaning-
less terms. Accattoli and Guerrieri’s recent study of meaningless terms in CbV [6]
indeed stresses two key differences: genericity fails in CbV, and collapsibility fails
as well, as any equational theory equating CbV meaningless terms is inconsistent,
if one considers as meaningless the CbV analogous of unsolvable terms. Accattoli
and Guerrieri also show that collapsibility can be recovered by adopting a different
notion of meaningless terms, namely CbV inscrutable terms, but they do not
prove genericity for them.

In this paper, we do prove a genericity result for inscrutable terms, and also
provide a new proof of their collapsibility. These results, however, are only a
small part of the contributions of this paper.

Contribution 1: the Very Statement of Genericity. We start by focussing on the
statement of genericity. The literature contains various versions. The one used
by Barendregt for proving collapsibility is the following (where unsolvable terms
are identified with →h-diverging terms), here dubbed as heavy :

Heavy genericity: let u be →h-diverging and C be a context such that
C⟨u⟩ →∗

β n with n β-normal. Then, C⟨t⟩ →∗
β n for all t.

In Takahashi’s elegant proof of heavy genericity [44]—which is an inspiration for
our work—the following statement is called fundamental property of unsolvable
λ-terms, which we here consider as an alternative, lighter statement for genericity:

Light genericity: let u be →h-diverging and C be a context such that C⟨u⟩ is
→h-normalizing. Then, C⟨t⟩ is →h-normalizing for all t.

We adopt the lighter statement as the proper one for genericity for three reasons:

Light Genericity 25

1. Powerful enough . We show that the collapsibility of unsolvable terms follows
already from the light notion: there is no need to consider reductions to
β-normal form, nor the fact that the normal forms of C⟨u⟩ and C⟨t⟩ coincide.

2. Economical and natural . The light version involves less concepts and it is
more in line with the motivations behind (un)solvability: if the right notion
of defined terms is head normalizable terms, it is somewhat odd to state
genericity with respect to β-normal forms.

3. Modularity . In CbV, it is less clear what notion of normal form to use for
the heavy statement, as shall be explained below. The light version, instead,
adapts naturally. It is also impossible to have a heavy form of the co-genericity
property given below, since the involved terms have no (full) normal form.

We then adapt Takahashi’s proof of heavy genericity to the light case.

Contribution 2: (Open) Contextual Equivalence/Pre-Order. Once one adopts
the light statement, a connection with contextual equivalence becomes evident.
Precisely, consider the contextual pre-order (that is, the asymmetric variant of
contextual equivalence) induced by head reduction:

Head contextual pre-order: t ≾h
C u if C⟨t⟩ →h-normalizing implies C⟨u⟩

→h-normalizing, for all closing contexts C.

Light genericity seems to rephrase that →h-diverging terms are minimum terms
with respect to ≾h

C . There is however a small yet non-trivial glitch: contextual
pre-orders/equivalences are defined using closing contexts, while genericity is
defined using arbitrary, possibly open contexts. Is the closing requirement essential
in the definition of contextual notions? To our knowledge, this question has not
been addressed in the literature. In fact, there is no absolute answer for all cases,
as it depends on the notion of observation and on the underlying calculus.

We show that, for head reduction, open and closed contextual notions do
coincide, what we refer to as the fact that head reduction is openable. As it is
often the case with behavioral notions, proving head reduction openable cannot
be done by simply unfolding the definitions, and requires some work.

The proof that we provide is—we believe—particularly elegant. It is obtained
as the corollary of a further contribution, the revisitation of another classic result
from the theory of the untyped λ-calculus, described next.

Contribution 3: Maximality. Barendregt proves that open head contextual
equivalence—what he denotes as the equational theory H∗—is maximal among
consistent equational theories, i.e. any extension of H∗ is inconsistent (moreover,
H∗ is the unique maximum theory among those collapsing unsolvable terms). His
proof uses Böhm theorem, an important and yet non-trivial result. We give a
new proof based only on light genericity, which is an arguably simpler result than
Böhm theorem, obtained adapting a similar result for CbV by Egidi et al. [19].

Contribution 4: Call-by-Value. Finally, we study the CbV case, adopting in-
scrutable terms as notion of meaningless terms. In Plotkin’s original CbV calculus

26 B. Accattoli, A. Lancelot

[40], however, these terms cannot be characterized as diverging for some strategy.
Moreover, in Plotkin’s calculus evaluation is not openable, that is, open and
closed contextual notions do not coincide. In both cases, the issue is connected
to the management of open terms.

We then adopt Accattoli and Paolini’s value substitution calculus (VSC) [9],
which is an extension of Plotkin’s calculus solving its well-known issues with open
terms and having the same (closed) contextual equivalence. Therein, inscrutable
terms are characterized as those diverging for weak evaluation →w.

For the VSC, we prove light genericity for →w-diverging terms. We use a
different technique with respect to the CbN case, namely we rely on Ehrhard’s
CbV multi types [20] (multi types are also known as non-idempotent intersection
types), because Takahashi’s technique does not easily adapt to the CbV case. We
also give a proof of maximality (essentially Egidi et al. [19]’s argument used as
blueprint for the CbN case) from which it follows that evaluation in the VSC is
openable, in contrast with evaluation in Plotkin’s calculus.

As hinted at above, it is relevant that in CbV we study light genericity rather
than the heavy variant because the notion of full normal form in the CbV case is
less standard. Firstly, it differs between Plotkin’s calculus and the VSC. Secondly,
it also differs between various refinements of Plotkin’s calculus that can properly
manage open terms, as discussed by Accattoli et al. [7].

Contribution 5: Co-Genericity. A difference between the head CbN case and
weak CbV case is given by an interesting class of terms, those evaluating to an
infinite sequence of abstractions, that is, such that t →∗

β λx.t′ with t′ having
the same property. Such terms are →h-diverging (thus head CbN meaningless),
but →w-normalizing (CbV meaningful), and hereditarily so. We prove that these
→w-super (normalizing) terms are maximum elements of the CbV contextual
pre-order, and the statement of this fact is a new notion of co-genericity:

Co-Genericity: let t be →w-super and C be a context such that C⟨u⟩ is
→w-normalizing for some u. Then, C⟨t⟩ is →w-normalizing.

We then show a strengthened collapsibility result: all →w-diverging terms and all
→w-super terms can be consistently collapsed.

Contribution 6: Alternative Proofs via Applicative Bisimilarity. Lastly, we show
a different route to proving light genericity and co-genericity—in CbV, but the
technique is general—by exploiting the link with contextual pre-orders. Namely,
we give a second proof that weak CbV evaluation is openable in the VSC
without using light genericity, and then we use the soundness of CbV applicative
bisimilarity with respect to the (closed) contextual pre-order for giving very
simple proofs of light genericity and co-genericity.

Related Work. There are many proofs of CbN genericity in the literature (but
they do not all prove the same statement3): a topological one by Barendregt [14,
3 Sometimes, one finds the following genericity as application statement: let u be
→h-diverging and s be such that su →∗

β n with n β-normal. Then, st →∗
β n for all

Light Genericity 27

Prop. 14.3.24], via intersection types by Ghilezan [24], rewriting-based ones by
Takahashi [44], Kuper [30], Kennaway et al. [28], and Endrullis and de Vrijer [21],
and via Taylor expansion by Barbarossa and Manzonetto [11]. Salibra studies a
generalization to an infinitary λ-calculus [43]. García-Pérez and Nogueira prove
partial genericity for Plotkin’s CbV λ-calculus [23] using a different notion of
meaningless terms, not as well-behaved as CbV inscrutable terms.

The most famous application of genericity is the collapsibility of meaningless
terms. Another application is Folkerts’s invertibility of terms for λη [22].

Independently, Arrial, Guerrieri, and Kesner developed an alternative study
of genericity in both CbN and CbV [10].

Proofs. Most proofs are omitted and can be found in the technical report [8].

2 Preliminaries

In this paper, we consider two languages, the λ-calculus and the value substitution
calculus. Here we give abstract definitions that apply to both. We then refer to a
generic language L of host reduction →L⊆ L × L together with an evaluation
strategy discussed below. Terms of both languages are considered modulo α-
renaming. Capture-avoiding substitution is noted t{x�u}.

Evaluation Strategies. An evaluation strategy for us is a relation →s⊆→L which
is either deterministic or has the diamond property, which, according to Dal Lago
and Martini [18], is defined as follows: a relation →r is diamond if u1 r← t→r u2

and u1 ̸= u2 imply u1 →r s r← u2 for some s. If→r is diamond then it is confluent,
all its reductions to normal form (if any) have the same length, and if there is one
such reduction from t then there are no diverging reductions from t; essentially,
the diamond property is a weakened notion of determinism.

We refer to a generic evaluation strategy with →s or simply with s, and
we also simply call it a strategy, and usually we omit the underlying language.
The conversion relation =s associated to a strategy s is the smallest equivalence
relation containing →s. We say that t is:

– s-normal : if t ̸→s;
– s-normalizing : if there exists u such that t→∗

s u and u is s-normal;
– s-diverging : if t is not s-normalizing.

We say that s is:

– Consistent : if there exist two closed terms t and u such that t is s-normalizing
and u is s-diverging;

– Normalizing : if t→∗
L u with u s-normal implies that t is s-normalizing;

– Stabilizing : if t s-normal and t→∗
L u imply u s-normal;

– Weak : if there are no s-redexes under abstraction.

t. Genericity as application is weaker than heavy/light genericity, and cannot be
directly used to infer the collapsibility of →h-diverging terms.

28 B. Accattoli, A. Lancelot

Contexts. An essential tool in our study shall be contexts, which are terms where
a sub-term has been replaced by a hole ⟨·⟩. For instance, for the λ-calculus
they are defined as follows: C,C ′ ::= ⟨·⟩ | tC | Ct | λx.C. The basic operation
on contexts is the plugging C⟨t⟩ of a term t in C, which simply replaces ⟨·⟩
with t in C, possibly capturing variables. For instance, (λx.⟨·⟩)⟨xy⟩ = λx.xy.
Note that plugging cannot be expressed as capture-avoiding substitution since
(λx.z){z�xy} = λx′.xy ̸= λx.xy.

Contextual Equivalences and Pre-Orders. The standard of reference for program
equivalences is contextual equivalence. The following definition slightly generalizes
the standard one as to catch also the open case studied in this paper.

Definition 1 (Open and Closed Contextual Pre-Order and Equivalence).
Given an evaluation strategy s, we define the open contextual pre-order ≾s

CO and
open contextual equivalence ≃s

CO as follows:

– t ≾s
CO t′ if, for all contexts C, C⟨t⟩ is s-normalizing implies that C⟨t′⟩ is

s-normalizing;
– t ≃s

CO t′ is the equivalence relation induced by ≾s
CO, that is, t ≃s

CO t′ if
t ≾s

CO t′ and t′ ≾s
CO t.

The closed variants, simply called contextual pre-order ≾s
C and contextual equiv-

alence ≃s
C, are defined as above but restricting to contexts C such that C⟨t⟩ and

C⟨t′⟩ are closed terms. We say that s is openable if ≾s
CO and ≾s

C coincide.

It follows from the definitions that ≾s
CO⊆≾s

C , and similarly for the equivalences,
while the other direction is not obvious, and can indeed fail. For instance, if pw
is weak evaluation in Plotkin’s CbV λ-calculus (to be defined in Sect. 5) and
δ := λz.zz then we have Ωl := (λx.δ)(yy)δ ≾pw

C δδ =: Ω but Ωl ̸≾pw
CO Ω. That is,

pw is not openable. To our knowledge, the notion of openable strategy is new.

(In)Equational Theories. A relation is compatible if t R u implies C⟨t⟩ R C⟨u⟩
for any context C and any terms t and u. A term t is minimum for a pre-order ≤
if for all u ∈ L, t ≤ u. We denote abstract inequational theories with the symbol
≤T to distinguish them from known program pre-orders, denoted with ≾P .

Definition 2 (Inequational s-theory). Let s be an evaluation strategy. An in-
equational s-theory ≤s

T is a compatible pre-order on terms containing s-conversion.
An inequational s-theory ≤s

T is called:

– Consistent: whenever it does not relate all terms;
– s-ground: if s-diverging terms are minimum terms for ≤s

T ;
– s-adequate: if t ≤s

T u and t is s-normalizing implies u is s-normalizing.

The notions of s-ground and s-adequate theories generalize to an abstract and
inequational framework the λ-calculus notions of sensible and semi-sensible
theories (whose non-abstract inequational versions are studied in particular in the
recent book by Barendregt and Manzonetto [16]), up to a very minor difference:
the definitions in the literature sometimes also ask for consistency which we treat
independently. An equational theory is a symmetric inequational theory.

Light Genericity 29

Remark 1. Any open contextual pre-order ≾s
CO is s-adequate: if t ≾s

CO u then, by
considering the empty context, t s-normalizing implies u s-normalizing. Closed
contextual pre-orders, instead, are not necessarily adequate: for weak evaluation
pw in Plotkin’s calculus, Ωl ≾

pw
C Ω, Ωl is pw-normal, and Ω is pw-diverging.

Lastly, we show under which conditions the contextual pre-orders ≾s
CO and

≾s
C are consistent inequational s-theories.

Proposition 1. Let L be a confluent language and s be a normalizing and
stabilizing strategy. Then ≾s

CO and ≾s
C (resp. ≃s

CO and ≃s
C) are inequational

(resp. equational) s-theories. Moreover, if s is consistent then ≾s
CO, ≾s

C, ≃s
CO,

and ≃s
C are consistent.

3 Light Genericity and Collapsibility

As working notion of genericity, we adopt the following abstract light version.

Definition 3 (Light genericity). Let s be an evaluation strategy. Light s-
genericity is the following property: if u is s-diverging and C is a context such
that C⟨u⟩ is s-normalizing, then C⟨t⟩ is s-normalizing for all t. Concisely: s-
diverging terms are minimums for ≾s

CO. Very concisely: ≾s
CO is s-ground.

We now show that light genericity is enough to obtain the main application of
Barendregt’s heavier notion, that is, that s-diverging terms can be consistently
equated (when s is consistent, which is a very mild hypothesis verified by all
strategies of interest), by showing that they are contextually equivalent. In both
the closed and open variants, independently of whether the strategy is openable.

Proposition 2 (Collapsibility). Let s be a consistent evaluation strategy sat-
isfying light genericity. Then:

1. Open: ≃s
CO equates all s-diverging terms and it is consistent;

2. Closed: ≃s
C equates all s-diverging terms and it is consistent.

Proof. 1. By light genericity, s-diverging terms are minimums for ≾s
CO. Since

then any two s-diverging terms are ≾s
CO-smaller than each other, s-diverging

terms are ≃s
CO-equivalent. Since s is consistent, ≃s

CO is consistent by Prop. 1.
2. Since ≾s

CO⊆≾s
C , we obtain that light genericity implies that s-diverging terms

are minimums for ≾s
C , and so ≃s

C equates all s-diverging terms. Since s is
consistent, ≃s

C is consistent by Prop. 1. ⊓⊔

Proposition 3 (Characterization of minimum terms for ≾s
CO). Let s be

a consistent evaluation strategy satisfying light genericity. Then the minimum
terms for ≾s

CO are exactly the s-diverging terms.

Proof. By light genericity, s-diverging terms are minimums for ≾s
CO. Conversely,

by consistency of s there exists a s-diverging term t. Let u be a minimum for
≾s

CO. Then u ≾s
CO t, hence u is s-diverging by s-adequacy of ≾s

CO (given by
Remark 1). ⊓⊔

30 B. Accattoli, A. Lancelot

Language Beta rule

Terms Λ ∋ t, u, s ::= x | λx.t | tu (λx.t)u 7→β t{x�u}

Head Reduction

Weak Head Contexts P ::= ⟨·⟩ | Pt
Head Contexts H ::= λx.H | P

t 7→β t′

H⟨t⟩ →h H⟨t′⟩

Rigid Terms r, r′ ::= x | rt Head Normal Forms h, h′ ::= λx.h | r

Fig. 1. Call-by-Name calculus.

The characterization of minimum terms does not hold in the closed case,
because the closed contextual pre-order is not necessarily adequate (Remark 1).
For weak evaluation pw in Plotkin’s calculus, indeed, Ωl is a minimum term for
≾pw

C and it is pw-normal. The characterization lifts when s is openable.

4 The Head Call-by-Name Case

Here we revisit two results from the theory of the λ-calculus, and use them to
prove that head evaluation is openable. The first result is genericity for unsolvable
terms—that is, head-diverging terms—for which we give a proof of light genericity.
The second result is the maximality of the open head contextual pre-order.

The host language L here is the λ-calculus and the evaluation strategy s is
the head strategy h. Both are defined in Fig. 1.

Solvability and Head Reduction. In the literature, the original notion of meaningful
terms are the solvable ones, characterized by Wadsworth as those terminating
for head reduction [46]; meaningless terms are their complement.

Definition 4 ((Un)Solvable terms). A term t is solvable if there is a head
context H such that H⟨t⟩ →∗

β I = λx.x, and unsolvable otherwise.

Theorem 1 (Operational characterization of solvability, [46]). t is solvable
(resp. unsolvable) if and only if t is h-normalizing (resp. h-diverging).

Apart from the proof of Thm. 4.1 below, we shall always use the operational
characterization and never refer to solvability itself.

Head Contextual Pre-Orders are Inequational. It is well-known that the λ-
calculus is confluent, that head normal forms are stable by reduction (that is, h
is stabilizing), and that the following normalization theorem holds (for a recent
simple proof of this classic result see Accattoli et al. [3]). These facts and Prop. 1
give that the contextual pre-orders are inequational h-theories.

Theorem 2 (Head normalization). If t →∗
β t′ and t′ is h-normal then t is

h-normalizing.

Proposition 4. The head pre-orders ≾h
CO and ≾h

C are inequational h-theories.

Light Genericity 31

Proofs of Genericity. In his book [14], Barendregt gives two proofs that h-
diverging terms can be consistently equated, both using heavy genericity (defined
in the introduction). A first one [14, Lemma 16.1.8-thm 16.1.9] uses it to show
that the minimal equational theory equating them, noted H, is consistent. This
proof is where the heavy part of genericity is used. A second proof [14, Lemma
16.2.3] exploits the consistency of ≃h

CO (noted H∗ in [14]), which is trivial, and
uses genericity to show that H ⊆≃h

CO, i.e. that ≃h
CO equates all h-diverging terms.

The second proof in [14] uses heavy genericity, but the heavy aspect is in fact
not needed for the proof to go through. The abstract result of the previous section,
indeed, follows essentially the same reasoning and uses only light genericity.

We now prove light genericity for head reduction, via a direct proof, using
the rewriting properties of head reduction.

Head Light Genericity via Takahashi’s Technique. Our proof of light genericity
adapts Takahashi’s simple technique for heavy genericity [44]. We stress that two
standard and crucial properties of head reduction are at work in Takahashi’s proof,
despite the fact that she does not point them out, namely the head normalization
theorem (Theorem 2) and the following property.

Proposition 5 (Head substitutivity). If t →∗
h u then t{x�s} →∗

h u{x�s},
for all t, u, s.

Firstly, we prove genericity for h-normal forms, via a simple induction on the
structure of normal forms, using an auxiliary lemma [8, Lemma 4].

Proposition 6 (Normal genericity). Let u be h-diverging and s be any
term.

1. If r is a rigid term and r{x�u} is h-normalizing then r{x�s} is a rigid term.
2. If h is h-normal and h{x�u} is h-normalizing then h{x�s} is h-normal.

We can now prove (light) genericity, which is done in two steps. The first one
simply lifts h-normal genericity to non-h-normal terms, obtaining a substitution-
based version of genericity. The second one turns the substitution-based state-
ment into a context-based statement, and its proof is what we shall refer to as
Takahashi’s trick. For the sake of clarity, note that the two statements are not
immediately equivalent, since substitution is a capture-avoiding operation while
context plugging may capture free variables.

Theorem 3 (Light genericity). Let u be h-diverging and s be any term.

1. Light genericity as substitution: if t is a term and t{x�u} is h-normalizing
then t{x�s} is h-normalizing.

2. Light genericity as context: if C is a context and C⟨u⟩ is h-normalizing then
C⟨s⟩ is h-normalizing.

Proof. 1. It follows from Prop. 5 (precisely, via a lemma in [8, Lemma 4]),
that if t{x�u} is h-normalizing then so is t. Then t →∗

h h for some h-
normal h. Again, by stability of head reduction under substitutions, we

32 B. Accattoli, A. Lancelot

have both t{x�u} →∗
h h{x�u} and t{x�s} →∗

h h{x�s}. Note that t{x�u}
h-normalizing implies h{x�u} h-normalizing. By normal genericity (Prop. 6),
h{x�s} is h-normal. Therefore, t{x�s} is h-normalizing.

2. Let fv(u) ∪ fv(s) = {x1, . . . , xk}, and y be a variable fresh with respect to
fv(u) ∪ fv(s) ∪ fv(C) and not captured by C. Note that ū := λx1. . . . λxk.u
is a closed term. Consider t := C⟨yx1 . . . xk⟩, and note that:

t{y�ū} = C⟨ūx1 . . . xk⟩ = C⟨(λx1. . . . λxk.u)x1 . . . xk⟩ →k
β C⟨u⟩.

The fact that u is h-diverging implies that ū is also h-diverging. If C⟨u⟩
is h-normalizing then so is t{y�ū} by the h-normalization theorem (Theo-
rem 2). By genericity as substitution, t{y�s′} is h-normalizing for every s′.
In particular, take s′ := s̄ = λx1. . . . λxk.s, then t{y�s̄} h-normalizes to some
h and note that t{y�s̄} →∗

β C⟨s⟩. Since β is confluent and h is stabilizing,
there exists a h-normal form h′ such that h→∗

β h′ and C⟨s⟩ →∗
β h′. By the

h-normalization theorem (Theorem 2), C⟨s⟩ is h-normalizing. ⊓⊔

Maximality of ≾h
CO. Barendregt shows that ≃h

CO is a maximal consistent theory,
that is, that equating more terms would yield an inconsistent theory [14, Thm
16.2.6]. Later on, Barendregt and Manzonetto refine the result for ≾h

CO [16], by
using the same technique, which relies on Böhm theorem. We present here a
new proof of maximality based only on light genericity and not needing Böhm
theorem, which is a heavier property, thus obtaining an arguably simpler proof.
It is inspired by the proof of maximality for CbV by Egidi et al. [19].

Theorem 4. 1. Let T be an inequational h-theory that is h-ground but not
h-adequate. Then T is inconsistent.

2. Maximality of ≾h
CO: ≾h

CO is a maximal consistent inequational h-theory.

Proof. 1. Since T is not h-adequate, there are t h-normalizing and u h-diverging
such that t ≤T u. Since t is h-normalizing, by solvability there is a head
context H sending it to the identity I. By the definition of inequational
theory, we have I =T H⟨t⟩ ≤T H⟨u⟩. Now, let s be a term. Then s =T Is
because =β⊆ T by definition of inequational theory. By the context closure
of theories and I ≤T H⟨u⟩, we obtain Is ≤T H⟨u⟩s. Since u is h-diverging,
thus unsolvable, H⟨u⟩ is h-diverging. Since T is h-ground and both H⟨u⟩
and H⟨u⟩s are h-diverging, H⟨u⟩s =T H⟨u⟩. Summing up, s =T Is ≤T
H⟨u⟩s =T H⟨u⟩ and, by the fact that T is h-ground, H⟨u⟩ ≤T s. Hence,
s =T H⟨u⟩ for every term s, that is, T is inconsistent.

2. Any theory T extending ≾h
CO is such that t ≤T u with t ̸≾h

CO u, i.e. such that
C⟨t⟩ is h-normalizing and C⟨u⟩ is h-diverging for some C. By compatibility of
T , C⟨t⟩ ≤T C⟨u⟩. Hence T is not h-adequate. Since ≾h

CO is h-ground by head
light genericity (Theorem 3), every theory T extending ≾h

CO is also h-ground.
Then T is h-ground and not h-adequate. By Point 1, T is inconsistent. ⊓⊔

Maximality and Head is Openable. From maximality of ≾h
CO it elegantly follows

that ≾h
CO and ≾h

C coincide. To our knowledge, there is no such result in the

Light Genericity 33

Language Root rule

Terms Λ ∋ t, u, s ::= v | tu
Values v, v′ ::= x | λx.t (λx.t)v 7→βv t{x�v}

Weak Evaluation pw

Weak Ctxs E ::= ⟨·⟩ | Et | tE
t 7→βv t′

E⟨t⟩ →pw E⟨t′⟩

Strong Evaluation

Strong Ctxs C ::= ⟨·⟩ | Ct | tC | λx.C
t 7→βv t′

C⟨t⟩ →βv C⟨t′⟩

Fig. 2. Plotkin’s CbV and Weak Evaluation pw.

literature but it is folklore for CbN. Note that, despite the apparently trivial
proof that we provide below, the equivalence of ≾h

CO and ≾h
C is not a trivial fact,

as the crucial inclusion ≾h
C ⊆≾h

CO cannot be proved directly from the definitions
of the pre-orders—in our proof, the non-trivial aspect is encapsulated in the
use of maximality. Paolini proves that closed theories can be uniquely extended
to open terms [37], but this does not imply that the extension of the closed
contextual pre-order coincides with the open contextual pre-order.

Proposition 7 (Head evaluation is openable). Open and closed head con-
textual pre-orders coincide: ≾h

CO =≾h
C.

Proof. Firstly, ≾h
CO ⊆≾h

C follows from the definitions. Secondly, by maximality
of ≾h

CO (Theorem 4) and since ≾h
C is consistent (because I ̸≾h

C Ω), we have that
the two pre-orders must coincide, i.e. ≾h

CO =≾h
C . ⊓⊔

5 Weak Call-by-Value and the VSC

We now turn our attention to the CbV case, for which the literature has already
extensively discussed two issues that arise when adapting the CbN case to
Plotkin’s CbV λ-calculus, recalled after the definition of the calculus.

Plotkin’s CbV λ-Calculus. Plotkin’s CbV λ-calculus is defined in Fig. 2, following
the modern presentation by Dal Lago and Martini [18] rather than Plotkin’s
original one [40]. We also define its weak evaluation strategy →pw .

Issue 1: CbV Unsolvable Terms Are Not Collapsible. As pointed out by Accattoli
and Guerrieri [6], the CbV variant of unsolvable terms is not a good notion
of meaningless terms, as their identification induces an inconsistent equational
theory. The solution amounts to switching to a different notion of meaningless
terms, the inscrutable ones (that coincide with the non-potentially valuable terms
of Paolini and Ronchi della Rocca [38,36,41]), which are collapsible [6].

Definition 5 (Testing contexts). Testing contexts are defined by the following
grammar T ::= ⟨·⟩ | (λx.T)t | Tt.
Definition 6 ((In)Scrutable terms). A term t is scrutable if there is a testing
context T and a value v such that T ⟨t⟩ →∗

βv
v, and inscrutable otherwise.

34 B. Accattoli, A. Lancelot

Language Root rules

Terms Λ ∋ t, u, s ::= v | tu | t[x�u]
Values v, v′ ::= x | λx.t

Sub. Ctxs S, S′ ::= ⟨·⟩ | S[x�u]

S⟨λx.t⟩u 7→m S⟨t[x�u]⟩
t[x�S⟨v⟩] 7→e S⟨t{x�v}⟩

Weak CbV Reduction

Weak Ctxs E ::= ⟨·⟩ | Et | tE | t[x�E] | E[x�u]
t 7→a t

′
a∈{m, e}

E⟨t⟩ →wa E⟨t′⟩
Notation →w:=→wm ∪ →we

Strong CbV Reduction

Strong Ctxs C ::= ⟨·⟩ | Ct | tC | t[x�C] | C[x�u]
| λx.C

t 7→a t
′

a∈{m, e}
C⟨t⟩ →a C⟨t′⟩

Notation →vsc:=→m ∪ →e

Fig. 3. Weak Value Substitution Calculus.

Issue 2: CbV Inscrutable Terms Have No Operational Characterization in Plotkin’s
CbV. The term Ωl := (λx.δ)(yy)δ is inscrutable but →βv

-normal. Therefore, in
Plotkin’s CbV there cannot be any operational characterization of inscrutable
terms via a notion of divergence, as instead happens in CbN (Thm. 1). This
fact is a real drawback, and boils down to the well-known inability of Plotkin’s
calculus to deal with open terms, which is also the reason why—as we have
pointed out in Sect. 2—the closed and open contextual notions induced by weak
evaluation in Plotkin’s calculus do not coincide.

The solution amounts to switching to a refined CbV λ-calculus, extending
Plotkin’s as to better deal with open terms while retaining the same notion of
contextual equivalence, as we now explain.

The VSC. Accattoli and Paolini’s value substitution calculus (VSC) [9], defined
in Figure 3, is exactly one such framework.

Intuitively, the VSC is a CbV λ-calculus extended with let-expressions, as is
common for CbV λ-calculi such as Moggi’s one [33,34]. We do however replace a
let-expression let x = u in t with a more compact explicit substitution (ES for short)
notation t[x�u], which binds x in t and that has precedence over abstraction and
application (that is, λx.t[y�u] stands for λx.(t[y�u]) and ts[y�u] for t(s[y�u])).
Moreover, our let/ES does not fix an order of evaluation between t and u, in
contrast to many papers in the literature (e.g. Sabry and Wadler [42] or Levy et
al. [32]) where u is evaluated first.

The reduction rules of VSC are slightly unusual as they use contexts both
to allow one to reduce redexes located in sub-terms, which is standard, and to
define the redexes themselves, which is less standard—these kind of rules is called
at a distance. The rationale is that the rewriting rules are designed to mimic cut-
elimination on proof nets, via Girard’s CbV translation (A⇒ B)v =!(Av ⊸ Bv)
of intuitionistic logic into linear logic [25], see Accattoli [2].

Light Genericity 35

Examples of steps: (λx.y)[y�t]u 7→m y[x�u][y�t] and (λz.xx)[x�y[y�t]] 7→e

(λz.yy)[y�t]. One with on-the-fly α-renaming is (λx.y)[y�t]y 7→m z[x�y][z�t].
A key point is that β-redexes are decomposed via ESs, indeed 7→βv is simulated

as (λx.t)v 7→m t[x�v] 7→e t{x�v}. Note that the by-value restriction is on ES-
redexes, not on β-redexes, because only values can be substituted. The VSC is
a conservative refinement for both closed and open terms: its weak evaluation
on closed terms terminates if and only if Plotkin’s →pw does, hence the closed
contextual pre-orders coincide (Prop. 8.3 below). On open terms, the VSC can
simulate every →pw step, but not vice-versa (which is why we adopt the VSC).

The Characterization of Inscrutable Terms. In the VSC, (in)scrutable terms
admit an operational characterization, due to Accattoli and Paolini [9].

Theorem 5 (Operational characterization of (in)scrutability, [9]). t is
scrutable (resp. inscrutable) if and only if t is w-normalizing (resp. w-diverging).

Apart from the proof of Thm. 8 below and Prop. 15 in Section 10, we shall
always use the operational characterization and never refer to scrutability itself.

Weak Contextual Pre-Orders Are Inequational. The VSC is confluent and its
weak strategy w is diamond [9]. Moreover, w is stabilizing and the normalization
theorem below holds. These facts and Prop. 1 give that the contextual pre-orders
are inequational w-theories. Moreover, the closed pre-order coincides with the
one on Plotkin’s calculus4.

Proposition 8. 1. Weak normalization, [6]: if t→∗
vsc t

′ and t′ is w-normal then
t is w-normalizing.

2. Inequational theories: ≾w
CO and ≾w

C are inequational w-theories.
3. VSC and Plotkin’s contextual pre-orders coincide, [6]: on λ-terms, ≾w

C=≾pw
C .

6 Light Genericity for Weak Call-by-Value

Here, we prove a new result: light genericity for weak evaluation in the VSC.

Takahashi’s Technique Does Not Really Scale Up. Proving CbV light genericity
via Takahashi’s technique is not as elegant as for CbN. We did develop such
a proof, but it is considerably more involved than for CbN. There are various
reasons. Firstly, the substitutivity property of Prop. 5 does not hold in CbV.
Substitutivity for values does hold, but one really needs general substitutivity.
Secondly, Takahashi’s trick lifting genericity as substitutions to genericity as
contexts also breaks, because it is based on adding abstractions, which do not
change unsolvability but do affect inscrutability. Thirdly, head reduction reduces
only on the head, while weak reduction reduces in all sub-terms out of abstractions,
which raises additional difficulties. Therefore, we follow a different approach.
4 The closed CbV contextual pre-order in Carraro and Guerrieri’s shuffling calculus

[17], studied by Kerinec et al. in [29], also coincides with ≾w
C=≾pw

C . Moreover, the
open pre-order of the shuffling calculus coincides with the one of the VSC. These
facts follow easily from results relating the three calculi in [26,4,6].

36 B. Accattoli, A. Lancelot

Linear Types L,L′ ::= M → N Multi Types M,N ::= [L1, . . . , Ln] n ≥ 0

x : [L] ⊢ x :L
ax

Γ, x :M ⊢ t :N

Γ ⊢ λx.t :M → N
λ

(Γi ⊢ v :Li)i∈I I finite⊎
i∈I Γi ⊢ v :

⊎
i∈I [Li]

many

Γ ⊢ t : [M → N] ∆ ⊢ u :M

Γ ⊎∆ ⊢ tu :N
@

Γ, x :M ⊢ t :N ∆ ⊢ u :M

Γ ⊎∆ ⊢ t[x�u] :N
es

Fig. 4. Call-by-Value Multi Type System for VSC.

Light Genericity via Multi Types. We provide a proof of light genericity relying on
Accattoli and Guerrieri’s characterization of w-diverging terms [6] via Ehrhard’s
CbV multi types [20] (multi types are also known as non-idempotent intersection
types). The idea behind the proof is very simple: we show that multi types induce
a pre-order ≾type contained in the open contextual pre-order, that is, ≾type⊆≾w

CO,
and that w-diverging terms are minimum elements for ≾type, which implies that
they are minimums for ≾w

CO. The proof itself is very simple as well. What is less
simple is the characterization of w-diverging terms via multi types, which however
we use as a black box from the literature. The same technique can be used also
in CbN, since h-diverging terms can also be characterized via multi types.

Our argument via multi types is similar to Ghilezan’s one based on intersection
types for CbN [24], even if the details are quite different: she proves a different
statement, namely heavy genericity in its as-application variant (see the footnote
at page 5), and she uses intersection types (which are idempotent, or non-linear).
We use multi types because the result from the literature that we exploit is based
on them, but the proof technique could also be based on intersection types (once
the result from the literature is adapted, which is possible).

CbV Multi Types. We introduce the bare minimum about CbV multi types, since
here they are used only as a tool, not as an object of study. For more, see [5,6].

The definition of the multi type system for the VSC is in Figure 4. Multi types
M are defined by mutual induction with linear types L. Multi types are finite
multi-sets [L1, . . . , Ln], which intuitively denote the intersection L1 ∩ . . . ∩ Ln,
where the intersection ∩ is a commutative, associative and non-idempotent
(A ∩ A ̸= A) operator, the neutral element of which is [], the empty multi set.
Note that there is no ground type, its role is played by the empty multi type [].

Typing judgments have shape Γ ⊢ t :T where T is a linear or a multi type
and Γ is a typing context, that is, an assignment of multi types to a finite set of
variables (Γ = x1 :M1, . . . , xn :Mn). A typing derivation π ▷ Γ ⊢ t :M is a tree
built from the rules in Figure 4 which ends with the typing judgment Γ ⊢ t :M .

Typing Rules. Linear types only type values, via the rules ax and λ. To give a
multi type to value v, one has to use the many rule, turning an indexed family of
linear types for v into a multi type. Note that any value can be typed with the
empty multi type []. The symbol ⊎ is the disjoint union operator on multi sets
(corresponding to the intersection operator when intersections are multi-sets).

Light Genericity 37

Characterization of Termination. The key property of CbV multi types is that
typability characterizes termination with respect to weak evaluation→w; therefore
w-diverging terms are simply the untypable ones. The characterization is proved
via subject reduction and expansion.

Theorem 6 (Characterization of termination, [6]).

1. Subject reduction and expansion: let t→vsc u. Then Γ ⊢ t :M iff Γ ⊢ u :M .
2. t is →w-normalizing if and only if there exists Γ and M such that Γ ⊢ t :M .

Type Pre-order. The type pre-order is defined as follows.

Definition 7 (Type pre-order). The type pre-order t ≾type t
′ holds if Γ ⊢ t :M

implies Γ ⊢ t′ :M for all Γ and M .

Point 2 of Thm. 6 ensures that ≾type is both w-ground—which is the key
point of the proof technique—and w-adequate. We also show that ≾type is an
inequational w-theory. Point 1 of Thm. 6 implies that ≾type contains w-conversion.
Compatibility holds because ≾type is defined via a compositional type system.

Proposition 9. The type pre-order ≾type is a w-ground, w-adequate, and con-
sistent inequational w-theory.

Adequacy and compatibility of ≾type imply that ≾type⊆≾w
CO, hence minimum

elements of ≾type are minimum for ≾w
CO.

Theorem 7. Light genericity for w: ≾w
CO is w-ground.

7 CbV Maximality

Here, we use light genericity to prove maximality of ≾w
CO and the fact that w is

openable, adapting the proofs for the head case.

Maximality of ≾w
CO. The following result adapts to our setting a result of Accattoli

and Guerrieri [6, Thm 6.5], itself adapting a result by Egidi et al. [19, Prop 35].

Theorem 8. 1. Any w-ground inequational theory T that is not w-adequate is
inconsistent.

2. Maximality of ≾w
CO: ≾w

CO is a maximal consistent inequational theory.

Proof. 1. Since T is not w-adequate, there are t w-normalizing and u w-diverging
such that t ≤T u. Since t is w-normalizing, t is scrutable, that is, there is a
testing context T sending it to a value v. By the definition of inequational w-
theory, we have v =T T ⟨t⟩ ≤T T ⟨u⟩. Now, let s be a term and y /∈ fv(s). Then
s =T (λy.s)v because =vsc⊆=T by definition of inequational theory. By the
compatibility of theories and v ≤T T ⟨u⟩, we obtain (λy.s)v ≤T (λy.s)T ⟨u⟩.
Since u is w-diverging, thus inscrutable, T ⟨u⟩ is also w-diverging. Since T is
w-ground and both T ⟨u⟩ and (λy.s)T ⟨u⟩ are w-diverging, (λy.s)T ⟨u⟩ =T T ⟨u⟩.
Summing up, s =T (λy.s)v ≤T (λy.s)T ⟨u⟩ ≤T T ⟨u⟩ and, since T is w-ground,
T ⟨u⟩ ≤T s. Hence, s =T T ⟨u⟩ for every term s, that is, T is inconsistent.

38 B. Accattoli, A. Lancelot

2. From Point 1 and CbV light genericity (Thm. 7.3), as in the head case. ⊓⊔

The proof of Thm. 8.1 is similar to the one of the CbN case, but it is not the
same argument : the CbN one relies on solvability, reduction to the identity, and
head context closure; the CbV one relies on scrutability, reduction to a value, a
different context closure, and on the fact that diverging arguments cannot be
erased in CbV. Therefore, our proofs of maximality cannot be done abstractly.

The fact that weak evaluation is openable then follows as in the head case.

Proposition 10 (Weak evaluation is openable in the VSC). Open and
closed weak contextual pre-orders coincide: ≾w

CO =≾w
C.

8 Co-Genericity

Here, we study a new notion dual to light genericity, which we dub co-genericity.

s-Super Terms. In the λ-calculus (both in CbN and CbV) there are terms
reducing to an infinite sequence of abstractions using strong evaluation. For
instance, let δλ := λx.λy.xx, then Ωλ := δλδλ is one such term. Indeed its weak
evaluation gives Ωλ 7→βv

λy.Ωλ. Now, the new copy of Ωλ shall itself (strongly)
reduce to λy.Ωλ, and so on, producing λy.λy.λy. Such a behavior, when seen
with respect to weak evaluation, is a form of hereditary, or super normalization.

Note that the example can be generalized by using δkλ := λx.λy1. . . . λyk.xx
instead of δλ, obtaining a family of terms Ωkλ := δkλδkλ all producing infinitely
many head abstractions and with no (finite) reduct in common. As for meaningless
terms, it is natural to wonder whether these super meaningful terms can all
be consistently collapsed. In the literature, super terms appear in weak CbN
as maximum (⊤) elements in Lévy-Longo trees [31]—but we are not aware of
a proof that these ⊤-enriched Lévy-Longo trees induce a consistent equational
theory—and in the hierarchy of unsolvable terms [35,1] as unsolvable terms of
order ∞. In CbV, we believe that super terms have not been studied.

Here we connect the collapsibility of super terms to a sort of dual variant
of light genericity. We start by setting up the concept of super normalization
abstractly. It is specific to weak strategies and makes sense also for weak CbN.

Definition 8 (s-super terms). Let s be a weak strategy. A term t is s-super
(normalizing) if, co-inductively, t→∗

s λx.t′ and t′ is s-super.

Co-genericity is the property stating that s-super terms are maximum elements
for ≾s

CO, that shall be captured by the following notion of being s-roof. As
expected, a term t is maximum for a pre-order ≤ if for all u ∈ L, u ≤ t.

Definition 9. Let s be a weak strategy. An inequational s-theory ≤s
T is called:

1. s-roof: if s-super terms are maximum terms for ≤s
T ;

2. Super s-adequate: if t ≤s
T u and t is s-super entails u is s-super.

Light Genericity 39

Definition 10 (Co-genericity). Let s be a weak strategy. Co-s-genericity is
the following property: if u is s-super and C is a context such that C⟨t⟩ is s-
normalizing for some t, then C⟨u⟩ is s-normalizing. Concisely: s-super terms are
maximum for ≾s

CO. Very concisely: ≾s
CO is s-roof.

Note that there cannot be a heavy co-genericity property mentioning strong
normal forms because s-super terms are diverging for strong s-evaluation, by def-
inition. Co-genericity is thus enabled by the switch from heavy to light genericity.

As for light genericity, co-genericity is enough to prove that s-super terms
can be consistently equated (as soon as s is consistent).

Proposition 11 (Co-collapsibility). Let s be a consistent weak strategy
satisfying co-genericity. Then ≃s

CO equates all s-super terms and it is consistent.

A weak strategy s is super consistent if there exists a s-super term.

Proposition 12 (Characterization of maximum terms for ≾s
CO). Let

s be a super consistent weak strategy satisfying co-genericity. If ≾s
CO is super

s-adequate then the maximum terms for ≾s
CO are exactly the s-super terms.

Proof. By co-genericity, s-super terms are maximal for ≾s
CO. For the other

direction, let t be a s-super term, which exists by super consistency of s, and let
u be maximal for ≾s

CO. Then t ≾s
CO u. By super s-adequacy, u is s-super. ⊓⊔

The two following sections present independent proofs of co-genericity for
weak evaluation in the VSC. We do not use multi types for good reasons: w-super
terms are not maximum for ≾type, see the technical report [8, Prop. 18].

9 CbV Co-Genericity via Takahashi’s Technique

In this section, we prove co-genericity for weak evaluation in the VSC adapting
Takahashi’s technique for genericity.

Co-Genericity via Normal Forms. The proof of co-genericity for CbV is based
on a key property of w-super terms with respect to w-normal forms, akin to
the normal genericity lemma of the CbN case. Then co-genericity follows via
Takahashi’s trick, which is not problematic here, since w-super terms are stable
by adding head abstractions. Another difficulty arises in CbV, however, which is
discussed in the technical report [8, p.27] before the proof of the following lemma.

Lemma 1 (Key property of w-super terms). Let s be a w-super term. If
n is a w-normal form then n{x�s} is w-normalizing.

As CbV evaluation only validate value-substitutivity (substitutivity restricted
to values: if t →w u then for all v t{x�v} →w u{x�v}), the statement of co-
genericity as substitution is split into two points.

Lemma 2 (Co-genericity). Let u be any term, s be a w-super term, v be
any value, and v′ be a w-super value.
1. Co-genericity as v -substitution: if t{x�v} is w-normalizing then so is t{x�v′}.
2. Co-genericity as substitution: if t{x�u} is w-normalizing then so is t{x�s}.
3. Co-genericity as context: if C⟨u⟩ is w-normalizing then so is C⟨s⟩.

40 B. Accattoli, A. Lancelot

Super w-Adequacy for ≾w
CO. Co-genericity states that w-super terms are maximal

for ≾w
CO. For the full characterization (Prop. 12), we need super adequacy and

super consistency. Super consistency is easily verified as Ωλ exists.

Proposition 13 (Super w-Adequacy).

1. Super adequacy: ≾w
CO is super w-adequate.

2. Characterization of maximum terms for ≾w
CO: maximum terms for ≾w

CO are
exactly w-super terms.

10 CbV (Co-)Genericity via Applicative Similarity

In this section, we present alternative proofs of genericity and co-genericity
for weak evaluation in the VSC. We use a well-known tool developed to study
Plotkin’s CbV contextual equivalence ≃pw

C , namely the CbV variant [27,39] of
Abramsky’s applicative (bi)similarity [1].

The following definition differs slightly from the literature on two points.
Firstly, we use a well known equivalent definition that does not ask that the
results of evaluation are similar (which is a fact needed for the definition of
applicative simulations, but not for applicative similarity). Secondly, we replace
Plotkin’s CbV by the VSC, which are equivalent for closed terms.

Definition 11 (Applicative similarity [1]). Applicative similarity t ≾w
AS u

is the relation on closed terms defined by: if t v1 . . . vn is w-normalizing then
u v1 . . . vn is w-normalizing, for all n ∈ N and v1, . . . , vn closed values. Applicative
similarity is extended to open terms via closing substitutions: t ≾w

AS u if tσ ≾w
AS

uσ for all substitutions of values σ closing t and u.

From the following lemma, it follows easily that w-diverging and w-super terms
are minimum and maximum for ≾w

AS .

Lemma 3. If t is w-diverging (resp. w-super) then so are t{x�v} and tv.

Proposition 14. 1. Minimums: w-diverging terms are minimum for ≾w
AS.

2. Maximums: w-super terms are maximum for ≾w
AS.

Proof. 1. Let t be a w-diverging term and u any term. Then by Lemma 3, for
any closing substitution σ of t and u and for any n and any v1, . . . , vn we still
have that tσ v1, . . . , vn is w-diverging. Hence t ≾w

AS u for any term u, that is,
t is a minimum term for ≾w

AS .
2. Let t be a w-super term and u any term. For any closing substitution σ of t

and u and for any n and values v1, . . . , vn, either uσ v1, . . . , vn is w-diverging
or uσ v1, . . . , vn is w-normalizing. In both cases, by Lemma 3, we still have
that tσ v1, . . . , vn is w-super, hence w-normalizing. Thus, u ≾w

AS t. ⊓⊔

Proving (co-)genericity amounts to show that the results of the previous
proposition transfer to ≾w

CO. This can be done by showing ≾w
AS⊆≾w

CO via:

Light Genericity 41

1. The soundness of applicative similarity ≾w
AS for Plotkin’s pre-order ≾pw

C , that
is, that ≾w

AS⊆≾
pw
C (completeness holds as well, but it is not useful here);

2. The equivalence ≾pw
C =≾w

C , given by Prop. 8.3;
3. The openability of w-evaluation, that is, ≾w

C=≾w
CO.

Soundness of ≾w
AS is a non-trivial result in the literature, established by Howe’s

method [27,39], which we here use as a black box. About openability, we proved
it in Sect. 7 but that proof uses light genericity (and maximality), which is our
goal here, so we have to re-prove openability without using light genericity.

w is Openable without Light Genericity. We know that ≾w
CO⊆≾w

C , thus we only
have to show the other inclusion, which follows from w-adequacy of ≾w

C .

Proposition 15. The inequational theory ≾w
C is w-adequate, hence w is openable.

Proof. The proof is in [8, p.32], here we only give the idea for w-adequacy. Let
t ≾w

C u with t w-normalizing. Then, we use the operational characterization of
scrutability (Thm. 5) to build a closing context C such that C⟨t⟩ is w-normalizing
and such that if u were w-diverging, so would be C⟨u⟩. ⊓⊔

(Co-)genericity via Applicative Similarity. The three points above are established,
and so we obtain new proofs of light genericity and co-genericity.

Proposition 16 (CbV light (co-)genericity). ≾w
CO is w-ground and w-roof.

11 Conclusions

We develop in this paper a theory of light genericity, which is as powerful as heavy
genericity for proving the collapsibility of meaningless terms, it is connected to
contextual pre-orders, and dualizable as co-genericity.

We also provide light proofs of the maximality of open contextual pre-orders,
which in turn provide an elegant proof of the fact that the closed and open
contextual pre-orders coincide. Lastly, we show that CbV applicative similarity
can be used for alternative simple proofs of light (co-)genericity. These simple
proofs via applicative similarity are easily adaptable to the (weak) CbN case.

Summing up, our work paints Barendregt’s genericity with a fresh, modern
hue, connecting it to program equivalences and maximality, following an abstract
approach and providing neat proofs.

Acknowledgements. To Giulio Manzonetto and Gabriele Vanoni for feedback on
a first draft, and to Victor Arrial for helpful discussions about genericity.

42 B. Accattoli, A. Lancelot

References

1. Abramsky, S., Ong, C.L.: Full abstraction in the lazy lambda calculus. Inf. Comput.
105(2), 159–267 (1993). https://doi.org/10.1006/inco.1993.1044

2. Accattoli, B.: Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci. 606,
2–24 (2015). https://doi.org/10.1016/j.tcs.2015.08.006

3. Accattoli, B., Faggian, C., Guerrieri, G.: Factorization and normalization, essentially.
In: Lin, A.W. (ed.) Programming Languages and Systems - 17th Asian Symposium,
APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings. Lecture
Notes in Computer Science, vol. 11893, pp. 159–180. Springer (2019). https://doi.
org/10.1007/978-3-030-34175-6_9

4. Accattoli, B., Guerrieri, G.: Open call-by-value. In: Igarashi, A. (ed.) Programming
Languages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,
November 21-23, 2016, Proceedings. Lecture Notes in Computer Science, vol. 10017,
pp. 206–226 (2016). https://doi.org/10.1007/978-3-319-47958-3_12, https://doi.
org/10.1007/978-3-319-47958-3_12

5. Accattoli, B., Guerrieri, G.: Types of fireballs. In: Ryu, S. (ed.) Programming
Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New
Zealand, December 2-6, 2018, Proceedings. Lecture Notes in Computer Science, vol.
11275, pp. 45–66. Springer (2018). https://doi.org/10.1007/978-3-030-02768-1_3

6. Accattoli, B., Guerrieri, G.: The theory of call-by-value solvability. Proc. ACM
Program. Lang. 6(ICFP), 855–885 (2022). https://doi.org/10.1145/3547652

7. Accattoli, B., Guerrieri, G., Leberle, M.: Strong call-by-value and multi types. In:
Ábrahám, E., Dubslaff, C., Tarifa, S.L.T. (eds.) Theoretical Aspects of Computing
- ICTAC 2023 - 20th International Colloquium, Lima, Peru, December 4-8, 2023,
Proceedings. Lecture Notes in Computer Science, vol. 14446, pp. 196–215. Springer
(2023). https://doi.org/10.1007/978-3-031-47963-2_13

8. Accattoli, B., Lancelot, A.: Light Genericity (Jan 2024), https://hal.science/
hal-04406343, technical report

9. Accattoli, B., Paolini, L.: Call-by-value solvability, revisited. In: Schrijvers, T.,
Thiemann, P. (eds.) Functional and Logic Programming - 11th International
Symposium, FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings. Lec-
ture Notes in Computer Science, vol. 7294, pp. 4–16. Springer (2012). https:
//doi.org/10.1007/978-3-642-29822-6_4

10. Arrial, V., Guerrieri, G., Kesner, D.: Genericity through stratification (2024),
https://arxiv.org/abs/2401.12212

11. Barbarossa, D., Manzonetto, G.: Taylor subsumes Scott, Berry, Kahn and Plotkin.
Proc. ACM Program. Lang. 4(POPL), 1:1–1:23 (2020). https://doi.org/10.1145/
3371069

12. Barendregt, H.P.: Some extensional term models for combinatory logics and λ-calculi.
Ph.D. thesis, Univ. Utrecht (1971)

13. Barendregt, H.P.: Solvability in lambda-calculi. In: Guillaume, M. (ed.) Colloque
international de logique : Clermont-Ferrand, 18-25 juillet 1975. pp. 209–219. Éditions
du C.N.R.S., Paris (1977)

14. Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics, Studies in
logic and the foundations of mathematics, vol. 103. North-Holland (1984)

15. Barendregt, H.: Representing ’undefined’ in lambda calculus. J. Funct. Program.
2(3), 367–374 (1992). https://doi.org/10.1017/S0956796800000447

16. Barendregt, H., Manzonetto, G.: A Lambda Calculus Satellite. College Publications
(2022), https://www.collegepublications.co.uk/logic/mlf/?00035

Light Genericity 43

https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-319-47958-3_12
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1145/3547652
https://doi.org/10.1145/3547652
https://doi.org/10.1007/978-3-031-47963-2_13
https://doi.org/10.1007/978-3-031-47963-2_13
https://hal.science/hal-04406343
https://hal.science/hal-04406343
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1007/978-3-642-29822-6_4
https://arxiv.org/abs/2401.12212
https://doi.org/10.1145/3371069
https://doi.org/10.1145/3371069
https://doi.org/10.1145/3371069
https://doi.org/10.1145/3371069
https://doi.org/10.1017/S0956796800000447
https://doi.org/10.1017/S0956796800000447
https://www.collegepublications.co.uk/logic/mlf/?00035

17. Carraro, A., Guerrieri, G.: A semantical and operational account of call-by-value
solvability. In: Muscholl, A. (ed.) Foundations of Software Science and Computation
Structures - 17th International Conference, FOSSACS 2014, Grenoble, France,
April 5-13, 2014, Proceedings. Lecture Notes in Computer Science, vol. 8412, pp.
103–118. Springer (2014). https://doi.org/10.1007/978-3-642-54830-7_7, https:
//doi.org/10.1007/978-3-642-54830-7_7

18. Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine. Theor.
Comput. Sci. 398(1-3), 32–50 (2008). https://doi.org/10.1016/j.tcs.2008.01.044

19. Egidi, L., Honsell, F., Ronchi Della Rocca, S.: Operational, denotational and logical
descriptions: a case study. Fundam. Inform. 16(1), 149–169 (1992)

20. Ehrhard, T.: Collapsing non-idempotent intersection types. In: Cégielski, P., Durand,
A. (eds.) Computer Science Logic (CSL’12) - 26th International Workshop/21st
Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau,
France. LIPIcs, vol. 16, pp. 259–273. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2012). https://doi.org/10.4230/LIPIcs.CSL.2012.259

21. Endrullis, J., de Vrijer, R.C.: Reduction under substitution. In: Voronkov, A.
(ed.) Rewriting Techniques and Applications, 19th International Conference, RTA
2008, Hagenberg, Austria, July 15-17, 2008, Proceedings. Lecture Notes in Com-
puter Science, vol. 5117, pp. 425–440. Springer (2008). https://doi.org/10.1007/
978-3-540-70590-1_29

22. Folkerts, E.: Invertibility in lambda-eta. In: Thirteenth Annual IEEE Symposium on
Logic in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998. pp. 418–
429. IEEE Computer Society (1998). https://doi.org/10.1109/LICS.1998.705676

23. García-Pérez, Á., Nogueira, P.: No solvable lambda-value term left behind. Log.
Methods Comput. Sci. 12(2) (2016). https://doi.org/10.2168/LMCS-12(2:12)2016

24. Ghilezan, S.: Full intersection types and topologies in lambda calculus. J. Comput.
Syst. Sci. 62(1), 1–14 (2001). https://doi.org/10.1006/jcss.2000.1703

25. Girard, J.Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987). https:
//doi.org/10.1016/0304-3975(87)90045-4

26. Guerrieri, G., Paolini, L., Ronchi Della Rocca, S.: Standardization and conservativity
of a refined call-by-value lambda-calculus. Logical Methods in Computer Science
13(4) (2017). https://doi.org/10.23638/LMCS-13(4:29)2017

27. Howe, D.J.: Proving congruence of bisimulation in functional programming lan-
guages. Inf. Comput. 124(2), 103–112 (1996). https://doi.org/10.1006/inco.1996.
0008

28. Kennaway, R., van Oostrom, V., de Vries, F.: Meaningless terms in rewriting. J.
Funct. Log. Program. 1999(1) (1999), http://danae.uni-muenster.de/lehre/kuchen/
JFLP/articles/1999/A99-01/A99-01.html

29. Kerinec, A., Manzonetto, G., Pagani, M.: Revisiting call-by-value böhm trees in
light of their taylor expansion. Log. Methods Comput. Sci. 16(3) (2020), https:
//lmcs.episciences.org/6638

30. Kuper, J.: Proving the genericity lemma by leftmost reduction is simple. In: Hsiang,
J. (ed.) Rewriting Techniques and Applications, 6th International Conference,
RTA-95, Kaiserslautern, Germany, April 5-7, 1995, Proceedings. Lecture Notes in
Computer Science, vol. 914, pp. 271–278. Springer (1995). https://doi.org/10.1007/
3-540-59200-8_63

31. Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimulation
up to context 20, 346–374 (1999). https://doi.org/10.1016/S1571-0661(04)80083-5,
https://doi.org/10.1016/S1571-0661(04)80083-5

44 B. Accattoli, A. Lancelot

https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1007/978-3-540-70590-1_29
https://doi.org/10.1007/978-3-540-70590-1_29
https://doi.org/10.1007/978-3-540-70590-1_29
https://doi.org/10.1007/978-3-540-70590-1_29
https://doi.org/10.1109/LICS.1998.705676
https://doi.org/10.1109/LICS.1998.705676
https://doi.org/10.2168/LMCS-12(2:12)2016
https://doi.org/10.2168/LMCS-12(2:12)2016
https://doi.org/10.1006/jcss.2000.1703
https://doi.org/10.1006/jcss.2000.1703
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.23638/LMCS-13(4:29)2017
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1006/inco.1996.0008
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-01/A99-01.html
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-01/A99-01.html
https://lmcs.episciences.org/6638
https://lmcs.episciences.org/6638
https://doi.org/10.1007/3-540-59200-8_63
https://doi.org/10.1007/3-540-59200-8_63
https://doi.org/10.1007/3-540-59200-8_63
https://doi.org/10.1007/3-540-59200-8_63
https://doi.org/10.1016/S1571-0661(04)80083-5
https://doi.org/10.1016/S1571-0661(04)80083-5
https://doi.org/10.1016/S1571-0661(04)80083-5

32. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-
gramming languages. Inf. Comput. 185(2), 182–210 (2003). https://doi.org/10.
1016/S0890-5401(03)00088-9

33. Moggi, E.: Computational λ-Calculus and Monads. LFCS report ECS-LFCS-
88-66, University of Edinburgh (1988), http://www.lfcs.inf.ed.ac.uk/reports/88/
ECS-LFCS-88-66/ECS-LFCS-88-66.pdf

34. Moggi, E.: Computational λ-Calculus and Monads. In: Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove,
California, USA, June 5-8, 1989. pp. 14–23. IEEE Computer Society (1989). https:
//doi.org/10.1109/LICS.1989.39155

35. Ong, C.L.: Lazy lambda calculus: Theories, models and local structure charac-
terization (extended abstract). In: Kuich, W. (ed.) Automata, Languages and
Programming, 19th International Colloquium, ICALP92, Vienna, Austria, July
13-17, 1992, Proceedings. Lecture Notes in Computer Science, vol. 623, pp. 487–498.
Springer (1992). https://doi.org/10.1007/3-540-55719-9_98

36. Paolini, L.: Call-by-value separability and computability. In: Theoretical Computer
Science, 7th Italian Conference, ICTCS 2001, Torino, Italy, October 4-6, 2001,
Proceedings. pp. 74–89 (2001). https://doi.org/10.1007/3-540-45446-2_5

37. Paolini, L.: Parametric λ-theories. Theoretical Computer Science 398(1), 51–62
(2008). https://doi.org/https://doi.org/10.1016/j.tcs.2008.01.021, calculi, Types
and Applications: Essays in honour of M. Coppo, M. Dezani-Ciancaglini and S.
Ronchi Della Rocca

38. Paolini, L., Ronchi Della Rocca, S.: Call-by-value solvability. RAIRO Theor. Infor-
matics Appl. 33(6), 507–534 (1999). https://doi.org/10.1051/ita:1999130

39. Pitts, A.M.: Howe’s method for higher-order languages. In: Sangiorgi, D., Rutten,
J.J.M.M. (eds.) Advanced Topics in Bisimulation and Coinduction, Cambridge
tracts in theoretical computer science, vol. 52, pp. 197–232. Cambridge University
Press (2012). https://doi.org/10.1017/CBO9780511792588.006

40. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science 1(2), 125–159 (1975). https://doi.org/https://doi.org/10.1016/
0304-3975(75)90017-1

41. Ronchi Della Rocca, S., Paolini, L.: The Parametric λ-Calculus – A Metamodel for
Computation. Texts in Theoretical Computer Science. An EATCS Series, Springer
(2004). https://doi.org/10.1007/978-3-662-10394-4

42. Sabry, A., Wadler, P.: A Reflection on Call-by-Value. ACM Trans. Program. Lang.
Syst. 19(6), 916–941 (1997). https://doi.org/10.1145/267959.269968

43. Salibra, A.: On the algebraic models of lambda calculus. Theor. Comput. Sci.
249(1), 197–240 (2000). https://doi.org/10.1016/S0304-3975(00)00059-1

44. Takahashi, M.: A simple proof of the genericity lemma. In: Jones, N.D., Hagiya, M.,
Sato, M. (eds.) Logic, Language and Computation, Festschrift in Honor of Satoru
Takasu. Lecture Notes in Computer Science, vol. 792, pp. 117–118. Springer (1994).
https://doi.org/10.1007/BFb0032397

45. Wadsworth, C.P.: Semantics and pragmatics of the lambda-calculus. PhD Thesis,
University of Oxford (1971)

46. Wadsworth, C.P.: The Relation Between Computational and Denotational Prop-
erties for Scott’s D∞-Models of the Lambda-Calculus. SIAM J. Comput. 5(3),
488–521 (1976). https://doi.org/10.1137/0205036

Light Genericity 45

https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/ECS-LFCS-88-66.pdf
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1007/3-540-55719-9_98
https://doi.org/10.1007/3-540-55719-9_98
https://doi.org/10.1007/3-540-45446-2_5
https://doi.org/10.1007/3-540-45446-2_5
https://doi.org/https://doi.org/10.1016/j.tcs.2008.01.021
https://doi.org/https://doi.org/10.1016/j.tcs.2008.01.021
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1017/CBO9780511792588.006
https://doi.org/10.1017/CBO9780511792588.006
https://doi.org/https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1145/267959.269968
https://doi.org/10.1145/267959.269968
https://doi.org/10.1016/S0304-3975(00)00059-1
https://doi.org/10.1016/S0304-3975(00)00059-1
https://doi.org/10.1007/BFb0032397
https://doi.org/10.1007/BFb0032397
https://doi.org/10.1137/0205036
https://doi.org/10.1137/0205036

46 B. Accattoli, A. Lancelot

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

1 Introduction

Logical relations are arguably the most widely used method for reasoning on higher-order
languages. Historically, early examples of logical relations [44,46,47,51,55,56,58,59]
were based on denotational semantics, before the method evolved into logical relations
based on operational semantics [7,17,34,50,52,53]. Today, operationally-based logical
relations are ubiquitous and serve purposes ranging from strong normalization proofs [6]
and safety properties [21,22] to reasoning about contextual equivalence [5,60] and
formally verified compilation [8,33,45,48], in a variety of settings such as effectful [37],
probabilistic [4,10,63], and differential programming [15,40,41].

Unfortunately, despite the extensive literature, there is a distinct lack of a general
formal theory of (operational) logical relations. As a reasoning method, logical relations
are applied in a largely empirical manner, more so because their core principles are well
understood on an intuitive level. For example, there is typically no formal notion of a
logical predicate or relation; instead, if a predicate or relation is defined by induction on

⋆ Supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
number 501369690

⋆⋆ Supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
numbers 419850228

⋆ ⋆ ⋆ Supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
numbers 419850228 and 527481841

† Supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
number 470467389

Logical Predicates in Higher-Order
Mathematical Operational Semantics

Sergey Goncharov1,⋆, Alessio Santamaria , Lutz Schroder2 ¨ 1,⋆⋆, Stelios Tsampas ,⋆ ⋆ ⋆

and Henning Urbat1,†

Abstract. We present a systematic approach to logical predicates based on univer-
sal coalgebra and higher-order abstract GSOS, thus making a first step towards a
unifying theory of logical relations. We start with the observation that logical pred-
icates are special cases of coalgebraic invariants on mixed-variance functors. We
then introduce the notion of a locally maximal logical refinement of a given predi-
cate, with a view to enabling inductive reasoning, and identify sufficient conditions
on the overall setup in which locally maximal logical refinements canonically exist.
Finally, we develop induction-up-to techniques that simplify inductive proofs via
logical predicates on systems encoded as (certain classes of) higher-order GSOS
laws by identifying and abstracting away from their boiler-plate part.

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 47– 9, 2024.
https://doi.org/10.1007/978-3-031-57231-9_3

9

1(B)

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
sergey.goncharov,lutz.schroder,stelios.tsampas@fau.de,

henning.urbat @fau.de
2 University of Sussex, Brighton, UK
a.santamaria@sussex.ac.uk

{
}

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_3&domain=pdf

types and maps “related inputs to related outputs”, it then meets the informal criteria to
be called “logical”. However, the empirical character of logical relations is problematic
for two main reasons: (i) complex machinery associated to logical relations needs to be
re-established anew on a per-case basis, and (ii) it is hard to abstract and simplify said
machinery, even though certain parts of proofs via logical relations seem generic.

Recently, Higher-order Mathematical Operational Semantics [24], or higher-order
abstract GSOS, has emerged as a unifying approach to the operational semantics of
higher-order languages. In this framework, languages are represented as higher-order
GSOS laws, a form of distributive law of a syntax functor Σ over a mixed-variance be-
haviour bifunctor B. In further work [62], an abstract form of Howe’s method [16,31,32]
for higher-order abstract GSOS has been identified, in which an otherwise complex and
application-specific operational technique is, at the same time, lifted to an appropriate
level of generality and reduced to a simple lax bialgebra condition.

In the present paper, we work towards establishing a theory of logical relations based
on coalgebra and higher-order abstract GSOS, starting from logical predicates, under-
stood as unary logical relations. In more detail, we present the following contributions:

(i) A systematization of the method of logical predicates (Section 3), achieved by
(a) identifying logical predicates as certain coalgebraic invariants (Definition 12),

parametric in a predicate lifting of the underlying mixed-variance bifunctor,
(b) introducing the locally maximal logical refinement □P of a predicate P (Defini-

tion 14), which enables inductive proofs of □P, and
(c) identifying an abstract setting in which locally maximal logical refinements of

predicates exist and are unique (Section 3.3).
(ii) The development of efficient reasoning techniques on logical predicates, which we
call induction up-to (Theorems 34 and 36), for higher-order GSOS laws satisfying a
relative flatness condition (Definition 30).

We illustrate (ii) by providing proofs of strong normalization for typed combinatory
logic and type safety for the simply typed λ-calculus which, thanks to the use of our
up-to techniques, are significantly shorter and simpler than standard arguments found
in the literature. Finally, we exploit the genericity of our framework to study strong
normalization on the level of higher-order GSOS laws (Theorem 42). We note that the
implementation of typed languages as higher-order GSOS laws as such is also novel.

Full proofs and additional details can be found in the arXiv version [25] of our paper.

Related work While denotational logical relations have been studied in categorical
generality, e.g. [27,28,29,38], general abstract foundations of operational logical rela-
tions are far less developed. In recent work [13,14], Dagnino and Gavazzo introduce
a categorical notion of operational logical relations that is largely orthogonal to ours,
in particular regarding the parametrization of the framework: In op. cit., the authors
work with a fixed fine-grain call-by-value language [42], parametrized by a signature
of generic effects, while the notion of logical relation is kept variable and in fact is
parametrized over a fibration; contrastingly, we keep to the traditional notion of logical
relation but parametrize over the syntax and semantics of the language. Moreover, we
work with a small-step operational semantics, whereas the semantics used in op. cit. is
an axiomatically defined categorical evaluation semantics.

48 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

2 Preliminaries

2.1 Category Theory

Familiarity with basic category theory [43] (e.g. functors, natural transformations,
(co)limits, monads) is assumed. We review some concepts and notation.

Notation. Given objects X1, X2 in a category C, we write X1 × X2 for the product and
⟨ f1, f2⟩ : X → X1 × X2 for the pairing of fi : X → Xi, i = 1, 2. We let X1 + X2 denote the
coproduct, inl : X1 → X1+X2 and inr : X2 → X1+X2 the injections, [g1, g2] : X1+X2 → X
the copairing of gi : Xi → X, i = 1, 2, and ∇ = [idX , idX] : X + X → X the codiagonal.
The slice category C/X, where X ∈ C, has as objects all pairs (Y, pY) of an object Y ∈ C

and a morphism pY : Y → X, and a morphism from (Y, pY) to (Z, pZ) is a morphism
f : Y → Z of C such that pY = pZ · f . The coslice category X/C is defined dually.

Extensive categories. A category C is (finitely) extensive [12] if it has finite coproducts
and for every finite family of objects Xi (i ∈ I) the functor E :

∏
i∈I C/Xi → C/

∐
i∈I Xi

sending (pi : Yi → Xi)i∈I to
∐

i∈I pi :
∐

i Yi →
∐

i Xi is an equivalence of categories.
A countably extensive category satisfies the analogous property for countable coprod-
ucts. In extensive categories, coproduct injections inl, inr are monic, and coproducts of
monomorphisms are monic; generally, coproducts behave like disjoint unions of sets.

Example 1. Examples of countably extensive categories include the category Set of
sets and functions; the category SetC of presheaves on a small category C and natural
transformations; and the categories of posets and monotone maps, nominal sets and
equivariant maps, and metric spaces and non-expansive maps, respectively.

Algebras. Given an endofunctor F on a category C, an F-algebra is a pair (A, a) consisting
of an object A and a morphism a : FA → A (the structure). A morphism from (A, a) to
an F-algebra (B, b) is a morphism h : A → B of C such that h · a = b · Fh. Algebras
for F and their morphisms form a category Alg(F), and an initial F-algebra is simply an
initial object in that category. We denote the initial F-algebra by µF if it exists, and its
structure by ι : F(µF) → µF. Initial algebras admit the structural induction principle:
the algebra µF has no proper subalgebras, that is, every F-algebra monomorphism
m : (A, a) ↣ (µF, ι) is an isomorphism.

More generally, a free F-algebra on an object X of C is an F-algebra (F⋆X, ιX)
together with a morphism ηX : X → F⋆X of C such that for every algebra (A, a) and
every h : X → A in C, there exists a unique F-algebra morphism h♯ : (F⋆X, ιX) → (A, a)
such that h = h♯ · ηX . If free algebras exist on every object, their formation induces a
monad F⋆ : C → C, the free monad generated by F. Every F-algebra (A, a) yields an
Eilenberg-Moore algebra â : F⋆A → A as the free extension of idA : A → A.

The most familiar example of functor algebras are algebras for a signature. Given a
set S of sorts, an S -sorted algebraic signature consists of a set Σ of operation symbols
together with a map ar : Σ → S ⋆ × S associating to every f ∈ Σ its arity. We write
f : s1 × · · · × sn → s if ar(f) = (s1, . . . , sn, s), and f : s if n = 0 (in which case f is
called a constant). Every signature Σ induces a polynomial functor on the category SetS

of S -sorted sets, denoted by the same letter Σ, given by (ΣX)s =
∐

f : s1···sn→s
∏n

i=1 Xsi

for X ∈ SetS and s ∈ S . An algebra for the functor Σ is precisely an algebra for

Logical Predicates in Higher-Order Mathematical Operational Semantics 49

the signature Σ, viz. an S -sorted set A = (As)s∈S in SetS equipped with an operation
fA :

∏n
i=1 Asi → As for every f : s1 · · · sn → s in Σ. Morphisms of Σ-algebras are S -sorted

maps respecting the algebraic structure. Given an S -sorted set X of variables, the free
algebra Σ⋆X is the Σ-algebra of Σ-terms with variables from X; more precisely, (Σ⋆X)s

is inductively defined by Xs ⊆ (Σ⋆X)s and f(t1, . . . , tn) ∈ (Σ⋆X)s for all f : s1 · · · sn → s
and ti ∈ (Σ⋆X)si . In particular, the free algebra on the empty set is the initial algebra µΣ;
it is formed by all closed terms of the signature. For every Σ-algebra (A, a), the induced
Eilenberg-Moore algebra â : Σ⋆A → A is given by the map that evaluates terms over A
in the algebra A.

Coalgebras. Dual to the notion of algebra, a coalgebra for an endofunctor F on C is a
pair (C, c) of an object C (the state space) and a morphism c : C → FC (the structure).

2.2 Higher-Order Abstract GSOS

We summarize the framework of higher-order abstract GSOS [24], which extends the
original, first-order counterpart introduced by Turi and Plotkin [61]. In higher-order
abstract GSOS, the operational semantics of a higher-order language is presented in the
form of a higher-order GSOS law, a categorical structure parametric in
(1) a category C with finite products and coproducts;
(2) an object V ∈ C of variables;
(3) an endofunctor Σ : C → C, where Σ = V + Σ′ for some endofunctor Σ′, such that
free Σ-algebras exist on every object (hence Σ generates a free monad Σ⋆);
(4) a mixed-variance bifunctor B : Cop × C → C.
The functors Σ and B represent the syntax and the behaviour of a higher-order language.
The motivation behind B having two arguments is that transitions have labels, which
behave contravariantly, and poststates, which behave covariantly; in term models the
objects of labels and states will coincide. The presence of an object V of variables is
a technical requirement for the modelling of languages with variable binding [19,20],
such as the λ-calculus. An object of V/C, the coslice category of V-pointed objects, is
thought of as a set X of programs with an embedding pX : V → X of the variables. In
point-free calculi, e.g. xTCL as introduced below, we put V = 0 (the initial object).

Definition 2. A (V-pointed) higher-order GSOS law of Σ over B is a family of mor-
phisms (1) that is dinatural in (X, pX) ∈ V/C and natural in Y ∈ C:

ϱ(X,pX),Y : Σ(X × B(X,Y)) → B(X, Σ⋆(X + Y)) (1)

Notation 3. (i) In (1), we have implicitly applied the forgetful functor V/C → C at
(X, pX). In addition, we write ϱX,Y for ϱ(X,pX),Y if the point pX is clear from the context.
(ii) For (A, a) ∈ Alg(Σ), we view A as V-pointed by pA =

(
V inl
−→ V + Σ′A = ΣA a

−→ A
)
.

Informally, ϱX,Y assigns to an operation of the language with formal arguments from X
having specified next-step behaviours in B(X,Y) (i.e. with labels in X and formal post-
states in Y) a next-step behaviour in B(X, Σ⋆(X + Y)), i.e. with the same labels, and
with poststates being program terms mentioning variables from both X and Y . Every

50 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

e ✓
−→ S τ1 ,τ2 ,τ3

t
−→ S ′

τ1 ,τ2 ,τ3
(t) S ′

τ1 ,τ2 ,τ3
(p) t

−→ S ′′
τ1 ,τ2 ,τ3

(p, t)

S ′′
τ1 ,τ2 ,τ3

(p, q) t
−→ (p t) (q t) Kτ1 ,τ2

t
−→ K′

τ1 ,τ2
(t) K′

τ1 ,τ2
(p) t

−→ p

Iτ t
−→ t

p → p′

p q → p′ q

p q
−→ p′

p q → p′

Fig. 1. (Call-by-name) operational semantics of xTCL.

higher-order GSOS law (1) induces a canonical operational model γ : µΣ → B(µΣ, µΣ),
viz. a B(µΣ,−)-coalgebra on the initial algebra µΣ, defined by primitive recursion [36,
Prop. 2.4.7] as the unique morphism γ making the following diagram commute:

Σ(µΣ) µΣ

Σ(µΣ × B(µΣ, µΣ)) B(µΣ, Σ⋆(µΣ + µΣ)) B(µΣ, µΣ)

Σ⟨id, γ⟩

ι

γ

ϱµΣ,µΣ B(µΣ,ι̂·Σ⋆∇)

Here, we regard the initial algebra (µΣ, ι) as V-pointed as explained in Notation 3.

Simply Typed SKI Calculus. We illustrate the ideas behind higher-order abstract GSOS
with an extended version of the simply typed SKI calculus [30], a typed combinatory
logic which we call xTCL. It is expressively equivalent to the simply typed λ-calculus
but does not use variables; hence it avoids the complexities associated to variable binding
and substitution in the λ-calculus, which we treat in Section 4.2. The set Ty of types is
inductively defined as

TyF unit | Ty _ Ty. (2)

The constructor _ is right-associative, i.e. τ1 _ τ2 _ τ3 is parsed as τ1 _ (τ2 _ τ3).
The terms of xTCL are formed over the Ty-sorted signature Σ whose operation symbols
are listed below, with τ, τ1, τ2, τ3 ranging over all types in Ty:

e : unit appτ1,τ2
: (τ1 _ τ2) × τ1 → τ2

S τ1,τ2,τ3 : (τ1 _ τ2 _ τ3) _ (τ1 _ τ2) _ τ1 _ τ3 Kτ1,τ2 : τ1 _ τ2 _ τ1

S ′
τ1,τ2,τ3

: (τ1 _ τ2 _ τ3) → ((τ1 _ τ2) _ τ1 _ τ3) K′
τ1,τ2

: τ1 → (τ2 _ τ1)
S ′′
τ1,τ2,τ3

: (τ1 _ τ2 _ τ3) × (τ1 _ τ2) → (τ1 _ τ3) Iτ : τ _ τ

We let Tr = µΣ denote the Ty-sorted set of closed Σ-terms. Informally, app represents
function application (we write s t for app(s, t)), and the constants Iτ, Kτ1,τ2 , S τ1,τ2,τ3

represent the λ-terms λt. t, λt. λs. t and λt. λs. λu. (s u) (t u), respectively. The operational
semantics of xTCL involves three kinds of transitions: ✓

−→, t
−→ and −→. It is presented

in Figure 1; here, p, p′, q, t range over terms in Tr of appropriate type. Intuitively, s ✓
−→

identifies s as an explicitly irreducible term; s t
−→ r states that s acts as a function

mapping t to r; and s → t indicates that s reduces to t. Our use of labelled transitions

Logical Predicates in Higher-Order Mathematical Operational Semantics 51

in higher-order operational semantics is inspired by work on bisimilarity in the λ-
calculus [1,26]. The use of K′, S ′ and S ′′ does not impact the behaviour of programs,
except for possibly adding more unlabelled transitions. For example, the standard rule
S tse → (te)(se) for the S-combinator is rendered as the chain of transitions S tse →

S ′(t) se → S ′′(t, s) e → (te)(se). The transition system for xTCL is deterministic:
for every term s, either s ✓

−→, or there exists a unique t such that s → t, or for each
appropriately typed t there exists a unique st such that s t

−→ st. Therefore, given

Bτ(X,Y) = Yτ + Dτ(X,Y), (3)

Dunit(X,Y) = 1 = {∗} and Dτ1_τ2 (X,Y) = Y
Xτ1
τ2 , (4)

the operational rules in Figure 1 determine a SetTy-morphism γ : Tr → B(Tr,Tr):

γunit(s) = inr(∗) if s ✓
−→ where s : unit,

γτ(s) = inl(t) if s −→ t where s, t : τ, (5)
γτ1_τ2 (s) = inr(λt. st) if s t

−→ st for s : τ1 _ τ2 and t : τ1.

Proposition 4. The object assignments (3) and (4) extend to mixed-variance bifunctors

B, D : (SetTy)op × SetTy → SetTy. (6)

The semantics of xTCL in Figure 1 corresponds to a (0-pointed) higher-order GSOS
law of the syntax functor Σ over the behaviour bifunctor B, i.e. to a family of maps (1)
dinatural in X ∈ SetTy and natural in Y ∈ SetTy. The maps ϱX,Y are cotuples defined by
distinguishing cases on the constructors e, S , S ′, S ′′, K, K′, I, app of xTCL, and each
component of ϱ is determined by the rules that apply to the corresponding constructor.
We provide a few illustrative cases; see [25, p. 25], for a complete definition.

ϱX,Y : Σ(X × B(X,Y)) → B(X, Σ⋆(X + Y)) (7)

ϱX,Y (S ′′
τ1,τ2,τ3

((p, f), (q, g))) = λt. (p t) (q t) (8)

ϱX,Y ((p, f) (q, g)) = f (q) if f : Y
Xτ1
τ2 (9)

ϱX,Y ((p, f) (q, g)) = f q if f : Yτ1_τ2 (10)

The operational model γ : Tr → B(Tr,Tr) of ϱ coincides with the coalgebra (5).

Remark 5. The rules for application in Figure 1 implement the call-by-name evaluation
strategy. Other strategies can be captured by varying the rules and consequently the
corresponding higher-order GSOS law. For the call-by-value strategy, one replaces
the last rule with (11) and (12) below and modifies clause (9) in the definition of ϱ
accordingly. One can also model the traditional view of combinatory logic as a rewrite
system [30] where any redex can be reduced, no matter how deeply. This amounts
to specifying a maximally nondeterministic strategy by adding the rule (13) below to
Figure 1. Notably, this makes the operational model nondeterministic, and hence the
corresponding higher-order GSOS law relies on the behaviour functor PB instead of the
original B given by (3), where P is the powerset functor.

p t
−→ p′ q → q′

p q → p q′
(11)

p q
−→ p′ q t

−→ q′

p q → p′
(12)

q → q′

p q → p q′
(13)

52 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

3 Coalgebraic Logical Predicates

3.1 Predicate Lifting

Predicates and relations on coalgebras are often most conveniently modelled through
predicate and relation liftings [39] of the underlying type functors. In the following
we introduce a framework of predicate liftings for mixed-variance bifunctors, adapting
existing notions of relation lifting [62], which enables reasoning about “higher-order”
coalgebras, such as operational models of higher-order GSOS laws. The following global
assumptions ensure that predicates and relations behave in an expected manner:

Assumptions 6. From now on, we fix C to be a complete, well-powered and extensive
category in which, additionally, strong epimorphisms are stable under pullbacks.

The categories of Example 1 satisfy these assumptions. Since C is complete and well-
powered, every morphism f admits a (strong epi, mono)-factorization f = m ·e [11, Prop.
4.4.3]; we call m the image of f . The category Pred(C) of predicates over C has as objects
all monics (predicates) P ↣ X from C, and as morphisms (p : P ↣ X) → (q : Q ↣ Y)
all pairs (f : X → Y, f |P : P → Q) such that q · f |P = f · p (so f |P is uniquely determined
by f). (Co)products in Pred(C) are lifted from C. The fiber PredX(C) is the subcategory
of all monics P ↣ X for fixed X and morphisms (idX ,−). It is is preordered by p ≤ q
if p factors through q; identifying p, q if p ≤ q and q ≤ p, we regard PredX(C) as a poset.
Since C is complete and well-powered, PredX(C) is a complete lattice; we write

∧
for

meets (i.e. pullbacks) and
∨

for joins. We will also write f ⋆[P] for the inverse image of
a predicate p : P ↣ X under f : Y → X, i.e. the pullback of p along f . The direct image
f ⋆[Q] of q : Q ↣ Y under f : Y → X is the image of the composite f · p : Q → X. This
yields an adjunction between PredX(C) and PredY (C), i.e. Q ≤ f ⋆[P] iff f ⋆[Q] ≤ P.

A predicate lifting of an endofunctor Σ : C → C is an endofunctor Σ : Pred(C) →
Pred(C) making the left-hand diagram below commute; similarly, a predicate lifting of
a mixed-variance bifunctor B : Cop × C → C is a bifunctor B : Pred(C)op × Pred(C) →
Pred(C) making the right-hand diagram below commute. Here |−| is the forgetful functor
sending p : P ↣ X to X.

Pred(C) Pred(C)

C C

|−|

Σ

|−|

Σ

Pred(C)op × Pred(C) Pred(C)

Cop × C C

|−|op×|−|

B

|−|

B

(14)

We denote by Σ both the action on predicates and on the corresponding objects in C, i.e.
Σ(p : P ↣ X) : ΣP ↣ ΣX.

Every endofunctor Σ on C admits a canonical predicate lifting Σ mapping p : P ↣ X
to the image Σp : ΣP ↣ ΣX of Σp : ΣP → ΣX [36]. Note that Σp = Σp if Σ preserves
monos. In the remainder we will only consider canonical liftings of endofunctors.

Proposition 7. If Σ preserves strong epis, then Σ
⋆
= Σ⋆.

The canonical predicate liftings for mixed-variance bifunctors are slightly more
complex. Similarly to the case of relation liftings of such functors developed in recent
work [62], their construction involves suitable pullbacks.

Logical Predicates in Higher-Order Mathematical Operational Semantics 53

Proposition 8. Every bifunctor B : Cop × C → C admits a canonical predicate lifting
B : Pred(C)op × Pred(C) → Pred(C) sending (p : P ↣ X, q : Q ↣ Y) to the predicate
mP,Q : B(P, Q) ↣ B(X,Y), the image of the morphism rP,Q given by the pullback below:

TP,Q B(P, Q)

B(P, Q)

B(X,Y) B(P,Y)

eP,Q

mP,Q

sP,Q

rP,Q B(id,q)

B(p,id)

(15)

If B preserves monos in the covariant argument, then B(id, q) is monic and, since monos
are pullback-stable, B(P, Q) is simply the predicate rP,Q : TP,Q ↣ B(X,Y).

Example 9. The bifunctors B and D of (3) and (4) have canonical predicate liftings

Bτ(P, Q) = Qτ + Dτ(P, Q) where (16)

Dunit(P, Q) = 1, Dτ1_τ2 (P, Q) = { f : Xτ1 → Yτ2 | ∀x ∈ Pτ1 . f (x) ∈ Qτ2 } ⊆ Y
Xτ1
τ2 . (17)

Predicate liftings allow us to generalize coalgebraic invariants [36, §6.2], viz. predicates
on the state space of a coalgebra that are closed under the coalgebra structure in a suitable
sense, from endofunctors to mixed-variance bifunctors:

Notation 10. For the remainder of the paper, we fix a mixed-variance bifunctor B : Cop×

C → C and a predicate lifting B : Pred(C)op × Pred(C) → Pred(C).

Definition 11 (Coalgebraic invariant). Let c : Y → B(X,Y) be a B(X,−)-coalgebra.
Given predicates S ↣ X, P ↣ Y , we say that P is an S -relative (B-)invariant (for c) if
P ≤ c⋆[B(S , P)], equivalently, c⋆[P] ≤ B(S , P). (Mention of B is usually omitted.)

Coalgebraic invariants will feature centrally in our notion of logical predicate.

3.2 Logical Predicates via Lifted Bifunctors

As a reasoning device, the method of logical predicates (which are unary logical relations)
typically applies to the following scenario: One has an operational semantics on an
inductively defined set µΣ of Σ-terms and a target predicate P ↣ µΣ to be proved, in
the sense that one wants to show P = µΣ. Logical predicates come into play when a
direct proof of P = µΣ by structural induction is not possible. The classical example of
such a predicate is strong normalization [23,59]. The idea is to strengthen P, obtaining a
predicate featuring a certain “logical” structure that does allow for a proof by induction.
We now develop this scenario in our abstract bifunctorial setting.

Definition 12 (Coalgebraic logical predicate). Suppose that c : X → B(X, X) is a B(X,−)
coalgebra with state space X. A predicate P ↣ X is logical (for c) if it is a P-relative
B-invariant (as per Def. 11), i.e. P ≤ c⋆[B(P, P)], equivalently, c⋆[P] ≤ B(P, P).

In applications, c is the operational model γ : µΣ → B(µΣ, µΣ) of a higher-order lan-
guage, or some coalgebra derived from it. The self-referential nature of logical predicates
(as relative to themselves) is meant to cater for the property that “inputs in P are mapped
to outputs in P”. The following example from xTCL illustrates this:

54 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

Example 13. For B given by (3) and its canonical lifting B, a predicate P ↣ Tr is
logical for the operational model γ : Tr → B(Tr,Tr) from (5) if γ⋆[P] ≤ B(P, P), that is,

(γunit)⋆[Punit] ≤ Punit + 1,
∀τ1, τ2. (γτ1_τ2)⋆[Pτ1_τ2] ≤ Pτ1_τ2 + { f : Trτ1 → Trτ2 | ∀s ∈ Pτ1 . f (s) ∈ Pτ2 },

using the description of B from Example 9. More explicitly, this means that

– if s ∈ Pτ and s → t then t ∈ Pτ;
– if s ∈ Pτ1_τ2 and s t

−→ u, then t ∈ Pτ1 implies u ∈ Pτ2 .

As we can see in the second clause, function terms that satisfy P produce outputs that
satisfy P on all inputs that satisfy P. This is the key property of any logical predicate.

Defining a suitable logical predicate (or relation) is the centerpiece of various sophis-
ticated arguments in higher-order settings. One standard application of logical predicates
are proofs of strong normalization, which we now illustrate in the case of xTCL. For the
operational model γ : Tr → B(Tr,Tr) and terms r, s, t of compatible type, put

– s ⇒ t if s = s0 → s1 → · · · → sn = t for some n ≥ 0 and terms s0, . . . , sn;
– s

t
=⇒ r if s ⇒ s′ and s′ t

−→ r for some (unique) s′;

– ⇓(s) if s ⇒ s′ and γ(s′) ∈ D(Tr,Tr) for some (unique) s′.

Coalgebraically, this associates a weak operational model γ̃ : Tr → PB(Tr,Tr) to γ, where
γ̃(t) = {t′ | t ⇒ t′} ∪ {γ(t′) | t ⇒ t′, γ(t′) ∈ D(Tr,Tr)}.

Strong normalization of xTCL asserts that ⇓ = Tr: every term eventually reduces
to a function or explicitly terminates. We now devise three different logical predicates
on Tr, each of which provides a proof of that property. The idea is to refine the target
predicate ⇓ ↣ Tr to a logical predicate, for which showing that it is totally true will be
facilitated by its invariance w.r.t. a corresponding coalgebra structure. Our first example
will be based on the following notion of refinement:

Definition 14 (Locally maximal logical refinement). Let c : X → B(X, X) be a coalgebra
and let P ↣ X be a predicate. A predicate □P ↣ X is a locally maximal logical
refinement of P if (i) □P ≤ P, (ii) □P is logical (i.e. a □P-relative B-invariant), and (iii)
for every predicate Q ≤ P that is a □P-relative B-invariant, one has Q ≤ □P.

Example 15. We define the predicate □⇓ ↣ Tr, i.e. a family of subsets □⇓τ ⊆ Trτ
(τ ∈ Ty), by induction on the structure of the type τ: we put □⇓unit = ⇓unit, and we take
□⇓τ1_τ2

to be the greatest subset of Trτ1_τ2 satisfying

□⇓τ1_τ2
(t) =⇒ ⇓τ1_τ2

(t) ∧

□⇓τ1_τ2
(t′) if t → t′

□⇓τ1
(s) =⇒ □⇓τ2

(t′) if t s
−→ t′

From this definition it is not difficult to verify by induction on the type that

□⇓ is a locally maximal logical refinement of ⇓. (18)

Logical Predicates in Higher-Order Mathematical Operational Semantics 55

Our goal is to show that □⇓ is a subalgebra of µΣ, equivalently Σ(□⇓) ≤ ι⋆[□⇓], which
then implies □⇓ = Tr and hence ⇓ = Tr by structural induction. Taking the partition
Σ = Ξ + ∆ where Ξ is the part of the signature for application and ∆ is the part of the
signature for the remaining term constructors, we separately prove Ξ(□⇓) ≤ ι⋆[□⇓] and
∆(□⇓) ≤ ι⋆[□⇓]. It suffices to come up with □⇓-relative invariants A,C ⊆ ⇓ such that
Ξ(□⇓) ≤ ι⋆[A] and ∆(□⇓) ≤ ι⋆[C]. Then by (18) we can conclude A,C ⊆ □⇓, so

Ξ(□⇓) ≤ ι⋆[A] ≤ ι⋆[□⇓] and ∆(□⇓) ≤ ι⋆[C] ≤ ι⋆[□⇓].

Let us record for further reference what it means for Q ↣ Tr to be a □⇓-relative invariant
contained in ⇓. Given t ∈ Qτ, the following must hold:

(1) ⇓τ t, (2) if t → t′ then Qτ(t′), (3) if t : τ1 _ τ2 and t s
−→ t′ and □⇓τ1

s then Qτ2 (t′).

We first put A = □⇓ ∨ (ι · inl)⋆[Ξ□⇓], and prove (1)–(3) for Q = A. So let t ∈ Aτ; we
distinguish cases on the disjunction defining A. If □⇓τ t, then (1)–(3) follow easily by
definition. Otherwise, we have t = p q such that □⇓τ1_τ2

p and □⇓τ1
q.

(1) By definition, □⇓τ1_τ2
p and □⇓τ1

q entail that p
q
=⇒ p′ for a (unique) term p′, and

that □⇓τ2
p′, hence ⇓τ2 p′. Since p q ⇒ p′, it follows that ⇓τ2 p q.

(2) We distinguish cases over the semantic rules for application:
(a) p q → p′ q where p → p′. Then □⇓τ1_τ2

p′, hence Aτ2 (p′ q).
(b) p q → p′ where p q

−→ p′. Since □⇓τ1_τ2
p and □⇓τ1

q, we have □⇓τ2
p′, so Aτ2 (p′).

(3) t does not have labelled transitions, hence this case is void.
Next, we show that C = □⇓∨ (ι · inr)⋆[∆(□⇓)] is a □⇓-relative invariant. We consider

two representative cases; the remaining cases are handled similarly.

– Case Iτ : τ _ τ. Since I terminates immediately, property (1) holds by definition of ⇓
and (2) holds vacuously. For (3), if I s

−→ t′ and □⇓τs, then t′ = s ∈ □⇓τ ⊆ Cτ.
– Case S ′′

τ1,τ2,τ3
(t, s) : τ1 _ τ3 with □⇓τ1_τ2_τ3

t and □⇓τ1_τ2
s. Again, (1) holds be-

cause S ′′(t, s) terminates immediately, and (2) holds vacuously. For (3), suppose
that □⇓τ1

r; we have to show (t r) (s r) ∈ Cτ3 . This follows from the inequality
Ξ(□⇓) ≤ ι⋆[□⇓] shown above, because □⇓τ2_τ3

(t r), □⇓τ2
(s r) by definition of □⇓.

Note that the definition of □⇓ uses both induction (over the structure of types) and
coinduction (by taking at every type the greatest predicate satisfying some property).

Example 16. We give an alternative logical predicate defined purely inductively. It
resembles Plotkin’s original concept of logical relation [55]. We define

⇛

↣ Tr by

⇛

unit (t) ⇐⇒ ⇓unit (t),

⇛

τ1_τ2
(t) ⇐⇒ ⇓τ1_τ2

t ∧ (∀s : τ1. t
s
=⇒ t′ ∧

⇛

τ1
(s) =⇒

⇛

τ2
(t′)).

(19)

It is evidently logical for the restriction γ̃̃ : Tr → PD(Tr,Tr) of the weak operational
model to labelled transitions, given by γ̃̃(t) := {γ(t′)} if t ⇒ t′ and γ(t′) ∈ D(Tr,Tr), and
γ̃̃(t) := ∅ otherwise. A proof of strong normalization using

⇛

is given in [25, App. A].

56 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

Example 17. A more popular (cf. [57,58]) and subtly different variant of

⇛

for proving
strong normalization goes back to Tait [59]. We define SN ↣ Tr by

SNunit (t) ⇐⇒ ⇓unit (t)
SNτ1_τ2 (t) ⇐⇒ ⇓τ1_τ2

(t) ∧ (∀s : τ1.SNτ1 (s) =⇒ SNτ2 (t s))
(20)

Unlike

⇛

, it is not immediate that SN is logical for γ̃̃ (see [25, App. A]). For a proof of
strong normalization based on SN in the context of the λ-calculus, see [57, Sec. 2].

While all three logical predicates □⇓,

⇛

, SN are eligible for proving strong normal-
ization, with proofs of similar length and complexity, the predicate □⇓ arguably has the
most generic flavour, as it depends neither on a system-specific notion of weak transition
(which appears in the definition of

⇛

) nor on the syntax of the language (such as the
application operator appearing in the definition of SN). Thus, our abstract categorical
approach to logical predicates will be based on a generalization of □⇓.

3.3 Constructing Logical Predicates

Our abstract coalgebraic notion of logical predicate (Definition 12) is parametric in the
bifunctor B and its lifting B and decoupled from any specific syntax. Next, we develop a
systematic construction that promotes a predicate P to a logical predicate, specifically to
a locally maximal refinement of P, generalizing □⇓ in Example 15. The construction
proceeds in two stages. First, we fix the contravariant argument of the lifted bifunctor B
and construct a greatest coalgebraic invariant w.r.t. the resulting endofunctor [36, §6.3]:

Definition 18 (Relative henceforth). Let c : Y → B(X,Y) and let S ↣ X be a predicate.
The (S -)relative henceforth modality sends P ↣ Y to □B,c(S , P) ↣ Y , which is the
supremum in PredY (C) of all S -relative invariants contained in P:

□B,c(S , P) =
∨

{Q ≤ P | Q is an S -relative B-invariant for c}. (21)

We will omit the superscripts B, c when they are irrelevant or clear from the context.

Proposition 19. The predicate □(S , P) is the greatest S -relative B-invariant contained
in P. Moreover, the map (S , P) 7→ □(S , P) is antitone in S and monotone in P.

Proof. The first statement follows from the Knaster-Tarski theorem since □(S , P) is the
greatest fixed point □(S , P) = νG. P ∧ c⋆[B(S ,G)] in the complete lattice PredY (C).
The second statement holds due to the mixed variance of the predicate lifting B. □

The relative henceforth modality only yields relative invariants. To obtain a logical
predicate, i.e. an invariant relative to itself, we move to the second stage of our construc-
tion, which is based on ultrametric semantics, see e.g. [9]. Let us briefly recall some
terminology. A metric space (X, d : X × X → R) is 1-bounded if d(x, y) ≤ 1 for all
x, y, an ultrametric space if d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z, and complete if
every Cauchy sequence converges. A map f : (X, d) → (X′, d′) between metric spaces
is nonexpansive if d′(f (x), f (y)) ≤ d(x, y) for all x, y, and contractive if there exists

Logical Predicates in Higher-Order Mathematical Operational Semantics 57

c ∈ [0, 1), called a contraction factor, such that d′(f (x), f (y)) ≤ c · d(x, y) for all x, y. A
family of maps (fi : X → X′)i∈I is uniformly contractive if there exists c ∈ [0, 1) such that
each fi is contractive with factor c. By Banach’s fixed point theorem, every contractive
endomap f : X → X on a non-empty complete metric space has a unique fixed point.

Definition 20. The category C is predicate-contractive if
(1) every PredX(C) carries the structure of a complete 1-bounded ultrametric space;
(2) for every f : X → Y in C, the map f ⋆[−] : PredY (C) → PredX(C) is non-expansive;
(3) for any two co-well-ordered families (Pi ↣ X)i∈I and (Qi ↣ X)i∈I of predicates,

d
(∧

i∈I Pi,
∧

i∈I Qi) ≤ supi∈I d(Pi, Qi).

Here (Pi ↣ X)i∈I is co-well-ordered if each nonempty subfamily has a greatest element.

Example 21. The category C = SetTy is predicate-contractive when equipped with the
ultrametric on PredX(C) given by d(P, Q) = 2−n for P, Q ↣ X, where n = inf{♯τ |

Pτ , Qτ} and ♯τ is the size of τ, defined by ♯unit = 1 and ♯(τ1 _ τ2) = ♯τ1 + ♯τ2. By
convention, inf ∅ = ∞ and 2−∞ = 0. To see predicate-contractivity, first note that a
function F : PredY (C) → PredX(C) is non-expansive iff

inf{♯τ | (F P)τ , (F Q)τ} ≥ inf{♯τ | Pτ , Qτ} for all P, Q ↣ Y ,

and contractive (necessarily with factor at most 1/2) iff that inequality holds strictly.
This immediately implies clause (2) of Definition 20: inverse images in SetTy are

computed pointwise, and fτ⋆[Pτ] , fτ⋆[Qτ] implies Pτ , Qτ for f : X → Y and
P, Q ↣ Y . Similarly, since intersections are computed pointwise, clause (3) amounts to

inf
{
♯τ |

⋂
i∈I

Pi
τ ,

⋂
i∈I

Qi
τ

}
≥ inf{♯τ | ∃i ∈ I : Pi

τ , Qi
τ},

which is clearly true, for if
⋂

i∈I Pi
τ ,

⋂
i∈I Qi

τ then Pi
τ , Qi

τ for some i ∈ I.

Definition 22 (Contractive lifting). Suppose that C is predicate-contractive. The predi-
cate lifting B : Pred(C)op × Pred(C) → Pred(C) is contractive if for every S ↣ X the
map B(S ,−) is non-expansive, and the family (B(−, P))P↣X is uniformly contractive.

Proposition 23. Let B be contractive and c : X → B(X, X). For every S ↣ X, the map
□B,c(S ,−) is non-expansive, and the family (□B,c(−, P))P↣X is uniformly contractive.

Contractive liftings allow us to augment every predicate P to a logical predicate:

Definition 24 (Henceforth). Let B be contractive and c : X → B(X, X). For each predicate
P ↣ X we define □B,cP ↣ X (where we usually omit the superscripts) to be the unique
fixed point of the contractive endomap

S 7→ □B,c(S , P) on PredX(C). (22)

Theorem 25. The predicate □P is the unique locally maximal logical refinement of P.

Proof. By (22), □P is the unique predicate satisfying □P = □(□P, P). By (21), this
equality says that □P is the greatest □P-relative invariant contained in P, as needed. □

58 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

Example 26. Let B be the behaviour bifunctor on SetTy given by (3). Its canonical
lifting B (Example 9) is contractive because Bτ1_τ2 (P, Q) depends only on Pτ1 , Qτ2 ,
Qτ1_τ2 ; in other words, B decreases the size of types in the contravariant argument and
does not increase it in the covariant argument. Given a coalgebra c : X → B(X, X) and
P ↣ X, the fixed point □B,cP is given by the Ty-indexed family of greatest fixed points

□Punit = νG. Punit ∧ cunit
⋆[G + 1],

□Pτ1_τ2 = νG. Pτ1_τ2 ∧ cτ1_τ2
⋆[G + { f : Trτ1 → Trτ2 | ∀s ∈ □Pτ1 . f (s) ∈ □Pτ2 }].

This follows from Theorem 25 since the above predicate is clearly a locally maximal
refinement of P. By instantiating c to the operational model γ : µΣ → B(µΣ, µΣ) of
xTCL and taking P = ⇓, we recover the definition of □⇓ in Example 15.

Example 27. The logical predicate

⇛

↣ Tr of Example 16 is precisely □⇓ for PD
w.r.t. its canonical lifting and the coalgebra γ̃̃ : Tr → PD(Tr,Tr). More generally, for a
coalgebra c : X → PD(X, X), the predicate □P is inductively defined as follows:

□Punit = Punit,

□Pτ1_τ2 = Pτ1_τ2 ∧ cτ1_τ2
⋆[{F ⊆ X

Xτ1
τ2 | ∀ f ∈ F. s ∈ □Pτ1 =⇒ f (s) ∈ □Pτ2 }].

Remark 28. The construction of logical predicates for typed languages is enabled by the
“type-decreasing” nature of the associated behaviour bifunctors. In untyped settings, e.g.
for B(X,Y) = Y + YX on Set modelling untyped combinatory logic [24], the canonical
lifting B is not contractive, hence the fixed point □P in general fails to exist.

Remark 29. The forgetful functor |−| : Pred(C) → C forms a complete lattice fibra-
tion [35], equivalently a topological functor [2], and all notions and results of the present
subsection extend to that level of generality. We leave the details for future work, as our
reasoning techniques found in the upcoming sections are tailored to logical predicates.

We are now in a position to state precisely what a proof via logical predicates is
in our framework. Given the operational model γ : µΣ → B(µΣ, µΣ) of a higher-order
language, a predicate lifting B, and a target predicate P ↣ µΣ, a proof of P via logical
predicates is a proof that □P forms a subalgebra of the initial algebra µΣ, which means

Σ(□P) ≤ ι⋆[□P], equivalently ι⋆[Σ(□P)] ≤ □P. (23)

Then □P = µΣ by structural induction, whence P = µΣ because □P ≤ P.
Up to this point, we have streamlined and formalized coalgebraic logical predicates

as a certain abstract construction on predicates (Definition 24) and presented proofs
by coalgebraic logical predicates as standard structural induction on said construction.
This presentation is indeed that of an abstract method: the various parts of the problem
setting, namely the syntax, the behaviour and its predicate lifting, as well as the opera-
tional semantics, are all parameters. In the next section, we exploit the parametric and
generic nature of this method in two main ways. First, we present up-to techniques that
simplify the proof goal (23) as much as possible. Second, we look to instantiate our
method to problems on classes of higher-order languages, as opposed to reasoning about
operational models of individual languages such as xTCL or the λ-calculus.

Logical Predicates in Higher-Order Mathematical Operational Semantics 59

4 Logical Predicates and Higher-Order Abstract GSOS

As indicated before, substantial parts of the proof of strong normalization in Example 15
look generic. Specifically, the properties (2) and (3) established for Q = A and Q = C
are independent of the choice of predicate P = ⇓ in □P. Moreover, these steps are either
obvious or follow immediately from the operational rules of xTCL: the predicates A
and C being invariants can be attributed to the fact that except for terms of the form
S ′′(−,−), all terms evolve either to a variable or to some flat term such as p′ q. The core
of the proof, which is tailored to the choice of P, lies in proving property (1).

As it turns out, for a class of higher-order GSOS laws that we call relatively flat
higher-order GSOS laws, conditions (2) and (3) are automatic. This insight leads us to a
powerful up-to technique that simplifies proofs via logical predicates.

4.1 Relatively Flat Higher-Order GSOS Laws

The following definition abstracts the restricted nature of the rules of xTCL to the level
of higher-order GSOS laws. For simplicity, we confine ourselves to 0-pointed laws,
however all the results of this subsection easily extend to the V-pointed case.

Definition 30. Let Σ : C → C be a syntax functor of the form Σ =
∐

j∈J Σ j, where (J,≺)
is a non-empty well-founded strict partial order, and put Σ≺k =

∐
j≺k Σ j. A relatively flat

(0-pointed) higher-order GSOS law of Σ over B is a J-indexed family of morphisms

ϱ
j
X,Y : Σ j(X × B(X,Y)) → B(X, Σ⋆

≺ j(X + Y) + Σ jΣ
⋆
≺ j(X + Y)) (24)

dinatural in X ∈ C and natural in Y ∈ C.

We put e j,X = [in♯
≺ j, ι · in j · Σ j(in

♯
≺ j)] : Σ⋆

≺ jX + Σ jΣ
⋆
≺ jX → Σ⋆X where in≺ j : Σ≺ j → Σ

and in j : Σ j → Σ are the coproduct injections, with free extensions in♯
≺ j : Σ

⋆
≺ j → Σ⋆ and

in♯
j : Σ

⋆
j → Σ⋆. Every relatively flat higher-order GSOS law (24) determines an ordinary

higher-order GSOS law of Σ over B with components

ϱX,Y =
∐

j∈J
Σ j(X × B(X,Y))

∐
j∈J ϱ

j
X,Y

−−−−−−→
∐

j∈J
B(X, Σ⋆

≺ j(X + Y) + Σ jΣ
⋆
≺ j(X + Y))

[B(X,e j,X+Y)] j∈J
−−−−−−−−−−−→ B(X, Σ⋆(X + Y)).

When we interpret a higher-order GSOS law as a set of operational rules, relative flatness
means that the operations of the language can be ranked in a way that every term
f(−, · · · ,−) with f of rank j evolves into a term that uses only operations of strictly lower
rank, except possibly its head symbol which may have the same rank j.

Example 31. xTCL is relatively flat: put J = {0 ≺ 1}, let Σ0 contain application, and let
Σ1 contain all other operation symbols. This is immediate from the rules in Figure 1.

Definition 32. Suppose that each Σ j preserves strong epimorphisms. A predicate lifting
of (24) is a relatively flat 0-pointed higher-order GSOS law (ϱ j) j∈J of Σ =

∐
j Σ j over B

where for every P ↣ X and Q ↣ Y the Pred(C)-morphism ϱ
j
P,Q is carried by ϱ

j
X,Y .

60 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

Remark 33. (1) The condition on Σ j ensures Σ j
⋆
= Σ⋆

j (Proposition 7), so that the first

component of ϱ j
P,Q has type Σ j(X × B(X,Y)) → B(X, Σ⋆

≺ j(X + Y) + Σ jΣ
⋆
≺ j(X + Y)).

(2) Liftings are unique if they exist: since ϱ
j
P,Q is a Pred(C)-morphism, it is determined

by its first component ϱ j
X,Y . Moreover, the (di)naturality of ϱ j follows from that of ϱ j.

(3) For the canonical lifting B, a lifting (ϱ j) j∈J of (ϱ j) j∈J always exists [25, App. D].

The following theorem establishes a sound up-to technique for logical predicates.
It states that for operational models of relatively flat laws, the proof goal (23) can be
established by checking a substantially relaxed property.

Theorem 34 (Induction up to □). Let γ : µΣ → B(µΣ, µΣ) be the operational model
of a relatively flat 0-pointed higher-order GSOS law that admits a predicate lifting. Then
for every predicate P ↣ µΣ and every locally maximal logical refinement □γ,BP,

Σ(□γ,BP) ≤ ι⋆[P] implies Σ(□γ,BP) ≤ ι⋆[□γ,BP] (hence P = µΣ).

We stress that the theorem applies to any refinement □γ,BP and does not assume a
specific construction (e.g. that of Section 3.3). The up-to technique facilitates proofs via
logical predicates quite dramatically. For illustration, we revisit strong normalization:

Example 35. We give an alternative proof of strong normalization of xTCL (cf. Exam-
ple 15) via induction up to □. Hence it suffices to prove

Σ(□⇓) ≤ ι⋆[⇓],

which states that a term is terminating if all of its subterms are in the logical predicate
□⇓. This is clear for terms that are not applications, since they immediately terminate
(cf. Figure 1). Now consider an application p q such that □τ1_τ2⇓(p) and □τ1⇓(q). Since

□⇓ is a logical predicate contained in ⇓, this entails that p
q
=⇒ p′ for a (unique) term p′,

and that □⇓τ2
p′, hence ⇓τ2 p′. Since p q ⇒ p′, it follows that ⇓τ2 p q.

Analogous reasoning shows that xTCL is strongly normalizing under the call-
by-value and the maximally nondeterministic evaluation strategy (Remark 5). In the
latter case, strong normalization means that every term must eventually terminate,
independently of the order of evaluation.

The reader should compare the above compact argument to the laborious original
proof given in Example 15. Our up-to technique can be seen to precisely isolate the
non-trivial core of the proof, while providing its generic parts for free. For a further
application – type safety of the simply typed λ-calculus – see Section 4.2.

4.2 λ-Laws

We proceed to explain how our theory of logical predicates applies to languages with
variables and binders. We highlight the core ideas and technical challenges in the case of
the λ-calculus, and briefly sketch their categorical generalization; a full exposition can

Logical Predicates in Higher-Order Mathematical Operational Semantics 61

be found in [25, App. E]. Let STLC be the simply typed call-by-name λ-calculus with
the set Ty of types given by (2) and operational rules

t −→ t′

t s → t′ s (λx : τ1. t) s → t[s/x]
(25)

where s, t, t′ range over λ-terms of appropriate type, and [−/−] denotes capture-avoiding
substitution. To model STLC in higher-order abstract GSOS, we follow ideas by
Fiore [18]. Our base category C is the presheaf category (SetF/Ty)Ty where F denotes
the category of finite cardinals and functions, and the set Ty is regarded as a discrete
category. An object Γ : n → Ty of F/Ty is a typed context, associating to each variable
x ∈ n a type; we put |Γ| := n . A presheaf X ∈ (SetF/Ty)Ty associates to each context Γ
and each type τ a set Xτ(Γ) whose elements we think of as terms of type τ in context Γ.

The syntax of STLC is captured by the functor Σ : (SetF/Ty)Ty → (SetF/Ty)Ty where

ΣunitX = Vunit + K1 +
∐

τ∈Ty
Xτ_unit × Xτ,

Στ1_τ2 X = Vτ1_τ2 + δ
τ1
τ2

X +
∐

τ∈Ty
Xτ_τ1_τ2 × Xτ.

(26)

Here K1 ∈ SetF/Ty is the constant presheaf on 1, V is given by Vτ(Γ) = {x ∈ |Γ| | Γ(x) =
τ}, and δ by (δτ1

τ2 X)(Γ) = Xτ2 (Γ + τ̌1) with (−) + τ̌1 denoting context extension by a
variable of type τ1. Informally, K1, V and δ represent the constant e : unit, variables, and
λ-abstraction, respectively. The initial algebra for Σ is the presheaf Λ of λ-terms, i.e.
Λτ(Γ) is the set of λ-terms (modulo α-equivalence) of type τ in context Γ [18].

The behaviour bifunctor Bλ : ((SetF/Ty)Ty)op × (SetF/Ty)Ty → (SetF/Ty)Ty for STLC
has two separate components: it is given by a product

Bλ(X,Y) = ⟨⟨X,Y⟩⟩ × B(X,Y) (27)

where ⟨⟨X,Y⟩⟩τ(Γ) = SetF/Ty
(∏

x∈|Γ|
XΓ(x),Yτ

)
,

B(X,Y) = (K1 + Y + D(X,Y)),

Dunit(X,Y) = K1 and Dτ1_τ2 (X,Y) = Y
Xτ1
τ2 ,

and Y
Xτ1
τ2 is an exponential object in SetF/Ty. The bifunctor ⟨⟨−,−⟩⟩ models an abstract

substitution structure; for instance, every λ-term t ∈ Λτ(Γ) induces a natural transforma-
tion

∏
x∈|Γ| ΛΓ(x) → Λτ in ⟨⟨Λ, Λ⟩⟩τ(Γ) mapping a tuple (t1, . . . , t|Γ|) to the term obtained

by simultaneous substitution of the terms ti for the variables of t. The summands of the
bifunctor B abstract from the possible operational behaviour of λ-terms: a term may
explicitly terminate, reduce, get stuck (e.g. if it is a variable), or act as a function.

The operational rules (25) of STLC can be encoded into a V-pointed higher-order
GSOS law of Σ over Bλ, similar to the untyped λ-calculus treated in earlier work [24].
The operational model ⟨ϕ, γ⟩ : Λ → ⟨⟨Λ, Λ⟩⟩×B(Λ, Λ) is the coalgebra whose components
ϕ, γ describe the substitution structure and the operational behaviour of λ-terms.

At this point, a key technical issue can be observed: the canonical predicate lifting
⟨⟨−,−⟩⟩ is not contractive. Indeed, given P ↣ X, Q ↣ Y , the predicate ⟨⟨P, Q⟩⟩τ consists
of all natural transformations

∏
x∈|Γ| XΓ(x) → Yτ that restrict to

∏
x∈|Γ| PΓ(x) → Qτ, and

62 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

this expression depends on PΓ(x) where the type Γ(x) may be of higher complexity than τ.
In particular, we conclude that Bλ is not contractive. In contrast, the canonical lifting
B is contractive and hence □γ,BP exists for every P ↣ Λ (Definition 24). However,
it is well-known that logical predicates do not do the trick for inductive proofs in the
λ-calculus, see e.g. [57, p. 9] and [49, p. 150]; rather, one needs to prove the open
extension of the logical predicate, which is the larger predicate

□· γ,BP = ϕ⋆[⟨⟨□γ,BP,□γ,BP⟩⟩].

The standard proof method is then to show □· γ,BP = Λ directly by structural induction.
However, this can be greatly simplified by the following up-to-principle, which works
with the original predicate □γ,BP and forms a counterpart of Theorem 34 for the λ-
calculus:

Theorem 36 (Induction up to □·). Let P ↣ Λ be a predicate. Then

Σ(□γ,B) ≤ ι⋆[P] implies Σ(□· γ,BP) ≤ ι⋆[□· γ,BP] (hence P = Λ).

Remark 37. Concretely, the theorem states that to prove P = Λ, it suffices to prove that
(1) variables satisfy P, (2) the unit expression e : unit satisfies P, (3) for all application
terms p q such that □τ1_τ2 P(Γ)(p) and □τ1 P(Γ)(q), we have Pτ2 (Γ)(p q), and (4) for all
λ-abstractions λx : τ1. t such that t ∈ □τ2 P(Γ, x), we have Pτ1_τ2 (Γ)(λx : τ1. t).

Example 38. We prove type safety for STLC via induction up to □· . Thus consider the
predicate Safe ↣ Λ that is constantly true on open terms and given by

t ∈ Safeτ(∅) ⇐⇒
(
∀e. t ⇒ e =⇒ (e is not an application) ∨ ∃r. e → r

)
,

on closed terms. We only need to check the conditions (1)–(4) of Remark 37. Con-
ditions (1), (2), (4) are clear since variables are open terms and the term e : unit and
λ-abstractions do not reduce. The only interesting clause is (3) for the empty context.
Thus let p q be a closed application term with p ∈ □Safeτ1_τ2 (∅) and q ∈ □Safeτ1 (∅);
we need to show p q ∈ Safeτ2 (∅). We proceed by case distinction on p q ⇒ e:
(a) p ⇒ p′ and e = p′ q. Then p′ ∈ □Safeτ1_τ2 (∅) by invariance, in particular p′ is
safe, so p′ is either not an application or reduces. In the former case, p′ is necessarily a
λ-abstraction since it is closed and not of type unit. Thus, in both cases, e reduces.
(b) p ⇒ λx.p′ and p′[q/x] ⇒ e. Since □Safe is a logical predicate, from p ∈

□Safeτ1_τ2 (∅) and q ∈ □τ1 Safe(∅) we can deduce p′[q/x] ∈ □τ2 Safe(∅), whence
e ∈ □τ2 Safe(∅). In particular, e is safe, which implies that e is either not an application
or reduces.

As an exercise, we invite the reader to prove strong normalization of STLC via
induction up to □· . The reader should compare these short and simple proofs with more
traditional ones, see e.g. [57].

All the above results and observations for STLC can be generalized and developed
at the level of general higher-order abstract GSOS laws. To this end, we first abstract the
behaviour functor (27) to a functor of the form B(X,Y) = (X � Y) × B′(X,Y), where

Logical Predicates in Higher-Order Mathematical Operational Semantics 63

(−) � (−) is the internal hom-functor of a suitable closed monoidal structure on the
base category C. In the case of STLC, this structure is given by Fiore’s substitution
tensor [18]. Second, we observe that the higher-order GSOS law of STLC is an instance
of a special kind of law that we coin relatively flat λ-laws. The induction-up-to-□·
technique of Theorem 36 then can be shown to hold for operational models of relatively
flat λ-laws. More details can be found in [25, App. E].

5 Strong Normalization for Deterministic Systems, Abstractly

The high level of generality in which the theory of logical predicates is developed above
enables reasoning uniformly about whole families of languages and behaviours. In this
section, we narrow our focus to deterministic systems and establish a general strong
normalization criterion, which can be checked in concrete instances by mere inspection
of the operational rules corresponding to higher-order abstract GSOS laws.

Throughout this section, we fix a 0-pointed higher-order GSOS law ϱ of a signature
endofunctor Σ : C → C over a behaviour bifunctor B : Cop × C → C, where

B(X,Y) = Y + D(X,Y) for some D : Cop × C → C.

For instance, the type functor (3) for xTCL is of that form. The operational model
γ : µΣ → µΣ +D(µΣ, µΣ) has an n-step extension γ(n) : µΣ → µΣ +D(µΣ, µΣ), for each
n ∈ N, where γ(0) is the left coproduct injection and γ(n+1) is the composite

µΣ
γ
−→ µΣ + D(µΣ, µΣ)

γ(n)+id
−−−−−→ µΣ + D(µΣ, µΣ) + D(µΣ, µΣ)

id+∇
−−−→ µΣ + D(µΣ, µΣ).

We regard D(µΣ, µΣ) as a predicate on B(µΣ, µΣ) via the right coproduct injection,
which is monic by extensivity of C, and define the following predicates on µΣ:

⇓n = (γ(n))⋆[D(µΣ, µΣ)] and ⇓=
∨

n
⇓n .

In xTCL, these are the predicates of strong normalization or strong normalization after
at most n steps, resp. Accordingly, we define strong normalization abstractly as follows:

Definition 39. The higher-order GSOS law ϱ is strongly normalizing if ⇓= µΣ.

We next identify two natural conditions on the law ϱ that together ensure strong
normalization. The first roughly asserts that for a term t = f(x1, . . . , xn) whose variables xi

are non-progressing, the term t is either non-progressing or it progresses to a variable.

Definition 40. The higher-order GSOS law ϱ is simple if its components ϱX,Y restrict to
morphisms ϱ0

X,Y as in the diagram below, where η is the unit of the free monad Σ⋆:

Σ(X × D(X,Y)) X + Y + D(X, Σ⋆(X + Y))

Σ(X × (Y + D(X,Y)) Σ⋆(X + Y) + D(X, Σ⋆(X + Y))

ϱ0
X,Y

Σ(id×inr) ηX+Y+id

ϱX,Y

64 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

The second condition asserts that the rules represented by the higher-order GSOS
law remain sound when strong transitions are replaced by weak ones. In the following,
the graph of a morphism f : A → B is the image gra(f) ↣ A× B of ⟨id, f ⟩ : A → A× B.

Definition 41. The higher-order GSOS law ϱ respects weak transitions if for every
n ∈ N, the graph of the composite below is contained in

∨
k gra(γ(k) · ι).

Σ(µΣ)
Σ⟨id,γ(n)⟩
−−−−−−→ Σ(µΣ × B(µΣ, µΣ))

ϱµΣ,µΣ
−−−−→ B(µΣ, Σ⋆(µΣ + µΣ))

B(id,ι̂·Σ⋆∇)
−−−−−−−−→ B(µΣ, µΣ)

Note that the higher-order GSOS law for xTCL is simple and respects weak transitions.
Thus, strong normalization of xTCL is an instance of the following strong normalization
theorem for higher-order abstract GSOS. Concerning its conditions, an ω-directed union
is a colimit of an ω-chain X0 ↣ X1 ↣ X2 ↣ · · · of monics. We say that monos in C are
ω-smooth if any such colimit has monic injections, and moreover for every compatible
cocone of monos, the mediating morphism is monic. This property holds in every locally
finitely presentable category [3, Prop. 1.62], e.g. sets, posets, or presheaves.

Theorem 42 (Strong normalization). Suppose that the following conditions hold:
(1) On top of Assumptions 6, C is countably extensive, and monos are ω-smooth.
(2) Σ preserves ω-directed unions, and D preserves monos in the second component.
(3) ϱ is relatively flat, simple, and respects weak transitions.
(4) ⇓ has a locally maximal logical refinement w.r.t. γ and the canonical lifting B.
Then the higher-order GSOS law ϱ is strongly normalizing.

Recall that condition (4) holds if B is contractive (Theorem 25). The proof uses the
induction-up-to-□ technique and a careful categorical abstraction of Example 35.

6 Conclusion and Future Work

Our work presents the initial steps towards a unifying, efficient theory of logical relations
for higher-order languages based on higher-order abstract GSOS. This theory can be
broadened in various directions. One obvious direction would be to extend our theory
from predicates to relations. Binary logical relations are often utilized as sound (and
sometimes complete) relations w.r.t. contextual equivalence. Additional generalizations
are suggested by the large amount of existing work on logical relations. One important
direction is to generalize the type system to cover, e.g., recursive types, parametric
polymorphism, or dependent types. Supporting recursive types will presumably require
an adaptation of the method of step-indexing [17] to our abstract setting. Another
point of interest is to apply and extend our framework to effectful (e.g. probabilistic)
settings [40,54], including e.g. an effectful version of the criterion of Section 5.

As indicated in Remark 29, large parts of our development in Section 3 can be
reformulated in fibrational terms. This has the potential merit of enabling abstract
reasoning about higher-order programs in metric and differential settings as done in
previous work on fine-grain call-by-value [13,14]. In future work, we aim to develop such
a generalization, and to explore the connection between our weak transition semantics
and the general evaluation semantics used in op. cit.

Logical Predicates in Higher-Order Mathematical Operational Semantics 65

References

1. Abramsky, S.: The lazy λ-calculus. In: Research topics in Functional Programming, pp.
65–117. Addison Wesley (1990)

2. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley (1990),
republished in: Reprints in Theory and Applications of Categories 17 (2006), pp. 1-507,
http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html

3. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Mathematical
Society Lecture Note Series, Cambridge University Press (1994). https://doi.org/10.
1017/CBO9780511600579

4. Aguirre, A., Birkedal, L.: Step-indexed logical relations for countable nondeterminism and
probabilistic choice. In: 50th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL 2023). Proc. ACM Program. Lang., vol. 7. ACM (2023). https://doi.
org/10.1145/3571195

5. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified types. In:
15th European Symposium on Programming (ESOP 2006). LNCS, vol. 3924, pp. 69–83.
Springer (2006). https://doi.org/10.1007/11693024_6

6. Altenkirch, T., Kaposi, A.: Normalisation by evaluation for dependent types. In: 1st Inter-
national Conference on Formal Structures for Computation and Deduction (FSCD 2016).
LIPIcs, vol. 52, pp. 6:1–6:16. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik (2016).
https://doi.org/10.4230/LIPIcs.FSCD.2016.6

7. Appel, A.W., McAllester, D.A.: An indexed model of recursive types for foundational proof-
carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683 (2001). https://doi.
org/10.1145/504709.504712

8. Benton, N., Hur, C.K.: Biorthogonality, step-indexing and compiler correctness. In: 14th ACM
SIGPLAN International Conference on Functional Programming (ICFP 2009). p. 97–108.
ACM (2009). https://doi.org/10.1145/1596550.1596567

9. Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of recursive metric-
space equations. Theoretical Computer Science 411(47), 4102–4122 (2010). https://doi.
org/10.1016/j.tcs.2010.07.010

10. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A. (ed.) 18th
International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS 2015). LNCS, vol. 9034, pp. 279–294. Springer (2015). https://doi.org/10.
1007/978-3-662-46678-0_18

11. Borceux, F.: Handbook of Categorical Algebra: Volume 1: Basic Category Theory, Ency-
clopedia of Mathematics and Its Applications, vol. 1. Cambridge University Press (1994).
https://doi.org/10.1017/CBO9780511525858

12. Carboni, A., Lack, S., Walters, R.F.C.: Introduction to extensive and distributive categories.
Journal of Pure and Applied Algebra 84(2), 145–158 (Feb 1993). https://doi.org/10.
1016/0022-4049(93)90035-R

13. Dagnino, F., Gavazzo, F.: A fibrational tale of operational logical relations. In: 7th International
Conference on Formal Structures for Computation and Deduction (FSCD 2022). LIPIcs,
vol. 228, pp. 3:1–3:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022). https:
//doi.org/10.4230/LIPIcs.FSCD.2022.3

14. Dagnino, F., Gavazzo, F.: A Fibrational Tale of Operational Logical Relations: Pure, Effectful
and Differential. CoRR (2023). https://doi.org/10.48550/arXiv.2303.03271

15. Dal Lago, U., Gavazzo, F.: Differential logical relations, part ii increments and derivatives.
Theor. Comput. Sci. 895(C), 34–47 (2021). https://doi.org/10.1016/j.tcs.2021.09.
027

66 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1145/3571195
https://doi.org/10.1145/3571195
https://doi.org/10.1145/3571195
https://doi.org/10.1145/3571195
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.1016/0022-4049(93)90035-R
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.4230/LIPIcs.FSCD.2022.3
https://doi.org/10.48550/arXiv.2303.03271
https://doi.org/10.48550/arXiv.2303.03271
https://doi.org/10.1016/j.tcs.2021.09.027
https://doi.org/10.1016/j.tcs.2021.09.027
https://doi.org/10.1016/j.tcs.2021.09.027
https://doi.org/10.1016/j.tcs.2021.09.027

16. Dal Lago, U., Gavazzo, F., Levy, P.B.: Effectful applicative bisimilarity: Monads, relators,
and Howe’s method. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2017). pp. 1–12. IEEE Computer Society (2017). https://doi.org/10.1109/LICS.
2017.8005117

17. Dreyer, D., Ahmed, A., Birkedal, L.: Logical step-indexed logical relations. In: 24th Annual
IEEE Symposium on Logic In Computer Science (LICS 2009). pp. 71–80. IEEE Computer
Society (2009). https://doi.org/10.1109/LICS.2009.34

18. Fiore, M.: Semantic analysis of normalisation by evaluation for typed lambda calcu-
lus. Math. Struct. Comput. Sci. 32(8), 1028–1065 (2022). https://doi.org/10.1017/
S0960129522000263

19. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: 14th Annual
IEEE Symposium on Logic in Computer Science (LICS 1999). pp. 193–202. IEEE Computer
Society (1999). https://doi.org/10.1109/LICS.1999.782615

20. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: 16th Annual IEEE Symposium
on Logic in Computer Science (LICS 2001). pp. 93–104. IEEE Computer Society (2001).
https://doi.org/10.1109/LICS.2001.932486

21. Georges, A.L., Guéneau, A., Van Strydonck, T., Timany, A., Trieu, A., Devriese, D., Birkedal,
L.: Cerise: Program verification on a capability machine in the presence of untrusted code. J.
ACM (2023). https://doi.org/10.1145/3623510

22. Giarrusso, P.G., Stefanesco, L., Timany, A., Birkedal, L., Krebbers, R.: Scala step-by-step:
Soundness for dot with step-indexed logical relations in iris. In: 25th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2020). Proc. ACM Program.
Lang., vol. 4. ACM (2020). https://doi.org/10.1145/3408996

23. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and types, vol. 7. Cambridge University Press
(1989)

24. Goncharov, S., Milius, S., Schröder, L., Tsampas, S., Urbat, H.: Towards a higher-order
mathematical operational semantics. In: 50th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL 2023). Proc. ACM Program. Lang., vol. 7. ACM (2023).
https://doi.org/10.1145/3571215

25. Goncharov, S., Santamaria, A., Schröder, L., Tsampas, S., Urbat, H.: Logical predicates in
higher-order mathematical operational semantics (2024), https://arxiv.org/abs/2401.
05872

26. Gordon, A.D.: Bisimilarity as a theory of functional programming. Theor. Comput. Sci.
228(1-2), 5–47 (1999). https://doi.org/10.1016/S0304-3975(98)00353-3

27. Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types.
Math. Struct. Comput. Sci. 18(6), 1169–1217 (2008). https://doi.org/10.1017/
S0960129508007172

28. Hermida, C., Reddy, U.S., Robinson, E.P.: Logical relations and parametricity - A Reynolds
programme for category theory and programming languages. Electron. Notes Theor. Comput.
Sci. 303, 149–180 (2014). https://doi.org/10.1016/j.entcs.2014.02.008

29. Hermida, C.A.: Fibrations, logical predicates and indeterminates. Ph.D. thesis, University of
Edinburgh (1993), https://era.ed.ac.uk/handle/1842/14057

30. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction. Cambridge
University Press, 2 edn. (2008). https://doi.org/10.1017/CBO9780511809835

31. Howe, D.J.: Equality in lazy computation systems. In: 4th Annual Symposium on Logic
in Computer Science (LICS 1989). pp. 198–203. IEEE Computer Society (1989). https:
//doi.org/10.1109/LICS.1989.39174

32. Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Inf.
Comput. 124(2), 103–112 (1996). https://doi.org/10.1006/inco.1996.0008

Logical Predicates in Higher-Order Mathematical Operational Semantics 67

https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1017/S0960129522000263
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1145/3623510
https://doi.org/10.1145/3623510
https://doi.org/10.1145/3408996
https://doi.org/10.1145/3408996
https://doi.org/10.1145/3571215
https://doi.org/10.1145/3571215
https://arxiv.org/abs/2401.05872
https://arxiv.org/abs/2401.05872
https://doi.org/10.1016/S0304-3975(98)00353-3
https://doi.org/10.1016/S0304-3975(98)00353-3
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1017/S0960129508007172
https://doi.org/10.1016/j.entcs.2014.02.008
https://doi.org/10.1016/j.entcs.2014.02.008
https://era.ed.ac.uk/handle/1842/14057
https://doi.org/10.1017/CBO9780511809835
https://doi.org/10.1017/CBO9780511809835
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1109/LICS.1989.39174
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1006/inco.1996.0008

33. Hur, C.K., Dreyer, D.: A Kripke Logical Relation between ML and Assembly. In: 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2023). p. 133–146. ACM (2011). https://doi.org/10.1145/1926385.1926402

34. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The Marriage of Bisimulations and Kripke
Logical Relations. In: 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2012). SIGPLAN Not., vol. 47, p. 59–72. ACM (2012).
https://doi.org/10.1145/2103621.2103666

35. Jacobs, B.: Categorical Logic and Type Theory. No. 141 in Studies in Logic and the Founda-
tions of Mathematics, North Holland (1999)

36. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Observation,
Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge University Press
(2016). https://doi.org/10.1017/CBO9781316823187

37. Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for algebraic effects.
In: 25th Annual IEEE Symposium on Logic in Computer Science (LICS 2010). pp. 209–218.
IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.29

38. Katsumata, S.: A generalisation of pre-logical predicates and its applications. Ph.D. thesis,
University of Edinburgh (2005), http://hdl.handle.net/1842/850

39. Kurz, A., Velebil, J.: Relation lifting, a survey. Journal of Logical and Algebraic Methods
in Programming 85(4), 475–499 (2016). https://doi.org/10.1016/j.jlamp.2015.08.
002

40. Lago, U.D., Gavazzo, F.: Effectful program distancing. In: 49th Annual ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL 2022). Proc. ACM Program.
Lang., vol. 6, pp. 1–30 (2022). https://doi.org/10.1145/3498680

41. Lago, U.D., Gavazzo, F., Yoshimizu, A.: Differential Logical Relations, Part I: The Simply-
Typed Case. In: 46th International Colloquium on Automata, Languages, and Programming
(ICALP 2019). LIPIcs, vol. 132, pp. 111:1–111:14. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.111

42. Levy, P., Power, J., Thielecke, H.: Modelling environments in call-by-value programming
languages. Inf. Comput. 185(2), 182–210 (2003)

43. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Math-
ematics, vol. 5. Springer, 2 edn. (1978), http://link.springer.com/10.1007/
978-1-4757-4721-8

44. Milner, R.: A theory of type polymorphism in programming. Journal of Computer and System
Sciences 17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

45. New, M.S., Bowman, W.J., Ahmed, A.: Fully abstract compilation via universal embedding.
In: 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016).
pp. 103–116. ACM (2016). https://doi.org/10.1145/2951913.2951941

46. O’Hearn, P.W., Riecke, J.G.: Kripke logical relations and PCF. Inf. Comput. 120(1), 107–116
(1995). https://doi.org/10.1006/inco.1995.1103

47. Ong, C.H.L.: The Lazy Lambda Calculus: An Investigation into the Foundations of Functional
Programming. Ph.D. thesis, Imperial College London (1988), http://hdl.handle.net/
10044/1/47211

48. Patrignani, M., Martin, E.M., Devriese, D.: On the semantic expressiveness of recursive types.
In: 48th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2021).
Proc. ACM Program. Lang., vol. 5. ACM (2021). https://doi.org/10.1145/3434302

49. Pierce, B.C.: Types and programming languages. MIT Press (2002)
50. Pitts, A.M.: Reasoning about local variables with operationally-based logical relations. In:

11th Annual IEEE Symposium on Logic in Computer Science (LICS 1996). pp. 152–163.
IEEE Computer Society (1996). https://doi.org/10.1109/LICS.1996.561314

51. Pitts, A.M.: Relational properties of domains. Information and Computation 127(2), 66–90
(1996). https://doi.org/10.1006/inco.1996.0052

68 S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat

https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/2103621.2103666
https://doi.org/10.1145/2103621.2103666
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1109/LICS.2010.29
http://hdl.handle.net/1842/850
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1145/3498680
https://doi.org/10.1145/3498680
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
https://doi.org/10.4230/LIPIcs.ICALP.2019.111
http://link.springer.com/10.1007/978-1-4757-4721-8
http://link.springer.com/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1006/inco.1995.1103
https://doi.org/10.1006/inco.1995.1103
http://hdl.handle.net/10044/1/47211
http://hdl.handle.net/10044/1/47211
https://doi.org/10.1145/3434302
https://doi.org/10.1145/3434302
https://doi.org/10.1109/LICS.1996.561314
https://doi.org/10.1109/LICS.1996.561314
https://doi.org/10.1006/inco.1996.0052
https://doi.org/10.1006/inco.1996.0052

52. Pitts, A.M.: Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science 10(3), 321–359 (2000). https://doi.org/10.1017/
S0960129500003066

53. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that dynamically
create local names, or: What’s new? In: 8th International Symposium on Mathematical
Foundations of Computer Science (MFCS 1993). LNCS, vol. 711, pp. 122–141. Springer
(1993). https://doi.org/10.1007/3-540-57182-5_8

54. Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state. In: Gordon,
A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, pp. 227–274.
Cambridge University Press, New York, NY, USA (1998)

55. Plotkin, G.D.: Lambda-definability and logical relations. Tech. rep., University of Edinburgh
(1973)

56. Sieber, K.: Reasoning about sequential functions via logical relations. In: Fourman, M.P.,
Johnstone, P.T., Pitts, A.M. (eds.) Applications of Categories in Computer Science: Pro-
ceedings of the London Mathematical Society Symposium, Durham 1991. p. 258–269.
London Mathematical Society Lecture Note Series, Cambridge University Press (1992).
https://doi.org/10.1017/CBO9780511525902.015

57. Skorstengaard, L.: An Introduction to Logical Relations (2019). https://doi.org/10.
48550/arXiv.1907.11133

58. Statman, R.: Logical relations and the typed lambda-calculus. Information and Control 65(2),
85–97 (1985). https://doi.org/10.1016/S0019-9958(85)80001-2

59. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symb. Log. 32(2),
198–212 (1967). https://doi.org/10.2307/2271658

60. Timany, A., Stefanesco, L., Krogh-Jespersen, M., Birkedal, L.: A logical relation for monadic
encapsulation of state: Proving contextual equivalences in the presence of runst. In: 44th
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). Proc.
ACM Program. Lang., vol. 2. ACM (2017). https://doi.org/10.1145/3158152

61. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: 12th Annual
IEEE Symposium on Logic in Computer Science (LICS 1997). pp. 280–291 (1997). https:
//doi.org/10.1109/LICS.1997.614955

62. Urbat, H., Tsampas, S., Goncharov, S., Milius, S., Schröder, L.: Weak similarity in higher-
order mathematical operational semantics. In: 38th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS 2023). IEEE Computer Society Press (2023). https://doi.
org/10.1109/LICS56636.2023.10175706

63. Wand, M., Culpepper, R., Giannakopoulos, T., Cobb, A.: Contextual equivalence for a proba-
bilistic language with continuous random variables and recursion. In: 23rd ACM SIGPLAN
International Conference on Functional Programming (ICFP 2018). Proc. ACM Program.
Lang., vol. 2. ACM (2018). https://doi.org/10.1145/3236782

Logical Predicates in Higher-Order Mathematical Operational Semantics 69

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1017/S0960129500003066
https://doi.org/10.1017/S0960129500003066
https://doi.org/10.1017/S0960129500003066
https://doi.org/10.1017/S0960129500003066
https://doi.org/10.1007/3-540-57182-5_8
https://doi.org/10.1007/3-540-57182-5_8
https://doi.org/10.1017/CBO9780511525902.015
https://doi.org/10.1017/CBO9780511525902.015
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.2307/2271658
https://doi.org/10.2307/2271658
https://doi.org/10.1145/3158152
https://doi.org/10.1145/3158152
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1145/3236782
https://doi.org/10.1145/3236782
http://creativecommons.org/licenses/by/4.0/

On Basic Feasible Functionals
and the Interpretation Method⋆

Abstract. The class of basic feasible functionals (BFF) is the analog of FP
(polynomial time functions) for type-2 functionals, that is, functionals that
can take (first-order) functions as arguments. BFF can be defined through
Oracle Turing machines with running time bounded by second-order
polynomials. On the other hand, higher-order term rewriting provides an
elegant formalism for expressing higher-order computation. We address
the problem of characterizing BFF by higher-order term rewriting. Various
kinds of interpretations for first-order term rewriting have been introduced
in the literature for proving termination and characterizing (first-order)
complexity classes. In this paper, we consider a recently introduced
notion of cost–size interpretations for higher-order term rewriting and
see definitions as ways of computing functionals. We then prove that the
class of functionals represented by higher-order terms admitting a certain
kind of cost–size interpretation is exactly BFF.

Keywords: Basic Feasible Functions · Higher-Order Term Rewriting ·
Tuple Interpretations · Computational Complexity

1 Introduction

Computational complexity classes, and in particular those relating to polynomial
time and space [20,11] capture the concept of a feasible problem, and as such
have been scrutinized with great care by the scientific community in the last
fifty years. The fact that even apparently simple problems, such as nontrivial
separation between those classes, remain open today has highlighted the need for
a comprehensive study aimed at investigating the deep nature of computational
complexity. The so-called implicit computational complexity [8,30,33,13,4] fits
into this picture, and is concerned with characterizations of complexity classes
based on tools from mathematical logic and the theory of programming languages.
⋆ This work is supported by the NWO TOP project “Implicit Complexity through

Higher-Order Rewriting”, NWO 612.001.803/7571, the NWO VIDI project “Con-
strained Higher-Order Rewriting and Program Equivalence”, NWO VI.Vidi.193.075,
and the ERC CoG “Differential Program Semantics”, GA 818616.

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 70–91, 2024.
https://doi.org/10.1007/978-3-031-57231-9_4

Patrick Baillot1 , Ugo Dal Lago2,3 , Cynthia Kop4 , and Deivid Vale4(B)

1 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000
Lille, France

patrick.baillot@univ-lille.fr
2 University of Bologna, Bologna, Italy

ugo.dallago@unibo.it

Radboud University Nijmegen, Nijmegen, The Netherlands

c.kop,deividvale @cs.ru.nl{ }

INRIA Sophia Antipolis, albonne, France
3

V
4

http://orcid.org/0009-0002-9364-1140
http://orcid.org/0000-0001-9200-070X
http://orcid.org/0000-0002-6337-2544
http://orcid.org/0000-0003-1350-3478
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_4&domain=pdf

One of the areas involved in this investigation is certainly that of term rewrit-
ing [34], which has proved useful as a tool for the characterization of complexity
classes. In particular, the class FP (i.e., of polytime first-order functions) has been
characterized through variations of techniques originally introduced for termi-
nation, e.g., the interpretation method [31,29], path orders [15], or dependency
pairs [16]. Some examples of such characterizations can be found in [7,9,10,1,3].

After the introduction of FP, it became clear that the study of computational
complexity also applies to higher-order functionals, which are functions that
take not only data but also other functions as inputs. The pioneering work of
Constable [12], Mehlhorn [32], and Kapron and Cook [22] laid the foundations of
the so-called higher-order complexity, which remains a prolific research area to
this day. Some motivations for this line of work can be found e.g. in computable
analysis [24], NP search problems [6], and programming language theory [14].

There have been several proposals for a class of type-two functionals that
correctly generalizes FP. However, the most widely accepted one is the class BFF

of basic feasible functionals. This class can be characterized based on function
algebras, similar to Cobham-style, but it can also be described using Oracle
Turing machines. The class BFF was then the object of study by the research
community, which over the years has introduced a variety of characterizations,
e.g., in terms of programming languages with restricted recursion schemes [21,14],
typed imperative languages [17,18], and restricted forms of iteration in OTMs [23].
An investigation of higher-order complexity classes employing the higher-order
interpretation method (in the context of a pure higher-order functional language)
was also proposed in [19]. However, this paper does not provide a characterization
of the standard BFF class. Instead, it characterizes a newly proposed class SFF2
(Safe Feasible Functionals) which is defined as the restriction of BFF to argument
functions in FP (see Sect. 4.2 and the conclusion in [19]).

The studies cited above present structurally complex programming languages
and logical systems, precisely due to the presence of higher-order functions. It is
not currently known whether it is possible to give a characterization of BFF in
terms of mainstream concepts of rewriting theory, although the latter has long
been known to provide tools for the modeling and analysis of functional programs
with higher-order functions [25].

This paper goes precisely in that direction by showing that the interpretation
method in the form studied by Kop and Vale [27,26] provides the right tools to
characterize BFF. More precisely, we consider a class of higher-order rewriting
systems admitting cost–size tuple interpretations (with some mild upper-bound
conditions on their cost and size components) and show that this class contains
exactly the functionals in BFF. Such a characterization could not have been
obtained employing classical integer interpretations as e.g. in [9] because BFF

crucially relies on some conditions both on size and on time. This is the main
contribution of our paper, formally stated in Theorem 2.

We believe that a benefit of this characterization is that it opens the way
to effectively handling programs or executable specifications implementing BFF

functions, in full generality. For instance, we expect that such a characterization

On Basic Feasible Functionals and the Interpretation Method 71

could be integrated into rewriting-based tools for complexity analysis of term
rewriting systems such as e.g. [2].

Our result is proved in two parts. We first prove that if any term rewriting
system in this class computes a higher-order functional, then this functional has
to be in BFF (soundness). Conversely, we prove that all functionals in BFF are
computed by this class of rewriting systems (completeness). We argue that the
key ingredient towards achieving this characterization is the ability to split the
dual notions of cost and size given by the usage of tuple interpretations.

2 Preliminaries

2.1 Higher-Order Rewriting

We roughly follow the definition of simply-typed term rewriting system [28]
(STRS): terms are applicative, and we limit our interest to second-order STRSs
where all rules have base type. Reductions follow an innermost evaluation strategy.

Let B be a nonempty set whose elements are called base types and range
over ι, κ, ν. The set T(B) of simple types over B is defined by the grammar
T(B) := B | T(B) ⇒ T(B). Types from T(B) are ranged over by σ, τ, ρ. The ⇒
type constructor is right-associative, so we write σ ⇒ τ ⇒ ρ for (σ ⇒ (τ ⇒ ρ)).
Hence, every type σ can be written as σ1 ⇒ · · · ⇒ σn ⇒ ι. We may write such
types as σ⃗ ⇒ ι. The order of a type is: ord(ι) = 0 for ι ∈ B and ord(σ ⇒ τ) =
max(1 + ord(σ), ord(τ)). A signature F is a triple (B, Σ, typeOf) where B is a
set of base types, Σ is a nonempty set of symbols, and typeOf : Σ −→ T(B). For
each type σ, we assume given a set Xσ of countably many variables and assume
that Xσ ∩ Xτ = ∅ if σ ̸= τ . We let X denote ∪σXσ and assume that Σ ∩ X = ∅.

The set T(F,X) — of terms built from F and X — collects those expressions
s for which a judgment s : σ can be deduced using the following rules:

x ∈ Xσ(ax) x : σ
f ∈ Σ typeOf(f) = σ

(f-ax)
f : σ

s : σ ⇒ τ t : σ
(app)

(s t) : τ

As usual, application of terms is left-associative, so we write s t u for ((s t)u). Let
vars(s) be the set of variables occurring in s. A term s is ground if vars(s) = ∅.
The head symbol of a term f s1 · · · sn is f. We say t is a subterm of s (written s ⊵ t)
if either (a) s = t, or (b) s = s′ s′′ and s′ ⊵ t or s′′ ⊵ t. It is a proper subterm of
s if s ̸= t. For a term s, pos(s) is the set of positions in s: pos(x) = pos(f) = {♯}
and pos(s t) = {♯} ∪ {1 · u | u ∈ pos(s)} ∪ {2 · u | u ∈ pos(t)}. For p ∈ pos(s),
the subterm s|p at position p is given by: s|♯ = s and (s1 s2)|i·p = si|p.

In this paper, we require that for all f ∈ Σ, ord(typeOf(f)) ≤ 2, so w.l.o.g.,
f : (⃗ι1 ⇒ κ1) ⇒ · · · ⇒ (⃗ιk ⇒ κk) ⇒ ν1 ⇒ · · · ⇒ νl ⇒ ι. Hence, in a fully applied
term f s1 . . . sk t1 . . . tl we say the si are the arguments of type-1 and the tj are
the arguments of type-0 for f. A substitution γ is a type-preserving map from
variables to terms such that {x ∈ X | γ(x) ̸= x} is finite. We extend γ to terms
as usual: xγ = γ(x), fγ = f, and (s t)γ = (sγ) (tγ). A context C is a term with a
single occurrence of a variable □; the term C[s] is obtained by replacing □ by s.

72 P. Baillot et al.

A rewrite rule ℓ→ r is a pair of terms of the same type such that ℓ = f ℓ1 · · · ℓm
and vars(ℓ) ⊇ vars(r). It is left-linear if no variable occurs more than once in
ℓ. A simply-typed term rewriting system (F,R) is a set of rewrite rules R over
T(F,X). In this paper, we require that all rules have base type. An STRS is
innermost orthogonal if all rules are left-linear, and for any two distinct rules
ℓ1 → r1, ℓ2 → r2, there are no substitutions γ, δ such that ℓ1γ = ℓ2δ. A reducible
expression (redex) is a term of the form ℓγ for a rule ℓ→ r and substitution γ.
The innermost rewrite relation induced by R is defined as follows:
• ℓγ →R rγ, if ℓ→ r ∈ R and ℓγ has no proper subterm that is a redex;
• s t→R u t, if s→R u and s t→R s u, if t→R u.

We write →+
R for the transitive closure of →R. An STRS R is innermost terminat-

ing if no infinite rewrite sequence s→R t→R . . . exists. It is innermost confluent
if s →+

R t and s →+
R u implies that some v exists with t →+

R v and u →+
R v.

It is well-known that innermost orthogonality implies innermost confluence. In
this paper, we will typically drop the “innermost” adjective and simply refer to
terminating/orthogonal/confluent STRSs.

Example 1. Let B = {nat} and 0 : nat, s : nat ⇒ nat, add,mult : nat ⇒ nat ⇒ nat,
and funcProd : (nat ⇒ nat) ⇒ nat ⇒ nat ⇒ nat. We then let R be given by:

add 0 y → y add (sx) y → s (addx y)
mult 0 y → 0 mult (sx) y → add y (multx y)

funcProdF 0 y → y funcProdF (sx) y → funcProdF x (mult y (F x))

Hereafter, we write ⌜n⌝ for the term s (s (. . . 0 . . .)) with n ss.

2.2 Cost–Size Interpretations

For sets A and B, we write A −→ B for the set of functions from A to B. A quasi-
ordered set (A,⊒) consists of a nonempty set A and a reflexive and transitive
relation ⊒ on A. For quasi-ordered sets (A1,⊒1) and (A2,⊒2), we write A1 =⇒ A2

for the set of functions f ∈ A1 −→ A2 such that f(x) ⊒2 f(y) whenever x ⊒1 y,
i.e., A1 =⇒ A2 is the space of functions that preserve quasi-ordering.

For every ι ∈ B, let a quasi-ordered set (Sι,⊒ι) be given. We extend this to
T(B) by defining Sσ⇒τ = (Sσ =⇒ Sτ ,⊒σ⇒τ) where f ⊒σ⇒τ g iff f(x) ⊒τ f(x)
for any x ∈ Sσ. Given a function J s mapping f ∈ Σ to some J s

f ∈ StypeOf(f) and a
valuation α mapping x ∈ Xσ to Sσ, we can map each term s : σ to an element of
Sσ naturally as follows: (a) JxKsα = α(x); (b) JfKsα = J s

f ; (c) Js tKsα = JsKsα(JtK
s
α).

For every type σ with ord(σ) ≤ 2, we define Cσ as follows: (a) Cκ = N for
κ ∈ B; (b) Cι⇒τ = Sι =⇒ Cτ for ι ∈ B; and (c) Cσ⇒τ = Cσ =⇒ Sσ =⇒ Cτ if
ord(σ) = 1. We want to interpret terms s : σ where both σ and all variables
occurring in s are of type order either 0 or 1, as is the case for the left- and
right-hand side of rules. Thus, we let J c be a function mapping f ∈ Σ to some
J c
f ∈ CtypeOf(f) and assume given, for each type σ, valuations α : Xσ −→ Sσ and

ζ : Xσ −→ Cσ. We then define:

Jx s1 · · · snKcα,ζ = ζ(x)(Js1K
s
α, . . . , JsnKsα)

Jf s1 · · · sk t1 · · · tnKcα,ζ = J c
f (Js1K

c
α,ζ , Js1K

s
α, . . . , JskK

c
α,ζ , JskK

s
α, Jt1K

s
α, . . . , JtnKsα)

On Basic Feasible Functionals and the Interpretation Method 73

We let cost(s)α,ζ =
∑

{JtKcα,ζ | s ⊵ t and t is a non-variable term of base type}.
This is all well-defined under our assumptions that all variables have a type of order
0 or 1, and f : (ι⃗1 ⇒ κ1) ⇒ · · · ⇒ (ι⃗k ⇒ κk) ⇒ ν1 ⇒ · · · ⇒ νl ⇒ ι. We also define
cost′(s)α,ζ =

∑
{JtKcα,ζ | s ⊵ t and t /∈ X is of base type not in normal form}.

A cost–size interpretation F for a second order signature F = (B, Σ, typeOf)
is a choice of a quasi-ordered set Sι, for each ι ∈ B, along with cost- and size-
interpretations J c and J s defined as above. Let (F,R) be an STRS over F. We
say (F,R) is compatible with a cost–size interpretation if for any valuations α
and ζ, we have (a) JℓKcα,ζ > cost(r)α,ζ and (b) JℓKsα ⊒ JrKsα, for all rules ℓ→ r in
R. In this case we say such cost–size interpretation orients all rules in R.

Theorem 1 (Innermost Compatibility). Suppose R is an STRS compatible
with a cost–size interpretation F , then for any valuations α and ζ we have
cost′(s)α,ζ > cost′(t)α,ζ and JsKsα ⊒ JtKsα whenever s→R t.

From compatibility, we have that if s0 →R · · · →R sn, then n ≤ cost′(s0).
Hence, cost′(s) bounds the derivation height of s. This follows from [26, Corollary
34], although we significantly simplified the presentation: the limitation to second-
order fully applied rules and the lack of abstraction terms allow us to avoid
many of the complexities in [26]. We also adapted it to innermost rather than
call-by-value evaluation. A correctness proof of this version is supplied in [5].
Since α and ζ are universally quantified, we typically omit them, and just write
x instead of α(x) and F c instead of ζ(F).

Example 2. We let Snat = (N,≥) and assign J s
0 = 0 and J s

s = λλx.x + 1, as
well as J c

0 = 0 and J c
s = λλx.0. This gives us J⌜n⌝Ks = n for all n ∈ N, and

J⌜n⌝Kc = cost(n) = 0. Now, we let J s
add = λλxy.x+ y and J s

mult = λλxy.x ∗ y; then
indeed JℓKs ≥ JrKs for the first four rules of Example 1 (e.g., Jmult (sx) yKs =
(x + 1) ∗ y ≥ y + (x ∗ y) = Jadd y (multx y)Ks). Moreover, let us choose J c

add =
λλxy.x+ 1 and J c

mult = λλxy.x ∗ y + x+ 1. Then also JℓKc > cost(r) for all rules;
for example, Jmult (sx) yKc = (x+ 1) ∗ y + 2 ∗ x+ 3 > (y + 1) + (x ∗ y + 2 ∗ x+
1) = Jadd y (multx y)Kc+Jmultx yKc = cost(add y (multx y)). Regarding funcProd,
we can orient both rules by choosing J s

funcProd = λλFxy.y ∗ max(F (x), 1)
x and

J c
funcProd = λλFGxy.2 ∗ x ∗ y ∗max(F (x), 1)

x+1
+ x ∗G(x) + 2 ∗ x+ 1. This works

due to the monotonicity assumption, which provides, e.g., G(x+1) ≥ G(x). (This
function is not polynomial, but that is allowed in the general case.)

2.3 Basic Feasible Functionals

We assume familiarity with Turing machines. In this paper, we consider determin-
istic multi-tape Turing machines. Those are, conceptually, machines consisting
of a finite set of states, one or more (but a fixed number of) right-infinite tapes
divided into cells. Each tape is equipped with a tape head that scans the symbols
on the tape’s cells and may write on it. The head can move to the left or right.
Let W = {0, 1}∗. A k-ary Oracle Turing Machine (OTM) is a deterministic multi-
tape Turing machine with at least 2k+1 tapes: one main tape for (input/output),

74 P. Baillot et al.

k designated query tapes, and k designated answer tapes. It also has k distinct
query states qi and k answer states ai.

A computation with a k-ary OTM M requires k fixed oracle functions
f1, . . . , fk : W −→ W . We write Mf⃗ to denote a run of M with these func-
tions. A run of Mf⃗ on w starts with w written in the main tape. It ends when
the machine halts, and yields the word that is written in the main tape as output.
As usual, we only consider machines that halt on all inputs. The computation
proceeds as usual for non-query states. To query the value of fi on w, the machine
writes w on the corresponding query tape and enters the query state qi. Then,
in one step, the machine transitions to the answer state ai as follows: (a) the
query value w written in the query tape for fi is read; (b) the contents of the
answer tape for fi are changed to fi(w); (c) the query value w is erased from the
query tape; and (d) the head of the answer tape is moved to its first symbol. The
running time of Mf⃗ on w is the number of steps used in the computation.

A type-1 function is a mapping in W −→ W . A type-2 functional of rank
(k, l) is a mapping in (W −→W)

k −→W l −→W .

Definition 1. We say an OTM M computes a type-2 functional Ψ of rank (k, l)
iff for all type-1 functions f1, . . . , fk and x1, . . . , xl ∈ W , whenever Mf1,...,fk is
started with x1, . . . , xl written on its main tape (separated by blanks), it halts
with Ψ(f1, . . . , fk, x1, . . . , xl) written on its main tape.

Definition 2. Let {F1, . . . , Fk} be a set of type-1 variables and {x1, . . . , xl} a
set of type-0 variables. The set Pol2N[F1, . . . , Fk;x1, . . . , xl] of second-order
polynomials over N with indeterminates F1, . . . , Fk, x1, . . . , xl is generated by:

P,Q := n | x | P +Q | P ∗Q | F (Q)

where n ∈ N, x ∈ {x1, . . . , xl}, and F ∈ {F1, . . . , Fk}.

Notice that a polynomial expression can be viewed as a type-2 functional in the
natural way, e.g., P (F, x) = 3 ∗ F (x) + x is a second-order polynomial functional.
Given w ∈W , we write |w| for its length and define the length |f | of f :W −→W
as |f | = λλn. max

|y|≤n
|f(y)|. This allows us to define BFF as the class of functionals

computable by OTMs with running time bounded by a second-order polynomial.

Definition 3. A type-2 functional Ψ is in BFF iff there exist an OTM M and
a second-order polynomial P such that M computes Ψ and for all f⃗ and x⃗: the
running time of Mf1,...,fk on x1, . . . , xl is at most P (|f1|, . . . , |fk|, |x1|, . . . , |xl|).

3 Statement of the Main Result

The main result of this paper roughly states that BFF consists exactly of those
type-2 functionals computed by an STRS compatible with a polynomially bounded
cost–size tuple interpretation. To formally state this result, we must first define
what it means for an STRS to compute a type-2 functional and define precisely
the class of cost–size interpretations we are interested in.

On Basic Feasible Functionals and the Interpretation Method 75

Indeed, let us start by encoding words in W as terms. We let bit,word ∈ B
and introduce symbols o, i : bit and [] : word, :: : bit ⇒ word ⇒ word. Then for
instance 001 is encoded as the term :: o (:: o (:: i [])). We use the cleaner list-like
notation [o; o; i] in practice. Let w denote the term encoding of a word w. Next,
we encode type-1 functions as a possibly infinite set of one-step rewrite rules.

Definition 4. Consider a type-1 function f :W −→W and let Sf : word ⇒ word
be a fresh function symbol. A set of rules Rf defines f by way of Sf if for
each w ∈W there is exactly one rule of the form Sf w → f(w) in Rf .

Henceforth, we assume given that our STRS (F,R) at hand is such that F
contains o, i, [], :: typed as above and a distinguished symbol F : (word ⇒ word)k ⇒
wordl ⇒ word. Given type-1 functions f1, . . . , fk, we write Ff⃗ for F extended with
function symbols Sfi : word ⇒ word, with 1 ≤ i ≤ k, and let R+f⃗ = R∪

⋃k
i=1 Rf .

Now we can define the notion of type-2 computability for such STRSs.

Definition 5. Let (F,R) be an STRS. We say that F computes the type-2
functional Ψ in (F,R) iff for all type-1 functions f1, . . . , fk and all w1, . . . , wl ∈
W , FSf1 · · · Sfk w1 · · ·wl →+

R
+f⃗

u, where u = Ψ(f1, . . . , fk, w1, . . . , wl).

Next, we define what we mean by polynomially bounded interpretation.

Definition 6. We say an STRS (F,R) admits a polynomially bounded inter-
pretation iff (F,R) is compatible with a cost–size interpretation such that:
• Sword = (N,≥);
• J c

o = J c
i = J c

[] = 0, J c
:: = λλxy.0, and J s

:: = λλxy.x+ y + c for some c ≥ 1;
• J c

F is bounded by a polynomial in Pol2N[F
c
1 , F

s
1, . . . , F

c
k , F

s
k;x1, . . . , xl].

Finally, we can formally state our main result.

Theorem 2. A type-2 functional Ψ is in BFF if and only if there exists a finite
orthogonal STRS (F,R) such that the distinguished symbol F computes Ψ in
(F,R) and R admits a polynomially bounded cost–size interpretation.

We prove this result in two parts. First, we prove soundness in Section 4 which
states that every type-2 functional computed by an STRS as above is in BFF.
Then in Section 5 we prove completeness which states that every functional in BFF

can be computed by such an STRS. In order to simplify proofs, we only consider
type-2 functions of rank (1,1). We claim that the results can be easily generalized,
but the proofs become more tedious when handling multiple arguments.

Example 3. Let us consider the type-2 functional defined by Ψ := λλfx.
∑

i<|x|
f(i).

Notice that Ψ adds all f(i) over each word i ∈ W whose value (as a natural
number) is smaller than the length of x. This functional was proved to lie in BFF

in [21], where the authors utilized an encoding of Ψ as a BTLP2 program. We
can encode Ψ as an STRS as follows. Let us consider ancillary symbols lengthOf :
word ⇒ nat and toBin : nat ⇒ word. The former computes the length of a given

76 P. Baillot et al.

word and the latter converts a number from unary to binary representation. We
also consider rules for addition on binary words, i.e., +B : word ⇒ word ⇒ word,
which we use in infix notation below.

computeF x 0 acc→ acc

computeF x (s i) acc→ computeF x i (acc +B F (toBin i))

startF x→ computeF x (lengthOf x) []

Now, if we want to compute Ψ(f, x) we simply reduce the term start Sf x to
normal form. To show that this system is in BFF via our rewriting formalism, we
need to exhibit a cost–size tuple interpretation for it that satisfies Definition 6,
see [5, Example 3].

4 Soundness

In order to prove soundness, let us consider a fixed finite orthogonal STRS R
admitting a polynomially bounded cost–size interpretation such that it computes
a type-2 functional Ψ . We proceed to show that Ψ is in BFF roughly as follows:
1. Since R computes Ψ and admits a polynomially bounded interpretation, we

show that so does the extended system R+f (Definition 5). The restriction on
J s
:: (Definition 6) implies that JFSf wKc is bounded by a second-order polyno-

mial over |f |, |w|. We show this in Lemma 1. By compatibility (Theorem 1),
we can do at most polynomially many steps when reducing FSf w.

2. The cost polynomial restricts the size of any input that the function variable
F is applied to (e.g., a cost bound of 3+F c(m) implies that F is never called
on a term with size interpretation > m). This is the subject of Lemma 3.

3. Using the observations above, we then show that by graph rewriting we can
simulate R+f and compute each R+f -reduction step in polynomial time on
an OTM. This guarantees that Ψ is in BFF, Theorem 3.

4.1 Interpreting The Extended STRS, Polynomially

Our first goal is to provide a polynomially bounded cost–size interpretation to the
extended system R+f . We start with the observation that the size interpretation
of words in W is proportional to their length. Indeed, since J s

:: = λλxy.x+ y + c
(Definition 6) let µ := max(J s

o ,J s
i)+ c and ν := J s

[]. Consequently, for all w ∈W :

|w| ≤ JwKs ≤ µ ∗ |w|+ ν (1)

Recall that by Definition 4 the extended system R+f has possibly infinitely
many rules of the form Sfw → f(w). Such rules Sf represent calls for an oracle
to compute f in a single step. Thus, we set their cost to 1. The size should be
given by the length of the oracle output, taking the overhead of interpretation
into account. Hence, we obtain:

J c
Sf

= λλx.1 J s
Sf

= λλx.µ ∗ |f |(x) + ν

On Basic Feasible Functionals and the Interpretation Method 77

This is weakly monotonic because |f | is. It orients the rules in Rf because
JSf wKc = 1 > 0 = cost(f(w)), and JSf wKs = µ ∗ |f |(JwKs)+ ν ≥ µ ∗ |f |(|w|)+ ν ≥
µ ∗ |f(w)|+ ν by definition of |f |, which is superior or equal to Jf(w)Ks.

As J c
F is bounded by a second-order polynomial λλF cF sx.P , we can let

D(F, n) := P (λλx.1, λλx.µ∗F (x)+ν, µ∗n+ν). ThenD is a second-order polynomial,
and D(|f |, |w|) ≥ J c

F (J c
Sf
,J s

Sf
, JwKs) = cost(FSf w). By Theorem 1 we see:

Lemma 1. There exists a second-order polynomial D so that D(|f |, |w|) bounds
the derivation height of FSf w for any f ∈W −→W and w ∈W .

Notice that this lemma does not imply that Ψ is in BFF. It only guarantees that
there is a polynomial bound to the number of rewriting steps for such systems.
However, it does not immediately follow that this number is a reasonable bound
for the actual computational cost of simulating a reduction on an OTM. Consider
for example a rule f (sn) t→ f n (c t t). Every step doubles the size of the term.
A naive implementation – which copies the duplicated term in each step – would
take exponential time. Moreover, a single step using the oracle can create a very
large output, which is not considered part of the cost of the reduction, even
though an OTM would be unable to use it without first fully reading it.

Therefore, in order to prove soundness, we show how to realize a reasonable
implementation of rewriting w.r.t. OTMs. In essence, we will show that (1) oracle
calls are not problematic in the presence of polynomially bounded interpretations,
and (2) we can handle duplication with an appropriate representation of rewriting.

4.2 Bounding The Oracle Input

We first deal with the reasonability of oracle calls. We will show that there exists
a second-order polynomial B such that if an oracle call Sf x occurs anywhere
along the reduction F Sf w →+

R v, then |x| ≤ B(|f |, |w|). From this, we know that
the growth of the overall term size during an oracle call is at most |f |(B(|f |, |w|)).

Let P again be the polynomial bounding J c
F . Since P is a second-order

polynomial, each occurrence of a sub-expression F c(E) in P is a second-order
polynomial, and so is E. Let us enumerate these arguments as E1, . . . , En. We
can then form the new polynomial Q defined as

Q :=
∑
i

Ei where occurrences of F c(E′
j) inside Ei are replaced by 1

We let B(G, y) := Q(λλz.µ ∗G(z) + ν, µ ∗ y + ν).

Example 4. If P = λλF cF sx.x ∗F c(3+F s(9 ∗x))+F c(12) ∗F c(3+x ∗F c(2))+5,
then Q = 3 + F s(9 ∗ x) + 12 + 3 + x ∗ 1 + 2 = 20 + F s(9 ∗ x) + x. We have
B(G, x) = 20+µ∗G(9∗(µ∗x+ν))+ν+(µ∗x+ν) = 20+2∗ν+G(9∗µ∗x+9∗ν)+µ∗x.

Now B gives an upper bound to the argument values for F c that are considered:
if a function differs from J c

Sf
only on argument values greater than B(|f |, |w|),

then we can use it in P and obtain the same result. Formally:

78 P. Baillot et al.

Lemma 2. Fix f, w. Let G ∈ N −→ N with G(z) = 1 if z ≤ B(|f |, |w|). Then
P (G,J s

Sf
, JwKs) = P (J c

Sf
,J s

Sf
, JwKs).

This is proved by induction on the form of P , using that G is never applied on
arguments larger than B(|f |, |w|). Lemma 2 is used in the following key result:

Lemma 3 (Oracle Subterm Lemma). Let f :W −→W be a type-1 function
and w ∈W . If FSf w →∗

R+f
C[Sf x] for some context C, then |x| ≤ B(|f |, |w|).

Proof. In view of a contradiction, suppose there exist f, w, and x such that
FSf w →∗

R+f
C[Sf x] for some context C, and |x| > B(|f |, |w|). Let us now

construct an alternative oracle: let 0 : nat, s : nat ⇒ nat,S′
f : word ⇒ word and

helper : nat ⇒ nat ⇒ nat, and for N := D(|f |, |w|), let R′
f,w be given by:

S′f x → f(x) if |x| ≤ B(|f |, |w|) helper 0 y → y

S′f x → helper ⌜N⌝ f(x) otherwise helper (sx) y → helper x y

Where ⌜N⌝ is the unary number encoding of N as introduced in Section 2.1. Notice
that by definition, the rules for S′f will produce f(x) in one step if |x| ≤ B(|f |, |w|),
but they will take N + 2 steps otherwise. Also observe that Sf and S′

f behave
the same; that is, Sf x and S′f x have the same normal form on any input x. We
extend the interpretation function of the original signature with:

J c
S′
f
= λλx.

{
1 if x ≤ B(|f |, |n|)
N + 2 if x > B(|f |, |n|) J s

S′
f
= J s

Sf
(y)

J c
helper = λλxy.x+ 1 J s

helper = λλxy.y J s
0 = 0 J s

s = λλx.x+ 1

We easily see that this orients all rules in Rf,w. Then, by Lemma 2, cost(F S′f w) ≤
P (J c

S′
f
,J s

S′
f
, JwKs) = P (J c

Sf
,J s

Sf
, JwKs) ≤ D(|f |, |w|) = N . Yet, as we have

FSf w →∗
R+f

C[Sf x], we also have FSf w →R∪R′
f,w

C ′[S′
f x], where C ′ is ob-

tained from C by replacing all occurrences of Sf by S′
f . Since |x| > B(|f |, |w|)

by assumption, the reduction FS′
f w →∗

R∪R′
f,w

C[S′
f w] →∗

R∪Rf,w′ C[f(x)] takes
strictly more than N steps, contradicting Theorem 1. ⊓⊔

4.3 Graph Rewriting

Lemma 1 guarantees that if R is compatible with a suitable interpretation,
then at most polynomially many R+f -steps can be performed starting in F Sf w.
However, as observed in Section 4.1, this does not yet imply that a type-2
functional computed by an STRS with such an interpretation is in BFF. To
simulate a reduction on an OTM, we must find a representation whose size does
not increase too much in any given step. The answer is graph rewriting.

Definition 7. A term graph for a signature Σ is a tuple (V, label, succ, Λ)
with V a finite nonempty set of vertices; Λ ∈ V a designated vertex called the root;
label : V −→ Σ ∪ {@} a partial function with @ fresh; and succ : V −→ V ∗

On Basic Feasible Functionals and the Interpretation Method 79

v0 : @

v1 : @

v2 : add v3 : ⊥

v4 : ⊥

(a)

@

@

add ⊥

⊥

(b)

@

@

add @

⊥s

(c)

@

@

f @

g ⊥

(d)

Fig. 1: A term graph, its simplified version, and two graphs with sharing

a total function such that succ(v) = v1v2 when label(v) = @ and succ(v) = ε
otherwise. We view this as a directed graph, with an edge from v to v′ if v′ ∈
succ(v), and require that this graph is acyclic (i.e., there is no path from any v
to itself). Given term graph G, we will often directly refer to VG, labelG, etc.

Term graphs can be denoted visually in an intuitive way. For example, using
Σ from Example 1, the graph with V = {v0, . . . , v4}, label = {v0, v1 7→ @, v2 7→
add}, succ = {v0 7→ v v , v1 4 1 7→ v v , v , v , v2 3 3 4 5 7→ ε} and Λ = v 0 is pictured in
Figure 1a. We use ⊥ to indicate unlabeled vertices and a circle for Λ. We will
typically omit vertex names, as done in Figure 1b. Note that the definition allows
multiple vertices to have the same vertex as successor; these successor vertices
with in-degree > 1 are shared. Two examples are denoted in Figures 1c and 1d.

Each term has a natural representation as a tree. Formally, for a term s we let
[s]G = (pos(s), label, succ, ♯) where label(p) = @ if s|p = s1s2 and label(p) =
f if s|p = f; label(p) is not defined if s|p is a variable; and succ(p) = (1 ·p)(2 ·p) if
s|p = s1 s2 and succ(p) = ε otherwise. Essentially, [s]G maintains the positioning
structure of s and forgets variable names. For example, Figure 1b denotes both
[addx y]G and [addxx]G.

Our next step is to reduce term graphs using rules. We limit interest to
left-linear rules, which includes all rules in R+f (as R is orthogonal, and the rules
in Rf are ground). To define reduction, we will need some helper definitions.

Definition 8. Let G = (V, label, succ, Λ), v ∈ V . The subgraph reach(G, v) of
G rooted at v is the term graph (V ′, label′, succ′, v) where V ′ contains those
v′ ∈ V such that a path from v to v′ exists, and label′, succ′ are respectively the
limitations of label and succ to V ′.

Definition 9. A homomorphism between two term graphs G and H is a
function ϕ : VG −→ VH with ϕ(ΛG) = ΛH , and for v ∈ VG such that labelG(v)
is defined, labelH(ϕ(v)) = labelG(v) and succH(ϕ(v)) = ϕ(v1) . . . ϕ(vk) when
succG(v) = v1 . . . vk. (If labelG(v) is undefined, succH(ϕ(v)) may be anything.)

Definition 10. A redex in G is a triple (ρ, v, ϕ) consisting of some rule ρ =
ℓ→ r ∈ R+f , a vertex v in VG, and a homomorphism ϕ : [ℓ]G −→ reach(G, v).

80 P. Baillot et al.

Definition 11. Let G be a term graph and v1, v2 vertices in G. The redirection
of v1 to v2 is the term graph G[v1 ≫ v2] ≡ (VG, labelG, succG′ , Λ′

G) with

succG′(v)i =

{
v2, if succG(v)i = v1

succG(v)i, otherwise
Λ′
G =

{
v2 if ΛG = v1

ΛG otherwise

That is, we replace every reference to v1 by a reference to v2. With these definitions
in hand, we can define contraction of term graphs:

Definition 12. Let G be a term graph, and (ρ, v, ϕ) a redex in G with ρ ∈ R+f ,
such that no other vertex v′ in reach(G, v) admits a redex (so v is an innermost
redex position). Denote ax for the position of variable x in ℓ, and recall that ax is a
vertex in [ℓ]G. By left-linearity, ax is unique for x ∈ vars(ℓ). The contraction of
(ρ, v, ϕ) in G is the term graph J produced after the following steps: H (building),
I (redirection), and J (garbage collection).

(building) Let H = (VH , labelH , succH , ΛG) where:
• VH = VG ⊎ {p ∈ pos(r) | r|p is not a variable} (⊎ means disjoint union);
• for v ∈ VG: labelH(v) = labelG(v) and succH(v) = succG(v)
• for p ∈ VH with r|p not a variable:

• labelH(p) = f if r|p = f and labelH(p) = @ otherwise
• succH(p) = ε if r|p = f; otherwise, succH(p) = ψ(1 · p)ψ(2 · p)

Here, ψ(q) = q if r|q is not a variable; if r|q = x then ψ(q) = ϕ(ax).
(redirection) If r is a variable x (so H = G), then let I = G[v ≫ ϕ(ax)].

Otherwise, let I = H[v≫ ♯], so with all references to v redirected to the root
vertex for r.

(garbage collection) Let J := reach(I, ΛI) (so remove unreachable vertices).

We then write G⇝ J in one step, and G⇝n J for the n-step reduction.

We illustrate this with two examples. First, we aim to rewrite the graph of
Figure 2a with a rule add 0 y → y at vertex v. Since the right-hand side is a
variable, the building phase does nothing. The result of the redirection phase is
given in Figure 2b, and the result of the garbage collection in Figure 2c.

@

s v: @

@ @

add 0 s

(a)

@

s v: @

@ @

add 0 s

(b)

@

s @

s 0

(c)

Fig. 2: Reducing a graph with the rule add 0 y → y

On Basic Feasible Functionals and the Interpretation Method 81

Second, we consider a reduction by mult (sx) y → add y (multx y). Figure 3a
shows the result of the building phase, with the vertices and edges added during
this phase in red. Redirection sets the root to the squared node (the root of the
right-hand side), and the result after garbage collection is in Figure 3b.

@

@

mult

@

s 0

@

@

add

@

@

mult

(a)

@

@

add

@

@

mult
@

s 0

(b)

Fig. 3: Reducing a term graph with substantial sharing

Note that, even when a term graph G is not a tree, we can find a corresponding
term: we assign a variable var(v) to each unlabeled vertex v in G, and let:

θ(v) =

 θ(v1) θ(v2) if label(v) = @ and succ(v) = v1v2
f if label(v) = f
var(v) if label(v) is undefined

Then we may define [G]−1
G = θ(ΛG). For a linear term, clearly [[s]G]

−1
G = s

(modulo variable renaming). We make the following observation:

Lemma 4. Assume given a term graph G such that there is a path from ΛG

to every vertex in VG, and let [G]−1
G = s. If G ⇝ H then [G]−1

G →+
R+f

[H]−1
G .

Moreover, if s→R+f
t for some t, then there exists H such that G⇝ H.

Consequently, if →R+f
is terminating, then so is⇝; and if [s]G ⇝n G for some

ground term s then s→∗
R+f

[G]−1
G in at least n steps. Notice that if G does not

admit any redex, then [G]−1
G is in normal form. Moreover, since R+f = R∪Rf

is orthogonal (as R is orthogonal and the Rf rules are non-overlapping) and
therefore confluent, this is the unique normal form of s. We conclude:

Corollary 1. If [FSf w]G ⇝n G, then n ≤ D(|f |, |w|); and if G is in normal
form, then [G]−1

G = Ψ(f,w).

4.4 Bringing Everything Together

We are now ready to complete the soundness proof following the recipe at the start
of the section. Towards the third bullet point, we make the following observation.

82 P. Baillot et al.

Lemma 5. There is a constant a such that, whenever G⇝ H by a rule in R,
then |H| ≤ |G|+ a, where |G| denotes the total number of nodes in the graph G.

Proof. In a step using a rule ℓ → r, the number of nodes in the graph can be
increased at most by |[r]G|. As there are only finitely many rules in R, we can
let a be the number of nodes in the largest graph for a right-hand side r. ⊓⊔

To see that graph rewriting with Sf can be implemented in an efficient way, we
observe that the size of any intermediary graph in the reduction [Gw]G →+

R [q]G
is polynomially bounded by a second-order polynomial over |f |, |w|:

Lemma 6. There is a second-order polynomial Q such that if [FSf w]G ⇝∗ H,
then |H| ≤ Q(|f |, |w|).

Proof. Let Q(F, x) := x + D(F, x) ∗ (a + F (B(F, x))), where D is the polyno-
mial from Lemma 1, a is the constant from Lemma 5, and B is the polyno-
mial from Section 4.2. This suffices, because there are at most D(|f |, |w|) steps
(Lemma 1, Corollary corollary 1), each of which increases the graph size by at
most max(a, |f |(B(|f |, |w|))). ⊓⊔

All in all, we are finally ready to prove the soundness side of the main theorem:

Theorem 3. Let R be a finite orthogonal STRS admitting a polynomially
bounded interpretation. If F computes a type-2 functional Ψ , then Ψ ∈ BFF.

Proof. Given (F,R), we can construct an OTM M so that for a given f ∈
W −→ W , the machine Mf executed on w ∈ W computes the normal form of
FSf w under →R+f

using graph rewriting. We omit the exact construction, but
observe:
• that we can represent each graph in polynomial space in the size of the graph;
• that we can do a rewriting step that does not call the oracle (so using a rule

in R) following the contraction algorithm we defined in Definition 12, which
is clearly feasible to do in polynomial time in the size of the graph;

• and that each oracle call (implemented in rewriting by a Rf -step Sf x → y)
is resolved by copying x to the query tape, transitioning to the query state,
and from the answer state copying y from the answer tape to the main tape.
By Lemma 3 this is doable in polynomial time in |f |, |w| and the graph size.

By Lemma 6, graph sizes are bounded by a polynomial over |f |, |w|, so using the
above reasoning, the same holds for the cost of each reduction step. In summary:
the total cost of Mf running on w is bounded by a second-order polynomial
in terms of |f | and |w|. As Mf simulates R+f via graph rewriting and R+f

computes Ψ , M also computes Ψ . By Definition 3, Ψ is in BFF. ⊓⊔

5 Completeness

Recall from Section 3 that to prove completeness we have to show the following:
if a given type-2 functional Ψ is in BFF, then there exists an orthogonal STRS

On Basic Feasible Functionals and the Interpretation Method 83

that computes Ψ and admits a polynomially bounded interpretation. We prove
this by providing an encoding of OTMs as STRSs that admit a polynomially
bounded interpretation.

The encoding is divided into three steps. In Section 5.1, we will define the
function symbols that will allow us to encode any possible machine configuration
as terms. In Section 5.2, we will encode transitions as reduction rules that rewrite
configuration terms. Lastly, we will design an STRS to simulate a complete
execution of an OTM in polynomially many steps. Achieving this polynomial
bound is non-trivial and is done in Sections 5.3–5.4.

Henceforth, we assume given a fixed OTM M , and a second-order polynomial
PM , such that M operates in time PM . For simplicity, we assume the machine
has only three tapes (one input/output tape, one query tape, one answer tape);
that each non-oracle transition only operates on one tape (i.e., reading/writing
and moving the tape head); and that we only have tape symbols {0, 1, B}.

5.1 Representing Configurations

Following 3, we have o, i : bit, :: : bit ⇒ word ⇒ word and [] : word. To represent
a (partial) tape, we also introduce b : bit for the blank symbol. Now for instance
a tape with content 011B01BB · · · (followed by infinitely many blanks) may be
represented as the list [o; i; i; b; o; i] of type word. We may also add an arbitrary
number of blanks at the end of the representation; e.g., [o; i; i; b; o; i; b; b].

We can think of a tape configuration — the combination of a tape and the
position of the tape head — as a finite word w1 . . . wp−1#wpwp+1 . . . wk (followed
by infinitely many blanks). Here, the tape’s head is reading the symbol wp. We
can split this tape into two components: the left word w1 . . . wp−1, and the right
word wp . . . wk. To represent a tape configuration, we introduce three symbols:

L : word ⇒ left R : word ⇒ right split : left ⇒ right ⇒ tape

Here, L,R hold the content of the left and right split of the tape, respectively.
While we technically do not need these two constructors (we could have split :
word ⇒ word ⇒ tape), they serve to make configurations more human-readable.
For convenience in rewriting transitions, later on, we will encode the left side of
the split in reverse order. Specifically, we encode w1 . . . wp−1#wpwp+1 . . . wk as

split (L [wp−1; . . . ;w2;w1]) (R [wp; . . . ;wk−1;wk])

The symbol currently being read is the first element of the list below R; in case
of R [], this symbol is B. For a concrete example, a tape configuration 1B0#10 is
represented by: split (L [o; b; i]) (R [i; o]). Since we have assumed an OTM with three
tapes, a configuration of the machine at any moment is a tuple (q, t1, t2, t3), with
q a state and t1, t2, t3 tape configurations. To represent machine configurations,
we introduce, for each state q, a symbol q : tape ⇒ tape ⇒ tape ⇒ config. Thus,
a configuration (q, t1, t2, t3) is represented by a term qT1 T2 T3.

84 P. Baillot et al.

Example 5. The initial configuration for a machine Mf on input w is a tuple
(q0,#w,#B,#B). This is represented by the term

initial(w) := q0 (split (L []) (Rw)) (split (L []) (R [])) (split (L []) (R []))

To interpret the symbols from this section, we let (Sι,⊒ι) := (N,≥) for all ι,
let J c

f = λλx1 . . . xm.0 whenever f takes m arguments, and for the sizes:

J s
o = 0 J s

b = 0 J s
L = λλx.x J s

:: = λλxy.x+ y + 1 J s
q = λλxyz.x+ y

J s
i = 0 J s

[] = 0 J s
R = λλx.x J s

split = λλx.xy.x+ y (for all states q)

Hence, JwKs = |w|, which satisfies the requirements of Theorem 2; the size of a
tape configuration w1 . . . wp−1#wp . . . wk is k, and the size of a configuration is
the size of its first and second tapes combined. We do not include the third tape,
as it does not directly affect either the result yielded by the final configuration
(this is read from the first tape), nor the size of a word the oracle f is applied on.

5.2 Executing The Machine

A single step in an OTM can either be an oracle call (a transition from the
query state to the answer state), or a traditional step: we assume that an OTM

M has a fixed set T of transitions q
r/i, d
====⇒

t
l where q is the input state, l the

output state, t ∈ {1, 2, 3} the tape considered (recall that we have assumed that a
non-oracle transition only operates on one tape), r, i ∈ {0, 1, B} respectively the
symbol being read and the symbol being written, and d ∈ {L,R} the direction
for the read head of tape t to move. We will model the computation of M as
rules that simulate the small step semantics for the machine.

To encode a single transition, let step : (word ⇒ word) ⇒ config ⇒ config. For

any transition of the form q
r/i, L
====⇒

1
l (so a transition operating on tape 1, and

moving left), we introduce a rule (where we write 0 = o, 1 = i, B = b):

stepF (q (split (L (x::y)) (R (r::z)))u v) → l (split (L y) (R (x::i::z)))u v

Moreover, for transitions q
B/w, L
=====⇒

1
l (so where B is read), we add a rule:

stepF (q (split (L (x::y)) (R []))u v) → l (split (L y) (R (x::i::[]))) u v

These rules respectively handle the steps where a tape configuration is changed
from u1 . . . up−1up#rup+2 . . . uk to u1 . . . up−1#upiup+2 . . . uk, and where a tape
configuration is changed from u1 . . . uk# to u1 . . .#uki.

Transitions where d = R, or on the other two tapes, are encoded similarly.
Next, we encode oracle calls. Recall that, to query the machine for the value

of f at u, we write u on the second tape, move its head to the leftmost position,
and enter the query state. Then, the content of this tape is erased and the image
of f over u is written in the third tape. Visually, this step is represented as:

(query, ⟨tape1⟩, v1 . . . vp#uB . . . , ⟨tape3⟩)⇝ (answer, ⟨tape1⟩,#B,#f(u))

On Basic Feasible Functionals and the Interpretation Method 85

This is implemented by the following rules:

stepF (query t1 (splitx (R y)) t3) → answer t1 (split (L []) (R []))
(split (L []) (R (F (clean y))))

clean (o::x) → o::(cleanx) clean (b::x) → []
clean (i::x) → i::(cleanx) clean [] → []

Here, clean : word ⇒ word turns a word that may have blanks in it into a bitstring,
by reading until the next blank; for instance replacing [o; i; b; i] by [o; i].

The various step rules, as well as the clean rules, are non-overlapping because
we consider deterministic OTMs. They are also left-linear, and are oriented using:

J s
clean = λλx.x J c

clean = λλx.x+ 1
J s
step = λλFx.x+ 1 J c

step = λλF cF sx.F c(x) + x+ 2

(Note that J s
step is so simple because the size of a configuration does not include

the size of the answer tape.) From the rules, the following result is obvious:

Lemma 7. Let Mf be an OTM and C,C ′ be machine configurations of Mf such
that C ⇝ C ′. Then step Sf [C] →+

R [C ′], where [C] is the term encoding of C.

5.3 A Bound on the Number of Steps

To generalize from performing a single step of the machine to tracing a full
computation on the machine level, the natural idea would be to define rules such
as:

executeF (qx y z) → executeF (step(qx y z)) for q ̸= end

executeF (end (split (Lx) (Rw)) y z) → cleanw

Then, reducing execute Sf initial(w) to normal form simulates a full OTM execu-
tion of Mf on input w. Unfortunately, this rule does not admit an interpretation,
as it may be non-terminating. A solution could be to give execute an additional
argument ⌜N⌝ suggesting an execution in at most N steps; this argument would
ensure termination, and could be used to find an interpretation.

The challenge, however, is to compute a bound on the number of steps in the
OTM: the obvious thought is to compute PM (|f |, |w|), but this cannot in general
be done in polynomial time because the STRS does not have access to |f |: since
|f |(i) = max{x ∈ N | |x| ≤ i}, there are exponentially many choices for x.

To solve this, and following [22, Proposition 2.3], we observe that it suffices to
know a bound for f(x) for only those x on which the oracle is actually questioned.
That is, for A ⊆W , let |f |A = λλn.max{|f(x)| | x ∈ A ∧ |x| ≤ n}. Then:

Lemma 8. Suppose an OTM Mf runs in time bounded by PM (|f |, |w|) on input
w. If Mf transitions in N steps from its initial state to some configuration C,
calling the oracle only on words in A ⊆W , then N ≤ PM (|f |A, |w|).

86 P. Baillot et al.

Proof (Sketch). We construct f ′ with f ′(x) = 0 if x /∈ A and f ′(x) = f(x) if
x ∈ A. Then |f ′| = |f |A, and Mf ′ runs the same on input w as Mf does. ⊓⊔

Now, for A encoded as a term A (using symbols ∅ : set, setcons : word ⇒
set ⇒ set), we can compute |f |A using the rules below, where we use unary
integers as in Example 1 (0 : nat, s : nat ⇒ nat), and defined symbols len : word ⇒
nat, max : nat ⇒ nat ⇒ nat, limit : word ⇒ nat ⇒ word, retif : word ⇒ nat ⇒
word ⇒ word, tryapply : (word ⇒ word) ⇒ word ⇒ nat ⇒ nat, tryall : (word ⇒
word) ⇒ set ⇒ nat ⇒ nat. By design, retif x ⌜n⌝ y reduces to y if |x| ≤ n and
to [] otherwise; tryapply Sf x ⌜n⌝ reduces to the unary encoding of |F |{x}(n) and
tryall a x ⌜n⌝ yields |F |A(n).

len [] → 0 len (x::y) → s (len y)
max 0m→ m max (sn) 0 → sn max (sn) (sm) → s (maxnm)
limit []n→ [] limit (x::y) 0 → [] limit (x::y) (sn) → x::(limit y n)

retif []n z → z retif (x::y) 0 z → [] retif (x::y) (sn) z → retif y n z

tryapplyF an→ len (retif an (F (limit an)))
tryallF ∅n→ 0 tryallF (setcons a tl)n→ max (tryapplyF an) (tryallF tl n)

An interpretation is provided in [5]. Importantly, the limit function ensures that,
in tryallF n we never apply F to a word w with |w| > n. Therefore we can
let JAKs = |A|, the number of words in A, and have J s

tryall = λλFan.F (n) and
J c
tryall = λλF cF san.1 + a+ F c(n) + 2 ∗ F s(n) + 2 ∗ n+ 6.

Now, for a given second-order polynomial P , fixed f, n, and a term A encoding
a set A ⊆W , we can construct a term ΘP

Sf ;⌜n⌝;A that computes P (|f |A, n) using
tryall and the functions add,mult from Example 1. By induction on P , we have
JΘP

Sf ;⌜n⌝;AKs = P (|f |, n), while its cost is bounded by a polynomial over |f |, n, |A|.

5.4 Finalising Execution

Now, we can define execution in a way that can be bounded by a polynomial
interpretation. We let execute : (word ⇒ word) ⇒ nat ⇒ nnat ⇒ nat ⇒ set ⇒
config ⇒ word and will define rules to reduce expressions executeF nmz a c
where
• F is the function to be used in oracle calls.
• n − 1 is a bound on the number of steps that can be done before the next

oracle call (or until the machine completes execution).
• m is essentially a natural number that represents the number of steps that

have been done so far. We use a new sort nnat with function symbols o : nnat
and n : nnat ⇒ nnat because we will let Snnat = (N,≤), so ordered in the
other direction. This will be essential to find an interpretation for execute.

• z is a unary representation of |w|, where w is the input to the OTM.
• c is the current configuration.

Using helper symbols F′ : (word ⇒ word) ⇒ nat ⇒ config ⇒ word, execute′ :
(word ⇒ word) ⇒ nat ⇒ nnat ⇒ nat ⇒ set ⇒ config ⇒ word, extract : tape ⇒
word and minus : nat ⇒ nnat ⇒ nat, we introduce the rules:

On Basic Feasible Functionals and the Interpretation Method 87

FF w → F′ F (lenw) (q0 (split(L []) (Rw)) (split(L []) (R [])) (split(L []) (R [])))

F′ F z c→ executeF ΘPM+1
F ;z;∅ o z ∅ c

executeF (sn)mz a (q t1 t2 t3) →
executeF n (nm) z (stepF (q t1 t2 t3)) for q /∈ {query, end}

executeF (sn)mz a (query t1 t2 t3) →
execute′ F n (nm) z (setcons (extract t2) a) (query t1 t2 t3)

execute′ F nmz a c→ executeF (minusΘPM+1
F ;z;a m)mz a (stepF c)

executeF nmz a (end t1 t2 t3) → extract t1
extract (split (Lx) (R y)) → clean y
minusx o → x minus 0 (n y) → o minus (sx) (n y) → minusx y

That is, an execution on FSf w starts by computing the length of w and
PM (|f |∅, |w|), and uses these as arguments to execute. Each normal transition
lowers the number n of steps we are allowed to do and increases the number n of
steps we have done. Each oracle transition updates A, and either lowers n by one,
or updates it to the new value PM (|f |A, |w|)−m, since we have already done m
steps. Once we read the final state, the answer is read off the first tape.

For the interpretation, note that the unusual size set of nnat allows us to
choose J s

minus = λλxy.max(x− y, 0) without losing monotonicity. Hence, in every
step executeF nmz a c, the value max(PM (JF Ks, JzKs)+ 1− JmKs, JnKs) decreases
by at least one. Since JΘPM+1F ; z; aKs = PM (JF Ks, JzKs) regardless of a, we can
use this component as part of the interpretation. The full interpretation functions
for execute and F are long and complex, so we will not supply them here. They
can be found in [5]. We will only conclude the other side of Theorem 2:

Theorem 4. If Ψ ∈ BFF, then there exists a finite orthogonal STRS R such that
F computes Ψ in R and R admits a polynomially bounded interpretation.

6 Conclusions and Future Work

In this paper, we have shown that BFF can be characterized through second-order
term rewriting systems admitting polynomially bounded cost–size interpretations.
This is arguably the first characterization of the basic feasible functionals purely
in terms of rewriting theoretic concepts.

For the purpose of presentation, we have imposed some mild restrictions that
we believe are not essential in practice. In future extensions, we can eliminate
these restrictions, such as allowing lambda-abstraction, non-base type rules, and
higher-order functions (assuming that F is still second-order). We can also allow
arbitrary inductive data structures as input.

Another direction we definitely wish to explore is the characterization of
polynomial time complexity for functionals of order strictly higher than two. It
is well known that the underlying theory in this case becomes less robust than
in type-2 complexity. As such, it is not clear which of the existing proposals for
complexity classes of higher-order polytime complexity we can hope to capture
within our framework.

88 P. Baillot et al.

References

1. Avanzini, M., Moser, G.: Polynomial path orders. Log. Methods Comput. Sci. 9(4)
(2013). https://doi.org/10.2168/LMCS-9(4:9)2013

2. Avanzini, M., Moser, G., Schaper, M.: Tct: Tyrolean complexity tool. In: Chechik,
M., Raskin, J. (eds.) Proceedings of TACAS 2016 conference. Lecture Notes in
Computer Science, vol. 9636, pp. 407–423. Springer (2016). https://doi.org/10.
1007/978-3-662-49674-9_24

3. Baillot, P., Dal Lago, U.: Higher-order interpretations and program complexity. In:
Proceedings of CSL 2012. LIPIcs, vol. 16, pp. 62–76. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012). https://doi.org/10.4230/LIPICS.CSL.2012.62, A
journal version in Information and Computation (248), 2016

4. Baillot, P., De Benedetti, E., Ronchi Della Rocca, S.: Characterizing polynomial
and exponential complexity classes in elementary lambda-calculus. Inf. Comput.
261, 55–77 (2018). https://doi.org/10.1016/J.IC.2018.05.005

5. Baillot, P., Dal Lago, U., Kop, C., Vale, D.: On basic feasible functionals and the
interpretation method (2024), https://arxiv.org/abs/2401.12385

6. Beame, P., Cook, S.A., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative
complexity of NP search problems. J. Comput. Syst. Sci. 57(1), 3–19 (1998).
https://doi.org/10.1006/JCSS.1998.1575

7. Beckmann, A., Weiermann, A.: A term rewriting characterization of the polytime
functions and related complexity classes. Arch. Math. Log. 36(1), 11–30 (1996).
https://doi.org/10.1007/s001530050054

8. Bellantoni, S.J., Cook, S.A.: A new recursion-theoretic characterization of the
polytime functions. Comput. Complex. 2, 97–110 (1992). https://doi.org/10.1007/
BF01201998

9. Bonfante, G., Cichon, A., Marion, J., Touzet, H.: Algorithms with polynomial
interpretation termination proof. J. Funct. Program. 11(1), 33–53 (2001). https:
//doi.org/10.1017/S0956796800003877

10. Bonfante, G., Marion, J., Moyen, J.: Quasi-interpretations a way to control resources.
Theor. Comput. Sci. 412(25), 2776–2796 (2011). https://doi.org/10.1016/j.tcs.2011.
02.007

11. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel,
Y. (ed.) Logic, Methodology and Philosophy of Science: Proceedings of the 1964
International Congress (Studies in Logic and the Foundations of Mathematics), pp.
24–30. North-Holland Publishing (1965)

12. Constable, R.L.: Type two computational complexity. In: Aho, A.V., Borodin, A.,
Constable, R.L., Floyd, R.W., Harrison, M.A., Karp, R.M., Strong, H.R. (eds.)
Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1973, Austin, Texas, USA. pp. 108–121. ACM (1973). https://doi.org/
10.1145/800125.804041

13. Dal Lago, U., Hofmann, M.: Realizability models and implicit complexity. Theor.
Comput. Sci. 412(20), 2029–2047 (2011). https://doi.org/10.1016/J.TCS.2010.12.
025

14. Danner, N., Royer, J.S.: Adventures in time and space. In: Morrisett, J.G., Jones,
S.L.P. (eds.) Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2006, Charleston, South Carolina,
USA, January 11-13, 2006. pp. 168–179. ACM (2006). https://doi.org/10.1145/
1111037.1111053

On Basic Feasible Functionals and the Interpretation Method 89

https://doi.org/10.2168/LMCS-9(4:9)2013
https://doi.org/10.2168/LMCS-9(4:9)2013
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.4230/LIPICS.CSL.2012.62
https://doi.org/10.4230/LIPICS.CSL.2012.62
https://doi.org/10.1016/J.IC.2018.05.005
https://doi.org/10.1016/J.IC.2018.05.005
https://arxiv.org/abs/2401.12385
https://doi.org/10.1006/JCSS.1998.1575
https://doi.org/10.1006/JCSS.1998.1575
https://doi.org/10.1007/s001530050054
https://doi.org/10.1007/s001530050054
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1007/BF01201998
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1017/S0956796800003877
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1016/j.tcs.2011.02.007
https://doi.org/10.1145/800125.804041
https://doi.org/10.1145/800125.804041
https://doi.org/10.1145/800125.804041
https://doi.org/10.1145/800125.804041
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1016/J.TCS.2010.12.025
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1145/1111037.1111053
https://doi.org/10.1145/1111037.1111053

15. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17,
279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

16. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, 11th
International Conference, LPAR 2004, Montevideo, Uruguay, March 14-18, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3452, pp. 301–331. Springer
(2004). https://doi.org/10.1007/978-3-540-32275-7_21

17. Hainry, E., Kapron, B.M., Marion, J., Péchoux, R.: A tier-based typed programming
language characterizing feasible functionals. In: Hermanns, H., Zhang, L., Kobayashi,
N., Miller, D. (eds.) LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, Saarbrücken, Germany, July 8-11, 2020. pp. 535–549. ACM
(2020). https://doi.org/10.1145/3373718.3394768

18. Hainry, E., Kapron, B.M., Marion, J., Péchoux, R.: Complete and tractable machine-
independent characterizations of second-order polytime. In: Bouyer, P., Schröder,
L. (eds.) Foundations of Software Science and Computation Structures - 25th
International Conference, FOSSACS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13242, pp.
368–388. Springer (2022). https://doi.org/10.1007/978-3-030-99253-8_19

19. Hainry, E., Péchoux, R.: Theory of higher order interpretations and application
to basic feasible functions. Log. Methods Comput. Sci. 16(4) (2020), https://lmcs.
episciences.org/6973

20. Hartmanis, J., Stearns, R.E.: Automata-based computational complexity. Inf. Sci.
1(2), 173–184 (1969). https://doi.org/10.1016/0020-0255(69)90014-0

21. Irwin, R.J., Royer, J.S., Kapron, B.M.: On characterizations of the basic feasible
functionals (part i). J. Funct. Program. 11(1), 117–153 (2001). https://doi.org/10.
1017/s0956796800003841

22. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J.
Comput. 25(1), 117–132 (1996). https://doi.org/10.1137/S0097539794263452

23. Kapron, B.M., Steinberg, F.: Type-two polynomial-time and restricted lookahead.
In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018. pp. 579–588. ACM (2018). https://doi.org/10.1145/3209108.3209124

24. Kawamura, A., Cook, S.A.: Complexity theory for operators in analysis. ACM Trans.
Comput. Theory 4(2), 5:1–5:24 (2012). https://doi.org/10.1145/2189778.2189780

25. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:
Introduction and survey. Theor. Comput. Sci. 121(1&2), 279–308 (1993). https:
//doi.org/10.1016/0304-3975(93)90091-7

26. Kop, C., Vale, D.: Cost-size semantics for call-by-value higher-order rewriting.
In: Proc. FSCD. LIPIcs, vol. 260, pp. 15:1–15:19 (2023). https://doi.org/10.4230/
LIPIcs.FSCD.2023.15

27. Kop, C., Vale, D.: Tuple interpretations for higher-order complexity. In: Kobayashi,
N. (ed.) 6th International Conference on Formal Structures for Computation
and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual
Conference). LIPIcs, vol. 195, pp. 31:1–31:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). https://doi.org/10.4230/LIPIcs.FSCD.2021.31

28. Kusakari, K.: On proving termination of term rewriting systems with higher-order
variables. IPSJ Transactions on Programming 42(SIG 7 (PRO 11)), 35–45 (2001),
http://id.nii.ac.jp/1001/00016864/

90 P. Baillot et al.

https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1145/3373718.3394768
https://doi.org/10.1145/3373718.3394768
https://doi.org/10.1007/978-3-030-99253-8_19
https://doi.org/10.1007/978-3-030-99253-8_19
https://lmcs.episciences.org/6973
https://lmcs.episciences.org/6973
https://doi.org/10.1016/0020-0255(69)90014-0
https://doi.org/10.1016/0020-0255(69)90014-0
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1017/s0956796800003841
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1137/S0097539794263452
https://doi.org/10.1145/3209108.3209124
https://doi.org/10.1145/3209108.3209124
https://doi.org/10.1145/2189778.2189780
https://doi.org/10.1145/2189778.2189780
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.1016/0304-3975(93)90091-7
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2023.15
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
http://id.nii.ac.jp/1001/00016864/

29. Lankford, D.S.: On proving term rewriting systems are noetherian. Memo MTP-3
(1979), https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_
Poly_Term.pdf

30. Leivant, D.: A foundational delineation of computational feasiblity. In: Proceedings
of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amster-
dam, The Netherlands, July 15-18, 1991. pp. 2–11. IEEE Computer Society (1991).
https://doi.org/10.1109/LICS.1991.151625

31. Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Proceedings of
the Third Hawaii International Conference on System Science. pp. 789–792 (1970)

32. Mehlhorn, K.: Polynomial and abstract subrecursive classes. J. Comput. Syst. Sci.
12(2), 147–178 (1976). https://doi.org/10.1016/S0022-0000(76)80035-9

33. Oitavem, I.: Implicit characterizations of pspace. In: Kahle, R., Schroeder-Heister,
P., Stärk, R.F. (eds.) Proof Theory in Computer Science, International Seminar,
PTCS 2001, Dagstuhl Castle, Germany, October 7-12, 2001, Proceedings. Lecture
Notes in Computer Science, vol. 2183, pp. 170–190. Springer (2001). https://doi.
org/10.1007/3-540-45504-3_11

34. Terese: Term rewriting systems, Cambridge tracts in theoretical computer science,
vol. 55. Cambridge University Press (2003)

On Basic Feasible Functionals and the Interpretation Method 91

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1109/LICS.1991.151625
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1016/S0022-0000(76)80035-9
https://doi.org/10.1007/3-540-45504-3_11
https://doi.org/10.1007/3-540-45504-3_11
https://doi.org/10.1007/3-540-45504-3_11
https://doi.org/10.1007/3-540-45504-3_11
http://creativecommons.org/licenses/by/4.0/

Logic and Proofs

Succinctness of Cosafety Fragments of LTL
via Combinatorial Proof Systems

Abstract. This paper focuses on succinctness results for fragments of
Linear Temporal Logic with Past (LTL) devoid of binary temporal oper-
ators like until, and provides methods to establish them. We prove that
there is a family of cosafety languages (Ln)n≥1 such that Ln can be ex-
pressed with a pure future formula of size O(n), but it requires formulae
of size 2Ω(n) to be captured with past formulae. As a by-product, such
a succinctness result shows the optimality of the pastification algorithm
proposed in [Artale et al., KR, 2023] .

We show that, in the considered case, succinctness cannot be proven by
relying on the classical automata-based method introduced in [Markey,
Bull. EATCS, 2003]. In place of this method, we devise and apply a
combinatorial proof system whose deduction trees represent LTL formu-
lae. The system can be seen as a proof-centric (one-player) view on the
games used by Adler and Immerman to study the succinctness of CTL.

Keywords: Temporal logics · LTL · Succinctness · Proof systems.

1 Introduction

Linear Temporal Logic with Past (LTL [17,23]) is the de-facto standard language
for the specification, verification, and synthesis of reactive systems [19]. Concern-
ing these reasoning tasks, two fundamental subsets of LTL-definable languages
come into play, namely, safety and cosafety languages. Safety languages express
properties stating that “something bad never happens”; cosafety languages, in-
stead, express the fact that “something good will eventually happen”. The crucial
feature of cosafety (resp., safety) languages is that checking a finite prefix of an
infinite trace suffices to establish whether the entire trace belongs (resp., does
not belong) to the language. Such an ability of reducing reasoning over infinite
words to the finite case plays a fundamental role in lowering the complexity of
reasoning tasks [16]. Because of this, while LTL was commonly interpreted over
infinite traces, recent work mainly considers its finite trace semantics [8,18,22].

In what follows, given a set of temporal operators S, we write LTL[S] for the
set of all LTL formulae in negation normal form whose temporal operators are
restricted to those in S. Similarly, we denote with F(LTL[S]) the set of formulae of
the form F(α), with α ∈ LTL[S]. Here, F is the future modality (a.k.a. eventually).

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 95–11 , 2024.
https://doi.org/10.1007/978-3-031-57231-9_5

Luca Geatti1(B) , Alessio Mansutti2 , and Angelo Montanari

1 University of Udine, Udine, Italy
luca.geatti,angelo.montanari @uniud.it

2 IMDEA Software Institute, Madrid, Spain

alessio.mansutti@imdea.org

{ }

5

(B) 1(B)

http://orcid.org/0000-0002-7125-787X
http://orcid.org/0000-0002-1104-7299
http://orcid.org/0000-0002-4322-769X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_5&domain=pdf

There are two notable syntactic characterizations of the cosafety languages
of LTL. The first one is a pure future characterization given by the logic LTL[X,U]
featuring modalities next X and until U. The second one is an eventually pure
past3 characterisation given by the logic F(pLTL), where pLTL is the pure past
fragment of LTL, that is, the restriction of LTL to past modalities. Analogous
characterizations have been provided for safety languages.

As for applications, F(pLTL) is considered to be much more convenient than
LTL[X,U], because, starting from an (eventually) pure past formula of size n, it
is possible to build an equivalent deterministic finite automaton of singly expo-
nential size in n [7]. In the case of LTL[X,U], such an automaton may have size
doubly exponential in n [16]. This computational advantage of pure past formu-
lae originated a recent line of research that focuses on the pastification problem,
i.e., the problem of translating an input pure future formula for a cosafety (or
safety) language into an equivalent pure past (equivalently, eventually pure past)
formula. While the best known algorithm for LTL[X,U] is triply exponential [7],
a singly exponential pastification algorithm to transform LTL[X,F] formulae into
F(LTL[Y, Ỹ,O]) ones has been recently developed in [4]. Here, modalities yester-
day Y and once O are the “temporal reverses” of modalities X and F, respectively,
whereas the weak yesterday operator Ỹ is the dual of Y (we formally define the
semantics of all these modalities in Section 2). No super-polynomial lower bounds
for these pastification problems are known.

While the above two characterisations of cosafety languages have been thor-
oughly studied in the last decades in terms of expressiveness [6] and complex-
ity [2], their succinctness is still poorly understood. To the best of our knowledge,
the only known result is the one in [3] showing that F(pLTL) can be exponen-
tially more succinct than LTL[X,U] — note that lower bounds to pastification
problems require the opposite direction.4

In this paper, we study the succinctness of LTL[F] against F(LTL[Y, Ỹ,O,H]),
where H is the dual of O, as well as the succinctness of their reverse logics [3],
that is, the succinctness of F(LTL[O]) against LTL[X, X̃,F,G]. For these fragments
of LTL, we establish the following two results.

Theorem 1. F(LTL[O]) can be exponentially more succinct than LTL[X, X̃,F,G].

Theorem 2. LTL[F] can be exponentially more succinct than F(LTL[Y, Ỹ,O,H]).

The two theorems prove an incomparability result about the succinctness of
the characterizations of cosafety languages in the pure future and eventually
pure past fragments of LTL. Theorem 1 and Theorem 2 hold for both the finite
and infinite trace semantics of LTL (however, due to lack of space, we report the
proof of Theorem 1 only in the case of finite traces). As a corollary, Theorem 2
implies that the pastification algorithm proposed in [4] is optimal.

3 “Eventually pure past” refers to formulae of the form F(α), with α pure past formula.
4 A logic L can be exponentially more succinct than a logic L′ whenever there is a
family of languages (Ln)n≥1 such that Ln can be expressed in L with a formula of
size polynomial in n, whereas expressing Ln in L′ requires formulae of size 2Ω(n).

96 L. Geatti et al.

Corollary 1. The pastification of LTL[X,F] into F(LTL[Y, Ỹ,O,H]) is in 2Θ(n).

To prove Theorem 1, we devise and apply a combinatorial proof system.5

Given two sets of finite traces A and B, with the proof system one can establish
whether there is a formula φ in LTL[X, X̃,F,G] that separates A from B, that is,
φ is satisfied by all traces in A (written A |= φ) and violated by all traces in
B (written B |= φ). A proof obtained by applying k rules of the proof system
corresponds to the existence of one such separating formula φ of size k.

The proposed combinatorial proof system can be seen as a reformulation in
terms of proofs of the games introduced by Adler and Immerman to show that
CTL+ is Θ(n)! more succinct than CTL [1]. They are two-player games that
extend Ehrenfeucht–Fräıssé games for quantifier depth in a way that captures
the notion of formula size instead. However, unlike Ehrenfeucht–Fräıssé ones, in
Adler–Immerman games one of the two players (the duplicator) has always a
trivial strategy. With our proof system, we show that removing the duplicator
from the game yields a natural one-player game based on building proofs.

To prove Theorem 1 by applying the proposed proof system, we provide,
for every n ≥ 1, a formula Φn in F(LTL[O]) of size linear in n and two sets of
traces An and Bn such that An |= Φn and Bn |= Φn, and then we show that
the smallest deduction tree that separates An from Bn has size at least 2n. This
implies that all formulas of LTL[X, X̃,F,G] capturing Φn are of size at least 2n.

Once Theorem 1 is established, one can prove Theorem 2 by “reversing”
the direction of time, building correspondences between formulae of LTL[F] and
FLTL[O], and between formulae of F(LTL[Y, Ỹ,O,H]) and LTL[X, X̃,F,G].

In the context of LTL, the main technique to prove “future against past” suc-
cinctness discrepancies is arguably the automata method introduced by Markey
in [20]. At its core, such a method exploits the fact that pure future formulae
of LTL can be translated into nondeterministic Büchi automata of exponential
size, and thus no property requiring a doubly exponential size automaton can
be represented succinctly. The introduction of our proof system raises the ques-
tion of whether Markey’s method can be applied to establish our succinctness
results. We prove that it cannot be used in our context. In order to obtain such
a result, the key observation is that, given a cosafety formula Fψ, a deterministic
Büchi automaton (DBA) for Fψ of size ℓ, and a prefix Π consisting of k temporal
operators among X, F, and G, the minimal DBA for the formula ΠFψ has size
polynomial in k and ℓ.

Synopsis. Section 2 introduces the necessary background. Section 3 discusses the
languages we use to prove Theorem 1. Section 4 introduces the combinatorial
proof system. In Section 5 we prove Theorem 1. In Section 6 we prove Theorem 2
and Corollary 1. The limits of the automata-based method to prove succinctness
lower bounds are discussed in Section 7. Related and future work are discussed
in Section 8. An extended version of the paper, complete of all proofs, can be
found in [13].

5 We use the term “combinatorial” for our proof system to conform with the terminol-
ogy from the Workshop “Combinatorial Games in Finite Model Theory”, LICS‘23.

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 97

2 Preliminaries

In this section, we introduce background knowledge on LTL focusing on finite
traces. All definitions admit a natural extension to the setting of infinite traces.

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over Σ
and by Σ+ the subset of finite non-empty words. We use the term trace as a syn-
onym of word. A language L over Σ is a subset of Σ∗. Let σ = ⟨w0, w1, . . . , wn⟩
be a word in Σ∗. We denote by |σ| the length of σ, that is, n+1. A position in σ is
an element in the set pos(σ) := [0, n]. For every i ∈ pos(σ), we denote by σ[i] ∈ Σ
the letter wi, and by σ[i⟩ the word ⟨wi, . . . , wn⟩. We say that position j of σ has
type τ ∈ Σ whenever σ[j] = τ . Given two traces σ1 and σ2, we write σ1 ⊑ σ2
whenever σ1 is a suffix of σ2, that is, there is j ∈ pos(σ2) such that σ1 = σ2[j⟩.
Given a word σ′ ∈ Σ∗, we denote the concatenation of σ′ to σ as σ ·σ′, or simply
σσ′. Given two languages L and L′, we define L ·L′ := {σ · σ′ | σ ∈ L, σ′ ∈ L′}.
We sometimes apply the concatenation to a word and a language; in these cases
the word is implicitly converted into a singleton language, e.g., σ · L := {σ} · L.
With A⊆fin B we denote the fact that A is a finite subset of the set B.

Linear Temporal Logic with Past. In the following, we introduce syntax and
semantics of Linear Temporal Logic with Past (LTL) restricted to those operators
that we are going to use throughout the paper. In particular, we omit the future
operators until and release, and their past counterparts (since and triggers). Let
AP be a finite set of atomic propositions. The syntax of the formulae over AP
is generated by the following grammar:

φ := p | ¬p | φ ∨ φ | φ ∧ φ Boolean connectives

| Xφ | X̃φ | Fφ | Gφ future operators

| Yφ | Ỹφ | Oφ | Hφ past operators

where p ∈ AP . The temporal operators are respectively called: X, next ; X̃,
weak next ; F, future; G, globally ; Y, yesterday ; Ỹ, weak yesterday ; O, once; H,
historically. For the rest of the paper, we let OP := {X, X̃,F,G,Y, Ỹ,O,H}.

For every formula φ, we define the size of φ, denoted by size(φ), inductively
defined as follows: (i) size(p) := 1 and size(¬p) := 1, (ii) size(⊗φ) := size(φ) + 1,
for ⊗ ∈ OP, and (iii) size(φ1 ⊕ φ2) := size(φ1)+ size(φ2) + 1 for ⊕ ∈ {∨,∧}.

We focus on the interpretation of LTL formulae over finite non-empty traces
over the alphabet 2AP . From now on, we set the alphabet Σ to be 2AP . Given
a word σ ∈ Σ+, the satisfaction of a formula φ by σ at time point / position
i ∈ pos(σ), denoted by σ, i |= φ, is defined as follows:

1. σ, i |= p iff p ∈ σ[i];
2. σ, i |= ¬p iff p ̸∈ σ[i];
3. σ, i |= φ1 ∨ φ2 iff σ, i |= φ1 or σ, i |= φ2;
4. σ, i |= φ1 ∧ φ2 iff σ, i |= φ1 and σ, i |= φ2;
5. σ, i |= Xφ iff i+ 1 < |σ| and σ, i+ 1 |= φ;
6. σ, i |= X̃φ iff either i+ 1 = |σ| or σ, i+ 1 |= φ;

98 L. Geatti et al.

7. σ, i |= Fφ iff there exists i ≤ j < |σ| such that σ, j |= φ;
8. σ, i |= Gφ iff for all i ≤ j < |σ|, it holds σ, j |= φ;
9. σ, i |= Yφ iff i > 0 and σ, i− 1 |= φ;
10. σ, i |= Ỹφ iff either i = 0 or σ, i− 1 |= φ;
11. σ, i |= Oφ iff there exists 0 ≤ j ≤ i such that σ, j |= φ;
12. σ, i |= Hφ iff for all 0 ≤ j ≤ i, it holds σ, j |= φ.

For every formula φ, we say that a trace σ satisfies φ, written σ |= φ, if
σ, 0 |= φ. The language of φ, denoted by L(φ), is the set of words σ ∈ Σ+ such
that σ |= φ. Given two formulae φ and ψ, we say that φ is equivalent to ψ,
written φ ≡ ψ, whenever L(φ) = L(ψ).

Fragments of LTL. Given a set of operators S ⊆ OP, we denote by LTL[S]
the set of formulae only using temporal operators from S. When dealing with
a concrete S, we omit the curly brackets and write, e.g., LTL[X,F] instead of
LTL[{X,F}]. Whenever S contains only future operators (resp., past operators),
the logic LTL[S] is called a pure future (resp., pure past) fragment of LTL. Fi-
nally, we denote by F(LTL[S]) (resp., G(LTL[S])) the set of formulae of the form
F(α) (resp., G(α)), where α is a formula of LTL[S]. A language L ⊆ Σ∗ is a
cosafety language whenever L = K · Σ∗, for some K ⊆ Σ∗. A language L is
a safety language whenever its complement L is a cosafety language. For every
formula φ in the fragments LTL[X,F] and F(LTL[Y, Ỹ,O,H]), it holds that L(φ)
is a cosafety language. Similarly, for every formula φ in the fragments LTL[X̃,G]
and G(LTL[Y, Ỹ,O,H]), it holds that L(φ) is a safety language.

The pastification problem. Given two sets S ⊆ {X, X̃,F,G} and S′ ⊆ {Y, Ỹ,O,H},
the pastification problem for LTL[S] into F(LTL[S′]) asks, given an input formula
φ ∈ LTL[S], to return a formula ψ from F(LTL[S′]) such that φ ≡ ψ. An algorithm
for the pastification problem is said to be of k-exponential size (for k ∈ N fixed)
whenever the output formula ψ is such that size(ψ) ∈ expk2(poly(size(φ))), where
expk(.) is the k-th iteration of the base-2 tetration function given by exp0(n) = n

and expi+1(n) = 2exp
i(n). In [4], an exponential time, 1-exponential size, pasti-

fication algorithm for LTL[X,F] into F(LTL[Y, Ỹ,O]) is presented.

Succinctness. Given two sets S, S′ ⊆ OP, we say that LTL[S] can be exponentially
more succinct than LTL[S′] if there is a family of languages (Ln)n≥1 such that,
for every n ≥ 1, Ln ⊆ Σ+

n , for some alphabet Σn, and:

– there is φ ∈ LTL[S] such that L(φ) = Ln and size(φ) ∈ poly(n), and
– for every ψ ∈ LTL[S′], if L(ψ) = Ln then size(ψ) ∈ 2Ω(n).

It is worth noticing that the above-given syntax for LTL is already in negation
normal form, that is, negation may only appear in front of atomic propositions.
Allowing negations to occur freely in the formula neither increase expressiveness
nor succinctness, as the grammar above is already closed under dual operators,
e.g., Gφ ≡ ¬F¬φ, and the size of a formula does not depend on the number
of negations occurring in literals. Because of this, all results given in the paper
continue to hold when negation is added to the language.

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 99

3 A problematic cosafety language for LTL[X, X̃, F,G]

We now describe the property that we will exploit to prove that F(LTL[O]) can
be exponentially more succinct than LTL[X, X̃,F,G] (Theorem 1). More precisely,
we define a family of F(LTL[O]) formulae (Φn)n≥1 such that, for every n ≥ 1, Φn

has size in O(n) and captures a property requiring a formula of size at least 2n

to be expressed in LTL[X, X̃,F,G] (as we will see in Section 5).
Let n ≥ 1. We consider the alphabet of 2n + 2 distinct atomic propositions

AP := {p̃, q̃} ∪ P ∪Q, with P := {p1, . . . , pn} and Q := {q1, . . . , qn}. For all
n ≥ 1, the formula Φn of F(LTL[O]) is defined as follows:

Φn := F
(
q̃ ∧

∧n
i=1

((
qi ∧ O(p̃ ∧ pi)

)
∨
(
¬qi ∧ O(p̃ ∧ ¬pi)

)))
.

Observe that, for every n ≥ 1, size(Φn) belongs to O(n). The formula Φn is
satisfied by those traces σ ∈ Σ+ where there is a position j ∈ pos(σ) such that
(i) q̃ ∈ σ[j] and (ii) for every i ∈ [1, n] there is a position ki ∈ [0, j] such that
p̃ ∈ σ[ki] and qi ∈ σ[j] if and only if pi ∈ σ[ki]. Notice that each ki ∈ [0, j]
depends on an index i ∈ [1, n]. Therefore, for distinct i, j ∈ [1, n] the positions
ki and kj might differ. This feature is crucial to get a language which has a
compact definition in F(LTL[O]), but is hard to capture for LTL[X, X̃,F,G].

As a matter of fact, requiring the various ki to coincide yields a formula
Ψn characterising the property: “the trace σ has two positions j ≥ k such that
p̃ ∈ σ[k], q̃ ∈ σ[j] and, for every i ∈ [1, n], qi ∈ σ[j] if and only if pi ∈ σ[k]”.
This formula is known to require exponential size in LTL [20], and therefore in
F(LTL[O]) as well. In a sense, the asymmetry obtained by relaxing the uniqueness
of the position k above is what makes Φn being easily expressible in F(LTL[O]),
but difficult to characterise in LTL[X, X̃,F,G]. The same trick, applied to posi-
tion j instead of position k, can be used to obtain a family of formulae that
can be represented in an exponentially more succinct way in LTL[F] than in
F(LTL[Y, Ỹ,O,H]). This form of “temporal duality” is what we will ultimately
exploit in Section 6 to prove Theorem 2.

The following lemma shows that Φn can be expressed in LTL[F] (and thus in
LTL[X, X̃,F,G] as well) with a formula of exponential size.

Lemma 1. For every n ≥ 1, there is a formula Φ′
n in LTL[F] such that Φ′

n ≡ Φn

and size(Φ′
n) < 2n+1(n+ 2)2.

Proof sketch. Given τ ∈ 2P , we write τ for the element of 2Q such that pi ∈ τ if
and only if qi ∈ τ , for every i ∈ [1, n]. Then, the formula Φ′

n is defined as follows:

Φ′
n :=

∨
τ ∈ 2P

(∧
p∈ τ F

(
p̃ ∧ p ∧ F(q̃ ∧ ψτ)

)
∧
∧

p∈P\τ F
(
p̃ ∧ ¬p ∧ F(q̃ ∧ ψτ)

))
,

where ψτ := (
∧

q ∈ τ q ∧
∧

q ∈Q\τ ¬q).

4 A combinatorial proof system for LTL[X, X̃, F,G]

In this section, we introduce the proof system that we will later employ to
prove Theorem 1, and discuss its connection with Adler–Immerman games [1].

100 L. Geatti et al.

Further notation. Let A ⊆ Σ+, with Σ := 2AP for some set of propositions AP .
We define AX := {σ[1⟩ : σ ∈ A s.t. |σ| ≥ 2}, i.e., the set of non-empty traces
obtained from A by stepping each trace one position to the right. We define
AG := {σ[j⟩ : σ ∈ A and j ∈ pos(σ)}, i.e., the set of all suffixes of the traces in A.
We say that a map f : A→ N is a future point for A whenever f(σ) ∈ pos(σ) for
every σ ∈ A. We write FA for the set of all maps that are future points for A.
Given a future point f for A and σ ∈ A with f(σ) = i, we define σf := σ[i⟩ and
Af := {σf : σ ∈ A}. Note that, by definition, AG =

⋃
f∈FA

Af .
For a formula φ of LTL, we write A |= φ whenever (σ, 0) |= φ for every

σ ∈ A, and A |= φ whenever (σ, 0) ̸|= φ for every σ ∈ A. Given two sets of traces
A,B ⊆ Σ+ we say that φ separates A from B whenever A |= φ and B |= φ. We
write ⟨·, ·⟩S ⊆ Σ+ × Σ+ for the separable relation on S ⊆ OP, i.e., the binary
relation holding on pairs (A,B) whenever there is some formula from LTL[S]
that separates A from B. Note that, when A and B are finite sets and X ∈ S,
deciding whether ⟨A,B⟩S holds is trivial.

Lemma 2. Let A,B ⊆ Σ+ and S ⊆ OP. Then, ⟨A,B⟩S implies A ∩ B = ∅.
Moreover, if A and B are finite sets and X ∈ S, A ∩B = ∅ implies ⟨A,B⟩S.

Proof sketch. For the first statement, clearly if A∩B ̸= ∅ then it is not possible
to separate A from B. To prove the second statement, one defines a disjunction φ
of formulae, each characterising an element in A. For instance, for AP = {p, q},
the trace {p}{q} can be characterised with the formula (p∧¬q)∧X(q∧¬p∧ X̃⊥),
where ⊥ := p ∧ ¬p. Then, φ separates A from B.

We mainly consider the relation ⟨·, ·⟩S with S being the set {X, X̃,F,G}, and
thus from now on simply write ⟨·, ·⟩ when considering this concrete choice of S.

4.1 The proof system

The combinatorial proof system that we define is a natural-deduction-style proof
system. It is made of several inference rules of the form H1 H2 ... Hn

C , to be read
as “if the hypotheses H1, . . . ,Hn hold, then the consequence C holds”. As usual,
proofs within the proof system have a tree-like presentation. An example of
such a deduction tree is given in Figure 2, where a := {p} and b := ∅, with
p ∈ AP . This is a deduction tree for the term ⟨{abaa, aaaa}, {aaab}⟩, which
we call the root of the deduction tree. In Figure 2, to the root it is applied
the rule Or, with hypotheses ⟨{abaa}, {aaab}⟩ and ⟨{aaaa}, {aaab}⟩. In turn,
these two hypotheses are derived in the deduction tree by eventually reaching
applications to the rule Atomic. A deduction tree is always closed : all maximal
paths from the root ends with an application of the rule Atomic. This means
that a rule of the proof system must be applied to each term ⟨A,B⟩ appearing
in the tree. We call a tree a partial deduction tree if this property is not enforced,
namely when there might be unproven terms ⟨A,B⟩. The size of a deduction
tree is the number of rules in it. For instance, the tree in Figure 2 has size 5.

We define the inference rules of the proof system in Figure 1. Let us briefly
describe these rules. The Atomic rule allows deriving ⟨A,B⟩ if every trace in A

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 101

Atomic
A |= α B |= α

⟨A,B⟩
α literal Or

⟨A1, B⟩ ⟨A2, B⟩
⟨A1 ⊎A2, B⟩

And
⟨A,B1⟩ ⟨A,B2⟩

⟨A,B1 ⊎B2⟩

Next
⟨AX, BX⟩

⟨A,B⟩
WeakNext

⟨A ,BX X⟩
⟨A,B⟩

Future
⟨Af , BG⟩
⟨A,B⟩

f ∈ FA Globally
⟨AG, Bf⟩
⟨A,B⟩

f ∈ FB

Fig. 1. The combinatorial proof system. Here, A,B ⊆ Σ+.

Or

Next

Atomic
{baa} |= ¬p {aab} |= ¬p

⟨{baa}, {aab}⟩
⟨{abaa}, {aaab}⟩

{aaaa, aaa, aa, a} |= p {b} |= p
⟨{aaaa, aaa, aa, a}, {b}⟩

Atomic

⟨{aaaa}, {aaab}⟩
Globally

⟨{abaa, aaaa}, {aaab}⟩

Fig. 2. A deduction tree proving ⟨{abaa, aaaa}, {aaab}⟩. Here, a := {p} and b := ∅.

satisfies some literal α and every trace in B violates α. The Or rule corresponds
the case of A being separable from B via a formula of the form φ1 ∨ φ2. In
this and the rule And, ⊎ stands for the union of disjoint sets. Intuitively, Or
can be applied by proving that φ1 separates a set A1 ⊆ A from B and that φ2

separates the set A\A1 from B. The Next rule allows separating A from B with
a formula of the form Xφ, by checking whether the sets obtained by stepping
all traces in A and B to next time point are separable by φ. The condition

is necessary to ensure that all traces in A have a next time point.
The Future rule separates A from B by following this principle: if the set
obtained by choosing one suffix for every trace in A is separable from the set of
all suffixes of the traces in B, then there is a formula of the form Fφ separating
A from B. The rules And, WeakNext and Globally are designed to be duals
of the rules Or, Next and Future, respectively.

By using the proof system one can derive whether a pair of (finite or infinite)
sets of traces (A,B) is in the separable relation ⟨·, ·⟩. Because of Lemma 2, this
is not, however, a particularly useful application. Instead, the proof system is to
be used to derive non-trivial lower (or upper) bounds on the size of the minimal
formula that separates A from B. This is done by studying the sizes of the
possible deduction trees of ⟨A,B⟩ in the proof system.

For instance, the deduction tree of Figure 2 shows that there is a formula φ
having size(φ) = 5 and separating {abaa, aaaa} from {aaab}. This formula is
found by simply reading bottom-up, starting from the root, the rules in the
deduction tree, associating to each rule the homonymous operator of LTL. In the
case of the tree in Figure 2 we have φ := (X¬p) ∨ Gp. Note that the formula φ
is not the smallest separating formula, because the formula XXGp also separates
{abaa, aaaa} from {aaab} and corresponds to a tree of size 4.

The correspondence between deduction trees and formulae is formalised in
the next theorem (we remark that A and B below do not need to be finite sets).

102 L. Geatti et al.

A ⊆ Σ · Σ+

A ⊆ Σ · Σ+ ⊆ Σ · Σ+B

Theorem 3. Consider A,B ⊆ Σ+. Then, the term ⟨A,B⟩ has a deduction tree
of size k if and only if there is a formula φ of LTL[X, X̃,F,G] separating A from
B and such that size(φ) = k.

Proof sketch. We leave to the reader the proof of the left to right direction of
the theorem (shown by induction on k), as it is not required to establish lower
bounds on the sizes of formulae, and focus instead on the right to left direction.

Consider a LTL[X, X̃,F,G] formula φ that separates A and B. We construct
a deduction tree of size size(φ). We proceed by structural induction on φ.

base case: φ literal. The deduction tree consists of a single rule Atomic.

induction step, case: φ = φ1 ∨ φ2. Define A1 := {a ∈ A : a |= φ1} and
A2 := A \ A1. From A |= φ and B |= φ we get Ai |= φi and B |= φi for both
i ∈ {1, 2}. By induction hypothesis ⟨Ai, B⟩ has a deduction tree of size size(φi).
By applying the rule And, we obtain a deduction tree for ⟨A,B⟩ having size
size(φ1) + size(φ2) + 1 = size(φ).

induction step, case: φ = Xψ. Since A |= Xψ, for every σ ∈ A we have |σ| ≥ 2

every σ′ ∈ B, if |σ′| ≥ 2 then (σ′, 1) ̸|= ψ. By definition of BX, we have BX |= ψ.
By induction hypothesis, ⟨AX, BX⟩ has a deduction tree of size size(ψ). We apply
the rule Next to obtain a deduction tree of ⟨A,B⟩ of size size(ψ)+ 1 = size(φ).

induction step: φ = Fψ. Since A |= Fψ, for every σ ∈ A there is jσ ∈ pos(σ)
such that (σ, jσ) |= ψ. Let f ∈ FA be the map given by f(σ) = jσ for every
σ ∈ A. We have Af |= ψ. We show that BG |= ψ. Ad absurdum, suppose there
is σ1 ∈ BG such that σ1 |= ψ. By definition of BG there is σ2 ∈ B such that
σ1 ⊑ σ2. Then, (σ2, 0) |= Fψ. However, this contradicts the fact that B |= Fψ.
Therefore, BG |= ψ. By induction hypothesis, ⟨Af , BG⟩ has a deduction tree of
size size(ψ). By applying the rule Future, we obtain a deduction tree for ⟨A,B⟩
of size size(ψ) + 1 = size(φ).

induction step, cases φ = φ1 ∧ φ2, φ = X̃ψ and φ = Gψ. The cases for
φ = φ1 ∧ φ2, φ = X̃ψ and φ = Gψ are analogous to the cases φ = φ1 ∨ φ2,
φ = Xψ and φ = Fψ, respectively.

The right to left direction of Theorem 3 implies the following corollary that
highlights how our proof system is used for formulae sizes lower bounds.

Corollary 2. Consider a formula φ in LTL[X, X̃,F,G]. Suppose that (i) there
are A,B ⊆ Σ+ such that φ separates A from B, and (ii) every deduction tree of
⟨A,B⟩ has size at least k. Then, size(φ) ≥ k.

4.2 Connections with the Adler–Immerman games

As outlined in Section 1, our proof system can be seen as an adaptation of the
games for CTL introduced by Adler and Immerman in [1]. We now illustrate
this connection. Readers that are mostly interested in seeing our proof system
in action may want to skip to Section 5.

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 103

and (σ, 1) |= ψ. By definition of AX, A ⊆ Σ ·Σ+ and AX |= ψ. From B |= Xψ, for

The Adler–Immerman games extend the classical Ehrenfeucht–Fräıssé games
in order to bound the sizes of the formulae that separate two (sets of) struc-
tures, instead of their quantifier depths. As in the Ehrenfeucht–Fräıssé games,
the Adler–Immerman games are two-player games between a spoiler and a du-
plicator. The game arena is a pair of sets of structures (A,B), and at each
round of the game the spoiler choses a rule r to play (there is one rule for each
Boolean connective and operator of the logic) and plays on one set of structures
accordingly to what r dictates. The duplicator replies on the other set, again
accordingly to r. The goal of the spoiler is to separate A from B (i.e., to show
⟨A,B⟩ in the context of CTL) in fewer rounds as possible, whereas the duplica-
tor must prolong the game as much as she can. The length of the minimal game
corresponds to the size of the minimal formula separating A from B. The main
difference between an Adler–Immerman game and an Ehrenfeucht–Fräıssé game
is that, in the former, in each round the duplicator is allowed to make copies
of the structures in the set she is playing on, and to play differently in each of
these copies. This extra power given to the duplicator is why the games end up
capturing the notion of size of a formula.

In the setting of the Adler–Immerman games, the rule for the operator F in
LTL would be spelled as follows: “For each structure σ ∈ A, the spoiler moves to
a future position of σ (i.e., σ[j⟩ for some j ∈ pos(σ)). The duplicator answers
by first making as many copies of elements in B as she wants, and then selects
a future position for each of these copies”. Because she can make copies, the
duplicator has a trivial optimal strategy: at each round, copy the structures in
B as much as possible, choosing a different position in each copy. The rule for F
the simplifies to “For each structure σ ∈ A, the spoiler moves to a future position
of σ. The duplicator answers with BG”, which corresponds to our rule Future.

While Adler and Immerman discuss the fact that the duplicator has a trivial
optimal strategy, they do not restate the games with only one player (mainly
to not lose the similarity with the Ehrenfeucht–Fräıssé games). Our work shows
that removing the duplicator yields a natural one-player game based on building
proofs within a proof system. We think that this proof-system view has a few
merits over the games. When proving lower bounds, it reduces the clumsiness of
discussing the various moves of the spoiler and the replies of the duplicator. The
combinatorics is of course still there, but not the players, and this substantially
simplifies the exposition. Second, the proof system resembles the way in which
one reasons about the algorithmic problem of separating A from B. For instance,
the algorithm presented in [21] uses decision trees for solving this problem. These
decision trees, when they encode a formula from LTL[X, X̃,F,G], can be easily
translated into proofs in our proof system. We discuss more this line of work
connected with LTL formulae learning and explainable planning in Section 8.

5 The exponential lower bound for Φn

In this section, we show that, for every n ≥ 1, all formulae of LTL[X, X̃,F,G]
characterising the F(LTL[O]) formula Φn defined in Section 3 have size at least 2n.

104 L. Geatti et al.

According to the definition of Φn, we consider a set of 2n + 2 distinct atomic
propositions AP := {p̃, q̃}∪P ∪Q, with P := {p1, . . . , pn} and Q := {q1, . . . , qn};
and Σ := 2AP . Throughout the section, let α(n) := 2n+1(n+2)2, i.e., the upper
bound given in Lemma 1 for one of these formulae.

Following Corollary 2, to prove the exponential lower bound we

1. define A,B ⊆ Σ+ such that Φn separates A from B (Section 5.1), and
2. prove that every deduction tree for ⟨A,B⟩ has size at least 2n (Section 5.2).

5.1 Setting up the sets of traces A and B

We define the sets of types TP := {τ ∈ Σ : p̃ ∈ τ and τ ⊆ P ∪ {p̃}} and
TQ := {τ ∈ Σ : q̃ ∈ τ and τ ⊆ Q ∪ {q̃}}. Similarly to what done in the proof

of Lemma 1, we write (·) for the involution on TP ∪ TQ sending a type τ ∈ TQ
into the (only) type τ ∈ TP with qi ∈ τ if and only if pi ∈ τ , for every i ∈ [1, n].

Throughout the section, we fix a (arbitrary) strict total order ≺ on the ele-
ments of TQ. Then, we denote by E ∈ (∅α(n) ·TQ)2

n ·∅α(n) the (only) finite word
enumerating all elements in TQ, with respect to the order ≺. Note that, in E ,
between any two subsequent elements of TQ there are α(n) positions of type ∅.
This “padding” added to the enumeration is required to handle the rules Next
and WeakNext. Given τ ∈ TQ, we write E|−τ for the trace obtained from E by
eliminating the only position of type τ , together with the α(n) positions of type
∅ preceding it. So, E−τ belongs to (∅α(n) · TQ)2

n−1 ·∅α(n).
For instance, consider the case of n = 2, so Q = {q1, q2} and α(n) = 128.

Suppose {q̃} ≺ {q̃, q1} ≺ {q̃, q2} ≺ {q̃, q1, q2} to be the strict order on TQ. Then,

E = ∅128 · {q̃} ·∅128 · {q̃, q1} ·∅128 · {q̃, q2} ·∅128 · {q̃, q1, q2} ·∅128,

E|−{q̃,q2} = ∅128 · {q̃} ·∅128 · {q̃, q1} ·∅128 · {q̃, q1, q2} ·∅128.

For the rest of the paper, we denote with A and B the sets:

A := {∅j · τ · E : j ∈ N, τ ∈ TQ}, B := {∅j · τ · (E|−τ) : j ∈ N, τ ∈ TQ}.

Lemma 3. The formula Φn separates A from B.

Proof. Let j ∈ N and τ ∈ TQ. In a nutshell, the fact that ∅j · τ · E |= Φn follows
from the fact that τ occurs in E , and from the position corresponding to τ one
can refer back to τ and find in this way a position satisfying pi if and only if
qi ∈ τ , for every i ∈ [1, n]. However, since τ is removed from E|−τ , we see that
b := ∅j · τ · (E|−τ) ̸|= Φn: indeed, b[j] = τ corresponds to the only position in
b satisfying p̃, but τ does not appear in b (since it does not appear in E|−τ).
Therefore, A |= Φn and B |= Φn.

5.2 Separating A from B requires an exponential proof

We now show that every deduction tree for ⟨A,B⟩ has size at least 2n. To do so,
we use a relation ≈ that, roughly speaking, states what elements (a, b) ∈ AG×BG

are similar enough to require a non-trivial proof in order to be separated using
the proof system. Formally, for a, b ∈ Σ+, we write a ≈ b whenever:

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 105

a and b are in the language ∅u · ρ ·∅α(n) ·Σ∗, for some u ∈ N and ρ ∈ TQ ∪ TP .

The central issue in the proof of the lower bound is counting how many of these
pairs a ≈ b are preserved when applying the rules of the proof system. This count
is done inductively on the size of the deduction tree, and allows us to derive the
following lemma.

Lemma 4. Let r1, t1, . . . , rm, tm ∈ N and let τ1, . . . , τm ∈ TQ be pairwise dis-
tinct sets. Consider A ⊆ AG, B := {(∅ti · τi · E|−τi)[ri⟩ : i ∈ [1,m]}, and C :=
{(a, b) ∈ A×B : a ≈ b}. Every deduction tree for ⟨A,B⟩ has size at least |C|+1.

Proof. Below, suppose that ⟨A,B⟩ has a deduction tree (else the statement is
trivially true). In particular, let T be a minimal deduction tree for ⟨A,B⟩, and
assume it has size s. Note that the hypothesis that τ1, . . . , τm are distinct implies
|B| ≤ 2n, which in turn implies |C| < 2n (by definition of ≈, for every b ∈ B
there is at most one a ∈ AG such that a ≈ b). Then, w.l.o.g. we can assume
s ≤ α(n); otherwise the lemma follows trivially.

During the proof, we write ≺ for the strict total order on elements of TQ
used to construct the trace E enumerating TQ. Before continuing the proof of
the lemma, we highlight a useful property of the elements of C.

Claim 1. Let (a, b) ∈ C and i ∈ [1,m] with b = (∅ti · τi · E|−τi)[ri⟩. Then,
b = ∅u · ρ ·∅α(n) · σ, for some u ∈ N, ρ ∈ {τi} ∪ {τ ∈ TQ : τ ≺ τi} and σ ∈ Σ∗.

In a nutshell, this claim tells us that for every (a, b) ∈ C we have b ̸⊑ E .
Let us go back to the proof of Lemma 4. If A = ∅ or m = 0 then C = ∅ and

the lemma follows trivially. Below, let us assume A ̸= ∅ and m ≥ 1. We prove
the statement by induction on the size s of T .

In the base case s = 1, T is a simple application of the rule Atomic. This
means that for every a ∈ A and b ∈ B we have a[0] ̸= b[0]. By definition of ≈,
this implies C = ∅, and therefore s ≥ |C|+ 1.

Let us then consider the induction step s ≥ 2. Note that if |C| ≤ 1 then the
statement follows trivially. Hence, below, we assume |C| ≥ 2. We split the proof
depending on the rule applied to the root ⟨A,B⟩ of T . Since s ≥ 2, this rule
cannot be Atomic. We omit the cases for Or and And, as they simply follow
the induction hypothesis, and focus on the rules related to temporal operators.

• case: rules Next and WeakNext. We consider Next and WeakNext
together, as both require ⟨AX, BX⟩. Perhaps surprisingly, this case is non-trivial.
The main difficulty stems from the fact that C ′ := {(a, b) ∈ AX × BX : a ≈ b}
might in principle even be empty, and thus applying the induction hypothesis
on ⟨AX, BX⟩ is unhelpful for concluding that s ≥ |C| + 1. We now show how
to circumvent this issue. The minimal deduction tree for ⟨AX, BX⟩ has size s−
1. Within this deduction tree, consider the maximal partial deduction tree T ′

rooted at ⟨AX, BX⟩ and made solely of applications of the rules And, Or, Next,
and WeakNext. Let ⟨A1, B1⟩, . . . , ⟨Aq, Bq⟩ be the leafs of such a tree. Let
j ∈ [1, q]. In the tree T , to ⟨Aj , Bj⟩ it is applied a rule among Atomic, Future
and Globally. Let ξj ≥ 1 be the number of Next and WeakNext rules used

106 L. Geatti et al.

in the path of T from ⟨A,B⟩ to ⟨Aj , Bj⟩. Note that, from s ≤ α(n), we have
ξj ≤ α(n). We define the following two sets Cj and Nj , whose role is essentially
to “track” the evolution of pairs in C with respect to Aj ×Bj :

Cj := {(a[ξj⟩, b[ξj⟩) ∈ Aj ×Bj : (a, b) ∈ C, a[ξj⟩ ≈ b[ξj⟩},
Nj := {(a[ξj⟩, b[ξj⟩) ∈ Aj ×Bj : (a, b) ∈ C, a[ξj⟩ ̸≈ b[ξj⟩}.

The minimal deduction tree for ⟨Aj , Bj⟩ has size sj ≥ |Cj |+ 1; by induction
hypothesis. Claims 2 to 4 below highlight a series of properties on the sets Cj

and Nj from which we derive s ≥ |C|+ 1.

Claim 2. For every j ∈ [1, q], if Cj ∪Nj ̸= ∅ then the rule applied to ⟨Aj , Bj⟩
in T is either Future or Globally.

As already said, the rule applied to ⟨Aj , Bj⟩ is among the rules Atomic,
Future andGlobally. Then, showing that a[0] = b[0] for every (a, b) ∈ Cj∪Nj

excludes the rule Atomic.

Claim 3. For every j ∈ [1, q], |Nj | ≤ 1.

The proof of this claim is by contradiction, assuming the existence of dis-
tinct (a1, b1), (a2, b2) ∈ Nj . In the proof, we analyse structural properties of the
traces a1, a2, b1 and b2, and consider several cases depending on such properties
(for instance, one case split depends on whether a1 ⊑ a2). In all these cases, we
reach a contradiction with either (a1, b1) ̸= (a2, b2) or Claim 2.

Claim 4. |C| ≤
∑q

j=1|Cj ∪Nj |.

The claim follows as soon as one proves the following two statements:

1. for every (a, b) ∈ C there is j ∈ [1, q] such that (a[ξj⟩, b[ξj⟩) ∈ Cj ∪Nj ,
2. for all distinct (a1, b1), (a2, b2) ∈ C, we have (a1[ℓ⟩, b1[ℓ⟩) ̸= (a2[ℓ⟩, b2[ℓ⟩) for

every ℓ ≤ α(n) (recall that ξj ≤ α(n), for every j ∈ [1, q]).

Item 1 is by induction on the size of T ′. Similarly to Claim 3, the proof of Item 2
again requires to consider many cases, and uses properties of ≈, E and E|−τi .

Thanks to Claims 3 and 4, one can then prove s ≥ |C| + 1, concluding the
proof for the rules Next and WeakNext:

s ≥ 1 +
∑q

j=1 sj by definition of T and T ′

≥ 1 +
∑q

j=1(|Cj |+ 1) by sj ≥ |Cj |+ 1 (induction hypothesis)

≥ 1 +
∑q

j=1(|Cj ∪Nj |) by |Nj | ≤ 1 (Claim 3)

≥ |C|+ 1 by |C| ≤
∑q

j=1|Cj ∪Nj | (Claim 4).

• case: rule Future. Let f ∈ FA be the future point used when applying
this rule. Define C ′ := {(a′, b′) ∈ Af × BG : a′ ≈ b′}. The minimal deduction
tree for ⟨Af , BG⟩ has size s− 1. By induction hypothesis, s− 1 ≥ |C ′|+ 1, i.e.,
s ≥ |C ′|+ 2. We divide the proof into two cases.

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 107

Case 1: for every a′ ∈ Af , a′ ̸⊑ E. By definition of ≈, every (a, b) ∈ C is
such that a and b belong to the language ∅u · τi · ∅α(n) · Σ∗ for some u ∈ N,
and i ∈ [1,m]. Since af ̸⊑ E , we must have f(a) ≤ u + 1. Then, af ≈ b[f(a)⟩.
Note that distinct (a, b) ∈ C concern distinct τi with i ∈ [1,m], and therefore,
together with b[f(a)⟩ ∈ BG, one concludes that |C ′| ≥ |C|; and so s ≥ |C|+ 2.

Case 2: there is a′ ∈ Af such that a′ ⊑ E. Let us denote with ã the element
in Af such that ã ⊑ a for every a ∈ Af . The existence of such an element follows
directly from the fact that a′ ⊑ E for some a′ ∈ Af .

Let I ⊆ [1,m] be the subset of those indices i ∈ [1,m] for which there is a
pair (a′, b′) ∈ C such that b′ = (∅ti · τi · E|τi)[ri⟩. Without loss of generality,
suppose I = {1, . . . , q} for some q ≤ m, and that τ1 ≺ τ2 ≺ · · · ≺ τq; recall that
all these types are pairwise distinct. By definition of ≈, for every b′ ∈ B there is
at most one a′ ∈ AG such that a′ ≈ b′, and therefore q = |C|. To conclude the
proof it suffices to show |C ′| ≥ q− 1. We do so by establishing a series of claims.
Recall that we are assuming |C| ≥ 2, so in particular C and I are non-empty.

Claim 5. There are u ∈ N, ρ ∈ TQ and σ ∈ (2Q)∗ s.t. ã = ∅u · ρ ·∅α(n) · σ.
Moreover, ρ ⪯ τi for every i ∈ I.

The first statement of this claim is established from the definition of ã. The
second statement is proven by contradiction. In particular, assuming that there
is i ∈ I such that τi ≺ ρ yields a contradiction with Claim 1.

Below, we write u, ρ and σ for the objects appearing in Claim 5. Note that,
from τ1 ≺ · · · ≺ τq, the second statement of Claim 5 implies ρ ≺ τ2 · · · ≺ τq. For
i ∈ [2, q], let (a′i, b

′
i) denote the pair in C such that b′i = (∅ti · τi · E|ρi

)[ri⟩.

Claim 6. For each i ∈ [2, q] there is ℓ ∈ N such that ã ≈ b′′i with b′′i := b′i[ℓ⟩.
Moreover, every type in {τ2, . . . , τq} \ {τi} appears in some position of b′′i .

This claim is proven using Claims 1 and 5 and properties of E|−τi .
Since all types τ2, . . . , τq are pairwise distinct, from the second statement

in Claim 6 we conclude that b′′i ̸= b′′j for every two distinct i, j ∈ I \ {i1}. Then,
the first statement in Claim 6 entails |C ′| ≥ q − 1.

• case: rule Globally. Let f ∈ FA be the future point used when applying
this rule. The minimal deduction tree for ⟨AG, Bf⟩ has size s − 1. We define
C ′ := {(a′, b′) ∈ AG ×Bf : a′ ≈ b′}. By induction hypothesis, s − 1 ≥ |C ′| + 1,
i.e., s ≥ |C ′| + 2. To conclude the proof it suffices to show that |C ′| ≥ |C| − 1
(in fact, we prove |C ′| ≥ |C|). Let {(a1, b1), . . . , (a|C|, b|C|)} = C.

Claim 7. For every j ∈ [1, |C|], bfj is not a suffix of E . More precisely, given

i ∈ [1,m] such that bj = (∅ti · τi · E|−τi)[ri⟩, we have bfj = ∅u · ρ ·∅α(n) · σ, for
some u ∈ N, ρ ∈ {τi} ∪ {τ ∈ TP : τ ≺ τi} and σ ∈ Σ∗.

See the similarities between this claim and Claim 1. The first statement is
proven by contradiction, deriving an absurdum with the existence of T . The
second statement follows from the definition of E|−τi .

108 L. Geatti et al.

Starting from Claim 7, we conclude that (i) for every j ̸= k ∈ [1, |C|],
bfj ̸= bfk , and (ii) for every j ∈ [1, |C|] there is ℓ ∈ N such that aj [ℓ⟩ ≈ bfj . This
directly implies |C ′| ≥ |C|. This concludes both the proof of the case Globally
and the proof of the lemma.

Together, Lemmas 3 and 4 yield an exponential lower bound for all formulae
of LTL[X, X̃,F,G] characterising Φn (Lemma 5), which in turn implies Theorem 1.

Lemma 5. Let Ψn ∈ LTL[X, X̃,F,G]. If Ψn ≡ Φn then size(Ψn) ≥ 2n.

Proof. We define the sets A = {τ · E : τ ∈ TQ} and B = {τ · E−τ : τ ∈ TQ}.
Observe that A ⊆ A ⊆ AG and B ⊆ B. Let C = {(a, b) ∈ A × B : a ≈ b}.
From the definition of ≈, |C| = 2n. We apply Lemma 4, and conclude that the
minimal deduction tree for ⟨A,B⟩ has size at least 2n (in fact, 2n + 1). Since
A ⊆ A and B ⊆ B, the same holds for the minimal deduction tree for ⟨A,B⟩.
Then, the theorem follows from Corollary 2 and Lemma 3.

While we do not prove it formally, we claim that Theorem 1 also holds for
infinite traces. It is in fact quite simple to see this: all traces in A and B, have
a suffix of the form ∅α(n). Roughly speaking, these suitably long suffixes are
added to make the far-end of the traces in A and B indistinguishable at the
level of formulae, so that they cannot be used in deduction trees to separate
A from B. Then, to prove Theorem 1 for infinite traces, it suffices to update
the proof system to handle these structures and consider an infinite suffix ∅ω

instead. The proof of Lemma 4 goes through with no significant change.
A second observation: traces in A and B are closed under taking arbitrary

long prefixes of the form ∅j . This feature is not used to prove Lemma 5 (see the
definition of A and B in the proof). However, these prefixes play a role in the next
section, when studying the succinctness of F(LTL[Y, Ỹ,O,H]) on infinite traces.

6 Theorem 2: a 2n lower bound for LTL[F] pastification

In this section, we rely on Lemma 5 to prove Theorem 2 and Corollary 1.
Theorem 2 is proven by relying on a “future–past duality” between future

and past fragments of LTL. Given a trace σ ∈ Σ+ we define the reverse of σ,
written σ−, as the trace satisfying σ−[i] = σ[|σ| − i] for every i ∈ pos(σ). The
reverse of a language L ⊆ Σ+ is defined as the language L− := {σ− : σ ∈ L}.
Clearly, (L−)− = L. Given a set of temporal operators S ⊆ {X, X̃,F,G}, we write
S− for the set of temporal operators among {Y, Ỹ,O,H} such that S− contains Y
(resp. Ỹ; O; H) if and only if S contains X (resp. X̃; F; G). For finite traces, the
following lemma, proves that if there is a family of languages (Ln)n≥1 that can be
compactly defined in F(LTL[O]) but explodes in LTL[X, X̃,F,G], then the family
(L−

n)n≥1 can be compactly defined in LTL[F] but explodes in F(LTL[Y, Ỹ,O,H]).

Lemma 6. Let L ⊆ Σ+, S ⊆ {X, X̃,F,G}, and φ be a formula in F(LTL[S−]).
There is a formula ψ in F(LTL[S]) such that L(ψ) = L(φ)−and size(ψ) = size(φ).

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 109

Theorem 2 follows by applying Lemma 6 on the family of formulae (Φn)n≥1

defined in Section 3, and by relying on the exponential lower bounds of Lemma 5.
The sequence of languages showing that LTL[F] can be exponentially more suc-
cinct than F(LTL[Y, Ỹ,O,H]) is given by (L(Φn)

−)n≥1.
Next, we extend Theorem 2 to the case of infinite traces. As usual, let Σω be

the set of all infinite traces over the finite alphabet Σ. We denote with Lω(φ)
the language of φ, when φ is interpreted over infinite traces (we refer the reader
to, e.g., [2] for the semantics of LTL on infinite traces).

Lemma 7. The family of languages of infinite traces (L(Φn)
− ·Σω)n≥1 is such

that, for every n ≥ 1, (i) there is a formula φ of LTL[F] such that size(φ) ∈ O(n)
and Lω(φ) = L(Φn)

− ·Σω, and (ii) for every formula ψ in F(LTL[Y, Ỹ,O,H]),
if Lω(ψ) = L(Φn)

− ·Σω then size(ψ) ≥ 2n.

Item (i) in the lemma above follows by applying Lemma 6 and exploiting the fact
that formulae φ in LTL[F] satisfy Lω(φ) = L(φ)·Σω and L(φ) = L(φ) ·Σ∗ (cf. [2,
Definition 5 and Lemma 5]). The proof of Item (ii) is instead quite subtle. One
would like to use the hypothesis Lω(ψ) = L(Φn)

− ·Σω and that L(ψ) is a cosafety
language to derive L(ψ) = L(Φn)

−. However, note that nothing prevents L(ψ) to
be equal to L(Φn)

− ·Σ, and as it stands we do not have bounds for characterising
this language. We apply instead the following strategy. We consider the family of
structures A′ := {a− ·∅ω : a ∈ A} and B′ := {b− ·∅ω : b ∈ B}. Note that A′ ⊆
Lω(ψ) and B′∩Lω(ψ) = ∅. Since ψ is of the form F(α) with α ∈ LTL[Y, Ỹ,O,H],
we can, roughly speaking, study the effects of applying to A′ and B′ a variant of
the rule Future for infinite words and that does not “forget the past”, and then
reverse all traces in the resulting sets (A′)f and (B′)G. In this way, we obtain two

sets of finite traces Ã ⊆ A and B̃ ⊆ B (this is where the prefixes ∅j discussed
at the end of Section 5 play a role). We show that the hypotheses of Lemma 4

apply to Ã and a set B̂ ⊆ B̃ for which the set {(a, b) ∈ Ã× B̂ : a ≈ b} has size
at least 2n − 1. By Corollary 2, we get that α, and thus ψ, is of size at least 2n.

Lemma 7 shows that Theorem 2 holds over infinite traces as well. Together
with the 2O(n) upper bound for the pastification problem for LTL[X,F] into
F(LTL[Y, Ỹ,O]) established6 in [4], this entails Corollary 1.

7 The automata method does not work for F(LTL[O])

In this section we show that the classical method introduced by Markey in [20]
to prove “future against past” succinctness discrepancies in fragments of LTL
cannot be used to prove the results in Section 5, namely that F(LTL[O]) can be
exponentially more succinct than LTL[X, X̃,F,G]. Due to space constraints, we
assume a basic familiarity with non-deterministic Büchi automata (NBAs) (and
deterministic Büchi automata, DBAs), which are central tools in [20]. Moreover,

6 To be more precise, in [4] the authors only provide a 2O(n2) upper bound for their
algorithm. Their analysis can however be easily improved to 2O(n).

110 L. Geatti et al.

we work on LTL on infinite traces, as done in [20], and write φ ≡ω ψ whenever
Lω(φ) = Lω(ψ). We write Lω(A) for the language of an NBA A.

Proposition 1 below summarises the method in [20], which is parametric on a
fixed prefix Π of operators among X, F and G. Given two fragments F, F ′ of LTL,
with F ′ pure future, to apply the method one has to provide the two families of
formulae (Φn)n≥1∈F and (Φ′

n)n≥1∈F ′, as well as the family of minimal NBAs
(An)n≥1, satisfying the hypotheses of Proposition 1. In [20], this is done for
F = LTL and F ′ set as the pure future fragment of LTL, using the prefix Π = G.

Proposition 1 (Markey’s method [20]). Let F, F ′ be fragments of LTL, with
F ′ pure future. Consider two families of formulae (Φn)n≥1∈F , (Φ′

n)n≥1∈F ′,
and a family of minimal NBAs (An)n≥1, such that

size(An) ∈ 22
Ω(n)

, size(Φn) ∈ poly(n), Φn ≡ω Φ
′
n, Lω(Π(Φ′

n)) = Lω(An).

Then, size(Φ′
n) ∈ 2size(Φn)

Ω(1)

and F can be exponentially more succinct than F ′.

The consequence size(Φ′
n) ∈ 2size(Φn)

Ω(1)

obtained in Proposition 1 follows di-
rectly from the fact that, from every pure future LTL formula φ, one can build
an NBA A of size 2O(size(φ)) such that Lω(A) = Lω(φ) [26]. Then, the hypotheses

size(An) ∈ 22
Ω(n)

and Lω(Π(Φ′
n)) = Lω(An) imply size(Φ′

n) ∈ 2Ω(n).

To show that Proposition 1 cannot be used to derive that F := F(LTL[O])
can be exponentially more succinct than F ′ := LTL[X, X̃,F,G], it suffices to show
that no families (Φn)n≥1∈F , (Φ′

n)n≥1∈F ′ and (An)n≥1 achieve the hypothe-
ses required by Proposition 1, no matter the temporal prefix Π. We do so by
establishing that whenever size(Φn) ∈ poly(n) and Φn ≡ω Φ′

n, the minimal de-
terministic Büchi automaton for Lω(Π(Φ′

n)) has size in 2O(poly(n)). Therefore,

no family of minimal NBAs (An)n≥1 such that size(An) ∈ 22
Ω(n)

can also satisfy
the hypothesis Lω(Π(Φ′

n)) = Lω(An). Here is the formal statement:

Theorem 4. Let Π be a prefix of k temporal operators among X, F and G. Let φ
be a formula of F(LTL[O]), and ψ be a formula of LTL[X, X̃,F,G], with φ ≡ω ψ.
The minimal DBA for Lω(Π(ψ)) is of size in (k + 1) · 2O(size(φ)).

The proof of this theorem is divided into three steps.

As a first step, one shows that ψ ≡ω Fψ; which essentially follows from the
fact that ψ ≡ω φ with φ ∈ F(LTL[O]). Together with tautologies of LTL such as
FGFψ′ ≡ω GFψ′, FXψ′ ≡ω XFψ′ and GXψ′ ≡ω XGψ′, the equivalence ψ ≡ω Fψ
let us rearrange Π into a prefix of the form either XjGF or XjF, for some j ≤ k.
Let us focus on the former (more challenging) case of Π = XjGF.

The second step required for the proof is to bound the size of the minimal
DBA A recognising Lω(Fψ). Thanks to the equivalences φ ≡ω ψ ≡ω Fψ, such a
DBA has size exponential in size(φ) by the following lemma.

Lemma 8. Let φ in F(LTL[O]). There is a DBA for Lω(φ) of size 2O(size(φ)).

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 111

Starting from A, the third and last step of the proof requires constructing
a DBA for Lω(XjGFψ) of size in (j + 1) · 2O(size(φ)). The treatment for the
prefix Xj is simple, so this step is mostly dedicated to constructing a DBA for
Lω(GFψ). In the case of LTL, it is known that closing an NBA under the globally
operator G might lead to a further exponential blow-up (in fact, this is one of the
reasons Markey’s method is possible in the first place). However, because φ is
in F(LTL[O]), and it is thus a cosafety language (and so ψ is a cosafety language
too), it turns out that the size of the minimal DBA for Lω(GFψ) is in O(size(A)).

Lemma 9. Let ψ be in LTL, such that Lω(ψ) is a cosafety language. Let A be
a DBA for Lω(Fψ). The minimal DBA for Lω(GFψ) has size in O(size(A)).

Thanks to Lemma 9, the proof of Theorem 4 can be easily completed. To
prove this lemma, one modifies A by redirecting all transitions exiting a final
state so that they mimic the transitions exiting the initial state of the automaton.
The reason why the obtained automaton recognises Lω(GFψ) uses in a crucial
way the fact that ψ and Fψ are cosafety languages.

8 Related and Future Work

The proof systems we use in this work to establish Theorem 2 and Theorem 1 are
strongly related to recent work in two seemingly disconnected areas of computer
science: (i) combinatorial games for formulae lower bounds of first-order logics
and (ii) learning of LTL formulae in explainable planning and program synthesis.

Combinatorial games. We have already discussed the connections between our
proof system and the CTL+ games by Adler and Immerman [1]. Recently, Fagin
and coauthors [9,10] have looked at combinatorial games that allow to count the
number of quantifiers required to express a property in first-order logic. While
these games simplify Adler–Immerman games, they come with a drawback: by
design, they implicitly look at how to express properties with first-order for-
mulae in prenex normal form, and they are not able to give any bound on the
quantifier-free part of such formulae. It seems then not possible to use these
types of games in the context of LTL. One could in principle consider transla-
tions of LTL formulas into a prenex fragment of S1S. However, since S1S is both
more expressive and more succinct than LTL [25], concluding that LTL[F] can
be exponentially more succinct than F(LTL[Y, Ỹ,O,H]) will ultimately require
analysing structural properties of the quantifier-free part of the S1S formulae.

Closer to the case of LTL are the games on linear orders (implicitly) used
by Grohe and Schweikartdt in [14]. These are formula-size games for a fixed
number of variables of first-order logic. Using our notation, the method used to
derive lower bounds in [14] relies on defining a function ω from terms of the
form ⟨A,B⟩ to N that acts as a sub-additive measure with respect to the rules
of the proof system. For instance, according to the rule Or, ω should satisfy
ω(⟨A,B⟩) ≤ ω(⟨A1, B⟩) + ω(⟨A2, B⟩), whenever A = A1 ⊎ A2. One can use a
sub-additive measure ω to conclude that the minimal deduction tree for ⟨A,B⟩, if

112 L. Geatti et al.

it exists, has size at least ω(⟨A,B⟩). When restricted to the objects in Lemma 4,
one can show that the function ω(⟨A,B⟩) := |{(a, b) ∈ A × B : a ≈ b}| + 1 is
a sub-additive measure with respect to the rules Atomic, Or, And, Future
and Globally (this is implicit in the proof of Lemma 4). However, it is not
a sub-additive measure for the rules Next and WeakNext: as stressed in the
proof, we might have ω(⟨AX, BX⟩) = 1 even for ω(⟨A,B⟩) arbitrary large. This
partially explains why the proof of Lemma 4 turned out to be quite involved.

In view of the optimality of the algorithm in [4] (Corollary 1), the main open
problem regarding pastification is the optimality of the triply-exponential time
procedure given in [7] for the pastification of LTL[X,U] into F(pLTL). As far as we
are aware, no super-polynomial lower bound for this problem is known. Our proof
system, properly extended with rules for the until and release operators, might
be able to tackle this issue. Obtaining a matching triply-exponential lower bound
might however be impossible: when restricted to propositional logic, our proof
system is equivalent to the communication games introduced by Karchmer and
Wigderson [15]. It is well-known that these games cannot prove super-quadratic
lower bounds for formulae sizes, and one should expect similar limitations for
temporal logics, albeit with respect to some function that is at least exponential.

LTL formulae learning. Motivated by the practical issue of understanding a
complex system starting from its execution traces, several recent works study
the algorithmic problem of finding an LTL formula separating two finite sets of
traces, see e.g. [21,5,24,11,12]. In light of Theorem 3, this problem is equivalent
to finding a proof in (possibly variations of) our combinatorial proof system.
We believe that this simple observation will turn out to be quite fruitful for
both the “combinatorial games” and the “formula learning” communities. From
our experience, tools such as the one developed in [21,5,24] are quite useful
when studying combinatorial lower bounds, as they can be used to empirically
test whether families of structures are difficult to separate, before attempting a
formal proof. In our case, we have used the tool in [21] while searching for the
structures and formulae we ended up using in Section 5, and discarded several
other candidates thanks to the evidences the tool gave us. On the other side of
the coin, combinatorial proof systems can be seen as a common foundational
framework for all these formulae-learning procedures. With this in mind, we
believe that the techniques developed for proving lower bounds in works such
as [14] might be of help for improving these procedures, for example using the
minimization of a sub-additive measure as a heuristic.

Acknowledgements Luca Geatti and Angelo Montanari acknowledge the sup-
port from the 2023 Italian INdAM-GNCS project “Analisi simbolica e numer-
ica di sistemi ciberfisici”, ref. no. CUP E53C22001930001. Angelo Montanari
acknowledges the support of the MUR PNRR project FAIR - Future AI Re-
search (PE00000013) funded by the NextGenerationEU. Alessio Mansutti is
supported by the César Nombela grant 2023-T1/COM-29001, funded by the
Madrid Regional Government, and by the grant PID2022-138072OB-I00, funded
by MCIN/AEI/10.13039/501100011033 (FEDER, EU).

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 113

References

1. M. Adler and N. Immerman. An n! lower bound on formula size. ACM Transactions
on Computational Logic, 4(3):296–314, 2003.

2. A. Artale, L. Geatti, N. Gigante, A. Mazzullo, and A. Montanari. Complexity of
safety and cosafety fragments of linear temporal logic. In AAAI’23, pages 6236–
6244, 2023.

3. A. Artale, L. Geatti, N. Gigante, A. Mazzullo, and A. Montanari. LTL over finite
words can be exponentially more succinct than pure-past LTL, and vice versa. In
TIME’23, volume 278, pages 2:1–2:14, 2023.

4. A. Artale, L. Geatti, N. Gigante, A. Mazzullo, and A. Montanari. A singly expo-
nential transformation of LTL[X, F] into pure past LTL. In KR’23, pages 65–74,
2023.

5. A. Camacho and S. A. McIlraith. Learning interpretable models expressed in linear
temporal logic. In ICAPS’19, pages 621–630, 2019.

6. E. Y. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property
classes. In ICALP’92, pages 474–486, 1992.

7. G. De Giacomo, A. Di Stasio, F. Fuggitti, and S. Rubin. Pure-past linear temporal
and dynamic logic on finite traces. In IJCAI’21, pages 4959–4965, 2021.

8. G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic
on finite traces. In IJCAI’13, pages 854–860, 2013.

9. R. Fagin, J. Lenchner, K. W. Regan, and N. Vyas. Multi-structural games and
number of quantifiers. In LICS’21, pages 1–13, 2021.

10. R. Fagin, J. Lenchner, N. Vyas, and R. R. Williams. On the number of quantifiers
as a complexity measure. In MFCS’22, pages 48:1–48:14, 2022.

11. M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, and M. Zakharyaschev.
Unique characterisability and learnability of temporal instance queries. In KR’22,
2022.

12. M. Fortin, B. Konev, V. Ryzhikov, Y. Savateev, F. Wolter, and M. Zakharyaschev.
Reverse engineering of temporal queries mediated by LTL ontologies. In IJCAI’23,
pages 3230–3238, 2023.

13. L. Geatti, A. Mansutti, and A. Montanari. Succinctness of Cosafety Frag-
ments of LTL via Combinatorial Proof Systems (extended version). arXiv,
cs.LO/2401.09860, 2024.

14. M. Grohe and N. Schweikardt. The succinctness of first-order logic on linear orders.
Log. Methods Comput. Sci., 1(1:6), 2005.

15. M. Karchmer. Communication complexity - a new approach to circuit depth. MIT
Press, 1989.

16. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314, 2001.

17. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Workshop on
Logic of Programs, pages 196–218, 1985.

18. F. M. Maggi, M. Montali, and R. Peñaloza. Temporal logics over finite traces with
uncertainty. In AAAI’20, pages 10218–10225, 2020.

19. Z. Manna and A. Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

20. N. Markey. Temporal logic with past is exponentially more succinct, concurrency
column. Bull. EATCS, 79:122–128, 2003.

21. D. Neider and I. Gavran. Learning linear temporal properties. In FMCAD’18,
pages 1–10, 2018.

114 L. Geatti et al.

22. M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business
processes management. In J. Eder and S. Dustdar, editors, BPM’06, pages 169–
180, 2006.

23. A. Pnueli. The temporal logic of programs. In FOCS (SFCS’77), pages 46–57,
1977.

24. R. Raha, R. Roy, N. Fijalkow, and D. Neider. Scalable anytime algorithms for
learning fragments of linear temporal logic. In TACAS’22, pages 263–280, 2022.

25. L. J. Stockmeyer and A. R. Meyer. Cosmological lower bound on the circuit
complexity of a small problem in logic. J. ACM, 49(6):753–784, 2002.

26. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In LICS’86, pages 322–331, 1986.

Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems 115

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

A Resolution-Based Interactive Proof System for
UNSAT

Philipp Czerner , Javier Esparza , and Valentin Krasotin

{czerner,esparza,krasotin}@in.tum.de

Abstract. Modern SAT or QBF solvers are expected to produce cor-
rectness certificates. However, certificates have worst-case exponential
size (unless NP = coNP), and at recent SAT competitions the largest
certificates of unsatisfiability are starting to reach terabyte size.
Recently, Couillard, Czerner, Esparza, and Majumdar have suggested
to replace certificates with interactive proof systems based on the IP =
PSPACE theorem. They have presented an interactive protocol between
a prover and a verifier for an extension of QBF. The overall running
time of the protocol is linear in the time needed by a standard BDD-
based algorithm, and the time invested by the verifier is polynomial in
the size of the formula. (So, in particular, the verifier never has to read
or process exponentially long certificates). We call such an interactive
protocol competitive with the BDD algorithm for solving QBF.
While BDD-algorithms are state-of-the-art for certain classes of QBF
instances, no modern (UN)SAT solver is based on BDDs. For this reason,
we initiate the study of interactive certification for more practical SAT
algorithms. In particular, we address the question whether interactive
protocols can be competitive with some variant of resolution. We present
two contributions. First, we prove a theorem that reduces the problem of
finding competitive interactive protocols to finding an arithmetisation of
formulas satisfying certain commutativity properties. (Arithmetisation
is the fundamental technique underlying the IP = PSPACE theorem.)
Then, we apply the theorem to give the first interactive protocol for the
Davis-Putnam resolution procedure.

1 Introduction

Automated reasoning tools should provide evidence of their correct behaviour. A
substantial amount of research has gone into proof-producing automated reason-
ing tools [12,17,16,10,3]. These works define a notion of “correctness certificate”
and adapt the reasoning engine to produce independently checkable certificates.
For example, SAT solvers produce either a satisfying assignment or a proof of
unsatisfiability in some proof system, e.g. resolution (see [12] for a survey).

Current tools may produce certificates for UNSAT with hundreds of GiB or
even, in extreme cases, hundreds of TiB [13]. This makes checking the certificate,
or even sending it to a verifier, computationally expensive. Despite much progress
on reducing the size of proofs and improving the efficiency of checking proofs (see
c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 116–136, 2024.
https://doi.org/10.1007/978-3-031-57231-9

_

9

(B)

Technical University of Munich, Munich, Germany

http://orcid.org/0000-0002-1786-9592
http://orcid.org/0000-0001-9862-4919
http://orcid.org/0009-0002-2129-2754
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_6&domain=pdf

e.g. [11,12]), this problem is of fundamental nature: unless NP = coNP, which
is considered very unlikely, certificates for UNSAT have worst-case exponential
size in the size of the formula.

The IP = PSPACE theorem, proved in 1992 by Shamir [18], presents a possible
fundamental solution to this problem: interactive proofs1. A language is in IP if
there exists a sound and complete interactive proof protocol between two agents,
Prover and Verifier, that Verifier can execute in randomised polynomial time
[7,2,15,1]. Completeness means that, for any input in the language, an honest
prover that truthfully follows the protocol will convince Verifier to accept the
input. Soundness means that, for any input not in the language, Verifier will
reject it with high probability, no matter how Prover behaves. “Conventional”
certification is the special case of interactive proof in which Prover sends Verifier
only one message, the certificate, and Verifier is convinced with probability 1.
The IP = PSPACE theorem implies the existence of interactive proof protocols
for UNSAT in which Verifier only invests polynomial time in the size of the
formula. In particular, Verifier must never check exponentially long certificates
from Prover, as is the case for conventional certification protocols in which Prover
generates a proof in the resolution, DRAT, or any other of the proof systems
found in the literature, and Verifier checks each step of the proof.

Despite its theoretical promise, the automated reasoning community has not
yet developed tools for UNSAT or QBF with interactive proof protocols. In a
recent paper [5], Couillard, Czerner, Esparza, and Majumdar venture a possible
explanation. They argue that all interactive certification protocols described in
the literature have been designed to prove asymptotic complexity results, for
which it suffices to use honest provers that construct the full truth table of the
formula. Such provers are incompatible with automated reasoning tools, which
use more sophisticated data structures and heuristics. To remedy this, Couillard
et al. propose to search for interactive proof protocols based on algorithms closer
to those used in automatic reasoning tools. In [5], they consider the standard
BDD-based algorithm for QBF and design an interactive proof protocol based
on it.

While BDDs are still considered interesting for QBF, the consensus is that
they are not state-of-the-art for UNSAT due to their high memory consumption.
In this paper we initiate the study of interactive certification for SAT-solving
algorithms closer to the ones used in tools. For this, given an algorithm Alg and
an interactive protocol P , both for UNSAT, we say that P is competitive for
Alg if the ratio between the runtime of Prover in P and the runtime of Alg on
inputs of length n is bounded by a polynomial in n. So, loosely speaking, if P is
competitive with Alg, then one can add interactive verification to Alg with only
polynomial overhead. The general question we address is: which algorithms for
UNSAT have competitive interactive proof protocols?

Our first contribution is a generic technique that, given an algorithm for UN-
SAT satisfying certain conditions, constructs a competitive interactive protocol.

1 In our context it would be more adequate to speak of interactive certification, but
we use the standard terminology.

A Resolution-Based Interactive Proof System for UNSAT 117

Let us be more precise. We consider algorithms for UNSAT that, given a formula
φ0, construct a sequence φ0, φ1, ..., φk of formulas such that φi is equisatisfiable
to φi+1, and there is a polynomial algorithm that decides if φk is unsatisfiable.
Our interactive protocols are based on the idea of encoding the formulas in this
sequence as polynomials over a finite field in such a way that the truth value
of the formula for a given assignment is determined by the value of the polyno-
mial on that assignment. The encoding procedure is called arithmetisation. We
introduce the notion of an arithmetisation compatible with a given algorithm.
Loosely speaking, compatibility means that for each step φi 7→ φi+1, there is an
operation on polynomials mimicking the operation on formulas that transforms
φi into φi+1. We show that the problem of finding a competitive interactive pro-
tocol for a given algorithm Alg for UNSAT reduces to finding an arithmetisation
compatible with Alg.

In our second contribution, we apply our technique to construct the first in-
teractive protocol competitive with a simplified version of the well-known Davis-
Putnam procedure (see e.g. section 2.9 of [9]). Our version fixes a total order
on variables, resolves exhaustively with respect to the next variable, say x, and
then “locks” all clauses containing x or ¬x, ensuring that they are never resolved
again w.r.t. any variable. We show that, while standard arithmetisations are
not compatible with Davis-Putnam, a non-standard arithmetisation is. In our
opinion, this is the main insight of our paper: in order to find interactive pro-
tocols for sophisticated algorithms for UNSAT, one can very much profit from
non-standard arithmetisations.

The paper is structured as follows. Section 2 contains preliminaries. Section 3
presents interactive proof systems and defines interactive proof systems compet-
itive with a given algorithm. Section 4 defines our version of the Davis-Putnam
procedure. Section 5 introduces arithmetisations, and defines arithmetisations
compatible with a given algorithm. Section 6 presents an interactive proof sys-
tem for Davis-Putnam. Section 7 contains conclusions.

2 Preliminaries

Multisets. A multiset over a set S is a mapping m : S → N. We also write
multisets using set notation, for example we write {x, x, y} or {2 · x, y}. Given
two multisets m1 and m2, we define m1 ⊕ m2 as the multiset given by (m1 ⊕
m2)(s) = m1(s) +m2(s) for every s ∈ S, and m1 ⊖m2 as the multiset given by
(m1 ⊖m2)(s) = max{0,m1(s)−m2(s)} for every s ∈ S.

Formulas, CNF, and resolution. A Boolean variable has the form xi where
i = 1, 2, 3, Boolean formulas are defined inductively: true, false and variables
are formulas; if φ and ψ are formulas, then so are ¬φ, φ ∨ ψ, and φ ∧ ψ. A
literal is a variable or the negation of a variable. A formula φ is in conjunctive
normal form (CNF) if it is a conjunction of disjunctions of literals. We represent
a formula in CNF as a multiset of clauses where a clause is a multiset of literals.
For example, the formula (x ∨ x ∨ x ∨ ¬y) ∧ z ∧ z is represented by the multiset
{{3x,¬y}, 2{z}}.

118 P. Czerner, J. Esparza, V. Krasotin

Remark 1. Usually CNF formulas are represented as sets of clauses, which are
defined as sets of literals. Algorithms that manipulate CNF formulas using the
set representation are assumed to silently remove duplicate formulas or duplicate
literals. In this paper, due to the requirements of interactive protocols, we need
to make these steps explicit. In particular, we use multiset notation for clauses.
For example, C(x) denotes the number of occurrences of x in C.

We assume in the paper that formulas are in CNF. Abusing language, we use
φ to denote both a (CNF) formula and its multiset representation.

Resolution. Resolution is a proof system for CNF formulas. Given a variable x,
a clause C containing exactly one occurrence of x and a clause C ′ containing
exactly one occurrence of ¬x, the resolvent of C and C ′ with respect to x is the
clause Resx(C,C ′) := (C ⊖ {x})⊕ (C ′ ⊖ {¬x}).

For example, Resx({x,¬y, z}, {¬x,¬w}) = {¬y, z,¬w}. It is easy to see that
C ∧C ′ and Resx(C,C ′) are equisatisfiable. A resolution refutation for a formula
φ is a sequence of clauses ending in the empty clause whose elements are either
clauses of φ or resolvents of two previous clauses in the sequence. It is well known
that φ is unsatisfiable iff there exists a resolution refutation for it. There exist
families of formulas, like the pigeonhole formulas, for which the length of the
shortest resolution refutation grows exponentially in the size of the formula, see
e.g. [8,4].

Polynomials. Interactive protocols make extensive use of polynomials over a
finite field F. Let X be a finite set of variables. We use x, y, z, ... for variables
and p, p1, p2, ... for polynomials. We use the following operations on polynomials:
– Sum, difference, and product, denoted p1+p2, p1−p2, p1 ·p2, and defined as

usual. For example, (3xy− z2)+ (z2+ yz) = 3xy+ yz and (x+ y) · (x− y) =
x2 − y2.

– Partial evaluation. Denoted π[x:=a] p, it returns the result of setting the vari-
able x to the field element a in the polynomial p, e.g. π[x:=5](3xy − z2) =
15y − z2.

A (partial) assignment is a (partial) mapping σ : X → F. We write Πσ p
for π[x1:=σ(x1)]...π[xk:=σ(xk)] p, where x1, ..., xk are the variables for which σ is
defined. Additionally, we call a (partial) assignment σ binary if σ(x) ∈ {0, 1} for
each x ∈ X.

The following lemma is at the heart of all interactive proof protocols. Intu-
itively, it states that if two polynomials are different, then they are different for
almost every input. Therefore, by picking an input at random, one can check
polynomial equality with high probability.

Lemma 1 (Schwartz-Zippel Lemma). Let p1, p2 be distinct univariate poly-
nomials over F of degree at most d ≥ 0. Let r be selected uniformly at random
from F. The probability that p1(r) = p2(r) holds is at most d/|F|.
Proof. Since p1 ̸= p2, the polynomial p := p1−p2 is not the zero polynomial and
has degree at most d. Therefore p has at most d zeros, and so the probability of
p(r) = 0 is at most d/|F|. ⊓⊔

A Resolution-Based Interactive Proof System for UNSAT 119

3 Interactive Proof Systems

An interactive protocol is a sequence of interactions between two parties: Prover
and Verifier. Prover has unbounded computational power, whereas Verifier is a
randomised, polynomial-time algorithm. Initially, the parties share an input x
that Prover claims belongs to a given language L (e.g. UNSAT). The parties
alternate in sending messages to each other according to a protocol. Intuitively,
Verifier repeatedly asks Prover to send informations. At the end of the protocol,
Verifier accepts or rejects the input.

Formally, let V, P denote (randomised) online algorithms, i.e. given a se-
quence of inputs m1,m2, ... ∈ {0, 1}∗ they compute a sequence of outputs,
e.g. V (m1), V (m1,m2), We say that (m1, ...,m2k) is a k-round interaction,
with m1, ...,m2k ∈ {0, 1}∗, if mi+1 = V (m1, ...,mi) for odd i and mi+1 =
P (m1, ...,mi) for even i.

The output outV,P,k(x) is m2k, where (m1, ...,m2k) is a k-round interaction
with m1 = x. We also define the Verifier-time vtimeV,P,k(x) as the expected time
it takes V to compute m2,m4, ...,m2k for any k-round interaction (m1, ...,m2k)
with m1 = x. We define the Prover-time ptimeV,P,k(x) analogously.

Let L be a language and p : N → N a polynomial. A tuple (V, PH , p)
is an interactive protocol for L if for each x ∈ {0, 1}∗ of length n we have
vtimeV,PH ,p(n)(x) ∈ O(poly n) and:

1. (Completeness) x ∈ L implies outV,PH ,p(n)(x) = 1 with probability 1, and
2. (Soundness) x /∈ L implies that for all P we have outV,P,p(n)(x) = 1 with

probability at most 2−n.

The completeness property ensures that if the input belongs to the language
L, then there is an “honest” Prover PH who can always convince Verifier that
indeed x ∈ L. If the input does not belong to the language, then the soundness
property ensures that Verifier rejects the input with high probability no matter
how a (dishonest) Prover tries to convince it.

IP is the class of languages for which there exists an interactive protocol. It
is known that IP = PSPACE [15,18], that is, every language in PSPACE has a
polynomial-round interactive protocol. The proof exhibits an interactive protocol
for the language QBF of true quantified boolean formulas; in particular, the
honest Prover is a polynomial-space, exponential-time algorithm.

3.1 Competitive Interactive Protocols

In an interactive protocol there are no restrictions on the running time of Prover.
The existence of an interactive protocol for some coNP-complete problem in
which Prover runs in polynomial time would imply e.g. NP ⊆ BPP. Since this
is widely believed to be false, Provers are allowed to run in exponential time, as
in the proofs of [15,18]. However, while all known approaches for UNSAT use
exponential time in the worst case, some perform much better in practice than
others. For example, the Provers of [15,18] run in exponential time in the best

120 P. Czerner, J. Esparza, V. Krasotin

case. This motivates our next definition: instead of stating that Prover must
always be efficient, we say that it must have a bounded overhead compared to
some given algorithm Alg.

Formally, let L ⊆ {0, 1}∗ be a language, let Alg be an algorithm for L, and let
(V, PH , p) be an interactive protocol for L. We say that (V, PH , p) is competitive
with Alg if for every input x ∈ {0, 1}∗ of length n we have ptimeV,PH ,p(n)(x) ∈
O(poly(n)T (x)), where T (x) is the time it takes Alg to run on input x.

Recently, Couillard, Czerner, Esparza and Majumdar [5] have constructed
an interactive protocol for QBF that is competitive with BDDSolver, the
straightforward BDD-based algorithm that constructs a BDD for the satisfy-
ing assignments of each subformula, starting at the leaves of the syntax tree
and progressively moving up. In this paper, we will investigate UNSAT and
give an interactive protocol that is competitive with DavisPutnam, a decision
procedure for UNSAT based on a restricted version of resolution.

4 The Davis-Putnam Resolution Procedure

We introduce the variant of resolution for which we later construct a competitive
interactive protocol. It is a version of the Davis-Putnam procedure [6,9]2. Recall
that in our setting, clauses are multisets, and given a clause C and a literal l,
C(l) denotes the number of occurrences of l in C.

Definition 1. Let x be a variable. Full x-resolution is the procedure that takes
as input a formula φ satisfying C(x)+C(¬x) ≤ 1 for every clause C, and returns
the formula Rx(φ) computed as follows:

1. For every pair C1, C2 of clauses of φ such that x ∈ C1 and ¬x ∈ C2, add to
φ the resolvent w.r.t. x of C1 and C2 (i.e. set φ := φ⊕ Resx(C1, C2)).

2. Remove all clauses containing x or ¬x.

Full x-cleanup is the procedure that takes as input a formula φ satisfying C(x)+
C(¬x) ≤ 2 for every clause C, and returns the formula Cx(φ) computed as
follows:

1. Remove from φ all clauses containing both x and ¬x.
2. Remove from each remaining clause all duplicates of x or ¬x.

The Davis-Putnam resolution procedure is the algorithm for UNSAT that, given
a total order x1 ≺ x2 ≺ · · · ≺ xn on the variables of an input formula φ, executes
Algorithm 1. The algorithm assumes that φ is a set of sets of literals, that is,
clauses contain no duplicate literals, and φ contains no duplicate clauses. We let
□ denote the empty clause.
2 In Harrison’s book [9], the Davis-Putnam procedure consists of three rules. The

version in Definition 1 uses only Rule III, which is sometimes called the Davis-
Putnam resolution procedure. Unfortunately, at the time of writing this paper, the
Wikipedia article for the Davis-Putnam algorithm uses a different terminology (even
though it cites [9]): it calls the three-rule procedure the Davis-Putnam algorithm,
and the algorithm consisting only of Rule III the Davis-Putnam procedure.

A Resolution-Based Interactive Proof System for UNSAT 121

Algorithm 1 DavisPutnam(φ)
for i = 1, ..., n do

φ := Rxi(φ)
for j = i+ 1, ..., n do

φ := Cxj (φ)

if □ ∈ φ then
return “unsatisfiable”

else
return “satisfiable”

Step Formula Arithmetisation

Inp. φ = {{x, y}, {x,¬y,¬z}, {¬x,¬z},
{¬x,¬y,¬z}, {y, z}, {¬y, z}}

B(φ) = (1− x)(1− y) + (1− x)y3z3 + x3z3

+x3y3z3 + (1− y)(1− z) + y3(1− z)

Rx φ1 = {{y,¬z}, {y,¬y,¬z}, {¬y,¬z,¬z}
{¬y,¬z,¬y,¬z}, {y, z}, {¬y, z}}

B(φ1) = (1− y)z3 + (1− y)y3z3 + y3z6

+y6z6 + (1− y)(1− z) + y3(1− z)

Cy φ2 = {{y,¬z}, 2 · {¬y,¬z,¬z},
{y, z}, {¬y, z}}

B(φ2) = (1− y)z3 + 2y3z6

+(1− y)(1− z) + y3(1− z)

Cz φ3 = {{y,¬z}, 2 · {¬y,¬z}
{y, z}, {¬y, z}}

B(φ3) = (1− y)z3 + 2y3z3

+(1− y)(1− z) + y3(1− z)

Ry φ4 = {2 · {¬z,¬z}, 3 · {¬z, z}, {z, z}} B(φ4) = 2z6 + 3z3(1− z) + (1− z)2

Cz φ5 = {2 · {¬z}, {z}} B(φ5) = 2z3 + (1− z)

Rz φ6 = {2 ·□} B(φ6) = 2

Table 1. Run of DavisPutnam on an input φ, and arithmetisation of the intermediate
formulas.

Observe that while the initial formula contains no duplicate clauses, the algo-
rithm may create them, and they are not removed.

Example 1. Table 1 shows on the left a run of DavisPutnam on a formula φ
with three variables and six clauses. The right column is explained in Section
6.1.

It is well-known that the Davis-Putnam resolution procedure is complete,
but we give a proof suitable for our purposes. Let φ[x := true] denote the
result of replacing all occurrences of x in φ by true and all occurrences of ¬x
by false. Define φ[x := false] reversely. Further, let ∃xφ be an abbreviation of
φ[x := true] ∨ φ[x := false]. We have:

Lemma 2. Let x be a variable and φ a formula in CNF such that C(x) +
C(¬x) ≤ 1 for every clause C. Then Rx(φ) ≡ ∃xφ.

Proof. Let C1, ..., Ck be the clauses of φ. We have

∃xφ ≡ φ[x := true] ∨ φ[x := false]

122 P. Czerner, J. Esparza, V. Krasotin

≡
(∧

i∈[k]

Ci[x := true]
)
∨
(∧

j∈[k]

Cj [x := false]
)

≡
∧

i,j∈[k]

(
Ci[x := true] ∨ Cj [x := false]

)
≡

∧
i∈[k], x,¬x/∈Ci

Ci ∧
∧

i,j∈[k],¬x∈Ci,x∈Cj

(
Ci[x := true] ∨ Cj [x := false]

)
≡ Rx(φ).

For the second-to-last equivalence, consider a clause Ci containing neither x nor
¬x. Then Ci ∨ Ci is a clause of

∧
i,j∈[k]

(
Ci[x := true] ∨ Cj [x := false]

)
, and

it subsumes any other clause of the form Ci ∨ Cj . The first conjunct of the
penultimate line contains these clauses. Furthermore, if Ci contains x or if Cj

contains ¬x, then the disjunction Ci[x := true] ∨ Cj [x := false] is a tautology
and can thus be ignored. It remains to consider the pairs (Ci, Cj) of clauses such
that ¬x ∈ Ci and x ∈ Cj . This is the second conjunct. ⊓⊔

Lemma 3. Let x be a variable and φ a formula in CNF such that C(x) +
C(¬x) ≤ 2 for every clause C. Then Cx(φ) ≡ φ.

Proof. Since x ∨ ¬x ≡ true, a clause containing both x and ¬x is valid and
thus can be removed. Furthermore, duplicates of x in a clause can be removed
because x ∨ x ≡ x. ⊓⊔

Theorem 1. DavisPutnam is sound and complete.

Proof. Let φ be a formula over the variables x1, ..., xn. By Lemmas 2 and 3, after
termination the algorithm arrives at a formula without variables equivalent to
∃xn · · · ∃x1φ. This final formula is equivalent to the truth value of whether φ
is satisfiable; that is, φ is unsatisfiable iff the final formula contains the empty
clause. ⊓⊔

5 Constructing Competitive Interactive Protocols for
UNSAT

We consider algorithms for UNSAT that, given a formula, execute a sequence of
macrosteps. Throughout this section, we use DavisPutnam as running example.

Definition 2. A macrostep is a partial mapping M that transforms a formula
φ into a formula M(φ) equisatisfiable to φ.

The first macrostep is applied to the input formula. The algorithm accepts
if the formula returned by the last macrostep is equivalent to false. Clearly, all
these algorithms are sound.

A Resolution-Based Interactive Proof System for UNSAT 123

Example 2. The macrosteps of DavisPutnam are Rx and Cx for each vari-
able x. On a formula with n variables, DavisPutnam executes exactly n(n+1)

2
macrosteps.

We present an abstract design framework to obtain competitive interactive
protocols for these macrostep-based algorithms. As in [15,18,5], the framework is
based on arithmetisation of formulas. Arithmetisations are mappings that assign
to a formula a polynomial with integer coefficients. In protocols, Verifier asks
Prover to return the result of evaluating polynomials obtained by arithmetising
formulas not over the integers, but over a prime field Fq, where q is a sufficiently
large prime. An arithmetisation is useful for the design of protocols if the value
of the polynomial on a binary input, that is, an assignment that assigns 0 or 1
to every variable, determines the truth value of the formula under the assign-
ment. We are interested in the following class of arithmetisations, just called
arithmetisations for brevity:

Definition 3. Let F and P denote the sets of formulas and polynomials over a
set of variables. An arithmetisation is a mapping A : F → P such that for every
formula φ and every assignment σ to its variables:

(a) σ satisfies φ iff ΠσA(φ) = 0,3 and
(b) ΠσA(φ) (mod q) can be computed in time O(|φ| polylog q) for any prime q.

In particular, two formulas φ,ψ over the same set of variables are equivalent
if and only if for every binary assignment σ, ΠσA(φ) and ΠσA(ψ) are either
both zero or both nonzero.

Example 3. Let A be the mapping inductively defined as follows:

A(true) := 0 A(¬x) := x A(φ1 ∧ φ2) := A(φ1) +A(φ2)

A(false) := 1 A(x) := 1− x A(φ1 ∨ φ2) := A(φ1) · A(φ2).

For example, A((x ∨ false) ∧ ¬x)) = ((1 − x) · 1) + x = 1. It is easy to see
that A is an arithmetisation in the sense of Definition 3. Notice that A can
map equivalent formulas to different polynomials. For example, A(¬x) = x and
A(¬x ∧ ¬x) = 2x.

We define when an arithmetisation A is compatible with a macrostep M .

Definition 4. Let A : F → P be an arithmetisation and let M : F → F be a
macrostep. A is compatible withM if there exists a partial mapping PM : P → P
and a pivot variable x ∈ X satisfying the following conditions:

(a) PM simulates M : For every formula φ where M(φ) is defined, we have
A(M(φ)) = PM (A(φ)).

3 In most papers one requires that σ satisfies φ iff ΠσA(φ) = 1. Because of our later
choice of arithmetisations, we prefer ΠσA(φ) = 0.

124 P. Czerner, J. Esparza, V. Krasotin

(b) PM commutes with partial evaluations: For every polynomial p and every
assignment σ : X \ {x} → Z: Πσ(PM (p)) = PM (Πσ(p)).

(c) PM (p (mod q)) = PM (p) (mod q) for any prime q. 4

(d) PM can be computed in polynomial time.

An arithmetisation A is compatible with Alg if it is compatible with every
macrostep executed by Alg.

Graphically, an arithmetisation A is compatible with M if there exists a
mapping PM such that the following diagram commutes:

• • • •

• • • •

A

M

A
PM

Πσ

Πσ

PM

mod q

mod q
PM

We can now state and prove the main theorem of this section.

Theorem 2. Let Alg be an algorithm for UNSAT and let A be an arithmetisa-
tion compatible with Alg such that for every input φ

(a) Alg executes a sequence of k ∈ O(poly|φ|) macrosteps, which compute a
sequence φ0, φ1, ..., φk of formulas with φ0 = φ,

(b) A(φi) has maximum degree at most d ∈ O(poly|φ|), for any i, and
(c) A(φk) is a constant polynomial such that |A(φk)| ≤ 22

O(|φ|)
.

Then there is an interactive protocol for UNSAT that is competitive with Alg.

To prove Theorem 2, we first define a generic interactive protocol for UNSAT
depending only on Alg and A, and then prove that it satisfies the properties of
an interactive proof system: if φ is unsatisfiable and Prover is honest, Verifier
always accepts; and if φ is satisfiable, then Verifier accepts with probability at
most 2−|φ|, regardless of Prover.

5.1 Interactive Protocol

The interactive protocol for a given algorithm Alg operates on polynomials over a
prime finite field, instead of the integers. Given a prime q, we write Aq(p) := A(p)
(mod q) for the polynomial over Fq (the finite field with q elements) that one
obtains by taking the coefficients of A(p) modulo q.

At the start of the protocol, Prover sends Verifier a prime q, and then ex-
changes messages with Verifier about the values of polynomials over Fq, with the
goal of convincing Verifier that A(φk) ̸= 0 by showing Aq(φk) ̸= 0 instead. The
4 We implicitly extend PM to polynomials over Fq in the obvious way: we consider

the input p as a polynomial over Z by selecting the smallest representative in N for
each coefficient, apply PM , and then take the coefficients of the output polynomial
modulo q.

A Resolution-Based Interactive Proof System for UNSAT 125

following lemma demonstrates that this is both sound and complete; (a) shows
that a dishonest Prover cannot cheat in this way, and (b) shows that an honest
Prover can always convince Verifier.

Lemma 4. Let φk be the last formula computed by Alg.
(a) For every prime q, we have that Aq(φk) ̸= 0 implies that φ is unsatisfiable.
(b) If φ is unsatisfiable, then there exists a prime q s.t. Aq(φk) ̸= 0.

Proof. For every prime q, if Aq(φk) ̸= 0 then A(φk) ̸= 0. For the converse, pick
any prime q larger than A(φk). ⊓⊔

We let φ = φ0, φ1, ..., φk denote the sequence of formulas computed by Alg,
and d the bound on the polynomials A(φi) of Theorem 2. Observe that the
formulas in the sequence can be exponentially larger than φ, and so Verifier
cannot even read them. For this reason, during the protocol Verifier repeatedly
sends Prover partial assignments σ chosen at random, and Prover sends back to
Verifier claims about the formulas of the sequence of the form ΠσAq(φi) = w.
The first claim is about φk, the second about φk−1, and so on. Verifier stores
the current claim by maintaining variables i, w, and σ. The protocol guarantees
that the claim about φi reduces to the claim about φi−1, in the following sense:
if a dishonest Prover makes a false claim about φi but a true claim about φi+1,
Verifier detects with high probability that the claim about φi is false and rejects.
Therefore, in order to make Verifier accept a satisfiable formula φ, a dishonest
Prover must keep making false claims, and in particular make a false last claim
about φ0 = φ. The protocol also guarantees that a false claim about φ0 is always
detected by Verifier.

The protocol is described in Table 2. It presents the steps of Verifier and an
honest Prover.

Example 4. In the next section we use the generic protocol of Table 2 to give an
interactive protocol for Alg := DavisPutnam, using an arithmetisation called
B. Table 3 shows a possible run of this protocol on the formula φ of Table 1. We
can already explain the shape of the run, even if B is not defined yet.

Recall that on input φ, DavisPutnam executes six steps, shown on the left
column of Table 1, that compute the formulas φ1, ..., φ6. Each row of Table 3
corresponds to a round of the protocol. In round i, Prover sends Verifier the
polynomial pi corresponding to the claim ΠσAq(φi) (column Honest Prover).
Verifier performs a check on the claim (line with ?

=). If the check passes, Verifier
updates σ and sends it to Prover as the assignment to be used for the next claim.

5.2 The interactive protocol is correct and competitive with Alg

We need to show that the interactive protocol of Table 2 is correct and com-
petitive with Alg. We do so by means of a sequence of lemmas. Lemmas 6-8
bound the error probability of Verifier and the running time of both Prover and
Verifier as a function of the prime q. Lemma 9 shows that Prover can efficiently
compute a suitable prime. The last part of the section combines the lemmas to
prove Theorem 2.

126 P. Czerner, J. Esparza, V. Krasotin

1. Prover picks an appropriate prime q; i.e. a prime s.t. Aq(φk) ̸= 0, where φk

is the last formula computed by Alg. (The algorithm to compute q is given
later.)

2. Prover sends both q and Aq(φk) to Verifier. If Prover sends Aq(φk) = 0,
Verifier rejects.

3. Verifier sets i := k, w := Aq(φk) (sent by Prover in the previous step), and σ to
an arbitrary assignment. (Since initially Aq(φk) is a constant, σ is irrelevant.)

4. For each i = k, ..., 1, the claim about φi is reduced to a claim about φi−1:

4.1 Let x denote the pivot variable of Mi and set σ′ to the partial assign-
ment that is undefined on x and otherwise matches σ. Prover sends the
polynomial p := Πσ′Aq(φi−1), which is a univariate polynomial in x.

4.2 If the degree of p exceeds d or π[x:=σ(x)]PMi(p) ̸= w, Verifier rejects.
Otherwise, Verifier chooses an r ∈ Fq uniformly at random and updates
w := π[x:=r]p and σ(x) := r.

5. Finally, Verifier checks the claim ΠσAq(φ0) = w by itself and rejects if it does
not hold. Otherwise, Verifier accepts.

Table 2. An interactive protocol for an algorithm for UNSAT describing the behaviour
of Verifier and the honest Prover.

Completeness. We start by establishing that an honest Prover can always
convince Verifier.

Lemma 5. If φ is unsatisfiable and Prover is honest (i.e. acts as described in
Table 2), then Verifier accepts with probability 1.

Proof. We show that Verifier accepts. First we show that Verifier does not reject
in step 2, i.e. that Aq(φk) ̸= 0. Since φ is unsatisfiable by assumption, by Defini-
tion 2 we have that φk is unsatisfiable. Then, Definition 3(a) implies Aq(φk) ̸= 0
(note that Aq(φk) is constant, by Theorem 2(c)).

Let us now argue that the claim Verifier tracks (i.e., the claim given by the
current values of the variables) is always true. In step 3, it is initialised with
w := Aq(φk), so the claim is true at that point.

In each step 4.2, Verifier checks π[x:=σ(x)]PMi
(p)

?
= w. As Prover is honest,

it sent p := Πσ′Aq(φi−1) in the previous step; so the check is equivalent to

w
?
= π[x:=σ(x)]PMi(Πσ′Aq(φi−1)) (Definition 4(b))
= ΠσPMi(Aq(φi−1)) (Definition 4(a,c))
= ΠσAq(Mi(φi−1)) = ΠσAq(φi)

By induction hypothesis w = ΠσAq(φi) holds, and thus Verifier does not reject.
When Verifier updates the claim, it selects a random number r. Due to p =

Πσ′Aq(φi−1), the new claim will hold for all possible values of r.
In step 5, we still have the invariant that the claim is true, so Verifier will

accept. ⊓⊔

A Resolution-Based Interactive Proof System for UNSAT 127

Probability of error. Establishing soundness is more involved. The key idea
of the proof (which is the same idea as for other interactive protocols) is that for
Verifier to accept erroneously, the claim it tracks must at some point be true.
However, initially the claim is false. It thus suffices to show that each step of the
algorithm is unlikely to turn a false claim into a true one.

Lemma 6. Let A, d, k as in Theorem 2. If φ is satisfiable, then for any Prover,
honest or not, Verifier accepts with probability at most dk/q ∈ O(poly(|φ|)/q).

Proof. Let i ∈ {k, ..., 1}, let σ,w denote the values of these variables at the
beginning of step 4.1 in iteration i, and let σ′, w′ denote the corresponding
(updated) values at the end of step 4.2.

We say that Prover tricks Verifier at iteration i if the claim tracked by Verifier
was false at the beginning of step 4 and is true at the end, i.e. ΠσAq(φi) ̸= w
and Πσ′Aq(φi−1) = w′.

The remainder of the proof is split into three parts.

(a) If Verifier accepts, it was tricked.
(b) For any i, Verifier is tricked at iteration i with probability at most d/q.
(c) Verifier is tricked with probability at most dk/q ∈ O(poly(|φ|)/q).

Part (a). If φ is satisfiable, then so is φk (Definition 2), and thus ΠσAq(φk) = 0
(Definition 3(a); also note that ΠσAq(φk) is constant). Therefore, in step 2
Prover either claims ΠσAq(φk) = 0 and Verifier rejects, or the initial claim in
step 3 is false.

If Verifier is never tricked, the claim remains false until step 5 is executed,
at which point Verifier will reject. So to accept, Verifier must be tricked.
Part (b). Let i ∈ {k, ..., 1} and assume that the claim is false at the beginning
of iteration i of step 4. Now there are two cases. If Prover sends the polynomial
p = Πσ′Aq(φi−1), then, as argued in the proof of Lemma 5, Verifier’s check
is equivalent to w

?
= ΠσAq(φi), which is the current claim. However, we have

assumed that the claim is false, so Verifier would reject. Hence, Prover must send
a polynomial p ̸= Πσ′Aq(φi−1) (of degree at most d) to trick Verifier.

By Lemma 1, the probability that Verifier selects an r with π[x:=r]p =
π[x:=r]Πσ′Aq(φi−1) is at most d/q. Conversely, with probability at least 1− d/q,
the new claim is false as well and Verifier is not tricked in this iteration.
Part (c). We have shown that the probability that Verifier is tricked in one
iteration is at most d/q. By union bound, Verifier is thus tricked with probability
at most dk/q, as there are k iterations. By conditions (a) and (b) of Theorem 2,
we get dk/q ∈ O(poly(|φ|)/q). ⊓⊔

Running time of Verifier. The next lemma estimates Verifier’s running time
in terms of |φ| and q.

Lemma 7. Verifier runs in time O(poly(|φ| log q)).

128 P. Czerner, J. Esparza, V. Krasotin

Proof. Verifier performs operations on polynomials of degree at most d with
coefficients in Fq. So a polynomial can be represented using d log q bits, and
arithmetic operations are polynomial in that representation. Additionally, Veri-
fier needs to execute PMi for each i, which can also be done in polynomial time
(Definition 4(c)). There are k ∈ O(poly|φ|) iterations.

Finally, Verifier checks the claim ΠσAq(φ) = w for some assignment σ and
w ∈ Fq. Definition 3 ensures that this takes O(|φ| polylog q) time. The overall
running time is therefore in O(poly(|φ|d log q)). The final result follows from
condition (b) of Theorem 2. ⊓⊔

Running time of Prover. We give a bound on the running time of Prover,
excluding the time needed to compute the prime q.

Lemma 8. Assume that A is an arithmetisation satisfying the conditions of
Theorem 2. Let T denote the time taken by Alg on φ. The running time of
Prover, excluding the time needed to compute the prime q, is O(T poly|φ| log q)).

Proof. After picking the prime q, Prover has to compute ΠσAq(φi) for different
i ∈ [k] and assignments σ. The conditions of Theorem 2 guarantee that this can
be done in time O(|φi| polylog q) ⊆ O(|φi| poly(|φ| log q)). We have

∑
i|φi| ≤ T ,

as Alg needs to write each φi during its execution. The total running time follows
by summing over i. ⊓⊔

Computing the prime q. The previous lemmas show the dependence of Ver-
ifier’s probability of error and the running times of Prover and Verifier as a
function of |φ| and q. Our final lemma gives a procedure for Prover to compute
a suitable prime q. Together with the previous lemmas, this will easily yield
Theorem 2.

Lemma 9. For every c > 0 there exists a procedure for Prover to find a prime
q ∈ 2O(|φ|) such that q ≥ 2c|φ| and Aq(φk) ̸= 0 in expected time O(T |φ|), where
T is the running time of Alg.

Proof. Assume wlog. that c > 1. Prover first runs Alg to compute φk and then
chooses a prime q with 2c|φ| ≤ q < 2c|φ|+1 uniformly at random; thus q ∈ 2O(|φ|)

is guaranteed. If Prover arrives at Aq(φk) = 0, Prover chooses another prime q
in the same way, until one is chosen s.t. Aq(φk) ̸= 0.

Since |A(φk)| ≤ 22
|φ|

, A(φk) is divisible by at most 2|φ| different primes.
Using the prime number theorem, there are Ω(2c|φ|/c|φ|) primes 2c|φ| ≤ q <
2c|φ|+1, so the probability that the picked q divides A(φk) is O(c|φ|/2(c−1)|φ|).

Therefore, for any c > 1 this probability is at most, say, 1/2 for sufficiently
large |φ|. In expectation, Prover thus needs to test 2 primes q, and each test
takes time O(|φk| polylog q) (see Definition 3(b)), which is in O(T |φ|). ⊓⊔

A Resolution-Based Interactive Proof System for UNSAT 129

Proof of Theorem 2. We can now conclude the proof of the theorem.

Completeness was already proved in Lemma 5.

Soundness. We need to ensure that the error probability is at most 2−|φ|. By
Lemma 6, the probability p of error satisfies p ≤ dk/q, where dk ∈ O(poly(|φ|)).
So there is a ξ > 0 with dk ≤ 2ξ|φ|. Using c := 1 + ξ as constant for Lemma 9,
we are done.

Verifier’s running time. By Lemma 7, Verifier runs in time O(poly(|φ| log q)).
Using the prime q ∈ 2O(|φ|) of Lemma 9, the running time is O(poly(|φ|).

Competitivity. By Lemma 8, Prover runs in time O(T poly(|φ| log q)) plus the
time need to compute the prime, which, by Lemma 9, is in O(T poly(|φ|)). Again
using q ∈ O(2|φ|), we find that the protocol is competitive with Alg. ⊓⊔

6 An Interactive Proof System Competitive with the
Davis-Putnam Resolution Procedure

In order to give an interactive proof system for the Davis-Putnam resolution
procedure, it suffices to find an arithmetisation which is compatible with the full
x-resolution step Rx and the full x-cleanup step Cx such that all properties of
Theorem 2 are satisfied. In this section, we present such an arithmetisation.

6.1 An arithmetisation compatible with Rx and Cx

We find an arithmetisation compatible with both Rx and Cx. Let us first see
that the arithmetisation of Example 3 does not work.

Example 5. The arithmetisation A of Example 3 is not compatible with Rx. To
see this, let φ = (¬x ∨ ¬y) ∧ (x ∨ ¬z) ∧ ¬w. We have Rx(φ) = (¬y ∨ ¬z) ∧ ¬w,
A(Rx(φ)) = yz + w, and A(φ) = xy + (1 − x)z + w = x(y − z) + z + w.
If A were compatible with Rx, then there would exist an operation PRx on
polynomials such that PRx

(x(y − z) + z + w) = yz + w by Definition 4(a), and
from Definition 4(b), we get PRx

(Πσ(x(y − z) + z + w)) = Πσ(yz + w) for all
partial assignments σ : {y, z, w} → Z. For σ := {y 7→ 1, z 7→ 0, w 7→ 1}, it
follows that PRx(x+ 1) = 1, but for σ := {y 7→ 2, z 7→ 1, w 7→ 0}, it follows that
PRx(x+ 1) = 2, a contradiction.

We thus present a non-standard arithmetisation.

Definition 5. The arithmetisation B of a CNF formula φ is the recursively
defined polynomial

B(true) := 0 B(x) := 1− x B(φ1 ∧ φ2) := B(φ1) + B(φ2)

B(false) := 1 B(¬x) := x3 B(φ1 ∨ φ2) := B(φ1) · B(φ2).

130 P. Czerner, J. Esparza, V. Krasotin

Example 6. The right column of Table 1 shows the polynomials obtained by
applying B to the formulas on the left. For example, we have B(φ5) = B(¬z ∧
¬z ∧ z) = 2B(¬z) + B(z) = 2z3 + 1− z.

We first prove that B is indeed an arithmetisation.

Proposition 1. For every formula φ and every assignment σ : X → {0, 1} to
the variables X of φ, we have that σ satisfies φ iff ΠσB(φ) = 0.

Proof. We prove the statement by induction on the structure of φ. The statement
is trivially true for φ ∈ {true, false, x,¬x}. For φ = φ1 ∨ φ2, we have

σ satisfies φ⇔ σ satisfies φ1 ∨ φ2 ⇔ σ satisfies φ1 or σ satisfies φ2

IH⇔ ΠσB(φ1) = 0 ∨ΠσB(φ2) = 0 ⇔ ΠσB(φ1) ·ΠσB(φ2) = 0

⇔ΠσB(φ1 ∨ φ2) = 0 ⇔ ΠσB(φ) = 0,

and for φ = φ1 ∧ φ2, we have

σ satisfies φ⇔ σ satisfies φ1 ∧ φ2 ⇔ σ satisfies φ1 and σ satisfies φ2

IH⇔ ΠσB(φ1) = 0 ∧ΠσB(φ2) = 0 ⇔ ΠσB(φ1) + ΠσB(φ2) = 0

⇔ΠσB(φ1 ∧ φ2) = 0 ⇔ ΠσB(φ) = 0.

The equivalence ΠσB(φ1) = 0 ∧ΠσB(φ2) = 0 ⇔ ΠσB(φ1) + ΠσB(φ2) = 0 holds
because ΠσB(φ) cannot be negative for binary assignments σ. ⊓⊔

B is compatible with Rx. We exhibit a mapping γx : P → P satisfying the
conditions of Definition 4 for the macrostep Rx. Recall that Rx is only defined
for formulas φ in CNF such that C(x) + C(¬x) ≤ 1 for every clause C. Since
arithmetisations of such formulas only have an x3 term, an x term, and a constant
term, it suffices to define γx for polynomials of the form a3x

3 + a1x+ a0.

Lemma 10. Let γx : P → P be the partial mapping defined by γx(a3x3 + a1x+
a0) := −a3a1 + a1 + a0. The mapping γx witnesses that B is polynomially com-
patible with the full resolution macrostep Rx.

Proof. We show that γx satisfies all properties of Definition 4. Let φ be a formula
in CNF such that C(x) +C(¬x) ≤ 1 for every clause C (see Definition 1). Then
φ is of the form

φ =
(∧

i∈[k]

x ∨ ai
)
∧
(∧

j∈[l]

¬x ∨ bj
)
∧ c

where ai, bj are disjunctions not depending on x and c is a conjunction of clauses
not depending on x. We have Rx(φ) =

∧
i∈[k], j∈[l](ai ∨ bj) ∧ c. Now

B(φ) =
∑
i∈[k]

(1− x)ai +
∑
j∈[l]

x3bj + c =
∑
j∈[l]

bjx
3 −

∑
i∈[k]

aix+
∑
i∈[k]

ai + c

A Resolution-Based Interactive Proof System for UNSAT 131

and thus
γx(B(φ)) =

(∑
j∈[l]

bj

)(∑
i∈[k]

ai

)
−

∑
i∈[k]

ai +
∑
i∈[k]

ai + c

=
∑

i∈[k], j∈[l]

aibj + c = B(Rx(φ)).

This proves (a). Since γx does not depend on variables other than x, (b) is also
given. (c) and (d) are trivial. ⊓⊔

B is compatible with Cx. We exhibit a mapping δx : P → P satisfying the
conditions of Definition 4 for the cleanup macrostep Cx. Recall that Cx is only
defined for formulas φ in CNF such that C(x) + C(¬x) ≤ 2 for every clause C.
Arithmetisations of such formulas are polynomials of degree at most 6 in each
variable, and so it suffices to define δx for these polynomials.

Lemma 11. Let δx : P → P be the partial mapping defined by

δx(a6x
6 + a5x

5 + · · ·+ a1x+ a0) := (a6 + a4 + a3)x
3 + (a2 + a1)x+ a0.

The mapping δx witnesses that B is polynomially compatible with Cx.

Proof. We show that δx satisfies all properties of Definition 4. We start with (a).
Since B(C∧C ′) = B(C)+B(C ′) for clauses C,C ′ and δx(p1+p2) = δx(p1)+δx(p2),
it suffices to show that δx(B(C)) = B(Cx(C)) for all clauses C of φ. Now let C
be a clause of φ. We assume that C(x) + C(¬x) ≤ 2 (see Definition 1).

– If C(x) + C(¬x) ≤ 1, then δx(B(C)) = B(C) = B(Cx(C)).
– If C = x ∨ x ∨ C ′, then B(C) = (1 − x)2B(C ′) = (1 − 2x + x2)B(C ′), so
δxB(C) = (1− 2x+ x)B(C ′) = (1− x)B(C ′) = B(x ∨ C ′) = B(Cx(C)).

– If C = ¬x ∨ ¬x ∨ C ′, then B(C) = x6B(C ′), so δxB(C) = x3B(C ′) =
B(¬x ∨ C ′) = B(Cx(C)).

– If C = x ∨ ¬x ∨ C ′, then B(C) = (1 − x)x3B(C ′) = x3B(C ′) − x4B(C ′), so
δxB(C) = x3B(C ′)− x3B(C ′) = 0 = B(Cx(C)).

This proves (a). Since δx does not depend on variables other than x, (b) is also
given. Parts (c) and (d) are trivial. ⊓⊔

As observed earlier, DavisPutnam does not remove duplicate clauses; that
is, Prover maintains a multiset of clauses that may contain multiple copies of a
clause. We show that the number of copies is at most double-exponential in |φ|.

Lemma 12. Let φ be the input formula, and let φk be the last formula computed
by DavisPutnam. Then A(φk) ∈ 22

O(|φ|)
.

Proof. Let nC(ψ) be the number of clauses in a formula ψ, let x be a variable.
Then nC(Cx(ψ)) ≤ nC(ψ) because a cleanup step can only change or delete
clauses. Moreover, nC(Rx(ψ)) = nxn¬x − nx − n¬x + nC(ψ) where nx and n¬x

are the numbers of clauses in ψ which contain x and ¬x, respectively. We get

132 P. Czerner, J. Esparza, V. Krasotin

Round Honest Prover Verifier
Initial q := 15871

p6 := Bq(φ6) = 2
send q, p6

w := p6 = 2
σ := {x 7→ 3, y 7→ 4, z 7→ 3}
send σ

k = 6 σ′ := {x 7→ 3, y 7→ 4}
p5 := Πσ′(Bq(φ5))

= 2z3 − z + 1
send p5

π[z:=3]γz(p5) = π[z:=3]2
?
= 2

σ(z) := 4
w := π[z:=4]p5 = 125
send σ

k = 5 σ′ := {x 7→ 3, y 7→ 4}
p4 := Πσ′(Bq(φ4))

= 2z6 − 3z4 + 3z3 + z2 − 2z + 1
send p4

π[z:=4]δz(p4) = π[z:=4]2z
3 − z + 1

?
= 125

σ(z) := 2
w := π[z:=2]p4 = 105
send σ

k = 4 σ′ := {x 7→ 3, z 7→ 2}
p3 := Πσ′(Bq(φ3))

= 15y3 − 7y + 7
send p3

π[y:=4]γy(p3) = π[y:=4]105
?
= 105

σ(y) := 2
w := π[y:=2]p3 = 113
send σ

k = 3 σ′ := {x 7→ 3, y 7→ 2}
p2 := Πσ′(Bq(φ2))

= 16z6 − z3 − 7z + 7
send p2

π[z:=2]δz(p2) = π[z:=2]15z
3 − 7z + 7

?
= 113

σ(z) := 3
w := π[z:=3]p2 = 11623
send σ

k = 2 σ′ := {x 7→ 3, z 7→ 2}
p1 := Πσ′(Bq(φ1))

= 729y6 − 27y4 + 754y3 − 25y + 25
send p1

π[y:=2]δy(p1) = π[y:=2]1456y
3 − 25y + 25

?
= 11623

σ(y) := 1
w := π[y:=1]p1 = 1456
send σ

k = 1 σ′ := {y 7→ 1, z 7→ 2}
p0 := Πσ′(Bq(φ0))

= 54x3 − 27x+ 25
send p0

π[x:=3]γx(p0) = π[x:=3]1456
?
= 1456

σ(x) := 2
w := π[x:=2]p0 = 493
send σ

Final ΠσBq(φ)
?
= 493

Table 3. Run of the instance of the interactive protocol of Table 2 for DavisPutnam,
using the arithmetisation B of Definition 5.

nC(Rx(ψ)) ≤ (nx + n¬x)
2 − (nx + n¬x) + nC(ψ). Since nx + n¬x ≤ nC(ψ),

it follows that nC(Rx(ψ)) ≤ (nC(ψ))
2. Now let n be the number of variables.

Since φk is reached after n resolution steps, it follows that B(φk) = nC(φk) ≤
nC(φ)

2n ∈ 22
O(|φ|)

. ⊓⊔

Proposition 2. There exists an interactive protocol for UNSAT that is compet-
itive with DavisPutnam.

Proof. We show that the B satisfies all properties of Theorem 2. On an input
formula φ over n variables, DavisPutnam executes n resolution steps Rx and
n(n − 1)/2 cleanup steps Cx, which gives n(n + 1)/2 macrosteps in total and
proves (a).

Since φ does not contain any variable more than once per clause and since
cleanup steps w.r.t. all remaining variables are applied after every resolution
step, resolution steps can only increase the maximum degree of B(φi) to at most

A Resolution-Based Interactive Proof System for UNSAT 133

6 (from 3). Hence the maximum degree of B(φi) is at most 6 for any i, showing
(b).

Furthermore, since Rx(φi) does not contain any occurrence of x, and resolu-
tion steps are performed w.r.t. all variables, φk does not contain any variables,
so φk = {a · □} for some a ∈ N where □ is the empty clause. Together with
Lemma 12, (c) follows. ⊓⊔

Instantiating Theorem 2 with B yields an interactive protocol competitive
with DavisPutnam. Table 3 shows a run of this protocol on the formula φ
of Table 1. Initially, Prover runs DavisPutnam on φ, computing the formulas
φ1, ..., φ6. Then, during the run of the protocol, it sends to Verifier polynomials
of the form Πσ′Bq(φi−1) for the assignments σ′ chosen by Verifier.

7 Conclusions

We have presented the first technique for the systematic derivation of interactive
proof systems competitive with a given algorithm for UNSAT. More precisely,
we have shown that such systems can be automatically derived from arithmeti-
sations satisfying a few commutativity properties. In particular, this result in-
dicates that non-standard arithmetisations can be key to obtaining competitive
interactive proof systems for practical algorithms. We have applied our technique
to derive the first interactive proof system for the Davis-Putnam resolution pro-
cedure, opening the door to interactive proof systems for less restrictive variants
of resolution.

Lovasz et al. have shown that given a refutation by the Davis-Putnam reso-
lution procedure, one can extract a multi-valued decision diagram, polynomial
in the size of the refutation, in which the path for a given truth assignment leads
to a clause false under that assignment (that is, to a clause witnessing that the
assignment does not satisfy the formula) [14]. This suggests a possible connec-
tion between our work and the work of Couillard et al. in [5]. As mentioned in
the introduction, [5] presents an interactive proof system competitive with the
algorithm for UNSAT that iteratively constructs a BDD for the formula (start-
ing at the leaves of its syntax tree, and moving up at each step), and returns
“unsatisfiable” iff the BDD for the root of the tree only contains the node 0.
We conjecture that a future version of our systematic derivation technique could
subsume both [5] and this paper.

Acknowledgments. We thank the anonymous reviewers for their comments and
Albert Atserias for helpful discussions.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2006), https://theory.cs.princeton.edu/complexity/book.pdf

134 P. Czerner, J. Esparza, V. Krasotin

https://theory.cs.princeton.edu/complexity/book.pdf

2. Babai, L.: Trading group theory for randomness. In: Sedgewick, R. (ed.) Pro-
ceedings of the 17th Annual ACM Symposium on Theory of Computing, May
6-8, 1985, Providence, Rhode Island, USA. pp. 421–429. ACM (1985). https:
//doi.org/10.1145/22145.22192, https://doi.org/10.1145/22145.22192

3. Barbosa, H., Reynolds, A., Kremer, G., Lachnitt, H., Niemetz, A., Nötzli, A.,
Ozdemir, A., Preiner, M., Viswanathan, A., Viteri, S., Zohar, Y., Tinelli, C.,
Barrett, C.W.: Flexible proof production in an industrial-strength SMT solver.
In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated Reasoning -
11th International Joint Conference, IJCAR 2022, Haifa, Israel, August 8-10,
2022, Proceedings. Lecture Notes in Computer Science, vol. 13385, pp. 15–35.
Springer (2022). https://doi.org/10.1007/978-3-031-10769-6_3, https://doi.org/
10.1007/978-3-031-10769-6_3

4. Buss, S.R., Turán, G.: Resolution proofs of generalized pigeonhole principles.
Theor. Comput. Sci. 62(3), 311–317 (1988)

5. Couillard, E., Czerner, P., Esparza, J., Majumdar, R.: Making IP = PSPACE prac-
tical: Efficient interactive protocols for BDD algorithms. In: Enea, C., Lal, A.
(eds.) Computer Aided Verification - 35th International Conference, CAV 2023,
Paris, France, July 17-22, 2023, Proceedings, Part III. Lecture Notes in Com-
puter Science, vol. 13966, pp. 437–458. Springer (2023). https://doi.org/10.1007/
978-3-031-37709-9_21, https://doi.org/10.1007/978-3-031-37709-9_21

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034, https://doi.org/10.
1145/321033.321034

7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Sedgewick, R. (ed.) Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA. pp. 291–304. ACM (1985). https://doi.org/10.1145/22145.
22178, https://doi.org/10.1145/22145.22178

8. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
9. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press (2009)
10. Henzinger, T., Jhala, R., Majumdar, R., Necula, G., Sutre, G., Weimer, W.:

Temporal-safety proofs for systems code. In: CAV 02: Computer-Aided Verifica-
tion, pp. 526–538. Lecture Notes in Computer Science 2404, Springer-Verlag (2002)

11. Heule, M., Jr., W.A.H., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: ITP. Lecture Notes in Computer Science, vol. 10499, pp.
269–284. Springer (2017)

12. Heule, M.J.H.: Proofs of unsatisfiability. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 635–668. IOS Press (2021). https://doi.
org/10.3233/FAIA200998, https://doi.org/10.3233/FAIA200998

13. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. CoRR abs/1605.00723
(2016)

14. Lovász, L., Naor, M., Newman, I., Wigderson, A.: Search problems in the decision
tree model. SIAM J. Discret. Math. 8(1), 119–132 (1995)

15. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992). https://doi.org/10.1145/146585.
146605, https://doi.org/10.1145/146585.146605

16. Namjoshi, K.: Certifying model checkers. In: CAV 01: Computer Aided Verification,
pp. 2–13. Lecture Notes in Computer Science 2102, Springer-Verlag (2001)

A Resolution-Based Interactive Proof System for UNSAT 135

https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/978-3-031-37709-9_21
https://doi.org/10.1007/978-3-031-37709-9_21
https://doi.org/10.1007/978-3-031-37709-9_21
https://doi.org/10.1007/978-3-031-37709-9_21
https://doi.org/10.1007/978-3-031-37709-9_21
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.3233/FAIA200998
https://doi.org/10.3233/FAIA200998
https://doi.org/10.3233/FAIA200998
https://doi.org/10.3233/FAIA200998
https://doi.org/10.3233/FAIA200998
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605

17. Necula, G.: Proof-carrying code. In: Principles of Programming Languages. pp.
106–119. ACM Press (1997)

18. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). https://doi.org/10.
1145/146585.146609, https://doi.org/10.1145/146585.146609

136 P. Czerner, J. Esparza, V. Krasotin

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
http://creativecommons.org/licenses/by/4.0/

Craig Interpolation for Decidable First-Order
Fragments

Abstract. We show that the guarded-negation fragment (GNFO) is, in
a precise sense, the smallest extension of the guarded fragment (GFO)
with Craig interpolation. In contrast, we show that the smallest extension
of the two-variable fragment (FO2), and of the forward fragment (FF)
with Craig interpolation, is full first-order logic. Similarly, we also show
that all extensions of FO2 and of the fluted fragment (FL) with Craig
interpolation are undecidable.

Keywords: Craig interpolation · Decidability · Abstract model theory.

1 Introduction

The study of decidable fragments of first-order logic (FO) is a topic with a long
history, dating back to the early 1900s ([40,52], cf. also [16]), and more actively
pursued since the 1990s. Inspired by Vardi [55], who asked “what makes modal
logic so robustly decidable?” and Andreka et al. [1], who asked “what makes
modal logic tick?” many decidable fragments have been introduced and studied
over the last 25 years that take inspiration from modal logic (ML), which itself
can be viewed as a fragment of FO that features a restricted form of quantifica-
tion. These include the following fragments, each of which naturally generalizes
modal logic in a different way: the two-variable fragment (FO2) [42], the guarded
fragment (GFO) [1], and the unary negation fragment (UNFO) [22]. Further de-
cidable extensions of these fragments were subsequently identified, including the
two-variable fragment with counting quantifiers (C2) [29] and the guarded nega-
tion fragment (GNFO) [4]. The latter can be viewed as a common generalization
of GFO and UNFO. Many decidable logics used in computer science and AI, in-
cluding various description logics and rule-based languages, can be translated
into GNFO and/or C2. In this sense, GNFO and C2 are convenient tools for
explaining the decidability of other logics. Extensions of GNFO have been stud-
ied that push the decidability frontier even further (for instance with fixed-point
operators and using clique-guards), but these fall outside the scope of this paper.

In an earlier line of investigation, Quine identified the decidable fluted frag-
ment (FL) [51], the first of several ordered logics which have been the subject of
recent interest [47,48,49,50,44]. The idea behind ordered logics is to restrict the
order in which variables are allowed to occur in atomic formulas and quantifiers.
c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 137–159, 2024.
https://doi.org/10.1007/978-3-031-57231-9_7

Balder ten Cate1 and Jesse Comer2(B)

1 ILLC, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
2 University of Pennsylvania, Philadelphia, PA 19104, USA

jacomer@seas.upenn.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_7&domain=pdf
http://orcid.org/0000-0002-2538-5846
http://orcid.org/0009-0006-9734-3457

FO

C2 GNFO

GFO UNFOFO2

Modal Logic

FF

FL
(*)decidability

finite model

property

FO First-order logic
FO2 Two-variable fragment
C2 Two-variable fragment with counting
GFO Guarded fragment

GNFO Guarded-negation fragment
UNFO Unary-negation fragment
FF Forward fragment
FL Fluted fragment

Fig. 1. Landscape of decidable fragments of FO with () and without () CIP.
The inclusion marked (∗) holds only for sentences and self-guarded formulas.

Another recently introduced decidable fragment that falls in this family is the
forward fragment (FF), whose syntax strictly generalizes that of FL. Both FL
and FF have the finite model property (FMP) [44] and embed ML [34], but are
incomparable in expressive power to GFO [45], FO2, and UNFO.3

Ideally, an FO-fragment is not only decidable, but also model-theoretically
well behaved. A particularly important model-theoretic property of logics is the
Craig Interpolation Property (CIP). It states that, for all formulas φ,ψ, if φ |= ψ,
then there exists a formula ϑ such that φ |= ϑ and ϑ |= ψ, and such that all non-
logical symbols occurring in ϑ occur both in φ and in ψ. Craig [24] proved in 1957
that FO itself has this property (hence the name). Several refinements of Craig’s
result have subsequently been obtained (e.g., [43,10]). These have found applica-
tions in various areas of computer science and AI, including formal verification,
modular hard/software specification and automated deduction [41,18,31], and
are emerging as a new prominent technology in databases [53,12] and knowledge
representation [39,21,37]. While we have described CIP here as a model theoretic
property, it also has a proof-theoretic interpretation. Indeed, it has been argued
that CIP is an indicator for the existence of nice proof systems [32].

Turning our attention to the decidable fragments of FO we mentioned ear-
lier, it turns out that, although GFO is in many ways model-theoretically well-
behaved [1], it lacks CIP [33]. Likewise, FO2 lacks CIP [23] and the same holds for
C2 ([35, Example 2] yields a counterexample). Both FF and FL lack CIP [7]. On
the other hand, UNFO and GNFO have CIP [22,3]. Figure 1 summarizes these
known results. Note that we restrict attention to relational signatures without
constant symbols and function symbols. Some of the results depend on this re-
striction. Other known results not reflected in Figure 1 (to avoid clutter) are that

3 Specifically, the FO-sentence ∃xy(R(x, y)∧R(y, x)) belongs to GFO, FO2 and UNFO,
but is not expressible in FF, since the structure consisting of two points with symmet-
ric edges and the structure (Z, S) with S the successor relation, are “infix bisimilar,”
as described in [7].

138 B. ten Cate, J. Comer

the intersection of GFO and FO2 (also known as GFO2) has CIP [33]. Similarly,
the intersection of FF with GFO and the intersection of FL with GFO (known
as GFF and GFL, respectively) have CIP [7].

When a logic L lacks CIP, the question naturally arises as to whether there
exists a more expressive logic L′ that has CIP. If such an L′ exists, then, in
particular, interpolants for valid L-implications can be found in L′. This line
of analysis is sometimes referred to as Repairing Interpolation [2]. If L′ is an
FO-fragment, and our aim is to repair interpolation by extension, then there is
a trivial solution: FO itself is an extension of L satisfying CIP. We will instead
consider the following refinement of the question: can a natural extension L′

of L be identified which satisfies CIP while retaining decidability? We will an-
swer this question for three of the fragments depicted in Figure 1 that lack CIP,
by identifying the minimal natural extension L′ of L satisfying CIP. Our main
results can be stated informally as follows:

1. The smallest logic extending GFO that has CIP is GNFO.
2. The smallest logic extending FO2 that has CIP is FO, and no decidable

extension of FO2 has CIP.
3. The smallest logic extending FF that has CIP is FO, and no decidable ex-

tension of FL has CIP.

The precise statements of these results will be given in the respective sections.
They involve some natural closure assumptions on the logics in question, and, for
the undecidability results, some assumptions regarding the effective computabil-
ity of the translation between the extension and the logic that it extends.

These results give us a clear sense of where, in the larger landscape of decid-
able fragments of FO, we may find logics that enjoy CIP. What makes the above
results remarkable is that, from the definition of the Craig interpolation property,
it doesn’t appear to follow that a logic without CIP would have a unique minimal
extension with CIP. Note that a valid implication may have many possible in-
terpolants, and the Craig interpolation property merely requires the existence of
one such interpolant. Nevertheless, the above results show that, in the case FO2,
GFO, and FF, such a unique minimal extension indeed exists (assuming suitable
closure properties, which will be spelled out in detail in the next sections).

Related Work. Several other approaches have been proposed for dealing with
logics that lack CIP. One approach is to weaken CIP. For example, it was shown
in [33] that GFO satisfies a weak, “modal” form of Craig interpolation, where,
roughly speaking, only the relation symbols that occur in non-guard positions
in the interpolant are required to occur both in the premise and the conclusion.
As it turns out, this weakening of CIP is strong enough to entail the (non-
projective) Beth Definability Property, which is one important use case of CIP.
See also Section 7 for further discussion of weak forms of CIP.

Another recent approach [35] is to develop algorithms for testing whether
an interpolant exists for a given entailment. That is, rather than viewing Craig
interpolation as a property of logics, the existence of interpolants is studied as an

Craig Interpolation for Decidable First-Order Fragments 139

algorithmic problem at the level of individual entailments. The interpolant exis-
tence problem turns out to be indeed decidable (although of higher complexity
than the satisfiability problem) for both GFO and FO2 [35].

Additional results are known for UNFO and GNFO beyond the fact that
they have CIP. In particular, CIP holds for their fixed-point extensions [9,8],
interpolants can be constructed effectively, and tight bounds are known on the
size of interpolants and the computational complexity of computing them [11].

Our paper can be viewed as an instance of abstract model theory for frag-
ments of FO. One large driving force behind the development of abstract model
theory was the identification of extensions of FO which satisfy desirable model-
theoretic properties, such as the compactness theorem, the Löwenheim-Skolem,
and Craig interpolation. One takeaway from this line of research is that CIP is
scarce among many “reasonable” FO-extensions. An early result of Lindström
showed that FO-extensions with finitely many generalized quantifiers and satis-
fying the downward Löwenheim-Skolem property do not have the Beth property
(and hence fail to satisfy CIP) [38]. Similarly, Caicedo [17], generalizing an early
result by Friedman [26], established a strong negative CIP result that applies
to arbitrary proper FO-extensions with monadic generalized quantifiers. For a
survey of negative interpolation results among FO-extensions, see [54]. These
negative results not only show that CIP is scarce among extensions of FO, they
also provide clues as to where, within the space of all extensions, one may hope
to find logics with CIP. Our results can be viewed similarly, except that they
pertain to (extensions of) fragments of FO.

Our results can also be appreciated as characterizations of GNFO and of
FO. While traditional Lindström-style characterizations are maximality theo-
rems (e.g., FO is a maximal logic having the compactness and Löwenheim-Skolem
properties), our results can be viewed as minimality theorems (e.g., GNFO is
the minimal logic extending GFO and having CIP).

Some prior work exists that studies abstract model theory for (extensions
of) fragments of FO. Most closely related is [19], which studies modal logics
and hybrid logics. Among other things, it was shown in [19] that the smallest
extension of modal logic with the difference operator (ML(D)) which satisfies
CIP is full first-order logic. Additionally, in [28], the authors identified minimal
extensions of various fragments of propositional linear temporal logic (PLTL)
with CIP. Furthermore, it was shown in [19] that every abstract logic extending
GFO with CIP can express all FO sentences and formulas with one free vari-
able, and is thus undecidable. A crucial difference between this result and ours
is that [19] assumes signatures with constant symbols and concerns a stronger
version of CIP, interpolating not only over relation symbols but also over con-
stant symbols. In contrast, we only consider purely relational signatures without
constant symbols. Other prior work on abstract model theory for fragments of
FO are [13,15,27]. Repairing interpolation has also been pursued in the context
of quantified modal logics, which typically lack CIP; in [2], the authors showed
that CIP can be repaired for such logics by adding nominals, @-operators and
the ↓-binder.

140 B. ten Cate, J. Comer

Outline. Section 2 introduces the abstract model-theoretic framework. In Sec-
tions 3, 4, and 5, we repair interpolation for FO2, GFO, and FF, respectively. In
Section 6, we provide results showing that, even with weak expressive assump-
tions, extensions of FO2 and FL with CIP are undecidable. In Section 7, we
discuss the implications and limitations of our results, and future directions.

2 Preliminaries

We assume familiarity with the syntax and semantics of FO. Signatures are
denoted by σ and τ , and are assumed to be relational and finite. If φ contains
only relation symbols occurring in σ, then we write M, g |= φ to denote that a
σ-structure M satisfies φ under the variable assignment g. We write xi, yi, zi, ui
to denote variables, and x, y, z, u to denote tuples of variables. We write ai, bi, ci
to denote elements of structures and a, b, c to denote tuples of such elements.
Given a tuple of elements a = a1, . . . , an in a structure M , a tuple of variables
x = x1, . . . , xn, and a variable assignment g, we write g[x/a] to denote the
variable assignment which is the same as g except that g(xi) = ai for each i ≤ n.
In order to state our main results precisely, we must formally define what we
mean by extensions L′ of L (where L is some fragment of FO that lacks CIP).
One option is to let L′ range over fragments of FO that syntactically include L.
However, as it turns out, our main results apply even to extensions that are not
themselves contained in FO. We therefore opt, instead, to work with an abstract
definition of logics, as typically used in abstract model theory.

Abstract Logics. An abstract logic (or logic) is a pair (L, |=L), where L is a
map from relational signatures σ to collections of formulas, and |=L is a ternary
satisfaction relation. A formula of an abstract logic (L, |=L) is an element of L(σ)
for some finite relational signature σ. L must be monotone: if σ ⊆ τ , then L(σ) ⊆
L(τ). Each formula φ has an associated finite set of free variables free(φ), and
we write φ(x) or φ(x1, . . . , xk) to denote that the free variables of φ are exactly
those in the tuple x = x1, . . . , xk. As in the case of FO, a formula φ is a sentence
if free(φ) = ∅. We write sig(φ) to denote the least signature σ such that φ ∈ L(σ).
The ternary satisfaction relation |=L is defined over triples (M, g, φ), where φ
is an L-formula, M is a τ -structure such that sig(φ) ⊆ τ , and g is a variable
assignment with free(φ) ⊆ dom(g); we write M, g |=L φ if this relation holds
between these objects. The notions of logical consequence and logical equivalence
for abstract logics are defined completely analogously to FO. In later sections,
we will prefer to suppress the subscript L in the notation for the satisfaction
relation and write L to denote an abstract logic (L, |=L). Furthermore, we often
write φ ∈ L rather than φ ∈ L(σ), leaving the signature implicit.

All abstract logics L are assumed to satisfy the reduct property and the re-
naming property. The reduct property states that if σ ⊆ τ , then for all φ ∈ L(σ),
all τ -structures M , and all assignments g, if M, g |=L φ, then M ↾ σ, g |=L φ. In
other words, the truth of a formula of an abstract logic L in a structure depends
only on the interpretations of the symbols in the signature of that formula. The

Craig Interpolation for Decidable First-Order Fragments 141

renaming property states that if ρ : σ → τ is an injective map preserving the
arity of relation symbols, then for each formula φ ∈ L(σ), there is a formula
ψ ∈ L(τ) such that for all τ -structures M , we have that M, g |=L ψ if and only
if ρ−1[M], g |=L φ, where ρ−1[M] is the σ-structure with the same domain as M
where, for each R ∈ σ, we have that Rρ

−1[M] = ρ(R)M . Intuitively, the renaming
property states that if a formula over a signature σ can be expressed in a logic
L, then the formula obtained by renaming all of its relation symbols can also be
expressed in L.

For arbitrary abstract logics L, the Craig interpolation property states that if
φ |=L ψ for L-formulas φ and ψ, then there exists a formula ϑ ∈ L(sig(φ)∩sig(ψ))
with free(ϑ) = free(φ) ∩ free(ψ) such that φ |=L ϑ and ϑ |=L ψ.

We say a formula φ of a logic L expresses a formula ψ of a logic L′ if free(φ) =
free(ψ), sig(φ) = sig(ψ), and for all structures M and assignments g, we have
that M, g |=L φ if and only if M, g |=L′ ψ. We say that a logic L′ is an extension
of a logic L (notation: L ⪯ L′) if L′ can express all formulas of L. An FO-
fragment can then be precisely defined, without reference to syntax, as a logic of
which FO is an extension. We say that L′ is a sentential extension of L (notation:
L ⪯sent L′) if L′ can express all sentences of L.

Let L be a logic and ψ(x1, . . . , xn) be an L-formula. We write JψKM for
the collection of tuples (a1, . . . , an) ∈Mn such that there exists an assignment g
whereM, g |= ψ and g(xi) = ai for each i ≤ n. Given formulas ψ1, . . . , ψk ∈ L(σ),
a σ-structureM , and relation symbols R1, . . . , Rk ∈ σ with |free(ψi)| = arity(Ri)
for each i ≤ k, we define M [R1/ψ1, . . . , Rk/ψk] to be the σ-structure with the
same domain as M and such that RM [R1/ψ1,...,Rk/ψk]

i = JψiKM for each i ≤ k.
We now describe a syntax-free notion of uniform substitution for formulas of an
abstract logic.

Definition 2.1. Let L be a logic and φ ∈ L(σ) with R1, . . . , Rk ∈ sig(φ), where
for each i ≤ k, we have that Ri is a ki-ary relation symbol. Furthermore, let
ψ1, . . . , ψk ∈ L(σ) be formulas with |free(ψi)| = ki for each i ≤ k. We say that
L expresses the substitution of ψ1, . . . , ψk for R1, . . . , Rk in φ if there exists a
formula χ ∈ L(σ) such that, for every σ-structure M ,

M, g |= χ ⇐⇒ M [R1/ψ1, . . . , Rk/ψk], g |= φ.

Most studies in abstract logic assume that the logics under study are regular,
roughly meaning that they can express atomic formulas, Boolean connectives,
and existential quantification. In other words, to study regular logics is to study
extensions of FO. Since we are interested in a more fine-grained view of logics
including FO-fragments, these assumptions are too strong. As a result, the first
step of studying extensions of FO-fragments from the perspective of abstract
logic is to identify natural expressive assumptions for those extensions which are
strictly weaker than regularity. We do this in the respective sections.

Some of our proofs will use second-order quantification (for expository rea-
sons only), and we recall the semantics of these quantifiers here. Given a formula
φ ∈ L(σ ∪ {P}) of some abstract logic L, we can form new formulas ∃Pφ and

142 B. ten Cate, J. Comer

∀Pφ with signature σ and the same free variables as φ. Given a σ-structure M
and an assignment g, the semantics of these formulas are defined as follows:

M, g |= ∃Pφ if there is a σ ∪ {P}-expansion M ′ of M
such that M ′, g |= φ, and

M, g |= ∀Pφ if for all σ ∪ {P}-expansions M ′ of M,

we have that M ′, g |= φ.

If L itself does not allow second-order quantification, we can view ∃Pφ and ∀Pφ
as elements of L′(σ) for a suitable extension L′ of L. In particular, if φ is an
FO-formula, then ∃Pφ and ∀Pφ are formulas of second-order logic (SO).

3 Repairing Interpolation for FO2

The two-variable fragment (FO2) consists of all FO-formulas containing only two
variables, say, x and y, where we allow for nested quantifiers that reuse the same
variable (as in ∃xy(R(x, y) ∧ ∃x(R(y, x))), expressing the existence of a path of
length 2). In this context, as is customary, we restrict attention to relations of
arity at most 2. It is known that FO2 is decidable [42] but does not have CIP [23].

3.1 Natural Extensions of FO2

While FO2 is restricted to only two variables and predicates of arity as most 2, it
has no restriction on its connectives: it is fully closed under Boolean connectives
and existential and universal quantification. Because of this fact, we will consider
in this section those abstract logics which are strong extensions of FO2.

Definition 3.1. We say that a logic L′ strongly extends a logic L if L′ extends
L and, for each formula φ ∈ L′ with R1, . . . , Rk ∈ sig(φ), where φ expresses
some ψ ∈ L, and all formulas ψ1, . . . , ψk ∈ L′, we have that L′ expresses the
substitution of ψ1, . . . , ψk for R1, . . . , Rk in φ (cf. Definition 2.1).

Intuitively, Definition 3.1 means that L′ can express uniform substitutions of
its formulas into formulas of L. In other words, the notion of a strong extension
is a syntax-free way to say that L′ extends L and is closed under the connectives
of L. In particular, if L strongly extends FO2, then L can express all of the usual
first-order connectives: for ψ0 and ψ1 expressible in L, it must also be the case
that ¬ψ0, ψ0 ∧ ψ1, and ∃xψ0 are expressible in L, under the usual semantics of
these connectives. Clearly FO2 is the smallest strong extension of itself.

3.2 Finding the Minimal Extension of FO2 with CIP

Recall that we write L ⪯sent L′ if every sentence of L is expressible in L′. Our
main result in this section is the following.

Theorem 3.1. If L is a strong extension of FO2 with CIP, then FO ⪯sent L.

Craig Interpolation for Decidable First-Order Fragments 143

Proof. We will show by induction on the complexity of formulas that, for every
FO-formula φ(x1 . . . , xn) there is a sentence ψ ∈ L over an extended signature
containing additional unary predicates P1, . . . , Pn, that is equivalent to

∃x1 . . . xn(
(∧
i=1...n

Pi(xi) ∧ ∀y(Pi(y) → y = xi)
)
∧ φ(x1, . . . , xn)).

In other words, ψ is a sentence expressing that φ holds under an assignment
of its free variables to some tuple of elements which uniquely satisfy the Pi
predicates. In the case that n = 0 (i.e., the case that φ is a sentence), we then
have that ψ is equivalent to φ, which shows that FO ⪯sent L.

The base case of the induction is straightforward (recall that we restrict
attention to relations of arity at most 2). The induction step for the Boolean
connectives is straightforward as well (using the fact that L is a strong extension
of FO2, and thus can express all connectives of FO2). In fact, the only non-
trivial part of the argument is the induction step for the existential quantifier.
Let φ(x1, . . . , xn) be of the form ∃xn+1φ

′(x1. . . . , xn, xn+1). By the inductive
hypothesis, there is an L-sentence ψ with sig(ψ) = sig(φ′) ∪ {P1, . . . , Pn+1},
where P1, . . . , Pn+1 are unary predicates not in sig(φ′), which is equivalent to

∃x1 . . . xn∃xn+1(
(∧
i≤n+1

Pi(xi) ∧ ∀y(Pi(y) → y = xi)
)
∧ φ′(x1, . . . , xn, xn+1)).

Now, let ψ′ be obtained from ψ by replacing every occurrence of Pn+1 by P ′ for
some fresh unary predicate P ′; this is expressible in L by the renaming property.
Furthermore, let

γ(x) := ψ ∧ Pn+1(x), and

χ(x) := (P ′(x) ∧ ∀y(P ′(y) → y = x)) → ψ′.

(where x is either of the two variables we have at our disposal; it does not matter
which). Since L strongly extends FO2, both can be written as an L-formula. Then

γ(x) |= χ(x).

Let ϑ(x) ∈ L be an interpolant. Observe that since Pn+1 occurs only in γ(x)
and P ′ only in χ(x), the following second-order entailment is also valid:

∃Pn+1γ(x) |= ϑ(x) |= ∀P ′χ(x).

It is not hard to see that ∃Pn+1γ(x) and ∀P ′χ(x) are equivalent. Indeed, both are
satisfied in a structure M under an assignment g precisely if M ′, g |= φ, where
M ′ is the expansion of M in which Pn+1 denotes the singleton set {g(xn+1)}.
It then follows that ϑ(x), being sandwiched between the two, is also equivalent
to ∃Pn+1γ(x). This implies that ϑ(x) is the unique interpolant (up to logical
equivalence) of the entailment γ(x) |= χ(x), and so it is expressible in L. Then
since L strongly extends FO2, it can express ∃xϑ(x). We claim that this sentence
satisfies the requirement of our claim. To see this, observe that ∃xϑ(x) is equiv-
alent to ∃x∃Pn+1γ(x), which is equivalent to ∃Pn+1ψ, which clearly satisfies the
requirement of our claim. ⊓⊔

144 B. ten Cate, J. Comer

4 Repairing Interpolation for GFO

The guarded fragment (GFO) [1] allows formulas in which all quantifiers are
“guarded.” Formally, a guard for a formula φ is an atomic formula α whose free
variables include all free variables of φ. Following [30], we allow α to be an equal-
ity. More generally, by an ∃-guard for φ, we will mean a possibly-existentially-
quantified atomic formula ∃xβ whose free variables include all free variables of
φ. The formulas of GFO are generated by the following grammar:

φ := ⊤ | R(x) | x = y | φ ∧ ψ | φ ∨ ψ | ¬φ | ∃x(α ∧ φ),

where, in the last clause, α is a guard for φ. Note again that we do not allow
constants and function symbols.

In the guarded-negation fragment (GNFO) [4], arbitrary existential quantifi-
cation is allowed, but every negation is required to be guarded. More precisely,
the formulas of GNFO are generated by the following grammar:

φ := ⊤ | R(x) | x = y | φ ∧ φ | φ ∨ φ | ∃xφ | α ∧ ¬φ,

where, in the last clause, α is a guard for φ.
As is customary, the above definitions are phrased in terms of ordinary guards

α. However, it is easy to see that if we allow for ∃-guards, this would not affect
the expressive power (or computational complexity) of these logics in any way.
This is because, when the variables in the tuple x do not occur free in φ, as is
the case when ∃xβ is an ∃-guard for φ, then we can write ∃xβ ∧ φ equivalently
as ∃x(β ∧ φ). In other words, an ∃-guard is as good as an ordinary guard. We
call an FO-formula self-guarded if it is either a sentence or it is of the form α∧φ
where α is an ∃-guard for φ.

In this section, we will require the notions of conjunctive queries (CQs) and
unions of conjunctive queries (UCQs). A CQ is an FO-formula of the form

φ(x1, . . . , xn) := ∃y1 . . . ∃ym(
∧
i∈I

αi),

where each αi is an atomic relation, possibly an equality, whose free variables are
among {x1, . . . , xn, y1, . . . , ym}. The collection of all CQs is expressively equiva-
lent to the fragment FO∃,∧ of first-order logic, which is generated by the following
grammar:

φ := R(x1, . . . , xk) | x = y | φ ∧ φ | ∃xφ.
A UCQ is a finite disjunction of CQs. Importantly, GNFO can be alterna-

tively characterized as the smallest logic which can express every UCQ and is
closed under guarded negation [4]. This is made explicit in the following expres-
sively equivalent grammar for GNFO:

φ := ⊤ | R(x) | x = y | α ∧ ¬φ | q[R1/φ1, . . . , Rn/φn],

where q is a UCQ with relation symbols R1, . . . , Rn and φ1, . . . , φn are self-
guarded formulas with the appropriate number of free variables and generated
by the same recursive grammar. We refer to this as the UCQ syntax for GNFO.

Craig Interpolation for Decidable First-Order Fragments 145

4.1 Natural Extensions of GFO

Unlike FO2, guarded fragments are peculiar in that they are not closed under
substitution. For example, ∃xy(R(x, y) ∧ ¬S(x, y)) belongs to GFO, but if we
substitute x = x ∧ y = y for R(x, y), we obtain ∃xy(x = x ∧ y = y ∧ ¬S(x, y)),
which does not belong to GFO (and is not even expressible in GNFO). GFO and
GNFO are, however, closed under self-guarded substitution : we can uniformly
substitute self-guarded formulas for atomic relations. We generalize the notion
of a self-guarded formula to abstract logics L as follows: a formula φ(x) ∈ L(σ)
with free(φ) = {x1, . . . , xk} is self-guarded if there is a n-ary relation symbol
G ∈ σ, where n ≥ k, and a tuple of variables y containing exactly the variables
free(φ) ∪ {z1, . . . , zm}, such that for all σ-structures M and assignments g,

M, g |= φ =⇒ M, g |= ∃z1 . . . ∃zmG(y).

Intuitively, we can think of a self-guarded L-formula as a conjunction of the
form α ∧ ψ, where α is an ∃-guard for ψ. We can then capture the notion of
self-guarded substitution for abstract logics by the following definition.

Definition 4.1. We say that an abstract logic L expresses self-guarded sub-
stitutions if, for each formula φ ∈ L with R1, . . . , Rk ∈ sig(φ), and all self-
guarded formulas ψ1, . . . , ψk ∈ L, we have that L can express the substitution of
ψ1, . . . , ψk for R1, . . . , Rk in φ (cf. Definition 2.1).

It was shown in [4] that every self-guarded GFO-formula is expressible in
GNFO. In particular, this applies to all GFO-sentences and GFO-formulas with
at most one free variable (since all such formulas can be equivalently written as
x = x ∧ φ). It is therefore common to treat GNFO as an extension of GFO. To
make this precise, we say that L′ is a self-guarded extension of L if L′ can express
all self-guarded formulas of L (notation: L ⪯sg L′). In Figure 1, the line marked
(*) indicates that GNFO extends GFO in this weaker sense. Furthermore, it is
worth noting that GNFO is also not closed under implication, while GFO is. If it
were, then GNFO would be able to express full negation (using formulas of the
form φ→ ⊥). However, GFO and GNFO both have disjunction and conjunction
in common. We formalize all of these considerations into the following notion.

Definition 4.2. A guarded logic is a logic L such that

1. GFO ⪯sg L,
2. L expresses self-guarded substitutions, and
3. L expresses conjunction and disjunction.

Clearly, GFO and GNFO are both guarded logics. Furthermore, observe that
the smallest guarded logic consists of all conjunctions and disjunctions of self-
guarded formulas of GFO.

146 B. ten Cate, J. Comer

4.2 Finding the Minimal Extension of GFO with CIP

Our main result in this section is the following.

Theorem 4.1. Let L be a guarded logic with CIP. Then GNFO ⪯ L.

In other words, loosely speaking, GNFO is the smallest extension of GFO
with CIP. It is based on similar ideas as the proof of Theorem 3.1, but the
argument is more intricate. The main thrust of the argument will be to show
that our abstract logic L can express all positive existential formulas, from which
it will follow easily that L is able to express all formulas in the UCQ syntax for
GNFO. Toward this end, the main technical result is the following proposition.

Proposition 4.1. Let L be a logic with CIP that can express atomic formulas,
guarded quantification, conjunction, and unary implication. Then FO∃,∧ ⪯ L.

Here, we say that a logic L can express guarded quantification if, whenever
φ ∈ L and α is a guard for φ, L can express ∃x(α∧φ); we say that L can express
unary implications if, whenever φ ∈ L and α is an atomic formula with only one
free variable, L can express α→ φ.

The following definition is used in the proof of Proposition 4.1.

Definition 4.3. Let φ be a formula in FO∃,∧, let y = y1, . . . , yn be a tuple of
distinct variables, and let P = P1, . . . , Pn be a tuple of unary predicates of the
same length. Then BINDy 7→P (φ) is defined recursively as follows:

BINDy 7→P (α) = ∃y(α ∧
∧

1≤i≤n Pi(yi))

BINDy 7→P (ϕ ∧ ψ) = BINDy 7→P (ϕ) ∧ BINDy 7→P (ψ)

BINDy 7→P (∃zψ) = ∃z(BINDy 7→P (ψ)),

where α is an atomic formula (possibly an equality).

The BINDy→P operation applied to a formula φ ∈ FO∃,∧ wraps each atomic
subformula of φ with quantifiers for the variables in y, and adds additional
unary predicates for these variables. Thus, the free variables of BINDy 7→P (φ),
for y = y1, . . . , yn, are exactly free(φ) \ {y1, . . . , yn}, which justifies our use of
the word “BIND”. The utility of this definition is due to the following fact: for
any φ ∈ FO∃,∧, whenever M, g |= BINDy→P (φ), and the interpretation in M

of each unary predicate Pi in P is a singleton, then M, g′ |= φ, where g′ is
the extension of g which maps each yi to the unique element satisfying Pi (cf.
Propositions 4.3, 4.4). The following proposition is a simple consequence of the
definition of BIND.

Proposition 4.2. For all FO∃,∧-formulas φ and for all x, y and P ,Q, if x and
y are disjoint, then BINDxy 7→PQ(φ) ≡ BINDx 7→P (BINDy 7→Q(φ)).

A formula φ is clean if no free variable of φ also occurs bound in φ, and
φ does not contain two quantifiers for the same variable. Every FO-formula is
equivalent to a clean FO-formula, and all subformulas of a clean formula are also
clean. We now state two technical propositions, whose proofs can be found in
the full version of this paper [20].

Craig Interpolation for Decidable First-Order Fragments 147

Proposition 4.3. For every clean FO∃,∧-formula φ, for every tuple of distinct
variables y = y1, . . . , yn (with each yi ∈ free(φ)), and for every tuple of unary
predicates P = P1, . . . , Pn, we have that(∧

i=1,...,n

Pi(yi)
)
|= φ→ BINDy 7→P (φ).

Proposition 4.4. For every clean FO∃,∧-formula φ(x, y) with y = y1, . . . , yn
distinct from x, and for every n-tuple of unary predicates P = P1, . . . , Pn not
occurring in φ, we have that

∃xφ(x, y) ≡ ∀P
((∧

i=1...n

Pi(yi)
)
→ ∃xBINDy 7→P (φ(x, y))

)
.

The following lemma enables the proof of Proposition 4.1.

Lemma 4.1. Let L be an FO-fragment which can express atomic formulas and
is closed under guarded quantification, conjunction, and unary implication. If L
can express a formula φ ∈ FO∃,∧ and all of its subformulas, then for all tuples
y of variables, we have that L can express BINDy 7→P (φ).

Proof. We show by strong induction on the complexity of clean FO∃,∧-formulas
φ that this proposition holds.

Base Case
Suppose φ is an atomic formula. Fix an arbitrary tuple y = y1 . . . , yn. Then

BINDy 7→P (φ) ≡ ∃y(φ ∧
∧

1≤i≤n

Pi(yi)),

which L can express by closure under conjunction and guarded quantification.

Inductive Step
Suppose inductively that, for all formulas ψ of lesser complexity than φ, and all
tuples z of variables, we have that L can express BINDz 7→P (ψ). Fix an arbitrary
tuple y of variables.

Suppose that φ = ψ1 ∧ ψ2. Since L can express φ and all of its subformulas,
it can also express ψ1, ψ2, and all of their subformulas. Then by the inductive
hypothesis, L can express BINDy 7→P (ψ1) and BINDy 7→P (ψ2). Then by closure
under conjunctions, L can express BINDy 7→P (ψ1) ∧ BINDy 7→P (ψ2), which is the
same as BINDy 7→P (φ) (cf. Definition 4.3).

Now suppose that φ(x, y) = ∃zψ(x, y, z), where the (possibly empty) tuple x
consists of all free variables of φ not in the tuple y. We need to show that L
can express BINDy 7→P (φ(x, y)), which is the same as ∃z(BINDy 7→P (ψ(x, y, z)))
(cf. Definition 4.3). Since L can express φ and all of its subformulas, it can also

148 B. ten Cate, J. Comer

express ψ and all of its subformulas. Then, by the inductive hypothesis, L can
express BINDy 7→P (ψ), whose free variables are those in the tuple xz, as well as
BINDxy 7→QP (ψ), whose only free variable is z. Since L is closed under conjunction
and guarded quantification, it follows that L can express

γ(x) := ∃z(G(x, z) ∧ BINDy 7→P (ψ)) and ∃z(z = z ∧ BINDxy 7→QP (ψ)),

where G is a fresh relation symbol not occurring in ψ. Then by closure under
unary implications, we have that L can also express

χ(x) :=
(∧
i

Qi(xi)
)
→ ∃z(z = z ∧ BINDxy 7→QP (ψ)).

Claim: γ(x) |= χ(x)

Proof of claim: By Proposition 4.2,

BINDxy 7→QP (ψ) ≡ BINDx 7→Q(BINDy 7→P (ψ)). (1)

Then by applying Proposition 4.3 and inverting the hypotheses, we have

BINDy 7→P (ψ) |=
(∧
i

Qi(xi)
)
→ BINDxy 7→QP (ψ).

From this, it follows (because z is distinct from xi variables) that

∃z(BINDy 7→P (ψ)) |=
(∧
i

Qi(xi)
)
→ ∃zBINDxy 7→QP (ψ),

and therefore γ(x) |= χ(x). This concludes the proof of the claim.

Since L can express both γ(x) and χ(x), we have by the Craig interpolation
property that L can express some Craig interpolant ϑ(x). Since G and the Qi
predicates do not occur in φ, they do not occur in ϑ(x), and therefore, the
following second-order implication is valid:

∃Gγ(x) |= ϑ(x) |= ∀Qχ(x).

It is easy to see that ∃Gγ(x) ≡ ∃zBINDy 7→P (ψ). Similarly, it follows from
Proposition 4.4 and equation (1) that ∀Qχ(x) ≡ ∃zBINDy 7→P (ψ). Therefore,
ϑ(x) ≡ ∃zBINDy 7→P (ψ). In particular, ∃zBINDy 7→P (ψ) is expressible in L. ⊓⊔

We are now ready to prove Proposition 4.1, restated below.

Proposition 4.1. Let L be a logic with CIP that can express atomic formulas,
guarded quantification, conjunction, and unary implication. Then FO∃,∧ ⪯ L.

Proof. By strong induction on the complexity of FO∃,∧-formulas. The base case
is immediate, since L can express all atomic formulas. For the inductive step, if
φ := ψ1∧ψ2, then by the inductive hypothesis, L can express ψ1 and ψ2, and so

Craig Interpolation for Decidable First-Order Fragments 149

by closure under conjunction, L can express φ. Now suppose φ(y) := ∃x(ψ(x, y)).
By the inductive hypothesis, together with closure under guarded quantification,
L can express

γ(y) := ∃x(G(x, y) ∧ ψ).

Furthermore, by Lemma 4.1, L can express BINDy 7→P (ψ), and therefore, by
closure under guarded quantification and unary implications, L can express

χ(y) :=
(∧
i

Pi(yi)
)
→ ∃x(x = x ∧ BINDy 7→P (ψ)).

Claim: γ(y) |= χ(y).

Proof of claim: It is clear that γ(y) |= ∃xψ. Furthermore, by Proposition 4.3,
ψ |=

(∧
i Pi(yi)

)
7→ BINDy 7→P (ψ), from which it follows that ∃xψ |= χ(y) (since

the variable x is distinct from y1, . . . , yn). Therefore, γ(y) |= χ(y).

Let ϑ(y) be an interpolant for γ(y) |= χ(y) in L. Since G and the predicates
in P do not occur in ψ, the following second-order entailments are valid:

∃G∃x(G(x, y) ∧ ψ) |= ϑ(y) |= ∀P ((
∧
i

Pi(yi)) → ∃xBINDy 7→P (ψ)).

It is easy to see that
∃G∃x(G(x, y) ∧ ψ) ≡ ∃xψ.

Furthermore, by Proposition 4.4,

ψ ≡ ∀P ((
∧
i

Pi(yi)) → BINDy 7→P (ψ)).

from which it follows (since x is distinct from y1, . . . , yn) that

∃xψ ≡ ∀P ((
∧
i

Pi(yi)) → ∃xBINDy 7→P (ψ)).

Therefore, ϑ(y) ≡ φ(y), and so we are done. ⊓⊔

Our main result follows easily from Proposition 4.1, the closure properties of
guarded logics, and the UCQ characterization of GNFO.

Theorem 4.1. Let L be a guarded logic with CIP. Then GNFO ⪯ L.

Proof. L can express self-guarded GFO-formulas, so it can express formulas of
the form ∃xβ, where β is an atomic formula. Then since L can express self-
guarded substitution, L can express guarded quantification. Furthermore, L can
express all self-guarded formulas of the form α ∧ ¬β, where α and β are atomic
formulas such that free(α) = free(β). Furthermore, for every formula φ express-
ible in L with free(φ) ⊆ free(α), α ∧ φ is a self-guarded formula. Thus by ex-
pressibility of self-guarded substitution, L can also express α ∧ ¬(α ∧ φ), which

150 B. ten Cate, J. Comer

is equivalent to α ∧¬φ; hence L can express guarded negation. If L can express
φ, then by expressibility of guarded negation and disjunction, it can also express
the formula (x = x∧¬P (x))∨φ, which is equivalent to P (x) → φ. Hence L can
express unary implications. Therefore, by Proposition 4.1, L can express all for-
mulas in FO∃,∧. Then by expressibility of disjunction, L can express all unions of
conjunctive queries. The result then follows immediately from the UCQ-syntax
for GNFO, by closure under self-guarded substitution. ⊓⊔

5 Repairing Interpolation for FF

The fluted fragment (FL) [51] is an ordered logic, in which all occurrences of vari-
ables in atomic formulas and quantifiers must follow a fixed order. In the context
of ordered logics, we assume a fixed infinite sequence of variables X = ⟨xi⟩i∈Z+ .
A suffix n-atom is an atomic formula of the form R(xj , . . . , xn), where xj , . . . , xn
is a finite contiguous subsequence of X. FL is defined by the following recursion.

Definition 5.1. For each n ∈ N, define collections of formulas FLn as follows:

1. FLn contains all suffix n-atoms,
2. FLn is closed under Boolean combinations, and
3. If φ is in FLn+1, then ∃xn+1φ and ∀xn+1φ are in FLn.

We set FL =
⋃
n∈N FLn.

The forward fragment (FF), introduced in [6], is a syntactic generalization
of FL. We say that R(xj , . . . , xk) is an infix n-atom if xj , . . . , xn is a finite
contiguous subsequence of X and k ≤ n. FF is defined by the following recursion.

Definition 5.2. For each n ∈ N, define collections of formulas FFn as follows:

1. FFn contains all infix n-atoms,
2. FFn is closed under Boolean combinations, and
3. If φ is in FFn+1, then ∃xn+1φ and ∀xn+1φ are in FFn.

We set FF =
⋃
n∈N FFn.

In contrast to the other logics we have seen, FL and FF do not allow the
primitive equality symbol. It can be seen by a simple formula induction that
every formula in FFk can be expressed by a formula in FFn for every n > k; it
follows easily that FF can express arbitrary Boolean combinations of its formulas.
However, FL cannot: P (x1) and P (x2) are in FL, but P (x1) ∧ P (x2) is not
expressible in FL. Although FF contains formulas which are not in FL, it is
known that FF and FL are expressively equivalent at the level of sentences [7].
Furthermore, the satisfiability problems for FL and FF are decidable [48,7].

Craig Interpolation for Decidable First-Order Fragments 151

5.1 Natural Extensions of FF

Given a formula φ, we write gfv(φ) to denote the greatest n ∈ Z+ such that xn
occurs free in φ; if φ is a sentence, then we set gfv(φ) = 0. We define forward
logics to capture the notion of a natural extension of FF.

Definition 5.3. A forward logic is an abstract logic L such that

1. L can express all infix n-atoms for every n ∈ Z+,
2. L can express all Boolean combinations of its formulas, and
3. L can express ∃xnφ and ∀xnφ whenever L can express φ and n = gfv(φ).

We refer to the last property of a forward logic as expressibility of ordered quan-
tification. Clearly FF is a forward logic, and every forward logic extends FF.

5.2 Finding the Minimal Extension of FF with CIP

Unlike the other fragments we have seen, one peculiar property of FF is that
the logic is not closed under variable substitutions. This can be seen simply
by considering relational atoms: for a 3-ary relational symbol R, the formula
R(x1, x2, x3) is in FF, but the formula R(x3, x1, x2) is not. Before proving our
main theorem, we prove the following lemma asserting that whenever a formula
is expressible in a forward logic L satisfying CIP, the result of making arbitrary
substitutions for the free variables of the formula is also expressible in L.

Lemma 5.1. Let L be a forward logic satisfying CIP, and let φ(xi1 , . . . , xik) be
a formula of first-order logic expressible in L, where xi1 , . . . , xik is not necessarily
a contiguous subsequence of variables. Then for every map

π : {i1, . . . , ik} → Z+,

we have that L can also express φ(xπ(i1), . . . , xπ(ik)). In other words, L is closed
under renamings of free variables.

Proof. For brevity, let x = xi1 , . . . , xik , and let π(x) = xπ(i1), . . . , xπ(ik). Without
loss of generality, assume that i1 ≤ · · · ≤ ik (we can do this since the notation
φ(xi1 , . . . , xik) only indicates that the variables occur free, but says nothing
about where or in what order they occur in the formula). Since L can express
φ(x), it can evidently express the following formulas, by the definition of a
forward logic:

γ(x) :=
∧
m≤k

Gm(xim) ∧ ∀xi1 . . . ∀xik

 ∧
m≤k

Gm(xπ(im)) → φ(x)


χ(x) :=

∧
m≤k

Pm(xim) → ∃xi1 . . . ∃xik

φ(x) ∧ ∧
m≤k

Pm(xπ(im))



152 B. ten Cate, J. Comer

Clearly γ |= χ, and so there exists an interpolant ϑ. Hence

∃G1 . . . Gkγ |= ϑ |= ∀P1 . . . Pkχ

is a valid second-order entailment. Furthermore, it is easy to see that

∃G1 . . . Gkγ ≡ ∀P1 . . . Pkχ ≡ φ.

Therefore, φ(xπ(i1), . . . , xπ(ik)) is expressible in L. ⊓⊔

We now prove our main theorem, which follows easily from Lemma 5.1.

Theorem 5.1. Let L be a forward logic satisfying CIP. Then FO ⪯ L.

Proof. We proceed by formula induction on FO-formulas φ. For the base case,
clearly L can express all atomic FO-formulas by applying Lemma 5.1 to an
appropriate infix atom. For the inductive step, the Boolean cases are immediate
since L can express all Boolean combinations. Hence the only interesting case
is when φ := ∃xkψ for some formula ψ. By the inductive hypothesis, L can
express ψ. Applying Lemma 5.1, L can also express φ′, the result of substituting
xn+1 for all free occurrences of xk, where n = gfv(φ), and leaving all other
free variables the same. Then by expressibility of ordered quantification, L can
express ∃xn+1φ

′, which is equivalent to φ. ⊓⊔

6 Undecidability of Extensions of FO2 and FL with CIP

In Section 3, we showed that every strong extension of FO2 with CIP can express
all sentences of FO, and in Section 5, we showed that every forward logic with
CIP can express all formulas of FO. These results suggest the undecidability of
the satisfiability problems for such logics. In this section, we formalize this idea,
showing that extensions of FO2 and FL with CIP and satisfying very limited
expressive assumptions are undecidable. These results rely primarily on known
results on the undecidability of FO2 and FL with additional transitive relations.

Proposition 6.1. Every abstract logic L with CIP extending FO2 or FL can
express the following formulas:

ψ0(x1) := ∀x2∀x3(R(x1, x2) ∧R(x2, x3) → R(x1, x3)), and
ψ1 := ¬∀x1∀x2∀x3(R(x1, x2) ∧R(x2, x3) → R(x1, x3)).

The proof of Proposition 6.1 can be found in the full version of this paper
[20]. We also need two additional definitions. First, an effective translation from
a logic L to a logic L′ is a computable function which takes formula of φ ∈ L
as input and outputs an equivalent formula φ′ ∈ L′. Second, we say that a logic
L has effective conjunction if there is a computable function taking formulas
φ,ψ ∈ L as input and outputting a formula χ ∈ L which is equivalent to φ ∧ ψ.

Craig Interpolation for Decidable First-Order Fragments 153

Theorem 6.1. Let L be an extension of FL which satisfies CIP. Suppose fur-
ther that there is an effective translation from FL to L, and L has effective
conjunction. The satisfiability problem for L is undecidable if either

1. L can express ordered quantification, or
2. L can express negation.

Proof. Let χ be the sentence asserting the transitivity of the relation R. Since
L has CIP and extends FL, it can express both ψ0(x1) and ψ1 by Proposition
6.1. If L can express ordered quantification, it can express ∀x1ψ0(x1), which is
equivalent to χ. If L can express negation, then it can express ¬ψ1, which is
also equivalent to χ. Since L, as an abstract logic, can express χ and is closed
under predicate renamings, it can express that any number of binary relations
are transitive. Let χ1, χ2, and χ3 be sentences expressing transitivity of binary
relation symbols R1, R2, and R3, respectively. Let tr be an effective translation
from FL to L. Then a formula φ of FL with three designated transitive relations
is satisfiable if and only if tr(φ)∧χ1∧χ2∧χ3 is satisfiable. Since tr is computable
and L is effectively closed under conjunction, this reduction is computable. Since
the satisfiability problem for FL with three transitive relations is undecidable
[46], the satisfiability problem for L is undecidable. ⊓⊔

It is also known that satisfiability is undecidable for FO2-formulas with two
transitive relations [36]. Using this fact, along with Proposition 6.1, we obtain
the following theorem, by a similar proof to that of Theorem 6.1.

Theorem 6.2. Let L be an extension of FO2 which satisfies CIP. Suppose fur-
ther that there is an effective translation from FO2 to L, and L has effective
conjunction. The satisfiability problem for L is undecidable if either

1. L can express universal quantification, or
2. L can express negation.

We remark that all forward logics and strong extensions of FO2 with CIP,
assuming appropriate effective translations and effective conjunction, meet the
requirements of Theorems 6.1 and 6.2, and hence are undecidable.

7 Discussion

In the introduction, we mentioned several results indicating the failure of CIP
among many natural proper extension of FO. In [14], van Benthem points out
that there is a similar scarcity among FO-fragments as well. Our results in Sec-
tions 3 and 5 may be interpreted as additional confirmation of this observation.
Furthermore, one tends to study proper fragments of FO for their desirable com-
putational properties, and so our broader undecidability results show that CIP
fails for large swaths of decidable FO-fragments. However, there are a few no-
table fragments for which the determination of a minimal extension satisfying
CIP is still open, such as FL and the quantifier prefix fragments.

154 B. ten Cate, J. Comer

One limitation of our methodology and results is their dependence on a def-
inition of Craig interpolation which mandates the existence of interpolants be-
tween proper formulas, while many practical applications only require CIP for
sentences. Throughout this paper, we have established expressibility of a formula
ϑ in a logic L by induction (and by constructing two formulas φ and ψ such that
φ |= ψ and arguing that every interpolant is equivalent to ϑ). In general, this
method is difficult to apply unless free variables are allowed; it is not clear how
to apply this type of inductive argument if we were only concerned with the
existence of interpolants for sentences of the logic.

There are several well-studied properties strictly weaker than CIP. The ∆-
interpolation property (also known as Suslin-Kleene interpolation) holds for a
logic L if, whenever φ |= ψ, and (intuitively speaking) there is only one possible
interpolant ϑ up to logical equivalence for this entailment, then L contains a
formula equivalent to ϑ [5]. It is not hard to see that, unlike the Craig interpola-
tion property, every logic L has a unique extension, denoted ∆(L), satisfying the
∆-interpolation property. In fact, in our proofs we only rely on ∆-interpolation;
every application of the assumption that some abstract logic L satisfies CIP
yields a provably unique interpolant, up to logical equivalence. Therefore, all of
our results hold also when CIP is replaced by ∆-interpolation.

Two additional weakenings of CIP are the projective and non-projective Beth
definability properties. The projective Beth property states, roughly, that when-
ever a σ∪τ∪{R}-theory Σ implicitly defines a relation R in terms of the relations
in σ, then Σ entails an explicit definition of R in terms of σ (the non-projective
Beth property being the special case for τ = ∅). Many practical applications
of CIP in database theory and knowledge representation require only the pro-
jective Beth property. It is not immediately clear how to extend our method-
ology to a systematic study of the (projective) Beth property among decidable
FO-fragments. Indeed, GFO already satisfies the non-projective Beth property
[33]. Given their applications, an interesting avenue of future work is to map
the landscape of FO-fragments satisfying these properties. In the other direc-
tion, minimal extensions of logics with uniform interpolation (a strengthening of
CIP) were studied in [25], although with limited results so far (cf. [25, Thm. 14]).
Some of the minimal extensions of PLTL fragments with CIP identified in [28],
however, do satisfy uniform interpolation.

Acknowledgements. We thank Jean Jung, Frank Wolter, and Malvin Gat-
tinger for feedback on an earlier draft, and we thank Ian Pratt-Hartmann and
Michael Benedikt for helpful remarks during a related workshop presentation.
Balder ten Cate is supported by EU Horizon 2020 grant MSCA-101031081.

References

1. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments
of predicate logic. Journal of Philosophical Logic 27 (06 1998). https://doi.org/
10.1023/A:1004275029985

Craig Interpolation for Decidable First-Order Fragments 155

https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1023/A:1004275029985
https://doi.org/10.1023/A:1004275029985

2. Areces, C., Blackburn, P., Marx, M.: Repairing the interpolation theorem in quan-
tified modal logic. Annals of Pure and Applied Logic 124(1), 287–299 (2003).
https://doi.org/10.1016/S0168-0072(03)00059-9

3. Bárány, V., Benedikt, M., ten Cate, B.: Rewriting guarded negation queries. In:
Proceedings of MFCS 2013. pp. 98–110. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2013)

4. Barany, V., ten Cate, B., Segoufin, L.: Guarded negation. Journal of the ACM
62(3), 22.1–22:26 (2015)

5. Barwise, J., Feferman, S. (eds.): Model-Theoretic Logics, Perspectives in Logic,
vol. 8. Cambridge University Press (2017)

6. Bednarczyk, B.: Exploiting forwardness: Satisfiability and query-entailment in
forward guarded fragment. In: Logics in Artificial Intelligence: 17th European
Conference, JELIA 2021, Virtual Event, May 17–20, 2021, Proceedings. p.
179–193. Springer-Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/
978-3-030-75775-5_13

7. Bednarczyk, B., Jaakkola, R.: Towards a Model Theory of Ordered Logics: Ex-
pressivity and Interpolation. In: Szeider, S., Ganian, R., Silva, A. (eds.) 47th In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS
2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 241, pp. 15:1–
15:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2022). https://doi.org/10.4230/LIPIcs.MFCS.2022.15

8. Benedikt, M., Bourhis, P., Boom, M.V.: Definability and Interpolation within De-
cidable Fixpoint Logics. Logical Methods in Computer Science Volume 15, Issue
3 (Sep 2019). https://doi.org/10.23638/LMCS-15(3:29)2019

9. Benedikt, M., ten Cate, B., Boom, M.V.: Interpolation with decidable fixpoint
logics. In: LICS. pp. 378–389 (2015). https://doi.org/10.1109/LICS.2015.43

10. Benedikt, M., ten Cate, B., Tsamoura, E.: Generating plans from proofs. ACM
Trans. Database Syst. 40(4), 22:1–22:45 (2016). https://doi.org/10.1145/
2847523

11. Benedikt, M., Cate, B.ten., Boom, M.V.: Effective interpolation and preservation
in guarded logics. ACM Trans. Comput. Logic 17(2) (2015). https://doi.org/
10.1145/2814570

12. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating plans from proofs
: the interpolation-based approach to query reformulation. Synthesis Lectures on
Data Management, Morgan & Claypool (2016)

13. van Benthem, J.: A new modal lindström theorem. Logica Universalis 1(1), 125–
138 (2007). https://doi.org/10.1007/s11787-006-0006-3

14. van Benthem, J.: The many faces of interpolation. Synthese 164(3), 451–460
(2008), http://www.jstor.org/stable/40271083

15. van Benthem, J., ten Cate, B., Väänänen, J.A.: Lindström theorems for fragments
of first-order logic. Log. Methods Comput. Sci. 5(3) (2009), http://arxiv.org/
abs/0905.3668

16. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic, Springer (1997)

17. Caicedo, X.: Failure of interpolation for quantifiers of monadic type. In: Di Prisco,
C.A. (ed.) Methods in Mathematical Logic. pp. 1–12. Springer Berlin Heidelberg,
Berlin, Heidelberg (1985)

18. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Combined covers
and beth definability. In: Proceedings of the 10th International Joint Conference on
Automated Reasoning, Part I, IJCAR 2020. pp. 181–200. Springer (2020). https:
//doi.org/10.1007/978-3-030-51074-9_11

156 B. ten Cate, J. Comer

https://doi.org/10.1016/S0168-0072(03)00059-9
https://doi.org/10.1016/S0168-0072(03)00059-9
https://doi.org/10.1007/978-3-030-75775-5_13
https://doi.org/10.1007/978-3-030-75775-5_13
https://doi.org/10.1007/978-3-030-75775-5_13
https://doi.org/10.1007/978-3-030-75775-5_13
https://doi.org/10.4230/LIPIcs.MFCS.2022.15
https://doi.org/10.4230/LIPIcs.MFCS.2022.15
https://doi.org/10.23638/LMCS-15(3:29)2019
https://doi.org/10.23638/LMCS-15(3:29)2019
https://doi.org/10.1109/LICS.2015.43
https://doi.org/10.1109/LICS.2015.43
https://doi.org/10.1145/2847523
https://doi.org/10.1145/2847523
https://doi.org/10.1145/2847523
https://doi.org/10.1145/2847523
https://doi.org/10.1145/2814570
https://doi.org/10.1145/2814570
https://doi.org/10.1145/2814570
https://doi.org/10.1145/2814570
https://doi.org/10.1007/s11787-006-0006-3
https://doi.org/10.1007/s11787-006-0006-3
http://www.jstor.org/stable/40271083
http://arxiv.org/abs/0905.3668
http://arxiv.org/abs/0905.3668
https://doi.org/10.1007/978-3-030-51074-9_11
https://doi.org/10.1007/978-3-030-51074-9_11
https://doi.org/10.1007/978-3-030-51074-9_11
https://doi.org/10.1007/978-3-030-51074-9_11

19. ten Cate, B.: Interpolation for extended modal languages. The Journal of Symbolic
Logic 70(1), 223–234 (2005), http://www.jstor.org/stable/27588355

20. ten Cate, B., Comer, J.: Craig interpolation for decidable first-order fragments.
arXiv preprint arXiv:2310.08689 (2023), https://arxiv.org/abs/2310.08689

21. ten Cate, B., Franconi, E., Seylan, I.: Beth definability in expressive description
logics. J. Artif. Int. Res. 48(1), 347–414 (oct 2013)

22. ten Cate, B., Segoufin, L.: Unary negation. Logical Methods in Computer Science
Volume 9, Issue 3 (Sep 2013). https://doi.org/10.2168/LMCS-9(3:25)2013

23. Comer, S.D.: Classes without the amalgamation property. Pacific Journal of Math-
ematics 28, 309–318 (1969)

24. Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. Journal of Symbolic Logic 22(3), 269–285 (1957). https://doi.
org/10.2307/2963594

25. D’Agostino, G., Lenzi, G., French, T.: µ-programs, uniform interpolation and
bisimulation quantifiers for modal logics. Journal of Applied Non-Classical Log-
ics 16(3-4), 297–309 (2006). https://doi.org/10.3166/jancl.16.297-309

26. Friedman, H.: Beth’s theorem in cardinality logics. Israel Journal of Mathematics
14(2), 205–212 (1973)

27. Garcá-Matos, M.: Abstract model theory without negation. Ph.D. thesis, Univer-
sity of Helsinki (2005)

28. Gheerbrant, A., ten Cate, B.: Craig interpolation for linear temporal languages.
In: Grädel, E., Kahle, R. (eds.) Computer Science Logic. pp. 287–301. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

29. Graedel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In:
Proceedings of LICS 1997. p. 306 (1997)

30. Grädel, E.: On the restraining power of guards. The Journal of Symbolic Logic
64(4), 1719–1742 (1999), http://www.jstor.org/stable/2586808

31. Hoder, K., Holzer, A., Kovács, L., Voronkov, A.: Vinter: A Vampire-based tool
for interpolation. In: Jhala, R., Igarashi, A. (eds.) Programming Languages and
Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13,
2012. Proceedings. Lecture Notes in Computer Science, vol. 7705, pp. 148–156.
Springer (2012). https://doi.org/10.1007/978-3-642-35182-2_11

32. Hoogland, E.: Definability and interpolation: model-theoretic investigations. Ph.D.
thesis, University of Amsterdam (2000)

33. Hoogland, E., Marx, M.: Interpolation and definability in guarded fragments. Stu-
dia Logica 70(3), 373–409 (2002), http://www.jstor.org/stable/20016403

34. Hustadt, U., Schmidt, R., Georgieva, L.: A survey of decidable first-order fragments
and description logics. Journal on Relational Methods in Computer Science 1, 251–
276 (01 2004)

35. Jung, J.C., Wolter, F.: Living without beth and craig: Definitions and interpolants
in the guarded and two-variable fragments. In: Proceedings of LICS 2021. pp. 1–14.
IEEE Computer Society (jul 2021). https://doi.org/10.1109/LICS52264.2021.
9470585

36. Kieroński, E.: Results on the guarded fragment with equivalence or transitive rela-
tions. In: Computer Science Logic. Lecture Notes in Computer Science, vol. 3634,
pp. 309–324. Springer Verlag (2005)

37. Koopmann, P., Schmidt, R.A.: Uniform interpolation and forgetting for ALC on-
tologies with ABoxes. In: Proceedings of the 29th AAAI Conference on Artificial
Intelligence, AAAI 2015. pp. 175–181. AAAI Press (2015), http://www.aaai.org/
ocs/index.php/AAAI/AAAI15/paper/view/9981

Craig Interpolation for Decidable First-Order Fragments 157

http://www.jstor.org/stable/27588355
https://arxiv.org/abs/2310.08689
https://doi.org/10.2168/LMCS-9(3:25)2013
https://doi.org/10.2168/LMCS-9(3:25)2013
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.3166/jancl.16.297-309
https://doi.org/10.3166/jancl.16.297-309
http://www.jstor.org/stable/2586808
https://doi.org/10.1007/978-3-642-35182-2_11
https://doi.org/10.1007/978-3-642-35182-2_11
http://www.jstor.org/stable/20016403
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9981
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9981

38. Lindström, P.: On extensions of elementary logic. Theoria 35(1) (1969)
39. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-

pressive description logics. In: Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, IJCAI 2011. pp. 989–995. IJCAI/AAAI (2011).
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170

40. Löwenheim, L.: Über möglichkeiten im relativkalkül. Mathematische Annalen 76,
447–470 (1915), http://eudml.org/doc/158703

41. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger,
T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 421–446.
Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_14

42. Mortimer, M.: On languages with two variables. Math. Log. Q. 21, 135–140 (1975)
43. Otto, M.: An interpolation theorem. The Bulletin of Symbolic Logic 6(4), 447–462

(2000), http://www.jstor.org/stable/420966
44. Pratt-Hartman, I., Szwast, W., Tendera, L.: The fluted fragment revisited. The

Journal of Symbolic Logic 84(3), 1020–1048 (2019). https://doi.org/10.1017/
jsl.2019.33

45. Pratt-Hartmann, I., Szwast, W., Tendera, L.: Quine’s fluted fragment is non-
elementary. In: Regnier, L., Talbot, J. (eds.) 25th EACSL Annual Conference on
Computer Science Logic. 25th EACSL Annual Conference on Computer Science
Logic (CSL 2016), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (Jun 2016).
https://doi.org/10.4230/LIPIcs.CSL.2016.39

46. Pratt-Hartmann, I., Tendera, L.: The fluted fragment with transitive relations.
Annals of Pure and Applied Logic 173(1), 103042 (2022). https://doi.org/10.
1016/j.apal.2021.103042

47. Purdy, W.C.: Decidability of Fluted Logic with Identity. Notre Dame Jour-
nal of Formal Logic 37(1), 84 – 104 (1996). https://doi.org/10.1305/ndjfl/
1040067318

48. Purdy, W.C.: Fluted formulas and the limits of decidability. The Journal of Sym-
bolic Logic 61(2), 608–620 (1996). https://doi.org/10.2307/2275678

49. Purdy, W.C.: Quine’s ‘limits of decision’. The Journal of Symbolic Logic 64(4),
1439–1466 (1999). https://doi.org/10.2307/2586789

50. Purdy, W.C.: Complexity and nicety of fluted logic. Studia Logica 71, 177–198
(2002)

51. Quine, W.V.: On the limits of decision. 14th International Congress for Philosophy
3, 57–62 (1969)

52. Skolem, T.: Logisch-Kombinatorische Untersuchungen über die Erfüllbarkeit oder
Bewiesbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen. I.
Matematisk-naturvidenskabelig Klasse 4, 1-36, Videnskapsselskapet Skrifter (1920)

53. Toman, D., Weddell, G.E.: Fundamentals of Physical Design and Query Compi-
lation. Synthesis Lectures on Data Management, Morgan & Claypool Publishers
(2011)

54. Väänänen, J.: The craig interpolation theorem in abstract model theory. Synthese
164(3), 401–420 (2008)

55. Vardi, M.Y.: Why is modal logic so robustly decidable? In: Immerman, N., Kolaitis,
P.G. (eds.) Descriptive Complexity and Finite Models. DIMACS, vol. 31, pp. 149–
183 (1996). https://doi.org/10.1090/dimacs/031/05

158 B. ten Cate, J. Comer

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
http://eudml.org/doc/158703
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1007/978-3-319-10575-8_14
http://www.jstor.org/stable/420966
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.1017/jsl.2019.33
https://doi.org/10.4230/LIPIcs.CSL.2016.39
https://doi.org/10.4230/LIPIcs.CSL.2016.39
https://doi.org/10.1016/j.apal.2021.103042
https://doi.org/10.1016/j.apal.2021.103042
https://doi.org/10.1016/j.apal.2021.103042
https://doi.org/10.1016/j.apal.2021.103042
https://doi.org/10.1305/ndjfl/1040067318
https://doi.org/10.1305/ndjfl/1040067318
https://doi.org/10.1305/ndjfl/1040067318
https://doi.org/10.1305/ndjfl/1040067318
https://doi.org/10.2307/2275678
https://doi.org/10.2307/2275678
https://doi.org/10.2307/2586789
https://doi.org/10.2307/2586789
https://doi.org/10.1090/dimacs/031/05
https://doi.org/10.1090/dimacs/031/05

Craig Interpolation for Decidable First-Order Fragments 159

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Clones, closed categories, and combinatory logic‹

Abstract. We explain how to recast the semantics of the simply-typed
λ-calculus, and its linear and ordered variants, using multi-ary struc-
tures. We define universal properties for multicategories, and use these
to derive familiar rules for products, tensors, and exponentials. Finally
we outline how to recover both the category-theoretic syntactic model
and its semantic interpretation from the multi-ary framework. We then
use these ideas to study the semantic interpretation of combinatory logic
and the simply-typed λ-calculus without products. We introduce exten-
sional SK-clones and show these are sound and complete for both com-
binatory logic with extensional weak equality and the simply-typed λ-
calculus without products. We then show such SK-clones are equivalent
to a variant of closed categories called SK-categories, so the simply-typed
λ-calculus without products is the internal language of SK-categories.

Keywords: categorical semantics · abstract clones · lambda calculus ·
combinatory logic · closed categories · cartesian closed categories

1 Introduction

Lambek’s correspondence between cartesian closed categories and the simply-
typed λ-calculus is one of the central pillars of categorical semantics. One way
of stating it categorically is to say that the syntax of typed λ-terms over a sig-
nature of base types and constants forms the free cartesian closed category (for
a readable overview, see [27,9]). The existence of this syntactic model gives com-
pleteness : if an equation holds in every model, it holds in the free one, and hence
in the syntax. The free property then gives soundness : for any interpretation
of basic types and constants in a cartesian closed category pC,Π,ñq one has a
functor J´K from the syntactic model to C, which is exactly the semantic inter-
pretation of λ-terms. The fact this functor is required to preserve cartesian closed
structure amounts to showing that the semantic interpretation is sound with re-
spect to the usual βη-laws. All this justifies calling the simply-typed λ-calculus
the internal language of cartesian closed categories.

This framework is powerful, but hides a fundamental mismatch: morphisms
A Ñ B in a category are unary—they have just one input—but terms-in-context
‹ Supported by the Air Force Office of Scientific Research under award number

FA9550-21-1-0038.

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 1 0–181, 2024.
https://doi.org/10.1007/978-3-031-57231-9_8

9

Philip Saville(B)

Department of Computer Science, University of Oxford, Oxford, UK
philip.saville@cs.ox.ac.uk

http://www.philipsaville.co.uk/

www.philipsaville.co.uk
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_8&domain=pdf
https://orcid.org/0000-0002-8320-0280

such as x1 : A1, . . . , xn : An $ t : B can have many inputs. The standard solu-
tion (e.g. [9,23]) is to use categorical products to model contexts, so a term t as
above corresponds to a map

śn
i“1Ai Ñ B out of the product.

Despite its evident success, this solution remains somewhat unsatisfactory,
in two ways (see also [21]). First, it forces us to conflate two different syntactic
classes, namely contexts and product types. As a result, some encoding is re-
quired to construct the syntactic model: the interpretation of x : A, y : B $ t : C
is a term in context p : A ˆ B. This adds complexity to the construction, and
results in the somewhat unintuitive fact that the semantic interpretation of a
term t in the syntactic model may not be just t itself. In turn, this complicates
the proof of completeness.

Second, we are forced to include products in our type theory if we want a
category-theoretic internal language—even though the calculus without products
likely has a stronger claim to being called ‘the’ simply-typed λ-calculus (e.g. see
Church’s original definition [8]). This raises the question: what categorical struc-
ture has the simply-typed λ-calculus without products as its internal language?

This paper. This paper has three main aims. First, to explain how removing
the mismatch between terms-in-context and morphisms outlined above clari-
fies the semantic interpretation of simply-typed λ-calculi. To achieve this, one
needs to move from the unary setting of categories to a multi-ary setting, in
which we have multimaps A1, . . . , An Ñ B. These ideas are not new, but are
under-appreciated, and I hope this will provide self-contained introduction for
a wider audience. Second, to initiate a multi-ary investigation of the semantics
of (cartesian) combinatory logic, in the style of Hyland’s investigation of similar
ideas for the untyped λ-calculus ([18,19]). Finally, to use these results to define
a categorical semantics for the simply-typed λ-calculus without products.

Outline. In Sections 2 to 6, we explain how the multi-ary perspective yields a
slick way to derive the unary semantic interpretation and syntactic model, to-
gether with soundness and completeness results (Section 4.2). We also show how
important type-theoretic constructions such as products and exponentials can
be derived from the semantics. This framework accommodates different choices
of structural rules, such as whether the language is ordered, linear, or cartesian.

The idea of using multi-ary constructions goes back to Lambek ([25,26]),
and has recently been exploited to great effect in a very general setting by
Shulman [40]. Particular cases can also be found in the works of Hyland ([18,19]),
Hyland & de Paiva [20] and Blanco & Zeilberger [7]. A reader familiar with
these approaches will likely be unsurprised by the technical development below.
However, we believe these ideas deserve to be more widely known, so spend time
making them explicit in a concrete setting.

In Section 7 we introduce a multi-ary model of (cartesian) combinatory logic,
called SK-clones, and prove that the sub-category of extensional SK-clones is
equivalent to the category of closed clones modelling simply-typed λ-calculus
without products. This provides a categorical statement of the classical corre-
spondence between λ-calculus and extensional combinatory logic (e.g. [5,15]).

Clones, closed categories, and combinatory logic 161

Finally, in Section 8 we introduce a version of Eilenberg & Kelly’s closed
categories ([11,10]), called SK-categories, and show that the category of SK-
categories is equivalent to the category of extensional SK-clones, and so to the
category of closed clones. Hence, SK-categories are a categorical model for the
simply-typed λ-calculus without products. SK-categories are a cartesian version
of the prounital-closed categories of Uustalu, Veltri & Zeilberger ([43,44]), which
in turn are closely related to an (incomplete) suggestion of Shulman’s [39].

Jacobs has also isolated a structure that is sound and complete for simply-
typed λ-calculus without products [21]. His approach, which fits into his elegant
general framework [22], is also predicated on a careful distinction between con-
texts and products. His models are certain indexed categories, with the contexts
encoded by the indexing: this makes them feel closer to multi-ary structures. In
SK-categories, by contrast, contexts are modelled within the category itself by
using the closed structure (cf. [35, §4.4]). Moreover, unlike other work relating
closed categories to multi-ary structures, SK-categories do not force us to include
a unit object in the corresponding type theory (cf. [31]).

Technical preliminaries. For a set S we write S‹ for the set of finite sequences
over S, and use Greek letters Γ,∆, . . . to denote elements of S‹. The empty string
is denoted ˛, and the length of Γ by |Γ |. Where the length of a sequence is clear,
we write simply A‚ for A1, . . . , An. Contexts are assumed to be ordered lists.

We call multimaps of the form A Ñ B unary and a multimap ˛ Ñ B nullary.
We define a signature S to be a set |S| of basic sorts with sets SpΓ ;Bq

of constants c : Γ Ñ B for each
`

Γ,B
˘

P |S|‹ ˆ |S|. A homomorphism of
signatures f : S Ñ S 1 is a map |f | : |S| Ñ |S 1| with maps SpA1, . . . , An;Bq Ñ

S 1pfA1, . . . , fAn; fBq for each
`

pA1, . . . , Anq, B
˘

P |S|‹ ˆ |S|. We write Sig for
the category of signatures and their homomorphisms. One could also consider
versions of higher-order constants, which may use the language’s constructs. This
extension does not change the theory significantly, and would require introducing
multiple categories of signatures, so we do not seek this extra generality here (for
an outline of this more general approach, see e.g. [38, §5.3.1]).

We assume familiarity with the simply-typed λ-calculus, as in e.g. [9]. We
denote the simply-typed λ-calculus with constants and base types given by a
signature S, and both product and exponential types modulo αβη-equality, by
Λˆ,Ñ
S . We write Λˆ

S and ΛÑ
S for the fragments with just products and just expo-

nentials, respectively. Here we focus on the typed cases: the untyped versions—
both in the syntax and the multi-ary models—are recovered by fixing a single
base type ‹ such that Θp‹, . . . , ‹q “ ‹ for each type constructor Θ.

We also assume familiarity with the basics of cartesian categories, cartesian
closed categories, and monoidal categories, as in e.g. [30,27]. To avoid having
to treat the unit type as a special case, cartesian categories are assumed to
have n-ary products

ś

n for all n P N. We also work with functors preserv-
ing structure strictly : this simplifies the exposition without any great loss of
generality. Thus, MonCat, SMonCat and CartCat denote the categories of
monoidal categories, symmetric monoidal categories, and cartesian categories,
respectively, with functors preserving all the data on the nose.

162 P. Saville

2 Multicategories and clones

We begin with an intuitive overview of the place of multi-ary structures in se-
mantics. A multi-ary structure has multimaps A1, . . . , An Ñ B with multiple
inputs and one output; unlike the morphisms in a category, multimaps corre-
spond directly to terms-in-context. As a result, it is often easier to construct a
multi-ary free model than it is to construct a unary one, and the interpretation
of a term-in-context t in the free model is given by t itself. Moreover, every
multi-ary structure gives rise to a unary one by restricting to multimaps with
one input. The multi-ary semantics therefore factors the unary one, as shown:

multi-ary structures

signatures categorical structures

free

forget

restrict to unary maps

extend

$

% (1)

One can then ‘read off’ the syntactic category, together with a guarantee that
it has the right structure, by restricting the free multi-ary structure to unary
maps. Similarly, the usual semantic interpretation in (say) a cartesian closed
category C is exactly the interpretation that arises by extending C to a multi-ary
structure. This gives an algebraic justification for encoding contexts as products:
this is how one extends a cartesian closed category to a multi-ary structure. (For
the details of these points, see Section 4.2.)

The multi-ary perspective also provides a unifying framework for type the-
ories with different structural rules. The simply-typed λ-calculus is cartesian:
it admits the structural rules of weakening, contraction, and permutation (as
in e.g. [9, Fig. 3.2]). The corresponding multi-ary structures are certain abstract
clones. Ordered type theories (e.g. [24,36]), also known as planar type theories
(e.g. [2,46]), do not admit weakening, contraction, or permutation, and corre-
spond to certain multicategories. Linear type theories (e.g. [16]), which admit
only permutation, correspond to certain symmetric multicategories (see also the
alternative ‘tangled’ option in [33]). Since abstract clones and symmetric mul-
ticategories may be seen as special cases of multicategories, we can develop a
theory of how to add structure to cartesian, linear, and ordered type theories by
analysing how to add structure to multicategories.

2.1 Multicategories, clones, and their internal languages

We now introduce multicategories and abstract clones and show how they cor-
respond to certain type theories. An even more general framework for syntax,
allowing multi-ary domains and codomains as well as both cartesian and linear
contexts, is provided by Shulman’s recent work with polycategories [40]. Clones,
and their correspondence with syntax, also play a key role in the ‘algebraic
syntax’ programme of Fiore and collaborators initiated in [13] (see e.g. [12,3,4]).

Definition 1 ([25]). A multicategory M consists of a set |M| of objects and
sets MpΓ ;Bq of multimaps for every Γ P |M|‹ and B P |M|, together with

Clones, closed categories, and combinatory logic 163

1. An identity multimap IdA P MpA;Aq for every A P |M|;
2. For any A1, . . . , An, B P |M| and p∆i P |M|‹qi“1,...,n, a composition map

MpA1, . . . , An;Bq ˆ
śn
i“1Mp∆i;Aiq Ñ Mp∆1, . . . ,∆n;Bq

`

t, pu1, . . . , unq
˘

ÞÑ t ˝ xu1, . . . , uny

subject to an associativity law and two unit laws (see e.g. [28, p. 35]). A mul-
ticategory functor f : M Ñ N consists of a map |f | : |M| Ñ |N| with maps
fA‚,B : MpA1, . . . , An;Bq Ñ NpfA1, . . . fAn; fBq for every A1, . . . , An, B P |M|,
such that substitution and the identity are preserved (see e.g. [28, p. 39]).

Definition 2 ([32,20]). A symmetric multicategory consists of a multicategory
M together with a symmetric group action: for each A1, . . . , An P |M| and σ P Sn
one has p´q ‚ σ : MpA1, . . . , An;Bq Ñ MpAσ1, . . . , Aσn;Bq compatible with sub-
stitution and satisfying unit and associativity laws (e.g. [28, p. 54]). A symmetric
multicategory functor is a multicategory functor which preserves the action.

We write Multicat (resp. SMulticat) for the category of (symmetric) mul-
ticategories and their functors, and write t : Γ Ñ B for t P MpΓ ;Bq.

Example 1. Every monoidal category pC,b, Iq induces a multicategory T C. The
objects are those of C, with multimaps pT CqpA1, . . . , An;Bq :“ Cp

Ân
i“1Ai, Bq

for a chosen n-ary bracketing of the tensor product. This determines functors
MonCat Ñ Multicat, and SMonCat Ñ SMulticat (see e.g. [28, p. 39]); we
denote both of these by T .

Lambek [25] essentially observed that every multicategory has an internal
language, as follows. One identifies multimaps t : A1, . . . , An Ñ B with terms
x1 : A1, . . . , xn : An $ t : B, for a fixed ordering of an infinite set of variables
tx1, x2, . . . u. The identity IdA is identified with the variable x : A, and the com-
position operation becomes a formal substitution operation on the language.
Stated in this way, the three axioms become well-known properties of substitu-
tion: the unit laws say xrus “ u and trx1, . . . , xns “ t, and the associativity law
is a linear version of the so-called Substitution Lemma (e.g. [5, Lemma 2.1.16]).

The next result shows this terminology does not differ too much from the
notion of internal language in the introduction. For a signature S and Γ :“
pxi : Aiqi“1,...,n, write OS for the ordered language generated by the two rules
on the left below, and LS for the linear language generated by all three rules:

x : A $ x : A

c P SpΓ ;Bq p∆i $ ui : Aiqi“1,...,n

∆1, . . . ,∆n $ c§pu1, . . . , unq : B

Θ, x : A, y : B,∆ $ t : C

Θ, y : B, x : A,∆ $ t : C

Substitution is defined as usual, so that the following rule is admissible:

x1 : A1, . . . , xn : An $ t : B p∆i $ ui : Aiqi“1,...,n

∆1, . . . ,∆n $ tru1{x1, . . . , un{xns : B
(2)

With this rule as composition, OS and LS define a syntactic multicategory
SynpOSq and a syntactic symmetric multicategory SynpLSq, respectively. These

164 P. Saville

define left adjoints to the functors Multicat Ñ Sig and SMulticat Ñ Sig
sending a (symmetric) multicategory M to the signature with objects |M| and
constants

␣

MpΓ ;Bq
(

ΓP|M|‹,BP|M|
; we denote both these functors by U.

Lemma 1. SynpOSq (resp. SynpLSq) is the free multicategory (resp. symmetric
multicategory) on S.

Thus, the internal language of a symmetric multicategory is the core of
Abramsky’s linear λ-calculus [1]. To recover a cartesian language, we use (multi-
sorted) abstract clones. These differ from multicategories in that the result of
substituting pui : ∆ Ñ Aiqi“1,2 into t : A1, A2 Ñ B yields a multimap of type
∆ Ñ B, not ∆,∆ Ñ B. Abstract clones are equivalently cartesian multicate-
gories (see e.g. [18]), but this formulation is less natural syntactically: it amounts
to adding explicit duplication and deletion operations to the language.

Definition 3. An abstract clone C consists of a set |C| of sorts and sets CpΓ ;Bq

of multimaps for every Γ P |C|‹ and B P |C|, together with

1. Projection multimaps pA‚

i P CpA1, . . . , An;Aiq for every A1, . . . , An P |C|;
2. For every A1, . . . , An, B P |C| and ∆ P |C|‹, a substitution operation

CpA1, . . . , An;Bq ˆ
śn
i“1Cp∆;Aiq Ñ Cp∆;Bq

`

t, pu1, . . . , unq
˘

ÞÑ tru1, . . . , uns

subject to an associativity law and two unit laws for any t P CpA1, . . . , An;Bq,
`

ui P CpB1, . . . , Bm;Aiq
˘

i“1,...,n
and

`

vj P CpΘ;Bjq
˘

j“1,...,m
:

`

tru‚s
˘

rv‚s “ t
“

. . . , uirv‚s, . . .
‰

, pA‚

i ru1, . . . , uns “ ui , trpA‚

1 , . . . , pA‚
n s “ t

A homomorphism of clones f : C Ñ D consists of a map |f | : |C| Ñ |D| and maps
fA‚,B : CpA1, . . . , An;Bq Ñ DpfA1, . . . fAn; fBq for every A1, . . . , An, B P |C|,
such that fppA‚

i q “ p
pfAq‚

i and f
`

tru1, . . . , uns
˘

“ pftqrfu1, . . . , funs. We write
Clone for the category of clones and clone homomorphisms.

Example 2 (cf. Example 1). Any cartesian category pC,Πq determines a clone
PC with sorts the objects of C and pPCq

`

A1, . . . , An;B
˘

:“ Cp
śn
i“1Ai;Bq.

We distinguish between clones and multicategories by using r. . . s for a clone’s
substitution operation and x. . .y for a multicategory’s composition operation.
Every multicategory, and hence every clone, has an underlying category.

Definition 4. The nucleus M of a multicategory or clone M is the category
with the same objects and MpA,Bq :“ MpA;Bq. This defines functors p´q :
Multicat Ñ Cat and p´q : Clone Ñ Cat to the category of small categories.

The internal language of a clone is a cartesian version of that for multicate-
gories. Write ΛS for the language below; substitution is defined as usual.

pi “ 1, . . . , nq

x1 : A1, . . . , xn : An $ xi : Ai

c P SpΓ ;Bq p∆ $ ui : Aiqi“1,...,n

∆ $ c§pu1, . . . , unq : B

Identifying variables with projections, we get a syntactic clone SynpΛSq.

Clones, closed categories, and combinatory logic 165

Lemma 2. The canonical forgetful functor U : Clone Ñ Sig has a left adjoint,
and the free clone on S is SynpΛSq.

Example 3. The languages Λˆ
S , Λ

Ñ
S and Λˆ,Ñ

S each induce syntactic clones we
denote by SynpΛˆ

S q, SynpΛÑ
S q and SynpΛˆ,Ñ

S q, respectively.

3 Universal properties for multicategories

In this section we generalise the categorical notion of universal arrows (as in
e.g. [30, §3]) to give a notion of universal property for multicategories. This
will provide a uniform way to introduce new connectives to a type theory. One
could also define the required conditions directly (see [7,40]), but here we wish
to emphasise that they arise from category-theoretic ideas.

Definition 5 (cf. [17]). Let f : M Ñ N be a multicategory functor.

1. A universal arrow from f to Y P |N| is a pair pR P |M|, ρ : fR Ñ Y q

such that for every t : fA1, . . . , fAn Ñ Y there exists a unique multimap
t# : A1, . . . , An Ñ R such that ρ ˝ xfpt#qy “ t.

2. A universal arrow from X1, . . . , Xn P |N| to f is a pair pR P |M|, ρ :
X1, . . . , Xn Ñ fRq such that for every t : X1, . . . , Xn Ñ fB there exists
a unique multimap t# : R Ñ B such that fpt#q ˝ xρy “ t.

We extend this definition—and hence our notion of universal property—to
clones by using the next observation (cf. the fact a cartesian category is monoidal).

Lemma 3. There is a faithful functor M : Clone Ñ Multicat sending a clone
C to the multicategory with the same objects and hom-sets, and composition
given using substitution in C and the projections.

Definition 5 does not involve ‘global’ conditions like naturality, so is particu-
larly amenable to a type-theoretic interpretation. As in the categorical setting,
however, it can be rephrased using natural isomorphisms (cf. [30, §3.2]).

Lemma 4. Let f : M Ñ N be a multicategory functor.

1. Giving a universal arrow from f to X P |N| is equivalent to giving R P M and
an isomorphism ϕA‚

: MpA1, . . . , An;Rq
–

ÝÑ NpfA1, . . . , fAn;Y q, natural in
the sense that the left diagram below commutes for any t : A1, . . . , An Ñ B;

2. Giving a universal arrow from X1, . . . , Xn P |N| to f is equivalent to giving
R P |M| and an isomorphism ψB : MpR;Bq

–
ÝÑ NpX1, . . . , Xn; fBq, natural

in the sense that the right diagram below commutes for any u : B Ñ C.

MpB;Rq NpfB;Xq

MpA1, . . . , An;Rq NpfA1, . . . , fAn;Xq

ϕB

p´q˝xty p´q˝xfty

ϕA‚

MpR;Bq NpX1, . . . , Xn; fBq

MpR;Cq NX1, . . . , Xn; fCq

ψB

u˝x´y fpuq˝x´y

ψC

A corollary is that giving a right adjoint to a multicategory functor f : N Ñ M
in Hermida’s 2-category of multicategories [17] is equivalent to giving a mapping
g0 : |M| Ñ |N| and a universal arrow fgpXq Ñ X from f to X for each X P |N|.

166 P. Saville

4 Product structure

We now have enough to define products for multicategories, and hence for clones.
An n-ary product is exactly a limit over the discrete category with n objects.
Rephrasing in terms of universal arrows (e.g. [30, §3]) we get that equipping a cat-
egory C with n-ary products is exactly equipping it with a universal arrow from
the diagonal functor ∆pnq : C Ñ Cˆn to pA1, . . . , Anq for every A1, . . . , An P C.

Since Multicat has finite products defined in much the same way as the
category of small categories Cat, we may make the following definition. The
prefix ‘cartesian’ is already used for multicategories, so we use ‘finite-products’.

Definition 6. An fp-multicategory is a multicategory M equipped with a univer-
sal arrow

`
śn
i“1Ai, pπ

A‚

1 , . . . , πA‚
n q

˘

from the diagonal functor ∆pnq : M Ñ Mˆn

to pA1, . . . , Anq for every n P N and A1, . . . , An P |M|.

Asking for M to have finite products is equivalent to asking for a product
object

śn
i“1Ai and unary multimaps

`

πA‚

i :
śn
i“1Ai Ñ Ai

˘

i“1,...,n
for each

A1, . . . , An P |M|, such that composition induces isomorphisms M
`

Γ ;
śn
i“1Ai

˘

–
śn
i“1 MpΓ ;Aiq. In the internal language, this amounts to the following rules:

pi “ 1, . . . , nq

p :
śn
i“1Ai $ πA‚

i ppq : Ai
,

pΓ $ ti : Aiqi“1,...,n

Γ $ xt, . . . , tny :
śn
i“1Ai

πA‚

i ppq
“

xt1, . . . , tny
‰

“ ti ,
@

πA‚

1 ppqrus, . . . , πA‚
n ppqrus

D

“ u

(3)

We can now derive the rules for & in linear λ-calculus [1]. Indeed, given
Γ, x : Ai, Θ $ t : B, from (3) we get Γ, p :

śn
i“1Ai, Θ $ trπA‚

i ppq{xs : B. This
suggests the following. Let O&

S (resp. L&
S) be the extension of OS (resp. LS) with

Γ, xi : Ai, Θ $ t : C ∆ $ u : &ni“1Ai
Γ,∆,Θ $ let xi be pi of u in t : C

,
pΓ $ ti : Aiqi“1,...,n

Γ $ xt1, . . . , tny : &ni“1Ai

let xi be pi of xuiy
n
i“1 in t “ trui{xis , xlet xi be pi of u in xiy

n
i“1 “ u

where we write xuiy
n
i“1 for xu1, . . . , uny. This syntax defines a free property. To

see this, say a multicategory functor f (strictly) preserves finite products if it
preserves all the data on the nose, so that fp

śn
i“1Aiq “

śn
i“1fAi, fpπA‚

i q “

π
fA‚

i , and fpxt1, . . . , tnyq “ xft1, . . . , ftny. Write fpMulticat for the category
of fp-multicategories and product-preserving functors, and fpSMulticat for the
subcategory of symmetric multicategories with finite products, with functors
preserving both structures.

Lemma 5. The composite forgetful functor fpMulticat Ñ Multicat Ñ Sig
has a left adjoint, and the free fp-multicategory on S is SynpO&

S q. This extends
to symmetric structure: replace fpMulticat by fpSMulticat and O& by L&.

Returning to the cartesian setting, we define products in a clone using the
corresponding structure for multicategories and Lemma 3.

Clones, closed categories, and combinatory logic 167

Definition 7. A cartesian clone pC,Πq is a clone C equipped with a choice
of finite products on MC. A (strict) homomorphism of cartesian clones is a
clone homomorphism f that strictly preserves all the product structure. We write
CartClone for the category of cartesian clones and strict homomorphisms.

Writing πiptq for the multimap πA‚

i rts, the rules (3) translate directly to the
usual product rules of λ-calculus. So cartesian clones exactly capture Λˆ.

Lemma 6. The composite forgetful functor CartClone Ñ Clone Ñ Sig has a
left adjoint, and SynpΛˆ

S q is the free cartesian clone on S.

Using the characterisation of universal arrows in terms of natural isomor-
phisms we get the following refinement of Example 2.

Example 4. For any cartesian category pC,Πq the induced clone PC is cartesian,
essentially by definition; this extends to a functor P : CartCat Ñ CartClone.
Moreover, if pC,Πq is a cartesian clone, then so is its nucleus C. Hence p´q

restricts to a functor CartClone Ñ CartCat.

The two functors in this example are actually adjoints, yielding our first
version of the schema in (1). The unit is identity-on-objects and sends t :
A1, . . . , An Ñ B to trπA‚

1 , . . . , πA‚
n s :

śn
i“1Ai Ñ B.

Proposition 1. The functor p´q : CartClone Ñ CartCat fits into the fol-
lowing diagram of adjunctions:

Sig CartClone CartCat
F

U

p´q

P

%%

Moreover, U ˝ P is equal to the canonical forgetful functor CartCat Ñ Sig.
Hence, the free cartesian category on S is canonically isomorphic to SynpΛˆ

S q.

4.1 Cartesian structure from representability

In the preceding section we defined products using a multi-ary version of the
familiar universal property. There is another way to define ‘monoidal structure’
in a multicategory: Hermida’s representability [17]. From the perspective of linear
logic, the finite product structure explored above corresponds to the additive
conjunction &; Hermida’s representability will correspond to the multiplicative
conjunction b. We shall also see that, for clones, the two are equivalent.

Definition 8. A representable multicategory is a multicategory M equipped with
a universal arrow

´

TpX1, . . . , Xnq, ρX‚
: X1, . . . , Xn Ñ TpX1, . . . , Xnq

¯

from
X1, . . . , Xn to the identity idM for each X1, . . . , Xn P |M|; we write Tni“1Xi for
TpX1, . . . , Xnq. These universal arrows must be closed under composition, so

X1, . . . , Xn, Y1, . . . , Ym
xρX‚ ,ρY‚y

ÝÝÝÝÝÝÑ Tni“1Xi,T
m
j“1 Yj

ρ
ÝÑ T

`

Tni“1Xi,T
m
j“1 Yj

˘

168 P. Saville

must also be universal. A representable multicategory functor f is a multi-
category functor that preserves all the universal arrows, so that fpTni“1Aiq “

Tni“1 fAi, fpρA‚
q “ ρfA‚

and fpt#q “ ft#. Write RepMulticat for the cat-
egory of representable multicategories, and SRepMulticat for the category of
representable multicategories whose underlying multicategories are also symmet-
ric, with functors preserving both structures.

Example 5 (cf. Example 1). The multicategory T C induced by a monoidal
category pC,b, Iq is representable. We therefore obtain functors MonCat Ñ

RepMulticat and SMonCat Ñ SRepMulticat; we denote them both T .

A representable multicategory is a multicategory equipped with rules which
are dual to those in (3) in the sense that the universal arrow goes the other
direction. Indeed, writing x1 b . . .bxn for ρA‚

, and let px1, . . . , xnq be p in t for
t#, and extending this to all terms by

u1 b . . .b un :“ px1 b . . .b xnqru1{x1, . . . , un{xns

let px1, . . . , xnq be u in t :“
`

let px1, . . . , xnq be p in t
˘

ru{ps

we obtain the following rules, where Γ :“ pxi : Aiqi“1,...,n:

p∆i $ ui : Aiqi“1,...,n

∆1, . . . ,∆n $ b
n
i“1ui :

Ân
i“1 Ai

,
Λ, Γ,Θ $ t : B ∆ $ u :

Ân
i“1 Ai

Λ,∆,Θ $ let px1, . . . , xnq be u in t : B
(4)

let px1, . . . , xnq be p in trbn
i“1xi{ps “ t , let px1, . . . , xnq be bn

i“1xi in t “ t

We write Ob
S (resp. Lb

S) for the extension of OS (resp. LS) with these rules.
This is essentially the tensor fragment of Abramsky’s linear λ-calculus [1]. The
connection with multicategories was already made in by Hyland & de Paiva [20],
who showed this type theory arises from Lambek’s monoidal multicategories [26].

Lemma 7. The composite forgetful functor RepMulticat Ñ Multicat Ñ Sig
has a left adjoint, and the free representable multicategory on S is the syntactic
multicategory SynpOb

S q. The same holds for symmetric structure, if one replaces
RepMulticat by SRepMulticat and Ob by Lb.

Combining this lemma with Lemma 5, one sees that a multicategory equipped
with representable and finite-product structure corresponds to a linear type the-
ory with both b and &.

We can also obtain a linear version of Proposition 1. Hermida [17] showed that
the 2-category of representable multicategories is 2-equivalent to the 2-category
of monoidal categories, and Weber showed this extends to the symmetric case [45].
From these constructions one can extract functors T : RepMulticat Ñ MonCat
and Tsym : SRepMulticat Ñ SMonCat sending a (symmetric) representable
multicategory to a (symmetric) monoidal structure on its nucleus, together with
equivalences RepMulticat » MonCat and SRepMulticat » SMonCat. So
we get the following.

Clones, closed categories, and combinatory logic 169

Proposition 2. The functors N and Nsym fit into the following diagram of
adjunctions, where in each case the right-hand adjunction is an equivalence:

RepMulticat

Sig MonCat

%

»

F

U

N

T
%

SRepMulticat

Sig SMonCat

%

»F

U

Nsym

Tsym

%

Moreover, U ˝ T and U ˝ Tsym are both equal to the canonical forgetful func-
tor to Sig. Hence, the free monoidal (resp. symmetric monoidal) category on a
signature S is canonically isomorphic to N

`

SynpOb
S q

˘

(resp. N
`

SynpLb
S q
˘

).

We now turn to studying representability in the cartesian setting.

Definition 9. A representable clone is a clone C equipped with a choice of rep-
resentable structure on MC. A representable clone homomorphism is a clone
homomorphism which preserves the representable structure as in Definition 8.

A cartesian clone makes the projections primitive (recall (3)), but a repre-
sentable clone makes the pairing operation primitive (recall (4)). It turns out
these perspectives are equivalent. In the proof-theoretic setting such ideas are
well-studied (cf. the equivalence of G-systems and N-systems in [42, §3.3]); the
categorical statement has also been made by Pisani [34] and Shulman [40].

Proposition 3. Equipping a clone C with representable structure is equivalent
to equipping C with cartesian structure.

In Proposition 2 we gave an equivalence of categories but in Proposition 1
we only gave an adjunction. We can now upgrade the latter to an equivalence.
Indeed, p´q˝P is equal to the identity. On the other hand, if pC,Πq is a cartesian
clone then by Proposition 3 and Lemma 4 we have a multi-natural isomorphism
CpA1, . . . , An;Bq – Cp

śn
i“1Ai;Bq “ PpCqpA1, . . . , An;Bq.

Corollary 1 ([34]). The functors P and p´q of Proposition 1 define an adjoint
equivalence CartClone » CartCat.

4.2 Recovering the semantic interpretation and syntactic model

We now show how the usual semantic interpretation, syntactic model, and sound-
ness and completeness results can be derived from the multi-ary framework. Al-
though we shall not pursue the point in detail for reasons of space, essentially
the same argument holds for all the calculi considered in this paper.

Semantic interpretation and soundness. We recover the usual semantic in-
terpretation of Λˆ in a cartesian category by Lemma 6 and Example 4 as follows.
Let U : CartCat Ñ Sig be the functor sending a cartesian category pC,Πq to
the signature with objects those of C and constants

␣

Cp
śn
i“1Ai, Bq

(

A1,...,An,BPC .
An interpretation s : S Ñ UC of basic types and constants in C is exactly an

170 P. Saville

interpretation s : S Ñ UpPCq in the induced cartesian clone. The unique ex-
tension sJ´K : SynpΛˆ

S q Ñ PC sends a term x1 : A1, . . . , xn : An $ t : B to
a multimap sJx1 : A1, . . . , xn : AnK Ñ sJBK in PC, which is exactly a map
śn
i“1 sJAiK Ñ sJBK in C. It is not hard to show this coincides with the usual,

inductively defined semantic interpretation. Unlike with the unary approach, we
do not need to prove soundness with respect to βη as a separate lemma: this
holds immediately from the fact sJ´K is a cartesian clone homomorphism.

Moreover, for any objects A1, . . . , An in a cartesian clone one can construct a
‘multi-isomorphism’ pA1, . . . , Anq –

śn
i“1Ai (see [38, Lemma 4.2.16]). Hence, in

a cartesian simple type theory with products, contexts must coincide with product
types. Together with the preceding, this provides a mathematical explanation for
the identification of contexts and product types in the interpretation of Λˆ,Ñ.

Syntactic model. We extract the construction from Proposition 1. For a sig-
nature S the cartesian category SynpΛˆ

S q has objects the types of Λˆ
S and mor-

phisms A Ñ B given by αβη-equivalence classes of terms x : A $ t : B for a
fixed variable x. Composition is substitution and the identity on A is the vari-
able x : A. The projections are x :

śn
i“1Ai $ πA‚

i pxq : Ai and the pairing of
the maps px : C $ ti : Aiqi“1,2 is x : C $ xt1, t2y : A1 ˆ A2. The usual proofs
that this is indeed cartesian (see e.g. [9, Chapter 3]) have been replaced by the
simple observation of Example 4.

Completeness. Once again, the proof is largely category-theoretic. Note first
that the functor p´q : CartClone Ñ CartCat is faithful. One can prove this
directly using Proposition 3 or infer it from Corollary 1 and the fact any equiva-
lence is fully faithful. In any case, it follows by standard results (e.g. [37, Lemma
4.5.13]) that the unit η1 of the adjunction p´q % P is monic. Just as in Cat,
any monomorphism of clones is injective on objects and injective on multimaps.
It suffices, therefore, to find a semantic interpretation ιJ´K which is equal to a
component of η1. This is accomplished by the next lemma.

Lemma 8. Let C D E
F%

U

F 1

%

U1

be adjunctions with units η : idC ñ UF

and η1 : idD ñ U1F 1. Then for any C P C, the unit η1FC : FC Ñ U1F 1FC is the
unique map h such that the following diagram commutes:

UFC UU1F 1FC

C UFC

Uh

ηC

ηC

Uη1
FC

In the setting of Proposition 1 this lemma implies that the component η1FS :

SynpΛˆ
S q Ñ P

`

SynpΛˆ
S qq of the unit for the adjunction p´q % P is exactly the

unique cartesian clone homomorphism ιJ´K extending the obvious interpretation
ι :“ S ãÑ SynpΛˆ

S q of base types and constants in the free cartesian category. By
our preceding discussion, this clone homomorphism is injective on multimaps:
so if ιJtK “ ιJt1K then t “ t1 in SynpΛˆ

S q, hence t “βη t
1.

Clones, closed categories, and combinatory logic 171

5 Closed structure

To define closed structure, we follow Lambek’s definition and simply upgrade
the hom-set definition of exponentials to multicategories.

Definition 10 ([26]). A closed multicategory is a multicategory M equipped
with an object rA,Bs and multimap evalA,B : rA,Bs, A Ñ B for every A,B P

|M|, such that composition induces isomorphisms as shown:

MpΓ,A;Bq MpΓ ; rA,Bsq

ΛA

evalA,B˝xp´q,IdAy

– (5)

A (strict) closed multicategory functor is a multicategory functor f which pre-
serves all the data: fprA,Bsq “ rfA, fBs, fpevalA,Bq “ evalfA,fB and fpΛtq “

Λpftq. We write ClMulticat for the category of closed multicategories and their
functors, and ClSMulticat for the category of symmetric multicategories with
closed structure, and functors preserving both of these.

Example 6. If pC,b, I, r´,“sq is a closed (symmetric) monoidal category then
the induced (symmetric) multicategory T C is also closed.

Closed multicategories allow us to model exponentials without requiring a
tensor product. Writing out the rules in the internal language, we get the map
ΛA in (5) as the usual abstraction rule, and the evaluation map as the application
f : A⊸ B, x : A $ f x : B. We then see that ∆, f : A⊸ B, x : A $ urf x{ys : C
whenever ∆, y : B $ u : C, so we recover a small adaptation of Abramsky’s rules
for exponentials. Write O⊸

S (resp. L⊸
S) for the extension of OS (resp. LS) with

the following rules and the βη-laws familiar from ΛÑ:
∆, y : B $ u : C Θ $ t : A⊸ B Γ $ v : A

∆,Θ, Γ $ urt v{ys : C
,

Γ, x : A $ t : B

Γ $ λx . t : A⊸ B

Lemma 9 ([20]). The composite forgetful functor ClMulticat Ñ Multicat Ñ

Sig has a left adjoint, and the free closed multicategory on S is the syntactic
multicategory SynpO⊸

S q. The same holds for symmetric structure, if one replaces
ClMulticat by ClSMulticat and O⊸ by L⊸.

For the cartesian case, we follow the same procedure as in Section 4.

Definition 11. A closed clone is a clone C equipped with a closed structure on
MC. We write ClClone for the category of closed clones and clone homomor-
phisms preserving the closed structure as in Definition 10.

Example 7. If pC,Π,ñq is a cartesian closed category, the clone PC is closed.

Definition 11 recovers the usual βη-laws for exponentials in ΛÑ, complete
with the weakenings that are usually implicit. Writing f x for eval, we get the
following equations in the internal language when Γ :“ pxi : Aiqi“1,...,n:

pf xq
“

pλx . tqrx1{x1, . . . , xn{xns{f, x{x
‰

“ t , λx . pf xq
“

trx1{x1, . . . , xn{xns{f
‰

“ t

Lemma 10. The composite forgetful functor ClClone Ñ Clone Ñ Sig has a
left adjoint, and the free closed clone on S is the syntactic clone SynpΛÑ

S q.

172 P. Saville

6 Cartesian closed structure

The development above makes defining cartesian closed structure straightfor-
ward. For reasons of space we restrict ourselves to the cartesian case, but similar
remarks apply to the linear and ordered cases.

Definition 12. A cartesian closed clone is a clone equipped with both closed
structure and cartesian structure. We write CCClone for the category of carte-
sian closed clones and homomorphisms that strictly preserve both structures.

By Lemmas 6 and 10, we already have a free property .

Lemma 11. The composite forgetful functor CCClone Ñ Clone Ñ Sig has a
left adjoint, and SynpΛˆ,Ñ

S q is the free cartesian closed clone on S.

The nucleus of any cartesian closed clone pC,Π,ñq is also cartesian closed:

CpAˆB,Cq “ CpAˆB;Cq – CpA,B;Cq – CpA;B ñ Cq “ CpA,B ñ Cq

Similarly, by Examples 4 and 7, for any cartesian closed category pC,Π,ñq the
induced category PC is cartesian closed. Proposition 1 then restricts as follows.

Proposition 4. The functor p´q : CCClone Ñ CCCat fits into the following
diagram, in which the right-hand adjunction is an equivalence:

Sig CCClone CCCat
F

U

p´q

P
»

%%

Moreover, U˝P is equal to the canonical forgetful functor CCCat Ñ Sig. Hence,
the free cartesian closed category on S is canonically isomorphic to SynpΛˆ,Ñ

S q.

As in Section 4.2, the preceding two results are enough to recover the sound
semantic interpretation of Λˆ,Ñ, and the usual syntactic model.

7 Cartesian combinatory logic and SK-clones

In this section we begin a multi-ary investigation of cartesian combinatory logic,
and give a categorical statement of the classical correspondence between combi-
natory logic and ΛÑ (for which see e.g. [15,6]). In Section 8 we shall use this to
define SK-categories and show they are sound and complete for ΛÑ.

We briefly recapitulate the rules of typed combinatory logic CLS over a sig-
nature S; for a fuller account see e.g. [6]. Types are as in ΛÑ. Terms are given by
the grammar t, u ::“ x

ˇ

ˇ c P SpΓ ;Bq
ˇ

ˇ pt uq
ˇ

ˇS
ˇ

ˇK: we have variables, constants and
an application operation as in ΛÑ and, for any context Γ and types A,B and
C, two combinators Γ $ SΓA,B,C :

`

A ñ pB ñ Cq
˘

ñ
`

pA ñ Cq ñ pA ñ Cq
˘

and Γ $ KΓA,B : A ñ pB ñ Aq. Substitution is as in ΛÑ, where the combinators
Z P tS,Ku satisfy Zru1{x1, . . . , un{xns “ Z so that ZΓ is the weakening of Z˛.

Clones, closed categories, and combinatory logic 173

The correlate of β-equality is weak equality “w, which is the smallest congru-
ence containing Sx y z “ px zq py zq and Kx y “ x. The correlate of βη-equality
is extensional weak equality “wext, which extends “w with the rule

t x1 ¨ ¨ ¨ xn “ t1 x1 ¨ ¨ ¨ xn x1, . . . , xn not free in t or t1
ext

t “ t1
(6)

We write CLw for combinatory logic with weak equality and CLwext for com-
binatory logic with extensional weak equality. The usual encoding of CLw in ΛÑ

sends S and K to λf . λg . λx . pf xq pg xq and λx . λy . x, respectively.
The next definition may be obtained by seeing that CLw can be presented

as an algebraic theory, and that clones are equivalent to algebraic theories
(e.g. [29,41]). We implicitly bracket application to the left, so t ¨u ¨ v :“ pt ¨uq ¨ v.
We also write p´q

∆;Θ for the weakening map CpΓ ;Bq Ñ Cp∆,Γ,Θ;Bq sending
t to t

“

p∆,Γ,Θ
|∆|`1 , . . . , p

∆,Γ,Θ
|∆|`|Γ |

,
‰

; when Γ is empty we write just p´q
∆.

Definition 13. An SK-clone is a clone C equipped with a mapping r´,“s :
|C| ˆ |C| Ñ |C|, nullary multimaps SA,B,C P C

`

˛;
“

rA, rB,Css, rrA,Bs, rA,Css
‰˘

and KA,B P C
`

˛; rA, rB,Ass
˘

for every A,B,C P |C|, and a binary application
operation p´ ¨ “q : CpΓ ; rA,Bsq ˆ CpΓ ;Aq Ñ CpΓ ;Bq for every Γ P |C|‹ and
B P |C|, such that the following axioms hold whenever they are well-typed:

pt ¨uqrv1, . . . , vns “ trv1, . . . , vns ¨urv1, . . . , vns , pKA,BqA,B ¨ p1 ¨ p2 “ p1

pSA,B,CqrA,rB,Css,rA,Bs,A ¨ p1 ¨ p2 ¨ p3 “ pp1 ¨ p3q ¨pp2 ¨ p3q

A homomorphism of SK-clones is a clone homomorphism that preserves applica-
tion, S and K: fpSA,B,Cq “ SfA,fB,fC , fpKA,Bq “ KfA,fB and fpt ¨uq “ ft ¨ fu.
We write SKClone for the category of SK-clones and their homomorphisms.

Lemma 12. The composite forgetful functor SKClone Ñ Clone Ñ Sig has a
left adjoint, and the free SK-clone on S is the syntactic clone SynpCLwS q.

A core feature of the syntax of combinatory logic, which is at the heart of
the correspondence between the terms of CLwext and ΛÑ, is the admissibility
of bracket extension algorithms (see e.g. [5, §7.1]). To express this in the typed
setting, we use the following notation. For a binary operation r´,“s on a set S
we define r´;“s : S‹ ˆ S Ñ S inductively as follows:

r˛;Bs :“ B , rA;Bs :“ rA,Bs , rΓ,A;Bs :“ rΓ ; rA,Bss

With this notation, bracket abstraction amounts to saying that if Γ :“ pxi :
Aiqi“1,...,n and Γ $ t : B in CLw, there exists a closed term ˛ $ tc : rΓ ;Bs

such that ptcq
Γ
x1 . . . xn “w t. The extensionality axiom (6) then says that tc is

unique: in other words, t ÞÑ tΓ x1 . . . xn is an isomorphism.
We now translate this into clone-theoretic terms. For any SK-clone C we

obtain the operation t ÞÑ tΓ x1 . . . xn as the composite below:

iΓ ;B :“
´

Cp˛; rΓ ;Bsq
wΓ

ÝÝÑ CpΓ ; rΓ ;Bsq
p´q ¨ pΓ1 ¨...pΓ|Γ |

ÝÝÝÝÝÝÝÝÝÑ CpΓ ;Bq

¯

(7)

174 P. Saville

For Γ :“ ˛ this is just the identity. The admissibility of bracket abstraction
in the syntax of CLw is then captured by the next lemma. Typically bracket
abstraction algorithms restrict to closed constants, because an open constant
may have no corresponding closed term. We restrict in the same way. Call a
signature S nullary if SpΓ ;Aq “ H whenever Γ ‰ ˛, and write Sig0 ãÑ Sig for
the full subcategory of nullary signatures.

Lemma 13. Let S be a nullary signature. Then for any Γ P |SynpCLwS q|‹ and
B P |SynpCLwS q| there exists a map p´q

c such that iΓ ;B ˝ p´q
c

“ idSynpCLw
S q.

Because bracket abstraction is defined by induction on the syntax, we cannot
straightforwardly define it in an arbitrary SK-clone. We can, however, consider
the sub-category of SK-clones (= semantic models of CLw) which admit bracket
abstraction in the sense that each iΓ ;B has a retraction. The extensional models
are then those for which this retract p´q

c also satisfies uniqueness.

Definition 14. An SK-clone C is extensional if for every Γ P |C|‹ and B P |C|

the map iΓ ;B defined in (7) is invertible. We write SKCloneext for the full
subcategory of SKClone consisting of just the extensional SK-clones.

Lemma 14. The composite forgetful functor SKCloneext Ñ Clone Ñ Sig0

has a left adjoint, and the free extensional SK-clone on a nullary signature S is
the syntactic clone SynpCLwext

S q.

7.1 Extensional SK-clones are closed clones

In this section we outline why SKCloneext is equivalent to ClClone, thereby
giving a category-theoretic equivalence not just between the syntax of CLwext

and ΛÑ but also between their models. The proof uses extensionality or the η-
law to pass from arbitrary multimaps to nullary ones, from which one can build
a strict closed clone. We shall rely heavily on the following simple observation.

Lemma 15. Let C be a clone and X :“
␣

XpΓ ;Bq
(

ΓP|C|‹,BP|C| a family of sets
together with an isomorphism

␣

νΓ ;A : CpΓ ;Aq Ñ XpΓ ;Aq
(

Γ,A
between X and

the hom-sets of C in the functor category
“

|C|‹ ˆ |C|,Set
‰

. Then X acquires a
canonical clone structure and ν becomes an isomorphism of clones.

We now introduce strict closed clones.

Definition 15. A strict closed clone is a closed clone pC,ñ, evalq such that
every ΛA : CpΓ,A;Bq Ñ CpΓ,A ñ Bq is the identity. We write ι : ClClonest ãÑ

ClClone for the full subcategory consisting of just the strict closed clones.

Any closed clone pC,ñ, evalq determines a strict closed clone SC and a
clone isomorphism λC : C Ñ SC by applying Lemma 15 to the isomorphisms
CpΓ ;Bq – Cp˛;Γ ñ Bq arising from the closed structure. This extends to a
functor S : ClClone Ñ ClClonest sending f : pC,ñ, evalq Ñ pD,ñ, evalq to

Clones, closed categories, and combinatory logic 175

the composite λD ˝ f ˝ λ´1
C . A short calculation shows that the isomorphisms λ

make S : ClClone ⇆ ClClonest : ι into an equivalence of categories.
We play a similar game for turning extensional SK-clones into (strict) closed

clones. Indeed, for any extensional SK-clone we have isomorphisms CpΓ ;Bq –

Cp˛; rΓ ;Bsq defining a strict closed clone LC with pLCqpΓ ;Bq :“ Cp˛; rΓ ;Bsq,
and hence a functor L : SKCloneext Ñ ClClonest in a similar fashion to S.

Finally, for any closed clone pC,ñ, evalq we get an extensional SK-clone EC
with the same underlying clone by taking application to be application in ΛÑ,
so t ¨u :“ evalA,Brt, us, and encoding the combinators as usual.

Theorem 1. There exist equivalences of categories

SKCloneext ClClonest ClClone.
L

»

E1:“E˝ι

ι

»

S

8 A categorical model of ΛÑ

In Propositions 1 and 4 we recovered a unary semantic interpretation of Λˆ and
Λˆ,Ñ from our clone-theoretic ones. But we do not have a corresponding result
for ΛÑ. In this section we fill this gap: we introduce SK-categories and show they
play the role for ΛÑ that cartesian closed categories play for Λˆ,Ñ. Our definition
is inspired by closed categories ([11,10]), which axiomatise an ‘internal’ version
of the hom-functor Cp´,“q in the form of a functor r´,“s : Cop ˆC Ñ C. Closed
categories have a unit object, corresponding to requiring a unit type (cf. [31]);
our definition avoids this (see also [39,43]).

Recall that in the presence of contravariance, dinaturality and extranaturality
are the right replacements for naturality (see e.g. [30, §IX.4]).

Definition 16. An SK-category consists of a category C and functors r´,“s :
Cop ˆ C Ñ C and U : C Ñ Set, together with

1. Maps SC,D,E : rC, rD,Ess Ñ rrC,Ds, rC,Ess dinatural in C and natural in
D and E;

2. Maps KC
D : D Ñ rC,Ds extranatural in C and natural in D;

3. Maps εC,D : U rC,Ds ˆ UC Ñ UD extranatural in C and natural in D;

This data is subject to the condition that U ˝ r´,“s “ Cp´,“q : Cop ˆ C Ñ Set
and the 7 axioms of Figure 1a. An SK-functor pF, ϕ, ψq is a functor F : C Ñ D
with natural transformations as below, such that the axioms of Figure 1b hold.

Cop ˆ C Dop ˆ C

C D
F

F op
ˆF

r´,“sr´,“s
ϕ

C D

Set

F

UU

ψ

We call pF, ϕ, ψq strict if ϕ is the identity, and write SKCat for the category of
SK-categories and strict SK-functors.

176 P. Saville

p1q

`

U rC, rD,Ess ˆ U rC,Ds
˘

ˆ UC

`

U rC, rD,Ess ˆ UC
˘

ˆ
`

U rC,Ds
˘

ˆ UC
˘

U rrC,Ds, rC,Ess

ˆU rC,Ds ˆ UC

U rD,Es ˆ UD U rC,Es ˆ UC

UE

εˆε

ε

USˆidˆid

εˆid

ε

p2q

UD ˆ UC U rC,Ds ˆ UC

UD

UKˆid

ε
π1

p3q

1 ˆ UC U rC,Cs ˆ UC

UC

xidC yˆid

π2
ε

p4q

U rD,Es ˆ U rC,Ds U rC,Es

U rC, rD,Ess ˆ U rC,Ds U rrC,Ds, rC,Ess ˆ U rC,Ds

˝

UKˆid

USˆid

ε

p5q

rrX,As, rrX,Bs, rX,Csss

“

rX,As, rX, rB,Css
‰ “

rrX,As, rX,Bss rrX,As, rX,Css
‰

“

X, rA, rB,Css
‰ “

rX, rA,Bss , rrX,As, rX,Css
‰

“

X, rrA,Bs, rA,Css
‰ “

rX, rA,Bss , rX, rA,Css
‰

S

rid,Ss S

rS,ids

rid,Ss

S

rid,Ss

p6q

rC,Es rC, rD,Ess

rD, rC,Ess rrD,Cs, rD,Ess

rid,KDs

KD

S

rKD,ids

p7q

rC,Es rC, rD,Ess

rrC,Ds, rC,Ess

rid,KDs

KrC,Ds
S

(a) Axioms for an SK-category. In (1) the unlabelled arrow is the canonical map
xxπ1π1, π2y, xπ2π1, π2yy : pX ˆ Y q ˆ Z Ñ pX ˆ Zq ˆ pX ˆ Zq. In (3) we write xidCy for
the set map ˚ ÞÑ idC : 1 Ñ UrC,Cs.

UC
rC,Ds CpC,Dq DpFC,FDq

UDF rC,Ds UD
rFC,FDs

ψ

Uϕ

FC,D
FD F rC,Ds

rFC,FDs

FKC

ϕ
KFC

UC
rC,Ds ˆ UCC UCD

UDF rC,Ds ˆ UDFC UDFD

UD
rFC,FDs ˆ UDFC

ψˆψ

UDϕˆid εD

εC

ψ

F
“

C, rD,Es
‰

F
“

rC,Ds, rC,Es
‰

“

FC,F rD,Es
‰ “

F rC,Ds, F rC,Es
‰

“

FC, rFD,FEs
‰ “

F rC,Ds, rFC,FEs
‰

“

rFC,FDs, rFC,FEs
‰

ϕ

rid,ϕs

FS

ϕ

rid,ϕs

S rϕ,ids

(b) Axioms for an SK-functor

Fig. 1: Extra axioms for Definition 16

Clones, closed categories, and combinatory logic 177

We think of UC as the set of multimaps ˛ Ñ C and ε as a formal applica-
tion operation p´ ¨ “q. Axioms (1) and (2) are the weak equality laws from CL.
Axioms (3) and (4) ensure compatibility between the category structure and the
corresponding CL constructions: for example, axiom (3) implies Upfqpxq “ f ¨x,
and axiom (4) says that composition coincides with S pK´q p“q, corresponding
to the weak equality S pK fq g x “ f pg xq. Axioms (5) – (7) are coherence laws.

Every extensional SK-clone determines an SK-category. Because we follow [11]
and ask for an equality U rA,Bs “ CpA,Bq in the definition of SK-categories, but
in general an extensional SK-clone pC, r´,“s, S,K, ¨q only has an isomorphism
CpA;Bq – Cp˛; rA,Bsq, we need to strictify in the same manner as Section 7.1.
As a notational shorthand, we write I,B and B1 for the closed multimaps satis-
fying the equations below in the internal language of C (see e.g. [15,6]):

IA ¨x “ x , BBñC,AñB,A ¨x ¨ y ¨ z “ x ¨py ¨ zq , pB1qAñB,BñC,A ¨x ¨ y ¨ z “ y ¨px ¨ zq

The category NC has objects |C| and hom-sets pNCqpA,Bq :“ Cp˛; rA,Bsq

(cf. [14]). The identity on A is IA and the composite of t and t1 is B ¨ t ¨ t1. For
U we take UA :“ Cp˛;Aq with the action on maps given by application. For
r´,“s the action on objects is given by the SK-structure, with the action on
maps given by rX, ts :“ B ¨ t and rt,Xs :“ B1 ¨ t. The maps S and K are given
by the corresponding combinators, and ε is the application operation in C. This
extends to a functor N : SKCloneext Ñ SKCat.

The internal language of SK-categories is CLwext, and hence ΛÑ. We write U
for the functor which sends an SK-category pC, U, r´,“s, S,K, εq to the signature
with base types |C| and constants U rΓ,Bs.

Proposition 5. The forgetful functor U : SKCat Ñ Sig has a left adjoint, and
the free SK-category on S is N

`

SynpCLwext
S q

˘

– pN ˝ Eq
`

SynpΛÑ
S q

˘

.

Using Theorem 1, we now obtain a version of Propositions 1 and 4 for ΛÑ.

Theorem 2. The composite N ˝ ι : ClClonest Ñ SKCat is invertible; hence
we get the diagram below, in which the right-hand adjunction is an equivalence:

Sig ClClone SKCat
F

U

N˝E

Cl

»

%%

Moreover, U ˝ Cl is equal to the forgetful functor SKCat Ñ Sig, so the free
SK-category on S is canonically isomorphic to pN ˝ EqpSynpΛÑ

S qq.

Recall that a closed monoidal category is a monoidal category pD,b, Iq such
that every p´q b D has a right adjoint rD,´s, and that in a closed category C giv-
ing every rC,´s a C-enriched left adjoint is equivalent to giving closed monoidal
structure ([11,10,43]). Theorem 2 and Proposition 4 imply a cartesian version.

Corollary 2. Equipping a category C with cartesian closed structure is equiva-
lent to equipping C with SK-structure and natural isomorphisms CpI, rC,Dsq –

CpC,Dq and CpC bD,Eq – CpC, rD,Esq for every C,D,E P C.

178 P. Saville

Acknowledgements. I thank Nathanael Arkor and Dylan McDermott for use-
ful discussions on early drafts of this paper, and the reviewers for their many
useful comments. I am grateful to Nayan Rajesh for pointing out the adjunctions
between cartesian categories and cartesian clones, and between cartesian closed
categories and cartesian closed clones, are in fact equivalences. Finally, I thank
Marcelo Fiore for introducing me to clones.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer
Science 111(1-2), 3–57 (1993). https://doi.org/10.1016/0304-3975(93)90181-r

2. Abramsky, S.: Temperley–Lieb algebra: From knot theory to logic and computation
via quantum mechanics. In: Mathematics of Quantum Computation and Quantum
Technology. Chapman and Hall/CRC (2007)

3. Arkor, N., Fiore, M.: Algebraic models of simple type theories. In: Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM
(2020). https://doi.org/10.1145/3373718.3394771

4. Arkor, N., McDermott, D.: Abstract clones for abstract syntax. In: Kobayashi,
N. (ed.) 6th International Conference on Formal Structures for Computation and
Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Con-
ference). LIPIcs, vol. 195, pp. 30:1–30:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021). https://doi.org/10.4230/LIPIcs.FSCD.2021.30

5. Barendregt, H.P.: The lambda calculus: its syntax and semantics, Studies in Logic
and the Foundations of Mathematics), vol. 103. North-Holland (1985), revised
edition

6. Bimbó, K.: Combinatory logic pure, applied, and typed. Taylor & Francis (2012)
7. Blanco, N., Zeilberger, N.: Bifibrations of polycategories and classical linear logic.

Electronic Notes in Theoretical Computer Science 352, 29–52 (Oct 2020). https:
//doi.org/10.1016/j.entcs.2020.09.003

8. Church, A.: A formulation of the simple theory of types. The Journal of Symbolic
Logic 5(2), 56–68 (1940), http://www.jstor.org/stable/2266170

9. Crole, R.L.: Categories for Types. Cambridge University Press (1994). https://doi.
org/10.1017/CBO9781139172707

10. Day, B.J., Laplaza, M.L.: On embedding closed categories. Bulletin of the Aus-
tralian Mathematical Society 18(3), 357–371 (1978). https://doi.org/10.1017/
s0004972700008236

11. Eilenberg, S., Kelly, G.M.: Closed categories. In: Proceedings of the Conference
on Categorical Algebra, pp. 421–562. Springer Berlin Heidelberg (1966). https:
//doi.org/10.1007/978-3-642-99902-4_22

12. Fiore, M., Mahmoud, O.: Second-order algebraic theories. In: Mathematical Foun-
dations of Computer Science 2010, pp. 368–380. Springer Berlin Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15155-2_33

13. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Pro-
ceedings of the 14th Annual IEEE Symposium on Logic in Computer Science.
pp. 193–. LICS ’99, IEEE Computer Society, Washington, DC, USA (1999),
http://dl.acm.org/citation.cfm?id=788021.788948

14. Fox, T.: Combinatory logic and cartesian closed categories. Master’s thesis, McGill
University (1971), https://escholarship.mcgill.ca/concern/theses/6h440t871

Clones, closed categories, and combinatory logic 179

https://doi.org/10.1016/0304-3975(93)90181-r
https://doi.org/10.1016/0304-3975(93)90181-r
https://doi.org/10.1145/3373718.3394771
https://doi.org/10.1145/3373718.3394771
https://doi.org/10.4230/LIPIcs.FSCD.2021.30
https://doi.org/10.4230/LIPIcs.FSCD.2021.30
https://doi.org/10.1016/j.entcs.2020.09.003
https://doi.org/10.1016/j.entcs.2020.09.003
https://doi.org/10.1016/j.entcs.2020.09.003
https://doi.org/10.1016/j.entcs.2020.09.003
http://www.jstor.org/stable/2266170
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/CBO9781139172707
https://doi.org/10.1017/s0004972700008236
https://doi.org/10.1017/s0004972700008236
https://doi.org/10.1017/s0004972700008236
https://doi.org/10.1017/s0004972700008236
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1007/978-3-642-99902-4_22
https://doi.org/10.1007/978-3-642-15155-2_33
https://doi.org/10.1007/978-3-642-15155-2_33
http://dl.acm.org/citation.cfm?id=788021.788948
https://escholarship.mcgill.ca/concern/theses/6h440t871

15. Gilezan, S.: A note on typed combinators and typed lambda terms. Novi Sad
Journal of Mathematics 23(1), 319–329 (1993), https://sites.dmi.uns.ac.rs/nsjom/
Papers/23_1/NSJOM_23_1_319_329.pdf

16. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
New York, NY, USA (1989), http://www.paultaylor.eu/stable/Proofs+Types.html

17. Hermida, C.: Representable multicategories. Advances in Mathematics 151(2),
164–225 (2000). https://doi.org/https://doi.org/10.1006/aima.1999.1877

18. Hyland, M.: Towards a notion of lambda monoid. Electronic Notes in Theoretical
Computer Science 303, 59–77 (2014). https://doi.org/10.1016/j.entcs.2014.02.004

19. Hyland, M.: Classical lambda calculus in modern dress. Mathematical Struc-
tures in Computer Science 27(5), 762–781 (2015). https://doi.org/10.1017/
s0960129515000377

20. Hyland, M., de Paiva, V.: Full intuitionistic linear logic (extended abstract). pre-
sented at the 9th International Congress of Logic, Methodology and Philosophy of
Science held in Uppsala, Sweden, August 7-14, 1991. Annals of Pure and Applied
Logic 64(3), 273–291 (1993). https://doi.org/10.1016/0168-0072(93)90146-5

21. Jacobs, B.: Simply typed and untyped lambda calculus revisited. In: Applications of
Categories in Computer Science, pp. 119–142. Cambridge University Press (1992).
https://doi.org/10.1017/cbo9780511525902.008

22. Jacobs, B.: Categorical logic and type theory. Elsevier Science (1999)
23. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium Volume

2 (Oxford Logic Guides). Clarendon Press (2002)
24. Lambek, J.: The mathematics of sentence structure. The American Mathematical

Monthly 65(3), 154 (1958). https://doi.org/10.2307/2310058
25. Lambek, J.: Deductive systems and categories II: Standard constructions and

closed categories. In: Category theory, homology theory and their applications I,
pp. 76–122. Springer (1969). https://doi.org/10.1007/BFb0079385

26. Lambek, J.: Multicategories revisited. In: Gray, J.W., Scedrov, A. (eds.) Categories
in Computer Science and Logic: Proceedings of the AMS-IMS-SIAM Joint Summer
Research Conference Held June 14-20, 1987 with Support from the National Science
Foundation, vol. 92, pp. 217–240. American Mathematical Society (1989). https:
//doi.org/10.1090/conm/092

27. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. Cam-
bridge University Press, New York, NY, USA (1986)

28. Leinster, T.: Higher operads, higher categories. No. 298 in London Mathematical
Society Lecture Note Series, Cambridge University Press (2004). https://doi.org/
10.1017/CBO9780511525896

29. Linton, F.E.J.: Some aspects of equational categories. In: Proceedings of the Con-
ference on Categorical Algebra, pp. 84–94. Springer Berlin Heidelberg (1966).
https://doi.org/10.1007/978-3-642-99902-4_3

30. Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Math-
ematics, vol. 5. Springer-Verlag New York, second edn. (1998). https://doi.org/10.
1007/978-1-4757-4721-8

31. Manzyuk, O.: Closed categories vs. closed multicategories. Theory and Applica-
tions of Categories 26(5), 132–175 (2012), http://www.tac.mta.ca/tac/volumes/
26/5/26-05.pdf

32. May, J.P.: The Geometry of Iterated Loop Spaces. Springer Berlin Heidelberg
(1972). https://doi.org/10.1007/bfb0067491

33. Melliès, P.A.: Ribbon tensorial logic. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science. LICS ’18, ACM (Jul 2018).
https://doi.org/10.1145/3209108.3209129

180 P. Saville

https://sites.dmi.uns.ac.rs/nsjom/Papers/23_1/NSJOM_23_1_319_329.pdf
https://sites.dmi.uns.ac.rs/nsjom/Papers/23_1/NSJOM_23_1_319_329.pdf
http://www.paultaylor.eu/stable/Proofs+Types.html
https://doi.org/https://doi.org/10.1006/aima.1999.1877
https://doi.org/https://doi.org/10.1006/aima.1999.1877
https://doi.org/10.1016/j.entcs.2014.02.004
https://doi.org/10.1016/j.entcs.2014.02.004
https://doi.org/10.1017/s0960129515000377
https://doi.org/10.1017/s0960129515000377
https://doi.org/10.1017/s0960129515000377
https://doi.org/10.1017/s0960129515000377
https://doi.org/10.1016/0168-0072(93)90146-5
https://doi.org/10.1016/0168-0072(93)90146-5
https://doi.org/10.1017/cbo9780511525902.008
https://doi.org/10.1017/cbo9780511525902.008
https://doi.org/10.2307/2310058
https://doi.org/10.2307/2310058
https://doi.org/10.1007/BFb0079385
https://doi.org/10.1007/BFb0079385
https://doi.org/10.1090/conm/092
https://doi.org/10.1090/conm/092
https://doi.org/10.1090/conm/092
https://doi.org/10.1090/conm/092
https://doi.org/10.1017/CBO9780511525896
https://doi.org/10.1017/CBO9780511525896
https://doi.org/10.1017/CBO9780511525896
https://doi.org/10.1017/CBO9780511525896
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
http://www.tac.mta.ca/tac/volumes/26/5/26-05.pdf
http://www.tac.mta.ca/tac/volumes/26/5/26-05.pdf
https://doi.org/10.1007/bfb0067491
https://doi.org/10.1007/bfb0067491
https://doi.org/10.1145/3209108.3209129
https://doi.org/10.1145/3209108.3209129

34. Pisani, C.: Sequential multicategories. Theory and Applications of Categories
29(19), 496––541 (2014). https://doi.org/http://www.tac.mta.ca/tac/volumes/
29/19/29-19.pdf

35. Pitts, A.M.: Categorical logic. In: Handbook of Logic in Computer Science, chap. 2,
pp. 39–123. Oxford University Press, Oxford, UK (2000)

36. Polakow, J., Pfenning, F.: Natural deduction for intuitionistic non-commutative
linear logic. In: Lecture Notes in Computer Science, pp. 295–309. Springer Berlin
Heidelberg (1999). https://doi.org/10.1007/3-540-48959-2_21

37. Riehl, E.: Category Theory in Context. Dover Publications, Incorporated (2016),
https://math.jhu.edu/~eriehl/context.pdf

38. Saville, P.: Cartesian closed bicategories: type theory and coherence. Ph.D. thesis,
University of Cambridge (2020). https://doi.org/10.17863/CAM.55080

39. Shulman, M.: Closed category, https://ncatlab.org/nlab/show/closed+category,
revision 49 (May 2018)

40. Shulman, M.: LNL polycategories and doctrines of linear logic. Logical Methods
in Computer Science 19(2) (2023). https://doi.org/10.46298/lmcs-19(2:1)2023

41. Taylor, W.: Characterizing Mal’cev conditions. Algebra Universalis 3(1), 351 (Dec
1973). https://doi.org/10.1007/BF02945141

42. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. No. 43 in Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, second edn. (2000)

43. Uustalu, T., Veltri, N., Zeilberger, N.: Eilenberg-Kelly reloaded. Electronic Notes in
Theoretical Computer Science 352, 233–256 (Oct 2020). https://doi.org/10.1016/
j.entcs.2020.09.012

44. Uustalu, T., Veltri, N., Zeilberger, N.: Deductive systems and coherence for skew
prounital closed categories. In: Sacerdoti Coen, C., Tiu, A. (eds.) Proceedings
Fifteenth Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice, Paris, France, 29th June 2020. Electronic Proceedings in Theoretical
Computer Science, vol. 332, pp. 35–53. Open Publishing Association (2021).
https://doi.org/10.4204/EPTCS.332.3

45. Weber, M.: Free products of higher operad algebras. Theory and Applications of
Categories 28(2), 24–65 (2013), http://www.tac.mta.ca/tac/volumes/28/2/28-02.
pdf

46. Zeilberger, N., Giorgetti, A.: A correspondence between rooted planar maps and
normal planar lambda terms. Logical Methods in Computer Science 11 (2015).
https://doi.org/10.2168/lmcs-11(3:22)2015

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Clones, closed categories, and combinatory logic 181

https://doi.org/http://www.tac.mta.ca/tac/volumes/29/19/29-19.pdf
https://doi.org/http://www.tac.mta.ca/tac/volumes/29/19/29-19.pdf
https://doi.org/http://www.tac.mta.ca/tac/volumes/29/19/29-19.pdf
https://doi.org/http://www.tac.mta.ca/tac/volumes/29/19/29-19.pdf
https://doi.org/10.1007/3-540-48959-2_21
https://doi.org/10.1007/3-540-48959-2_21
https://math.jhu.edu/~eriehl/context.pdf
https://doi.org/10.17863/CAM.55080
https://doi.org/10.17863/CAM.55080
https://ncatlab.org/nlab/show/closed+category
https://doi.org/10.46298/lmcs-19(2:1)2023
https://doi.org/10.46298/lmcs-19(2:1)2023
https://doi.org/10.1007/BF02945141
https://doi.org/10.1007/BF02945141
https://doi.org/10.1016/j.entcs.2020.09.012
https://doi.org/10.1016/j.entcs.2020.09.012
https://doi.org/10.1016/j.entcs.2020.09.012
https://doi.org/10.1016/j.entcs.2020.09.012
https://doi.org/10.4204/EPTCS.332.3
https://doi.org/10.4204/EPTCS.332.3
http://www.tac.mta.ca/tac/volumes/28/2/28-02.pdf
http://www.tac.mta.ca/tac/volumes/28/2/28-02.pdf
https://doi.org/10.2168/lmcs-11(3:22)2015
https://doi.org/10.2168/lmcs-11(3:22)2015
http://creativecommons.org/licenses/by/4.0/

Infinite-State Systems

Reachability in Fixed VASS:
Expressiveness and Lower Bounds

Abstract. The recent years have seen remarkable progress in estab-
lishing the complexity of the reachability problem for vector addition
systems with states (VASS), equivalently known as Petri nets. Existing
work primarily considers the case in which both the VASS as well as
the initial and target configurations are part of the input. In this paper,
we investigate the reachability problem in the setting where the VASS
and the final configuration are fixed and only the initial configuration is
variable. We show that fixed VASS fully express arithmetic with count-
ing on initial segments of the natural numbers. It follows that there is
a very weak reduction from any fixed such number-theoretic predicate
(e.g. square-freeness or “N1 is the number of primes smaller than N2”) to
reachability in fixed VASS where configurations are presented in unary.
If configurations are given in binary, we show that there is a fixed VASS
with five counters whose reachability problem is PSPACE-hard.

1 Introduction

Vector addition systems with states (VASS), equivalently known as Petri nets,
are a fundamental model of computation. A VASS comprises a finite-state con-
troller with a finite number of counters ranging over the non-negative integers.
When a transition is taken, counters can be updated by adding an integer,
provided that the resulting counter values are all non-negative; otherwise the
transition blocks. Given two configurations of a VASS, each consisting of a con-
trol state and an assignment of values to the counters, the reachability problem
asks whether there is a path connecting the two configurations in the infinite
transition system induced by the VASS. The VASS reachability problem has
been one of the most intriguing problems in theoretical computer science and
studied for more than fifty years. In the 1970s, Lipton showed this problem
EXPSPACE-hard [18]. Ever since the 1980s [19, 14, 16], the reachability prob-
lem has been known to be decidable, albeit with non-elementary complexity.
This wide gap between the EXPSPACE lower bound and a non-elementary up-
per bound persisted for many years, until a recent series of papers established
various non-elementary lower bounds [5, 6, 15], and resulted in matching a re-
cently established upper bound [17], showing the VASS reachability problem
Ackermann-complete. The lower bounds for this result require an unbounded
number of counters, but even for a fixed number of counters, the Petri net
reachability problem requires non-elementary time [6, 7, 15].

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 185–205, 2024.
https://doi.org/10.1007/978-3-031-57231-9_9

Andrei Draghici(B) , Christoph Haase , and Andrew Ryzhikov

Department of Computer Science, University of Oxford, Oxford, UK

andrei.draghici@stcatz.ox.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_9&domain=pdf
http://orcid.org/0009-0000-9308-1169
http://orcid.org/0000-0002-5452-936X
http://orcid.org/0000-0002-2031-2488

Main results. The main focus of this paper is to investigate the reachability
problem for fixed VASS, where the VASS under consideration and the final
configuration are fixed and only the initial configuration forms the input to
a reachability query. Here, it is crucial to distinguish between the encoding of
numbers used to represent counter values in configurations: in unary encoding,
the representation length of a natural number n ∈ N is its magnitude n whereas
in binary encoding the bit length of n ∈ N is ⌈log n⌉ + 1. It turns out that
establishing meaningful lower bounds under unary encoding of configurations is
a rather delicate issue; a full discussion is deferred to Section 4. As a first step,
we establish a tight correspondence between reachability in VASS and the first-
order theory of initial segments of N with the arithmetical relations addition
(+), multiplication (×) and counting quantifiers. An initial segment in N is a set
N = {0, . . . , N} for some arbitrary but fixed N ∈ N \ {0}. Relations definable
in this family of structures are known as rudimentary relations and contain
many important number-theoretic relations, cf. [9] and the references therein.
For instance, the fixed formula PRIME(x) ≡ ¬(x = 0)∧¬(x = 1)∧∀y < x ∀z <
x¬(x = y × z) evaluates to true in N precisely for all prime numbers up to N .
The formula ∃=zy (y < x) ∧ PRIME(y) evaluates to true if and only if there
exist exactly z prime numbers smaller than x.

Given a fixed rudimentary relation Φ(x1, . . . , xk), we show how to construct a
fixed VASS V and fixed polynomials p1, . . . , pm such that Φ(n1, . . . , nk) evaluates
to true in N if and only if there is a run in V starting in (p1(N,n1, . . . , nk), . . . ,
pm(N,n1, . . . , nk)) and ending in a zero vector. It thus follows that reachability
in fixed VASS under unary encoding of configurations is at least as hard as
evaluating any rudimentary relation under unary encoding of numbers. Hence,
reachability queries in fixed VASS can, e.g., determine primality and square-
freeness of a number given in unary. From those developments, it is already
possible to infer that reachability in fixed VASS with configurations encoded in
binary is hard for every level of the polynomial hierarchy by a reduction from the
validity problem for short Presburger arithmetic [21]. In fact, we can establish a
PSPACE lower bound for reachability in a fixed VASS with five counters with
configurations encoded in binary, by a generic reduction allowing to simulate
space-bounded computations of arbitrary Turing machines encoded as natural
numbers. A recent conjecture of Jecker [13] states that for every VASS V, there
exists a fixed constant C such that if a target configuration is reachable from an
initial configuration, then there exists a witnessing path whose length is bounded
by C ·m, where m is the maximum constant appearing in the initial and final
configurations. Thus, assuming Jecker’s conjecture, reachability in fixed VASS
under binary encoding of configurations would be PSPACE-complete. In the
course of our work, we were not able to find any evidence that this conjecture
is false. It is also worth noting that while all our results assume that the final
configuration is fixed to a zero vector, we did not find any stronger lower bounds
for the case where the final configuration is variable, and only the VASS is fixed.

Related work. To the best of our knowledge, the reachability problem for fixed
VASS has not yet been systematically explored. Closest to the topics of this paper

186 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

is the work by Rosier and Yen [22], who conducted a multi-parameter analysis
of the complexity of the boundedness and coverability problems for VASS.

However, the study of the computation power of other fixed machines has a
long history in the theory of computation. The two classical decision problems
for a computation model are membership (also called the word problem) and
reachability. Membership asks whether a given machine accepts a given input;
the (generic) reachability problem asks whether given an initial and a target
configuration, there is a path in the transition system induced by a given machine
from the initial configuration to the target configuration. The most prominent
example of a reachability problem is the halting problem for different kinds of
machines. Classically, the computational complexity of such problems assumes
that both the computational model and its input word (for membership) or
configurations (for reachability) are part of the input. However, these are two
separate parameters. For example, in database theory, the database size and the
query size are often considered separately, since the complexity of algorithms
may depend very differently on these two parameters, and the sizes of these two
parameters in applications can also vary a lot [26]. One approach to study such
phenomena is to fix either the database or the query. More generally, the field
of parameterised complexity studies the computational difficulty of a problem
with respect to multiple parameters of the input.

Returning to our setting, this means fixing either the machine or its input. In
this paper, we concentrate on the former. The question can then be seen as fol-
lows: in relation to a problem such as membership or reachability, which machine
is the hardest one in the given computation model? For some models, the answer
easily follows from the existence of universal machines, i.e., machines which are
able to simulate any other machine from their class. A classical example here is a
universal Turing machine. Sometimes the ability to simulate all other machines
has to be relaxed, for example as for Greibach’s hardest context-free language
[11]. Greibach showed that there exists a fixed context-free grammar such that a
membership query for any other context-free grammar can be efficiently reduced
to a membership query for this grammar. Similar results are known for two-way
non-deterministic pushdown languages [23, 4].

2 Preliminaries

We denote by Z and N the set of integers and non-negative integers, respectively.
For N ∈ N we write N to denote the set {0, . . . , N}. By [n,m] we define the set
of integers between n and m: [n,m] = {k ∈ Z | n ≤ k ≤ m}. By 0 we denote the
zero vector (0, 0 . . . , 0) whose dimension is clear from the context.

Counter automata. A d-counter automaton is a tupleA = (Q,∆, ζ, q0, qf), where
Q is a finite set of states, ∆ ⊆ Q × Zd × Q is the transition relation, ζ : ∆ →
[1, d] ∪ {⊤} is a function indicating which counter is tested for zero along a
transition (⊤ meaning no counter is tested), q0 ∈ Q is the initial state, and
qf ∈ Q is the final state. We assume that qf does not have outgoing transitions.

Reachability in Fixed VASS: Expressiveness and Lower Bounds 187

The set of configurations of A is C(A) := {(q, n1, . . . , nd) : q ∈ Q,ni ∈ N, 1 ≤
i ≤ n}. A run ϱ of a counter automaton A from a configuration c1 ∈ C(A) to
cn+1 ∈ C(A) is a sequence of configurations interleaved with transitions

ϱ = c1
t1−→ c2

t2−→ . . .
tn−→ cn+1

such that for all 1 ≤ i ≤ n, ci = (q,m1, . . . ,md) and ci+1 = (r,m′
1, . . . ,m

′
d),

– ti = (q, (z1, . . . , zd), r) with m′
j = mj + zj for all 1 ≤ j ≤ d; and

– mj = 0 if ζ(ti) = j.

Observe that we can without loss of generality assume that each transition
t ∈ ∆ is of one of the two types:

– either no counter is tested for zero along t, that is, ζ(t) = ⊤, in which case
we call it an update transition;

– or t does not change the values of the counters, that is, ζ(t) = j for some
1 ≤ j ≤ d and t = (q,0, r), in which case we call it a zero-test transition.

We say that A is a vector addition system with states of dimension d (d-
VASS) if A cannot perform any zero tests, i.e., ζ is the constant function assign-
ing ⊤ to all transitions. We can now formally define the main decision problem
we study in this paper.

Problem 1. Fixed VASS zero-reachability
Fixed: d-VASS A.
Input: A vector x ∈ Nd of initial values of the counters.
Output: YES if and only if A has a run from (q0,x) to (qf ,0).

1: goto 2 or 4
2: x −= 3
3: goto 1
4: x += 1
5: halt

Fig. 1. Example of a
counter program.

Counter programs. For ease of presentation, we use the no-
tion of counter programs presented e.g. in [5], which are
equivalent to VASS, and allow for presenting VASS (and
counter automata) in a serialised way. A counter program
is a primitive imperative program that executes arith-
metic operations on a finite number of counter variables.
Formally, a counter program consists of a finite set X of
global counter variables (called counters subsequently for
brevity) ranging over the natural numbers, and a finite
sequence 1, . . . ,m of line numbers (subsequently lines for
brevity), each associated with an instruction manipulat-
ing the values of the counters or a control flow operation.
Each instruction is in of one the following forms:

– x += c (increment counter x by constant c ∈ N),
– x −= c (decrement counter x by constant c ∈ N),
– goto L1 or L2 (non-deterministically jump to the instruction labelled by L1

or L2),
– skip (no operation).

188 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

We write goto L as an abbreviation for goto L or L, and also allow state-
ments of the form goto L1 or L2 or . . . or Lk. Moreover, the line with the largest
number is a special instruction halt. In our examples of counter programs, we
usually omit this last line if it is not referenced explicitly.

An example of a counter program is given in Figure 1. This counter program
uses a single counter x and consists of five lines. Starting in line 1, the program
non-deterministically loops and decrements the counter x by three every time,
until it increments x by one and terminates.

To be able to compose counter programs, we describe the operation of sub-
stitution, which substitutes a given line (which we always assume to have a skip
instruction) of a counter program with the “code” of another counter program.
Formally, let C1, C2 be counter programs with m1 and m2 lines respectively. The
result of substituting line k, 1 ≤ k ≤ m1−1, of C1 with C2 is a counter program
C ′

1 with m1+m2−1 lines obtained, intuitively, by calling C2 as a sub-routine in
this line and when it halts returning control back to C1. Formally, the instruction
corresponding to a line L, 1 ≤ L < m1 +m2, is defined as follows:

– if L < k, it is the instruction of line L in C1,
– if k ≤ L < m2 + k − 1, it is the instruction of line L− k + 1 in C2,
– if L = m2 + k − 1, it is the instruction skip,
– if m2 + k ≤ L, it is the instruction of line L−m2 in C1.

The line numbers in goto instructions are changed accordingly. We also con-
sider a substitution of several counter programs. When specifying counter pro-
grams, to denote substitution of another counter program we just write its name
instead of an instruction in a line. Also, we write C1;C2 for

1: C1

2: C2

and C1 or C2 as syntactic sugar for the counter program:

1: goto 2 or 4
2: C1

3: goto 5
4: C2

When C is a counter program, we write loop C as an abbreviation for the
counter program

1: goto 2 or 4
2: C
3: goto 1

Hence, the counter program in Figure 1 corresponds to

1: loop
2: x −= 3

3: x += 1

We use indentation to mark the scope of the loop instruction. We also assume
that if several instructions share the same line and are separated by a semicolon,
they all belong to the scope of a loop.

Reachability in Fixed VASS: Expressiveness and Lower Bounds 189

Runs of counter programs. Exactly as in the case of VASS, a configuration of
a counter program is an element (L, f) ∈ N × NX , where L ∈ N is a program
line with a corresponding instruction, and f :X → N is a counter valuation.
The semantics of counter programs are defined in a natural way: after executing
the instructions on the line L, we either non-deterministically go to one of the
specified lines (if the instruction on line L is a goto instruction), or, otherwise,
we go to the line L+ 1. After executing the last line, we stop.

One can view a counter program as a VASS by treating line numbers as states
and defining transitions as specified by the counter program, each labelled with
the respective instruction. It is also easy to see how to convert a VASS into a
counter program.

A run of a counter program is a sequence ϱ: (L1, f1) −→ (L2, f2) −→ . . . −→
(Ln, fn) of configurations defined naturally according to the described semantics.
For example, (1, {x 7→ 7}) −→ (4, {x 7→ 7}) −→ (5, {x 7→ 8}) is a run of the counter
program in Figure 1. Given a run ϱ: (L1, f1) −→ (L2, f2) −→ . . . −→ (Ln, fn), we
say that ϱ is terminating if L1 = 1 and the instruction on line Ln is halt,
and zero-terminating if additionally fn(x) = 0 for all x ∈ X . We denote by
valend(ϱ, x) := fn(x) the value of the counter x at the end of a terminating
run. Sometimes, we also want to talk about the value of a counter at a specific
point during the execution of a run and define vali(ϱ, x) to be the value of
the counter x right before we execute the instruction on line i in the run ϱ
for the first time, i.e. vali(ϱ, x) := fk(x), where k is the smallest index such
that Lk = i. For instance, in the example above, we have valend(ϱ, x) = 8 and
val4(ϱ, x) = 7. We often construct counter programs that admit exactly one run ϱ
from a given initial configuration to a target configuration. In such a setting, we
may omit the reference to ϱ and simply write valend(x) and vali(x). The effect
eff(ϱ):X → Z of a run ϱ starting in (1, f1) and ending in (n, fn) is a map such
that eff(ϱ, x) = fn(x)− f1(x) for all x ∈ X .

For counter programs, the zero-reachability problem is as follows.

Problem 2. Fixed counter program zero-reachability
Fixed: Counter program C.
Input: A vector x ∈ Nd of initial values of the counters.
Output: YES if and only if C has a zero-terminating run from x.

3 Implementation of zero tests

The structure of runs in arbitrary counter programs is very complicated and
hard to analyse, and hence it is difficult to force a counter program to have
a prescribed behaviour. One of the common ways to deal with this issue is to
introduce some restricted zero tests, that is, some gadgets that guarantee that
if a run reaches a certain configuration, then along this run, the values of some
counters are zero at prescribed positions. In this section, summarising [5], we
describe such a gadget in the case where the values of counters are bounded by
a given number. The number of zero tests that can be performed this way is also
bounded. For a counter v, we call this gadget zero-test(v), and later on we will

190 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

use it as a single instruction to test that the value of v is zero before executing
it.

In Section 4, the assumption that the values of the counters are bounded
comes from the the fact that the corresponding values of the variables in rudi-
mentary arithmetic are bounded. In Section 5, we enforce this property for more
powerful models of computation and show how to simulate them with VASS.

Let N ∈ N be an upper bound on the value of a counter v. Then, we can
introduce a counter v̂ and enforce the invariant f(v)+f(v̂) = N to hold in all the
configurations of any run of our counter program. We achieve this by ensuring
that every line containing an instruction of type v += c must be followed by
a line with a v̂ −= c instruction. From now on, we make the convention that
the instruction v += c is an abbreviation for v += c; v̂ −= c. This allows us
to remove the hatted counters from our future counter programs whenever it is
convenient for us, which will ease readability. So, if we choose an initial config-
uration in which f(v) + f(v̂) = N , we have that this invariant holds whenever
the zero-test gadget is invoked.

We introduce auxiliary counters u1, u2 that will be tested for zero only in
the final configuration, and hence have no hat counterpart. In the following, the
instruction zero-test(v) denotes the following gadget:

1: loop
2: v += 1; v̂ −= 1;u2 −= 1

3: loop
4: v −= 1; v̂ += 1;u2 −= 1

5: u1 −= 2

Consider an initial configuration in which f(u1) = 2n and f(u2) = 2n · N for
some n > 0. Initially, it is true that f(u2) = f(u1) ·N .

Lemma 1 ([5]). There exists a run of the counter program zero-test(v) that
starts in a configuration with f(u2) ≥ 2, f(u2) = f(u1) · N , and ends in a
configuration with f(u2) = f(u1) · N if and only if f(v) = 0 in the initial
configuration.

Proof. The invariant f(v)+f(v̂) = N ensures that the loops on line 1 and line 3
can each decrease the value of u2 by at most N . Moreover, this can only happen
if f(v) = 0 in the initial configuration. ⊓⊔

From a configuration with f(u2) = f(u1) ·N , a run “incorrectly” executing the
zero-test(v) subroutine can only reach a configuration with f(u2) > f(u1) ·N .
Observe that from such a configuration, we can never reach a configuration
respecting the invariant f(u2) = f(u1) ·N if the values of u1, u2 are only changed
by zero-test(v) instructions. Now, consider a counter v and a counter program
C that modifies the values of counters u1 and u2 only through the zero-test(v)
instruction. If we start in a configuration in which f(u1) = 2n and f(u2) = 2n·N
for some n > 0, and we are guaranteed that any run of C cannot execute
more than n zero-test(v) instructions, then after any run of C, we have that
f(u2) = f(u1) · N only if the value of the counter v was zero at the beginning

Reachability in Fixed VASS: Expressiveness and Lower Bounds 191

of every zero-test(v) instruction. If all the counters that we are interested in
are bounded by the same value N , we can use a single pair of counters u1, u2 to
perform zero tests on all our counters. We subsequently call the counters u1 and
u2 testing counters. To summarise, using this technique, we can perform n zero
tests on counters bounded by N via a reachability query in a VASS.

Given a configuration (L, f), we say that (L, f) is a valid configuration if f
respects the condition that f(u2) = f(u1) ·N . A valid run is a run that starts in
a valid configuration and ends in a valid configuration. Also, a counter program
admits a valid run if there exists a valid run that reaches the terminal instruction
halt. Observe that in every valid run the zero-test() subroutine does not change
the value of the counter which is tested for zero, that is, this value remains zero.
Only the values of the testing counters are changed.

We now introduce components. Informally, a component is a counter program
acting as a subroutine such that, if it is invoked in a configuration fulfilling the
invariants required for valid runs, upon returning, those invariants still hold.
Formally, a component is a counter program such that:

– there is a polynomial p such that every valid run performs at most p(N)
calls of zero-test() on all counters; and

– the values of u1 and u2 are updated only by zero-test() instructions.

We conclude this section with Lemma 2, which states that sequential composi-
tion and non-deterministic branching of components yields components. We will
subsequently implicitly make use of this obvious lemma without referring to it.

Lemma 2. If C1, C2 are components then both C1;C2 and C1 or C2 are also
components.

Remark 1. Let V be a fixed VASS, and s = (q0,n), t = (qf ,m) be a pair of its
configurations. Given s and t, the Fixed VASS coverability problem asks
where there exists a run in V from s to a configuration t′ = (qf ,m

′) such that
m′ ≥ m componentwise. Note that when simulating zero tests as described
above, for each counter x except u1, u2, we have a counter x̂ such that the sum
of the values of x and x̂ is always the same and is known in advance. Since
the values of u1, u2 are never increased, we can introduce in the same way the
counters û1, û2, initially set to zero, so that ui+ûi is constant for i = 1, 2. Hence,
by requiring that the final value of x̂ is at least the initial value of x, we make
sure that the final value of x is equal to zero. Thus, in this setting, reachability
queries reduce to coverability queries.

4 Rudimentary arithmetic and unary VASS

In this section, we provide a lower bound for the zero-reachability problem for a
VASS when the input configuration is encoded in unary. We observe that there
is a close relationship between this problem and deciding validity of a formula
of first-order arithmetic with counting, addition, and multiplication on an initial
segment of N, also known as rudimentary arithmetic with counting [9].

192 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

4.1 Rudimentary arithmetic with counting

For the remainder of this section, all the structures we consider are relational.
We denote by FO(+,×) the first-order theory of the structure ⟨N,+,×⟩, where
+ and × are the natural ternary addition and multiplication relations. When
interpreted over initial segments of N, i.e. sets {0, 1, . . . , N}, for some fixed N ∈
N, the family of the first-order theories is known as rudimentary arithmetic. Note
that, in particular, for a predicate x + y = z to hold, all of x, y, z must be at
most N . It thus might seem that after we fix N , a formula Φ(x) can only express
facts about numbers up to N . However, as discussed in [25] and [9], this can be
improved to quantifying over variables up to Nd for any fixed d using (N+1)-ary
representations of numbers. In other words, for any fixed d and formula Φ(x),
there exists a formula Φ′(x) such that for any N ∈ N and x ∈ Nn, we have that
⟨N,+,×⟩ |= Φ′(x) iff ⟨Nd,+,×⟩ |= Φ(x).

Rudimentary arithmetic can be extended with counting quantifiers. As de-
scribed in [25], let rudimentary FOunC(+,×) be rudimentary FO(+,×) ex-
tended with counting quantifiers of the form ∃>xy φ(y). In this expression, the
variable x is free and the variable y is bounded by the quantifier. The semantics
of this expression is that there exist more than x different values of y such that
the formula φ(y) is satisfied. The paper [25] actually uses the counting quantifier
∃=xy φ(y) to state that the number of such values is exactly x, which can be
expressed as (x = 0 ∧ ¬∃y φ(y)) ∨ ((∃>x′

y φ(y)) ∧ (x′ + 1 = x) ∧ ¬∃>xy φ(y)).
Moreover, FOunC(+,×) can be extended to FOk-aryC(+,×), FO(+,×)

with k-ary counting quantifiers ∃=xy φ(y). In this expression, x,y are vectors of
the same dimension, and similarly to the previous case, all the variables of x are
free and all the variables of y are bounded by the quantifier. The semantics is
that the k-tuple x is the (N +1)-ary representation of the number of k-tuples y
that satisfy φ(y). As shown in [3], rudimentary FOunC(+,×) and rudimentary
FOk-aryC(+,×) have the same expressive power. In order to have a meaningful
reduction to fixed VASS, we are interested in the following decision problem:

Problem 3. Fixed rudimentary FOk-aryC(+,×) validity
Fixed: Φ(x) ∈ FOk-aryC(+,×).
Input: N ∈ N and x ∈ Nn given in unary.
Output: YES if and only if ⟨N,+,×⟩ |= Φ(x).

4.2 Reductions between unary languages

In order to study decision problems whose input is, for some constant k, a k-tuple
of numbers presented in unary, and hence to analyse languages corresponding to
them, we need a notion of reductions that are weaker compared to the standard
ones that are widely used in computational complexity. The reason is that clas-
sical problems involving numbers represented in unary, such as Unary Subset
Sum [8], have as an input a variable-length sequence of numbers given in unary.
Hence, languages of such problems are in fact binary, as we need a delimiter
symbol to separate the elements of the sequence. It is not clear how a reasonable

Reachability in Fixed VASS: Expressiveness and Lower Bounds 193

reduction from such a language to a language consisting of k-tuples of num-
bers for a fixed k would look like. In particular, note that unary Fixed VASS
zero-reachability is not the unary “counterpart” of binary Fixed VASS
zero-reachability in the classical sense. Conversely, arithmetic properties of
a single number, e.g. primality or square-freeness, require very low computational
resources if the input is represented in unary. Hence, the notion of a reduction
between such “genuinely unary” languages has to be very weak.

In view of this discussion, we introduce the following kind of reduction. Given
k > 0, a k-tuple unary language is a subset L ⊆ Nk. We say that L is a tuple
unary language if L is a k-tuple unary language for some k > 0. Let L ⊆ Nk and
M ⊆ Nℓ be tuple unary languages, we say that L arithmetically reduces to M
if there are fixed polynomials p1, . . . , pℓ:Nk → N such that (m1, . . . ,mk) ∈ L if
and only if (p1(m1, . . . ,mk), . . . , pℓ(m1, . . . ,mk)) ∈ M .

We believe that this reduction is sensible for the following informal reasons.
Polynomials can be represented as arithmetic circuits. To the best of our knowl-
edge, there are no known lower bounds for, e.g. comparing the output of two
arithmetic circuits with all input gates having value one [1], suggesting that
evaluating a polynomial is a computationally weak operation. Moreover, in the
light of sets of numbers definable in rudimentary arithmetic, it seems implausible
that applying a polynomial transformation makes, e.g. deciding primality of a
number substantially easier.

For a formula Φ, let LΦ be the tuple unary language of yes-instances for
Fixed rudimentary FOk-aryC(+,×) validity. Also, for a counter program
C, define LC as the tuple unary language of yes-instance for the Fixed counter
program zero-reachability problem. The remainder of this section is de-
voted to proving the following theorem.

Theorem 1. For every formula Φ of rudimentary FOk-aryC(+,×), there ex-
ists a counter program C such that LΦ arithmetically reduces to LC .

This theorem can be viewed in two different contexts. On the one hand, it
relates the computational complexity of the two problems using a very weak
reduction as described above. On the other hand, it also relates the expressivity
of two formalisms. Namely, the set of satisfying assignments for formulas of
rudimentary arithmetic is at most as expressive as the composition of polynomial
transformations with the sets of initial configurations for zero-reachable runs in
counter programs. In particular, it shows that fixed VASS can, up to a polynomial
transformation, decide number-theoretic properties such as primality, square-
freeness, see [9] for further examples. Note that by Remark 1, an analogue of
Theorem 1 holds for tuple unary languages of yes-instances of Fixed VASS
coverability.

4.3 Components for arithmetic operations

Since there is no straightforward way to model negation with a counter program,
we need to provide gadgets for both the predicates + and × of rudimentary
FOk-aryC(+,×) and their negations, and hence design a separate component

194 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

for each literal. However, these components may change the values of the counters
representing first-order variables, and since a first-order variable might appear in
multiple literals, we first provide a gadget to copy the value of a chosen counter
to some auxiliary counter before it can be manipulated.

Copy. We provide a counter program Copy[x, x′] with the following properties:

1. it admits a valid run if and only if valend(x
′) = valend(x) = val1(x); and

2. Copy[x, x′] is a component.

We implement Copy[x, x′] as follows:

1: loop
2: x′ −= 1

3: zero-test(x′)
4: loop
5: x −= 1;x′ += 1; t += 1

6: zero-test(x)
7: loop
8: t −= 1;x += 1

9: zero-test(t)

The loop on line 1 ensures that val4(x
′) = 0. We do not do this for the auxil-

iary counter t because any valid run sets valend(t) = 0. Observe that Copy[x, x′]
admits a valid run if and only if the loop on line 4 is executed val1(x) many
times and the loop on line 7 is executed val4(t) = val1(x) many times which
happens if and only if valend(x

′) = valend(x) = val1(x). Moreover, any valid run
performs 3 calls to the zero-test() subroutine, so Copy[x, x′] is a component.

Addition. We define a counter program Addition[x, y, z] that enables us to
check whether the value stored in counter z is equal to the sum of the values
stored in x, y. Formally, it has following properties:

1. Addition[x, y, z] admits a valid run if and only if val1(x)+val1(y) = val1(z);
2. Addition[x, y, z] is a component; and
3. the effect of Addition[x, y, z] is zero on counters x, y, z.

We implement Addition[x, y, z] as follows:

1: Copy[x, x′];Copy[y, y′];Copy[z, z′]
2: loop
3: z′ −= 1
4: x′ −= 1 or y′ −= 1

5: zero-test(x′); zero-test(y′); zero-test(z′)

It is easy to see that the first property is fulfilled by the counter program
and that Addition[x, y, z] is a component because any run performs exactly 12
class to zero-test() (9 calls on line 1, and 3 calls on line 5). The last property
is true based on the properties of Copy. The component for the negation of the
addition predicate is defined similarly.

Reachability in Fixed VASS: Expressiveness and Lower Bounds 195

Multiplication. We now define a counter program Multiplication[x, y, z] with
the following properties:

1. it admits a valid run if and only if val1(z) = val1(x) · val1(y);
2. Multiplication[x, y, z] is a component; and
3. the effect of Multiplication[x, y, z] is zero on counters x, y, z.

We implement Multiplication[x, y, z] as follows:

1: Copy[x, x′];Copy[y, y′];Copy[z, z′]
2: loop
3: loop
4: x′ −= 1; t += 1; z′ −= 1

5: zero-test(x′)
6: loop
7: x′ += 1; t −= 1;

8: zero-test(t)
9: y′ −= 1

10: zero-test(y′); zero-test(z′)

Observe that the loop on line 3 of any valid run must be executed val1(x)
val1(x) many times in order to pass the zero test on line 5. The effect of this
loop is then to decrease the value of z′ by val1(x) and to set the value of t to
val1(x). Next, the loop on line 6 must be executed val5(t) = val1(x) many times
to pass the zero test on line 8, so the value of x′ is set to val1(x) and the value
of t is set again to zero. Hence, the effect of lines 3-8 is to subtract val1(x) from
the value of z′ without changing the value of x′. Finally, any valid run passes the
test on line 10 if and only if the loop on line 2 is executed val1(y) many times,
which happens if and only if val1(z) = val1(x) · val1(y). Since we argued that
the loop on line 2 is executed val1(y) many times, we conclude that any valid
run of Multiplication[x, y, z] performs at most 2N +9 calls to zero-test(), so
Multiplication[x, y, z] is a component. Again, the last property is ensured by
the properties of Copy. The definition of ¬Multiplication[x, y, z] is similar.

4.4 Components for quantification

We define the remaining components that we need in order to prove Theorem 1.
These components allow us to existentially and universally quantify over vari-
ables in a bounded range.

Existential quantifiers. We start with a counter program Exists[v] with the
following properties:

1. for every n ∈ N , Exists[v] admits a valid run ϱ such that valend(ϱ, v) = n;
2. Exists[v] is a component.

We define Exists[v] as follows:

1: loop v −= 1

196 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

2: zero-test(v)
3: loop v += 1

It is easy to see that both properties hold, since Exists[v] performs exactly one
call to the zero-test() subroutine.

Universal quantifiers. While the component used for simulating existential quan-
tification can be sequentially composed with a component for a subformula,
universal quantification requires directly integrating the component over whose
variable we universally quantify. Let C[v] be a component that may access the
counter v, test it for zero, and change its value on intermediate steps, but has
overall effect zero on counter v. We write ForAll[v] : C[v] for the following
counter program:

1: loop
2: v −= 1

3: zero-test(v)
4: loop
5: C[v]
6: v += 1

7: zero-test(v̂)

The properties of ForAll[v] : C[v] are as follows:

1. it admits a valid run if and only if for all n ∈ N , C has a valid run with
val1(v) = n; and

2. ForAll[v] : C[v] is a component.

Notice that the instruction on line 7 tests if val7(v) = N . Thus, any valid
run that passes the test on line 7 must be able to execute C[v] for all values of
v ∈ N . Moreover, since C[v] is a component, we know that the number of calls
to zero-test() it makes is polynomial in N . Denote this number by B. Then
ForAll[v] : C[v] executes at most N · B + 1 many calls to zero-test() and it
is thus a component.

Counting quantifiers. Finally, we design a component which is an extension
of the ForAll[v] : C[v] component, where, as in the case of ForAll, C[v]
has overall effect zero on v. Formally, ExistsC[x, v] : C[v] component has the
following properties:

– it admits a valid run if and only if there exist more than val1(x) different
integers n ∈ N such that C has a valid run with val1(v) = n

– the overall effect on counter x is zero; and
– ExistsC[x, v] : C[v] is a component.

We write ExistsC[x, v] : C[v] for the following counter program:

Reachability in Fixed VASS: Expressiveness and Lower Bounds 197

1: loop
2: v −= 1

3: zero-test(v)
4: Copy[x, x′]
5: goto 6 or 9
6: zero-test(x̂′)
7: ForAll[v] : C[v]
8: goto 15

9: x += 1
10: loop
11: v += 1
12: goto 13 or 10
13: C[v]; x′ −= 1

14: zero-test(x′)
15: halt

The branching on line 5 checks whether val1(x) = N . If so, C[v] must have a
valid run for all values of v, which is checked on line 7. Otherwise, the instructions
on line 13 ensure that the value of x′ can be decremented if only if C[v] admits at
least one valid run with the current value of v. Moreover, the zero test on line 14
is passed if and only if C[v] admitted a valid run for more than val1(x) different
values. Similarly to the ForAll case, since C[v] is a component, we have that
it makes at most a polynomial number of calls to zero-test(). If we denote
this number by B, the maximum number of calls to zero-test() performed by
ExistsC[x, v] : C[v] is bounded by N ·B + 5. Hence, it is indeed a component.

4.5 Putting it all together

Having defined all the building blocks above, we now prove Theorem 1, which is
a consequence of the following lemma.

Lemma 3. For any formula Φ(x) of FOk-aryC(+,×), there exists a compo-
nent C over k counters and polynomials p1, . . . , pk : N × Nn → N such that for
any N ∈ N and x ∈ Nn, ⟨N,+,×⟩ |= Φ(x) if and only if C admits a valid run
from the initial configuration (p1(N,x), . . . , pk(N,x)).

Proof. We prove this statement by structural induction on subformulas of Φ.
As shown in [3], rudimentary FOunC(+,×) has the same expressive power
as rudimentary FOk-aryC(+,×). Since in our setting the formula is fixed, we
can thus assume that Φ ∈ FOunC(+,×). Moreover, it is easy to see that we
can assume that only ∃>x is used as a counter quantifier, since ∃=x can easily
be defined using it as described above. Finally, we can assume that negations
appear in Φ only in front of arithmetic predicates. In particular, ¬∃>xy φ(y) is
equivalent to (∃>x′

y ¬φ(y)) ∧ (x+ x′ = N).
The counters of the component C are defined to be:

– a counter in vector xC corresponding to every free variable of Φ(x);
– a counter in vector yC corresponding to every quantified variable of Φ(x);
– a counter in vector aC corresponding to every constant of Φ(x); and
– the auxiliary counters tC ,x

′
C ,y

′
C , c

′
C used inside the components for predi-

cates and counting quantifiers described above.

We initialise them as follows:

198 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

– f1(xC) = x and f1(x̂C) = N − x for each counter xC corresponding to a
variable x in x;

– f1(v) = 0 and f1(v̂) = N for all the counters corresponding to quantified
variables and constants, and auxiliary counters; and

– for the testing counters, f1(u1) = 2N and f1(u2) = 2N · P (N), where the
polynomial P (N) will be defined later.

Assume first that a subformula φ of Φ consists of a single literal. Then, by
using the previously defined components, we can construct a fixed component
C ′ corresponding to this literal. In C ′, for every valid initial configuration (L, f),
there exists a valid run starting in it if and only if φ is true under the assignment
of the values of the counters in (L, f) to the corresponding variables in φ. If
φ is a Boolean combination of multiple literals, by simulating conjunction via
sequential composition and disjunction by non-deterministic branching, we can
construct a component Cφ with the same property.

We now need to show how to simulate the quantifiers. Let C be the compo-
nent constructed for φ. We then take

– for ∃y φ:

1: Exists[yC]
2: C[yC]

– for ∀y φ:

1: ForAll[yC] :
2: C[yC]

– for ∃>xy φ:

1: ExistsC[xC , yC] :
2: C[yC]

As noted above, to be able to use these components, we need to make sure
that C[yC] has overall zero effect on the value of yC . This is indeed true, since
the only place where the value of a counter yC is changed by a subroutine is in
the component corresponding to the quantifier bounding y.

The counter program C starts with a component C0 that initialises the coun-
ters a corresponding to the constants of Φ(x) by a sequence of instruction of
the type a += c for a corresponding constant c appearing in Φ(x). Finally, we
let C = C0;C1. By the properties established above, it is clear that C admits
a valid run starting with f1 defined above if and only if Φ(x) is valid. To see
that C is a component, it remains to note that at every step of the structural
induction the number of calls to zero-test() is polynomial in N . Hence, there
exists a polynomial P (N) such that the overall number calls to zero-test() per-
formed by C is bounded by P (N). We conclude by reminding that we use this
polynomial to initialise the value of the testing counter u2. ⊓⊔

To prove Theorem 1, add a loop repeating zero tests at the end of C, thus
setting the values of the testing counters to zero if and only if the invariant
described in Section 3 holds. After that, set to zero all the remaining counters
(including the hatted counters) by decrementing them in loops. A run in thus
constructed counter program is zero-accepting if and only if it is valid.

As proved in [3], rudimentary FOk-aryC(<) has the same expressive power
as FOk-aryC(+,×). Hence, an alternative proof for Theorem 1 is to express
k-ary counting quantifiers without the need for components for addition and
multiplication. However, this approach is more technical and less insightful.

Reachability in Fixed VASS: Expressiveness and Lower Bounds 199

5 A universal VASS for polynomial space computations

The goal of this section is to show that there is a fixed 5-VASS whose zero-
reachability problem is PSPACE-hard, provided that the initial configuration is
encoded in binary. Let us first remark that we can actually use the techniques
developed in the previous section to prove that for every i, there exists a fixed
VASS Vi such that deciding zero-reachability for Vi is ΣP

i -hard. A result by
Nguyen and Pak [21] shows that for every i, there is a formula Φi of so-called
short Presburger arithmetic such that deciding Φi is Σ

P
i -hard. Applying bounds

on quantifier elimination established in [27], it can be shown that quantification
for formulas of short Presburger arithmetic relativises in a certain sense to an
initial segment N for some N ∈ N whose bit length is polynomial in the size of
Φi. Hence, by combining the results from [21] with Lemma 3, it is possible to show
that zero-reachability for fixed binary VASS is hard for the polynomial hierarchy.
We do not explore this method further because we can actually construct a fixed
binary VASS such that the zero-reachability problem is PSPACE-hard for it and
which has a smaller number of counters than the fixed binary VASS obtained
from showing NP-hardness via the reduction from short Presburger arithmetic
outlined above.

We proceed with our construction as follows. We start with the halting prob-
lem for Turing machines (TMs) working in polynomial space and show that this
problem is PSPACE-hard even if the space complexity of the TM is bounded
by the length of its encoding and its input is empty. In Proposition 2, we then
reformulate the halting problem as follows: given the encoding of such a machine
as an input to a universal one-tape TM U , does U accept?

We then use two consecutive simulation. First, we simulate U with a 3-
counter automaton A (Proposition 3), and then simulate A with an 5-VASS V
(Theorem 2). To be able to apply the technique described in Section 3, we make
sure that the space complexity stays linear in the size of the input throughout
these simulations. This implies that both the upper bound on the value of the
counters and the required number of zero tests are polynomial in the size of the
input, which enables us to establish a polynomial time reduction. As a result we
obtain a VASS V which, in a certain sense, can simulate arbitrary polynomial-
space computations.

To provide the reduction, we then show how to transform in polynomial time
the input of the problem we started with, the halting problem for polynomial-
space TMs, into a zero-reachability query for V.

5.1 The halting problem for space-bounded TMs

The goal of this subsection is to show that there exists a fixed polynomial-
space TM whose halting problem is PSPACE-complete. Note that using standard
arguments, we can assume that M below always halts.

Proposition 1 ([2, Section 4.2]). The following problem is PSPACE-complete:
given a TM M, an input word w and a number n encoded in unary, decide if
M accepts w in at most n space.

200 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

We fix some way of encoding, using an alphabet of size at least two, of Turing
machines and we denote by |M| the length of the encoding of M, which we call
the size of M. Given a TM M, we say that it is |M|-space-bounded if on every
input it halts using at most |M| space. Given M, an input word w and a number
n encoded in unary, it is easy to construct a |M|-space-bounded TM M′ such
that if M accepts w in space at most n, then M′ accepts on the empty input,
otherwise M′ rejects on the empty input. Moreover, the size of M′ is polynomial
in |M|, |w| and 2n.

Indeed, M′ can be constructed as follows. When run on the empty input, it
writes w on some tape, and then runs M treating this tape as the input tape.
Additionally, it initialises another tape with n written in unary, and before each
step of M it checks that the space used by the tape where M is simulated does
not exceed n. If it does, it immediately rejects. It is easy to see that such a TM
is |M′|-space-bounded and satisfies the required conditions.

Hence we get that the following problem is PSPACE-complete: given a |M|-
space-bounded TM M, does M accept on the empty input? Observe that from
the construction above we can assume that M has a special representation such
that the fact that it is |M|-space-bounded can be checked in polynomial time.

Let U be a one-tape universal TM. This TM has a single read-write tape,
which in the beginning contains the input, that is, a description of a TM M it
is going to simulate. If M is |M|-space-bounded (and represented as mentioned
in the previous paragraph), U simulates M on the empty input in space linear
in |M| [2, Claim 1.6], otherwise U rejects. That is, in this space, U accepts or
rejects depending on whether M accepts or rejects the empty word. Hence we
get the following proposition.

Proposition 2. There exists a fixed linear-space TM U such that the question
whether U halts on a given input is PSPACE-complete.

5.2 From TMs to a counter automata

In the previous subsection, we obtained a PSPACE-complete problem which al-
ready resembles the form of the reachability problem for a fixed counter program:
given a fixed linear-space TM U , does it accept a given input? In this section
we show how to simulate U with a fixed counter automaton A, and in the next
section we show how to simulate A with a fixed binary VASS V.

Let A be a counter automaton. We say that A is deterministic if for every
configuration (q, n1, . . . , nd) there is at most one transition that A can take from
this configuration. Suppose that A is deterministic, and that its final state qf
does not have any outgoing transitions. Let n = (n1, . . . , nd) ∈ Nd. We treat A
as an acceptor for such vectors. We say that A works in time t and space s
on n if the unique run starting in the configuration (q0, n1, . . . , nd) ends in a
state without outgoing transitions, has length t, and the bit length of the largest
value of a counter along this run is s. If this run ends in qf , we say that A
accepts this vector, otherwise we say that it rejects it. In all our constructions
we make sure that there are no infinite runs. Note that, as in the case of TMs,

Reachability in Fixed VASS: Expressiveness and Lower Bounds 201

we measure space complexity in the bit length of the values of the counters, and
not in their actual values.

Let Σ be a finite alphabet. Let us bijectively assign a natural number to each
word over Σ as follows. First, assign a natural number between 1 and |Σ| to
each symbol in Σ. Then w can be considered as a number in base |Σ|+1, with
the least significant digit corresponding to the first letter of w. We denote this
number by num(w).

Let M be a TM, and w be its input. We can transform w into a vector
(num(w), 0, . . . , 0), which will be the input of a deterministic counter automa-
ton A. We say that A simulates M if w is accepted by M if and only if the
corresponding vector is accepted by A. We say that this simulation is in linear
space if there exists a constant c such that if the space complexity of M is s on
some input, then the space complexity of A on the corresponding input is cs.

The proof of the following proposition uses the techniques described in the
proofs of [10, Theorem 4.3(a)] and [12, Theorem 2.4].

Proposition 3. For every one-tape TM M, there exists a deterministic 3-
counter automaton A that simulates it in linear space.

Proof. The idea of the proof is as follows. Two counters of A, call them ℓ and r,
represent the content of the tape of M to the left and to the right of the reading
head. They are encoded similarly to the way we encode the input word. Namely,
let w1aw2, where w1, w2 ∈ Σ∗ and a ∈ Σ, be the content of the tape at some
moment of time, with the working head in the position of the letter a. Denote
by wR

1 the reversal of the word w. Then ℓ stores num(wR
1), r stores num(w2),

and a is stored in the finite memory of the underlying finite automaton.
Now, to make a step to the left, we do the following. First, we need to add

a to the end of the word encoded by the value of r. This is done by multiplying
the value of r by |Σ|+1 and adding num(a) to it. Next, we need to extract the
last letter of the word encoded by the value of ℓ, and remove this letter. To do
so, we do the opposite of what we did for r: this letter is the residue of dividing
the value of ℓ by |Σ|+1, and the new value of ℓ is the result of this division.

The reason we need the third counter x is to perform these multiplications
and divisions. Namely, to divide the value of a counter ℓ by a constant c, we
repeat the following until it is no longer possible: subtract c from the value of
ℓ and add one to the value of x. When the value of ℓ becomes smaller than
c, we get the result of the division in the counter x, and the remainder in ℓ.
Multiplication by a constant is done similarly. Observe that by construction the
largest value of a counter of A at any moment of time is at most (|Σ|+1)S , where
S is the maximal amount of space M uses on given input. The bit length of this
number is linear in S, hence A simulates M in linear space. ⊓⊔

By simulating U from Proposition 2 with a counter automaton A, we get the
following statement.

Corollary 1. There exists a fixed 3-counter automaton A working in linear
space such that the zero-reachability problem for it is PSPACE-complete.

202 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

For 2-counter automata, no such result is known. Informally speaking, such
automata are exponentially slower than 3-counter automata: the known simula-
tion requires storing the values of the three counters x, y, z as 2x3y5z [20]. They
are also less expressive: for example, 2-counter automata cannot compute the
function 2n [24], while for 3-counter automata this is trivial. It is worth not-
ing the developments of the next subsection imply that a lower bound for fixed
2-counter automata translates into a lower bound for fixed 4-VASS.

5.3 From counter automata to VASS

To go from a counter automaton to a VASS, we need to simulate zero tests with
a VASS. In general, this is not possible. However, the space complexity of the
counter automaton in Corollary 1 is linear, so the values of all its counters are
bounded by a polynomial in the bit length of the input. The number of zero tests
A performs does not exceed its time complexity, which is at most exponential
in the space complexity. However, this is not a problem, since all the values
are provided and stored in binary. The bit length of the number of zero tests
is thus polynomial in the input, and hence the testing counters described in
Section 3 can be initialised with a polynomial time reduction, hence obtaining
PSPACE-hardness of the zero-reachability problem in fixed 8-VASS.

Moreover, a more advanced technique of quadratic pairs described in [7]
allows to deduce the same result for 5-VASS. Namely, a slight variation of [7,
Lemma 2.7] states that given a 3-counter automaton A working in linear space,
one can construct a 5-VASS V such that fixed zero-reachability in A can be
reduced in polynomial time to fixed zero-reachability in V. The same reasoning
as before shows that we can initialise the counters of V to account for enough
zero tests. Hence we get the main result of this section.

Theorem 2. There exists a fixed 5-VASS such that the Fixed VASS zero-
reachability problem for it is PSPACE-hard assuming that the input configu-
ration is given in binary.

By Remark 1 and by further inspecting the construction in [7, Lemma 2.7],
together with the PSPACE upper bound for coverability in fixed VASS with
configurations given in binary established in [22], we moreover obtain the fol-
lowing corollary.

Corollary 2. There exists a fixed 6-VASS such that the Fixed VASS cover-
ability problem for it is PSPACE-complete assuming that the input configura-
tions are given in binary.

Acknowledgements. We would like to thank anonymous reviewers for their
useful comments on the content and presentation of the paper. This work is
part of a project that has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 852769, ARiAT).

Reachability in Fixed VASS: Expressiveness and Lower Bounds 203

References

1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. SIAM Journal on Computing 38(5), 1987–2006
(2009). https://doi.org/10.1137/070697926

2. Arora, S., Barak, B.: Computational Complexity – A Modern Approach. Cam-
bridge University Press (2009)

3. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within
NC1. Journal of Computer and System Sciences 41(3), 274–306 (1990).
https://doi.org/10.1016/0022-0000(90)90022-D

4. Chistikov, D., Majumdar, R., Schepper, P.: Subcubic certificates for CFL reach-
ability. Proceedings of the ACM on Programming Languages 6(POPL) (2022).
https://doi.org/10.1145/3498702

5. Czerwiński, W., Lasota, S., Lazić, R., Leroux, J., Mazowiecki, F.: The reachability
problem for petri nets is not elementary. Journal of the ACM 68(1), 1–28 (2020).
https://doi.org/10.1145/3313276.3316369

6. Czerwinski, W., Orlikowski, L.: Reachability in vector addition sys-
tems is Ackermann-complete. In: Annual Symposium on Founda-
tions of Computer Science, FOCS. pp. 1229–1240. IEEE (2021).
https://doi.org/10.1109/FOCS52979.2021.00120

7. Czerwinski, W., Orlikowski, L.: Lower bounds for the reachability problem
in fixed dimensional VASSes. In: Symposium on Logic in Computer Science,
LICS. Association for Computing Machinery, New York, NY, USA (2022).
https://doi.org/10.1145/3531130.3533357

8. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-
laender and Courcelle. In: Annual Symposium on Foundations of Computer Sci-
ence, FOCS. pp. 143–152 (2010). https://doi.org/10.1109/FOCS.2010.21

9. Esbelin, H.A., More, M.: Rudimentary relations and primitive recur-
sion: A toolbox. Theoretical Computer Science 193(1), 129–148 (1998).
https://doi.org/https://doi.org/10.1016/S0304-3975(97)00002-9

10. Fischer, P.C., Meyer, A.R., Rosenberg, A.L.: Counter machines and
counter languages. Mathematical systems theory 2, 265–283 (1968).
https://doi.org/10.1007/BF01694011

11. Greibach, S.A.: The hardest context-free language. SIAM Journal on Computing
2(4), 304–310 (1973). https://doi.org/10.1137/0202025

12. Greibach, S.A.: Remarks on the complexity of nondeterministic counter languages.
Theoretical Computer Science 1(4), 269–288 (1976). https://doi.org/10.1016/0304-
3975(76)90072-4

13. Jecker, I.: 22.1 complexity of fixed vas reachability. https://autoboz.org/open-
problems (2023), accessed: 2023-10-12

14. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: Symposium on Theory of Computing, STOC. pp. 267–281. ACM
(1982). https://doi.org/10.1145/800070.802201

15. Leroux, J.: The reachability problem for petri nets is not primitive recursive. In:
Annual Symposium on Foundations of Computer Science, FOCS. pp. 1241–1252.
IEEE (2021). https://doi.org/10.1109/FOCS52979.2021.00121

16. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
Symposium on Logic in Computer Science, LICS. pp. 56–67. IEEE Computer So-
ciety (2015). https://doi.org/10.1109/LICS.2015.16

204 Andrei Draghici, Christoph Haase, Andrew Ryzhikov

17. Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: Symposium on Logic in Computer Science (LICS).
pp. 1–13 (2019). https://doi.org/10.1109/LICS.2019.8785796

18. Lipton, R.J.: The reachability problem requires exponential space. Research report
(Yale University. Department of Computer Science), Department of Computer Sci-
ence, Yale University (1976)

19. Mayr, E.W.: An algorithm for the general petri net reachability problem. SIAM
Journal on Computing 13(3), 441–460 (1984). https://doi.org/10.1137/0213029

20. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, USA
(1967)

21. Nguyen, D., Pak, I.: Short Presburger arithmetic is hard. SIAM Journal on Com-
puting 51(2), 17:1–30 (2022). https://doi.org/10.1137/17M1151146

22. Rosier, L.E., Yen, H.C.: A multiparameter analysis of the boundedness problem for
vector addition systems. Journal of Computer and System Sciences 32(1), 105–135
(1986). https://doi.org/10.1016/0022-0000(86)90006-1

23. Rytter, W.: A hardest language recognized by two-way nondeterministic
pushdown automata. Information Processing Letters 13(4), 145–146 (1981).
https://doi.org/10.1016/0020-0190(81)90045-4

24. Schroeppel, R.: A two counter machine cannot calculate 2N . Artificial Intelligence
Memo 257, Massachusetts Institute of Technology (1972)

25. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers.
ACM Transactions on Computational Logic (TOCL) 6(3), 634–671 (2005).
https://doi.org/10.1145/1071596.1071602

26. Vardi, M.Y.: The complexity of relational query languages (extended
abstract). In: Symposium on Theory of Computing, STOC. pp. 137–
146. Association for Computing Machinery, New York, NY, USA (1982).
https://doi.org/10.1145/800070.802186

27. Weispfenning, V.: The complexity of almost linear diophantine problems. Journal
of Symbolic Computation 10(5), 395–403 (1990). https://doi.org/10.1016/S0747-
7171(08)80051-X

Reachability in Fixed VASS: Expressiveness and Lower Bounds 205

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

From Innermost to Full Almost-Sure Termination
of Probabilistic Term Rewriting⋆

Jan-Christoph Kassing(B) , Florian Frohn(B) , and Jürgen Giesl(B)

Abstract. There are many evaluation strategies for term rewrite systems,
but proving termination automatically is usually easiest for innermost
rewriting. Several syntactic criteria exist when innermost termination
implies full termination. We adapt these criteria to the probabilistic
setting, e.g., we show when it suffices to analyze almost-sure termination
(AST) w.r.t. innermost rewriting to prove full AST of probabilistic term
rewrite systems. These criteria also apply to other notions of termination
like positive AST. We implemented and evaluated our new contributions
in the tool AProVE.

1 Introduction

Termination analysis is one of the main tasks in program verification, and
techniques and tools to analyze termination of term rewrite systems (TRSs)
automatically have been studied for decades. While a direct application of classical
reduction orderings is often too weak, these orderings can be used successfully
within the dependency pair (DP) framework [3, 20]. This framework allows for
modular termination proofs by decomposing the original termination problem
into sub-problems whose termination can then be analyzed independently using
different techniques. Thus, DPs are used in essentially all current termination
tools for TRSs (e.g., AProVE [21], MuTerm [25], NaTT [46], TTT2 [33]). To
allow certification of termination proofs with DPs, they have been formalized in
several proof assistants and there exist several corresponding certification tools
for termination proofs with DPs (e.g., CeTA [43]).

On the other hand, probabilistic programs are used to describe randomized
algorithms and probability distributions, with applications in many areas, see,
e.g., [23]. To use TRSs also for such programs, probabilistic term rewrite systems
(PTRSs) were introduced in [4, 9, 10]. In the probabilistic setting, there are
several notions of “termination”. In this paper, we mostly focus on analyzing
almost-sure termination (AST), i.e., we want to prove automatically that the
probability for termination is 1.

⋆ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2) and the DFG Research Training Group 2236
UnRAVeL

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 20 –228, 2024.
https://doi.org/10.1007/978-3-031-57231-9_10

9

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-57231-9 10.

{ }kassing,florian.frohn @cs.rwth-aachen.de

giesl@informatik.rwth-aachen.de

,

http://orcid.org/0009-0001-9972-2470
http://orcid.org/0000-0003-0902-1994
http://orcid.org/0000-0003-0283-8520
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_10&domain=pdf
https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/

While there exist many automatic approaches to prove (P)AST of imperative
programs on numbers (e.g., [2, 5, 11, 16, 22, 26–28, 36–38, 40]), there are only
few automatic approaches for programs with complex non-tail recursive structure
[8, 12, 13]. The approaches that are also suitable for algorithms on recursive
data structures [7, 35, 45] are mostly specialized for specific data structures and
cannot easily be adjusted to other (possibly user-defined) ones, or are not yet
fully automated.

For innermost AST (i.e., AST restricted to rewrite sequences where one
only evaluates at innermost positions), we recently presented an adaption of
the DP framework which allows us to benefit from a similar modularity as in
the non-probabilistic setting [29, 32]. Unfortunately, there is no such modular
powerful approach available for full AST (i.e., AST when considering arbitrary
rewrite sequences). Up to now, full AST of PTRSs can only be proved via a
direct application of orderings [4, 29], but there is no corresponding adaption of
dependency pairs. (As explained in [29], a DP framework to analyze full instead
of innermost AST would be “considerably more involved”.) Indeed, also in the
non-probabilistic setting, innermost termination is usually substantially easier to
prove than full termination, see, e.g., [3, 20]. To lift innermost termination proofs
to full rewriting, in the non-probabilistic setting, there exist several sufficient
criteria which ensure that innermost termination implies full termination [24].

Up to now no such results were known in the probabilistic setting. Our paper
presents the first sufficient criteria for PTRSs which ensure that AST coincide for
full and innermost rewriting, and we also show similar results for other rewrite
strategies like leftmost-innermost rewriting. We focus on criteria that can be
checked automatically, so we can combine our results with the DP framework
for proving innermost AST of PTRSs [29, 32]. In this way, we obtain a modular
powerful technique that can also prove AST for full rewriting automatically.

We will also consider the stronger notion of positive almost-sure termination
(PAST) [10, 42], which requires that the expected runtime is finite, and show
that our criteria for the relationship between full and innermost probabilistic
rewriting hold for PAST as well. In contrast to AST, PAST is not modular, i.e.,
the sequence of two programs that are PAST may yield a program that is not
PAST (see, e.g., [27]). Therefore, up to now there is no variant of DPs that allows
to prove PAST of PTRSs, but there only exist techniques to apply polynomial or
matrix orderings directly [4].

We start with preliminaries on term rewriting in Sect. 2. Then we recapitulate
PTRSs based on [4, 10, 14, 15, 29] in Sect. 3. In Sect. 4 we show that the properties
of [24] that ensure equivalence of innermost and full termination do not suffice in
the probabilistic setting and extend them accordingly. In particular, we show that
innermost and full AST coincide for PTRSs that are non-overlapping and linear.
This result also holds for PAST, as well as for strategies like leftmost-innermost
evaluation. In Sect. 5 we show how to weaken the linearity requirement in order
to prove full AST for larger classes of PTRSs. The implementation of our criteria
in the tool AProVE is evaluated in Sect. 6. We refer to [30] for all proofs.

From Innermost to Full AST of PTRSs 207

2 Preliminaries

We assume familiarity with term rewriting [6] and regard (possibly infinite) TRSs
over a (possibly infinite) signature Σ and a set of variables V . Consider the TRS
Rd that doubles a natural number (represented by the terms s and O) with
the rewrite rules d(s(x))→ s(s(d(x))) and d(O)→ O as an example. A TRS R
induces a rewrite relation →R ⊆ T (Σ,V) × T (Σ,V) on terms where s →R t
holds if there is a position π, a rule ℓ→ r ∈ R, and a substitution σ such that
s|π = ℓσ and t = s[rσ]π. A rewrite step s →R t is an innermost rewrite step
(denoted s

i→R t) if all proper subterms of the used redex ℓσ are in normal form
w.r.t. R (i.e., they do not contain redexes themselves and thus, they cannot be
reduced with →R). For example, we have d(s(d(s(O)))) i→Rd

d(s(s(s(d(O))))).
Let < be the prefix ordering on positions and let ≤ be its reflexive closure.

Then for two parallel positions τ and π we define τ ≺ π if we have i < j for the
unique i, j such that χ.i ≤ τ and χ.j ≤ π, where χ is the longest common prefix
of τ and π. An innermost rewrite step s

i→R t at position π is leftmost (denoted
s

li→R t) if there exists no redex at a position τ with τ ≺ π.
We call a TRS R strongly (innermost/leftmost innermost) normalizing (SN /

iSN / liSN) if →R (
i→R /

li→R) is well founded. SN is also called “terminating”
and iSN/liSN are called “innermost/leftmost innermost terminating”. If every
term t ∈ T (Σ,V) has a normal form (i.e., we have t→∗

R t′ where t′ is in normal
form) then we call R weakly normalizing (WN). Two terms s, t are joinable via
R (denoted s ↓R t) if there exists a term w such that s→∗

R w ←∗
R t. Two rules

ℓ1 → r1, ℓ2 → r2 ∈ R with renamed variables such that V(ℓ1) ∩ V(ℓ2) = ∅ are
overlapping if there exists a non-variable position π of ℓ1 such that ℓ1|π and ℓ2
are unifiable with a mgu σ. If (ℓ1 → r1) = (ℓ2 → r2), then we require that π ̸= ε.
R is non-overlapping (NO) if it has no overlapping rules. As an example, the
TRS Rd is non-overlapping. A TRS is left-linear (LL) (right-linear, RL) if every
variable occurs at most once in the left-hand side (right-hand side) of a rule. A
TRS is linear if it is both left- and right-linear. A TRS is non-erasing (NE) if in
every rule, all variables of the left-hand side also occur in the right-hand side.

Next, we recapitulate the relations between iSN, SN, liSN, and WN in the
non-probabilistic setting. We start with the relation between iSN and SN.

Counterexample 1 (Toyama’s Counterexample [44]). The TRS R1 with the rules
f(a, b, x)→ f(x, x, x), g → a, and g → b is not SN since we have f(a, b, g)→R1

f(g, g, g) →R1
f(a, g, g) →R1

f(a, b, g) →R1
. . . But the only innermost rewrite

sequences starting with f(a, b, g) are f(a, b, g)
i→R1

f(a, b, a)
i→R1

f(a, a, a) and
f(a, b, g)

i→R1
f(a, b, b)

i→R1
f(b, b, b), i.e., both reach normal forms in the end.

Thus, R1 is iSN as we have to rewrite the inner g before we can use the f-rule.

The first property known to ensure equivalence of SN and iSN is orthogonality.
A TRS is orthogonal if it is non-overlapping and left-linear.

Theorem 2 (From iSN to SN (1), [41]). If a TRS R is orthogonal, then R
is SN iff R is iSN.

Then, in [24] it was shown that one can remove the left-linearity requirement.

208 J.-C. Kassing, F. Frohn, J. Giesl

Theorem 3 (From iSN to SN (2), [24]). If a TRS R is non-overlapping,
then R is SN iff R is iSN.

Finally, [24] also refined Thm. 3 further. A TRS R is an overlay system (OS)
if its rules may only overlap at the root position, i.e., π = ε. For Ex. 1 one can see
that the overlaps occur at non-root positions, i.e., R1 is not an overlay system.
Furthermore, a TRS is locally confluent (or weakly Church-Rosser, abbreviated
WCR) if for all terms s, t1, t2 such that t1 R← s→R t2 the terms t1 and t2 are
joinable. So R1 is not WCR, as we have f(a, b, a) R1

← f(a, b, g)→R1
f(a, b, b),

but f(a, b, a) ̸ ↓ R1
f(a, b, b). If a TRS has both of these properties, then iSN and

SN are again equivalent.

Theorem 4 (From iSN to SN (3), [24]). If a TRS R is a locally confluent
overlay system, then R is SN iff R is iSN.

Thm. 4 is stronger than Thm. 3 as every non-overlapping TRS is a locally
confluent overlay system. We recapitulate the relation between WN and SN next.

Counterexample 5. Consider the TRS R2 with the rules f(x)→ b and a→ f(a).
This TRS is not SN since we can always rewrite the inner a to get a →R2

f(a)→R2
f(f(a))→R2

. . ., but it is WN since we can also rewrite the outer f(. . .)
before we use the a-rule twice, resulting in the term b, which is a normal form.
For the TRS R3 with the rules f(a)→ b and a→ f(a), the situation is similar.

The TRS R2 from Ex. 5 is erasing and R3 is overlapping. For TRSs with
neither of those two properties, SN and WN are equivalent.

Theorem 6 (From WN to SN [24]). If a TRS R is non-overlapping and
non-erasing, then R is SN iff R is WN.

Finally, we look at the difference between rewrite strategies that use an
ordering for parallel redexes like leftmost innermost rewriting compared to just
innermost rewriting. It turns out that such an ordering does not interfere with
termination at all.

Theorem 7 (From liSN to iSN [34]). For all TRSs R we have that R is
iSN iff R is liSN.

The relations between the different properties for non-probabilistic TRSs
(given in Thm. 4, 6, and 7) are summarized below.

SNiSN WNliSN

OS + WCR NO+NE

From Innermost to Full AST of PTRSs 209

3 Probabilistic Term Rewriting

In this section, we recapitulate probabilistic TRSs [4, 10, 29]. In contrast to TRSs,
a PTRS has finite multi-distributions1 on the right-hand sides of its rewrite rules.2

A finite multi-distribution µ on a set A ̸= ∅ is a finite multiset of pairs (p : a),
where 0 < p ≤ 1 is a probability and a ∈ A, such that

∑
(p:a)∈µ p = 1. FDist(A)

is the set of all finite multi-distributions on A. For µ ∈ FDist(A), its support is
the multiset Supp(µ) = {a | (p : a) ∈ µ for some p}. A probabilistic rewrite rule
is a pair ℓ → µ ∈ T (Σ,V) × FDist(T (Σ,V)) such that ℓ ̸∈ V and V(r) ⊆ V(ℓ)
for every r ∈ Supp(µ). A probabilistic TRS (PTRS) is a (possibly infinite) set S
of probabilistic rewrite rules. Similar to TRSs, the PTRS S induces a rewrite
relation →S ⊆ T (Σ,V) × FDist(T (Σ,V)) where s →S {p1 : t1, . . . , pk : tk} if
there is a position π, a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ S, and a substitution
σ such that s|π = ℓσ and tj = s[rjσ]π for all 1 ≤ j ≤ k. We call s →S µ an
innermost rewrite step (denoted s

i→S µ) if all proper subterms of the used redex
ℓσ are in normal form w.r.t. S. We have s

li→S µ if the rewrite step s
i→S µ at

position π is leftmost (i.e., there is no redex at a position τ with τ ≺ π). For
example, the PTRS Srw with the only rule g→ {1/2 : c(g, g), 1/2 : ⊥} corresponds
to a symmetric random walk on the number of g-symbols in a term.

As in [4, 14, 15, 29], we lift →S to a rewrite relation between multi-distributions
in order to track all probabilistic rewrite sequences (up to non-determinism) at
once. For any 0 < p ≤ 1 and any µ ∈ FDist(A), let p ·µ = {(p ·q : a) | (q : a) ∈ µ}.

Definition 8 (Lifting). The lifting ⇒ ⊆ FDist(T (Σ,V)) × FDist(T (Σ,V))
of a relation → ⊆ T (Σ,V)× FDist(T (Σ,V)) is the smallest relation with:

• If t ∈ T (Σ,V) is in normal form w.r.t. →, then {1 : t}⇒ {1 : t}.
• If t→ µ, then {1 : t}⇒ µ.
• If for all 1 ≤ j ≤ k there are µj , νj ∈ FDist(T (Σ,V)) with µj ⇒ νj and
0 < pj ≤ 1 with

∑
1≤j≤k pj = 1, then

⋃
1≤j≤k pj · µj ⇒

⋃
1≤j≤k pj · νj.

For a PTRS S, we write ⇒S ,
i⇒S , and

li⇒S for the liftings of →S ,
i→S , and

li→S ,
respectively.

Example 9. For example, we obtain the following ⇒Srw -rewrite sequence (which
is also a

i⇒Srw -sequence, but not a
li⇒Srw -sequence).

{1 : g}
⇒Srw {1/2 : c(g, g), 1/2 : ⊥}
⇒Srw {1/4 : c(c(g, g), g), 1/4 : c(⊥, g), 1/2 : ⊥}
⇒Srw {1/8 : c(c(g, g), c(g, g)), 1/8 : c(c(g, g),⊥), 1/8 : c(⊥, c(g, g)), 1/8 : c(⊥,⊥), 1/2 : ⊥}

1 The restriction to finite multi-distributions allows us to simplify the handling of
PTRSs in the proofs.

2 A different form of probabilistic rewrite rules was proposed in PMaude [1], where
numerical extra variables in right-hand sides of rules are instantiated according to a
probability distribution.

210 J.-C. Kassing, F. Frohn, J. Giesl

To express the concept of almost-sure termination, one has to determine the
probability for normal forms in a multi-distribution.

Definition 10 (|µ|S). For a PTRS S, NFS ⊆ T (Σ,V) denotes the set of all
normal forms w.r.t. S. For any µ ∈ FDist(T (Σ,V)), let |µ|S =

∑
(p:t)∈µ,t∈NFS p.

Example 11. Consider {1/8 : c(c(g, g), c(g, g)), 1/8 : c(c(g, g),⊥), 1/8 : c(⊥, c(g, g)),
1/8 : c(⊥,⊥), 1/2 : ⊥} = µ from Ex. 9. Then |µ|Srw = 1/8 + 1/2 = 5/8, since c(⊥,⊥)
and ⊥ are both normal forms w.r.t. Srw.

Definition 12 (AST). Let S be a PTRS and µ⃗ = (µn)n∈N be an infinite
⇒S-rewrite sequence, i.e., µn ⇒S µn+1 for all n ∈ N. We say that µ⃗ converges
with probability lim

n→∞
|µn|S . S is almost-surely terminating (AST) (innermost

AST (iAST) / leftmost innermost AST (liAST)) if lim
n→∞

|µn|S = 1 holds for

every infinite ⇒S- (
i⇒S- /

li⇒S-) rewrite sequence (µn)n∈N. To highlight the
consideration of AST for full (instead of innermost) rewriting, we also speak
of full AST (fAST) instead of “AST”. We say that S is weakly AST (wAST)
if for every term t there exists an infinite ⇒S-rewrite sequence (µn)n∈N with
lim
n→∞

|µn|S = 1 and µ0 = {1 : t}.

Example 13. For every infinite extension (µn)n∈N of the ⇒Srw -rewrite sequence
in Ex. 9, we have lim

n→∞
|µn|S = 1. Indeed, Srw is fAST and thus also iAST, liAST,

and wAST.

Next, we define positive almost-sure termination that considers the expected
derivation length edl(µ⃗) of a rewrite sequence µ⃗, i.e., the expected number of
steps until one reaches a normal form. For PAST, we require that the expected
derivation lengths of all possible rewrite sequences are finite. In the following
definition, (1 − |µn|S) is the probability of terms that are not in normal form
w.r.t. S after the n-th step.

Definition 14 (edl, PAST). Let S be a PTRS and µ⃗ = (µn)n∈N be an infinite
⇒S-rewrite sequence. By edl(µ⃗) =

∑∞
n=0(1−|µn|S) we denote the expected deriva-

tion length of µ⃗. S is positively almost-surely terminating (PAST) (innermost
PAST (iPAST) / leftmost innermost AST (liPAST)) if edl(µ⃗) is finite for every
infinite ⇒S- (

i⇒S- /
li⇒S-) rewrite sequence µ⃗ = (µn)n∈N.

3 Again, we also speak
of full PAST (fPAST) when considering PAST for the full rewrite relation ⇒S .
We say that S is weakly PAST (wPAST) if for every term t there exists an infinite
⇒S-rewrite sequence µ⃗ = (µn)n∈N such that edl(µ⃗) is finite and µ0 = {1 : t}.

It is well known that PAST implies AST, but not vice versa.

Example 15. For every infinite extension µ⃗ = (µn)n∈N of the ⇒Srw -rewrite se-
quence in Ex. 9, the expected derivation length edl(µ⃗) is infinite, hence Srw is
not PAST w.r.t. any of the strategies regarded in this paper.

3 This definition is from [4], where it is also explained why this definition of PAST is
equivalent to the one of, e.g., [10].

From Innermost to Full AST of PTRSs 211

In [4, 18], PAST was strengthened further to bounded or strong almost-sure
termination (SAST). Indeed, our results on PAST can also be adapted to SAST
(see [30]).

Many properties of TRSs from Sect. 2 can be lifted to PTRSs in a straight-
forward way: A PTRS S is right-linear (non-erasing) iff the TRS {ℓ→ r | ℓ→
µ ∈ S, r ∈ Supp(µ)} has the respective property. Moreover, all properties that
just consider the left-hand sides, e.g., left-linearity, being non-overlapping, or-
thogonality, and being an overlay system, can be lifted to PTRSs directly as well,
since their rules again only have a single left-hand side.

4 Relating Variants of AST

Our goal is to relate AST of full rewriting to restrictions of fAST, i.e., to iAST
(Sect. 4.1), wAST (Sect. 4.2), and liAST (Sect. 4.3). More precisely, we want to
find properties of PTRSs which are suitable for automated checking and which
guarantee that two variants of AST are equivalent. Then for example, we can
use existing tools that analyze iAST in order to prove fAST. Clearly, we have
to impose at least the same requirements as in the non-probabilistic setting, as
every TRS R can be transformed into a PTRS S by replacing every rule ℓ→ r
with ℓ→ {1 : r}. Then R is SN / iSN / liSN iff S is fAST / iAST / liAST. While
we mostly focus on AST, all results and counterexamples in this section also hold
for PAST.

4.1 From iAST to fAST

Again, we start by analyzing the relation between iAST and fAST. The following
example shows that Thm. 2 does not carry over to the probabilistic setting, i.e.,
orthogonality is not sufficient to ensure that iAST implies fAST.

Counterexample 16 (Orthogonality Does Not Suffice). Consider the orthogonal
PTRS S1 with the two rules:

g→ {3/4 : d(g), 1/4 : ⊥} d(x)→ {1 : c(x, x)}

This PTRS is not fAST (and thus, also not fPAST), as we have {1 : g} ⇒2
S1

{3/4 : c(g, g), 1/4 : ⊥}, which corresponds to a random walk biased towards
non-termination (since 3

4 > 1
2).

However, the d-rule can only duplicate normal forms in innermost evaluations.
To see that S1 is iPAST (and thus, also iAST), consider the following rewrite
sequence µ⃗:

{1 : g} i
⇒S1 {3/4 : d(g), 1/4 : ⊥} i

⇒S1 {(3/4)2 : d(d(g)), 1/4 · 3/4 : d(⊥), 1/4 : ⊥} i
⇒S1 . . .

We can also view this rewrite sequence as a tree:

212 J.-C. Kassing, F. Frohn, J. Giesl

µ0 : 1 g

µ1 : 3/4 d(g) 1/4 ⊥

µ2 : (3/4)2 d(d(g)) 1/4 · 3/4 d(⊥)

µ3 : (3/4)3 d(d(d(g))) 1/4 · (3/4)2 d(d(⊥)) . . .

.

The branch to the right that starts with ⊥ stops after 0 innermost steps, the
branch that starts with d(⊥) stops after 1 innermost steps, the branch that starts
with d(d(⊥)) stops after 2 innermost steps, and so on. So if we start with the
term dn(⊥), then we reach a normal form after n steps, and we reach dn(⊥) after
n+ 1 steps from the initial term g, where dn(⊥) = d(. . . (d︸ ︷︷ ︸

n-times

(⊥)) . . .). Hence, for

every k ∈ N we have |µ2·k+1|S1
= |µ2·k+2|S1

=
∑k

n=0
1/4 · (3/4)n and thus

edl(µ⃗) =
∑∞

n=0(1− |µn|S1) = 1 + 2 ·
∑

k∈N(1− |µ2·k+1|S1)

= 1 + 2 ·
∑

k∈N(1−
∑k

n=0
1/4 · (3/4)n) = 1 + 2 ·

∑
k∈N(

3/4)k+1

= (2 ·
∑

k∈N(
3/4)k)− 1 = 7

Analogously, in all other innermost rewrite sequences, the d-rule can also only
duplicate normal forms. Thus, all possible innermost rewrite sequences have finite
expected derivation length. Therefore, S1 is iPAST and thus, also iAST. The
latter can also be proved automatically by our implementation of the probabilistic
DP framework for iAST [29] in AProVE.

To construct a counterexample for AST of S1, we exploited the fact that S1
is not right-linear. Indeed, requiring right-linearity yields our desired result. For
reasons of space, here we only give a proof sketch. As mentioned, all full proofs
can be found in [30].

Theorem 17 (From iAST/iPAST to fAST/fPAST (1)). If a PTRS S is
orthogonal and right-linear (i.e., non-overlapping and linear), then:

S is fAST⇐⇒ S is iAST

S is fPAST⇐⇒ S is iPAST

Proof Sketch. We only have to prove the non-trivial direction “⇐=”. The proofs
for all theorems in this section (for both AST and PAST) follow a similar structure.
We always iteratively replace rewrite steps by steps that use the desired strategy
and ensure that this does not increase the probability of termination (resp. the
expected derivation length). For this replacement, we lift the corresponding
construction from the non-probabilistic to the probabilistic setting. However, this

From Innermost to Full AST of PTRSs 213

cannot be done directly but instead, we have to regard the “limit” of a sequence
of transformation steps.

We first consider fAST and iAST. Let S be a PTRS that is non-overlapping,
linear, and not fAST. Thus, there exists an infinite rewrite sequence µ⃗ = (µn)n∈N
such that limn→∞ |µn|S = c for some c ∈ R with 0 ≤ c < 1. Our goal is to
transform this sequence into an innermost sequence that converges at most with
probability c. If the sequence is not yet an innermost one, then in (µn)n∈N at
least one rewrite step is performed with a redex that is not an innermost redex.
Since S is non-overlapping, we can replace a first such non-innermost rewrite
step with an innermost rewrite step using a similar construction as in the non-

probabilistic setting. In this way, we result in a rewrite sequence µ⃗(1) = (µ
(1)
n)n∈N

with limn→∞ |µ(1)
n |S = limn→∞ |µn|S = c. Here, linearity is needed to ensure that

the probability of termination does not increase during this replacement. We can
then repeat this replacement for every non-innermost rewrite step, i.e., we again

replace a first non-innermost rewrite step in (µ
(1)
n)n∈N to obtain (µ

(2)
n)n∈N with

the same termination probability, etc. In the end, the limit of all these rewrite

sequences limi→∞(µ
(i)
n)n∈N is an innermost rewrite sequence that converges with

probability at most c < 1, and hence, the PTRS S is not innermost AST.
For fPAST and iPAST, we start with an infinite rewrite sequence µ⃗ such

that edl(µ⃗) = ∞. Again, we replace the first non-innermost rewrite step with
an innermost rewrite step using exactly the same construction as before to
obtain µ⃗(1), etc., since µ⃗(1) does not only have the same termination proba-
bility as µ⃗, but we also have edl(µ⃗(1)) ≥ edl(µ⃗). In the end, the limit of all
these rewrite sequences limi→∞ µ⃗(i) is an innermost rewrite sequence such that
edl(limi→∞ µ⃗(i)) ≥ edl(µ⃗) =∞, and hence, the PTRS S is not innermost PAST.

⊓⊔

One may wonder whether we can remove the left-linearity requirement from
Thm. 17, as in the non-probabilistic setting. It turns out that this is not possible.

Counterexample 18 (Left-Linearity Cannot be Removed). Consider the PTRS S2
with the rules:

f(x, x)→ {1 : f(a, a)} a→ {1/2 : b, 1/2 : c}

S2 is not fAST (hence also not fPAST), since {1 : f(a, a)}⇒S2
{1 : f(a, a)}⇒S2

. . .
is an infinite rewrite sequence that converges with probability 0. However, it
is iPAST (and hence, iAST) since the corresponding innermost sequence has
the form {1 : f(a, a)} i⇒S2

{ 12 : f(b, a), 1
2 : f(c, a)} i⇒S2

{ 14 : f(b, b), 1
4 : f(b, c), 1

4 :
f(c, b), 1

4 : f(c, c)}. Here, the last distribution contains two normal forms f(b, c)
and f(c, b) that did not occur in the previous rewrite sequence. Since all innermost
rewrite sequences keep on adding such normal forms after a certain number of
steps for each start term, they always have finite expected derivation length and
thus, converge with probability 1 (again, iAST can be shown automatically by
AProVE). Note that adding the requirement of being non-erasing would not help
to get rid of the left-linearity either, as shown by the PTRS S3 which results
from S2 by replacing the f-rule with f(x, x)→ {1 : d(f(a, a), x)}.

214 J.-C. Kassing, F. Frohn, J. Giesl

The problem here is that although we rewrite both occurrences of a with the
same rewrite rule, the two a-symbols are replaced by two different terms (each
with a probability > 0). This is impossible in the non-probabilistic setting.

Next, one could try to adapt Thm. 4 to the probabilistic setting (when
requiring linearity in addition). So one could investigate whether iAST implies
fAST for PTRSs that are linear locally confluent overlay systems. A PTRS S is
locally confluent if for all multi-distributions µ, µ1, µ2 such that µ1 ⇔S µ ⇒S µ2,
there exists a multi-distribution µ′ such that µ1 ⇒∗

S µ′ ⇔∗
S µ2, see [14]. Note

that in contrast to the probabilistic setting, there are non-overlapping PTRSs
that are not locally confluent (e.g., the variant S ′2 of S2 that consists of the
rules f(x, x) → {1 : d} and a → {1/2 : b, 1/2 : c}, since we have {1 : d} ⇔S′

2
{1 :

f(a, a)}⇒S′
2
{1/2 : f(b, a), 1/2 : f(c, a)} and the two resulting multi-distributions

are not joinable). Thus, such an adaption of Thm. 4 would not subsume Thm. 17.
In contrast to the proof of Thm. 2, the proof of Thm. 4 relies on a minimality

requirement for the used redex. In the non-probabilistic setting, whenever a term
t starts an infinite rewrite sequence, then there exists a position π of t such
that there is an infinite rewrite sequence of t starting with the redex t|π, but no
infinite rewrite sequence of t starting with a redex at a position τ > π which
is strictly below π. In other words, if t starts an infinite rewrite sequence, then
there is a “minimal” infinite rewrite sequence starting in t, i.e., as soon as one
reduces a proper subterm of one of the redexes in the sequence, then one obtains
a term which is terminating. However, such minimal infinite sequences do not
always exist in the probabilistic setting.

Example 19 (No Minimal Infinite Rewrite Sequence for AST). Reconsider the
PTRS S1 from Ex. 16, which is not fAST. However, there is no “minimal” rewrite
sequence with convergence probability < 1 such that one rewrite step at a proper
subterm of a redex would modify the multi-distribution in such a way that now
only rewrite sequences with convergence probability 1 are possible. We have
{1 : g}⇒S1

{3/4 : d(g), 1/4 : ⊥}. In Ex. 16, we now alternated between the d- and
the g-rule, resulting in a biased random walk, i.e., we obtained {3/4 : d(g), 1/4 :
⊥} ⇒S1 {3/4 : c(g, g), 1/4 : ⊥} ⇒S1 {3/4 : c(d(g), g), 1/4 : ⊥} ⇒S1 . . . The steps
with the d-rule use redexes that have g as a proper subterm.

However, there does not exist any “minimal” non-fAST sequence. If we rewrite
the proper subterm g of a redex d(g), then this still yields a multi-distribution that
is not fAST, i.e., it can still start a rewrite sequence with convergence probability
< 1. For example, we have {3/4 : d(g), 1/4 : ⊥} ⇒S1

{(3/4)2 : d(d(g)), 1/4 · 3/4 :
d(⊥), 1/4 : ⊥}, but the obtained multi-distribution still contains the subterm
g, and thus, one can still continue the rewrite sequence in such a way that its
convergence probability is < 1. Again, the same example also shows that there is
no “minimal” non-fPAST sequence.

It remains open whether one can also adapt Thm. 4 to the probabilistic setting
(e.g., if one can replace non-overlappingness in Thm. 17 by the requirement of
locally confluent overlay systems). There are two main difficulties when trying
to adapt the proof of this theorem to PTRSs. First, the minimality requirement
cannot be imposed in the probabilistic setting, as discussed above. In the non-

From Innermost to Full AST of PTRSs 215

probabilistic setting, this requirement is needed to ensure that rewriting below a
position that was reduced in the original (minimal) infinite rewrite sequence leads
to a strongly normalizing rewrite sequence. Second, the original proof of Thm. 4
uses Newman’s Lemma [39] which states that local confluence implies confluence
for strongly normalizing terms t, and thus it implies that t has a unique normal
form. Local confluence and adaptions of the unique normal form property for the
probabilistic setting have been studied in [14, 15], which concluded that obtaining
an analogous statement to Newman’s Lemma for PTRSs that are AST (or PAST)
would be very difficult. The reason is that one cannot use well-founded induction
on the length of a rewrite sequence of a PTRS that is AST (or PAST), since
these rewrite sequences may be infinite.

4.2 From wAST to fAST

Next, we investigate wAST. Since iAST implies wAST, we essentially have the
same problems as for innermost AST, i.e., in addition to non-overlappingness,
we need linearity, as seen in Ex. 16 and 18, as S1 and S3 are iAST (and hence
wAST) but not fAST, while they are non-overlapping and non-erasing, but not
linear. Furthermore, we need non-erasingness as we did in the non-probabilistic
setting for the same reasons, see Ex. 5.

Theorem 20 (From wAST/wPAST to fAST/fPAST). If a PTRS S is
non-overlapping, linear, and non-erasing, then

S is fAST⇐⇒ S is wAST

S is fPAST⇐⇒ S is wPAST

4.3 From liAST to fAST

Finally, we look at leftmost-innermost AST as an example for a rewrite strategy
that uses an ordering for parallel redexes. In contrast to the non-probabilistic
setting, it turns out that liAST and iAST are not equivalent in general. The
counterexample is similar to Ex. 18, which illustrated that fAST and iAST are
not equivalent without left-linearity.

Counterexample 21. Consider the PTRS S4 with the five rules:

a→ {1 : c1}
a→ {1 : c2}

b→ {1/2 : d1, 1/2 : d2}
f(c1, d1)→ {1 : f(a, b)}
f(c2, d2)→ {1 : f(a, b)}

This PTRS is not iAST (and hence not iPAST) since there exists the infi-
nite rewrite sequence {1 : f(a, b)} i⇒S4

{1/2 : f(a, d1), 1/2 : f(a, d2)}
i⇒2
S4
{1/2 :

f(c1, d1), 1/2 : f(c2, d2)}
i⇒2
S4
{1/2 : f(a, b), 1/2 : f(a, b)} i⇒S4

. . ., which converges
with probability 0. It first “splits” the term f(a, b) with the b-rule, and then
applies one of the two different a-rules to each of the resulting terms. In contrast,
when applying a leftmost innermost rewrite strategy, we have to decide which
a-rule to use. For example, we have {1 : f(a, b)} li⇒S4

{1 : f(c1, b)}
li⇒S4

{1/2 :
f(c1, d1), 1/2 : f(c1, d2)}. Here, the second term f(c1, d2) is a normal form. Since

216 J.-C. Kassing, F. Frohn, J. Giesl

all leftmost innermost rewrite sequences keep on adding such normal forms after
a certain number of steps for each start term, the PTRS is liAST (and also
liPAST).

The counterexample above can easily be adapted to variants of innermost
rewriting that impose different orders on parallel redexes like, e.g., rightmost
innermost rewriting.

However, liAST and iAST are again equivalent for non-overlapping TRSs. For
such TRSs, at most one rule can be used to rewrite at a given position, which
prevents the problem illustrated in Ex. 21.

Theorem 22 (From liAST/liPAST to iAST/iPAST). If a PTRS S is
non-overlapping, then

S is iAST⇐⇒ S is liAST

S is iPAST⇐⇒ S is liPAST

The relations between the different properties for AST of PTRSs (given in
Thm. 17, 20, and 22) are summarized below. An analogous figure also holds for
PAST.

fASTiAST wASTliAST

NO NO+LL+RL NO+LL+RL+NE

5 Improving Applicability

In this section, we improve the applicability of Thm. 17, which relates fAST and
iAST. The results of Sect. 5.1 allow us to remove the requirement of left-linearity
by modifying the rewrite relation to simultaneous rewriting. Then in Sect. 5.2 we
show that the requirement of right-linearity can be weakened to spareness if one
only considers rewrite sequences that start with basic terms.

5.1 Removing Left-Linearity by Simultaneous Rewriting

First, we will see that we do not need to require left-linearity if we allow the
simultaneous reduction of several copies of identical redexes. For a PTRS S, this
results in the notion of simultaneous rewriting, denoted S . While

i

S over-
approximates

i→S , existing techniques for proving iAST [29, 32] (except for the
rewriting processor4) do not distinguish between both notions of rewriting, i.e.,
these techniques even prove that every rewrite sequence with the lifting

i

S of
i

S converges with probability 1. So for non-overlapping and right-linear PTRSs,
these techniques can be used to prove innermost almost-sure termination w.r.t.

4 This processor is an optional transformation technique which was added in [32] when
improving the DP framework further since it sometimes helps to increase power, but
all other (major) DP processors do not distinguish between

i→S and
i

S .

From Innermost to Full AST of PTRSs 217

S , which then implies fAST. The following example illustrates our approach
for handling non-left-linear PTRSs by applying the same rewrite rule at parallel
positions simultaneously.

Example 23 (Simultaneous Rewriting). Reconsider the PTRS S2 from Ex. 18
with the rules f(x, x)→ {1 : f(a, a)} and a→ {1/2 : b, 1/2 : c} which is iAST, but
not fAST. Our new rewrite relation S2

allows us to reduce several copies of
the same redex simultaneously, so that we get {1 : f(a, a)} i

S2 { 12 : f(b, b), 1
2 :

f(c, c)} i 2
S2
{1/2 : f(a, a), 1/2 : f(a, a)}, i.e., this i

S2-sequence converges with
probability 0 and thus, S2 is not iAST w.r.t. S2

. Note that we simultaneously
reduced both occurrences of a in the first step.

Definition 24 (Simultaneous Rewriting). Let S be a PTRS. A term s
rewrites simultaneously to a multi-distribution µ = {p1 : t1, . . . , pk : tk} (denoted
s S µ) if there is a non-empty set of parallel positions Π, a rule ℓ → {p1 :
r1, . . . , pk : rk} ∈ S, and a substitution σ such that s|π = ℓσ and tj = s[rjσ]π
for every position π ∈ Π and for all 1 ≤ j ≤ k. We call s S µ an innermost
simultaneous rewrite step (denoted s

i

S µ) if all proper subterms of the redex
ℓσ are in normal form w.r.t. S.

Clearly, if the set of positions Π from Def. 24 is a singleton, then the resulting
simultaneous rewrite step is an “ordinary” probabilistic rewrite step, i.e., →S ⊆

S and
i→S ⊆

i

S .

Corollary 25 (From S to →S). If S is fAST (iAST) w.r.t. S , i.e., every
infinite S- (resp.

i

S-) rewrite sequence converges with probability 1, then
S is fAST (iAST). Analogously, if S is fPAST (iPAST) w.r.t. S , i.e., every
infinite S- (resp.

i

S-) rewrite sequence has finite expected derivation length,
then S is fPAST (iPAST).

However, the converse of Cor. 25 does not hold. Ex. 23 shows that
i

S allows
for rewrite sequences that are not possible with

i→S , and the following example
shows the same for S and →S .

Counterexample 26. Consider the PTRS S2 with the three rules:

f(b, b)→ {1 : f(a, a)}
f(c, c)→ {1 : f(a, a)}

a→ {1/2 : b, 1/2 : c}

This PTRS is fAST. But as in Ex. 23, we have {1 : f(a, a)} i

S2
{ 12 : f(b, b), 1

2 :

f(c, c)} i 2
S2
{1/2 : f(a, a), 1/2 : f(a, a)}, i.e., there are rewrite sequences with

i

S2
and thus, also with S2

that converge with probability 0. Hence, S2 is
not iAST or fAST w.r.t. S2

. Again, the same example also shows that fPAST
and fPAST w.r.t. simultaneous rewriting are not equivalent either.

Note that this kind of simultaneous rewriting is different from the “ordinary”
parallelism used for non-probabilistic rewriting, which is typically denoted by
→||. There, one may reduce multiple parallel redexes in a single rewrite step.
Here, we do not only allow reducing multiple redexes, but in addition we “merge”
the corresponding terms in the multi-distributions that result from rewriting

218 J.-C. Kassing, F. Frohn, J. Giesl

the different redexes. Because of this merging, we only allow the simultaneous
reduction of equal redexes, whereas “ordinary” parallel rewriting allows the
simultaneous reduction of arbitrary parallel redexes. For example, for S2 from
Ex. 18 we have {1 : f(a, a)} i

S2 { 12 : f(b, b), 1
2 : f(c, c)}, whereas using ordinary

parallel rewriting we would get {1 : f(a, a)} i⇒||S2
{ 14 : f(b, b), 1

4 : f(b, c), 1
4 :

f(c, b), 1
4 : f(c, c)}.

The following theorem shows that indeed, we do not need to require left-
linearity when moving from iAST/iPAST w.r.t. S to fAST/fPAST w.r.t. →S .

Theorem 27 (From iAST/iPAST to fAST/fPAST (2)). If a PTRS S is
non-overlapping and right-linear, then

S is fAST⇐= S is iAST w.r.t. S

S is fPAST⇐= S is iPAST w.r.t. S

Proof Sketch. We use an analogous construction as for the proof of Thm. 17, but
in addition, if we replace a non-innermost rewrite step by an innermost one, then
we check whether in the original rewrite sequence, the corresponding innermost
redex is “inside” the substitution used for the non-innermost rewrite step. In
that case, if this rewrite step applied a non-left-linear rule, then we identify all
other (equal) innermost redexes and use

i

S to rewrite them simultaneously (as
we did for the innermost redex a in Ex. 23). ⊓⊔

Note that Ex. 26 shows that the direction “ =⇒ ” does not hold in Thm. 27.
The following example shows that right-linearity in Thm. 27 cannot be weakened
to the requirement that S is non-duplicating (i.e., that no variable occurs more
often in a term on the right-hand side of a rule than on its left-hand side).

Counterexample 28 (Non-Duplicating Does Not Suffice). Let d(f(a, a)3) abbreviate
d(f(a, a), f(a, a), f(a, a)). Consider the PTRS S5 with the four rules:

f(x, x)→ {1 : g(x, x)}
a→ {1/2 : b, 1/2 : c}

g(b, c)→ {1 : d(f(a, a)3)}
g(c, b)→ {1 : d(f(a, a)3)}

S5 is not fAST (and thus, also not fPAST), since the infinite rewrite sequence
{1 : f(a, a)} ⇒S5 {1 : g(a, a)} ⇒2

S5
{1/4 : g(b, b), 1/4 : g(b, c), 1/4 : g(c, b), 1/4 :

g(c, c)}⇒2
S5
{1/4 : g(b, b), 1/4 : d(f(a, a)3), 1/4 : d(f(a, a)3), 1/4 : g(c, c)} can be seen

as a biased random walk on the number of f(a, a)-subterms that is not AST.
However, for every innermost evaluation with

i→S5
or

i

S5
we have to rewrite

the inner a-symbols first. Afterwards, the f-rule can only be used on redexes
f(t, t) where the resulting term g(t, t) is a normal form. Thus, S5 is iPAST (and
hence, iAST) w.r.t. S5 .

Note that for wAST, the direction of the implication in Cor. 25 is reversed,
since wAST requires that for each start term, there exists an infinite rewrite
sequence that is almost-surely terminating, whereas fAST requires that all infinite
rewrite sequences are almost-surely terminating. Thus, if there exists an infinite
⇒S -rewrite sequence that converges with probability 1 (showing that S is wAST),
then this is also a valid S -rewrite sequence that converges with probability 1
(showing that S is wAST w.r.t. S).

From Innermost to Full AST of PTRSs 219

Corollary 29 (From →S to S for wAST/wPAST). If S is wAST
(wPAST), then S is wAST (wPAST) w.r.t. S .

One may wonder whether simultaneous rewriting could also be used to improve
Thm. 20 by removing the requirement of left-linearity, but Ex. 30 shows this is
not possible.

Counterexample 30. Consider the non-left-linear PTRS S6 with the two rules:

g→ {3/4 : d(g, g), 1/4 : ⊥} d(x, x)→ {1 : x}

This PTRS is not fAST (and thus, also not fPAST), as we have {1 : g} ⇒S6

{3/4 : d(g, g), 1/4 : ⊥}, which corresponds to a random walk biased towards
non-termination if we never use the d-rule (since 3

4 > 1
2). However, if we always

use the d-rule directly after the g-rule, then we essentially end up with a PTRS
whose only rule is g→ {3/4 : c(g), 1/4 : ⊥}, which corresponds to flipping a biased
coin until heads comes up. This proves that S6 is wPAST and hence, also wAST.
As S6 is non-overlapping, right-linear, and non-erasing, this shows that a variant
of Thm. 20 without the requirement of left-linearity needs more than just moving
to simultaneous rewriting.

5.2 Weakening Right-Linearity to Spareness

To improve our results further, we introduce the notion of spareness. The idea
of spareness is to require that variables which occur non-linear in right-hand
sides may only be instantiated by normal forms. We already used spareness
for non-probabilistic TRSs in [17] to find classes of TRSs where innermost and
full runtime complexity coincide. For a PTRS S, we decompose its signature
Σ = ΣC ⊎ ΣD such that f ∈ ΣD iff f = root(ℓ) for some rule ℓ → µ ∈ S. The
symbols in ΣC and ΣD are called constructors and defined symbols, respectively.

Definition 31 (Spareness). Let ℓ → µ ∈ S. A rewrite step ℓσ →S µσ is
spare if σ(x) is in normal form w.r.t. S for every x ∈ V that occurs more than
once in some r ∈ Supp(µ). A ⇒S-sequence is spare if each of its →S-steps is
spare. S is spare if each ⇒S-sequence that starts with {1 : t} for a basic term t
is spare. A term t ∈ T (Σ,V) is basic if t = f(t1, . . . , tn) such that f ∈ ΣD and
ti ∈ T (ΣC ,V) for all 1 ≤ i ≤ n.

Example 32. Consider the PTRS S7 with the two rules:

g→ {3/4 : d(⊥), 1/4 : g} d(x)→ {1 : c(x, x)}

It is similar to the PTRS S1 from Ex. 16, but we exchanged the symbols g and
⊥ in the right-hand side of the g-rule. This PTRS is orthogonal but duplicating
due to the d-rule. However, in any rewrite sequence that starts with {1 : t} for
a basic term t we can only duplicate the constructor symbol ⊥ but no defined
symbol. Hence, S7 is spare.

220 J.-C. Kassing, F. Frohn, J. Giesl

In general, it is undecidable whether a PTRS is spare, since spareness is
already undecidable for non-probabilistic TRSs. However, there exist computable
sufficient conditions for spareness, see [17].

If a PTRS is spare, and we start with a basic term, then we will only duplicate
normal forms with our duplicating rules. This means that the duplicating rules
do not influence the (expected) runtime and, more importantly for AST, the
probability of termination. As in [17], which analyzed runtime complexity, we
have to restrict ourselves to rewrite sequences that start with basic terms. So
we only consider start terms where a single algorithm is applied to data, i.e.,
we may not have any nested defined symbols in our start terms. This leads to
the following theorem, where “on basic terms” means that one only considers
rewrite sequences that start with {1 : t} for a basic term t. It can be proved by
an analogous limit construction as in the proof of Thm. 17.

Theorem 33 (From iAST/iPAST to fAST/fPAST (3)). If a PTRS S is
orthogonal and spare, then

S is fAST on basic terms⇐⇒ S is iAST on basic terms

S is fPAST on basic terms⇐⇒ S is iPAST on basic terms

While iAST on basic terms is the same as iAST in general, the requirement
of basic start terms is real restriction for fAST, i.e., there exists PTRSs that are
fAST on basic terms, but not fAST in general.

Counterexample 34. Consider the PTRS S8 with the two rules:

g→ {3/4 : s(g), 1/4 : ⊥} f(s(x))→ {1 : c(f(x), f(x))}

This PTRS behaves similarly to S1 (see Ex. 16). It is not fAST (and thus, also
not fPAST), as we have {1 : f(g)} ⇒2

S8
{3/4 : c(f(g), f(g)), 1/4 : f(⊥)}, which

corresponds to a random walk biased towards non-termination (since 3
4 > 1

2).
However, the only basic terms for this PTRS are g and f(t) for terms t that

do not contain g or f. A sequence starting with g corresponds to flipping a biased
coin and a sequence starting with f(t) will clearly terminate. Hence, S8 is fAST
(and even fPAST) on basic terms. Furthermore, note that S8 is iPAST (and thus,
also iAST) analogous to S1. This shows that Thm. 33 cannot be extended to
fAST or fPAST in general.

One may wonder whether Thm. 33 can nevertheless be used in order to prove
fAST of a PTRS S on all terms by using a suitable transformation from S to
another PTRS S ′ such that S is fAST on all terms iff S ′ is fAST on basic terms.

There is an analogous difference in the complexity analysis of non-probabilistic
term rewrite systems. There, the concept of runtime complexity is restricted to
rewrite sequences that start with a basic term, whereas the concept of derivational
complexity allows arbitrary start terms. In [19], a transformation was presented
that extends any (non-probabilistic) TRS R by so-called generator rules G(R)
such that the derivational complexity of R is the same as the runtime complexity
of R∪ G(R), where G(R) are considered to be relative rules whose rewrite steps

From Innermost to Full AST of PTRSs 221

do not “count” for the complexity. This transformation can indeed be reused to
move from fAST on basic terms to fAST in general.

Lemma 35. A PTRS S is fAST iff S ∪ G(S) is fAST on basic terms.

For every defined symbol f , the idea of the transformation is to introduce
a new constructor symbol consf and for every function symbol f it introduces
a new defined symbol encf . As an example for S8 from Ex. 32, then instead
of starting with the non-basic term c(g, f(g)), we start with the basic term
encc(consg, consf(consg)), its so-called basic variant. The new defined symbol encc
is used to first build the term c(g, f(g)) at the beginning of the rewrite sequence,
i.e., it converts all occurrences of consf for f ∈ ΣD back into the defined symbol
f , and then we can proceed as if we started with the term c(g, f(g)) directly. For
this conversion, we need another new defined symbol argenc that iterates through
the term and replaces all new constructors consf by the original defined symbol
f . Thus, we define the generator rules as in [19] (just with trivial probabilities in
the right-hand sides ℓ→ {1 : r}), since we do not need any probabilities during
this initial construction of the original start term.

Definition 36 (Generator Rules G(S)). Let S be a PTRS over the signature
Σ. Its generator rules G(S) are the following set of rules

{encf (x1, . . . , xn) → {1 : f(argenc(x1), . . . , argenc(xn))} | f ∈ Σ}
∪ {argenc(consf (x1, . . . , xn)) → {1 : f(argenc(x1), . . . , argenc(xn))} | f ∈ ΣD}
∪ {argenc(f(x1, . . . , xn)) → {1 : f(argenc(x1), . . . , argenc(xn))} | f ∈ ΣC},

where x1, . . . , xn are pairwise different variables and where the function symbols
argenc, consf , and encf are fresh (i.e., they do not occur in S). Moreover, we
define ΣG(S) = {encf | f ∈ Σ} ∪ {argenc} ∪ {consf | f ∈ ΣD}.

Example 37. For the PTRS S8 from Ex. 34, we obtain the following generator
rules G(S8):

encg → {1 : g}
encf(x1)→ {1 : f(argenc(x1))}

encc(x1, x2)→ {1 : c(argenc(x1), argenc(x2))}
encs(x1)→ {1 : s(argenc(x1))}

enc⊥ → {1 : ⊥}
argenc(consg)→ {1 : g}

argenc(consf(x1))→ {1 : f(argenc(x1))}
argenc(c(x1, x2))→ {1 : c(argenc(x1), argenc(x2))}

argenc(s(x1))→ {1 : s(argenc(x1))}
argenc(⊥)→ {1 : ⊥}

As mentioned, using the symbols consf and encf , as in [19] every term over
Σ can be transformed into a basic term over Σ ∪ΣG(S).

However, even if S is spare, the PTRS S ∪G(S) is not guaranteed to be spare,
although the generator rules themselves are right-linear. The problem is that

222 J.-C. Kassing, F. Frohn, J. Giesl

the generator rules include a rule like encf(x1) → {1 : f(argenc(x1))} where a
defined symbol argenc occurs below the duplicating symbol f on the right-hand
side. Indeed, while S8 is spare, S8 ∪ G(S8) is not. For example, when starting
with the basic term encf(s(consg)), we have

{1 : encf(s(consg))} ⇒2
G(S8)

{1 : f(s(argenc(consg)))}
⇒S8

{1 : c(f(argenc(consg)), f(argenc(consg))),

where the last step is not spare. In general, S ∪ G(S) is guaranteed to be spare
if S is right-linear. So we could modify Thm. 33 into a theorem which states
that S is fAST on all terms iff S ∪ G(S) is iAST on basic terms (and thus, on all
terms) for orthogonal and right-linear PTRSs S. However, this theorem would
be subsumed by Thm. 17, where we already showed the equivalence of fAST and
iAST if S is orthogonal and right-linear. Indeed, our goal in Thm. 33 was to
find a weaker requirement than right-linearity. Hence, such a transformational
approach to move from fAST on all start terms to fAST on basic terms does not
seem viable for Thm. 33.

Finally, we can also combine our results on simultaneous rewriting and
spareness to relax both left- and right-linearity in case of basic start terms. The
proof for the following theorem combines the proofs for Thm. 27 and Thm. 33.

Theorem 38 (From iAST/iPAST to fAST/fPAST (4)). If S is non-
overlapping and spare, then

S is fAST on basic terms⇐= S is iAST w.r.t. S on basic terms

S is fPAST on basic terms⇐= S is iPAST w.r.t. S on basic terms

6 Conclusion and Evaluation

In this paper, we presented numerous new results on the relationship between
full and restricted forms of AST, including several criteria for PTRSs such that
innermost AST implies full AST. All of our results also hold for PAST, and all
of our criteria are suitable for automation (for spareness, there exist sufficient
conditions that can be checked automatically).

We implemented our new criteria in our termination prover AProVE [21]. For
every PTRS, one can indicate whether one wants to analyze its termination
behavior for all start terms or only for basic start terms. Up to now, AProVE’s
main technique for termination analysis of PTRSs was the probabilistic DP
framework from [29, 32] which however can only prove iAST. If one wants to
analyze fAST for a PTRS S, then AProVE now first tries to prove that the
conditions of Thm. 33 are satisfied if one is restricted to basic start terms, or that
the conditions of Thm. 17 hold if one wants to consider arbitrary start terms. If
this succeeds, then we can use the full probabilistic DP framework in order to
prove iAST, which then implies fAST. Otherwise, we try to prove all conditions
of Thm. 38 or Thm. 27, respectively. If this succeeds, then we can use most of
the processors from the probabilistic DP framework to prove iAST, which again

From Innermost to Full AST of PTRSs 223

implies fAST. If none of these theorems can be applied, then AProVE tries to
prove fAST using a direct application of polynomial orderings [29]. Note that
for AST w.r.t. basic start terms, Thm. 33 generalizes Thm. 17 and Thm. 38
generalizes Thm. 27, since right-linearity implies spareness.

For our evaluation, we compare the old AProVE without any of the new
theorems (which only uses direct applications of polynomial orderings to prove
fAST), to variants of AProVE where we activated each of the theorems individually,
and finally to the new AProVE strategy explained above. The following diagram
shows the theoretical subsumptions of each of these strategies for basic start
terms, where an arrow from strategy A to strategy B means that B is strictly
better than A.

old AProVE

Thm. 17

Thm. 27

Thm. 33

Thm. 38

new AProVE

We used the benchmark set of 100 PTRSs from [32], and extended it by
15 new PTRSs that contain all the examples presented in this paper and some
additional examples which illustrate the power of each strategy. AProVE can
prove iAST for 93 of these 118 PTRSs. The following table shows for how many
of these 93 PTRSs the respective strategy allows us to conclude fAST for basic
start terms from AProVE’s proof of iAST.

old AProVE Thm. 17 Thm. 27 Thm. 33 Thm. 38 new AProVE

36 48 44 58 56 61

From the 61 examples that we can solve by using both Thm. 33 and Thm. 38
in “new AProVE”, 5 examples (that are all right-linear) can only be solved by
Thm. 33, 3 examples (where one is right-linear and the others only spare) can only
be solved by Thm. 38, and 53 examples can be solved by both. If one considers arbitrary
start terms, then the new AProVE can conclude fAST (using only Thm. 17 and
Thm. 27) for 49 examples.

Currently, we only use the switch from full to innermost rewriting as a
preprocessing step before applying the DP framework. As future work, we want
to develop a processor within the DP framework that can perform this switch in
a modular way. Then, the criteria of our theorems do not have to be required
for the whole PTRS anymore, but just for specific sub-problems within the
termination proof. This, however, requires developing a DP framework for fAST
directly, which we will investigate in future work.

For details on our experiments, our collection of examples, and for instructions
on how to run our implementation in AProVE via its web interface or locally, we
refer to:

https://aprove-developers.github.io/InnermostToFullAST/

In addition, an artifact is available at [31].

Acknowledgements. We thank Stefan Dollase for pointing us to [19].

224 J.-C. Kassing, F. Frohn, J. Giesl

https://aprove-developers.github.io/InnermostToFullAST/

References

[1] G. Agha, J. Meseguer, and K. Sen. “PMaude: Rewrite-based Specification
Language for Probabilistic Object Systems”. In: Proc. QAPL ’05. ENTCS
153. 2006, pp. 213–239. doi: 10.1016/j.entcs.2005.10.040.

[2] S. Agrawal, K. Chatterjee, and P. Novotný. “Lexicographic Ranking Su-
permartingales: An Efficient Approach to Termination of Probabilistic
Programs”. In: Proc. ACM Program. Lang. 2.POPL (2017). doi: 10.1145/
3158122.

[3] T. Arts and J. Giesl. “Termination of Term Rewriting Using Dependency
Pairs”. In: Theor. Comput. Sc. 236.1-2 (2000), pp. 133–178. doi: 10.1016/
S0304-3975(99)00207-8.

[4] M. Avanzini, U. Dal Lago, and A. Yamada. “On Probabilistic Term Rewrit-
ing”. In: Sci. Comput. Program. 185 (2020). doi: 10.1016/j.scico.2019.
102338.

[5] M. Avanzini, G. Moser, and M. Schaper. “A Modular Cost Analysis for
Probabilistic Programs”. In: Proc. ACM Program. Lang. 4.OOPSLA (2020).
doi: 10.1145/3428240.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. doi: 10.1017/CBO9781139172752.

[7] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and L. Verscht. “A
Calculus for Amortized Expected Runtimes”. In: Proc. ACM Program.
Lang. 7.POPL (2023). doi: 10.1145/3571260.

[8] R. Beutner and L. Ong. “On Probabilistic Termination of Functional Pro-
grams with Continuous Distributions”. In: Proc. PLDI ’21. 2021, pp. 1312–
1326. doi: 10.1145/3453483.3454111.

[9] O. Bournez and C. Kirchner. “Probabilistic Rewrite Strategies. Applications
to ELAN”. In: Proc. RTA ’02. LNCS 2378. 2002, pp. 252–266. doi: 10.1007/3-
540-45610-4 18.

[10] O. Bournez and F. Garnier. “Proving Positive Almost-Sure Termination”.
In: Proc. RTA ’05. LNCS 3467. 2005, pp. 323–337. doi: 10.1007/978-3-540-
32033-3 24.

[11] K. Chatterjee, H. Fu, and P. Novotný. “Termination Analysis of Probabilis-
tic Programs with Martingales”. In: Foundations of Probabilistic Program-
ming. Ed. by G. Barthe, J. Katoen, and A. Silva. Cambridge University
Press, 2020, 221–258. doi: 10.1017/9781108770750.008.

[12] U. Dal Lago and C. Grellois. “Probabilistic Termination by Monadic Affine
Sized Typing”. In: Proc. ESOP ’17. LNCS 10201. 2017, pp. 393–419. doi:
10.1007/978-3-662-54434-1 15.

[13] U. Dal Lago, C. Faggian, and S. R. Della Rocca. “Intersection Types
and (Positive) Almost-Sure Termination”. In: Proc. ACM Program. Lang.
5.POPL (2021). doi: 10.1145/3434313.

[14] A. Dı́az-Caro and G. Mart́ınez. “Confluence in Probabilistic Rewriting”.
In: Proc. LSFA ’17. ENTCS 338. 2018, pp. 115–131. doi: 10.1016/j.entcs.
2018.10.008.

From Innermost to Full AST of PTRSs 225

https://doi.org/10.1016/j.entcs.2005.10.040
https://doi.org/10.1145/3158122
https://doi.org/10.1145/3158122
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3428240
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/3571260
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1017/9781108770750.008
https://doi.org/10.1007/978-3-662-54434-1_15
https://doi.org/10.1145/3434313
https://doi.org/10.1016/j.entcs.2018.10.008
https://doi.org/10.1016/j.entcs.2018.10.008

[15] C. Faggian. “Probabilistic Rewriting and Asymptotic Behaviour: On Ter-
mination and Unique Normal Forms”. In: Log. Methods in Comput. Sci.
18.2 (2022). doi: 10.46298/lmcs-18(2:5)2022.

[16] L. M. Ferrer Fioriti and H. Hermanns. “Probabilistic Termination: Sound-
ness, Completeness, and Compositionality”. In: Proc. POPL ’15. 2015,
pp. 489–501. doi: 10.1145/2676726.2677001.

[17] F. Frohn and J. Giesl. “Analyzing Runtime Complexity via Innermost
Runtime Complexity”. In: Proc. LPAR ’17. EPiC 46. 2017, pp. 249–228.
doi: 10.29007/1nbh.

[18] H. Fu and K. Chatterjee. “Termination of Nondeterministic Probabilistic
Programs”. In: Proc. VMCAI ’19. LNCS 11388. 2019, pp. 468–490. doi:
10.1007/978-3-030-11245-5 22.

[19] C. Fuhs. “Transforming Derivational Complexity of Term Rewriting to
Runtime Complexity”. In: Proc. FroCoS ’19. LNCS 11715. 2019, pp. 348–
364. doi: 10.1007/978-3-030-29007-8 20.

[20] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. “Mechanizing
and Improving Dependency Pairs”. In: J. Autom. Reason. 37.3 (2006),
pp. 155–203. doi: 10.1007/s10817-006-9057-7.

[21] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swi-
derski, and R. Thiemann. “Analyzing Program Termination and Complexity
Automatically with AProVE”. In: J. Autom. Reason. 58.1 (2017), pp. 3–31.
doi: 10.1007/s10817-016-9388-y.

[22] J. Giesl, P. Giesl, and M. Hark. “Computing Expected Runtimes for
Constant Probability Programs”. In: Proc. CADE ’19. LNCS 11716. 2019,
pp. 269–286. doi: 10.1007/978-3-030-29436-6 16.

[23] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. “Prob-
abilistic Programming”. In: Proc. FOSE ’14. 2014, pp. 167–181. doi:
10.1145/2593882.2593900.

[24] B. Gramlich. “Abstract Relations between Restricted Termination and
Confluence Properties of Rewrite Systems”. In: Fundamenta Informaticae
24 (1995), pp. 2–23. doi: 10.3233/FI-1995-24121.

[25] R. Gutiérrez and S. Lucas. “MU-TERM: Verify Termination Properties
Automatically (System Description)”. In: Proc. IJCAR ’20. LNCS 12167.
2020, pp. 436–447. doi: 10.1007/978-3-030-51054-1 28.

[26] M. Huang, H. Fu, K. Chatterjee, and A. K. Goharshady. “Modular Verifi-
cation for Almost-Sure Termination of Probabilistic Programs”. In: Proc.
ACM Program. Lang. 3.OOPSLA (2019). doi: 10.1145/3360555.

[27] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. “Weakest
Precondition Reasoning for Expected Runtimes of Randomized Algorithms”.
In: J. ACM 65 (2018), pp. 1–68. doi: 10.1145/3208102.

[28] B. L. Kaminski, J. Katoen, and C. Matheja. “Expected Runtime Analyis
by Program Verification”. In: Foundations of Probabilistic Programming.
Ed. by G. Barthe, J. Katoen, and A. Silva. Cambridge University Press,
2020, 185–220. doi: 10.1017/9781108770750.007.

226 J.-C. Kassing, F. Frohn, J. Giesl

https://doi.org/10.46298/lmcs-18(2:5)2022
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.29007/1nbh
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1007/978-3-030-29007-8_20
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.3233/FI-1995-24121
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1145/3360555
https://doi.org/10.1145/3208102
https://doi.org/10.1017/9781108770750.007

[29] J.-C. Kassing and J. Giesl. “Proving Almost-Sure Innermost Termination of
Probabilistic Term Rewriting Using Dependency Pairs”. In: Proc. CADE ’23.
LNCS 14132. 2023, pp. 344–364. doi: 10.1007/978-3-031-38499-8 20.

[30] J.-C. Kassing, F. Frohn, and J. Giesl. “From Innermost to Full Almost-Sure
Termination of Probabilistic Term Rewriting”. In: CoRR abs/2310.06121
(2023). doi: 10.48550/arXiv.2310.06121.

[31] J.-C. Kassing, F. Frohn, and J. Giesl. From Innermost to Full Almost-Sure
Termination of Probabilistic Term Rewriting - AProVE Artifact. 2024. doi:
10.5281/zenodo.10449299.

[32] J.-C. Kassing, S. Dollase, and J. Giesl. “A Complete Dependency Pair
Framework for Almost-Sure Innermost Termination of Probabilistic Term
Rewriting”. In: Proc. FLOPS ’24. LNCS. To appear. Long version at CoRR
abs/2309.00344. 2024. doi: 10.48550/arXiv.2309.00344.

[33] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. “Tyrolean Termination
Tool 2”. In: Proc. RTA ’09. LNCS 5595. 2009, pp. 295–304. doi: 10.1007/978-
3-642-02348-4 21.

[34] M. R. K. Krishna Rao. “Some Characteristics of Strong Innermost Normal-
ization”. In: Theor. Comput. Sc. 239 (2000), pp. 141–164. doi: 10.1016/
S0304-3975(99)00215-7.

[35] L. Leutgeb, G. Moser, and F. Zuleger. “Automated Expected Amortised
Cost Analysis of Probabilistic Data Structures”. In: Proc. CAV ’22. LNCS
13372. 2022, pp. 70–91. doi: 10.1007/978-3-031-13188-2 4.

[36] A. McIver, C. Morgan, B. L. Kaminski, and J.-P. Katoen. “A New Proof
Rule for Almost-Sure Termination”. In: Proc. ACM Program. Lang. 2.POPL
(2018). doi: 10.1145/3158121.

[37] F. Meyer, M. Hark, and J. Giesl. “Inferring Expected Runtimes of Prob-
abilistic Integer Programs Using Expected Sizes”. In: Proc. TACAS ’21.
LNCS 12651. 2021, pp. 250–269. doi: 10.1007/978-3-030-72016-2 14.

[38] M. Moosbrugger, E. Bartocci, J. Katoen, and L. Kovács. “Automated
Termination Analysis of Polynomial Probabilistic Programs”. In: Proc.
ESOP ’21. LNCS 12648. 2021, pp. 491–518. doi: 10.1007/978-3-030-72019-
3 18.

[39] M. H. A. Newman. “On Theories with a Combinatorial Definition of Equiv-
alence”. In: Annals of Mathematics 43.2 (1942), pp. 223–242. url: http:
//www.ens- lyon.fr/LIP/REWRITING/TERMINATION/NEWMAN/
Newman.pdf.

[40] V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. “Bounded Expectations:
Resource Analysis for Probabilistic Programs”. In: Proc. PLDI ’18. 2018,
pp. 496–512. doi: 10.1145/3192366.3192394.

[41] M. J. O’Donnell. Computing in Systems Described by Equations. LNCS 58.
1977. doi: 10.1007/3-540-08531-9.

[42] N. Saheb-Djahromi. “Probabilistic LCF”. In: Proc. MFCS ’78. LNCS 64.
1978, pp. 442–451. doi: 10.1007/3-540-08921-7 92.

From Innermost to Full AST of PTRSs 227

https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.48550/arXiv.2310.06121
https://doi.org/10.5281/zenodo.10449299
https://doi.org/10.48550/arXiv.2309.00344
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1016/S0304-3975(99)00215-7
https://doi.org/10.1016/S0304-3975(99)00215-7
https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1145/3158121
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/NEWMAN/Newman.pdf
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/NEWMAN/Newman.pdf
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/NEWMAN/Newman.pdf
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/3-540-08531-9
https://doi.org/10.1007/3-540-08921-7_92

[43] R. Thiemann and C. Sternagel. “Certification of Termination Proofs Using
CeTA”. In: Proc. TPHOLs ’09. LNCS 5674. 2009, pp. 452–468. doi: 10.
1007/978-3-642-03359-9 31.

[44] Y. Toyama. “Counterexamples to the Termination for the Direct Sum of
Term Rewriting Systems”. In: Inf. Proc. Lett. 25 (1987), pp. 141–143. doi:
10.1016/0020-0190(87)90122-0.

[45] D. Wang, D. M. Kahn, and J. Hoffmann. “Raising Expectations: Automat-
ing Expected Cost Analysis with Types”. In: Proc. ACM Program. Lang.
4.ICFP (2020). doi: 10.1145/3408992.

[46] A. Yamada, K. Kusakari, and T. Sakabe. “Nagoya Termination Tool”. In:
Proc. RTA-TLCA ’14. LNCS 8560. 2014, pp. 466–475. doi: 10.1007/978-3-
319-08918-8 32.

228 J.-C. Kassing, F. Frohn, J. Giesl

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1145/3408992
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-319-08918-8_32
http://creativecommons.org/licenses/by/4.0/

Dimension-Minimality and Primality of Counter
Nets⋆⋆⋆

Abstract. A k-Counter Net (k-CN) is a finite-state automaton equipped
with k integer counters that are not allowed to become negative, but
do not have explicit zero tests. This language-recognition model can be
thought of as labelled vector addition systems with states, some of which
are accepting. Certain decision problems for k-CNs become easier, or in-
deed decidable, when the dimension k is small. Yet, little is known about
the effect that the dimension k has on the class of languages recognised
by k-CNs. Specifically, it would be useful if we could simplify algorithmic
reasoning by reducing the dimension of a given CN.
To this end, we introduce the notion of dimension-primality for k-CN,
whereby a k-CN is prime if it recognises a language that cannot be de-
composed into a finite intersection of languages recognised by d-CNs, for
some d < k. We show that primality is undecidable. We also study two
related notions: dimension-minimality (where we seek a single language-
equivalent d-CN of lower dimension) and language regularity. Addition-
ally, we explore the trade-offs in expressiveness between dimension and
non-determinism for CN.

1 Introduction

A k-dimensional Counter Net (k-CN) is a finite-state automaton equipped with
k integer counters that are not allowed to become negative, but do not have
explicit zero tests (see Fig. 1a for an example). This language-recognition model
can be thought of as an alphabet-labelled Vector Addition System with States
(VASS), some of whose states are accepting [7]. A k-CN A over alphabet Σ

⋆ S. Almagor was supported by the ISRAEL SCIENCE FOUNDATION (grant No.
989/22), G. Avni was supported by the ISRAEL SCIENCE FOUNDATION (grant
No. 1679/21), H. Sinclair-Banks was supported by EPSRC Standard Research Stu-
dentship (DTP), grant number EP/T5179X/1.

⋆⋆ The full version can be found on https://arxiv.org/abs/2307.14492

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 229–249, 2024.
https://doi.org/10.1007/978-3-031-57231-9_11

Shaull Almagor1(B) , Guy Avni2(B) , Henry Sinclair-Banks3(B) ,

and Asaf Yeshurun1(B)

1 Technion, Haifa, Israel
shaull@technion.ac.il, asafyeshurun@campus.technion.ac.il

2 Department of Computer Science, University of Haifa, Haifa, Israel
gavni@cs.haifa.ac.il

3 Centre for Discrete Mathematics and its Applications (DIMAP) & Department of
Computer Science, University of Warwick, Coventry, UK

h.sinclair-banks@warwick.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_11&domain=pdf
http://orcid.org/0000-0001-9021-1175
http://orcid.org/0000-0001-5588-8287
http://orcid.org/0000-0003-1653-4069

230 S. Almagor et al.

accepts a word w ∈ Σ∗ if there is a run of A on w that ends in an accepting
state in which the counters stay non-negative. The language of A is the set L(A)
of words accepted by A.

Counter nets are a natural model of concurrency and are closely related —
and equivalent, in some senses — to labelled Petri Nets. These models have re-
ceived significant attention over the years [6,7,13,14,17,19,27], with specific inter-
est in the one-dimensional case, often referred to as one-counter nets [20,21,1,2].
Unfortunately, most decision problems for k-CNs are notoriously difficult and
are often undecidable [1,2]. In particular, k-CNs subsume VASS and Petri nets,
for which many problems are known to be Ackermann-complete, for example see
the recent breakthrough in the complexity of reachability in VASS [11,25].

In many cases, the complexity of decision problems for VASS, sometimes
with extensions, depends on the dimension, with low dimensions admitting more
tractable solutions. [9,8,10,16]. For example, reachability in dimensions one and
two is NP-complete [18] and PSPACE-complete [4], respectively, when counter
updates are encoded in binary.

A natural question, therefore, is whether we can decrease the dimension of
a given a k-CN whilst maintaining its language, to facilitate reasoning about
it. More generally, the trade-off between expressiveness and the dimension of
Counter Nets is poorly understood. We tackle this question in this work by
introducing two approaches. The first is straightforward dimension-minimality :
given a k-CN, does there exist a d-CN B recognising the same language for some
d < k?

The second approach is primality : given a k-CN, does there exist some d < k
and d-CNs B1, . . . ,Bn such that L(A) =

⋂n
i=1 L(Bi)? That is, we ask whether

the language of A can be decomposed as an intersection of languages recognised
by several lower-dimension CNs. We also consider compositeness, the dual of
primality. Intuitively, in a composite k-CN the usage of the counters can be “split”
across several lower-dimension CNs, allowing for properties (such as universality)
to be checked on each conjunct separately.

Example 1. We illustrate the model and the definition of compositeness. Con-
sider the 2-CN A depicted in Fig. 1a, and consider a word w = am#bn#ck. We
have that A has an accepting run on w iff m ≥ n and m ≥ k. Indeed, if m < n,
the first counter drops below 0 while cycling in the second state and so the run
is “stuck”, and similarly if m < k. It is not hard to show that there is no 1-CN
that recognizes the language of A. However, Fig. 1b shows two 1-CNs B1 and
B2 such that L(B) = L(B1)∩L(B2). Indeed, a word w = am#bn#ck ∈ L(B1) iff
m ≥ n, and w ∈ L(B2) iff m ≥ k.

Note that the decomposition in Example 1 is obtained by “splitting” the
counters between the two 1-CNs. This raises the question of whether such split-
tings are always possible. As we show in Proposition 1, for deterministic k-CNs
(k-DCNs) this is indeed the case. In general, however, it is not hard to find
examples where a k-CN cannot simply be split to an intersection by projecting
on each counter. This however, does not rule out that other decompositions are

Dimension-Minimality and Primality of Counter Nets 231

#, (0, 0) #, (0, 0)

a, (1, 1) b, (−1, 0) c, (0,−1)

(a) A composite 2-CN.

#, (0) #, (0)

a, (1) b, (−1) c, (0)

#, (0) #, (0)

a, (1) b, (0) c, (−1)

(b) Two 1-CNs showing compositeness of the 2-CN.

Fig. 1: A composite 2-CN whose language is {am#bn#ck | m ≥ n ∧m ≥ k} and
its decomposition into two 1-CNs recognising the languages {am#bn#ck | m ≥
n} and {am#bn#ck | m ≥ k}.

possible. Our main result, Theorem 1, gives an example of a prime 2-CN. That
is, a 2-CN whose language cannot be expressed as an intersection of 1-CNs.

The notion of primality has been studied for regular languages in [24,23,22],
the exact complexity of deciding primality is still open. There, an automaton is
composite if it can be written as an intersection of finite automata with fewer
states. In this work we introduce primality for CNs. We focus on dimension as a
measure of size, a notion which does not exist for regular languages. Thus, unlike
regular languages, the differences between prime and composite CNs is not only
in succinctness, but actually in expressiveness, as we later demonstrate.

We parameterise primality and compositeness by the dimension d and the
number n of lower-dimension factors. Thus, a k-CN A is (d, n)-composite if it can
be written as the intersection above. Then, A is composite if it is (d, n)-composite
for some d < k and n ∈ N. Under this view, dimension-minimality is a special
case of compositeness, namely A is dimension-minimal if it is not (k − 1, 1)-
composite. Another particular problem captured by compositeness is regularity.
Indeed, L(A) is regular if and only if A is (0, 1)-composite, since 0-CNs are just
NFAs. Since regularity is already undecidable for 1-CNs [2,28], it follows that
deciding whether a k-CN is (d, n)-composite is undecidable. Moreover, it follows
that both primality and dimension-minimality are undecidable for 1-CNs.

The undecidability of the above problems is not surprising, as the huge dif-
ference in expressive power between 1-CNs and regular languages is well un-
derstood. In contrast, even the expressive power difference between 1-CNs and
2-CNs is poorly understood, let alone what effect the dimension has on the
expressive power beyond regular languages. Already, 1-VASS and 2-VASS are
known to have flat equivalents with respect to reachability [26,4], but the com-
plexity differs greatly.

Our goal in this work is to shed light on these differences. In Section 4, we
give a concrete example of a prime 2-CN, which turns out to be technically
challenging. This example is the heart of our technical contribution, and we em-
phasise that we do not currently have a proved example of a prime 3-CN, let

alone for general k-CN (although we conjecture a candidate for such languages).
We consider this an interesting open problem, as it highlights the type of pump-
ing machinery that is currently missing from the VASS/CN reasoning arsenal.
The technical intricacy in proving our example suggests that generalising it is
highly nontrivial. Indeed, proving this claim would require intricate pumping
arguments, which are notoriously difficult even for low-dimensional CNs [9].

Using our example, we obtain in Section 5, the undecidability of primality and
of dimension-minimality for 2-CNs. To complement this, we show in Theorem 3,
that regularity of k-DCNs is decidable. In Section 6, we explore trade-offs in
expressiveness of CNs with increasing dimension and with nondeterminism. In
particular, we show that there is a strict hierarchy of expressiveness with respect
to the dimension. We conclude with a discussion in Section 7. For brevity, some
proofs only appear in the full version of the paper.

2 Preliminaries

We denote the non-negative integers {0, 1, . . .} by N. We write vectors in bold,
e.g., e ∈ Zk, and e[i] is the i-th coordinate. We use [k] = {1, . . . , k} for k ≥ 1.
We use Σ∗ to denote the set of all words over an alphabet Σ, and |w| is the
length of w ∈ Σ∗.

A k-dimensional Counter Net (k-CN) A is a quintuple A = ⟨Σ,Q,Q0, δ, F ⟩
where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of
initial states, δ ⊆ Q × Σ × Zk × Q is a set of transitions, and F ⊆ Q are the
accepting states. A k-CN is deterministic, denoted k-DCN, if |Q0| = 1, and for
every p ∈ Q and σ ∈ Σ there is at most one transition of the form (p, σ,v, q) ∈ δ.
For a transition (p, σ,v, q) ∈ δ, we refer to v ∈ Zk as its effect.

An N-configuration (resp. Z-configuration) of a k-CN A is a pair (q,v) ∈
Q × Nk (resp. (q,v) ∈ Q × Zk) representing the current state and values of
the counters. A transition (p, σ, e, q) ∈ δ is valid from N-configuration (q,v) if
v+e ∈ Nk, i.e., if all k counters remain non-negative after the transition. A Z-run
ρ of A on w is a sequence of Z-configurations ρ = (q0,v0), (q1,v1), . . . , (qn,vn)
such that (qi, σi,vi+1−vi, qi+1) ∈ δ for every 0 ≤ i ≤ n−1, we may also say that
ρ reads w = σ0σ1 · · ·σn. An N-run is a Z-run that visits only N-configurations.
Note that all the transitions in an N-run are valid. We may omit N or Z from the
run when it does not matter. For a run ρ = (q0,v0), (q1,v1), . . . , (qn,vn) of A,
we denote (q0,v0)

ρ→ (qn,vn). We define the effect of ρ to be eff(ρ) = vn − v0.
An N-run ρ is accepting if q0 ∈ Q0, v0 = 0, and qn ∈ F . We say that

A accepts w if there is an accepting N-run of A on w. The language of A is
L(A) = {w ∈ Σ∗ | A accepts w}. We say that A is unambiguous if it has at most
one accepting run on any given word. Otherwise we say that it is ambiguous.

An infix π = (qk,vk), (qk+1,vk+1), . . . , (qk+n,vk+n) of a run ρ is a cycle if
qk = qk+n and is a simple cycle if it does not contain a cycle as a proper infix.
When discussing an infix π of a 1-CN – we write that π is > 0, ≥ 0, or < 0 if
eff(π) > 0, eff(π) ≥ 0, or eff(π) < 0, respectively.

232 S. Almagor et al.

3 Primality and Compositeness

We begin by presenting our main definitions, followed by some introductory
properties.

Definition 1 (Compositeness, Primality, and Dimension-Minimality).
Consider a k-CN A, and let d, n ∈ N. We say that A is (d, n)-composite if there
exist d-CNs B1, . . . ,Bn such that L(A) =

⋂n
i=1 L(Bi). If A is (d, n)-composite

for some d < k and n ∈ N, we say A is composite. Otherwise, A is prime. If A
is not (k− 1, 1)-composite, we say that A is dimension-minimal. We also extend
the definition of primality to languages, and say that a language L is prime if
there is an integer d > 0 such that L = L(A) for some d-CN A, but there are
no (d− 1)-CNs B1, . . .Bn such that L =

⋂n
i=1 L(Bi).

Remark 1. Note that the special case where A is (0, n)-composite coincides with
the regularity of L(A), and hence also with being (0, 1)-composite.

Observe that in Fig. 1 we in fact show a composite 2-DCN. We now show that
every k-DCN is (1, k)-composite, by projecting to each of the counters separately.
In particular, a k-DCN is prime only when k = 1 and it recognises a non-regular
language, or when k = 0. Formally, consider a k-DCN D = ⟨Σ,Q,Q0, δ, F ⟩ and
let 1 ≤ i ≤ k. We define the i-projection to be the 1-DCN D|i = ⟨Σ,Q,Q0, δ|i, F ⟩
where δ|i = {(p, σ,v[i], q) | (p, σ,v, q) ∈ δ}.

Proposition 1. Every k-DCN D is (1, k)-composite, and L(D) =
⋂k

i=1 L(D|i).

Proof. Let w ∈ L(D) and let ρ be the accepting run of D on w, then the projec-
tion of ρ on counter i induces an accepting run of D|i on w, thus w ∈

⋂k
i=1 L(D|i).

Note that this direction does not use the determinism of D.
Conversely, let w ∈

⋂k
i=1 L(D|i), then each D|i has an accepting run ρi on

w. Since the structure of all the D|i is identical to that of D, all the runs ρi have
identical state sequences, and therefore are also a Z-run of D on w. Moreover, due
to this being a single N-run in each D|i, it follows that all counter values remain
non-negative in the corresponding run of D on w. Hence, this is an accepting
N-run of D on w, so w ∈ L(D). ⊓⊔

Remark 2 (Unambiguous Counter Nets are Composite). The proof of Proposi-
tion 1 applies also to structurally unambiguous CNs, i.e. CNs whose underlying
automaton, disregarding the counters, is unambiguous. Thus, every unambigu-
ous CN is (1, k)-composite.

Consider k-CNs B1, . . . ,Bn. By taking their product, we can construct a k ·n-
CN A such that L(A) =

⋂n
i=1 L(Bi). In particular, if each Bi is a 1-DCN, then

A is an n-DCN. Combining this with Proposition 1, we can deduce the following
(proof can be found in the full version).

Proposition 2. A k-DCN is dimension-minimal if and only if it is not (1, k−1)-
composite.

Dimension-Minimality and Primality of Counter Nets 233

4 A Prime Two-Counter Net

In this section we present our main technical contribution, namely an example
of a prime 2-CN. The technical difficulty arises from the need to prove that
this example cannot be decomposed as an intersection of nondeterministic 1-
CNs. Since intersection has a “universal flavour”, and nondeterminism has an
“existential flavour”, we have a sort of “quantifier alternation” which is often a
source of difficulty.

The importance of this example is threefold. First, it enables us to show that
primality is undecidable in Section 5. Second, it offers intuition on what makes
a language prime. Third, we suspect that the techniques developed here will
be useful in other settings when reasoning about nondeterministic automata,
perhaps with counters.

We start by presenting the prime 2-CN, followed by an overview of the proof,
before delving into the details.

Example 2. Consider the 2-CN P over alphabet Σ = {a, b, c,#} depicted in Fig. 2.
Intuitively, P starts by reading segments of the form am#, where in each seg-
ment it nondeterministically chooses whether to increase the first or second
counter by m. Then, it reads bmbcmc and accepts if the value of the first and
second counter is at least mb and mc, respectively. Thus, P accepts a word if its
am# segments can be partitioned into two sets I and I so that the combined
lengths of the segments in I (resp. I) is at least the length of the b segment
(resp. c segment). For example, a10#a20#a15#b15c30 ∈ L(P), since segments
1 and 2 have length 30, matching c30 and segment 3 matches b15. However,
a10#a20#a15#b21c21 /∈ L(P), since in any partition of {10, 20, 15}, one set will
have sum lower than 21. More precisely, we have the following:

L(P) = {am1#am2# · · ·#amt#bmbcmc | ∃I ⊆ [t] s.t.
∑
i∈I

mi ≥ mb∧
∑
i/∈I

mi ≥ mc}

#,(0,0)#,(0,0)

a,(1,0)
#,(0,0)

a,(0,1)
#,(0,0)

#,(0,0)

#,(0,0)

b,(−1,0) c,(0,−1)

c,(0,−1)

Fig. 2: The prime 2-CN P for Example 2 and Theorem 1.

Theorem 1. P is prime.

The high-level intuition behind Theorem 1 is that any 1-CN can either guess a
subset of segments that covers mb or mc, but not both, and in order to make sure

234 S. Almagor et al.

the choices between two 1-CNs form a partition, we need to fix the partition in
advance. This is only possible if the number of segments is a priori fixed, which
is not true (c.f., Remark 3). This intuition, however, is far from a proof.

4.1 Overview of the Proof of Theorem 1

Assume by way of contradiction that P is not a prime 2-CN. Thus, there exist
1-CNs V1, . . .Vk such that L(P) =

⋂
1≤j≤k L(Vj). Throughout the proof, we

focus on words of the form am1#am2# · · ·#amk+1#bmbcmc for positive integers
{mi}k+1

i=1 ,mb,mc. We index the ami segments of these words, so ami is the i-th
segment. Note that we focus on words with k + 1 many a segments, one more
than the number of Vj factors in the intersection. It is useful to think about each
segment as “paying” for either b or c. Then, a word is accepted if there is a way
to choose for each segment whether it pays for b or c, such that there is sufficient
budget for both.

Let i ∈ [k + 1] and j ∈ [k]. We say that the i-th segment is bad in Vj

if, intuitively, we can pump the length mi of segment i whilst pumping both
mb and mc to unbounded lengths, such that the resulting words are accepted
by Vj (see Definition 2 for the formal definition). For example, consider the
word a10#a10#a10#b20c10 ∈ L(P). If the second segment is bad for Vj then
there exist x, y, z > 0 such that for every t, tb, tc ∈ N it holds that the word
a10#a10+tx#a10#b20+tbyc10+tcz is in L(Vj). Observe that such behaviour is un-
desirable, since for large enough t, tb, tc, the resulting word is not in L(P). Note,
however, that the existence of such a bad segment is not a contradiction by itself,
since the resulting pumped words might not be accepted by some other 1-CN
Vj′ .

In order to reach a contradiction, we need to show the existence of a segment i
that is bad for every Vj . Moreover, we must also show that arbitrarily increasing
mi,mb,mc can be simultaneously achieved in all the Vj together (i.e., the above
x, y, z > 0 are the same for all Vj). This would create a contradiction since all
the Vj accept a word that is not in L(P). Our goal is therefore to establish a
robust and precise definition of a “bad” segment, then find a word w comprising
k+ 1 segments where one of the segments is bad for every Vj , and pumping the
words in each segment can be done synchronously.

4.2 Pumping Arguments in One-Counter Nets

In this section we establish some pumping results for 1-CN which will be used
in the proof of Theorem 1. Throughout this section, we consider a 1-CN V =
⟨Σ,Q,Q0, δ, F ⟩.

Our first lemma states the intuitive fact that without > 0 cycles, the counter
value of a run is bounded (proof can be found in the full version).

Lemma 1. Let (q, n) be a configuration of V, let W be the maximal positive
update in V, σ ∈ Σ, and N ∈ N. If an N-run ρ of V on σN from configuration
(q, n) does not traverse any > 0 cycle, then the maximal possible counter value
anywhere along ρ is n+W |Q|.

Dimension-Minimality and Primality of Counter Nets 235

The next lemma shows that long-enough runs must contain ≥ 0 cycles.

Lemma 2. Let σ ∈ Σ and (q, n) be an N-configuration of V. Then there exists
N ∈ N such that for all N ′ ≥ N , every N-run of V on σN ′

from (q, n) traverses
a ≥ 0 cycle.

Proof. Let W be the maximal positive transition update in V , we show that
N = |Q|(n+ |Q| ·W) satisfies the requirements. Assume by way of contradiction
that V can read σN via an N-run ρ = (q0, n0 = n)

ρ→ (qN , nN) that only traverses
< 0 cycles.

Since ρ visits N + 1 states, then by the Pigeonhole Principle, there exists a
state p ∈ Q that is visited m ≥ (N + 1)/|Q| > N/|Q| many times in ρ.

Consider all the indices 0 ≤ i1 < i2 < . . . < im ≤ N such that p = qi1 = . . . =
qim . Each run segment (qi1 , ni1) → (qi2 , ni2), . . . , (qim−1 , nim−1) → (qim , nim) is
a cycle in ρ, and therefore must have negative effect. Thus ni1 > ni2 > . . . >
nim ≥ 0, so in particular ni1 ≥ nim +m− 1 ≥ 0 (as each cycle has effect at most
−1). Moreover, ni1 < n + |Q| · W since the prefix (q0, n) → (qi1 , ni1) cannot
contain a non-negative cycle. However, since m > N/|Q| = n + |Q| · W and
ni1 ≥ nim +m − 1 ≥ n + |Q| ·W , we get n + |Q| ·W < n + |Q| ·W which is a
contradiction.

⊓⊔

Next, we show that runs with ≥ 0 and > 0 cycles have “pumpable” infixes.

Lemma 3. Let σ ∈ Σ and consider a > 0 (resp. ≥ 0) cycle π = (q0, c0)
σ→

(q1, c1)
σ→ . . . (qn = q0, cn) on σn that induces an N-run. Then, there is a se-

quence of (not necessarily contiguous) indices 0 ≤ i1 ≤ . . . ≤ ik ≤ n such that
qi1

σ→ qi2
σ→ · · · qik is a simple > 0 (resp. ≥ 0) cycle with some effect e > 0 (resp.

e ≥ 0). In addition, this simple cycle is “pumpable” from the first occurrence of
qi1 in π; namely, for all m ∈ N there is a run πm obtained from π by traversing
the cycle m times so that eff(πm) = eff(π) + em.

Proof. We prove the ≥ 0 case, the > 0 case can be proved mutatis mutandis.
We define πm = (q0, c0)

σ→ . . . (qi1 , ci1)
σ→ . . . (qi1 , ci1 + em)

σ→ . . . (qn, cn +
em). The proof is now by induction on the length of π.

The base of the induction is a cyclic N-run of length 2. In this case π =
(q0, c0)

σ→ (q1 = q0, c1) is itself a ≥ 0 simple cycle that is infinitely pumpable
from (q0, c0).

We now assume correctness for length n, and discuss π = (q0, c0)
σ→ (q1, c1)

σ→
. . . (qn = q0, cn) of length n + 1. Let 0 ≤ j1 < j2 ≤ n be indices such that
qj1 = qj2 , for a maximal j1. Note that the cycle τ = (qj1 , cj1)

σ→ . . . (qj2 , cj2)
must be simple. If j1 = 0 and j2 = n, then π itself is a simple ≥ 0 cycle, and the
pumping argument is straightforward. Otherwise τ is nested. We now split into
two cases, based on whether eff(τ) ≥ 0.

1. τ is ≥ 0: then the induction hypothesis applies on τ . We take the guaranteed
constants j1 ≤ i1 ≤ . . . ≤ ik ≤ j2, which apply to π as well.

236 S. Almagor et al.

2. τ is < 0: then we remove τ from π to obtain π′ = (q0, c0)
σ→ . . . (qj1 , cj1)

σ→
(qj2+1, c

′
j2+1)

σ→ . . . (qn, c
′
n), such that c′i ≥ ci for all j2 + 1 ≤ i ≤ n. The

induction hypothesis applies on π′, so let i1, . . . , ik be the guaranteed con-
stants. Note that i1 ≤ j1, since the cycle removed when obtaining π′ from
π is the last occurrence of a repetition of states in π. We therefore know
that qi1

σ→ qi2
σ→ · · · qik is a simple ≥ 0 cycle in π′ – which applies to π as

well. In addition, it is infinitely pumpable from N-configuration (qi1 , ci1) in
π′ for i1 ≤ j1. Indeed, since π and π′ coincide up to and including (qj1 , cj1)
between π and π′ - this cycle is infinitely pumpable in π as well. ⊓⊔

The simple cycle in Lemma 3 has length k < |Q|. By pumping it |Q|!
k times

we obtain a pumpable cycle of length |Q|!, allowing us to conclude with the
following.

Corollary 1. Let ρ be an N-run of V on σn that traverses a ≥ 0 cycle. For every
m ∈ N, we can construct an N-run ρ′ of V on σn+m|Q|! such that eff(ρ′) ≥ eff(ρ)
by pumping a ≥ 0 simple cycle in ρ.

4.3 Good and Bad Segments

We lift the colour scheme4 of > 0 and ≥ 0 to words and runs as follows. For a
word w = uv and a run ρ, we write e.g., uv to denote that ρ traverses a > 0
cycle when reading u, then a ≥ 0 cycle when reading v. Note that this does not
preclude other cycles, e.g., there could also be negative cycles in the u part, etc.
That is, the colouring is not unique, but represents elements of the run.

Recall our assumption that L(P) =
⋂

1≤j≤k L(Vj), and for all j ∈ [k] denote
Vj = ⟨Σ,Qj , Ij , δj , Fj⟩. Let Qmax = max{|Qj |}kj=1 and denote α = Qmax!. Fur-
ther recall that we focus on words of the form am1#am2# · · ·#amk+1#bmbcmc

for integers {mi}k+1
i=1 ,mb,mc ∈ N, and that we refer to the infix ami as the

i-th segment, for 1 ≤ i ≤ k + 1. We proceed to formally define good and bad
segments.

Definition 2 (Good and Bad Segments). The i-th segment is bad in Vj if
there exist constants {mi}k+1

i=1 ,mb,mc ∈ N such that the following hold.

(a) {mi}k+1
i=1 ,mb,mc are multiples of α, and

(b) there is an accepting N-run ρ of Vj on w = am1#am2# · · ·#amk+1#bmbcmc

that adheres to one of the three forms:
(i) am1#am2# · · · ami−1#ami#ami+1# · · ·#amk+1#bmbcmc ,
(ii) am1#am2# · · · ami−1#ami#ami+1# · · ·#amk+1#bmbcmc , or
(iii) am1#am2# · · · ami−1#ami#ami+1# · · ·#amk+1#bmbcmc .

The i-th segment is good in Vj if it is not bad in Vj.

4 The colours were chosen as accessible for the colourblind. For a greyscale-friendly
version, see the full paper.

Dimension-Minimality and Primality of Counter Nets 237

Lemma 4 formalises the intuition that a bad segment can be pumped simul-
taneously with both the b and c segments, giving rise to a word accepted by Vj

but rejected by P.
Intuitively, Forms (ii) and (iii) indicate that all segments are bad. Indeed,

the i-th segment has a ≥ 0 cycle, so it can be pumped safely, and in Form (ii)
both b and c can be pumped using ≥ 0 cycles. Whereas in Form (iii) we can
pump b using a > 0 cycle, and can use it to compensate for pumping c, even if
the latter requires iterating a negative cycle.

Form (i) is the interesting case, where we use a > 0 cycle in the i-th segment
to compensate for pumping both b and c. The requirement that all segments up
to the i-th are ≥ 0 is at the core of our proof and is explained in Section 4.4.

Lemma 4. Suppose the l-th segment is bad in Vj, then there exist x, y, z ∈ N,
that are multiples of α, such that for every n ∈ N the following word w is accepted
by Vj.

wn = am1#am2# · · ·#aml−1#aml+xn#aml+1# · · ·#amk+1#bmb+yncmc+zn

Proof. We can choose z = α, then take y to be large enough so that Form (iii)
runs can compensate for negative cycles in cz using > 0 cycles in by, whilst not
decreasing the counters in Form (ii) runs. We can indeed find such a y ∈ N that
is a multiple of α, since α is divisible by all lengths of simple cycles. Finally, we
choose x so that Form (i) runs can compensate for cz and by using > 0 cycles
on ax in the l-th segment, again whilst not decreasing the counters in Forms (ii)
and (iii). ⊓⊔

Recall that our goal is to show that there is a segment l ∈ [k+1] that is bad
in every Vj , for j ∈ [k]. In Lemma 5, We show that each Vj has at most one
good segment. Therefore, there are at most k good segments in total, leaving at
least one segment that is bad in every Vj , as desired.

Lemma 5. Let j ∈ [k] and 0 ≤ r < s ≤ k + 1. Then the r-th or s-th segment is
bad in Vj.

Proof. Since j is fixed, denote Vj = ⟨Σ,Q,Q0, δ, F ⟩. We inductively define con-
stants {ni}k+1

i=1 , nb, nc ∈ N as follows. Suppose that n1 is a large-enough multiple
of α so that Lemma 2 guarantees a ≥ 0 cycle in any accepting run of Vj on an1

from some (q0, 0) with q0 ∈ Q0. Now, assume that we have defined n1, . . . nl−1,
and consider the word u = an1#an2# · · ·#anl−1#. Define n = |u| · W where
W is the maximal update of any transition of Vj . Since u consists of n

W let-
ters, n + 1 is greater than any counter value that can be observed in any run
of Vj on u. We define nl to be a multiple of α large enough so that Lemma 2
guarantees a ≥ 0 cycle when reading anl from any configuration of the form
{(q, n′) | q ∈ Q, n′ ≤ n + 1}. We set nb = nc = α, the choice of nb, nc is
somewhat arbitrary. Finally, we set w = an1# · · ·#ank+1#bnbcnc .

Now, for every x ∈ N, we obtain from w a word wx by pumping xα many
a’s in the r-th and s-th segments and pumping xα many b’s and c’s in their

238 S. Almagor et al.

segments. That is, let n′
i = ni + xα for i ∈ {r, s} and n′

i = ni for i /∈ {r, s},
and let n′

b = nb + xα and n′
c = nc + xα, then wx = an

′
1# · · ·#an

′
k+1#bn

′
bcn

′
c .

Observe that wx ∈ L(P). Indeed, since nr ≥ nb = α and ns ≥ nc = α we have
that nr + xα ≥ nb + xα and ns + xα ≥ nc + xα, so the r-th and s-th segments
can already pay for the b’s and c’s, respectively. In particular, wx ∈ L(Vj) via
some accepting N-run ρx.

We choose a particular value of x, as follows. Consider x and suppose some
accepting N-run ρx as above does not traverse a > 0 cycle neither in r-th nor s-th
segment. By Lemma 1, the maximal possible counter value of ρx after reading

an1# · · ·#anr+xα# · · ·#ans+xα# · · ·#ank+1#

is Mb = (k + 1 +
∑

z∈[k+1]\{r,s} nz) · W + 2|Q| · W . Crucially, this value does
not depend on x. Further, if there is no > 0 cycle in the segment of b’s as
well, again the maximal counter value of ρ up to the c segment is bounded by
Mc = (k + 2 +

∑
z∈[k+1]\{r,s} nz) ·W + 3|Q| ·W , that is independent of x and

Mb. By Lemma 2, we can now choose x large enough to satisfy that for every
accepting N-run ρx on wx:

1. If ρx does not traverse any > 0 cycle in the r-th or s-th segments, then ρx
has a ≥ 0 cycle reading b(nb+xα) from any configuration in {(q,M ′) | q ∈
Q, M ′ ≤ Mb}.

2. If ρx does not traverse any > 0 cycle in the r-th or s-th segment, nor in the
b segment, then ρx has a ≥ 0 cycle reading c(nc+xα) from any configuration
in {(q,M ′)|q ∈ Q, M ′ ≤ Mc}.

Having fixed x, we claim that for the constants of wx, one of the r-th or s-th
segment is bad in Vj . By construction, Lemma 2 guarantees that ρx has ≥ 0
cycles in segments 1, . . . r − 1. If ρx has a > 0 cycle in segment r, then ρx is of
Form (i):

an1#an2# · · ·#anr−1#anr+xα# · · ·#ans+xα# · · ·#ank+1#bnb+xαcnc+xα

and so the r-th segment must be bad in Vj .
Otherwise, if ρx does not have a > 0 cycle in the r-th segment, then the con-

struction in Lemma 2 guarantees ≥ 0 cycles in segments indexed r, r+1, . . . , s−1.
Indeed, for the r-th segment, we are guaranteed a ≥ 0 cycle reading anr , all the
more for anr+xα. As for segments indexed r + 1, . . . s− 1, if ρx does not have a
> 0 cycle in the r-th segment, then the maximal effect of segment r is |Q| ·W .
However, nr+1 was constructed to guarantee a ≥ 0 cycle even in case the effect
of segment r is Wnr ≥ Wα ≥ W |Q|.

If there is a > 0 cycle in segment s, then ρx is again of Form (i):

an1#an2# · · ·#ans−1#ans+xα#ans+1# · · ·#ank+1#bnb+xαcmc+xα

and so the s-th segment must be bad in Vj .
Otherwise, using the same arguments as for the r-th segment, we have that

segments indexed s + 1, . . . , k + 1 each contain a ≥ 0 cycle. In this case we are

Dimension-Minimality and Primality of Counter Nets 239

left with the b and c segments. The choice of x guarantees a ≥ 0 cycle in the b
segment. If ρx traverses a > 0 cycle in the b segment, then wx is of Form (iii).

an1#an2# · · ·#ank+1#bnb+xαcnc+xα

Finally, if there are no > 0 cycles in the b segment, then the choice of x again
guarantees a ≥ 0 cycle in the c segment, so wx is of Form (ii).

an1#an2# · · ·#ank+1#bnb+xαcnc+xα

In the two latter cases, both the r-th and the s-th segments are bad in Vj . ⊓⊔

4.4 Proof of Theorem 1

Given Lemma 5, we now know that each Vj has at most one good segment.
Therefore, all 1-CNs V1, . . . ,Vk together have at most k good segments. Recall
that the words we focus on have k+1 segments, and therefore there is at least one
segment, say the l-th segment, that is bad in every Vj . Note, however, that this
segment may correspond to different constants in each Vj . That is, there exists
constants {mj

i ,m
j
b,m

j
c | i ∈ [k + 1], j ∈ [k]} witnessing that the l-th segment is

bad for each Vj . We group the Vj according to the form of their accepting runs
ρj (see Definition 2):

(i) am
j
1#am

j
2# · · ·#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c ,

(ii) am
j
1#am

j
2# · · ·#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c , or

(iii) am
j
1#am

j
2# · · ·#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c .

We now find constants resulting in a single word for which the l-th segment is
bad in every Vj . First, for i ∈ [k+1]\{l}, we define Mi = max{mj

i | j ∈ [k]}, note
that these values are still multiples of α. Similarly, we define Mc = max{mj

c |
j ∈ [k]}. It remains to fix new constants L and B, which we do in phases in the
following. The resulting word is then

w = aM1# · · ·#aMl−1#aL#aMl+1# · · ·#aMk+1#bBcMc .
Most steps in the analysis below are based on Lemma 3 and Corollary 1. We

first, partially, handle Form (iii) runs. For such Vj , there is an accepting N-run
ρj on

am
j
1# · · ·#am

j
l−1#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c

By pumping ≥ 0 cycles as per Corollary 1 in all segments except l we obtain an
accepting N-run ρ′j on

aM1# · · ·#aMl−1#am
j
l#aMl+1# · · ·#aMk+1#bm

j
bcm

j
c .

We now pump arbitrary cycles in the c segment to construct a Z-run ρ′′j on

aM1# · · ·#aMl−1#am
j
l#aMl+1# · · ·#aMk+1#bm

j
bcMc .

Next, we compensate for possible negative cycles in the c segment by pumping
a > 0 cycle in the b segment. Thus, we construct an N-run ρ′′′j on

aM1# · · ·#aMl−1#am
j
l#aMl+1# · · ·#aMk+1#bBcMc ,

240 S. Almagor et al.

where B is chosen to be large enough such that ρ′′′j is an N-run for all Vj , j ∈ [k].
Note that it remains to fix L.

We now turn to Form (i) with a similar process we start with an accepting
N-run ρj on

am
j
1# · · ·#am

j
l−1#am

j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c .

Pump ≥ 0 cycles in segments indexed 1, . . . , l − 1 to obtain an accepting N-run
ρ′j on

aM1# · · ·#aMl−1#am
j
l#am

j
l+1# · · ·#am

j
k+1#bm

j
bcm

j
c .

Now, obtain a Z-run ρ′′j by pumping arbitrary cycles in the remaining segments,
including the b segment.

aM1# · · ·#aMl−1#am
j
l#aMl+1# · · ·#aMk+1#bBcMc

Again, compensate for negative cycles by taking L large enough so that pumping
> 0 cycles in the l-th segment yields an accepting N-run ρ′′′j on

aM1# · · ·#aMl−1#aL#aMl+1# · · ·#aMk+1#bBcMc .
We now return to Form (iii) and fix the l-th segment by pumping ≥ 0 cycles

to construct an accepting N-run on
aM1# · · ·#aMl−1#aL#aMl+1# · · ·#aMk+1#bBcMc .

We are left with Form (ii), which are the most straightforward to handle. We
simply pump ≥ 0 cycles in all segments to construct an accepting N-run ρ′j on

aM1# · · ·#aMl−1#aL#aMl+1# · · ·#aMk+1#bBcMc .
Note that the requirement for all segments before the l-th to be ≥ 0 is crucial,

otherwise we won’t be able to pump all the cycles in all forms simultaneously.
We now have that w is accepted by every Vj , and the l-th segment is bad

for all Vj . By applying Lemma 4 for each of the Vj and taking global constants
to be the products of the respective constants x, y, z > 0 for each Vj , we now
obtain X,Y, Z ∈ N, multiples of α, such that for every n ∈ N the word

wn = aM1# · · ·#aMl−1#aL+Xn#aMl+1# · · ·#aMk+1#bB+Y ncMc+Zn ∈ L(Vj)

is accepted by every Vj , for every j ∈ [k].
Finally, we choose n large enough to satisfy

∑
i∈[k+1]\{l} Mi < min{B +

Y n,Mc + Zn}, so that wn /∈ L(P). This is possible because, w.l.o.g, the l-th
segment can only pay for b, and the remaining segments [k+1] \ {l} cannot pay
for c. This contradicts the assumption that L(P) =

⋂
j∈[k] L(Vj), concluding the

proof of Theorem 1. ⊓⊔

Remark 3 (Unbounded Compositeness). The proof of Theorem 1 shows that if
words with k+1 segments are allowed, then the language is not (1, k)-composite,
we use this to establish primality. By intersecting L(P) with words that allow
at most k + 1 segments, we obtain a language that is not (1, k)-composite, but
it is not hard to show that it is (1, 2k+1)-composite. This demonstrates that a
2-CN can be composite, but may require unboundedly many factors.

The intuition behind Theorem 1 is that separate counters are needed to keep
track of the elements that “cover” bmb and cmc . Extending this idea to k-CN,

Dimension-Minimality and Primality of Counter Nets 241

we require that the a segments are partitioned to k different sets that cover k
“targets”.

Conjecture 1. The following language is the language of a prime k-CN:

Lk ={am1#am2# · · ·#amt#bn1
1 #bn2

2 · · ·#bnk

k |

∃I1, . . . , Ik ⊆ [t] ∀i ∈ [k],
∑
j∈Ii

mj ≥ ni ∧ ∀i ̸= j, Ii ∩ Ij = ∅}

While constructing a k-CN for Lk is a simple extension of Example 2, proving
that it is indeed prime does not seem to succumb to our techniques, and we leave
it as an important open problem (see Section 7).

5 Primality of Counter Nets is Undecidable

In this section we consider the primality and dimension-minimality decision
problems: given a k-CN A, decide whether A is prime and whether A is dimension-
minimal, respectively.

We use our prime 2-CN from Example 2 and the results of Section 4 to
show that both problems are undecidable. Our proof is by reduction from the
containment problem5 for 1-CN: given two 1-CN A,B over alphabet Σ, decide
whether L(A) ⊆ L(B). This problem was shown to be undecidable in [20].

We begin by describing the reduction that applies to both problems. Consider
an instance of 1-CN containment with two 1-CNs A and B over the alphabet Σ.
We construct a 2-CN C as follows. Let Λ be the alphabet of the 2-CN from Ex-
ample 2 and Theorem 1, and let $ /∈ Σ ∪ Λ be a fresh symbol. Intuitively, C
accepts words of the form u$v when either u ∈ L(A) and v is accepted by P
starting from the maximal counter A ended with on u, or when u ∈ L(B) and
v ∈ Λ∗.

Formally, we convert A and B to 2-CNs A′ and B′ by adding a counter and
never modifying its value, so a transition (p, σ, v, q) in A becomes (p, σ, (v, 0), q))
in A′, for example. We construct a 2-CN C as follows (see Fig. 3). We take A′, B′,
and P, and for every accepting state q of A′ we introduce a transition (q, $,0, p0)
where p0 is an initial state of P. We then add a new accepting state q⊤ and add
the transitions (q⊤, λ,0, q⊤) for every letter λ ∈ Λ, in other words q⊤ is an
accepting sink for Λ. We also add transitions (s, $,0, q⊤) from every accepting
state s of B′. The initial states are those of A′ and B′, and the accepting states
are those of P and q⊤.

Theorem 2. Primality and dimension-minimality are undecidable, already for
2-CN.

Proof. We prove the theorem by establishing that C is not prime if and only if
L(A) ⊆ L(B), and C is not dimension-minimal if and only if L(A) ⊆ L(B).
5 Actually, the complement thereof.

242 S. Almagor et al.

A′ P B′ q⊤
$,0 $,0

Λ,0

Fig. 3: The reduction from 1-CN non-containment to 2-CN primality and
dimension-minimality. The dashed accepting states are those of A′ and B′, and
are not accepting in the resulting construction.

Assume that L(A) ⊆ L(B), then the component of C containing A′ and P
(Fig. 3 left) becomes redundant. Since the component containing B′ and q⊤
only makes use of one counter, C is composite. Formally, we claim that L(C) =
{u$v | u ∈ L(B) ∧ v ∈ Λ∗}. Indeed, if w ∈ L(C) then w = u$v so either
u ∈ L(A′) = L(A) or u ∈ L(B), but since L(A) ⊆ L(B), this is equivalent to
u ∈ L(B), and in this case there is simply no condition on v ∈ Λ∗. Since the
second counter is not used in component containing B′ and q⊤ (Fig. 3 right), we
can construct a 1-CN equivalent to C by projecting on the first counter and just
deleting the component containing A′ and P completely. It follows that in this
case C is not dimension-minimal, and therefore is not prime either.

For the converse, assume that L(A) ̸⊆ L(B), and let u ∈ L(A)\L(B). Denote
m = max{eff(ρ) | ρ is an accepting run of A on u}. Thus, for a word v ∈ Λ∗ we
have that u$v ∈ L(C) if and only if v is accepted in P with initial counter m.
Assume by way of contradiction that C is not prime, then we can write L(C)
as an intersection of languages of 1-CNs. Loosely speaking, this will create a
contradiction as we will be able to argue that P is not prime. More precisely,
take v = am1#am2# · · ·#amk+1#bmbcmc for integers {mi}k+1

i=1 ,mb,mc ∈ N and
consider words of the form u$v. Our analysis from Section 4—specifically the
arguments used in the proof Lemma 5—on u$v can show, mutatis mutandis,
that the language of P is not composite regardless of any fixed initial counter
value (an analogue of Theorem 1).

We thus have that C is prime, and in particular C is dimension-minimal,
concluding the correctness of the reduction. ⊓⊔

To contrast the undecidability of primality in nondeterministic CNs, we turn
our attention to a decidable fragment of primality, for which we focus on deter-
ministic CNs. Recall that by Proposition 1, a k-DCN is dimension minimal if
and only if it is not (1, k− 1)-composite. Thus, dimension-minimality “captures”
primality. We show that regularity, which is equivalent to being (0, 1)-composite,
is decidable for k-DCNs for every dimension k.

For dimension one, regularity is already known to be decidable in EXPSPACE,
even for history-deterministic 1-CNs [5, Theorem 19]. History-determinism is a
restricted form of nondeterminism; history-deterministic CNs are less expressive
than nondeterministic CNs but more expressive than DCNs. However, already
for k ≥ 2, regularity is undecidable for history-deterministic k-CNs [5, Theorem
20].

Theorem 3. Regularity of k-DCN is decidable and is in EXPSPACE.

Dimension-Minimality and Primality of Counter Nets 243

We provide further details, including a proof of Theorem 3, in the full version.
In short, we translate our k-DCN into a regularity preserving Vector Addition
System (VAS) and use results on VAS regularity from [3, Theorem 4.5]. We
remark that an alternative approach may be taken by adapting the results of [12]
on regularity of VASS, although this seems more technically challenging because
CNs have accepting states.

6 Expressiveness Trade-Offs between Dimensions and
Nondeterminism

Theorem 1 implies that 2-CNs are more expressive than 1-CNs, and that non-
deterministic models are more expressive than deterministic ones. In particular,
a k-DCN can be decomposed by projection (Proposition 1), and have decidable
regularity (Theorem 3). It is therefore interesting to study the interplay be-
tween increasing the dimension and introducing nondeterminism. In this section
we present two results: first, we show that dimension and nondeterminism, are
incomparable notions, in a sense. Second, we show that increasing the dimen-
sion strictly increases expressiveness, for both CNs and DCNs. We remark that
the latter may seem like an intuitive and simple claim. However, to the best of
our knowledge it has never been proved, and moreover, it requires a nontrivial
approach to pumping with several counters.

We start by showing that nondeterminism can sometimes compensate for low
dimension. Let k ∈ N and Σ = {a1, . . . , ak, b1, . . . , bk, c}; consider the language
Lk = {an1

1 an2
2 · · · ank

k bic
m | i ∈ [k]∧ ni ≥ m}. It is easy to construct a k-DCN as

well as a 1-CN for Lk, as depicted by Figs. 4 and 5 for k = 3. To construct a
1-CN we guess which bi will be later read, and verify the guess using the single
counter in the ani

i part.

a2,(0,1,0) a3,(0,0,1)

b1,0

b2,0

b3,0

a1,(1,0,0) a2,(0,1,0) a3,(0,0,1) c,(−1,0,0)

c,(0,−1,0)

c,(0,0,−1)

Fig. 4: A 3-DCN for L3 = {an1
1 an2

2 an3
3 bic

m | i ∈ [3] ∧ ni ≥ m}. Intuitively,
the 3-DCN counts the number of occurrences of each letter, and decreases the
appropriate counter once the letter bi selects it.

We now show that Lk’s dimension cannot be minimised whilst maintaining
determinism.

Theorem 4. Lk is not recognisable by a (k − 1)-DCN.

Proof. Assume by way of contradiction that there exists a (k − 1)-DCN D =
⟨Σ,Q,Q0, δ, F ⟩ such that L(D) = Lk. Let n > |Q| and for every i ∈ [k] consider

244 S. Almagor et al.

a2,0 a3,0

a2,1 a3,0

a2,0 a3,1

a1,1 a2,0 a3,0

a1,0 a2,1 a3,0

a1,0 a2,0 a3,1

b
1 ,0

b2,0

b3
,0

c,−1

Fig. 5: A 1-CN for L3 = {an1
1 an2

2 an3
3 bic

m | i ∈ [3] ∧ ni ≥ m}. Intuitively, the CN
guesses which bi will be seen, and counts the respective occurrences of the letter
ai. Then, once bi is seen, the counter is decreased on c.

the word wi = an1a
n
2 · · · ankbicn ∈ Lk. Since D is deterministic and n > |Q|, all of

the accepting runs on the wi coincide up to the bi part and have cycles in each
ani segment as well as in the cn segment (the latter may differ according to i).
Let M be the product of the lengths of all these cycles.

First, observe that the cycles in all of the ani segments cannot decrease any
counter. Indeed, otherwise by pumping such a cycle for large enough t > 0 times,
there would not exist an N-run on words with the prefix an1 · · · ani−1a

n+tM
i . This

creates a contradiction since, with an appropriate suffix, such words can be
accepted.

Thus, all ai cycles have non-negative effects for all counters. Indeed, for each
counter i – associate with i the minimal segment index whose cycle strictly in-
creases i. Since there are k−1 counters and k segments this map is not surjective,
in other words, there is a segment (without loss of generality, the ak segment)
such that every counter that is increased in the ak cycle is also increased in a
previous segment. Therefore, there exist s, t > 0 such that the word

an+sM
1 an+sM

2 · · · as+sM
k−1 ankbkc

n+tM /∈ Lk

is accepted by D, which is a contradiction.

We now turn to show that conversely, dimension can sometimes compensate
for nondeterminism. Moreover, we show that there is a strict hierarchy of expres-
siveness with respect to dimension. Specifically, for k ∈ N consider the language
Hk = {am1

1 am2
2 · · · amk

k bn1
1 bn2

2 · · · bnk

k | ∀1 ≤ i ≤ k, mi ≥ ni}.

Theorem 5. Hk is recognisable by a k-DCN, but not by a (k − 1)-CN.

Proof (sketch). Constructing a k-DCN for Hk is straightforward, by using the
i-th counter to check that mi ≥ ni, for each i ∈ [k].

We turn to argue that Hk is not recognisable by a (k − 1)-CN (See the
full version for a complete proof). Assume by way of contradiction that A =

Dimension-Minimality and Primality of Counter Nets 245

⟨Σ,Q,Q0, δ, F ⟩ is a (k − 1)-CN with L(A) = Hk. We first observe that there
exists m1 ∈ N large enough so that every run of A on am1

1 must traverse a non-
negative cycle, i.e., a cycle whose overall effect is u1 ∈ Zk−1 such that u1[i] ≥ 0
for all i ∈ [k− 1]. Indeed, this is immediate by a “uniformly bounded” version of
Dickson’s lemma [15]; any long-enough “controlled” sequence of vectors in Nk−1

must contain an r-increasing chain, for any r ∈ N.
By repeating this argument we can ultimately find m1, . . . ,mk such that any

run of A on am1
1 am2

2 · · · amk

k traverses a non-negative cycle in each aj segment for
j ∈ [k]. Consider now the word w = am1

1 am2
2 · · · amk

k bm1
1 bm2

2 · · · bmk

k ∈ Hk, then
there exists an accepting run ρ of A on w such that for each j ∈ [k], the run ρ
traverses a non-negative cycle in segment aj , with effect uj ∈ Nk−1.

Consider the vectors u1, . . . ,uk. We claim that there exists ℓ ∈ [k] such that
the support of uℓ is covered by u1, . . . ,uℓ−1 in the following sense: for every
counter i ∈ [k−1], if uℓ[i] > 0, then there exists j < ℓ such that uj [i] > 0. Indeed,
this holds since otherwise every uj must contribute a fresh positive coordinate
to the union of supports of the previous vectors, but there are k vectors and only
k − 1 coordinates.

Next, observe that since each uj is a non-negative cycle taken in ρ, then
it can be pumped without decreasing any following counters, and hence induce
an accepting run on a pumped word. Intuitively, we now proceed by pumping
all the uj cycles for j < ℓ for some large-enough number of times M , which
enables us to remove one iteration of the cycle with effect uℓ while maintaining
an accepting run on a word of the form:

w′ = am1+Md1
1 am2+Md2

2 · · · amℓ−1+Mdℓ−1

ℓ−1 amℓ−dℓ

ℓ a
mℓ+1

ℓ+1 · · · amk

k bm1
1 bm2

2 · · · bmk

k .

Since mℓ > mℓ−dℓ, the bℓ segment is longer than the aℓ segment. Thus w′ /∈ Hk,
this yields a contradiction. ⊓⊔

Apart from showing that nondeterminism cannot always compensate for in-
creased dimension, Theorem 5 also shows that for every dimension k, there are
languages recognisable by a (k + 1)-DCN (and in particular by a (k + 1)-CN),
but not by any k-CN (and in particular not by any k-DCN). Thus, we obtain
the following hierarchy.

Corollary 2. For every k ∈ N, k-CNs (resp. k-DCNs) are strictly less expres-
sive than (k + 1)-CNs (resp. (k + 1)-DCNs).

7 Discussion

Broadly, this work explores the interplay between the dimension of a CN and its
expressive power. This is done by studying the dimension-minimality problem,
where we ask whether the dimension of a given CN can be decreased while pre-
serving its language, and by the more involved primality problem, which allows a
decomposition to multiple CNs of lower dimension. We show that both primality
and dimension-minimality are undecidable. Moreover, they remain undecidable

246 S. Almagor et al.

even when we discard the degenerate dimension 0 case, which corresponds to
finite memory, i.e., regular languages. On the other hand, this degenerate case
is one where we can show decidability for DCNs.

This work also highlights a technical shortcoming of current understanding
of high-dimensional CNs: pumping arguments in the presence of k dimensions
and nondeterminism are very involved, and are (to our best efforts) insufficient
to prove Conjecture 1. To this end, we present novel pumping arguments in the
proof of Theorem 1 and to some extent in the proof of Theorem 5, which make
progress towards pumping in the presence of k dimensions and nondeterminism.

References

1. Shaull Almagor, Udi Boker, Piotr Hofman, and Patrick Totzke. Parametrized
universality problems for one-counter nets. In 31st International Conference on
Concurrency Theory (CONCUR 2020). Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik, 2020.

2. Shaull Almagor and Asaf Yeshurun. Determinization of one-counter nets. In
33rd International Conference on Concurrency Theory (CONCUR 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

3. Michel Blockelet and Sylvain Schmitz. Model checking coverability graphs of
vector addition systems. In Filip Murlak and Piotr Sankowski, editors, Mathe-
matical Foundations of Computer Science 2011 - 36th International Symposium,
MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings, volume 6907
of Lecture Notes in Computer Science, pages 108–119. Springer, 2011. doi:
10.1007/978-3-642-22993-0_13.

4. Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase,
Ranko Lazić, Pierre McKenzie, and Patrick Totzke. The reachability problem for
two-dimensional vector addition systems with states. Journal of the ACM (JACM),
68(5):1–43, 2021.

5. Sougata Bose, David Purser, and Patrick Totzke. History-deterministic vector
addition systems. arXiv preprint arXiv:2305.01981, 2023.

6. Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu. Diagnosability of
discrete-event systems using labeled Petri nets. IEEE Transactions on Automation
Science and Engineering, 11(1):144–153, 2013.

7. Wojciech Czerwiński, Diego Figueira, and Piotr Hofman. Universality problem
for unambiguous vass. In 31st International Conference on Concurrency Theory
(CONCUR 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

8. Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip
Mazowiecki. Reachability in fixed dimension vector addition systems with states. In
31st International Conference on Concurrency Theory (CONCUR 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

9. Wojciech Czerwiński, Slawomir Lasota, Christof Löding, and Radoslaw Piórkowski.
New pumping technique for 2-dimensional VASS. In 44th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

10. Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski. Improved lower
bounds for reachability in vector addition systems. In 48th International Col-
loquium on Automata, Languages, and Programming (ICALP 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

Dimension-Minimality and Primality of Counter Nets 247

https://doi.org/10.1007/978-3-642-22993-0_13
https://doi.org/10.1007/978-3-642-22993-0_13

11. Wojciech Czerwiński and Łukasz Orlikowski. Reachability in vector addition sys-
tems is Ackermann-complete. In 2021 IEEE 62nd Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 1229–1240. IEEE, 2022.

12. Stéphane Demri. On selective unboundedness of VASS. J. Comput. Syst. Sci.,
79(5):689–713, 2013. doi:10.1016/j.jcss.2013.01.014.

13. Javier Esparza. Decidability and complexity of petri net problems—an introduc-
tion. Lectures on Petri Nets I: Basic Models: Advances in Petri Nets, pages 374–
428, 2005.

14. Diego Figueira. Co-finiteness of VASS coverability languages. working paper or
preprint, July 2019. URL: https://hal.science/hal-02193089.

15. Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen.
Ackermannian and primitive-recursive bounds with dickson’s lemma. In 2011 IEEE
26th Annual Symposium on Logic in Computer Science, pages 269–278. IEEE, 2011.

16. Alain Finkel, Jérôme Leroux, and Grégoire Sutre. Reachability for two-counter
machines with one test and one reset. In FSTTCS 2018-38th IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
volume 122, pages 31–1. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

17. Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter
machines. Theoretical Computer Science, 7(3):311–324, 1978.

18. Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reach-
ability in succinct and parametric one-counter automata. In CONCUR 2009-
Concurrency Theory: 20th International Conference, CONCUR 2009, Bologna,
Italy, September 1-4, 2009. Proceedings 20, pages 369–383. Springer, 2009.

19. Michel Henri Theódore Hack. Petri net language. Computation Structures Group
Memo 124, 1976. URL: http://publications.csail.mit.edu/lcs/pubs/pdf/
MIT-LCS-TR-159.pdf.

20. Piotr Hofman, Richard Mayr, and Patrick Totzke. Decidability of weak simulation
on one-counter nets. In 2013 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 203–212. IEEE, 2013.

21. Piotr Hofman and Patrick Totzke. Trace inclusion for one-counter nets revis-
ited. In Reachability Problems: 8th International Workshop, RP 2014, Oxford,
UK, September 22-24, 2014. Proceedings 8, pages 151–162. Springer, 2014.

22. I. Jecker, N. Mazzocchi, and P. Wolf. Decomposing permutation automata. In
Proc. 32nd CONCUR, volume 203 of LIPIcs, pages 18:1–18:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

23. Ismael R Jecker, Orna Kupferman, and Nicolas Mazzocchi. Unary prime languages.
In 45th International Symposium on Mathematical Foundations of Computer Sci-
ence, volume 170, 2020.

24. Orna Kupferman and Jonathan Mosheiff. Prime languages. Information and Com-
putation, 240:90–107, 2015.

25. Jérôme Leroux. The reachability problem for petri nets is not primitive recur-
sive. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 1241–1252. IEEE, 2022.

26. Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition
systems with states. In CONCUR, volume 4, pages 402–416. Springer, 2004.

27. Elaine Render and Mark Kambites. Rational subsets of polycyclic monoids and
valence automata. Information and Computation, 207(11):1329–1339, 2009.

28. Rüdiger Valk and Guy Vidal-Naquet. Petri nets and regular languages. Journal
of Computer and system Sciences, 23(3):299–325, 1981.

248 S. Almagor et al.

https://doi.org/10.1016/j.jcss.2013.01.014
https://hal.science/hal-02193089
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-159.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-159.pdf

Dimension-Minimality and Primality of Counter Nets 249

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Parameterized Broadcast Networks with
Registers: from NP to the Frontiers of

Decidability⋆

Abstract. We consider the parameterized verification of networks of
agents which communicate through unreliable broadcasts. In this model,
agents have local registers whose values are unordered and initially dis-
tinct and may therefore be thought of as identifiers. When an agent
broadcasts a message, it appends to the message the value stored in one
of its registers. Upon reception, an agent can store the received value
or test it for equality against one of its own registers. We consider the
coverability problem, where one asks whether a given state of the system
may be reached by at least one agent. We establish that this problem is
decidable, although non-primitive recursive. We contrast this with the
undecidability of the closely related target problem where all agents must
synchronize on a given state. On the other hand, we show that the cov-
erability problem is NP-complete when each agent only has one register.

Keywords: Parameterized verification · Well quasi-orders · Distributed
systems

1 Introduction

We consider Broadcast Networks of Register Automata (BNRA), a model for
networks of agents communicating by broadcasts. These systems are composed
of an arbitrary number of agents whose behavior is specified with a finite au-
tomaton. This automaton is equipped with a finite set of private registers that
contain values from an infinite unordered set. Initially, registers all contain dis-
tinct values, so these values can be used as identifiers. A broadcast message is
composed of a symbol from a finite alphabet along with the value of one of the
sender’s registers. When an agent broadcasts a message, any subset of agents
may receive it; this models unreliable systems with unexpected crashes and dis-
connections. Upon reception, an agent may store the received value or test it for
equality with one of its register values. For example, an agent can check that
several received messages have the same value.

⋆ Partly supported by ANR project PaVeDyS (ANR-23-CE48-0005).

c© The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 250–270, 2024.
https://doi.org/10.1007/978-3-031-57231-9_12

Lucie Guillou1, Corto Mascle2, and Nicolas Waldburger3(B)

1 IRIF, CNRS, Université Paris Cité, Paris, France
guillou@irif.fr

2 LaBRI, Université de Bordeaux, Bordeaux, France
corto.mascle@labri.fr

3 IRISA, Université de Rennes, Rennes, France
nicolas.waldburger@irisa.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57231-9_12&domain=pdf

This model was introduced in [10], as a natural extension of Reconfigurable
Broadcast Networks [12]. In [10], the authors established that coverability is
undecidable if the agents are allowed to send two values per message. They
moreover claimed that, with one value per message, coverability was decidable
and PSPACE-complete; however, the proof turned out to be incorrect [22]. As
we will see, the complexity of that problem is in fact much higher.

In this paper we establish the decidability of the coverability problem and
its completeness for the hyper-Ackermannian complexity class Fωω , showing
that the problem has nonprimitive recursive complexity. The lower bound comes
from lossy channel systems, which consist (in their simplest version) of a finite
automaton that uses an unreliable FIFO memory from which any letter may
be erased at any time [3, 8, 26]. We further establish that our model lies at the
frontier of decidability by showing undecidability of the target problem (where
all agents must synchronize in a given state). We contrast these results with the
NP-completeness of the coverability problem if each agent has only one register.

Related work Broadcast protocols are a widely studied class of systems in which
processes are represented by nodes of a graph and can send messages to their
neighbors in the graph. There are many versions depending on how one models
processes, the communication graph, the shape of messages... A model with a
fully connected communication graph and messages ranging over a finite alpha-
bet was presented in [13]. When working with parameterized questions over this
model (i.e., working with systems of arbitrary size), many basic problems are
undecidable [14]; similar negative results were found for Ad Hoc Networks where
the communication graph is fixed but arbitrary [12]. This lead the community
to consider Reconfigurable Broadcast Networks (RBN) where a broadcast can
be received by an arbitrary subset of agents [12].

Parameterized verification problems over RBN have been the subject of ex-
tensive study in recent years, concerning for instance reachability questions [5,
11], liveness [9] or alternative communication assumptions [4]; however, RBN
have weak expressivity, in particular because agents are anonymous. In [10],
RBN were extended to BNRA, the model studied in this article, by the addition
of registers allowing processes to exchange identifiers.

Other approaches exist to define parameterized models with registers [6],
such as dynamic register automata in which processes are allowed to spawn
other processes with new identifiers and communicate integers values [1]. While
basic problems on these models are in general undecidable, some restrictions on
communications allow to obtain decidability [2, 20].

Parameterized verification problems often relate to the theory of well quasi-
orders and the associated high complexities obtained from bounds on the length
of sequences with no increasing pair (see for example [25]). In particular, our
model is linked to data nets, a classical model connected to well-quasi-orders.
Data nets are Petri nets in which tokens are labeled with natural numbers and
can exchange and compare their labels using inequality tests [18]; in this model,
the coverability problem is Fωωω -complete [15]. When one restricts data nets to
only equality tests, the coverability problem becomes Fωω -complete [21]. Data

Parameterized broadcast networks with registers 251

nets with equality tests do not subsume BNRA. Indeed, in data nets, each process
can only carry one integer at a time, and problems on models of data nets where
tokens carry tuples of integers are typically undecidable [17].

Overview We start with the model definition and some preliminary results in
Section 2. As our decidability proof is quite technical, we start by proving de-
cidability of the coverability problem in a subcase called signature protocols in
Section 3. We then rely on the intuitions built in that subcase to generalize the
proof to the general case in Section 4. We also show the undecidability of the
closely-related target problem. Finally, we prove the NP-completeness of the
coverability problem for protocols with one register in Section 5. Due to space
constraints, a lot of proofs, as well as some technical definitions, are only sketched
in this version. Detailed proofs can be found in the full version, available here.

In this document, each notion is linked to its definition using the knowledge
package. On electronic devices, clicking on words or symbols allows to access
their definitions.

2 Preliminaries

2.1 Definitions of the Model

A Broadcast Network of Register Automata (BNRA) [10] is a model describing
broadcast networks of agents with local registers. A finite transition system
describes the behavior of an agent; an agent can broadcast and receive messages
with integer values, store them in local registers and perform (dis)equality tests.
There are arbitrarily many agents. When an agent broadcasts a message, every
other agent may receive it, but does not have to do so.

Definition 1. A protocol with r registers is a tuple P = (Q,M, ∆, q0) with Q
a finite set of states, q0 ∈ Q an initial state, M a finite set of message types
and ∆ ⊆ Q× Op×Q a finite set of transitions, with operations Op =

{br(m, i), rec(m, i, ∗), rec(m, i, ↓), rec(m, i,=), rec(m, i, ̸=) |m ∈ M, 1 ≤ i ≤ r}.

Label br stands for broadcasts and rec for receptions. In a reception rec(m, i, α),
α is its action. The set of actions is Actions := {=, ̸=, ↓, ∗}, where ‘=’ is an
equality test, ‘ ̸=’ is a disequality test, ‘ ↓ ’ is a store action and ‘∗’ is a dummy
action with no effect. The size of P is |P| := |Q|+ |M|+ |∆|+ r.

We now define the semantics of those systems. Essentially, we have a finite
set of agents with r registers each; all registers initially contain distinct values. A
step consists of an agent broadcasting a message that other agents may receive.

Definition 2 (Semantics). Let (Q,M, ∆, q0) be a protocol with r registers,
and A a finite non-empty set of agents. A configuration over A is a function

252 L. Guillou, C. Mascle, N. Waldburger

https://arxiv.org/abs/2306.01517
https://www.irif.fr/~colcombe/knowledge_en.html
https://www.irif.fr/~colcombe/knowledge_en.html

q0 q1

q3q2 q4q5

br(m1, 1)

br(m2, 1)rec(m2, 1, ↓) rec(m3, 2, ↓)

br(m3, 2)
br(m4, 1)

rec(m4, 1,=)

br(m4, 1)

rec(m1, 1,=)

Fig. 1: Example of a protocol.

γ : A → Q×Nr mapping each agent to its state and its register values. We write
st(γ) for the state component of γ and data(γ) for its register component.

An initial configuration γ is one where for all a ∈ A, st(γ)(a) = q0 and
data(γ)(a, i) ̸= data(γ)(a′, i′) for all (a, i) ̸= (a′, i′).

Given a finite non-empty set of agents A and two configurations γ, γ′ over A,
a step γ −→ γ′ is defined when there exist m ∈ M, a0 ∈ A and i ∈ [1, r] such that
(st(γ)(a0), br(m, i), st(γ

′)(a0)) ∈ ∆, data(γ)(a0) = data(γ′)(a0) and, for all a ̸=
a0, either γ

′(a) = γ(a) or there exists (st(γ)(a), rec(m, j, α), st(γ′)(a)) ∈ ∆ s.t.
data(γ′)(a, j′) = data(γ)(a, j′) for j′ ̸= j and:

– if α = ‘∗’ then data(γ′)(a, j) = data(γ)(a, j),
– if α = ‘ ↓ ’ then data(γ′)(a, j) = data(γ)(a0, i),
– if α = ‘=’ then data(γ′)(a, j) = data(γ)(a, j) = data(γ)(a0, i),
– if α = ‘ ̸=’ then data(γ′)(a, j) = data(γ)(a, j) ̸= data(γ)(a0, i).

A run over A is a sequence of steps ρ : γ0 −→ γ1 −→ · · · −→ γk with γ0, . . . , γk

configurations over A. We write γ0
∗−→ γk when there exists such a run. A run is

initial when γ0 is an initial configuration.

Remark 3. In our model, agents may only send one value per message. Indeed,
coverability is undecidable if agents can broadcast several values at once [10].

Example 4. Figure 1 shows a protocol with 2 registers. Let A = {a1, a2}. We
denote by ⟨st(γ)(a1), data(γ)(a1), st(γ)(a2), data(γ)(a2)⟩ a configuration γ over
A. The following sequence is an initial run:

⟨q0, (1, 2), q0, (3, 4)⟩ −→ ⟨q1, (1, 2), q2, (1, 4)⟩ −→ ⟨q3, (1, 4), q3, (1, 4)⟩
−→ ⟨q4, (1, 4), q3, (1, 4)⟩ −→ ⟨q4, (1, 4), q4, (1, 4)⟩

The broadcast messages are, in this order: (m2, 1) by a1, (m3, 4) by a2, (m4, 1)
by a2 and (m4, 1) by a1. In this run, each broadcast message is received by the
other agent; in general, however, this does not have to be true. ⊓⊔

Remark 5. From a run ρ : γ0
∗−→ γ, we can build a larger run ρ′ in which, for

each agent a of ρ, there are arbitrarily many extra agents in ρ′ that end in the
same state as a, all with distinct register values. To obtain this, ρ′ make many

Parameterized broadcast networks with registers 253

copies of ρ run in parallel on disjoint sets of agents. Because all these copies of
ρ do not interact with one another and because all agents start with distinct
values in initial configurations, the different copies of ρ have no register values
in common. This property is called copycat principle: if state q is coverable, then
for all n there exists an augmented run which puts n agents on q.

Definition 6. The coverability problem Cover asks, given a protocol P and
a state qf , whether there is a finite non-empty set of agents A, an initial run

γ0
∗−→ γf over A that covers qf , i.e., there is a ∈ A such that st(γf)(a) = qf .
The target problem Target asks, given a protocol P and a state qf , whether

there is there is a finite non-empty set of agents A and an initial run γ0
∗−→ γf

over A such that, for every a ∈ A, st(γf)(a) = qf , i.e., all agents end on qf .

Example 7. Let P the protocol of Figure 1. As proven in Example 4, (P, q4) is a
positive instance of Cover and Target. However, let P ′ the protocol obtained
from P by removing the loop on q4; (P ′, q4) becomes a negative instance of
Target. Indeed, there must be an agent staying on q3 to broadcast m4. Also,
(P, q5) is a negative instance of Cover: we would need to be able to have one
agent on q2 and one agent on q0 with the same value in their first registers.
However, an agent in q0 has performed no transition so it cannot share register
values with other agents. ⊓⊔

Remark 8. In [10], the authors consider the query problem where one looks for
a run reaching a configuration satisfying some queries. In fact, this problem
exponentially reduces to Cover hence our complexity result of Fωω also holds for
the query problem. In the case with one register, one can even find a polynomial-
time reduction hence our NP result also holds with queries.

We finally introduce signature BNRA, an interesting restriction of our model
where register 1 is broadcast-only and all other registers are reception-only. Said
otherwise, the first register acts as a permanent identifier with which agents sign
their messages. An example of such a protocol is displayed in Fig. 2. Under this
restriction, a message is composed of a message type along with the identifier
of the sender. This restriction is relevant for pedagogical purposes: we will see
that it falls into the same complexity class as the general case but makes the
decidability procedure simpler.

Definition 9 (Signature protocols). A signature protocol with r registers is
a protocol P = (Q,M, ∆, q0) where register 1 appears only in broadcasts in ∆
and registers i ≥ 2 appear only in receptions in ∆.

2.2 Classical Definitions

Fast-growing hierarchy For α an ordinal in Cantor normal form, we denote by Fα

the class of functions corresponding to level α in the Fast-Growing Hierarchy.
We denote by Fα the associated complexity class and use the notion of Fα-
completeness. All these notions are defined in [23]. We will specifically work with

254 L. Guillou, C. Mascle, N. Waldburger

complexity class Fωω . For readers unfamiliar with these notions, Fωω -complete
problems are decidable but with very high complexity (non-primitive recursive,
and even much higher than the Ackermann class Fω).

We highlight that our main result is the decidability of the problem. We show
that the problem lies in Fωω because it does not complicate our decidability proof
significantly; also, it fits nicely into the landscape of high-complexity problems
arising from well quasi-orders.

Well-quasi orders For our decidability result, we rely on the theory of well
quasi-orders in the context of subword ordering. Let Σ be a finite alphabet,
w1, w2 ∈ Σ∗, w1 is a subword of w2, denoted w1 ⪯ w2, when w1 can be obtained
from w2 by erasing some letters. A sequence of words w0, w1, . . . is good if there
exist i < j such that wi ⪯ wj , and bad otherwise. Higman’s lemma [16] states
that every bad sequence of words over a finite alphabet is finite, but there is
no uniform bound. In order to bound the length of all bad sequences, one must
bound the growth of the sequence of words. We will use the following result,
known as the Length function theorem [24]:

Theorem 10 (Length function theorem [24]). Let Σ a finite alphabet and
g : N → N a primitive recursive function. There exists a function f ∈ Fω|Σ|−1

such that, for all n ∈ N, every bad sequence w1, w2, . . . such that |wi| ≤ g(i)(n)
for all i has at most f(n) terms (where g(i) denotes g applied i times).

2.3 A Complexity Lower Bound for COVER Using LCS

Lossy channel systems (LCS) are systems where finite-state processes communi-
cate by sending messages from a finite alphabet through lossy FIFO channels.
Unlike in the non-lossy case [7], reachability of a state is decidable for lossy chan-
nel systems [3], but has non-primitive recursive complexity [26] and is in fact
Fωω -complete [8]. By simulating LCS using BNRA, we obtain our Fωω lower
bound for the coverability problem:

Proposition 11. Cover for signature BNRA is Fωω -hard.

Proof sketch. Given an LCS L, we build a signature protocol P with two regis-
ters. Each agent starts by receiving a foreign identifier and storing it in its second
register; using equality tests, it then only accepts messages with this identifier.
Each agent has at most one predecessor, so the communication graph is a forest
where messages propagate from roots to leaves. Each branch simulates an execu-
tion of L. Each agent of the branch simulates a step of the execution: it receives
from its predecessor a configuration of L, chooses the next configuration of L
and broadcasts it, sending first the location of L and then, letter by letter, the
content of the channel. It could be that some messages are not received, hence
the lossiness. ⊓⊔

Parameterized broadcast networks with registers 255

3 Coverability Decidability for Signature Protocols

This section and the next one are dedicated to the proof of our main result:

Theorem 12. Cover for BNRA is decidable and Fωω -complete.

For the sake of clarity, in this section, we will first focus on the case of
signature BNRA. As a preliminary, we start by defining a notion of local run
meant to represent the projection of a run onto a given agent.

3.1 Local runs

A local configuration is a pair (q, ν) ∈ Q × Nr. An internal step from (q, ν) to

(q′, ν′) with transition δ ∈ ∆, denoted (q, ν)
int(δ)−−−→ (q′, ν′), is defined when ν = ν′

and δ = (q,br(m, i), q′) is a broadcast. A reception step from (q, ν) to (q′, ν′)

with transition δ ∈ ∆ and value v ∈ N, denoted (q, ν)
ext(δ,v)−−−−→ (q′, ν′), is defined

when δ is of the form (q, rec(m, j, α), q′) with ν(j′) = ν′(j′) for all j′ ̸= j and:
– if α = ‘∗’ then ν(j) = ν′(j),
– if α = ‘ ↓ ’ then ν′(j) = v,

– if α = ‘=’ then ν(j) = ν′(j) = v,
– if α = ‘ ̸=’ then ν(j) = ν′(j) ̸= v.

Such a reception step corresponds to receiving message (m, v); in a local run,
one does not specify the origin of a received message. A local step (q, ν) −→ (q′, ν′)
is either a reception step or an internal step. A local run u is a sequence of local
steps denoted (q0, ν0)

∗−→ (q, ν). Its length |u| is its number of steps.
A value v ∈ N appearing in u is initial if it appears in ν0 and non-initial

otherwise. For v ∈ N, the v-input Inv(u) (resp. v-output Outv(u)) is the sequence
m0 · · ·mℓ ∈ M∗ of message types received (resp. broadcast) with value v in u.

3.2 Unfolding Trees

We first prove decidability of Cover for signature BNRA. Note that, in signature
protocols, the initial values of reception-only registers are not relevant as they
can never be shared with other agents. We deduce from this idea the following
informal observation:

Observation 13 In signature BNRA, when some agent receives a message, it
can compare the value of the message only with the ones of previously received
messages, i.e., check whether the sender is the same.

If we want to turn a local run u of an agent a into an actual run, we must
match a’s receptions with broadcasts. Because of Observation 13, what matters
is not the actual values of the receptions in u but which ones are equal to which.
Therefore, for a value v received in u, if m1 . . .mk ∈ M∗ are the message types
received in u with value v in this order, it means that to execute u, a need
another agent a′ to broadcast messages types m1 to mk, all with the same value.
We describe what an agent needs from other agents as a set of specifications
which are words of M∗.

256 L. Guillou, C. Mascle, N. Waldburger

q0

q1 q2 q3 q4

q5

q6

q7

br(go, 1)

br(hlt, 1)
br(rdy, 1)br(rdy, 1)

rec(rdy, 2, ↓)

rec(rdy, 3, ↓) rec(go, 2,=) rec(hlt, 3,=)

rec(rdy, 2, ∗)

Fig. 2: Example of a signature protocol.

To represent runs, we consider unfolding trees that abstract runs by repre-
senting such specifications, dependencies between them and how they are carried
out. In this tree, each node is assigned a local run and the specification that it
carries out. Because of copycat arguments, we will in fact be able to duplicate
agents so that each agent only accomplishes one task, hence the tree structure.

Definition 14. An unfolding tree τ over P is a finite tree where nodes µ have
three labels:

– a local run of P, written lr(µ);
– a value in N, written val(µ);
– a specification spec(µ) ∈ M∗.

Moreover, all nodes µ in τ must satisfy the three following conditions:

(i) Initial values of lr(µ) are never received in lr(µ),
(ii) spec(µ) ⪯ Outval(µ)(lr(µ)), (recall that ⪯ denotes the subword relation)
(iii) For each value v received in lr(µ), µ has a child µ′ s.t. Inv(lr(µ)) ⪯ spec(µ′).

Lastly, given τ an unfolding tree, we define its size by |τ | :=
∑
µ∈τ |µ| where

|µ| := |lr(µ)| + |spec(µ)|. Note that the size of τ takes into account the size of
its nodes, so that a tree τ can be stored in space polynomial in |τ | (renaming the
values appearing in τ if needed).

We explain this definition. Condition (i) enforces that the local run cannot
cheat by receiving its initial values. Condition (ii) expresses that lr(µ) broadcasts
(at least) the messages of spec(µ). We can use the subword relation ⪯ (instead
of equality) because messages do not have to be received. Condition (iii) expresses
that, for each value v received in the local run lr(µ), µ has a child who is able
to broadcast the sequence of messages that lr(µ) receives with value v.

Example 15. Figure 2 provides an example of a signature protocol. Let A =
{a1, a2, a3}. We denote a configuration γ by ⟨st(γ)(a1), (data(γ)(a1)),
st(γ)(a2), (data(γ)(a2)), st(γ)(a3), (data(γ)(a3))⟩. Irrelevant register values are
denoted by . Let ρ be the run over A of initial configuration
⟨q0, (1, ,), q0, (2, ,), q0, (3, ,)⟩ where the following occurs:

Parameterized broadcast networks with registers 257

Node µ1 (a1 in ρ)
spec = ε

v = 1

reg 1
reg 2
reg 3

q0
1

→
ext(δ01, 2)

q1
1
2

→
ext(δ12, 3)

q2
1
2
3

→
ext(δ23, 2)

q3
1
2
3

→
ext(δ34, 3)

q4
1
2
3

q0
2

→
int(δ00)

q5
2

→
ext(δ05, 4)

q5
2

→
int(δ56)

q6
2Node µ2 (a2)

spec = rdy · go
v = 2

q0
3

→
int(δ00)

q0
3

→
ext(δ05, 5)

q5
3

→
int(δ57)

q7
3 Node µ3 (a3)

spec = rdy · hlt
v = 3

q0
4

→
int(δ00)

q0
4Node µ4 (a3)

spec = rdy
v = 4

q0
5

→
ext(δ05, 6)

q5
5

→
int(δ55)

q5
5 Node µ5 (a2)

spec = rdy
v = 5

q0
6

→
int(δ00)

q0
6 Node µ6 (a3)

spec = rdy
v = 6

Fig. 3: Example of an unfolding tree derived from ρ. Grids correspond to local
runs, a column of a grid is a local configuration. Transition δij is the transition
between state qi and state qj , for example δ01 = (q0, rec(rdy, 2, ↓), q1). If δ is a
reception of m ∈ M, ext(δ, v) corresponds to receiving message (m, v); if δ is a
broadcast of m ∈ M, int(δ) corresponds to broadcasting (m, id) where id is the
value in the first register of the agent. Initial values of reception-only registers
are irrevelant and written as ‘ ’. Colors correspond to message types.

– a2 broadcasts rdy, a1 receives: ⟨q1, (1, 2,), q0, (2, ,), q0, (3, ,)⟩,
– a3 broadcasts rdy, a1 and a2 receive: ⟨q2, (1, 2, 3), q5, (2, ,), q0, (3, ,)⟩,
– a2 broadcasts rdy, a3 receives: ⟨q2, (1, 2, 3), q5, (2, ,), q5, (3, ,)⟩,
– a2 broadcasts go, a1 receives: ⟨q3, (1, 2, 3), q6, (2, ,), q5, (3, ,)⟩,
– a3 broadcasts hlt, a1 receives: ⟨q4, (1, 2, 3), q6, (2, ,), q7, (3, ,)⟩.

Figure 3 provides an unfolding tree derived from ρ by applying a procedure
introduced later. Because agents a2 and a3 broadcast to several other agents,
they each correspond to several nodes of the tree.

We explain why this tree is an unfolding tree. Condition (i) is trivially sat-
isfied. Condition (ii) holds at every node because the local run of each node
exactly broadcasts the specification of the node. Condition (iii) is satisfied at
µ1: In2(lr(µ1)) = rdy · go = spec(µ2) and In3(lr(µ1)) = rdy · hlt = spec(µ3). It is
also satisfied at µ2, µ3 and µ5 because their local runs only receive rdy and they
each have a child with specification rdy. It is trivially satisfied at µ4 and µ6 as
their local runs have no reception. ⊓⊔

258 L. Guillou, C. Mascle, N. Waldburger

Lemma 16. Given a signature protocol P with a state qf , qf is coverable in P
if and only if there exists an unfolding tree whose root is labelled by a local run
covering qf . We call such an unfolding tree a coverability witness.

Proof. Given a run ρ, agent a satisfies a specification w ∈ M∗ in ρ if the sequence
of message types broadcast by a admits w as subword.

Let τ be a coverability witness. We prove the following property by strong
induction on the depth of µ: for every µ in τ , there exists a run ρ with an agent
a whose local run in ρ is lr(µ) and who satisfies specification spec(µ). This
is trivially true for leaves of τ because their local runs have no reception (by
condition (iii)) hence are actual runs by themselves. Let µ a node of τ , u :=
lr(µ) and v1, . . . , vc the values received in u. These values are non-initial thanks
to condition (i); applying condition (iii) gives the existence of corresponding
children µ1, . . . , µc in τ . We apply the induction hypothesis on the subtrees
rooted in µ1, . . . , µc to obtain runs ρ1, . . . , ρc satisfying the specifications of the
children of µ. Up to renaming agents, we can assume the set of agents of these
runs are disjoint; up to renaming values, we can assume that vj = val(µj) for
all j and that all agents start with distinct values. We build an initial run ρ
whose agents is the union of the agents of the c runs along with a fresh agent
a. In ρ, we make ρ1 to ρc progress in parallel and make a follow the local run
u, matching each reception with value vj in u with a broadcast in ρj . This is
possible because, for all j, Invj (u) ⪯ spec(µj) ⪯ Outvj (ρj) (by (ii)).

Conversely, we prove the following by induction on the length of ρ: for every
initial run ρ, for every agent a in ρ and for every v ∈ N, there exists an unfolding
tree whose root has as local run the projection of ρ onto a and as specification
the v-output of a in ρ. If ρ is the empty run, consider the unfolding tree with a
single node whose local run and specification are empty. Suppose now that ρ has
non-zero length, let a an agent in ρ, v ∈ N and let ρp the prefix run of ρ of length
|ρ| − 1. Let τ1 the unfolding tree obtained by applying the induction hypothesis
to ρp, a and v, and consider τ2 obtained by simply appending the last step of a
in ρ to the local run at the root of τ1. If this last step is a broadcast, we obtain
an unfolding tree; if the broadcast value is v, we append the broadcast message
type to the specification at the root of τ2 and we are done. Suppose that, in the
last step of ρ, a performs a reception (q, rec(m, i, α), q′) of a message (m, v′).
We might need to adapt τ2 to respect condition (iii) at the root. Let a′ the agent
broadcasting in the last step of ρ. Let τ3 the unfolding tree obtained by applying
the induction to ρp, a

′ and v′. Let τ4 the unfolding tree obtained by appending
the last broadcast to the local run at the root of τ3 and the corresponding
message type to the specification at the root of τ3. Attaching τ4 below the root
of τ2 gives an unfolding tree satisfying the desired properties. ⊓⊔

The unfolding tree τ of Figure 3 is built from ρ of Example 15 using the
previous procedure. Observe that the unfolding tree τ is a coverability witness
for q4. However, one can find a smaller coverability witness. Indeed, in the right
branch of τ , µ5 and µ6 have the same specification, therefore µ5 can be deleted
and replaced with µ6. More generally, we would have also been able to shorten
the tree if we had spec(µ5) ⪯ spec(µ6).

Parameterized broadcast networks with registers 259

Remark 17. With the previous notion of coverability witness, the root has to
cover qf but may have an empty specification. However, we will later need the
length of the specification of a node to be equal to the number of tasks that
it must carry out. For this reason, we will, in the rest of this paper, consider
that the roots of coverability witnesses have a specification of length 1. This can
be formally achieved by introducing a new message type mf that may only be
broadcast from qf and require that, at the root, spec = mf .

3.3 Bounding the Size of a Coverability Witness

In all the following, we fix a positive instance (P, qf) ofCover with r+1 registers
(i.e., r registers used for reception) and a coverability witness τ of minimal size.
We turn the observation above into an argument that will be useful towards
bounding the length of branches of a coverability witness:

Lemma 18. If a coverability witness τ for (P, qf) of minimal size has two nodes
µ, µ′ with µ a strict ancestor of µ′ then spec(µ) cannot be a subword of spec(µ′).

Proof. Otherwise, replacing the subtree rooted in µ with the one rooted in µ′

would contradict minimality of τ . ⊓⊔

We would now like to use the Length function theorem to bound the height
of τ , using the previous lemma. To do so, we need a bound on the size of a node
with respect to its depth. The following lemma bounds the number of steps of a
local run between two local configurations: we argue that if the local run is long
enough we can replace it with a shorter one that can be executed using the same
input. This will in turn bound the length of a local run of a node with respect
to the size of its specification, which is the first step towards our goal.

Lemma 19. There exists a primitive recursive function ψ so that, for every local
run u : (q, ν)

∗−→ (q′, ν′), there exists u′ : (q, ν)
∗−→ (q′, ν′) with |u′| < ψ(|P|, r)

and for all value v′ ∈ N, there exists v ∈ N such that Inv′(u
′) ⪯ Inv(u).

Proof. Let ψ(n, 0) = n + 1 and ψ(n, k + 1) = 2ψ(n, k) · (|∆|2ψ(n,k) + 1) + 1
for all k. Observe that ψ(n, k) is a tower of exponentials of height k, which is
primitive-recursive although non-elementary. A register i ≥ 2 is active in a local
run u if u has some ‘ ↓ ’ action on register i. Let u a local run, k the number of
active registers in u, n := |P| and M := ψ(n, k). We prove by induction on the
number k of active registers in u that if |u| ≥ ψ(n, k) then u can be shortened.

If k = 0, any state repetition can be removed. Suppose that |u| > ψ(n, k+1)
and that the set I of active registers of u is such that |I| = k+ 1. If there exists
an infix run of u of length M with only k active registers, we shorten u using the
induction hypothesis. Otherwise, every sequence of M steps in u has a ‘ ↓ ’ on
every register of I. Because |u| > 2M (|∆|2M +1), u contains at least |∆|2M +1
disjoint sequences of length 2M and some s ∈ ∆2M appears twice: in infix run
u1 first, then in infix run u2. We build a shorter run u′ by removing all steps
between u1 and u2 and merging u1 and u2 (see Fig. 4). We need suitable values

260 L. Guillou, C. Mascle, N. Waldburger

Original
local run

reg 2

reg 3

reg 4 v2

v1

‘ ↓ ’ actions

Shortened
local run

reg 2

reg 3

reg 4

s

v′2

m2

m1

fresh
values

v1

s s

Fig. 4: Illustration of the proof of Lemma 19.

for the reception steps in s in the shortened run u′. For a given register i ∈ I, we
would like to pick a ‘ ↓ ’ step on register i in s, use values from u1 before that
step and values from u2 after that step. This would guarantee that all equality
and disequality tests still pass. However, there is an issue if a value v appears in
several registers in u. For example, if v1 = v2 = v in Figure 4, we might interleave
receptions of v on registers 2 and 4: if we had a ext(rec(m1, 2,=), v) in u1 and a
ext(rec(m2, 4,=), v) in u2, we could have m1 before m2 in Inv(u) but m1 after
m2 in Inv(u

′), so that we do not have Inv(u
′) ⪯ Inv(u). We solve this issue by

introducing fresh values between values of u1 and values of u2; because |s| = 2M ,
there is a ‘ ↓ ’ for each register in I in each half of s. In the shortened run u′,
before the first ‘ ↓ ’ on register i (excluded), we use values of u1, and after the
last ‘ ↓ ’ on register i (included), we use values of u2. For every value v appearing
in register i between these two steps in u1, we select a fresh value vf (i.e., a value
that does not appear anywhere in the run) and consistently replace v with vf
(hatched blocks in Fig. 4). With this technique, receptions with values from u1
and receptions with values from u2 cannot get interleaved in u′. Therefore, for
every value that appeared in u, we have Inv(u

′) ⪯ Inv(u). Also, for every fresh
value v′ there is a value v such that Inv′(u

′) ⪯ Inv(u). Moreover, u′ is shorter
than u; we conclude by iterating this shortening procedure. ⊓⊔

Using the previous lemma, we will bound the size of a node in τ with respect
to its specification therefore with respect to its parent’s size. By induction, we
will then obtain a bound depending on the depth, and apply the Length function
theorem to bound the height of the tree.

Lemma 20. For all nodes µ, µ′ in τ :

1. |lr(µ)| ≤ ψ(|P|, r) |spec(µ)|,
2. if µ is the child of µ′, |spec(µ)| ≤ ψ(|P|, r) |spec(µ′)|.

Proof. Thanks to Remark 17, we assume that the specification at the root is of
length 1. For the first item, by minimality of τ , lr(µ) ends with the last broadcast

Parameterized broadcast networks with registers 261

required by spec(µ); we identify in lr(µ) the broadcast steps witnessing spec(µ)
and shorten the local run between these steps using Lemma 19. We thus obtain
|lr(µ)| ≤ ψ(|P|, r) |spec(µ)|, proving 1. For the second item, by minimality of τ ,
|spec(µ)| ≤ maxv∈N |Inv(lr(µ′))| ≤ |lr(µ′)| ≤ ψ(|P|, r) |spec(µ′)|. ⊓⊔

Proposition 21. There exists a function f of class Fω|M|−1 s.t. |τ | ≤ f(|P|).

Proof. Let n := |P|, let r + 1 be the number of registers in P. Thanks to
Lemma 18, for all µ ̸= µ′ in τ with µ ancestor of µ′, spec(µ) is not a sub-
word of spec(µ′). Let µ1, . . . , µm the node appearing in a branch of τ , from
root to leaf. The sequence spec(µ1), . . . , spec(µm) is a bad sequence. For all
i ∈ [1,m], |spec(µi+1)| ≤ ψ(n, r) |spec(µi)| by Lemma 20. By direct induction,
|spec(µi)| is bounded by g(i)(n) where g : n 7→ nψ(n, n) is a primitive recursive
function. Let h of class Fω|M|−1 the function obtained when applying the Length
function theorem on g and M; we have m ≤ h(n).

By immediate induction, thanks to Lemma 20.2, for every node µ at depth d,
|spec(µ)| ≤ ψ(n, r)d+1 which, by Lemma 20.1 and because d ≤ h(n), bounds the
size of every node by h′(n) = ψ(n, n)h(n)+2. By minimality of τ , the number of
children of a node is bounded by the number of values appearing in its local run
hence by h′(n), so the total number of nodes in τ is bounded by h′(n)h(n)+1

and the size of τ by f(n) := h′(n)h(n)+2. Because Fω|M|−1 is closed under
composition with primitive-recursive functions, f is in Fω|M|−1 . ⊓⊔

The previous argument shows that Cover for signature protocols is decidable
and lies in complexity class Fωω . Because the hardness from Proposition 11 holds
for signature protocols, Cover is in fact complete for this complexity class.

We now extend this method to the general case.

4 Coverability Decidability in the General Case

4.1 Generalizing Unfolding Trees

In the general case, a new phenomenon appears: an agent may broadcast a value
that it did not initially have but that it has received and stored. In particular,
an agent starting with value v could broadcast v then require someone else to
make a broadcast with value v as well. For example, in the run described in
Example 4, 1 is initially a value of a1 that a2 receives and rebroadcasts to a1.

We now have two types of specifications. Boss specifications describe the
task of broadcasting with one of its own initial values; this is the specification
we had in signature protocols and, as before, it consists of a word bw ∈ M∗

describing a sequence of message types that should be all broadcast with the
same value. Follower specifications describe the task of broadcasting with a non-
initial value received previously. More precisely, a follower specification is a pair
(fw, fm) ∈ M∗ ×M asking to broadcast a message (fm, v) under the condition
of previously receiving the sequence of message types fw with value v.

262 L. Guillou, C. Mascle, N. Waldburger

A key idea is that, if an agent that had v initially receives some message
(m, v), then intuitively we can isolate a subset of agents that did not have v ini-
tially but that are able to broadcast (m, v) after receiving a sequence of messages
with that value. We can then copy them many times in the spirit of the copycat
principle. Each copy receives the necessary sequence of messages in parallel, and
they then provide us with an unbounded supply of messages (m, v). In short, if
an agent broadcasts (m, v) while not having v as an initial value, then we can
consider that we have an unlimited supply of messages (m, v).

Example 22. Assume that A = {a1, a2, a3} and let v be initial for a1. Consider
an execution where the broadcasts with value v are: a1 broadcasts a · b, then
a2 broadcasts c, then a1 broadcasts a3 then a3 broadcasts b. The follower spec-
ification of a2’s task would be of the form (w, c) where w ⪯ a · b: a2 must be
able to broadcast (c, v) once a · b has been broadcast with value v. By contrast,
a3’s follower specification would be of the form (w · w′, c) where w ⪯ a · b and
w′ ∈ {a, c}∗ is a subword of a3 enriched with as many c as desired, because a2
may be cloned at will. For example, one could have w = b and w′ = c ·a ·c4 ·a ·c2.
This idea is formalized in the full version of the paper with the notion of de-
composition. Using this notion, the previous condition becomes: w · w′ admits
decomposition (a · b, c, a3). ⊓⊔

In our new unfolding trees, a node is either a boss node or a follower node,
depending on its type of specification. A boss node with a boss specification bw
must broadcast that sequence of message types with one of its initial values. A
follower node µ with follower specification (fw, fm) is allowed to receive sequence
of messages fw with value val(µ) (which must be non-initial) without it being
broadcast by its children. Other conditions are similar to the ones for signature
protocols: if µ is a node and v ̸= val(µ) a non-initial value received in its local
run, µ must have a boss child broadcasting this word. Moreover, for each (m, v)
received where v is an initial value of the local run, µ must have a follower child
that is able to broadcast (m, v) after receiving messages sent previously with
value v; the formal statement is more technical because it takes into account the
observation of Example 22. The formal definition of unfolding tree is given in
the full version.

Example 23. Figure 5 depicts the unfolding tree associated to a1 in the run of
Example 4. Follower node µ3 can have a m2 reception that is not matched by its
children because m2 is in fw(µ3). µ1 broadcasts (m2, 1) before receiving (m4, 1)
hence the follower specification of µ3 witnesses broadcast of (m4, 1). ⊓⊔

A coverability witness is again an unfolding tree whose root covers qf (or
broadcasts a message mf , see Remark 17), with the extra condition that the
root is a boss node (a follower node implicitly relies on its parent’s ability to
broadcast).

Proposition 24. An instance of Cover (P, qf) is positive if and only if there
exists a coverability witness for that instance.

Parameterized broadcast networks with registers 263

Boss node µ1 (a1 in ρ)

bw = ε

v = 1

reg 1
reg 2

q0
1

→
int(δb2)

q1
1

→
ext(δr3, 2)

q3
1
2

→
ext(δr4, 1)

q4
1
2

→
int(δb4)

q4
1
2

q0

2

→
ext(δr2, 3)

q2
3
2

→
int(δb3)

q3
3
2

Boss node µ2 (a2)

bw = m3

v = 2

q0 →
ext(δr2, 1)

q2
1

→
int(δb3)

q3
1

→
int(δb4)

q3
1

Follower node µ3 (a2)

fw = m2, fm = m4

v = 1

q0
3

→
int(δb2)

q1
3

Boss node µ4 (a1)

bw = m2

v = 3

Fig. 5: Example of an unfolding tree. δri (resp. δbi) denotes the reception (resp.
broadcast) transition of message mi in the protocol described in Fig. 1. Values
that are never broadcast are omitted and written as ‘ ’.

Proof sketch. The proof is quite similar to the one of Lemma 16, but is made
more technical by the addition of follower nodes. When translating an unfolding
tree to a run, if the root of the tree is a follower node µ of specification (fw, fm),
then we actually obtain a partial run, i.e., a run except that the receptions from
fw are not matched by broadcasts in the run. We then combine this partial run
with the run corresponding to the parent of µ and with the runs of other children
of µ so that every reception is matched with a broadcast. For the translation
from run to tree, we inductively construct the tree by extracting from the run
the agents and values responsible for satisfying the specifications of each node
and analyzing the messages they receive to determine their set of children (as in
Example 22). ⊓⊔

Bounding the Size of the Unfolding Tree. Our aim is again to bound the
size of a minimal coverability witness. In the following, we fix an instance (P, qf)
with r registers and a coverability witness of minimal size. We start by providing
new conditions under which a branch can be shortened; for boss specifications, it
is the condition of Lemma 18 but for follower specifications, the subword relation
goes the opposite direction because the shorter the requirement fw, the better.

Lemma 25. Let µ ̸= µ′ be two nodes of τ such that µ is an ancestor of µ′. If one
of those conditions holds, then τ can be shortened (contradicting its minimality):

– µ and µ′ are boss nodes with boss specifications respectively bw and bw′, and
bw ⪯ bw′;

– µ and µ′ are follower nodes with follower specifications respectively (fw, fm)
and (fw′, fm′), and fw′ ⪯ fw and fm′ = fm.

We can generalize Lemma 19 to bound the size of a node by the number of
messages that it must broadcast times a primitive-recursive function ψ(|P|, r).
The proof is more technical than the one of Lemma 19 but the idea is essentially

264 L. Guillou, C. Mascle, N. Waldburger

altitude

-2

-1

0

1

Boss

Follower

Boss

Boss

Follower

BossBoss

Follower

Follower

Boss

Fig. 6: Rearrangement of a tree. The root is in red, black solid arrows connect
parents to children, blue dashed arrows highlight that long words of messages
are sent upwards.

the same. The formal statement is given below. One can therefore bound the
size of a node with respect to the size of the nodes that it must broadcast to.

Lemma 26. There exists a primitive recursive function ψ such that, for every
protocol P with r registers, for all local runs u0 : (q0, ν0)

∗−→ (q, ν), u : (q, ν)
∗−→

(q′, ν′), uf : (q′, ν′)
∗−→ (qf , νf), there exists a local run u′ : (q, ν)

∗−→ (q′, ν′) with
|u′| ≤ ψ(|P|, r) and for all v′ ∈ N:

1. if v′ appears in u0, u, or uf , Inv′(u
′) ⪯ Inv′(u),

2. otherwise, there exists v ∈ N, not initial in u0, such that Inv′(u
′) ⪯ Inv(u).

It is however now much harder than in the signature case to bound the size of
the coverability witness. Indeed, the broadcasts no longer go only from children
to parents in the unfolding tree. If µp is the parent of µc, then µc broadcasts
to µp if µc is a boss node, but µp broadcasts to µc if µc is a follower node,
in which case µc only broadcasts one message to µp. Therefore, we cannot in
general bound |µp| with respect to |µc| nor |µc| with respect to |µp|, making us
unable to apply the Length function theorem immediately.

This leads us to arrange the unfolding tree so that long broadcast sequences
are sent upwards, using the notion of altitude depicted in Figure 6, formally
defined as follows. The altitude of the root is 0, the altitude of a boss node is the
altitude of its parent minus one, and the altitude of a follower node is the altitude
of its parent plus one. We denote the altitude of µ by alt(µ). This way the nodes
of maximal altitude are the ones that do not need to send long sequences of
messages. We will bound the size of nodes with respect to their altitude, from
the highest to the lowest, and then use the Length function theorem to bound
the maximal and minimal altitudes. We present here a sketch of the proof.

Let altmax ≥ 0 (resp. altmin ≤ 0) denote the maximum (resp. minimum)
altitude in τ . We first bound the size of a node with respect to the difference
between its altitude and altmax.

Parameterized broadcast networks with registers 265

Lemma 27. There is a primitive recursive function f0 such that, for every node
µ of τ , |µ| ≤ f0(|P|+ altmax− alt(µ)).

Proof sketch. We proceed by induction on the altitude, from highest to lowest. A
node of maximal altitude has at most one message to broadcast (a follower node
must broadcast one message to its parent), so its size is bounded by ψ(|P|, r)
by Lemma 26 (applying the Lemma to its local run minus its final step, i.e., the
step making the broadcast to its parent). Let µ be a node of τ whose neighbors
of higher altitude have size bounded by K. We claim that |µ| ≤ (ψ(|P|, r) +
2) (|M| rK +K), with ψ the primitive-recursive function defined in Lemma 26.
The idea is similar to the one for Lemma 20. The neighbors of higher altitude
are the nodes which require sequences of messages from µ. Their size bounds the
number of messages that µ needs to send; we then apply Lemma 26 to bound
the size of the local run of µ. We finally obtain f0 by iteratively applying the
inequality above. ⊓⊔

We now bound altmax and altmin:

Lemma 28. altmax and |altmin| are bounded by a function of class Fω|M| .

Proof sketch. We first bound altmax. Consider a branch of τ that has a node
at altitude altmax. We follow this branch from the root to a node of altitude
altmax: for every j ∈ [1,altmax], let µj be the first node of the branch that
has altitude j. All such nodes are necessarily follower nodes as they are above
their parent. Sequence µaltmax, . . . , µ2, µ1 is so that the ith term is at altitude
altmax − i hence its size is bounded by f0(|P| + i) (Lemma 27). With the
observation of Lemma 25, we retrieve from the follower specifications of this
sequence of nodes a bad sequence and we apply the Length function theorem to
bound altmax. This yields in turn a bound on the size of the root of τ . In order
to bound altmin, we proceed similarly, using boss nodes this time. We follow
a branch from the root to a node of altitude altmin. The sequence of nodes
that are lower than all previous ones yields a sequence of boss specifications,
which is a bad sequence by Lemma 25, and whose growth can be bounded using
Lemma 27 and the bound on altmax. We apply the Length function theorem
to bound |altmin|. ⊓⊔

Once we have bounded altmax and altmin, we can infer a bound on the
size of all nodes (Lemma 27), and then on the length of branches: by minimality,
a branch cannot have two nodes with the same specification. The bound on the
size of the tree then follows from the observation that bounding the size of nodes
of τ also allows to bound their number of children.

We obtain a computable bound (of the class Fωω) on the size of a minimal
coverability witness if it exists. Our decidability procedure computes that bound,
enumerates all trees of size below the bound and checks for each of them whether
it is coverability witness. This yields the main result of this paper:

Theorem 12. Cover for BNRA is decidable and Fωω -complete.

266 L. Guillou, C. Mascle, N. Waldburger

4.2 Undecidability of the target problem

A natural next problem, after Cover, is the target problem (Target). Our
Cover procedure heavily relies on the ability to add agents at no cost. For
Target we need to guarantee that those agents can then reach the target state,
which makes the problem harder. In fact, Target is undecidable, which indicates
that our model lies at the frontier of decidability.

Proposition 29. Target is undecidable for BNRA, even with two registers.

Proof sketch. We simulate a Minsky machine with two counters. As in Propo-
sition 11, each agent starts by storing some other agent’s identifier, called its
“predecessor”. It then only accepts messages from its predecessor. As there are
finitely many agents, there is a cycle in the predecessor graph.

In a cycle, we use the fact that all agents must reach state qf to simulate faith-
fully a run of the machine: agents alternate between receptions and broadcasts
so that, in the end, they have received and sent the same number of messages,
implying that no message has been lost along the cycle. We then simulate the
machine by having an agent (the leader) choose transitions and the other ones
simulate the counter values by memorizing a counter (1 or 2) and a binary value
(0 or 1). For instance, an increment of counter 1 takes the form of a message
propagated in the cycle from the leader until it finds an agent simulating counter
1 and having bit 0. This agent switches to 1 and sends an acknowledgment that
propagates back to the leader. ⊓⊔

5 Cover in 1-BNRA

In this section, we establish the NP-completeness of the restriction of Cover to
BNRA with one register per agent, called 1-BNRA. Here we simply sketch the
key observations that allow us to abstract runs into short witnesses, leading to
an NP algorithm for the problem.

In 1-BNRA, thanks to the copycat principle, any message can be broadcast
with a fresh value, therefore one can always circumvent ‘ ̸=’ tests. In the end,
our main challenge for 1-BNRA is ‘=’ tests upon reception. For this reason, we
look at clusters of agents that share the value in their registers.

Consider a run in which some agent a reaches some state q,; we can duplicate
a many times to have an unlimited supply of agents in state q. Now assume
that, at some point in the run, agent a stored a received value. Consider the
last storing action performed by a: a was in a state q1 and performed transition
(q1, rec(m, 1, ↓), q2) upon reception of a message (m, v). Because we can assume
that we have an unlimited supply of agents in q1 thanks to the copycat principle,
we can make as many agents as we want take transition (q1, rec(m, 1, ↓), q2) at
the same time as a by receiving the same message (m, v). These new agents end
up in q2 with value v, and then follow a along every transition until they all
reach q, still with value v. In summary, because a has stored a value in the run,
we can have an unlimited supply of agents in state q with the same value as a.

Parameterized broadcast networks with registers 267

Following those observations, we define an abstract semantics with abstract
configurations of the form (S, b,K) with S,K ⊆ Q and b ∈ Q ∪ {⊥}. The first
component S is a set of states that we know we can cover (hence we can assume
that there are arbitrarily many agents in all these states). We start with S = {q0}
and try to increase it. To do so, we use the two other components (the gang)
to keep track of the set of agents sharing a value v: b (the boss) is the state of
the agent which had that value at the start, K (the clique) is the set of states
covered by other agents with that value. As mentioned above, we may assume
that every state of K is filled with as many agents with value v as we need. We
will thus define abstract steps which allow to simulate steps of the agents with
the value we are following. When they cover states outside of S, we may add
those to S and reset b to q0 and K to ∅, to then start following another value. We
can bound the length of relevant abstract runs, and thus use them as witnesses
for our NP upper bound.

The NP lower bound follows from a reduction from 3SAT. An agent a sends a
sequence of messages representing a valuation, with its identifier, to other agents
who play the role of an external memory by broadcasting back the valuation.
This then allows a to check the satisfaction of a 3SAT formula.

Theorem 30. The coverability problem for 1-BNRA is NP-complete.

6 Conclusion

We established the decidability (and Fωω -completeness) of the coverability prob-
lem for BNRA, as well as the NP-completeness of the problem for 1-BNRA.
Concerning future work, one may want to push decidability further, for instance
by enriching our protocols with inequality tests, as done in classical models such
as data nets [15]. Reductions of other distributed models to this one are also
being studied.

Acknowledgements. We are grateful to Arnaud Sangnier for encouraging us to
work on BNRA, for the discussions about his work in [10] and for his valuable
advice. We also thank Philippe Schnoebelen for the interesting discussion and
Sylvain Schmitz for the exchange on complexity class Fωω and related topics.

References

1. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of dynamic register
automata. In: 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2014. LIPIcs, vol. 29, pp. 653–665.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014). https://doi.org/10.
4230/LIPIcs.FSTTCS.2014.653

2. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of buffered dynamic
register automata. In: Networked Systems, NETYS 2015. Lecture Notes in Com-
puter Science, vol. 9466, pp. 15–31. Springer (2015). https://doi.org/10.1007/
978-3-319-26850-7_2

268 L. Guillou, C. Mascle, N. Waldburger

https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.1007/978-3-319-26850-7_2
https://doi.org/10.1007/978-3-319-26850-7_2
https://doi.org/10.1007/978-3-319-26850-7_2
https://doi.org/10.1007/978-3-319-26850-7_2

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996). https://doi.org/10.1006/inco.
1996.0053

4. Balasubramanian, A.R., Bertrand, N., Markey, N.: Parameterized verification of
synchronization in constrained reconfigurable broadcast networks. In: Tools and
Algorithms for the Construction and Analysis of Systems, TACAS 2018. Lecture
Notes in Computer Science, vol. 10806, pp. 38–54. Springer (2018). https://doi.
org/10.1007/978-3-319-89963-3_3

5. Balasubramanian, A.R., Guillou, L., Weil-Kennedy, C.: Parameterized anal-
ysis of reconfigurable broadcast networks. In: Foundations of Software Sci-
ence and Computation Structures, FoSSaCS 2022. Lecture Notes in Computer
Science, vol. 13242, pp. 61–80. Springer (2022). https://doi.org/10.1007/

978-3-030-99253-8_4
6. Bollig, B., Ryabinin, F., Sangnier, A.: Reachability in distributed memory au-

tomata. In: Annual Conference on Computer Science Logic, CSL 2021. LIPIcs,
vol. 183, pp. 13:1–13:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.13

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

8. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel
systems. In: Annual IEEE Symposium on Logic in Computer Science, LICS 2008.
pp. 205–216. IEEE Computer Society (2008). https://doi.org/10.1109/LICS.
2008.47

9. Chini, P., Meyer, R., Saivasan, P.: Liveness in broadcast networks. Computing
104(10), 2203–2223 (2022). https://doi.org/10.1007/s00607-021-00986-y

10. Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broadcast
networks of register automata. In: Reachability Problems , RP 2013. Lecture Notes
in Computer Science, vol. 8169, pp. 109–121. Springer (2013). https://doi.org/
10.1007/978-3-642-41036-9_11

11. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in reconfigurable broadcast networks. In: IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2012. LIPIcs, vol. 18, pp. 289–300. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012). https://doi.org/10.4230/LIPIcs.FSTTCS.2012.
289

12. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: CONCUR 2010. Lecture Notes in Computer Science, vol. 6269, pp.
313–327. Springer (2010). https://doi.org/10.1007/978-3-642-15375-4_22

13. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic infinite-
state systems. In: Annual IEEE Symposium on Logic in Computer Science, LICS
1998. pp. 70–80. IEEE Computer Society (1998). https://doi.org/10.1109/

LICS.1998.705644
14. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:

14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-
5, 1999. pp. 352–359. IEEE Computer Society (1999). https://doi.org/10.1109/
LICS.1999.782630

15. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of
timed-arc petri nets, data nets, and other enriched nets. In: Proceedings of the 27th
Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik,
Croatia, June 25-28, 2012. pp. 355–364. IEEE Computer Society (2012). https:
//doi.org/10.1109/LICS.2012.46

Parameterized broadcast networks with registers 269

https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.4230/LIPIcs.CSL.2021.13
https://doi.org/10.4230/LIPIcs.CSL.2021.13
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1007/s00607-021-00986-y
https://doi.org/10.1007/s00607-021-00986-y
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1109/LICS.2012.46

16. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the Lon-
don Mathematical Society s3-2(1), 326–336 (1952). https://doi.org/10.1112/
plms/s3-2.1.326

17. Lasota, S.: Decidability border for petri nets with data: WQO dichotomy conjec-
ture. In: Kordon, F., Moldt, D. (eds.) Application and Theory of Petri Nets and
Concurrency - 37th International Conference, PETRI NETS 2016, Toruń, Poland,
June 19-24, 2016. Proceedings. Lecture Notes in Computer Science, vol. 9698,
pp. 20–36. Springer (2016). https://doi.org/10.1007/978-3-319-39086-4_3,
https://doi.org/10.1007/978-3-319-39086-4_3

18. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
tokens which carry data. Fundam. Informaticae 88(3), 251–274 (2008). https:

//doi.org/10.1007/978-3-540-73094-1_19

19. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA
(1967)

20. Rezine, O.: Verification of networks of communicating processes: Reachability prob-
lems and decidability issues. Ph.D. thesis, Uppsala University, Sweden (2017)

21. Rosa-Velardo, F.: Ordinal recursive complexity of unordered data nets. Information
and Computation 254, 41–58 (2017). https://doi.org/10.1016/j.ic.2017.02.
002

22. Sangnier, A.: Erratum to parameterized verification of broadcast networks of reg-
ister automata (2023), https://www.irif.fr/~sangnier/publications.html

23. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Transactions on
Computation Theory 8(1), 3:1–3:36 (2016). https://doi.org/10.1145/2858784

24. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s
lemma. In: International Colloquium on Automata, Languages and Programming,
ICALP 2011. Lecture Notes in Computer Science, vol. 6756, pp. 441–452. Springer
(2011). https://doi.org/10.1007/978-3-642-22012-8_35

25. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H.C. (eds.) CONCUR 2013 - Concurrency Theory - 24th Interna-
tional Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8052, pp. 5–24. Springer
(2013). https://doi.org/10.1007/978-3-642-40184-8_2

26. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters 83(5), 251–261 (2002). https://doi.org/
10.1016/S0020-0190(01)00337-4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

270 L. Guillou, C. Mascle, N. Waldburger

https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1016/j.ic.2017.02.002
https://doi.org/10.1016/j.ic.2017.02.002
https://doi.org/10.1016/j.ic.2017.02.002
https://doi.org/10.1016/j.ic.2017.02.002
https://www.irif.fr/~sangnier/publications.html
https://doi.org/10.1145/2858784
https://doi.org/10.1145/2858784
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1016/S0020-0190(01)00337-4
http://creativecommons.org/licenses/by/4.0/

Author Index

A
Accattoli, Beniamino II-24
Almagor, Shaull I-191, II-229
Austin, Pete I-79
Avni, Guy II-229

B
Baillot, Patrick II-70
Basold, Henning I-121
Birkmann, Fabian I-144
Blot, Valentin II-3
Bose, Sougata I-79

C
Comer, Jesse II-137
Czerner, Philipp II-116

D
Dafni, Neta I-191
Dal Lago, Ugo II-70
Dowek, Gilles II-3
Doyen, Laurent I-34
Draghici, Andrei II-185

E
Esparza, Javier II-116

F
Frohn, Florian II-206

G
Gaba, Pranshu I-34
Geatti, Luca II-95
Giesl, Jürgen II-206
Goncharov, Sergey II-47
Guha, Shibashis I-34
Guillou, Lucie II-250

H
Haase, Christoph II-185
Hausmann, Daniel I-13, I-55

J
Jacobs, Bart I-101
Jankola, Marek I-234

K
Kassing, Jan-Christoph II-206
Kop, Cynthia II-70
Krasotin, Valentin II-116
Kupferman, Orna I-256

L
Laarman, Alfons I-121
Lancelot, Adrienne II-24
Lehaut, Mathieu I-55
Leroux, Jérôme I-3
Leshkowitz, Ofer I-256

M
Mansutti, Alessio II-95
Mascle, Corto II-250
Milius, Stefan I-144
Montanari, Angelo II-95

P
Piterman, Nir I-13, I-55
Prakash, Aditya I-212

R
Ryzhikov, Andrew II-185

S
Sağlam, Irmak I-13
Samuelson, Richard I-166
Santamaria, Alessio II-47
Saville, Philip II-160
Schmuck, Anne-Kathrin I-13
Schröder, Lutz II-47
Shamash Halevy, Naama I-256
Sinclair-Banks, Henry II-229
Stein, Dario I-166
Strejček, Jan I-234

© The Editor(s) (if applicable) and The Author(s) 2024
N. Kobayashi and J. Worrell (Eds.): FoSSaCS 2024, LNCS 14575, pp. 271–272, 2024.
https://doi.org/10.1007/978-3-031-57231-9

https://doi.org/10.1007/978-3-031-57231-9

272 Author Index

T
ten Cate, Balder II-137
Totzke, Patrick I-79
Traversié, Thomas II-3
Tsampas, Stelios II-47

U
Urbat, Henning I-144, II-47

V
Vale, Deivid II-70
Villoria, Alejandro I-121

W
Waldburger, Nicolas II-250
Winterhalter, Théo II-3

Y
Yeshurun, Asaf II-229

	ETAPS Foreword
	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Types and Programming Languages
	From Rewrite Rules to Axioms in the λΠ-Calculus Modulo Theory
	Light Genericity
	Logical Predicates in Higher-Order Mathematical Operational Semantics
	Introduction
	Preliminaries
	Category Theory
	Higher-Order Abstract GSOS

	Coalgebraic Logical Predicates
	Predicate Lifting
	Logical Predicates via Lifted Bifunctors
	Constructing Logical Predicates

	Logical Predicates and Higher-Order Abstract GSOS
	Relatively Flat Higher-Order GSOS Laws
	Lambda-Laws

	Strong Normalization for Deterministic Systems, Abstractly
	Conclusion and Future Work

	On Basic Feasible Functionals and the Interpretation Method
	Logic and Proofs
	Succinctness of Cosafety Fragments of LTL via Combinatorial Proof Systems
	A Resolution-Based Interactive Proof System for UNSAT
	Craig Interpolation for Decidable First-Order Fragments
	Clones, closed categories, and combinatory logic

	Infinite-State Systems
	Reachability in Fixed VASS: Expressiveness and Lower Bounds
	From Innermost to Full Almost-Sure Termination of Probabilistic Term Rewriting
	Dimension-Minimality and Primality of Counter Nets
	Parameterized Broadcast Networks with Registers: from NP to the Frontiers of Decidability
	Author Index

